WorldWideScience

Sample records for catalytic dynamic resolution

  1. Catalytic Kinetic Resolution of Biaryl Compounds.

    Science.gov (United States)

    Ma, Gaoyuan; Sibi, Mukund P

    2015-08-10

    Biaryl compounds with axial chirality are very common in synthetic chemistry, especially in catalysis. Axially chiral biaryls are important due to their biological activities and extensive applications in asymmetric catalysis. Thus the development of efficient enantioselective methods for their synthesis has attracted considerable attention. This Minireview discusses the progress made in catalytic kinetic resolution of biaryl compounds and chronicles significant advances made recently in catalytic kinetic resolution of biaryl scaffolds. © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Spectromicroscopy of catalytic relevant processes with sub-micron resolution

    International Nuclear Information System (INIS)

    Guenther, S.; Esch, F.; Gregoratti, L.; Marsi, M.; Kiskinova, M.; Schubert, U. A.; Grotz, P.; Knoezinger, H.; Taglauer, E.; Schuetz, E.; Schaak, A.; Imbihl, R.

    2000-01-01

    The capabilities of the Scanning Photo Electron Microscope (SPEM) at ELETTRA as a unique probing tool in the field of catalysis and surface science are illustrated presenting results of two recent investigations. The lateral resolution and the high surface sensitivity of the SPEM has enabled imaging the initial steps of the spreading processes of MoO 3 crystals on an alumina support surface, a model system of a catalyst used in petrochemistry. In the second study the local adsorbate coverage inside a pulse of a chemical wave occurring in the catalytic NO+H 2 reaction on a Rh(110) single crystal surface has been determined. The microscope was used to monitor the sample surface in situ during the reaction and thus characterizing a temporal and spatial inhomogeneous system. The so-called excitation cycle of the pulse formation has been verified and the adsorbate gradient inside a chemical wave was measured

  3. Detectors for high resolution dynamic pet

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Budinger, T.F.; Huesman, R.H.

    1983-05-01

    This report reviews the motivation for high spatial resolution in dynamic positron emission tomography of the head and the technical problems in realizing this objective. We present recent progress in using small silicon photodiodes to measure the energy deposited by 511 keV photons in small BGO crystals with an energy resolution of 9.4% full-width at half-maximum. In conjunction with a suitable phototube coupled to a group of crystals, the photodiode signal to noise ratio is sufficient for the identification of individual crystals both for conventional and time-of-flight positron tomography

  4. Dynamic high resolution imaging of rats

    International Nuclear Information System (INIS)

    Miyaoka, R.S.; Lewellen, T.K.; Bice, A.N.

    1990-01-01

    A positron emission tomography with the sensitivity and resolution to do dynamic imaging of rats would be an invaluable tool for biological researchers. In this paper, the authors determine the biological criteria for dynamic positron emission imaging of rats. To be useful, 3 mm isotropic resolution and 2-3 second time binning were necessary characteristics for such a dedicated tomograph. A single plane in which two objects of interest could be imaged simultaneously was considered acceptable. Multi-layered detector designs were evaluated as a possible solution to the dynamic imaging and high resolution imaging requirements. The University of Washington photon history generator was used to generate data to investigate a tomograph's sensitivity to true, scattered and random coincidences for varying detector ring diameters. Intrinsic spatial uniformity advantages of multi-layered detector designs over conventional detector designs were investigated using a Monte Carlo program. As a result, a modular three layered detector prototype is being developed. A module will consist of a layer of five 3.5 mm wide crystals and two layers of six 2.5 mm wide crystals. The authors believe adequate sampling can be achieved with a stationary detector system using these modules. Economical crystal decoding strategies have been investigated and simulations have been run to investigate optimum light channeling methods for block decoding strategies. An analog block decoding method has been proposed and will be experimentally evaluated to determine whether it can provide the desired performance

  5. A Dynamic Supramolecular System Exhibiting Substrate Selectivity in the Catalytic Epoxidation of Olefins

    DEFF Research Database (Denmark)

    Jonsson, Stefan; Odille, Fabrice G. J.; Norrby, Per-Ola

    2005-01-01

    A dynamic supramolecular system involving hydrogen bonding between a Mn(III) salen catalyst and a Zn(II) porphyrin receptor exhibits selectivity for pyridine appended cis-beta-substituted styrene derivatives over phenyl appended derivatives in a catalytic epoxidation reaction.......A dynamic supramolecular system involving hydrogen bonding between a Mn(III) salen catalyst and a Zn(II) porphyrin receptor exhibits selectivity for pyridine appended cis-beta-substituted styrene derivatives over phenyl appended derivatives in a catalytic epoxidation reaction....

  6. A quartz-based micro catalytic methane sensor by high resolution screen printing

    Science.gov (United States)

    Lu, Wenshuai; Jing, Gaoshan; Bian, Xiaomeng; Yu, Hongyan; Cui, Tianhong

    2016-02-01

    A micro catalytic methane sensor was proposed and fabricated on a bulk fused quartz substrate using a high resolution screen printing technique for the first time, with reduced power consumption and optimized sensitivity. The sensor was designed by the finite element method and quartz was chosen as the substrate material and alumina support with optimized dimensions. Fabrication of the sensor consisted of two MEMS processes, lift-off and high resolution screen printing, with the advantages of high yield and uniformity. When the sensor’s regional working temperature changes from 250 °C to 470 °C, its sensitivity increases, as well as the power consumption. The highest sensitivity can reach 1.52 mV/% CH4. A temperature of 300 °C was chosen as the optimized working temperature, and the sensor’s sensitivity, power consumption, nonlinearity and response time are 0.77 mV/% CH4, 415 mW, 2.6%, and 35 s, respectively. This simple, but highly uniform fabrication process and the reliable performance of this sensor may lead to wide applications for methane detection.

  7. A quartz-based micro catalytic methane sensor by high resolution screen printing

    International Nuclear Information System (INIS)

    Lu, Wenshuai; Jing, Gaoshan; Bian, Xiaomeng; Yu, Hongyan; Cui, Tianhong

    2016-01-01

    A micro catalytic methane sensor was proposed and fabricated on a bulk fused quartz substrate using a high resolution screen printing technique for the first time, with reduced power consumption and optimized sensitivity. The sensor was designed by the finite element method and quartz was chosen as the substrate material and alumina support with optimized dimensions. Fabrication of the sensor consisted of two MEMS processes, lift-off and high resolution screen printing, with the advantages of high yield and uniformity. When the sensor’s regional working temperature changes from 250 °C to 470 °C, its sensitivity increases, as well as the power consumption. The highest sensitivity can reach 1.52 mV/% CH 4 . A temperature of 300 °C was chosen as the optimized working temperature, and the sensor’s sensitivity, power consumption, nonlinearity and response time are 0.77 mV/% CH 4 , 415 mW, 2.6%, and 35 s, respectively. This simple, but highly uniform fabrication process and the reliable performance of this sensor may lead to wide applications for methane detection. (paper)

  8. Crystal structure of the catalytic subunit of protein kinase CK2 from Zea mays at 2.1 A resolution

    DEFF Research Database (Denmark)

    Niefind, K; Guerra, B; Pinna, L A

    1998-01-01

    CK2alpha is the catalytic subunit of protein kinase CK2, an acidophilic and constitutively active eukaryotic Ser/Thr kinase involved in cell proliferation. A crystal structure, at 2.1 A resolution, of recombinant maize CK2alpha (rmCK2alpha) in the presence of ATP and Mg2+, shows the enzyme in an ...

  9. Triangular Diagrams Teach Steady and Dynamic Behaviour of Catalytic Reactions.

    Science.gov (United States)

    Klusacek, K.; And Others

    1989-01-01

    Illustrates how triangular diagrams can aid in presenting some of the rather complex transient interactions that occur among gas and surface species during heterogeneous catalytic reactions. The basic equations and numerical examples are described. Classroom use of the triangular diagram is discussed. Several diagrams and graphs are provided. (YP)

  10. Catalytic properties and dynamic behaviour of uranium complexes

    International Nuclear Information System (INIS)

    Le Marechal, J.F.

    1986-01-01

    The catalytic properties of organometallic uranium III and IV compounds in solution as well as reaction mechanisms are studied. The structure in solution of CpUCl 3 L 2 (L=THF, HMPA, OPPh 3 , OP(OR) 3 ) is investigated. When L=HMPA, the complex exists in two isomers in equilibrium with the L ligands either in trans or mer-cis configuration. The isomerization (Ea=92 kJ mol -1 ) as well as the bimolecular exchange with an outer sphere ligand L are observable in 1 H and 31 P NMR, and quantified with the spin saturation transfer technique in several solvents and at different temperatures between 230 and 330 K. This property is extended to other ligands. The compound U(AlH 4 ) 3 is synthetized. This compound catalyses the hydroalumination of olefins by LiAlH 4 with a very good anti-Markovnikov regioselectivity. A simple mechanism for this reaction is suggested. The reactions of the organoaluminates products with several reactants (D 2 O, I 2 , CH 2 O, Allyl-Br...) has been shown to be a powerful synthetic tool. Some specific alkenes and alkynes exhibit an interesting behaviour as dimerization or β-alkyl elimination which is easily interpreted by our mechanism [fr

  11. Dynamics of High-Resolution Networks

    DEFF Research Database (Denmark)

    Sekara, Vedran

    the unprecedented amounts of information collected by mobile phones to gain detailed insight into the dynamics of social systems. This dissertation presents an unparalleled data collection campaign, collecting highly detailed traces for approximately 1000 people over the course of multiple years. The availability...... are we all affected by an ever changing network structure? Answering these questions will enrich our understanding of ourselves, our organizations, and our societies. Yet, mapping the dynamics of social networks has traditionally been an arduous undertaking. Today, however, it is possible to use...... of such dynamic maps allows us to probe the underlying social network and understand how individuals interact and form lasting friendships. More importantly, these highly detailed dynamic maps provide us new perspectives at traditional problems and allow us to quantify and predict human life....

  12. Dynamics and mechanisms of catalytic processes and hot chemistry. Final report, March 1, 1972-October 31, 1984

    International Nuclear Information System (INIS)

    Spicer, L.D.

    1984-10-01

    General areas of research addressed are recoil chemistry of halogens, tritium, and sulfur, radiotracer methods for studies of chemical dynamics, thermal and photochemistry of sulfur dioxide, and photochemistry and photoassistance in catalytic systems

  13. Dynamics of catalytic tubular microjet engines: dependence on geometry and chemical environment.

    Science.gov (United States)

    Li, Jinxing; Huang, Gaoshan; Ye, Mengmeng; Li, Menglin; Liu, Ran; Mei, Yongfeng

    2011-12-01

    Strain-engineered tubular microjet engines with various geometric dimensions hold interesting autonomous motions in an aqueous fuel solution when propelled by catalytic decomposition of hydrogen peroxide to oxygen and water. The catalytically-generated oxygen bubbles expelled from microtubular cavities propel the microjet step by step in discrete increments. We focus on the dynamics of our tubular microjets in one step and build up a body deformation model to elucidate the interaction between tubular microjets and the bubbles they produce. The average microjet velocity is calculated analytically based on our model and the obtained results demonstrate that the velocity of the microjet increases linearly with the concentration of hydrogen peroxide. The geometric dimensions of the microjet, such as length and radius, also influence its dynamic characteristics significantly. A close consistency between experimental and calculated results is achieved despite a small deviation due to the existence of an approximation in the model. The results presented in this work improve our understanding regarding catalytic motions of tubular microjets and demonstrate the controllability of the microjet which may have potential applications in drug delivery and biology.

  14. Merging Iron Catalysis and Biocatalysis-Iron Carbonyl Complexes as Efficient Hydrogen Autotransfer Catalysts in Dynamic Kinetic Resolutions

    KAUST Repository

    El-Sepelgy, Osama

    2016-09-29

    A dual catalytic iron/lipase system has been developed and applied in the dynamic kinetic resolution of benzylic and aliphatic secondary alcohols. A detailed study of the Knölker-type iron complexes demonstrated the hydrogen autotransfer of alcohols to proceed under mild reaction conditions and allowed the combination with the enzymatic resolution. Different racemic alcohols were efficiently converted to chiral acetates in good yields and with excellent enantioselectivities. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  15. Merging Iron Catalysis and Biocatalysis-Iron Carbonyl Complexes as Efficient Hydrogen Autotransfer Catalysts in Dynamic Kinetic Resolutions

    KAUST Repository

    El-Sepelgy, Osama; Alandini, Nurtalya; Rueping, Magnus

    2016-01-01

    A dual catalytic iron/lipase system has been developed and applied in the dynamic kinetic resolution of benzylic and aliphatic secondary alcohols. A detailed study of the Knölker-type iron complexes demonstrated the hydrogen autotransfer of alcohols to proceed under mild reaction conditions and allowed the combination with the enzymatic resolution. Different racemic alcohols were efficiently converted to chiral acetates in good yields and with excellent enantioselectivities. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  16. Dynamic simulation of pure hydrogen production via ethanol steam reforming in a catalytic membrane reactor

    International Nuclear Information System (INIS)

    Hedayati, Ali; Le Corre, Olivier; Lacarrière, Bruno; Llorca, Jordi

    2016-01-01

    Ethanol steam reforming (ESR) was performed over Pd-Rh/CeO 2 catalyst in a catalytic membrane reactor (CMR) as a reformer unit for production of fuel cell grade pure hydrogen. Experiments were performed at 923 K, 6–10 bar, and fuel flow rates of 50–200 μl/min using a mixture of ethanol and distilled water with steam to carbon ratio of 3. A static model for the catalytic zone was derived from the Arrhenius law to calculate the total molar production rates of ESR products, i.e. CO, CO 2 , CH 4 , H 2 , and H 2 O in the catalytic zone of the CMR (coefficient of determination R 2  = 0.993). The pure hydrogen production rate at steady state conditions was modeled by means of a static model based on the Sieverts' law. Finally, a dynamic model was developed under ideal gas law assumptions to simulate the dynamics of pure hydrogen production rate in the case of the fuel flow rate or the operating pressure set point adjustment (transient state) at isothermal conditions. The simulation of fuel flow rate change dynamics was more essential compared to the pressure change one, as the system responded much faster to such an adjustment. The results of the dynamic simulation fitted very well to the experimental values at P = 7–10 bar, which proved the robustness of the simulation based on the Sieverts' law. The simulation presented in this work is similar to the hydrogen flow rate adjustments needed to set the electrical load of a fuel cell, when fed online by the pure hydrogen generating reformer studied. - Highlights: • Ethanol steam reforming (ESR) experiments were performed in a Pd-Ag membrane reactor. • The model of the catalytic zone of the reactor was derived from the Arrhenius law. • The permeation zone (membrane) was modeled based on the Sieverts' law. • The Sieverts' law model showed good results for the range of P = 7–10 bar. • Pressure and fuel flow rate adjustments were considered for dynamic simulation.

  17. CATALYTIC KINETIC RESOLUTION OF 5-ALKOXY-2(5H)-FURANONES

    OpenAIRE

    FABER, WS; Kok, Johan C; DELANGE, B; FERINGA, BL; Faber, Wijnand S.; Lange, Ben de; Feringa, Bernard

    1994-01-01

    The kinetic resolution of racemic 5-alkoxy-2(5H)-furanones, using a chiral aminoalcohol catalyzed 1-4-addition of arylthiols, was examined. Using various butenolides it was shown that a gamma-alkoxy substituent appears to be essential to reach high enantioselectivities whereas electron-donating substituents in the arylthiols also increase the selectivity. Cinchona alkaloids are the preferred catalysts for the kinetic resolution, with quinine and quinidine leading to the most efficient and sel...

  18. Dynamic\tmodelling of catalytic three-phase reactors for hydrogenation and oxidation processes

    Directory of Open Access Journals (Sweden)

    Salmi T.

    2000-01-01

    Full Text Available The dynamic modelling principles for typical catalytic three-phase reactors, batch autoclaves and fixed (trickle beds were described. The models consist of balance equations for the catalyst particles as well as for the bulk phases of gas and liquid. Rate equations, transport models and mass balances were coupled to generalized heterogeneous models which were solved with respect to time and space with algorithms suitable for stiff differential equations. The aspects of numerical solution strategies were discussed and the procedure was illustrated with three case studies: hydrogenation of aromatics, hydrogenation of aldehydes and oxidation of ferrosulphate. The case studies revealed the importance of mass transfer resistance inside the catalyst pallets as well as the dynamics of the different phases being present in the reactor. Reliable three-phase reactor simulation and scale-up should be based on dynamic heterogeneous models.

  19. CATALYTIC KINETIC RESOLUTION OF 5-ALKOXY-2(5H)-FURANONES

    NARCIS (Netherlands)

    FABER, WS; Kok, Johan C; DELANGE, B; FERINGA, BL; Faber, Wijnand S.; Lange, Ben de; Feringa, Bernard

    1994-01-01

    The kinetic resolution of racemic 5-alkoxy-2(5H)-furanones, using a chiral aminoalcohol catalyzed 1-4-addition of arylthiols, was examined. Using various butenolides it was shown that a gamma-alkoxy substituent appears to be essential to reach high enantioselectivities whereas electron-donating

  20. Conformational flexibility in the catalytic triad revealed by the high-resolution crystal structure of Streptomyces erythraeus trypsin in an unliganded state

    Energy Technology Data Exchange (ETDEWEB)

    Blankenship, Elise; Vukoti, Krishna [Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States); Miyagi, Masaru, E-mail: mxm356@cwru.edu [Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States); Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States); Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States); Lodowski, David T., E-mail: mxm356@cwru.edu [Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States); Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States)

    2014-03-01

    This work reports the first sub-angstrom resolution structure of S. erythraeus trypsin. The detailed model of a prototypical serine protease at a catalytically relevant pH with an unoccupied active site is presented and is compared with other high-resolution serine protease structures. With more than 500 crystal structures determined, serine proteases make up greater than one-third of all proteases structurally examined to date, making them among the best biochemically and structurally characterized enzymes. Despite the numerous crystallographic and biochemical studies of trypsin and related serine proteases, there are still considerable shortcomings in the understanding of their catalytic mechanism. Streptomyces erythraeus trypsin (SET) does not exhibit autolysis and crystallizes readily at physiological pH; hence, it is well suited for structural studies aimed at extending the understanding of the catalytic mechanism of serine proteases. While X-ray crystallographic structures of this enzyme have been reported, no coordinates have ever been made available in the Protein Data Bank. Based on this, and observations on the extreme stability and unique properties of this particular trypsin, it was decided to crystallize it and determine its structure. Here, the first sub-angstrom resolution structure of an unmodified, unliganded trypsin crystallized at physiological pH is reported. Detailed structural analysis reveals the geometry and structural rigidity of the catalytic triad in the unoccupied active site and comparison to related serine proteases provides a context for interpretation of biochemical studies of catalytic mechanism and activity.

  1. Conformational flexibility in the catalytic triad revealed by the high-resolution crystal structure of Streptomyces erythraeus trypsin in an unliganded state

    International Nuclear Information System (INIS)

    Blankenship, Elise; Vukoti, Krishna; Miyagi, Masaru; Lodowski, David T.

    2014-01-01

    This work reports the first sub-angstrom resolution structure of S. erythraeus trypsin. The detailed model of a prototypical serine protease at a catalytically relevant pH with an unoccupied active site is presented and is compared with other high-resolution serine protease structures. With more than 500 crystal structures determined, serine proteases make up greater than one-third of all proteases structurally examined to date, making them among the best biochemically and structurally characterized enzymes. Despite the numerous crystallographic and biochemical studies of trypsin and related serine proteases, there are still considerable shortcomings in the understanding of their catalytic mechanism. Streptomyces erythraeus trypsin (SET) does not exhibit autolysis and crystallizes readily at physiological pH; hence, it is well suited for structural studies aimed at extending the understanding of the catalytic mechanism of serine proteases. While X-ray crystallographic structures of this enzyme have been reported, no coordinates have ever been made available in the Protein Data Bank. Based on this, and observations on the extreme stability and unique properties of this particular trypsin, it was decided to crystallize it and determine its structure. Here, the first sub-angstrom resolution structure of an unmodified, unliganded trypsin crystallized at physiological pH is reported. Detailed structural analysis reveals the geometry and structural rigidity of the catalytic triad in the unoccupied active site and comparison to related serine proteases provides a context for interpretation of biochemical studies of catalytic mechanism and activity

  2. Dynamic kinetic resolution of biaryl atropisomers by chiral dialkylaminopyridine catalysts.

    Science.gov (United States)

    Ma, Gaoyuan; Deng, Chao; Deng, Jun; Sibi, Mukund P

    2018-05-02

    The acylative dynamic kinetic resolution (DKR) of configurationally unstable biaryl atropisomers is achieved by using newly developed chiral dialkylaminopyridine catalysts with fluxional chirality. Various types of biaryl substrates containing phenolic structures were subjected to the DKR to obtain a range of acylated biaryl products with enantiomeric ratios up to 90 : 10.

  3. Relevance and bio-catalytic strategies for the kinetic resolution of ketoprofen towards dexketoprofen.

    Science.gov (United States)

    Toledo, María Victoria; Briand, Laura Estefanía

    2017-11-10

    This review presents the most relevant investigations concerning the biocatalytic kinetic resolution of racemic ketoprofen to dexketoprofen for the last 22 years. The advantages related to the administration of the dex-enantiomer in terms of human health, the so called "chiral switch" in the pharmaceutical industry and the sustainability of biotransformations have been the driving forces to develop innovative technology to obtain dexketoprofen. In particular, the kinetic resolution of racemic ketoprofen through enantiomeric esterification and hydrolysis using lipases as biocatalysts are thoroughly revised and commented upon. In this context, the biocatalysts, acyl-acceptors (alcohols), reaction conditions, conversion, enantiomeric excess, and enantiomeric ratio among others are discussed. Moreover, the investigations concerning scaling up processes in order to obtain an optically pure enantiomer of the profen are presented. Finally, some guidelines about perspectives of the technology and research opportunities are given.

  4. Dynamic simulation of industrial Fluidized-bed Catalytic Cracking - FCC unit

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, Argimiro R.; Neumann, Gustavo A.; Trierweiler, Jorge O. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Dept. de Engenharia Quimica]. E-mail: arge@enq.ufrgs.br; gneumann@enq.ufrgs.br; jorge@enq.ufrgs.br; Santos, Marlova G. [PETROBRAS S.A., Canoas, RS (Brazil). Refinaria Alberto Pasqualini]. E-mail: marlova@petrobras.com.br

    2000-07-01

    In this work a mathematical model for the dynamic simulation of the Fluidized-bed Catalytic Cracking (FCC) Reactor, to be used in the analysis, control, and optimization of this system is developed. Based on the full range of published data in FCC performance and kinetic rates, and adapted to the industrial unit of the PETROBRAS' Alberto Pasqualini Refinery (REFAP), an integrated dynamic model is build up. The model is sufficiently complex to capture the major dynamics effects that occur in this system. The regenerator is modeled as emulsion and bubble phases that exchange mass and heat. The riser is modeled as an adiabatic plug flow reactor. The fluid dynamic is taking into account for the catalyst circulation, and the dynamics of the gas phase and the riser are also considered into the model. The model, represented by a non-linear system of differential-algebraic equations, was written in language C and implemented in MATLAB/SIMULINK. The results are compared with the data obtained from the industrial plant of REFAP. (author)

  5. Molecular dynamics characterization of five pathogenic factor X mutants associated with decreased catalytic activity

    KAUST Repository

    Abdel-Azeim, Safwat

    2014-11-11

    Factor X (FX) is one of the major players in the blood coagulation cascade. Upon activation to FXa, it converts prothrombin to thrombin, which in turn converts fibrinogen into fibrin (blood clots). FXa deficiency causes hemostasis defects, such as intracranial bleeding, hemathrosis, and gastrointestinal blood loss. Herein, we have analyzed a pool of pathogenic mutations, located in the FXa catalytic domain and directly associated with defects in enzyme catalytic activity. Using chymotrypsinogen numbering, they correspond to D102N, T135M, V160A, G184S, and G197D. Molecular dynamics simulations were performed for 1.68 μs on the wild-type and mutated forms of FXa. Overall, our analysis shows that four of the five mutants considered, D102N, T135M, V160A, and G184S, have rigidities higher than those of the wild type, in terms of both overall protein motion and, specifically, subpocket S4 flexibility, while S1 is rather insensitive to the mutation. This acquired rigidity can clearly impact the substrate recognition of the mutants.

  6. Molecular dynamics characterization of five pathogenic factor X mutants associated with decreased catalytic activity

    KAUST Repository

    Abdel-Azeim, Safwat; Oliva, Romina M.; Chermak, Edrisse; De Cristofaro, Raimondo; Cavallo, Luigi

    2014-01-01

    Factor X (FX) is one of the major players in the blood coagulation cascade. Upon activation to FXa, it converts prothrombin to thrombin, which in turn converts fibrinogen into fibrin (blood clots). FXa deficiency causes hemostasis defects, such as intracranial bleeding, hemathrosis, and gastrointestinal blood loss. Herein, we have analyzed a pool of pathogenic mutations, located in the FXa catalytic domain and directly associated with defects in enzyme catalytic activity. Using chymotrypsinogen numbering, they correspond to D102N, T135M, V160A, G184S, and G197D. Molecular dynamics simulations were performed for 1.68 μs on the wild-type and mutated forms of FXa. Overall, our analysis shows that four of the five mutants considered, D102N, T135M, V160A, and G184S, have rigidities higher than those of the wild type, in terms of both overall protein motion and, specifically, subpocket S4 flexibility, while S1 is rather insensitive to the mutation. This acquired rigidity can clearly impact the substrate recognition of the mutants.

  7. The effect of oxygen storage capacity on the dynamic characteristics of an automotive catalytic converter

    International Nuclear Information System (INIS)

    Shamim, Tariq

    2008-01-01

    Automotive catalytic converters, which are employed to reduce engine exhaust emissions, are subjected to highly transient conditions during a typical driving cycle. These transient conditions arise from changes in driving mode, the hysteresis and flow lags of the feedback control system, and result in fluctuations of air-fuel ratio, exhaust gas flow rates and temperatures. The catalyst performance is also strongly influenced by the oxygen storage capacity. This paper presents a computational investigation of the effect of oxygen storage capacity on the dynamic behavior of an automotive catalytic converter subjected to modulations in exhaust gases. The modulations are generated by forcing the temporal variations in exhaust gases air-fuel ratio, gas flow rates and temperatures. The study employs a single-channel based, one-dimensional, non-adiabatic model. The results show that the imposed modulations cause a significant departure in the catalyst behavior from its steady behavior, and the oxygen storage capacity plays an important role in determining the catalyst's response to the imposed modulations. Modulations and oxygen storage capacity are found to have relatively greater influence on the catalyst's performance near stoichiometric conditions

  8. The effect of oxygen storage capacity on the dynamic characteristics of an automotive catalytic converter

    Energy Technology Data Exchange (ETDEWEB)

    Shamim, Tariq [Department of Mechanical Engineering, The University of Michigan-Dearborn, Dearborn, MI 48128-2406 (United States)

    2008-11-15

    Automotive catalytic converters, which are employed to reduce engine exhaust emissions, are subjected to highly transient conditions during a typical driving cycle. These transient conditions arise from changes in driving mode, the hysteresis and flow lags of the feedback control system, and result in fluctuations of air-fuel ratio, exhaust gas flow rates and temperatures. The catalyst performance is also strongly influenced by the oxygen storage capacity. This paper presents a computational investigation of the effect of oxygen storage capacity on the dynamic behavior of an automotive catalytic converter subjected to modulations in exhaust gases. The modulations are generated by forcing the temporal variations in exhaust gases air-fuel ratio, gas flow rates and temperatures. The study employs a single-channel based, one-dimensional, non-adiabatic model. The results show that the imposed modulations cause a significant departure in the catalyst behavior from its steady behavior, and the oxygen storage capacity plays an important role in determining the catalyst's response to the imposed modulations. Modulations and oxygen storage capacity are found to have relatively greater influence on the catalyst's performance near stoichiometric conditions. (author)

  9. Detectors for high resolution dynamic positron emission tomography

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Budinger, T.F.; Huesman, R.H.

    1985-01-01

    Tomography is the technique of producing a photographic image of an opaque specimen by transmitting a beam of x-rays or gamma rays through the specimen onto an adjacent photographic film. The image results from variations in thickness, density, and chemical composition, of the specimen. This technique is used to study the metabolism of the human brain. This article examines the design of equipment used for high resolution dynamic positron emission tomography. 27 references, 5 figures, 3 tables

  10. Hydrodynamics in adaptive resolution particle simulations: Multiparticle collision dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Alekseeva, Uliana, E-mail: Alekseeva@itc.rwth-aachen.de [Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation (IAS), Forschungszentrum Jülich, D-52425 Jülich (Germany); German Research School for Simulation Sciences (GRS), Forschungszentrum Jülich, D-52425 Jülich (Germany); Winkler, Roland G., E-mail: r.winkler@fz-juelich.de [Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation (IAS), Forschungszentrum Jülich, D-52425 Jülich (Germany); Sutmann, Godehard, E-mail: g.sutmann@fz-juelich.de [Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation (IAS), Forschungszentrum Jülich, D-52425 Jülich (Germany); ICAMS, Ruhr-University Bochum, D-44801 Bochum (Germany)

    2016-06-01

    A new adaptive resolution technique for particle-based multi-level simulations of fluids is presented. In the approach, the representation of fluid and solvent particles is changed on the fly between an atomistic and a coarse-grained description. The present approach is based on a hybrid coupling of the multiparticle collision dynamics (MPC) method and molecular dynamics (MD), thereby coupling stochastic and deterministic particle-based methods. Hydrodynamics is examined by calculating velocity and current correlation functions for various mixed and coupled systems. We demonstrate that hydrodynamic properties of the mixed fluid are conserved by a suitable coupling of the two particle methods, and that the simulation results agree well with theoretical expectations.

  11. Dynamic Raman imaging system with high spatial and temporal resolution

    Science.gov (United States)

    Wang, Lei; Dai, Yinzhen; He, Hao; Lv, Ruiqi; Zong, Cheng; Ren, Bin

    2017-09-01

    There is an increasing need to study dynamic changing systems with significantly high spatial and temporal resolutions. In this work, we integrated point-scanning, line-scanning, and wide-field Raman imaging techniques into a single system. By using an Electron Multiplying CCD (EMCCD) with a high gain and high frame rate, we significantly reduced the time required for wide-field imaging, making it possible to monitor the electrochemical reactions in situ. The highest frame rate of EMCDD was ˜50 fps, and the Raman images for a specific Raman peak can be obtained by passing the signal from the sample through the Liquid Crystal Tunable Filter. The spatial resolutions of scanning imaging and wide-field imaging with a 100× objective (NA = 0.9) are 0.5 × 0.5 μm2 and 0.36 × 0.36 μm2, respectively. The system was used to study the surface plasmon resonance of Au nanorods, the surface-enhanced Raman scattering signal distribution for Au Nanoparticle aggregates, and dynamic Raman imaging of an electrochemical reacting system.

  12. The effect of oxygen storage capacity on the dynamic characteristics of an automotive catalytic converter

    Energy Technology Data Exchange (ETDEWEB)

    Shamim, T. [Michigan-Dearborn Univ., Dearborn, MI (United states). Dept. of Mechanical Engineering

    2007-07-01

    Automotive catalytic converters that reduce engine exhaust emissions are subject to transient conditions during a typical driving cycle. These conditions arise from changes in driving mode, the hysteresis and flow lags of the feedback control system, and result in fluctuations of air-fuel, exhaust gas flow rates and temperatures. The catalyst performance is also highly influenced by the oxygen storage capacity (OSC). This paper examined the influence of OSC on the catalyst dynamic behavior. The transient conditions were simulated by considering the catalyst subjected to temporal modulation in air-fuel ratio, exhaust gas composition and temperature. The paper presented the mathematical formulation including the development of governing equations. The governing equations were developed by considering the conservation of mass, energy and chemical species. It also presented the results and discussed the effect of sinusoidal modulation in the air-fuel ratio as well as the effect of sinusoidal modulation in exhaust composition. It was concluded that the presence of the OSC sensitivity influenced its response to the imposed modulation. The specific effect was dependent on the operating conditions and the type of the imposed modulations. 10 refs., 1 tab., 3 figs.

  13. Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor

    NARCIS (Netherlands)

    Wang, Jiaobing; Feringa, B.L.

    2011-01-01

    Enzymes and synthetic chiral catalysts have found widespread application to produce single enantiomers, but in situ switching of the chiral preference of a catalytic system is very difficult to achieve. Here, we report on a light-driven molecular motor with integrated catalytic functions in which

  14. Dynamic interplay between catalytic and lectin domains of GalNAc-transferases modulates protein O-glycosylation

    DEFF Research Database (Denmark)

    Lira-Navarrete, Erandi; de Las Rivas, Matilde; Compañón, Ismael

    2015-01-01

    the first crystal structures of complexes of GalNAc-T2 with glycopeptides that together with enhanced sampling molecular dynamics simulations demonstrate a cooperative mechanism by which the lectin domain enables free acceptor sites binding of glycopeptides into the catalytic domain. Atomic force microscopy......Protein O-glycosylation is controlled by polypeptide GalNAc-transferases (GalNAc-Ts) that uniquely feature both a catalytic and lectin domain. The underlying molecular basis of how the lectin domains of GalNAc-Ts contribute to glycopeptide specificity and catalysis remains unclear. Here we present...... and small-angle X-ray scattering experiments further reveal a dynamic conformational landscape of GalNAc-T2 and a prominent role of compact structures that are both required for efficient catalysis. Our model indicates that the activity profile of GalNAc-T2 is dictated by conformational heterogeneity...

  15. Millisecond dynamics in glutaredoxin during catalytic turnover is dependent on substrate binding and absent in the resting states

    DEFF Research Database (Denmark)

    Jensen, Kristine Steen; Winther, Jakob R; Teilum, Kaare

    2011-01-01

    to the glutathione exchange rate was observed for 23 residues. Binding of reduced glutathione resulted in competitive inhibition of the reduced enzyme having kinetics similar to that of the reaction. This observation couples the motions observed during catalysis directly to substrate binding. Backbone motions......Conformational dynamics is important for enzyme function. Which motions of enzymes determine catalytic efficiency and whether the same motions are important for all enzymes, however, are not well understood. Here we address conformational dynamics in glutaredoxin during catalytic turnover...... with a combination of NMR magnetization transfer, R(2) relaxation dispersion, and ligand titration experiments. Glutaredoxins catalyze a glutathione exchange reaction, forming a stable glutathinoylated enzyme intermediate. The equilibrium between the reduced state and the glutathionylated state was biochemically...

  16. Structure of a catalytic dimer of the α- and β-subunits of the F-ATPase from Paracoccus denitrificans at 2.3 Å resolution

    International Nuclear Information System (INIS)

    Morales-Ríos, Edgar; Montgomery, Martin G.; Leslie, Andrew G. W.; García-Trejo, José J.; Walker, John E.

    2015-01-01

    The structure of the αβ heterodimer of the F-ATPase from the α-proteobacterium P. denitrificans has been determined at 2.3 Å resolution. It corresponds to the ‘open’ or ‘empty’ catalytic interface found in other F-ATPases. The structures of F-ATPases have predominantly been determined from mitochondrial enzymes, and those of the enzymes in eubacteria have been less studied. Paracoccus denitrificans is a member of the α-proteobacteria and is related to the extinct protomitochondrion that became engulfed by the ancestor of eukaryotic cells. The P. denitrificans F-ATPase is an example of a eubacterial F-ATPase that can carry out ATP synthesis only, whereas many others can catalyse both the synthesis and the hydrolysis of ATP. Inhibition of the ATP hydrolytic activity of the P. denitrificans F-ATPase involves the ζ inhibitor protein, an α-helical protein that binds to the catalytic F 1 domain of the enzyme. This domain is a complex of three α-subunits and three β-subunits, and one copy of each of the γ-, δ- and ∊-subunits. Attempts to crystallize the F 1 –ζ inhibitor complex yielded crystals of a subcomplex of the catalytic domain containing the α- and β-subunits only. Its structure was determined to 2.3 Å resolution and consists of a heterodimer of one α-subunit and one β-subunit. It has no bound nucleotides, and it corresponds to the ‘open’ or ‘empty’ catalytic interface found in other F-ATPases. The main significance of this structure is that it aids in the determination of the structure of the intact membrane-bound F-ATPase, which has been crystallized

  17. Structure of a catalytic dimer of the α- and β-subunits of the F-ATPase from Paracoccus denitrificans at 2.3 Å resolution

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Ríos, Edgar; Montgomery, Martin G. [The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY (United Kingdom); Leslie, Andrew G. W. [The Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH (United Kingdom); García-Trejo, José J. [Universidad Nacional Autónoma de México, Mexico City (Mexico); Walker, John E., E-mail: walker@mrc-mbu.cam.ac.uk [The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY (United Kingdom)

    2015-09-23

    The structure of the αβ heterodimer of the F-ATPase from the α-proteobacterium P. denitrificans has been determined at 2.3 Å resolution. It corresponds to the ‘open’ or ‘empty’ catalytic interface found in other F-ATPases. The structures of F-ATPases have predominantly been determined from mitochondrial enzymes, and those of the enzymes in eubacteria have been less studied. Paracoccus denitrificans is a member of the α-proteobacteria and is related to the extinct protomitochondrion that became engulfed by the ancestor of eukaryotic cells. The P. denitrificans F-ATPase is an example of a eubacterial F-ATPase that can carry out ATP synthesis only, whereas many others can catalyse both the synthesis and the hydrolysis of ATP. Inhibition of the ATP hydrolytic activity of the P. denitrificans F-ATPase involves the ζ inhibitor protein, an α-helical protein that binds to the catalytic F{sub 1} domain of the enzyme. This domain is a complex of three α-subunits and three β-subunits, and one copy of each of the γ-, δ- and ∊-subunits. Attempts to crystallize the F{sub 1}–ζ inhibitor complex yielded crystals of a subcomplex of the catalytic domain containing the α- and β-subunits only. Its structure was determined to 2.3 Å resolution and consists of a heterodimer of one α-subunit and one β-subunit. It has no bound nucleotides, and it corresponds to the ‘open’ or ‘empty’ catalytic interface found in other F-ATPases. The main significance of this structure is that it aids in the determination of the structure of the intact membrane-bound F-ATPase, which has been crystallized.

  18. Resolution enhancement in neural networks with dynamical synapses

    Directory of Open Access Journals (Sweden)

    C. C. Alan Fung

    2013-06-01

    Full Text Available Conventionally, information is represented by spike rates in the neural system. Here, we consider the ability of temporally modulated activities in neuronal networks to carry information extra to spike rates. These temporal modulations, commonly known as population spikes, are due to the presence of synaptic depression in a neuronal network model. We discuss its relevance to an experiment on transparent motions in macaque monkeys by Treue et al. in 2000. They found that if the moving directions of objects are too close, the firing rate profile will be very similar to that with one direction. As the difference in the moving directions of objects is large enough, the neuronal system would respond in such a way that the network enhances the resolution in the moving directions of the objects. In this paper, we propose that this behavior can be reproduced by neural networks with dynamical synapses when there are multiple external inputs. We will demonstrate how resolution enhancement can be achieved, and discuss the conditions under which temporally modulated activities are able to enhance information processing performances in general.

  19. A Finite-Rate-Catalytic Model For Hypersonic Flows Informed By Molecular Dynamics

    Science.gov (United States)

    Schwartzentruber, T. E.; Valentini, P.; Norman, P.; Sorensen, C.

    2011-05-01

    The implementation of a finite-rate catalytic (FRC) wall boundary condition within a general 3D unstructured CFD solver is described. A set of one-step gas-surface chemical equations and atomistic parameters that deter- mine the reaction rates must be prescribed as input to the model. The chemical rate equations are solved at each wall face in the CFD simulation and result in a net production of species at the wall. In order for a finite- rate gas-surface reaction model to be consistent at equilibrium, it is determined that not all forward and back- ward rates can be specified arbitrarily. Provided that the forward rates for each surface recombination are as- signed, the backward rates must be determined using equilibrium constants that are consistent with the gas- phase chemistry model and thermodynamics. Reactive molecular dynamics (MD) simulations are performed us- ing the ReaxFFSiO potential to investigate oxygen-silica interactions. β-quartz and amorphous SiO2 surfaces are accommodated to a high temperature gas via MD simulation and reach a steady-state surface coverage. In addition to stable surface reconstructions a number of active sites are observed on which recombination occurs. Single collision MD simulations are performed where gas-phase oxygen atoms interact with the most dominant active site. Probabilities of recombination are found to have an exponential trend with gas-surface system temperature. The MD simulations are used to determine the activation energy for Eley-Rideal recombination of oxygen on a specific silica active site which is an important input parameter for the FRC model.

  20. Dynamical Response of Catalytic Systems in a CS Corrected Environmental Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Dunin-Borkowski, Rafal E.; Boothroyd, Chris

    2010-01-01

    . In a catalytic reactor, the particles tend to sinter under reaction conditions resulting in the formation of larger particles and a loss of catalytic activity. Several models of sintering in different systems have been put forward [4,5]. However, most investigations have been post mortem studies, revealing only...... energies and energy barriers for sintering processes can be studied. The surface structures of catalytic materials are highly dependent on the surrounding atmosphere. The combined capabilities of ETEM and image CS correction provide unique possibilities to study this relationship. However, in order...... as function of Ar pressure in the pole piece gap. References [1] I. Chorkendorff and J.W. Niemantsverdriet, Concepts of Modern Catalysis and Kinetics, Wiley-VCH, Weinheim, 2003. [2] www.nacatsoc.org [3] A.K. Datye, J. Catal. 216 (2003) 144. [4] J.T. Richardson and J.G. Crump, J. Catal. 56 (1979) 417. [5] C. H...

  1. A High-Resolution Sensor Network for Monitoring Glacier Dynamics

    Science.gov (United States)

    Edwards, S.; Murray, T.; O'Farrell, T.; Rutt, I. C.; Loskot, P.; Martin, I.; Selmes, N.; Aspey, R.; James, T.; Bevan, S. L.; Baugé, T.

    2013-12-01

    Changes in Greenland and Antarctic ice sheets due to ice flow/ice-berg calving are a major uncertainty affecting sea-level rise forecasts. Latterly GNSS (Global Navigation Satellite Systems) have been employed extensively to monitor such glacier dynamics. Until recently however, the favoured methodology has been to deploy sensors onto the glacier surface, collect data for a period of time, then retrieve and download the sensors. This approach works well in less dynamic environments where the risk of sensor loss is low. In more extreme environments e.g. approaching the glacial calving front, the risk of sensor loss and hence data loss increases dramatically. In order to provide glaciologists with new insights into flow dynamics and calving processes we have developed a novel sensor network to increase the robustness of data capture. We present details of the technological requirements for an in-situ Zigbee wireless streaming network infrastructure supporting instantaneous data acquisition from high resolution GNSS sensors thereby increasing data capture robustness. The data obtained offers new opportunities to investigate the interdependence of mass flow, uplift, velocity and geometry and the network architecture has been specifically designed for deployment by helicopter close to the calving front to yield unprecedented detailed information. Following successful field trials of a pilot three node network during 2012, a larger 20 node network was deployed on the fast-flowing Helheim glacier, south-east Greenland over the summer months of 2013. The utilisation of dual wireless transceivers in each glacier node, multiple frequencies and four ';collector' stations located on the valley sides creates overlapping networks providing enhanced capacity, diversity and redundancy of data 'back-haul', even close to ';floor' RSSI (Received Signal Strength Indication) levels around -100 dBm. Data loss through radio packet collisions within sub-networks are avoided through the

  2. Catalytic strategies of the hepatitis delta virus ribozyme as probed by molecular dynamics simulations

    Czech Academy of Sciences Publication Activity Database

    Krasovská, Maryna V.; Sefcikova, J.; Špačková, Naďa; Šponer, Jiří; Walter, N. G.

    2005-01-01

    Roč. 22, č. 6 (2005), s. 774 ISSN 0739-1102. [Albany 2005. Conversation /14./. 14.06.2005-18.06.2005, Albany] Institutional research plan: CEZ:AV0Z50040507 Keywords : catalytic strategies * hepatitis delta virus Subject RIV: BO - Biophysics

  3. High Resolution Crystal Structures of Streptococcus pneumoniae Nicotinamidase with Trapped Intermediates Provide Insights into Catalytic Mechanism and Inhibition by Aldehydes∥,‡

    Science.gov (United States)

    French, Jarrod B.; Cen, Yana; Sauve, Anthony A.; Ealick, Steven E.

    2010-01-01

    Nicotinamidases are salvage enzymes that convert nicotinamide to nicotinic acid. These enzymes are essential for the recycling of nicotinamide into NAD+ in most prokaryotes, most single cell and multicellular eukaryotes, but not in mammals. The significance of these enzymes for nicotinamide salvage and for NAD+ homeostasis has increased interest in nicotinamidases as possible antibiotic targets. Nicotinamidases are also regulators of intracellular nicotinamide concentrations, thereby regulating signaling of downstream NAD+ consuming enzymes, such as the NAD+-dependent deacetylases (sirtuins). Here, we report several high resolution crystal structures of the nicotinamidase from Streptococcus pneumoniae (SpNic) in unliganded and ligand-bound forms. The structure of the C136S mutant in complex with nicotinamide provides details about substrate binding while a trapped nicotinoyl-thioester complexed with SpNic reveals the structure of the proposed thioester reaction intermediate. Examination of the active site of SpNic reveals several important features including a metal ion that coordinates the substrate and the catalytically relevant water molecule, and an oxyanion hole which both orients the substrate and offsets the negative charge that builds up during catalysis. Structures of this enzyme with bound nicotinaldehyde inhibitors elucidate the mechanism of inhibition and provide further details about the catalytic mechanism. In addition, we provide a biochemical analysis of the identity and role of the metal ion that orients the ligand in the active site and activates the water molecule responsible for hydrolysis of the substrate. These data provide structural evidence for several proposed reaction intermediates and allow for a more complete understanding of the catalytic mechanism of this enzyme. PMID:20853856

  4. High-resolution crystal structures of Streptococcus pneumoniae nicotinamidase with trapped intermediates provide insights into the catalytic mechanism and inhibition by aldehydes .

    Science.gov (United States)

    French, Jarrod B; Cen, Yana; Sauve, Anthony A; Ealick, Steven E

    2010-10-12

    Nicotinamidases are salvage enzymes that convert nicotinamide to nicotinic acid. These enzymes are essential for the recycling of nicotinamide into NAD(+) in most prokaryotes and most single-cell and multicellular eukaryotes, but not in mammals. The significance of these enzymes for nicotinamide salvage and for NAD(+) homeostasis has stimulated interest in nicotinamidases as possible antibiotic targets. Nicotinamidases are also regulators of intracellular nicotinamide concentrations, thereby regulating signaling of downstream NAD(+)-consuming enzymes, such as the NAD(+)-dependent deacetylases (sirtuins). Here, we report several high-resolution crystal structures of the nicotinamidase from Streptococcus pneumoniae (SpNic) in unliganded and ligand-bound forms. The structure of the C136S mutant in complex with nicotinamide provides details about substrate binding, while a trapped nicotinoyl thioester in a complex with SpNic reveals the structure of the proposed thioester reaction intermediate. Examination of the active site of SpNic reveals several important features, including a metal ion that coordinates the substrate and the catalytically relevant water molecule and an oxyanion hole that both orients the substrate and offsets the negative charge that builds up during catalysis. Structures of this enzyme with bound nicotinaldehyde inhibitors elucidate the mechanism of inhibition and provide further details about the catalytic mechanism. In addition, we provide a biochemical analysis of the identity and role of the metal ion that orients the ligand in the active site and activates the water molecule responsible for hydrolysis of the substrate. These data provide structural evidence of several proposed reaction intermediates and allow for a more complete understanding of the catalytic mechanism of this enzyme.

  5. High-Resolution Crystal Structures of Streptococcus pneumoniae Nicotinamidase with Trapped Intermediates Provide Insights into the Catalytic Mechanism and Inhibition by Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    French, Jarrod B.; Cen, Yana; Sauve, Anthony A.; Ealick, Steven E. (Cornell); (Weill-Med)

    2010-11-11

    Nicotinamidases are salvage enzymes that convert nicotinamide to nicotinic acid. These enzymes are essential for the recycling of nicotinamide into NAD{sup +} in most prokaryotes and most single-cell and multicellular eukaryotes, but not in mammals. The significance of these enzymes for nicotinamide salvage and for NAD{sup +} homeostasis has stimulated interest in nicotinamidases as possible antibiotic targets. Nicotinamidases are also regulators of intracellular nicotinamide concentrations, thereby regulating signaling of downstream NAD{sup +}-consuming enzymes, such as the NAD{sup +}-dependent deacetylases (sirtuins). Here, we report several high-resolution crystal structures of the nicotinamidase from Streptococcus pneumoniae (SpNic) in unliganded and ligand-bound forms. The structure of the C136S mutant in complex with nicotinamide provides details about substrate binding, while a trapped nicotinoyl thioester in a complex with SpNic reveals the structure of the proposed thioester reaction intermediate. Examination of the active site of SpNic reveals several important features, including a metal ion that coordinates the substrate and the catalytically relevant water molecule and an oxyanion hole that both orients the substrate and offsets the negative charge that builds up during catalysis. Structures of this enzyme with bound nicotinaldehyde inhibitors elucidate the mechanism of inhibition and provide further details about the catalytic mechanism. In addition, we provide a biochemical analysis of the identity and role of the metal ion that orients the ligand in the active site and activates the water molecule responsible for hydrolysis of the substrate. These data provide structural evidence of several proposed reaction intermediates and allow for a more complete understanding of the catalytic mechanism of this enzyme.

  6. Dynamical and technological consequences of multiple isolas of steady states in a catalytic fluidised-bed reactor

    Directory of Open Access Journals (Sweden)

    Bizon Katarzyna

    2017-09-01

    Full Text Available Steady-state characteristics of a catalytic fluidised bed reactor and its dynamical consequences are analyzed. The occurrence of an untypical steady-state structure manifesting in a form of multiple isolas is described. A two-phase bubbling bed model is used for a quantitative description of the bed of catalyst. The influence of heat exchange intensity and a fluidisation ratio onto the generation of isolated solution branches is presented for two kinetic schemes. Dynamical consequences of the coexistence of such untypical branches of steady states are presented. The impact of linear growth of the fluidisation ratio and step change of the cooling medium temperature onto the desired product yield is analyzed. The results presented in this study confirm that the identification of a region of the occurrence of multiple isolas is important due to their strong impact both on the process start-up and its control.

  7. A high resolution large dynamic range TDC circuit implementation

    International Nuclear Information System (INIS)

    Lei Wuhu; Liu Songqiu; Ye Weiguo; Han Hui; Li Pengyu

    2003-01-01

    Time measurement technology is usually used in nuclear experimentation. There are many methods of time measurement. The implementation method of Time to Digital Conversion (TDC) by means of electronic is a classical technology. The range and resolution of TDC is different according with different usage. A wide range and high resolution TDC circuit, including its theory and implementation way, is introduced in this paper. The test result is also given. (authors)

  8. A high resolution large dynamic range TDC circuit implementation

    International Nuclear Information System (INIS)

    Lei Wuhu; Liu Songqiu; Li Pengyu; Han Hui; Ye Yanlin

    2005-01-01

    Time measurement technology is usually used in nuclear experimentation. There are many methods of time measurement. The implementation method of Time to Digital Conversion (TDC) by means of electronics is a classical technology. The range and resolution of TDC is different according with different usage. A wide range and high resolution TDC circuit, including its theory and implementation way, is introduced in this paper. The test result is also given. (authors)

  9. Ab initio molecular dynamics simulations for the role of hydrogen in catalytic reactions of furfural on Pd(111)

    Science.gov (United States)

    Xue, Wenhua; Dang, Hongli; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu

    2014-03-01

    In the study of catalytic reactions of biomass, furfural conversion over metal catalysts with the presence of hydrogen has attracted wide attention. We report ab initio molecular dynamics simulations for furfural and hydrogen on the Pd(111) surface at finite temperatures. The simulations demonstrate that the presence of hydrogen is important in promoting furfural conversion. In particular, hydrogen molecules dissociate rapidly on the Pd(111) surface. As a result of such dissociation, atomic hydrogen participates in the reactions with furfural. The simulations also provide detailed information about the possible reactions of hydrogen with furfural. Supported by DOE (DE-SC0004600). This research used the supercomputer resources of the XSEDE, the NERSC Center, and the Tandy Supercomputing Center.

  10. Development and application of coupled system dynamics and game theory: A dynamic water conflict resolution method.

    Science.gov (United States)

    Zomorodian, Mehdi; Lai, Sai Hin; Homayounfar, Mehran; Ibrahim, Shaliza; Pender, Gareth

    2017-01-01

    the reservoirs using the mixed-strategy game and Markov chain methods. The two models were then evaluated against three performance indices: Reliability, Resilience and Vulnerability (R-R-V). The results showed that, while both models were well capable of dealing with conflict resolution over water resources in the Langat River basin, the second model achieved a substantially improved performance through its ability to deal with dynamicity, complexity and uncertainty in the river system.

  11. Development and application of coupled system dynamics and game theory: A dynamic water conflict resolution method.

    Directory of Open Access Journals (Sweden)

    Mehdi Zomorodian

    strategies for the reservoirs using the mixed-strategy game and Markov chain methods. The two models were then evaluated against three performance indices: Reliability, Resilience and Vulnerability (R-R-V. The results showed that, while both models were well capable of dealing with conflict resolution over water resources in the Langat River basin, the second model achieved a substantially improved performance through its ability to deal with dynamicity, complexity and uncertainty in the river system.

  12. Evaluations of high-resolution dynamically downscaled ensembles over the contiguous United States Climate Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Zobel, Zachary; Wang, Jiali; Wuebbles, Donald J.; Kotamarthi, V. Rao

    2018-02-01

    This study uses Weather Research and Forecast (WRF) model to evaluate the performance of six dynamical downscaled decadal historical simulations with 12-km resolution for a large domain (7200 x 6180 km) that covers most of North America. The initial and boundary conditions are from three global climate models (GCMs) and one reanalysis data. The GCMs employed in this study are the Geophysical Fluid Dynamics Laboratory Earth System Model with Generalized Ocean Layer Dynamics component, Community Climate System Model, version 4, and the Hadley Centre Global Environment Model, version 2-Earth System. The reanalysis data is from the National Centers for Environmental Prediction-US. Department of Energy Reanalysis II. We analyze the effects of bias correcting, the lateral boundary conditions and the effects of spectral nudging. We evaluate the model performance for seven surface variables and four upper atmospheric variables based on their climatology and extremes for seven subregions across the United States. The results indicate that the simulation’s performance depends on both location and the features/variable being tested. We find that the use of bias correction and/or nudging is beneficial in many situations, but employing these when running the RCM is not always an improvement when compared to the reference data. The use of an ensemble mean and median leads to a better performance in measuring the climatology, while it is significantly biased for the extremes, showing much larger differences than individual GCM driven model simulations from the reference data. This study provides a comprehensive evaluation of these historical model runs in order to make informed decisions when making future projections.

  13. Dynamic neuroanatomy at subcellular resolution in the zebrafish.

    Science.gov (United States)

    Faucherre, Adèle; López-Schier, Hernán

    2014-01-01

    Genetic means to visualize and manipulate neuronal circuits in the intact animal have revolutionized neurobiology. "Dynamic neuroanatomy" defines a range of approaches aimed at quantifying the architecture or subcellular organization of neurons over time during their development, regeneration, or degeneration. A general feature of these approaches is their reliance on the optical isolation of defined neurons in toto by genetically expressing markers in one or few cells. Here we use the afferent neurons of the lateral line as an example to describe a simple method for the dynamic neuroanatomical study of axon terminals in the zebrafish by laser-scanning confocal microscopy.

  14. Conserved water-mediated H-bonding dynamics of catalytic Asn ...

    Indian Academy of Sciences (India)

    Prakash

    Extensive energy minimization and molecular dynamics simulation studies up to 2 ns ... Conserved water in molecular recognition; MD simulation; plant cysteine protease ..... Mustata G and Briggs J M 2004 Cluster analysis of water molecules.

  15. Data Driven Approach for High Resolution Population Distribution and Dynamics Models

    Energy Technology Data Exchange (ETDEWEB)

    Bhaduri, Budhendra L [ORNL; Bright, Eddie A [ORNL; Rose, Amy N [ORNL; Liu, Cheng [ORNL; Urban, Marie L [ORNL; Stewart, Robert N [ORNL

    2014-01-01

    High resolution population distribution data are vital for successfully addressing critical issues ranging from energy and socio-environmental research to public health to human security. Commonly available population data from Census is constrained both in space and time and does not capture population dynamics as functions of space and time. This imposes a significant limitation on the fidelity of event-based simulation models with sensitive space-time resolution. This paper describes ongoing development of high-resolution population distribution and dynamics models, at Oak Ridge National Laboratory, through spatial data integration and modeling with behavioral or activity-based mobility datasets for representing temporal dynamics of population. The model is resolved at 1 km resolution globally and describes the U.S. population for nighttime and daytime at 90m. Integration of such population data provides the opportunity to develop simulations and applications in critical infrastructure management from local to global scales.

  16. Super-resolution optical microscopy for studying membrane structure and dynamics.

    Science.gov (United States)

    Sezgin, Erdinc

    2017-07-12

    Investigation of cell membrane structure and dynamics requires high spatial and temporal resolution. The spatial resolution of conventional light microscopy is limited due to the diffraction of light. However, recent developments in microscopy enabled us to access the nano-scale regime spatially, thus to elucidate the nanoscopic structures in the cellular membranes. In this review, we will explain the resolution limit, address the working principles of the most commonly used super-resolution microscopy techniques and summarise their recent applications in the biomembrane field.

  17. Universal Critical Dynamics in High Resolution Neuronal Avalanche Data

    Science.gov (United States)

    Friedman, Nir; Ito, Shinya; Brinkman, Braden A. W.; Shimono, Masanori; DeVille, R. E. Lee; Dahmen, Karin A.; Beggs, John M.; Butler, Thomas C.

    2012-05-01

    The tasks of neural computation are remarkably diverse. To function optimally, neuronal networks have been hypothesized to operate near a nonequilibrium critical point. However, experimental evidence for critical dynamics has been inconclusive. Here, we show that the dynamics of cultured cortical networks are critical. We analyze neuronal network data collected at the individual neuron level using the framework of nonequilibrium phase transitions. Among the most striking predictions confirmed is that the mean temporal profiles of avalanches of widely varying durations are quantitatively described by a single universal scaling function. We also show that the data have three additional features predicted by critical phenomena: approximate power law distributions of avalanche sizes and durations, samples in subcritical and supercritical phases, and scaling laws between anomalous exponents.

  18. Crystal structure of the catalytic core domain of the family 6 cellobiohydrolase II, Cel6A, from Humicola insolens, at 1.92 A resolution.

    Science.gov (United States)

    Varrot, A; Hastrup, S; Schülein, M; Davies, G J

    1999-01-15

    The three-dimensional structure of the catalytic core of the family 6 cellobiohydrolase II, Cel6A (CBH II), from Humicola insolens has been determined by X-ray crystallography at a resolution of 1.92 A. The structure was solved by molecular replacement using the homologous Trichoderma reesei CBH II as a search model. The H. insolens enzyme displays a high degree of structural similarity with its T. reesei equivalent. The structure features both O- (alpha-linked mannose) and N-linked glycosylation and a hexa-co-ordinate Mg2+ ion. The active-site residues are located within the enclosed tunnel that is typical for cellobiohydrolase enzymes and which may permit a processive hydrolysis of the cellulose substrate. The close structural similarity between the two enzymes implies that kinetics and chain-end specificity experiments performed on the H. insolens enzyme are likely to be applicable to the homologous T. reesei enzyme. These cast doubt on the description of cellobiohydrolases as exo-enzymes since they demonstrated that Cel6A (CBH II) shows no requirement for non-reducing chain-ends, as had been presumed. There is no crystallographic evidence in the present structure to support a mechanism involving loop opening, yet preliminary modelling experiments suggest that the active-site tunnel of Cel6A (CBH II) is too narrow to permit entry of a fluorescenyl-derivatized substrate, known to be a viable substrate for this enzyme.

  19. Flow dynamics study of catalyst powder in catalytic cracking unit for troubleshooting

    Directory of Open Access Journals (Sweden)

    Yelgaonkar Vivek

    2017-12-01

    Full Text Available Gamma scanning and radiotracer applications are very effective and inexpensive tools to understand and optimize the process as well as troubleshoot the various types of problems in many chemical, petrochemical industries and refineries. These techniques are non-invasive; hence, the problems can be pinpointed online, which leads to reduce the downtime, schedule the shutdown and maintenance of the plant equipment, rendering huge economic benefits. In a leading refinery of India, the catalytic cracking unit (CCU was malfunctioning. It was suspected by the refinery engineers that the catalyst powder was being carried over to the fractionator, which could have led to erosion of the fractionator column internals resulting in their rupture, and consequentially, to the fire hazard. To understand the flow behaviour of the catalyst powder and to ensure the mechanical integrity, catalyst accumulation and choking, both radiotracer study and gamma scanning of the CCU reactor was carried out. The reactor consists of a riser, three primary cyclones and three secondary cyclones. Gamma scanning of the reactor was carried out with the help of an automatic gamma scanner using 1.8 GBq of Co-60 sealed source. Results showed that the catalyst powder was accumulated in one of the secondary cyclones and uneven density distribution was observed in another secondary cyclone. The radiotracer study was carried out using the irradiated catalyst powder as a radiotracer, which contains 0.9 GBq of Na-24. The radiotracer was injected in the reactor through the specially fabricated injection system. Radiation measurement was done using the thermally insulated and collimated NaI(Tl scintillation detectors located at various strategic locations coupled to a multi-detector data acquisition system. The data were mathematically analysed. It was confirmed that the catalyst powder was accumulated in one of the secondary cyclones with no flow downwards. This resulted in excess powder

  20. Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Michael R. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States)], E-mail: armstrong30@llnl.gov; Boyden, Ken [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Browning, Nigel D. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Department of Chemical Engineering and Materials Science, University of California-Davis, One Shields Avenue, Davis, CA 95616 (United States); Campbell, Geoffrey H.; Colvin, Jeffrey D.; De Hope, William J.; Frank, Alan M. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Gibson, David J.; Hartemann, Fred [N Division, Physics and Advanced Technologies Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-280, Livermore, CA 94550 (United States); Kim, Judy S. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Department of Chemical Engineering and Materials Science, University of California-Davis, One Shields Avenue, Davis, CA 95616 (United States); King, Wayne E.; La Grange, Thomas B.; Pyke, Ben J.; Reed, Bryan W.; Shuttlesworth, Richard M.; Stuart, Brent C.; Torralva, Ben R. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States)

    2007-04-15

    Although recent years have seen significant advances in the spatial resolution possible in the transmission electron microscope (TEM), the temporal resolution of most microscopes is limited to video rate at best. This lack of temporal resolution means that our understanding of dynamic processes in materials is extremely limited. High temporal resolution in the TEM can be achieved, however, by replacing the normal thermionic or field emission source with a photoemission source. In this case the temporal resolution is limited only by the ability to create a short pulse of photoexcited electrons in the source, and this can be as short as a few femtoseconds. The operation of the photo-emission source and the control of the subsequent pulse of electrons (containing as many as 5x10{sup 7} electrons) create significant challenges for a standard microscope column that is designed to operate with a single electron in the column at any one time. In this paper, the generation and control of electron pulses in the TEM to obtain a temporal resolution <10{sup -6} s will be described and the effect of the pulse duration and current density on the spatial resolution of the instrument will be examined. The potential of these levels of temporal and spatial resolution for the study of dynamic materials processes will also be discussed.

  1. Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy

    International Nuclear Information System (INIS)

    Armstrong, Michael R.; Boyden, Ken; Browning, Nigel D.; Campbell, Geoffrey H.; Colvin, Jeffrey D.; De Hope, William J.; Frank, Alan M.; Gibson, David J.; Hartemann, Fred; Kim, Judy S.; King, Wayne E.; La Grange, Thomas B.; Pyke, Ben J.; Reed, Bryan W.; Shuttlesworth, Richard M.; Stuart, Brent C.; Torralva, Ben R.

    2007-01-01

    Although recent years have seen significant advances in the spatial resolution possible in the transmission electron microscope (TEM), the temporal resolution of most microscopes is limited to video rate at best. This lack of temporal resolution means that our understanding of dynamic processes in materials is extremely limited. High temporal resolution in the TEM can be achieved, however, by replacing the normal thermionic or field emission source with a photoemission source. In this case the temporal resolution is limited only by the ability to create a short pulse of photoexcited electrons in the source, and this can be as short as a few femtoseconds. The operation of the photo-emission source and the control of the subsequent pulse of electrons (containing as many as 5x10 7 electrons) create significant challenges for a standard microscope column that is designed to operate with a single electron in the column at any one time. In this paper, the generation and control of electron pulses in the TEM to obtain a temporal resolution -6 s will be described and the effect of the pulse duration and current density on the spatial resolution of the instrument will be examined. The potential of these levels of temporal and spatial resolution for the study of dynamic materials processes will also be discussed

  2. Catalytic performances of chemically immobilized urease under static and dynamic conditions: A comparative study

    OpenAIRE

    Yürekli, Yılmaz; Alsoy Altınkaya, Sacide

    2011-01-01

    Immobilized urease has been used for direct removal of urea from aqueous solution and as biological sensing material in the preparation of urea biosensors. The former application is carried out under dynamic condition using ultrafiltration membrane either in tubular form or in flat sheet, while the latter is used in static condition. In this study, the performance of chemically immobilized urease on poly(acrylonitrile-co-sodium methallyl sulfonate) ultrafiltration membrane was determined unde...

  3. Cations and hydration in catalytic RNA: Molecular dynamics of the hepatitis delta virus ribozyme

    Czech Academy of Sciences Publication Activity Database

    Krasovská, Maryna V.; Šefčíková, J.; Réblová, Kamila; Schneider, Bohdan; Walter, N.G.; Šponer, Jiří

    2006-01-01

    Roč. 91, č. 2 (2006), s. 626-638 ISSN 0006-3495 R&D Projects: GA ČR(CZ) GA203/05/0388; GA ČR(CZ) GA203/05/0009; GA AV ČR(CZ) 1QS500040581; GA MŠk(CZ) LC512 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z40550506 Keywords : molecular dynamics * cations * hydration Subject RIV: BO - Biophysics Impact factor: 4.757, year: 2006

  4. The Dynamic Range of Ultra-High Resolution Cryogenic Gamma-ray Spectrometers

    International Nuclear Information System (INIS)

    Ali, S; Terracol, S F; Drury, O B; Friedrich, S

    2005-01-01

    We are developing high-resolution cryogenic gamma-ray spectrometers for nuclear science and non-proliferation applications. The gamma-ray detectors are composed of a bulk superconducting Sn foil absorber attached to multilayer Mo/Cu transition-edge sensors (TES). The energy resolution achieved with a 1 x 1 x 0.25 mm 3 Sn absorber is 50 -90eV for γ-rays up to 100 keV and it decreases for large absorber sizes. We discuss the trade-offs between energy resolution and dynamic range, as well as development of TES arrays for higher count rates and better sensitivity

  5. The dynamic range of ultra-high-resolution cryogenic gamma-ray spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Shafinaz [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-270, Livermore, CA 94550 (United States); Terracol, Stephane F. [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-270, Livermore, CA 94550 (United States); Drury, Owen B. [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-270, Livermore, CA 94550 (United States); Friedrich, Stephan [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-270, Livermore, CA 94550 (United States)]. E-mail: friedrich1@llnl.gov

    2006-04-15

    We are developing high-resolution cryogenic gamma-ray spectrometers for nuclear science and non-proliferation applications. The gamma-ray detectors are composed of a bulk superconducting Sn foil absorber attached to a multilayer Mo/Cu transition-edge sensor (TES). The energy resolution of a detector with a 1x1x0.25 mm{sup 3} Sn absorber is 50-90 eV FWHM for {gamma}-rays up to 100 keV, and it decreases for larger absorbers. Here, we present the detector performance for different absorber volumes, and discuss the trade-offs between energy resolution and dynamic range.

  6. Recent Advances in Dynamic Kinetic Resolution by Chiral Bifunctional (Thiourea- and Squaramide-Based Organocatalysts

    Directory of Open Access Journals (Sweden)

    Pan Li

    2016-10-01

    Full Text Available The organocatalysis-based dynamic kinetic resolution (DKR process has proved to be a powerful strategy for the construction of chiral compounds. In this feature review, we summarized recent progress on the DKR process, which was promoted by chiral bifunctional (thiourea and squaramide catalysis via hydrogen-bonding interactions between substrates and catalysts. A wide range of asymmetric reactions involving DKR, such as asymmetric alcoholysis of azlactones, asymmetric Michael–Michael cascade reaction, and enantioselective selenocyclization, are reviewed and demonstrate the efficiency of this strategy. The (thiourea and squaramide catalysts with dual activation would be efficient for more unmet challenges in dynamic kinetic resolution.

  7. Investigation of Coal-biomass Catalytic Gasification using Experiments, Reaction Kinetics and Computational Fluid Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, Francine [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Agblevor, Foster [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Klein, Michael [Univ. of Delaware, Newark, DE (United States); Sheikhi, Reza [Northeastern Univ., Boston, MA (United States)

    2015-12-31

    A collaborative effort involving experiments, kinetic modeling, and computational fluid dynamics (CFD) was used to understand co-gasification of coal-biomass mixtures. The overall goal of the work was to determine the key reactive properties for coal-biomass mixed fuels. Sub-bituminous coal was mixed with biomass feedstocks to determine the fluidization and gasification characteristics of hybrid poplar wood, switchgrass and corn stover. It was found that corn stover and poplar wood were the best feedstocks to use with coal. The novel approach of this project was the use of a red mud catalyst to improve gasification and lower gasification temperatures. An important results was the reduction of agglomeration of the biomass using the catalyst. An outcome of this work was the characterization of the chemical kinetics and reaction mechanisms of the co-gasification fuels, and the development of a set of models that can be integrated into other modeling environments. The multiphase flow code, MFIX, was used to simulate and predict the hydrodynamics and co-gasification, and results were validated with the experiments. The reaction kinetics modeling was used to develop a smaller set of reactions for tractable CFD calculations that represented the experiments. Finally, an efficient tool was developed, MCHARS, and coupled with MFIX to efficiently simulate the complex reaction kinetics.

  8. High resolution neutron spectroscopy - a tool for the investigation of dynamics of polymers and soft matter

    International Nuclear Information System (INIS)

    Monkenbusch, M.; Richter, D.

    2007-01-01

    Neutron scattering, with the ability to vary the contrast of molecular items by hydrogen/deuterium exchanges, is an invaluable tool for soft matter research. Besides the structural information on the mesoscopic scale that is obtained by diffraction methods like small angle neutron scattering, the slow dynamics of molecular motion on mesoscopic scale is accessible by high resolution neutron spectroscopy. The basic features of neutron backscattering spectroscopy, and in particular neutron spin-echo spectroscopy, are presented, in combination with illustrations of results from polymer melt dynamics to protein dynamics which are obtained by these techniques. (authors)

  9. SYSTEM OF GUARANTEED RESOLUTION OF DYNAMIC CONFLICTS OF AIRCRAFTS IN REAL TIME

    Directory of Open Access Journals (Sweden)

    Svitlana Pavlova

    2017-03-01

    Full Text Available Purpose: The present work is devoted to improving of flight safety in civil aviation by creating and implementing a new system of resolution of dynamic conflict of aircrafts. The developed system is aimed at ensuring a guaranteed level of safety when resolution of rarefied conflict situations of aircraft in real-time. Methods: The proposed system is based on a new method of conflict resolution of aircraft on the basis of the theory of invariance. Results: The development of the system of conflict resolution of aircraft in real time and the implementation of the respective algorithms such control will ensure effective prevention of dangerous approaches. Discussion: The system is implemented as single unified equipment using satellite and radar navigation systems that will ensure the positioning of aircraft in real time. Provided that the system should be installed on all aircraft and integrated on board to properly ensure its functionality and interact with navigation systems.

