WorldWideScience

Sample records for catalytic dyad mechanism

  1. Propulsion Mechanism of Catalytic Microjet Engines.

    Science.gov (United States)

    Fomin, Vladimir M; Hippler, Markus; Magdanz, Veronika; Soler, Lluís; Sanchez, Samuel; Schmidt, Oliver G

    2014-02-01

    We describe the propulsion mechanism of the catalytic microjet engines that are fabricated using rolled-up nanotech. Microjets have recently shown numerous potential applications in nanorobotics but currently there is a lack of an accurate theoretical model that describes the origin of the motion as well as the mechanism of self-propulsion. The geometric asymmetry of a tubular microjet leads to the development of a capillary force, which tends to propel a bubble toward the larger opening of the tube. Because of this motion in an asymmetric tube, there emerges a momentum transfer to the fluid. In order to compensate this momentum transfer, a jet force acting on the tube occurs. This force, which is counterbalanced by the linear drag force, enables tube velocities of the order of 100 μ m/s. This mechanism provides a fundamental explanation for the development of driving forces that are acting on bubbles in tubular microjets.

  2. Turning goals into results: the power of catalytic mechanisms.

    Science.gov (United States)

    Collins, J

    1999-01-01

    Most executives have a big, hairy, audacious goal. They write vision statements, formalize procedures, and develop complicated incentive programs--all in pursuit of that goal. In other words, with the best of intentions, they install layers of stultifying bureaucracy. But it doesn't have to be that way. In this article, Jim Collins introduces the catalytic mechanism, a simple yet powerful managerial tool that helps translate lofty aspirations into concrete reality. Catalytic mechanisms are the crucial link between objectives and performance; they are a galvanizing, nonbureaucratic means to turn one into the other. What's the difference between catalytic mechanisms and most traditional managerial controls? Catalytic mechanisms share five characteristics. First, they produce desired results in unpredictable ways. Second, they distribute power for the benefit of the overall system, often to the discomfort of those who traditionally hold power. Third, catalytic mechanisms have teeth. Fourth, they eject "viruses"--those people who don't share the company's core values. Finally, they produce an ongoing effect. Catalytic mechanisms are just as effective for reaching individual goals as they are for corporate ones. To illustrate how catalytic mechanisms work, the author draws on examples of individuals and organizations that have relied on such mechanisms to achieve their goals. The same catalytic mechanism that works in one organization, however, will not necessarily work in another. Catalytic mechanisms must be tailored to specific goals and situations. To help readers get started, the author offers some general principles that support the process of building catalytic mechanisms effectively.

  3. Fluid catalytic cracking : Feedstocks and reaction mechanism

    NARCIS (Netherlands)

    Dupain, X.

    2006-01-01

    The Fluid Catalytic Cracking (FCC) process is one of the key units in a modern refinery. Traditionally, its design is primarily aimed for the production of gasoline from heavy oil fractions, but as co-products also diesel blends and valuable gasses (e.g. propene and butenes) are formed in

  4. Short hydrogen bonds in the catalytic mechanism of serine proteases

    Directory of Open Access Journals (Sweden)

    VLADIMIR LESKOVAC

    2008-04-01

    Full Text Available The survey of crystallographic data from the Protein Data Bank for 37 structures of trypsin and other serine proteases at a resolution of 0.78–1.28 Å revealed the presence of hydrogen bonds in the active site of the enzymes, which are formed between the catalytic histidine and aspartate residues and are on average 2.7 Å long. This is the typical bond length for normal hydrogen bonds. The geometric properties of the hydrogen bonds in the active site indicate that the H atom is not centered between the heteroatoms of the catalytic histidine and aspartate residues in the active site. Taken together, these findings exclude the possibility that short “low-barrier” hydrogen bonds are formed in the ground state structure of the active sites examined in this work. Some time ago, it was suggested by Cleland that the “low-barrier hydrogen bond” hypothesis is operative in the catalytic mechanism of serine proteases, and requires the presence of short hydrogen bonds around 2.4 Å long in the active site, with the H atom centered between the catalytic heteroatoms. The conclusions drawn from this work do not exclude the validity of the “low-barrier hydrogen bond” hypothesis at all, but they merely do not support it in this particular case, with this particular class of enzymes.

  5. The catalytic cracking mechanism of lignite pyrolysis char on tar

    International Nuclear Information System (INIS)

    Lei, Z.; Huibin, H.; Xiangling, S.; Zhenhua, M.; Lei, Z.

    2017-01-01

    The influence of different pyrolysis conditions for tar catalytic cracking will be analyzed according to the lignite pyrolysis char as catalyst on pyrolytic tar in this paper. The pyrolysis char what is the by-product of the cracking of coal has an abundant of pore structure and it has good catalytic activity. On this basis, making the modified catalyst when the pyrolysis char is activation and loads Fe by impregnation method. The cracking mechanism of lignite pyrolytic tar is explored by applying gas chromatograph to analyze splitting products of tar. The experimental results showed that: (1) The effect of tar cracking as the pyrolysis temperature, the heating rate, the volatilization of pyrolysis char and particle size increasing is better and better. The effect of the catalytic and cracking of lignite pyrolysis char in tar is best when the heating rate, the pyrolysis temperature, the volatiles of pyrolysis char, particle size is in specific conditions.(2) The activation of pyrolysis char can improve the catalytic effect of pyrolysis char on the tar cracking. But it reduces the effect of the tar cracking when the pyrolysis char is activation loading Fe. (author)

  6. The catalytic mechanism of mouse renin studied with QM/MM calculations.

    Science.gov (United States)

    Brás, Natércia F; Ramos, Maria J; Fernandes, Pedro A

    2012-09-28

    Hypertension is a chronic condition that affects nearly 25% of adults worldwide. As the Renin-Angiotensin-Aldosterone System is implicated in the control of blood pressure and body fluid homeostasis, its combined blockage is an attractive therapeutic strategy currently in use for the treatment of several cardiovascular conditions. We have performed QM/MM calculations to study the mouse renin catalytic mechanism in atomistic detail, using the N-terminal His6-Asn14 segment of angiotensinogen as substrate. The enzymatic reaction (hydrolysis of the peptidic bond between residues in the 10th and 11th positions) occurs through a general acid/base mechanism and, surprisingly, it is characterized by three mechanistic steps: it begins with the creation of a first very stable tetrahedral gem-diol intermediate, followed by protonation of the peptidic bond nitrogen, giving rise to a second intermediate. In a final step the peptidic bond is completely cleaved and both gem-diol hydroxyl protons are transferred to the catalytic dyad (Asp32 and Asp215). The final reaction products are two separate peptides with carboxylic acid and amine extremities. The activation energy for the formation of the gem-diol intermediate was calculated as 23.68 kcal mol(-1), whereas for the other steps the values were 15.51 kcal mol(-1) and 14.40 kcal mol(-1), respectively. The rate limiting states were the reactants and the first transition state. The associated barrier (23.68 kcal mol(-1)) is close to the experimental values for the angiotensinogen substrate (19.6 kcal mol(-1)). We have also tested the influence of the density functional on the activation and reaction energies. All eight density functionals tested (B3LYP, B3LYP-D3, X3LYP, M06, B1B95, BMK, mPWB1K and B2PLYP) gave very similar results.

  7. Roles of the redox-active disulfide and histidine residues forming a catalytic dyad in reactions catalyzed by 2-ketopropyl coenzyme M oxidoreductase/carboxylase.

    Science.gov (United States)

    Kofoed, Melissa A; Wampler, David A; Pandey, Arti S; Peters, John W; Ensign, Scott A

    2011-09-01

    NADPH:2-ketopropyl-coenzyme M oxidoreductase/carboxylase (2-KPCC), an atypical member of the disulfide oxidoreductase (DSOR) family of enzymes, catalyzes the reductive cleavage and carboxylation of 2-ketopropyl-coenzyme M [2-(2-ketopropylthio)ethanesulfonate; 2-KPC] to form acetoacetate and coenzyme M (CoM) in the bacterial pathway of propylene metabolism. Structural studies of 2-KPCC from Xanthobacter autotrophicus strain Py2 have revealed a distinctive active-site architecture that includes a putative catalytic triad consisting of two histidine residues that are hydrogen bonded to an ordered water molecule proposed to stabilize enolacetone formed from dithiol-mediated 2-KPC thioether bond cleavage. Site-directed mutants of 2-KPCC were constructed to test the tenets of the mechanism proposed from studies of the native enzyme. Mutagenesis of the interchange thiol of 2-KPCC (C82A) abolished all redox-dependent reactions of 2-KPCC (2-KPC carboxylation or protonation). The air-oxidized C82A mutant, as well as wild-type 2-KPCC, exhibited the characteristic charge transfer absorbance seen in site-directed variants of other DSOR enzymes but with a pK(a) value for C87 (8.8) four units higher (i.e., four orders of magnitude less acidic) than that for the flavin thiol of canonical DSOR enzymes. The same higher pK(a) value was observed in native 2-KPCC when the interchange thiol was alkylated by the CoM analog 2-bromoethanesulfonate. Mutagenesis of the flavin thiol (C87A) also resulted in an inactive enzyme for steady-state redox-dependent reactions, but this variant catalyzed a single-turnover reaction producing a 0.8:1 ratio of product to enzyme. Mutagenesis of the histidine proximal to the ordered water (H137A) led to nearly complete loss of redox-dependent 2-KPCC reactions, while mutagenesis of the distal histidine (H84A) reduced these activities by 58 to 76%. A redox-independent reaction of 2-KPCC (acetoacetate decarboxylation) was not decreased for any of the

  8. Three-Dimensional Structure and Catalytic Mechanism of Cytosine Deaminase

    Energy Technology Data Exchange (ETDEWEB)

    R Hall; A Fedorov; C Xu; E Fedorov; S Almo; F Raushel

    2011-12-31

    Cytosine deaminase (CDA) from E. coli is a member of the amidohydrolase superfamily. The structure of the zinc-activated enzyme was determined in the presence of phosphonocytosine, a mimic of the tetrahedral reaction intermediate. This compound inhibits the deamination of cytosine with a K{sub i} of 52 nM. The zinc- and iron-containing enzymes were characterized to determine the effect of the divalent cations on activation of the hydrolytic water. Fe-CDA loses activity at low pH with a kinetic pKa of 6.0, and Zn-CDA has a kinetic pKa of 7.3. Mutation of Gln-156 decreased the catalytic activity by more than 5 orders of magnitude, supporting its role in substrate binding. Mutation of Glu-217, Asp-313, and His-246 significantly decreased catalytic activity supporting the role of these three residues in activation of the hydrolytic water molecule and facilitation of proton transfer reactions. A library of potential substrates was used to probe the structural determinants responsible for catalytic activity. CDA was able to catalyze the deamination of isocytosine and the hydrolysis of 3-oxauracil. Large inverse solvent isotope effects were obtained on k{sub cat} and k{sub cat}/K{sub m}, consistent with the formation of a low-barrier hydrogen bond during the conversion of cytosine to uracil. A chemical mechanism for substrate deamination by CDA was proposed.

  9. Cytochromes P450: History, Classes, Catalytic Mechanism, and Industrial Application.

    Science.gov (United States)

    Cook, D J; Finnigan, J D; Cook, K; Black, G W; Charnock, S J

    Cytochromes P450, a family of heme-containing monooxygenases that catalyze a diverse range of oxidative reactions, are so-called due to their maximum absorbance at 450nm, ie, "Pigment-450nm," when bound to carbon monoxide. They have appeal both academically and commercially due to their high degree of regio- and stereoselectivity, for example, in the area of active pharmaceutical ingredient synthesis. Despite this potential, they often exhibit poor stability, low turnover numbers and typically require electron transport protein(s) for catalysis. P450 systems exist in a variety of functional domain architectures, organized into 10 classes. P450s are also divided into families, each of which is based solely on amino acid sequence homology. Their catalytic mechanism employs a very complex, multistep catalytic cycle involving a range of transient intermediates. Mutagenesis is a powerful tool for the development of improved biocatalysts and has been used extensively with the archetypal Class VIII P450, BM3, from Bacillus megaterium, but with the increasing scale of genomic sequencing, a huge resource is now available for the discovery of novel P450s. © 2016 Elsevier Inc. All rights reserved.

  10. Reaction mechanisms of CO2 activation and catalytic reduction

    International Nuclear Information System (INIS)

    Wolff, Niklas von

    2016-01-01

    The use of CO 2 as a C1 chemical feedstock for the fine chemical industry is interesting both economically and ecologically, as CO 2 is non-toxic, abundant and cheap. Nevertheless, transformations of CO 2 into value-added products is hampered by its high thermodynamic stability and its inertness toward reduction. In order to design new catalysts able to overcome this kinetic challenge, a profound understanding of the reaction mechanisms at play in CO 2 reduction is needed. Using novel N/Si+ frustrated Lewis pairs (FLPs), the influence of CO 2 adducts and different hydro-borane reducing agents on the reaction mechanism in the catalytic hydroboration of CO 2 were investigated, both by DFT calculations and experiments. In a second step, the reaction mechanism of a novel reaction for the creation of C-C bonds from CO 2 and pyridyl-silanes (C 5 H 4 N-SiMe 3 ) was analyzed by DFT calculations. It was shown that CO 2 plays a double role in this transformation, acting both as a catalyst and a C1-building block. The fine understanding of this transformation then led to the development of a novel approach for the synthesis of sulfones and sulfonamides. Starting from SO 2 and aromatic silanes/amine silanes, these products were obtained in a single step under metal-free conditions. Noteworthy, sulfones and sulfonamides are common motifs in organic chemistry and found in a variety of highly important drugs. Finally, this concept was extended to aromatic halides as coupling partners, and it was thus shown for the first time that a sulfonylative Hiyama reaction is a possible approach to the synthesis of sulfones. (author) [fr

  11. A QM/MM–Based Computational Investigation on the Catalytic Mechanism of Saccharopine Reductase

    OpenAIRE

    Almasi, Joel N.; Bushnell, Eric A.C.; Gauld, James W.

    2011-01-01

    Saccharopine reductase from Magnaporthe grisea, an NADPH-containing enzyme in the α-aminoadipate pathway, catalyses the formation of saccharopine, a precursor to L-lysine, from the substrates glutamate and α-aminoadipate-δ-semialdehyde. Its catalytic mechanism has been investigated using quantum mechanics/molecular mechanics (QM/MM) ONIOM-based approaches. In particular, the overall catalytic pathway has been elucidated and the effects of electron correlation and the anisotropic polar protein...

  12. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase

    Energy Technology Data Exchange (ETDEWEB)

    S Kamat; A Bagaria; D Kumaran; G Holmes-Hampton; H Fan; A Sali; J Sauder; S Burley; P Lindahl; et. al.

    2011-12-31

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with k{sub cat} and k{sub cat}/K{sub m} values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{sup -1}, respectively. The apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction

  13. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase

    Energy Technology Data Exchange (ETDEWEB)

    Kamat, S.S.; Swaminathan, S.; Bagaria, A.; Kumaran, D.; Holmes-Hampton, G. P.; Fan, H.; Sali, A.; Sauder, J. M.; Burley, S. K.; Lindahl, P. A.; Raushel, F. M.

    2011-03-22

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with kcat and kcat/Km values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{sup -1}, respectively. The apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction mechanism and the

  14. Mechanisms of catalytic activity in heavily coated hydrocracking catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Millan, M.; Adell, C.; Hinojosa, C.; Herod, A.A.; Kandiyoti, R. [University of London Imperial College Science Technology & Medicine, London (United Kingdom). Dept. of Chemical Engineering

    2008-01-15

    Catalyst deactivation by coke deposition has a direct impact on the economic viability of heavy hydrocarbon upgrading processes, such as coal liquefaction and oil residue hydroprocessing. Coke deposition is responsible for rapid loss of catalytic activity and it mostly takes place in the early stages of hydrocracking. The effect of carbonaceous deposition on the catalytic activity of a chromium pillared montmorillonite has been studied in the present work. Its catalytic activity in hydrocracking a coal extract was evaluated based on the boiling point distributions of feed and products obtained by thermogravimetric analysis (TGA), and their characterisation by size exclusion chromatography (SEC) and UV-Fluorescence spectroscopy (UV-F). A large deposition on the catalyst was observed after two successive 2-hour long runs in which the catalyst recovered from the first run was reused in the second. The pillared clay retained its activity even though it showed high carbon loading, a large drop in surface area and complete apparent pore blockage. Some observations may contribute to explain this persistent catalytic activity. First, there is evidence suggesting the dynamic nature of the carbonaceous deposits, which continuously exchange material with the liquid, allowing catalytic activity to continue. Secondly, Scanning Electron Microscopy (SEM) on the used Cr montmorillonite has shown preferential deposition on some regions of the catalyst, which leaves a fraction of the surface relatively exposed. Finally, evidence from SEM coupled to X-ray microanalysis also suggest that deposits are thinner in areas where the active phase of the catalyst is present in higher concentrations. Hydrogenation on the active sites would make the deposits more soluble in the liquid cleaning of surrounding area from deposits.

  15. Understanding the mechanism of catalytic fast pyrolysis by unveiling reactive intermediates in heterogeneous catalysis

    Science.gov (United States)

    Hemberger, Patrick; Custodis, Victoria B. F.; Bodi, Andras; Gerber, Thomas; van Bokhoven, Jeroen A.

    2017-06-01

    Catalytic fast pyrolysis is a promising way to convert lignin into fine chemicals and fuels, but current approaches lack selectivity and yield unsatisfactory conversion. Understanding the pyrolysis reaction mechanism at the molecular level may help to make this sustainable process more economic. Reactive intermediates are responsible for product branching and hold the key to unveiling these mechanisms, but are notoriously difficult to detect isomer-selectively. Here, we investigate the catalytic pyrolysis of guaiacol, a lignin model compound, using photoelectron photoion coincidence spectroscopy with synchrotron radiation, which allows for isomer-selective detection of reactive intermediates. In combination with ambient pressure pyrolysis, we identify fulvenone as the central reactive intermediate, generated by catalytic demethylation to catechol and subsequent dehydration. The fulvenone ketene is responsible for the phenol formation. This technique may open unique opportunities for isomer-resolved probing in catalysis, and holds the potential for achieving a mechanistic understanding of complex, real-life catalytic processes.

  16. Probing the Catalytic Mechanism of S-Ribosylhomocysteinase (LuxS) with Catalytic Intermediates and Substrate Analogues

    Energy Technology Data Exchange (ETDEWEB)

    Gopishetty, Bhaskar; Zhu, Jinge; Rajan, Rakhi; Sobczak, Adam J.; Wnuk, Stanislaw F.; Bell, Charles E.; Pei, Dehua; (OSU); (FIU)

    2009-05-12

    S-Ribosylhomocysteinase (LuxS) cleaves the thioether bond in S-ribosylhomocysteine (SRH) to produce homocysteine (Hcys) and 4,5-dihydroxy-2,3-pentanedione (DPD), the precursor of the type II bacterial quorum sensing molecule (AI-2). The catalytic mechanism of LuxS comprises three distinct reaction steps. The first step involves carbonyl migration from the C1 carbon of ribose to C2 and the formation of a 2-ketone intermediate. The second step shifts the C=O group from the C2 to C3 position to produce a 3-ketone intermediate. In the final step, the 3-ketone intermediate undergoes a {beta}-elimination reaction resulting in the cleavage of the thioether bond. In this work, the 3-ketone intermediate was chemically synthesized and shown to be chemically and kinetically competent in the LuxS catalytic pathway. Substrate analogues halogenated at the C3 position of ribose were synthesized and reacted as time-dependent inhibitors of LuxS. The time dependence was caused by enzyme-catalyzed elimination of halide ions. Examination of the kinetics of halide release and decay of the 3-ketone intermediate catalyzed by wild-type and mutant LuxS enzymes revealed that Cys-84 is the general base responsible for proton abstraction in the three reaction steps, whereas Glu-57 likely facilitates substrate binding and proton transfer during catalysis.

  17. Catalytic Mechanisms and Biocatalytic Applications of Aspartate and Methylaspartate Ammonia Lyases

    NARCIS (Netherlands)

    de Villiers, Marianne; Veetil, Vinod Puthan; Raj, Hans; de Villiers, Jandre; Poelarends, Gerrit J.

    2012-01-01

    Ammonia lyases catalyze the formation of alpha-beta-unsaturated bonds by the elimination of ammonia from their substrates. This conceptually straightforward reaction has been the emphasis of many studies, with the main focus on the catalytic mechanism of these enzymes and/or the use of these enzymes

  18. Structural basis for the catalytic mechanism of a proficient enzyme: Orotidine 5'-Monophosphate Decarboxylase

    DEFF Research Database (Denmark)

    Harris, Pernille Hanne; Poulsen, Jens-Christian Navarro; Jensen, Kaj Frank

    2000-01-01

    /ß-barrels with two shared active sites. The orientation of the orotate moiety of the substrate is unambiguously deduced from the structure, and previously proposed catalytic mechanisms involving protonation of O2 or O4 can be ruled out. The proximity of the OMP carboxylate group with Asp71 appears to be instrumental...

  19. Further investigation on boric acid catalytic graphitization of polyacrylonitrile carbon fibers: Mechanism and mechanical properties

    International Nuclear Information System (INIS)

    Wen, Ya; Lu, Yonggen; Xiao, Hao; Qin, Xianying

    2012-01-01

    Highlights: ► The modulus of carbon fiber was improved by boric acid at the temperature range of 1500–2900 °C. ► 2300 °C is a key temperature degree from which the boron began to benefit fiber strength. ► The fiber strength was affected by the boron reaction and related to the boron states. -- Abstract: Catalytic graphitization of polyacrylonitrile based carbon fibers by boric acid doping was studied and the dependence of fiber tensile strength on the boron content and temperature was discussed. It was found that there existed a key temperature point for the boron to take effect. When the fibers were modified with 7.0 wt.% boric acid solution, with increasing temperature, the tensile strength was lower than that of the unmodified ones below 2300 °C, but a reverse thing happened above 2300 °C. Moreover, when being heated at 2500 °C, the modified fibers showed an increasing tensile modulus and strength with increasing boron content till maximums of 404 GPa and 2.46 GPa, 26% and 16% higher than those of unmodified ones. The mechanical properties of the fibers were affected by the interaction of carbon and boron, and also related with boron states. The decomposition of boron acid and its interaction with carbon brought defects on fiber surface, degrading the mechanical properties below 1300 °C. With further heat treatment, the boron diffused into the fibers and divided into two states: substitutional and interstitial. At a temperature over 2300 °C with an appreciate boron content, the substitutional would be formed predominantly, which removed the structural defects and relaxed the distortions, so as to benefit the mechanical properties.

  20. Catalytic routes and oxidation mechanisms in photoreforming of polyols

    Energy Technology Data Exchange (ETDEWEB)

    Sanwald, Kai E.; Berto, Tobias F.; Eisenreich, Wolfgang; Gutiérrez, Oliver Y.; Lercher, Johannes A.

    2016-12-01

    Photocatalytic reforming of biomass-derived oxygenates leads to H2 generation and evolution of CO2 via parallel formation of organic intermediates through anodic oxidations on a Rh/TiO2 photocatalyst. The reaction pathways and kinetics in the photoreforming of C3–C6 polyols were explored. Polyols are converted via direct and indirect hole transfer pathways resulting in (i) oxidative rupture of C–C bonds, (ii) oxidation to a-oxygen functionalized aldoses and ketoses (carbonyl group formation) and (iii) light-driven dehydration. Direct hole transfer to chemisorbed oxygenates on terminal Ti(IV)-OH groups, generating alkoxy-radicals that undergo ß-C–C-cleavage, is proposed for the oxidative C–C rupture. Carbonyl group formation and dehydration are attributed to indirect hole transfer at surface lattice oxygen sites [Ti_ _ _O_ _ _Ti] followed by the generation of carbon-centered radicals. Polyol chain length impacts the contribution of the oxidation mechanisms favoring the C–C bond cleavage (internal preferred over terminal) as the dominant pathway with higher polyol carbon number.

  1. Insights into the catalytic mechanism of dehydrogenase BphB: A quantum mechanics/molecular mechanics study.

    Science.gov (United States)

    Zhang, Ruiming; Shi, Xiangli; Sun, Yanhui; Zhang, Qingzhu; Wang, Wenxing

    2018-05-17

    The present study delineated the dehydrogenation mechanism of cis-2,3-dihydro-2,3-dihydroxybiphenyl (2,3-DDBPH) and cis-2,3-dihydro-2,3-dihydroxy-4,4'-dichlorobiphenyl (2,3-DD-4,4'-DBPH) by Pandoraea pnomenusa strain B-356 cis-2,3-dihydro-2,3-dihydroxybiphenyl dehydrogenase (BphB) in atomistic detail. The enzymatic process was investigated by a combined quantum mechanics/molecular mechanics (QM/MM) approach. Five different snapshots were extracted and calculated, which revealed that the Boltzmann-weighted average barriers of 2,3-DDBPH and 2,3-DD-4,4'-DBPH dehydrogenation processes are 10.7 and 11.5 kcal mol -1 , respectively. The established dehydrogenation mechanism provides new insight into the degradation processes of other chlorinated 2,3-DDBPH. In addition to Asn115, Ser142, and Lys149, the importance of Ile 89, Asn143, Pro184, Met 187, Thr189, and Lue 191 during the dehydrogenation process of 2,3-DDBPH and 2,3-DD-4,4'-DBPH were also highlighted to search for promising mutation targets for improving the catalytic efficiency of BphB. Copyright © 2018. Published by Elsevier Ltd.

  2. A QM/MM–Based Computational Investigation on the Catalytic Mechanism of Saccharopine Reductase

    Directory of Open Access Journals (Sweden)

    James W. Gauld

    2011-10-01

    Full Text Available Saccharopine reductase from Magnaporthe grisea, an NADPH-containing enzyme in the α-aminoadipate pathway, catalyses the formation of saccharopine, a precursor to L-lysine, from the substrates glutamate and α-aminoadipate-δ-semialdehyde. Its catalytic mechanism has been investigated using quantum mechanics/molecular mechanics (QM/MM ONIOM-based approaches. In particular, the overall catalytic pathway has been elucidated and the effects of electron correlation and the anisotropic polar protein environment have been examined via the use of the ONIOM(HF/6-31G(d:AMBER94 and ONIOM(MP2/6-31G(d//HF/6-31G(d:AMBER94 methods within the mechanical embedding formulism and ONIOM(MP2/6-31G(d//HF/6-31G(d:AMBER94 and ONIOM(MP2/6-311G(d,p//HF/6-31G(d:AMBER94 within the electronic embedding formulism. The results of the present study suggest that saccharopine reductase utilises a substrate-assisted catalytic pathway in which acid/base groups within the cosubstrates themselves facilitate the mechanistically required proton transfers. Thus, the enzyme appears to act most likely by binding the three required reactant molecules glutamate, α-aminoadipate-δ-semialdehyde and NADPH in a manner and polar environment conducive to reaction.

  3. Characterization of nicotinamidases: steady state kinetic parameters, classwide inhibition by nicotinaldehydes, and catalytic mechanism.