  10. Towards high resolution mapping of 3-D mesoscale dynamics from observations

    Directory of Open Access Journals (Sweden)

    B. Buongiorno Nardelli

    2012-10-01

    Full Text Available The MyOcean R&D project MESCLA (MEsoSCaLe dynamical Analysis through combined model, satellite and in situ data was devoted to the high resolution 3-D retrieval of tracer and velocity fields in the oceans, based on the combination of in situ and satellite observations and quasi-geostrophic dynamical models. The retrieval techniques were also tested and compared with the output of a primitive equation model, with particular attention to the accuracy of the vertical velocity field as estimated through the Q vector formulation of the omega equation. The project focused on a test case, covering the region where the Gulf Stream separates from the US East Coast. This work demonstrated that innovative methods for the high resolution mapping of 3-D mesoscale dynamics from observations can be used to build the next generations of operational observation-based products.

  11. Super-resolution microscopy reveals cell wall dynamics and peptidoglycan architecture in ovococcal bacteria.

    Science.gov (United States)

    Wheeler, Richard; Mesnage, Stéphane; Boneca, Ivo G; Hobbs, Jamie K; Foster, Simon J

    2011-12-01

    Cell morphology and viability in Eubacteria is dictated by the architecture of peptidoglycan, the major and essential structural component of the cell wall. Although the biochemical composition of peptidoglycan is well understood, how the peptidoglycan architecture can accommodate the dynamics of growth and division while maintaining cell shape remains largely unknown. Here, we elucidate the peptidoglycan architecture and dynamics of bacteria with ovoid cell shape (ovococci), which includes a number of important pathogens, by combining biochemical analyses with atomic force and super-resolution microscopies. Atomic force microscopy analysis showed preferential orientation of the peptidoglycan network parallel to the short axis of the cell, with distinct architectural features associated with septal and peripheral wall synthesis. Super-resolution three-dimensional structured illumination fluorescence microscopy was applied for the first time in bacteria to unravel the dynamics of peptidoglycan assembly in ovococci. The ovococci have a unique peptidoglycan architecture and growth mode not observed in other model organisms. © 2011 Blackwell Publishing Ltd.

  12. xMDFF: molecular dynamics flexible fitting of low-resolution X-ray structures

    International Nuclear Information System (INIS)

    McGreevy, Ryan; Singharoy, Abhishek; Li, Qufei; Zhang, Jingfen; Xu, Dong; Perozo, Eduardo; Schulten, Klaus

    2014-01-01

    A new real-space refinement method for low-resolution X-ray crystallography is presented. The method is based on the molecular dynamics flexible fitting protocol targeted at addressing large-scale deformations of the search model to achieve refinement with minimal manual intervention. An explanation of the method is provided, augmented by results from the refinement of both synthetic and experimental low-resolution data, including an independent electrophysiological verification of the xMDFF-refined crystal structure of a voltage-sensor protein. X-ray crystallography remains the most dominant method for solving atomic structures. However, for relatively large systems, the availability of only medium-to-low-resolution diffraction data often limits the determination of all-atom details. A new molecular dynamics flexible fitting (MDFF)-based approach, xMDFF, for determining structures from such low-resolution crystallographic data is reported. xMDFF employs a real-space refinement scheme that flexibly fits atomic models into an iteratively updating electron-density map. It addresses significant large-scale deformations of the initial model to fit the low-resolution density, as tested with synthetic low-resolution maps of d-ribose-binding protein. xMDFF has been successfully applied to re-refine six low-resolution protein structures of varying sizes that had already been submitted to the Protein Data Bank. Finally, via systematic refinement of a series of data from 3.6 to 7 Å resolution, xMDFF refinements together with electrophysiology experiments were used to validate the first all-atom structure of the voltage-sensing protein Ci-VSP

  13. xMDFF: molecular dynamics flexible fitting of low-resolution X-ray structures

    Energy Technology Data Exchange (ETDEWEB)

    McGreevy, Ryan; Singharoy, Abhishek [University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Li, Qufei [The University of Chicago, Chicago, IL 60637 (United States); Zhang, Jingfen; Xu, Dong [University of Missouri, Columbia, MO 65211 (United States); Perozo, Eduardo [The University of Chicago, Chicago, IL 60637 (United States); Schulten, Klaus, E-mail: kschulte@ks.uiuc.edu [University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2014-09-01

    A new real-space refinement method for low-resolution X-ray crystallography is presented. The method is based on the molecular dynamics flexible fitting protocol targeted at addressing large-scale deformations of the search model to achieve refinement with minimal manual intervention. An explanation of the method is provided, augmented by results from the refinement of both synthetic and experimental low-resolution data, including an independent electrophysiological verification of the xMDFF-refined crystal structure of a voltage-sensor protein. X-ray crystallography remains the most dominant method for solving atomic structures. However, for relatively large systems, the availability of only medium-to-low-resolution diffraction data often limits the determination of all-atom details. A new molecular dynamics flexible fitting (MDFF)-based approach, xMDFF, for determining structures from such low-resolution crystallographic data is reported. xMDFF employs a real-space refinement scheme that flexibly fits atomic models into an iteratively updating electron-density map. It addresses significant large-scale deformations of the initial model to fit the low-resolution density, as tested with synthetic low-resolution maps of d-ribose-binding protein. xMDFF has been successfully applied to re-refine six low-resolution protein structures of varying sizes that had already been submitted to the Protein Data Bank. Finally, via systematic refinement of a series of data from 3.6 to 7 Å resolution, xMDFF refinements together with electrophysiology experiments were used to validate the first all-atom structure of the voltage-sensing protein Ci-VSP.

  14. Dynamic coupling between the LID and NMP domain motions in the catalytic conversion of ATP and AMP to ADP by adenylate kinase.

    Science.gov (United States)

    Jana, Biman; Adkar, Bharat V; Biswas, Rajib; Bagchi, Biman

    2011-01-21

    The catalytic conversion of adenosine triphosphate (ATP) and adenosine monophosphate (AMP) to adenosine diphosphate (ADP) by adenylate kinase (ADK) involves large amplitude, ligand induced domain motions, involving the opening and the closing of ATP binding domain (LID) and AMP binding domain (NMP) domains, during the repeated catalytic cycle. We discover and analyze an interesting dynamical coupling between the motion of the two domains during the opening, using large scale atomistic molecular dynamics trajectory analysis, covariance analysis, and multidimensional free energy calculations with explicit water. Initially, the LID domain must open by a certain amount before the NMP domain can begin to open. Dynamical correlation map shows interesting cross-peak between LID and NMP domain which suggests the presence of correlated motion between them. This is also reflected in our calculated two-dimensional free energy surface contour diagram which has an interesting elliptic shape, revealing a strong correlation between the opening of the LID domain and that of the NMP domain. Our free energy surface of the LID domain motion is rugged due to interaction with water and the signature of ruggedness is evident in the observed root mean square deviation variation and its fluctuation time correlation functions. We develop a correlated dynamical disorder-type theoretical model to explain the observed dynamic coupling between the motion of the two domains in ADK. Our model correctly reproduces several features of the cross-correlation observed in simulations.

  15. Molecular Modeling of the Catalytic Domain of CyaA Deepened the Knowledge of Its Functional Dynamics

    Directory of Open Access Journals (Sweden)

    Thérèse E Malliavin

    2017-06-01

    Full Text Available Although CyaA has been studied for over three decades and revealed itself to be a very good prototype for developing various biotechnological applications, only a little is known about its functional dynamics and about the conformational landscape of this protein. Molecular dynamics simulations helped to clarify the view on these points in the following way. First, the model of interaction between AC and calmodulin (CaM has evolved from an interaction centered on the surface between C-CaM hydrophobic patch and the α helix H of AC, to a more balanced view, in which the C-terminal tail of AC along with the C-CaM Calcium loops play an important role. This role has been confirmed by the reduction of the affinity of AC for calmodulin in the presence of R338, D360 and N347 mutations. In addition, enhanced sampling studies have permitted to propose a representation of the conformational space for the isolated AC. It remains to refine this representation using structural low resolution information measured on the inactive state of AC. Finally, due to a virtual screening study on another adenyl cyclase from Bacillus anthracis, weak inhibitors of AC have been discovered.

  16. xMDFF: molecular dynamics flexible fitting of low-resolution X-ray structures.

    Science.gov (United States)

    McGreevy, Ryan; Singharoy, Abhishek; Li, Qufei; Zhang, Jingfen; Xu, Dong; Perozo, Eduardo; Schulten, Klaus

    2014-09-01

    X-ray crystallography remains the most dominant method for solving atomic structures. However, for relatively large systems, the availability of only medium-to-low-resolution diffraction data often limits the determination of all-atom details. A new molecular dynamics flexible fitting (MDFF)-based approach, xMDFF, for determining structures from such low-resolution crystallographic data is reported. xMDFF employs a real-space refinement scheme that flexibly fits atomic models into an iteratively updating electron-density map. It addresses significant large-scale deformations of the initial model to fit the low-resolution density, as tested with synthetic low-resolution maps of D-ribose-binding protein. xMDFF has been successfully applied to re-refine six low-resolution protein structures of varying sizes that had already been submitted to the Protein Data Bank. Finally, via systematic refinement of a series of data from 3.6 to 7 Å resolution, xMDFF refinements together with electrophysiology experiments were used to validate the first all-atom structure of the voltage-sensing protein Ci-VSP.

  17. Dual enzymatic dynamic kinetic resolution by Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase and Candida antarctica lipase B

    KAUST Repository

    Karume, Ibrahim

    2016-10-04

    The immobilization of Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase (TeSADH) using sol–gel method enables its use to racemize enantiopure alcohols in organic media. Here, we report the racemization of enantiopure phenyl-ring-containing secondary alcohols using xerogel-immobilized W110A TeSADH in hexane rather than the aqueous medium required by the enzyme. We further showed that this racemization approach in organic solvent was compatible with Candida antarctica lipase B (CALB)-catalyzed kinetic resolution. This compatibility, therefore, allowed a dual enzymatic dynamic kinetic resolution of racemic alcohols using CALB-catalyzed kinetic resolution and W110A TeSADH-catalyzed racemization of phenyl-ring-containing alcohols.

  18. FitEM2EM--tools for low resolution study of macromolecular assembly and dynamics.

    Directory of Open Access Journals (Sweden)

    Ziv Frankenstein

    Full Text Available Studies of the structure and dynamics of macromolecular assemblies often involve comparison of low resolution models obtained using different techniques such as electron microscopy or atomic force microscopy. We present new computational tools for comparing (matching and docking of low resolution structures, based on shape complementarity. The matched or docked objects are represented by three dimensional grids where the value of each grid point depends on its position with regard to the interior, surface or exterior of the object. The grids are correlated using fast Fourier transformations producing either matches of related objects or docking models depending on the details of the grid representations. The procedures incorporate thickening and smoothing of the surfaces of the objects which effectively compensates for differences in the resolution of the matched/docked objects, circumventing the need for resolution modification. The presented matching tool FitEM2EMin successfully fitted electron microscopy structures obtained at different resolutions, different conformers of the same structure and partial structures, ranking correct matches at the top in every case. The differences between the grid representations of the matched objects can be used to study conformation differences or to characterize the size and shape of substructures. The presented low-to-low docking tool FitEM2EMout ranked the expected models at the top.

  19. Study of the dynamics of the MoO2-Mo2C system for catalytic partial oxidation reactions

    Science.gov (United States)

    Cuba Torres, Christian Martin

    On a global scale, the energy demand is largely supplied by the combustion of non-renewable fossil fuels. However, their rapid depletion coupled with environmental and sustainability concerns are the main drivers to seek for alternative energetic strategies. To this end, the sustainable generation of hydrogen from renewable resources such as biodiesel would represent an attractive alternative solution to fossil fuels. Furthermore, hydrogen's lower environmental impact and greater independence from foreign control make it a strong contender for solving this global problem. Among a wide variety of methods for hydrogen production, the catalytic partial oxidation offers numerous advantages for compact and mobile fuel processing systems. For this reaction, the present work explores the versatility of the Mo--O--C catalytic system under different synthesis methods and reforming conditions using methyl oleate as a surrogate biodiesel. MoO2 exhibits good catalytic activity and exhibits high coke-resistance even under reforming conditions where long-chain oxygenated compounds are prone to form coke. Moreover, the lattice oxygen present in MoO2 promotes the Mars-Van Krevelen mechanism. Also, it is introduced a novel beta-Mo2C synthesis by the in-situ formation method that does not utilize external H2 inputs. Herein, the MoO 2/Mo2C system maintains high catalytic activity for partial oxidation while the lattice oxygen serves as a carbon buffer for preventing coke formation. This unique feature allows for longer operation reforming times despite slightly lower catalytic activity compared to the catalysts prepared by the traditional temperature-programmed reaction method. Moreover, it is demonstrated by a pulse reaction technique that during the phase transformation of MoO2 to beta-Mo2C, the formation of Mo metal as an intermediate is not responsible for the sintering of the material wrongly assumed by the temperature-programmed method.

  20. Adaptive resolution simulation of a biomolecule and its hydration shell: Structural and dynamical properties

    International Nuclear Information System (INIS)

    Fogarty, Aoife C.; Potestio, Raffaello; Kremer, Kurt

    2015-01-01

    A fully atomistic modelling of many biophysical and biochemical processes at biologically relevant length- and time scales is beyond our reach with current computational resources, and one approach to overcome this difficulty is the use of multiscale simulation techniques. In such simulations, when system properties necessitate a boundary between resolutions that falls within the solvent region, one can use an approach such as the Adaptive Resolution Scheme (AdResS), in which solvent particles change their resolution on the fly during the simulation. Here, we apply the existing AdResS methodology to biomolecular systems, simulating a fully atomistic protein with an atomistic hydration shell, solvated in a coarse-grained particle reservoir and heat bath. Using as a test case an aqueous solution of the regulatory protein ubiquitin, we first confirm the validity of the AdResS approach for such systems, via an examination of protein and solvent structural and dynamical properties. We then demonstrate how, in addition to providing a computational speedup, such a multiscale AdResS approach can yield otherwise inaccessible physical insights into biomolecular function. We use our methodology to show that protein structure and dynamics can still be correctly modelled using only a few shells of atomistic water molecules. We also discuss aspects of the AdResS methodology peculiar to biomolecular simulations

  1. Adaptive resolution simulation of a biomolecule and its hydration shell: Structural and dynamical properties

    Energy Technology Data Exchange (ETDEWEB)

    Fogarty, Aoife C., E-mail: fogarty@mpip-mainz.mpg.de; Potestio, Raffaello, E-mail: potestio@mpip-mainz.mpg.de; Kremer, Kurt, E-mail: kremer@mpip-mainz.mpg.de [Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany)

    2015-05-21

    A fully atomistic modelling of many biophysical and biochemical processes at biologically relevant length- and time scales is beyond our reach with current computational resources, and one approach to overcome this difficulty is the use of multiscale simulation techniques. In such simulations, when system properties necessitate a boundary between resolutions that falls within the solvent region, one can use an approach such as the Adaptive Resolution Scheme (AdResS), in which solvent particles change their resolution on the fly during the simulation. Here, we apply the existing AdResS methodology to biomolecular systems, simulating a fully atomistic protein with an atomistic hydration shell, solvated in a coarse-grained particle reservoir and heat bath. Using as a test case an aqueous solution of the regulatory protein ubiquitin, we first confirm the validity of the AdResS approach for such systems, via an examination of protein and solvent structural and dynamical properties. We then demonstrate how, in addition to providing a computational speedup, such a multiscale AdResS approach can yield otherwise inaccessible physical insights into biomolecular function. We use our methodology to show that protein structure and dynamics can still be correctly modelled using only a few shells of atomistic water molecules. We also discuss aspects of the AdResS methodology peculiar to biomolecular simulations.

  2. Incorporating human-water dynamics in a hyper-resolution land surface model

    Science.gov (United States)

    Vergopolan, N.; Chaney, N.; Wanders, N.; Sheffield, J.; Wood, E. F.

    2017-12-01

    The increasing demand for water, energy, and food is leading to unsustainable groundwater and surface water exploitation. As a result, the human interactions with the environment, through alteration of land and water resources dynamics, need to be reflected in hydrologic and land surface models (LSMs). Advancements in representing human-water dynamics still leave challenges related to the lack of water use data, water allocation algorithms, and modeling scales. This leads to an over-simplistic representation of human water use in large-scale models; this is in turn leads to an inability to capture extreme events signatures and to provide reliable information at stakeholder-level spatial scales. The emergence of hyper-resolution models allows one to address these challenges by simulating the hydrological processes and interactions with the human impacts at field scales. We integrated human-water dynamics into HydroBlocks - a hyper-resolution, field-scale resolving LSM. HydroBlocks explicitly solves the field-scale spatial heterogeneity of land surface processes through interacting hydrologic response units (HRUs); and its HRU-based model parallelization allows computationally efficient long-term simulations as well as ensemble predictions. The implemented human-water dynamics include groundwater and surface water abstraction to meet agricultural, domestic and industrial water demands. Furthermore, a supply-demand water allocation scheme based on relative costs helps to determine sectoral water use requirements and tradeoffs. A set of HydroBlocks simulations over the Midwest United States (daily, at 30-m spatial resolution for 30 years) are used to quantify the irrigation impacts on water availability. The model captures large reductions in total soil moisture and water table levels, as well as spatiotemporal changes in evapotranspiration and runoff peaks, with their intensity related to the adopted water management strategy. By incorporating human-water dynamics in

  3. Method of Obtaining High Resolution Intrinsic Wire Boom Damping Parameters for Multi-Body Dynamics Simulations

    Science.gov (United States)

    Yew, Alvin G.; Chai, Dean J.; Olney, David J.

    2010-01-01

    The goal of NASA's Magnetospheric MultiScale (MMS) mission is to understand magnetic reconnection with sensor measurements from four spinning satellites flown in a tight tetrahedron formation. Four of the six electric field sensors on each satellite are located at the end of 60- meter wire booms to increase measurement sensitivity in the spin plane and to minimize motion coupling from perturbations on the main body. A propulsion burn however, might induce boom oscillations that could impact science measurements if oscillations do not damp to values on the order of 0.1 degree in a timely fashion. Large damping time constants could also adversely affect flight dynamics and attitude control performance. In this paper, we will discuss the implementation of a high resolution method for calculating the boom's intrinsic damping, which was used in multi-body dynamics simulations. In summary, experimental data was obtained with a scaled-down boom, which was suspended as a pendulum in vacuum. Optical techniques were designed to accurately measure the natural decay of angular position and subsequently, data processing algorithms resulted in excellent spatial and temporal resolutions. This method was repeated in a parametric study for various lengths, root tensions and vacuum levels. For all data sets, regression models for damping were applied, including: nonlinear viscous, frequency-independent hysteretic, coulomb and some combination of them. Our data analysis and dynamics models have shown that the intrinsic damping for the baseline boom is insufficient, thereby forcing project management to explore mitigation strategies.

  4. High-resolution dynamic pressure sensor array based on piezo-phototronic effect tuned photoluminescence imaging.

    Science.gov (United States)

    Peng, Mingzeng; Li, Zhou; Liu, Caihong; Zheng, Qiang; Shi, Xieqing; Song, Ming; Zhang, Yang; Du, Shiyu; Zhai, Junyi; Wang, Zhong Lin

    2015-03-24

    A high-resolution dynamic tactile/pressure display is indispensable to the comprehensive perception of force/mechanical stimulations such as electronic skin, biomechanical imaging/analysis, or personalized signatures. Here, we present a dynamic pressure sensor array based on pressure/strain tuned photoluminescence imaging without the need for electricity. Each sensor is a nanopillar that consists of InGaN/GaN multiple quantum wells. Its photoluminescence intensity can be modulated dramatically and linearly by small strain (0-0.15%) owing to the piezo-phototronic effect. The sensor array has a high pixel density of 6350 dpi and exceptional small standard deviation of photoluminescence. High-quality tactile/pressure sensing distribution can be real-time recorded by parallel photoluminescence imaging without any cross-talk. The sensor array can be inexpensively fabricated over large areas by semiconductor product lines. The proposed dynamic all-optical pressure imaging with excellent resolution, high sensitivity, good uniformity, and ultrafast response time offers a suitable way for smart sensing, micro/nano-opto-electromechanical systems.

  5. Dynamic placement of plasmonic hotspots for super-resolution surface-enhanced Raman scattering.

    Science.gov (United States)

    Ertsgaard, Christopher T; McKoskey, Rachel M; Rich, Isabel S; Lindquist, Nathan C

    2014-10-28

    In this paper, we demonstrate dynamic placement of locally enhanced plasmonic fields using holographic laser illumination of a silver nanohole array. To visualize these focused "hotspots", the silver surface was coated with various biological samples for surface-enhanced Raman spectroscopy (SERS) imaging. Due to the large field enhancements, blinking behavior of the SERS hotspots was observed and processed using a stochastic optical reconstruction microscopy algorithm enabling super-resolution localization of the hotspots to within 10 nm. These hotspots were then shifted across the surface in subwavelength (hotspots. Using this technique, we also show that such subwavelength shifting and localization of plasmonic hotspots has potential for imaging applications. Interestingly, illuminating the surface with randomly shifting SERS hotspots was sufficient to completely fill in a wide field of view for super-resolution chemical imaging.

  6. Full dynamic resolution low lower DA-Converters for flat panel displays

    Directory of Open Access Journals (Sweden)

    C. Saas

    2006-01-01

    Full Text Available It has been shown that stepwise charging can reduce the power dissipated in the source drivers of a flat panel display. However the solution presented only provided a dynamic resolution of 3 bits which is not sufficient for obtaining a full color resolution display. In this work a further development of the basic idea is presented. The stepwise charging is increased to 4 bits and supplemented by a current source to provide an output signal which represents an 8 bit value with sufficient accuracy. Within this work the application is an AM-OLED flat panel display, but the concept can easily be applied to other display technologies like TFT-LCD as well.

  7. Large-scale ruthenium- and enzyme-catalyzed dynamic kinetic resolution of (rac-1-phenylethanol

    Directory of Open Access Journals (Sweden)

    Bäckvall Jan-E

    2007-12-01

    Full Text Available Abstract The scale-up of the ruthenium- and enzyme-catalyzed dynamic kinetic resolution (DKR of (rac-1-phenylethanol (2 is addressed. The immobilized lipase Candida antarctica lipase B (CALB was employed for the resolution, which shows high enantioselectivity in the transesterification. The ruthenium catalyst used, (η 5-C5Ph5RuCl(CO2 1, was shown to possess very high reactivity in the "in situ" redox racemization of 1-phenylethanol (2 in the presence of the immobilized enzyme, and could be used in 0.05 mol% with high efficiency. Commercially available isopropenyl acetate was employed as acylating agent in the lipase-catalyzed transesterifications, which makes the purification of the product very easy. In a successful large-scale DKR of 2, with 0.05 mol% of 1, (R-1-phenylethanol acetate (3 was obtained in 159 g (97% yield in excellent enantiomeric excess (99.8% ee.

  8. Validation of the Regional Climate Model ALARO with different dynamical downscaling approaches and different horizontal resolutions

    Science.gov (United States)

    Berckmans, Julie; Hamdi, Rafiq; De Troch, Rozemien; Giot, Olivier

    2015-04-01

    At the Royal Meteorological Institute of Belgium (RMI), climate simulations are performed with the regional climate model (RCM) ALARO, a version of the ALADIN model with improved physical parameterizations. In order to obtain high-resolution information of the regional climate, lateral bounary conditions (LBC) are prescribed from the global climate model (GCM) ARPEGE. Dynamical downscaling is commonly done in a continuous long-term simulation, with the initialisation of the model at the start and driven by the regularly updated LBCs of the GCM. Recently, more interest exists in the dynamical downscaling approach of frequent reinitializations of the climate simulations. For these experiments, the model is initialised daily and driven for 24 hours by the GCM. However, the surface is either initialised daily together with the atmosphere or free to evolve continuously. The surface scheme implemented in ALARO is SURFEX, which can be either run in coupled mode or in stand-alone mode. The regional climate is simulated on different domains, on a 20km horizontal resolution over Western-Europe and a 4km horizontal resolution over Belgium. Besides, SURFEX allows to perform a stand-alone or offline simulation on 1km horizontal resolution over Belgium. This research is in the framework of the project MASC: "Modelling and Assessing Surface Change Impacts on Belgian and Western European Climate", a 4-year project funded by the Belgian Federal Government. The overall aim of the project is to study the feedbacks between climate changes and land surface changes in order to improve regional climate model projections at the decennial scale over Belgium and Western Europe and thus to provide better climate projections and climate change evaluation tools to policy makers, stakeholders and the scientific community.

  9. Impact of the lateral boundary conditions resolution on dynamical downscaling of precipitation in mediterranean spain

    Energy Technology Data Exchange (ETDEWEB)

    Amengual, A.; Romero, R.; Homar, V.; Ramis, C.; Alonso, S. [Universitat de les Illes Balears, Grup de Meteorologia, Departament de Fisica, Palma de Mallorca (Spain)

    2007-10-15

    Conclusions on the General Circulation Models (GCMs) horizontal and temporal optimum resolution for dynamical downscaling of rainfall in Mediterranean Spain are derived based on the statistical analysis of mesoscale simulations of past events. These events correspond to the 165 heavy rainfall days during 1984-1993, which are simulated with the HIRLAM mesoscale model. The model is nested within the European Centre for Medium-Range Weather Forecasts atmospheric grid analyses. We represent the spectrum of GCMs resolutions currently applied in climate change research by using varying horizontal and temporal resolutions of these analyses. Three sets of simulations are designed using input data with 1 , 2 and 3 horizontal resolutions (available at 6 h intervals), and three additional sets are designed using 1 horizontal resolution with less frequent boundary conditions updated every 12, 24 and 48 h. The quality of the daily rainfall forecasts is verified against rain-gauge observations using correlation and root mean square error analysis as well as Relative Operating Characteristic curves. Spatial distribution of average precipitation fields are also computed and verified against observations. For the whole Mediterranean Spain, model skill is not appreciably improved when using enhanced spatial input data, suggesting that there is no clear benefit in using high resolution data from General Circulation Model for the regional downscaling of precipitation under the conditions tested. However, significant differences are found in verification scores when boundary conditions are interpolated less frequently than 12 h apart. The analysis is particularized for six major rain bearing flow regimes that affect the region, and differences in model performance are found among the flow types, with slightly better forecasts for Atlantic and cold front passage flows. A remarkable spatial variability in forecast quality is found in the domain, with an overall tendency for higher

  10. Dynamic frequency-domain interferometer for absolute distance measurements with high resolution

    International Nuclear Information System (INIS)

    Weng, Jidong; Liu, Shenggang; Ma, Heli; Tao, Tianjiong; Wang, Xiang; Liu, Cangli; Tan, Hua

    2014-01-01

    A unique dynamic frequency-domain interferometer for absolute distance measurement has been developed recently. This paper presents the working principle of the new interferometric system, which uses a photonic crystal fiber to transmit the wide-spectrum light beams and a high-speed streak camera or frame camera to record the interference stripes. Preliminary measurements of harmonic vibrations of a speaker, driven by a radio, and the changes in the tip clearance of a rotating gear wheel show that this new type of interferometer has the ability to perform absolute distance measurements both with high time- and distance-resolution

  11. Dynamic frequency-domain interferometer for absolute distance measurements with high resolution

    Science.gov (United States)

    Weng, Jidong; Liu, Shenggang; Ma, Heli; Tao, Tianjiong; Wang, Xiang; Liu, Cangli; Tan, Hua

    2014-11-01

    A unique dynamic frequency-domain interferometer for absolute distance measurement has been developed recently. This paper presents the working principle of the new interferometric system, which uses a photonic crystal fiber to transmit the wide-spectrum light beams and a high-speed streak camera or frame camera to record the interference stripes. Preliminary measurements of harmonic vibrations of a speaker, driven by a radio, and the changes in the tip clearance of a rotating gear wheel show that this new type of interferometer has the ability to perform absolute distance measurements both with high time- and distance-resolution.

  12. Inverse stochastic-dynamic models for high-resolution Greenland ice core records

    DEFF Research Database (Denmark)

    Boers, Niklas; Chekroun, Mickael D.; Liu, Honghu

    2017-01-01

    as statistical properties such as probability density functions, waiting times and power spectra, with no need for any external forcing. The crucial ingredients for capturing these properties are (i) high-resolution training data, (ii) cubic drift terms, (iii) nonlinear coupling terms between the 18O and dust......Proxy records from Greenland ice cores have been studied for several decades, yet many open questions remain regarding the climate variability encoded therein. Here, we use a Bayesian framework for inferring inverse, stochastic-dynamic models from 18O and dust records of unprecedented, subdecadal...

  13. Video-to-Video Dynamic Super-Resolution for Grayscale and Color Sequences

    Directory of Open Access Journals (Sweden)

    Elad Michael

    2006-01-01

    Full Text Available We address the dynamic super-resolution (SR problem of reconstructing a high-quality set of monochromatic or color super-resolved images from low-quality monochromatic, color, or mosaiced frames. Our approach includes a joint method for simultaneous SR, deblurring, and demosaicing, this way taking into account practical color measurements encountered in video sequences. For the case of translational motion and common space-invariant blur, the proposed method is based on a very fast and memory efficient approximation of the Kalman filter (KF. Experimental results on both simulated and real data are supplied, demonstrating the presented algorithms, and their strength.

  14. High resolution kinetic beam schemes in generalized coordinates for ideal quantum gas dynamics

    International Nuclear Information System (INIS)

    Shi, Yu-Hsin; Huang, J.C.; Yang, J.Y.

    2007-01-01

    A class of high resolution kinetic beam schemes in multiple space dimensions in general coordinates system for the ideal quantum gas is presented for the computation of quantum gas dynamical flows. The kinetic Boltzmann equation approach is adopted and the local equilibrium quantum statistics distribution is assumed. High-order accurate methods using essentially non-oscillatory interpolation concept are constructed. Computations of shock wave diffraction by a circular cylinder in an ideal quantum gas are conducted to illustrate the present method. The present method provides a viable means to explore various practical ideal quantum gas flows

  15. Extended-Range High-Resolution Dynamical Downscaling over a Continental-Scale Domain

    Science.gov (United States)

    Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.

    2014-12-01

    High-resolution mesoscale simulations, when applied for downscaling meteorological fields over large spatial domains and for extended time periods, can provide valuable information for many practical application scenarios including the weather-dependent renewable energy industry. In the present study, a strategy has been proposed to dynamically downscale coarse-resolution meteorological fields from Environment Canada's regional analyses for a period of multiple years over the entire Canadian territory. The study demonstrates that a continuous mesoscale simulation over the entire domain is the most suitable approach in this regard. Large-scale deviations in the different meteorological fields pose the biggest challenge for extended-range simulations over continental scale domains, and the enforcement of the lateral boundary conditions is not sufficient to restrict such deviations. A scheme has therefore been developed to spectrally nudge the simulated high-resolution meteorological fields at the different model vertical levels towards those embedded in the coarse-resolution driving fields derived from the regional analyses. A series of experiments were carried out to determine the optimal nudging strategy including the appropriate nudging length scales, nudging vertical profile and temporal relaxation. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil-moisture, and snow conditions, towards their expected values obtained from a high-resolution offline surface scheme was also devised to limit any considerable deviation in the evolving surface fields due to extended-range temporal integrations. The study shows that ensuring large-scale atmospheric similarities helps to deliver near-surface statistical scores for temperature, dew point temperature and horizontal wind speed that are better or comparable to the operational regional forecasts issued by Environment Canada. Furthermore, the meteorological fields

  16. WRF high resolution dynamical downscaling of ERA-Interim for Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Pedro M.M. [University of Lisbon, Instituto Dom Luiz, Lisbon (Portugal); Faculdade de Ciencias da Universidade de Lisboa, Lisbon (Portugal); Cardoso, Rita M.; Miranda, Pedro M.A.; Medeiros, Joana de [University of Lisbon, Instituto Dom Luiz, Lisbon (Portugal); Belo-Pereira, Margarida; Espirito-Santo, Fatima [Instituto de Meteorologia, Lisbon (Portugal)

    2012-11-15

    This study proposes a dynamically downscaled climatology of Portugal, produced by a high resolution (9 km) WRF simulation, forced by 20 years of ERA-Interim reanalysis (1989-2008), nested in an intermediate domain with 27 km of resolution. The Portuguese mainland is characterized by large precipitation gradients, with observed mean annual precipitation ranging from about 400 to over 2,200 mm, with a very wet northwest and rather dry southeast, largely explained by orographic processes. Model results are compared with all available stations with continuous records, comprising daily information in 32 stations for temperature and 308 for precipitation, through the computation of mean climatologies, standard statistical errors on daily to seasonally timescales, and distributions of extreme events. Results show that WRF at 9 km outperforms ERA-Interim in all analyzed variables, with good results in the representation of the annual cycles in each region. The biases of minimum and maximum temperature are reduced, with improvement of the description of temperature variability at the extreme range of its distribution. The largest gain of the high resolution simulations is visible in the rainiest regions of Portugal, where orographic enhancement is crucial. These improvements are striking in the high ranking percentiles in all seasons, describing extreme precipitation events. WRF results at 9 km compare favorably with published results supporting its use as a high-resolution regional climate model. This higher resolution allows a better representation of extreme events that are of major importance to develop mitigation/adaptation strategies by policy makers and downstream users of regional climate models in applications such as flash floods or heat waves. (orig.)

  17. Dynamic high-resolution ultrasound of the shoulder: How we do it

    Energy Technology Data Exchange (ETDEWEB)

    Corazza, Angelo, E-mail: angelcoraz@libero.it [Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Genova, Via Alberti 4, 16132 Genova (Italy); Orlandi, Davide, E-mail: theabo@libero.it [Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Genova, Via Alberti 4, 16132 Genova (Italy); Fabbro, Emanuele, E-mail: emanuele.fabbro@gmail.com [Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Genova, Via Alberti 4, 16132 Genova (Italy); Ferrero, Giulio, E-mail: giulio.ferrero@gmail.com [Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Genova, Via Alberti 4, 16132 Genova (Italy); Messina, Carmelo, E-mail: carmelomessina.md@gmail.com [Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Milano, Piazza Malan 2, 20097 San Donato Milanese (Italy); Sartoris, Riccardo, E-mail: riccardo.sartoris@hotmail.it [Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Genova, Via Alberti 4, 16132 Genova (Italy); Perugin Bernardi, Silvia, E-mail: silvy-86-@hotmail.it [Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Genova, Via Alberti 4, 16132 Genova (Italy); Arcidiacono, Alice, E-mail: a.arcidiacono84@gmail.com [Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Genova, Via Alberti 4, 16132 Genova (Italy); Silvestri, Enzo, E-mail: silvi.enzo@gmail.com [Dipartimento di Radiologia, Ospedale Evangelico Internazionale, Corso Solferino 29A, 16121 Genova (Italy); and others

    2015-02-15

    Highlights: • This paper shows how to apply US technique to image soft tissues around the shoulder. • Readers will learn to recognize normal US anatomy of tendons of the shoulder. • Readers will learn to apply dynamic maneuvers to improve rotator cuff visibility. - Abstract: Ultrasonography (US) is an established and well-accepted modality that can be used to evaluate articular and peri-articular structures around the shoulder. US has been proven to be useful in a wide range of rotator cuff diseases (tendon tears, tendinosis, and bursitis) as well as non-rotator cuff abnormalities (instability problems, synovial joint diseases, and nerve entrapment syndromes). Diagnostic accuracy of shoulder US when evaluating rotator cuff tears can reach 91–100% for partial and full thickness tears detection, respectively, having been reported to be as accurate as magnetic resonance imaging in experienced hands. US is cheap, readily available, capable to provide high-resolution images, and does not use ionizing radiations. In addition, US is the only imaging modality that allows performing dynamic evaluation of musculoskeletal structures, that may help to further increase diagnostic performance. In this setting, a standardized imaging protocol is essential for an exhaustive and efficient examination, also helping reducing the intrinsic dependence from operators of US. Furthermore, knowledge of pitfalls that can be encountered when examining the shoulder may help to avoid erroneous images interpretation. In this article we use detailed anatomic schemes and high-resolution US images to describe the normal US anatomy of soft tissues, articular, and para-articular structures located in and around the shoulder. Short video clips emphasizing the crucial role of dynamic maneuvers and dynamic real-time US examination of these structures are included as supplementary material.

  18. Dynamic high-resolution ultrasound of the shoulder: How we do it

    International Nuclear Information System (INIS)

    Corazza, Angelo; Orlandi, Davide; Fabbro, Emanuele; Ferrero, Giulio; Messina, Carmelo; Sartoris, Riccardo; Perugin Bernardi, Silvia; Arcidiacono, Alice; Silvestri, Enzo

    2015-01-01

    Highlights: • This paper shows how to apply US technique to image soft tissues around the shoulder. • Readers will learn to recognize normal US anatomy of tendons of the shoulder. • Readers will learn to apply dynamic maneuvers to improve rotator cuff visibility. - Abstract: Ultrasonography (US) is an established and well-accepted modality that can be used to evaluate articular and peri-articular structures around the shoulder. US has been proven to be useful in a wide range of rotator cuff diseases (tendon tears, tendinosis, and bursitis) as well as non-rotator cuff abnormalities (instability problems, synovial joint diseases, and nerve entrapment syndromes). Diagnostic accuracy of shoulder US when evaluating rotator cuff tears can reach 91–100% for partial and full thickness tears detection, respectively, having been reported to be as accurate as magnetic resonance imaging in experienced hands. US is cheap, readily available, capable to provide high-resolution images, and does not use ionizing radiations. In addition, US is the only imaging modality that allows performing dynamic evaluation of musculoskeletal structures, that may help to further increase diagnostic performance. In this setting, a standardized imaging protocol is essential for an exhaustive and efficient examination, also helping reducing the intrinsic dependence from operators of US. Furthermore, knowledge of pitfalls that can be encountered when examining the shoulder may help to avoid erroneous images interpretation. In this article we use detailed anatomic schemes and high-resolution US images to describe the normal US anatomy of soft tissues, articular, and para-articular structures located in and around the shoulder. Short video clips emphasizing the crucial role of dynamic maneuvers and dynamic real-time US examination of these structures are included as supplementary material

  19. Catalytic treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bindley, W T.R.

    1931-04-18

    An apparatus is described for the catalytic treatment of liquids, semi-liquids, and gases comprising a vessel into which the liquid, semi-liquid, or gas to be treated is introduced through a common inlet to a chamber within the vessel whence it passes to contact with a catalyst through radially arranged channels or passages to a common outlet chamber.

  20. Investigating sub-spine actin dynamics in rat hippocampal neurons with super-resolution optical imaging.

    Directory of Open Access Journals (Sweden)

    Vedakumar Tatavarty

    Full Text Available Morphological changes in dendritic spines represent an important mechanism for synaptic plasticity which is postulated to underlie the vital cognitive phenomena of learning and memory. These morphological changes are driven by the dynamic actin cytoskeleton that is present in dendritic spines. The study of actin dynamics in these spines traditionally has been hindered by the small size of the spine. In this study, we utilize a photo-activation localization microscopy (PALM-based single-molecule tracking technique to analyze F-actin movements with approximately 30-nm resolution in cultured hippocampal neurons. We were able to observe the kinematic (physical motion of actin filaments, i.e., retrograde flow and kinetic (F-actin turn-over dynamics of F-actin at the single-filament level in dendritic spines. We found that F-actin in dendritic spines exhibits highly heterogeneous kinematic dynamics at the individual filament level, with simultaneous actin flows in both retrograde and anterograde directions. At the ensemble level, movements of filaments integrate into a net retrograde flow of approximately 138 nm/min. These results suggest a weakly polarized F-actin network that consists of mostly short filaments in dendritic spines.

  1. Investigating sub-spine actin dynamics in rat hippocampal neurons with super-resolution optical imaging.

    Science.gov (United States)

    Tatavarty, Vedakumar; Kim, Eun-Ji; Rodionov, Vladimir; Yu, Ji

    2009-11-09

    Morphological changes in dendritic spines represent an important mechanism for synaptic plasticity which is postulated to underlie the vital cognitive phenomena of learning and memory. These morphological changes are driven by the dynamic actin cytoskeleton that is present in dendritic spines. The study of actin dynamics in these spines traditionally has been hindered by the small size of the spine. In this study, we utilize a photo-activation localization microscopy (PALM)-based single-molecule tracking technique to analyze F-actin movements with approximately 30-nm resolution in cultured hippocampal neurons. We were able to observe the kinematic (physical motion of actin filaments, i.e., retrograde flow) and kinetic (F-actin turn-over) dynamics of F-actin at the single-filament level in dendritic spines. We found that F-actin in dendritic spines exhibits highly heterogeneous kinematic dynamics at the individual filament level, with simultaneous actin flows in both retrograde and anterograde directions. At the ensemble level, movements of filaments integrate into a net retrograde flow of approximately 138 nm/min. These results suggest a weakly polarized F-actin network that consists of mostly short filaments in dendritic spines.

  2. Inverse stochastic–dynamic models for high-resolution Greenland ice core records

    Directory of Open Access Journals (Sweden)

    N. Boers

    2017-12-01

    Full Text Available Proxy records from Greenland ice cores have been studied for several decades, yet many open questions remain regarding the climate variability encoded therein. Here, we use a Bayesian framework for inferring inverse, stochastic–dynamic models from δ18O and dust records of unprecedented, subdecadal temporal resolution. The records stem from the North Greenland Ice Core Project (NGRIP, and we focus on the time interval 59–22 ka b2k. Our model reproduces the dynamical characteristics of both the δ18O and dust proxy records, including the millennial-scale Dansgaard–Oeschger variability, as well as statistical properties such as probability density functions, waiting times and power spectra, with no need for any external forcing. The crucial ingredients for capturing these properties are (i high-resolution training data, (ii cubic drift terms, (iii nonlinear coupling terms between the δ18O and dust time series, and (iv non-Markovian contributions that represent short-term memory effects.

  3. Inverse stochastic-dynamic models for high-resolution Greenland ice core records

    Science.gov (United States)

    Boers, Niklas; Chekroun, Mickael D.; Liu, Honghu; Kondrashov, Dmitri; Rousseau, Denis-Didier; Svensson, Anders; Bigler, Matthias; Ghil, Michael

    2017-12-01

    Proxy records from Greenland ice cores have been studied for several decades, yet many open questions remain regarding the climate variability encoded therein. Here, we use a Bayesian framework for inferring inverse, stochastic-dynamic models from δ18O and dust records of unprecedented, subdecadal temporal resolution. The records stem from the North Greenland Ice Core Project (NGRIP), and we focus on the time interval 59-22 ka b2k. Our model reproduces the dynamical characteristics of both the δ18O and dust proxy records, including the millennial-scale Dansgaard-Oeschger variability, as well as statistical properties such as probability density functions, waiting times and power spectra, with no need for any external forcing. The crucial ingredients for capturing these properties are (i) high-resolution training data, (ii) cubic drift terms, (iii) nonlinear coupling terms between the δ18O and dust time series, and (iv) non-Markovian contributions that represent short-term memory effects.

  4. Temporal dynamics of motivation-cognitive control interactions revealed by high-resolution pupillometry

    Directory of Open Access Journals (Sweden)

    Kimberly Sarah Chiew

    2013-01-01

    Full Text Available Motivational manipulations, such as the presence of performance-contingent reward incentives, can have substantial influences on cognitive control. Previous evidence suggests that reward incentives may enhance cognitive performance specifically through increased preparatory, or proactive, control processes. The present study examined reward influences on cognitive control dynamics in the AX-Continuous Performance Task (AX-CPT, using high-resolution pupillometry. In the AX-CPT, contextual cues must be actively maintained over a delay in order to appropriately respond to ambiguous target probes. A key feature of the task is that it permits dissociable characterization of preparatory, proactive control processes (i.e., utilization of context and reactive control processes (i.e., target-evoked interference resolution. Task performance profiles suggested that reward incentives enhanced proactive control (context utilization. Critically, pupil dilation was also increased on reward incentive trials during context maintenance periods, suggesting trial-specific shifts in proactive control, particularly when context cues indicated the need to overcome the dominant target response bias. Reward incentives had both transient (i.e., trial-by-trial and sustained (i.e., block-based effects on pupil dilation, which may reflect distinct underlying processes. The transient pupillary effects were present even when comparing against trials matched in task performance, suggesting a unique motivational influence of reward incentives. These results suggest that pupillometry may be a useful technique for investigating reward motivational signals and their dynamic influence on cognitive control.

  5. High-resolution polypeptide structure and dynamics in anisotropic environments: The gramicidin channel

    Energy Technology Data Exchange (ETDEWEB)

    Cross, T.A.; Lee, K.C.; Ketchem, R.R.; Hu, W.; Lazo, N.D.; Huo, S. [Florida State Univ., Tallahassee, FL (United States)

    1994-12-01

    To understand the details of macromolecular function, high-resolution structural and dynamic detail is essential. The polypeptide fold of the gramicidin channel has been effectively modeled for the past 20 years, yet the functional changes in conductance and channel lifetime associated with amino acid substitutions cannot be predicted. To accomplish this goal, high-resolution electrostatic modeling and the precise orientation of all dipoles are required. Furthermore, an enhanced knowledge of the complex molecular environment of this membrane-bound peptide is needed. An aqueous environment is relatively uniform and achiral. The membrane environment is very heterogenous and chiral. A knowledge of the interactions, specific and nonspecific, between peptide and lipid will aid in developing a better understanding of this environment. To accomplish this goal, it is necessary to study the peptide in an extended lipid bilayer, rather than in a vesicular or micellar form. These latter environments are likely to possess increased dynamics, increased water penetration, and distorted interactions between the polypeptide and membrane surface. To perform NMR studies on bilayer bound peptides, solid state NMR methods are required, and for specific site information, isotopic labels are incorporated using solid phase peptide synthesis.

  6. Dynamic (4D) CT perfusion offers simultaneous functional and anatomical insights into pulmonary embolism resolution

    Energy Technology Data Exchange (ETDEWEB)

    Mirsadraee, Saeed, E-mail: saeed.mirsadraee@ed.ac.uk [Clinical Research Imaging Centre, Queen' s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ (United Kingdom); Reid, John H.; Connell, Martin [Clinical Research Imaging Centre, Queen' s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ (United Kingdom); MacNee, William; Hirani, Nikhil [The Queen' s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ (United Kingdom); Murchison, John T. [Department of Radiology, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA (United Kingdom); Beek, Edwin J. van [Clinical Research Imaging Centre, Queen' s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ (United Kingdom)

    2016-10-15

    Objective: Resolution and long-term functional effects of pulmonary emboli are unpredictable. This study was carried out to assess persisting vascular bed perfusion abnormalities and resolution of arterial thrombus in patients with recent pulmonary embolism (PE). Methods and materials: 26 Patients were prospectively evaluated by dynamic (4D) contrast enhanced CT perfusion dynamic pulmonary CT perfusion. Intermittent volume imaging was performed every 1.5–1.7 s during breath-hold and perfusion values were calculated by maximum-slope technique. Thrombus load (modified Miller score; MMS) and ventricular diameter were determined. Perfusion maps were visually scored and correlated with residual endoluminal filling defects. Results: The mean initial thrombus load was 13.1 ± 4.6 MMS (3–16), and 1.2 ± 2.1 MMS (0–8) at follow up. From the 24 CTPs with diagnostic quality perfusion studies, normal perfusion was observed in 7 (29%), and mildly-severely abnormal in 17 (71%). In 15 patients with no residual thrombus on follow up CTPA, normal perfusion was observed in 6, and abnormal perfusion in 9. Perfusion was abnormal in all patients with residual thrombus on follow up CTPA. Pulmonary perfusion changes were classified as reduced (n = 4), delayed (systemic circulation pattern; n = 5), and absent (no-flow; n = 5). The right ventricle was dilated in 12/25 (48%) at presentation, and normal in all 26 follow up scans. Weak correlation was found between initial ventricular dilatation and perfusion abnormality at follow up (r = 0.15). Conclusions: Most patients had substantial perfusion abnormality at 3–6 months post PE. Abnormal perfusion patterns were frequently observed in patients and in regions with no corresponding evidence of residual thrombus on CTPA. Some defects exhibit delayed, presumed systemic, enhancement (which we have termed ‘stunned’ lung). CT perfusion provides combined anatomical and functional information about PE resolution.

  7. Prediction of gasoline yield in a fluid catalytic cracking (FCC riser using k-epsilon turbulence and 4-lump kinetic models: A computational fluid dynamics (CFD approach

    Directory of Open Access Journals (Sweden)

    Muhammad Ahsan

    2015-07-01

    Full Text Available Fluid catalytic cracking (FCC is an essential process for the conversion of gas oil to gasoline. This study is an effort to model the phenomenon numerically using commercial computational fluid dynamics (CFD software, heavy density catalyst and 4-lump kinetic model. Geometry, boundary conditions and dimensions of industrial riser for catalytic cracking unit are conferred for 2D simulation using commercial CFD code FLUENT 6.3. Continuity, momentum, energy and species transport equations, applicable to two phase solid and gas flow, are used to simulate the physical phenomenon as efficient as possible. This study implements and predicts the use of the granular Eulerian multiphase model with species transport. Time accurate transient problem is solved with the prediction of mass fraction profiles of gas oil, gasoline, light gas and coke. The output curves demonstrate the breaking of heavy hydrocarbon in the presence of catalyst. An approach proposed in this study shows good agreement with the experimental and numerical data available in the literature.

  8. Dynamic structural change of the self-assembled lanthanum complex induced by lithium triflate for direct catalytic asymmetric aldol-Tishchenko reaction.

    Science.gov (United States)

    Horiuchi, Yoshihiro; Gnanadesikan, Vijay; Ohshima, Takashi; Masu, Hyuma; Katagiri, Kosuke; Sei, Yoshihisa; Yamaguchi, Kentaro; Shibasaki, Masakatsu

    2005-09-05

    The development of a direct catalytic asymmetric aldol-Tishchenko reaction and the nature of its catalyst are described. An aldol-Tishchenko reaction of various propiophenone derivatives with aromatic aldehydes was promoted by [LaLi3(binol)3] (LLB), and reactivity and enantioselectivity were dramatically enhanced by the addition of lithium trifluoromethanesulfonate (LiOTf). First, we observed a dynamic structural change of LLB by the addition of LiOTf using 13C NMR spectroscopy, electronspray ionization mass spectrometry (ESI-MS), and cold-spray ionization mass spectrometry (CSI-MS). X-ray crystallography revealed that the structure of the newly generated self-assembled complex was a binuclear [La2Li4(binaphthoxide)5] complex 6. A reverse structural change of complex 6 to LLB by the addition of one equivalent of Li2(binol) was also confirmed by ESI-MS and experimental results. The drastic concentration effects on the direct catalytic asymmetric aldol-Tishchenko reaction suggested that the addition of LiOTf to LLB generated an active oligomeric catalyst species.

  9. Statistical dynamic image reconstruction in state-of-the-art high-resolution PET

    International Nuclear Information System (INIS)

    Rahmim, Arman; Cheng, J-C; Blinder, Stephan; Camborde, Maurie-Laure; Sossi, Vesna

    2005-01-01

    Modern high-resolution PET is now more than ever in need of scrutiny into the nature and limitations of the imaging modality itself as well as image reconstruction techniques. In this work, we have reviewed, analysed and addressed the following three considerations within the particular context of state-of-the-art dynamic PET imaging: (i) the typical average numbers of events per line-of-response (LOR) are now (much) less than unity (ii) due to the physical and biological decay of the activity distribution, one requires robust and efficient reconstruction algorithms applicable to a wide range of statistics and (iii) the computational considerations in dynamic imaging are much enhanced (i.e., more frames to be stored and reconstructed). Within the framework of statistical image reconstruction, we have argued theoretically and shown experimentally that the sinogram non-negativity constraint (when using the delayed-coincidence and/or scatter-subtraction techniques) is especially expected to result in an overestimation bias. Subsequently, two schemes are considered: (a) subtraction techniques in which an image non-negativity constraint has been imposed and (b) implementation of random and scatter estimates inside the reconstruction algorithms, thus enabling direct processing of Poisson-distributed prompts. Both techniques are able to remove the aforementioned bias, while the latter, being better conditioned theoretically, is able to exhibit superior noise characteristics. We have also elaborated upon and verified the applicability of the accelerated list-mode image reconstruction method as a powerful solution for accurate, robust and efficient dynamic reconstructions of high-resolution data (as well as a number of additional benefits in the context of state-of-the-art PET)

  10. Femtosecond laser spectroscopy of spins: Magnetization dynamics in thin magnetic films with spatio-temporal resolution

    International Nuclear Information System (INIS)

    Carpene, E.; Mancini, E.; Dallera, C.; Puppin, E.; De Silvestri, S.

    2010-01-01

    Based on the Magneto-Optical Kerr Effect (MOKE), we have developed an experimental set-up that allows us to fully characterize the magnetization dynamics in thin magnetic films by measuring all three real space components of the magnetization vector M. By means of the pump-probe technique it is possible to extract the time dependence of each individual projection with sub-picosecond resolution. This method has been exploited to investigate the temporal evolution of the magnetization (modulus and orientation) induced by an ultrashort laser pulse in thin epitaxial iron films. According to our results, we deduced that the initial, sub-picosecond demagnetization is established at the electronic level through electron-magnon excitations. The subsequent dynamics is characterized by a precessional motion on the 100 ps time scale, around an effective, time-dependent magnetic field. Following the full dynamics of M, the temporal evolution of the magneto-crystalline anisotropy constant can be unambiguously determined, providing the experimental evidence that the precession is triggered by the rapid, optically-induced misalignment between the magnetization vector and the effective magnetic field. These results suggest a possible pathway toward the ultrarapid switching of the magnetization.

  11. Measurement of Dynamic Urethral Pressures with a High Resolution Manometry System in Continent and Incontinent Women

    Science.gov (United States)

    Kirby, Anna C; Tan-Kim, Jasmine; Nager, Charles W.

    2015-01-01

    Objectives Female stress urinary incontinence (SUI) is caused by urethral dysfunction during dynamic conditions, but current technology has limitations in measuring urethral pressures under dynamic conditions. An 8-French high resolution manometry catheter (HRM) currently in clinical use in gastroenterology may accurately measure urethral pressures under dynamic conditions because it has a 25ms response rate and circumferential pressure sensors along the length of the catheter (ManoScan® ESO, Given Imaging). We evaluated the concordance, repeatability, and tolerability of this catheter. Methods We measured resting, cough, and strain maximum urethral closure pressures (MUCPs) using HRM and measured resting MUCPs with water perfusion side-hole catheter urethral pressure profilometry (UPP) in 37 continent and 28 stress incontinent subjects. Maneuvers were repeated after moving the HRM catheter along the urethral length to evaluate whether results depend on catheter positioning. Visual analog pain scores evaluated the comfort of HRM compared to UPP. Results The correlation coefficient for resting MUCPs measured by HRM vs. UPP was high (r = 0.79, prest, cough, and strain with HRM: r= 0.92, 0.89, and 0.89. Mean MUCPs (rest, cough, strain) were higher in continent than incontinent subjects (all p continent subjects during cough and strain maneuvers compared to rest. Conclusions This preliminary study shows that HRM is concordant with standard technology, repeatable, and well tolerated in the urethra. Incontinent women have more impairment of their urethral closure pressures during cough and strain than continent women. PMID:25185595

  12. Oscillatory Behavior during the Catalytic Partial Oxidation of Methane: Following Dynamic Structural Changes of Palladium Using the QEXAFS Technique

    DEFF Research Database (Denmark)

    Stoetzel, Jan; Frahm, Ronald; Kimmerle, Bertram

    2012-01-01

    oxidation of methane, the catalyst reduced from the end to the beginning of the catalyst bed and oxidized again toward the end as soon as the entire catalyst bed was reduced. On an entirely oxidized catalyst bed, only total oxidation of methane was observed and consumed the oxygen until the conditions...... of the Pd particles at increasing age of the catalyst was observed, which leads to a lower oscillation frequency. Effects of particle size, oven temperature, and oxygen/methane ratio on the oscillation behavior were studied in detail. The deactivation period (reoxidation of Pd) was much less influenced...... by the oven temperature than the ignition behavior of the catalytic partial oxidation of methane. This indicates that deactivation is caused by an autoreduction of the palladium at the beginning of the catalyst bed due to the high temperature achieved by total oxidation of methane....

  13. Dynamic pressure sensor calibration techniques offering expanded bandwidth with increased resolution

    Science.gov (United States)

    Wisniewiski, David

    2015-03-01

    Advancements in the aerospace, defense and energy markets are being made possible by increasingly more sophisticated systems and sub-systems which rely upon critical information to be conveyed from the physical environment being monitored through ever more specialized, extreme environment sensing components. One sensing parameter of particular interest is dynamic pressure measurement. Crossing the boundary of all three markets (i.e. aerospace, defense and energy) is dynamic pressure sensing which is used in research and development of gas turbine technology, and subsequently embedded into a control loop used for long-term monitoring. Applications include quantifying the effects of aircraft boundary layer ingestion into the engine inlet to provide a reliable and robust design. Another application includes optimization of combustor dynamics by "listening" to the acoustic signature so that fuel-to-air mixture can be adjusted in real-time to provide cost operating efficiencies and reduced NOx emissions. With the vast majority of pressure sensors supplied today being calibrated either statically or "quasi" statically, the dynamic response characterization of the frequency dependent sensitivity (i.e. transfer function) of the pressure sensor is noticeably absent. The shock tube has been shown to be an efficient vehicle to provide frequency response of pressure sensors from extremely high frequencies down to 500 Hz. Recent development activity has lowered this starting frequency; thereby augmenting the calibration bandwidth with increased frequency resolution so that as the pressure sensor is used in an actual test application, more understanding of the physical measurement can be ascertained by the end-user.

  14. Detection and Extraction of Roads from High Resolution Satellites Images with Dynamic Programming

    Science.gov (United States)

    Benzouai, Siham; Smara, Youcef

    2010-12-01

    The advent of satellite images allows now a regular and a fast digitizing and update of geographic data, especially roads which are very useful for Geographic Information Systems (GIS) applications such as transportation, urban pollution, geomarketing, etc. For this, several studies have been conducted to automate roads extraction in order to minimize the manual processes [4]. In this work, we are interested in roads extraction from satellite imagery with high spatial resolution (at best equal to 10 m). The method is semi automatic and follows a linear approach where road is considered as a linear object. As roads extraction is a pattern recognition problem, it is useful, above all, to characterize roads. After, we realize a pre-processing by applying an Infinite Size Edge Filter -ISEF- and processing method based on dynamic programming concept, in particular, Fishler algorithm designed by F*.

  15. Galactic and stellar dynamics in the era of high resolution surveys

    Science.gov (United States)

    Boily, C. M.; Combes, F.; Hensler, G.; Spurzem, R.

    2008-12-01

    The conference Galactic and Stellar Dynamics in the Era of High Resolution Surveys took place at the European Doctoral College (EDC) in Strasbourg from 2008 March 16 to 20. The event was co-sponsored by the Astronomische Gesellschaft (AG) and the Société Fran\\c{c}aise d'Astronomie et d'Astrophysique (SF2A), a joint venture aiming to set a new trend of regular thematic meetings in specific areas of research. This special issue of the Astronomische Nachrichten is a compilation of the papers presented at the meeting. We give an outline of the meeting together with a short history of the relations of the two societies.

  16. Development of dynamic kinetic resolution on large scale for (±-1-phenylethylamine

    Directory of Open Access Journals (Sweden)

    Lisa K. Thalén

    2010-09-01

    Full Text Available Candida antarctica lipase B (CALB and racemization catalyst 4 were combined in the dynamic kinetic resolution (DKR of (±-1-phenylethylamine (1. Several reaction parameters have been investigated to modify the method for application on multigram scale. A comparison of isopropyl acetate and alkyl methoxyacetates as acyl donors was carried out. It was found that lower catalyst loadings could be used to obtain (R-2-methoxy-N-(1-phenylethylacetamide (3 in good yield and high ee when alkyl methoxyacetates were used as acyl donors compared to when isopropyl acetate was used as the acyl donor. The catalyst loading could be decreased to 1.25 mol % Ru-catalyst 4 and 10 mg CALB per mmol 1 when alkyl methoxyacetates were used as the acyl donor.

  17. Development of dynamic kinetic resolution on large scale for (±)-1-phenylethylamine.

    Science.gov (United States)

    Thalén, Lisa K; Bäckvall, Jan-E

    2010-09-13

    Candida antarctica lipase B (CALB) and racemization catalyst 4 were combined in the dynamic kinetic resolution (DKR) of (±)-1-phenylethylamine (1). Several reaction parameters have been investigated to modify the method for application on multigram scale. A comparison of isopropyl acetate and alkyl methoxyacetates as acyl donors was carried out. It was found that lower catalyst loadings could be used to obtain (R)-2-methoxy-N-(1-phenylethyl)acetamide (3) in good yield and high ee when alkyl methoxyacetates were used as acyl donors compared to when isopropyl acetate was used as the acyl donor. The catalyst loading could be decreased to 1.25 mol % Ru-catalyst 4 and 10 mg CALB per mmol 1 when alkyl methoxyacetates were used as the acyl donor.

  18. Chemoenzymatic dynamic kinetic resolution of primary amines using a recyclable palladium nanoparticle catalyst together with lipases.

    Science.gov (United States)

    Gustafson, Karl P J; Lihammar, Richard; Verho, Oscar; Engström, Karin; Bäckvall, Jan-E

    2014-05-02

    A catalyst consisting of palladium nanoparticles supported on amino-functionalized siliceous mesocellular foam (Pd-AmP-MCF) was used in chemoenzymatic dynamic kinetic resolution (DKR) to convert primary amines to amides in high yields and excellent ee's. The efficiency of the nanocatalyst at temperatures below 70 °C enables reaction conditions that are more suitable for enzymes. In the present study, this is exemplified by subjecting 1-phenylethylamine (1a) and analogous benzylic amines to DKR reactions using two commercially available lipases, Novozyme-435 (Candida antartica Lipase B) and Amano Lipase PS-C1 (lipase from Burkholderia cepacia) as biocatalysts. The latter enzyme has not previously been used in the DKR of amines because of its low stability at temperatures over 60 °C. The viability of the heterogeneous Pd-AmP-MCF was further demonstrated in a recycling study, which shows that the catalyst can be reused up to five times.

  19. Quantitative tradeoffs between spatial, temporal, and thermometric resolution of nonresonant Raman thermometry for dynamic experiments.

    Science.gov (United States)

    McGrane, Shawn D; Moore, David S; Goodwin, Peter M; Dattelbaum, Dana M

    2014-01-01

    The ratio of Stokes to anti-Stokes nonresonant spontaneous Raman can provide an in situ thermometer that is noncontact, independent of any material specific parameters or calibrations, can be multiplexed spatially with line imaging, and can be time resolved for dynamic measurements. However, spontaneous Raman cross sections are very small, and thermometric measurements are often limited by the amount of laser energy that can be applied without damaging the sample or changing its temperature appreciably. In this paper, we quantitatively detail the tradeoff space between spatial, temporal, and thermometric accuracy measurable with spontaneous Raman. Theoretical estimates are pinned to experimental measurements to form realistic expectations of the resolution tradeoffs appropriate to various experiments. We consider the effects of signal to noise, collection efficiency, laser heating, pulsed laser ablation, and blackbody emission as limiting factors, provide formulae to help choose optimal conditions and provide estimates relevant to planning experiments along with concrete examples for single-shot measurements.

  20. Distributed UAV-Swarm Real-Time Geomatic Data Collection Under Dynamically Changing Resolution Requirements

    Science.gov (United States)

    Almeida, Miguel; Hildmann, Hanno; Solmaz, Gürkan

    2017-08-01

    Unmanned Aerial Vehicles (UAVs) have been used for reconnaissance and surveillance missions as far back as the Vietnam War, but with the recent rapid increase in autonomy, precision and performance capabilities - and due to the massive reduction in cost and size - UAVs have become pervasive products, available and affordable for the general public. The use cases for UAVs are in the areas of disaster recovery, environmental mapping & protection and increasingly also as extended eyes and ears of civil security forces such as fire-fighters and emergency response units. In this paper we present a swarm algorithm that enables a fleet of autonomous UAVs to collectively perform sensing tasks related to environmental and rescue operations and to dynamically adapt to e.g. changing resolution requirements. We discuss the hardware used to build our own drones and the settings under which we validate the proposed approach.

  1. Two millennia of soil dynamics derived from ancient desert terraces using high resolution 3-D data

    Science.gov (United States)

    Filin, Sagi; Arav, Reuma; Avni, Yoav

    2017-04-01

    Large areas in the arid southern Levant are dotted with ancient terrace-based agriculture systems which were irrigated by runoff harvesting techniques. They were constructed and maintained between the 3rd - 9th centuries AD and abandoned in the 10th century AD. During their 600 years of cultivation, these terraces documented the gradual aggradation of alluvial soils, erosion processes within the drainage basins, as well as flashflood damage. From their abandonment and onwards, they documented 1000 years and more of land degradation and soil erosion processes. Examination of these installations presents an opportunity to study natural and anthropogenic induced changes over almost two millennia. On a global scale, such an analysis is unique as it is rare to find intact manifestations of anthropogenic influences over such time-scales because of landscape dynamics. It is also rare to find a near millennia documentation of soil erosion processes. We study in this paper the aggradation processes within intact agriculture plots in the region surrounding the world heritage Roman-Byzantine ancient city of Avdat, Negev Highlands. We follow the complete cycle of the historical desert agriculture, from the configuration pre-dating the first anthropogenic intervention, through the centuries of cultivation, and up to the present erosion phase, which spans over more than a millennium. We use high resolution 3-D laser scans to document the erosion and the environmental dynamics during these two millennia. The high-resolution data is then utilized to compute siltation rates as well as erosion rates. The long-term measures of soil erosion and land degradation we present here significantly improve our understanding of the mechanism of long-term environmental change acting in arid environments. For sustainable desert inhabitation, the study offers insights into better planning of modern agriculture in similar zones as well as insights on strategies needed to protect such historical

  2. Absorption Spectroscopy, Molecular Dynamics Calculations, and Multivariate Curve Resolution on the Phthalocyanine Aggregation

    International Nuclear Information System (INIS)

    Ajloo, Davood; Ghadamgahi, Maryam; Shaheri, Freshte; Zarei, Kobra

    2014-01-01

    Co(II)-tetrasulfonated phthalocyanine (CoTSP) is known to be aggregated to dimer at high concentration levels in water. A study on the aggregation of CoTSP using multivariate curve resolution analysis of the visible absorbance spectra over a concentration range of 30, 40 and 50 μM in the presence of dimethyl sulfoxide (DMSO), dimethyl formamide (DMF), acetonitrile (AN) and ethanol (EtOH) in the concentration range of 0 to 3.57 M is conducted. A hard modeling-based multivariate curve resolution method was applied to determine the dissociation constants of the CoTSP aggregates at various temperatures ranging from 25, 45 and 65 .deg. C and in the presence of various co-solvents. Dissociation constant for aggregation was increased and then decrease by temperature and concentration of phthalocyanine, respectively. Utilizing the vant Hoff relation, the enthalpy and entropy of the dissociation equilibriums were calculated. For the dissociation of both aggregates, the enthalpy and entropy changes were positive and negative, respectively. Molecular dynamics simulation of cosolvent effect on CoTSP aggregation was done to confirm spectroscopy results. Results of radial distribution function (RDF), root mean square deviation (RMSD) and distance curves confirmed more effect of polar solvent to decrease monomer formation

  3. Absorption Spectroscopy, Molecular Dynamics Calculations, and Multivariate Curve Resolution on the Phthalocyanine Aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Ajloo, Davood; Ghadamgahi, Maryam; Shaheri, Freshte; Zarei, Kobra [Damghan Univ., Damghan (Iran, Islamic Republic of)

    2014-05-15

    Co(II)-tetrasulfonated phthalocyanine (CoTSP) is known to be aggregated to dimer at high concentration levels in water. A study on the aggregation of CoTSP using multivariate curve resolution analysis of the visible absorbance spectra over a concentration range of 30, 40 and 50 μM in the presence of dimethyl sulfoxide (DMSO), dimethyl formamide (DMF), acetonitrile (AN) and ethanol (EtOH) in the concentration range of 0 to 3.57 M is conducted. A hard modeling-based multivariate curve resolution method was applied to determine the dissociation constants of the CoTSP aggregates at various temperatures ranging from 25, 45 and 65 .deg. C and in the presence of various co-solvents. Dissociation constant for aggregation was increased and then decrease by temperature and concentration of phthalocyanine, respectively. Utilizing the vant Hoff relation, the enthalpy and entropy of the dissociation equilibriums were calculated. For the dissociation of both aggregates, the enthalpy and entropy changes were positive and negative, respectively. Molecular dynamics simulation of cosolvent effect on CoTSP aggregation was done to confirm spectroscopy results. Results of radial distribution function (RDF), root mean square deviation (RMSD) and distance curves confirmed more effect of polar solvent to decrease monomer formation.

  4. THE DYNAMICS OF PEACEFUL RESOLUTION OF THE GEORGIAN-ABKHAZ CONFLICT (BEFORE THE AUGUST 2008 EVENTS

    Directory of Open Access Journals (Sweden)

    А О Ласария

    2017-12-01

    Full Text Available In this article, research attention is paid to the structure and dynamics of the peaceful resolu-tion of ethnopolitical conflicts in the Caucasus region (on the example of the Georgian-Abkhaz confrontation. The study takes into account the factors that were the catalysts of the escalation of the ethnopolitical conflict in the territory of Abkhazia. The collapse of the USSR and the collapse of the ideology of internationalism led to the need to develop a completely new identity. Most of the elites and socio-political movements of the post-Soviet period have focused on the formation of ideological structures from national and historical roots. In the last decade of the 20th century, the tendencies towards the realization of the right to national self-determination (in Abkhazia and South Ossetia and on the other hand to maintain the territorial integrity of the state (for example, in post-Soviet Georgia acquired an antagonistic character. An important political goal is to identify conceptual aspects of the resolution of the Georgian-Abkhaz conflict, which can be used as a basis for elaborating mechanisms for regulating ethnopolitical conflicts in the Caucasus region.

  5. High resolution field study of sediment dynamics on a strongly heterogeneous bed

    Science.gov (United States)

    Bailly Du Bois, P.; Blanpain, O.; Lafite, R.; Cugier, P.; Lunven, M.

    2010-12-01

    Extensive field measurements have been carried out at several stations in a macrotidal inner continental shelf in the English Channel (around 25 m depth) during spring tide period. The strong tidal current measured (up to 1.6 m.s-1) allowed sediment dynamics on a bed characterised by a mixture of size with coarse grains to be dominant. Data acquired in such hydro-sedimentary conditions are scarce. A new instrument, the DYnamic Sediment Profile Imagery (DySPI) system, was specifically conceived and implemented in-situ to observe and measure, with a high temporal resolution, the dynamics of a strongly heterogeneous mixture of particles in a grain-size scale. The data collected covered: 1) grain size range (side scan sonar, video observations, Shipeck grab samples, DySPI images) and vertical sorting (stratigraphic sampling by divers) of sediment cover, 2) hydrodynamic features (acoustic Doppler velocimeter, acoustic Doppler profiler), 3) suspended load nature and dynamics (optical backscatter, chlorophyll fluorometer, particle size analyser, Niskin bottles, scanning electron microscopy), 4) sand and gravel bedload transport estimates (DySPI image processing), 5) transfer dynamics of fine grains within a coarse matrix and their depth of penetration (radionuclides measurements in stratigraphic samples). The four stations present different grain size vertical sorting from a quasi-permanent armouring to a homogenous distribution. The sediment cover condition is directly linked to hydrodynamic capacity and sediment availability. Fine grain ratio within deep sediment layers (up to 10 cm) is higher when the bed armouring is durable. However, fine sediments are not permanently depth trapped: deep layers are composed of few years-old radionuclide tracers fixed on fine grains and a vertical mixing coefficient has been evaluated for each sediment cover. Fine grain dynamics within a coarse matrix is inversely proportional to the robustness of the armour layer. For current

  6. Enhancement of catalytic activity of enzymes by heating in anhydrous organic solvents: 3D structure of a modified serine proteinase at high resolution.