    Science.gov (United States)

    French, Jarrod B; Cen, Yana; Vrablik, Tracy L; Xu, Ping; Allen, Eleanor; Hanna-Rose, Wendy; Sauve, Anthony A

    2010-12-14

    Nicotinamidases are metabolic enzymes that hydrolyze nicotinamide to nicotinic acid. These enzymes are widely distributed across biology, with examples found encoded in the genomes of Mycobacteria, Archaea, Eubacteria, Protozoa, yeast, and invertebrates, but there are none found in mammals. Although recent structural work has improved our understanding of these enzymes, their catalytic mechanism is still not well understood. Recent data show that nicotinamidases are required for the growth and virulence of several pathogenic microbes. The enzymes of Saccharomyces cerevisiae, Drosophila melanogaster, and Caenorhabditis elegans regulate life span in their respective organisms, consistent with proposed roles in the regulation of NAD(+) metabolism and organismal aging. In this work, the steady state kinetic parameters of nicotinamidase enzymes from C. elegans, Sa. cerevisiae, Streptococcus pneumoniae (a pathogen responsible for human pneumonia), Borrelia burgdorferi (the pathogen that causes Lyme disease), and Plasmodium falciparum (responsible for most human malaria) are reported. Nicotinamidases are generally efficient catalysts with steady state k(cat) values typically exceeding 1 s(-1). The K(m) values for nicotinamide are low and in the range of 2 -110 μM. Nicotinaldehyde was determined to be a potent competitive inhibitor of these enzymes, binding in the low micromolar to low nanomolar range for all nicotinamidases tested. A variety of nicotinaldehyde derivatives were synthesized and evaluated as inhibitors in kinetic assays. Inhibitions are consistent with reaction of the universally conserved catalytic Cys on each enzyme with the aldehyde carbonyl carbon to form a thiohemiacetal complex that is stabilized by a conserved oxyanion hole. The S. pneumoniae nicotinamidase can catalyze exchange of (18)O into the carboxy oxygens of nicotinic acid with H(2)(18)O. The collected data, along with kinetic analysis of several mutants, allowed us to propose a catalytic

  4. Significance of the enzymatic properties of yeast S39A enolase to the catalytic mechanism.

    Science.gov (United States)

    Brewer, J M; Glover, C V; Holland, M J; Lebioda, L

    1998-04-02

    The S39A mutant of yeast enolase (isozyme 1), prepared by site-directed mutagenesis, has a relative Vmax of 0.01% and an activation constant for Mg2+ ca. 10-fold higher, compared with native enzyme. It is correctly folded. There is little effect of solvent viscosity on activity. We think that the loop Ser36-His43 fails to move to the 'closed' position upon catalytic Mg2+ binding, weakening several electrostatic interactions involved in the mechanism.

  5. Synergetic mechanism of methanol–steam reforming reaction in a catalytic reactor with electric discharges

    International Nuclear Information System (INIS)

    Kim, Taegyu; Jo, Sungkwon; Song, Young-Hoon; Lee, Dae Hoon

    2014-01-01

    Highlights: • Methanol–steam reforming was performed on Cu catalysts under an electric discharge. • Discharge had a synergetic effect on the catalytic reaction for methanol conversion. • Discharge lowered the temperature for catalyst activation or light off. • Discharge controlled the yield and selectivity of species in a reforming process. • Adsorption triggered by a discharge was a possible mechanism for a synergetic effect. - Abstract: Methanol–steam reforming was performed on Cu/ZnO/Al 2 O 3 catalysts under an electric discharge. The discharge occurred between the electrodes where the catalysts were packed. The electric discharge was characterized by the discharge voltage and electric power to generate the discharge. The existence of a discharge had a synergetic effect on the catalytic reaction for methanol conversion. The electric discharge provided modified reaction paths resulting in a lower temperature for catalyst activation or light off. The discharge partially controlled the yield and selectivity of species in a reforming process. The aspect of control was examined in view of the reaction kinetics. The possible mechanisms for the synergetic effect between the catalytic reaction and electric discharge on methanol–steam reforming were addressed. A discrete reaction path, particularly adsorption triggered by an electric discharge, was suggested to be the most likely mechanism for the synergetic effect. These results are expected to provide a guide for understanding the plasma–catalyst hybrid reaction

  6. A QM/MM study of the catalytic mechanism of nicotinamidase.

    Science.gov (United States)

    Sheng, Xiang; Liu, Yongjun

    2014-02-28

    Nicotinamidase (Pnc1) is a member of Zn-dependent amidohydrolases that hydrolyzes nicotinamide (NAM) to nicotinic acid (NA), which is a key step in the salvage pathway of NAD(+) biosynthesis. In this paper, the catalytic mechanism of Pnc1 has been investigated by using a combined quantum-mechanical/molecular-mechanical (QM/MM) approach based on the recently obtained crystal structure of Pnc1. The reaction pathway, the detail of each elementary step, the energetics of the whole catalytic cycle, and the roles of key residues and Zn-binding site are illuminated. Our calculation results indicate that the catalytic water molecule comes from the bulk solvent, which is then deprotonated by residue D8. D8 functions as a proton transfer station between C167 and NAM, while the activated C167 serves as the nucleophile. The residue K122 only plays a role in stabilizing intermediates and transition states. The oxyanion hole formed by the amide backbone nitrogen atoms of A163 and C167 has the function to stabilize the hydroxyl anion of nicotinamide. The Zn-binding site rather than a single Zn(2+) ion acts as a Lewis acid to influence the reaction. Two elementary steps, the activation of C167 in the deamination process and the decomposition of catalytic water in the hydrolysis process, correspond to the large energy barriers of 25.7 and 28.1 kcal mol(-1), respectively, meaning that both of them contribute a lot to the overall reaction barrier. Our results may provide useful information for the design of novel and efficient Pnc1 inhibitors and related biocatalytic applications.

  7. [Mechanism of catalytic ozonation for the degradation of paracetamol by activated carbon].

    Science.gov (United States)

    Wang, Jia-Yu; Dai, Qi-Zhou; Yu, Jie; Yan, Yi-Zhou; Chen, Jian-Meng

    2013-04-01

    The degradation of paracetamol (APAP) in aqueous solution was studied with ozonation integrated with activated carbon (AC). The synergistic effect of ozonation/AC process was explored by comparing the degradation efficiency of APAP in three processes (ozonation alone, activated carbon alone and ozonation integrated with activated carbon). The operational parameters that affected the reaction rate were carefully optimized. Based on the intermediates detected, the possible pathway for catalytic degradation was discussed and the reaction mechanism was also investigated. The results showed that the TOC removal reached 55.11% at 60 min in the AC/O3 system, and was significantly better than the sum of ozonation alone (20.22%) and activated carbon alone (27.39%), showing the great synergistic effect. And the BOD5/COD ratio increased from 0.086 (before reaction) to 0.543 (after reaction), indicating that the biodegradability was also greatly improved. The effects of the initial concentration of APAP, pH value, ozone dosage and AC dosage on the variation of reaction rate were carefully discussed. The catalytic reaction mechanism was different at different pH values: the organic pollutions were removed by adsorption and direct ozone oxidation at acidic pH, and mainly by catalytic ozonation at alkaline pH.

  8. Quantum Mechanics and Molecular Mechanics Study of the Catalytic Mechanism of Human AMSH-LP Domain Deubiquitinating Enzymes.

    Science.gov (United States)

    Zhu, Wenyou; Liu, Yongjun; Ling, Baoping

    2015-08-25

    Deubiquitinating enzymes (DUBs) catalyze the cleavage of the isopeptide bond in polyubiquitin chains to control and regulate the deubiquitination process in all known eukaryotic cells. The human AMSH-LP DUB domain specifically cleaves the isopeptide bonds in the Lys63-linked polyubiquitin chains. In this article, the catalytic mechanism of AMSH-LP has been studied using a combined quantum mechanics and molecular mechanics method. Two possible hydrolysis processes (Path 1 and Path 2) have been considered. Our calculation results reveal that the activation of Zn(2+)-coordinated water molecule is the essential step for the hydrolysis of isopeptide bond. In Path 1, the generated hydroxyl first attacks the carbonyl group of Gly76, and then the amino group of Lys63 is protonated, which is calculated to be the rate limiting step with an energy barrier of 13.1 kcal/mol. The energy barrier of the rate limiting step and the structures of intermediate and product are in agreement with the experimental results. In Path 2, the protonation of amino group of Lys63 is prior to the nucleophilic attack of activated hydroxyl. The two proton transfer processes in Path 2 correspond to comparable overall barriers (33.4 and 36.1 kcal/mol), which are very high for an enzymatic reaction. Thus, Path 2 can be ruled out. During the reaction, Glu292 acts as a proton transfer mediator, and Ser357 mainly plays a role in stabilizing the negative charge of Gly76. Besides acting as a Lewis acid, Zn(2+) also influences the reaction by coordinating to the reaction substrates (W1 and Gly76).

  9. Automated Prediction of Catalytic Mechanism and Rate Law Using Graph-Based Reaction Path Sampling.

    Science.gov (United States)

    Habershon, Scott

    2016-04-12

    In a recent article [ J. Chem. Phys. 2015 , 143 , 094106 ], we introduced a novel graph-based sampling scheme which can be used to generate chemical reaction paths in many-atom systems in an efficient and highly automated manner. The main goal of this work is to demonstrate how this approach, when combined with direct kinetic modeling, can be used to determine the mechanism and phenomenological rate law of a complex catalytic cycle, namely cobalt-catalyzed hydroformylation of ethene. Our graph-based sampling scheme generates 31 unique chemical products and 32 unique chemical reaction pathways; these sampled structures and reaction paths enable automated construction of a kinetic network model of the catalytic system when combined with density functional theory (DFT) calculations of free energies and resultant transition-state theory rate constants. Direct simulations of this kinetic network across a range of initial reactant concentrations enables determination of both the reaction mechanism and the associated rate law in an automated fashion, without the need for either presupposing a mechanism or making steady-state approximations in kinetic analysis. Most importantly, we find that the reaction mechanism which emerges from these simulations is exactly that originally proposed by Heck and Breslow; furthermore, the simulated rate law is also consistent with previous experimental and computational studies, exhibiting a complex dependence on carbon monoxide pressure. While the inherent errors of using DFT simulations to model chemical reactivity limit the quantitative accuracy of our calculated rates, this work confirms that our automated simulation strategy enables direct analysis of catalytic mechanisms from first principles.

  10. Catalytic mechanism of phenylacetone monooxygenases for non-native linear substrates.

    Science.gov (United States)

    Carvalho, Alexandra T P; Dourado, Daniel F A R; Skvortsov, Timofey; de Abreu, Miguel; Ferguson, Lyndsey J; Quinn, Derek J; Moody, Thomas S; Huang, Meilan

    2017-10-11

    Phenylacetone monooxygenase (PAMO) is the most stable and thermo-tolerant member of the Baeyer-Villiger monooxygenase family, and therefore it is an ideal candidate for the synthesis of industrially relevant compounds. However, its limited substrate scope has largely limited its industrial applications. In the present work, we provide, for the first time, the catalytic mechanism of PAMO for the native substrate phenylacetone as well as for a linear non-native substrate 2-octanone, using molecular dynamics simulations, quantum mechanics and quantum mechanics/molecular mechanics calculations. We provide a theoretical basis for the preference of the enzyme for the native aromatic substrate over non-native linear substrates. Our study provides fundamental atomic-level insights that can be employed in the rational engineering of PAMO for wide applications in industrial biocatalysis, in particular, in the biotransformation of long-chain aliphatic oils into potential biodiesels.

  11. Investigation of the degradation mechanism of catalytic wires during oxidation of ammonia process

    International Nuclear Information System (INIS)

    Pura, Jarosław; Wieciński, Piotr; Kwaśniak, Piotr; Zwolińska, Marta; Garbacz, Halina; Zdunek, Joanna; Laskowski, Zbigniew; Gierej, Maciej

    2016-01-01

    Highlights: • Degradation mechanisms of precious metal catalytic gauzes is proposed. • Significant change of gauzes morphology and chemical composition was observed. • Samples were analyzed using SEM, EDS and micro-XCT techniques. - Abstract: The most common catalysts for the ammonia oxidation process are 80 μm diameter platinum-rhodium wires knitted or woven into the form of a gauze. In an aggressive environment and under extreme conditions (temperature 800–900 °C, intensive gas flow, high pressure) precious elements are drained from the surface of the wires. Part of this separated material quickly decomposes on the surface in the form of characteristic “cauliflower-shape protrusions”. The rest of the platinum is captured by palladium-nickel catalytic-capture gauzes located beneath. In our investigation we focused on the effects of the degradation of gauzes from one industrial catalytic system. The aim of the study was to compare the degree and the mechanism of degradation of gauzes from a different part of the reactor. The study covered PtRh7 catalytic and PdNi5 catalytic-capture gauzes. X-ray computer microtomography investigation revealed that despite strong differences in morphology, each Pt-Rh wire has a similar specific surface area. This indicates that the oxidation process and morphological changes of the wires occur in a self-regulating balance, resulting in the value of the specific surface area of the catalyst. Microtomography analysis of Pd-Ni wires revealed strong redevelopment of the wires’ surface, which is related to the platinum capture phenomenon. Scanning electron microscope observations also revealed the nanostructure in the cauliflower-shape protrusions and large grains in the wires’ preserved cores. The high temperature in the reactor and the long-term nature of the process do not favor the occurrence of the nanostructure in this type of material. Further and detailed analysis of this phenomena will provide a better

  12. Investigation of the degradation mechanism of catalytic wires during oxidation of ammonia process

    Energy Technology Data Exchange (ETDEWEB)

    Pura, Jarosław, E-mail: jaroslawpura@gmail.com [Faculty of Material Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland); Wieciński, Piotr; Kwaśniak, Piotr; Zwolińska, Marta; Garbacz, Halina; Zdunek, Joanna [Faculty of Material Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland); Laskowski, Zbigniew; Gierej, Maciej [Precious Metal Mint, Weteranów 95, 05-250 Radzymin (Poland)

    2016-12-01

    Highlights: • Degradation mechanisms of precious metal catalytic gauzes is proposed. • Significant change of gauzes morphology and chemical composition was observed. • Samples were analyzed using SEM, EDS and micro-XCT techniques. - Abstract: The most common catalysts for the ammonia oxidation process are 80 μm diameter platinum-rhodium wires knitted or woven into the form of a gauze. In an aggressive environment and under extreme conditions (temperature 800–900 °C, intensive gas flow, high pressure) precious elements are drained from the surface of the wires. Part of this separated material quickly decomposes on the surface in the form of characteristic “cauliflower-shape protrusions”. The rest of the platinum is captured by palladium-nickel catalytic-capture gauzes located beneath. In our investigation we focused on the effects of the degradation of gauzes from one industrial catalytic system. The aim of the study was to compare the degree and the mechanism of degradation of gauzes from a different part of the reactor. The study covered PtRh7 catalytic and PdNi5 catalytic-capture gauzes. X-ray computer microtomography investigation revealed that despite strong differences in morphology, each Pt-Rh wire has a similar specific surface area. This indicates that the oxidation process and morphological changes of the wires occur in a self-regulating balance, resulting in the value of the specific surface area of the catalyst. Microtomography analysis of Pd-Ni wires revealed strong redevelopment of the wires’ surface, which is related to the platinum capture phenomenon. Scanning electron microscope observations also revealed the nanostructure in the cauliflower-shape protrusions and large grains in the wires’ preserved cores. The high temperature in the reactor and the long-term nature of the process do not favor the occurrence of the nanostructure in this type of material. Further and detailed analysis of this phenomena will provide a better

  13. Hydrodynamics and propulsion mechanism of self-propelled catalytic micromotors: model and experiment.

    Science.gov (United States)

    Li, Longqiu; Wang, Jiyuan; Li, Tianlong; Song, Wenping; Zhang, Guangyu

    2014-10-14

    The hydrodynamic behavior and propulsion mechanism of self-propelled micromotors are studied theoretically and experimentally. A hydrodynamic model to describe bubble growth and detachment is proposed to investigate the mechanism of a self-propelled conical tubular catalytic micromotor considering bubble geometric asymmetry and buoyancy force. The growth force caused by the growth of the bubble surface against the fluid is the driving force for micromotor motion. Also, the buoyancy force plays a primary role in bubble detachment. The effect of geometrical parameters on the micromotor velocity and drag force is presented. The bubble radius ratio is investigated for different micromotor radii to determine its hydrodynamic behavior during bubble ejection. The average micromotor velocity is found to be strongly dependent on the semi-cone angle, expelling frequency and bubble radius ratio. The semi-cone angle has a significant effect on the expelling frequency for conical tubular micromotors. The predicted results are compared to already existing experimental data for cylindrical micromotors (semi-cone angle δ = 0°) and conical micromotors. A good agreement is found between the theoretical calculation and experimental results. This model provides a profound explanation for the propulsion mechanism of a catalytic micromotor and can be used to optimize the micromotor design for its biomedical and environmental applications.

  14. New insights into the binding and catalytic mechanisms of Bacillus thuringiensis lactonase: insights into B. thuringiensis AiiA mechanism.

    Directory of Open Access Journals (Sweden)

    Marc N Charendoff

    Full Text Available The lactonase enzyme (AiiA produced by Bacillus thuringiensis serves to degrade autoinducer-1 (AI-1 signaling molecules in what is an evolved mechanism by which to compete with other bacteria. Bioassays have been previously performed to determine whether the AI-1 aliphatic tail lengths have any effect on AiiA's bioactivity, however, data to date are conflicting. Additionally, specific residue contributions to the catalytic activity of AiiA provide for some interesting questions. For example, it has been proposed that Y194 serves to provide an oxyanion hole to AI-1 which is curious given the fact the substrate spans two Zn(2+ ions. These ions might conceivably provide enough charge to promote both ligand stability and the carbonyl activation necessary to drive a nucleophilic attack. To investigate these questions, multiple molecular dynamics simulations were performed across a family of seven acylated homoserine lactones (AHL along with their associated intermediate and product states. Distance analyses and interaction energy analyses were performed to investigate current bioassay data. Our simulations are consistent with experimental studies showing that AiiA degrades AHLs in a tail length independent manner. However, the presence of the tail is required for activity. Also, the putative oxyanion hole function of Y194 toward the substrate is not observed in any of the reactant or product state simulation trajectories, but does seem to show efficacy in stabilizing the intermediate state. Last, we argue through ionization state analyses, that the proton shuttling necessary for catalytic activity might be mediated by both water and substrate-based intra-molecular proton transfer. Based on this argument, an alternate catalytic mechanism is proposed.

  15. ESR study into mechanism of heterogeneous-catalytic oxidation on oxides

    Energy Technology Data Exchange (ETDEWEB)

    Topchieva, K V; Loginov, A Yu; Kostikov, S V [Moskovskij Gosudarstvennyj Univ. (USSR)

    1977-12-11

    The role of radical particles in heterogeneous-catalytic oxidation of H/sub 2/; CO; SO/sub 2/; NH/sub 3/; C/sub 3/H/sub 6/ on the rare earth oxides (yttrium, lanthanum, magnesium and scandium oxides) and alkaline earth metal oxides was studied by the ESR method. The conclusion was made about the great reactivity of the peroxide structures O/sub 2//sup -/ in the oxidation catalysis in comparison to other formulas of chemisorption oxigen on oxides. The kinetic investigations are chemisorption oxigen on oxides. The kinetic investigations are carried out on the change of the concentration of paramagnetic particles O/sub 2/ during the catalysis. On the basis of the received data the conclusion is made about the reaction process of catalytic oxidation on rare and alkaline-earth oxides according to radical-chain mechanism with the formation of radical particles O/sub 2//sup -/, CO/sub 3//sup -/, SO/sub 4//sup -/, CO/sub 2//sup -/ as interediate products.

  16. Structural basis and catalytic mechanism for the dual functional endo-beta-N-acetylglucosaminidase A.

    Directory of Open Access Journals (Sweden)

    Jie Yin

    Full Text Available Endo-beta-N-acetylglucosaminidases (ENGases are dual specificity enzymes with an ability to catalyze hydrolysis and transglycosylation reactions. Recently, these enzymes have become the focus of intense research because of their potential for synthesis of glycopeptides. We have determined the 3D structures of an ENGase from Arthrobacter protophormiae (Endo-A in 3 forms, one in native form, one in complex with Man(3GlcNAc-thiazoline and another in complex with GlcNAc-Asn. The carbohydrate moiety sits above the TIM-barrel in a cleft region surrounded by aromatic residues. The conserved essential catalytic residues - E173, N171 and Y205 are within hydrogen bonding distance of the substrate. W216 and W244 regulate access to the active site during transglycosylation by serving as "gate-keepers". Interestingly, Y299F mutation resulted in a 3 fold increase in the transglycosylation activity. The structure provides insights into the catalytic mechanism of GH85 family of glycoside hydrolases at molecular level and could assist rational engineering of ENGases.

  17. Mechanisms of catalytic cleavage of benzyl phenyl ether in aqueous and apolar phases

    Energy Technology Data Exchange (ETDEWEB)

    He, Jiayue; Lu, Lu; Zhao, Chen; Mei, Donghai; Lercher, Johannes A.

    2014-03-01

    Catalytic pathways for the cleavage of ether bonds in benzyl phenyl ether (BPE) in liquid phase using Ni- and zeolite-based catalysts are explored. In the absence of catalysts, the C-O bond is selectively cleaved in water by hydrolysis, forming phenol and benzyl alcohol as intermediates, followed by alkylation. The hydronium ions catalyzing the reactions are provided by the dissociation of water at 523 K. Upon addition of HZSM-5, rates of hydrolysis and alkylation are markedly increased in relation to proton concentrations. In the presence of Ni/SiO2, the selective hydrogenolysis dominates for cleaving the Caliphatic-O bond. Catalyzed by the dual-functional Ni/HZSM-5, hydrogenolysis occurs as the major route rather than hydrolysis (minor route). In apolar undecane, the non-catalytic thermal pyrolysis route dominates. Hydrogenolysis of BPE appears to be the major reaction pathway in undecane in the presence of Ni/SiO2 or Ni/HZSM-5, almost completely suppressing radical reactions. Density functional theory (DFT) calculations strongly support the proposed C-O bond cleavage mechanisms on BPE in aqueous and apolar phases. These calculations show that BPE is initially protonated and subsequently hydrolyzed in the aqueous phase. Finally, DFT calculations suggest that the radical reactions in non-polar solvents lead to primary benzyl and phenoxy radicals in undecane, which leads to heavier condensation products as long as metals are absent for providing dissociated hydrogen.

  18. Dyads, a generalisation of monads

    NARCIS (Netherlands)

    Fokkinga, M.M.

    The concept of dyad is defined as the least common generalisation of monads and co-monads. So, taking some of the ingredients to be the identity, the concept specialises to the concept of monad, and taking other ingredients to be the identity it specialises to co-monads. Except for one axiom, all

  19. First-principles quantum-mechanical investigations: The role of water in catalytic conversion of furfural on Pd(111)

    Science.gov (United States)

    Xue, Wenhua; Borja, Miguel Gonzalez; Resasco, Daniel E.; Wang, Sanwu

    2015-03-01

    In the study of catalytic reactions of biomass, furfural conversion over metal catalysts with the presence of water has attracted wide attention. Recent experiments showed that the proportion of alcohol product from catalytic reactions of furfural conversion with palladium in the presence of water is significantly increased, when compared with other solvent including dioxane, decalin, and ethanol. We investigated the microscopic mechanism of the reactions based on first-principles quantum-mechanical calculations. We particularly identified the important role of water and the liquid/solid interface in furfural conversion. Our results provide atomic-scale details for the catalytic reactions. Supported by DOE (DE-SC0004600). This research used the supercomputer resources at NERSC, of XSEDE, at TACC, and at the Tandy Supercomputing Center.

  20. Evaluation of mechanical properties in metal wire mesh supported selective catalytic reduction (SCR) catalyst structures

    Science.gov (United States)

    Rajath, S.; Siddaraju, C.; Nandakishora, Y.; Roy, Sukumar

    2018-04-01

    The objective of this research is to evaluate certain specific mechanical properties of certain stainless steel wire mesh supported Selective catalytic reduction catalysts structures wherein the physical properties of the metal wire mesh and also its surface treatments played vital role thereby influencing the mechanical properties. As the adhesion between the stainless steel wire mesh and the catalyst material determines the bond strength and the erosion resistance of catalyst structures, surface modifications of the metal- wire mesh structure in order to facilitate the interface bonding is therefore very important to realize enhanced level of mechanical properties. One way to enhance such adhesion properties, the stainless steel wire mesh is treated with the various acids, i.e., chromic acid, phosphoric acid including certain mineral acids and combination of all those in various molar ratios that could generate surface active groups on metal surface that promotes good interface structure between the metal- wire mesh and metal oxide-based catalyst material and then the stainless steel wire mesh is dipped in the glass powder slurry containing some amount of organic binder. As a result of which the said catalyst material adheres to the metal-wire mesh surface more effectively that improves the erosion profile of supported catalysts structure including bond strength.

  1. Surface spintronics enhanced photo-catalytic hydrogen evolution: Mechanisms, strategies, challenges and future

    Science.gov (United States)

    Zhang, Wenyan; Gao, Wei; Zhang, Xuqiang; Li, Zhen; Lu, Gongxuan

    2018-03-01

    Hydrogen is a green energy carrier with high enthalpy and zero environmental pollution emission characteristics. Photocatalytic hydrogen evolution (HER) is a sustainable and promising way to generate hydrogen. Despite of great achievements in photocatalytic HER research, its efficiency is still limited due to undesirable electron transfer loss, high HER over-potential and low stability of some photocatalysts, which lead to their unsatisfied performance in HER and anti-photocorrosion properties. In recent years, many spintronics works have shown their enhancing effects on photo-catalytic HER. For example, it was reported that spin polarized photo-electrons could result in higher photocurrents and HER turn-over frequency (up to 200%) in photocatalytic system. Two strategies have been developed for electron spin polarizing, which resort to heavy atom effect and magnetic induction respectively. Both theoretical and experimental studies show that controlling spin state of OHrad radicals in photocatalytic reaction can not only decrease OER over-potential (even to 0 eV) of water splitting, but improve stability and charge lifetime of photocatalysts. A convenient strategy have been developed for aligning spin state of OHrad by utilizing chiral molecules to spin filter photo-electrons. By chiral-induced spin filtering, electron polarization can approach to 74%, which is significantly larger than some traditional transition metal devices. Those achievements demonstrate bright future of spintronics in enhancing photocatalytic HER, nevertheless, there is little work systematically reviewing and analysis this topic. This review focuses on recent achievements of spintronics in photocatalytic HER study, and systematically summarizes the related mechanisms and important strategies proposed. Besides, the challenges and developing trends of spintronics enhanced photo-catalytic HER research are discussed, expecting to comprehend and explore such interdisciplinary research in

  2. Catalytic mechanism of the dehydrogenation of ethylbenzene over Fe–Co/Mg(Al)O derived from hydrotalcites

    KAUST Repository

    Tope, Balkrishna B.; Balasamy, Rabindran J.; Khurshid, Alam; Atanda, Luqman A.; Yahiro, Hidenori; Shishido, Tetsuya; Takehira, Katsuomi; Al-Khattaf, Sulaiman S.