    Science.gov (United States)

    Sharma, S; Tyagi, R; Gupta, M N; Singh, T P

    2001-01-01

    For the first time, it is demonstrated that exposure of an enzyme to anhydrous organic solvents at optimized high temperature enhances its catalytic power through local changes at the binding region. Six enzymes, namely, proteinase K, wheat germ acid phosphatase, alpha-amylase, beta-glucosidase, chymotrypsin and trypsin were exposed to acetonitrile at 70 degrees C for three hr. The activities of these enzymes were found to be considerably enhanced. In order to understand the basis of this change in the activity of these enzymes, proteinase K was analyzed in detail using X-ray diffraction method. The overall structure of the enzyme was found to be similar to the native structure in aqueous environment. The hydrogen bonding system of the catalytic triad remained intact after the treatment. However, the water structure in the substrate binding site underwent some rearrangement as some of the water molecules were either displaced or completely absent. The most striking observation concerning the water structure was the complete deletion of the water molecule which occupied the position at the so-called oxyanion hole in the active site of the native enzyme. Three acetonitrile molecules were found in the present structure. All the acetonitrile molecules were located in the recognition site. Interlinked through water molecules, the sites occupied by acetonitrile molecules were independent of water molecules. The acetonitrile molecules are involved in extensive interactions with the protein atoms. The methyl group of one of the acetonitrile molecules (CCN1) interacts simultaneously with the hydrophobic side chains of Leu 96, Ile 107 and Leu 133. The development of such a hydrophobic environment at the recognition site introduced a striking conformation change in Ile 107 by rotating its side chain about C alpha-C beta bond by 180 degrees to bring about the delta-methyl group within the range of attractive van der Waals interactions with the methyl group of CCN1. A similar

  7. Remotely Sensed High-Resolution Global Cloud Dynamics for Predicting Ecosystem and Biodiversity Distributions.

    Directory of Open Access Journals (Sweden)

    Adam M Wilson

    2016-03-01

    Full Text Available Cloud cover can influence numerous important ecological processes, including reproduction, growth, survival, and behavior, yet our assessment of its importance at the appropriate spatial scales has remained remarkably limited. If captured over a large extent yet at sufficiently fine spatial grain, cloud cover dynamics may provide key information for delineating a variety of habitat types and predicting species distributions. Here, we develop new near-global, fine-grain (≈1 km monthly cloud frequencies from 15 y of twice-daily Moderate Resolution Imaging Spectroradiometer (MODIS satellite images that expose spatiotemporal cloud cover dynamics of previously undocumented global complexity. We demonstrate that cloud cover varies strongly in its geographic heterogeneity and that the direct, observation-based nature of cloud-derived metrics can improve predictions of habitats, ecosystem, and species distributions with reduced spatial autocorrelation compared to commonly used interpolated climate data. These findings support the fundamental role of remote sensing as an effective lens through which to understand and globally monitor the fine-grain spatial variability of key biodiversity and ecosystem properties.

  8. Breast MR imaging: correlation of high resolution dynamic MR findings with prognostic factors

    International Nuclear Information System (INIS)

    Lee, Shin Ho; Cho, Nariya; Chung, Hye Kyung; Kim, Seung Ja; Cho, Kyung Soo; Moon, Woo Kyung; Cho, Joo Hee

    2005-01-01

    We wanted to correlate the kinetic and morphologic MR findings of invasive breast cancer with the classical and molecular prognostic factors. Eighty-seven patients with invasive ductal carcinoma NOS underwent dynamic MR imaging at 1.5 T, and with using the T1-weighted 3D FLASH technique. The morphologic findings (shape, margin, internal enhancement of the mass or the enhancement distribution and the internal enhancement of any non-mass lesion) and the kinetic findings (the initial phase and the delayed phase of the time-signal. Intensity curve) were interpreted using a ACR BI-RADS-MRI lexicon. We correlate MR findings with histopathologic prognostic factors (tumor size, lymph node status and tumor grade) and the immunohistochemically detected biomarkers (ER, PR, ρ 53, c-erbB-2, EGFR and Ki-67). Univariate and multivariate statistical analyses were than performed. Among the MR findings, a spiculated margin, rim enhancement and washout were significantly correlated with the prognostic factors. A spiculated margin was independently associated with the established predictors of a good prognosis (a lower histologic and nuclear grade, positive ER and PR) and rim enhancement was associated with a poor prognosis (a higher histologic and nuclear grade, negative ER and PR). Wash out was a independent predictor of Ki-67 activity. Some of the findings of high resolution dynamic MR imaging were associated with the prognostic factors, and these findings may predict the prognosis of breast cancer

  9. Recent Advances in Dynamic Kinetic Resolution by Chiral Bifunctional (Thio)urea- and Squaramide-Based Organocatalysts.

    Science.gov (United States)

    Li, Pan; Hu, Xinquan; Dong, Xiu-Qin; Zhang, Xumu

    2016-10-14

    The organocatalysis-based dynamic kinetic resolution (DKR) process has proved to be a powerful strategy for the construction of chiral compounds. In this feature review, we summarized recent progress on the DKR process, which was promoted by chiral bifunctional (thio)urea and squaramide catalysis via hydrogen-bonding interactions between substrates and catalysts. A wide range of asymmetric reactions involving DKR, such as asymmetric alcoholysis of azlactones, asymmetric Michael-Michael cascade reaction, and enantioselective selenocyclization, are reviewed and demonstrate the efficiency of this strategy. The (thio)urea and squaramide catalysts with dual activation would be efficient for more unmet challenges in dynamic kinetic resolution.

  10. Evaluations of high-resolution dynamically downscaled ensembles over the contiguous United States

    Science.gov (United States)

    Zobel, Zachary; Wang, Jiali; Wuebbles, Donald J.; Kotamarthi, V. Rao

    2018-02-01

    This study uses Weather Research and Forecast (WRF) model to evaluate the performance of six dynamical downscaled decadal historical simulations with 12-km resolution for a large domain (7200 × 6180 km) that covers most of North America. The initial and boundary conditions are from three global climate models (GCMs) and one reanalysis data. The GCMs employed in this study are the Geophysical Fluid Dynamics Laboratory Earth System Model with Generalized Ocean Layer Dynamics component, Community Climate System Model, version 4, and the Hadley Centre Global Environment Model, version 2-Earth System. The reanalysis data is from the National Centers for Environmental Prediction-US. Department of Energy Reanalysis II. We analyze the effects of bias correcting, the lateral boundary conditions and the effects of spectral nudging. We evaluate the model performance for seven surface variables and four upper atmospheric variables based on their climatology and extremes for seven subregions across the United States. The results indicate that the simulation's performance depends on both location and the features/variable being tested. We find that the use of bias correction and/or nudging is beneficial in many situations, but employing these when running the RCM is not always an improvement when compared to the reference data. The use of an ensemble mean and median leads to a better performance in measuring the climatology, while it is significantly biased for the extremes, showing much larger differences than individual GCM driven model simulations from the reference data. This study provides a comprehensive evaluation of these historical model runs in order to make informed decisions when making future projections.

  11. Impact of an extruded nucleotide on cleavage activity and dynamic catalytic core conformation of the hepatitis delta virus ribozyme

    Czech Academy of Sciences Publication Activity Database

    Šefčíková, J.; Krasovská, Maryna V.; Špačková, Naďa; Šponer, Jiří; Walter, N.G.

    2007-01-01

    Roč. 85, 5-6 (2007), s. 392-406 ISSN 0006-3525 R&D Projects: GA ČR(CZ) GA203/05/0388; GA ČR(CZ) GA203/05/0009; GA AV ČR(CZ) 1QS500040581; GA MŠk(CZ) LC512 Institutional research plan: CEZ:AV0Z50040702 Keywords : conformational dynamics * hepatitis delta virus * molecular dynamics Subject RIV: BO - Biophysics Impact factor: 2.389, year: 2007

  12. High resolution dynamical downscaling of air temperature and relative humidity: performance assessment of WRF for Portugal

    Science.gov (United States)

    Menezes, Isilda; Pereira, Mário; Moreira, Demerval; Carvalheiro, Luís; Bugalho, Lourdes; Corte-Real, João

    2017-04-01

    Air temperature and relative humidity are two of the atmospheric variables with higher impact on human and natural systems, contributing to define the stress/comfortable conditions, affecting the productivity and health of the individuals as well as diminishing the resilience to other environmental hazards. Atmospheric regional models, driven by large scale forecasts from global circulation models, are the best way to reproduce such environmental conditions in high space-time resolution. This study is focused on the performance assessment of the WRF mesoscale model to perform high resolution dynamical downscaling for Portugal with three two-way nested grids, at 60 km, 20 km and 5 km horizontal resolution. The simulations of WRF models were produced with different initial and boundary forcing conditions. The NCEP-FNL Operational Global Analysis data available on 1-degree by 1-degree grid every six hours and ERA-Interim reanalyses dataset were used to drive the models. Two alternative configurations of the WRF model, including planetary boundary, layer schemes, microphysics, land-surface models, radiation schemes, were used and tested within the 5 km spatial resolution domain. Simulations of air temperature and relative humidity were produced for January and July of 2016 and compared with the observed datasets provided by the Instituto Português do Mar e da Atmosfera (IPMA) for 83 weather stations. Different performance measures of bias, precision, and accuracy were used, namely normalized bias, standard deviation, mean absolute error, root mean square error, bias of root mean square error as well as correlation based measures (e.g., coefficient of determination) and goodness of fit measures (index of agreement). Main conclusions from the obtained results reveal: (i) great similarity between the spatial patterns of the simulated and observed fields; (ii) only small differences between simulations produced with ERA-Interim and NCEP-FNL, in spite of some differences

  13. High-Resolution Dynamical Downscaling Ensemble Projections of Future Extreme Temperature Distributions for the United States

    Science.gov (United States)

    Zobel, Zachary; Wang, Jiali; Wuebbles, Donald J.; Kotamarthi, V. Rao

    2017-12-01

    The aim of this study is to examine projections of extreme temperatures over the continental United States (CONUS) for the 21st century using an ensemble of high spatial resolution dynamically downscaled model simulations with different boundary conditions. The downscaling uses the Weather Research and Forecast model at a spatial resolution of 12 km along with outputs from three different Coupled Model Intercomparison Project Phase 5 global climate models that provide boundary conditions under two different future greenhouse gas (GHG) concentration trajectories. The results from two decadal-length time slices (2045-2054 and 2085-2094) are compared with a historical decade (1995-2004). Probability density functions of daily maximum/minimum temperatures are analyzed over seven climatologically cohesive regions of the CONUS. The impacts of different boundary conditions as well as future GHG concentrations on extreme events such as heat waves and days with temperature higher than 95°F are also investigated. The results show that the intensity of extreme warm temperature in future summer is significantly increased, while the frequency of extreme cold temperature in future winter decreases. The distribution of summer daily maximum temperature experiences a significant warm-side shift and increased variability, while the distribution of winter daily minimum temperature is projected to have a less significant warm-side shift with decreased variability. Using "business-as-usual" scenario, 5-day heat waves are projected to occur at least 5-10 times per year in most CONUS and ≥95°F days will increase by 1-2 months by the end of the century.

  14. High-Resolution Monitoring of Himalayan Glacier Dynamics Using Unmanned Aerial Vehicles

    Science.gov (United States)

    Immerzeel, W.; Kraaijenbrink, P. D. A.; Shea, J.; Shrestha, A. B.; Pellicciotti, F.; Bierkens, M. F.; de Jong, S. M.

    2014-12-01

    Himalayan glacier tongues are commonly debris covered and play an important role in modulating the glacier response to climate . However, they remain relatively unstudied because of the inaccessibility of the terrain and the difficulties in field work caused by the thick debris mantles. Observations of debris-covered glaciers are therefore limited to point locations and airborne remote sensing may bridge the gap between scarce, point field observations and coarse resolution space-borne remote sensing. In this study we deploy an Unmanned Airborne Vehicle (UAV) on two debris covered glaciers in the Nepalese Himalayas: the Lirung and Langtang glacier during four field campaigns in 2013 and 2014. Based on stereo-imaging and the structure for motion algorithm we derive highly detailed ortho-mosaics and digital elevation models (DEMs), which we geometrically correct using differential GPS observations collected in the field. Based on DEM differencing and manual feature tracking we derive the mass loss and the surface velocity of the glacier at a high spatial resolution and accuracy. We also assess spatiotemporal changes in supra-glacial lakes and ice cliffs based on the imagery. On average, mass loss is limited and the surface velocity is very small. However, the spatial variability of melt rates is very high, and ice cliffs and supra-glacial ponds show mass losses that can be an order of magnitude higher than the average. We suggest that future research should focus on the interaction between supra-glacial ponds, ice cliffs and englacial hydrology to further understand the dynamics of debris-covered glaciers. Finally, we conclude that UAV deployment has large potential in glaciology and it represents a substantial advancement over methods currently applied in studying glacier surface features.

  15. Motion robust high resolution 3D free-breathing pulmonary MRI using dynamic 3D image self-navigator.

    Science.gov (United States)

    Jiang, Wenwen; Ong, Frank; Johnson, Kevin M; Nagle, Scott K; Hope, Thomas A; Lustig, Michael; Larson, Peder E Z

    2018-06-01

    To achieve motion robust high resolution 3D free-breathing pulmonary MRI utilizing a novel dynamic 3D image navigator derived directly from imaging data. Five-minute free-breathing scans were acquired with a 3D ultrashort echo time (UTE) sequence with 1.25 mm isotropic resolution. From this data, dynamic 3D self-navigating images were reconstructed under locally low rank (LLR) constraints and used for motion compensation with one of two methods: a soft-gating technique to penalize the respiratory motion induced data inconsistency, and a respiratory motion-resolved technique to provide images of all respiratory motion states. Respiratory motion estimation derived from the proposed dynamic 3D self-navigator of 7.5 mm isotropic reconstruction resolution and a temporal resolution of 300 ms was successful for estimating complex respiratory motion patterns. This estimation improved image quality compared to respiratory belt and DC-based navigators. Respiratory motion compensation with soft-gating and respiratory motion-resolved techniques provided good image quality from highly undersampled data in volunteers and clinical patients. An optimized 3D UTE sequence combined with the proposed reconstruction methods can provide high-resolution motion robust pulmonary MRI. Feasibility was shown in patients who had irregular breathing patterns in which our approach could depict clinically relevant pulmonary pathologies. Magn Reson Med 79:2954-2967, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  16. Correlation between High Resolution Dynamic MR Features and Prognostic Factors in Breast Cancer

    International Nuclear Information System (INIS)

    Lee, Shin Ho; Cho, Nariya; Kim, Seung Ja; Cho, Kyung Soo; Ko, Eun Sook; Moon, Woo Kyung; Cha, Joo Hee

    2008-01-01

    To correlate high resolution dynamic MR features with prognostic factors in breast cancer. One hundred and ninety-four women with invasive ductal carcinomas underwent dynamic MR imaging using T1-weighted three dimensional fast low-angle shot (3D-FLASH) sequence within two weeks prior to surgery. Morphological and kinetic MR features were determined based on the breast imaging and reporting data system (BI-RADS) MR imaging lexicon. Histological specimens were analyzed for tumor size, axillary lymph node status, histological grade, expression of estrogen receptor (ER), expression of progesterone receptor (PR), and expression of p53, c-erbB-2, and Ki-67. Correlations between the MR features and prognostic factors were determined using the Pearson x 2 test, linear-by-linear association, and logistic regression analysis. By multivariate analysis, a spiculated margin was a significant, independent predictor of a lower histological grade (p < 0.001), and lower expression of Ki-67 (p = 0.007). Rim enhancement was significant, independent predictor of a higher histological grade (p < 0.001), negative expression of ER (p 0.001), negative expression of PR (p < 0.001) and a larger tumor size (p = 0.006). A washout curve may predict a higher level of Ki-67 (p = 0.05). Most of the parameters of the initial enhancement phase cannot predict the status of the prognostic factors. Only the enhancement ratio may predict a larger tumor size (p 0.05). Of the BI-RADS-MR features, a spiculated margin may predict favorable prognosis, whereas rim enhancement or washout may predict unfavorable prognosis of breast cancer

  17. Cardiovascular coupling analysis with high-resolution joint symbolic dynamics in patients suffering from acute schizophrenia

    International Nuclear Information System (INIS)

    Schulz, Steffen; Tupaika, Nadine; Voss, Andreas; Berger, Sandy; Bär, Karl-Jürgen; Haueisen, Jens

    2013-01-01

    Besides the well-known cardiac risk factors for schizophrenia, increasing concerns have been raised regarding the cardiac side-effects of antipsychotic medications. A bivariate analysis of autonomic regulation, based on cardiovascular coupling, can provide additional information about heart rate (HR) and blood pressure regulatory patterns within the complex interactions of the cardiovascular system. We introduce a new high-resolution coupling analysis method (HRJSD) based on joint symbolic dynamics (JSD), which is characterized by three symbols, a threshold (individual dynamic variability, physiological) for time series transformation and eight coupling pattern families. This is based on a redundancy reduction strategy used to quantify and characterize cardiovascular couplings. In this study, short-term (30 min) HR and systolic blood pressure (SP) time series of 42 unmedicated (UNMED) and 42 medicated patients (MED) suffering from acute schizophrenia were analysed to establish the suitability of the new method for quantifying the effects of antipsychotics on cardiovascular couplings. We were able to demonstrate that HRJSD, applying the threshold based on spontaneous baroreflex sensitivity (BRS) estimation, revealed eight significant pattern families that were able to quantify the anti-cholinergic effects of antipsychotics and the related changes of cardiovascular regulation (coupling) in MED in comparison to UNMED. This was in contrast to the simple JSD, BRS (sequence method) and only partly to standard linear HR variability indices. HRJSD provides strong evidence that autonomic regulation in MED seems to be, to some extent, predominated by invariable HR responses in combination with alternating SP values in contrast to UNMED, indicating an impairment of the baroreflex control feedback loop in MED. Surrogate data analysis was applied to test for the significance and nonlinearity of cardiovascular couplings in the original data due to medical treatment with

  18. CubeSats in Hydrology: Ultra-High Resolution Insights into Vegetation Dynamics and Terrestrial Evaporation

    KAUST Repository

    McCabe, Matthew; Aragon, B.; Houborg, Rasmus; Mascaro, J.

    2017-01-01

    Satellite-based remote sensing has generally necessitated a trade-off between spatial resolution and temporal frequency, affecting the capacity to observe fast hydrological processes and rapidly changing land surface conditions. An avenue for overcoming these spatiotemporal restrictions is the concept of using constellations of satellites, as opposed to the mission focus exemplified by the more conventional space-agency approach to earth observation. Referred to as CubeSats, these platforms offer the potential to provide new insights into a range of earth system variables and processes. Their emergence heralds a paradigm shift from single-sensor launches to an operational approach that envisions tens to hundreds of small, lightweight and comparatively inexpensive satellites placed into a range of low earth orbits. Although current systems are largely limited to sensing in the optical portion of the electromagnetic spectrum, we demonstrate the opportunity and potential that CubeSats present the hydrological community via the retrieval of vegetation dynamics and terrestrial evaporation and foreshadow future sensing capabilities.

  19. Sub-Airy disk angular resolution with high dynamic range in the near-infrared

    Directory of Open Access Journals (Sweden)

    Richichi A.

    2011-07-01

    Full Text Available Lunar occultations (LO are a simple and effective high angular resolution method, with minimum requirements in instrumentation and telescope time. They rely on the analysis of the diffraction fringes created by the lunar limb. The diffraction phenomen occurs in space, and as a result LO are highly insensitive to most of the degrading effects that limit the performance of traditional single telescope and long-baseline interferometric techniques used for direct detection of faint, close companions to bright stars. We present very recent results obtained with the technique of lunar occultations in the near-IR, showing the detection of companions with very high dynamic range as close as few milliarcseconds to the primary star. We discuss the potential improvements that could be made, to increase further the current performance. Of course, LO are fixed-time events applicable only to sources which happen to lie on the Moon’s apparent orbit. However, with the continuously increasing numbers of potential exoplanets and brown dwarfs beign discovered, the frequency of such events is not negligible. I will list some of the most favorable potential LO in the near future, to be observed from major observatories.

  20. Probing spatial locality in ionic liquids with the grand canonical adaptive resolution molecular dynamics technique

    Science.gov (United States)

    Shadrack Jabes, B.; Krekeler, C.; Klein, R.; Delle Site, L.

    2018-05-01

    We employ the Grand Canonical Adaptive Resolution Simulation (GC-AdResS) molecular dynamics technique to test the spatial locality of the 1-ethyl 3-methyl imidazolium chloride liquid. In GC-AdResS, atomistic details are kept only in an open sub-region of the system while the environment is treated at coarse-grained level; thus, if spatial quantities calculated in such a sub-region agree with the equivalent quantities calculated in a full atomistic simulation, then the atomistic degrees of freedom outside the sub-region play a negligible role. The size of the sub-region fixes the degree of spatial locality of a certain quantity. We show that even for sub-regions whose radius corresponds to the size of a few molecules, spatial properties are reasonably reproduced thus suggesting a higher degree of spatial locality, a hypothesis put forward also by other researchers and that seems to play an important role for the characterization of fundamental properties of a large class of ionic liquids.

  1. MOLECULAR DYNAMICS SIMULATION OF KINETIC RESOLUTION OF RACEMIC ALCOHOL USING BURKHOLDERIA CEPACIA LIPASE IN ORGANIC SOLVENTS

    Directory of Open Access Journals (Sweden)

    A. C. Mathpati

    2018-03-01

    Full Text Available Lipases, a subclass of hydrolases, have gained a lot of importance as they can catalyze esterification, transesterification and hydrolysis reaction in non-aqueous media. Lipases are also widely used for kinetic resolution of racemic alcohols into enantiopure compounds. The lipase activity is affected by organic solvents due to changes in the conformational rigidity of enzymes, the active site, or altering the solvation of the transition state. The activity of lipases strongly depends on the logP value of solvents. Molecular dynamics (MD can help to understand the effect of solvents on lipase conformation as well as protein-ligand complex. In this work, MD simulations of Burkholderia cepacia lipase (BCL and complex between R and S conformation of acetylated form of 1-phenylethanol with BCL using gromacs have been carried in various organic solvents. The RMSD values were within the range of 0.15 to 0.20 nm and radius of gyration was found to be with 1.65 to 1.9 nm. Major changes in the B factor compared to reference structure were observed between residues 60 to 80, 120 to 150 and 240 to 260. Higher unfolding was observed in toluene and diethyl ether compared to hexane and acetonitrile. R acetylated complex was found to favorably bind BCL compared to S form. The predicted enantioselectivity were in good agreement with the experimental data.

  2. The neural dynamics of competition resolution for language production in the prefrontal cortex.

    Science.gov (United States)

    Bourguignon, Nicolas J; Ohashi, Hiroki; Nguyen, Don; Gracco, Vincent L

    2018-03-01

    Previous research suggests a pivotal role of the prefrontal cortex (PFC) in word selection during tasks of confrontation naming (CN) and verb generation (VG), both of which feature varying degrees of competition between candidate responses. However, discrepancies in prefrontal activity have also been reported between the two tasks, in particular more widespread and intense activation in VG extending into (left) ventrolateral PFC, the functional significance of which remains unclear. We propose that these variations reflect differences in competition resolution processes tied to distinct underlying lexico-semantic operations: Although CN involves selecting lexical entries out of limited sets of alternatives, VG requires exploration of possible semantic relations not readily evident from the object itself, requiring prefrontal areas previously shown to be recruited in top-down retrieval of information from lexico-semantic memory. We tested this hypothesis through combined independent component analysis of functional imaging data and information-theoretic measurements of variations in selection competition associated with participants' performance in overt CN and VG tasks. Selection competition during CN engaged the anterior insula and surrounding opercular tissue, while competition during VG recruited additional activity of left ventrolateral PFC. These patterns remained after controlling for participants' speech onset latencies indicative of possible task differences in mental effort. These findings have implications for understanding the neural-computational dynamics of cognitive control in language production and how it relates to the functional architecture of adaptive behavior. © 2017 Wiley Periodicals, Inc.

  3. Chemoenzymatic Dynamic Kinetic Resolution: A Powerful Tool for the Preparation of Enantiomerically Pure Alcohols and Amines

    Science.gov (United States)

    2015-01-01

    Chemoenzymatic dynamic kinetic resolution (DKR) constitutes a convenient and efficient method to access enantiomerically pure alcohol and amine derivatives. This Perspective highlights the work carried out within this field during the past two decades and pinpoints important avenues for future research. First, the Perspective will summarize the more developed area of alcohol DKR, by delineating the way from the earliest proof-of-concept protocols to the current state-of-the-art systems that allows for the highly efficient and selective preparation of a wide range of enantiomerically pure alcohol derivatives. Thereafter, the Perspective will focus on the more challenging DKR of amines, by presenting the currently available homogeneous and heterogeneous methods and their respective limitations. In these two parts, significant attention will be dedicated to the design of efficient racemization methods as an important means of developing milder DKR protocols. In the final part of the Perspective, a brief overview of the research that has been devoted toward improving enzymes as biocatalysts is presented. PMID:25730714

  4. CubeSats in Hydrology: Ultra-High Resolution Insights into Vegetation Dynamics and Terrestrial Evaporation

    KAUST Repository

    McCabe, Matthew

    2017-12-01

    Satellite-based remote sensing has generally necessitated a trade-off between spatial resolution and temporal frequency, affecting the capacity to observe fast hydrological processes and rapidly changing land surface conditions. An avenue for overcoming these spatiotemporal restrictions is the concept of using constellations of satellites, as opposed to the mission focus exemplified by the more conventional space-agency approach to earth observation. Referred to as CubeSats, these platforms offer the potential to provide new insights into a range of earth system variables and processes. Their emergence heralds a paradigm shift from single-sensor launches to an operational approach that envisions tens to hundreds of small, lightweight and comparatively inexpensive satellites placed into a range of low earth orbits. Although current systems are largely limited to sensing in the optical portion of the electromagnetic spectrum, we demonstrate the opportunity and potential that CubeSats present the hydrological community via the retrieval of vegetation dynamics and terrestrial evaporation and foreshadow future sensing capabilities.

  5. Expanding the linear dynamic range for quantitative liquid chromatography-high resolution mass spectrometry utilizing natural isotopologue signals

    International Nuclear Information System (INIS)

    Liu, Hanghui; Lam, Lily; Yan, Lin; Chi, Bert; Dasgupta, Purnendu K.

    2014-01-01

    Highlights: • Less abundant isotopologue ions were utilized to decrease detector saturation. • A 25–50 fold increase in the upper limit of dynamic range was demonstrated. • Linear dynamic range was expanded without compromising mass resolution. - Abstract: The linear dynamic range (LDR) for quantitative liquid chromatography–mass spectrometry can be extended until ionization saturation is reached by using a number of target isotopologue ions in addition to the normally used target ion that provides the highest sensitivity. Less abundant isotopologue ions extend the LDR: the lower ion abundance decreases the probability of ion detector saturation. Effectively the sensitivity decreases and the upper limit of the LDR increases. We show in this paper that the technique is particularly powerful with a high resolution time of flight mass spectrometer because the data for all ions are automatically acquired, and we demonstrated this for four small organic molecules; the upper limits of LDRs increased by 25–50 times

  6. Satellite microwave remote sensing of North Eurasian inundation dynamics: development of coarse-resolution products and comparison with high-resolution synthetic aperture radar data

    International Nuclear Information System (INIS)

    Schroeder, R; Rawlins, M A; McDonald, K C; Podest, E; Zimmermann, R; Kueppers, M

    2010-01-01

    Wetlands are not only primary producers of atmospheric greenhouse gases but also possess unique features that are favourable for application of satellite microwave remote sensing to monitoring their status and trend. In this study we apply combined passive and active microwave remote sensing data sets from the NASA sensors AMSR-E and QuikSCAT to map surface water dynamics over Northern Eurasia. We demonstrate our method on the evolution of large wetland complexes for two consecutive years from January 2006 to December 2007. We apply river discharge measurements from the Ob River along with land surface runoff simulations derived from the Pan-Arctic Water Balance Model during and after snowmelt in 2006 and 2007 to interpret the abundance of widespread flooding along the River Ob in early summer of 2007 observed in the remote sensing products. The coarse-resolution, 25 km, surface water product is compared to a high-resolution, 30 m, inundation map derived from ALOS PALSAR (Advanced Land Observation Satellite phased array L-band synthetic aperture radar) imagery acquired for 11 July 2006, and extending along a transect in the central Western Siberian Plain. We found that the surface water fraction derived from the combined AMSR-E/QuikSCAT data sets closely tracks the inundation mapped using higher-resolution ALOS PALSAR data.

  7. Transforming SWAT for continental-scale high-resolution modeling of floodplain dynamics: opportunities and challenges

    Science.gov (United States)

    Rajib, A.; Merwade, V.; Liu, Z.; Lane, C.; Golden, H. E.; Tavakoly, A. A.; Follum, M. L.

    2017-12-01

    There have been many initiatives to develop frameworks for continental-scale modeling and mapping floodplain dynamics. The choice of a model for such needs should be governed by its suitability to be executed in high performance cyber platforms, ability to integrate supporting hydraulic/hydrodynamic tools, and ability to assimilate earth observations. Furthermore, disseminating large volume of outputs for public use and interoperability with similar frameworks should be considered. Considering these factors, we have conducted a series of modeling experiments and developed a suite of cyber-enabled platforms that have transformed Soil and Water Assessment Tool (SWAT) into an appropriate model for use in a continental-scale, high resolution, near real-time flood information framework. Our first experiment uses a medium size watershed in Indiana, USA and attempts burning-in a high resolution, National Hydrography Dataset Plus(NHDPlus) into the SWAT model. This is crucial with a view to make the outputs comparable with other global/national initiatives. The second experiment is built upon the first attempt to add a modified landscape representation in the model which differentiates between the upland and floodplain processes. Our third experiment involves two separate efforts: coupling SWAT with a hydrodynamic model LISFLOOD-FP and a new generation, low complexity hydraulic model AutoRoute. We have executed the prototype "loosely-coupled" models for the Upper Mississippi-Ohio River Basin in the USA, encompassing 1 million square km drainage area and nearly 0.2 million NHDPlus river reaches. The preliminary results suggest reasonable accuracy for both streamflow and flood inundation. In this presentation, we will also showcase three cyber-enabled platforms, including SWATShare to run and calibrate large scale SWAT models online using high performance computational resources, HydroGlobe to automatically extract and assimilate multiple remotely sensed earth observations in

  8. Substrate binding and catalytic mechanism in phospholipase C from Bacillus cereus. a molecular mechanics and molecular dynamics study

    DEFF Research Database (Denmark)

    da Graça Thrige, D; Buur, J R; Jørgensen, Flemming Steen

    1997-01-01

    cereus including a docked substrate molecule was subjected to a stepwise molecular mechanics energy minimization. Second, the location of the nucleophilic water molecule in the active site of the fully relaxed enzyme-substrate complex was determined by evaluation of nonbonded interaction energies between...... water molecule was verified during a 100 ps molecular dynamics simulation. During the simulation the substrate undergoes a conformational change, but retains its localization in the active site. The contacts between the enzyme, the substrate, and the nucleophilic water molecule display some fluctuations...... the strong electrostatic interactions in the active site realistically during energy minimization, delocalization of the charges from the three zinc ions was considered. Therefore, quantum mechanics calculations on the zinc ions and the zinc-coordinating residues were carried out prior to the molecular...

  9. High-resolution dynamic angiography using flat-panel volume CT: feasibility demonstration for neuro and lower limb vascular applications

    International Nuclear Information System (INIS)

    Mehndiratta, Amit; Rabinov, James D.; Grasruck, Michael; Liao, Eric C.; Crandell, David; Gupta, Rajiv

    2015-01-01

    This paper evaluates a prototype flat-panel volume CT (fpVCT) for dynamic in vivo imaging in a variety of neurovascular and lower limb applications. Dynamic CTA was performed on 12 patients (neuro = 8, lower limb = 4) using an fpVCT with 120 kVp, 50 mA, rotation time varying from 8 to 19 s, and field of view of 25 x 25 x 18 cm 3 . Four-dimensional data sets (i.e. 3D images over time) were reconstructed and reviewed. Dynamic CTA demonstrated sufficient spatio-temporal resolution to elucidate first-pass and recirculation dynamics of contrast bolus through neurovasclar pathologies and phasic blood flow though lower-limb vasculature and grafts. The high spatial resolution of fpVCT resulted in reduced partial volume and metal beam-hardening artefacts. This facilitated assessment of vascular lumen in the presence of calcified plaque and evaluation of fractures, especially in the presence of fixation hardware. Evaluation of arteriovenous malformation using dynamic fpVCT angiography was of limited utility. Dynamic CTA using fpVCT can visualize time-varying phenomena in neuro and lower limb vascular applications and has sufficient diagnostic imaging quality to evaluate a number of pathologies affecting these regions. (orig.)

  10. High-resolution dynamic angiography using flat-panel volume CT: feasibility demonstration for neuro and lower limb vascular applications

    Energy Technology Data Exchange (ETDEWEB)

    Mehndiratta, Amit [Massachusetts General Hospital, Department of Radiology, Harvard Medical School, Boston, MA (United States); University of Oxford, Institute of Biomedical Engineering and Keble College, Oxford (United Kingdom); Indian Institute of Technology Delhi and All India Institute of Medical Science, Centre for Biomedical Engineering, New Delhi (India); Rabinov, James D. [Massachusetts General Hospital, Interventional Neuroradiology, Harvard Medical School, Boston, MA (United States); Grasruck, Michael [Siemens Medical Solutions, Forchheim (Germany); Liao, Eric C. [Massachusetts General Hospital, Department of Plastic and Reconstructive Surgery and Center for Regenerative Medicine, Harvard Medical School, Boston, MA (United States); Crandell, David [Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Charlestown, MA (United States); Gupta, Rajiv [Massachusetts General Hospital, Department of Radiology, Harvard Medical School, Boston, MA (United States)

    2015-07-15

    This paper evaluates a prototype flat-panel volume CT (fpVCT) for dynamic in vivo imaging in a variety of neurovascular and lower limb applications. Dynamic CTA was performed on 12 patients (neuro = 8, lower limb = 4) using an fpVCT with 120 kVp, 50 mA, rotation time varying from 8 to 19 s, and field of view of 25 x 25 x 18 cm{sup 3}. Four-dimensional data sets (i.e. 3D images over time) were reconstructed and reviewed. Dynamic CTA demonstrated sufficient spatio-temporal resolution to elucidate first-pass and recirculation dynamics of contrast bolus through neurovasclar pathologies and phasic blood flow though lower-limb vasculature and grafts. The high spatial resolution of fpVCT resulted in reduced partial volume and metal beam-hardening artefacts. This facilitated assessment of vascular lumen in the presence of calcified plaque and evaluation of fractures, especially in the presence of fixation hardware. Evaluation of arteriovenous malformation using dynamic fpVCT angiography was of limited utility. Dynamic CTA using fpVCT can visualize time-varying phenomena in neuro and lower limb vascular applications and has sufficient diagnostic imaging quality to evaluate a number of pathologies affecting these regions. (orig.)

  11. Crystallization-induced dynamic resolution R-epimer from 25-OCH3-PPD epimeric mixture.

    Science.gov (United States)

    Zhang, Sainan; Tang, Yun; Cao, Jiaqing; Zhao, Chen; Zhao, Yuqing

    2015-11-15

    25-OCH3-PPD is a promising antitumor dammarane sapogenin isolated from the total saponin-hydrolyzed extract of Panax ginseng berry and Panax notoginseng leaves. 20(R)-25-OCH3-PPD was more potent as an anti-cancer agent than 20(S)-25-OCH3-PPD and epimeric mixture of 25-OCH3-PPD. This paper describes the rapid separation process of the R-epimer of 25-OCH3-PPD from its epimeric mixture by crystallization-induced dynamic resolution (CIDR). The optimized CIDR process was based on single factor analysis and nine well-planned orthogonal design experiments (OA9 matrix). A rapid and sensitive reverse phase high-performance liquid chromatographic (HPLC) method with evaporative light-scattering detector (ELSD) was developed and validated for the quantitation of 25-OCH3-PPD epimeric mixture and crystalline product. Separation and quantitation were achieved with a silica column using a mobile phase consisting of methanol and water (87:13, v/v) at a flow rate of 1.0mL/min. The ELSD detection was performed at 50°C and 3L/min. Under conditions involving 3mL of 95% ethanol, 8% HCl, and a hermetically sealed environment for 72h, the maximum production of 25(R)-OCH3-PPD was achieved with a chemical purity of 97% and a total yield of 87% through the CIDR process. The 25(R)-OCH3-PPD was nearly completely separated from the 220mg 25-OCH3-PPD epimeric mixture. Overall, a simple and steady small-batch purification process for the large-scale production of 25(R)-OCH3-PPD from 25-OCH3-PPD epimeric mixture was developed. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The dynamics of cyclone clustering in re-analysis and a high-resolution climate model

    Science.gov (United States)

    Priestley, Matthew; Pinto, Joaquim; Dacre, Helen; Shaffrey, Len

    2017-04-01

    Extratropical cyclones have a tendency to occur in groups (clusters) in the exit of the North Atlantic storm track during wintertime, potentially leading to widespread socioeconomic impacts. The Winter of 2013/14 was the stormiest on record for the UK and was characterised by the recurrent clustering of intense extratropical cyclones. This clustering was associated with a strong, straight and persistent North Atlantic 250 hPa jet with Rossby wave-breaking (RWB) on both flanks, pinning the jet in place. Here, we provide for the first time an analysis of all clustered events in 36 years of the ERA-Interim Re-analysis at three latitudes (45˚ N, 55˚ N, 65˚ N) encompassing various regions of Western Europe. The relationship between the occurrence of RWB and cyclone clustering is studied in detail. Clustering at 55˚ N is associated with an extended and anomalously strong jet flanked on both sides by RWB. However, clustering at 65(45)˚ N is associated with RWB to the south (north) of the jet, deflecting the jet northwards (southwards). A positive correlation was found between the intensity of the clustering and RWB occurrence to the north and south of the jet. However, there is considerable spread in these relationships. Finally, analysis has shown that the relationships identified in the re-analysis are also present in a high-resolution coupled global climate model (HiGEM). In particular, clustering is associated with the same dynamical conditions at each of our three latitudes in spite of the identified biases in frequency and intensity of RWB.

  13. Intramolecular diffusive motion in alkane monolayers studied by high-resolution quasielastic neutron scattering and molecular dynamics simulations

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Criswell, L.; Fuhrmann, D

    2004-01-01

    Molecular dynamics simulations of a tetracosane (n-C24H50) monolayer adsorbed on a graphite basal-plane surface show that there are diffusive motions associated with the creation and annihilation of gauche defects occurring on a time scale of similar to0.1-4 ns. We present evidence...... that these relatively slow motions are observable by high-energy-resolution quasielastic neutron scattering (QNS) thus demonstrating QNS as a technique, complementary to nuclear magnetic resonance, for studying conformational dynamics on a nanosecond time scale in molecular monolayers....

  14. Time-resolved PIV technique for high temporal resolution measurement of mechanical prosthetic aortic valve fluid dynamics.

    Science.gov (United States)

    Kaminsky, R; Morbiducci, U; Rossi, M; Scalise, L; Verdonck, P; Grigioni, M

    2007-02-01

    Prosthetic heart valves (PHVs) have been used to replace diseased native valves for more than five decades. Among these, mechanical PHVs are the most frequently implanted. Unfortunately, these devices still do not achieve ideal behavior and lead to many complications, many of which are related to fluid mechanics. The fluid dynamics of mechanical PHVs are particularly complex and the fine-scale characteristics of such flows call for very accurate experimental techniques. Adequate temporal resolution can be reached by applying time-resolved PIV, a high-resolution dynamic technique which is able to capture detailed chronological changes in the velocity field. The aim of this experimental study is to investigate the evolution of the flow field in a detailed time domain of a commercial bileaflet PHV in a mock-loop mimicking unsteady conditions, by means of time-resolved 2D Particle Image Velocimetry (PIV). The investigated flow field corresponded to the region immediately downstream of the valve plane. Spatial resolution as in "standard" PIV analysis of prosthetic valve fluid dynamics was used. The combination of a Nd:YLF high-repetition-rate double-cavity laser with a high frame rate CMOS camera allowed a detailed, highly temporally resolved acquisition (up to 10000 fps depending on the resolution) of the flow downstream of the PHV. Features that were observed include the non-homogeneity and unsteadiness of the phenomenon and the presence of large-scale vortices within the field, especially in the wake of the valve leaflets. Furthermore, we observed that highly temporally cycle-resolved analysis allowed the different behaviors exhibited by the bileaflet valve at closure to be captured in different acquired cardiac cycles. By accurately capturing hemodynamically relevant time scales of motion, time-resolved PIV characterization can realistically be expected to help designers in improving PHV performance and in furnishing comprehensive validation with experimental data

  15. Stereoselective Preparation of N-Alkyl Dipeptide Analogues via Dynamic Kinetic Resolution of α-Halo Acyl Amino Esters

    International Nuclear Information System (INIS)

    Shin, Eun Kyoung; Chang, Ji Yeon; Kim, Hyun Jung; Kim, Yong Tae; Park, Yong Sun

    2006-01-01

    We have shown that dynamic kinetic resolution of α-bromo and α-chloro amides in nucleophilic substitution reaction can be successfully applied towards the preparation of various N-terminal functionalized dipeptide analogues. The stereochemical aspects of the results showed that stereoselectivity depends critically on the structures of amine nucleophiles. This mild and practical method can be run on a multi-gram scale without any special precautions and should be applicable to stereoselective syntheses of various peptidomimetics. Extension of this synthetic methodology to dynamic resolution of N-(α-haloacetyl) peptides in the stereospecific nucleophilic substitution (S N 2) could be an attractive synthetic strategy for asymmetric syntheses of peptide analogues. Recently it has been shown from our group that the chiral information of adjacent amino acid residue is efficiently transferred to the new C-N bond formation at α-halo carbon center for asymmetric syntheses of di-, tri- and tetrapeptide analogues. The α-halo stereogenic center of undergoes rapid epimerization in the presence of diisopropylethylamine (DIEA) and tetrabutylammonium iodide (TBAI), and (αS) reacts with the nucleophile preferentially to provide the dipeptide analogue (αR). The mechanistic investigation showed that this is a case of dynamic kinetic resolution, in which the stereoselectivity is determined by the difference in the diastereomeric transition state energies for the reaction with the nucleophiles. Herein we describe our recent progress to extend the scope of the methodology to stereoselective preparation of N-terminal functionalized dipeptide analogues with various amine nucleophiles

  16. Comparison of elastic-viscous-plastic and viscous-plastic dynamics models using a high resolution Arctic sea ice model

    Energy Technology Data Exchange (ETDEWEB)

    Hunke, E.C. [Los Alamos National Lab., NM (United States); Zhang, Y. [Naval Postgraduate School, Monterey, CA (United States)

    1997-12-31

    A nonlinear viscous-plastic (VP) rheology proposed by Hibler (1979) has been demonstrated to be the most suitable of the rheologies commonly used for modeling sea ice dynamics. However, the presence of a huge range of effective viscosities hinders numerical implementations of this model, particularly on high resolution grids or when the ice model is coupled to an ocean or atmosphere model. Hunke and Dukowicz (1997) have modified the VP model by including elastic waves as a numerical regularization in the case of zero strain rate. This modification (EVP) allows an efficient, fully explicit discretization that adapts well to parallel architectures. The authors present a comparison of EVP and VP dynamics model results from two 5-year simulations of Arctic sea ice, obtained with a high resolution sea ice model. The purpose of the comparison is to determine how differently the two dynamics models behave, and to decide whether the elastic-viscous-plastic model is preferable for high resolution climate simulations, considering its high efficiency in parallel computation. Results from the first year of this experiment (1990) are discussed in detail in Hunke and Zhang (1997).

  17. Design parameters for measurements of local catalytic activity on surfaces

    DEFF Research Database (Denmark)

    Johansson, Martin; Johannessen, Tue; Jørgensen, Jan Hoffmann

    2006-01-01

    Computational fluid dynamics in combination with experiments is used to characterize a gas sampling device for measurements of the local catalytic activity on surfaces. The device basically consists of a quartz capillary mounted concentrically inside an aluminum tube. Reactant gas is blown toward......, the limits of the range in reaction rate, which can be Studied are estimated. (c) 2005 Elsevier B.V. All rights reserved.......Computational fluid dynamics in combination with experiments is used to characterize a gas sampling device for measurements of the local catalytic activity on surfaces. The device basically consists of a quartz capillary mounted concentrically inside an aluminum tube. Reactant gas is blown toward...... limit for the lateral resolution of the measurement, and that a flow rate of the order of 240 (ml/min)(n) is sufficient to achieve this resolution. The sensitivity is reasonable also with high flow rates, due to the presence of a pocket of stagnant gas under the tip of the capillary. Furthermore...

  18. Dynamics and regulation at the tip : a high resolution view on microtubele assembly

    NARCIS (Netherlands)

    Munteanu, Laura

    2008-01-01

    Microtubules are highly dynamic protein polymers that and are essential for intracellular organization and fundamental processes like transport and cell division. In cells, a wide family of microtubule-associated proteins (MAPs) tightly regulates microtubule dynamics. The work presented in this

  19. Dynamic rupture scenarios from Sumatra to Iceland - High-resolution earthquake source physics on natural fault systems

    Science.gov (United States)

    Gabriel, Alice-Agnes; Madden, Elizabeth H.; Ulrich, Thomas; Wollherr, Stephanie

    2017-04-01

    Capturing the observed complexity of earthquake sources in dynamic rupture simulations may require: non-linear fault friction, thermal and fluid effects, heterogeneous fault stress and fault strength initial conditions, fault curvature and roughness, on- and off-fault non-elastic failure. All of these factors have been independently shown to alter dynamic rupture behavior and thus possibly influence the degree of realism attainable via simulated ground motions. In this presentation we will show examples of high-resolution earthquake scenarios, e.g. based on the 2004 Sumatra-Andaman Earthquake, the 1994 Northridge earthquake and a potential rupture of the Husavik-Flatey fault system in Northern Iceland. The simulations combine a multitude of representations of source complexity at the necessary spatio-temporal resolution enabled by excellent scalability on modern HPC systems. Such simulations allow an analysis of the dominant factors impacting earthquake source physics and ground motions given distinct tectonic settings or distinct focuses of seismic hazard assessment. Across all simulations, we find that fault geometry concurrently with the regional background stress state provide a first order influence on source dynamics and the emanated seismic wave field. The dynamic rupture models are performed with SeisSol, a software package based on an ADER-Discontinuous Galerkin scheme for solving the spontaneous dynamic earthquake rupture problem with high-order accuracy in space and time. Use of unstructured tetrahedral meshes allows for a realistic representation of the non-planar fault geometry, subsurface structure and bathymetry. The results presented highlight the fact that modern numerical methods are essential to further our understanding of earthquake source physics and complement both physic-based ground motion research and empirical approaches in seismic hazard analysis.

  20. The nonlinear dynamics of family problem solving in adolescence: the predictive validity of a peaceful resolution attractor.

    Science.gov (United States)

    Dishion, Thomas J; Forgatch, Marion; Van Ryzin, Mark; Winter, Charlotte

    2012-07-01

    In this study we examined the videotaped family interactions of a community sample of adolescents and their parents. Youths were assessed in early to late adolescence on their levels of antisocial behavior. At age 16-17, youths and their parents were videotaped interacting while completing a variety of tasks, including family problem solving. The interactions were coded and compared for three developmental patterns of antisocial behavior: early onset, persistent; adolescence onset; and typically developing. The mean duration of conflict bouts was the only interaction pattern that discriminated the 3 groups. In the prediction of future antisocial behavior, parent and youth reports of transition entropy and conflict resolution interacted to account for antisocial behavior at age 18-19. Families with low entropy and peaceful resolutions predicted low levels of youth antisocial behavior at age 18-19. These findings suggest the need to study both attractors and repellers to understand family dynamics associated with health and social and emotional development.

  1. High resolution polarimeter-interferometer system for fast equilibrium dynamics and MHD instability studies on Joint-TEXT tokamak (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; Zhuang, G., E-mail: ge-zhuang@hust.edu.cn; Li, Q.; Liu, Y.; Gao, L.; Zhou, Y. N.; Jian, X.; Xiong, C. Y.; Wang, Z. J. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Brower, D. L.; Ding, W. X. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095 (United States)

    2014-11-15

    A high-performance Faraday-effect polarimeter-interferometer system has been developed for the J-TEXT tokamak. This system has time response up to 1 μs, phase resolution < 0.1° and minimum spatial resolution ∼15 mm. High resolution permits investigation of fast equilibrium dynamics as well as magnetic and density perturbations associated with intrinsic Magneto-Hydro-Dynamic (MHD) instabilities and external coil-induced Resonant Magnetic Perturbations (RMP). The 3-wave technique, in which the line-integrated Faraday angle and electron density are measured simultaneously by three laser beams with specific polarizations and frequency offsets, is used. In order to achieve optimum resolution, three frequency-stabilized HCOOH lasers (694 GHz, >35 mW per cavity) and sensitive Planar Schottky Diode mixers are used, providing stable intermediate-frequency signals (0.5–3 MHz) with S/N > 50. The collinear R- and L-wave probe beams, which propagate through the plasma poloidal cross section (a = 0.25–0.27 m) vertically, are expanded using parabolic mirrors to cover the entire plasma column. Sources of systematic errors, e.g., stemming from mechanical vibration, beam non-collinearity, and beam polarization distortion are individually examined and minimized to ensure measurement accuracy. Simultaneous density and Faraday measurements have been successfully achieved for 14 chords. Based on measurements, temporal evolution of safety factor profile, current density profile, and electron density profile are resolved. Core magnetic and density perturbations associated with MHD tearing instabilities are clearly detected. Effects of non-axisymmetric 3D RMP in ohmically heated plasmas are directly observed by polarimetry for the first time.

  2. High resolution mapping of riffle-pool dynamics based on ADCP and close-range remote sensing data

    Science.gov (United States)

    Salmela, Jouni; Kasvi, Elina; Alho, Petteri

    2017-04-01

    Present development of mobile laser scanning (MLS) and close-range photogrammetry with unmanned aerial vehicle (UAV) enable us to create seamless digital elevation models (DEMs) of the riverine environment. Remote-controlled flow measurement platforms have also improved spatio-temporal resolution of the flow field data. In this study, acoustic Doppler current profiler (ADCP) attached to remote-controlled mini-boat, UAV-based bathymetry and MLS techniques were utilized to create the high-resolution DEMs of the river channel. These high-resolution measurements can be used in many fluvial applications such as computational fluid dynamics, channel change detection, habitat mapping or hydro-electric power plant planning. In this study we aim: 1) to analyze morphological changes of river channel especially riffle and pool formations based on fine-scale DEMs and ADCP measurements, 2) to analyze flow fields and their effect on morphological changes. The interest was mainly focused on reach-scale riffle-pool dynamics within two-year period of 2013 and 2014. The study was performed in sub-arctic meandering Pulmankijoki River located in Northern Finland. The river itself has shallow and clear water and sandy bed sediment. Discharge remains typically below 10 m3s-1 most of the year but during snow melt period in spring the discharge may exceed 70 m3s-1. We compared DEMs and ADCP measurements to understand both magnitude and spatio-temporal change of the river bed. Models were accurate enough to study bed form changes and locations and persistence of riffles and pools. We analyzed their locations with relation to flow during the peak and low discharge. Our demonstrated method has improved significantly spatio-temporal resolution of riverine DEMs compared to other cross-sectional and photogrammetry based models. Together with flow field measurements we gained better understanding of riverbed-water interaction

  3. Dynamic Resolution in GPU-Accelerated Volume Rendering to Autostereoscopic Multiview Lenticular Displays

    Directory of Open Access Journals (Sweden)

    Daniel Ruijters

    2008-09-01

    Full Text Available The generation of multiview stereoscopic images of large volume rendered data demands an enormous amount of calculations. We propose a method for hardware accelerated volume rendering of medical data sets to multiview lenticular displays, offering interactive manipulation throughout. The method is based on buffering GPU-accelerated direct volume rendered visualizations of the individual views from their respective focal spot positions, and composing the output signal for the multiview lenticular screen in a second pass. This compositing phase is facilitated by the fact that the view assignment per subpixel is static, and therefore can be precomputed. We decoupled the resolution of the individual views from the resolution of the composited signal, and adjust the resolution on-the-fly, depending on the available processing resources, in order to maintain interactive refresh rates. The optimal resolution for the volume rendered views is determined by means of an analysis of the lattice of the output signal for the lenticular screen in the Fourier domain.

  4. Spatio-temporal image correlation spectroscopy and super-resolution microscopy to quantify molecular dynamics in T cells.

    Science.gov (United States)

    Ashdown, George W; Owen, Dylan M

    2018-02-02

    Many cellular processes are regulated by the spatio-temporal organisation of signalling complexes, cytoskeletal components and membranes. One such example is at the T cell immunological synapse where the retrograde flow of cortical filamentous (F)-actin from the synapse periphery drives signalling protein microclusters towards the synapse centre. The density of this mesh however, makes visualisation and analysis of individual actin fibres difficult due to the resolution limit of conventional microscopy. Recently, super-resolution methods such as structured illumination microscopy (SIM) have surpassed this resolution limit. Here, we apply SIM to better visualise the dense cortical actin meshwork in T cell synapses formed against activating, antibody-coated surfaces and image under total-internal reflection fluorescence (TIRF) illumination. To analyse the observed molecular flows, and the relationship between them, we apply spatio-temporal image correlation spectroscopy (STICS) and its cross-correlation variant (STICCS). We show that the dynamic cortical actin mesh can be visualised with unprecedented detail and that STICS/STICCS can output accurate, quantitative maps of molecular flow velocity and directionality from such data. We find that the actin flow can be disrupted using small molecule inhibitors of actin polymerisation. This combination of imaging and quantitative analysis may provide an important new tool for researchers to investigate the molecular dynamics at cellular length scales. Here we demonstrate the retrograde flow of F-actin which may be important for the clustering and dynamics of key signalling proteins within the plasma membrane, a phenomenon which is vital to correct T cell activation and therefore the mounting of an effective immune response. Copyright © 2018. Published by Elsevier Inc.

  5. An efficient non hydrostatic dynamical care far high-resolution simulations down to the urban scale

    International Nuclear Information System (INIS)

    Bonaventura, L.; Cesari, D.

    2005-01-01

    Numerical simulations of idealized stratified flows aver obstacles at different spatial scales demonstrate the very general applicability and the parallel efficiency of a new non hydrostatic dynamical care far simulation of mesoscale flows aver complex terrain

  6. Improving the off-axis spatial resolution and dynamic range of the NIF X-ray streak cameras (invited)

    Energy Technology Data Exchange (ETDEWEB)

    MacPhee, A. G., E-mail: macphee2@llnl.gov; Hatch, B. W.; Bell, P. M.; Bradley, D. K.; Datte, P. S.; Landen, O. L.; Palmer, N. E.; Piston, K. W.; Rekow, V. V. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); Dymoke-Bradshaw, A. K. L.; Hares, J. D. [Kentech Instruments Ltd., Isis Building, Howbery Park, Wallingford, Oxfordshire OX10 8BD (United Kingdom); Hassett, J. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627 (United States); Meadowcroft, A. L. [AWE Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Hilsabeck, T. J.; Kilkenny, J. D. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States)

    2016-11-15

    We report simulations and experiments that demonstrate an increase in spatial resolution of the NIF core diagnostic x-ray streak cameras by at least a factor of two, especially off axis. A design was achieved by using a corrector electron optic to flatten the field curvature at the detector plane and corroborated by measurement. In addition, particle in cell simulations were performed to identify the regions in the streak camera that contribute the most to space charge blurring. These simulations provide a tool for convolving synthetic pre-shot spectra with the instrument function so signal levels can be set to maximize dynamic range for the relevant part of the streak record.

  7. Dynamic functional coupling of high resolution EEG potentials related to unilateral internally triggered one-digit movements.

    Science.gov (United States)

    Urbano, A; Babiloni, C; Onorati, P; Babiloni, F

    1998-06-01

    Between-electrode cross-covariances of delta (0-3 Hz)- and theta (4-7 Hz)-filtered high resolution EEG potentials related to preparation, initiation. and execution of human unilateral internally triggered one-digit movements were computed to investigate statistical dynamic coupling between these potentials. Significant (P planning, starting, and performance of unilateral movement. The involvement of these cortical areas is supported by the observation that averaged spatially enhanced delta- and theta-bandpassed potentials were computed from the scalp regions where task-related electrical activation of primary sensorimotor areas and supplementary motor area was roughly represented.

  8. Quantitative analysis of localized stresses in irradiated stainless steels using high resolution electron backscatter diffraction and molecular dynamics modeling

    International Nuclear Information System (INIS)

    Johnson, D.C.; Kuhr, B.; Farkas, D.; Was, G.S.

    2016-01-01

    Quantitative measurements of stress near dislocation channel–grain boundary (DC–GB) interaction sites were made using high resolution electron backscatter diffraction (HREBSD) and have been compared with molecular dynamics (MD) simulations. Tensile stress normal to the grain boundary was significantly elevated at discontinuous DC–GB intersections with peak magnitudes roughly an order of magnitude greater than at sites where slip transfer occurred. These results constitute the first measurement of stress amplification at DC–GB intersections and provide support to the theory that high normal stress at the grain boundary may be a key driver for the initiation of irradiation assisted stress corrosion cracks.

  9. Improving the off-axis spatial resolution and dynamic range of the NIF X-ray streak cameras (invited).

    Science.gov (United States)

    MacPhee, A G; Dymoke-Bradshaw, A K L; Hares, J D; Hassett, J; Hatch, B W; Meadowcroft, A L; Bell, P M; Bradley, D K; Datte, P S; Landen, O L; Palmer, N E; Piston, K W; Rekow, V V; Hilsabeck, T J; Kilkenny, J D

    2016-11-01

    We report simulations and experiments that demonstrate an increase in spatial resolution of the NIF core diagnostic x-ray streak cameras by at least a factor of two, especially off axis. A design was achieved by using a corrector electron optic to flatten the field curvature at the detector plane and corroborated by measurement. In addition, particle in cell simulations were performed to identify the regions in the streak camera that contribute the most to space charge blurring. These simulations provide a tool for convolving synthetic pre-shot spectra with the instrument function so signal levels can be set to maximize dynamic range for the relevant part of the streak record.

  10. Production of solar radiation bankable datasets from high-resolution solar irradiance derived with dynamical downscaling Numerical Weather prediction model

    Directory of Open Access Journals (Sweden)

    Yassine Charabi

    2016-11-01

    Full Text Available A bankable solar radiation database is required for the financial viability of solar energy project. Accurate estimation of solar energy resources in a country is very important for proper siting, sizing and life cycle cost analysis of solar energy systems. During the last decade an important progress has been made to develop multiple solar irradiance database (Global Horizontal Irradiance (GHI and Direct Normal Irradiance (DNI, using satellite of different resolution and sophisticated models. This paper assesses the performance of High-resolution solar irradiance derived with dynamical downscaling Numerical Weather Prediction model with, GIS topographical solar radiation model, satellite data and ground measurements, for the production of bankable solar radiation datasets. For this investigation, NWP model namely Consortium for Small-scale Modeling (COSMO is used for the dynamical downscaling of solar radiation. The obtained results increase confidence in solar radiation data base obtained from dynamical downscaled NWP model. The mean bias of dynamical downscaled NWP model is small, on the order of a few percents for GHI, and it could be ranked as a bankable datasets. Fortunately, these data are usually archived in the meteorological department and gives a good idea of the hourly, monthly, and annual incident energy. Such short time-interval data are valuable in designing and operating the solar energy facility. The advantage of the NWP model is that it can be used for solar radiation forecast since it can estimate the weather condition within the next 72–120 hours. This gives a reasonable estimation of the solar radiation that in turns can be used to forecast the electric power generation by the solar power plant.

  11. Two Monthly Continuous Dynamic Model Based on Nash Bargaining Theory for Conflict Resolution in Reservoir System.

    Science.gov (United States)

    Homayounfar, Mehran; Zomorodian, Mehdi; Martinez, Christopher J; Lai, Sai Hin

    2015-01-01

    So far many optimization models based on Nash Bargaining Theory associated with reservoir operation have been developed. Most of them have aimed to provide practical and efficient solutions for water allocation in order to alleviate conflicts among water users. These models can be discussed from two viewpoints: (i) having a discrete nature; and (ii) working on an annual basis. Although discrete dynamic game models provide appropriate reservoir operator policies, their discretization of variables increases the run time and causes dimensionality problems. In this study, two monthly based non-discrete optimization models based on the Nash Bargaining Solution are developed for a reservoir system. In the first model, based on constrained state formulation, the first and second moments (mean and variance) of the state variable (water level in the reservoir) is calculated. Using moment equations as the constraint, the long-term utility of the reservoir manager and water users are optimized. The second model is a dynamic approach structured based on continuous state Markov decision models. The corresponding solution based on the collocation method is structured for a reservoir system. In this model, the reward function is defined based on the Nash Bargaining Solution. Indeed, it is used to yield equilibrium in every proper sub-game, thereby satisfying the Markov perfect equilibrium. Both approaches are applicable for water allocation in arid and semi-arid regions. A case study was carried out at the Zayandeh-Rud river basin located in central Iran to identify the effectiveness of the presented methods. The results are compared with the results of an annual form of dynamic game, a classical stochastic dynamic programming model (e.g. Bayesian Stochastic Dynamic Programming model, BSDP), and a discrete stochastic dynamic game model (PSDNG). By comparing the results of alternative methods, it is shown that both models are capable of tackling conflict issues in water allocation

  12. Two Monthly Continuous Dynamic Model Based on Nash Bargaining Theory for Conflict Resolution in Reservoir System.

    Directory of Open Access Journals (Sweden)

    Mehran Homayounfar

    Full Text Available So far many optimization models based on Nash Bargaining Theory associated with reservoir operation have been developed. Most of them have aimed to provide practical and efficient solutions for water allocation in order to alleviate conflicts among water users. These models can be discussed from two viewpoints: (i having a discrete nature; and (ii working on an annual basis. Although discrete dynamic game models provide appropriate reservoir operator policies, their discretization of variables increases the run time and causes dimensionality problems. In this study, two monthly based non-discrete optimization models based on the Nash Bargaining Solution are developed for a reservoir system. In the first model, based on constrained state formulation, the first and second moments (mean and variance of the state variable (water level in the reservoir is calculated. Using moment equations as the constraint, the long-term utility of the reservoir manager and water users are optimized. The second model is a dynamic approach structured based on continuous state Markov decision models. The corresponding solution based on the collocation method is structured for a reservoir system. In this model, the reward function is defined based on the Nash Bargaining Solution. Indeed, it is used to yield equilibrium in every proper sub-game, thereby satisfying the Markov perfect equilibrium. Both approaches are applicable for water allocation in arid and semi-arid regions. A case study was carried out at the Zayandeh-Rud river basin located in central Iran to identify the effectiveness of the presented methods. The results are compared with the results of an annual form of dynamic game, a classical stochastic dynamic programming model (e.g. Bayesian Stochastic Dynamic Programming model, BSDP, and a discrete stochastic dynamic game model (PSDNG. By comparing the results of alternative methods, it is shown that both models are capable of tackling conflict issues in

  13. Dynamic perfusion CT: Optimizing the temporal resolution for the calculation of perfusion CT parameters in stroke patients

    Energy Technology Data Exchange (ETDEWEB)

    Kaemena, Andreas [Department of Radiology, Charite-Medical University Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany)], E-mail: andreas.kaemena@charite.de; Streitparth, Florian; Grieser, Christian; Lehmkuhl, Lukas [Department of Radiology, Charite-Medical University Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany); Jamil, Basil [Department of Radiotherapy, Charite-Medical University Berlin, Schumannstr. 20/21, D-10117 Berlin (Germany); Wojtal, Katarzyna; Ricke, Jens; Pech, Maciej [Department of Radiology, Charite-Medical University Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany)

    2007-10-15

    Purpose: To assess the influence of different temporal sampling rates on the accuracy of the results from cerebral perfusion CTs in patients with an acute ischemic stroke. Material and methods: Thirty consecutive patients with acute stroke symptoms received a dynamic perfusion CT (LightSpeed 16, GE). Forty millilitres of iomeprol (Imeron 400) were administered at an injection rate of 4 ml/s. After a scan delay of 7 s, two adjacent 10 mm slices at 80 kV and 190 mA were acquired in a cine mode technique with a cine duration of 49 s. Parametric maps for the blood flow (BF), blood volume (BV) and mean transit time (MTT) were calculated for temporal sampling intervals of 0.5, 1, 2, 3 and 4 s using GE's Perfusion 3 software package. In addition to the quantitative ROI data analysis, a visual perfusion map analysis was performed. Results: The perfusion analysis proved to be technically feasible with all patients. The calculated perfusion values revealed significant differences with regard to the BF, BV and MTT, depending on the employed temporal resolution. The perfusion contrast between ischemic lesions and healthy brain tissue decreased continuously at the lower temporal resolutions. The visual analysis revealed that ischemic lesions were best depicted with sampling intervals of 0.5 and 1 s. Conclusion: We recommend a temporal scan resolution of two images per second for the best detection and depiction of ischemic areas.

  14. Mapping groundwater dynamics using multiple sources of exhaustive high resolution data

    NARCIS (Netherlands)

    Finke, P.A.; Brus, D.J.; Bierkens, M.F.P.; Hoogland, T.; Knotters, M.; Vries, de F.

    2004-01-01

    Existing groundwater table (GWT) class maps, available at full coverage for the Netherlands at 1:50,000 scale, no longer satisfy user demands. Groundwater levels have changed due to strong human impact, so the maps are partially outdated. Furthermore, a more dynamic description of groundwater table

  15. Observations of movement dynamics of flying insects using high resolution lidar

    DEFF Research Database (Denmark)

    Kirkeby, Carsten Thure; Wellenreuther, Maren; Brydegaard, Mikkel

    2016-01-01

    insects (wing size cross-section) moved across the field and clustered near the light trap around 22:00 local time, while larger insects (wing size >2.5 mm2 in cross-section) were most abundant near the lidar beam before 22:00 and then moved towards the light trap between 22:00 and 23:30. We......Insects are fundamental to ecosystem functioning and biodiversity, yet the study of insect movement, dispersal and activity patterns remains a challenge. Here we present results from a novel high resolution laser-radar (lidar) system for quantifying flying insect abundance recorded during one...

  16. Dynamics of Transformation from Platinum Icosahedral Nanoparticles to Larger FCC Crystal at Millisecond Time Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wenpei [Univ. of Illinois at Urbana-Champaign, IL (United States). Dept. of Materials Science and Engineering and Fredrick Seitz Materials Research Lab.; Wu, Jianbo [Univ. of Illinois at Urbana-Champaign, IL (United States). Dept. of Materials Science and Engineering, Fredrick Seitz Materials Research Lab. and Dept. of Chemical and Biomolecular Engineering; Shanghai Jiao Tong Univ. (China). School of Materials Science and Engineering; Yoon, Aram [Univ. of Illinois at Urbana-Champaign, IL (United States). Dept. of Materials Science and Engineering and Fredrick Seitz Materials Research Lab.; Lu, Ping [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Qi, Liang [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Materials Science and Engineering; Wen, Jianguo [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials and Electron Microscopy Center; Miller, Dean J. [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials and Electron Microscopy Center; Mabon, James C. [Univ. of Illinois at Urbana-Champaign, IL (United States). Fredrick Seitz Materials Research Lab.; Wilson, William L. [Univ. of Illinois at Urbana-Champaign, IL (United States). Dept. of Materials Science and Engineering and Fredrick Seitz Materials Research Lab.; Yang, Hong [Univ. of Illinois at Urbana-Champaign, IL (United States). Dept. of Chemical and Biomolecular Engineering; Zuo, Jian-Min [Univ. of Illinois at Urbana-Champaign, IL (United States). Dept. of Materials Science and Engineering and Fredrick Seitz Materials Research Lab.

    2017-12-08

    Atomic motion at grain boundaries is essential to microstructure development, growth and stability of catalysts and other nanostructured materials. However, boundary atomic motion is often too fast to observe in a conventional transmission electron microscope (TEM) and too slow for ultrafast electron microscopy. We report on the entire transformation process of strained Pt icosahedral nanoparticles (ICNPs) into larger FCC crystals, captured at 2.5 ms time resolution using a fast electron camera. Results show slow diffusive dislocation motion at nm/s inside ICNPs and fast surface transformation at μm/s. By characterizing nanoparticle strain, we show that the fast transformation is driven by inhomogeneous surface stress. And interaction with pre-existing defects led to the slowdown of the transformation front inside the nanoparticles. Particle coalescence, assisted by oxygen-induced surface migration at T ≥ 300°C, also played a critical role. Thus by studying transformation in the Pt ICNPs at high time and spatial resolution, we obtain critical insights into the transformation mechanisms in strained Pt nanoparticles.

  17. High-resolution and large dynamic range nanomechanical mapping in tapping-mode atomic force microscopy

    International Nuclear Information System (INIS)

    Sahin, Ozgur; Erina, Natalia

    2008-01-01

    High spatial resolution imaging of material properties is an important task for the continued development of nanomaterials and studies of biological systems. Time-varying interaction forces between the vibrating tip and the sample in a tapping-mode atomic force microscope contain detailed information about the elastic, adhesive, and dissipative response of the sample. We report real-time measurement and analysis of the time-varying tip-sample interaction forces with recently introduced torsional harmonic cantilevers. With these measurements, high-resolution maps of elastic modulus, adhesion force, energy dissipation, and topography are generated simultaneously in a single scan. With peak tapping forces as low as 0.6 nN, we demonstrate measurements on blended polymers and self-assembled molecular architectures with feature sizes at 1, 10, and 500 nm. We also observed an elastic modulus measurement range of four orders of magnitude (1 MPa to 10 GPa) for a single cantilever under identical feedback conditions, which can be particularly useful for analyzing heterogeneous samples with largely different material components.

  18. Interactive desktop analysis of high resolution simulations: application to turbulent plume dynamics and current sheet formation

    International Nuclear Information System (INIS)

    Clyne, John; Mininni, Pablo; Norton, Alan; Rast, Mark

    2007-01-01

    The ever increasing processing capabilities of the supercomputers available to computational scientists today, combined with the need for higher and higher resolution computational grids, has resulted in deluges of simulation data. Yet the computational resources and tools required to make sense of these vast numerical outputs through subsequent analysis are often far from adequate, making such analysis of the data a painstaking, if not a hopeless, task. In this paper, we describe a new tool for the scientific investigation of massive computational datasets. This tool (VAPOR) employs data reduction, advanced visualization, and quantitative analysis operations to permit the interactive exploration of vast datasets using only a desktop PC equipped with a commodity graphics card. We describe VAPORs use in the study of two problems. The first, motivated by stellar envelope convection, investigates the hydrodynamic stability of compressible thermal starting plumes as they descend through a stratified layer of increasing density with depth. The second looks at current sheet formation in an incompressible helical magnetohydrodynamic flow to understand the early spontaneous development of quasi two-dimensional (2D) structures embedded within the 3D solution. Both of the problems were studied at sufficiently high spatial resolution, a grid of 504 2 by 2048 points for the first and 1536 3 points for the second, to overwhelm the interactive capabilities of typically available analysis resources

  19. High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision and hobbyist unmanned aerial vehicles

    Science.gov (United States)

    Dandois, J. P.; Ellis, E. C.