    2011-01-01

    -H+ abstraction from ethyl group on Mg2+-O2- basic sites, followed by C-O-Mg bond formation. The α-H+ abstraction by O2-(-Mg 2+) was likely followed by β-H abstraction, leading to the formations of styrene and H2. Such catalytic mechanism by the Fe 3+ acid-O2-(-Mg

  3. Catalytic zinc site and mechanism of the metalloenzyme PR-AMP cyclohydrolase.

    Science.gov (United States)

    D'Ordine, Robert L; Linger, Rebecca S; Thai, Carolyn J; Davisson, V Jo

    2012-07-24

    The enzyme N(1)-(5'-phosphoribosyl) adenosine-5'-monophosphate cyclohydrolase (PR-AMP cyclohydrolase) is a Zn(2+) metalloprotein encoded by the hisI gene. It catalyzes the third step of histidine biosynthesis, an uncommon ring-opening of a purine heterocycle for use in primary metabolism. A three-dimensional structure of the enzyme from Methanobacterium thermoautotrophicum has revealed that three conserved cysteine residues occur at the dimer interface and likely form the catalytic site. To investigate the functions of these cysteines in the enzyme from Methanococcus vannielii, a series of biochemical studies were pursued to test the basic hypothesis regarding their roles in catalysis. Inactivation of the enzyme activity by methyl methane thiosulfonate (MMTS) or 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) also compromised the Zn(2+) binding properties of the protein inducing loss of up to 90% of the metal. Overall reaction stoichiometry and the potassium cyanide (KCN) induced cleavage of the protein suggested that all three cysteines were modified in the process. The enzyme was protected from DTNB-induced inactivation by inclusion of the substrate N(1)-(5'-phosphoribosyl)adenosine 5'-monophosphate; (PR-AMP), while Mg(2+), a metal required for catalytic activity, enhanced the rate of inactivation. Site-directed mutations of the conserved C93, C109, C116 and the double mutant C109/C116 were prepared and analyzed for catalytic activity, Zn(2+) content, and reactivity with DTNB. Substitution of alanine for each of the conserved cysteines showed no measurable catalytic activity, and only the C116A was still capable of binding Zn(2+). Reactions of DTNB with the C109A/C116A double mutant showed that C93 is completely modified within 0.5 s. A model consistent with these data involves a DTNB-induced mixed disulfide linkage between C93 and C109 or C116, followed by ejection of the active site Zn(2+) and provides further evidence that the Zn(2+) coordination site involves the

  4. New insight in the microscopic mechanism of the catalytic synthesis of ammonia

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Henriksen, Niels Engholm; Billing, Gert D.

    1995-01-01

    Theoretical quantum calculations and molecular beam experiments of the dissociative chemisorption of N-2 molecules on catalytic active metal surfaces have given new insight in the fundamental process of the ammonia synthesis. This new approach to the study of catalytic process supplements the con...

  5. Mechanism for enhanced degradation of clofibric acid in aqueous by catalytic ozonation over MnOx/SBA-15.

    Science.gov (United States)

    Sun, Qiangqiang; Wang, Yu; Li, Laisheng; Bing, Jishuai; Wang, Yingxin; Yan, Huihua

    2015-04-09

    Comparative experiments were conducted to investigate the catalytic ability of MnO(x)/SBA-15 for the ozonation of clofibric acid (CA) and its reaction mechanism. Compared with ozonation alone, the degradation of CA was barely enhanced, while the removal of TOC was significantly improved by catalytic ozonation (O3/MnO(x)/SBA-15). Adsorption of CA and its intermediates by MnO(x)/SBA-15 was proved unimportant in O3/MnO(x)/SBA-15 due to the insignificant adsorption of CA and little TOC variation after ceasing ozone in stopped-flow experiment. The more remarkably inhibition effect of sodium bisulfite (NaHSO3) on the removal of TOC in catalytic ozonation than in ozonation alone elucidated that MnO(x)/SBA-15 facilitated the generation of hydroxyl radicals (OH), which was further verified by electron spin-resonance spectroscopy (ESR). Highly dispersed MnO(x) on SBA-15 were believed to be the main active component in MnO(x)/SBA-15. Some intermediates were indentified and different degradation routes of CA were proposed in both ozonation alone and catalytic ozonation. The amounts of small molecular carboxylic acids (i.e., formic acid (FA), acetic acid (AA) and oxalic acid (OA)) generated in catalytic ozonation were lower than in ozonation alone, resulting from the generation of more OH. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Towards Understanding the Catalytic Mechanism of Human Paraoxonase 1: Experimental and In Silico Mutagenesis Studies.

    Science.gov (United States)

    Tripathy, Rajan K; Aggarwal, Geetika; Bajaj, Priyanka; Kathuria, Deepika; Bharatam, Prasad V; Pande, Abhay H

    2017-08-01

    Human paraoxonase 1 (h-PON1) is a ~45-kDa serum enzyme that can hydrolyze a variety of substrates, including organophosphate (OP) compounds. It is a potential candidate for the development of antidote against OP poisoning in humans. However, insufficient OP-hydrolyzing activity of native enzyme affirms the urgent need to develop improved variant(s) having enhanced OP-hydrolyzing activity. The crystal structure of h-PON1 remains unsolved, and the molecular details of how the enzyme catalyses hydrolysis of different types of substrates are also not clear. Understanding the molecular details of the catalytic mechanism of h-PON1 is essential to engineer better variant(s) of enzyme. In this study, we have used a random mutagenesis approach to increase the OP-hydrolyzing activity of recombinant h-PON1. The mutants not only showed a 10-340-fold increased OP-hydrolyzing activity against different OP substrates but also exhibited differential lactonase and arylesterase activities. In order to investigate the mechanistic details of the effect of observed mutations on the hydrolytic activities of enzyme, molecular docking studies were performed with selected mutants. The results suggested that the observed mutations permit differential binding of substrate/inhibitor into the enzyme's active site. This may explain differential hydrolytic activities of the enzyme towards different substrates.

  7. Mechanism of 3,4-dihydroxybenzaldehyde electropolymerization at carbon paste electrodes : catalytic detection of NADH

    Directory of Open Access Journals (Sweden)

    Delbem Maria Flávia

    2002-01-01

    Full Text Available Cyclic voltammetry was used to study 3,4-dihydroxybenzaldehyde (3,4-DHB electropolymerization processes on carbon paste electrodes. The characteristics of the electropolymerized films were highly dependent on pH, anodic switching potential, scan rate, 3,4-DHB concentrations and number of cycles. Film stability was determined in citrate/phosphate buffer solutions at the same pH used during the electropolymerization process. The best conditions to prepare carbon paste modified electrodes were pH 7.8; 0.0 <= Eapl <= 0.25 V; 10 mV s-1; 0.25 mmol L-1 3,4-DHB and 10 scans. These carbon paste modified electrodes were used for NADH catalytic detection at 0.23 V in the range 0.015 <= [NADH] <= 0.21 mmol L-1. Experimental data were used to propose a mechanism for the 3,4--DHB electropolymerization processes, which involves initial phenoxyl radical formation.

  8. Ire1 Has Distinct Catalytic Mechanisms for XBP1/HAC1 Splicing and RIDD

    Directory of Open Access Journals (Sweden)

    Arvin B. Tam

    2014-11-01

    Full Text Available An evolutionarily conserved unfolded protein response (UPR component, IRE1, cleaves XBP1/HAC1 introns in order to generate spliced mRNAs that are translated into potent transcription factors. IRE1 also cleaves endoplasmic-reticulum-associated RNAs leading to their decay, an activity termed regulated IRE1-dependent decay (RIDD; however, the mechanism by which IRE1 differentiates intron cleavage from RIDD is not well understood. Using in vitro experiments, we found that IRE1 has two different modes of action: XBP1/HAC1 is cleaved by IRE1 subunits acting cooperatively within IRE1 oligomers, whereas a single subunit of IRE1 performs RIDD without cooperativity. Furthermore, these distinct activities can be separated by complementation of catalytically inactive IRE1 RNase and mutations at oligomerization interfaces. Using an IRE1 RNase inhibitor, STF-083010, selective inhibition of XBP1 splicing indicates that XBP1 promotes cell survival, whereas RIDD leads to cell death, revealing modulation of IRE1 activities as a drug-development strategy.

  9. Differences in the catalytic mechanisms of mesophilic and thermophilic indole-3-glycerol phosphate synthase enzymes at their adaptive temperatures.

    Science.gov (United States)

    Zaccardi, Margot J; Mannweiler, Olga; Boehr, David D

    2012-02-10

    Thermophilic enzymes tend to be less catalytically-active at lower temperatures relative to their mesophilic counterparts, despite having very similar crystal structures. An often cited hypothesis for this general observation is that thermostable enzymes have evolved a more rigid tertiary structure in order to cope with their more extreme, natural environment, but they are also less flexible at lower temperatures, leading to their lower catalytic activity under mesophilic conditions. An alternative hypothesis, however, is that complementary thermophilic-mesophilic enzyme pairs simply operate through different evolutionary-optimized catalytic mechanisms. In this communication, we present evidence that while the steps of the catalytic mechanisms for mesophilic and thermophilic indole-3-glycerol phosphate synthase (IGPS) enzymes are fundamentally similar, the identity of the rate-determining step changes as a function of temperature. Our findings indicate that while product release is rate-determining at 25°C for thermophilic IGPS, near its adaptive temperature (75°C), a proton transfer event, involving a general acid, becomes rate-determining. The rate-determining steps for thermophilic and mesophilic IGPS enzymes are also different at their respective, adaptive temperatures with the mesophilic IGPS-catalyzed reaction being rate-limited before irreversible CO2 release, and the thermophilic IGPS-catalyzed reaction being rate limited afterwards. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Differences in the catalytic mechanisms of mesophilic and thermophilic indole-3-glycerol phosphate synthase enzymes at their adaptive temperatures

    International Nuclear Information System (INIS)

    Zaccardi, Margot J.; Mannweiler, Olga; Boehr, David D.

    2012-01-01

    Highlights: ► Catalytic mechanisms of thermophilic–mesophilic enzymes may differ. ► Product release is rate-determining for thermophilic IGPS at low temperatures. ► But at higher temperatures, proton transfer from the general acid is rate-limiting. ► Rate-determining step is different still for mesophilic IGPS. ► Both chemical and physical steps of catalysis are important for temperature adaptation. -- Abstract: Thermophilic enzymes tend to be less catalytically-active at lower temperatures relative to their mesophilic counterparts, despite having very similar crystal structures. An often cited hypothesis for this general observation is that thermostable enzymes have evolved a more rigid tertiary structure in order to cope with their more extreme, natural environment, but they are also less flexible at lower temperatures, leading to their lower catalytic activity under mesophilic conditions. An alternative hypothesis, however, is that complementary thermophilic–mesophilic enzyme pairs simply operate through different evolutionary-optimized catalytic mechanisms. In this communication, we present evidence that while the steps of the catalytic mechanisms for mesophilic and thermophilic indole-3-glycerol phosphate synthase (IGPS) enzymes are fundamentally similar, the identity of the rate-determining step changes as a function of temperature. Our findings indicate that while product release is rate-determining at 25 °C for thermophilic IGPS, near its adaptive temperature (75 °C), a proton transfer event, involving a general acid, becomes rate-determining. The rate-determining steps for thermophilic and mesophilic IGPS enzymes are also different at their respective, adaptive temperatures with the mesophilic IGPS-catalyzed reaction being rate-limited before irreversible CO 2 release, and the thermophilic IGPS-catalyzed reaction being rate limited afterwards.

  11. Mechanism for enhanced degradation of clofibric acid in aqueous by catalytic ozonation over MnOx/SBA-15

    International Nuclear Information System (INIS)

    Sun, Qiangqiang; Wang, Yu; Li, Laisheng; Bing, Jishuai; Wang, Yingxin; Yan, Huihua

    2015-01-01

    Highlights: • Clofibric acid (CA) is efficiently mineralized by O 3 /MnO x /SBA-15. • Adsorption of CA and its intermediates on MnO x /SBA-15 is proved unimportant. • Initiation of hydroxyl radicals (·OH) is enhanced in O 3 /MnO x /SBA-15. • Uniformly distributed MnO x accounts for the high activity of MnO x /SBA-15. • Degradation routes of CA in ozonation alone and catalytic ozonation are proposed. - Abstract: Comparative experiments were conducted to investigate the catalytic ability of MnO x /SBA-15 for the ozonation of clofibric acid (CA) and its reaction mechanism. Compared with ozonation alone, the degradation of CA was barely enhanced, while the removal of TOC was significantly improved by catalytic ozonation (O 3 /MnO x /SBA-15). Adsorption of CA and its intermediates by MnO x /SBA-15 was proved unimportant in O 3 /MnO x /SBA-15 due to the insignificant adsorption of CA and little TOC variation after ceasing ozone in stopped-flow experiment. The more remarkably inhibition effect of sodium bisulfite (NaHSO 3 ) on the removal of TOC in catalytic ozonation than in ozonation alone elucidated that MnO x /SBA-15 facilitated the generation of hydroxyl radicals (·OH), which was further verified by electron spin-resonance spectroscopy (ESR). Highly dispersed MnO x on SBA-15 were believed to be the main active component in MnO x /SBA-15. Some intermediates were indentified and different degradation routes of CA were proposed in both ozonation alone and catalytic ozonation. The amounts of small molecular carboxylic acids (i.e., formic acid (FA), acetic acid (AA) and oxalic acid (OA)) generated in catalytic ozonation were lower than in ozonation alone, resulting from the generation of more ·OH

  12. Atomistic insight into the catalytic mechanism of glycosyltransferases by combined quantum mechanics/molecular mechanics (QM/MM) methods.

    Science.gov (United States)

    Tvaroška, Igor

    2015-02-11

    Glycosyltransferases catalyze the formation of glycosidic bonds by assisting the transfer of a sugar residue from donors to specific acceptor molecules. Although structural and kinetic data have provided insight into mechanistic strategies employed by these enzymes, molecular modeling studies are essential for the understanding of glycosyltransferase catalyzed reactions at the atomistic level. For such modeling, combined quantum mechanics/molecular mechanics (QM/MM) methods have emerged as crucial. These methods allow the modeling of enzymatic reactions by using quantum mechanical methods for the calculation of the electronic structure of the active site models and treating the remaining enzyme environment by faster molecular mechanics methods. Herein, the application of QM/MM methods to glycosyltransferase catalyzed reactions is reviewed, and the insight from modeling of glycosyl transfer into the mechanisms and transition states structures of both inverting and retaining glycosyltransferases are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Thermal catalytic oxidation of octachloronaphthalene over anatase TiO2 nanomaterial and its hypothesized mechanism

    Science.gov (United States)

    Su, Guijin; Li, Qianqian; Lu, Huijie; Zhang, Lixia; Huang, Linyan; Yan, Li; Zheng, Minghui

    2015-12-01

    As an environmentally-green technology, thermal catalytic oxidation of octachloronaphthalene (CN-75) over anatase TiO2 nanomaterials was investigated at 300 °C. A wide range of oxidation intermediates, which were investigated using various techniques, could be of three types: naphthalene-ring, single-benzene-ring, and completely ring-opened products. Reactive oxygen species on anatase TiO2 surface, such as O2-• and O2-, contributed to oxidative degradation. Based on these findings, a novel oxidation degradation mechanism was proposed. The reaction at (101) surface of anatase TiO2 was used as a model. The naphthalene-ring oxidative products with chloronaphthols and hydroxyl-pentachloronaphthalene-dione, could be formed via attacking the carbon of naphthalene ring at one or more positions by nucleophilic O2-. Lateral cleavage of the naphthalene ring at different C1-C10 and C4-C9, C1-C2 and C4-C9, C1-C2 or and C3-C4 bond positions by electrophilic O2-• could occur. This will lead to the formation of tetrachlorophenol, tetrachloro-benzoic acid, tetrachloro-phthalaldehyde, and tetrachloro-acrolein-benzoic acid, partially with further transformation into tetrachlorobenzene-dihydrodiol and tetrachloro-salicylic acid. Unexpectedly, the symmetric half section of CN-75 could be completely remained with generating the intricate oxidative intermediates characteristically containing tetrachlorobenzene structure. Complete cleavage of naphthalene ring could produce the ring-opened products, such as formic and acetic acids.

  14. Relational uncertainty in service dyads

    DEFF Research Database (Denmark)

    Kreye, Melanie

    2017-01-01

    in service dyads and how they resolve it through suitable organisational responses to increase the level of service quality. Design/methodology/approach: We apply the overall logic of Organisational Information-Processing Theory (OIPT) and present empirical insights from two industrial case studies collected...... the relational uncertainty increased the functional quality while resolving the partner’s organisational uncertainty increased the technical quality of the delivered service. Originality: We make two contributions. First, we introduce relational uncertainty to the OM literature as the inability to predict...... and explain the actions of a partnering organisation due to a lack of knowledge about their abilities and intentions. Second, we present suitable organisational responses to relational uncertainty and their effect on service quality....

  15. Exploration of alternate catalytic mechanisms and optimization strategies for retroaldolase design.

    Science.gov (United States)

    Bjelic, Sinisa; Kipnis, Yakov; Wang, Ling; Pianowski, Zbigniew; Vorobiev, Sergey; Su, Min; Seetharaman, Jayaraman; Xiao, Rong; Kornhaber, Gregory; Hunt, John F; Tong, Liang; Hilvert, Donald; Baker, David

    2014-01-09

    Designed retroaldolases have utilized a nucleophilic lysine to promote carbon-carbon bond cleavage of β-hydroxy-ketones via a covalent Schiff base intermediate. Previous computational designs have incorporated a water molecule to facilitate formation and breakdown of the carbinolamine intermediate to give the Schiff base and to function as a general acid/base. Here we investigate an alternative active-site design in which the catalytic water molecule was replaced by the side chain of a glutamic acid. Five out of seven designs expressed solubly and exhibited catalytic efficiencies similar to previously designed retroaldolases for the conversion of 4-hydroxy-4-(6-methoxy-2-naphthyl)-2-butanone to 6-methoxy-2-naphthaldehyde and acetone. After one round of site-directed saturation mutagenesis, improved variants of the two best designs, RA114 and RA117, exhibited among the highest kcat (>10(-3)s(-1)) and kcat/KM (11-25M(-1)s(-1)) values observed for retroaldolase designs prior to comprehensive directed evolution. In both cases, the >10(5)-fold rate accelerations that were achieved are within 1-3 orders of magnitude of the rate enhancements reported for the best catalysts for related reactions, including catalytic antibodies (kcat/kuncat=10(6) to 10(8)) and an extensively evolved computational design (kcat/kuncat>10(7)). The catalytic sites, revealed by X-ray structures of optimized versions of the two active designs, are in close agreement with the design models except for the catalytic lysine in RA114. We further improved the variants by computational remodeling of the loops and yeast display selection for reactivity of the catalytic lysine with a diketone probe, obtaining an additional order of magnitude enhancement in activity with both approaches. © 2013.

  16. Similarity in Depressive Symptoms in Adolescents’ Friendship Dyads: Selection or Socialization?

    Science.gov (United States)

    Giletta, Matteo; Scholte, Ron H. J.; Burk, William J.; Engels, Rutger C. M. E.; Larsen, Junilla K.; Prinstein, Mitchell J.; Ciairano, Silvia

    2012-01-01

    This study examined friendship selection and socialization as mechanisms explaining similarity in depressive symptoms in adolescent same-gender best friend dyads. The sample consisted of 1,752 adolescents (51% male) ages 12–16 years (M = 13.77, SD = 0.73) forming 487 friend dyads and 389 nonfriend dyads (the nonfriend dyads served as a comparison group). To test our hypothesis, we applied a multigroup actor–partner interdependence model to 3 friendship types that started and ended at different time points during the 2 waves of data collection. Results showed that adolescents reported levels of depressive symptoms at follow-up that were similar to those of their best friends. Socialization processes explained the increase in similarity exclusively in female dyads, whereas no evidence for friendship selection emerged for either male or female dyads. Additional analyses revealed that similarity between friends was particularly evident in the actual best friend dyads (i.e., true best friends), in which evidence for socialization processes emerged for both female and male friend dyads. Findings highlight the importance of examining friendship relations as a potential context for the development of depressive symptoms. PMID:21639621

  17. Catalytic Mechanism and Mode of Action of the Periplasmic Alginate Epimerase AlgG

    NARCIS (Netherlands)

    Wolfram, Francis; Kitova, Elena N.; Robinson, Howard; Walvoort, Marthe T. C.; Codee, Jeroen D. C.; Klassen, John S.; Howell, P. Lynne

    2014-01-01

    Background: The alginate epimerase AlgG converts mannuronate to its C5 epimer guluronate at the polymer level. Results: The structure of Pseudomonas syringae AlgG has been determined, and the protein has been functionally characterized. Conclusion: His(319) acts as the catalytic base, whereas

  18. Critical Role of Interdomain Interactions in the Conformational Change and Catalytic Mechanism of Endoplasmic Reticulum Aminopeptidase 1.

    Science.gov (United States)

    Stamogiannos, Athanasios; Maben, Zachary; Papakyriakou, Athanasios; Mpakali, Anastasia; Kokkala, Paraskevi; Georgiadis, Dimitris; Stern, Lawrence J; Stratikos, Efstratios

    2017-03-14

    Endoplasmic reticulum aminopeptidase 1 (ERAP1) is an intracellular enzyme that is important for the generation of antigenic epitopes and major histocompatibility class I-restricted adaptive immune responses. ERAP1 processes a vast variety of different peptides but still shows length and sequence selectivity, although the mechanism behind these properties is poorly understood. X-ray crystallographic analysis has revealed that ERAP1 can assume at least two distinct conformations in which C-terminal domain IV is either proximal or distal to active site domain II. To improve our understanding of the role of this conformational change in the catalytic mechanism of ERAP1, we used site-directed mutagenesis to perturb key salt bridges between domains II and IV. Enzymatic analysis revealed that these mutations, although located away from the catalytic site, greatly reduce the catalytic efficiency and change the allosteric kinetic behavior. The variants were more efficiently activated by small peptides and bound a competitive inhibitor with weaker affinity and faster dissociation kinetics. Molecular dynamics analysis suggested that the mutations affect the conformational distribution of ERAP1, reducing the population of closed states. Small-angle X-ray scattering indicated that both the wild type and the ERAP1 variants are predominantly in an open conformational state in solution. Overall, our findings suggest that electrostatic interactions between domains II and IV in ERAP1 are crucial for driving a conformational change that regulates the structural integrity of the catalytic site. The extent of domain opening in ERAP1 probably underlies its specialization for antigenic peptide precursors and should be taken into account in inhibitor development efforts.

  19. Theoretical Proposal for the Whole Phosphate Diester Hydrolysis Mechanism Promoted by a Catalytic Promiscuous Dinuclear Copper(II) Complex.

    Science.gov (United States)

    Esteves, Lucas F; Rey, Nicolás A; Dos Santos, Hélio F; Costa, Luiz Antônio S

    2016-03-21

    The catalytic mechanism that involves the cleavage of the phosphate diester model BDNPP (bis(2,4-dinitrophenyl) phosphate) catalyzed through a dinuclear copper complex is investigated in the current study. The metal complex was originally designed to catalyze catechol oxidation, and it showed an interesting catalytic promiscuity case in biomimetic systems. The current study investigates two different reaction mechanisms through quantum mechanics calculations in the gas phase, and it also includes the solvent effect through PCM (polarizable continuum model) single-point calculations using water as solvent. Two mechanisms are presented in order to fully describe the phosphate diester hydrolysis. Mechanism 1 is of the S(N)2 type, which involves the direct attack of the μ-OH bridge between the two copper(II) ions toward the phosphorus center, whereas mechanism 2 is the process in which hydrolysis takes place through proton transfer between the oxygen atom in the bridging hydroxo ligand and the other oxygen atom in the phosphate model. Actually, the present theoretical study shows two possible reaction paths in mechanism 1. Its first reaction path (p1) involves a proton transfer that occurs immediately after the hydrolytic cleavage, so that the proton transfer is the rate-determining step, which is followed by the entry of two water molecules. Its second reaction path (p2) consists of the entry of two water molecules right after the hydrolytic cleavage, but with no proton transfer; thus, hydrolytic cleavage is the rate-limiting step. The most likely catalytic path occurs in mechanism 1, following the second reaction path (p2), since it involves the lowest free energy activation barrier (ΔG(⧧) = 23.7 kcal mol(-1), in aqueous solution). A kinetic analysis showed that the experimental k(obs) value of 1.7 × 10(-5) s(-1) agrees with the calculated value k1 = 2.6 × 10(-5) s(-1); the concerted mechanism is kinetically favorable. The KIE (kinetic isotope effect) analysis

  20. The mechanism of the catalytic oxidation of hydrogen sulfide: II. Kinetics and mechanism of hydrogen sulfide oxidation catalyzed by sulfur

    NARCIS (Netherlands)

    Steijns, M.; Derks, F.; Verloop, A.; Mars, P.

    1976-01-01

    The kinetics of the catalytic oxidation of hydrogen sulfide by molecular oxygen have been studied in the temperature range 20–250 °C. The primary reaction product is sulfur which may undergo further oxidation to SO2 at temperatures above 200 °C. From the kinetics of this autocatalytic reaction we

  1. Large-Scale Analysis Exploring Evolution of Catalytic Machineries and Mechanisms in Enzyme Superfamilies.

    Science.gov (United States)

    Furnham, Nicholas; Dawson, Natalie L; Rahman, Syed A; Thornton, Janet M; Orengo, Christine A

    2016-01-29

    Enzymes, as biological catalysts, form the basis of all forms of life. How these proteins have evolved their functions remains a fundamental question in biology. Over 100 years of detailed biochemistry studies, combined with the large volumes of sequence and protein structural data now available, means that we are able to perform large-scale analyses to address this question. Using a range of computational tools and resources, we have compiled information on all experimentally annotated changes in enzyme function within 379 structurally defined protein domain superfamilies, linking the changes observed in functions during evolution to changes in reaction chemistry. Many superfamilies show changes in function at some level, although one function often dominates one superfamily. We use quantitative measures of changes in reaction chemistry to reveal the various types of chemical changes occurring during evolution and to exemplify these by detailed examples. Additionally, we use structural information of the enzymes active site to examine how different superfamilies have changed their catalytic machinery during evolution. Some superfamilies have changed the reactions they perform without changing catalytic machinery. In others, large changes of enzyme function, in terms of both overall chemistry and substrate specificity, have been brought about by significant changes in catalytic machinery. Interestingly, in some superfamilies, relatives perform similar functions but with different catalytic machineries. This analysis highlights characteristics of functional evolution across a wide range of superfamilies, providing insights that will be useful in predicting the function of uncharacterised sequences and the design of new synthetic enzymes. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Designing efficient photochromic dithienylethene dyads.

    Science.gov (United States)

    Fihey, Arnaud; Jacquemin, Denis

    2015-06-01

    Aiming at designing more efficient multiphotochromes, we investigate with the help of ab initio tools the impact of the substitution on a series of dimers constituted of two dithienylethene (DTE) moieties, strongly coupled to each other through an ethynyl linker. The electronic structure and the optical properties of a large panel of compounds, substituted on different positions by various types of electroactive groups, have been compared with the aim of designing a dyad in which the three possible isomers (open-open, closed-open, closed-closed) can be reached. We show that appending the reactive carbons atoms of the DTE core with electroactive groups on one of the two photochromes allows cyclisation to be induced on a specific moiety, which leads to the formation of the desired closed-open isomer. Substituting the lateral positions of the thiophene rings provides further control of the topology of the frontier molecular orbitals, so that the electronic transition inducing the second ring closure stands out in the spectrum of the intermediate isomer.

  3. Medical students' perception of dyad practice

    DEFF Research Database (Denmark)

    Tolsgaard, Martin G; Rasmussen, Maria Birkvad; Bjørck, Sebastian

    2014-01-01

    Training in pairs (dyad practice) has been shown to improve efficiency of clinical skills training compared with single practice but little is known about students' perception of dyad practice. The aim of this study was to explore the reactions and attitudes of medical students who were instructed....... The students felt dyad practice improved their self-efficacy through social interaction with peers, provided useful insight through observation, and contributed with shared memory of what to do, when they forgot essential steps of the physical examination of the patient. However, some students were concerned...

  4. Catalytic mechanism of the dehydrogenation of ethylbenzene over Fe–Co/Mg(Al)O derived from hydrotalcites

    KAUST Repository

    Tope, Balkrishna B.

    2011-11-01

    Catalytic mechanism of ethylbenzene dehydrogenation over Fe-Co/Mg(Al)O derived from hydrotalcites has been studied based on the XAFS and XPS catalyst characterization and the FTIR measurements of adsorbed species. Fe-Co/Mg(Al)O showed synergy, whereas Fe-Ni/Mg(Al)O showed no synergy, in the dehydrogenation of ethylbenzene. Ni species were stably incorporated as Ni2+ in the regular sites in periclase and spinel structure in the Fe-Ni/Mg(Al)O. Contrarily, Co species exists as a mixture of Co3+/Co2+ in the Fe-Co/Mg(Al)O and was partially isolated from the regular sites in the structures with increasing the Co content. Co addition enhanced Lewis acidity of Fe3+ active sites by forming Fe3+-O-Co 3+/2+(1/1) bond, resulting in an increase in the activity. FTIR of ethylbenzene adsorbed on the Fe-Co/Mg(Al)O clearly showed formations of C-O bond and π-adsorbed aromatic ring. This suggests that ethylbenzene was strongly adsorbed on the Fe3+ acid sites via π-bonding and the dehydrogenation was initiated by α-H+ abstraction from ethyl group on Mg2+-O2- basic sites, followed by C-O-Mg bond formation. The α-H+ abstraction by O2-(-Mg 2+) was likely followed by β-H abstraction, leading to the formations of styrene and H2. Such catalytic mechanism by the Fe 3+ acid-O2-(-Mg2+) base couple and the Fe 3+/Fe2+ reduction-oxidation cycle was further assisted by Co3+/Co2+, leading to a good catalytic activity for the dehydrogenation of ethylbenzene. © 2011 Elsevier B.V. All rights reserved.

  5. Interrogating the catalytic mechanism of nanoparticle mediated Stille coupling reactions employing bio-inspired Pd nanocatalysts

    Science.gov (United States)

    Pacardo, Dennis B.; Slocik, Joseph M.; Kirk, Kyle C.; Naik, Rajesh R.; Knecht, Marc R.

    2011-05-01

    To address issues concerning the global environmental and energy state, new catalytic technologies must be developed that translate ambient and efficient conditions to heavily used reactions. To achieve this, the structure/function relationship between model catalysts and individual reactions must be critically discerned to identify structural motifs responsible for the reactivity. This is especially true for nanoparticle-based systems where this level of information remains limited. Here we present evidence indicating that peptide-capped Pd nanoparticles drive Stille C-C coupling reactions via Pd atom leaching. Through a series of reaction studies, the materials are shown to be optimized for reactivity under ambient conditions where increases in temperature or catalyst concentration deactivate reactivity due to the leaching process. A quartz crystal microbalance analysis demonstrates that Pd leaching occurs during the initial oxidative addition step at the nanoparticle surface by aryl halides. Together, this suggests that peptide-based materials may be optimally suited for use as model systems to isolate structural motifs responsible for the generation of catalytically reactive materials under ambient synthetic conditions.

  6. Interrogating the catalytic mechanism of nanoparticle mediated Stille coupling reactions employing bio-inspired Pd nanocatalysts.

    Science.gov (United States)

    Pacardo, Dennis B; Slocik, Joseph M; Kirk, Kyle C; Naik, Rajesh R; Knecht, Marc R

    2011-05-01

    To address issues concerning the global environmental and energy state, new catalytic technologies must be developed that translate ambient and efficient conditions to heavily used reactions. To achieve this, the structure/function relationship between model catalysts and individual reactions must be critically discerned to identify structural motifs responsible for the reactivity. This is especially true for nanoparticle-based systems where this level of information remains limited. Here we present evidence indicating that peptide-capped Pd nanoparticles drive Stille C-C coupling reactions via Pd atom leaching. Through a series of reaction studies, the materials are shown to be optimized for reactivity under ambient conditions where increases in temperature or catalyst concentration deactivate reactivity due to the leaching process. A quartz crystal microbalance analysis demonstrates that Pd leaching occurs during the initial oxidative addition step at the nanoparticle surface by aryl halides. Together, this suggests that peptide-based materials may be optimally suited for use as model systems to isolate structural motifs responsible for the generation of catalytically reactive materials under ambient synthetic conditions. © The Royal Society of Chemistry 2011

  7. Catalytic mechanism of sodium compounds in black liquor during gasification of coal black liquor slurry

    International Nuclear Information System (INIS)

    Kuang Jianping; Zhou Junhu; Zhou Zhijun; Liu Jianzhong; Cen Kefa

    2008-01-01

    The coal black liquor slurry (CBLS) was composed of coal and black pulping liquor, which has plenty of sodium compounds, lignin and cellulose. The sodium compounds have a catalytic effect on the gasification process of coal black liquor slurry, while lignin and cellulose enhance the heat value. Alkali-catalyzed gasification experiments of CBLS and CWS (coal water slurry) are investigated on the thermobalance and fixed bed reactor. The residues of the gasification of CBLS and CWS are analyzed by XRD, SEM and FT-IR. It is found that many micro- and mesopores and zigzag faces exist in the surface of the CBLS coke, which play a key role in the catalytic gasification. Sodium can enhance the reaction potential, weaken the bond of C-O and improve the gasification reaction rate. XRD results show that sodium aluminum silicate and nepheline are the main crystal components of the CBLS and CWS. The C-O stretching vibration peak in the 1060 cm -1 band in the CBLS shifts to 995.65 cm -1 in the CBLS coke after partial gasification. This means that the energy of the C-O stretching vibration in the CBLS carbon matrix decreases, so the structure of the carbon matrix is more liable to react with an oxygen ion or hydroxide ion. The amplitude of the C-O stretching vibration peak is augmented step by step due to the ground-excited level jump of the C-O band

  8. Catalytic oxidation of dibromomethane over Ti-modified Co3O4 catalysts: Structure, activity and mechanism.

    Science.gov (United States)

    Mei, Jian; Huang, Wenjun; Qu, Zan; Hu, Xiaofang; Yan, Naiqiang

    2017-11-01

    Ti-modified Co 3 O 4 catalysts with various Co/Ti ratios were synthesized using the co-precipitation method and were used in catalytic oxidation of dibromomethane (CH 2 Br 2 ), which was selected as the model molecule for brominated volatile organic compounds (BVOCs). Addition of Ti distorted the crystal structure and led to the formation of a Co-O-Ti solid solution. Co 4 Ti 1 (Co/Ti molar ratio was 4) achieved higher catalytic activity with a T 90 (the temperature needed for 90% conversion) of approximately 245°C for CH 2 Br 2 oxidation and higher selectivity to CO 2 at a low temperature than the other investigated catalysts. In addition, Co 4 Ti 1 was stable for at least 30h at 500ppm CH 2 Br 2 , 0 or 2vol% H 2 O, 0 or 500ppm p-xylene (PX), and 10% O 2 at a gas hourly space velocity of 60,000h -1 . The final products were CO x , Br 2 , and HBr, without the formation of other Br-containing organic byproducts. The high catalytic activity was attributed to the high Co 3+ /Co 2+ ratio and high surface acidity. Additionally, the synergistic effect of Co and Ti made it superior for CH 2 Br 2 oxidation. Furthermore, based on the analysis of products and in situ DRIFTs studies, a receivable reaction mechanism for CH 2 Br 2 oxidation over Ti-modified Co 3 O 4 catalysts was proposed. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Synthesis of hydrophobic gold nanoclusters: growth mechanism study, luminescence property and catalytic application

    International Nuclear Information System (INIS)

    Selvam, Tamil Selvi; Chi, Kai-Ming

    2011-01-01

    One-pot synthesis of well dispersed, size-controlled gold nanoparticles with the average size of 10–15 nm and luminescent gold nanoclusters with average size of 1.7–2.0 nm were successfully achieved by thermal decomposition of gold organometallic precursor CH 3 AuPPh 3 in the presence of thiol surfactants in o-xylene. Only difference between the preparations of two types of Au nanoparticles is the amount of thiol surfactant employed. The mechanistic study of formation of gold nanoparticles was carried out by analyzing the samples at different reaction time intervals and revealed that two-staged growth process was involved. The nanoclusters showed strong red emission with the maximum intensity at about 600 nm. The maximum room temperature photoluminescence quantum yield was measured as 1.2%. The catalytic ability of the Au nanoclusters to promote Suzuki–Miyaura coupling involving the C–C bond formation was also investigated.

  10. CO-Bridged H-Cluster Intermediates in the Catalytic Mechanism of [FeFe]-Hydrogenase CaI.

    Science.gov (United States)

    Ratzloff, Michael W; Artz, Jacob H; Mulder, David W; Collins, Reuben T; Furtak, Thomas E; King, Paul W

    2018-06-20

    The [FeFe]-hydrogenases ([FeFe] H 2 ases) catalyze reversible H 2 activation at the H-cluster, which is composed of a [4Fe-4S] H subsite linked by a cysteine thiolate to a bridged, organometallic [2Fe-2S] ([2Fe] H ) subsite. Profoundly different geometric models of the H-cluster redox states that orchestrate the electron/proton transfer steps of H 2 bond activation have been proposed. We have examined this question in the [FeFe] H 2 ase I from Clostridium acetobutylicum (CaI) by Fourier-transform infrared (FTIR) spectroscopy with temperature annealing and H/D isotope exchange to identify the relevant redox states and define catalytic transitions. One-electron reduction of H ox led to formation of H red H + ([4Fe-4S] H 2+ -Fe I -Fe I ) and H red ' ([4Fe-4S] H 1+ -Fe II -Fe I ), with both states characterized by low frequency μ-CO IR modes consistent with a fully bridged [2Fe] H . Similar μ-CO IR modes were also identified for H red H + of the [FeFe] H 2 ase from Chlamydomonas reinhardtii (CrHydA1). The CaI proton-transfer variant C298S showed enrichment of an H/D isotope-sensitive μ-CO mode, a component of the hydride bound H-cluster IR signal, H hyd . Equilibrating CaI with increasing amounts of NaDT, and probed at cryogenic temperatures, showed H red H + was converted to H hyd . Over an increasing temperature range from 10 to 260 K catalytic turnover led to loss of H hyd and appearance of H ox , consistent with enzymatic turnover and H 2 formation. The results show for CaI that the μ-CO of [2Fe] H remains bridging for all of the "H red " states and that H red H + is on pathway to H hyd and H 2 evolution in the catalytic mechanism. These results provide a blueprint for designing small molecule catalytic analogs.

  11. Theoretical study for pyridinium-based ionic liquid 1-ethylpyridinium trifluoroacetate: synthesis mechanism, electronic structure, and catalytic reactivity.

    Science.gov (United States)

    Zhu, Xueying; Cui, Peng; Zhang, Dongju; Liu, Chengbu

    2011-07-28

    By performing density functional theory calculations, we have studied the synthesis mechanism, electronic structure, and catalytic reactivity of a pyridinium-based ionic liquid, 1-ethylpyridinium trifluoroacetate ([epy](+)[CF(3)COO](-)). It is found that the synthesis of the pyridinium salt follows a S(N)2 mechanism. The electronic structural analyses show that multiple H bonds are generally involved in the pyridinium-based ionic liquid, which may play a decisive role for stabilizing the ionic liquid. The cation-anion interaction mainly involves electron transfer between the lone pair of the oxygen atom in the anion and the antibonding orbital of the C*-H bond (C* denotes the carbon atom at the ortho-position of nitrogen atom in the cation). This present work has also given clearly the catalytic mechanism of [epy](+)[CF(3)COO](-) toward to the Diels-Alder (D-A) reaction of acrylonitrile with 2-methyl-1,3-butadiene. Both the cation and anion are shown to play important roles in promoting the D-A reaction. The cation [epy](+), as a Lewis acid, associates the C≡N group by C≡N···H H bond to increase the polarity of the C═C double bond in acrylonitrile, while the anion CF(3)COO(-) links with the methyl group in 2-methyl-1,3-butadiene by C-H···O H bond, which weakens the electron-donating capability of methyl and thereby lowers the energy barrier of the D-A reaction. The present results are expected to provide valuable information for the design and application of pyridinium-based ionic liquids. © 2011 American Chemical Society

  12. DNA gyrase with a single catalytic tyrosine can catalyze DNA supercoiling by a nicking-closing mechanism

    Science.gov (United States)

    Gubaev, Airat; Weidlich, Daniela; Klostermeier, Dagmar

    2016-01-01

    The topological state of DNA is important for replication, recombination and transcription, and is regulated in vivo by DNA topoisomerases. Gyrase introduces negative supercoils into DNA at the expense of ATP hydrolysis. It is the accepted view that gyrase achieves supercoiling by a strand passage mechanism, in which double-stranded DNA is cleaved, and a second double-stranded segment is passed through the gap, converting a positive DNA node into a negative node. We show here that gyrase with only one catalytic tyrosine that cleaves a single strand of its DNA substrate can catalyze DNA supercoiling without strand passage. We propose an alternative mechanism for DNA supercoiling via nicking and closing of DNA that involves trapping, segregation and relaxation of two positive supercoils. In contrast to DNA supercoiling, ATP-dependent relaxation and decatenation of DNA by gyrase lacking the C-terminal domains require both tyrosines and strand passage. Our results point towards mechanistic plasticity of gyrase and might pave the way for finding novel and specific mechanism-based gyrase inhibitors. PMID:27557712

  13. A framework for studying relationship marketing dyads

    NARCIS (Netherlands)

    Lindgreen, A.

    2001-01-01

    Although coined more than 15 years ago, relationship marketing remains an ambiguous concept with plenty of rhetoric but few publications on empirical evidence in support of a relationship marketing paradigm shift. A research project is currently studying marketing dyads in the international food

  14. Mechanism of catalytic action of oxide systems in reactions of aldehyde oxidation to carboxylic acids

    International Nuclear Information System (INIS)

    Andrushkevich, T.V.

    1997-01-01

    Mechanism of selective action of oxide catalysts (on the base of V 2 O 4 , MoO 3 ) of aldehyde oxidation to acids is considered, reaction acrolein oxidation to acrylic acid is taken as an example. Multistage mechanism of the process is established; it involves consequent transformation of coordination-bonded aldehyde into carbonyl-bonded aldehyde and symmetric carboxylate. Principles of active surface construction are formulated, they take into account the activity of stabilization center of concrete intermediate compound and bond energy of oxygen with surface. (author)

  15. The role of the active site Zn in the catalytic mechanism of the GH38 Golgi alpha-mannosidase II: Implications from noeuromycin inhibition

    DEFF Research Database (Denmark)

    Bols, Mikael; Kuntz, Douglas A.; Rose, David R.

    2006-01-01

    Golgi alpha-mannosidase II (GMII) is a Family 38 glycosyl hydrolase involved in the eukaryotic N-glycosylation pathway in protein synthesis. Understanding of its catalytic mechanism has been of interest for the development of specific inhibitors that could lead to novel anti-metastatic or anti-in...

  16. Enhanced photocatalytic hydrogen production from an MCM-41-immobilized photosensitizer-[Fe-Fe] hydrogenase mimic dyad.

    Science.gov (United States)

    Wang, Wen; Yu, Tianjun; Zeng, Yi; Chen, Jinping; Yang, Guoqiang; Li, Yi

    2014-11-01

    A covalently linked photosensitizer-catalytic center dyad Ps-Hy, consisting of two bis(2-phenylpyridine)(2,2'-bipyridine)iridium(iii) chromophores (Ps) and a diiron hydrogenase mimic (Hy) was constructed by using click reaction. Ps-Hy was incorporated into K(+)-exchanged molecular sieve MCM-41 to form a composite (Ps-Hy@MCM-41), which has been successfully applied to the photochemical production of hydrogen. The catalytic activity of Ps-Hy@MCM-41 is ∼3-fold higher as compared with that of Ps-Hy in the absence of MCM-41. The incorporation of Ps-Hy into MCM-41 stabilizes the catalyst, and consequently, advances the photocatalysis. The present study provides a potential strategy for improving catalytic efficiency of artificial photosynthesis systems using mesoporous molecular sieves.

  17. The catalytic mechanism of cyclic GMP-AMP synthase (cGAS) and implications for innate immunity and inhibition.

    Science.gov (United States)

    Hall, Justin; Ralph, Erik C; Shanker, Suman; Wang, Hong; Byrnes, Laura J; Horst, Reto; Wong, Jimson; Brault, Amy; Dumlao, Darren; Smith, James F; Dakin, Leslie A; Schmitt, Daniel C; Trujillo, John; Vincent, Fabien; Griffor, Matt; Aulabaugh, Ann E

    2017-12-01

    Cyclic GMP-AMP synthase (cGAS) is activated by ds-DNA binding to produce the secondary messenger 2',3'-cGAMP. cGAS is an important control point in the innate immune response; dysregulation of the cGAS pathway is linked to autoimmune diseases while targeted stimulation may be of benefit in immunoncology. We report here the structure of cGAS with dinucleotides and small molecule inhibitors, and kinetic studies of the cGAS mechanism. Our structural work supports the understanding of how ds-DNA activates cGAS, suggesting a site for small molecule binders that may cause cGAS activation at physiological ATP concentrations, and an apparent hotspot for inhibitor binding. Mechanistic studies of cGAS provide the first kinetic constants for 2',3'-cGAMP formation, and interestingly, describe a catalytic mechanism where 2',3'-cGAMP may be a minor product of cGAS compared with linear nucleotides. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  18. Mechanisms for catalytic carbon nanofiber growth studied by ab initio density functional theory calculations

    DEFF Research Database (Denmark)

    Abild-Pedersen, Frank; Nørskov, Jens Kehlet; Rostrup-Nielsen, Jens

    2006-01-01

    Mechanisms and energetics of graphene growth catalyzed by nickel nanoclusters were studied using ab initio density functional theory calculations. It is demonstrated that nickel step-edge sites act as the preferential growth centers for graphene layers on the nickel surface. Carbon is transported......, and it is argued how these processes may lead to different nanofiber structures. The proposed growth model is found to be in good agreement with previous findings....

  19. New insights into the catalytic mechanism of human glycine N-acyltransferase.

    Science.gov (United States)

    van der Sluis, Rencia; Ungerer, Vida; Nortje, Carla; A van Dijk, Alberdina; Erasmus, Elardus

    2017-11-01

    Even though the glycine conjugation pathway was one of the first metabolic pathways to be discovered, this pathway remains very poorly characterized. The bi-substrate kinetic parameters of a recombinant human glycine N-acyltransferase (GLYAT, E.C. 2.3.1.13) were determined using the traditional colorimetric method and a newly developed HPLC-ESI-MS/MS method. Previous studies analyzing the kinetic parameters of GLYAT, indicated a random Bi-Bi and/or ping-pong mechanism. In this study, the hippuric acid concentrations produced by the GLYAT enzyme reaction were analyzed using the allosteric sigmoidal enzyme kinetic module. Analyses of the initial rate (v) against substrate concentration plots, produced a sigmoidal curve (substrate activation) when the benzoyl-CoA concentrations was kept constant, whereas the plot with glycine concentrations kept constant, passed through a maximum (substrate inhibition). Thus, human GLYAT exhibits mechanistic kinetic cooperativity as described by the Ferdinand enzyme mechanism rather than the previously assumed Michaelis-Menten reaction mechanism. © 2017 Wiley Periodicals, Inc.

  20. Relational demography in coach-athlete dyads | Zhang | African ...

    African Journals Online (AJOL)

    This study used an adapted version of Zhang's (2004) trust questionnaire to examine perceived characteristic and trust differences between coach and athlete dyads that differ in gender or ethnicity as well as in dyads that were similar. The four different gender dyad groups were male athlete with male coach (MAMC), ...

  1. Substrate binding and catalytic mechanism in phospholipase C from Bacillus cereus. a molecular mechanics and molecular dynamics study

    DEFF Research Database (Denmark)

    da Graça Thrige, D; Buur, J R; Jørgensen, Flemming Steen

    1997-01-01

    cereus including a docked substrate molecule was subjected to a stepwise molecular mechanics energy minimization. Second, the location of the nucleophilic water molecule in the active site of the fully relaxed enzyme-substrate complex was determined by evaluation of nonbonded interaction energies between...... water molecule was verified during a 100 ps molecular dynamics simulation. During the simulation the substrate undergoes a conformational change, but retains its localization in the active site. The contacts between the enzyme, the substrate, and the nucleophilic water molecule display some fluctuations...... the strong electrostatic interactions in the active site realistically during energy minimization, delocalization of the charges from the three zinc ions was considered. Therefore, quantum mechanics calculations on the zinc ions and the zinc-coordinating residues were carried out prior to the molecular...

  2. Study on the mechanism of a manganese-based catalyst for catalytic NOX flue gas denitration

    Science.gov (United States)

    Zhang, Lei; Wen, Xin; Lei, Zhang; Gao, Long; Sha, Xiangling; Ma, Zhenhua; He, Huibin; Wang, Yusu; Jia, Yang; Li, Yonghui

    2018-04-01

    Manganese-based bimetallic catalysts were prepared with self-made pyrolysis coke as carrier and its denitration performance of low-temperature SCR (selective catalyst reduction) was studied. The effects of different metal species, calcination temperature, calcination time and the metal load quantity on the denitration performance of the catalyst were studied by orthogonal test. The denitration mechanism of the catalyst was analyzed by XRD (X-ray diffraction), SEM (scanning electron microscope), BET test and transient test. The experiments show that: * The denitration efficiency of Mn-based bimetallic catalysts mainly relates to the metal type, the metal load quantity and the catalyst adjuvant type. * The optimal catalyst preparation conditions are as follows: the load quantity of monometallic MnO2 is 10%, calcined at 300°C for 4h, and then loaded with 8% CeO2, calcined at 350°Cfor 3h. * The denitration mechanism of manganese-based bimetallic oxide catalysts is stated as: NH3 is firstly adsorbed by B acid center Mn-OH which nears Mn4+==O to form NH4+, NH4+ was then attacked by the gas phase NO to form N2, H2O and Mn3+-OH. Finally, Mn3+-OH was oxidized by O2 to regenerate Mn4+.

  3. Study on the mechanism of a manganese-based catalyst for catalytic NOX flue gas denitration

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2018-04-01

    Full Text Available Manganese-based bimetallic catalysts were prepared with self-made pyrolysis coke as carrier and its denitration performance of low-temperature SCR (selective catalyst reduction was studied. The effects of different metal species, calcination temperature, calcination time and the metal load quantity on the denitration performance of the catalyst were studied by orthogonal test. The denitration mechanism of the catalyst was analyzed by XRD (X-ray diffraction, SEM (scanning electron microscope, BET test and transient test. The experiments show that: ① The denitration efficiency of Mn-based bimetallic catalysts mainly relates to the metal type, the metal load quantity and the catalyst adjuvant type. ② The optimal catalyst preparation conditions are as follows: the load quantity of monometallic MnO2 is 10%, calcined at 300°C for 4h, and then loaded with 8% CeO2, calcined at 350°Cfor 3h. ③ The denitration mechanism of manganese-based bimetallic oxide catalysts is stated as: NH3 is firstly adsorbed by B acid center Mn-OH which nears Mn4+==O to form NH4+, NH4+ was then attacked by the gas phase NO to form N2, H2O and Mn3+-OH. Finally, Mn3+-OH was oxidized by O2 to regenerate Mn4+.

  4. Kinetic investigation of the catalytic mechanism for bovine liver mitochondrial monoamine oxidase

    International Nuclear Information System (INIS)

    Walker, M.C.

    1988-01-01

    The kinetic behavior of the oxidative deamination reaction catalyzed by bovine liver mitochondrial monoamine oxidase was investigated with a series of ring-substituted benzylamines. Oxidation rates were fastest with the meta isomers. Dalziel coefficients were consistent with a mechanism involving a ternary complex for all substrates tested. Alterations in the Michaelis constant for oxygen were similar in magnitude to those for the rate of catalysis. Deuterium and tritium isotope effects were determined to obtain more detailed information on the mechanism of catalysis. Large deuterium isotope effects expressed on k cat were obtained for all substrates. Determination of the tritium isotope effect for benzylamine allowed the calculation of an intrinsic isotope effect of 6.5 and a secondary isotope effect of 1.17. Steady-state experiments were supplemented with pre-steady-state kinetic techniques. Rates of flavin reduction were faster than that of turnover. The deuterium isotope effect obtained for the rate of flavin reduction was 7-15 for the various substrates. The observed isotope effect was found to be an appropriate estimate for the intrinsic isotope effect

  5. Factor VII deficiency: Unveiling the cellular and molecular mechanisms underlying three model alterations of the enzyme catalytic domain.