    2013-12-01

    High spatial resolution three-dimensional (3D) measurements of vegetation by remote sensing are advancing ecological research and environmental management. However, substantial economic and logistical costs limit this application, especially for observing phenological dynamics in ecosystem structure and spectral traits. Here we demonstrate a new aerial remote sensing system enabling routine and inexpensive aerial 3D measurements of canopy structure and spectral attributes, with properties similar to those of LIDAR, but with RGB (red-green-blue) spectral attributes for each point, enabling high frequency observations within a single growing season. This 'Ecosynth' methodology applies photogrammetric ''Structure from Motion'' computer vision algorithms to large sets of highly overlapping low altitude (USA. Ecosynth canopy height maps (CHMs) were strong predictors of field-measured tree heights (R2 0.63 to 0.84) and were highly correlated with a LIDAR CHM (R 0.87) acquired 4 days earlier, though Ecosynth-based estimates of aboveground biomass densities included significant errors (31 - 36% of field-based estimates). Repeated scanning of a 0.25 ha forested area at six different times across a 16 month period revealed ecologically significant dynamics in canopy color at different heights and a structural shift upward in canopy density, as demonstrated by changes in vertical height profiles of point density and relative RGB brightness. Changes in canopy relative greenness were highly correlated (R2 = 0.88) with MODIS NDVI time series for the same area and vertical differences in canopy color revealed the early green up of the dominant canopy species, Liriodendron tulipifera, strong evidence that Ecosynth time series measurements capture vegetation structural and spectral dynamics at the spatial scale of individual trees. Observing canopy phenology in 3D at high temporal resolutions represents a breakthrough in forest ecology. Inexpensive user-deployed technologies for

  20. Dynamics of Catalyst Nanoparticles

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Cavalca, Filippo; Wagner, Jakob Birkedal

    and pharmaceuticals, and the cleanup of exhaust from automobiles and stationary power plants. Sintering, or thermal deactivation, is an important mechanism for the loss of catalyst activity. In order to initiate a systematic study of the dynamics and sintering of nanoparticles, various catalytic systems have been...... under gas exposure, dynamic phenomena such as sintering and growth can be observed with sub-Ångstrøm resolution. Metal nanoparticles contain the active sites in heterogeneous catalysts, which are important for many industrial applications including the production of clean fuels, chemicals...

  1. Structure and Dynamics of Zr6O8 Metal-Organic Framework Node Surfaces Probed with Ethanol Dehydration as a Catalytic Test Reaction.

    Science.gov (United States)

    Yang, Dong; Ortuño, Manuel A; Bernales, Varinia; Cramer, Christopher J; Gagliardi, Laura; Gates, Bruce C

    2018-03-14

    Some metal-organic frameworks (MOFs) incorporate nodes that are metal oxide clusters such as Zr 6 O 8 . Vacancies on the node surfaces, accidental or by design, act as catalytic sites. Here, we report elucidation of the chemistry of Zr 6 O 8 nodes in the MOFs UiO-66 and UiO-67 having used infrared and nuclear magnetic resonance spectroscopies to determine the ligands on the node surfaces originating from the solvents and modifiers used in the syntheses and having elucidated the catalytic properties of the nodes for ethanol dehydration, which takes place selectively to make diethyl ether but not ethylene at 473-523 K. Density functional theory calculations show that the key to the selective catalysis is the breaking of node-linker bonds (or the accidental adjacency of open/defect sites) that allows catalytically fruitful bonding of the reactant ethanol to neighboring sites on the nodes, facilitating the bimolecular ether formation through an S N 2 mechanism.

  2. Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset.

    Science.gov (United States)

    Wootton, J Timothy; Pfister, Catherine A; Forester, James D

    2008-12-02

    Increasing global concentrations of atmospheric CO(2) are predicted to decrease ocean pH, with potentially severe impacts on marine food webs, but empirical data documenting ocean pH over time are limited. In a high-resolution dataset spanning 8 years, pH at a north-temperate coastal site declined with increasing atmospheric CO(2) levels and varied substantially in response to biological processes and physical conditions that fluctuate over multiple time scales. Applying a method to link environmental change to species dynamics via multispecies Markov chain models reveals strong links between in situ benthic species dynamics and variation in ocean pH, with calcareous species generally performing more poorly than noncalcareous species in years with low pH. The models project the long-term consequences of these dynamic changes, which predict substantial shifts in the species dominating the habitat as a consequence of both direct effects of reduced calcification and indirect effects arising from the web of species interactions. Our results indicate that pH decline is proceeding at a more rapid rate than previously predicted in some areas, and that this decline has ecological consequences for near shore benthic ecosystems.

  3. High-resolution dynamic imaging and quantitative analysis of lung cancer xenografts in nude mice using clinical PET/CT.

    Science.gov (United States)

    Wang, Ying Yi; Wang, Kai; Xu, Zuo Yu; Song, Yan; Wang, Chu Nan; Zhang, Chong Qing; Sun, Xi Lin; Shen, Bao Zhong

    2017-08-08

    Considering the general application of dedicated small-animal positron emission tomography/computed tomography is limited, an acceptable alternative in many situations might be clinical PET/CT. To estimate the feasibility of using clinical PET/CT with [F-18]-fluoro-2-deoxy-D-glucose for high-resolution dynamic imaging and quantitative analysis of cancer xenografts in nude mice. Dynamic clinical PET/CT scans were performed on xenografts for 60 min after injection with [F-18]-fluoro-2-deoxy-D-glucose. Scans were reconstructed with or without SharpIR method in two phases. And mice were sacrificed to extracting major organs and tumors, using ex vivo γ-counting as a reference. Strikingly, we observed that the image quality and the correlation between the all quantitive data from clinical PET/CT and the ex vivo counting was better with the SharpIR reconstructions than without. Our data demonstrate that clinical PET/CT scanner with SharpIR reconstruction is a valuable tool for imaging small animals in preclinical cancer research, offering dynamic imaging parameters, good image quality and accurate data quatification.

  4. High Resolution Angle Resolved Photoemission Studies on Quasi-Particle Dynamics in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Leem, C.S.

    2010-06-02

    We obtained the spectral function of the graphite H point using high resolution angle resolved photoelectron spectroscopy (ARPES). The extracted width of the spectral function (inverse of the photo-hole lifetime) near the H point is approximately proportional to the energy as expected from the linearly increasing density of states (DOS) near the Fermi energy. This is well accounted by our electron-phonon coupling theory considering the peculiar electronic DOS near the Fermi level. And we also investigated the temperature dependence of the peak widths both experimentally and theoretically. The upper bound for the electron-phonon coupling parameter is 0.23, nearly the same value as previously reported at the K point. Our analysis of temperature dependent ARPES data at K shows that the energy of phonon mode of graphite has much higher energy scale than 125K which is dominant in electron-phonon coupling.

  5. A new look at stress: abscisic acid patterns and dynamics at high-resolution.

    Science.gov (United States)

    Jones, Alexander M

    2016-04-01

    Abscisic acid (ABA) is a key phytohormone promoting abiotic stress tolerance as well as developmental processes such as seed dormancy. A spatiotemporal map of ABA concentrations would greatly advance our understanding of the cell type and timing of ABA action. Organ and tissue-level ABA measurements, as well as indirect in vivo measurements such as cell-specific transcriptional analysis of ABA metabolic enzymes and ABA-responsive promoters, have all contributed to current views of the localization and timing of ABA accumulations. Recently developed Förster resonance energy transfer (FRET) biosensors for ABA that sense ABA levels directly promise to add unprecedented resolution to in vivo ABA spatiotemporal mapping and expand our knowledge of the mechanisms controlling ABA levels in space and time. © 2015 Carnegie Institution for Science New Phytologist © 2015 New Phytologist Trust.

  6. Dynamics of Saturn’s 2010 Great White Spot from high-resolution Cassini ISS observations

    Science.gov (United States)

    Hueso, Ricardo; Sánchez-Lavega, A.; del Río-Gaztelurrutia, T.

    2012-10-01

    On December 5th 2010 a storm erupted in Saturn’s North Temperate latitudes which were experiencing early spring season. The storm quickly developed to a planet-wide disturbance of the Great White Spot type. The ISS instrument onboard Cassini acquired its first images of the storm on 23th December 2010 and performed repeated observations with a variety of spatial resolutions over the nearly 10 months period the storm continued active. Here we present an analysis of two of the image sequences with better spatial resolution of the mature storm when it was fully developed and very active. We used an image correlation algorithm to measure the cloud motions obtained from images separated 20 minutes and obtained 16,000 wind tracers in a domain of 60 degrees longitude per 20 degrees in latitude. Intense zonal and meridional motions accompanied the storm and reached values of 120 m/s in particular regions of the active storm. The storm released a chain of anticyclonic and cyclonic vortices at planetocentric latitudes of 36° and 32° respectively. The short time difference between the images results in estimated wind uncertainties of 15 m/s that did not allow to perform a complete analysis of the turbulence and kinetic spectrum of the motions. We identify locations of the updrafts and link those with the morphology in different observing filters. The global behaviour of the storm was examined in images separated by 10 hours confirming the intensity of the winds and the global behaviour of the vortices. Acknowledgments: This work was supported by the Spanish MICIIN project AYA2009-10701 with FEDER funds, by Grupos Gobierno Vasco IT-464-07 and by Universidad País Vasco UPV/EHU through program UFI11/55.

  7. Determination of dynamic characteristics of multi-layer carbon plastic structures of high-resolution scanner

    Directory of Open Access Journals (Sweden)

    В. Н. Маслей

    2017-10-01

    Full Text Available The comparative analysis results for the numerical determination of the dynamic characteristics of multi-layer carbon-fiber plates of the space vehicle scanner design by various types of finite element approximation of the physico-mechanical properties of the composite material are presented. Using the topological structure of the construction of reinforcing layers material in the plate package plane, experimental data for the elastic and mass characteristics of homogeneous carbon-fiber fibers, equivalent structural and orthotropic stiffness and elastic characteristics of the material of composite plates are determined.

  8. Mapping the dissociative ionization dynamics of molecular nitrogen with attosecond resolution

    International Nuclear Information System (INIS)

    Klinker, M; González-Vázquez, J; Martin, F; Trabattoni, A; Sansone, G; Nisoli, M; Liu, C; Linguerri, R; Hochlaf, M; Klei, J; Vrakking, M J J; Calegari, F

    2015-01-01

    We wish to understand the processes underlying the ionization dynamics of N 2 as experimentally induced and studied by recording the kinetic energy release (KER) in a XUV-pump/IR-probe setup. To this end a theoretical model was developed describing the ionization process using Dyson Orbitals and, subsequently, the dissociation process using a large set of diabatic potential energy surfaces (PES) on which to propagate. From said set of PES, a small subset is extracted allowing for the identification of one and two photon processes chiefly responsible for the experimentally observed features. (paper)

  9. Improved resolution and reliability in dynamic PET using Bayesian regularization of MRTM2

    DEFF Research Database (Denmark)

    Agn, Mikael; Svarer, Claus; Frokjaer, Vibe G.

    2014-01-01

    This paper presents a mathematical model that regularizes dynamic PET data by using a Bayesian framework. We base the model on the well known two-parameter multilinear reference tissue method MRTM2 and regularize on the assumption that spatially close regions have similar parameters. The developed...... model is compared to the conventional approach of improving the low signal-to-noise ratio of PET data, i.e., spatial filtering of each time frame independently by a Gaussian kernel. We show that the model handles high levels of noise better than the conventional approach, while at the same time...

  10. Stark mapping of H2 Rydberg states in the strong-field regime with dynamical resolution

    International Nuclear Information System (INIS)

    Glab, W.L.; Qin, K.

    1993-01-01

    We have acquired spectra of high Rydberg states of molecular hydrogen in a static external field, in the energy region from below the energy at which field ionization becomes classically possible (E c ) to well above this energy. Simultaneous spectra of ionization and dissociation were acquired, thereby allowing direct information on the excited-state decay dynamics to be obtained. We have found that states with energies below E c undergo field-induced predissociation, while states with energies well above E c decay predominantly by field ionization. Field ionization and dissociation compete effectively as decay channels for states with energies in a restricted region just above E c . Comparison of our ionization spectra to the results of a single-channel quantum-defect theory Stark calculation shows quantitative agreement except near curve crossings, indicating that inclusion of different core rotational state channels will be required to properly account for coupling between the Stark states. Several states in the spectra undergo pronounced changes in their dynamical properties over a narrow range of field values, which we interpret as being due to interference cancellation of the ionization rates for these states

  11. Improved High Resolution Models of Subduction Dynamics: Use of transversely isotropic viscosity with a free-surface

    Science.gov (United States)

    Liu, X.; Gurnis, M.; Stadler, G.; Rudi, J.; Ratnaswamy, V.; Ghattas, O.

    2017-12-01

    Dynamic topography, or uncompensated topography, is controlled by internal dynamics, and provide constraints on the buoyancy structure and rheological parameters in the mantle. Compared with other surface manifestations such as the geoid, dynamic topography is very sensitive to shallower and more regional mantle structure. For example, the significant dynamic topography above the subduction zone potentially provides a rich mine for inferring the rheological and mechanical properties such as plate coupling, flow, and lateral viscosity variations, all critical in plate tectonics. However, employing subduction zone topography in the inversion study requires that we have a better understanding of the topography from forward models, especially the influence of the viscosity formulation, numerical resolution, and other factors. One common approach to formulating a fault between the subducted slab and the overriding plates in viscous flow models assumes a thin weak zone. However, due to the large lateral variation in viscosity, topography from free-slip numerical models typically has artificially large magnitude as well as high-frequency undulations over subduction zone, which adds to the difficulty in making comparisons between model results and observations. In this study, we formulate a weak zone with the transversely isotropic viscosity (TI) where the tangential viscosity is much smaller than the viscosity in the normal direction. Similar with isotropic weak zone models, TI models effectively decouple subducted slabs from the overriding plates. However, we find that the topography in TI models is largely reduced compared with that in weak zone models assuming an isotropic viscosity. Moreover, the artificial `tooth paste' squeezing effect observed in isotropic weak zone models vanishes in TI models, although the difference becomes less significant when the dip angle is small. We also implement a free-surface condition in our numerical models, which has a smoothing

  12. High-resolution inelastic X-ray scattering to study the high-frequency atomic dynamics of disordered systems

    International Nuclear Information System (INIS)

    Monaco, G.

    2008-01-01

    The use of momentum-resolved inelastic X-ray scattering with meV energy resolution to study the high-frequency atomic dynamics in disordered systems is here reviewed. The typical realization of this experiment is described together with some common models used to interpret the measured spectra and to extract parameters of interest for the investigation of disordered systems. With the help of some selected examples, the present status of the field is discussed. Particular attention is given to those results which are still open for discussion or controversial, and which will require further development of the technique to be fully solved. Such an instrumental development seems nowadays possible at the light of recently proposed schemes for advanced inelastic X-ray scattering spectrometers. (author)

  13. High Resolution and Large Dynamic Range Resonant Pressure Sensor Based on Q-Factor Measurement

    Science.gov (United States)

    Gutierrez, Roman C. (Inventor); Stell, Christopher B. (Inventor); Tang, Tony K. (Inventor); Vorperian, Vatche (Inventor); Wilcox, Jaroslava (Inventor); Shcheglov, Kirill (Inventor); Kaiser, William J. (Inventor)

    2000-01-01

    A pressure sensor has a high degree of accuracy over a wide range of pressures. Using a pressure sensor relying upon resonant oscillations to determine pressure, a driving circuit drives such a pressure sensor at resonance and tracks resonant frequency and amplitude shifts with changes in pressure. Pressure changes affect the Q-factor of the resonating portion of the pressure sensor. Such Q-factor changes are detected by the driving/sensing circuit which in turn tracks the changes in resonant frequency to maintain the pressure sensor at resonance. Changes in the Q-factor are reflected in changes of amplitude of the resonating pressure sensor. In response, upon sensing the changes in the amplitude, the driving circuit changes the force or strength of the electrostatic driving signal to maintain the resonator at constant amplitude. The amplitude of the driving signals become a direct measure of the changes in pressure as the operating characteristics of the resonator give rise to a linear response curve for the amplitude of the driving signal. Pressure change resolution is on the order of 10(exp -6) torr over a range spanning from 7,600 torr to 10(exp -6) torr. No temperature compensation for the pressure sensor of the present invention is foreseen. Power requirements for the pressure sensor are generally minimal due to the low-loss mechanical design of the resonating pressure sensor and the simple control electronics.

  14. High-resolution dynamic downscaling of CMIP5 output over the Tropical Andes

    Science.gov (United States)

    Reichler, Thomas; Andrade, Marcos; Ohara, Noriaki

    2015-04-01

    Our project is targeted towards making robust predictions of future changes in climate over the tropical part of the South American Andes. This goal is challenging, since tropical lowlands, steep mountains, and snow covered subarctic surfaces meet over relatively short distances, leading to distinct climate regimes within the same domain and pronounced spatial gradients in virtually every climate quantity. We use an innovative approach to solve this problem, including several quadruple nested versions of WRF, a systematic validation strategy to find the version of WRF that best fits our study region, spatial resolutions at the kilometer scale, 20-year-long simulation periods, and bias-corrected output from various CMIP5 simulations that also include the multi-model mean of all CMIP5 models. We show that the simulated changes in climate are consistent with the results from the global climate models and also consistent with two different versions of WRF. We also discuss the expected changes in snow and ice, derived from off-line coupling the regional simulations to a carefully calibrated snow and ice model.

  15. Dynamic electrostatic force microscopy technique for the study of electrical properties with improved spatial resolution

    International Nuclear Information System (INIS)

    Maragliano, C; Heskes, D; Stefancich, M; Chiesa, M; Souier, T

    2013-01-01

    The need to resolve the electrical properties of confined structures (CNTs, quantum dots, nanorods, etc) is becoming increasingly important in the field of electronic and optoelectronic devices. Here we propose an approach based on amplitude modulated electrostatic force microscopy to obtain measurements at small tip–sample distances, where highly nonlinear forces are present. We discuss how this improves the lateral resolution of the technique and allows probing of the electrical and surface properties. The complete force field at different tip biases is employed to derive the local work function difference. Then, by appropriately biasing the tip–sample system, short-range forces are reconstructed. The short-range component is then separated from the generic tip–sample force in order to recover the pure electrostatic contribution. This data can be employed to derive the tip–sample capacitance curve and the sample dielectric constant. After presenting a theoretical model that justifies the need for probing the electrical properties of the sample in the vicinity of the surface, the methodology is presented in detail and verified experimentally. (paper)

  16. DYNAMIC SOFTWARE TESTING MODELS WITH PROBABILISTIC PARAMETERS FOR FAULT DETECTION AND ERLANG DISTRIBUTION FOR FAULT RESOLUTION DURATION

    Directory of Open Access Journals (Sweden)

    A. D. Khomonenko

    2016-07-01

    Full Text Available Subject of Research.Software reliability and test planning models are studied taking into account the probabilistic nature of error detection and discovering. Modeling of software testing enables to plan the resources and final quality at early stages of project execution. Methods. Two dynamic models of processes (strategies are suggested for software testing, using error detection probability for each software module. The Erlang distribution is used for arbitrary distribution approximation of fault resolution duration. The exponential distribution is used for approximation of fault resolution discovering. For each strategy, modified labeled graphs are built, along with differential equation systems and their numerical solutions. The latter makes it possible to compute probabilistic characteristics of the test processes and states: probability states, distribution functions for fault detection and elimination, mathematical expectations of random variables, amount of detected or fixed errors. Evaluation of Results. Probabilistic characteristics for software development projects were calculated using suggested models. The strategies have been compared by their quality indexes. Required debugging time to achieve the specified quality goals was calculated. The calculation results are used for time and resources planning for new projects. Practical Relevance. The proposed models give the possibility to use the reliability estimates for each individual module. The Erlang approximation removes restrictions on the use of arbitrary time distribution for fault resolution duration. It improves the accuracy of software test process modeling and helps to take into account the viability (power of the tests. With the use of these models we can search for ways to improve software reliability by generating tests which detect errors with the highest probability.

  17. Using High-Resolution Data to Assess Land Use Impact on Nitrate Dynamics in East African Tropical Montane Catchments

    Science.gov (United States)

    Jacobs, Suzanne R.; Weeser, Björn; Guzha, Alphonce C.; Rufino, Mariana C.; Butterbach-Bahl, Klaus; Windhorst, David; Breuer, Lutz

    2018-03-01

    Land use change alters nitrate (NO3-N) dynamics in stream water by changing nitrogen cycling, nutrient inputs, uptake and hydrological flow paths. There is little empirical evidence of these processes for East Africa. We collected a unique 2 year high-resolution data set to assess the effects of land use (i.e., natural forest, smallholder agriculture and commercial tea plantations) on NO3-N dynamics in three subcatchments within a headwater catchment in the Mau Forest Complex, Kenya's largest tropical montane forest. The natural forest subcatchment had the lowest NO3-N concentrations (0.44 ± 0.043 mg N L-1) with no seasonal variation. NO3-N concentrations in the smallholder agriculture (1.09 ± 0.11 mg N L-1) and tea plantation (2.13 ± 0.19 mg N L-1) subcatchments closely followed discharge patterns, indicating mobilization of NO3-N during the rainy seasons. Hysteresis patterns of rainfall events indicate a shift from subsurface flow in the natural forest to surface runoff in agricultural subcatchments. Distinct peaks in NO3-N concentrations were observed during rainfall events after a longer dry period in the forest and tea subcatchments. The high-resolution data set enabled us to identify differences in NO3-N transport of catchments under different land use, such as enhanced NO3-N inputs to the stream during the rainy season and higher annual export in agricultural subcatchments (4.9 ± 0.3 to 12.0 ± 0.8 kg N ha-1 yr-1) than in natural forest (2.6 ± 0.2 kg N ha-1 yr-1). This emphasizes the usefulness of our monitoring approach to improve the understanding of land use effects on riverine N exports in tropical landscapes, but also the need to apply such methods in other regions.

  18. Solid-State NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization

    International Nuclear Information System (INIS)

    Takahashi, Hiroki; Bardet, Michel; De Paepe, Gael; Hediger, Sabine; Ayala, Isabel; Simorre, Jean-Pierre

    2013-01-01

    Dynamic nuclear polarization (DNP) enhanced solid-state nuclear magnetic resonance (NMR) has recently emerged as a powerful technique for the study of material surfaces. In this study, we demonstrate its potential to investigate cell surface in intact cells. Using Bacillus subtilis bacterial cells as an example, it is shown that the polarizing agent 1-(TEMPO-4-oxy)-3-(TEMPO-4-amino)propan-2-ol (TOTAPOL) has a strong binding affinity to cell wall polymers (peptidoglycan). This particular interaction is thoroughly investigated with a systematic study on extracted cell wall materials, disrupted cells, and entire cells, which proved that TOTAPOL is mainly accumulating in the cell wall. This property is used on one hand to selectively enhance or suppress cell wall signals by controlling radical concentrations and on the other hand to improve spectral resolution by means of a difference spectrum. Comparing DNP-enhanced and conventional solid-state NMR, an absolute sensitivity ratio of 24 was obtained on the entire cell sample. This important increase in sensitivity together with the possibility of enhancing specifically cell wall signals and improving resolution really opens new avenues for the use of DNP-enhanced solid-state NMR as an on-cell investigation tool. (authors)

  19. Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization.

    Science.gov (United States)

    Takahashi, Hiroki; Ayala, Isabel; Bardet, Michel; De Paëpe, Gaël; Simorre, Jean-Pierre; Hediger, Sabine

    2013-04-03

    Dynamic nuclear polarization (DNP) enhanced solid-state nuclear magnetic resonance (NMR) has recently emerged as a powerful technique for the study of material surfaces. In this study, we demonstrate its potential to investigate cell surface in intact cells. Using Bacillus subtilis bacterial cells as an example, it is shown that the polarizing agent 1-(TEMPO-4-oxy)-3-(TEMPO-4-amino)propan-2-ol (TOTAPOL) has a strong binding affinity to cell wall polymers (peptidoglycan). This particular interaction is thoroughly investigated with a systematic study on extracted cell wall materials, disrupted cells, and entire cells, which proved that TOTAPOL is mainly accumulating in the cell wall. This property is used on one hand to selectively enhance or suppress cell wall signals by controlling radical concentrations and on the other hand to improve spectral resolution by means of a difference spectrum. Comparing DNP-enhanced and conventional solid-state NMR, an absolute sensitivity ratio of 24 was obtained on the entire cell sample. This important increase in sensitivity together with the possibility of enhancing specifically cell wall signals and improving resolution really opens new avenues for the use of DNP-enhanced solid-state NMR as an on-cell investigation tool.

  20. Toolbox for Urban Mobility Simulation: High Resolution Population Dynamics for Global Cities

    Science.gov (United States)

    Bhaduri, B. L.; Lu, W.; Liu, C.; Thakur, G.; Karthik, R.

    2015-12-01

    In this rapidly urbanizing world, unprecedented rate of population growth is not only mirrored by increasing demand for energy, food, water, and other natural resources, but has detrimental impacts on environmental and human security. Transportation simulations are frequently used for mobility assessment in urban planning, traffic operation, and emergency management. Previous research, involving purely analytical techniques to simulations capturing behavior, has investigated questions and scenarios regarding the relationships among energy, emissions, air quality, and transportation. Primary limitations of past attempts have been availability of input data, useful "energy and behavior focused" models, validation data, and adequate computational capability that allows adequate understanding of the interdependencies of our transportation system. With increasing availability and quality of traditional and crowdsourced data, we have utilized the OpenStreetMap roads network, and has integrated high resolution population data with traffic simulation to create a Toolbox for Urban Mobility Simulations (TUMS) at global scale. TUMS consists of three major components: data processing, traffic simulation models, and Internet-based visualizations. It integrates OpenStreetMap, LandScanTM population, and other open data (Census Transportation Planning Products, National household Travel Survey, etc.) to generate both normal traffic operation and emergency evacuation scenarios. TUMS integrates TRANSIMS and MITSIM as traffic simulation engines, which are open-source and widely-accepted for scalable traffic simulations. Consistent data and simulation platform allows quick adaption to various geographic areas that has been demonstrated for multiple cities across the world. We are combining the strengths of geospatial data sciences, high performance simulations, transportation planning, and emissions, vehicle and energy technology development to design and develop a simulation

  1. Numerical modeling of permafrost dynamics in Alaska using a high spatial resolution dataset

    Directory of Open Access Journals (Sweden)

    E. E. Jafarov

    2012-06-01

    Full Text Available Climate projections for the 21st century indicate that there could be a pronounced warming and permafrost degradation in the Arctic and sub-Arctic regions. Climate warming is likely to cause permafrost thawing with subsequent effects on surface albedo, hydrology, soil organic matter storage and greenhouse gas emissions.

    To assess possible changes in the permafrost thermal state and active layer thickness, we implemented the GIPL2-MPI transient numerical model for the entire Alaska permafrost domain. The model input parameters are spatial datasets of mean monthly air temperature and precipitation, prescribed thermal properties of the multilayered soil column, and water content that are specific for each soil class and geographical location. As a climate forcing, we used the composite of five IPCC Global Circulation Models that has been downscaled to 2 by 2 km spatial resolution by Scenarios Network for Alaska Planning (SNAP group.

    In this paper, we present the modeling results based on input of a five-model composite with A1B carbon emission scenario. The model has been calibrated according to the annual borehole temperature measurements for the State of Alaska. We also performed more detailed calibration for fifteen shallow borehole stations where high quality data are available on daily basis. To validate the model performance, we compared simulated active layer thicknesses with observed data from Circumpolar Active Layer Monitoring (CALM stations. The calibrated model was used to address possible ground temperature changes for the 21st century. The model simulation results show widespread permafrost degradation in Alaska could begin between 2040–2099 within the vast area southward from the Brooks Range, except for the high altitude regions of the Alaska Range and Wrangell Mountains.

  2. Measurement of dynamic urethral pressures with a high-resolution manometry system in continent and incontinent women.

    Science.gov (United States)

    Kirby, Anna C; Tan-Kim, Jasmine; Nager, Charles W

    2015-01-01

    Female stress urinary incontinence is caused by urethral dysfunction during dynamic conditions, but current technology has limitations in measuring urethral pressures under these conditions. An 8-French high-resolution manometry (HRM) catheter currently in clinical use in gastroenterology may accurately measure urethral pressures under dynamic conditions because it has a 25-millisecond response rate and circumferential pressure sensors along the length of the catheter (ManoScan ESO; Given Imaging, Yoqneam, Israel). We evaluated the concordance, repeatability, and tolerability of this catheter. We measured resting, cough, and strain maximum urethral closure pressures (MUCPs) using HRM and measured resting MUCPs with water-perfusion side-hole catheter urethral pressure profilometry (UPP) in 37 continent and 28 stress-incontinent subjects. Maneuvers were repeated after moving the HRM catheter along the urethral length to evaluate whether results depend on catheter positioning. Visual analog pain scores evaluated the comfort of HRM compared to UPP. The correlation coefficient for resting MUCPs measured by HRM versus UPP was high (r = 0.79, P rest, cough, and strain with HRM: r = 0.92, 0.89, and 0.89. Mean MUCPs (rest, cough, and strain) were higher in continent than in incontinent subjects (all P continent subjects during cough and strain maneuvers compared to rest. This preliminary study shows that HRM is concordant with standard technology, repeatable, and well tolerated in the urethra. Incontinent women have more impairment of their urethral closure pressures during cough and strain than continent women.

  3. Analysis of stationary fuel cell dynamic ramping capabilities and ultra capacitor energy storage using high resolution demand data

    Science.gov (United States)

    Meacham, James R.; Jabbari, Faryar; Brouwer, Jacob; Mauzey, Josh L.; Samuelsen, G. Scott

    Current high temperature fuel cell (HTFC) systems used for stationary power applications (in the 200-300 kW size range) have very limited dynamic load following capability or are simply base load devices. Considering the economics of existing electric utility rate structures, there is little incentive to increase HTFC ramping capability beyond 1 kWs -1 (0.4% s -1). However, in order to ease concerns about grid instabilities from utility companies and increase market adoption, HTFC systems will have to increase their ramping abilities, and will likely have to incorporate electrical energy storage (EES). Because batteries have low power densities and limited lifetimes in highly cyclic applications, ultra capacitors may be the EES medium of choice. The current analyses show that, because ultra capacitors have a very low energy storage density, their integration with HTFC systems may not be feasible unless the fuel cell has a ramp rate approaching 10 kWs -1 (4% s -1) when using a worst-case design analysis. This requirement for fast dynamic load response characteristics can be reduced to 1 kWs -1 by utilizing high resolution demand data to properly size ultra capacitor systems and through demand management techniques that reduce load volatility.

  4. Improved accuracy of quantitative parameter estimates in dynamic contrast-enhanced CT study with low temporal resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Mo, E-mail: Sunmo.Kim@rmp.uhn.on.ca [Radiation Medicine Program, Princess Margaret Hospital/University Health Network, Toronto, Ontario M5G 2M9 (Canada); Haider, Masoom A. [Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada and Department of Medical Imaging, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Jaffray, David A. [Radiation Medicine Program, Princess Margaret Hospital/University Health Network, Toronto, Ontario M5G 2M9, Canada and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Yeung, Ivan W. T. [Radiation Medicine Program, Princess Margaret Hospital/University Health Network, Toronto, Ontario M5G 2M9 (Canada); Department of Medical Physics, Stronach Regional Cancer Centre, Southlake Regional Health Centre, Newmarket, Ontario L3Y 2P9 (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9 (Canada)

    2016-01-15

    Purpose: A previously proposed method to reduce radiation dose to patient in dynamic contrast-enhanced (DCE) CT is enhanced by principal component analysis (PCA) filtering which improves the signal-to-noise ratio (SNR) of time-concentration curves in the DCE-CT study. The efficacy of the combined method to maintain the accuracy of kinetic parameter estimates at low temporal resolution is investigated with pixel-by-pixel kinetic analysis of DCE-CT data. Methods: The method is based on DCE-CT scanning performed with low temporal resolution to reduce the radiation dose to the patient. The arterial input function (AIF) with high temporal resolution can be generated with a coarsely sampled AIF through a previously published method of AIF estimation. To increase the SNR of time-concentration curves (tissue curves), first, a region-of-interest is segmented into squares composed of 3 × 3 pixels in size. Subsequently, the PCA filtering combined with a fraction of residual information criterion is applied to all the segmented squares for further improvement of their SNRs. The proposed method was applied to each DCE-CT data set of a cohort of 14 patients at varying levels of down-sampling. The kinetic analyses using the modified Tofts’ model and singular value decomposition method, then, were carried out for each of the down-sampling schemes between the intervals from 2 to 15 s. The results were compared with analyses done with the measured data in high temporal resolution (i.e., original scanning frequency) as the reference. Results: The patients’ AIFs were estimated to high accuracy based on the 11 orthonormal bases of arterial impulse responses established in the previous paper. In addition, noise in the images was effectively reduced by using five principal components of the tissue curves for filtering. Kinetic analyses using the proposed method showed superior results compared to those with down-sampling alone; they were able to maintain the accuracy in the

  5. Investigating Forest Harvest Effects on DOC Concentration and Quality: An In Situ, High Resolution Approach to Quantifying DOC Export Dynamics

    Science.gov (United States)

    Jollymore, A. J.; Johnson, M. S.; Hawthorne, I.

    2013-12-01

    Justification: Forest harvest effects on water quality can signal alterations in hydrologic and ecologic processes incurred as a result of forest harvest activities. Organic matter (OM), specifically dissolved organic carbon (DOC), plays a number of important roles mediating UV-light penetration, redox reactivity and microbial activity within aquatic ecosystems. Quantification of DOC is typically pursued via grab sampling followed by chemical or spectrophotometric analysis, limiting the temporal resolution obtained as well as the accuracy of export calculations. The advent of field-deployable sensors capable of measuring DOC concentration and certain quality characteristics in situ provides the ability to observe dynamics at temporal scales necessary for accurate calculation of DOC flux, as well as the observation of dynamic changes in DOC quality on timescales impossible to observe through grab sampling. Methods: This study utilizes a field deployable UV-Vis spectrophotometer (spectro::lyzer, s::can, Austria) to investigate how forest harvest affects DOC export. The sensor was installed at an existing hydrologic monitoring site at the outlet of a headwater stream draining a small (91 hectare) second growth Douglasfir-dominated catchment near Campbell River on Vancouver Island, British Columbia. Measurement began late in 2009, prior to forest harvest and associated activities such as road building (which commenced in October 2010 and ended in early 2011), and continues to present. During this time - encompassing the pre, during and post-harvest conditions - the absorbance spectrum of stream water from 200 to 750 nm was measured. DOC concentration and spectroscopic indices related to DOC quality (including SUVA, which relates to the concentration of aromatic carbon, and spectral slope) were subsequently calculated for each spectra obtained at 30-minute intervals. Results and conclusions: High frequency measurements of DOC show that overall export of OM increased in

  6. Monitoring vegetation dynamics with medium resolution MODIS-EVI time series at sub-regional scale in southern Africa

    Science.gov (United States)

    Dubovyk, Olena; Landmann, Tobias; Erasmus, Barend F. N.; Tewes, Andreas; Schellberg, Jürgen

    2015-06-01

    Currently there is a lack of knowledge on spatio-temporal patterns of land surface dynamics at medium spatial scale in southern Africa, even though this information is essential for better understanding of ecosystem response to climatic variability and human-induced land transformations. In this study, we analysed vegetation dynamics across a large area in southern Africa using the 14-years (2000-2013) of medium spatial resolution (250 m) MODIS-EVI time-series data. Specifically, we investigated temporal changes in the time series of key phenometrics including overall greenness, peak and timing of annual greenness over the monitoring period and study region. In order to specifically capture spatial and per pixel vegetation changes over time, we calculated trends in these phenometrics using a robust trend analysis method. The results showed that interannual vegetation dynamics followed precipitation patterns with clearly differentiated seasonality. The earliest peak greenness during 2000-2013 occurred at the end of January in the year 2000 and the latest peak greenness was observed at the mid of March in 2012. Specifically spatial patterns of long-term vegetation trends allowed mapping areas of (i) decrease or increase in overall greenness, (ii) decrease or increase of peak greenness, and (iii) shifts in timing of occurrence of peak greenness over the 14-year monitoring period. The observed vegetation decline in the study area was mainly attributed to human-induced factors. The obtained information is useful to guide selection of field sites for detailed vegetation studies and land rehabilitation interventions and serve as an input for a range of land surface models.

  7. From Particles and Point Clouds to Voxel Models: High Resolution Modeling of Dynamic Landscapes in Open Source GIS

    Science.gov (United States)

    Mitasova, H.; Hardin, E. J.; Kratochvilova, A.; Landa, M.

    2012-12-01

    Multitemporal data acquired by modern mapping technologies provide unique insights into processes driving land surface dynamics. These high resolution data also offer an opportunity to improve the theoretical foundations and accuracy of process-based simulations of evolving landforms. We discuss development of new generation of visualization and analytics tools for GRASS GIS designed for 3D multitemporal data from repeated lidar surveys and from landscape process simulations. We focus on data and simulation methods that are based on point sampling of continuous fields and lead to representation of evolving surfaces as series of raster map layers or voxel models. For multitemporal lidar data we present workflows that combine open source point cloud processing tools with GRASS GIS and custom python scripts to model and analyze dynamics of coastal topography (Figure 1) and we outline development of coastal analysis toolbox. The simulations focus on particle sampling method for solving continuity equations and its application for geospatial modeling of landscape processes. In addition to water and sediment transport models, already implemented in GIS, the new capabilities under development combine OpenFOAM for wind shear stress simulation with a new module for aeolian sand transport and dune evolution simulations. Comparison of observed dynamics with the results of simulations is supported by a new, integrated 2D and 3D visualization interface that provides highly interactive and intuitive access to the redesigned and enhanced visualization tools. Several case studies will be used to illustrate the presented methods and tools and demonstrate the power of workflows built with FOSS and highlight their interoperability.Figure 1. Isosurfaces representing evolution of shoreline and a z=4.5m contour between the years 1997-2011at Cape Hatteras, NC extracted from a voxel model derived from series of lidar-based DEMs.

  8. A regional-scale, high resolution dynamical malaria model that accounts for population density, climate and surface hydrology.

    Science.gov (United States)

    Tompkins, Adrian M; Ermert, Volker

    2013-02-18

    The relative roles of climate variability and population related effects in malaria transmission could be better understood if regional-scale dynamical malaria models could account for these factors. A new dynamical community malaria model is introduced that accounts for the temperature and rainfall influences on the parasite and vector life cycles which are finely resolved in order to correctly represent the delay between the rains and the malaria season. The rainfall drives a simple but physically based representation of the surface hydrology. The model accounts for the population density in the calculation of daily biting rates. Model simulations of entomological inoculation rate and circumsporozoite protein rate compare well to data from field studies from a wide range of locations in West Africa that encompass both seasonal endemic and epidemic fringe areas. A focus on Bobo-Dioulasso shows the ability of the model to represent the differences in transmission rates between rural and peri-urban areas in addition to the seasonality of malaria. Fine spatial resolution regional integrations for Eastern Africa reproduce the malaria atlas project (MAP) spatial distribution of the parasite ratio, and integrations for West and Eastern Africa show that the model grossly reproduces the reduction in parasite ratio as a function of population density observed in a large number of field surveys, although it underestimates malaria prevalence at high densities probably due to the neglect of population migration. A new dynamical community malaria model is publicly available that accounts for climate and population density to simulate malaria transmission on a regional scale. The model structure facilitates future development to incorporate migration, immunity and interventions.

  9. Temporal dynamics of selective attention and conflict resolution during cross-dimensional go-nogo decisions

    Directory of Open Access Journals (Sweden)

    Moschner Carsten

    2007-08-01

    Full Text Available Abstract Background Decision-making is a fundamental capacity which is crucial to many higher-order psychological functions. We recorded event-related potentials (ERPs during a visual target-identification task that required go-nogo choices. Targets were identified on the basis of cross-dimensional conjunctions of particular colors and forms. Color discriminability was manipulated in three conditions to determine the effects of color distinctiveness on component processes of decision-making. Results Target identification was accompanied by the emergence of prefrontal P2a and P3b. Selection negativity (SN revealed that target-compatible features captured attention more than target-incompatible features, suggesting that intra-dimensional attentional capture was goal-contingent. No changes of cross-dimensional selection priorities were measurable when color discriminability was altered. Peak latencies of the color-related SN provided a chronometric measure of the duration of attention-related neural processing. ERPs recorded over the frontocentral scalp (N2c, P3a revealed that color-overlap distractors, more than form-overlap distractors, required additional late selection. The need for additional response selection induced by color-overlap distractors was severely reduced when color discriminability decreased. Conclusion We propose a simple model of cross-dimensional perceptual decision-making. The temporal synchrony of separate color-related and form-related choices determines whether or not distractor processing includes post-perceptual stages. ERP measures contribute to a comprehensive explanation of the temporal dynamics of component processes of perceptual decision-making.

  10. All-in-one light-tunable borated phosphors with chemical and luminescence dynamical control resolution.

    Science.gov (United States)

    Lin, Chun Che; Liu, Yun-Ping; Xiao, Zhi Ren; Wang, Yin-Kuo; Cheng, Bing-Ming; Liu, Ru-Shi

    2014-06-25

    Single-composition white-emitting phosphors with superior intrinsic properties upon excitation by ultraviolet light-emitting diodes are important constituents of next-generation light sources. Borate-based phosphors, such as NaSrBO3:Ce(3+) and NaCaBO3:Ce(3+), have stronger absorptions in the near-ultraviolet region as well as better chemical/physical stability than oxides. Energy transfer effects from sensitizer to activator caused by rare-earth ions are mainly found in the obtained photoluminescence spectra and lifetime. The interactive mechanisms of multiple dopants are ambiguous in most cases. We adjust the doping concentration in NaSrBO3:RE (RE = Ce(3+), Tb(3+), Mn(2+)) to study the energy transfer effects of Ce(3+) to Tb(3+) and Mn(2+) by comparing the experimental data and theoretical calculation. The vacuum-ultraviolet experimental determination of the electronic energy levels for Ce(3+) and Tb(3+) in the borate host regarding the 4f-5d and 4f-4f configurations are described. Evaluation of the Ce(3+)/Mn(2+) intensity ratios as a function of Mn(2+) concentration is based on the analysis of the luminescence dynamical process and fluorescence lifetime measurements. The results closely agree with those directly obtained from the emission spectra. Density functional calculations are performed using the generalized gradient approximation plus an on-site Coulombic interaction correction scheme to investigate the forbidden mechanism of interatomic energy transfer between the NaSrBO3:Ce(3+) and NaSrBO3:Eu(2+) systems. Results indicate that the NaSrBO3:Ce(3+), Tb(3+), and Mn(2+) phosphors can be used as a novel white-emitting component of UV radiation-excited devices.

  11. Headwater sediment dynamics in a debris flow catchment constrained by high-resolution topographic surveys

    Science.gov (United States)

    Loye, Alexandre; Jaboyedoff, Michel; Theule, Joshua Isaac; Liébault, Frédéric

    2016-06-01

    Debris flows have been recognized to be linked to the amounts of material temporarily stored in torrent channels. Hence, sediment supply and storage changes from low-order channels of the Manival catchment, a small tributary valley with an active torrent system located exclusively in sedimentary rocks of the Chartreuse Massif (French Alps), were surveyed periodically for 16 months using terrestrial laser scanning (TLS) to study the coupling between sediment dynamics and torrent responses in terms of debris flow events, which occurred twice during the monitoring period. Sediment transfer in the main torrent was monitored with cross-section surveys. Sediment budgets were generated seasonally using sequential TLS data differencing and morphological extrapolations. Debris production depends strongly on rockfall occurring during the winter-early spring season, following a power law distribution for volumes of rockfall events above 0.1 m3, while hillslope sediment reworking dominates debris recharge in spring and autumn, which shows effective hillslope-channel coupling. The occurrence of both debris flow events that occurred during the monitoring was linked to recharge from previous debris pulses coming from the hillside and from bedload transfer. Headwater debris sources display an ambiguous behaviour in sediment transfer: low geomorphic activity occurred in the production zone, despite rainstorms inducing debris flows in the torrent; still, a general reactivation of sediment transport in headwater channels was observed in autumn without new debris supply, suggesting that the stored debris was not exhausted. The seasonal cycle of sediment yield seems to depend not only on debris supply and runoff (flow capacity) but also on geomorphic conditions that destabilize remnant debris stocks. This study shows that monitoring the changes within a torrent's in-channel storage and its debris supply can improve knowledge on recharge thresholds leading to debris flow.

  12. New GOES High-Resolution Magnetic Measurements and their Contribution to Understanding Magnetospheric Particle Dynamics

    Science.gov (United States)

    Redmon, R. J.; Loto'aniu, P. T. M.; Boudouridis, A.; Chi, P. J.; Singer, H. J.; Kress, B. T.; Rodriguez, J. V.; Abdelqader, A.; Tilton, M.

    2017-12-01

    studies, we find that the wave amplitude of poloidal oscillations is amplified at low altitudes but attenuated on the ground, confirming the theoretical predictions of wave propagation from the magnetosphere to the ground. We include examples of GOES-16 particle flux and magnetic field observations illustrating complex particle dynamics.

  13. Catalytic cracking models developed for predictive control purposes

    Directory of Open Access Journals (Sweden)

    Dag Ljungqvist

    1993-04-01

    Full Text Available The paper deals with state-space modeling issues in the context of model-predictive control, with application to catalytic cracking. Emphasis is placed on model establishment, verification and online adjustment. Both the Fluid Catalytic Cracking (FCC and the Residual Catalytic Cracking (RCC units are discussed. Catalytic cracking units involve complex interactive processes which are difficult to operate and control in an economically optimal way. The strong nonlinearities of the FCC process mean that the control calculation should be based on a nonlinear model with the relevant constraints included. However, the model can be simple compared to the complexity of the catalytic cracking plant. Model validity is ensured by a robust online model adjustment strategy. Model-predictive control schemes based on linear convolution models have been successfully applied to the supervisory dynamic control of catalytic cracking units, and the control can be further improved by the SSPC scheme.

  14. Single-molecule resolution of protein dynamics on polymeric membrane surfaces: the roles of spatial and population heterogeneity.

    Science.gov (United States)

    Langdon, Blake B; Mirhossaini, Roya B; Mabry, Joshua N; Sriram, Indira; Lajmi, Ajay; Zhang, Yanxia; Rojas, Orlando J; Schwartz, Daniel K

    2015-02-18

    Although polymeric membranes are widely used in the purification of protein pharmaceuticals, interactions between biomolecules and membrane surfaces can lead to reduced membrane performance and damage to the product. In this study, single-molecule fluorescence microscopy provided direct observation of bovine serum albumin (BSA) and human monoclonal antibody (IgG) dynamics at the interface between aqueous buffer and polymeric membrane materials including regenerated cellulose and unmodified poly(ether sulfone) (PES) blended with either polyvinylpyrrolidone (PVP), polyvinyl acetate-co-polyvinylpyrrolidone (PVAc-PVP), or polyethylene glycol methacrylate (PEGM) before casting. These polymer surfaces were compared with model surfaces composed of hydrophilic bare fused silica and hydrophobic trimethylsilane-coated fused silica. At extremely dilute protein concentrations (10(-3)-10(-7) mg/mL), protein surface exchange was highly dynamic with protein monomers desorbing from the surface within ∼1 s after adsorption. Protein oligomers (e.g., nonspecific dimers, trimers, or larger aggregates), although less common, remained on the surface for 5 times longer than monomers. Using newly developed super-resolution methods, we could localize adsorption sites with ∼50 nm resolution and quantify the spatial heterogeneity of the various surfaces. On a small anomalous subset of the adsorption sites, proteins adsorbed preferentially and tended to reside for significantly longer times (i.e., on "strong" sites). Proteins resided for shorter times overall on surfaces that were more homogeneous and exhibited fewer strong sites (e.g., PVAc-PVP/PES). We propose that strong surface sites may nucleate protein aggregation, initiated preferentially by protein oligomers, and accelerate ultrafiltration membrane fouling. At high protein concentrations (0.3-1.0 mg/mL), fewer strong adsorption sites were observed, and surface residence times were reduced. This suggests that at high concentrations

  15. Dynamic Contacts of U2, RES, Cwc25, Prp8 and Prp45 Proteins with the Pre-mRNA Branch-Site and 3' Splice Site during Catalytic Activation and Step 1 Catalysis in Yeast Spliceosomes.

    Directory of Open Access Journals (Sweden)

    Cornelius Schneider

    Full Text Available Little is known about contacts in the spliceosome between proteins and intron nucleotides surrounding the pre-mRNA branch-site and their dynamics during splicing. We investigated protein-pre-mRNA interactions by UV-induced crosslinking of purified yeast B(act spliceosomes formed on site-specifically labeled pre-mRNA, and analyzed their changes after conversion to catalytically-activated B* and step 1 C complexes, using a purified splicing system. Contacts between nucleotides upstream and downstream of the branch-site and the U2 SF3a/b proteins Prp9, Prp11, Hsh49, Cus1 and Hsh155 were detected, demonstrating that these interactions are evolutionarily conserved. The RES proteins Pml1 and Bud13 were shown to contact the intron downstream of the branch-site. A comparison of the B(act crosslinking pattern versus that of B* and C complexes revealed that U2 and RES protein interactions with the intron are dynamic. Upon step 1 catalysis, Cwc25 contacts with the branch-site region, and enhanced crosslinks of Prp8 and Prp45 with nucleotides surrounding the branch-site were observed. Cwc25's step 1 promoting activity was not dependent on its interaction with pre-mRNA, indicating it acts via protein-protein interactions. These studies provide important insights into the spliceosome's protein-pre-mRNA network and reveal novel RNP remodeling events during the catalytic activation of the spliceosome and step 1 of splicing.

  16. SHORT COMMUNICATION CATALYTIC KINETIC ...

    African Journals Online (AJOL)

    IV) catalyzes the discoloring reaction of DBS-arsenazo oxidized by potassium bromate, a new catalytic kinetic spectrophotometric method for the determination of trace titanium (IV) was developed. The linear range of the determination of ...

  17. Catalytic distillation process

    Science.gov (United States)

    Smith, L.A. Jr.

    1982-06-22

    A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  18. Catalytic distillation structure

    Science.gov (United States)

    Smith, L.A. Jr.

    1984-04-17

    Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

  19. Integrating real-time and manual monitored data to predict hillslope soil moisture dynamics with high spatio-temporal resolution using linear and non-linear models

    Science.gov (United States)

    Spatio-temporal variability of soil moisture (') is a challenge that remains to be better understood. A trade-off exists between spatial coverage and temporal resolution when using the manual and real-time ' monitoring methods. This restricted the comprehensive and intensive examination of ' dynamic...

  20. Dynamic inundation mapping of Hurricane Harvey flooding in the Houston metro area using hyper-resolution modeling and quantitative image reanalysis

    Science.gov (United States)

    Noh, S. J.; Lee, J. H.; Lee, S.; Zhang, Y.; Seo, D. J.

    2017-12-01

    Hurricane Harvey was one of the most extreme weather events in Texas history and left significant damages in the Houston and adjoining coastal areas. To understand better the relative impact to urban flooding of extreme amount and spatial extent of rainfall, unique geography, land use and storm surge, high-resolution water modeling is necessary such that natural and man-made components are fully resolved. In this presentation, we reconstruct spatiotemporal evolution of inundation during Hurricane Harvey using hyper-resolution modeling and quantitative image reanalysis. The two-dimensional urban flood model used is based on dynamic wave approximation and 10 m-resolution terrain data, and is forced by the radar-based multisensor quantitative precipitation estimates. The model domain includes Buffalo, Brays, Greens and White Oak Bayous in Houston. The model is simulated using hybrid parallel computing. To evaluate dynamic inundation mapping, we combine various qualitative crowdsourced images and video footages with LiDAR-based terrain data.

  1. The effect of acquisition interval and spatial resolution on dynamic cardiac imaging with a stationary SPECT camera

    International Nuclear Information System (INIS)

    Roberts, J; Maddula, R; Clackdoyle, R; DiBella, E; Fu, Z

    2007-01-01

    The current SPECT scanning paradigm that acquires images by slow rotation of multiple detectors in body-contoured orbits around the patient is not suited to the rapid collection of tomographically complete data. During rapid image acquisition, mechanical and patient safety constraints limit the detector orbit to circular paths at increased distances from the patient, resulting in decreased spatial resolution. We consider a novel dynamic rotating slant-hole (DyRoSH) SPECT camera that can collect full tomographic data every 2 s, employing three stationary detectors mounted with slant-hole collimators that rotate at 30 rpm. Because the detectors are stationary, they can be placed much closer to the patient than is possible with conventional SPECT systems. We propose that the decoupling of the detector position from the mechanics of rapid image acquisition offers an additional degree of freedom which can be used to improve accuracy in measured kinetic parameter estimates. With simulations and list-mode reconstructions, we consider the effects of different acquisition intervals on dynamic cardiac imaging, comparing a conventional three detector SPECT system with the proposed DyRoSH SPECT system. Kinetic parameters of a two-compartment model of myocardial perfusion for technetium-99m-teboroxime were estimated. When compared to a conventional SPECT scanner for the same acquisition periods, the proposed DyRoSH system shows equivalent or reduced bias or standard deviation values for the kinetic parameter estimates. The DyRoSH camera with a 2 s acquisition period does not show any improvement compared to a DyRoSH camera with a 10 s acquisition period

  2. The effect of acquisition interval and spatial resolution on dynamic cardiac imaging with a stationary SPECT camera

    Science.gov (United States)

    Roberts, J.; Maddula, R.; Clackdoyle, R.; Di Bella, E.; Fu, Z.

    2007-08-01

    The current SPECT scanning paradigm that acquires images by slow rotation of multiple detectors in body-contoured orbits around the patient is not suited to the rapid collection of tomographically complete data. During rapid image acquisition, mechanical and patient safety constraints limit the detector orbit to circular paths at increased distances from the patient, resulting in decreased spatial resolution. We consider a novel dynamic rotating slant-hole (DyRoSH) SPECT camera that can collect full tomographic data every 2 s, employing three stationary detectors mounted with slant-hole collimators that rotate at 30 rpm. Because the detectors are stationary, they can be placed much closer to the patient than is possible with conventional SPECT systems. We propose that the decoupling of the detector position from the mechanics of rapid image acquisition offers an additional degree of freedom which can be used to improve accuracy in measured kinetic parameter estimates. With simulations and list-mode reconstructions, we consider the effects of different acquisition intervals on dynamic cardiac imaging, comparing a conventional three detector SPECT system with the proposed DyRoSH SPECT system. Kinetic parameters of a two-compartment model of myocardial perfusion for technetium-99m-teboroxime were estimated. When compared to a conventional SPECT scanner for the same acquisition periods, the proposed DyRoSH system shows equivalent or reduced bias or standard deviation values for the kinetic parameter estimates. The DyRoSH camera with a 2 s acquisition period does not show any improvement compared to a DyRoSH camera with a 10 s acquisition period.

  3. Viral Transmission Dynamics at Single-Cell Resolution Reveal Transiently Immune Subpopulations Caused by a Carrier State Association.

    Directory of Open Access Journals (Sweden)

    William Cenens

    2015-12-01

    Full Text Available Monitoring the complex transmission dynamics of a bacterial virus (temperate phage P22 throughout a population of its host (Salmonella Typhimurium at single cell resolution revealed the unexpected existence of a transiently immune subpopulation of host cells that emerged from peculiarities preceding the process of lysogenization. More specifically, an infection event ultimately leading to a lysogen first yielded a phage carrier cell harboring a polarly tethered P22 episome. Upon subsequent division, the daughter cell inheriting this episome became lysogenized by an integration event yielding a prophage, while the other daughter cell became P22-free. However, since the phage carrier cell was shown to overproduce immunity factors that are cytoplasmically inherited by the P22-free daughter cell and further passed down to its siblings, a transiently resistant subpopulation was generated that upon dilution of these immunity factors again became susceptible to P22 infection. The iterative emergence and infection of transiently resistant subpopulations suggests a new bet-hedging strategy by which viruses could manage to sustain both vertical and horizontal transmission routes throughout an infected population without compromising a stable co-existence with their host.

  4. Greenhouse Gas Dynamics in a Salt-Wedge Estuary Revealed by High Resolution Cavity Ring-Down Spectroscopy Observations.

    Science.gov (United States)

    Tait, Douglas R; Maher, Damien T; Wong, WeiWen; Santos, Isaac R; Sadat-Noori, Mahmood; Holloway, Ceylena; Cook, Perran L M

    2017-12-05

    Estuaries are an important source of greenhouse gases to the atmosphere, but uncertainties remain in the flux rates and production pathways of greenhouse gases in these dynamic systems. This study performs simultaneous high resolution measurements of the three major greenhouse gases (carbon dioxide, methane, and nitrous oxide) as well as carbon stable isotope ratios of carbon dioxide and methane, above and below the pycnocline along a salt wedge estuary (Yarra River estuary, Australia). We identified distinct zones of elevated greenhouse gas concentrations. At the tip of salt wedge, average CO 2 and N 2 O concentrations were approximately five and three times higher than in the saline mouth of the estuary. In anaerobic bottom waters, the natural tracer radon ( 222 Rn) revealed that porewater exchange was the likely source of the highest methane concentrations (up to 1302 nM). Isotopic analysis of CH 4 showed a dominance of acetoclastic production in fresh surface waters and hydrogenotrophic production occurring in the saline bottom waters. The atmospheric flux of methane (in CO 2 equivalent units) was a major (35-53%) contributor of atmospheric radiative forcing from the estuary, while N 2 O contributed <2%. We hypothesize that the release of bottom water gases when stratification episodically breaks down will release large pulses of greenhouse gases to the atmosphere.

  5. Path integral molecular dynamics within the grand canonical-like adaptive resolution technique: Simulation of liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Animesh, E-mail: animesh@zedat.fu-berlin.de; Delle Site, Luigi, E-mail: dellesite@fu-berlin.de [Institute for Mathematics, Freie Universität Berlin, Berlin (Germany)

    2015-09-07

    Quantum effects due to the spatial delocalization of light atoms are treated in molecular simulation via the path integral technique. Among several methods, Path Integral (PI) Molecular Dynamics (MD) is nowadays a powerful tool to investigate properties induced by spatial delocalization of atoms; however, computationally this technique is very demanding. The above mentioned limitation implies the restriction of PIMD applications to relatively small systems and short time scales. One of the possible solutions to overcome size and time limitation is to introduce PIMD algorithms into the Adaptive Resolution Simulation Scheme (AdResS). AdResS requires a relatively small region treated at path integral level and embeds it into a large molecular reservoir consisting of generic spherical coarse grained molecules. It was previously shown that the realization of the idea above, at a simple level, produced reasonable results for toy systems or simple/test systems like liquid parahydrogen. Encouraged by previous results, in this paper, we show the simulation of liquid water at room conditions where AdResS, in its latest and more accurate Grand-Canonical-like version (GC-AdResS), is merged with two of the most relevant PIMD techniques available in the literature. The comparison of our results with those reported in the literature and/or with those obtained from full PIMD simulations shows a highly satisfactory agreement.

  6. Kinetic and dynamic kinetic resolution of secondary alcohols with ionic-surfactant-coated Burkholderia cepacia lipase: substrate scope and enantioselectivity.

    Science.gov (United States)

    Kim, Cheolwoo; Lee, Jusuk; Cho, Jeonghun; Oh, Yeonock; Choi, Yoon Kyung; Choi, Eunjeong; Park, Jaiwook; Kim, Mahn-Joo

    2013-03-15

    Forty-four different secondary alcohols, which can be classified into several types (II-IX), were tested as the substrates of ionic surfactant-coated Burkholderia cepacia lipase (ISCBCL) to see its substrate scope and enantioselectivity in kinetic and dynamic kinetic resolution (KR and DKR). They include 6 boron-containing alcohols, 24 chiral propargyl alcohols, and 14 diarylmethanols. The results from the studies on KR indicate that ISCBCL accepted most of them with high enantioselectivity at ambient temperature and with useful to high enantioselectivity at elevated temperatures. In particular, ISCBCL displayed high enantioselectivity toward sterically demanding secondary alcohols (types VIII and IX) which have two bulky substituents at the hydroxymethine center. DKR reactions were performed by the combination of ISCBCL with a ruthenium-based racemization catalyst at 25-60 °C. Forty-one secondary alcohols were tested for DKR. About half of them were transformed into their acetates of high enantiopurity (>90% ee) with good yields (>80%). It is concluded that ISCBCL appears to be a superb enzyme for the KR and DKR of secondary alcohols.

  7. Characterising Dynamic Instability in High Water-Cut Oil-Water Flows Using High-Resolution Microwave Sensor Signals

    Science.gov (United States)

    Liu, Weixin; Jin, Ningde; Han, Yunfeng; Ma, Jing

    2018-06-01

    In the present study, multi-scale entropy algorithm was used to characterise the complex flow phenomena of turbulent droplets in high water-cut oil-water two-phase flow. First, we compared multi-scale weighted permutation entropy (MWPE), multi-scale approximate entropy (MAE), multi-scale sample entropy (MSE) and multi-scale complexity measure (MCM) for typical nonlinear systems. The results show that MWPE presents satisfied variability with scale and anti-noise ability. Accordingly, we conducted an experiment of vertical upward oil-water two-phase flow with high water-cut and collected the signals of a high-resolution microwave resonant sensor, based on which two indexes, the entropy rate and mean value of MWPE, were extracted. Besides, the effects of total flow rate and water-cut on these two indexes were analysed. Our researches show that MWPE is an effective method to uncover the dynamic instability of oil-water two-phase flow with high water-cut.

  8. Resolution-of-identity stochastic time-dependent configuration interaction for dissipative electron dynamics in strong fields.

    Science.gov (United States)

    Klinkusch, Stefan; Tremblay, Jean Christophe

    2016-05-14

    In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.

  9. Resolution-of-identity stochastic time-dependent configuration interaction for dissipative electron dynamics in strong fields

    Energy Technology Data Exchange (ETDEWEB)

    Klinkusch, Stefan; Tremblay, Jean Christophe [Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin (Germany)

    2016-05-14

    In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.

  10. Spatial-Temporal Dynamics of High-Resolution Animal Networks: What Can We Learn from Domestic Animals?

    Directory of Open Access Journals (Sweden)

    Shi Chen

    Full Text Available Animal social network is the key to understand many ecological and epidemiological processes. We used real-time location system (RTLS to accurately track cattle position, analyze their proximity networks, and tested the hypothesis of temporal stationarity and spatial homogeneity in these networks during different daily time periods and in different areas of the pen. The network structure was analyzed using global network characteristics (network density, subgroup clustering (modularity, triadic property (transitivity, and dyadic interactions (correlation coefficient from a quadratic assignment procedure at hourly level. We demonstrated substantial spatial-temporal heterogeneity in these networks and potential link between indirect animal-environment contact and direct animal-animal contact. But such heterogeneity diminished if data were collected at lower spatial (aggregated at entire pen level or temporal (aggregated at daily level resolution. The network structure (described by the characteristics such as density, modularity, transitivity, etc. also changed substantially at different time and locations. There were certain time (feeding and location (hay that the proximity network structures were more consistent based on the dyadic interaction analysis. These results reveal new insights for animal network structure and spatial-temporal dynamics, provide more accurate descriptions of animal social networks, and allow more accurate modeling of multiple (both direct and indirect disease transmission pathways.

  11. Highly Dense Isolated Metal Atom Catalytic Sites

    DEFF Research Database (Denmark)

    Chen, Yaxin; Kasama, Takeshi; Huang, Zhiwei

    2015-01-01

    -ray diffraction. A combination of electron microscopy images with X-ray absorption spectra demonstrated that the silver atoms were anchored on five-fold oxygen-terminated cavities on the surface of the support to form highly dense isolated metal active sites, leading to excellent reactivity in catalytic oxidation......Atomically dispersed noble-metal catalysts with highly dense active sites are promising materials with which to maximise metal efficiency and to enhance catalytic performance; however, their fabrication remains challenging because metal atoms are prone to sintering, especially at a high metal...... loading. A dynamic process of formation of isolated metal atom catalytic sites on the surface of the support, which was achieved starting from silver nanoparticles by using a thermal surface-mediated diffusion method, was observed directly by using in situ electron microscopy and in situ synchrotron X...

  12. Development of High-Resolution Dynamic Dust Source Function - A Case Study with a Strong Dust Storm in a Regional Model

    Science.gov (United States)

    Kim, Dongchul; Chin, Mian; Kemp, Eric M.; Tao, Zhining; Peters-Lidard, Christa D.; Ginoux, Paul

    2017-01-01

    A high-resolution dynamic dust source has been developed in the NASA Unified-Weather Research and Forecasting (NU-WRF) model to improve the existing coarse static dust source. In the new dust source map, topographic depression is in 1-km resolution and surface bareness is derived using the Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS). The new dust source better resolves the complex topographic distribution over the Western United States where its magnitude is higher than the existing, coarser resolution static source. A case study is conducted with an extreme dust storm that occurred in Phoenix, Arizona in 0203 UTC July 6, 2011. The NU-WRF model with the new high-resolution dynamic dust source is able to successfully capture the dust storm, which was not achieved with the old source identification. However the case study also reveals several challenges in reproducing the time evolution of the short-lived, extreme dust storm events.

  13. Development of High-Resolution Dynamic Dust Source Function -A Case Study with a Strong Dust Storm in a Regional Model.

    Science.gov (United States)

    Kim, Dongchul; Chin, Mian; Kemp, Eric M; Tao, Zhining; Peters-Lidard, Christa D; Ginoux, Paul

    2017-06-01

    A high-resolution dynamic dust source has been developed in the NASA Unified-Weather Research and Forecasting (NU-WRF) model to improve the existing coarse static dust source. In the new dust source map, topographic depression is in 1-km resolution and surface bareness is derived using the Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS). The new dust source better resolves the complex topographic distribution over the Western United States where its magnitude is higher than the existing, coarser resolution static source. A case study is conducted with an extreme dust storm that occurred in Phoenix, Arizona in 02-03 UTC July 6, 2011. The NU-WRF model with the new high-resolution dynamic dust source is able to successfully capture the dust storm, which was not achieved with the old source identification. However the case study also reveals several challenges in reproducing the time evolution of the short-lived, extreme dust storm events.

  14. Catalytic nanoporous membranes

    Science.gov (United States)

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  15. Calculating the Na⁺ translocating V-ATPase catalytic site affinity for substrate binding by homology modeled NtpA monomer using molecular dynamics/free energy calculation.

    Science.gov (United States)

    Muhammed, Zahed; Arai, Satoshi; Saijo, Shinya; Yamato, Ichiro; Murata, Takeshi; Suenaga, Atsushi

    2012-07-01

    Vacuolar ATPase (V-ATPase) of Enterococcus hirae is composed of a soluble catalytic domain (V₁; NtpA₃-B₃-D-G) and an integral membrane domain (V₀; NtpI-K₁₀) connected by a central and two peripheral stalks (NtpC, NtpD-G and NtpE-F). Recently nucleotide binding of catalytic NtpA monomer has been reported (Arai et al.). In the present study, we calculated the nucleotide binding affinity of NtpA by molecular dynamics (MD) simulation/free energy calculation using MM-GBSA approach based on homology modeled structure of NtpA monomer docked with ATP analogue, adenosine 5'-[β, γ-imido] triphosphate (AMP-PNP). The calculated binding free energies showed qualitatively good agreement with experimental data. The calculation was cross-validated further by the rigorous method, thermodynamic integration (TI) simulation. Finally, the interaction between NtpA and nucleotides at the atomic level was investigated by the analyses of components of free energy and the optimized model structures obtained from MD simulations, suggesting that electrostatic contribution is responsible for the difference in nucleotide binding to NtpA monomer. This is the first observation and suggestion to explain the difference of nucleotide binding properties in V-ATPase NtpA subunit, and our method can be a valuable primary step to predict nucleotide binding affinity to other subunits (NtpAB, NtpA₃B₃) and to explore subunit interactions and eventually may help to understand energy transduction mechanism of E. hirae V-ATPase. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Enhancement of catalytic efficiency of enzymes through exposure to anhydrous organic solvent at 70 degrees C. Three-dimensional structure of a treated serine proteinase at 2.2 A resolution.

    Science.gov (United States)

    Gupta, M N; Tyagi, R; Sharma, S; Karthikeyan, S; Singh, T P

    2000-05-15

    The enzyme behavior in anhydrous media has important applications in biotechnology. So far chemical modifications and protein engineering have been used to alter the catalytic power of the enzymes. For the first time, it is demonstrated that an exposure of enzyme to anhydrous organic solvents at optimized high temperature enhances its catalytic power through local changes at the binding region. Six enzymes: proteinase K, wheat germ acid phosphatase, alpha-amylase, beta-glucosidase, chymotrypsin and trypsin have been exposed to acetonitrile at 70 degrees C for three hours. The activities of these enzymes were found to be considerably enhanced. In order to understand the basis of this change in the activity of these enzymes, the structure of one of these treated enzymes, proteinase K has been analyzed in detail using X-ray diffraction method. The overall structure of the enzyme is similar to the native structure in aqueous environment. The hydrogen bonding system of the catalytic triad is intact after the treatment. However, the water structure in the substrate binding site undergoes some rearrangement as some of the water molecules are either displaced or completely absent. The most striking observation concerning the water structure pertains to the complete deletion of the water molecule which occupied the position at the so-called oxyanion hole in the active site of the native enzyme. Three acetonitrile molecules were found in the present structure. All the acetonitrile molecules are located in the recognition site. The sites occupied by acetonitrile molecules are independent of water molecules. The acetonitrile molecules are involved in extensive interactions with the protein atoms. All of them are interlinked through water molecules. The methyl group of one of the acetonitrile molecules (CCN1) interacts simultaneously with the hydrophobic side chains of Leu-96, Ile-107, and Leu-133. The development of such a hydrophobic environment at the recognition site

  17. Static and Dynamic Reservoir Characterization Using High Resolution P-Wave Velocity Data in Delhi Field, la

    Science.gov (United States)

    Hussain, S.; Davis, T.

    2012-12-01

    Static and dynamic reservoir characterization was done on high resolution P-wave seismic data in Delhi Field, LA to study the complex stratigraphy of the Holt-Bryant sands and to delineate the CO2 flow path. The field is undergoing CO2 injection for enhanced oil recovery. The seismic data was bandwidth extended by Geotrace to decrease the tuning thickness effect. Once the authenticity of the added frequencies in the data was determined, the interpretation helped map thin Tuscaloosa and Paluxy sands. Cross-equalization was done on the baseline and monitor surveys to remove the non-repeatable noise in the data. Acoustic impedance (AI) inversion was done on the baseline and monitor surveys to map the changes in AI with CO2 injection in the field. Figure 1 shows the AI percentage change at Base Paluxy. The analysis helped identify areas that were not being swept by CO2. Figure 2 shows the CO2 flow paths in Tuscaloosa formation. The percentage change of AI with CO2 injection and pressure increase corresponded with the fluid substitution modeling results. Time-lapse interpretation helped in delineating the channels, high permeability zones and the bypassed zones in the reservoir.; Figure 1: P-impedance percentage difference map with a 2 ms window centered at the base of Paluxy with the production data from June 2010 overlain; the black dashed line is the oil-water contact; notice the negative impedance change below the OWC. The lighter yellow color shows area where Paluxy is not being swept completely. ; Figure 2: P-impedance percentage difference map at TUSC 7 top; the white triangles are TUSC 7 injectors and the white circles are TUSC 7 producers; the black polygons show the flow paths of CO2.

  18. High-resolution dynamical downscaling of re-analysis data over the Kerguelen Islands using the WRF model

    Science.gov (United States)

    Fonseca, Ricardo; Martín-Torres, Javier

    2018-03-01

    We have used the Weather Research and Forecasting (WRF) model to simulate the climate of the Kerguelen Islands (49° S, 69° E) and investigate its inter-annual variability. Here, we have dynamically downscaled 30 years of the Climate Forecast System Reanalysis (CFSR) over these islands at 3-km horizontal resolution. The model output is found to agree well with the station and radiosonde data at the Port-aux-Français station, the only location in the islands for which observational data is available. An analysis of the seasonal mean WRF data showed a general increase in precipitation and decrease in temperature with elevation. The largest seasonal rainfall amounts occur at the highest elevations of the Cook Ice Cap in winter where the summer mean temperature is around 0 °C. Five modes of variability are considered: conventional and Modoki El Niño-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), Subtropical IOD (SIOD) and Southern Annular Mode (SAM). It is concluded that a key mechanism by which these modes impact the local climate is through interaction with the diurnal cycle in particular in the summer season when it has a larger magnitude. One of the most affected regions is the area just to the east of the Cook Ice Cap extending into the lower elevations between the Gallieni and Courbet Peninsulas. The WRF simulation shows that despite the small annual variability, the atmospheric flow in the Kerguelen Islands is rather complex which may also be the case for the other islands located in the Southern Hemisphere at similar latitudes.

  19. Steam reformer with catalytic combustor

    Science.gov (United States)

    Voecks, Gerald E. (Inventor)

    1990-01-01

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  20. Carcinoma of the uterine cervix. High-resolution turbo spin-echo MR imaging with contrast-enhanced dynamic scanning and T2-weighting

    International Nuclear Information System (INIS)

    Abe, Y.; Yamashita, Y.; Namimoto, T.; Takahashi, M.; Katabuchi, H.; Tanaka, N.; Okamura, H.