    Science.gov (United States)

    Chollet, Maria Eugenia; Andersen, Elisabeth; Skarpen, Ellen; Myklebust, Christiane F; Koehler, Christian; Morth, Jens Preben; Chuansumrit, Ampaiwan; Pinotti, Mirko; Bernardi, Francesco; Thiede, Bernd; Sandset, Per Morten; Skretting, Grethe

    2018-03-01

    Activated factor (F) VII is a vitamin K-dependent glycoprotein that initiates blood coagulation upon interaction with tissue factor. FVII deficiency is the most common of the rare congenital bleeding disorders. While the mutational pattern has been extensively characterized, the pathogenic molecular mechanisms of mutations, particularly at the intracellular level, have been poorly defined. Here, we aimed at elucidating the mechanisms underlying altered FVII biosynthesis in the presence of three mutation types in the catalytic domain: a missense change, a microdeletion and a frameshift/elongation, associated with severe or moderate to severe phenotypes. Using CHO-K1 cells transiently transfected with expression vectors containing the wild-type FVII cDNA (FVIIwt) or harboring the p.I289del, p.G420V or p.A354V-p.P464Hfs mutations, we found that the secretion of the FVII mutants was severely decreased compared to FVIIwt. The synthesis rate of the mutants was slower than the FVIIwt and delayed, and no degradation of the FVII mutants by proteasomes, lysosomes or cysteine proteases was observed. Confocal immunofluorescence microscopy studies showed that FVII variants were localized into the endoplasmic reticulum (ER) but were not detectable within the Golgi apparatus. These findings suggested that a common pathogenic mechanism, possibly a defective folding of the mutant proteins, was triggered by the FVII mutations. The misfolded state led to impaired trafficking of these proteins causing ER retention, which would explain the low to very low FVII plasma levels observed in patients carrying these mutations. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Cloning, functional characterization and catalytic mechanism of a bergaptol O-methyltransferase from Peucedanum praeruptorum Dunn

    Directory of Open Access Journals (Sweden)

    Yucheng eZhao

    2016-05-01

    Full Text Available Coumarins are main active components of Peucedanum praeruptorum Dunn. Among them, methoxylated coumarin compound, such as bergapten, xanthotoxin and isopimpinellin, has high officinal value and plays an important role in medicinal field. However, major issues associated with the biosynthesis mechanism of coumarins remain unsolved and no corresponding enzyme has been cloned from P. praeruptorum. In this study, a local BLASTN program was conducted to find the candidate genes from P. praeruptorum transcriptome database using the nucleotide sequence of Ammi majus bergaptol O-methyltransferase (AmBMT, GenBank accession No: AY443006 as a template. As a result, a 1335 bp full-length of cDNA sequence which contains an open reading frame of 1080 bp encoding a BMT polypeptide of 359 amino acids was obtained. The recombinant protein was functionally expressed in Escherichia coli and displayed an observed activity to bergaptol. In vitro experiments show that the protein has narrow substrate specificity for bergaptol. Expression profile indicated that the cloned gene had a higher expression level in roots and can be induced by methyl jasmonate (MeJA. Subcellular localization analysis showed that the BMT protein was located in cytoplasm in planta. Homology modeling and docking based site-directed mutagenesis have been employed to investigate the amino acid residues in BMT required for substrate binding and catalysis. Conservative amino acid substitutions at residue H264 affected BMT catalysis, whereas substitutions at residues F171, M175, D226 and L312 affected substrate binding. The systemic study summarized here will enlarge our knowledge on OMTs and provide useful information in investigating the coumarins biosynthesis mechanism in P. praeruptorum.

  7. Catalytic mechanism and inhibition of tRNA (Uracil-5-)methyltransferase: evidence for covalent catalysis

    International Nuclear Information System (INIS)

    Santi, D.V.; Hardy, L.W.

    1987-01-01

    tRNA (Ura-5-) methyltransferase catalyzes the transfer of a methyl group from S-adenosylmethionine (AdoMet) to the 5-carbon of a specific Urd residue in tRNA. This results in stoichiometric release of tritium from [5- 3 H] Urd-labeled substrate tRNA isolated from methyltransferase-deficient Escherichia coli. The enzyme also catalyzes an AdoMet-independent exchange reaction between [5- 3 H]-Urd-labeled substrate tRNA and protons of water at a rate that is about 1% that of the normal methylation reaction, but with identical stoichiometry. S-Adenosylhomocysteine inhibits the rate of the exchange reaction by 2-3-fold, whereas an analog having the sulfur of AdoMet replaced by nitrogen accelerates the exchange reaction 9-fold. In the presence (but not absence) of AdoMet, 5-fluorouracil-substituted tRNA (FUra-tRNA) leads to the first-order inactivation of the enzyme. This is accompanied by the formation of a stable covalent complex containing the enzyme, FUra-tRNA, and the methyl group AdoMet. A mechanism for catalysis is proposed that explains both the 5-H exchange reaction and the inhibition by FUra-tRNA: the enzyme forms a covalent Michael adduct with substrate or inhibitor tRNA by attack of a nucleophilic group of the enzyme at carbon 6 of the pyrimidine residue to be modified. As a result, an anion equivalent is generated at carbon 5 that is sufficiently reactive to be methylated by AdoMet. Preliminary experiments and precedents suggest that the nucleophilic catalyst of the enzyme is a thiol group of cysteine. The potent irreversible inhibition by FUra-tRNA suggest that a mechanism for the RNA effects of FUra may also involve irreversible inhibition of RNA-modifying enzymes

  8. Structural and catalytic characterization of mechanical mixtures of Pt/WOx-ZrO2 and Al2O3

    International Nuclear Information System (INIS)

    Contreras, J.L.; Fuentes, G.A.; Navarrete, J.; Vazquez, A.; Zeifert, B.; Salmones, J.; Nuno, L.

    2010-01-01

    The effect of the Bronsted/Lewis acid ratio on isomerization of n-heptane using Al 2 O 3 as a source of Lewis acidity and WOx/ZrO 2 as a source of Bronsted and Lewis acidity was studied and controlled using mechanical mixtures of these solids. These mixtures were characterized by surface area, infrared spectroscopy of pyridine, X-ray diffraction and Raman spectroscopy. It was found that the presence of W=O stretching mode which was consistent with the presence of oxotungstate species which were the precursors of the acid sites. It was found out that as the oxotungstate structures increased, the selectivity to n-heptane isomers increased while the hydrocracking and dehydrocyclization selectivity decreased. The presence of Bronsted acidity of the WOx/ZrO 2 domains, the increase of Knudsen diffusivity and the loss of Pt metallic area by strong interaction of the Pt with the WOx/ZrO 2 explain this catalytic behavior.

  9. Crystal Structure and Catalytic Mechanism of 7-Hydroxymethyl Chlorophyll a Reductase*

    Science.gov (United States)

    Wang, Xiao; Liu, Lin

    2016-01-01

    7-Hydroxymethyl chlorophyll a reductase (HCAR) catalyzes the second half-reaction in chlorophyll b to chlorophyll a conversion. HCAR is required for the degradation of light-harvesting complexes and is necessary for efficient photosynthesis by balancing the chlorophyll a/b ratio. Reduction of the hydroxymethyl group uses redox cofactors [4Fe-4S] cluster and FAD to transfer electrons and is difficult because of the strong carbon-oxygen bond. Here, we report the crystal structure of Arabidopsis HCAR at 2.7-Å resolution and reveal that two [4Fe-4S]clusters and one FAD within a very short distance form a consecutive electron pathway to the substrate pocket. In vitro kinetic analysis confirms the ferredoxin-dependent electron transport chain, thus supporting a proton-activated electron transfer mechanism. HCAR resembles a partial reconstruction of an archaeal F420-reducing [NiFe] hydrogenase, which suggests a common mode of efficient proton-coupled electron transfer through conserved cofactor arrangements. Furthermore, the trimeric form of HCAR provides a biological clue of its interaction with light-harvesting complex II. PMID:27072131

  10. The regulation and catalytic mechanism of the NADP-malic enzyme from tobacco leaves

    Directory of Open Access Journals (Sweden)

    VERONIKA DOUBNEROVÁ

    2009-08-01

    Full Text Available The non-photosynthetic NADP-malic enzyme EC 1.1.1.40 (NADP-ME, which catalyzes the oxidative decarboxylation of L-malate and NADP+ to produce pyruvate and NADPH, respectively, and which could be involved in plant defense responses, was isolated from Nicotiana tabacum L. leaves. The mechanism of the enzyme reaction was studied by the initial rate method and was found to be an ordered sequential one. Regulation possibilities of purified cytosolic NADP-ME by cell metabolites were tested. Intermediates of the citric acid cycle (a-ketoglutarate, succinate, fumarate, metabolites of glycolysis (pyruvate, phosphoenolpyruvate, glucose-6-phosphate, compounds connected with lipogenesis (coenzyme A, acetyl-CoA, palmitoyl-CoA and some amino acids (glutamate, glutamine, aspartate did not significantly affect the NADP-ME activity from tobacco leaves. In contrast, macroergic compounds (GTP, ATP and ADP were strong inhibitors of NADP-ME; the type of inhibition and the inhibition constants were determined in the presence of the most effective cofactors (Mn2+ or Mg2+, required by NADP-ME. Predominantly non-competitive type of inhibitions of NADP-ME with respect to NADP+ and mixed type to L-malate were found.

  11. Fundamental mechanisms and reactions in non-catalytic subcritical hydrothermal processes: A review.

    Science.gov (United States)

    Yousefifar, Azadeh; Baroutian, Saeid; Farid, Mohammed M; Gapes, Daniel J; Young, Brent R

    2017-10-15

    The management and disposal of solid waste is of increasing concern across the globe. Hydrothermal processing of sludge has been suggested as a promising solution to deal with the considerable amounts of sludge produced worldwide. Such a process not only degrades organic compounds and reduces waste volume, but also provides an opportunity to recover valuable substances. Hydrothermal processing comprises two main sub-processes: wet oxidation (WO) and thermal hydrolysis (TH), in which the formation of various free radicals results in the production of different intermediates. Volatile fatty acids (VFAs), especially acetic acid, are usually the main intermediates which remain as a by-product of the process. This paper aims to review the fundamental mechanism for hydrothermal processing of sludge, and the formation of different free radicals and intermediates therein. In addition, the proposed kinetic models for the two processes (WO and TH) from the literature are reviewed and the advantages and disadvantages of each model are outlined. The effect of mass transfer as a critical component of the design and development of the processes, which has been neglected in most of these proposed models, is also reviewed, and the effect of influencing parameters on the processes' controlling step (reaction or mass transfer) is discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Structural aspects of catalytic mechanisms of endonucleases and their binding to nucleic acids

    Energy Technology Data Exchange (ETDEWEB)

    Zhukhlistova, N. E.; Balaev, V. V.; Lyashenko, A. V.; Lashkov, A. A., E-mail: alashkov83@gmail.com [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2012-05-15

    Endonucleases (EC 3.1) are enzymes of the hydrolase class that catalyze the hydrolytic cleavage of deoxyribonucleic and ribonucleic acids at any region of the polynucleotide chain. Endonucleases are widely used both in biotechnological processes and in veterinary medicine as antiviral agents. Medical applications of endonucleases in human cancer therapy hold promise. The results of X-ray diffraction studies of the spatial organization of endonucleases and their complexes and the mechanism of their action are analyzed and generalized. An analysis of the structural studies of this class of enzymes showed that the specific binding of enzymes to nucleic acids is characterized by interactions with nitrogen bases and the nucleotide backbone, whereas the nonspecific binding of enzymes is generally characterized by interactions only with the nucleic-acid backbone. It should be taken into account that the specificity can be modulated by metal ions and certain low-molecular-weight organic compounds. To test the hypotheses about specific and nonspecific nucleic-acid-binding proteins, it is necessary to perform additional studies of atomic-resolution three-dimensional structures of enzyme-nucleic-acid complexes by methods of structural biology.

  13. Mechanism of Diphtheria Toxin Catalytic Domain Delivery to the Eukaryotic Cell Cytosol and the Cellular Factors that Directly Participate in the Process

    Science.gov (United States)

    Murphy, John R.

    2011-01-01

    Research on diphtheria and anthrax toxins over the past three decades has culminated in a detailed understanding of their structure function relationships (e.g., catalytic (C), transmembrane (T), and receptor binding (R) domains), as well as the identification of their eukaryotic cell surface receptor, an understanding of the molecular events leading to the receptor-mediated internalization of the toxin into an endosomal compartment, and the pH triggered conformational changes required for pore formation in the vesicle membrane. Recently, a major research effort has been focused on the development of a detailed understanding of the molecular interactions between each of these toxins and eukaryotic cell factors that play an essential role in the efficient translocation of their respective catalytic domains through the trans-endosomal vesicle membrane pore and delivery into the cell cytosol. In this review, I shall focus on recent findings that have led to a more detailed understanding of the mechanism by which the diphtheria toxin catalytic domain is delivered to the eukaryotic cell cytosol. While much work remains, it is becoming increasingly clear that the entry process is facilitated by specific interactions with a number of cellular factors in an ordered sequential fashion. In addition, since diphtheria, anthrax lethal factor and anthrax edema factor all carry multiple coatomer I complex binding motifs and COPI complex has been shown to play an essential role in entry process, it is likely that the initial steps in catalytic domain entry of these divergent toxins follow a common mechanism. PMID:22069710

  14. Dynamics and mechanisms of catalytic processes and hot chemistry. Final report, March 1, 1972-October 31, 1984

    International Nuclear Information System (INIS)

    Spicer, L.D.

    1984-10-01

    General areas of research addressed are recoil chemistry of halogens, tritium, and sulfur, radiotracer methods for studies of chemical dynamics, thermal and photochemistry of sulfur dioxide, and photochemistry and photoassistance in catalytic systems

  15. Quantitative comparison of catalytic mechanisms and overall reactions in convergently evolved enzymes: implications for classification of enzyme function.

    Science.gov (United States)

    Almonacid, Daniel E; Yera, Emmanuel R; Mitchell, John B O; Babbitt, Patricia C

    2010-03-12

    Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine

  16. Quantitative comparison of catalytic mechanisms and overall reactions in convergently evolved enzymes: implications for classification of enzyme function.

    Directory of Open Access Journals (Sweden)

    Daniel E Almonacid

    2010-03-01

    Full Text Available Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3 show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1 catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56% suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to

  17. Mechanisms of mono- and poly-ubiquitination: Ubiquitination specificity depends on compatibility between the E2 catalytic core and amino acid residues proximal to the lysine

    Directory of Open Access Journals (Sweden)

    Sadowski Martin

    2010-08-01

    Full Text Available Abstract Ubiquitination involves the attachment of ubiquitin to lysine residues on substrate proteins or itself, which can result in protein monoubiquitination or polyubiquitination. Ubiquitin attachment to different lysine residues can generate diverse substrate-ubiquitin structures, targeting proteins to different fates. The mechanisms of lysine selection are not well understood. Ubiquitination by the largest group of E3 ligases, the RING-family E3 s, is catalyzed through co-operation between the non-catalytic ubiquitin-ligase (E3 and the ubiquitin-conjugating enzyme (E2, where the RING E3 binds the substrate and the E2 catalyzes ubiquitin transfer. Previous studies suggest that ubiquitination sites are selected by E3-mediated positioning of the lysine toward the E2 active site. Ultimately, at a catalytic level, ubiquitination of lysine residues within the substrate or ubiquitin occurs by nucleophilic attack of the lysine residue on the thioester bond linking the E2 catalytic cysteine to ubiquitin. One of the best studied RING E3/E2 complexes is the Skp1/Cul1/F box protein complex, SCFCdc4, and its cognate E2, Cdc34, which target the CDK inhibitor Sic1 for K48-linked polyubiquitination, leading to its proteasomal degradation. Our recent studies of this model system demonstrated that residues surrounding Sic1 lysines or lysine 48 in ubiquitin are critical for ubiquitination. This sequence-dependence is linked to evolutionarily conserved key residues in the catalytic region of Cdc34 and can determine if Sic1 is mono- or poly-ubiquitinated. Our studies indicate that amino acid determinants in the Cdc34 catalytic region and their compatibility to those surrounding acceptor lysine residues play important roles in lysine selection. This may represent a general mechanism in directing the mode of ubiquitination in E2 s.

  18. Comparison of Efficiencies and Mechanisms of Catalytic Ozonation of Recalcitrant Petroleum Refinery Wastewater by Ce, Mg, and Ce-Mg Oxides Loaded Al2O3

    Directory of Open Access Journals (Sweden)

    Chunmao Chen

    2017-02-01

    Full Text Available The use of catalytic ozonation processes (COPs for the advanced treatment of recalcitrant petroleum refinery wastewater (RPRW is rapidly expanding. In this study, magnesium (Mg, cerium (Ce, and Mg-Ce oxide-loaded alumina (Al2O3 were developed as cost efficient catalysts for ozonation treatment of RPRW, having performance metrics that meet new discharge standards. Interactions between the metal oxides and the Al2O3 support influence the catalytic properties, as well as the efficiency and mechanism. Mg-Ce/Al2O3 (Mg-Ce/Al2O3-COP reduced the chemical oxygen demand by 4.7%, 4.1%, 6.0%, and 17.5% relative to Mg/Al2O3-COP, Ce/Al2O3-COP, Al2O3-COP, and single ozonation, respectively. The loaded composite metal oxides significantly increased the hydroxyl radical-mediated oxidation. Surface hydroxyl groups (–OHs are the dominant catalytic active sites on Al2O3. These active surface –OHs along with the deposited metal oxides (Mg2+ and/or Ce4+ increased the catalytic activity. The Mg-Ce/Al2O3 catalyst can be economically produced, has high efficiency, and is stable under acidic and alkaline conditions.

  19. Catalytic Mechanism of Nitrile Hydratase Proposed by Time-resolved X-ray Crystallography Using a Novel Substrate, tert-Butylisonitrile*S⃞

    Science.gov (United States)

    Hashimoto, Koichi; Suzuki, Hiroyuki; Taniguchi, Kayoko; Noguchi, Takumi; Yohda, Masafumi; Odaka, Masafumi

    2008-01-01

    Nitrile hydratases (NHases) have an unusual iron or cobalt catalytic center with two oxidized cysteine ligands, cysteine-sulfinic acid and cysteine-sulfenic acid, catalyzing the hydration of nitriles to amides. Recently, we found that the NHase of Rhodococcus erythropolis N771 exhibited an additional catalytic activity, converting tert-butylisonitrile (tBuNC) to tert-butylamine. Taking advantage of the slow reactivity of tBuNC and the photoreactivity of nitrosylated NHase, we present the first structural evidence for the catalytic mechanism of NHase with time-resolved x-ray crystallography. By monitoring the reaction with attenuated total reflectance-Fourier transform infrared spectroscopy, the product from the isonitrile carbon was identified as a CO molecule. Crystals of nitrosylated inactive NHase were soaked with tBuNC. The catalytic reaction was initiated by photo-induced denitrosylation and stopped by flash cooling. tBuNC was first trapped at the hydrophobic pocket above the iron center and then coordinated to the iron ion at 120 min. At 440 min, the electron density of tBuNC was significantly altered, and a new electron density was observed near the isonitrile carbon as well as the sulfenate oxygen of αCys114. These results demonstrate that the substrate was coordinated to the iron and then attacked by a solvent molecule activated by αCys114-SOH. PMID:18948265

  20. A conserved mechanism of autoinhibition for the AMPK kinase domain: ATP-binding site and catalytic loop refolding as a means of regulation

    International Nuclear Information System (INIS)

    Littler, Dene R.; Walker, John R.; Davis, Tara; Wybenga-Groot, Leanne E.; Finerty, Patrick J. Jr; Newman, Elena; Mackenzie, Farell; Dhe-Paganon, Sirano

    2010-01-01

    A 1.9 Å resolution crystal structure of the isolated kinase domain from the α2 subunit of human AMPK, the first from a multicellular organism, is presented. The AMP-activated protein kinase (AMPK) is a highly conserved trimeric protein complex that is responsible for energy homeostasis in eukaryotic cells. Here, a 1.9 Å resolution crystal structure of the isolated kinase domain from the α2 subunit of human AMPK, the first from a multicellular organism, is presented. This human form adopts a catalytically inactive state with distorted ATP-binding and substrate-binding sites. The ATP site is affected by changes in the base of the activation loop, which has moved into an inhibited DFG-out conformation. The substrate-binding site is disturbed by changes within the AMPKα2 catalytic loop that further distort the enzyme from a catalytically active form. Similar structural rearrangements have been observed in a yeast AMPK homologue in response to the binding of its auto-inhibitory domain; restructuring of the kinase catalytic loop is therefore a conserved feature of the AMPK protein family and is likely to represent an inhibitory mechanism that is utilized during function

  1. Dissecting the Catalytic Mechanism of Betaine-Homocysteine S-Methyltransferase Using Intrinsic Tryptophan Fluorescence and Site-Directed Mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Castro, C.; Gratson, A.A.; Evans, J.C.; Jiracek, J.; Collinsova, M.; Ludwig, M.L.; Garrow, T.A. (ASCR); (UIUC); (Michigan)

    2010-03-05

    Betaine-homocysteine S-methyltransferase (BHMT) is a zinc-dependent enzyme that catalyzes the transfer of a methyl group from glycine betaine (Bet) to homocysteine (Hcy) to form dimethylglycine (DMG) and methionine (Met). Previous studies in other laboratories have indicated that catalysis proceeds through the formation of a ternary complex, with a transition state mimicked by the inhibitor S-({delta}-carboxybutyl)-l-homocysteine (CBHcy). Using changes in intrinsic tryptophan fluorescence to determine the affinity of human BHMT for substrates, products, or CBHcy, we now demonstrate that the enzyme-substrate complex reaches its transition state through an ordered bi-bi mechanism in which Hcy is the first substrate to bind and Met is the last product released. Hcy, Met, and CBHcy bind to the enzyme to form binary complexes with K{sub d} values of 7.9, 6.9, and 0.28 {micro}M, respectively. Binary complexes with Bet and DMG cannot be detected with fluorescence as a probe, but Bet and DMG bind tightly to BHMT-Hcy to form ternary complexes with K{sub d} values of 1.1 and 0.73 {micro}M, respectively. Mutation of each of the seven tryptophan residues in human BHMT provides evidence that the enzyme undergoes two distinct conformational changes that are reflected in the fluorescence of the enzyme. The first is induced when Hcy binds, and the second, when Bet binds. As predicted by the crystal structure of BHMT, the amino acids Trp44 and Tyr160 are involved in binding Bet, and Glu159 in binding Hcy. Replacing these residues by site-directed mutagenesis significantly reduces the catalytic efficiency (V{sub max}/K{sub m}) of the enzyme. Replacing Tyr77 with Phe abolishes enzyme activity.

  2. Evaluation of the catalytic mechanism of AICAR transformylase by pH-dependent kinetics, mutagenesis, and quantum chemical calculations.

    Science.gov (United States)

    Shim, J H; Wall, M; Benkovic, S J; Díaz, N; Suárez, D; Merz, K M

    2001-05-23

    The catalytic mechanism of 5-aminoimidazole-4-carboxamide ribonucleotide transformylase (AICAR Tfase) is evaluated with pH dependent kinetics, site-directed mutagenesis, and quantum chemical calculations. The chemistry step, represented by the burst rates, was not pH-dependent, which is consistent with our proposed mechanism that the 4-carboxamide of AICAR assists proton shuttling. Quantum chemical calculations on a model system of 5-amino-4-carboxamide imidazole (AICA) and formamide using the B3LYP/6-31G level of theory confirmed that the 4-carboxamide participated in the proton-shuttling mechanism. The result also indicated that the amide-assisted mechanism is concerted such that the proton transfers from the 5-amino group to the formamide are simultaneous with nucleophilic attack by the 5-amino group. Because the process does not lead to a kinetically stable intermediate, the intramolecular proton transfer from the 5-amino group through the 4-carboxamide to the formamide proceeds in the same transition state. Interestingly, the calculations predicted that protonation of the N3 of the imidazole of AICA would reduce the energy barrier significantly. However, the pK(a) of the imidazole of AICAR was determined to be 3.23 +/- 0.01 by NMR titration, and AICAR is likely to bind to the enzyme with its imidazole in the free base form. An alternative pathway was suggested by modeling Lys266 to have a hydrogen-bonding interaction with the N3 of the imidazole of AICAR. Lys266 has been implicated in catalysis based on mutagenesis studies and the recent X-ray structure of AICAR Tfase. The quantum chemical calculations on a model system that contains AICA complexed with CH3NH3+ as a mimic of the Lys residue confirmed that such an interaction lowered the activation energy of the reaction and likewise implicated the 4-carboxamide. To experimentally verify this hypothesis, we prepared the K266R mutant and found that its kcat is reduced by 150-fold from that of the wild type

  3. β-Molybdenum nitride: synthesis mechanism and catalytic response in the gas phase hydrogenation of p-chloronitrobenzene

    NARCIS (Netherlands)

    Cárdenas-Lizana, F.; Gómez-Quero, S.; Perret, N.; Kiwi-Minsker, L.; Keane, M.A.

    2011-01-01

    A temperature programmed treatment of MoO3 in flowing N2 + H2 has been employed to prepare β-phase molybdenum nitride (β-Mo2N) which has been used to promote, for the first time, the catalytic hydrogenation of p-chloronitrobenzene. The reduction/nitridation synthesis steps have been monitored in

  4. Sequence analysis and structure prediction of type II Pseudomonas sp. USM 4–55 PHA synthase and an insight into its catalytic mechanism

    Directory of Open Access Journals (Sweden)

    Ahmad Khairudin Nurul

    2006-11-01

    Full Text Available Abstract Background Polyhydroxyalkanoates (PHA, are biodegradable polyesters derived from many microorganisms such as the pseudomonads. These polyesters are in great demand especially in the packaging industries, the medical line as well as the paint industries. The enzyme responsible in catalyzing the formation of PHA is PHA synthase. Due to the limited structural information, its functional properties including catalysis are lacking. Therefore, this study seeks to investigate the structural properties as well as its catalytic mechanism by predicting the three-dimensional (3D model of the Type II Pseudomonas sp. USM 4–55 PHA synthase 1 (PhaC1P.sp USM 4–55. Results Sequence analysis demonstrated that PhaC1P.sp USM 4–55 lacked similarity with all known structures in databases. PSI-BLAST and HMM Superfamily analyses demonstrated that this enzyme belongs to the alpha/beta hydrolase fold family. Threading approach revealed that the most suitable template to use was the human gastric lipase (PDB ID: 1HLG. The superimposition of the predicted PhaC1P.sp USM 4–55 model with 1HLG covering 86.2% of the backbone atoms showed an RMSD of 1.15 Å. The catalytic residues comprising of Cys296, Asp451 and His479 were found to be conserved and located adjacent to each other. In addition to this, an extension to the catalytic mechanism was also proposed whereby two tetrahedral intermediates were believed to form during the PHA biosynthesis. These transition state intermediates were further postulated to be stabilized by the formation of oxyanion holes. Based on the sequence analysis and the deduced model, Ser297 was postulated to contribute to the formation of the oxyanion hole. Conclusion The 3D model of the core region of PhaC1P.sp USM 4–55 from residue 267 to residue 484 was developed using computational techniques and the locations of the catalytic residues were identified. Results from this study for the first time highlighted Ser297 potentially

  5. Mechanism for enhanced degradation of clofibric acid in aqueous by catalytic ozonation over MnO{sub x}/SBA-15

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Qiangqiang; Wang, Yu [School of Chemistry & Environment, South China Normal University, Guangzhou 510006 (China); Li, Laisheng, E-mail: llsh@scnu.edu.cn [School of Chemistry & Environment, South China Normal University, Guangzhou 510006 (China); Bing, Jishuai [Key Laboratory of Aquatic Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Wang, Yingxin; Yan, Huihua [School of Chemistry & Environment, South China Normal University, Guangzhou 510006 (China)

    2015-04-09

    Highlights: • Clofibric acid (CA) is efficiently mineralized by O{sub 3}/MnO{sub x}/SBA-15. • Adsorption of CA and its intermediates on MnO{sub x}/SBA-15 is proved unimportant. • Initiation of hydroxyl radicals (·OH) is enhanced in O{sub 3}/MnO{sub x}/SBA-15. • Uniformly distributed MnO{sub x} accounts for the high activity of MnO{sub x}/SBA-15. • Degradation routes of CA in ozonation alone and catalytic ozonation are proposed. - Abstract: Comparative experiments were conducted to investigate the catalytic ability of MnO{sub x}/SBA-15 for the ozonation of clofibric acid (CA) and its reaction mechanism. Compared with ozonation alone, the degradation of CA was barely enhanced, while the removal of TOC was significantly improved by catalytic ozonation (O{sub 3}/MnO{sub x}/SBA-15). Adsorption of CA and its intermediates by MnO{sub x}/SBA-15 was proved unimportant in O{sub 3}/MnO{sub x}/SBA-15 due to the insignificant adsorption of CA and little TOC variation after ceasing ozone in stopped-flow experiment. The more remarkably inhibition effect of sodium bisulfite (NaHSO{sub 3}) on the removal of TOC in catalytic ozonation than in ozonation alone elucidated that MnO{sub x}/SBA-15 facilitated the generation of hydroxyl radicals (·OH), which was further verified by electron spin-resonance spectroscopy (ESR). Highly dispersed MnO{sub x} on SBA-15 were believed to be the main active component in MnO{sub x}/SBA-15. Some intermediates were indentified and different degradation routes of CA were proposed in both ozonation alone and catalytic ozonation. The amounts of small molecular carboxylic acids (i.e., formic acid (FA), acetic acid (AA) and oxalic acid (OA)) generated in catalytic ozonation were lower than in ozonation alone, resulting from the generation of more ·OH.