    1998-01-01

    Purpose: To compare high-resolution contrast-enhanced (Gd-DTPA) dynamic MR imaging with T2-weighted turbo spin-echo (TSE) imaging in the evaluation of uterine cervical carcinoma. Material and Methods: Thirty-two patients with cervical carcinoma underwent MR imaging on a 1.5 T superconductive unit to have the extension of the disease assessed before treatment. A phased-array coil was used in all patients. In 25 patients, surgical confirmation of the diagnosis was obtained after imaging. Radiation therapy was selected for the remaining 7 patients with advanced carcinoma. Qualitative and quantitative image analyses were also performed. Results: The cervical carcinomas showed maximum contrast in the cervical stroma and myometrium in the early dynamic phase. The tumor/cervical-stroma contrast in the early dynamic phase obtained with the T1-weighted TSE technique (contrast-to-noise ratio 22.6) was significantly higher than that obtained in T2-weighted TSE imaging (contrast-to-noise ratio 4.3). In the evaluation of parametrial invasion, the accuracy of T2-weighted imaging was 71.8% and contrast-enhanced dynamic imaging 81.2%. Conclusion: High-resolution contrast-enhanced (Gd-DTPA) dynamic MR imaging in cervical cancer offers improved tumor/cervical-stroma contrast and provides useful information on parametrial invasion. (orig.)

  1. Catalytic pyrolysis of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Vail' eva, N A; Buyanov, R A

    1979-01-01

    Catalytic pyrolysis of petroleum fractions (undecane) was performed with the object of clarifying such questions as the mechanism of action of the catalyst, the concepts of activity and selectivity of the catalyst, the role of transport processes, the temperature ranges and limitations of the catalytic process, the effect of the catalyst on secondary processes, and others. Catalysts such as quartz, MgO, Al/sub 2/O/sub 3/, were used. Analysis of the experimental findings and the fact that the distribution of products is independent of the nature of the surface, demonstrate that the pyrolysis of hydrocarbons in the presence of catalysts is based on the heterogeneous-homogeneous radical-chain mechanism of action, and that the role of the catalysts reduces to increasing the concentration of free radicals. The concept of selectivity cannot be applied to catalysts here, since they do not affect the mechanism of the unfolding of the process of pyrolysis and their role consists solely in initiating the process. In catalytic pyrolysis the concepts of kinetic and diffusive domains of unfolding of the catalytic reaction do not apply, and only the outer surface of the catalyst is engaged, whereas the inner surface merely promotes deletorious secondary processes reducing the selectivity of the process and the activity of the catalyst. 6 references, 2 figures.

  2. Catalytic Conversion of Biofuels

    DEFF Research Database (Denmark)

    Jørgensen, Betina

    This thesis describes the catalytic conversion of bioethanol into higher value chemicals. The motivation has been the unavoidable coming depletion of the fossil resources. The thesis is focused on two ways of utilising ethanol; the steam reforming of ethanol to form hydrogen and the partial oxida...

  3. CATALYTIC KINETIC SPECTROPHOTOMETRIC DETERMINATION ...

    African Journals Online (AJOL)

    Preferred Customer

    acetylchlorophosphonazo(CPApA) by hydrogen peroxide in 0.10 M phosphoric acid. A novel catalytic kinetic-spectrophotometric method is proposed for the determination of copper based on this principle. Copper(II) can be determined spectrophotometrically ...

  4. Catalytic methanol dissociation

    International Nuclear Information System (INIS)

    Alcinikov, Y.; Fainberg, V.; Garbar, A.; Gutman, M.; Hetsroni, G.; Shindler, Y.; Tatrtakovsky, L.; Zvirin, Y.

    1998-01-01

    Results of the methanol dissociation study on copper/potassium catalyst with alumina support at various temperatures are presented. The following gaseous and liquid products at. The catalytic methanol dissociation is obtained: hydrogen, carbon monoxide, carbon dioxide, methane, and dimethyl ether. Formation rates of these products are discussed. Activation energies of corresponding reactions are calculated

  5. Impact of respiratory motion correction and spatial resolution on lesion detection in PET: a simulation study based on real MR dynamic data

    Science.gov (United States)

    Polycarpou, Irene; Tsoumpas, Charalampos; King, Andrew P.; Marsden, Paul K.

    2014-02-01

    The aim of this study is to investigate the impact of respiratory motion correction and spatial resolution on lesion detectability in PET as a function of lesion size and tracer uptake. Real respiratory signals describing different breathing types are combined with a motion model formed from real dynamic MR data to simulate multiple dynamic PET datasets acquired from a continuously moving subject. Lung and liver lesions were simulated with diameters ranging from 6 to 12 mm and lesion to background ratio ranging from 3:1 to 6:1. Projection data for 6 and 3 mm PET scanner resolution were generated using analytic simulations and reconstructed without and with motion correction. Motion correction was achieved using motion compensated image reconstruction. The detectability performance was quantified by a receiver operating characteristic (ROC) analysis obtained using a channelized Hotelling observer and the area under the ROC curve (AUC) was calculated as the figure of merit. The results indicate that respiratory motion limits the detectability of lung and liver lesions, depending on the variation of the breathing cycle length and amplitude. Patients with large quiescent periods had a greater AUC than patients with regular breathing cycles and patients with long-term variability in respiratory cycle or higher motion amplitude. In addition, small (less than 10 mm diameter) or low contrast (3:1) lesions showed the greatest improvement in AUC as a result of applying motion correction. In particular, after applying motion correction the AUC is improved by up to 42% with current PET resolution (i.e. 6 mm) and up to 51% for higher PET resolution (i.e. 3 mm). Finally, the benefit of increasing the scanner resolution is small unless motion correction is applied. This investigation indicates high impact of respiratory motion correction on lesion detectability in PET and highlights the importance of motion correction in order to benefit from the increased resolution of future

  6. Impact of respiratory motion correction and spatial resolution on lesion detection in PET: a simulation study based on real MR dynamic data

    International Nuclear Information System (INIS)

    Polycarpou, Irene; Tsoumpas, Charalampos; King, Andrew P; Marsden, Paul K

    2014-01-01

    The aim of this study is to investigate the impact of respiratory motion correction and spatial resolution on lesion detectability in PET as a function of lesion size and tracer uptake. Real respiratory signals describing different breathing types are combined with a motion model formed from real dynamic MR data to simulate multiple dynamic PET datasets acquired from a continuously moving subject. Lung and liver lesions were simulated with diameters ranging from 6 to 12 mm and lesion to background ratio ranging from 3:1 to 6:1. Projection data for 6 and 3 mm PET scanner resolution were generated using analytic simulations and reconstructed without and with motion correction. Motion correction was achieved using motion compensated image reconstruction. The detectability performance was quantified by a receiver operating characteristic (ROC) analysis obtained using a channelized Hotelling observer and the area under the ROC curve (AUC) was calculated as the figure of merit. The results indicate that respiratory motion limits the detectability of lung and liver lesions, depending on the variation of the breathing cycle length and amplitude. Patients with large quiescent periods had a greater AUC than patients with regular breathing cycles and patients with long-term variability in respiratory cycle or higher motion amplitude. In addition, small (less than 10 mm diameter) or low contrast (3:1) lesions showed the greatest improvement in AUC as a result of applying motion correction. In particular, after applying motion correction the AUC is improved by up to 42% with current PET resolution (i.e. 6 mm) and up to 51% for higher PET resolution (i.e. 3 mm). Finally, the benefit of increasing the scanner resolution is small unless motion correction is applied. This investigation indicates high impact of respiratory motion correction on lesion detectability in PET and highlights the importance of motion correction in order to benefit from the increased resolution of future

  7. High-resolution He beam scattering as a tool for the investigation of the structural and dynamical properties of surface soliton dislocations

    International Nuclear Information System (INIS)

    El-Batanouny, M.; Martini, K.M.

    1986-01-01

    We discuss the applicability of high-resolution-He-beam/surface scattering to the investigation of the structural and dynamic properties of soliton-like surface misfit dislocations and associated phase transitions. We present evidence, based on recent He diffraction measurements, for the existence of double-sine-Gordon soliton-like dislocations on the reconstructed Au(111) surface. 18 refs., 3 figs., 1 tab

  8. Studies of Catalytic Model Systems

    DEFF Research Database (Denmark)

    Holse, Christian

    The overall topic of this thesis is within the field of catalysis, were model systems of different complexity have been studied utilizing a multipurpose Ultra High Vacuum chamber (UHV). The thesis falls in two different parts. First a simple model system in the form of a ruthenium single crystal...... of the Cu/ZnO nanoparticles is highly relevant to industrial methanol synthesis for which the direct interaction of Cu and ZnO nanocrystals synergistically boost the catalytic activity. The dynamical behavior of the nanoparticles under reducing and oxidizing environments were studied by means of ex situ X......-ray Photoelectron Electron Spectroscopy (XPS) and in situ Transmission Electron Microscopy (TEM). The surface composition of the nanoparticles changes reversibly as the nanoparticles exposed to cycles of high-pressure oxidation and reduction (200 mbar). Furthermore, the presence of metallic Zn is observed by XPS...

  9. Environment-Dependent Surface Dynamics of Supported Gold Nanoparticles Studied by High-Resolution Transmission Electron Microscopy

    DEFF Research Database (Denmark)

    Liu, Pei

    there is a variety of configurations which can be considered as local minima in potential energies in configurational space. The relations between particles and substrate have been studied. Particle motion on the substrates are in three manners, such as rigid sliding, movement via mass transport and rigid rotation...... is mainly on the (111) facet. In the last part of the thesis, the reversibility and local strain field variation of the twinning-detwinning processes suggest twins play an important role in the catalytic reaction....

  10. Vegetation and Carbon Cycle Dynamics in the High-Resolution Transient Holocene Simulations Using the MPI Earth System Model

    Science.gov (United States)

    Brovkin, V.; Lorenz, S.; Raddatz, T.; Claussen, M.; Dallmeyer, A.

    2017-12-01

    One of the interesting periods to investigate a climatic role of terrestrial biosphere is the Holocene, when, despite of the relatively steady global climate, the atmospheric CO2 grew by about 20 ppm from 7 kyr BP to pre-industrial. We use a new setup of the Max Planck Institute Earth System Model MPI-ESM1 consisting of the latest version of the atmospheric model ECHAM6, including the land surface model JSBACH3 with carbon cycle and vegetation dynamics, coupled to the ocean circulation model MPI-OM, which includes the HAMOCC model of ocean biogeochemistry. The model has been run for several simulations over the Holocene period of the last 8000 years under the forcing data sets of orbital insolation, atmospheric greenhouse gases, volcanic aerosols, solar irradiance and stratospheric ozone, as well as land-use changes. In response to this forcing, the land carbon storage increased by about 60 PgC between 8 and 4 kyr BP, stayed relatively constant until 2 kyr BP, and decreased by about 90 PgC by 1850 AD due to land use changes. At 8 kyr BP, vegetation cover was much denser in Africa, mainly due to increased rainfall in response to the orbital forcing. Boreal forests moved northward in both, North America and Eurasia. The boreal forest expansion in North America is much less pronounced than in Eurasia. Simulated physical ocean fields, including surface temperatures and meridional overturning, do not change substantially in the Holocene. Carbonate ion concentration in deep ocean decreases in both, prescribed and interactive CO2simulations. Comparison with available proxies for terrestrial vegetation and for the ocean carbonate chemistry will be presented. Vegetation and soil carbon changes significantly affected atmospheric CO2 during the periods of strong volcanic eruptions. In response to the eruption-caused cooling, the land initially stores more carbon as respiration decreases, but then it releases even more carbon die to productivity decrease. This decadal

  11. An investigation into the effects of temporal resolution on hepatic dynamic contrast-enhanced MRI in volunteers and in patients with hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Gill, Andrew B; Graves, Martin J; Lomas, David J; Black, Richard T; Bowden, David J; Priest, Andrew N

    2014-01-01

    This study investigated the effect of temporal resolution on the dual-input pharmacokinetic (PK) modelling of dynamic contrast-enhanced MRI (DCE-MRI) data from normal volunteer livers and from patients with hepatocellular carcinoma. Eleven volunteers and five patients were examined at 3 T. Two sections, one optimized for the vascular input functions (VIF) and one for the tissue, were imaged within a single heart-beat (HB) using a saturation-recovery fast gradient echo sequence. The data was analysed using a dual-input single-compartment PK model. The VIFs and/or uptake curves were then temporally sub-sampled (at interval ▵t = [2–20] s) before being subject to the same PK analysis. Statistical comparisons of tumour and normal tissue PK parameter values using a 5% significance level gave rise to the same study results when temporally sub-sampling the VIFs to HB < ▵t <4 s. However, sub-sampling to ▵t > 4 s did adversely affect the statistical comparisons. Temporal sub-sampling of just the liver/tumour tissue uptake curves at ▵t ≤ 20 s, whilst using high temporal resolution VIFs, did not substantially affect PK parameter statistical comparisons. In conclusion, there is no practical advantage to be gained from acquiring very high temporal resolution hepatic DCE-MRI data. Instead the high temporal resolution could be usefully traded for increased spatial resolution or SNR. (paper)

  12. High resolution propagation-based imaging system for in vivo dynamic computed tomography of lungs in small animals

    Science.gov (United States)

    Preissner, M.; Murrie, R. P.; Pinar, I.; Werdiger, F.; Carnibella, R. P.; Zosky, G. R.; Fouras, A.; Dubsky, S.

    2018-04-01

    We have developed an x-ray imaging system for in vivo four-dimensional computed tomography (4DCT) of small animals for pre-clinical lung investigations. Our customized laboratory facility is capable of high resolution in vivo imaging at high frame rates. Characterization using phantoms demonstrate a spatial resolution of slightly below 50 μm at imaging rates of 30 Hz, and the ability to quantify material density differences of at least 3%. We benchmark our system against existing small animal pre-clinical CT scanners using a quality factor that combines spatial resolution, image noise, dose and scan time. In vivo 4DCT images obtained on our system demonstrate resolution of important features such as blood vessels and small airways, of which the smallest discernible were measured as 55–60 μm in cross section. Quantitative analysis of the images demonstrate regional differences in ventilation between injured and healthy lungs.

  13. Extended-range high-resolution dynamical downscaling over a continental-scale spatial domain with atmospheric and surface nudging

    Science.gov (United States)

    Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.

    2014-12-01

    Extended-range high-resolution mesoscale simulations with limited-area atmospheric models when applied to downscale regional analysis fields over large spatial domains can provide valuable information for many applications including the weather-dependent renewable energy industry. Long-term simulations over a continental-scale spatial domain, however, require mechanisms to control the large-scale deviations in the high-resolution simulated fields from the coarse-resolution driving fields. As enforcement of the lateral boundary conditions is insufficient to restrict such deviations, large scales in the simulated high-resolution meteorological fields are therefore spectrally nudged toward the driving fields. Different spectral nudging approaches, including the appropriate nudging length scales as well as the vertical profiles and temporal relaxations for nudging, have been investigated to propose an optimal nudging strategy. Impacts of time-varying nudging and generation of hourly analysis estimates are explored to circumvent problems arising from the coarse temporal resolution of the regional analysis fields. Although controlling the evolution of the atmospheric large scales generally improves the outputs of high-resolution mesoscale simulations within the surface layer, the prognostically evolving surface fields can nevertheless deviate from their expected values leading to significant inaccuracies in the predicted surface layer meteorology. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil moisture, and snow conditions, toward their expected values obtained from a high-resolution offline surface scheme is therefore proposed to limit any considerable deviation. Finally, wind speed and temperature at wind turbine hub height predicted by different spectrally nudged extended-range simulations are compared against observations to demonstrate possible improvements achievable using higher spatiotemporal

  14. Concentric catalytic combustor

    Science.gov (United States)

    Bruck, Gerald J [Oviedo, FL; Laster, Walter R [Oviedo, FL

    2009-03-24

    A catalytic combustor (28) includes a tubular pressure boundary element (90) having a longitudinal flow axis (e.g., 56) separating a first portion (94) of a first fluid flow (e.g., 24) from a second portion (95) of the first fluid flow. The pressure boundary element includes a wall (96) having a plurality of separate longitudinally oriented flow paths (98) annularly disposed within the wall and conducting respective portions (100, 101) of a second fluid flow (e.g., 26) therethrough. A catalytic material (32) is disposed on a surface (e.g., 102, 103) of the pressure boundary element exposed to at least one of the first and second portions of the first fluid flow.

  15. Orion EFT-1 Catalytic Tile Experiment Overview and Flight Measurements

    Science.gov (United States)

    Salazar, Giovanni; Amar, Adam; Hyatt, Andrew; Rezin, Marc D.

    2016-01-01

    This paper describes the design and results of a surface catalysis flight experiment flown on the Orion Multipurpose Crew Vehicle during Exploration Flight Test 1 (EFT1). Similar to previous Space Shuttle catalytic tile experiments, the present test consisted of a highly catalytic coating applied to an instrumented TPS tile. However, the present catalytic tile experiment contained significantly more instrumentation in order to better resolve the heating overshoot caused by the change in surface catalytic efficiency at the interface between two distinct materials. In addition to collecting data with unprecedented spatial resolution of the "overshoot" phenomenon, the experiment was also designed to prove if such a catalytic overshoot would be seen in turbulent flow in high enthalpy regimes. A detailed discussion of the results obtained during EFT1 is presented, as well as the challenges associated with data interpretation of this experiment. Results of material testing carried out in support of this flight experiment are also shown. Finally, an inverse heat conduction technique is employed to reconstruct the flight environments at locations upstream and along the catalytic coating. The data and analysis presented in this work will greatly contribute to our understanding of the catalytic "overshoot" phenomenon, and have a significant impact on the design of future spacecraft.

  16. High-resolution Mapping of Permafrost and Soil Freeze/thaw Dynamics in the Tibetan Plateau Based on Multi-sensor Satellite Observations

    Science.gov (United States)

    Zhang, W.; Yi, Y.; Yang, K.; Kimball, J. S.

    2016-12-01

    The Tibetan Plateau (TP) is underlain by the world's largest extent of alpine permafrost ( 2.5×106 km2), dominated by sporadic and discontinuous permafrost with strong sensitivity to climate warming. Detailed permafrost distributions and patterns in most of the TP region are still unknown due to extremely sparse in-situ observations in this region characterized by heterogeneous land cover and large temporal dynamics in surface soil moisture conditions. Therefore, satellite-based temperature and moisture observations are essential for high-resolution mapping of permafrost distribution and soil active layer changes in the TP region. In this study, we quantify the TP regional permafrost distribution at 1-km resolution using a detailed satellite data-driven soil thermal process model (GIPL2). The soil thermal model is calibrated and validated using in-situ soil temperature/moisture observations from the CAMP/Tibet field campaign (9 sites: 0-300 cm soil depth sampling from 1997-2007), a multi-scale soil moisture and temperature monitoring network in the central TP (CTP-SMTMN, 57 sites: 5-40 cm, 2010-2014) and across the whole plateau (China Meteorology Administration, 98 sites: 0-320 cm, 2000-2015). Our preliminary results using the CAMP/Tibet and CTP-SMTMN network observations indicate strong controls of surface thermal and soil moisture conditions on soil freeze/thaw dynamics, which vary greatly with underlying topography, soil texture and vegetation cover. For regional mapping of soil freeze/thaw and permafrost dynamics, we use the most recent soil moisture retrievals from the NASA SMAP (Soil Moisture Active Passive) sensor to account for the effects of temporal soil moisture dynamics on soil thermal heat transfer, with surface thermal conditions defined by MODIS (Moderate Resolution Imaging Spectroradiometer) land surface temperature records. Our study provides the first 1-km map of spatial patterns and recent changes of permafrost conditions in the TP.

  17. Catalytic exhaust control

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, H

    1973-09-01

    Recent achievements and problems in the development of exhaust control devices in the USA are reviewed. To meet the 1976 emission standards, catalytic systems for the oxidation of carbon monoxide and hydrocarbons and for the reduction of nitrogen oxides to nitrogen and water are needed. While oxidizing catalysts using platinum, palladium, copper, vanadium, and chromium appplied on alumina or ceramic materials are more or less effective in emission control, there are no catalytic devices for the reduction of nitrogen oxides with the required useful life of 25,000 to 50,000 miles as yet available. In the case of platinum catalysts on monolithic supports, the operating temperature of 650 to 750/sup 0/C as required for the oxidation process may cause inactivation of the catalysts and fusion of the support material. The oxidation of CO and hydrocarbons is inhibited by high concentrations of CO, nitric oxide, and hydrocarbons. The use of catalytic converters requires the use of lead-free or low-lead gasoline. The nitrogen oxides conversion efficiency is considerably influenced by the oxygen-to-CO ratio of the exhaust gas, which makes limitation of this ratio necessary.

  18. A dynamic model of interactions of Ca2+, calmodulin, and catalytic subunits of Ca2+/calmodulin-dependent protein kinase II.

    Directory of Open Access Journals (Sweden)

    Shirley Pepke

    2010-02-01

    Full Text Available During the acquisition of memories, influx of Ca2+ into the postsynaptic spine through the pores of activated N-methyl-D-aspartate-type glutamate receptors triggers processes that change the strength of excitatory synapses. The pattern of Ca2+influx during the first few seconds of activity is interpreted within the Ca2+-dependent signaling network such that synaptic strength is eventually either potentiated or depressed. Many of the critical signaling enzymes that control synaptic plasticity,including Ca2+/calmodulin-dependent protein kinase II (CaMKII, are regulated by calmodulin, a small protein that can bindup to 4 Ca2+ ions. As a first step toward clarifying how the Ca2+-signaling network decides between potentiation or depression, we have created a kinetic model of the interactions of Ca2+, calmodulin, and CaMKII that represents our best understanding of the dynamics of these interactions under conditions that resemble those in a postsynaptic spine. We constrained parameters of the model from data in the literature, or from our own measurements, and then predicted time courses of activation and autophosphorylation of CaMKII under a variety of conditions. Simulations showed that species of calmodulin with fewer than four bound Ca2+ play a significant role in activation of CaMKII in the physiological regime,supporting the notion that processing of Ca2+ signals in a spine involves competition among target enzymes for binding to unsaturated species of CaM in an environment in which the concentration of Ca2+ is fluctuating rapidly. Indeed, we showed that dependence of activation on the frequency of Ca2+ transients arises from the kinetics of interaction of fluctuating Ca2+with calmodulin/CaMKII complexes. We used parameter sensitivity analysis to identify which parameters will be most beneficial to measure more carefully to improve the accuracy of predictions. This model provides a quantitative base from which to build more complex dynamic

  19. 动力学视角下的冲突解决策略%A Dynamic Perspective on Conflict Resolution Strategies

    Institute of Scientific and Technical Information of China (English)

    李小平

    2013-01-01

      传统的冲突解决策略是基于问题解决模型,它着眼于各方的利益关系和沟通、控制等因素在解决冲突中的作用;动力学系统模型主要从推动冲突的吸引子出发,探讨冲突演化的过程。动力学的观点认为,冲突解决的关键在于改变系统内在的动力学性质,即引发和决定冲突演化趋向的吸引子,冲突的解决策略则主要从打破系统的封闭性、改变系统的反馈环路、恢复系统的多维性、创造和激活潜在的正性吸引子等方面入手。冲突解决的最终目的是使冲突各方形成新的心理和行为模式和不同于以往的心理和社会环境。%Traditional conflict resolution strategy is based on a problem-solving model which focuses on the role played by such factors in conflict resolution as the interest relations,communication and con-trol between different parties. Unlike the problem-solving model,the dynamic system model highlights the role played by the attractor which promotes the escalation of conflict,and explores the evolutionary process of a conflict. From the dynamic perspective,the key to conflict resolution consists in changing the inherent dynamical nature of a conflict system,which means changing the attractor that initiates and determines the evolution of a conflict in time. The dynamic conflict resolution strategies involve breaking up the closed system of a conflict,changing its feedback loops,restoring the multidimension-ality of its system and creating and activating the latent attractors. The ultimate aims of conflict resolu-tion are to form a new mental and behavior pattern along with a different psychological and social envi-ronment.

  20. Stepwise dissection and visualization of the catalytic mechanism of haloalkane dehalogenase LinB using molecular dynamics simulations and computer graphics.

    Science.gov (United States)

    Negri, Ana; Marco, Esther; Damborsky, Jiri; Gago, Federico

    2007-10-01

    The different steps of the dehalogenation reaction carried out by LinB on three different substrates have been characterized using a combination of quantum mechanical calculations and molecular dynamics simulations. This has allowed us to obtain information in atomic detail about each step of the reaction mechanism, that is, substrate entrance and achievement of the near-attack conformation, transition state stabilization within the active site, halide stabilization, water molecule activation and subsequent hydrolytic attack on the ester intermediate with formation of alcohol, and finally product release. Importantly, no bias or external forces were applied during the whole procedure so that both intermediates and products were completely free to sample configuration space in order to adapt to the plasticity of the active site and/or search for an exit. Differences in substrate reactivity were found to be correlated with the ease of adopting the near-attack conformation and two different exit pathways were found for product release that do not interfere with substrate entrance. Additional support for the different entry and exit pathways was independently obtained from an examination of the enzyme's normal modes.

  1. Fat suppression techniques for obtaining high resolution dynamic contrast enhanced bilateral breast MR images at 7 tesla

    DEFF Research Database (Denmark)

    van der Velden, Tijl A; Schmitz, Alexander M Th; Gilhuijs, Kenneth G A

    2016-01-01

    contained 3D T1-weighted gradient echo images obtained with both WSE fat suppression, multi echo Dixon fat suppression, and without fat suppression. Images were acquired at a (0.8mm)(3) or (0.7mm)(3) isotropic resolution with equal field of view and optimized such to obtain a maximal SNR. Image quality...... was scored qualitatively on overall image quality, sharpness of anatomical details, presence of artefacts, inhomogeneous fat suppression and the presence of water-fat shift. A quantitative scoring was obtained from the signal to noise ratio and contrast to noise ratio. RESULTS: WSE scored significantly...... better in terms of overall image quality and the absence of artefacts. No significant difference in contrast to noise ratio was found between the two fat suppression methods. CONCLUSION: When maximizing temporal and spatial resolution of high resolution DCE MRI of the breast, water selective excitation...

  2. Spatial dynamics of thermokarst and thermo-erosion at lakes and ponds in North Siberia and Northwest Alaska using high-resolution remote sensing

    Science.gov (United States)

    Grosse, G.; Tillapaugh, M.; Romanovsky, V. E.; Walter, K. M.; Plug, L. J.

    2008-12-01

    Formation, growth, and drainage of thermokarst lakes in ice-rich permafrost deposits are important factors of landscape dynamics in extent Arctic lowlands. Monitoring of spatial and temporal dynamics of such lakes will allow an assessment of permafrost stability and enhance the capabilities for modelling and quantifying biogeochemical processes related to permafrost degradation in a warming Arctic. In this study we use high-resolution remote sensing and GIS to analyze the development of thermokarst lakes and ponds in two study regions in North Siberia and Northwest Alaska. The sites are 1) the Cherskii region in the Kolyma lowland (Siberia) and 2) the Kitluk River area on the northern Seward Peninsula (Alaska). Both regions are characterized by continuous permafrost, a highly dissected and dynamic thermokarst landscape, uplands of Late Pleistocene permafrost deposits with high excess ice contents, and a large total volume of permafrost-stored carbon. These ice-rich Yedoma or Yedoma-like deposits are highly vulnerable to permafrost degradation forced by climate warming or other surface disturbance. Time series of high- resolution imagery (aerial, Corona, Ikonos, Alos Prism) covering more than 50 years of lake dynamics allow detailed assessments of processes and spatial patterns of thermokarst lake expansion and drainage in continuous permafrost. Time series of high-resolution imagery (aerial, Corona, Ikonos, Alos Prism) covering more than 50 years of lake dynamics allow detailed assessments of processes and spatial patterns of thermokarst lake expansion and drainage in continuous permafrost. Processes identified include thaw slumping, wave undercutting of frozen sediments or peat blocks and subsequent mass wasting, thaw collapse of near-shore zones, sinkhole formation and ice-wedge tunnelling, and gully formation by thermo-erosion. We use GIS-based tools to relate the remote sensing results to field data (ground ice content, topography, lithology, and relative age

  3. Impact of the dynamical core on the direct simulation of tropical cyclones in a high-resolution global model

    International Nuclear Information System (INIS)

    Reed, K. A.

    2015-01-01

    Our paper examines the impact of the dynamical core on the simulation of tropical cyclone (TC) frequency, distribution, and intensity. The dynamical core, the central fluid flow component of any general circulation model (GCM), is often overlooked in the analysis of a model's ability to simulate TCs compared to the impact of more commonly documented components (e.g., physical parameterizations). The Community Atmosphere Model version 5 is configured with multiple dynamics packages. This analysis demonstrates that the dynamical core has a significant impact on storm intensity and frequency, even in the presence of similar large-scale environments. In particular, the spectral element core produces stronger TCs and more hurricanes than the finite-volume core using very similar parameterization packages despite the latter having a slightly more favorable TC environment. Furthermore, these results suggest that more detailed investigations into the impact of the GCM dynamical core on TC climatology are needed to fully understand these uncertainties. Key Points The impact of the GCM dynamical core is often overlooked in TC assessments The CAM5 dynamical core has a significant impact on TC frequency and intensity A larger effort is needed to better understand this uncertainty

  4. Influence of the partial volume correction method on (18)F-fluorodeoxyglucose brain kinetic modelling from dynamic PET images reconstructed with resolution model based OSEM.

    Science.gov (United States)

    Bowen, Spencer L; Byars, Larry G; Michel, Christian J; Chonde, Daniel B; Catana, Ciprian

    2013-10-21

    Kinetic parameters estimated from dynamic (18)F-fluorodeoxyglucose ((18)F-FDG) PET acquisitions have been used frequently to assess brain function in humans. Neglecting partial volume correction (PVC) for a dynamic series has been shown to produce significant bias in model estimates. Accurate PVC requires a space-variant model describing the reconstructed image spatial point spread function (PSF) that accounts for resolution limitations, including non-uniformities across the field of view due to the parallax effect. For ordered subsets expectation maximization (OSEM), image resolution convergence is local and influenced significantly by the number of iterations, the count density, and background-to-target ratio. As both count density and background-to-target values for a brain structure can change during a dynamic scan, the local image resolution may also concurrently vary. When PVC is applied post-reconstruction the kinetic parameter estimates may be biased when neglecting the frame-dependent resolution. We explored the influence of the PVC method and implementation on kinetic parameters estimated by fitting (18)F-FDG dynamic data acquired on a dedicated brain PET scanner and reconstructed with and without PSF modelling in the OSEM algorithm. The performance of several PVC algorithms was quantified with a phantom experiment, an anthropomorphic Monte Carlo simulation, and a patient scan. Using the last frame reconstructed image only for regional spread function (RSF) generation, as opposed to computing RSFs for each frame independently, and applying perturbation geometric transfer matrix PVC with PSF based OSEM produced the lowest magnitude bias kinetic parameter estimates in most instances, although at the cost of increased noise compared to the PVC methods utilizing conventional OSEM. Use of the last frame RSFs for PVC with no PSF modelling in the OSEM algorithm produced the lowest bias in cerebral metabolic rate of glucose estimates, although by less than 5% in

  5. Catalytic biomass pyrolysis process

    Science.gov (United States)

    Dayton, David C.; Gupta, Raghubir P.; Turk, Brian S.; Kataria, Atish; Shen, Jian-Ping

    2018-04-17

    Described herein are processes for converting a biomass starting material (such as lignocellulosic materials) into a low oxygen containing, stable liquid intermediate that can be refined to make liquid hydrocarbon fuels. More specifically, the process can be a catalytic biomass pyrolysis process wherein an oxygen removing catalyst is employed in the reactor while the biomass is subjected to pyrolysis conditions. The stream exiting the pyrolysis reactor comprises bio-oil having a low oxygen content, and such stream may be subjected to further steps, such as separation and/or condensation to isolate the bio-oil.

  6. Catalytic reforming methods

    Science.gov (United States)

    Tadd, Andrew R; Schwank, Johannes

    2013-05-14

    A catalytic reforming method is disclosed herein. The method includes sequentially supplying a plurality of feedstocks of variable compositions to a reformer. The method further includes adding a respective predetermined co-reactant to each of the plurality of feedstocks to obtain a substantially constant output from the reformer for the plurality of feedstocks. The respective predetermined co-reactant is based on a C/H/O atomic composition for a respective one of the plurality of feedstocks and a predetermined C/H/O atomic composition for the substantially constant output.

  7. Combining multiple approaches and optimized data resolution for an improved understanding of stream temperature dynamics of a forested headwater basin in the Southern Appalachians

    Science.gov (United States)

    Belica, L.; Mitasova, H.; Caldwell, P.; McCarter, J. B.; Nelson, S. A. C.

    2017-12-01

    Thermal regimes of forested headwater streams continue to be an area of active research as climatic, hydrologic, and land cover changes can influence water temperature, a key aspect of aquatic ecosystems. Widespread monitoring of stream temperatures have provided an important data source, yielding insights on the temporal and spatial patterns and the underlying processes that influence stream temperature. However, small forested streams remain challenging to model due to the high spatial and temporal variability of stream temperatures and the climatic and hydrologic conditions that drive them. Technological advances and increased computational power continue to provide new tools and measurement methods and have allowed spatially explicit analyses of dynamic natural systems at greater temporal resolutions than previously possible. With the goal of understanding how current stream temperature patterns and processes may respond to changing landcover and hydroclimatoligical conditions, we combined high-resolution, spatially explicit geospatial modeling with deterministic heat flux modeling approaches using data sources that ranged from traditional hydrological and climatological measurements to emerging remote sensing techniques. Initial analyses of stream temperature monitoring data revealed that high temporal resolution (5 minutes) and measurement resolutions (guide field data collection for further heat flux modeling. By integrating multiple approaches and optimizing data resolution for the processes being investigated, small, but ecologically significant differences in stream thermal regimes were revealed. In this case, multi-approach research contributed to the identification of the dominant mechanisms driving stream temperature in the study area and advanced our understanding of the current thermal fluxes and how they may change as environmental conditions change in the future.

  8. Interfaces and strain in InGaAsP/InP heterostructures assessed with dynamical simulations of high-resolution x-ray diffraction curves

    International Nuclear Information System (INIS)

    Vandenberg, J.M.

    1995-01-01

    The interfacial structure of a lattice-matched InGaAs/InP/(100)InP superlattice with a long period of ∼630 Angstrom has been studied by fully dynamical simulations of high-resolution x-ray diffraction curves. This structure exhibits a very symmetrical x-ray pattern enveloping a large number of closely spaced satellite intensities with pronounced maxima and minima. It appears in the dynamical analysis that the position and shape of these maxima and minima is extremely sensitive to the number N of molecular layers and atomic spacing d of the InGaAs and InP layer and in particular the presence of strained interfacial layers. The structural model of strained interfaces was also applied to an epitaxial lattice-matched 700 Angstrom InP/400 Angstrom InGaAsP/(100)InP beterostructure. 9 refs., 3 figs

  9. Calibration of high-dynamic-range, finite-resolution x-ray pulse-height spectrometers for extracting electron energy distribution data from the PFRC-2 device

    Science.gov (United States)

    Swanson, C.; Jandovitz, P.; Cohen, S. A.

    2017-10-01

    Knowledge of the full x-ray energy distribution function (XEDF) emitted from a plasma over a large dynamic range of energies can yield valuable insights about the electron energy distribution function (EEDF) of that plasma and the dynamic processes that create them. X-ray pulse height detectors such as Amptek's X-123 Fast SDD with Silicon Nitride window can detect x-rays in the range of 200eV to 100s of keV. However, extracting EEDF from this measurement requires precise knowledge of the detector's response function. This response function, including the energy scale calibration, the window transmission function, and the resolution function, can be measured directly. We describe measurements of this function from x-rays from a mono-energetic electron beam in a purpose-built gas-target x-ray tube. Large-Z effects such as line radiation, nuclear charge screening, and polarizational Bremsstrahlung are discussed.

  10. Applying High Resolution Imagery to Understand the Role of Dynamics in the Diminishing Arctic Sea Ice Cover

    Science.gov (United States)

    2015-09-30

    describe contemporary ice pack thickness, MODIS , AVHRR, RadarSat-2 (satellite imagery) that describe ice pack deformation features on large scales, as well...high-resolution visible-band images of the Arctic ice pack that are available at the GFL, USGS. The statistics related to the available images are...University of Maryland team as a Faculty Research Assistant, working under the guidance of Co-PI Farrell. Ms. Faber is responsible for analysis of MODIS

  11. Quantifying Surface Water Dynamics at 30 Meter Spatial Resolution in the North American High Northern Latitudes 1991-2011

    Science.gov (United States)

    Carroll, Mark; Wooten, Margaret; DiMiceli, Charlene; Sohlberg, Robert; Kelly, Maureen

    2016-01-01

    The availability of a dense time series of satellite observations at moderate (30 m) spatial resolution is enabling unprecedented opportunities for understanding ecosystems around the world. A time series of data from Landsat was used to generate a series of three maps at decadal time step to show how surface water has changed from 1991 to 2011 in the high northern latitudes of North America. Previous attempts to characterize the change in surface water in this region have been limited in either spatial or temporal resolution, or both. This series of maps was generated for the NASA Arctic and Boreal Vulnerability Experiment (ABoVE), which began in fall 2015. These maps show a nominal extent of surface water by using multiple observations to make a single map for each time step. This increases the confidence that any detected changes are related to climate or ecosystem changes not simply caused by short duration weather events such as flood or drought. The methods and comparison to other contemporary maps of the region are presented here. Initial verification results indicate 96% producer accuracy and 54% user accuracy when compared to 2-m resolution World View-2 data. All water bodies that were omitted were one Landsat pixel or smaller, hence below detection limits of the instrument.

  12. Iron-coupled inactivation of phosphorus in sediments by macrozoobenthos (chironomid larvae) bioturbation: Evidences from high-resolution dynamic measurements

    International Nuclear Information System (INIS)

    Chen, Musong; Ding, Shiming; Liu, Ling; Xu, Di; Han, Chao; Zhang, Chaosheng

    2015-01-01

    The effects of chironomid larvae bioturbation on the lability of phosphorus (P) in sediments were investigated through sediment incubation for 140 days. High-resolution dialysis (HR-Peeper) and diffusive gradients in thin films (DGT) techniques were applied to obtain soluble and labile P/Fe profiles at a millimeter resolution, respectively. The larvae bioturbation decreased concentrations of soluble/labile P and Fe by up to over half of the control at the sediment depths of influence up to 70 and 90 mm respectively. These effects continued over 116 days and disappeared on the 140th days due to eclosion of chironomid larvae. Labile P was highly correlated with labile Fe, while a weak correlation was observed between soluble P and soluble Fe. It was concluded that Fe(II) oxidation and its enhanced adsorption were the major mechanisms responsible for the decreases of soluble and labile P. - Highlights: • High resolution techniques were employed to study bioturbation effects on P. • Larvae bioturbation decreased the concentrations of soluble/labile P and Fe. • Bioturbation effects continued over 116 days and disappeared on the 140th days. • Labile P was more sensitive than pore water SRP in response to bioturbation. • It proved the mechanism of Fe-coupled inactivation of P in bioturbation sediments. - Chironomid larvae bioturation decreased the lability of P in sediments from Fe(II) oxidation and enhanced adsorption of P

  13. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  14. Kinetic Parameters of Non-Isothermal Thermogravimetric Non-Catalytic and Catalytic Pyrolysis of Empty Fruit Bunch with Alumina by Kissinger and Ozawa Methods

    Science.gov (United States)

    Rahayu Mohamed, Alina; Li, Nurfahani; Sohaimi, Khairunissa Syairah Ahmad; Izzati Iberahim, Nur; Munirah Rohaizad, Nor; Hamzah, Rosniza

    2018-03-01

    The non-isothermal thermogravimetric non-catalytic and catalytic empty fruit bunch (EFB) pyrolysis with alumina were performed at different heating rates of 10, 15, 20, 25, 30 and 40 K/min under nitrogen atmosphere at a flow rate of 100 ml/min under dynamic conditions from 301 K to 1273 K. The activation energy were calculated based on Kissinger and Ozawa methods. Both reactions followed first order reactions. By Kissinger method, the activation energy and Ln A values for non-catalytic and catalytic EFB pyrolysis with alumina were 188.69 kJ mol-1 and 201.67 kJ/mol respectively. By Ozawa method, the activation energy values for non-catalytic and catalytic EFB pyrolysis with alumina were 189.13 kJ/mol and 201.44 kJ/mol respectively. The presence of catalyst increased the activation energy values for EFB pyrolysis as calculated by Kissinger and Ozawa methods.

  15. Direct current (DC) resistivity and Induced Polarization (IP) monitoring of active layer dynamics at high temporal resolution

    DEFF Research Database (Denmark)

    Doetsch, J.; Fiandaca, G.; Ingeman-Nielsen, Thomas

    2015-01-01

    With permafrost thawing and changes in active layer dynamics induced by climate change, interactions between biogeochemical and thermal processes in the ground are of great importance. Here, active layer dynamics have been monitored using direct current (DC) resistivity and induced polarization (IP...... the soil freezing as a strong increase in resistivity. While the freezing horizon generally moves deeper with time, some variations in the freezing depth are observed along the profile. Comparison with depth-specific soil temperature indicates an exponential relationship between resistivity and below...

  16. Direct current (DC) resistivity and induced polarization (IP) monitoring of active layer dynamics at high temporal resolution

    DEFF Research Database (Denmark)

    Doetsch, Joseph; Ingeman-Nielsen, Thomas; Christiansen, Anders V.

    2015-01-01

    With permafrost thawing and changes in active layer dynamics induced by climate change, interactions between biogeochemical and thermal processes in the ground are of great importance. Here, active layer dynamics have been monitored using direct current (DC) resistivity and induced polarization (IP...... in resistivity. While the freezing horizon generally moves deeper with time, some variations in the freezing depth are observed along the profile. Comparison with depth-specific soil temperature indicates an exponential relationship between resistivity and below-freezing temperature. Time-lapse inversions...

  17. Clinical application of bilateral high temporal and spatial resolution dynamic contrast-enhanced magnetic resonance imaging of the breast at 7 T

    Energy Technology Data Exchange (ETDEWEB)

    Pinker, K.; Baltzer, P.; Bernathova, M.; Weber, M.; Leithner, D.; Helbich, T.H. [Medical University Vienna, Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Waehringer Guertel 18-20, 1090, Vienna (Austria); Bogner, W.; Trattnig, S.; Gruber, S.; Zaric, O. [Medical University Vienna, Department of Biomedical Imaging and Image-guided Therapy, MR Centre of Excellence, Vienna (Austria); Abeyakoon, O. [King' s College, Department of Radiology, London (United Kingdom); Dubsky, P. [Medical University Vienna, Department of Surgery, Vienna (Austria); Bago-Horvath, Z. [Medical University Vienna, Department of Pathology, Vienna (Austria)

    2014-04-15

    The objective of our study was to evaluate the clinical application of bilateral high spatial and temporal resolution dynamic contrast-enhanced magnetic resonance imaging (HR DCE-MRI) of the breast at 7 T. Following institutional review board approval 23 patients with a breast lesion (BIRADS 0, 4-5) were included in our prospective study. All patients underwent bilateral HR DCE-MRI of the breast at 7 T (spatial resolution of 0.7 mm{sup 3} voxel size, temporal resolution of 14 s). Two experienced readers (r1, r2) and one less experienced reader (r3) independently assessed lesions according to BI-RADS registered. Image quality, lesion conspicuity and artefacts were graded from 1 to 5. Sensitivity, specificity and diagnostic accuracy were assessed using histopathology as the standard of reference. HR DCE-MRI at 7 T revealed 29 lesions in 23 patients (sensitivity 100 % (19/19); specificity of 90 % (9/10)) resulting in a diagnostic accuracy of 96.6 % (28/29) with an AUC of 0.95. Overall image quality was excellent in the majority of cases (27/29) and examinations were not hampered by artefacts. There was excellent inter-reader agreement for diagnosis and image quality parameters (κ = 0.89-1). Bilateral HR DCE-MRI of the breast at 7 T is feasible with excellent image quality in clinical practice and allows accurate breast cancer diagnosis. (orig.)

  18. Automated method for relating regional pulmonary structure and function: integration of dynamic multislice CT and thin-slice high-resolution CT

    Science.gov (United States)

    Tajik, Jehangir K.; Kugelmass, Steven D.; Hoffman, Eric A.

    1993-07-01

    We have developed a method utilizing x-ray CT for relating pulmonary perfusion to global and regional anatomy, allowing for detailed study of structure to function relationships. A thick slice, high temporal resolution mode is used to follow a bolus contrast agent for blood flow evaluation and is fused with a high spatial resolution, thin slice mode to obtain structure- function detail. To aid analysis of blood flow, we have developed a software module, for our image analysis package (VIDA), to produce the combined structure-function image. Color coded images representing blood flow, mean transit time, regional tissue content, regional blood volume, regional air content, etc. are generated and imbedded in the high resolution volume image. A text file containing these values along with a voxel's 3-D coordinates is also generated. User input can be minimized to identifying the location of the pulmonary artery from which the input function to a blood flow model is derived. Any flow model utilizing one input and one output function can be easily added to a user selectable list. We present examples from our physiologic based research findings to demonstrate the strengths of combining dynamic CT and HRCT relative to other scanning modalities to uniquely characterize pulmonary normal and pathophysiology.

  19. Cortical actin nodes: Their dynamics and recruitment of podosomal proteins as revealed by super-resolution and single-molecule microscopy

    Science.gov (United States)

    Shirai, Yuki M.; Tsunoyama, Taka A.; Hiramoto-Yamaki, Nao; Hirosawa, Koichiro M.; Shibata, Akihiro C. E.; Kondo, Kenichi; Tsurumune, Atsushi; Ishidate, Fumiyoshi; Kusumi, Akihiro

    2017-01-01

    Electron tomography of the plasma membrane (PM) identified several layers of cortical actin meshwork running parallel to the PM cytoplasmic surface throughout the PM. Here, cortical actin structures and dynamics were examined in living cells, using super-resolution microscopy, with (x,y)- and z-resolutions of ~140 and ~400 nm, respectively, and single-molecule imaging. The super-resolution microscopy identified sub-micron-sized actin clusters that appeared identical by both phalloidin post-fixation staining and Lifeact-mGFP expression followed by fixation, and therefore, these actin clusters were named “actin-pl-clusters”. In live cells, the actin-pl-clusters visualized by Lifeact-mGFP linked two or more actin filaments in the fine actin meshwork, acting as a node of the meshwork, and dynamically moved on/along the meshwork in a myosin II-dependent manner. Their formation depended on the Arp2/3 activities, suggesting that the movements could involve both the myosin motor activity and actin polymerization-depolymerization. The actin-pl-clusters differ from the actin nodes/asters found previously after latrunculin treatments, since myosin II and filamin A were not colocalized with the actin-pl-clusters, and the actin-pl-clusters were much smaller than the previously reported nodes/asters. The Lifeact linked to a fluorescently-labeled transmembrane peptide from syntaxin4 (Lifeact-TM) expressed in the PM exhibited temporary immobilization in the PM regions on which actin-pl-clusters and stress fibers were projected, showing that ≥66% of actin-pl-clusters and 89% of stress fibers were located in close proximity (within 3.5 nm) to the PM cytoplasmic surface. Podosome-associated cytoplasmic proteins, Tks4, Tks5, cortactin, and N-WASP, were transiently recruited to actin-pl-clusters, and thus, we propose that actin-pl-clusters also represent “actin podosome-like clusters”. PMID:29190677

  20. Physics and dynamics coupling across scales in the next generation CESM: Meeting the challenge of high resolution. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Vincent E.

    2015-02-21

    This is a final report for a SciDAC grant supported by BER. The project implemented a novel technique for coupling small-scale dynamics and microphysics into a community climate model. The technique uses subcolumns that are sampled in Monte Carlo fashion from a distribution of subgrid variability. The resulting global simulations show several improvements over the status quo.

  1. High-resolution precipitation data derived from dynamical downscaling using the WRF model for the Heihe River Basin, northwest China

    Science.gov (United States)

    Zhang, Xuezhen; Xiong, Zhe; Zheng, Jingyun; Ge, Quansheng

    2018-02-01

    The community of climate change impact assessments and adaptations research needs regional high-resolution (spatial) meteorological data. This study produced two downscaled precipitation datasets with spatial resolutions of as high as 3 km by 3 km for the Heihe River Basin (HRB) from 2011 to 2014 using the Weather Research and Forecast (WRF) model nested with Final Analysis (FNL) from the National Center for Environmental Prediction (NCEP) and ERA-Interim from the European Centre for Medium-Range Weather Forecasts (ECMWF) (hereafter referred to as FNLexp and ERAexp, respectively). Both of the downscaling simulations generally reproduced the observed spatial patterns of precipitation. However, users should keep in mind that the two downscaled datasets are not exactly the same in terms of observations. In comparison to the remote sensing-based estimation, the FNLexp produced a bias of heavy precipitation centers. In comparison to the ground gauge-based measurements, for the warm season (May to September), the ERAexp produced more precipitation (root-mean-square error (RMSE) = 295.4 mm, across the 43 sites) and more heavy rainfall days, while the FNLexp produced less precipitation (RMSE = 115.6 mm) and less heavy rainfall days. Both the ERAexp and FNLexp produced considerably more precipitation for the cold season (October to April) with RMSE values of 119.5 and 32.2 mm, respectively, and more heavy precipitation days. Along with simulating a higher number of heavy precipitation days, both the FNLexp and ERAexp also simulated stronger extreme precipitation. Sensitivity experiments show that the bias of these simulations is much more sensitive to micro-physical parameterizations than to the spatial resolution of topography data. For the HRB, application of the WSM3 scheme may improve the performance of the WRF model.

  2. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    Extensive studies have been conducted to establish sound basis for design and engineering of reactors for practising such catalytic reactions and for realizing improvements in reactor performance. In this article, application of recent (and not so recent) developments in engineering reactors for catalytic reactions is ...

  3. Projected future vegetation changes for the northwest United States and southwest Canada at a fine spatial resolution using a dynamic global vegetation model.

    Science.gov (United States)

    Shafer, Sarah; Bartlein, Patrick J.; Gray, Elizabeth M.; Pelltier, Richard T.

    2015-01-01

    Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0–58.0°N latitude by 136.6–103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070–2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas.

  4. High-Spatial- and High-Temporal-Resolution Dynamic Contrast-enhanced MR Breast Imaging with Sweep Imaging with Fourier Transformation: A Pilot Study

    Science.gov (United States)

    Benson, John C.; Idiyatullin, Djaudat; Snyder, Angela L.; Snyder, Carl J.; Hutter, Diane; Everson, Lenore I.; Eberly, Lynn E.; Nelson, Michael T.; Garwood, Michael

    2015-01-01

    Purpose To report the results of sweep imaging with Fourier transformation (SWIFT) magnetic resonance (MR) imaging for diagnostic breast imaging. Materials and Methods Informed consent was obtained from all participants under one of two institutional review board–approved, HIPAA-compliant protocols. Twelve female patients (age range, 19–54 years; mean age, 41.2 years) and eight normal control subjects (age range, 22–56 years; mean age, 43.2 years) enrolled and completed the study from January 28, 2011, to March 5, 2013. Patients had previous lesions that were Breast Imaging Reporting and Data System 4 and 5 based on mammography and/or ultrasonographic imaging. Contrast-enhanced SWIFT imaging was completed by using a 4-T research MR imaging system. Noncontrast studies were completed in the normal control subjects. One of two sized single-breast SWIFT-compatible transceiver coils was used for nine patients and five controls. Three patients and five control subjects used a SWIFT-compatible dual breast coil. Temporal resolution was 5.9–7.5 seconds. Spatial resolution was 1.00 mm isotropic, with later examinations at 0.67 mm isotropic, and dual breast at 1.00 mm or 0.75 mm isotropic resolution. Results Two nonblinded breast radiologists reported SWIFT image findings of normal breast tissue, benign fibroadenomas (six of six lesions), and malignant lesions (10 of 12 lesions) concordant with other imaging modalities and pathologic reports. Two lesions in two patients were not visualized because of coil field of view. The images yielded by SWIFT showed the presence and extent of known breast lesions. Conclusion The SWIFT technique could become an important addition to breast imaging modalities because it provides high spatial resolution at all points during the dynamic contrast-enhanced examination. © RSNA, 2014 PMID:25247405

  5. Catalytic detritiation of water

    International Nuclear Information System (INIS)

    Rogers, M.L.; Lamberger, P.H.; Ellis, R.E.; Mills, T.K.

    1977-01-01

    A pilot-scale system has been used at Mound Laboratory to investigate the catalytic detritiation of water. A hydrophobic, precious metal catalyst is used to promote the exchange of tritium between liquid water and gaseous hydrogen at 60 0 C. Two columns are used, each 7.5 m long by 2.5 cm ID and packed with catalyst. Water flow is 5-10 cm 3 /min and countercurrent hydrogen flow is 9,000-12,000 cm 3 /min. The equipment, except for the columns, is housed in an inert atmosphere glovebox and is computer controlled. The hydrogen is obtained by electrolysis of a portion of the water stream. Enriched gaseous tritium is withdrawn for further enrichment. A description of the system is included along with an outline of its operation. Recent experimental data are discussed

  6. Dynamics of formation and resolution of vasogenic brain oedema. 1. Measurement of oedema clearance into ventricular CSF

    Energy Technology Data Exchange (ETDEWEB)

    Tsuyumu, M; Reulen, H J; Prioleau, G [Mainz Univ. (Germany, F.R.). Neurochirurgische Klinik

    1981-01-01

    Previous studies showed that resolution of brain oedema may occur by clearance into the CSF. The present study was performed to measure quantitatively the amount of oedema clearance in cold-induced oedema in cats. In order to determine the minute amounts of oedema fluid entering the CSF the oedema fluid was labelled with a high concentration of an extracellular marker (S/sup 35/-sodiumthiosulphate). Ventriculo-cisternal perfusion was used to collect the marker in the cisternal outflow. By using the assumption that oedema fluid has the same marker concentration as the plasma, the distribution profile of extracellular space as well as the clearance rate of oedema into CSF could be computed. Oedema and thiosulphate space were most pronounced in the white matter underlying the cortical cold injury. The values then declined progressively with the distance from the lesion towards the ventricle. Oedema fluid clearance into the ventricular CSF at 24 hours following the cold injury amounted to 0.8-1.2 ..mu..l/min or 1.15 ml/day. These data support the assumption that this may be one of the main mechanisms of the resolution of vasogenic brain oedema.

  7. Catalytic Combustion of Gasified Waste

    Energy Technology Data Exchange (ETDEWEB)

    Kusar, Henrik

    2003-09-01

    This thesis concerns catalytic combustion for gas turbine application using a low heating-value (LHV) gas, derived from gasified waste. The main research in catalytic combustion focuses on methane as fuel, but an increasing interest is directed towards catalytic combustion of LHV fuels. This thesis shows that it is possible to catalytically combust a LHV gas and to oxidize fuel-bound nitrogen (NH{sub 3}) directly into N{sub 2} without forming NO{sub x} The first part of the thesis gives a background to the system. It defines waste, shortly describes gasification and more thoroughly catalytic combustion. The second part of the present thesis, paper I, concerns the development and testing of potential catalysts for catalytic combustion of LHV gases. The objective of this work was to investigate the possibility to use a stable metal oxide instead of noble metals as ignition catalyst and at the same time reduce the formation of NO{sub x} In paper II pilot-scale tests were carried out to prove the potential of catalytic combustion using real gasified waste and to compare with the results obtained in laboratory scale using a synthetic gas simulating gasified waste. In paper III, selective catalytic oxidation for decreasing the NO{sub x} formation from fuel-bound nitrogen was examined using two different approaches: fuel-lean and fuel-rich conditions. Finally, the last part of the thesis deals with deactivation of catalysts. The various deactivation processes which may affect high-temperature catalytic combustion are reviewed in paper IV. In paper V the poisoning effect of low amounts of sulfur was studied; various metal oxides as well as supported palladium and platinum catalysts were used as catalysts for combustion of a synthetic gas. In conclusion, with the results obtained in this thesis it would be possible to compose a working catalytic system for gas turbine application using a LHV gas.

  8. Mechanical behavior and high-resolution EBSD investigation of the microstructural evolution in AISI 321 stainless steel under dynamic loading condition

    International Nuclear Information System (INIS)

    Tiamiyu, A.A.; Eskandari, M.; Sanayei, Mohsen; Odeshi, A.G.; Szpunar, J.A.

    2016-01-01

    The impact response of three regions (top, mid and center) across the thickness of AISI 321 austenitic stainless steel plate at high strain rates (>6000 s −1 ) was studied using the split Hopkinson pressure bar system. The result shows that texture and stored energy heterogeneity across plate thickness influenced the mechanical responses of the investigated steel in these regions. Microstructural evaluation using high-resolution electron backscattered diffraction (HR-EBSD) analysis showed that strengthening in AISI 321 steel originates from the evolution of strain-induced martensite and formation of nano-carbides in addition to plastic deformation by mechanical twinning and slip. This resulted in a desirable combination of high strength and good ductility (approx. 2000 MPa at 0.42 true strain). Phase transformation, dynamic recrystallization and formation of nano-carbides were confirmed within the adiabatic shear band (ASB) region. The average dynamic recrystallized (DRX) grain size in the shear band region is 0.28 µm in comparison to grain size of 15 µm outside the shear bands. The nano-sized grain inside the shear bands is proposed to form by rotational dynamic recrystallization. A comparative study of the alloy's behavior under dynamic and quasi-static compression shows that the stability of austenite is higher at high strain rates and lower at a low strain rate. The strength in the dynamically impacted specimen is compromised as a result of the suppressed evolution of strain-induced martensite and mechanical twin. Martensitic transformation under both loading conditions follows the FCC É£-austenite→BCC ά-martensite kinetic path and both phases obey the Kurdjumov-Sachs' {(111)É£||(110)ά and <−101>É£||<1–11>ά} orientation relationship.

  9. Mechanical behavior and high-resolution EBSD investigation of the microstructural evolution in AISI 321 stainless steel under dynamic loading condition

    Energy Technology Data Exchange (ETDEWEB)

    Tiamiyu, A.A., E-mail: ahmed.tiamiyu@usask.ca [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Sask. (Canada); Eskandari, M. [Department of Materials Science & Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of); Sanayei, Mohsen; Odeshi, A.G.; Szpunar, J.A. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Sask. (Canada)

    2016-09-15

    The impact response of three regions (top, mid and center) across the thickness of AISI 321 austenitic stainless steel plate at high strain rates (>6000 s{sup −1}) was studied using the split Hopkinson pressure bar system. The result shows that texture and stored energy heterogeneity across plate thickness influenced the mechanical responses of the investigated steel in these regions. Microstructural evaluation using high-resolution electron backscattered diffraction (HR-EBSD) analysis showed that strengthening in AISI 321 steel originates from the evolution of strain-induced martensite and formation of nano-carbides in addition to plastic deformation by mechanical twinning and slip. This resulted in a desirable combination of high strength and good ductility (approx. 2000 MPa at 0.42 true strain). Phase transformation, dynamic recrystallization and formation of nano-carbides were confirmed within the adiabatic shear band (ASB) region. The average dynamic recrystallized (DRX) grain size in the shear band region is 0.28 µm in comparison to grain size of 15 µm outside the shear bands. The nano-sized grain inside the shear bands is proposed to form by rotational dynamic recrystallization. A comparative study of the alloy's behavior under dynamic and quasi-static compression shows that the stability of austenite is higher at high strain rates and lower at a low strain rate. The strength in the dynamically impacted specimen is compromised as a result of the suppressed evolution of strain-induced martensite and mechanical twin. Martensitic transformation under both loading conditions follows the FCC É£-austenite→BCC ά-martensite kinetic path and both phases obey the Kurdjumov-Sachs' {(111)É£||(110)ά and <−101>É£||<1–11>ά} orientation relationship.

  10. Dynamic high-resolution ultrasound of intrinsic and extrinsic ligaments of the wrist: How to make it simple.

    Science.gov (United States)

    Gitto, Salvatore; Messina, Carmelo; Mauri, Giovanni; Aliprandi, Alberto; Sardanelli, Francesco; Sconfienza, Luca Maria

    2017-02-01

    Wrist ligaments are crucial structures for the maintenance of carpal stability. They are classified into extrinsic ligaments, connecting the carpus with the forearm bones or distal radioulnar ligaments, and intrinsic ligaments, entirely situated within the carpus. Lesions of intrinsic and extrinsic ligaments of the wrist have been demonstrated to occur largely, mostly in patients with history of trauma and carpal instability, or rheumatoid arthritis. Ultrasound allows for rapid, cost-effective, non-invasive and dynamic evaluation of the wrist, and may represent a valuable diagnostic tool. Although promising results have been published, ultrasound of wrist ligaments is not performed in routine clinical practice, maybe due to its technical feasibility regarded as quite complex. This review article aims to enlighten readers about the normal sonographic appearance of intrinsic and extrinsic carpal ligaments, and describe a systematic approach for their sonographic assessment with detailed anatomic landmarks, dynamic manoeuvres and scanning technique. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Dynamic high-resolution ultrasound of intrinsic and extrinsic ligaments of the wrist: How to make it simple

    International Nuclear Information System (INIS)

    Gitto, Salvatore; Messina, Carmelo; Mauri, Giovanni; Aliprandi, Alberto; Sardanelli, Francesco; Sconfienza, Luca Maria

    2017-01-01

    Highlights: • US allows for rapid, cost-effective, and non-invasive assessment of wrist ligaments. • Knowledge of landmarks and dynamic manoeuvres is basic for a systematic examination. • A sequential approach is effective, timesaving and feasible in clinical practice. - Abstract: Wrist ligaments are crucial structures for the maintenance of carpal stability. They are classified into extrinsic ligaments, connecting the carpus with the forearm bones or distal radioulnar ligaments, and intrinsic ligaments, entirely situated within the carpus. Lesions of intrinsic and extrinsic ligaments of the wrist have been demonstrated to occur largely, mostly in patients with history of trauma and carpal instability, or rheumatoid arthritis. Ultrasound allows for rapid, cost-effective, non-invasive and dynamic evaluation of the wrist, and may represent a valuable diagnostic tool. Although promising results have been published, ultrasound of wrist ligaments is not performed in routine clinical practice, maybe due to its technical feasibility regarded as quite complex. This review article aims to enlighten readers about the normal sonographic appearance of intrinsic and extrinsic carpal ligaments, and describe a systematic approach for their sonographic assessment with detailed anatomic landmarks, dynamic manoeuvres and scanning technique.

  12. Dynamic high-resolution ultrasound of intrinsic and extrinsic ligaments of the wrist: How to make it simple

    Energy Technology Data Exchange (ETDEWEB)

    Gitto, Salvatore, E-mail: sal.gitto@gmail.com [Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milano (Italy); Messina, Carmelo [Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milano (Italy); Mauri, Giovanni [Servizio di Radiologia, IRCCS Policlinico San Donato, Via Morandi 30, 20097 San Donato Milanese (Italy); Dipartimento di Radiologia Interventistica, Istituto Europeo di Oncologia, Via Ripamonti 435, 20141 Milano (Italy); Aliprandi, Alberto [Servizio di Radiologia, IRCCS Policlinico San Donato, Via Morandi 30, 20097 San Donato Milanese (Italy); Sardanelli, Francesco [Servizio di Radiologia, IRCCS Policlinico San Donato, Via Morandi 30, 20097 San Donato Milanese (Italy); Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Pascal 36, 20133 Milano (Italy); Sconfienza, Luca Maria [Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Pascal 36, 20133 Milano (Italy); Unità Operativa di Radiologia/Diagnostica per Immagini con Servizio di Radiologia Interventistica, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161 Milano (Italy)

    2017-02-15

    Highlights: • US allows for rapid, cost-effective, and non-invasive assessment of wrist ligaments. • Knowledge of landmarks and dynamic manoeuvres is basic for a systematic examination. • A sequential approach is effective, timesaving and feasible in clinical practice. - Abstract: Wrist ligaments are crucial structures for the maintenance of carpal stability. They are classified into extrinsic ligaments, connecting the carpus with the forearm bones or distal radioulnar ligaments, and intrinsic ligaments, entirely situated within the carpus. Lesions of intrinsic and extrinsic ligaments of the wrist have been demonstrated to occur largely, mostly in patients with history of trauma and carpal instability, or rheumatoid arthritis. Ultrasound allows for rapid, cost-effective, non-invasive and dynamic evaluation of the wrist, and may represent a valuable diagnostic tool. Although promising results have been published, ultrasound of wrist ligaments is not performed in routine clinical practice, maybe due to its technical feasibility regarded as quite complex. This review article aims to enlighten readers about the normal sonographic appearance of intrinsic and extrinsic carpal ligaments, and describe a systematic approach for their sonographic assessment with detailed anatomic landmarks, dynamic manoeuvres and scanning technique.

  13. Modelling hen harrier dynamics to inform human-wildlife conflict resolution: a spatially-realistic, individual-based approach.

    Directory of Open Access Journals (Sweden)

    Johannes P M Heinonen

    Full Text Available Individual-based models have gained popularity in ecology, and enable simultaneous incorporation of spatial explicitness and population dynamic processes to understand spatio-temporal patterns of populations. We introduce an individual-based model for understanding and predicting spatial hen harrier (Circus cyaneus population dynamics in Great Britain. The model uses a landscape with habitat, prey and game management indices. The hen harrier population was initialised according to empirical census estimates for 1988/89 and simulated until 2030, and predictions for 1998, 2004 and 2010 were compared to empirical census estimates for respective years. The model produced a good qualitative match to overall trends between 1989 and 2010. Parameter explorations revealed relatively high elasticity in particular to demographic parameters such as juvenile male mortality. This highlights the need for robust parameter estimates from empirical research. There are clearly challenges for replication of real-world population trends, but this model provides a useful tool for increasing understanding of drivers of hen harrier dynamics and focusing research efforts in order to inform conflict management decisions.

  14. Modelling hen harrier dynamics to inform human-wildlife conflict resolution: a spatially-realistic, individual-based approach.

    Science.gov (United States)

    Heinonen, Johannes P M; Palmer, Stephen C F; Redpath, Steve M; Travis, Justin M J

    2014-01-01

    Individual-based models have gained popularity in ecology, and enable simultaneous incorporation of spatial explicitness and population dynamic processes to understand spatio-temporal patterns of populations. We introduce an individual-based model for understanding and predicting spatial hen harrier (Circus cyaneus) population dynamics in Great Britain. The model uses a landscape with habitat, prey and game management indices. The hen harrier population was initialised according to empirical census estimates for 1988/89 and simulated until 2030, and predictions for 1998, 2004 and 2010 were compared to empirical census estimates for respective years. The model produced a good qualitative match to overall trends between 1989 and 2010. Parameter explorations revealed relatively high elasticity in particular to demographic parameters such as juvenile male mortality. This highlights the need for robust parameter estimates from empirical research. There are clearly challenges for replication of real-world population trends, but this model provides a useful tool for increasing understanding of drivers of hen harrier dynamics and focusing research efforts in order to inform conflict management decisions.

  15. Investigations of the dynamics and growth of insulator films by high resolution helium atom scattering. Final report, May 1, 1985--April 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Safron, S.A.; Skofronick, J.G.

    1997-07-01

    Over the twelve years of this grant from the U.S. Department of Energy, DE-FG05-85ER45208, the over-reaching aims of this work have been to explore and to attempt to understand the fundamental physics and chemistry of surfaces and interfaces. The instrument we have employed m in this work is high-resolution helium atom scattering (HAS) which we have become even more convinced is an exceptionally powerful and useful tool for surface science. One can follow the evolution of the development and progress of the experiments that we have carried out by the evolution of the proposal titles for each of the four three-year periods. At first, m in 1985-1988, the main objective of this grant was to construct the HAS instrument so that we could begin work on the surface vibrational dynamics of crystalline materials; the title was {open_quotes}Helium Atom-Surface Scattering Apparatus for Studies of Crystalline Surface Dynamics{close_quotes}. Then, as we became more interested m in the growth of films and interfaces the title m in 1988-1991 became {open_quotes}Helium Atom Surface Spectroscopy: Surface Lattice Dynamics of Insulators, Metal and Metal Overlayers{close_quotes}. In 1991-1994, we headed even more m in this direction, and also recognized that we should focus more on insulator materials as very few techniques other than helium atom scattering could be applied to insulators without causing surface damage. Thus, the proposal title became {open_quotes}Helium Atom-Surface Scattering: Surface Dynamics of Insulators, Overlayers and Crystal Growth{close_quotes}. M in the final period of this grant the title ended up {open_quotes}Investigations of the Dynamics and Growth of Insulator Films by High Resolution Helium Atom Scattering{close_quotes} m in 1994-1997. The list of accomplishments briefly discussed in this report are: tests of the shell model; multiphoton scattering; physisorbed monolayer films; other surface phase transitions; and surface magnetic effects.

  16. Single-cell resolution of intracellular T cell Ca2+ dynamics in response to frequency-based H2O2 stimulation.

    Science.gov (United States)

    Kniss-James, Ariel S; Rivet, Catherine A; Chingozha, Loice; Lu, Hang; Kemp, Melissa L

    2017-03-01

    Adaptive immune cells, such as T cells, integrate information from their extracellular environment through complex signaling networks with exquisite sensitivity in order to direct decisions on proliferation, apoptosis, and cytokine production. These signaling networks are reliant on the interplay between finely tuned secondary messengers, such as Ca 2+ and H 2 O 2 . Frequency response analysis, originally developed in control engineering, is a tool used for discerning complex networks. This analytical technique has been shown to be useful for understanding biological systems and facilitates identification of the dominant behaviour of the system. We probed intracellular Ca 2+ dynamics in the frequency domain to investigate the complex relationship between two second messenger signaling molecules, H 2 O 2 and Ca 2+ , during T cell activation with single cell resolution. Single-cell analysis provides a unique platform for interrogating and monitoring cellular processes of interest. We utilized a previously developed microfluidic device to monitor individual T cells through time while applying a dynamic input to reveal a natural frequency of the system at approximately 2.78 mHz stimulation. Although our network was much larger with more unknown connections than previous applications, we are able to derive features from our data, observe forced oscillations associated with specific amplitudes and frequencies of stimuli, and arrive at conclusions about potential transfer function fits as well as the underlying population dynamics.

  17. Plasma-catalytic reforming of liquid hydrocarbons

    International Nuclear Information System (INIS)

    Nedybaliuk, O.A.; Chernyak, V.Ya; Kolgan, V.V.; Iukhymenko, V.V.; Solomenko, O.V.; Fedirchyk, I.I.; Martysh, E.V.; Demchina, V.P.; Klochok, N.V.; Dragnev, S.V.

    2015-01-01

    The series of experiments studying the plasma-catalytic reforming of liquid hydrocarbons was carried out. The dynamic plasma-liquid system based on a low-power rotating gliding arc with solid electrodes was used for the investigation of liquid hydrocarbons reforming process. Conversion was done via partial oxidation. A part of oxidant flow was activated by the discharge. Synthesis-gas composition was analysed by means of mass-spectrometry and gas-chromatography. A standard boiler, which operates on natural gas and LPG, was used for the burning of synthesis-gas

  18. Monitoring tropical debris-covered glacier dynamics from high-resolution unmanned aerial vehicle photogrammetry, Cordillera Blanca, Peru

    Directory of Open Access Journals (Sweden)

    O. Wigmore

    2017-11-01

    Full Text Available The glaciers of the Cordillera Blanca, Peru, are rapidly retreating and thinning as a result of climate change, altering the timing, quantity and quality of water available to downstream users. Furthermore, increases in the number and size of proglacial lakes associated with these melting glaciers is increasing potential exposure to glacier lake outburst floods (GLOFs. Understanding how these glaciers are changing and their connection to proglacial lake systems is thus of critical importance. Most satellite data are too coarse for studying small mountain glaciers and are often affected by cloud cover, while traditional airborne photogrammetry and lidar are costly. Recent developments have made unmanned aerial vehicles (UAVs a viable and potentially transformative method for studying glacier change at high spatial resolution, on demand and at relatively low cost.Using a custom designed hexacopter built for high-altitude (4000–6000 m a. s. l.  operation, we completed repeat aerial surveys (2014 and 2015 of the debris-covered Llaca Glacier tongue and proglacial lake system. High-resolution orthomosaics (5 cm and digital elevation models (DEMs (10 cm were produced and their accuracy assessed. Analysis of these datasets reveals highly heterogeneous patterns of glacier change. The most rapid areas of ice loss were associated with exposed ice cliffs and meltwater ponds on the glacier surface. Considerable subsidence and low surface velocities were also measured on the sediments within the pro-glacial lake, indicating the presence of extensive regions of buried ice and continued connection to the glacier tongue. Only limited horizontal retreat of the glacier tongue was observed, indicating that measurements of changes in aerial extent alone are inadequate for monitoring changes in glacier ice quantity.

  19. SU-F-I-16: Short Breast MRI with High-Resolution T2-Weighted and Dynamic Contrast Enhanced T1-Weighted Images

    International Nuclear Information System (INIS)

    Ma, J; Son, J; Arun, B; Hazle, J; Hwang, K; Madewell, J; Yang, W; Dogan, B; Wang, K; Bayram, E

    2016-01-01

    Purpose: To develop and demonstrate a short breast (sb) MRI protocol that acquires both T2-weighted and dynamic contrast-enhanced T1-weighted images in approximately ten minutes. Methods: The sb-MRI protocol consists of two novel pulse sequences. The first is a flexible fast spin-echo triple-echo Dixon (FTED) sequence for high-resolution fat-suppressed T2-weighted imaging, and the second is a 3D fast dual-echo spoiled gradient sequence (FLEX) for volumetric fat-suppressed T1-weighted imaging before and post contrast agent injection. The flexible FTED sequence replaces each single readout during every echo-spacing period of FSE with three fast-switching bipolar readouts to produce three raw images in a single acquisition. These three raw images are then post-processed using a Dixon algorithm to generate separate water-only and fat-only images. The FLEX sequence acquires two echoes using dual-echo readout after each RF excitation and the corresponding images are post-processed using a similar Dixon algorithm to yield water-only and fat-only images. The sb-MRI protocol was implemented on a 3T MRI scanner and used for patients who had undergone concurrent clinical MRI for breast cancer screening. Results: With the same scan parameters (eg, spatial coverage, field of view, spatial and temporal resolution) as the clinical protocol, the total scan-time of the sb-MRI protocol (including the localizer, bilateral T2-weighted, and dynamic contrast-enhanced T1-weighted images) was 11 minutes. In comparison, the clinical breast MRI protocol took 43 minutes. Uniform fat suppression and high image quality were consistently achieved by sb-MRI. Conclusion: We demonstrated a sb-MRI protocol comprising both T2-weighted and dynamic contrast-enhanced T1-weighted images can be performed in approximately ten minutes. The spatial and temporal resolution of the images easily satisfies the current breast MRI accreditation guidelines by the American College of Radiology. The protocol has the

  20. SU-F-I-16: Short Breast MRI with High-Resolution T2-Weighted and Dynamic Contrast Enhanced T1-Weighted Images

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J; Son, J; Arun, B; Hazle, J; Hwang, K; Madewell, J; Yang, W; Dogan, B [UT MD Anderson Cancer Center, Houston, TX (United States); Wang, K; Bayram, E [GE Healthcare Technologies, Waukesha, Wisconsin (United States)

    2016-06-15

    Purpose: To develop and demonstrate a short breast (sb) MRI protocol that acquires both T2-weighted and dynamic contrast-enhanced T1-weighted images in approximately ten minutes. Methods: The sb-MRI protocol consists of two novel pulse sequences. The first is a flexible fast spin-echo triple-echo Dixon (FTED) sequence for high-resolution fat-suppressed T2-weighted imaging, and the second is a 3D fast dual-echo spoiled gradient sequence (FLEX) for volumetric fat-suppressed T1-weighted imaging before and post contrast agent injection. The flexible FTED sequence replaces each single readout during every echo-spacing period of FSE with three fast-switching bipolar readouts to produce three raw images in a single acquisition. These three raw images are then post-processed using a Dixon algorithm to generate separate water-only and fat-only images. The FLEX sequence acquires two echoes using dual-echo readout after each RF excitation and the corresponding images are post-processed using a similar Dixon algorithm to yield water-only and fat-only images. The sb-MRI protocol was implemented on a 3T MRI scanner and used for patients who had undergone concurrent clinical MRI for breast cancer screening. Results: With the same scan parameters (eg, spatial coverage, field of view, spatial and temporal resolution) as the clinical protocol, the total scan-time of the sb-MRI protocol (including the localizer, bilateral T2-weighted, and dynamic contrast-enhanced T1-weighted images) was 11 minutes. In comparison, the clinical breast MRI protocol took 43 minutes. Uniform fat suppression and high image quality were consistently achieved by sb-MRI. Conclusion: We demonstrated a sb-MRI protocol comprising both T2-weighted and dynamic contrast-enhanced T1-weighted images can be performed in approximately ten minutes. The spatial and temporal resolution of the images easily satisfies the current breast MRI accreditation guidelines by the American College of Radiology. The protocol has the

  1. Catalytic production of biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Theilgaard Madsen, A.

    2011-07-01

    The focus of this thesis is the catalytic production of diesel from biomass, especially emphasising catalytic conversion of waste vegetable oils and fats. In chapter 1 an introduction to biofuels and a review on different catalytic methods for diesel production from biomass is given. Two of these methods have been used industrially for a number of years already, namely the transesterification (and esterification) of oils and fats with methanol to form fatty acid methyl esters (FAME), and the hydrodeoxygenation (HDO) of fats and oils to form straight-chain alkanes. Other possible routes to diesel include upgrading and deoxygenation of pyrolysis oils or aqueous sludge wastes, condensations and reductions of sugars in aqueous phase (aqueous-phase reforming, APR) for monofunctional hydrocarbons, and gasification of any type of biomass followed by Fischer-Tropsch-synthesis for alkane biofuels. These methods have not yet been industrialised, but may be more promising due to the larger abundance of their potential feedstocks, especially waste feedstocks. Chapter 2 deals with formation of FAME from waste fats and oils. A range of acidic catalysts were tested in a model fat mixture of methanol, lauric acid and trioctanoin. Sulphonic acid-functionalised ionic liquids showed extremely fast convertion of lauric acid to methyl laurate, and trioctanoate was converted to methyl octanoate within 24 h. A catalyst based on a sulphonated carbon-matrix made by pyrolysing (or carbonising) carbohydrates, so-called sulphonated pyrolysed sucrose (SPS), was optimised further. No systematic dependency on pyrolysis and sulphonation conditions could be obtained, however, with respect to esterification activity, but high activity was obtained in the model fat mixture. SPS impregnated on opel-cell Al{sub 2}O{sub 3} and microporous SiO{sub 2} (ISPS) was much less active in the esterification than the original SPS powder due to low loading and thereby low number of strongly acidic sites on the

  2. Analysis of the epidemiological dynamics during the 1982-1983 epidemic of foot-and-mouth disease in Denmark based on molecular high-resolution strain identification

    DEFF Research Database (Denmark)

    Christensen, Laurids Siig; Normann, Preben; Thykier-Nielsen, Søren

    2005-01-01

    An epidemic of foot-and-mouth disease (FMD) causing a total of 23 cases in 1982-1983, primarily on the island of Funen, Denmark, was subjected to molecular epidemiological investigations. In an attempt to exploit the quasi-species nature of foot-and-mouth disease virus strains for molecular high......-resolution strain identification in order to analyse the dynamics of this epidemic, full-length VP1 coding regions were sequenced for 17 isolates collected at different farms during the epidemic. The sequence information together with epidemiological information gathered during the epidemic suggests......, and the prerequisite of co- or superinfection of animals with variant strains in turn implies that they have a common source or epidemiologically related sources originating from an area with endemic FMD....

  3. Early smoking-induced lung lesions in asymptomatic subjects. Correlations between high resolution dynamic CT and pulmonary function testing

    International Nuclear Information System (INIS)

    Spaggiari, Enrica; Zompadori, Maurizio; Bna', Claudio; Ormitti, Francesca; Svaerzellati, Nicola; Rabaiotti, Enrico; Verduri, Alessia; Chetta, Alfredo

    2005-01-01

    Purpose: To evaluate the prevalence and significance of the pathological effects of cigarette smoking on the lung and the sensitivity of high-resolution CT (HRCT) in the recognition of early smoking-induced lesions in asymptomatic former of current smokers. Materials and methods: We performed a prospective and consecutive analysis of 36 volunteers (16 males, 20 females), 10 non-smokers (3 males, 7 females) and 26 smokers (13 males, 13 females / 17 current smokers; 9 former smokers), all asymptomatic and with normal respiratory flows. These subjects underwent lung function testing and HRCT, after providing written informed consent for the study. The HRCT scans were obtained at three pre-selected levels (aortic arch, tracheal carina and venous hilum). The same scans were obtained in post-expiration phase. At the level of the apical segmental bronchus of the right upper lobe, we measured on the monitor wall thickening, and the total and internal diameters using the techniques reported in literature. Each study was independently evaluated by two radiologists that were blinded to all clinical and functional data: they also evaluated the presence, prevalence and type of emphysema, areas of patchy hyperlucency and oligoemia in the inspiration phase and areas of expiratory air trapping. The extension was evaluated with the visual score method. The data obtained were analysed with the Windows SPSS package for statistical analysis. Results: The two groups (non smokers and smokers) showed significant differences in some functional tests such as FEV1 (p [it

  4. The usefulness of high-resolution three-dimensional dynamic MR imaging with sensitivity encoding for evaluating extrahepatic bile duct cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Kon; Ko, Seog Wan [Chonbuk National University Hospital and Medical School, Jeonju (Korea, Republic of)

    2006-07-15

    We assessed the usefulness of high-resolution 3D dynamic MR imaging with sensitivity encoding (mSENSE) for evaluating bile duct cancer. Twenty-three patients with extrahepatic bile duct cancer underwent multiphasic 3D GRE MRI, including two delayed phases without and with mSENSE. The first delayed phases were obtained with volumetric interpolated breath-hold imaging (VIBE) and then the higher in-place resolution images (320 X 168) were obtained using mSENSE. The two delayed phase images were compared quantitatively by measuring the signal-to-noise ratio (SNR) of liver and tumor, the liver-visceral fat contrast and the tumor-visceral fat contrast-to-noise ratio (CNR); the two delayed phase images were compared qualitatively by evaluating the sharpness of the hepatic vessels and bile duct, the artifacts and the conspicuity of bile duct cancer. The quantitative results with mSENSE image were significantly better than those with conventional VIBE. Though the clarity of the intrahepatic vessels and the intrahepatic bile duct, and the artifacts did not differ significantly between the two images ( {rho} > 0.05), the clarity of the extrahepatic vessels, the extrahepatic bile duct and the bile duct cancer were better on the mSENSE image than on the VIBE ( {rho} < 0.05). The higher in-plane resolution 3D GRE image obtained with mSENSE was of a better image quality than the conventional VIBE images. This technique shows promise for use as a comprehensive exam for assessing bile duct cancer.

  5. The usefulness of high-resolution three-dimensional dynamic MR imaging with sensitivity encoding for evaluating extrahepatic bile duct cancer

    International Nuclear Information System (INIS)

    Kim, Young Kon; Ko, Seog Wan

    2006-01-01

    We assessed the usefulness of high-resolution 3D dynamic MR imaging with sensitivity encoding (mSENSE) for evaluating bile duct cancer. Twenty-three patients with extrahepatic bile duct cancer underwent multiphasic 3D GRE MRI, including two delayed phases without and with mSENSE. The first delayed phases were obtained with volumetric interpolated breath-hold imaging (VIBE) and then the higher in-place resolution images (320 X 168) were obtained using mSENSE. The two delayed phase images were compared quantitatively by measuring the signal-to-noise ratio (SNR) of liver and tumor, the liver-visceral fat contrast and the tumor-visceral fat contrast-to-noise ratio (CNR); the two delayed phase images were compared qualitatively by evaluating the sharpness of the hepatic vessels and bile duct, the artifacts and the conspicuity of bile duct cancer. The quantitative results with mSENSE image were significantly better than those with conventional VIBE. Though the clarity of the intrahepatic vessels and the intrahepatic bile duct, and the artifacts did not differ significantly between the two images ( ρ > 0.05), the clarity of the extrahepatic vessels, the extrahepatic bile duct and the bile duct cancer were better on the mSENSE image than on the VIBE ( ρ < 0.05). The higher in-plane resolution 3D GRE image obtained with mSENSE was of a better image quality than the conventional VIBE images. This technique shows promise for use as a comprehensive exam for assessing bile duct cancer

  6. Constraining the dynamics of the water budget at high spatial resolution in the world's water towers using models and remote sensing data; Snake River Basin, USA

    Science.gov (United States)

    Watson, K. A.; Masarik, M. T.; Flores, A. N.

    2016-12-01

    Mountainous, snow-dominated basins are often referred to as the water towers of the world because they store precipitation in seasonal snowpacks, which gradually melt and provide water supplies to downstream communities. Yet significant uncertainties remain in terms of quantifying the stores and fluxes of water in these regions as well as the associated energy exchanges. Constraining these stores and fluxes is crucial for advancing process understanding and managing these water resources in a changing climate. Remote sensing data are particularly important to these efforts due to the remoteness of these landscapes and high spatial variability in water budget components. We have developed a high resolution regional climate dataset extending from 1986 to the present for the Snake River Basin in the northwestern USA. The Snake River Basin is the largest tributary of the Columbia River by volume and a critically important basin for regional economies and communities. The core of the dataset was developed using a regional climate model, forced by reanalysis data. Specifically the Weather Research and Forecasting (WRF) model was used to dynamically downscale the North American Regional Reanalysis (NARR) over the region at 3 km horizontal resolution for the period of interest. A suite of satellite remote sensing products provide independent, albeit uncertain, constraint on a number of components of the water and energy budgets for the region across a range of spatial and temporal scales. For example, GRACE data are used to constrain basinwide terrestrial water storage and MODIS products are used to constrain the spatial and temporal evolution of evapotranspiration and snow cover. The joint use of both models and remote sensing products allows for both better understanding of water cycle dynamics and associated hydrometeorologic processes, and identification of limitations in both the remote sensing products and regional climate simulations.

  7. High-resolution high-speed dynamic mechanical spectroscopy of cells and other soft materials with the help of atomic force microscopy.

    Science.gov (United States)

    Dokukin, M; Sokolov, I

    2015-07-28

    Dynamic mechanical spectroscopy (DMS), which allows measuring frequency-dependent viscoelastic properties, is important to study soft materials, tissues, biomaterials, polymers. However, the existing DMS techniques (nanoindentation) have limited resolution when used on soft materials, preventing them from being used to study mechanics at the nanoscale. The nanoindenters are not capable of measuring cells, nanointerfaces of composite materials. Here we present a highly accurate DMS modality, which is a combination of three different methods: quantitative nanoindentation (nanoDMA), gentle force and fast response of atomic force microscopy (AFM), and Fourier transform (FT) spectroscopy. This new spectroscopy (which we suggest to call FT-nanoDMA) is fast and sensitive enough to allow DMS imaging of nanointerfaces, single cells, while attaining about 100x improvements on polymers in both spatial (to 10-70 nm) and temporal resolution (to 0.7 s/pixel) compared to the current art. Multiple frequencies are measured simultaneously. The use of 10 frequencies are demonstrated here (up to 300 Hz which is a rather relevant range for biological materials and polymers, in both ambient conditions and liquid). The method is quantitatively verified on known polymers and demonstrated on cells and polymers blends. Analysis shows that FT-nanoDMA is highly quantitative. The FT-nanoDMA spectroscopy can easily be implemented in the existing AFMs.

  8. Catalytic cracking of lignites

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, M.; Nowak, S.; Naegler, T.; Zimmermann, J. [Hochschule Merseburg (Germany); Welscher, J.; Schwieger, W. [Erlangen-Nuernberg Univ. (Germany); Hahn, T. [Halle-Wittenberg Univ., Halle (Germany)

    2013-11-01

    A most important factor for the chemical industry is the availability of cheap raw materials. As the oil price of crude oil is rising alternative feedstocks like coal are coming into focus. This work, the catalytic cracking of lignite is part of the alliance ibi (innovative Braunkohlenintegration) to use lignite as a raw material to produce chemicals. With this new one step process without an input of external hydrogen, mostly propylene, butenes and aromatics and char are formed. The product yield depends on manifold process parameters. The use of acid catalysts (zeolites like MFI) shows the highest amount of the desired products. Hydrogen rich lignites with a molar H/C ratio of > 1 are to be favoured. Due to primary cracking and secondary reactions the ratio between catalyst and lignite, temperature and residence time are the most important parameter to control the product distribution. Experiments at 500 C in a discontinuous rotary kiln reactor show yields up to 32 wt-% of hydrocarbons per lignite (maf - moisture and ash free) and 43 wt-% char, which can be gasified. Particularly, the yields of propylene and butenes as main products can be enhanced four times to about 8 wt-% by the use of catalysts while the tar yield decreases. In order to develop this innovative process catalyst systems fixed on beads were developed for an easy separation and regeneration of the used catalyst from the formed char. (orig.)

  9. Hydrological application of the INCA model with varying spatial resolution and nitrogen dynamics in a northern river basin

    Directory of Open Access Journals (Sweden)

    K. Rankinen

    2002-01-01

    Full Text Available As a first step in applying the Integrated Nitrogen model for CAtchments (INCA to the Simojoki river basin (3160 km2, this paper focuses on calibration of the hydrological part of the model and nitrogen (N dynamics in the river during the 1980s and 1990s. The model application utilised the GIS land-use and forest classification of Finland together with a recent forest inventory based on remote sensing. In the INCA model, the Hydrologically Effective Rainfall (HER is used to drive the water flow and N fluxes through the catchment system. HER was derived from the Watershed Simulation and Forecast System (WSFS. The basic component of the WSFS is a conceptual hydrological model which simulates runoff using precipitation, potential evapotranspiration and temperature data as inputs. Spatially uniform, lumped input data were calculated for the whole river basin and spatially semi-distributed input data were calculated for each of the nine sub-basins. When comparing discharges simulated by the INCA model with observed values, a better fit was obtained with the semi-distributed data than with the spatially uniform data (R2 0.78 v. 0.70 at Hosionkoski and 0.88 v. 0.78 at the river outlet. The timing of flow peaks was simulated rather well with both approaches, although the semi-distributed input data gave a more realistic simulation of low flow periods and the magnitude of spring flow peaks. The river basin has a relatively closed N cycle with low input and output fluxes of inorganic N. During 1982-2000, the average total N flux to the sea was 715 tonnes yr–1, of which 6% was NH4-N, 14% NO3-N, and 80% organic N. Annual variation in river flow and the concentrations of major N fractions in river water, and factors affecting this variation are discussed. Keywords: northern river basin, nitrogen, forest management, hydrology, dynamic modelling, semi-distributed modelling

  10. Reaction rate oscillations during catalytic CO oxidation: A brief overview

    Science.gov (United States)

    Tsotsis, T. T.; Sane, R. C.

    1987-01-01

    It is not the intent here to present a comprehensive review of the dynamic behavior of the catalytic oxidation of CO. This reaction is one of the most widely studied in the field of catalysis. A review paper by Engel and Ertl has examined the basic kinetic and mechanistic aspects, and a comprehensive paper by Razon and Schmitz was recently devoted to its dynamic behavior. Those interested in further study of the subject should consult these reviews and a number of general review papers on catalytic reaction dynamics. The goal is to present a brief overview of certain interesting aspects of the dynamic behavior of this reaction and to discuss a few questions and issues, which are still the subject of study and debate.

  11. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    126, No. 2, March 2014, pp. 341–351. c Indian Academy of Sciences. ... enhancement was realized by catalyst design, appropriate choice of reactor, better injection and .... Gas–liquid and liquid–solid transport processes in catalytic reactors.5.

  12. Dynamical theoretical model of the high-resolution double-crystal x-ray diffractometry of imperfect single crystals with microdefects

    International Nuclear Information System (INIS)

    Molodkin, V. B.; Olikhovskii, S. I.; Kislovskii, E. N.; Vladimirova, T. P.; Skakunova, E. S.; Seredenko, R. F.; Sheludchenko, B. V.

    2008-01-01

    The dynamical diffraction model has been developed for the quantitative description of rocking curves (RCs) measured in the Bragg diffraction geometry from single crystals containing homogeneously distributed microdefects of several types and with arbitrary sizes. The analytical expressions for coherent and diffuse RC components, which take self-consistently multiple-scattering effects into account and depend explicitly on microdefect characteristics (radius, concentration, strength, etc.), have been derived with taking into account the instrumental factors. The developed model has been applied to determine the characteristics of oxygen precipitates and dislocation loops in silicon crystals grown by Czochralsky and float-zone methods using RCs measured by the high-resolution double-crystal x-ray diffractometer. It has been shown, particularly, that completely dynamical consideration of Huang as well as Stockes-Wilson diffuse scattering (DS) in both diffuse RC component and coefficient of extinction of coherent RC component due to DS, together with taking asymmetry and thermal DS effects into account, provides the possibility to distinguish contributions into RC from defects of different types, which have equal or commensurable effective radii

  13. Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic time series from Landsat and the MODIS BRDF/NBAR/albedo product

    Science.gov (United States)

    Wang, Zhuosen; Schaaf, Crystal B.; Sun, Qingsong; Kim, JiHyun; Erb, Angela M.; Gao, Feng; Román, Miguel O.; Yang, Yun; Petroy, Shelley; Taylor, Jeffrey R.; Masek, Jeffrey G.; Morisette, Jeffrey T.; Zhang, Xiaoyang; Papuga, Shirley A.

    2017-07-01

    Seasonal vegetation phenology can significantly alter surface albedo which in turn affects the global energy balance and the albedo warming/cooling feedbacks that impact climate change. To monitor and quantify the surface dynamics of heterogeneous landscapes, high temporal and spatial resolution synthetic time series of albedo and the enhanced vegetation index (EVI) were generated from the 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) operational Collection V006 daily BRDF/NBAR/albedo products and 30 m Landsat 5 albedo and near-nadir reflectance data through the use of the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The traditional Landsat Albedo (Shuai et al., 2011) makes use of the MODIS BRDF/Albedo products (MCD43) by assigning appropriate BRDFs from coincident MODIS products to each Landsat image to generate a 30 m Landsat albedo product for that acquisition date. The available cloud free Landsat 5 albedos (due to clouds, generated every 16 days at best) were used in conjunction with the daily MODIS albedos to determine the appropriate 30 m albedos for the intervening daily time steps in this study. These enhanced daily 30 m spatial resolution synthetic time series were then used to track albedo and vegetation phenology dynamics over three Ameriflux tower sites (Harvard Forest in 2007, Santa Rita in 2011 and Walker Branch in 2005). These Ameriflux sites were chosen as they are all quite nearby new towers coming on line for the National Ecological Observatory Network (NEON), and thus represent locations which will be served by spatially paired albedo measures in the near future. The availability of data from the NEON towers will greatly expand the sources of tower albedometer data available for evaluation of satellite products. At these three Ameriflux tower sites the synthetic time series of broadband shortwave albedos were evaluated using the tower albedo measurements with a Root Mean Square Error (RMSE) less than 0.013 and a

  14. The glass transition in cured epoxy thermosets: A comparative molecular dynamics study in coarse-grained and atomistic resolution

    Energy Technology Data Exchange (ETDEWEB)

    Langeloth, Michael; Böhm, Michael C.; Müller-Plathe, Florian [Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Center of Smart Interfaces, Technische Universität Darmstadt, Alarich Weiss Straße 4, D-64287 Darmstadt (Germany); Sugii, Taisuke, E-mail: taisuke.sugii.zs@hitachi.com [Center for Technology Innovation – Mechanical Engineering, Research & Development Group, Hitachi, Ltd., 832-2, Horiguchi, Hitachinaka, Ibaraki 312-0034 (Japan)

    2015-12-28

    We investigate the volumetric glass transition temperature T{sub g} in epoxy thermosets by means of molecular dynamics simulations. The epoxy thermosets consist of the resin bisphenol A diglycidyl ether and the hardener diethylenetriamine. A structure based coarse-grained (CG) force field has been derived using iterative Boltzmann inversion in order to facilitate simulations of larger length scales. We observe that T{sub g} increases clearly with the degree of cross-linking for all-atomistic (AA) and CG simulations. The transition T{sub g} in CG simulations of uncured mixtures is much lower than in AA-simulations due to the soft nature of the CG potentials, but increases all the more with the formation of rigid cross-links. Additional simulations of the CG mixtures in contact with a surface show the existence of an interphase region of about 3 nm thickness in which the network properties deviate significantly from the bulk. In accordance to experimental studies, we observe that T{sub g} is reduced in this interphase region and gradually increases to its bulk value with distance from the surface. The present study shows that the glass transition is a local phenomenon that depends on the network structure in the immediate environment.

  15. Mapping and Characterization of Hydrological Dynamics in a Coastal Marsh Using High Temporal Resolution Sentinel-1A Images

    Directory of Open Access Journals (Sweden)

    Cécile Cazals

    2016-07-01

    Full Text Available In Europe, water levels in wetlands are widely controlled by environmental managers and farmers. However, the influence of these management practices on hydrodynamics and biodiversity remains poorly understood. This study assesses advantages of using radar data from the recently launched Sentinel-1A satellite to monitor hydrological dynamics of the Poitevin marshland in western France. We analyze a time series of 14 radar images acquired in VV and HV polarizations from December 2014 to May 2015 with a 12-day time step. Both polarizations are used with a hysteresis thresholding algorithm which uses both spatial and temporal information to distinguish open water, flooded vegetation and non-flooded grassland. Classification results are compared to in situ piezometric measurements combined with a Digital Terrain Model derived from LiDAR data. Results reveal that open water is successfully detected, whereas flooded grasslands with emergent vegetation and fine-grained patterns are detected with moderate accuracy. Five hydrological regimes are derived from the flood duration and mapped. Analysis of time steps in the time series shows that decreased temporal repetitivity induces significant differences in estimates of flood duration. These results illustrate the great potential to monitor variations in seasonal floods with the high temporal frequency of Sentinel-1A acquisitions.

  16. Prediction of prostate cancer extracapsular extension with high spatial resolution dynamic contrast-enhanced 3-T MRI

    International Nuclear Information System (INIS)

    Bloch, B.N.; Genega, Elizabeth M.; Costa, Daniel N.; Pedrosa, Ivan; Rofsky, Neil M.; Smith, Martin P.; Kressel, Herbert Y.; Ngo, Long; Sanda, Martin G.; DeWolf, William C.

    2012-01-01

    To assess the value of dynamic contrast-enhanced (DCE) combined with T2-weighted (T2W) endorectal coil (ERC) magnetic resonance imaging (MRI) at 3 T for determining extracapsular extension (ECE) of prostate cancer. In this IRB-approved study, ERC 3-T MRI of the prostate was performed in 108 patients before radical prostatectomy. T2W fast spin-echo and DCE 3D gradient echo images were acquired. The interpretations of readers with varied experience were analysed. MRI-based staging results were compared with radical prostatectomy histology. Descriptive statistics were generated for prediction of ECE and staging accuracies were determined by the area under the receiver-operating characteristic curve. The overall sensitivity, specificity, positive predictive value and negative predictive value for ECE were 75 %, 92 %, 79 % and 91 %, respectively. Diagnostic accuracy for staging was 86 %, 80 % and 91 % for all readers, experienced and less experienced readers, respectively. ERC 3-T MRI of the prostate combining DCE and T2W imaging is an accurate pretherapeutic staging tool for assessment of ECE in clinical practice across varying levels of reader experience. (orig.)

  17. The glass transition in cured epoxy thermosets: A comparative molecular dynamics study in coarse-grained and atomistic resolution

    International Nuclear Information System (INIS)

    Langeloth, Michael; Böhm, Michael C.; Müller-Plathe, Florian; Sugii, Taisuke

    2015-01-01

    We investigate the volumetric glass transition temperature T g in epoxy thermosets by means of molecular dynamics simulations. The epoxy thermosets consist of the resin bisphenol A diglycidyl ether and the hardener diethylenetriamine. A structure based coarse-grained (CG) force field has been derived using iterative Boltzmann inversion in order to facilitate simulations of larger length scales. We observe that T g increases clearly with the degree of cross-linking for all-atomistic (AA) and CG simulations. The transition T g in CG simulations of uncured mixtures is much lower than in AA-simulations due to the soft nature of the CG potentials, but increases all the more with the formation of rigid cross-links. Additional simulations of the CG mixtures in contact with a surface show the existence of an interphase region of about 3 nm thickness in which the network properties deviate significantly from the bulk. In accordance to experimental studies, we observe that T g is reduced in this interphase region and gradually increases to its bulk value with distance from the surface. The present study shows that the glass transition is a local phenomenon that depends on the network structure in the immediate environment

  18. Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours

    Energy Technology Data Exchange (ETDEWEB)

    Lasko, Loren M.; Jakob, Clarissa G.; Edalji, Rohinton P.; Qiu, Wei; Montgomery, Debra; Digiammarino, Enrico L.; Hansen, T. Matt; Risi, Roberto M.; Frey, Robin; Manaves, Vlasios; Shaw, Bailin; Algire, Mikkel; Hessler, Paul; Lam, Lloyd T.; Uziel, Tamar; Faivre, Emily; Ferguson, Debra; Buchanan, Fritz G.; Martin, Ruth L.; Torrent, Maricel; Chiang, Gary G.; Karukurichi, Kannan; Langston, J. William; Weinert, Brian T.; Choudhary, Chunaram; de Vries, Peter; Van Drie, John H.; McElligott, David; Kesicki, Ed; Marmorstein, Ronen; Sun, Chaohong; Cole, Philip A.; Rosenberg, Saul H.; Michaelides, Michael R.; Lai, Albert; Bromberg, Kenneth D. (AbbVie); (UCopenhagen); (Petra Pharma); (UPENN); (JHU); (Van Drie); (Faraday)

    2017-09-27

    The dynamic and reversible acetylation of proteins, catalysed by histone acetyltransferases (HATs) and histone deacetylases (HDACs), is a major epigenetic regulatory mechanism of gene transcription1 and is associated with multiple diseases. Histone deacetylase inhibitors are currently approved to treat certain cancers, but progress on the development of drug-like histone actyltransferase inhibitors has lagged behind2. The histone acetyltransferase paralogues p300 and CREB-binding protein (CBP) are key transcriptional co-activators that are essential for a multitude of cellular processes, and have also been implicated in human pathological conditions (including cancer3). Current inhibitors of the p300 and CBP histone acetyltransferase domains, including natural products4, bi-substrate analogues5 and the widely used small molecule C6466,7, lack potency or selectivity. Here, we describe A-485, a potent, selective and drug-like catalytic inhibitor of p300 and CBP. We present a high resolution (1.95 Å) co-crystal structure of a small molecule bound to the catalytic active site of p300 and demonstrate that A-485 competes with acetyl coenzyme A (acetyl-CoA). A-485 selectively inhibited proliferation in lineage-specific tumour types, including several haematological malignancies and androgen receptor-positive prostate cancer. A-485 inhibited the androgen receptor transcriptional program in both androgen-sensitive and castration-resistant prostate cancer and inhibited tumour growth in a castration-resistant xenograft model. These results demonstrate the feasibility of using small molecule inhibitors to selectively target the catalytic activity of histone acetyltransferases, which may provide effective treatments for transcriptional activator-driven malignancies and diseases.

  19. Genome-wide dynamic transcriptional profiling in clostridium beijerinckii NCIMB 8052 using single-nucleotide resolution RNA-Seq

    Directory of Open Access Journals (Sweden)

    Wang Yi

    2012-03-01

    Full Text Available Abstract Background Clostridium beijerinckii is a prominent solvent-producing microbe that has great potential for biofuel and chemical industries. Although transcriptional analysis is essential to understand gene functions and regulation and thus elucidate proper strategies for further strain improvement, limited information is available on the genome-wide transcriptional analysis for C. beijerinckii. Results The genome-wide transcriptional dynamics of C. beijerinckii NCIMB 8052 over a batch fermentation process was investigated using high-throughput RNA-Seq technology. The gene expression profiles indicated that the glycolysis genes were highly expressed throughout the fermentation, with comparatively more active expression during acidogenesis phase. The expression of acid formation genes was down-regulated at the onset of solvent formation, in accordance with the metabolic pathway shift from acidogenesis to solventogenesis. The acetone formation gene (adc, as a part of the sol operon, exhibited highly-coordinated expression with the other sol genes. Out of the > 20 genes encoding alcohol dehydrogenase in C. beijerinckii, Cbei_1722 and Cbei_2181 were highly up-regulated at the onset of solventogenesis, corresponding to their key roles in primary alcohol production. Most sporulation genes in C. beijerinckii 8052 demonstrated similar temporal expression patterns to those observed in B. subtilis and C. acetobutylicum, while sporulation sigma factor genes sigE and sigG exhibited accelerated and stronger expression in C. beijerinckii 8052, which is consistent with the more rapid forespore and endspore development in this strain. Global expression patterns for specific gene functional classes were examined using self-organizing map analysis. The genes associated with specific functional classes demonstrated global expression profiles corresponding to the cell physiological variation and metabolic pathway switch. Conclusions The results from this

  20. The Evaluation of the Spanish Air Quality Modelling System: CALIOPE. Dynamics and Chemistry over Europe and Iberian Peninsula for 2004 at high horizontal resolution

    Science.gov (United States)

    Piot, M.; Pay, M.; Jorba, O.; Lopez, E.; Pirez, C.; Gasso, S.; Baldasano, J. M.

    2009-12-01

    values show a slight negative bias ranging from -18% to 0%. These values lie within the range defined by the US-EPA (MNGE: +/- 30-35%; MNBE: +/- 10-15%. See US-EPA, 1991, 2005). NO2 is less accurately simulated, with a mean MNBE of -35% caused by an overall underestimation in concentrations. The reproduction of SO2 concentrations is relatively correct but false peaks are reported (mean annual MNBE=6%). The simulated variation of particulate matter is reliable, with a mean correlation of 0.57. The aerosol dynamics is well captured and false peaks are reduced by use of an improved 8-bin aerosol description in the BSC-DREAM dust model, but mean levels are still underestimated by a factor of two. The model simulation for Europe is used to force the nested high-resolution simulation of Spain. The performances of the latter will be also presented.

  1. Rapid Calibration of High Resolution Geologic Models to Dynamic Data Using Inverse Modeling: Field Application and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Akhil Datta-Gupta

    2008-03-31

    Streamline-based assisted and automatic history matching techniques have shown great potential in reconciling high resolution geologic models to production data. However, a major drawback of these approaches has been incompressibility or slight compressibility assumptions that have limited applications to two-phase water-oil displacements only. We propose an approach to history matching three-phase flow using a novel compressible streamline formulation and streamline-derived analytic sensitivities. First, we utilize a generalized streamline model to account for compressible flow by introducing an 'effective density' of total fluids along streamlines. Second, we analytically compute parameter sensitivities that define the relationship between the reservoir properties and the production response, viz. water-cut and gas/oil ratio (GOR). These sensitivities are an integral part of history matching, and streamline models permit efficient computation of these sensitivities through a single flow simulation. We calibrate geologic models to production data by matching the water-cut and gas/oil ratio using our previously proposed generalized travel time inversion (GTTI) technique. For field applications, however, the highly non-monotonic profile of the gas/oil ratio data often presents a challenge to this technique. In this work we present a transformation of the field production data that makes it more amenable to GTTI. Further, we generalize the approach to incorporate bottom-hole flowing pressure during three-phase history matching. We examine the practical feasibility of the method using a field-scale synthetic example (SPE-9 comparative study) and a field application. Recently Ensemble Kalman Filtering (EnKF) has gained increased attention for history matching and continuous reservoir model updating using data from permanent downhole sensors. It is a sequential Monte-Carlo approach that works with an ensemble of reservoir models. Specifically, the method

  2. Imaging of radiocesium uptake dynamics in a plant body using a newly developed high-resolution gamma camera for radiocesium

    Energy Technology Data Exchange (ETDEWEB)

    Kawachi, Naoki; Yin, Yong-Gen; Suzui, Nobuo; Ishii, Satomi; Fujimaki, Shu [Radiotracer Imaging Gr., Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Yoshihara, Toshihiro [Plant Molecular Biology, Laboratory of Environmental Science, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Chiba 270-1194 (Japan); Watabe, Hiroshi [Cyclotron and Radioisotope Center (CYRIC), Tohoku University, 6-3Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578 (Japan); Yamamoto, Seiichi [Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya 461-8673 (Japan)

    2014-07-01

    Vast agricultural and forest areas around the Tokyo Electric Power Company Fukushima Daiichi Nuclear Power Station in Japan were contaminated with radiocesium (Cs-134 and Cs-137) after the accident following the earthquake and tsunami in March 2011. A variety of agricultural studies, such as fertilizer management and plant breeding, have been undertaken intensively for reduction of radiocesium uptake in crops, or, enhancement of uptake in phyto-remediation. In this study, we newly developed a gamma camera specific for plant nutritional research, and performed quantitative analyses on uptake and partitioning of radiocesium in intact plant bodies. In general, gamma camera is a common technology in medical imaging, but it is not applicable to high-energy gamma rays such as emissions from Cs-137 (662 keV). Therefore, we designed our new gamma camera to prevent the penetration and scattering of the high-energy gamma rays. A single-crystal scintillator, Ce-doped Gd{sub 3}Al{sub 2}Ga{sub 3}O{sub 12} (Ce:GAGG), was employed, which has a relatively high density, a large light output, no natural radioactivity and no hygroscopicity. A 44 x 44 matrix of the Ce:GAGG pixels, with dimensions of 0.85 mm x 0.85 mm x 10 mm for each pixel, was coupled to a high-quantum efficiency position sensitive photomultiplier tube. This gamma detector unit was encased in a 20-mm-thick tungsten container with a tungsten pinhole collimator on the front. By using this gamma camera, soybean plants (Glycine max), grown in hydroponic solutions and fed with 1-2 MBq of Cs-137, were imaged for 6.5 days in maximum to investigate and visualize the uptake dynamics into/within the areal part. As a result, radiocesium gradually appeared in the shoot several hours after feeding of Cs-137, and then accumulated intensively in the maturing pods and seeds in a characteristic pattern. Our results also demonstrated that this gamma-camera method enables quantitative evaluation of plant ability to absorb, transport

  3. High-resolution sub-Doppler infrared spectroscopy of atmospherically relevant Criegee precursor CH2I radicals: CH2 stretch vibrations and "charge-sloshing" dynamics

    Science.gov (United States)

    Kortyna, A.; Lesko, D. M. B.; Nesbitt, D. J.

    2018-05-01

    The combination of a pulsed supersonic slit-discharge source and single-mode difference frequency direct absorption infrared spectroscopy permit first high resolution infrared study of the iodomethyl (CH2I) radical, with the CH2I radical species generated in a slit jet Ne/He discharge and cooled to 16 K in the supersonic expansion. Dual laser beam detection and collisional collimation in the slit expansion yield sub-Doppler linewidths (60 MHz), an absolute frequency calibration of 13 MHz, and absorbance sensitivities within a factor of two of the shot-noise limit. Fully rovibrationally resolved direct absorption spectra of the CH2 symmetric stretch mode (ν2) are obtained and fitted to a Watson asymmetric top Hamiltonian with electron spin-rotation coupling, providing precision rotational constants and spin-rotation tensor elements for the vibrationally excited state. Analysis of the asymmetric top rotational constants confirms a vibrationally averaged planar geometry in both the ground- and first-excited vibrational levels. Sub-Doppler resolution permits additional nuclear spin hyperfine structures to be observed, with splittings in excellent agreement with microwave measurements on the ground state. Spectroscopic data on CH2I facilitate systematic comparison with previous studies of halogen-substituted methyl radicals, with the periodic trends strongly correlated with the electronegativity of the halogen atom. Interestingly, we do not observe any asymmetric CH2 stretch transitions, despite S/N ≈ 25:1 on strongest lines in the corresponding symmetric CH2 stretch manifold. This dramatic reversal of the more typical 3:1 antisymmetric/symmetric CH2 stretch intensity ratio signals a vibrational transition moment poorly described by simple "bond-dipole" models. Instead, the data suggest that this anomalous intensity ratio arises from "charge sloshing" dynamics in the highly polar carbon-iodine bond, as supported by ab initio electron differential density plots and

  4. Anthropogenic and volcanic emission impacts on SO2 dynamics and acid rain profiles. Numerical study using WRF-Chem in a high-resolution modeling

    Science.gov (United States)

    Vela, A. V.; González, C. M.; Ynoue, R.; Rojas, N. Y.; Aristizábal, B. H.; Wahl, M.

    2017-12-01

    Eulerian 3-D chemistry transport models (CTM) have been widely used for the study of air quality in urban environments, becoming an essential tool for studying the impacts and dynamics of gases and aerosols on air quality. However, their use in Colombia is scarce, especially in medium-sized cities, which are experimenting a fast urban growth, increasing the risk associated with possible air pollution episodes. In the densely populated medium-sized Andean city of Manizales, Colombia - a city located on the western slopes of the central range of the Andes (urban population 368000; 2150 m.a.s.l), there is an influence of the active Nevado del Ruiz volcano, located 28 km to the southwest. This natural source emits daily gas and particle fluxes, which could influence the atmospheric chemistry of the city and neighboring towns. Hence, the zone presents a unique combination of anthropogenic and volcanic sulfur gas emissions, which affects SO2 dynamics in the urban area, influencing also in the formation of acid rain phenomenon in the city. Therefore, studies analyzing the relative contribution of anthropogenic and volcanic emission could contribute with a deep understanding about causes and dynamics of both acid rain phenomenon and ambient SO2 levels in Manizales. This work aimed to analyze the influence of anthropogenic (on-road vehicular and industrial point-sources) and volcanic sulfur emissions in SO2 atmospheric chemistry dynamics, evaluating its possible effects on acid rain profiles. Ambient SO2 levels and day-night rain samples were measured and used to analyze results obtained from the application of the fully-coupled on-line WRF-Chem model. Two high-resolution simulations were performed during two dry and wet one-week periods in 2015. Analysis of SO2 dispersion patterns and comparison with SO2 observations in the urban area were performed for three different scenarios in which natural and anthropogenic emissions were simulated separately. Results suggest that

  5. Evaluating the CALIOPE air quality modelling system: dynamics and chemistry over Europe and Iberian Peninsula for 2004 at high horizontal resolution

    Science.gov (United States)

    Piot, M.; Pay, M. T.; Jorba, O.; Baldasano, J. M.; Jiménez-Guerrero, P.; López, E.; Pérez, C.; Gassó, S.

    2009-04-01

    Often in Europe, population exposure to air pollution exceeds standards set by the EU and the World Health Organization (WHO). Urban/suburban areas are predominantly impacted upon, although exceedances of particulate matter (PM10 and PM2.5) and Ozone (O3) also take place in rural areas. In the frame of the CALIOPE project (Baldasano et al., 2008a), a high-resolution air quality forecasting system, WRF-ARW/HERMES/CMAQ/DREAM, has been developed and applied to the European domain (12km x 12km, 1hr) as well as to the Iberian Peninsula domain (4km x 4km, 1hr) to provide air quality forecasts for Spain (http://www.bsc.es/caliope/). The simulation of such high-resolution model system has been made possible by its implementation on the MareNostrum supercomputer. To reassure potential users and reduce uncertainties, the model system must be evaluated to assess its performances in terms of air quality levels and dynamics reproducibility. The present contribution describes a thorough quantitative evaluation study performed for a reference year (2004). The CALIOPE modelling system is configured with 38 vertical layers reaching up to 50 hPa for the meteorological core. Atmospheric initial and boundary conditions are obtained from the NCEP final analysis data. The vertical resolution of the CMAQ chemistry-transport model for gas-phase and aerosols has been increased from 8 to 15 layers in order to simulate vertical exchanges more accurately. Gas phase boundary conditions are provided by the LMDz-INCA2 global climate-chemistry model (see Hauglustaine et al., 2004). The DREAM model simulates long-range transport of mineral dust over the domains under study. For the European simulation, emissions are disaggregated from the EMEP expert emission inventory for 2004 to the utilized resolution using the criteria implemented in the HERMES emission model (Baldasano et al., 2008b). The HERMES model system, using a bottom-up approach, was adopted to estimate emissions for the Iberian

  6. The catalytic function of cytochrome P450 is entwined with its membrane-bound nature [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Carlo Barnaba

    2017-05-01

    Full Text Available Cytochrome P450, a family of monooxygenase enzymes, is organized as a catalytic metabolon, which requires enzymatic partners as well as environmental factors that tune its complex dynamic. P450 and its reducing counterparts—cytochrome P450-reductase and cytochrome b5—are membrane-bound proteins located in the cytosolic side of the endoplasmic reticulum. They are believed to dynamically associate to form functional complexes. Increasing experimental evidence signifies the role(s played by both protein-protein and protein-lipid interactions in P450 catalytic function and efficiency. However, the biophysical challenges posed by their membrane-bound nature have severely limited high-resolution understanding of the molecular interfaces of these interactions. In this article, we provide an overview of the current knowledge on cytochrome P450, highlighting the environmental factors that are entwined with its metabolic function. Recent advances in structural biophysics are also discussed, setting up the bases for a new paradigm in the study of this important class of membrane-bound enzymes.

  7. Catalytic bioreactors and methods of using same

    Science.gov (United States)

    Worden, Robert Mark; Liu, Yangmu Chloe

    2017-07-25

    Various embodiments provide a bioreactor for producing a bioproduct comprising one or more catalytically active zones located in a housing and adapted to keep two incompatible gaseous reactants separated when in a gas phase, wherein each of the one or more catalytically active zones may comprise a catalytic component retainer and a catalytic component retained within and/or thereon. Each of the catalytically active zones may additionally or alternatively comprise a liquid medium located on either side of the catalytic component retainer. Catalytic component may include a microbial cell culture located within and/or on the catalytic component retainer, a suspended catalytic component suspended in the liquid medium, or a combination thereof. Methods of using various embodiments of the bioreactor to produce a bioproduct, such as isobutanol, are also provided.

  8. Plasma-activated core-shell gold nanoparticle films with enhanced catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Llorca, Jordi, E-mail: jordi.llorca@upc.edu; Casanovas, Albert; Dominguez, Montserrat; Casanova, Ignasi [Universitat Politecnica de Catalunya, Institut de Tecniques Energetiques (Spain); Angurell, Inmaculada; Seco, Miquel; Rossell, Oriol [Universitat de Barcelona, Departament de Quimica Inorganica (Spain)

    2008-03-15

    Catalytically active gold nanoparticle films have been prepared from core-shell nanoparticles by plasma-activation and characterized by high-resolution transmission electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Methane can be selectively oxidized into formic acid with an O{sub 2}-H{sub 2} mixture in a catalytic wall reactor functionalized with plasma-activated gold nanoparticle films containing well-defined Au particles of about 3.5 nm in diameter. No catalytic activity was recorded over gold nanoparticle films prepared by thermal decomposition of core-shell nanoparticles due to particle agglomeration.

  9. Plasma-activated core-shell gold nanoparticle films with enhanced catalytic properties

    International Nuclear Information System (INIS)

    Llorca, Jordi; Casanovas, Albert; Dominguez, Montserrat; Casanova, Ignasi; Angurell, Inmaculada; Seco, Miquel; Rossell, Oriol

    2008-01-01

    Catalytically active gold nanoparticle films have been prepared from core-shell nanoparticles by plasma-activation and characterized by high-resolution transmission electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Methane can be selectively oxidized into formic acid with an O 2 -H 2 mixture in a catalytic wall reactor functionalized with plasma-activated gold nanoparticle films containing well-defined Au particles of about 3.5 nm in diameter. No catalytic activity was recorded over gold nanoparticle films prepared by thermal decomposition of core-shell nanoparticles due to particle agglomeration

  10. HIGH RESOLUTION He i 10830 Å NARROW-BAND IMAGING OF AN M-CLASS FLARE. I. ANALYSIS OF SUNSPOT DYNAMICS DURING FLARING

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ya; Su, Yingna; Hong, Zhenxiang; Ji, Haisheng [Key Laboratory of DMSA, Purple Mountain Observatory, CAS, Nanjing, 210008 (China); Zeng, Zhicheng; Goode, Philip R.; Cao, Wenda [Big Bear Solar Observatory, 40386 North Shore Lane, Big Bear City, CA 92314 (United States); Ji, Kaifan [Yunnan Astronomical Observatories, Kunming 650011 (China)

    2016-12-20

    In this paper, we report our first-step results of high resolution He i 10830 Å narrow-band imaging (bandpass: 0.5 Å) of an M1.8 class two-ribbon flare on 2012 July 5. The flare was observed with the 1.6 m aperture New Solar Telescope at Big Bear Solar Observatory. For this unique data set, sunspot dynamics during flaring were analyzed for the first time. By directly imaging the upper chromosphere, running penumbral waves are clearly seen as an outward extension of umbral flashes; both take the form of absorption in the 10830 Å narrow-band images. From a space–time image made of a slit cutting across a flare ribbon and the sunspot, we find that the dark lanes for umbral flashes and penumbral waves are obviously broadened after the flare. The most prominent feature is the sudden appearance of an oscillating absorption strip inside the ribbon when it sweeps into the sunspot’s penumbral and umbral regions. During each oscillation, outwardly propagating umbral flashes and subsequent penumbral waves rush out into the inwardly sweeping ribbon, followed by a return of the absorption strip with similar speed. We tentatively explain the phenomena as the result of a sudden increase in the density of ortho-helium atoms in the area of the sunspot being excited by the flare’s extreme ultraviolet illumination. This explanation is based on the observation that 10830 Å absorption around the sunspot area gets enhanced during the flare. Nevertheless, questions are still open and we need further well-devised observations to investigate the behavior of sunspot dynamics during flares.

  11. Catalytic activity of Au nanoparticles

    DEFF Research Database (Denmark)

    Larsen, Britt Hvolbæk; Janssens, Ton V.W.; Clausen, Bjerne

    2007-01-01

    Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change with par......Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change...... with particle size. We find that the fraction of low-coordinated Au atoms scales approximately with the catalytic activity, suggesting that atoms on the corners and edges of Au nanoparticles are the active sites. This effect is explained using density functional calculations....

  12. High resolution neutron spectroscopy - a tool for the investigation of dynamics of polymers and soft matter; La spectroscopie de neutrons a haute resolution-un outil pour l'etude de la dynamique des polymeres et de la matiere molle

    Energy Technology Data Exchange (ETDEWEB)

    Monkenbusch, M.; Richter, D. [Institut fur Festkorperforschung (IFF), Forschungszentrum Julich, Julich (Germany)

    2007-09-15

    Neutron scattering, with the ability to vary the contrast of molecular items by hydrogen/deuterium exchanges, is an invaluable tool for soft matter research. Besides the structural information on the mesoscopic scale that is obtained by diffraction methods like small angle neutron scattering, the slow dynamics of molecular motion on mesoscopic scale is accessible by high resolution neutron spectroscopy. The basic features of neutron backscattering spectroscopy, and in particular neutron spin-echo spectroscopy, are presented, in combination with illustrations of results from polymer melt dynamics to protein dynamics which are obtained by these techniques. (authors)

  13. Random catalytic reaction networks

    Science.gov (United States)

    Stadler, Peter F.; Fontana, Walter; Miller, John H.

    1993-03-01

    We study networks that are a generalization of replicator (or Lotka-Volterra) equations. They model the dynamics of a population of object types whose binary interactions determine the specific type of interaction product. Such a system always reduces its dimension to a subset that contains production pathways for all of its members. The network equation can be rewritten at a level of collectives in terms of two basic interaction patterns: replicator sets and cyclic transformation pathways among sets. Although the system contains well-known cases that exhibit very complicated dynamics, the generic behavior of randomly generated systems is found (numerically) to be extremely robust: convergence to a globally stable rest point. It is easy to tailor networks that display replicator interactions where the replicators are entire self-sustaining subsystems, rather than structureless units. A numerical scan of random systems highlights the special properties of elementary replicators: they reduce the effective interconnectedness of the system, resulting in enhanced competition, and strong correlations between the concentrations.

  14. Efficient Synthesis of Differentiated syn-1,2-Diol Derivatives by Asymmetric Transfer Hydrogenation-Dynamic Kinetic Resolution of α-Alkoxy-Substituted β-Ketoesters.

    Science.gov (United States)

    Monnereau, Laure; Cartigny, Damien; Scalone, Michelangelo; Ayad, Tahar; Ratovelomanana-Vidal, Virginie

    2015-08-10

    Asymmetric transfer hydrogenation was applied to a wide range of racemic aryl α-alkoxy-β-ketoesters in the presence of well-defined, commercially available, chiral catalyst Ru(II) -(N-p-toluenesulfonyl-1,2-diphenylethylenediamine) and a 5:2 mixture of formic acid and triethylamine as the hydrogen source. Under these conditions, dynamic kinetic resolution was efficiently promoted to provide the corresponding syn α-alkoxy-β-hydroxyesters derived from substituted aromatic and heteroaromatic aldehydes with a high level of diastereoselectivity (diastereomeric ratio (d.r.)>99:1) and an almost perfect enantioselectivity (enantiomeric excess (ee)>99 %). Additionally, after extensive screening of the reaction conditions, the use of Ru(II) - and Rh(III) -tethered precatalysts extended this process to more-challenging substrates that bore alkenyl-, alkynyl-, and alkyl substituents to provide the corresponding syn α-alkoxy-β-hydroxyesters with excellent enantiocontrol (up to 99 % ee) and good to perfect diastereocontrol (d.r.>99:1). Lastly, the synthetic utility of the present protocol was demonstrated by application to the asymmetric synthesis of chiral ester ethyl (2S)-2-ethoxy-3-(4-hydroxyphenyl)-propanoate, which is an important pharmacophore in a number of peroxisome proliferator-activated receptor α/γ dual agonist advanced drug candidates used for the treatment of type-II diabetes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Conception of Repairable Dynamic Fault Trees and resolution by the use of RAATSS, a Matlab® toolbox based on the ATS formalism

    International Nuclear Information System (INIS)

    Manno, G.; Chiacchio, F.; Compagno, L.; D'Urso, D.; Trapani, N.

    2014-01-01

    Dynamic Fault Tree (DFT) is a well-known stochastic technique for conducting reliability studies of complex systems. At the state of the art, existing tools (both academic and commercial) do not fully support DFT with repairable components and repeated events, lowering the penetration of this powerful technique in real industrial applications (e.g., industrial processes and plants, computer, electronic and network applications). One of the main reasons limiting the attractiveness of DFT is that, originally, DFTs were conceived without repairable components; only recently few related works have started to deal with a formal semantic, which would avoid undefined behavior and misinterpretation of DFT. Other researchers have tackled the problem by introducing extensions of the original Fault Trees (FTs) technique like Boolean Driven Markov Processes (BDMPs) and Generalized Fault Trees (GFTs). However, despite they consider repairable systems and repeated events, we have found that the introduction of a different formalism with more complex features has again limited the penetration of these powerful methods in real applications. The target of this work is the original DFT technique. Starting from the state of the art, a set of standardized rules that frame the behaviors of dynamic gates are designed and a well-defined semantic for repairable-DFT is drawn through the application of a novel formalism, the Adaptive Transitions System (ATS). The proposed theoretical framework is afterward used to code a software tool, RAATSS, for the resolution of extended, repairable-DFT. Moreover, this work introduces some novel concepts regarding the modeling of a system by a DFT and provides a basic hint of the ATS capabilities to describe interdependencies in complex system. - Highlights: • A semantic for Repairable Dynamic Fault Tree (RDFT) was conceived. • Practical motivation for the use of RDFT is presented. • The conception of failure gates for the computation of the

  16. Catalytic properties of niobium compounds

    International Nuclear Information System (INIS)

    Tanabe, K.; Iizuka, T.

    1983-04-01

    The catalytic activity and selectivity of niobium compounds including oxides, salts, organometallic compounds and others are outlined. The application of these compounds as catalysts to diversified reactions is reported. The nature and action of niobium catalysts are characteristic and sometimes anomalous, suggesting the necessity of basic research and the potential use as catalysts for important processes in the chemical industry. (Author) [pt

  17. Catalytic Decoupling of Quantum Information

    DEFF Research Database (Denmark)

    Majenz, Christian; Berta, Mario; Dupuis, Frédéric

    2017-01-01

    The decoupling technique is a fundamental tool in quantum information theory with applications ranging from quantum thermodynamics to quantum many body physics to the study of black hole radiation. In this work we introduce the notion of catalytic decoupling, that is, decoupling in the presence...... and quantum state merging, and leads to a resource theory of decoupling....

  18. Short hydrogen bonds in the catalytic mechanism of serine proteases

    Directory of Open Access Journals (Sweden)

    VLADIMIR LESKOVAC

    2008-04-01

    Full Text Available The survey of crystallographic data from the Protein Data Bank for 37 structures of trypsin and other serine proteases at a resolution of 0.78–1.28 Å revealed the presence of hydrogen bonds in the active site of the enzymes, which are formed between the catalytic histidine and aspartate residues and are on average 2.7 Å long. This is the typical bond length for normal hydrogen bonds. The geometric properties of the hydrogen bonds in the active site indicate that the H atom is not centered between the heteroatoms of the catalytic histidine and aspartate residues in the active site. Taken together, these findings exclude the possibility that short “low-barrier” hydrogen bonds are formed in the ground state structure of the active sites examined in this work. Some time ago, it was suggested by Cleland that the “low-barrier hydrogen bond” hypothesis is operative in the catalytic mechanism of serine proteases, and requires the presence of short hydrogen bonds around 2.4 Å long in the active site, with the H atom centered between the catalytic heteroatoms. The conclusions drawn from this work do not exclude the validity of the “low-barrier hydrogen bond” hypothesis at all, but they merely do not support it in this particular case, with this particular class of enzymes.

  19. Synthesis, spectroscopic characterization and catalytic oxidation ...

    Indian Academy of Sciences (India)

    were characterized by infrared, electronic, electron paramagnetic resonance ... The catalytic oxidation property of ruthenium(III) complexes were also ... cies at room temperature. ..... aldehyde part of Schiff base ligands, catalytic activ- ity of new ...

  20. Dynamics in mangroves assessed by high-resolution and multi-temporal satellite data: a case study in Zhanjiang Mangrove National Nature Reserve (ZMNNR, P. R. China

    Directory of Open Access Journals (Sweden)

    K. Leempoel

    2013-08-01

    Full Text Available Mangrove forests are declining across the globe, mainly because of human intervention, and therefore require an evaluation of their past and present status (e.g. areal extent, species-level distribution, etc. to implement better conservation and management strategies. In this paper, mangrove cover dynamics at Gaoqiao (P. R. China were assessed through time using 1967, 2000 and 2009 satellite imagery (sensors Corona KH-4B, Landsat ETM+, GeoEye-1 respectively. Firstly, multi-temporal analysis of satellite data was undertaken, and secondly biotic and abiotic differences were analysed between the different mangrove stands, assessed through a supervised classification of a high-resolution satellite image. A major decline in mangrove cover (−36% was observed between 1967 and 2009 due to rice cultivation and aquaculture practices. Moreover, dike construction has prevented mangroves from expanding landward. Although a small increase of mangrove area was observed between 2000 and 2009 (+24%, the ratio mangrove / aquaculture kept decreasing due to increased aquaculture at the expense of rice cultivation in the vicinity. From the land-use/cover map based on ground-truth data (5 × 5 m plot-based tree measurements (August–September, 2009 as well as spectral reflectance values (obtained from pansharpened GeoEye-1, both Bruguiera gymnorrhiza and small Aegiceras corniculatum are distinguishable at 73–100% accuracy, whereas tall A. corniculatum was correctly classified at only 53% due to its mixed vegetation stands with B. gymnorrhiza (overall classification accuracy: 85%. In the case of sediments, sand proportion was significantly different between the three mangrove classes. Overall, the advantage of very high resolution satellite images like GeoEye-1 (0.5 m for mangrove spatial heterogeneity assessment and/or species-level discrimination was well demonstrated, along with the complexity to provide a precise classification for non-dominant species (e

  1. A first principles study of the binding of formic acid in catalase complementing high resolution X-ray structures

    International Nuclear Information System (INIS)

    Rovira, Carme; Alfonso-Prieto, Mercedes; Biarnes, Xevi; Carpena, Xavi; Fita, Ignacio; Loewen, Peter C.

    2006-01-01

    Density functional molecular dynamics simulations using a QM/MM approach are used to get insight into the binding modes of formic acid in catalase. Two ligand binding sites are found, named A and B, in agreement with recent high resolution structures of catalase with bound formic acid. In addition, the calculations show that the His56 residue is protonated and the ligand is present as a formate anion. The lowest energy minimum structure (A) corresponds to the ligand interacting with both the heme iron and the catalytic residues (His56 and Asn129). The second minimum energy structure (B) corresponds to the situation in which the ligand interacts solely with the catalytic residues. A mechanism for the process of formic acid binding in catalase is suggested

  2. A first principles study of the binding of formic acid in catalase complementing high resolution X-ray structures

    Energy Technology Data Exchange (ETDEWEB)

    Rovira, Carme [Centre especial de Recerca en Quimica Teorica, Parc Cientific de Barcelona, Josep Samitier 1-5, 08028 Barcelona (Spain)], E-mail: crovira@pcb.ub.es; Alfonso-Prieto, Mercedes [Centre especial de Recerca en Quimica Teorica, Parc Cientific de Barcelona, Josep Samitier 1-5, 08028 Barcelona (Spain); Biarnes, Xevi [Centre especial de Recerca en Quimica Teorica, Parc Cientific de Barcelona, Josep Samitier 1-5, 08028 Barcelona (Spain); Carpena, Xavi [Consejo Superior de Investigaciones Cientificas y Parc Cientific de Barcelona (CSIC-PCB), Josep Samitier 1-5, 08028 Barcelona (Spain); Fita, Ignacio [Consejo Superior de Investigaciones Cientificas y Parc Cientific de Barcelona (CSIC-PCB), Josep Samitier 1-5, 08028 Barcelona (Spain); Loewen, Peter C. [Department of Microbiology, University of Manitoba, Winnipeg, Canada MB R3T 2N2 (Canada)

    2006-03-31

    Density functional molecular dynamics simulations using a QM/MM approach are used to get insight into the binding modes of formic acid in catalase. Two ligand binding sites are found, named A and B, in agreement with recent high resolution structures of catalase with bound formic acid. In addition, the calculations show that the His56 residue is protonated and the ligand is present as a formate anion. The lowest energy minimum structure (A) corresponds to the ligand interacting with both the heme iron and the catalytic residues (His56 and Asn129). The second minimum energy structure (B) corresponds to the situation in which the ligand interacts solely with the catalytic residues. A mechanism for the process of formic acid binding in catalase is suggested.

  3. High-resolution DEMs for High-mountain Asia: A systematic, region-wide assessment of geodetic glacier mass balance and dynamics

    Science.gov (United States)

    Shean, D. E.; Arendt, A. A.; Osmanoglu, B.; Montesano, P.

    2017-12-01

    High Mountain Asia (HMA) constitutes the largest glacierized region outside of the Earth's polar regions. Although available observations are limited, long-term records indicate sustained regional glacier mass loss since 1850, with increased loss in recent decades. Recent satellite data (e.g., GRACE, ICESat-1) show spatially variable glacier mass balance, with significant mass loss in the Himalaya and Hindu Kush and slight mass gain in the Karakoram. We generated 4000 high-resolution digital elevation models (DEMs) from sub-meter commercial stereo imagery (DigitalGlobe WorldView/GeoEye) acquired over glaciers in High-mountain Asia from 2002-present (mostly 2013-present). We produced a regional 8-m DEM mosaic for 2015 and estimated 15-year geodetic mass balance for 40000 glaciers larger than 0.1 km2. We are combining with other regional DEM sources to systematically document the spatiotemporal evolution of glacier mass balance for the entire HMA region. We also generated monthly to interannual DEM and velocity time series for high-priority sites distributed across the region, with >15-20 DEMs available for some locations from 2010-present. These records document glacier dynamics, seasonal snow accumulation/redistribution, and processes that affect glacier mass balance (e.g., ice-cliff retreat, debris cover evolution). These efforts will provide basin-scale assessments of snow/ice melt runoff contributions for model cal/val and downstream water resources applications. We will continue processing all archived and newly available commercial stereo imagery for HMA, and will release all DEMs through the HiMAT DAAC.

  4. Age-Related Differences in Dynamic Interactions Among Default Mode, Frontoparietal Control, and Dorsal Attention Networks during Resting-State and Interference Resolution

    Science.gov (United States)

    Avelar-Pereira, Bárbara; Bäckman, Lars; Wåhlin, Anders; Nyberg, Lars; Salami, Alireza

    2017-01-01

    Resting-state fMRI (rs-fMRI) can identify large-scale brain networks, including the default mode (DMN), frontoparietal control (FPN) and dorsal attention (DAN) networks. Interactions among these networks are critical for supporting complex cognitive functions, yet the way in which they are modulated across states is not well understood. Moreover, it remains unclear whether these interactions are similarly affected in aging regardless of cognitive state. In this study, we investigated age-related differences in functional interactions among the DMN, FPN and DAN during rest and the Multi-Source Interference task (MSIT). Networks were identified using independent component analysis (ICA), and functional connectivity was measured during rest and task. We found that the FPN was more coupled with the DMN during rest and with the DAN during the MSIT. The degree of FPN-DMN connectivity was lower in older compared to younger adults, whereas no age-related differences were observed in FPN-DAN connectivity in either state. This suggests that dynamic interactions of the FPN are stable across cognitive states. The DMN and DAN were anti correlated and age-sensitive during the MSIT only, indicating variation in a task-dependent manner. Increased levels of anticorrelation from rest to task also predicted successful interference resolution. Additional analyses revealed that the degree of DMN-DAN anticorrelation during the MSIT was associated to resting cerebral blood flow (CBF) within the DMN. This suggests that reduced DMN neural activity during rest underlies an impaired ability to achieve higher levels of anticorrelation during a task. Taken together, our results suggest that only parts of age-related differences in connectivity are uncovered at rest and thus, should be studied in the functional connectome across multiple states for a more comprehensive picture. PMID:28588476

  5. Catalytic process for tritium exchange reaction

    International Nuclear Information System (INIS)

    Hansoo Lee; Kang, H.S.; Paek, S.W.; Hongsuk Chung; Yang Geun Chung; Sook Kyung Lee

    2001-01-01

    The catalytic activities for a hydrogen isotope exchange were measured through the reaction of a vapor and gas mixture. The catalytic activity showed to be comparable with the published data. Since the gas velocity is relatively low, the deactivation was not found clearly during the 5-hour experiment. Hydrogen isotope transfer experiments were also conducted through the liquid phase catalytic exchange reaction column that consisted of a catalytic bed and a hydrophilic bed. The efficiencies of both the catalytic and hydrophilic beds were higher than 0.9, implying that the column performance was excellent. (author)

  6. High-Resolution Phenotypic Landscape of the RNA Polymerase II Trigger Loop.

    Directory of Open Access Journals (Sweden)

    Chenxi Qiu

    2016-11-01

    Full Text Available The active sites of multisubunit RNA polymerases have a "trigger loop" (TL that multitasks in substrate selection, catalysis, and translocation. To dissect the Saccharomyces cerevisiae RNA polymerase II TL at individual-residue resolution, we quantitatively phenotyped nearly all TL single variants en masse. Three mutant classes, revealed by phenotypes linked to transcription defects or various stresses, have distinct distributions among TL residues. We find that mutations disrupting an intra-TL hydrophobic pocket, proposed to provide a mechanism for substrate-triggered TL folding through destabilization of a catalytically inactive TL state, confer phenotypes consistent with pocket disruption and increased catalysis. Furthermore, allele-specific genetic interactions among TL and TL-proximal domain residues support the contribution of the funnel and bridge helices (BH to TL dynamics. Our structural genetics approach incorporates structural and phenotypic data for high-resolution dissection of transcription mechanisms and their evolution, and is readily applicable to other essential yeast proteins.

  7. The influence of platinum washing-out time on its recovery from used auto catalytic converters

    Directory of Open Access Journals (Sweden)

    A. Fornalczyk

    2014-07-01

    Full Text Available The used catalytic converters contain small amounts of precious metals. Recovery of these metals is essential for environmental and economic reasons. This work presents a method of Platinum Group Metals (PGM recovery from auto catalytic converters in which they are washed out by a liquid metal. The magneto-hydro-dynamic pump was used to force circulation of liquid metal under the influence of electromagnetic fields The influence of process time on platinum recovery was also carried out.

  8. Catalytic Fast Pyrolysis: A Review

    Directory of Open Access Journals (Sweden)

    Theodore Dickerson

    2013-01-01

    Full Text Available Catalytic pyrolysis is a promising thermochemical conversion route for lignocellulosic biomass that produces chemicals and fuels compatible with current, petrochemical infrastructure. Catalytic modifications to pyrolysis bio-oils are geared towards the elimination and substitution of oxygen and oxygen-containing functionalities in addition to increasing the hydrogen to carbon ratio of the final products. Recent progress has focused on both hydrodeoxygenation and hydrogenation of bio-oil using a variety of metal catalysts and the production of aromatics from bio-oil using cracking zeolites. Research is currently focused on developing multi-functional catalysts used in situ that benefit from the advantages of both hydrodeoxygenation and zeolite cracking. Development of robust, highly selective catalysts will help achieve the goal of producing drop-in fuels and petrochemical commodities from wood and other lignocellulosic biomass streams. The current paper will examine these developments by means of a review of existing literature.

  9. Catalytic processes for cleaner fuels

    International Nuclear Information System (INIS)

    Catani, R.; Marchionna, M.; Rossini, S.

    1999-01-01

    More stringent limitations on vehicle emissions require different measurement: fuel reformulation is one of the most important and is calling for a noticeable impact on refinery assets. Composition rangers of the future fuels have been defined on a time scale. In this scenario the evolution of catalytic technologies becomes a fundamental tool for allowing refinery to reach the fixed-by-law targets. In this paper, the refinery process options to meet each specific requirements of reformulated fuels are surveyed [it

  10. Enhanced catalytic behavior of Ni alloys in steam methane reforming

    Science.gov (United States)

    Yoon, Yeongpil; Kim, Hanmi; Lee, Jaichan

    2017-08-01

    The dissociation process of methane on Ni and Ni alloys are investigated by density functional theory (DFT) in terms of catalytic efficiency and carbon deposition. Examining the dissociation to CH3, CH2, CH, C, and H is not sufficient to properly predict the catalytic efficiency and carbon deposition, and further investigation of the CO gas-evolving reaction is required to completely understand methane dissociation in steam. The location of alloying element in Ni alloy needed be addressed from the results of ab-inito molecular dynamics (MD). The reaction pathway of methane dissociation associated with CO gas evolution is traced by performing first-principles calculations of the adsorption and activation energies of each dissociation step. During the dissociation process, two alternative reaction steps producing adsorbed C and H or adsorbed CO are critically important in determining coking inhibition as well as H2 gas evolution (i.e., the catalytic efficiency). The theoretical calculations presented here suggest that alloying Ni with Ru is an effective way to reduce carbon deposition and enhance the catalytic efficiency of H2 fueling in solid oxide fuel cells (SOFCs).

  11. Lipase-catalyzed asymmetric synthesis of naphtho[2,3-c]furan-1(3H)-one derivatives by a one-pot dynamic kinetic resolution/intramolecular Diels-Alder reaction: Total synthesis of (-)-himbacine.

    Science.gov (United States)

    Sugiyama, Koji; Kawanishi, Shinji; Oki, Yasuhiro; Kamiya, Marin; Hanada, Ryosuke; Egi, Masahiro; Akai, Shuji

    2018-04-01

    One-pot sequential reactions using the acyl moieties installed by enzymatic dynamic kinetic resolution of alcohols have been little investigated. In this work, the acryloyl moiety installed via the lipase/oxovanadium combo-catalyzed dynamic kinetic resolution of a racemic dienol [4-(cyclohex-1-en-1-yl)but-3-en-2-ol or 1-(cyclohex-1-en-1-yl)but-2-en-1-ol] with a (Z)-3-(phenylsulfonyl)acrylate underwent an intramolecular Diels-Alder reaction in a one-pot procedure to produce an optically active naphtho[2,3-c]furan-1(3H)-one derivative (98% ee). This method was successfully applied to the asymmetric total synthesis of (-)-himbacine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The seasonal cycle of mixed layer dynamics and phytoplankton biomass in the Sub-Antarctic Zone: A high-resolution glider experiment

    CSIR Research Space (South Africa)

    Swart, S

    2014-06-01

    Full Text Available -resolution glider data (3 hourly, 2 km horizontal resolution), from~6 months of sampling (spring through summer) in the Sub-Antarctic Zone, is used to assess 1) the different forcing mechanisms driving variability in upper ocean physics and 2) how thesemay...