  6. Consonance perception of complex-tone dyads and chords

    DEFF Research Database (Denmark)

    Rasmussen, Marc; Santurette, Sébastien; MacDonald, Ewen

    2014-01-01

    Sensory consonance and dissonance are perceptual attributes of musical intervals conveying pleasant- ness, tension, and harmony in musical phrases. For complex-tone dyads, corresponding to two musical notes played simultaneously, consonance is known to vary with the ratio in fundamental frequency...... for a potential role of frequency selectivity for consonance perception of dyads, might not hold for chords...

  7. Structural Evidence of a Major Conformational Change Triggered by Substrate Binding in DapE Enzymes: Impact on the Catalytic Mechanism.

    Science.gov (United States)

    Nocek, Boguslaw; Reidl, Cory; Starus, Anna; Heath, Tahirah; Bienvenue, David; Osipiuk, Jerzy; Jedrzejczak, Robert; Joachimiak, Andrzej; Becker, Daniel P; Holz, Richard C

    2018-02-06

    The X-ray crystal structure of the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase from Haemophilus influenzae (HiDapE) bound by the products of hydrolysis, succinic acid and l,l-DAP, was determined at 1.95 Å. Surprisingly, the structure bound to the products revealed that HiDapE undergoes a significant conformational change in which the catalytic domain rotates ∼50° and shifts ∼10.1 Å (as measured at the position of the Zn atoms) relative to the dimerization domain. This heretofore unobserved closed conformation revealed significant movements within the catalytic domain compared to that of wild-type HiDapE, which results in effectively closing off access to the dinuclear Zn(II) active site with the succinate carboxylate moiety bridging the dinculear Zn(II) cluster in a μ-1,3 fashion forming a bis(μ-carboxylato)dizinc(II) core with a Zn-Zn distance of 3.8 Å. Surprisingly, His194.B, which is located on the dimerization domain of the opposing chain ∼10.1 Å from the dinuclear Zn(II) active site, forms a hydrogen bond (2.9 Å) with the oxygen atom of succinic acid bound to Zn2, forming an oxyanion hole. As the closed structure forms upon substrate binding, the movement of His194.B by more than ∼10 Å is critical, based on site-directed mutagenesis data, for activation of the scissile carbonyl carbon of the substrate for nucleophilic attack by a hydroxide nucleophile. Employing the HiDapE product-bound structure as the starting point, a reverse engineering approach called product-based transition-state modeling provided structural models for each major catalytic step. These data provide insight into the catalytic reaction mechanism and also the future design of new, potent inhibitors of DapE enzymes.

  8. CATALYTIC COMBUSTION OF METHANE OVER Pt/γ-Al2O3 IN MICRO-COMBUSTOR WITH DETAILED CHEMICAL KINETIC MECHANISMS

    Directory of Open Access Journals (Sweden)

    JUNJIE CHEN

    2014-11-01

    Full Text Available Micro-scale catalytic combustion characteristics and heat transfer processes of preheated methane-air mixtures (φ = 0.4 in the plane channel were investigated numerically with detailed chemical kinetic mechanisms. The plane channel of length L = 10.0 mm, height H =1.0 mm and wall thickness δ = 0.1 mm, which inner horizontal surfaces contained Pt/γ-Al2O3 catalyst washcoat. The computational results indicate that the presence of the gas phase reactions extends mildly the micro-combustion stability limits at low and moderate inlet velocities due to the strong flames establishment, and have a more profound effect on extending the high-velocity blowout limits by allowing for additional heat release originating mainly from the incomplete CH4 gas phase oxidation in the plane channel. When the same mass flow rate (ρin × Vin is considered, the micro-combustion stability limits at p: 0.1 MPa are much narrower than at p: 0.6 MPa due to both gas phase and catalytic reaction activities decline with decreasing pressure. Catalytic micro-combustor can achieve stable combustion at low solid thermal conductivity ks < 0.1 W∙m-1•K-1, while the micro-combustion extinction limits reach their larger extent for the higher thermal conductivity ks = 20.0-100.0 W∙m-1•K-1. The existence of surface radiation heat transfers significantly effects on the micro-combustion stability limits and micro-combustors energy balance. Finally, gas phase combustion in catalytic micro-combustors can be sustained at the sub-millimeter scale (plane channel height of 0.25 mm.

  9. High Resolution Crystal Structures of Streptococcus pneumoniae Nicotinamidase with Trapped Intermediates Provide Insights into Catalytic Mechanism and Inhibition by Aldehydes∥,‡

    Science.gov (United States)

    French, Jarrod B.; Cen, Yana; Sauve, Anthony A.; Ealick, Steven E.

    2010-01-01

    Nicotinamidases are salvage enzymes that convert nicotinamide to nicotinic acid. These enzymes are essential for the recycling of nicotinamide into NAD+ in most prokaryotes, most single cell and multicellular eukaryotes, but not in mammals. The significance of these enzymes for nicotinamide salvage and for NAD+ homeostasis has increased interest in nicotinamidases as possible antibiotic targets. Nicotinamidases are also regulators of intracellular nicotinamide concentrations, thereby regulating signaling of downstream NAD+ consuming enzymes, such as the NAD+-dependent deacetylases (sirtuins). Here, we report several high resolution crystal structures of the nicotinamidase from Streptococcus pneumoniae (SpNic) in unliganded and ligand-bound forms. The structure of the C136S mutant in complex with nicotinamide provides details about substrate binding while a trapped nicotinoyl-thioester complexed with SpNic reveals the structure of the proposed thioester reaction intermediate. Examination of the active site of SpNic reveals several important features including a metal ion that coordinates the substrate and the catalytically relevant water molecule, and an oxyanion hole which both orients the substrate and offsets the negative charge that builds up during catalysis. Structures of this enzyme with bound nicotinaldehyde inhibitors elucidate the mechanism of inhibition and provide further details about the catalytic mechanism. In addition, we provide a biochemical analysis of the identity and role of the metal ion that orients the ligand in the active site and activates the water molecule responsible for hydrolysis of the substrate. These data provide structural evidence for several proposed reaction intermediates and allow for a more complete understanding of the catalytic mechanism of this enzyme. PMID:20853856

  10. High-resolution crystal structures of Streptococcus pneumoniae nicotinamidase with trapped intermediates provide insights into the catalytic mechanism and inhibition by aldehydes .

    Science.gov (United States)

    French, Jarrod B; Cen, Yana; Sauve, Anthony A; Ealick, Steven E

    2010-10-12

    Nicotinamidases are salvage enzymes that convert nicotinamide to nicotinic acid. These enzymes are essential for the recycling of nicotinamide into NAD(+) in most prokaryotes and most single-cell and multicellular eukaryotes, but not in mammals. The significance of these enzymes for nicotinamide salvage and for NAD(+) homeostasis has stimulated interest in nicotinamidases as possible antibiotic targets. Nicotinamidases are also regulators of intracellular nicotinamide concentrations, thereby regulating signaling of downstream NAD(+)-consuming enzymes, such as the NAD(+)-dependent deacetylases (sirtuins). Here, we report several high-resolution crystal structures of the nicotinamidase from Streptococcus pneumoniae (SpNic) in unliganded and ligand-bound forms. The structure of the C136S mutant in complex with nicotinamide provides details about substrate binding, while a trapped nicotinoyl thioester in a complex with SpNic reveals the structure of the proposed thioester reaction intermediate. Examination of the active site of SpNic reveals several important features, including a metal ion that coordinates the substrate and the catalytically relevant water molecule and an oxyanion hole that both orients the substrate and offsets the negative charge that builds up during catalysis. Structures of this enzyme with bound nicotinaldehyde inhibitors elucidate the mechanism of inhibition and provide further details about the catalytic mechanism. In addition, we provide a biochemical analysis of the identity and role of the metal ion that orients the ligand in the active site and activates the water molecule responsible for hydrolysis of the substrate. These data provide structural evidence of several proposed reaction intermediates and allow for a more complete understanding of the catalytic mechanism of this enzyme.

  11. High-Resolution Crystal Structures of Streptococcus pneumoniae Nicotinamidase with Trapped Intermediates Provide Insights into the Catalytic Mechanism and Inhibition by Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    French, Jarrod B.; Cen, Yana; Sauve, Anthony A.; Ealick, Steven E. (Cornell); (Weill-Med)

    2010-11-11

    Nicotinamidases are salvage enzymes that convert nicotinamide to nicotinic acid. These enzymes are essential for the recycling of nicotinamide into NAD{sup +} in most prokaryotes and most single-cell and multicellular eukaryotes, but not in mammals. The significance of these enzymes for nicotinamide salvage and for NAD{sup +} homeostasis has stimulated interest in nicotinamidases as possible antibiotic targets. Nicotinamidases are also regulators of intracellular nicotinamide concentrations, thereby regulating signaling of downstream NAD{sup +}-consuming enzymes, such as the NAD{sup +}-dependent deacetylases (sirtuins). Here, we report several high-resolution crystal structures of the nicotinamidase from Streptococcus pneumoniae (SpNic) in unliganded and ligand-bound forms. The structure of the C136S mutant in complex with nicotinamide provides details about substrate binding, while a trapped nicotinoyl thioester in a complex with SpNic reveals the structure of the proposed thioester reaction intermediate. Examination of the active site of SpNic reveals several important features, including a metal ion that coordinates the substrate and the catalytically relevant water molecule and an oxyanion hole that both orients the substrate and offsets the negative charge that builds up during catalysis. Structures of this enzyme with bound nicotinaldehyde inhibitors elucidate the mechanism of inhibition and provide further details about the catalytic mechanism. In addition, we provide a biochemical analysis of the identity and role of the metal ion that orients the ligand in the active site and activates the water molecule responsible for hydrolysis of the substrate. These data provide structural evidence of several proposed reaction intermediates and allow for a more complete understanding of the catalytic mechanism of this enzyme.

  12. Determination of the protonation state of the Asp dyad: conventional molecular dynamics versus thermodynamic integration.

    Science.gov (United States)

    Huang, Jinfeng; Zhu, Yali; Sun, Bin; Yao, Yuan; Liu, Junjun

    2016-03-01

    The protonation state of the Asp dyad is important as it can reveal enzymatic mechanisms, and the information this provides can be used in the development of drugs for proteins such as memapsin 2 (BACE-1), HIV-1 protease, and rennin. Conventional molecular dynamics (MD) simulations have been successfully used to determine the preferred protonation state of the Asp dyad. In the present work, we demonstrate that the results obtained from conventional MD simulations can be greatly influenced by the particular force field applied or the values used for control parameters. In principle, free-energy changes between possible protonation states can be used to determine the protonation state. We show that protonation state prediction by the thermodynamic integration (TI) method is insensitive to force field version or to the cutoff for calculating nonbonded interactions (a control parameter). In the present study, the protonation state of the Asp dyad predicted by TI calculations was the same regardless of the force field and cutoff value applied. Contrary to the intuition that conventional MD is more efficient, our results clearly show that the TI method is actually more efficient and more reliable for determining the protonation state of the Asp dyad.

  13. The application of Cu/SiO2 catalytic system in chemical mechanical planarization based on the stability of SiO2 sol

    International Nuclear Information System (INIS)

    Li Yan; Liu Yuling; Wang Aochen; Yang Zhixin; Sun Mingbin; Cheng Chuan; Zhang Yufeng; Zhang Nannan

    2014-01-01

    There is a lot of hydroxyl on the surface of nano SiO 2 sol used as an abrasive in the chemical mechanical planarization (CMP) process, and the chemical reaction activity of the hydroxyl is very strong due to the nano effect. In addition to providing a mechanical polishing effect, SiO 2 sol is also directly involved in the chemical reaction. The stability of SiO 2 sol was characterized through particle size distribution, zeta potential, viscosity, surface charge and other parameters in order to ensure that the chemical reaction rate in the CMP process, and the surface state of the copper film after CMP was not affected by the SiO 2 sol. Polarization curves and corrosion potential of different concentrations of SiO 2 sol showed that trace SiO 2 sol can effectively weaken the passivation film thickness. In other words, SiO 2 sol accelerated the decomposition rate of passive film. It was confirmed that the SiO 2 sol as reactant had been involved in the CMP process of copper film as reactant by the effect of trace SiO 2 sol on the removal rate of copper film in the CMP process under different conditions. In the CMP process, a small amount of SiO 2 sol can drastically alter the chemical reaction rate of the copper film, therefore, the possibility that Cu/SiO 2 as a catalytic system catalytically accelerated the chemical reaction in the CMP process was proposed. According to the van't Hoff isotherm formula and the characteristics of a catalyst which only changes the chemical reaction rate with out changing the total reaction standard Gibbs free energy, factors affecting the Cu/SiO 2 catalytic reaction were derived from the decomposition rate of Cu (OH) 2 and the pH value of the system, and then it was concluded that the CuSiO 3 as intermediates of Cu/SiO 2 catalytic reaction accelerated the chemical reaction rate in the CMP process. It was confirmed that the Cu/SiO 2 catalytic system generated the intermediate of the catalytic reaction (CuSiO 3 ) in the CMP process

  14. Solution structure of the parvulin-type PPIase domain of Staphylococcus aureus PrsA – Implications for the catalytic mechanism of parvulins

    Directory of Open Access Journals (Sweden)

    Koskela Harri

    2009-03-01

    Full Text Available Abstract Background Staphylococcus aureus is a Gram-positive pathogenic bacterium causing many kinds of infections from mild respiratory tract infections to life-threatening states as sepsis. Recent emergence of S. aureus strains resistant to numerous antibiotics has created a need for new antimicrobial agents and novel drug targets. S. aureus PrsA is a membrane associated extra-cytoplasmic lipoprotein which contains a parvulin-type peptidyl-prolyl cis-trans isomerase domain. PrsA is known to act as an essential folding factor for secreted proteins in Gram-positive bacteria and thus it is a potential target for antimicrobial drugs against S. aureus. Results We have solved a high-resolution solution structure of the parvulin-type peptidyl-prolyl cis-trans isomerase domain of S. aureus PrsA (PrsA-PPIase. The results of substrate peptide titrations pinpoint the active site and demonstrate the substrate preference of the enzyme. With detailed NMR spectroscopic investigation of the orientation and tautomeric state of the active site histidines we are able to give further insight into the structure of the catalytic site. NMR relaxation analysis gives information on the dynamic behaviour of PrsA-PPIase. Conclusion Detailed structural description of the S. aureus PrsA-PPIase lays the foundation for structure-based design of enzyme inhibitors. The structure resembles hPin1-type parvulins both structurally and regarding substrate preference. Even though a wealth of structural data is available on parvulins, the catalytic mechanism has yet to be resolved. The structure of S. aureus PrsA-PPIase and our findings on the role of the conserved active site histidines help in designing further experiments to solve the detailed catalytic mechanism.

  15. First-principles quantum mechanical investigations: Catalytic reactions of furfural on Pd(111) and at the water/Pd(111) interface

    Science.gov (United States)

    Xue, Wenhua

    Bio-oils have drawn more and more attention from scientists as a promising new clean, cheap energy source. One of the most interesting relevant issues is the effect of catalysts on the catalytic reactions that are used for producing bio-oils. Furfural, as a very important intermediate during these reactions, has attracted significant studies. However, the effect of catalysts, including particularly the liquid/solid interface formed by a metal catalyst and liquid water, in the catalytic reactions involving furfural still remains elusive. In this research, we performed ab initio molecular dynamics simulations and first-principles density-functional theory calculations to investigate the atomic-scale mechanisms of catalytic hydrogenation of furfural on the palladium surface and at the liquid/state interface formed by the palladium surface and liquid water. We studied all the possible mechanisms that lead to formation of furfuryl alcohol (FOL), formation of tetrahydrofurfural (THFAL), and formation of tetrahydrofurfurfuryl alcohol (THFOL). We found that liquid water plays a significant role in the hydrogenation reactions. During the reaction in the presence of water and the palladium catalyst, in particular, water directly participates in the hydrogenation of the aldehyde group of furfural and facilitates the formation of FOL by reducing the activation energy. Our calculations show that water provides hydrogen for the hydrogenation of the aldehyde group, and at the same time, a pre-existing hydrogen atom, which is resulted from dissociation of molecular hydrogen (experimentally, molecular hydrogen is always supplied for hydrogenation) on the palladium surface, is bonded to water, making the water molecule intact in structure. In the absence of water, on the other hand, formation of FOL and THFAL on the palladium surface involves almost the same energy barriers, suggesting a comparable selectivity. Overall, as water reduces the activation energy for the formation of FOL

  16. New insights into the catalytic mechanism of Bombyx mori prostaglandin E synthase gained from structure–function analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Kohji, E-mail: yamamok@agr.kyushu-u.ac.jp [Faculty of Agriculture, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Suzuki, Mamoru; Higashiura, Akifumi [Institute for Protein Research, Osaka University, Suita 565-0871 (Japan); Aritake, Kosuke; Urade, Yoshihiro; Uodome, Nobuko [Department of Molecular Behavioral Biology, Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka 565-0874 (Japan); Hossain, MD. Tofazzal [Faculty of Agriculture, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Nakagawa, Atsushi [Institute for Protein Research, Osaka University, Suita 565-0871 (Japan)

    2013-11-01

    Highlights: •Structure of Bombyx mori prostaglandin E synthase is determined. •Bound glutathione sulfonic acid is located at the glutathione-binding site. •Electron-sharing network is present in this protein. •This network includes Asn95, Asp96, and Arg98. •Site-directed mutagenesis reveals that the residues contribute to the catalytic activity. -- Abstract: Prostaglandin E synthase (PGES) catalyzes the isomerization of PGH{sub 2} to PGE{sub 2}. We previously reported the identification and structural characterization of Bombyx mori PGES (bmPGES), which belongs to Sigma-class glutathione transferase. Here, we extend these studies by determining the structure of bmPGES in complex with glutathione sulfonic acid (GTS) at a resolution of 1.37 Å using X-ray crystallography. GTS localized to the glutathione-binding site. We found that electron-sharing network of bmPGES includes Asn95, Asp96, and Arg98. Site-directed mutagenesis of these residues to create mutant forms of bmPGES mutants indicate that they contribute to catalytic activity. These results are, to our knowledge, the first to reveal the presence of an electron-sharing network in bmPGES.

  17. Evidence for unintentional emotional contagion beyond dyads.

    Directory of Open Access Journals (Sweden)

    Guillaume Dezecache

    Full Text Available Little is known about the spread of emotions beyond dyads. Yet, it is of importance for explaining the emergence of crowd behaviors. Here, we experimentally addressed whether emotional homogeneity within a crowd might result from a cascade of local emotional transmissions where the perception of another's emotional expression produces, in the observer's face and body, sufficient information to allow for the transmission of the emotion to a third party. We reproduced a minimal element of a crowd situation and recorded the facial electromyographic activity and the skin conductance response of an individual C observing the face of an individual B watching an individual A displaying either joy or fear full body expressions. Critically, individual B did not know that she was being watched. We show that emotions of joy and fear displayed by A were spontaneously transmitted to C through B, even when the emotional information available in B's faces could not be explicitly recognized. These findings demonstrate that one is tuned to react to others' emotional signals and to unintentionally produce subtle but sufficient emotional cues to induce emotional states in others. This phenomenon could be the mark of a spontaneous cooperative behavior whose function is to communicate survival-value information to conspecifics.

  18. The effect of defects on the catalytic activity of single Au atom supported carbon nanotubes and reaction mechanism for CO oxidation.

    Science.gov (United States)

    Ali, Sajjad; Fu Liu, Tian; Lian, Zan; Li, Bo; Sheng Su, Dang

    2017-08-23

    The mechanism of CO oxidation by O 2 on a single Au atom supported on pristine, mono atom vacancy (m), di atom vacancy (di) and the Stone Wales defect (SW) on single walled carbon nanotube (SWCNT) surface is systematically investigated theoretically using density functional theory. We determine that single Au atoms can be trapped effectively by the defects on SWCNTs. The defects on SWCNTs can enhance both the binding strength and catalytic activity of the supported single Au atom. Fundamental aspects such as adsorption energy and charge transfer are elucidated to analyze the adsorption properties of CO and O 2 and co-adsorption of CO and O 2 molecules. It is found that CO binds stronger than O 2 on Au supported SWCNT. We clearly demonstrate that the defected SWCNT surface promotes electron transfer from the supported single Au atom to O 2 molecules. On the other hand, this effect is weaker for pristine SWCNTs. It is observed that the high density of spin-polarized states are localized in the region of the Fermi level due to the strong interactions between Au (5d orbital) and the adjacent carbon (2p orbital) atoms, which influence the catalytic performance. In addition, we elucidate both the Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms of CO oxidation by O 2 . For the LH pathway, the barriers of the rate-limiting step are calculated to be 0.02 eV and 0.05 eV for Au/m-SWCNT and Au/di-SWCNT, respectively. To regenerate the active sites, an ER-like reaction occurs to form a second CO 2 molecule. The ER pathway is observed on Au/m-SWCNT, Au/SW-SWCNT and Au/SWCNT in which the Au/m-SWCNT has a smaller barrier. The comparison with a previous study (Lu et al., J. Phys. Chem. C, 2009, 113, 20156-20160.) indicates that the curvature effect of SWCNTs is important for the catalytic property of the supported single Au. Overall, Au/m-SWCNT is identified as the most active catalyst for CO oxidation compared to pristine SWCNT, SW-SWCNT and di-SWCNT. Our findings give a

  19. Catalytic treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bindley, W T.R.

    1931-04-18

    An apparatus is described for the catalytic treatment of liquids, semi-liquids, and gases comprising a vessel into which the liquid, semi-liquid, or gas to be treated is introduced through a common inlet to a chamber within the vessel whence it passes to contact with a catalyst through radially arranged channels or passages to a common outlet chamber.

  20. Catalytic pyrolysis of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Vail' eva, N A; Buyanov, R A

    1979-01-01

    Catalytic pyrolysis of petroleum fractions (undecane) was performed with the object of clarifying such questions as the mechanism of action of the catalyst, the concepts of activity and selectivity of the catalyst, the role of transport processes, the temperature ranges and limitations of the catalytic process, the effect of the catalyst on secondary processes, and others. Catalysts such as quartz, MgO, Al/sub 2/O/sub 3/, were used. Analysis of the experimental findings and the fact that the distribution of products is independent of the nature of the surface, demonstrate that the pyrolysis of hydrocarbons in the presence of catalysts is based on the heterogeneous-homogeneous radical-chain mechanism of action, and that the role of the catalysts reduces to increasing the concentration of free radicals. The concept of selectivity cannot be applied to catalysts here, since they do not affect the mechanism of the unfolding of the process of pyrolysis and their role consists solely in initiating the process. In catalytic pyrolysis the concepts of kinetic and diffusive domains of unfolding of the catalytic reaction do not apply, and only the outer surface of the catalyst is engaged, whereas the inner surface merely promotes deletorious secondary processes reducing the selectivity of the process and the activity of the catalyst. 6 references, 2 figures.

  1. On the mechanism of sulfite activation of chloroplast thylakoid ATPase and the relation of ADP tightly bound at a catalytic site to the binding change mechanism

    International Nuclear Information System (INIS)

    Du, Z.; Boyer, P.D.

    1990-01-01

    Washed chloroplast thylakoid membranes upon exposure to [ 3 H]ADP retain in tightly bound [ 3 H]ADP on a catalytic site of the ATP synthase. The presence of sufficient endogenous or added Mg 2+ results in an enzyme with essentially no ATPase activity. Sulfite activates the ATPase, and many molecules of ATP per synthase can be hydrolyzed before most of the bound [ 3 H]ADP is released, a result interpreted as indicating that the ADP is not bound at a site participating in catalysis by the sulfite-activated enzyme. The authors present evidence that this is not the case. The Mg 2+ - and ADP-inhibited enzyme when exposed to MgATP and 20-100 mM sulfite shows a lag of about 1 min at 22 degree C and of about 15 s at 37 degree C before reaching the same steady-state rate as attained with light-activated ATPase that has not been inhibited by Mg 2+ and ADP. The lag is not eliminated if the enzyme is exposed to sulfite prior to MgATP addition, indicating that ATPase turnover is necessary for the activation. The release of most of the bound [ 3 H]ADP parallels the onset of ATPase activity, although some [ 3 H]ADP is not released even with prolonged catalytic turnover and may be on poorly active or inactive enzyme or at noncatalytic sites. The results are consistent with most of the tightly bound [ 3 H]ADP being at a catalytic site and being replaced as this Mg 2+ - and ADP-inhibited site regains equivalent participation with other catalytic sites on the activated enzyme. The sulfite activation can be explained by sulfite combination at a P i binding site of the enzyme-ADP-Mg 2+ complex to give a form more readily activated by ATP binding at an alternative site

  2. Understanding the Catalytic Mechanism and the Nature of the Transition State of an Attractive Drug-Target Enzyme (Shikimate Kinase) by Quantum Mechanical/Molecular Mechanical (QM/MM) Studies.