  13. Dynamics

    CERN Document Server

    Goodman, Lawrence E

    2001-01-01

    Beginning text presents complete theoretical treatment of mechanical model systems and deals with technological applications. Topics include introduction to calculus of vectors, particle motion, dynamics of particle systems and plane rigid bodies, technical applications in plane motions, theory of mechanical vibrations, and more. Exercises and answers appear in each chapter.

  14. Resolution propositions

    International Nuclear Information System (INIS)

    2003-05-01

    To put a resolution to the meeting in relation with the use of weapons made of depleted uranium is the purpose of this text. The situation of the use of depleted uranium by France during the Gulf war and other recent conflicts will be established. This resolution will give the most strict recommendations face to the eventual sanitary and environmental risks in the use of these kind of weapons. (N.C.)

  15. Mechanisms of catalytic activity in heavily coated hydrocracking catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Millan, M.; Adell, C.; Hinojosa, C.; Herod, A.A.; Kandiyoti, R. [University of London Imperial College Science Technology & Medicine, London (United Kingdom). Dept. of Chemical Engineering

    2008-01-15

    Catalyst deactivation by coke deposition has a direct impact on the economic viability of heavy hydrocarbon upgrading processes, such as coal liquefaction and oil residue hydroprocessing. Coke deposition is responsible for rapid loss of catalytic activity and it mostly takes place in the early stages of hydrocracking. The effect of carbonaceous deposition on the catalytic activity of a chromium pillared montmorillonite has been studied in the present work. Its catalytic activity in hydrocracking a coal extract was evaluated based on the boiling point distributions of feed and products obtained by thermogravimetric analysis (TGA), and their characterisation by size exclusion chromatography (SEC) and UV-Fluorescence spectroscopy (UV-F). A large deposition on the catalyst was observed after two successive 2-hour long runs in which the catalyst recovered from the first run was reused in the second. The pillared clay retained its activity even though it showed high carbon loading, a large drop in surface area and complete apparent pore blockage. Some observations may contribute to explain this persistent catalytic activity. First, there is evidence suggesting the dynamic nature of the carbonaceous deposits, which continuously exchange material with the liquid, allowing catalytic activity to continue. Secondly, Scanning Electron Microscopy (SEM) on the used Cr montmorillonite has shown preferential deposition on some regions of the catalyst, which leaves a fraction of the surface relatively exposed. Finally, evidence from SEM coupled to X-ray microanalysis also suggest that deposits are thinner in areas where the active phase of the catalyst is present in higher concentrations. Hydrogenation on the active sites would make the deposits more soluble in the liquid cleaning of surrounding area from deposits.

  16. Kinetics of heterogeneous catalytic reactions

    CERN Document Server

    Boudart, Michel

    2014-01-01

    This book is a critical account of the principles of the kinetics of heterogeneous catalytic reactions in the light of recent developments in surface science and catalysis science. Originally published in 1984. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase acc

  17. Catalytic Organometallic Reactions of Ammonia

    Science.gov (United States)

    Klinkenberg, Jessica L.

    2012-01-01

    Until recently, ammonia had rarely succumbed to catalytic transformations with homogeneous catalysts, and the development of such reactions that are selective for the formation of single products under mild conditions has encountered numerous challenges. However, recently developed catalysts have allowed several classes of reactions to create products with nitrogen-containing functional groups from ammonia. These reactions include hydroaminomethylation, reductive amination, alkylation, allylic substitution, hydroamination, and cross-coupling. This Minireview describes examples of these processes and the factors that control catalyst activity and selectivity. PMID:20857466

  18. Catalytic cracking of hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    1940-09-12

    A process is described for the vapor phase catalytic cracking of hydrocarbon oils boiling substantially in the gas oil range. The reaction takes place in the presence of a solid catalyst between 700 to 900/sup 0/F under pressure between atmospheric and 400 psi. A gas containing between 20 and 90 mol % of free hydrogen is used. The reaction is allowed to proceed until consumption of the free begins. The reaction is discontinued at that point and the catalyst is regenerated for further use.

  19. Molecular catalytic coal liquid conversion

    Energy Technology Data Exchange (ETDEWEB)

    Stock, L.M.; Yang, Shiyong [Univ. of Chicago, IL (United States)

    1995-12-31

    This research, which is relevant to the development of new catalytic systems for the improvement of the quality of coal liquids by the addition of dihydrogen, is divided into two tasks. Task 1 centers on the activation of dihydrogen by molecular basic reagents such as hydroxide ion to convert it into a reactive adduct (OH{center_dot}H{sub 2}){sup {minus}} that can reduce organic molecules. Such species should be robust withstanding severe conditions and chemical poisons. Task 2 is focused on an entirely different approach that exploits molecular catalysts, derived from organometallic compounds that are capable of reducing monocyclic aromatic compounds under very mild conditions. Accomplishments and conclusions are discussed.

  20. Preparation, characterization and catalytic effects of copper oxalate nanocrystals

    International Nuclear Information System (INIS)

    Singh, Gurdip; Kapoor, Inder Pal Singh; Dubey, Reena; Srivastava, Pratibha

    2012-01-01

    Graphical abstract: Prepared copper oxalate nanocrystals were characterized by FE-SEM and bright field TEM micrographs. Its catalytic activity was evaluated on the thermal decomposition of ammonium perchlorate using TG and TG-DSC techniques. Highlights: ► Preparation of nanocrystals (∼9.0 nm) of copper oxalate using Cu(NO 3 ) 2 ·2H 2 O, oxalic acid and acetone under thermal conditions. ► Method is simple and novel. ► Characterization using XRD, SEM, TEM, HRTEM and ED pattern. ► Catalytic activity of copper oxalate nanocrystals on AP thermal decomposition using thermal techniques (TG, TG-DSC and ignition delay). ► Kinetics of thermal decomposition of AP + CONs using isoconversional and model fitting kinetic approaches. - Abstract: Recent work has described the preparation and characterization of copper oxalate nanocrystals (CONs). It was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and electron diffraction pattern (ED). The catalytic activity of CONs on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellants (CSPs) has been done by thermogravimetry (TG), differential scanning calorimetry (DSC) and ignition delay measurements. Burning rate of CSPs was also found to be enhanced in presence of copper oxalate nanocrystals. Kinetics of thermal decomposition of AP with and without CONs has also been investigated. The model free (isoconversional) and model-fitting kinetic approaches have been applied to data for isothermal TG decomposition.

  1. Optical manipulation and catalytic activity enhanced by surface plasmon effect

    Science.gov (United States)

    Zou, Ningmu; Min, Jiang; Jiao, Wenxiang; Wang, Guanghui

    2017-02-01

    For optical manipulation, a nano-optical conveyor belt consisting of an array of gold plasmonic non-concentric nano-rings (PNNRs) is demonstrated for the realization of trapping and unidirectional transportation of nanoparticles by polarization rotation of excitation beam. These hot spots of an asymmetric plasmonic nanostructure are polarization dependent, therefore, one can use the incident polarization state to manipulate the trapped targets. Trapped particles could be transferred between adjacent PNNRs in a given direction just by rotating the polarization of incident beam due to unbalanced potential. The angular dependent distribution of electric field around PNNR has been solved using the three- dimensional finite-difference time-domain (FDTD) technique. For optical enhanced catalytic activity, the spectral properties of dimers of Au nanorod-Au nanorod nanostructures under the excitation of 532nm photons have been investigated. With a super-resolution catalytic mapping technique, we identified the existence of "hot spot" in terms of catalytic reactivity at the gap region within the twined plasmonic nanostructure. Also, FDTD calculation has revealed an intrinsic correlation between hot electron transfer.

  2. Catalytic enantioselective Reformatsky reaction with ketones

    NARCIS (Netherlands)

    Fernandez-Ibanez, M. Angeles; Macia, Beatriz; Minnaard, Adriaan J.; Feringa, Ben L.

    2008-01-01

    Chiral tertiary alcohols were obtained with good yields and enantioselectivities via a catalytic Reformatsky reaction with ketones, including the challenging diaryl ketones, using chiral BINOL derivatives.

  3. Construction of a 3D model of nattokinase, a novel fibrinolytic enzyme from Bacillus natto. A novel nucleophilic catalytic mechanism for nattokinase.

    Science.gov (United States)

    Zheng, Zhong-liang; Zuo, Zhen-yu; Liu, Zhi-gang; Tsai, Keng-chang; Liu, Ai-fu; Zou, Guo-lin

    2005-01-01

    A three-dimensional structural model of nattokinase (NK) from Bacillus natto was constructed by homology modeling. High-resolution X-ray structures of Subtilisin BPN' (SB), Subtilisin Carlsberg (SC), Subtilisin E (SE) and Subtilisin Savinase (SS), four proteins with sequential, structural and functional homology were used as templates. Initial models of NK were built by MODELLER and analyzed by the PROCHECK programs. The best quality model was chosen for further refinement by constrained molecular dynamics simulations. The overall quality of the refined model was evaluated. The refined model NKC1 was analyzed by different protein analysis programs including PROCHECK for the evaluation of Ramachandran plot quality, PROSA for testing interaction energies and WHATIF for the calculation of packing quality. This structure was found to be satisfactory and also stable at room temperature as demonstrated by a 300ps long unconstrained molecular dynamics (MD) simulation. Further docking analysis promoted the coming of a new nucleophilic catalytic mechanism for NK, which is induced by attacking of hydroxyl rich in catalytic environment and locating of S221.

  4. Synthesis of Chiral Cyclic Carbonates via Kinetic Resolution of Racemic Epoxides and Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Xiao Wu

    2016-01-01

    Full Text Available The catalytic synthesis of cyclic carbonates using carbon dioxide as a C1-building block is a highly active area of research. Here, we review the catalytic production of enantiomerically enriched cyclic carbonates via kinetic resolution of racemic epoxides catalysed by metal-containing catalyst systems.

  5. High resolution backscattering instruments

    International Nuclear Information System (INIS)

    Coldea, R.

    2001-01-01

    The principle of operation of indirect-geometry time-of-flight spectrometers are presented, including the IRIS at the ISIS spallation neutron source. The key features that make those types of spectrometers ideally suited for low-energy spectroscopy are: high energy resolution over a wide dynamic range, and simultaneous measurement over a large momentum transfer range provided by the wide angular detector coverage. To exemplify these features are discussed of single-crystal experiments of the spin dynamics in the two-dimensional frustrated quantum magnet Cs 2 CuCl 4 . (R.P.)

  6. Angstrom analysis with dynamic in-situ aberration corrected electron microscopy

    International Nuclear Information System (INIS)

    Gai, P L; Boyes, E D

    2010-01-01

    Following the pioneering development of atomic resolution in-situ environmental TEM (ETEM) for direct probing of gas-solid reactions, recent developments are presented of dynamic real time in-situ studies at the Angstrom level in an aberration corrected electron microscope. The in-situ data from Pt-Pd nanoparticles on carbon with the corresponding FFT/optical diffractogram (OD) illustrate an achieved resolution of 0 C and higher, in a double aberration corrected JEOL 2200 FS TEM/STEM employing a wider gap objective pole piece and gas tolerant TMP column pumping system. Direct observations of dynamic biofuel catalysts under controlled calcinations conditions and quantified with catalytic reactivity and physico-chemical studies show the benefits in-situ aberration correction in unveiling the evolution of surface active sites necessary for the development efficient heterogeneous catalysts. The new results open up opportunities for dynamic studies of materials in an aberration corrected environment and direct future development activities.

  7. Probing Ultrafast Electron Dynamics at Surfaces Using Soft X-Ray Transient Reflectivity Spectroscopy

    Science.gov (United States)

    Baker, L. Robert; Husek, Jakub; Biswas, Somnath; Cirri, Anthony

    The ability to probe electron dynamics with surface sensitivity on the ultrafast time scale is critical for understanding processes such as charge separation, injection, and surface trapping that mediate efficiency in catalytic and energy conversion materials. Toward this goal, we have developed a high harmonic generation (HHG) light source for femtosecond soft x-ray reflectivity. Using this light source we investigated the ultrafast carrier dynamics at the surface of single crystalline α-Fe2O3, polycrystalline α-Fe2O3, and the mixed metal oxide, CuFeO2. We have recently demonstrated that CuFeO2 in particular is a selective catalyst for photo-electrochemical CO2 reduction to acetate; however, the role of electronic structure and charge carrier dynamics in mediating catalytic selectivity has not been well understood. Soft x-ray reflectivity measurements probe the M2,3, edges of the 3d transition metals, which provide oxidation and spin state resolution with element specificity. In addition to chemical state specificity, these measurements are also surface sensitive, and by independently simulating the contributions of the real and imaginary components of the complex refractive index, we can differentiate between surface and sub-surface contributions to the excited state spectrum. Accordingly, this work demonstrates the ability to probe ultrafast carrier dynamics in catalytic materials with element and chemical state specificity and with surface sensitivity.

  8. Petrochemical promoters in catalytic cracking

    International Nuclear Information System (INIS)

    Gomez, Maria; Vargas, Clemencia; Lizcano, Javier

    2010-01-01

    This study is based on the current scheme followed by a refinery with available Catalytic Cracking capacity to process new feedstocks such as Straight Run Naphtha and Naphthas from FCC. These feedstocks are of petrochemical interest to produce Ethane, Ethylene, Propylene, i-Butane, Toluene and Xylene. To evaluate the potential of these new streams versus the Cracking-charged Residues, it was performed a detailed chemical analysis on the structural groups in carbons [C1-C12] at the reactor product obtained in pilot plant. A catalyst with and without Propylene Promoter Additive was used. This study analyzes the differences in the chemical composition of the feedstocks, relating them to the yield of each petrochemical product. Straight Run Naphthas with a high content of Naphthenes, and Paraffines n[C5-C12] and i[C7-C12] are selective to the production of i-Butane and Propane, while Naphthas from FCC with a high content of n[C5-C12]Olefins, i-Olefins, and Aromatics are more selective to Propylene, Toluene, and Xylene. Concerning Catalytic Cracking of Naphthas, the Additive has similar selectivity for all the petrochemical products, their yields increase by about one point with 4%wt of Additive, while in cracking of Residues, the Additive increases in three points Propylene yield, corresponding to a selectivity of 50% (?C3= / ?LPG).

  9. Catalytic conversion of light alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  10. Catalytic converters in the fireplace

    International Nuclear Information System (INIS)

    Kouki, J.

    1995-01-01

    In addition to selecting the appropriate means of heating and using dry fuel, the amount of harmful emissions contained by flue gases produced by fireplaces can be reduced by technical means. One such option is to use an oxidising catalytic converter. Tests at TTS Institute's Heating Studies Experimental Station have focused on two such converters (dense and coarse) mounted in light-weight iron heating stoves. The ability of the dense catalytic converter to oxidise carbon monoxide gases proved to be good. The concentration of carbon monoxide in the flue gases was reduced by as much as 90 %. Measurements conducted by VTT (Technical Research Centre of Finland) showed that the conversion of other gases, e.g. of methane, was good. The exhaust resistance caused by the dense converter was so great as to necessitate the mounting of a fluegas evacuation fan in the chimney for the purpose of creating sufficient draught. When relying on natural draught, the dense converter requires a chimney of at least 7 metres and a by-pass connection while the fire is being lit. In addition, the converter will have to be constructed to be less dense and this will mean that it's capability to oxidise non-combusted gases will be reduced. The coarse converter did not impair the draught but it's oxidising property was insufficient. With the tests over, the converter was not observed to have become blocked up by impurities

  11. High resolution carbon isotope of Crassostrea cuttakensis: A proxy for seasonally varying carbon dynamics in a tropical delta-estuary system

    Science.gov (United States)

    Sreemany, Arpita

    2017-04-01

    The exponential increase in the atmospheric CO2 concentration and global temperature is becoming a major threat to the existence of the mankind. It has been proposed that the ˜2 ˚ C rise in the average global temperature may lead to a point of no-return where the balance between the climate and the ecosystem collapses. Therefore, detailed understanding of the major carbon reservoirs and their mutual interactions is needed for better future climate prediction. Among all the reservoirs, ocean holds ˜90 % of the exogenic carbon and promotes long term storage in sediments. However, the majority of the sedimentary carbon is of terrestrial origin and transported through rivers, which play an important role in carbon exchange between the atmosphere, terrestrial biosphere, and oceans. The transportation of organic carbon through river does not follow a simple conveyer belt model. Various organic and inorganic reactions (i.e., organic carbon degradation, inorganic carbon precipitation, primary production, community respiration) modify the state of the carbon to form a major sub-reservoir in the river, i.e., Dissolved Inorganic Carbon (DIC). So, identifying the source/s of the DIC is crucial to understand the carbon dynamics in the river. Stable carbon isotopic composition of the DIC (δ13CDIC) has long been extensively used to reveal the dominant source/s of the DIC. The majority of the large rivers, being situated in the tropical belts, show seasonal fluctuation in the DIC sources. However, seasonal sampling in the remotest reaches of these rivers hindered our thorough understanding of the seasonally varying source/s of DIC in these rivers. Many calcifying organisms precipitate their shell carbonate in equilibrium with water and hence likely to record the δ13CDICof ambient water in their shell. In this study, a living oyster (Crassostrea cuttakensis) was collected from Matla River, which is part of the Ganges Brahmaputra river delta system, and analyzed for its stable

  12. Heterogeneous catalytic degradation of polyacrylamide solution | Hu ...

    African Journals Online (AJOL)

    Modified with trace metal elements, the catalytic activity of Fe2O3/Al2O3 could be changed greatly. Among various trace metal elements, Fe2O3/Al2O3 catalysts modified with Co and Cu showed great increase on catalytic activity. International Journal of Engineering, Science and Technology, Vol. 2, No. 7, 2010, pp. 110- ...

  13. Computer simulation on spatial resolution of X-ray bright-field imaging by dynamical diffraction theory for a Laue-case crystal analyzer

    International Nuclear Information System (INIS)

    Suzuki, Yoshifumi; Chikaura, Yoshinori; Ando, Masami

    2011-01-01

    Recently, dark-field imaging (DFI) and bright-field imaging (BFI) have been proposed and applied to visualize X-ray refraction effects yielded in biomedical objects. In order to clarify the spatial resolution due to a crystal analyzer in Laue geometry, a program based on the Takagi-Taupin equation was modified to be used for carrying out simulations to evaluate the spatial resolution of images coming into a Laue angular analyzer (LAA). The calculation was done with a perfect plane wave for diffraction wave-fields, which corresponded to BFI, under the conditions of 35 keV and a diffraction index 440 for a 2100 μm thick LAA. As a result, the spatial resolution along the g-vector direction showed approximately 37.5 μm. 126 μm-thick LAA showed a spatial resolution better than 3.1 μm under the conditions of 13.7 keV and a diffraction index 220.

  14. Method of fabricating a catalytic structure

    Science.gov (United States)

    Rollins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2009-09-22

    A precursor to a catalytic structure comprising zinc oxide and copper oxide. The zinc oxide has a sheet-like morphology or a spherical morphology and the copper oxide comprises particles of copper oxide. The copper oxide is reduced to copper, producing the catalytic structure. The catalytic structure is fabricated by a hydrothermal process. A reaction mixture comprising a zinc salt, a copper salt, a hydroxyl ion source, and a structure-directing agent is formed. The reaction mixture is heated under confined volume conditions to produce the precursor. The copper oxide in the precursor is reduced to copper. A method of hydrogenating a carbon oxide using the catalytic structure is also disclosed, as is a system that includes the catalytic structure.

  15. Catalytic hydrogenation of carbon monoxide

    International Nuclear Information System (INIS)

    Wayland, B.B.

    1993-12-01

    Focus of this project is on developing new approaches for hydrogenation of carbon monoxide to produce organic oxygenates at mild conditions. The strategies to accomplish CO reduction are based on favorable thermodynamics manifested by rhodium macrocycles for producing a series of intermediates implicated in the catalytic hydrogenation of CO. Metalloformyl complexes from reactions of H 2 and CO, and CO reductive coupling to form metallo α-diketone species provide alternate routes to organic oxygenates that utilize these species as intermediates. Thermodynamic and kinetic-mechanistic studies are used in guiding the design of new metallospecies to improve the thermodynamic and kinetic factors for individual steps in the overall process. Electronic and steric effects associated with the ligand arrays along with the influences of the reaction medium provide the chemical tools for tuning these factors. Non-macrocyclic ligand complexes that emulate the favorable thermodynamic features associated with rhodium macrocycles, but that also manifest improved reaction kinetics are promising candidates for future development

  16. Selective catalytic oxidation of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J; Koljonen, T [VTT Energy, Espoo (Finland)

    1997-12-31

    In the combustion of fossil fuels, the principal source of nitrogen oxides is nitrogen bound in the fuel structure. In gasification, a large part of fuel nitrogen forms NH{sub 3}, which may form nitrogen oxides during gas combustion. If NH{sub 3} and other nitrogen species could be removed from hot gas, the NO emission could be considerably reduced. However, relatively little attention has been paid to finding new means of removing nitrogen compounds from the hot gasification gas. The possibility of selectively oxidizing NH{sub 3} to N{sub 2} in the hot gasification has been studied at VTT Energy. The largest NH{sub 3} reductions have been achieved by catalytic oxidation on aluminium oxides. (author) (4 refs.)

  17. Non-catalytic recuperative reformer

    Science.gov (United States)

    Khinkis, Mark J.; Kozlov, Aleksandr P.; Kurek, Harry

    2015-12-22

    A non-catalytic recuperative reformer has a flue gas flow path for conducting hot flue gas from a thermal process and a reforming mixture flow path for conducting a reforming mixture. At least a portion of the reforming mixture flow path is embedded in the flue gas flow path to permit heat transfer from the hot flue gas to the reforming mixture. The reforming mixture flow path contains substantially no material commonly used as a catalyst for reforming hydrocarbon fuel (e.g., nickel oxide, platinum group elements or rhenium), but instead the reforming mixture is reformed into a higher calorific fuel via reactions due to the heat transfer and residence time. In a preferred embodiment, extended surfaces of metal material such as stainless steel or metal alloy that are high in nickel content are included within at least a portion of the reforming mixture flow path.

  18. Selective catalytic oxidation of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T. [VTT Energy, Espoo (Finland)

    1996-12-31

    In the combustion of fossil fuels, the principal source of nitrogen oxides is nitrogen bound in the fuel structure. In gasification, a large part of fuel nitrogen forms NH{sub 3}, which may form nitrogen oxides during gas combustion. If NH{sub 3} and other nitrogen species could be removed from hot gas, the NO emission could be considerably reduced. However, relatively little attention has been paid to finding new means of removing nitrogen compounds from the hot gasification gas. The possibility of selectively oxidizing NH{sub 3} to N{sub 2} in the hot gasification has been studied at VTT Energy. The largest NH{sub 3} reductions have been achieved by catalytic oxidation on aluminium oxides. (author) (4 refs.)

  19. The evolution of catalytic function

    Science.gov (United States)

    Maurel, Marie-Christine; Ricard, Jacques

    2006-03-01

    It is very likely that the main driving force of enzyme evolution is the requirement to improve catalytic and regulatory efficiency which results from the intrinsic performance as well as from the spatial and functional organization of enzymes in living cells. Kinetic co-operativity may occur in simple monomeric proteins if they display “slow” conformational transitions, at the cost of catalytic efficiency. Oligomeric enzymes on the other hand can be both efficient and co-operative. We speculate that the main reason for the emergence of co-operative oligomeric enzymes is the need for catalysts that are both cooperative and efficient. As it is not useful for an enzyme to respond to a change of substrate concentration in a complex kinetic way, the emergence of symmetry has its probable origin in a requirement for “functional simplicity”. In a living cell, enzyme are associated with other macromolecules and membranes. The fine tuning of their activity may also be reached through mutations of the microenvironment. Our hypothesis is that these mutations are related to the vectorial transport of molecules, to achieve the hysteresis loops of enzyme reactions generated by the coupling of reaction and diffusion, through the co-operativity brought about by electric interactions between a charged substrate and a membrane, and last but not least, through oscillations. As the physical origins of these effects are very simple and do not require complex molecular devices, it is very likely that the functional advantage generated by the spatial and functional organization of enzyme molecules within the cell have appeared in prebiotic catalysis or very early during the primeval stages of biological evolution. We shall began this paper by presenting the nature of the probable earliest catalysts in the RNA world.

  20. New Catalytic DNA Biosensors for Radionuclides and Metal ions

    International Nuclear Information System (INIS)

    Lu, Yi

    2003-01-01

    The goals of the project are to develop new catalytic DNA biosensors for simultaneous detection and quantification of bioavailable radionuclides and metal ions, and apply the sensors for on-site, real-time assessment of concentration, speciation and stability of the individual contaminants during and after bioremediation. A negative selection strategy was tested and validated. In vitro selection was shown to yield highly active and specific transition metal ion-dependent catalytic DNA/RNA. A fluorescence resonance energy transfer (FRET) study of in vitro selected DNA demonstrated that the trifluorophore labeled system is a simple and powerful tool in studying complex biomolecules structure and dynamics, and is capable of revealing new sophisticated structural changes. New fluorophore/quenchers in a single fluorosensor yielded improved signal to noise ratio in detection, identification and quantification of metal contaminants. Catalytic DNA fluorescent and colorimetric sensors were shown useful in sensing lead in lake water and in leaded paint. Project results were described in two papers and two patents, and won an international prize

  1. Forced thermal cycling of catalytic reactions: experiments and modelling

    DEFF Research Database (Denmark)

    Jensen, Søren; Olsen, Jakob Lind; Thorsteinsson, Sune

    2007-01-01

    Recent studies of catalytic reactions subjected to fast forced temperature oscillations have revealed a rate enhancement increasing with temperature oscillation frequency. We present detailed studies of the rate enhancement up to frequencies of 2.5 Hz. A maximum in the rate enhancement is observed...... at about 1 Hz. A model for the rate enhancement that includes the surface kinetics and the dynamic partial pressure variations in the reactor is introduced. The model predicts a levelling off of the rate enhancement with frequency at about 1 Hz. The experimentally observed decrease above 1 Hz is explained...

  2. Low temperature catalytic combustion of natural gas - hydrogen - air mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Newson, E; Roth, F von; Hottinger, P; Truong, T B [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The low temperature catalytic combustion of natural gas - air mixtures would allow the development of no-NO{sub x} burners for heating and power applications. Using commercially available catalysts, the room temperature ignition of methane-propane-air mixtures has been shown in laboratory reactors with combustion efficiencies over 95% and maximum temperatures less than 700{sup o}C. After a 500 hour stability test, severe deactivation of both methane and propane oxidation functions was observed. In cooperation with industrial partners, scaleup to 3 kW is being investigated together with startup dynamics and catalyst stability. (author) 3 figs., 3 refs.

  3. Growth of catalytically active nanostructures in the nonequilibrium epitaxy regime

    International Nuclear Information System (INIS)

    Gorshkov, V.M.; Kuzmenko, V.V.

    2015-01-01

    The dynamics of metal atom deposition on a flat metal substrate in the diffusion mode has been studied. Conditions for growing up the periodic structures with a developed surface morphology are found. The applicability of the results obtained to the manufacture of catalysts is analyzed. In particular, when platinum atoms are deposited on a gold substrate, which is expedient by cost reasons, a system of nanopyramids confined by (111) facets can be formed under special conditions. This structure possesses an ultrahigh catalytic activity and is promising for applications in chemical industry

  4. MIiSR: Molecular Interactions in Super-Resolution Imaging Enables the Analysis of Protein Interactions, Dynamics and Formation of Multi-protein Structures.

    Directory of Open Access Journals (Sweden)

    Fabiana A Caetano

    2015-12-01

    Full Text Available Our current understanding of the molecular mechanisms which regulate cellular processes such as vesicular trafficking has been enabled by conventional biochemical and microscopy techniques. However, these methods often obscure the heterogeneity of the cellular environment, thus precluding a quantitative assessment of the molecular interactions regulating these processes. Herein, we present Molecular Interactions in Super Resolution (MIiSR software which provides quantitative analysis tools for use with super-resolution images. MIiSR combines multiple tools for analyzing intermolecular interactions, molecular clustering and image segmentation. These tools enable quantification, in the native environment of the cell, of molecular interactions and the formation of higher-order molecular complexes. The capabilities and limitations of these analytical tools are demonstrated using both modeled data and examples derived from the vesicular trafficking system, thereby providing an established and validated experimental workflow capable of quantitatively assessing molecular interactions and molecular complex formation within the heterogeneous environment of the cell.

  5. Optimization of the catalytic converter internal flow by using 3D-CFD; Sanjigen nagare kaiseki ni yoru shokubai converter nai nagare no saitekika

    Energy Technology Data Exchange (ETDEWEB)

    Toi, M; Sugiura, S [Toyota Motor Corp., Tokyo (Japan)

    1997-10-01

    By using computational fluid dynamics and statistical quality control method, we investigated the contribution of front and rear catalytic converter cone shape for the pressure loss and the partial flow, also led the optimal terms and the predictional formulations efficiently. According to this, we can investigate the optimal position of the catalytic converter from the planning. 8 figs., 6 tabs.

  6. Catalytic modification of cellulose and hemicellulose - Sugarefine

    Energy Technology Data Exchange (ETDEWEB)

    Repo, T. [Helsinki Univ. (Finland),Laboratory of Inorganic Chemistry], email: timo.repo@helsinki.fi

    2012-07-01

    The main goal of the project is to develop catalytic methods for the modification of lignocellulose-based saccharides in the biorefineries. The products of these reactions could be used for example as biofuel components, raw materials for the chemical industry, solvents and precursors for biopolymers. The catalyst development aims at creating efficient, selective and green catalytic methods for profitable use in biorefineries. The project is divided in three work packages: In WP1 (Catalytic dehydration of cellulose) the aim is at developing non-toxic, efficient methods for the catalytic dehydration of cellulose the target molecule being here 5-hydroxymethylfurfural (5-HMF). 5-HMF is an interesting platform chemical for the production of fuel additives, solvents and polymers. In WP2 (Catalytic reduction), the objective of the catalytic reduction studies is to produce commercially interesting monofunctional chemicals, such as 1-butanol or 2-methyltetrahydrofuran (2-MeTHF). In WP3 (Catalytic oxidation), the research focuses on developing a green and efficient oxidation method for producing acids. Whereas acetic and formic acids are bulk chemicals, diacids such as glucaric and xylaric acids are valuable specialty chemicals for detergent, polymer and food production.

  7. Dimerization interface of 3-hydroxyacyl-CoA dehydrogenase tunes the formation of its catalytic intermediate.

    Directory of Open Access Journals (Sweden)

    Yingzhi Xu

    Full Text Available 3-Hydroxyacyl-CoA dehydrogenase (HAD, EC 1.1.1.35 is a homodimeric enzyme localized in the mitochondrial matrix, which catalyzes the third step in fatty acid β-oxidation. The crystal structures of human HAD and subsequent complexes with cofactor/substrate enabled better understanding of HAD catalytic mechanism. However, numerous human diseases were found related to mutations at HAD dimerization interface that is away from the catalytic pocket. The role of HAD dimerization in its catalytic activity needs to be elucidated. Here, we solved the crystal structure of Caenorhabditis elegans HAD (cHAD that is highly conserved to human HAD. Even though the cHAD mutants (R204A, Y209A and R204A/Y209A with attenuated interactions on the dimerization interface still maintain a dimerization form, their enzymatic activities significantly decrease compared to that of the wild type. Such reduced activities are in consistency with the reduced ratios of the catalytic intermediate formation. Further molecular dynamics simulations results reveal that the alteration of the dimerization interface will increase the fluctuation of a distal region (a.a. 60-80 that plays an important role in the substrate binding. The increased fluctuation decreases the stability of the catalytic intermediate formation, and therefore the enzymatic activity is attenuated. Our study reveals the molecular mechanism about the essential role of the HAD dimerization interface in its catalytic activity via allosteric effects.

  8. Catalytic CO Oxidation over Au Nanoparticles Loaded Nanoporous Nickel Phosphate Composite

    Directory of Open Access Journals (Sweden)

    Xiaonan Leng

    2015-01-01

    Full Text Available Au/nickel phosphate-5 (Au/VSB-5 composite with the noble metal loading amount of 1.43 wt.% is prepared by using microporous VSB-5 nanocrystals as the support. Carbon monoxide (CO oxidation reaction is carried out over the sample with several catalytic cycles. Complete conversion of CO is achieved at 238°C over the catalyst at the first catalytic cycle. The catalytic activity improved greatly at the second cycle with the complete conversion fulfilled at 198°C and preserved for the other cycles. A series of experiments such as X-ray diffraction (XRD, high resolution transmission electron microscopy (HRTEM, ultraviolet-visible (UV-vis spectroscopy, and X-ray photoelectron spectroscopy (XPS are carried out to characterize the catalysts before and after the reaction to study the factors influencing this promotion at the second cycle.

  9. Catalytic Wittig and aza-Wittig reactions

    Directory of Open Access Journals (Sweden)

    Zhiqi Lao

    2016-11-01

    Full Text Available This review surveys the literature regarding the development of catalytic versions of the Wittig and aza-Wittig reactions. The first section summarizes how arsenic and tellurium-based catalytic Wittig-type reaction systems were developed first due to the relatively easy reduction of the oxides involved. This is followed by a presentation of the current state of the art regarding phosphine-catalyzed Wittig reactions. The second section covers the field of related catalytic aza-Wittig reactions that are catalyzed by both phosphine oxides and phosphines.

  10. Catalytic models developed through social work

    DEFF Research Database (Denmark)

    Jensen, Mogens

    2015-01-01

    of adolescents placed in out-of-home care and is characterised using three situated cases as empirical data. Afterwards the concept of catalytic processes is briefly presented and then applied in an analysis of pedagogical treatment in the three cases. The result is a different conceptualisation of the social......The article develops the concept of catalytic processes in relation to social work with adolescents in an attempt to both reach a more nuanced understanding of social work and at the same time to develop the concept of catalytic processes in psychology. The social work is pedagogical treatment...

  11. Efficient catalytic combustion in integrated micropellistors

    International Nuclear Information System (INIS)

    Bársony, I; Ádám, M; Fürjes, P; Dücső, Cs; Lucklum, R; Hirschfelder, M; Kulinyi, S

    2009-01-01

    This paper analyses two of the key issues of the development of catalytic combustion-type sensors: the selection and production of active catalytic particles on the micropellistor surface as well as the realization of a reliable thermal conduction between heater element and catalytic surface, for the sensing of temperature increase produced by the combustion. The report also demonstrates that chemical sensor product development by a MEMS process is a continuous struggle for elimination of all uncertainties influencing reliability and sensitivity of the final product

  12. Continuous monitoring bed-level dynamics on an intertidal flat: Introducing novel, stand-alone high-resolution SED-sensors

    NARCIS (Netherlands)

    Hu, Z.; Lenting, W.; Van der Wal, D.; Bouma, T.J.

    2015-01-01

    Tidal flat morphology is continuously shaped by hydrodynamic forces, resulting in a highly dynamic bed surface. The knowledge of short-term bed-level changes is important both for assessing sediment transport processes as well as for understanding critical ecological processes, such as vegetation

  13. Vacuum-insulated catalytic converter

    Science.gov (United States)

    Benson, David K.

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  14. Catalytic hydrotreatment of refinery waste

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The object of the project is to produce liquid hydrocarbons by the catalytic hydroprocessing of solid refinery wastes (hard pitches) in order to improve the profitability of deep conversion processes and reduce the excess production of heavy fuels. The project was mostly carried out on the ASVAHL demonstration platform site, at Solaize, and hard pitches were produced primarily by deasphalting of atmospheric or vacuum distillation residues. The project includes two experimental phases and an economic evaluation study phase. In phase 1, two granular catalysts were used to transform pitch into standard low sulphur fuel oil: a continuously moving bed, with demetallation and conversion catalyst; a fixed bed, with hydrorefining catalyst. In phase 2 of the project, it was proven that a hydrotreatment process using a finely dispersed catalyst in the feedstock, can, under realistic operating conditions, transform with goods yields hard pitch into distillates that can be refined through standard methods. In phase 3 of the project, it was shown that the economics of such processes are tightly linked to the price differential between white and black oil products, which is expected to increase in the future. Furthermore, the evolution of environmental constraints will impel the use of such methods, thus avoiding the coproduction of polluting solid residues.

  15. Homology modeling, docking studies and molecular dynamic simulations using graphical processing unit architecture to probe the type-11 phosphodiesterase catalytic site: a computational approach for the rational design of selective inhibitors.

    Science.gov (United States)

    Cichero, Elena; D'Ursi, Pasqualina; Moscatelli, Marco; Bruno, Olga; Orro, Alessandro; Rotolo, Chiara; Milanesi, Luciano; Fossa, Paola

    2013-12-01

    Phosphodiesterase 11 (PDE11) is the latest isoform of the PDEs family to be identified, acting on both cyclic adenosine monophosphate and cyclic guanosine monophosphate. The initial reports of PDE11 found evidence for PDE11 expression in skeletal muscle, prostate, testis, and salivary glands; however, the tissue distribution of PDE11 still remains a topic of active study and some controversy. Given the sequence similarity between PDE11 and PDE5, several PDE5 inhibitors have been shown to cross-react with PDE11. Accordingly, many non-selective inhibitors, such as IBMX, zaprinast, sildenafil, and dipyridamole, have been documented to inhibit PDE11. Only recently, a series of dihydrothieno[3,2-d]pyrimidin-4(3H)-one derivatives proved to be selective toward the PDE11 isoform. In the absence of experimental data about PDE11 X-ray structures, we found interesting to gain a better understanding of the enzyme-inhibitor interactions using in silico simulations. In this work, we describe a computational approach based on homology modeling, docking, and molecular dynamics simulation to derive a predictive 3D model of PDE11. Using a Graphical Processing Unit architecture, it is possible to perform long simulations, find stable interactions involved in the complex, and finally to suggest guideline for the identification and synthesis of potent and selective inhibitors. © 2013 John Wiley & Sons A/S.

  16. Chemistry and engineering of catalytic hydrodesulfurization

    NARCIS (Netherlands)

    Schuit, G.C.A.; Gates, B.C.

    1973-01-01

    A review with 74 refs. on catalytic hydrodesulfurization of pure compds. and petroleum feedstocks, with emphasis on reaction intermediates and structures of Al2O3-supported Ni-W and Co-Mo catalysts. [on SciFinder (R)

  17. Gap Resolution

    Energy Technology Data Exchange (ETDEWEB)

    2017-04-25

    Gap Resolution is a software package that was developed to improve Newbler genome assemblies by automating the closure of sequence gaps caused by repetitive regions in the DNA. This is done by performing the follow steps:1) Identify and distribute the data for each gap in sub-projects. 2) Assemble the data associated with each sub-project using a secondary assembler, such as Newbler or PGA. 3) Determine if any gaps are closed after reassembly, and either design fakes (consensus of closed gap) for those that closed or lab experiments for those that require additional data. The software requires as input a genome assembly produce by the Newbler assembler provided by Roche and 454 data containing paired-end reads.

  18. Catalytic Aminohalogenation of Alkenes and Alkynes.

    Science.gov (United States)

    Chemler, Sherry R; Bovino, Michael T

    2013-06-07

    Catalytic aminohalogenation methods enable the regio- and stereoselective vicinal difunctionalization of alkynes, allenes and alkenes with amine and halogen moieties. A range of protocols and reaction mechanisms including organometallic, Lewis base, Lewis acid and Brønsted acid catalysis have been disclosed, enabling the regio- and stereoselective synthesis of halogen-functionalized acyclic amines and nitrogen heterocycles. Recent advances including aminofluorination and catalytic enantioselective aminohalogenation reactions are summarized in this review.

  19. Kinetic catalytic studies of scorpion's hemocyanin

    International Nuclear Information System (INIS)

    Queinnec, E.; Vuillaume, M.; Gardes-Albert, M.; Ferradini, C.; Ducancel, F.

    1991-01-01

    Hemocyanins are copper proteins which function as oxygen carriers in the haemolymph of Molluscs and Arthropods. They possess enzymatic properties: peroxidatic and catalatic activities, although they have neither iron nor porphyrin ring at the active site. The kinetics of the catalytic reaction is described. The reaction of superoxide anion with hemocyanin has been studied using pulse radiolysis at pH 9. The catalytic rate constant is 3.5 X 10 7 mol -1 .l.s -1 [fr

  20. Studies Relevent to Catalytic Activation Co & other small Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Peter C

    2005-02-22

    Detailed annual and triannual reports describing the progress accomplished during the tenure of this grant were filed with the Program Manager for Catalysis at the Office of Basic Energy Sciences. To avoid unnecessary duplication, the present report will provide a brief overview of the research areas that were sponsored by this grant and list the resulting publications and theses based on this DOE supported research. The scientific personnel participating in (and trained by) this grant's research are also listed. Research carried out under this DOE grant was largely concerned with the mechanisms of the homogeneous catalytic and photocatalytic activation of small molecules such as carbon monoxide, dihydrogen and various hydrocarbons. Much of the more recent effort has focused on the dynamics and mechanisms of reactions relevant to substrate carbonylations by homogeneous organometallic catalysts. A wide range of modern investigative techniques were employed, including quantitative fast reaction methodologies such as time-resolved optical (TRO) and time-resolved infrared (TRIR) spectroscopy and stopped flow kinetics. Although somewhat diverse, this research falls within the scope of the long-term objective of applying quantitative techniques to elucidate the dynamics and understand the principles of mechanisms relevant to the selective and efficient catalytic conversions of fundamental feedstocks to higher value materials.

  1. Nanosecond time-resolved investigations using the in situ of dynamic transmission electron microscope (DTEM)

    International Nuclear Information System (INIS)

    LaGrange, Thomas; Campbell, Geoffrey H.; Reed, B.W.; Taheri, Mitra; Pesavento, J. Bradley; Kim, Judy S.; Browning, Nigel D.

    2008-01-01

    Most biological processes, chemical reactions and materials dynamics occur at rates much faster than can be captured with standard video rate acquisition methods in transmission electron microscopes (TEM). Thus, there is a need to increase the temporal resolution in order to capture and understand salient features of these rapid materials processes. This paper details the development of a high-time resolution dynamic transmission electron microscope (DTEM) that captures dynamics in materials with nanosecond time resolution. The current DTEM performance, having a spatial resolution <10 nm for single-shot imaging using 15 ns electron pulses, will be discussed in the context of experimental investigations in solid state reactions of NiAl reactive multilayer films, the study of martensitic transformations in nanocrystalline Ti and the catalytic growth of Si nanowires. In addition, this paper will address the technical issues involved with high current, electron pulse operation and the near-term improvements to the electron optics, which will greatly improve the signal and spatial resolutions, and to the laser system, which will allow tailored specimen and photocathode drive conditions

  2. Nanosecond time-resolved investigations using the in situ of dynamic transmission electron microscope (DTEM)

    Energy Technology Data Exchange (ETDEWEB)

    LaGrange, Thomas [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States)], E-mail: lagrange@llnl.gov; Campbell, Geoffrey H.; Reed, B.W.; Taheri, Mitra; Pesavento, J. Bradley [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Kim, Judy S.; Browning, Nigel D. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Department of Chemical Engineering and Materials Science, University of California, One Shields Avenue, Davis, CA 95616 (United States)

    2008-10-15

    Most biological processes, chemical reactions and materials dynamics occur at rates much faster than can be captured with standard video rate acquisition methods in transmission electron microscopes (TEM). Thus, there is a need to increase the temporal resolution in order to capture and understand salient features of these rapid materials processes. This paper details the development of a high-time resolution dynamic transmission electron microscope (DTEM) that captures dynamics in materials with nanosecond time resolution. The current DTEM performance, having a spatial resolution <10 nm for single-shot imaging using 15 ns electron pulses, will be discussed in the context of experimental investigations in solid state reactions of NiAl reactive multilayer films, the study of martensitic transformations in nanocrystalline Ti and the catalytic growth of Si nanowires. In addition, this paper will address the technical issues involved with high current, electron pulse operation and the near-term improvements to the electron optics, which will greatly improve the signal and spatial resolutions, and to the laser system, which will allow tailored specimen and photocathode drive conditions.

  3. Solution structure of the parvulin-type PPIase domain of Staphylococcus aureus PrsA – Implications for the catalytic mechanism of parvulins

    Directory of Open Access Journals (Sweden)

    Koskela Harri

    2009-03-01

    Full Text Available Abstract Background Staphylococcus aureus is a Gram-positive pathogenic bacterium causing many kinds of infections from mild respiratory tract infections to life-threatening states as sepsis. Recent emergence of S. aureus strains resistant to numerous antibiotics has created a need for new antimicrobial agents and novel drug targets. S. aureus PrsA is a membrane associated extra-cytoplasmic lipoprotein which contains a parvulin-type peptidyl-prolyl cis-trans isomerase domain. PrsA is known to act as an essential folding factor for secreted proteins in Gram-positive bacteria and thus it is a potential target for antimicrobial drugs against S. aureus. Results We have solved a high-resolution solution structure of the parvulin-type peptidyl-prolyl cis-trans isomerase domain of S. aureus PrsA (PrsA-PPIase. The results of substrate peptide titrations pinpoint the active site and demonstrate the substrate preference of the enzyme. With detailed NMR spectroscopic investigation of the orientation and tautomeric state of the active site histidines we are able to give further insight into the structure of the catalytic site. NMR relaxation analysis gives information on the dynamic behaviour of PrsA-PPIase. Conclusion Detailed structural description of the S. aureus PrsA-PPIase lays the foundation for structure-based design of enzyme inhibitors. The structure resembles hPin1-type parvulins both structurally and regarding substrate preference. Even though a wealth of structural data is available on parvulins, the catalytic mechanism has yet to be resolved. The structure of S. aureus PrsA-PPIase and our findings on the role of the conserved active site histidines help in designing further experiments to solve the detailed catalytic mechanism.

  4. Catalytic hydrogenation of carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Wayland, B.B.

    1992-12-01

    This project is focused on developing strategies to accomplish the reduction and hydrogenation of carbon monoxide to produce organic oxygenates at mild conditions. Our approaches to this issue are based on the recognition that rhodium macrocycles have unusually favorable thermodynamic values for producing a series of intermediate implicated in the catalytic hydrogenation of CO. Observations of metalloformyl complexes produced by reactions of H{sub 2} and CO, and reductive coupling of CO to form metallo {alpha}-diketone species have suggested a multiplicity of routes to organic oxygenates that utilize these species as intermediates. Thermodynamic and kinetic-mechanistic studies are used in constructing energy profiles for a variety of potential pathways, and these schemes are used in guiding the design of new metallospecies to improve the thermodynamic and kinetic factors for individual steps in the overall process. Variation of the electronic and steric effects associated with the ligand arrays along with the influences of the reaction medium provide the chemical tools for tuning these factors. Emerging knowledge of the factors that contribute to M-H, M-C and M-O bond enthalpies is directing the search for ligand arrays that will expand the range of metal species that have favorable thermodynamic parameters to produce the primary intermediates for CO hydrogenation. Studies of rhodium complexes are being extended to non-macrocyclic ligand complexes that emulate the favorable thermodynamic features associated with rhodium macrocycles, but that also manifest improved reaction kinetics. Multifunctional catalyst systems designed to couple the ability of rhodium complexes to produce formyl and diketone intermediates with a second catalyst that hydrogenates these imtermediates are promising approaches to accomplish CO hydrogenation at mild conditions.

  5. Crystallization and preliminary X-ray characterization of the catalytic domain of collagenase G from Clostridium histolyticum

    International Nuclear Information System (INIS)

    Eckhard, Ulrich; Nüss, Dorota; Ducka, Paulina; Schönauer, Esther; Brandstetter, Hans

    2008-01-01

    The catalytic domain of collagenase G from C. histolyticum was expressed in E. coli BL21 (DE3) and purified using affinity and size-exclusion column-chromatographic methods. Crystals were obtained at 290 K by the sitting-drop vapour-diffusion method and diffraction data have been collected to 2.75 Å resolution. The catalytic domain of collagenase G from Clostridium histolyticum has been cloned, recombinantly expressed in Escherichia coli and purified using affinity and size-exclusion column-chromatographic methods. Crystals of the catalytic domain were obtained from 0.12 M sodium citrate and 23%(v/v) PEG 3350 at 293 K. The crystals diffracted to 2.75 Å resolution using synchrotron radiation. The crystals belong to an orthorhombic space group, with unit-cell parameters a = 57, b = 109, c = 181 Å. This unit cell is consistent with the presence of one molecule per asymmetric unit and a solvent content of approximately 53%

  6. Crystallization and preliminary X-ray characterization of the catalytic domain of collagenase G from Clostridium histolyticum

    Energy Technology Data Exchange (ETDEWEB)

    Eckhard, Ulrich, E-mail: ulrich.eckhard@sbg.ac.at; Nüss, Dorota; Ducka, Paulina; Schönauer, Esther; Brandstetter, Hans [Structural Biology Group, Department of Molecular Biology, University of Salzburg, 5020 Salzburg (Austria)

    2008-05-01

    The catalytic domain of collagenase G from C. histolyticum was expressed in E. coli BL21 (DE3) and purified using affinity and size-exclusion column-chromatographic methods. Crystals were obtained at 290 K by the sitting-drop vapour-diffusion method and diffraction data have been collected to 2.75 Å resolution. The catalytic domain of collagenase G from Clostridium histolyticum has been cloned, recombinantly expressed in Escherichia coli and purified using affinity and size-exclusion column-chromatographic methods. Crystals of the catalytic domain were obtained from 0.12 M sodium citrate and 23%(v/v) PEG 3350 at 293 K. The crystals diffracted to 2.75 Å resolution using synchrotron radiation. The crystals belong to an orthorhombic space group, with unit-cell parameters a = 57, b = 109, c = 181 Å. This unit cell is consistent with the presence of one molecule per asymmetric unit and a solvent content of approximately 53%.

  7. Adsorbent catalytic nanoparticles and methods of using the same

    Energy Technology Data Exchange (ETDEWEB)

    Slowing, Igor Ivan; Kandel, Kapil

    2017-01-31

    The present invention provides an adsorbent catalytic nanoparticle including a mesoporous silica nanoparticle having at least one adsorbent functional group bound thereto. The adsorbent catalytic nanoparticle also includes at least one catalytic material. In various embodiments, the present invention provides methods of using and making the adsorbent catalytic nanoparticles. In some examples, the adsorbent catalytic nanoparticles can be used to selectively remove fatty acids from feedstocks for biodiesel, and to hydrotreat the separated fatty acids.

  8. Pair Interaction of Catalytical Sphere Dimers in Chemically Active Media

    Directory of Open Access Journals (Sweden)

    Jing-Min Shi

    2018-01-01

    Full Text Available We study the pair dynamics of two self-propelled sphere dimers in the chemically active medium in which a cubic autocatalytic chemical reaction takes place. Concentration gradient around the dimer, created by reactions occurring on the catalytic sphere surface and responsible for the self-propulsion, is greatly influenced by the chemical activities of the environment. Consequently, the pair dynamics of two dimers mediated by the concentration field are affected. In the particle-based mesoscopic simulation, we combine molecular dynamics (MD for potential interactions and reactive multiparticle collision dynamics (RMPC for solvent flow and bulk reactions. Our results indicate three different configurations between a pair of dimers after the collision, i.e., two possible scenarios of bound dimer pairs and one unbound dimer pair. A phase diagram is sketched as a function of the rate coefficients of the environment reactions. Since the pair interactions are the basic elements of larger scale systems, we believe the results may shed light on the understanding of the collective dynamics.

  9. Contributions to the theory of catalytic titrations-III Neutralization catalytic titrations.

    Science.gov (United States)

    Gaál, F F; Abramović, B F

    1985-07-01

    Neutralization catalytic titrations of weak monoprotic adds and bases with both volumetric and coulometric addition of the titrant (strong base/acid) have been simulated by taking into account the equilibrium concentration of the catalyst during the titration. The influence of several factors on the shape of the simulated catalytic titration curve has been investigated and is discussed.

  10. Lake topography and wind waves determining seasonal-spatial dynamics of total suspended matter in turbid Lake Taihu, China: assessment using long-term high-resolution MERIS data.

    Science.gov (United States)

    Zhang, Yunlin; Shi, Kun; Liu, Xiaohan; Zhou, Yongqiang; Qin, Boqiang

    2014-01-01

    Multiple comprehensive in situ bio-optical investigations were conducted from 2005 to 2010 and covered a large variability of total suspended matter (TSM) in Lake Taihu to calibrate and validate a TSM concentration estimation model based on Medium Resolution Imaging Spectrometer (MERIS) data. The estimation model of the TSM concentration in Lake Taihu was developed using top-of-atmosphere (TOA) radiance of MERIS image data at band 9 in combination with a regional empirical atmospheric correction model, which was strongly correlated with the in situ TSM concentration (r(2) = 0.720, pwind speed and TSM concentration (r(2)= 0.685, pwind speed in the TSM variations in Lake Taihu. In addition, a low TSM concentration was linked to the appearance of submerged aquatic vegetation (SAV). Therefore, TSM dynamics were controlled by the lake topography, wind-driven sediment resuspension and SAV distribution.

  11. Ultrafast supercontinuum fiber-laser based pump-probe scanning magneto-optical Kerr effect microscope for the investigation of electron spin dynamics in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution.

    Science.gov (United States)

    Henn, T; Kiessling, T; Ossau, W; Molenkamp, L W; Biermann, K; Santos, P V

    2013-12-01

    We describe a two-color pump-probe scanning magneto-optical Kerr effect microscope which we have developed to investigate electron spin phenomena in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. The key innovation of our microscope is the usage of an ultrafast "white light" supercontinuum fiber-laser source which provides access to the whole visible and near-infrared spectral range. Our Kerr microscope allows for the independent selection of the excitation and detection energy while avoiding the necessity to synchronize the pulse trains of two separate picosecond laser systems. The ability to independently tune the pump and probe wavelength enables the investigation of the influence of excitation energy on the optically induced electron spin dynamics in semiconductors. We demonstrate picosecond real-space imaging of the diffusive expansion of optically excited electron spin packets in a (110) GaAs quantum well sample to illustrate the capabilities of the instrument.

  12. Practical approaches to the ESI-MS analysis of catalytic reactions.

    Science.gov (United States)

    Yunker, Lars P E; Stoddard, Rhonda L; McIndoe, J Scott

    2014-01-01

    Electrospray ionization mass spectrometry (ESI-MS) is a soft ionization technique commonly coupled with liquid or gas chromatography for the identification of compounds in a one-time view of a mixture (for example, the resulting mixture generated by a synthesis). Over the past decade, Scott McIndoe and his research group at the University of Victoria have developed various methodologies to enhance the ability of ESI-MS to continuously monitor catalytic reactions as they proceed. The power, sensitivity and large dynamic range of ESI-MS have allowed for the refinement of several homogenous catalytic mechanisms and could potentially be applied to a wide range of reactions (catalytic or otherwise) for the determination of their mechanistic pathways. In this special feature article, some of the key challenges encountered and the adaptations employed to counter them are briefly reviewed. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Atomically Precise Metal Nanoclusters for Catalytic Application

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Rongchao [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2016-11-18

    The central goal of this project is to explore the catalytic application of atomically precise gold nanoclusters. By solving the total structures of ligand-protected nanoclusters, we aim to correlate the catalytic properties of metal nanoclusters with their atomic/electronic structures. Such correlation unravel some fundamental aspects of nanocatalysis, such as the nature of particle size effect, origin of catalytic selectivity, particle-support interactions, the identification of catalytically active centers, etc. The well-defined nanocluster catalysts mediate the knowledge gap between single crystal model catalysts and real-world conventional nanocatalysts. These nanoclusters also hold great promise in catalyzing certain types of reactions with extraordinarily high selectivity. These aims are in line with the overall goals of the catalytic science and technology of DOE and advance the BES mission “to support fundamental research to understand, predict, and ultimately control matter and energy at the level of electrons, atoms, and molecules”. Our group has successfully prepared different sized, robust gold nanoclusters protected by thiolates, such as Au25(SR)18, Au28(SR)20, Au38(SR)24, Au99(SR)42, Au144(SR)60, etc. Some of these nanoclusters have been crystallographically characterized through X-ray crystallography. These ultrasmall nanoclusters (< 2 nm diameter) exhibit discrete electronic structures due to quantum size effect, as opposed to quasicontinuous band structure of conventional metal nanoparticles or bulk metals. The available atomic structures (metal core plus surface ligands) of nanoclusters serve as the basis for structure-property correlations. We have investigated the unique catalytic properties of nanoclusters (i.e. not observed in conventional nanogold catalysts) and revealed the structure-selectivity relationships. Highlights of our

  14. Tracking Land Use/Land Cover Dynamics in Cloud Prone Areas Using Moderate Resolution Satellite Data: A Case Study in Central Africa

    Directory of Open Access Journals (Sweden)

    Bikash Basnet

    2015-05-01

    Full Text Available Tracking land surface dynamics over cloud prone areas with complex mountainous terrain is an important challenge facing the Earth Science community. One such region is the Lake Kivu region in Central Africa. We developed a processing chain to systematically monitor the spatio-temporal land use/land cover dynamics of this region over the years 1988, 2001, and 2011 using Landsat data, complemented by ancillary data. Topographic compensation was performed on Landsat reflectances to avoid the strong illumination angle impacts and image compositing was used to compensate for frequent cloud cover and thus incomplete annual data availability in the archive. A systematic supervised classification was applied to the composite Landsat imagery to obtain land cover thematic maps with overall accuracies of 90% and higher. Subsequent change analysis between these years found extensive conversions of the natural environment as a result of human related activities. The gross forest cover loss for 1988–2001 and 2001–2011 period was 216.4 and 130.5 thousand hectares, respectively, signifying significant deforestation in the period of civil war and a relatively stable and lower deforestation rate later, possibly due to conservation and reforestation efforts in the region. The other dominant land cover changes in the region were aggressive subsistence farming and urban expansion displacing natural vegetation and arable lands. Despite limited data availability, this study fills the gap of much needed detailed and updated land cover change information for this biologically important region of Central Africa. These multi-temporal datasets will be a valuable baseline for land use managers in the region interested in developing ecologically sustainable land management strategies and measuring the impacts of biodiversity conservation efforts.

  15. Revealing dynamically-organized receptor ion channel clusters in live cells by a correlated electric recording and super-resolution single-molecule imaging approach.

    Science.gov (United States)

    Yadav, Rajeev; Lu, H Peter

    2018-03-28

    The N-methyl-d-aspartate (NMDA) receptor ion-channel is activated by the binding of ligands, along with the application of action potential, important for synaptic transmission and memory functions. Despite substantial knowledge of the structure and function, the gating mechanism of the NMDA receptor ion channel for electric on-off signals is still a topic of debate. We investigate the NMDA receptor partition distribution and the associated channel's open-close electric signal trajectories using a combined approach of correlating single-molecule fluorescence photo-bleaching, single-molecule super-resolution imaging, and single-channel electric patch-clamp recording. Identifying the compositions of NMDA receptors, their spatial organization and distributions over live cell membranes, we observe that NMDA receptors are organized inhomogeneously: nearly half of the receptor proteins are individually dispersed; whereas others exist in heterogeneous clusters of around 50 nm in size as well as co-localized within the diffraction limited imaging area. We demonstrate that inhomogeneous interactions and partitions of the NMDA receptors can be a cause of the heterogeneous gating mechanism of NMDA receptors in living cells. Furthermore, comparing the imaging results with the ion-channel electric current recording, we propose that the clustered NMDA receptors may be responsible for the variation in the current amplitude observed in the on-off two-state ion-channel electric signal trajectories. Our findings shed new light on the fundamental structure-function mechanism of NMDA receptors and present a conceptual advancement of the ion-channel mechanism in living cells.

  16. Actively heated high-resolution fiber-optic-distributed temperature sensing to quantify streambed flow dynamics in zones of strong groundwater upwelling

    Science.gov (United States)

    Briggs, Martin A.; Buckley, Sean F.; Bagtzoglou, Amvrossios C.; Werkema, Dale D.; Lane, John W.

    2016-01-01

    Zones of strong groundwater upwelling to streams enhance thermal stability and moderate thermal extremes, which is particularly important to aquatic ecosystems in a warming climate. Passive thermal tracer methods used to quantify vertical upwelling rates rely on downward conduction of surface temperature signals. However, moderate to high groundwater flux rates (>−1.5 m d−1) restrict downward propagation of diurnal temperature signals, and therefore the applicability of several passive thermal methods. Active streambed heating from within high-resolution fiber-optic temperature sensors (A-HRTS) has the potential to define multidimensional fluid-flux patterns below the extinction depth of surface thermal signals, allowing better quantification and separation of local and regional groundwater discharge. To demonstrate this concept, nine A-HRTS were emplaced vertically into the streambed in a grid with ∼0.40 m lateral spacing at a stream with strong upward vertical flux in Mashpee, Massachusetts, USA. Long-term (8–9 h) heating events were performed to confirm the dominance of vertical flow to the 0.6 m depth, well below the extinction of ambient diurnal signals. To quantify vertical flux, short-term heating events (28 min) were performed at each A-HRTS, and heat-pulse decay over vertical profiles was numerically modeled in radial two dimension (2-D) using SUTRA. Modeled flux values are similar to those obtained with seepage meters, Darcy methods, and analytical modeling of shallow diurnal signals. We also observed repeatable differential heating patterns along the length of vertically oriented sensors that may indicate sediment layering and hyporheic exchange superimposed on regional groundwater discharge.

  17. Reactivity of organic compounds in catalytic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Minachev, Kh M; Bragin, O V

    1978-01-01

    A comprehensive review of 1976 Soviet research on catalysis delivered to the 1977 annual session of the USSR Academy of Science Council on Catalysis (Baku 6/16-20/77) covers hydrocarbon reactions, including hydrogenation and hydrogenolysis, dehydrogenation, olefin dimerization and disproportionation, and cyclization and dehydrocyclization (e.g., piperylene cyclization and ethylene cyclotrimerization); catalytic and physicochemical properties of zeolites, including cracking, dehydrogenation, and hydroisomerization catalytic syntheses and conversion of heterocyclic and functional hydrocarbon derivatives, including partial and total oxidation (e.g., of o-xylene to phthalic anhydride); syntheses of thiophenes from alkanes and hydrogen sulfide over certain dehydrogenation catalysts; catalytic syntheses involving carbon oxides ( e.g., the development of a new heterogeneous catalyst for hydroformylation of olefins), and of Co-MgO zeolitic catalysts for synthesis of aliphatic hydrocarbons from carbon dioxide and hydrogen, and fabrication of high-viscosity lubricating oils over bifunctional aluminosilicate catalysts.

  18. Catalytic Organic Transformations Mediated by Actinide Complexes

    Directory of Open Access Journals (Sweden)

    Isabell S. R. Karmel

    2015-10-01

    Full Text Available This review article presents the development of organoactinides and actinide coordination complexes as catalysts for homogeneous organic transformations. This chapter introduces the basic principles of actinide catalysis and deals with the historic development of actinide complexes in catalytic processes. The application of organoactinides in homogeneous catalysis is exemplified in the hydroelementation reactions, such as the hydroamination, hydrosilylation, hydroalkoxylation and hydrothiolation of alkynes. Additionally, the use of actinide coordination complexes for the catalytic polymerization of α-olefins and the ring opening polymerization of cyclic esters is presented. The last part of this review article highlights novel catalytic transformations mediated by actinide compounds and gives an outlook to the further potential of this field.

  19. Modeling and simulation of heterogeneous catalytic processes

    CERN Document Server

    Dixon, Anthony

    2014-01-01

    Heterogeneous catalysis and mathematical modeling are essential components of the continuing search for better utilization of raw materials and energy, with reduced impact on the environment. Numerical modeling of chemical systems has progressed rapidly due to increases in computer power, and is used extensively for analysis, design and development of catalytic reactors and processes. This book presents reviews of the state-of-the-art in modeling of heterogeneous catalytic reactors and processes. Reviews by leading authorities in the respective areas Up-to-date reviews of latest techniques in modeling of catalytic processes Mix of US and European authors, as well as academic/industrial/research institute perspectives Connections between computation and experimental methods in some of the chapters.

  20. Deterministic methods for the relativistic Vlasov-Maxwell equations and the Van Allen belts dynamics; Methodes deterministes de resolution des equations de Vlasov-Maxwell relativistes en vue du calcul de la dynamique des ceintures de Van Allen

    Energy Technology Data Exchange (ETDEWEB)

    Le Bourdiec, S

    2007-03-15

    Artificial satellites operate in an hostile radiation environment, the Van Allen radiation belts, which partly condition their reliability and their lifespan. In order to protect them, it is necessary to characterize the dynamics of the energetic electrons trapped in these radiation belts. This dynamics is essentially determined by the interactions between the energetic electrons and the existing electromagnetic waves. This work consisted in designing a numerical scheme to solve the equations modelling these interactions: the relativistic Vlasov-Maxwell system of equations. Our choice was directed towards methods of direct integration. We propose three new spectral methods for the momentum discretization: a Galerkin method and two collocation methods. All of them are based on scaled Hermite functions. The scaling factor is chosen in order to obtain the proper velocity resolution. We present in this thesis the discretization of the one-dimensional Vlasov-Poisson system and the numerical results obtained. Then we study the possible extensions of the methods to the complete relativistic problem. In order to reduce the computing time, parallelization and optimization of the algorithms were carried out. Finally, we present 1Dx-3Dv (mono-dimensional for x and three-dimensional for velocity) computations of Weibel and whistler instabilities with one or two electrons species. (author)

  1. Structure and dynamics of alpha-tocopherol in model membranes and in solution: a broad-line and high-resolution NMR study

    International Nuclear Information System (INIS)

    Ekiel, I.H.; Hughes, L.; Burton, G.W.; Jovall, P.A.; Ingold, K.U.; Smith, I.C.

    1988-01-01

    Nuclear magnetic resonance has been applied to study the conformational dynamics of alpha-tocopherol (vitamin E) in solution and in model membranes. In nonviscous solution, 1 H nuclear magnetic resonance (NMR) showed that alpha-tocopherol is in rapid equilibrium between two or more puckered conformers of its heterocyclic ring. The most likely conformers to be so involved are the two half-chair forms. Deuterium NMR spectra of specifically deuteriated alpha-tocopherol in multilamellar dispersions of egg phosphatidylcholine, measured in the liquid-crystalline state, were characteristic of axially symmetric motional averaging. The orientation of the rotational axis within the molecular framework was determined. Studies on oriented multilamellar membranes revealed that this axis is perpendicular to the surface of the membrane. The profile of quadrupolar splittings along the hydrophobic tail does not have a plateau, in contrast to that of the fatty acyl chains of the membrane lipids. Longitudinal relaxation times (T1) were short. The presence of a minimum in their temperature dependence shows that molecular motion with an effective correlation time tau eff approximately equal to 3 X 10(-9)s is responsible for relaxation. However, the temperatures and absolute values of the minima depend on the position of the deuterium in the molecule, demonstrating that tau eff represents a complex blend of motions

  2. Dynamic gauge adjustment of high-resolution X-band radar data for convective rain storms: Model-based evaluation against measured combined sewer overflow

    Science.gov (United States)

    Borup, Morten; Grum, Morten; Linde, Jens Jørgen; Mikkelsen, Peter Steen

    2016-08-01

    Numerous studies have shown that radar rainfall estimates need to be adjusted against rain gauge measurements in order to be useful for hydrological modelling. In the current study we investigate if adjustment can improve radar rainfall estimates to the point where they can be used for modelling overflows from urban drainage systems, and we furthermore investigate the importance of the aggregation period of the adjustment scheme. This is done by continuously adjusting X-band radar data based on the previous 5-30 min of rain data recorded by multiple rain gauges and propagating the rainfall estimates through a hydraulic urban drainage model. The model is built entirely from physical data, without any calibration, to avoid bias towards any specific type of rainfall estimate. The performance is assessed by comparing measured and modelled water levels at a weir downstream of a highly impermeable, well defined, 64 ha urban catchment, for nine overflow generating rain events. The dynamically adjusted radar data perform best when the aggregation period is as small as 10-20 min, in which case it performs much better than static adjusted radar data and data from rain gauges situated 2-3 km away.

  3. A high resolution helium atom scattering and far infrared study of the dynamics and the lateral potential energy surface of CO molecules chemisorbed on Cu(001)

    International Nuclear Information System (INIS)

    Graham, A.P.; Hofmann, F.; Toennies, J.P.; Williams, G.P.; Hirschmugl, C.J.; Ellis, J.

    1998-01-01

    Inelastic helium scattering (HAS) and infrared reflection adsorption spectroscopy (IRAS) have been used to measure the isotope shifts of the frequencies of both the parallel and perpendicular frustrated translation modes, as well as the frustrated rotation mode of CO molecules at on top sites on Cu(001). The measured isotope shifts for four different isotopomers indicates a significant rotational contribution to the parallel frustrated translation (T-mode), where the vibrational amplitude of the oxygen atom is significantly larger than for the carbon atom. Conversely, for the frustrated rotation the vibrational amplitude of the carbon atom was observed to be larger than for the oxygen atom. At surface temperatures above T s =100 K a careful analysis of the peak shape of the HAS quasielastic peak shows a small broadening, which is attributed to a rapid diffusion of the CO molecules. The measured dynamic diffusion barrier of 31±10 meV is compatible with the shape of the potential at the on-top site and makes it possible to extend the potential energy surface to the region between the on-top sites. copyright 1998 American Institute of Physics

  4. Biologically relevant conformational features of linear and cyclic proteolipid protein (PLP) peptide analogues obtained by high-resolution nuclear magnetic resonance and molecular dynamics

    Science.gov (United States)

    Kordopati, Golfo G.; Tzoupis, Haralambos; Troganis, Anastassios N.; Tsivgoulis, Gerasimos M.; Golic Grdadolnik, Simona; Simal, Carmen; Tselios, Theodore V.

    2017-09-01

    Proteolipid protein (PLP) is one of the main proteins of myelin sheath that are destroyed during the progress of multiple sclerosis (MS). The immunodominant PLP139-151 epitope is known to induce experimental autoimmune encephalomyelitis (EAE, animal model of MS), wherein residues 144 and 147 are recognized by T cell receptor (TCR) during the formation of trimolecular complex with peptide-antigen and major histocompability complex. The conformational behavior of linear and cyclic peptide analogues of PLP, namely PLP139-151 and cyclic (139-151) (L144, R147) PLP139-151, have been studied in solution by means of nuclear magnetic resonance (NMR) methods in combination with unrestrained molecular dynamics simulations. The results indicate that the side chains of mutated amino acids in the cyclic analogue have different spatial orientation compared with the corresponding side chains of the linear analogue, which can lead to reduced affinity to TCR. NMR experiments combined with theoretical calculations pave the way for the design and synthesis of potent restricted peptides of immunodominant PLP139-151 epitope as well as non peptide mimetics that rises as an ultimate goal.

  5. Catalytic Wastewater Treatment Using Pillared Clays

    Science.gov (United States)

    Perathoner, Siglinda; Centi, Gabriele

    After introduction on the use of solid catalysts in wastewater treatment technologies, particularly advanced oxidation processes (AOPs), this review discussed the use of pillared clay (PILC) materials in three applications: (i) wet air catalytic oxidation (WACO), (ii) wet hydrogen peroxide catalytic oxidation (WHPCO) on Cu-PILC and Fe-PILC, and (iii) behavior of Ti-PILC and Fe-PILC in the photocatalytic or photo-Fenton conversion of pollutants. Literature data are critically analyzed to evidence the main direction to further investigate, in particularly with reference to the possible practical application of these technologies to treat industrial, municipal, or agro-food production wastewater.

  6. Thermal and catalytic pyrolysis of plastic waste

    Directory of Open Access Journals (Sweden)

    Débora Almeida

    2016-02-01

    Full Text Available Abstract The amount of plastic waste is growing every year and with that comes an environmental concern regarding this problem. Pyrolysis as a tertiary recycling process is presented as a solution. Pyrolysis can be thermal or catalytical and can be performed under different experimental conditions. These conditions affect the type and amount of product obtained. With the pyrolysis process, products can be obtained with high added value, such as fuel oils and feedstock for new products. Zeolites can be used as catalysts in catalytic pyrolysis and influence the final products obtained.

  7. Janus droplet as a catalytic micromotor

    Science.gov (United States)

    Shklyaev, Sergey

    2015-06-01

    Self-propulsion of a Janus droplet in a solution of surfactant, which reacts on a half of a drop surface, is studied theoretically. The droplet acts as a catalytic motor creating a concentration gradient, which generates its surface-tension-driven motion; the self-propulsion speed is rather high, 60 μ \\text{m/s} and more. This catalytic motor has several advantages over other micromotors: simple manufacturing, easily attained neutral buoyancy. In contrast to a single-fluid droplet, which demonstrates a self-propulsion as a result of symmetry breaking instability, for the Janus one no stability threshold exists; hence, the droplet radius can be scaled down to micrometers.

  8. Catalytic burners in larger boiler appliances

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, Fredrik; Persson, Mikael (Catator AB, Lund (Sweden))

    2009-02-15

    This project focuses on the scale up of a Catator's catalytic burner technology to enable retrofit installation in existing boilers and the design of new innovative combinations of catalytic burners and boilers. Different design approaches are discussed and evaluated in the report and suggestions are made concerning scale-up. Preliminary test data, extracted from a large boiler installation are discussed together with an accurate analysis of technical possibilities following an optimization of the boiler design to benefit from the advantages of catalytic combustion. The experimental work was conducted in close collaboration with ICI Caldaie (ICI), located in Verona, Italy. ICI is a leading European boiler manufacturer in the effect segment ranging from about 20 kWt to several MWt. The study shows that it is possibly to scale up the burner technology and to maintain low emissions. The boilers used in the study were designed around conventional combustion and were consequently not optimized for implementation of catalytic burners. From previous experiences it stands clear that the furnace volume can be dramatically decreased when applying catalytic combustion. In flame combustion, this volume is normally dimensioned to avoid flame impingement on cold surfaces and to facilitate completion of the gas-phase reactions. The emissions of nitrogen oxides can be reduced by decreasing the residence time in the furnace. Even with the over-dimensioned furnace used in this study, we easily reached emission values close to 35 mg/kWh. The emissions of carbon monoxide and unburned hydrocarbons were negligible (less than 5 ppmv). It is possible to decrease the emissions of nitrogen oxides further by designing the furnace/boiler around the catalytic burner, as suggested in the report. Simultaneously, the size of the boiler installation can be reduced greatly, which also will result in material savings, i.e. the production cost can be reduced. It is suggested to optimize the

  9. Catalytic gasification of oil-shales

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.; Avakyan, T. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation); Strizhakova, Yu. [Samara State Univ. (Russian Federation)

    2012-07-01

    Nowadays, the problem of complex usage of solid fossil fuels as raw materials for obtaining of motor fuels and chemical products is becoming increasingly important. A one of possible solutions of the problem is their gasification with further processing of gaseous and liquid products. In this work we have investigated the process of thermal and catalytic gasification of Baltic and Kashpir oil-shales. We have shown that, as compared with non-catalytic process, using of nickel catalyst in the reaction increases the yield of gas, as well as hydrogen content in it, and decreases the amount of liquid products. (orig.)

  10. Using electron beams to investigate catalytic materials

    International Nuclear Information System (INIS)

    Zhang, Bingsen; Su, Dang Sheng

    2014-01-01

    Transmission Electron microscopy (TEM) enables us, not only to reveal the morphology, but also to provide structural, chemical and electronic information about solid catalysts at the atomic level, providing a dramatic driving force for the development of heterogeneous catalysis. Almost all catalytic materials have been studied with TEM in order to obtain information about their structures, which can help us to establish the synthesis-structure-property relationships and to design catalysts with new structures and desired properties. Herein, several examples will be reviewed to illustrate the investigation of catalytic materials by using electron beams. (authors)

  11. The use of Phoenics in the design of catalytic converters

    Energy Technology Data Exchange (ETDEWEB)

    Luoma, M. [Kemira Metalkat Oy, Oulu (Finland); Smith, A.G. [S and C Thermofluids Ltd, Bath (United Kingdom)

    1996-12-31

    Manufacturers of automotive catalytic converters are constrained to design a system which is mechanically reliable, puts low back pressure on the engine, has adequate conversion performance, is low cost and of minimum size. In recent years, computational fluid dynamics (CFD) has been widely examined as a means of predicting the performance of catalytic converters to aid with the design process. Kemira Metalkat and S and C Thermofluids have put together and developed a number of existing CFD techniques in order to create a tool which is integrated within the design process. PHOENICS is used in the heart of the system in order to produce predictions of transient (light-off) and steady state catalyst performance. Grid generation tools have been provided to allow simplified and rapid geometry definition with suitable integration (via FEMGEN) within other parts of the catalyst design process. Simplified input techniques have been provided along with associated translators to create specification of the model for PHOENICS. Post-processing software has been provided through FEMVIEW to allow visualisation of catalyst monolith variables and transient performance animation. The whole system is controlled via a menu. The system have been use to study the effects of the catalyst design parameters on the converter performance. The results obtained using the system have so far been more qualitative than quantitative. However, validation studies have been carried out to check pressure drop prediction. A new model for the pressure drop over a metallic monolith has been developed. (author)

  12. The use of Phoenics in the design of catalytic converters

    Energy Technology Data Exchange (ETDEWEB)

    Luoma, M [Kemira Metalkat Oy, Oulu (Finland); Smith, A G [S and C Thermofluids Ltd, Bath (United Kingdom)

    1997-12-31

    Manufacturers of automotive catalytic converters are constrained to design a system which is mechanically reliable, puts low back pressure on the engine, has adequate conversion performance, is low cost and of minimum size. In recent years, computational fluid dynamics (CFD) has been widely examined as a means of predicting the performance of catalytic converters to aid with the design process. Kemira Metalkat and S and C Thermofluids have put together and developed a number of existing CFD techniques in order to create a tool which is integrated within the design process. PHOENICS is used in the heart of the system in order to produce predictions of transient (light-off) and steady state catalyst performance. Grid generation tools have been provided to allow simplified and rapid geometry definition with suitable integration (via FEMGEN) within other parts of the catalyst design process. Simplified input techniques have been provided along with associated translators to create specification of the model for PHOENICS. Post-processing software has been provided through FEMVIEW to allow visualisation of catalyst monolith variables and transient performance animation. The whole system is controlled via a menu. The system have been use to study the effects of the catalyst design parameters on the converter performance. The results obtained using the system have so far been more qualitative than quantitative. However, validation studies have been carried out to check pressure drop prediction. A new model for the pressure drop over a metallic monolith has been developed. (author)

  13. Recent developments in research on catalytic reaction networks

    Directory of Open Access Journals (Sweden)

    Roberto Serra

    2013-09-01

    Full Text Available Over the last years, analyses performed on a stochastic model of catalytic reaction networks have provided some indications about the reasons why wet-lab experiments hardly ever comply with the phase transition typically predicted by theoretical models with regard to the emergence of collectively self-replicating sets of molecule (also defined as autocatalytic sets, ACSs, a phenomenon that is often observed in nature and that is supposed to have played a major role in the emergence of the primitive forms of life. The model at issue has allowed to reveal that the emerging ACSs are characterized by a general dynamical fragility, which might explain the difficulty to observe them in lab experiments. In this work, the main results of the various analyses are reviewed, with particular regard to the factors able to affect the generic properties of catalytic reactions network, for what concerns, not only the probability of ACSs to be observed, but also the overall activity of the system, in terms of production of new species, reactions and matter.

  14. High-resolution studies of tropolone in the S0 and S1 electronic states: isotope driven dynamics in the zero-point energy levels.

    Science.gov (United States)

    Keske, John C; Lin, Wei; Pringle, Wallace C; Novick, Stewart E; Blake, Thomas A; Plusquellic, David F

    2006-02-21

    Rotationally resolved microwave (MW) and ultraviolet (UV) spectra of jet-cooled tropolone have been obtained in S(0) and S(1) electronic states using Fourier-transform microwave and UV-laser/molecular-beam spectrometers. In the ground electronic state, the MW spectra of all heavy-atom isotopomers including one (18)O and four (13)C isotopomers were observed in natural abundance. The OD isotopomer was obtained from isotopically enriched samples. The two lowest tunneling states of each isotopomer except (18)O have been assigned. The observed inversion splitting for the OD isotopomer is 1523.227(5) MHz. For the asymmetric (13)C structures, the magnitudes of tunneling-rotation interactions are found to diminish with decreasing distance between the heavy atom and the tunneling proton. In the limit of closest approach, the 0(+) state of (18)O was well fitted to an asymmetric rotor Hamiltonian, reflecting significant changes in the tautomerization dynamics. Comparisons of the substituted atom coordinates with theoretical predictions at the MP2/aug-cc-pVTZ level of theory suggest the localized 0(+) and 0(-) wave functions of the heavier isotopes favor the C-OH and C=O forms of tropolone, respectively. The only exception occurs for the (13)C-OH and (13)C[Double Bond]O structures which correlate to the 0(-) and 0(+) states, respectively. These preferences reflect kinetic isotope effects as quantitatively verified by the calculated zero-point energy differences between members of the asymmetric atom pairs. From rotationally resolved data of the 0(+) <--0(+) and 0(-) <--0(-) bands in S(1), line-shape fits have yielded Lorentzian linewidths that differ by 12.2(16) MHz over the 19.88(4) cm(-1) interval in S(1). The fluorescence decay rates together with previously reported quantum yield data give nonradiative decay rates of 7.7(5) x 10(8) and 8.5(5) x 10(8) s(-1) for the 0(+) and 0(-) levels of the S(1) state of tropolone.

  15. Singularity resolution in quantum gravity

    International Nuclear Information System (INIS)

    Husain, Viqar; Winkler, Oliver

    2004-01-01

    We examine the singularity resolution issue in quantum gravity by studying a new quantization of standard Friedmann-Robertson-Walker geometrodynamics. The quantization procedure is inspired by the loop quantum gravity program, and is based on an alternative to the Schroedinger representation normally used in metric variable quantum cosmology. We show that in this representation for quantum geometrodynamics there exists a densely defined inverse scale factor operator, and that the Hamiltonian constraint acts as a difference operator on the basis states. We find that the cosmological singularity is avoided in the quantum dynamics. We discuss these results with a view to identifying the criteria that constitute 'singularity resolution' in quantum gravity

  16. Requirements on high resolution detectors

    Energy Technology Data Exchange (ETDEWEB)

    Koch, A. [European Synchrotron Radiation Facility, Grenoble (France)

    1997-02-01

    For a number of microtomography applications X-ray detectors with a spatial resolution of 1 {mu}m are required. This high spatial resolution will influence and degrade other parameters of secondary importance like detective quantum efficiency (DQE), dynamic range, linearity and frame rate. This note summarizes the most important arguments, for and against those detector systems which could be considered. This article discusses the mutual dependencies between the various figures which characterize a detector, and tries to give some ideas on how to proceed in order to improve present technology.

  17. Fluid catalytic cracking : Feedstocks and reaction mechanism

    NARCIS (Netherlands)

    Dupain, X.

    2006-01-01

    The Fluid Catalytic Cracking (FCC) process is one of the key units in a modern refinery. Traditionally, its design is primarily aimed for the production of gasoline from heavy oil fractions, but as co-products also diesel blends and valuable gasses (e.g. propene and butenes) are formed in

  18. Kinetic equation of heterogeneous catalytic isotope exchange

    Energy Technology Data Exchange (ETDEWEB)

    Trokhimets, A I [AN Belorusskoj SSR, Minsk. Inst. Fiziko-Organicheskoj Khimii

    1979-12-01

    A kinetic equation is derived for the bimolecular isotope exchange reaction between AXsub(n)sup(*) and BXsub(m)sup(o), all atoms of element X in each molecule being equivalent. The equation can be generalized for homogeneous and heterogeneous catalytic isotope exchange.

  19. Complementary structure sensitive and insensitive catalytic relationships

    NARCIS (Netherlands)

    Santen, van R.A.

    2009-01-01

    The burgeoning field of nanoscience has stimulated an intense interest in properties that depend on particle size. For transition metal particles, one important property that depends on size is catalytic reactivity, in which bonds are broken or formed on the surface of the particles. Decreased

  20. Toward Facilitative Mentoring and Catalytic Interventions

    Science.gov (United States)

    Smith, Melissa K.; Lewis, Marilyn

    2015-01-01

    In TESOL teacher mentoring, giving advice can be conceptualized as a continuum, ranging from directive to facilitative feedback. The goal, over time, is to lead toward the facilitative end of the continuum and specifically to catalytic interventions that encourage self-reflection and autonomous learning. This study begins by examining research on…

  1. Electrochemical Promotion of Catalytic Reactions Using

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bjerrum, Niels; Cleemann, Lars Nilausen

    2007-01-01

    This paper presents the results of a study on electrochemical promotion (EP) of catalytic reactions using Pt/C/polybenzimidazole(H3PO4)/Pt/C fuel cell performed by the Energy and Materials Science Group (Technical University of Denmark) during the last 6 years[1-4]. The development of our...... understanding of the nature of the electrochemical promotion is also presented....

  2. Novel Metal Nanomaterials and Their Catalytic Applications

    Directory of Open Access Journals (Sweden)

    Jiaqing Wang

    2015-09-01

    Full Text Available In the rapidly developing areas of nanotechnology, nano-scale materials as heterogeneous catalysts in the synthesis of organic molecules have gotten more and more attention. In this review, we will summarize the synthesis of several new types of noble metal nanostructures (FePt@Cu nanowires, Pt@Fe2O3 nanowires and bimetallic Pt@Ir nanocomplexes; Pt-Au heterostructures, Au-Pt bimetallic nanocomplexes and Pt/Pd bimetallic nanodendrites; Au nanowires, CuO@Ag nanowires and a series of Pd nanocatalysts and their new catalytic applications in our group, to establish heterogeneous catalytic system in “green” environments. Further study shows that these materials have a higher catalytic activity and selectivity than previously reported nanocrystal catalysts in organic reactions, or show a superior electro-catalytic activity for the oxidation of methanol. The whole process might have a great impact to resolve the energy crisis and the environmental crisis that were caused by traditional chemical engineering. Furthermore, we hope that this article will provide a reference point for the noble metal nanomaterials’ development that leads to new opportunities in nanocatalysis.

  3. Toward a catalytic site in DNA

    DEFF Research Database (Denmark)

    Jakobsen, Ulla; Rohr, Katja; Vogel, Stefan

    2007-01-01

    A number of functionalized polyaza crown ether building blocks have been incorporated into DNA-conjugates as catalytic Cu(2+) binding sites. The effect of the DNA-conjugate catalyst on the stereochemical outcome of a Cu(2+)-catalyzed Diels-Alder reaction will be presented....

  4. CATALYTIC SPECTROPHOTOMETRIC DETERMINATION OF Mn(II ...

    African Journals Online (AJOL)

    Preferred Customer

    method is based on the catalytic effect of Mn(II) with the oxidation of Celestine blue .... water samples were filtered through a 0.45 μm pore size membrane filter to remove suspended .... slope of the calibration graph as the optimization criterion. ..... In presence of Phen as stability enhancement agent in indicator system. ( ) +.

  5. Catalytic asymmetric synthesis of the alkaloid (+)-myrtine

    NARCIS (Netherlands)

    Pizzuti, Maria Gabriefla; Minnaard, Adriaan J.; Feringa, Ben L.

    2008-01-01

    A new protocol for the asymmetric synthesis of trans-2,6-disubstituted-4-piperidones has been developed using a catalytic enantioselective conjugate addition reaction in combination with a diastereoselective lithiation-substitution sequence; an efficient synthesis of (+)-myrtine has been achieved

  6. Catalytic oxidation of cyclohexane to cyclohexanone

    Indian Academy of Sciences (India)

    ... a precursor and characterized by chemical analysis using the ICP–AES method, XRD, TEM, FTIR and BET surface area determination. The oxidation reaction was carried out at 70°C under atmospheric pressure. The results showed the catalytic performance of Pt/Al2O3 as being very high in terms of turnover frequency.

  7. Catalytic site interactions in yeast OMP synthase

    DEFF Research Database (Denmark)

    Hansen, Michael Riis; Barr, Eric W.; Jensen, Kaj Frank

    2014-01-01

    45 (2006) 5330-5342]. This behavior was investigated in the yeast enzyme by mutations in the conserved catalytic loop and 5-phosphoribosyl-1-diphosphate (PRPP) binding motif. Although the reaction is mechanistically sequential, the wild-type (WT) enzyme shows parallel lines in double reciprocal...

  8. Flame assisted synthesis of catalytic ceramic membranes

    DEFF Research Database (Denmark)

    Johansen, Johnny; Mosleh, Majid; Johannessen, Tue

    2004-01-01

    technology it is possible to make supported catalysts, composite metal oxides, catalytically active surfaces, and porous ceramic membranes. Membrane layers can be formed by using a porous substrate tube (or surface) as a nano-particle filter. The aerosol gas from the flame is led through a porous substrate...

  9. Sintering of Catalytic Nanoparticles: Particle Migration or Ostwald Ripening?

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; DeLaRiva, Andrew T.; Challa, Sivakumar R.

    2013-01-01

    deactivation, is an important mechanism for the loss of catalyst activity. This is especially true for high temperature catalytic processes, such as steam reforming, automotive exhaust treatment, or catalytic combustion. With dwindling supplies of precious metals and increasing demand, fundamental...

  10. Catalytic characterization of bi-functional catalysts derived from Pd ...

    Indian Academy of Sciences (India)

    Unknown

    1995; Lyubovsky and Pfefferle 1999; Sales et al 1999;. Hill et al 2000). ... For a catalytic system, whose activity ... catalytic systems containing Pd, supported on various acid- ..... Further studies are needed to optimize a balance between.

  11. Catalytically favorable surface patterns in Pt-Au nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb; Schwingenschlö gl, Udo

    2013-01-01

    Motivated by recent experimental demonstrations of novel PtAu nanoparticles with highly enhanced catalytic properties, we present a systematic theoretical study that explores principal catalytic indicators as a function of the particle size

  12. Catalytic site identification—a web server to identify catalytic site structural matches throughout PDB

    Science.gov (United States)

    Kirshner, Daniel A.; Nilmeier, Jerome P.; Lightstone, Felice C.

    2013-01-01

    The catalytic site identification web server provides the innovative capability to find structural matches to a user-specified catalytic site among all Protein Data Bank proteins rapidly (in less than a minute). The server also can examine a user-specified protein structure or model to identify structural matches to a library of catalytic sites. Finally, the server provides a database of pre-calculated matches between all Protein Data Bank proteins and the library of catalytic sites. The database has been used to derive a set of hypothesized novel enzymatic function annotations. In all cases, matches and putative binding sites (protein structure and surfaces) can be visualized interactively online. The website can be accessed at http://catsid.llnl.gov. PMID:23680785

  13. A fast, noniterative approach for accelerated high-temporal resolution cine-CMR using dynamically interleaved streak removal in the power-spectral encoded domain with low-pass filtering (DISPEL) and modulo-prime spokes (MoPS).

    Science.gov (United States)

    Kawaji, Keigo; Patel, Mita B; Cantrell, Charles G; Tanaka, Akiko; Marino, Marco; Tamura, Satoshi; Wang, Hui; Wang, Yi; Carroll, Timothy J; Ota, Takeyoshi; Patel, Amit R

    2017-07-01

    To introduce a pair of accelerated non-Cartesian acquisition principles that when combined, exploit the periodicity of k-space acquisition, and thereby enable acquisition of high-temporal cine Cardiac Magnetic Resonance (CMR). The mathematical formulation of a noniterative, undersampled non-Cartesian cine acquisition and reconstruction is presented. First, a low-pass filtering step that exploits streaking artifact redundancy is provided (i.e., Dynamically Interleaved Streak removal in the Power-spectrum Encoded domain with Low-pass filtering [DISPEL]). Next, an effective radial acquisition for the DISPEL approach that exploits the property of prime numbers is described (i.e., Modulo-Prime Spoke [MoPS]). Both DISPEL and MoPS are examined using numerical simulation of a digital heart phantom to show that high-temporal cine-CMR is feasible without removing physiologic motion vs aperiodic interleaving using Golden Angles. The combined high-temporal cine approach is next examined in 11 healthy subjects for a time-volume curve assessment of left ventricular systolic and diastolic performance vs conventional Cartesian cine-CMR reference. The DISPEL method was first shown using simulation under different streak cycles to allow separation of undersampled radial streaking artifacts from physiologic motion with a sufficiently frequent streak-cycle interval. Radial interleaving with MoPS is next shown to allow interleaves with pseudo-Golden-Angle variants, and be more compatible with DISPEL against irrational and nonperiodic rotation angles, including the Golden-Angle-derived rotations. In the in vivo data, the proposed method showed no statistical difference in the systolic performance, while diastolic parameters sensitive to the cine's temporal resolution were statistically significant (P cine). We demonstrate a high-temporal resolution cine-CMR using DISPEL and MoPS, whose streaking artifact was separated from physiologic motion. © 2017 American Association of Physicists

  14. Mean field approximation for the kinetics of the selective catalytic reduction of NO by ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Santos, M.; Bodanese, J.P. [Centro de Ensino Sao Jose, Universidade do Vale do Itajai (Brazil); S. Grandi, B.C. da [Departamento de Fisica, Universidade Federal de Santa Catarina, Florianopolis (Brazil)

    2007-04-15

    In this work we study a catalytic reaction model among three monomers in order to understand the chemical kinetics of the selective catalytic reduction of nitrogen oxide by ammonia (4NO+4NH{sub 3}+O{sub 2}{yields}4N{sub 2}+6H{sub 2}O). Our model takes into account the formation of the intermediate species in the global scheme of the reaction. In order to determine the dynamical behaviour of the model we used single site approximation method. In this approach we have observed that, depending on the values of the control parameters, the model presents an active or an inactive phase. In fact, the dynamical phase diagram of the model exhibits a first order line separating these two phases. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Direct instrumental identification of catalytically active surface sites

    Science.gov (United States)

    Pfisterer, Jonas H. K.; Liang, Yunchang; Schneider, Oliver; Bandarenka, Aliaksandr S.

    2017-09-01

    The activity of heterogeneous catalysts—which are involved in some 80 per cent of processes in the chemical and energy industries—is determined by the electronic structure of specific surface sites that offer optimal binding of reaction intermediates. Directly identifying and monitoring these sites during a reaction should therefore provide insight that might aid the targeted development of heterogeneous catalysts and electrocatalysts (those that participate in electrochemical reactions) for practical applications. The invention of the scanning tunnelling microscope (STM) and the electrochemical STM promised to deliver such imaging capabilities, and both have indeed contributed greatly to our atomistic understanding of heterogeneous catalysis. But although the STM has been used to probe and initiate surface reactions, and has even enabled local measurements of reactivity in some systems, it is not generally thought to be suited to the direct identification of catalytically active surface sites under reaction conditions. Here we demonstrate, however, that common STMs can readily map the catalytic activity of surfaces with high spatial resolution: we show that by monitoring relative changes in the tunnelling current noise, active sites can be distinguished in an almost quantitative fashion according to their ability to catalyse the hydrogen-evolution reaction or the oxygen-reduction reaction. These data allow us to evaluate directly the importance and relative contribution to overall catalyst activity of different defects and sites at the boundaries between two materials. With its ability to deliver such information and its ready applicability to different systems, we anticipate that our method will aid the rational design of heterogeneous catalysts.

  16. Characterisation by nuclear magnetic resonance of the β catalytic subunit of the chloroplastic coupling factor

    International Nuclear Information System (INIS)

    Andre, Francois

    1986-09-01

    This academic work addressed the use of nuclear magnetic resonance (NMR) for the structural and dynamic study of the catalytic sub-unit of the extrinsic section of a membrane complex, the chloroplastic H+-ATPase. This work included the development of a protocol of preparation and quantitative purification of β subunits isolated from the CF1 for the elaboration of a concentrated sample for NMR, and then the study of the β subunit by using proton NMR

  17. Visualizing a Catalyst at Work during the Ignition of the Catalytic Partial Oxidation of Methane

    DEFF Research Database (Denmark)

    Kimmerle, Bertram; Grunwaldt, Jan-Dierk; Baiker, Alfons

    2009-01-01

    We present a spatiotemporal operando X-ray absorption study of a highly dynamic process, the ignition of the noble metal catalyzed partial oxidation of methane. Evolvement and propagation of the platinum component's structural changes are investigated with a high-speed X-ray camera, which...... in combination with temperature profiling by IR-thermography and catalytic activity measurements by online mass spectrometry gives insight into the first stages of the ignition of the reaction toward hydrogen and carbon monoxide....

  18. Modelling and parameter estimation in reactive continuous mixtures: the catalytic cracking of alkanes - part II

    Directory of Open Access Journals (Sweden)

    F. C. PEIXOTO

    1999-09-01

    Full Text Available Fragmentation kinetics is employed to model a continuous reactive mixture of alkanes under catalytic cracking conditions. Standard moment analysis techniques are employed, and a dynamic system for the time evolution of moments of the mixture's dimensionless concentration distribution function (DCDF is found. The time behavior of the DCDF is recovered with successive estimations of scaled gamma distributions using the moments time data.

  19. Radioisotopic investigations of catalyst motion in the process of fluidal catalytic cracking

    International Nuclear Information System (INIS)

    Dalecki, W.; Bazaniak, Z.; Palige, J.; Michalik, J.

    1981-01-01

    By radioisotopic method the dynamic characteristics of reactor and regenerator of fluidal mode of catalytic cracking have been determined. Average times of catalyst staying, distribution of residence times, mass of catalyst circulating in installation, mass intensity of flow and height of fluidal bed have been estimated. It has been found a considerable participation of process of ideal mixing in the operation of both aggregates, what is particularly disadvantageous in the case of regenerator. (author)

  20. Catalytic monolayer voltammetry and in situ scanning tunneling microscopy of copper nitrite reductase on cysteamine-modified Au(111) electrodes

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Welinder, A.C.; Hansen, Allan Glargaard

    2003-01-01

    electrochemical scanning tunneling microscopy (in situ STM) directly in aqueous acetate buffer, pH 6.0 has been used. High-resolution in situ STM shows that cysteamine packs into ordered domains with strip features of a periodic distance of 11.7 +/- 0.3 Angstrom. No voltammetric signals of the nitrite substrate...... on this surface could be detected. A strong cathodic catalytic wave appears in the presence of nitrite. The catalytic current follows a Michaelis-Menten pattern with a Michaelis constant of K-m approximate to 44 muM, which is close to the value for AxCuNiR in homogeneous solution. The apparent catalytic rate...

  1. High-Resolution and Non-destructive Evaluation of the Spatial Distribution of Nitrate and Its Dynamics in Spinach (Spinacia oleracea L. Leaves by Near-Infrared Hyperspectral Imaging

    Directory of Open Access Journals (Sweden)

    Hao-Yu Yang

    2017-11-01

    Full Text Available Nitrate is an important component of the nitrogen cycle and is therefore present in all plants. However, excessive nitrogen fertilization results in a high nitrate content in vegetables, which is unhealthy for humans. Understanding the spatial distribution of nitrate in leaves is beneficial for improving nitrogen assimilation efficiency and reducing its content in vegetables. In this study, near-infrared (NIR hyperspectral imaging was used for the non-destructive and effective evaluation of nitrate content in spinach (Spinacia oleracea L. leaves. Leaf samples with different nitrate contents were collected under various fertilization conditions, and reference data were obtained using reflectometer apparatus RQflex 10. Partial least squares regression analysis revealed that there was a high correlation between the reference data and NIR spectra (r2 = 0.74, root mean squared error of cross-validation = 710.16 mg/kg. Furthermore, the nitrate content in spinach leaves was successfully mapped at a high spatial resolution, clearly displaying its distribution in the petiole, vein, and blade. Finally, the mapping results demonstrated dynamic changes in the nitrate content in intact leaf samples under different storage conditions, showing the value of this non-destructive tool for future analyses of the nitrate content in vegetables.

  2. On the Structural Context and Identification of Enzyme Catalytic Residues

    Directory of Open Access Journals (Sweden)

    Yu-Tung Chien

    2013-01-01

    Full Text Available Enzymes play important roles in most of the biological processes. Although only a small fraction of residues are directly involved in catalytic reactions, these catalytic residues are the most crucial parts in enzymes. The study of the fundamental and unique features of catalytic residues benefits the understanding of enzyme functions and catalytic mechanisms. In this work, we analyze the structural context of catalytic residues based on theoretical and experimental structure flexibility. The results show that catalytic residues have distinct structural features and context. Their neighboring residues, whether sequence or structure neighbors within specific range, are usually structurally more rigid than those of noncatalytic residues. The structural context feature is combined with support vector machine to identify catalytic residues from enzyme structure. The prediction results are better or comparable to those of recent structure-based prediction methods.

  3. Effect of inlet cone pipe angle in catalytic converter

    Science.gov (United States)

    Amira Zainal, Nurul; Farhain Azmi, Ezzatul; Arifin Samad, Mohd

    2018-03-01

    The catalytic converter shows significant consequence to improve the performance of the vehicle start from it launched into production. Nowadays, the geometric design of the catalytic converter has become critical to avoid the behavior of backpressure in the exhaust system. The backpressure essentially reduced the performance of vehicles and increased the fuel consumption gradually. Consequently, this study aims to design various models of catalytic converter and optimize the volume of fluid flow inside the catalytic converter by changing the inlet cone pipe angles. Three different geometry angles of the inlet cone pipe of the catalytic converter were assessed. The model is simulated in Solidworks software to determine the optimum geometric design of the catalytic converter. The result showed that by decreasing the divergence angle of inlet cone pipe will upsurge the performance of the catalytic converter.

  4. Zeolitic catalytic conversion of alcohols to hydrocarbons

    Science.gov (United States)

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2018-04-10

    A method for converting an alcohol to a hydrocarbon, the method comprising contacting said alcohol with a metal-loaded zeolite catalyst at a temperature of at least 100.degree. C. and up to 550.degree. C., wherein said alcohol can be produced by a fermentation process, said metal is a positively-charged metal ion, and said metal-loaded zeolite catalyst is catalytically active for converting said alcohol to said hydrocarbon.

  5. Method to produce catalytically active nanocomposite coatings

    Science.gov (United States)

    Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat

    2016-02-09

    A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.

  6. Enantioselective catalytic fluorinative aza-semipinacol rearrangement.

    Science.gov (United States)

    Romanov-Michailidis, Fedor; Pupier, Marion; Besnard, Céline; Bürgi, Thomas; Alexakis, Alexandre

    2014-10-03

    An efficient and highly stereoselective fluorinative aza-semipinacol rearrangement is described. The catalytic reaction requires use of Selectfluor in combination with the chiral, enantiopure phosphate anion derived from acid L3. Under optimized conditions, cyclopropylamines A were transformed into β-fluoro cyclobutylimines B in good yields and high levels of diastereo- and enantiocontrol. Furthermore, the optically active cyclobutylimines were reduced diastereoselectively with L-Selectride in the corresponding fluorinated amines C, compounds of significant interest in the pharmacological industry.

  7. Zeolitic catalytic conversion of alochols to hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2017-01-03

    A method for converting an alcohol to a hydrocarbon, the method comprising contacting said alcohol with a metal-loaded zeolite catalyst at a temperature of at least 100.degree. C. and up to 550.degree. C., wherein said alcohol can be produced by a fermentation process, said metal is a positively-charged metal ion, and said metal-loaded zeolite catalyst is catalytically active for converting said alcohol to said hydrocarbon.

  8. Materials for High-Temperature Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ersson, Anders

    2003-04-01

    Catalytic combustion is an environmentally friendly technique to combust fuels in e.g. gas turbines. Introducing a catalyst into the combustion chamber of a gas turbine allows combustion outside the normal flammability limits. Hence, the adiabatic flame temperature may be lowered below the threshold temperature for thermal NO{sub X} formation while maintaining a stable combustion. However, several challenges are connected to the application of catalytic combustion in gas turbines. The first part of this thesis reviews the use of catalytic combustion in gas turbines. The influence of the fuel has been studied and compared over different catalyst materials. The material section is divided into two parts. The first concerns bimetallic palladium catalysts. These catalysts showed a more stable activity compared to their pure palladium counterparts for methane combustion. This was verified both by using an annular reactor at ambient pressure and a pilot-scale reactor at elevated pressures and flows closely resembling the ones found in a gas turbine combustor. The second part concerns high-temperature materials, which may be used either as active or washcoat materials. A novel group of materials for catalysis, i.e. garnets, has been synthesised and tested in combustion of methane, a low-heating value gas and diesel fuel. The garnets showed some interesting abilities especially for combustion of low-heating value, LHV, gas. Two other materials were also studied, i.e. spinels and hexa aluminates, both showed very promising thermal stability and the substituted hexa aluminates also showed a good catalytic activity. Finally, deactivation of the catalyst materials was studied. In this part the sulphur poisoning of palladium, platinum and the above-mentioned complex metal oxides has been studied for combustion of a LHV gas. Platinum and surprisingly the garnet were least deactivated. Palladium was severely affected for methane combustion while the other washcoat materials were

  9. Catalytic extraction processing of contaminated scrap metal

    International Nuclear Information System (INIS)

    Griffin, T.P.; Johnston, J.E.; Payea, B.M.; Zeitoon, B.M.

    1995-01-01

    Molten Metal Technology was awarded a contract to demonstrate the applicability of the Catalytic Extraction Process, a proprietary process that could be applied to US DOE's inventory of low level mixed waste. This paper is a description of that technology, and included within this document are discussions of: (1) Program objectives, (2) Overall technology review, (3) Organic feed conversion to synthetic gas, (4) Metal, halogen, and transuranic recovery, (5) Demonstrations, (6) Design of the prototype facility, and (7) Results

  10. Method to produce catalytically active nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat

    2017-12-19

    A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.

  11. Simulation and calculation of three-reactor system of catalytic reforming

    International Nuclear Information System (INIS)

    Rikalovska, Tatjana; Markovska, Liljana; Meshko, Vera; Poposka, Filimena

    1999-01-01

    The process of catalytic reforming has been operated for quite a long time, one can not always find real data for the kinetics and thermodynamics of the reactions that take place during the catalytic reforming process in order to facilitate the designing of reactor system or its simulation in a wide:ran e of process parameters. Kinetic and thermodynamic data have been collected for the reactions that take place during the catalytic reforming process. The stress has been pointed on four major reactions: dehydrogenation of naphthenes (aromatization), dehydrocyclization of paraffins and hydrocracking of naphthenes and paraffins. On the base of such a kinetic model, the reforming process has been described with a system of differential equations. For the purpose of solving these equations computer programs for simulation of a three-reactor system for adiabatic operation of the reactors. The computer simulation of the mathematical model of this three-reactor system has been accomplished by use of the ISIM-dynamic simulator. The results obtained out of the simulation agree very good with the data of the real process of catalytic reforming in OKTA Crude Oil Refinery in Skopje, Macedonia. (Author)

  12. Extended Impact of Pin1 Catalytic Loop Phosphorylation Revealed by S71E Phosphomimetic.

    Science.gov (United States)

    Mahoney, Brendan J; Zhang, Meiling; Zintsmaster, John S; Peng, Jeffrey W

    2018-03-02

    Pin1 is a two-domain human protein that catalyzes the cis-trans isomerization of phospho-Ser/Thr-Pro (pS/T-P) motifs in numerous cell-cycle regulatory proteins. These pS/T-P motifs bind to Pin1's peptidyl-prolyl isomerase (PPIase) domain in a catalytic pocket, between an extended catalytic loop and the PPIase domain core. Previous studies showed that post-translational phosphorylation of S71 in the catalytic loop decreases substrate binding affinity and isomerase activity. To define the origins for these effects, we investigated a phosphomimetic Pin1 mutant, S71E-Pin1, using solution NMR. We find that S71E perturbs not only its host loop but also the nearby PPIase core. The perturbations identify a local network of hydrogen bonds and salt bridges that is more extended than previously thought, and includes interactions between the catalytic loop and the α2/α3 turn in the PPIase core. Explicit-solvent molecular dynamics simulations and phylogenetic analysis suggest that these interactions act as conserved "latches" between the loop and PPIase core that enhance binding of phosphorylated substrates, as they are absent in PPIases lacking pS/T-P specificity. Our results suggest that S71 is a hub residue within an electrostatic network primed for phosphorylation, and may illustrate a common mechanism of phosphorylation-mediated allostery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Emergence of traveling wave endothermic reaction in a catalytic fixed bed under microwave heating

    International Nuclear Information System (INIS)

    Gerasev, Alexander P.

    2017-01-01

    This paper presents a new phenomenon in a packed bed catalytic reactor under microwave heating - traveling wave (moving reaction zones) endothermic chemical reaction. A two-phase model is developed to simulate the nonlinear dynamic behavior of the packed bed catalytic reactor with an irreversible first-order chemical reaction. The absorbed microwave power was obtained from Lambert's law. The structure of traveling wave endothermic chemical reaction was explored. The effects of the gas velocity and microwave power on performance of the packed bed catalytic reactor were presented. Finally, the effects of the change in the location of the microwave source at the packed bed reactor was demonstrated. - Highlights: • A new phenomenon - traveling waves of endothermic reaction - is predicted. • The physical and mathematical model of a packed bed catalytic reactor under microwave heating is presented. • The structure of the traveling waves is explored. • The configuration of heating the packed bed reactor via microwave plays a key role.

  14. Consecutive dynamic resolutions of phosphine oxides

    NARCIS (Netherlands)

    Kortmann, Felix A.; Chang, Mu-Chieh; Otten, Edwin; Couzijn, Erik P. A.; Lutz, Martin; Minnaard, Adriaan J.

    2013-01-01

    A crystallization-induced asymmetric transformation (CIAT) involving a radical-mediated racemization provides access to enantiopure secondary phosphine oxides. A consecutive CIAT is used to prepare enantio-and diastereo-pure tert-butyl(hydroxyalkyl)phenylphosphine oxides.

  15. Consecutive dynamic resolutions of phosphine oxides

    NARCIS (Netherlands)

    Kortmann, Felix A.; Chang, Mu Chieh; Otten, Edwin; Couzijn, Erik P A; Lutz, Martin|info:eu-repo/dai/nl/304828971; Minnaard, Adriaan J.

    2014-01-01

    A crystallization-induced asymmetric transformation (CIAT) involving a radical-mediated racemization provides access to enantiopure secondary phosphine oxides. A consecutive CIAT is used to prepare enantio- and diastereo-pure tert-butyl(hydroxyalkyl)phenylphosphine oxides. © 2014 The Royal Society

  16. Catalytic hydrogen recombination for nuclear containments

    International Nuclear Information System (INIS)

    Koroll, G.W.; Lau, D.W.P.; Dewit, W.A.; Graham, W.R.C.

    1994-01-01

    Catalytic recombiners appear to be a credible option for hydrogen mitigation in nuclear containments. The passive operation, versatility and ease of back fitting are appealing for existing stations and new designs. Recently, a generation of wet-proofed catalyst materials have been developed at AECL which are highly specific to H 2 -O 2 , are active at ambient temperatures and are being evaluated for containment applications. Two types of catalytic recombiners were evaluated for hydrogen removal in containments based on the AECL catalyst. The first is a catalytic combustor for application in existing air streams such as provided by fans or ventilation systems. The second is an autocatalytic recombiner which uses the enthalpy of reaction to produce natural convective flow over the catalyst elements. Intermediate-scale results obtained in 6 m 3 and 10 m 3 spherical and cylindrical vessels are given to demonstrate self-starting limits, operating limits, removal capacity, scaling parameters, flow resistance, mixing behaviour in the vicinity of an operating recombiner and sensitivity to poisoning, fouling and radiation. (author). 13 refs., 10 figs

  17. Electrochemical catalytic treatment of phenol wastewater

    International Nuclear Information System (INIS)

    Ma Hongzhu; Zhang Xinhai; Ma Qingliang; Wang Bo

    2009-01-01

    The slurry bed catalytic treatment of contaminated water appears to be a promising alternative for the oxidation of aqueous organic pollutants. In this paper, the electrochemical oxidation of phenol in synthetic wastewater catalyzed by ferric sulfate and potassium permanganate adsorbed onto active bentonite in slurry bed electrolytic reactor with graphite electrode has been investigated. In order to determine the optimum operating condition, the orthogonal experiments were devised and the results revealed that the system of ferric sulfate, potassium permanganate and active bentonite showed a high catalytic efficiency on the process of electrochemical oxidation phenol in initial pH 5. When the initial concentration of phenol was 0.52 g/L (the initial COD 1214 mg/L), up to 99% chemical oxygen demand (COD) removal was obtained in 40 min. According to the experimental results, a possible mechanism of catalytic degradation of phenol was proposed. Environmental estimation was also done and the results showed that the treated wastewater have little impact on plant growth and could totally be applied to irrigation.

  18. Catalytic applications of bio-inspired nanomaterials

    Science.gov (United States)

    Pacardo, Dennis Kien Balaong

    The biomimetic synthesis of Pd nanoparticles was presented using the Pd4 peptide, TSNAVHPTLRHL, isolated from combinatorial phage display library. Using this approach, nearly monodisperse and spherical Pd nanoparticles were generated with an average diameter of 1.9 +/- 0.4 nm. The peptide-based nanocatalyst were employed in the Stille coupling reaction under energy-efficient and environmentally friendly reaction conditions of aqueous solvent, room temperature and very low catalyst loading. To this end, the Pd nanocatalyst generated high turnover frequency (TOF) value and quantitative yields using ≥ 0.005 mol% Pd as well as catalytic activities with different aryl halides containing electron-withdrawing and electron-donating groups. The Pd4-capped Pd nanoparticles followed the atom-leaching mechanism and were found to be selective with respect to substrate identity. On the other hand, the naturally-occurring R5 peptide (SSKKSGSYSGSKGSKRRIL) was employed in the synthesis of biotemplated Pd nanomaterials which showed morphological changes as a function of Pd:peptide ratio. TOF analysis for hydrogenation of olefinic alcohols showed similar catalytic activity regardless of nanomorphology. Determination of catalytic properties of these bio-inspired nanomaterials are important as they serve as model system for alternative green catalyst with applications in industrially important transformations.

  19. Vapor-Driven Propulsion of Catalytic Micromotors

    Science.gov (United States)

    Dong, Renfeng; Li, Jinxing; Rozen, Isaac; Ezhilan, Barath; Xu, Tailin; Christianson, Caleb; Gao, Wei; Saintillan, David; Ren, Biye; Wang, Joseph

    2015-08-01

    Chemically-powered micromotors offer exciting opportunities in diverse fields, including therapeutic delivery, environmental remediation, and nanoscale manufacturing. However, these nanovehicles require direct addition of high concentration of chemical fuel to the motor solution for their propulsion. We report the efficient vapor-powered propulsion of catalytic micromotors without direct addition of fuel to the micromotor solution. Diffusion of hydrazine vapor from the surrounding atmosphere into the sample solution is instead used to trigger rapid movement of iridium-gold Janus microsphere motors. Such operation creates a new type of remotely-triggered and powered catalytic micro/nanomotors that are responsive to their surrounding environment. This new propulsion mechanism is accompanied by unique phenomena, such as the distinct off-on response to the presence of fuel in the surrounding atmosphere, and spatio-temporal dependence of the motor speed borne out of the concentration gradient evolution within the motor solution. The relationship between the motor speed and the variables affecting the fuel concentration distribution is examined using a theoretical model for hydrazine transport, which is in turn used to explain the observed phenomena. The vapor-powered catalytic micro/nanomotors offer new opportunities in gas sensing, threat detection, and environmental monitoring, and open the door for a new class of environmentally-triggered micromotors.

  20. Catalytic pyrolysis of olive mill wastewater sludge

    Science.gov (United States)

    Abdellaoui, Hamza

    From 2008 to 2013, an average of 2,821.4 kilotons/year of olive oil were produced around the world. The waste product of the olive mill industry consists of solid residue (pomace) and wastewater (OMW). Annually, around 30 million m3 of OMW are produced in the Mediterranean area, 700,000 m3 year?1 in Tunisia alone. OMW is an aqueous effluent characterized by an offensive smell and high organic matter content, including high molecular weight phenolic compounds and long-chain fatty acids. These compounds are highly toxic to micro-organisms and plants, which makes the OMW a serious threat to the environment if not managed properly. The OMW is disposed of in open air evaporation ponds. After evaporation of most of the water, OMWS is left in the bottom of the ponds. In this thesis, the effort has been made to evaluate the catalytic pyrolysis process as a technology to valorize the OMWS. The first section of this research showed that 41.12 wt. % of the OMWS is mostly lipids, which are a good source of energy. The second section proved that catalytic pyrolysis of the OMWS over red mud and HZSM-5 can produce green diesel, and 450 °C is the optimal reaction temperature to maximize the organic yields. The last section revealed that the HSF was behind the good fuel-like properties of the OMWS catalytic oils, whereas the SR hindered the bio-oil yields and quality.

  1. Antibody proteases: induction of catalytic response.

    Science.gov (United States)

    Gabibov, A G; Friboulet, A; Thomas, D; Demin, A V; Ponomarenko, N A; Vorobiev, I I; Pillet, D; Paon, M; Alexandrova, E S; Telegin, G B; Reshetnyak, A V; Grigorieva, O V; Gnuchev, N V; Malishkin, K A; Genkin, D D

    2002-10-01

    Most of the data accumulated throughout the years on investigation of catalytic antibodies indicate that their production increases on the background of autoimmune abnormalities. The different approaches to induction of catalytic response toward recombinant gp120 HIV-1 surface protein in mice with various autoimmune pathologies are described. The peptidylphosphonate conjugate containing structural part of gp120 molecule is used for reactive immunization of NZB/NZW F1, MRL, and SJL mice. The specific modification of heavy and light chains of mouse autoantibodies with Val-Ala-Glu-Glu-Glu-Val-PO(OPh)2 reactive peptide was demonstrated. Increased proteolytic activity of polyclonal antibodies in SJL mice encouraged us to investigate the production of antigen-specific catalytic antibodies on the background of induced experimental autoimmune encephalomyelitis (EAE). The immunization of autoimmune-prone mice with the engineered fusions containing the fragments of gp120 and encephalitogenic epitope of myelin basic protein (MBP(89-104)) was made. The proteolytic activity of polyclonal antibodies isolated from the sera of autoimmune mice immunized by the described antigen was shown. Specific immune response of SJL mice to these antigens was characterized. Polyclonal antibodies purified from sera of the immunized animals revealed proteolytic activity. The antiidiotypic approach to raise the specific proteolytic antibody as an "internal image" of protease is described. The "second order" monoclonal antibodies toward subtilisin Carlsberg revealed pronounced proteolytic activity.

  2. Electrochemical catalytic treatment of phenol wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Ma Hongzhu, E-mail: hzmachem@snnu.edu.cn [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China); Zhang Xinhai [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China); Ma Qingliang [Department of Applied Physics, College of Sciences, Taiyuan University of Technology, 030024 Taiyuan (China); Wang Bo [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China)

    2009-06-15

    The slurry bed catalytic treatment of contaminated water appears to be a promising alternative for the oxidation of aqueous organic pollutants. In this paper, the electrochemical oxidation of phenol in synthetic wastewater catalyzed by ferric sulfate and potassium permanganate adsorbed onto active bentonite in slurry bed electrolytic reactor with graphite electrode has been investigated. In order to determine the optimum operating condition, the orthogonal experiments were devised and the results revealed that the system of ferric sulfate, potassium permanganate and active bentonite showed a high catalytic efficiency on the process of electrochemical oxidation phenol in initial pH 5. When the initial concentration of phenol was 0.52 g/L (the initial COD 1214 mg/L), up to 99% chemical oxygen demand (COD) removal was obtained in 40 min. According to the experimental results, a possible mechanism of catalytic degradation of phenol was proposed. Environmental estimation was also done and the results showed that the treated wastewater have little impact on plant growth and could totally be applied to irrigation.

  3. Predicting CYP2C19 Catalytic Parameters for Enantioselective Oxidations Using Artificial Neural Networks and a Chirality Code

    Science.gov (United States)

    Hartman, Jessica H.; Cothren, Steven D.; Park, Sun-Ha; Yun, Chul-Ho; Darsey, Jerry A.; Miller, Grover P.

    2013-01-01

    Cytochromes P450 (CYP for isoforms) play a central role in biological processes especially metabolism of chiral molecules; thus, development of computational methods to predict parameters for chiral reactions is important for advancing this field. In this study, we identified the most optimal artificial neural networks using conformation-independent chirality codes to predict CYP2C19 catalytic parameters for enantioselective reactions. Optimization of the neural networks required identifying the most suitable representation of structure among a diverse array of training substrates, normalizing distribution of the corresponding catalytic parameters (kcat, Km, and kcat/Km), and determining the best topology for networks to make predictions. Among different structural descriptors, the use of partial atomic charges according to the CHelpG scheme and inclusion of hydrogens yielded the most optimal artificial neural networks. Their training also required resolution of poorly distributed output catalytic parameters using a Box-Cox transformation. End point leave-one-out cross correlations of the best neural networks revealed that predictions for individual catalytic parameters (kcat and Km) were more consistent with experimental values than those for catalytic efficiency (kcat/Km). Lastly, neural networks predicted correctly enantioselectivity and comparable catalytic parameters measured in this study for previously uncharacterized CYP2C19 substrates, R- and S-propranolol. Taken together, these seminal computational studies for CYP2C19 are the first to predict all catalytic parameters for enantioselective reactions using artificial neural networks and thus provide a foundation for expanding the prediction of cytochrome P450 reactions to chiral drugs, pollutants, and other biologically active compounds. PMID:23673224

  4. Rice Cellulose SynthaseA8 Plant-Conserved Region Is a Coiled-Coil at the Catalytic Core Entrance

    Energy Technology Data Exchange (ETDEWEB)

    Rushton, Phillip S.; Olek, Anna T.; Makowski, Lee; Badger, John; Steussy, C. Nicklaus; Carpita, Nicholas C.; Stauffacher, Cynthia V. (NEU); (Purdue)

    2016-11-22

    The crystallographic structure of a rice (Oryza sativa) cellulose synthase, OsCesA8, plant-conserved region (P-CR), one of two unique domains in the catalytic domain of plant CesAs, was solved to 2.4 Å resolution. Two antiparallel α-helices form a coiled-coil domain linked by a large extended connector loop containing a conserved trio of aromatic residues. The P-CR structure was fit into a molecular envelope for the P-CR domain derived from small-angle X-ray scattering data. The P-CR structure and molecular envelope, combined with a homology-based chain trace of the CesA8 catalytic core, were modeled into a previously determined CesA8 small-angle X-ray scattering molecular envelope to produce a detailed topological model of the CesA8 catalytic domain. The predicted position for the P-CR domain from the molecular docking models places the P-CR connector loop into a hydrophobic pocket of the catalytic core, with the coiled-coil aligned near the entrance of the substrate UDP-glucose into the active site. In this configuration, the P-CR coiled-coil alone is unlikely to regulate substrate access to the active site, but it could interact with other domains of CesA, accessory proteins, or other CesA catalytic domains to control substrate delivery.

  5. Performance simulations of catalytic converters during the Federal Test Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Shen, H.; Shamim, T.; Sengupta, S.; Son, S.; Adamczyk, A.A.

    1999-07-01

    A numerical study is carried out to predict the tailpipe emissions and emission conversion efficiencies of unburned hydrocarbon, nitrogen oxide and carbon monoxide flowing through a catalytic converter during the Federal Test Procedure (FTP). The model considers the effect of heat transfer in the catalytic converter, coupled with catalyst chemical kinetics, including an oxygen storage mechanism. The resulting governing equations based on the conservation of mass and energy are solved by a tridiagonal matrix algorithm (TDMA) with a successive line under relaxation method. The numerical scheme for this non-linear problem is found to have good convergence efficiency. The simulation for the complete FTP cycle is accomplished in less than fifteen minutes on a desktop personal computer. A 13-step reaction mechanism plus a nine-step O{sub 2} storage mechanism is used to simulate the chemical kinetics. The energy equations include the heat loss due to conduction and convection plus the energy liberated by chemical reactions. The effect of radiation is assumed to be negligible and is not considered. The results of the numerical model for both the instantaneous and accumulated emissions are found to be in good agreement with experimental measurements. The conversion efficiencies of HC, CO and NO as predicted by the model are found to be within 5% of those dynamic measurements, and calculated results of accumulated HC, CO and NO{sub x} are in fair agreement with experimental measurements. The transient measurements are also used to check the robustness of the numerical model. The model is found to be robust and hence can simulate various operating conditions of engine output to the converter.

  6. Turning goals into results: the power of catalytic mechanisms.

    Science.gov (United States)

    Collins, J

    1999-01-01

    Most executives have a big, hairy, audacious goal. They write vision statements, formalize procedures, and develop complicated incentive programs--all in pursuit of that goal. In other words, with the best of intentions, they install layers of stultifying bureaucracy. But it doesn't have to be that way. In this article, Jim Collins introduces the catalytic mechanism, a simple yet powerful managerial tool that helps translate lofty aspirations into concrete reality. Catalytic mechanisms are the crucial link between objectives and performance; they are a galvanizing, nonbureaucratic means to turn one into the other. What's the difference between catalytic mechanisms and most traditional managerial controls? Catalytic mechanisms share five characteristics. First, they produce desired results in unpredictable ways. Second, they distribute power for the benefit of the overall system, often to the discomfort of those who traditionally hold power. Third, catalytic mechanisms have teeth. Fourth, they eject "viruses"--those people who don't share the company's core values. Finally, they produce an ongoing effect. Catalytic mechanisms are just as effective for reaching individual goals as they are for corporate ones. To illustrate how catalytic mechanisms work, the author draws on examples of individuals and organizations that have relied on such mechanisms to achieve their goals. The same catalytic mechanism that works in one organization, however, will not necessarily work in another. Catalytic mechanisms must be tailored to specific goals and situations. To help readers get started, the author offers some general principles that support the process of building catalytic mechanisms effectively.

  7. Effect of support on the catalytic activity of manganese oxide catalyts for toluene combustion

    International Nuclear Information System (INIS)

    Pozan, Gulin Selda

    2012-01-01

    Highlights: ► α-Al 2 O 3 , obtained from Bohmite, as a support for enhancing of the activity. ► The support material for catalytic oxidation. ► The manganese state and oxygen species effect on the catalytic combustion reaction. - Abstract: The aim of this work was to study combustion of toluene (1000 ppm) over MnO 2 modified with different supports. α-Al 2 O 3 and γ-Al 2 O 3 obtained from Boehmite, γ-Al 2 O 3 (commercial), SiO 2 , TiO 2 and ZrO 2 were used as commercial support materials. In view of potential interest of this process, the influence of support material on the catalytic performance was discussed. The deposition of 9.5MnO 2 was performed by impregnation over support. The catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction and oxidation (TPR/TPO) and thermogravimetric analysis (TGA). The catalytic tests were carried out at atmospheric pressure in a fixed-bed flow reactor. 9.5MnO 2 /α-Al 2 O 3 (B) (synthesized from Boehmite) catalyst exhibits the highest catalytic activity, over which the toluene conversion was up to 90% at a temperature of 289 °C. Considering all the characterization and reaction data reported in this study, it was concluded that the manganese state and oxygen species played an important role in the catalytic activity.

  8. Crystallization and preliminary X-ray diffraction analysis of the glucuronoyl esterase catalytic domain from Hypocrea jecorina

    International Nuclear Information System (INIS)

    Wood, S. J.; Li, X.-L.; Cotta, M. A.; Biely, P.; Duke, N. E. C.; Schiffer, M.; Pokkuluri, P. R.

    2008-01-01

    The catalytic domain of the glucuronoyl esterase from H. jecorina was overexpresssed, purified and crystallized in space group P2 1 2 1 2 1 . X-ray diffraction data were collected to 1.9 Å resolution. The catalytic domain of the glucuronoyl esterase from Hypocrea jecorina (anamorph Trichoderma reesei) was overexpresssed, purified and crystallized by the sitting-drop vapor-diffusion method using 1.4 M sodium/potassium phosphate pH 6.9. The crystals belonged to space group P2 1 2 1 2 1 and X-ray diffraction data were collected to 1.9 Å resolution. This is the first enzyme with glucoronoyl esterase activity to be crystallized; its structure will be valuable in lignocellulose-degradation research

  9. Crystallization and preliminary X-ray diffraction analysis of the glucuronoyl esterase catalytic domain from Hypocrea jecorina

    Energy Technology Data Exchange (ETDEWEB)

    Wood, S. J. [Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Li, X.-L.; Cotta, M. A. [Fermentation Biotechnology Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois 61604 (United States); Biely, P. [Institute of Chemistry, Slovak Academy of Sciences, 845 38 Bratislava (Slovakia); Duke, N. E. C.; Schiffer, M.; Pokkuluri, P. R., E-mail: rajp@anl.gov [Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2008-04-01

    The catalytic domain of the glucuronoyl esterase from H. jecorina was overexpresssed, purified and crystallized in space group P2{sub 1}2{sub 1}2{sub 1}. X-ray diffraction data were collected to 1.9 Å resolution. The catalytic domain of the glucuronoyl esterase from Hypocrea jecorina (anamorph Trichoderma reesei) was overexpresssed, purified and crystallized by the sitting-drop vapor-diffusion method using 1.4 M sodium/potassium phosphate pH 6.9. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1} and X-ray diffraction data were collected to 1.9 Å resolution. This is the first enzyme with glucoronoyl esterase activity to be crystallized; its structure will be valuable in lignocellulose-degradation research.

  10. Heterogeneous catalytic materials solid state chemistry, surface chemistry and catalytic behaviour

    CERN Document Server

    Busca, Guido

    2014-01-01

    Heterogeneous Catalytic Materials discusses experimental methods and the latest developments in three areas of research: heterogeneous catalysis; surface chemistry; and the chemistry of catalysts. Catalytic materials are those solids that allow the chemical reaction to occur efficiently and cost-effectively. This book provides you with all necessary information to synthesize, characterize, and relate the properties of a catalyst to its behavior, enabling you to select the appropriate catalyst for the process and reactor system. Oxides (used both as catalysts and as supports for cata

  11. Key Feature of the Catalytic Cycle of TNF-α Converting Enzyme Involves Communication Between Distal Protein Sites and the Enzyme Catalytic Core

    International Nuclear Information System (INIS)

    Solomon, A.; Akabayov, B.; Frenkel, A.; Millas, M.; Sagi, I.

    2007-01-01

    Despite their key roles in many normal and pathological processes, the molecular details by which zinc-dependent proteases hydrolyze their physiological substrates remain elusive. Advanced theoretical analyses have suggested reaction models for which there is limited and controversial experimental evidence. Here we report the structure, chemistry and lifetime of transient metal-protein reaction intermediates evolving during the substrate turnover reaction of a metalloproteinase, the tumor necrosis factor-α converting enzyme (TACE). TACE controls multiple signal transduction pathways through the proteolytic release of the extracellular domain of a host of membrane-bound factors and receptors. Using stopped-flow x-ray spectroscopy methods together with transient kinetic analyses, we demonstrate that TACE's catalytic zinc ion undergoes dynamic charge transitions before substrate binding to the metal ion. This indicates previously undescribed communication pathways taking place between distal protein sites and the enzyme catalytic core. The observed charge transitions are synchronized with distinct phases in the reaction kinetics and changes in metal coordination chemistry mediated by the binding of the peptide substrate to the catalytic metal ion and product release. Here we report key local charge transitions critical for proteolysis as well as long sought evidence for the proposed reaction model of peptide hydrolysis. This study provides a general approach for gaining critical insights into the molecular basis of substrate recognition and turnover by zinc metalloproteinases that may be used for drug design

  12. Impact of the Little Ice Age cooling and 20th century climate change on peatland vegetation dynamics in central and northern Alberta using a multi-proxy approach and high-resolution peat chronologies

    Science.gov (United States)

    Magnan, Gabriel; van Bellen, Simon; Davies, Lauren; Froese, Duane; Garneau, Michelle; Mullan-Boudreau, Gillian; Zaccone, Claudio; Shotyk, William

    2018-04-01

    Northern boreal peatlands are major terrestrial sinks of organic carbon and these ecosystems, which are highly sensitive to human activities and climate change, act as sensitive archives of past environmental change at various timescales. This study aims at understanding how the climate changes of the last 1000 years have affected peatland vegetation dynamics in the boreal region of Alberta in western Canada. Peat cores were collected from five bogs in the Fort McMurray region (56-57° N), at the southern limit of sporadic permafrost, and two in central Alberta (53° N and 55° N) outside the present-day limit of permafrost peatlands. The past changes in vegetation communities were reconstructed using detailed plant macrofossil analyses combined with high-resolution peat chronologies (14C, atmospheric bomb-pulse 14C, 210Pb and cryptotephras). Peat humification proxies (C/N, H/C, bulk density) and records of pH and ash content were also used to improve the interpretation of climate-related vegetation changes. Our study shows important changes in peatland vegetation and physical and chemical peat properties during the Little Ice Age (LIA) cooling period mainly from around 1700 CE and the subsequent climate warming of the 20th century. In some bogs, the plant macrofossils have recorded periods of permafrost aggradation during the LIA with drier surface conditions, increased peat humification and high abundance of ericaceous shrubs and black spruce (Picea mariana). The subsequent permafrost thaw was characterized by a short-term shift towards wetter conditions (Sphagnum sect. Cuspidata) and a decline in Picea mariana. Finally, a shift to a dominance of Sphagnum sect. Acutifolia (mainly Sphagnum fuscum) occurred in all the bogs during the second half of the 20th century, indicating the establishment of dry ombrotrophic conditions under the recent warmer and drier climate conditions.

  13. Modulation of catalytic activity in multi-domain protein tyrosine phosphatases.

    Directory of Open Access Journals (Sweden)

    Lalima L Madan

    Full Text Available Signaling mechanisms involving protein tyrosine phosphatases govern several cellular and developmental processes. These enzymes are regulated by several mechanisms which include variation in the catalytic turnover rate based on redox stimuli, subcellular localization or protein-protein interactions. In the case of Receptor Protein Tyrosine Phosphatases (RPTPs containing two PTP domains, phosphatase activity is localized in their membrane-proximal (D1 domains, while the membrane-distal (D2 domain is believed to play a modulatory role. Here we report our analysis of the influence of the D2 domain on the catalytic activity and substrate specificity of the D1 domain using two Drosophila melanogaster RPTPs as a model system. Biochemical studies reveal contrasting roles for the D2 domain of Drosophila Leukocyte antigen Related (DLAR and Protein Tyrosine Phosphatase on Drosophila chromosome band 99A (PTP99A. While D2 lowers the catalytic activity of the D1 domain in DLAR, the D2 domain of PTP99A leads to an increase in the catalytic activity of its D1 domain. Substrate specificity, on the other hand, is cumulative, whereby the individual specificities of the D1 and D2 domains contribute to the substrate specificity of these two-domain enzymes. Molecular dynamics simulations on structural models of DLAR and PTP99A reveal a conformational rationale for the experimental observations. These studies reveal that concerted structural changes mediate inter-domain communication resulting in either inhibitory or activating effects of the membrane distal PTP domain on the catalytic activity of the membrane proximal PTP domain.

  14. Design of a facility for the in situ measurement of catalytic reaction by neutron scattering spectroscopy

    Science.gov (United States)

    Tan, Shuai; Cheng, Yongqiang; Daemen, Luke L.; Lutterman, Daniel A.

    2018-01-01

    Catalysis is a critical enabling science for future energy needs. The next frontier of catalysis is to evolve from catalyst discovery to catalyst design, and for this next step to be realized, we must develop new techniques to better understand reaction mechanisms. To do this, we must connect catalytic reaction rates and selectivities to the kinetics, energetics, and dynamics of individual elementary steps and relate these to the structure and dynamics of the catalytic sites involved. Neutron scattering spectroscopies offer unique capabilities that are difficult or impossible to match by other techniques. The current study presents the development of a compact and portable instrumental design that enables the in situ investigation of catalytic samples by neutron scattering techniques. The developed apparatus was tested at the Spallation Neutron Source (SNS) in Oak Ridge National Laboratory and includes a gas handling panel that allows for computer hookups to control the panel externally and online measurement equipment such as coupled GC-FID/TCD (Gas Chromatography-Flame Ionization Detector/Thermal Conductivity Detector) and MS (Mass Spectrometry) to characterize offgassing while the sample is in the neutron scattering spectrometer. This system is flexible, modular, compact, and portable enabling its use for many types of gas-solid and liquid-solid reactions at the various beamlines housed at the SNS.

  15. Catalytic biofilms on structured packing for the production of glycolic acid.

    Science.gov (United States)

    Li, Xuan Zhong; Hauer, Bernhard; Rosche, Bettina

    2013-02-01

    While structured packing modules are known to be efficient for surface wetting and gas-liquid exchange in abiotic surface catalysis, this model study explores structured packing as a growth surface for catalytic biofilms. Microbial biofilms have been proposed as self-immobilized and self-regenerating catalysts for the production of chemicals. A concern is that the complex and dynamic nature of biofilms may cause fluctuations in their catalytic performance over time or may affect process reproducibility. An aerated continuous trickle-bed biofilm reactor system was designed with a 3 L structured packing, liquid recycling and pH control. Pseudomonas diminuta established a biofilm on the stainless steel structured packing with a specific surface area of 500 m2 m-3 and catalyzed the oxidation of ethylene glycol to glycolic acid for over two months of continuous operation. A steady-state productivity of up to 1.6 gl-1h-1 was achieved at a dilution rate of 0.33 h-1. Process reproducibility between three independent runs was excellent, despite process interruptions and activity variations in cultures grown from biofilm effluent cells. The results demonstrate the robustness of a catalytic biofilm on structured packing, despite its dynamic nature. Implementation is recommended for whole-cell processes that require efficient gas-liquid exchange, catalyst retention for continuous operation, or improved catalyst stability.

  16. Nanorods of manganese oxides: Synthesis, characterization and catalytic application

    Science.gov (United States)

    Yang, Zeheng; Zhang, Yuancheng; Zhang, Weixin; Wang, Xue; Qian, Yitai; Wen, Xiaogang; Yang, Shihe

    2006-03-01

    Single-crystalline nanorods of β-MnO 2, α-Mn 2O 3 and Mn 3O 4 were successfully synthesized via the heat-treatment of γ-MnOOH nanorods, which were prepared through a hydrothermal method in advance. The calcination process of γ-MnOOH nanorods was studied with the help of Thermogravimetric analysis and X-ray powder diffraction. When the calcinations were conducted in air from 250 to 1050 °C, the precursor γ-MnOOH was first changed to β-MnO 2, then to α-Mn 2O 3 and finally to Mn 3O 4. When calcined in N 2 atmosphere, γ-MnOOH was directly converted into Mn 3O 4 at as low as 500 °C. Transmission electron microscopy (TEM) and high-resolution TEM were also used to characterize the products. The obtained manganese oxides maintain the one-dimensional morphology similar to the precursor γ-MnOOH nanorods. Further experiments show that the as-prepared manganese oxide nanorods have catalytic effect on the oxidation and decomposition of the methylene blue (MB) dye with H 2O 2.

  17. Engineering Metallic Nanoparticles for Enhancing and Probing Catalytic Reactions.

    Science.gov (United States)

    Collins, Gillian; Holmes, Justin D

    2016-07-01

    Recent developments in tailoring the structural and chemical properties of colloidal metal nanoparticles (NPs) have led to significant enhancements in catalyst performance. Controllable colloidal synthesis has also allowed tailor-made NPs to serve as mechanistic probes for catalytic processes. The innovative use of colloidal NPs to gain fundamental insights into catalytic function will be highlighted across a variety of catalytic and electrocatalytic applications. The engineering of future heterogenous catalysts is also moving beyond size, shape and composition considerations. Advancements in understanding structure-property relationships have enabled incorporation of complex features such as tuning surface strain to influence the behavior of catalytic NPs. Exploiting plasmonic properties and altering colloidal surface chemistry through functionalization are also emerging as important areas for rational design of catalytic NPs. This news article will highlight the key developments and challenges to the future design of catalytic NPs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Protein structure based prediction of catalytic residues.

    Science.gov (United States)

    Fajardo, J Eduardo; Fiser, Andras

    2013-02-22

    Worldwide structural genomics projects continue to release new protein structures at an unprecedented pace, so far nearly 6000, but only about 60% of these proteins have any sort of functional annotation. We explored a range of features that can be used for the prediction of functional residues given a known three-dimensional structure. These features include various centrality measures of nodes in graphs of interacting residues: closeness, betweenness and page-rank centrality. We also analyzed the distance of functional amino acids to the general center of mass (GCM) of the structure, relative solvent accessibility (RSA), and the use of relative entropy as a measure of sequence conservation. From the selected features, neural networks were trained to identify catalytic residues. We found that using distance to the GCM together with amino acid type provide a good discriminant function, when combined independently with sequence conservation. Using an independent test set of 29 annotated protein structures, the method returned 411 of the initial 9262 residues as the most likely to be involved in function. The output 411 residues contain 70 of the annotated 111 catalytic residues. This represents an approximately 14-fold enrichment of catalytic residues on the entire input set (corresponding to a sensitivity of 63% and a precision of 17%), a performance competitive with that of other state-of-the-art methods. We found that several of the graph based measures utilize the same underlying feature of protein structures, which can be simply and more effectively captured with the distance to GCM definition. This also has the added the advantage of simplicity and easy implementation. Meanwhile sequence conservation remains by far the most influential feature in identifying functional residues. We also found that due the rapid changes in size and composition of sequence databases, conservation calculations must be recalibrated for specific reference databases.

  19. Catalytic oxidation of soot over alkaline niobates

    International Nuclear Information System (INIS)

    Pecchi, G.; Cabrera, B.; Buljan, A.; Delgado, E.J.; Gordon, A.L.; Jimenez, R.

    2013-01-01

    Highlights: ► No previous reported studies about alkaline niobates as catalysts for soot oxidation. ► NaNbO 3 and KNbO 3 perovskite-type oxides show lower activation energy than other lanthanoid perovskite-type oxides. ► The alkaline niobate does not show deactivation by metal loss. - Abstract: The lack of studies in the current literature about the assessment of alkaline niobates as catalysts for soot oxidation has motivated this research. In this study, the synthesis, characterization and assessment of alkaline metal niobates as catalysts for soot combustion are reported. The solids MNbO 3 (M = Li, Na, K, Rb) are synthesized by a citrate method, calcined at 450 °C, 550 °C, 650 °C, 750 °C, and characterized by AAS, N 2 adsorption, XRD, O 2 -TPD, FTIR and SEM. All the alkaline niobates show catalytic activity for soot combustion, and the activity depends basically on the nature of the alkaline metal and the calcination temperature. The highest catalytic activity, expressed as the temperature at which combustion of carbon black occurs at the maximum rate, is shown by KNbO 3 calcined at 650 °C. At this calcination temperature, the catalytic activity follows an order dependent on the atomic number, namely: KNbO 3 > NaNbO 3 > LiNbO 3 . The RbNbO 3 solid do not follow this trend presumably due to the perovskite structure was not reached. The highest catalytic activity shown by of KNbO 3 , despite the lower apparent activation energy of NaNbO 3 , stress the importance of the metal nature and suggests the hypothesis that K + ions are the active sites for soot combustion. It must be pointed out that alkaline niobate subjected to consecutive soot combustion cycles does not show deactivation by metal loss, due to the stabilization of the alkaline metal inside the perovskite structure.

  20. Tritium stripping by a catalytic exchange stripper

    International Nuclear Information System (INIS)

    Heung, L.K.; Gibson, G.W.; Ortman, M.S.

    1991-01-01

    A catalytic exchange process for stripping elemental tritium from gas streams has been demonstrated. The process uses a catalyzed isotopic exchange reaction between tritium in the gas phase and protium or deuterium in the solid phase on alumina. The reaction is catalyzed by platinum deposited on the alumina. The process has been tested with both tritium and deuterium. Decontamination factors (ration of inlet and outlet tritium concentrations) as high as 1000 have been achieved, depending on inlet concentration. The test results and some demonstrated applications are presented