    Science.gov (United States)

    Yao, Jianzhuang; Wang, Xia; Luo, Haixia; Gu, Pengfei

    2017-11-16

    Shikimate kinase (SK) is the fifth bacterial enzyme involved in the shikimate pathway for biosynthesis of life-indispensable components, such as aromatic amino acids. The absence of the shikimate pathway in humans makes SK an attractive target for the rational design of drugs aimed at pathogenesis bacteria, such as Mycobacterium tuberculosis and Helicobacter pylori. However, an effective inhibitor of SK (e.g., a transition-state analogue) is still not available on the market due, at least in part, to a lack of knowledge on the catalytic mechanism and the nature of the rate-limiting transition state. Herein, quantum mechanical/molecular mechanical (QM/MM) reaction coordinate, molecular dynamics (MD), and free-energy simulations have been performed to answer these questions. The results presented herein demonstrate that the phosphoryl-transfer process, which is the rate-limiting step of SK-catalyzed phosphorylation of shikimic acid (SKM), is a concerted one-step reaction proceeding through a loose transition state. The computational results agree well with those of experimental studies, specifically NMR results, X-ray crystal structure observation, and activation free-energy barrier. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. An investigation into the applicability of the semiempirical method PM7 for modeling the catalytic mechanism in the enzyme chymotrypsin.

    Science.gov (United States)

    Stewart, James J P

    2017-05-01

    The catalytic cycle for the serine protease α-chymotrypsin was investigated in an attempt to determine the suitability of using the semiempirical method PM7 in the program MOPAC for investigating enzyme-catalyzed reactions. All six classical intermediates were modeled using standard methods, and were characterized as stable minima on the potential energy surface. Using a modified saddle point optimization method, five transition states were located and verified both by vibrational and by intrinsic reaction coordinate analysis. Some individual features, such as the hydrogen bonds in the oxyanion hole, the nature of various electrostatic interactions, and the role of Met192, were examined. This involved designing and running computational experiments to model mutations that would allow features of interest, in particular the energies involved, to be isolated. Three features within the enzyme were examined in detail: the reaction site itself, where covalent bonds were made and broken, the electrostatic effects of the buried aspartate anion, a passive but essential component of the catalytic triad, and the oxyanion hole, where hydrogen bonds help stabilize charged intermediates. With one minor exception, all phenomena investigated agreed with previously-reported descriptions. This result, along with the fact that all the techniques used were relatively straightforward, leads to the recommendation that PM7 and related methods, such as PM6-D3H4, are appropriate for modeling similar enzyme-catalyzed reactions. Graphical abstract Fifth of six transition states, showing water splitting into hydroxyl anion and a proton, to form the second tetrahedral intermediate and histidinium ion. Atoms of the water molecule involved in the hydrolysis are indicated by halos.

  4. Photophysical properties of novel Porphyrin-Flavin Dyads

    International Nuclear Information System (INIS)

    Stark, S.

    2001-10-01

    Photosynthesis belongs to the fundamentals of life on earth, therefore it is an important matter in natural sciences. The basic principle of photosynthesis is the transformation of solar light into chemical energy. The starting steps of photosynthesis are light-induced energy- and electron-transfer-steps with singular efficiency. One attempt to enlighten the molecular processes involved is to synthesize simpler model systems with similar properties. Important research goals are the dependencies of light-induced processes on distance and orientation of donor and acceptor. A second aim next to the clarification of the molecular conditions of photosynthesis is to create molecular light-driven machines. The most simple so-called biomimetic model system consists of an electron-donor connected to an electron-acceptor via a spacer-group. This simplest form is also referred to as dyad. Beyond dyads far more complicated compounds have been introduced consisting of several donors and/or acceptors, so-called triads, tetrads, pentads etc. Usually porphyrin serves as electron-donor. Next to chinones several other electron-acceptors are used, e.g. anthracene, pyromellitimide and fullerene. Artificial photosynthetic centers are often more stable and/or the excited states are easier to detect compared to the natural photosynthetic center. The photophysical characteristics of four dyads are reported in this work. The dyads consist of porphyrin (either free-base or zinc-metallated) and flavin, connected by different spacers. These dyads reveal photo-induced electron transfer from porphyrin to flavin and energy-transfer in the reversed direction with different efficiencies. The object of the study is the dependency of these processes on the structural features. The spacer of the dyads 1a-1c is an aromatic bridge which leads to well defined donor-acceptor distances. Because of this structure conjugation through the spacer is increased, whereas the absorption in the visible and near UV

  5. Construction of a 3D model of nattokinase, a novel fibrinolytic enzyme from Bacillus natto. A novel nucleophilic catalytic mechanism for nattokinase.

    Science.gov (United States)

    Zheng, Zhong-liang; Zuo, Zhen-yu; Liu, Zhi-gang; Tsai, Keng-chang; Liu, Ai-fu; Zou, Guo-lin

    2005-01-01

    A three-dimensional structural model of nattokinase (NK) from Bacillus natto was constructed by homology modeling. High-resolution X-ray structures of Subtilisin BPN' (SB), Subtilisin Carlsberg (SC), Subtilisin E (SE) and Subtilisin Savinase (SS), four proteins with sequential, structural and functional homology were used as templates. Initial models of NK were built by MODELLER and analyzed by the PROCHECK programs. The best quality model was chosen for further refinement by constrained molecular dynamics simulations. The overall quality of the refined model was evaluated. The refined model NKC1 was analyzed by different protein analysis programs including PROCHECK for the evaluation of Ramachandran plot quality, PROSA for testing interaction energies and WHATIF for the calculation of packing quality. This structure was found to be satisfactory and also stable at room temperature as demonstrated by a 300ps long unconstrained molecular dynamics (MD) simulation. Further docking analysis promoted the coming of a new nucleophilic catalytic mechanism for NK, which is induced by attacking of hydroxyl rich in catalytic environment and locating of S221.

  6. On the mechanism of sulfite activation of chloroplast thylakoid ATPase and the relation of ADP tightly bound at a catalytic site to the binding change mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Du, Z.; Boyer, P.D. (Univ. of California, Los Angeles (USA))

    1990-01-16

    Washed chloroplast thylakoid membranes upon exposure to ({sup 3}H)ADP retain in tightly bound ({sup 3}H)ADP on a catalytic site of the ATP synthase. The presence of sufficient endogenous or added Mg{sup 2+} results in an enzyme with essentially no ATPase activity. Sulfite activates the ATPase, and many molecules of ATP per synthase can be hydrolyzed before most of the bound ({sup 3}H)ADP is released, a result interpreted as indicating that the ADP is not bound at a site participating in catalysis by the sulfite-activated enzyme. The authors present evidence that this is not the case. The Mg{sup 2+}- and ADP-inhibited enzyme when exposed to MgATP and 20-100 mM sulfite shows a lag of about 1 min at 22{degree}C and of about 15 s at 37{degree}C before reaching the same steady-state rate as attained with light-activated ATPase that has not been inhibited by Mg{sup 2+} and ADP. The lag is not eliminated if the enzyme is exposed to sulfite prior to MgATP addition, indicating that ATPase turnover is necessary for the activation. The release of most of the bound ({sup 3}H)ADP parallels the onset of ATPase activity, although some ({sup 3}H)ADP is not released even with prolonged catalytic turnover and may be on poorly active or inactive enzyme or at noncatalytic sites. The results are consistent with most of the tightly bound ({sup 3}H)ADP being at a catalytic site and being replaced as this Mg{sup 2+}- and ADP-inhibited site regains equivalent participation with other catalytic sites on the activated enzyme. The sulfite activation can be explained by sulfite combination at a P{sub i} binding site of the enzyme-ADP-Mg{sup 2+} complex to give a form more readily activated by ATP binding at an alternative site.

  7. Light induced intramolecular electron and energy transfer events in rigidly linked borondipyrromethene: Corrole Dyad

    Energy Technology Data Exchange (ETDEWEB)

    Giribabu, Lingamallu, E-mail: giribabu@iict.res.in [Inorganic & Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, Telangana (India); Jain, Kanika [Department of Chemistry, School of Chemical Sciences & Pharmacy, Central University of Rajasthan, Kishangarh, Dist. Ajmer, Rajasthan 305817 (India); Sudhakar, Kolanu; Duvva, Naresh [Inorganic & Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, Telangana (India); Chitta, Raghu, E-mail: raghuchitta@curaj.ac.in [Department of Chemistry, School of Chemical Sciences & Pharmacy, Central University of Rajasthan, Kishangarh, Dist. Ajmer, Rajasthan 305817 (India)

    2016-09-15

    We have designed and synthesized a photo-induced energy/electron donor–acceptor conjugate comprising of corrole linked to BODIPY at the 5-position via ester linkage. The dyad was characterized by elemental analysis, MALDI-MS, UV-Visible, {sup 1}H NMR fluorescence spectroscopy (steady-state and time-resolved) as well as electrochemical methods. A comparison of the UV–visible and {sup 1}H NMR spectra of the dyad with those of the corresponding individual model compounds (i.e., BODIPY-CO{sub 2}H and BPFC-OH) reveal that there exist minimum π–π interactions between BODIPY and corrole π-planes. Quenched emission of BODIPY and corrole part of the dyad has been observed in five different solvents. Excitation spectral data provided evidence for an intramolecular excitation energy transfer (EET) from the singlet BODIPY to the corrole and an intramolecular photoinduced electron transfer (PET) from singlet state of corrole to ground state of BODIPY. Detailed analysis of the data suggests that Forster's dipole–dipole mechanism does not adequately explain this energy transfer but, an electron exchange mediated mechanism can, in principle, contribute to the intramolecular EET.

  8. Reaction Mechanism for the Formation of Nitrogen Oxides (NO x ) During Coke Oxidation in Fluidized Catalytic Cracking Units

    KAUST Repository

    Chaparala, Sree Vidya

    2015-06-11

    Fluidized catalytic cracking (FCC) units in refineries process heavy feedstock obtained from crude oil distillation. While cracking feed, catalysts get deactivated due to coke deposition. During catalyst regeneration by burning coke in air, nitrogen oxides (NOx) are formed. The increase in nitrogen content in feed over time has resulted in increased NOx emissions. To predict NOx concentration in flue gas, a reliable model for FCC regenerators is needed that requires comprehensive understanding and accurate kinetics for NOx formation. Based on the nitrogen-containing functional groups on coke, model molecules are selected to study reactions between coke-bound nitrogen and O2 to form NO and NO2 using density functional theory. The reaction kinetics for the proposed pathways are evaluated using transition state theory. It is observed that the addition of O2 on coke is favored only when the free radical is present on the carbon atom instead of nitrogen atom. Thus, NOx formation during coke oxidation does not result from the direct attack by O2 on N atoms of coke, but from the transfer of an O atom to N from a neighboring site. The low activation energies required for NO formation indicate that it is more likely to form than NO2 during coke oxidation. The favorable pathways for NOx formation that can be used in FCC models are identified. Copyright © 2015 Taylor & Francis Group, LLC.

  9. Formation of polyhedral ceria nanoparticles with enhanced catalytic CO oxidation activity in thermal plasma via a hydrogen mediated shape control mechanism

    International Nuclear Information System (INIS)

    Zheng Jie; Zhang Yaohua; Song Xubo; Li Xingguo

    2011-01-01

    Ceria nanoparticles with well defined facets are prepared in argon–hydrogen thermal plasma followed by controlled oxidation. With increasing hydrogen fraction in the plasma, a clear sphere-to-polyhedron shape transition is observed. The heat released during the hydrogenation of cerium, which significantly enhances the species mobility on the surface, favors the growth of well defined facets. The polyhedron ceria nanoparticles, though lower in specific surface area, exhibit superior catalytic performance for CO oxidation over the round particles, which is attributed to the higher density of the reactive {200} and {220} facets on the surface. The hydrogen mediated shape control mechanism provides new insights into the shape control of nanoparticles during thermal plasma processing.

  10. Changed membrane integration and catalytic site conformation are two mechanisms behind the increased Aβ42/Aβ40 ratio by presenilin 1 familial Alzheimer-linked mutations

    Directory of Open Access Journals (Sweden)

    Johanna Wanngren

    2014-01-01

    Full Text Available The enzyme complex γ-secretase generates amyloid β-peptide (Aβ, a 37–43-residue peptide associated with Alzheimer disease (AD. Mutations in presenilin 1 (PS1, the catalytical subunit of γ-secretase, result in familial AD (FAD. A unifying theme among FAD mutations is an alteration in the ratio Aβ species produced (the Aβ42/Aβ40 ratio, but the molecular mechanisms responsible remain elusive. In this report we have studied the impact of several different PS1 FAD mutations on the integration of selected PS1 transmembrane domains and on PS1 active site conformation, and whether any effects translate to a particular amyloid precursor protein (APP processing phenotype. Most mutations studied caused an increase in the Aβ42/Aβ40 ratio, but via different mechanisms. The mutations that caused a particular large increase in the Aβ42/Aβ40 ratio did also display an impaired APP intracellular domain (AICD formation and a lower total Aβ production. Interestingly, seven mutations close to the catalytic site caused a severely impaired integration of proximal transmembrane/hydrophobic sequences into the membrane. This structural defect did not correlate to a particular APP processing phenotype. Six selected FAD mutations, all of which exhibited different APP processing profiles and impact on PS1 transmembrane domain integration, were found to display an altered active site conformation. Combined, our data suggest that FAD mutations affect the PS1 structure and active site differently, resulting in several complex APP processing phenotypes, where the most aggressive mutations in terms of increased Aβ42/Aβ40 ratio are associated with a decrease in total γ-secretase activity.

  11. Conceptual Diagnosis Model Based on Distinct Knowledge Dyads for Interdisciplinary Environments

    Directory of Open Access Journals (Sweden)

    Cristian VIZITIU

    2014-06-01

    Full Text Available The present paper has a synergic dual purpose of bringing a psychological and neuroscience related perspective oriented towards decision making and knowledge creation diagnosis in the frame of Knowledge Management. !e conceptual model is built by means ofCognitive-Emotional and Explicit-Tacit knowledge dyads and structured on Analytic Hierarchy Process (AHP according to the hypothesis which designates the first dyad as an accessing mechanism of knowledge stored in the second dyad. Due to the well acknowledged needsconcerning new advanced decision making instruments and enhanced knowledge creation processes in the field of technical space projects emphasized by a high level of complexity, the herein study tries also to prove the relevance of the proposed conceptual diagnosis modelin Systems Engineering (SE methodology which foresees at its turn concurrent engineering within interdisciplinary working environments. !e theoretical model, entitled DiagnoSE, has the potential to provide practical implications to space/space related business sector butnot merely, and on the other hand, to trigger and inspire other knowledge management related researches for refining and testing the proposed instrument in SE or other similar decision making based working environment.

  12. Crystalline nanotubes of {gamma}-AlOOH and {gamma}-Al{sub 2}O{sub 3}: hydrothermal synthesis, formation mechanism and catalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Lu, C L; Lv, J G; Xu, L; Guo, X F; Hou, W H [Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Hu, Y; Huang, H [State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China)], E-mail: guoxf@nju.edu.cn, E-mail: whou@nju.edu.cn

    2009-05-27

    Crystalline nanotubes of {gamma}-AlOOH and {gamma}-Al{sub 2}O{sub 3} have been synthesized. An anionic surfactant-assisted hydrothermal process yields {gamma}-AlOOH nanotubes, and appropriate calcination treatment of the {gamma}-AlOOH nanotubes yields {gamma}-Al{sub 2}O{sub 3} nanotubes. The nanotubes were characterized by XRD, SEM, TEM, TG-DSC, FTIR and nitrogen adsorption-desorption techniques. Both the {gamma}-AlOOH and {gamma}-Al{sub 2}O{sub 3} nanotubes are crystalline, with a representative length of {approx}500 nm and diameters of 20-40 nm. The {gamma}-Al{sub 2}O{sub 3} nanotubes exhibit a very high mesoporous specific surface area (SSA) of 201.0 m{sup 2} g{sup -1} and a high mesopore volume of 0.68 cm{sup 3} g{sup -1} with an average mesopore size of 27.7 nm, as well as a high microporous SSA of 186.0 m{sup 2} g{sup -1} and a micropore volume of 0.08 cm{sup 3} g{sup -1} with an average micropore size of 0.53 nm. The formation process was discussed and a possible mechanism was proposed, in which a lamellar phase was first formed by camphorsulfonic anions and Al(III) species, and then rolled up to form the crystalline nanotubes under the hydrothermal condition. The catalytic performance of the obtained {gamma}- Al{sub 2}O{sub 3} nanotubes was tested by using the dehydration of ethanol to ethylene as a probe reaction and it was shown that the obtained {gamma}- Al{sub 2}O{sub 3} nanotubes catalyst possesses a higher catalytic activity compared with the {gamma}- Al{sub 2}O{sub 3} nanoparticles.

  13. Structures of the Mycobacterium tuberculosis GlpX protein (class II fructose-1,6-bisphosphatase): implications for the active oligomeric state, catalytic mechanism and citrate inhibition.

    Science.gov (United States)

    Wolf, Nina M; Gutka, Hiten J; Movahedzadeh, Farahnaz; Abad-Zapatero, Celerino

    2018-04-01

    The crystal structures of native class II fructose-1,6-bisphosphatase (FBPaseII) from Mycobacterium tuberculosis at 2.6 Å resolution and two active-site protein variants are presented. The variants were complexed with the reaction product fructose 6-phosphate (F6P). The Thr84Ala mutant is inactive, while the Thr84Ser mutant has a lower catalytic activity. The structures reveal the presence of a 222 tetramer, similar to those described for fructose-1,6/sedoheptulose-1,7-bisphosphatase from Synechocystis (strain 6803) as well as the equivalent enzyme from Thermosynechococcus elongatus. This homotetramer corresponds to a homologous oligomer that is present but not described in the crystal structure of FBPaseII from Escherichia coli and is probably conserved in all FBPaseIIs. The constellation of amino-acid residues in the active site of FBPaseII from M. tuberculosis (MtFBPaseII) is conserved and is analogous to that described previously for the E. coli enzyme. Moreover, the structure of the active site of the partially active (Thr84Ser) variant and the analysis of the kinetics are consistent with the previously proposed catalytic mechanism. The presence of metabolites in the crystallization medium (for example citrate and malonate) and in the corresponding crystal structures of MtFBPaseII, combined with their observed inhibitory effect, could suggest the existence of an uncharacterized inhibition of this class of enzymes besides the allosteric inhibition by adenosine monophosphate observed for the Synechocystis enzyme. The structural and functional insights derived from the structure of MtFBPaseII will provide critical information for the design of lead inhibitors, which will be used to validate this target for future chemical intervention.

  14. Copper/ascorbic acid dyad as a catalytic system for selective aerobic oxidation of amines

    Czech Academy of Sciences Publication Activity Database

    Šrogl, Jiří; Voltrová, Svatava

    2009-01-01

    Roč. 11, č. 4 (2009), s. 843-845 ISSN 1523-7060 Institutional research plan: CEZ:AV0Z40550506 Keywords : copper * ascorbic acid * oxidative deamination Subject RIV: CC - Organic Chemistry Impact factor: 5.420, year: 2009

  15. Structural and In Vivo Studies on Trehalose-6-Phosphate Synthase from Pathogenic Fungi Provide Insights into Its Catalytic Mechanism, Biological Necessity, and Potential for Novel Antifungal Drug Design

    Directory of Open Access Journals (Sweden)

    Yi Miao

    2017-07-01

    Full Text Available The disaccharide trehalose is critical to the survival of pathogenic fungi in their human host. Trehalose-6-phosphate synthase (Tps1 catalyzes the first step of trehalose biosynthesis in fungi. Here, we report the first structures of eukaryotic Tps1s in complex with substrates or substrate analogues. The overall structures of Tps1 from Candida albicans and Aspergillus fumigatus are essentially identical and reveal N- and C-terminal Rossmann fold domains that form the glucose-6-phosphate and UDP-glucose substrate binding sites, respectively. These Tps1 structures with substrates or substrate analogues reveal key residues involved in recognition and catalysis. Disruption of these key residues severely impaired Tps1 enzymatic activity. Subsequent cellular analyses also highlight the enzymatic function of Tps1 in thermotolerance, yeast-hypha transition, and biofilm development. These results suggest that Tps1 enzymatic functionality is essential for the fungal stress response and virulence. Furthermore, structures of Tps1 in complex with the nonhydrolyzable inhibitor, validoxylamine A, visualize the transition state and support an internal return-like catalytic mechanism that is generalizable to other GT-B-fold retaining glycosyltransferases. Collectively, our results depict key Tps1-substrate interactions, unveil the enzymatic mechanism of these fungal proteins, and pave the way for high-throughput inhibitor screening buttressed and guided by the current structures and those of high-affinity ligand-Tps1 complexes.

  16. Exciplex formation and excited state deactivation of difluoroborondipyrromethene (Bodipy) dyads.

    Science.gov (United States)

    Benniston, Andrew C; Copley, Graeme; Lemmetyinen, Helge; Tkachenko, Nikolai V

    2010-06-07

    Two series of geometrically-related dyads are discussed based on the difluoroborondipyrromethene (Bodipy) unit, and incorporating covalently attached hydroquinone/quinone groups. These units are anchored directly, or via a phenylene spacer, to the Bodipy core at the meso position in one series (BD-MHQ, BD-MQ, BD-MPHQ, BD-MPQ), but for the second series the attachment site is the 2-position (BD-SHQ, BD-SQ, BD-SPHQ, BD-SPQ). The compounds show various levels of fluorescence depending on the oxidation state of the appended group and the substitution pattern. In non-polar solvents such as toluene, diethyl ether and dichlorobenzene, the S(1) state deactivation of the Bodipy unit in BD-SPQ and BD-MPQ is dominated by (1, 3)exciplex formation, which has not been reported for Bodipy derivatives so far. In the latter molecule, the decay of the exciplex is divided between population of the Bodipy triplet state (13 %-21 %) and ground state reformation. This partitioning is not seen for the side-on substituted derivative, BD-SPQ, and only ground state reformation is observed following decay of the exciplex. This difference in behavior is explained by the radical-pair inter-system-crossing mechanism, which more effectively operates in BD-MPQ because of the orthogonality of the donor-acceptor units. In the more polar solvent CH(3)CN all the quinone derivatives show fast formation of the charge-separated state (k(CS)) followed by slower charge recombination (k(CR)). The ratio k(CS)/k(CR)

  17. Catalytic mechanism of Sep-tRNA:Cys-tRNA synthase: sulfur transfer is mediated by disulfide and persulfide.

    Science.gov (United States)

    Liu, Yuchen; Dos Santos, Patricia C; Zhu, Xiang; Orlando, Ron; Dean, Dennis R; Söll, Dieter; Yuan, Jing

    2012-02-17

    Sep-tRNA:Cys-tRNA synthase (SepCysS) catalyzes the sulfhydrylation of tRNA-bound O-phosphoserine (Sep) to form cysteinyl-tRNA(Cys) (Cys-tRNA(Cys)) in methanogens that lack the canonical cysteinyl-tRNA synthetase (CysRS). A crystal structure of the Archaeoglobus fulgidus SepCysS apoenzyme provides information on the binding of the pyridoxal phosphate cofactor as well as on amino acid residues that may be involved in substrate binding. However, the mechanism of sulfur transfer to form cysteine was not known. Using an in vivo Escherichia coli complementation assay, we showed that all three highly conserved Cys residues in SepCysS (Cys(64), Cys(67), and Cys(272) in the Methanocaldococcus jannaschii enzyme) are essential for the sulfhydrylation reaction in vivo. Biochemical and mass spectrometric analysis demonstrated that Cys(64) and Cys(67) form a disulfide linkage and carry a sulfane sulfur in a portion of the enzyme. These results suggest that a persulfide group (containing a sulfane sulfur) is the proximal sulfur donor for cysteine biosynthesis. The presence of Cys(272) increased the amount of sulfane sulfur in SepCysS by 3-fold, suggesting that this Cys residue facilitates the generation of the persulfide group. Based upon these findings, we propose for SepCysS a sulfur relay mechanism that recruits both disulfide and persulfide intermediates.

  18. Reaction mechanisms and evaluation of effective process operation for catalytic oxidation and coagulation by ferrous solution and hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.H.; Moon, H.J.; Kim, Y.M. [Dept. of Environmental Engineering, Sangmyung Univ., Cheonan (Korea); Bae, W.K. [Dept. of Civil and Environmental Engineering, Hanyang Univ., Ansan, Kyounggi (Korea)

    2003-07-01

    This research was carried out to evaluate the removal efficiencies of COD{sub cr} and colour for the dyeing wastewater by ferrous solution and the different dosage of H{sub 2}O{sub 2} in Fenton process. In the case of H{sub 2}O{sub 2} divided dosage, 7:3 was more effective than 3:7 to remove COD{sub cr} and colour. The results showed that COD was mainly removed by Fenton coagulation, where the ferric ions are formed in the initial step of Fenton reaction. On the other hand colour was removed by Fenton oxidation rather than Fenton coagulation. This paper also aims at pursuing to investigate the effective removal mechanisms using ferrous ion coagulation, ferric ion coagulation and Fenton oxidation process. The removal mechanism of COD{sub cr} and colour was mainly coagulation by ferrous ion, ferric ion and Fenton oxidation. The removal efficiencies were dependent on the ferric ion amount at the beginning of the reaction. However the final removal efficiency of COD and colour was in the order of Fenton oxidation, ferric ion coagulation and ferrous ion coagulation. The reason of the highest removal efficiency by Fenton oxidation can be explained by the chain reactions with ferrous solution, ferric ion and hydrogen peroxide. (orig.)

  19. Stepwise catalytic mechanism via short-lived intermediate inferred from combined QM/MM MERP and PES calculations on retaining glycosyltransferase ppGalNAcT2.

    Science.gov (United States)

    Trnka, Tomáš; Kozmon, Stanislav; Tvaroška, Igor; Koča, Jaroslav

    2015-04-01

    The glycosylation of cell surface proteins plays a crucial role in a multitude of biological processes, such as cell adhesion and recognition. To understand the process of protein glycosylation, the reaction mechanisms of the participating enzymes need to be known. However, the reaction mechanism of retaining glycosyltransferases has not yet been sufficiently explained. Here we investigated the catalytic mechanism of human isoform 2 of the retaining glycosyltransferase polypeptide UDP-GalNAc transferase by coupling two different QM/MM-based approaches, namely a potential energy surface scan in two distance difference dimensions and a minimum energy reaction path optimisation using the Nudged Elastic Band method. Potential energy scan studies often suffer from inadequate sampling of reactive processes due to a predefined scan coordinate system. At the same time, path optimisation methods enable the sampling of a virtually unlimited number of dimensions, but their results cannot be unambiguously interpreted without knowledge of the potential energy surface. By combining these methods, we have been able to eliminate the most significant sources of potential errors inherent to each of these approaches. The structural model is based on the crystal structure of human isoform 2. In the QM/MM method, the QM region consists of 275 atoms, the remaining 5776 atoms were in the MM region. We found that ppGalNAcT2 catalyzes a same-face nucleophilic substitution with internal return (SNi). The optimized transition state for the reaction is 13.8 kcal/mol higher in energy than the reactant while the energy of the product complex is 6.7 kcal/mol lower. During the process of nucleophilic attack, a proton is synchronously transferred to the leaving phosphate. The presence of a short-lived metastable oxocarbenium intermediate is likely, as indicated by the reaction energy profiles obtained using high-level density functionals.

  20. Stepwise catalytic mechanism via short-lived intermediate inferred from combined QM/MM MERP and PES calculations on retaining glycosyltransferase ppGalNAcT2.

    Directory of Open Access Journals (Sweden)

    Tomáš Trnka

    2015-04-01

    Full Text Available The glycosylation of cell surface proteins plays a crucial role in a multitude of biological processes, such as cell adhesion and recognition. To understand the process of protein glycosylation, the reaction mechanisms of the participating enzymes need to be known. However, the reaction mechanism of retaining glycosyltransferases has not yet been sufficiently explained. Here we investigated the catalytic mechanism of human isoform 2 of the retaining glycosyltransferase polypeptide UDP-GalNAc transferase by coupling two different QM/MM-based approaches, namely a potential energy surface scan in two distance difference dimensions and a minimum energy reaction path optimisation using the Nudged Elastic Band method. Potential energy scan studies often suffer from inadequate sampling of reactive processes due to a predefined scan coordinate system. At the same time, path optimisation methods enable the sampling of a virtually unlimited number of dimensions, but their results cannot be unambiguously interpreted without knowledge of the potential energy surface. By combining these methods, we have been able to eliminate the most significant sources of potential errors inherent to each of these approaches. The structural model is based on the crystal structure of human isoform 2. In the QM/MM method, the QM region consists of 275 atoms, the remaining 5776 atoms were in the MM region. We found that ppGalNAcT2 catalyzes a same-face nucleophilic substitution with internal return (SNi. The optimized transition state for the reaction is 13.8 kcal/mol higher in energy than the reactant while the energy of the product complex is 6.7 kcal/mol lower. During the process of nucleophilic attack, a proton is synchronously transferred to the leaving phosphate. The presence of a short-lived metastable oxocarbenium intermediate is likely, as indicated by the reaction energy profiles obtained using high-level density functionals.

  1. Emotional Availability and Touch in Deaf and Hearing Dyads

    Science.gov (United States)

    Paradis, Grace; Koester, Lynne Sanford

    2015-01-01

    In recent years, increasing attention has been given to the development of deaf children, though few studies have included Deaf parents. The present study examined emotional availability (EA) and functions of touch used by Deaf or hearing parents with hearing or deaf infants during free play. Sixty dyads representing four hearing status groups…

  2. Analysis of Relational Communication in Dyads: New Measurement Procedures.

    Science.gov (United States)

    Rogers, L. Edna; Farace, Richard

    Relational communication refers to the control or dominance aspects of message exchange in dyads--distinguishing it from the report or referential aspects of communication. In relational communicational analysis, messages as transactions are emphasized; major theoretical concepts which emerge are symmetry, transitoriness, and complementarity of…

  3. Verbal and nonverbal behavior of ability-grouped dyads

    Science.gov (United States)

    Jones, M. Gail; Carter, Glenda

    In this study we describe the social interactions of ability-grouped dyads as they constructed knowledge of balance concepts to elucidate the relationship between interactions and conceptual growth. The verbal and nonverbal behaviors of 30 fifth-grade students were recorded as they completed three activities related to balance. These student interactions were examined within a framework of social cognition. For each dyad, characteristics of ability-grouped dyads were identified. Results revealed that high-achieving students effectively used prior experiences, maintained focus on the learning task, and were able to manipulate the equipment effectively to construct knowledge. Low-achieving students exhibited off-task behavior, lacked a metacognitive framework for organizing the learning tasks, centered on irrelevant features of the equipment, and were unable to use language effectively to mediate learning. Within low-high student dyads, high-achieving students typically modeled thinking processes and strategies for manipulating equipment. In addition, they focused the low-achieving students on the components of the tasks while verbally monitoring their progress, thus enabling low students to identify the critical features necessary for concept construction. These results highlighted the differences that students have in the use of language and tools. Low students' inefficient use of tools has implications for the ways science teachers structure lessons and group students for laboratory work.Received: 8 March 1993; Revised: 6 January 1994;

  4. Humor style similarity and difference in friendship dyads.

    Science.gov (United States)

    Hunter, Simon C; Fox, Claire L; Jones, Siân E

    2016-01-01

    This study assessed the concurrent and prospective (fall to spring) associations between four different humor styles to assess the degree to which stable friendships are characterized by similarity, and to assess whether best friends' humor styles influence each other's later use of humor. Participants were aged 11-13 years, with 87 stable, reciprocal best friend dyads. Self-report assessments of humor styles were completed on both occasions. Results indicated that there was no initial similarity in dyads' levels of humor. However, dyads' use of humor that enhances interpersonal relationships (Affiliative humor) became positively correlated by spring. Additionally, young people's use of this humor style was positively associated with their best friend's later use of the same. No such effects were present for humor which was aggressive, denigrating toward the self, or used to enhance the self. These results have clear implications for theories of humor style development, highlighting an important role for Affiliative humor within stable friendship dyads. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Triphenylamine corrole dyads: Synthesis, characterization and ...

    Indian Academy of Sciences (India)

    acceptor (D-A) systems in which triphenylamine is the donor and substituted corroles i.e., 5,15-phenyl-10- ..... trate that electronic communication between corrole and TPA chromophores is .... nical exchange).57 Both the Forster and the Dexter mechanisms .... energy-optimized structures, HOMO-LUMO pictures and the ...

  6. Structural and catalytic characterization of mechanical mixtures of Pt/WOx-ZrO{sub 2} and Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, J.L., E-mail: jlcl@correo.azc.uam.m [Universidad Autonoma Metropolitana-Azcapotzalco, CBI, Dpto. Energia, Av. Sn. Pablo 180, Col. Reynosa, C.P. 02200, Mexico, DF (Mexico); Fuentes, G.A. [Universidad Autonoma Metropolitana-Iztapalapa, CBI, Depto. de IPH C.P. 09340, Mexico, DF (Mexico); Navarrete, J.; Vazquez, A. [Instituto Mexicano del Petroleo, IBP, Ger. de Catalizadores, Eje Central Lazaro Cardenas No. 152, C.P. 07300, Mexico, DF (Mexico); Zeifert, B.; Salmones, J. [Instituto Politecnico Nacional Mexico, ESIQIE, Laboratorio de Catalisis y Materiales, C.P. 07738, Mexico, DF (Mexico); Nuno, L. [Universidad Autonoma Metropolitana-Azcapotzalco, CBI, Dpto. Energia, Av. Sn. Pablo 180, Col. Reynosa, C.P. 02200, Mexico, DF (Mexico)

    2010-04-16

    The effect of the Bronsted/Lewis acid ratio on isomerization of n-heptane using Al{sub 2}O{sub 3} as a source of Lewis acidity and WOx/ZrO{sub 2} as a source of Bronsted and Lewis acidity was studied and controlled using mechanical mixtures of these solids. These mixtures were characterized by surface area, infrared spectroscopy of pyridine, X-ray diffraction and Raman spectroscopy. It was found that the presence of W=O stretching mode which was consistent with the presence of oxotungstate species which were the precursors of the acid sites. It was found out that as the oxotungstate structures increased, the selectivity to n-heptane isomers increased while the hydrocracking and dehydrocyclization selectivity decreased. The presence of Bronsted acidity of the WOx/ZrO{sub 2} domains, the increase of Knudsen diffusivity and the loss of Pt metallic area by strong interaction of the Pt with the WOx/ZrO{sub 2} explain this catalytic behavior.

  7. Effect of dyad training on medical students' cardiopulmonary resuscitation performance.

    Science.gov (United States)

    Wang, Candice; Huang, Chin-Chou; Lin, Shing-Jong; Chen, Jaw-Wen

    2017-03-01

    We investigated the effects of dyadic training on medical students' resuscitation performance during cardiopulmonary resuscitation (CPR) training.We provided students with a 2-hour training session on CPR for simulated cardiac arrest. Student teams were split into double groups (Dyad training groups: Groups A and B) or Single Groups. All groups received 2 CPR simulation rounds. CPR simulation training began with peer demonstration for Group A, and peer observation for Group B. Then the 2 groups switched roles. Single Groups completed CPR simulation without peer observation or demonstration. Teams were then evaluated based on leadership, teamwork, and team member skills.Group B had the highest first simulation round scores overall (P = 0.004) and in teamwork (P = 0.001) and team member skills (P = 0.031). Group B also had the highest second simulation round scores overall (P training groups with those of Single Groups in overall scores, leadership scores, teamwork scores, and team member scores. In the second simulation, Dyad training groups scored higher in overall scores (P = 0.002), leadership scores (P = 0.044), teamwork scores (P = 0.005), and team member scores (P = 0.008). Dyad training groups also displayed higher improvement in overall scores (P = 0.010) and team member scores (P = 0.022).Dyad training was effective for CPR training. Both peer observation and demonstration for peers in dyad training can improve student resuscitation performance.

  8. Effect of dyad training on medical students’ cardiopulmonary resuscitation performance

    Science.gov (United States)

    Wang, Candice; Huang, Chin-Chou; Lin, Shing-Jong; Chen, Jaw-Wen

    2017-01-01

    Abstract We investigated the effects of dyadic training on medical students’ resuscitation performance during cardiopulmonary resuscitation (CPR) training. We provided students with a 2-hour training session on CPR for simulated cardiac arrest. Student teams were split into double groups (Dyad training groups: Groups A and B) or Single Groups. All groups received 2 CPR simulation rounds. CPR simulation training began with peer demonstration for Group A, and peer observation for Group B. Then the 2 groups switched roles. Single Groups completed CPR simulation without peer observation or demonstration. Teams were then evaluated based on leadership, teamwork, and team member skills. Group B had the highest first simulation round scores overall (P = 0.004) and in teamwork (P = 0.001) and team member skills (P = 0.031). Group B also had the highest second simulation round scores overall (P training groups with those of Single Groups in overall scores, leadership scores, teamwork scores, and team member scores. In the second simulation, Dyad training groups scored higher in overall scores (P = 0.002), leadership scores (P = 0.044), teamwork scores (P = 0.005), and team member scores (P = 0.008). Dyad training groups also displayed higher improvement in overall scores (P = 0.010) and team member scores (P = 0.022). Dyad training was effective for CPR training. Both peer observation and demonstration for peers in dyad training can improve student resuscitation performance. PMID:28353555

  9. Metal ion coordination in the E. coli Nudix hydrolase dihydroneopterin triphosphate pyrophosphatase: New clues into catalytic mechanism.

    Directory of Open Access Journals (Sweden)

    Shannon E Hill

    Full Text Available Dihydroneopterin triphosphate pyrophosphatase (DHNTPase, a member of the Mg2+ dependent Nudix hydrolase superfamily, is the recently-discovered enzyme that functions in the second step of the pterin branch of the folate biosynthetic pathway in E. coli. DHNTPase is of interest because inhibition of enzymes in bacterial folate biosynthetic pathways is a strategy for antibiotic development. We determined crystal structures of DHNTPase with and without activating, Mg2+-mimicking metals Co2+ and Ni2+. Four metal ions, identified by anomalous scattering, and stoichiometrically confirmed in solution by isothermal titration calorimetry, are held in place by Glu56 and Glu60 within the Nudix sequence motif, Glu117, waters, and a sulfate ion, of which the latter is further stabilized by a salt bridge with Lys7. In silico docking of the DHNTP substrate reveals a binding mode in which the pterin ring moiety is nestled in a largely hydrophobic pocket, the β-phosphate activated for nucleophilic attack overlays with the crystallographic sulfate and is in line with an activated water molecule, and remaining phosphate groups are stabilized by all four identified metal ions. The structures and binding data provide new details regarding DHNTPase metal requirements, mechanism, and suggest a strategy for efficient inhibition.

  10. Sulfur mobilization in cyanobacteria: the catalytic mechanism of L-cystine C-S lyase (C-DES) from synechocystis.

    Science.gov (United States)

    Campanini, Barbara; Schiaretti, Francesca; Abbruzzetti, Stefania; Kessler, Dorothea; Mozzarelli, Andrea

    2006-12-15

    Sulfur mobilization represents one of the key steps in ubiquitous Fe-S clusters assembly and is performed by a recently characterized set of proteins encompassing cysteine desulfurases, assembly factors, and shuttle proteins. Despite the evolutionary conservation of these proteins, some degree of variability among organisms was observed, which might reflect functional specialization. L-Cyst(e)ine lyase (C-DES), a pyridoxal 5'-phosphatedependent enzyme identified in the cyanobacterium Synechocystis, was reported to use preferentially cystine over cysteine with production of cysteine persulfide, pyruvate, and ammonia. In this study, we demonstrate that C-DES sequences are present in all cyanobacterial genomes and constitute a new family of sulfur-mobilizing enzymes, distinct from cysteine desulfurases. The functional properties of C-DES from Synechocystis sp. PCC 6714 were investigated under pre-steady-state and steady-state conditions. Single wavelength and rapid scanning stopped-flow kinetic data indicate that the internal aldimine reacts with cystine forming an external aldimine that rapidly decays to a transient quinonoid species and stable tautomers of the alpha-aminoacrylate Schiff base. In the presence of cysteine, the transient formation of a dipolar species precedes the selective and stable accumulation of the enolimine tautomer of the external aldimine, with no formation of the alpha-aminoacrylate Schiff base under reducing conditions. Effective sulfur mobilization from cystine might represent a mechanism that allows adaptation of cyanobacteria to different environmental conditions and to light-dark cycles.

  11. Metal ion coordination in the E. coli Nudix hydrolase dihydroneopterin triphosphate pyrophosphatase: New clues into catalytic mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Shannon E.; Nguyen, Elaine; Ukachukwu, Chiamaka U.; Freeman, Dana M.; Quirk, Stephen; Lieberman, Raquel L.; Boggon, Titus J.

    2017-07-25

    Dihydroneopterin triphosphate pyrophosphatase (DHNTPase), a member of the Mg2+ dependent Nudix hydrolase superfamily, is the recently-discovered enzyme that functions in the second step of the pterin branch of the folate biosynthetic pathway in E. coli. DHNTPase is of interest because inhibition of enzymes in bacterial folate biosynthetic pathways is a strategy for antibiotic development. We determined crystal structures of DHNTPase with and without activating, Mg2+-mimicking metals Co2+ and Ni2+. Four metal ions, identified by anomalous scattering, and stoichiometrically confirmed in solution by isothermal titration calorimetry, are held in place by Glu56 and Glu60 within the Nudix sequence motif, Glu117, waters, and a sulfate ion, of which the latter is further stabilized by a salt bridge with Lys7. In silico docking of the DHNTP substrate reveals a binding mode in which the pterin ring moiety is nestled in a largely hydrophobic pocket, the β-phosphate activated for nucleophilic attack overlays with the crystallographic sulfate and is in line with an activated water molecule, and remaining phosphate groups are stabilized by all four identified metal ions. The structures and binding data provide new details regarding DHNTPase metal requirements, mechanism, and suggest a strategy for efficient inhibition.

  12. Structural Basis for the Catalytic Mechanism of DncV, Bacterial Homolog of Cyclic GMP-AMP Synthase.

    Science.gov (United States)

    Kato, Kazuki; Ishii, Ryohei; Hirano, Seiichi; Ishitani, Ryuichiro; Nureki, Osamu

    2015-05-05

    Cyclic dinucleotides (CDNs) play key roles as second messengers and signaling molecules in bacteria and metazoans. The newly identified dinucleotide cyclase in Vibrio cholerae (DncV) produces three different CDNs containing two 3'-5' phosphodiester bonds, and its predominant product is cyclic GMP-AMP, whereas mammalian cyclic GMP-AMP synthase (cGAS) produces only cyclic GMP-AMP containing mixed 2'-5' phosphodiester bonds. We report the crystal structures of V. cholerae and Escherichia coli DncV in complex with various nucleotides in the pre-reaction states. The high-resolution structures revealed that DncV preferably recognizes ATP and GTP as acceptor and donor nucleotides, respectively, in the first nucleotidyl transfer reaction. Considering the recently reported intermediate structures, our pre-reaction state structures provide the precise mechanism of 3'-5' linked cyclic AMP-GMP production in bacteria. A comparison with cGAS in the pre-reaction states suggests that the orientation of the acceptor nucleotide primarily determines the distinct linkage specificities between DncV and cGAS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Sintering of Catalytic Nanoparticles: Particle Migration or Ostwald Ripening?

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; DeLaRiva, Andrew T.; Challa, Sivakumar R.

    2013-01-01

    deactivation, is an important mechanism for the loss of catalyst activity. This is especially true for high temperature catalytic processes, such as steam reforming, automotive exhaust treatment, or catalytic combustion. With dwindling supplies of precious metals and increasing demand, fundamental...

  14. Roles of the conserved aspartate and arginine in the catalytic mechanism of an archaeal beta-class carbonic anhydrase.

    Science.gov (United States)

    Smith, Kerry S; Ingram-Smith, Cheryl; Ferry, James G

    2002-08-01

    The roles of an aspartate and an arginine, which are completely conserved in the active sites of beta-class carbonic anhydrases, were investigated by steady-state kinetic analyses of replacement variants of the beta-class enzyme (Cab) from the archaeon Methanobacterium thermoautotrophicum. Previous kinetic analyses of wild-type Cab indicated a two-step zinc-hydroxide mechanism of catalysis in which the k(cat)/K(m) value depends only on the rate constants for the CO(2) hydration step, whereas k(cat) also depends on rate constants from the proton transfer step (K. S. Smith, N. J. Cosper, C. Stalhandske, R. A. Scott, and J. G. Ferry, J. Bacteriol. 182:6605-6613, 2000). The recently solved crystal structure of Cab shows the presence of a buffer molecule within hydrogen bonding distance of Asp-34, implying a role for this residue in the proton transport step (P. Strop, K. S. Smith, T. M. Iverson, J. G. Ferry, and D. C. Rees, J. Biol. Chem. 276:10299-10305, 2001). The k(cat)/K(m) values of Asp-34 variants were decreased relative to those of the wild type, although not to an extent which supports an essential role for this residue in the CO(2) hydration step. Parallel decreases in k(cat) and k(cat)/K(m) values for the variants precluded any conclusions regarding a role for Asp-34 in the proton transfer step; however, the k(cat) of the D34A variant was chemically rescued by replacement of 2-(N-morpholino)propanesulfonic acid buffer with imidazole at pH 7.2, supporting a role for the conserved aspartate in the proton transfer step. The crystal structure of Cab also shows Arg-36 with two hydrogen bonds to Asp-34. Arg-36 variants had both k(cat) and k(cat)/K(m) values that were decreased at least 250-fold relative to those of the wild type, establishing an essential function for this residue. Imidazole was unable to rescue the k(cat) of the R36A variant; however, partial rescue of the kinetic parameter was obtained with guanidine-HCl indicating that the guanido group of this

  15. Light-Induced Activation of a Molybdenum Oxotransferase Model within a Ru(II)-Mo(VI) Dyad.

    Science.gov (United States)

    Ducrot, Aurélien B; Coulson, Ben A; Perutz, Robin N; Duhme-Klair, Anne-Kathrin

    2016-12-19

    Nature uses molybdenum-containing enzymes to catalyze oxygen atom transfer (OAT) from water to organic substrates. In these enzymes, the two electrons that are released during the reaction are rapidly removed, one at a time, by spatially separated electron transfer units. Inspired by this design, a Ru(II)-Mo(VI) dyad was synthesized and characterized, with the aim of accelerating the rate-determining step in the cis-dioxo molybdenum-catalyzed OAT cycle, the transfer of an oxo ligand to triphenyl phosphine, via a photo-oxidation process. The dyad consists of a photoactive bis(bipyridyl)-phenanthroline ruthenium moiety that is covalently linked to a bioinspired cis-dioxo molybdenum thiosemicarbazone complex. The quantum yield and luminescence lifetimes of the dyad [Ru(bpy) 2 (L 2 )MoO 2 (solv)] 2+ were determined. The major component of the luminescence decay in MeCN solution (τ = 1149 ± 2 ns, 67%) corresponds closely to the lifetime of excited [Ru(bpy) 2 (phen-NH 2 )] 2+ , while the minor component (τ = 320 ± 1 ns, 31%) matches that of [Ru(bpy) 2 (H 2 -L 2 )] 2+ . In addition, the (spectro)electrochemical properties of the system were investigated. Catalytic tests showed that the dyad-catalyzed OAT from dimethyl sulfoxide to triphenyl phosphine proceeds significantly faster upon irradiation with visible light than in the dark. Methylviologen acts as a mediator in the photoredox cycle, but it is regenerated and hence only required in stoichiometric amounts with respect to the catalyst rather than sacrificial amounts. It is proposed that oxidative quenching of the photoexcited Ru unit, followed by intramolecular electron transfer, leads to the production of a reactive one-electron oxidized catalyst, which is not accessible by electrochemical methods. A significant, but less pronounced, rate enhancement was observed when an analogous bimolecular system was tested, indicating that intramolecular electron transfer between the photosensitizer and the catalytic center

  16. Removal of elemental mercury by TiO₂doped with WO₃ and V₂O₅ for their photo- and thermo-catalytic removal mechanisms.

    Science.gov (United States)

    Shen, Huazhen; Ie, Iau-Ren; Yuan, Chung-Shin; Hung, Chung-Hsuang; Chen, Wei-Hsiang

    2016-03-01

    The catalytic removal of Hg(0) was investigated to ascertain whether the catalysts could simultaneously possess both thermo- and photo-catalytic reactivity. The immobilized V2O5/TiO2 and WO3/TiO2 catalysts were synthesized by sol-gel method and then coated on the surface of glass beads for catalytic removal of Hg(0). They were also characterized by SEM, BET, XRD, UV-visible, and XPS analysis, and their catalytic reactivity was tested under 100-160 °C under the near-UV irradiation. The results indicated that V2O5/TiO2 solely possessed the thermo-catalytic reactivity while WO3/TiO2 only had photo-catalytic reactivity. Although the synthesis catalytic reactivity has not been found for these catalysts up to date, but compared with TiO2, the removal efficiencies of Hg(0) at 140 and 160 °C were enhanced; particularly, the efficiency was improved from 20 % at 160 °C by TiO2 to nearly 90 % by WO3/TiO2 under the same operating conditions. The effects of doping amount of V2O5 and WO3 were also investigated, and the results showed that 10 % V2O5 and 5 % WO3/TiO2 were the best immobilized catalysts for thermo- and photo-catalytic reactivity, respectively. The effect of different influent concentrations of Hg(0) was demonstrated that the highest concentration of Hg(0) led to the best removal efficiencies for V2O5/TiO2 and WO3/TiO2 at 140 and 160 °C, because high Hg(0) concentration increased the mass transfer rate of Hg(0) toward the surface of catalysts and drove the reaction to proceed. At last, the effect of single gas component on the removal of Hg(0) was also investigated.

  17. A Simple Catalytic Mechanism for the Direct Coupling of α-Carbonyls with Functionalized Amines: A One-Step Synthesis of Plavix

    OpenAIRE

    Evans, Ryan W.; Zbieg, Jason R.; Zhu, Shaolin; Li, Wei; MacMillan, David W. C.

    2013-01-01

    The direct α-amination of ketones, esters, and aldehydes has been accomplished via copper catalysis. In the presence of catalytic copper(II) bromide, a diverse range of carbonyl and amine substrates undergo fragment coupling to produce synthetically useful α-amino substituted motifs. The transformation is proposed to proceed via a catalytically generated α-bromo carbonyl species; nucleophilic displacement of the bromide by the amine then delivers the α-amino carbonyl adduct while the catalyst...

  18. Exciplex mediated photoinduced electron transfer reactions of phthalocyanine-fullerene dyads

    NARCIS (Netherlands)

    Niemi, Marja; Tkachenko, Nikolai V.; Efimov, Alexander; Lehtivuori, Heli; Ohkubo, Kei; Fukuzumi, Shunichi; Lemmetyinen, Helge

    2008-01-01

    Evidences of an intramolecular exciplex intermediate in a photoinduced electron transfer (ET) reaction of double-linked free-base and zinc phthalocyanine-C-60 dyads were found. This was the first time for a dyad with phthalocyanine donor. Excitation of the phthalocyanine moiety of the dyads results

  19. Structural and catalytic effects of an invariant purine substitution in the hammerhead ribozyme: implications for the mechanism of acid–base catalysis

    Science.gov (United States)

    Schultz, Eric P.; Vasquez, Ernesto E.; Scott, William G.

    2014-01-01

    The hammerhead ribozyme catalyzes RNA cleavage via acid–base catalysis. Whether it does so by general acid–base catalysis, in which the RNA itself donates and abstracts protons in the transition state, as is typically assumed, or by specific acid–base catalysis, in which the RNA plays a structural role and proton transfer is mediated by active-site water molecules, is unknown. Previous biochemical and crystallographic experiments implicate an invariant purine in the active site, G12, as the general base. However, G12 may play a structural role consistent with specific base catalysis. To better understand the role of G12 in the mechanism of hammerhead catalysis, a 2.2 Å resolution crystal structure of a hammerhead ribozyme from Schistosoma mansoni with a purine substituted for G12 in the active site of the ribozyme was obtained. Comparison of this structure (PDB entry 3zd4), in which A12 is substituted for G, with three previously determined structures that now serve as important experimental controls, allows the identification of structural perturbations that are owing to the purine substitution itself. Kinetic measurements for G12 purine-substituted schistosomal hammerheads confirm a previously observed dependence of rate on the pK a of the substituted purine; in both cases inosine, which is similar to G in pK a and hydrogen-bonding properties, is unexpectedly inactive. Structural comparisons indicate that this may primarily be owing to the lack of the exocyclic 2-amino group in the G12A and G12I substitutions and its structural effect upon both the nucleotide base and phosphate of A9. The latter involves the perturbation of a previously identified and well characterized metal ion-binding site known to be catalytically important in both minimal and full-length hammerhead ribozyme sequences. The results permit it to be suggested that G12 plays an important role in stabilizing the active-site structure. This result, although not inconsistent with the

  20. Structural and catalytic effects of an invariant purine substitution in the hammerhead ribozyme: implications for the mechanism of acid-base catalysis.

    Science.gov (United States)

    Schultz, Eric P; Vasquez, Ernesto E; Scott, William G

    2014-09-01

    The hammerhead ribozyme catalyzes RNA cleavage via acid-base catalysis. Whether it does so by general acid-base catalysis, in which the RNA itself donates and abstracts protons in the transition state, as is typically assumed, or by specific acid-base catalysis, in which the RNA plays a structural role and proton transfer is mediated by active-site water molecules, is unknown. Previous biochemical and crystallographic experiments implicate an invariant purine in the active site, G12, as the general base. However, G12 may play a structural role consistent with specific base catalysis. To better understand the role of G12 in the mechanism of hammerhead catalysis, a 2.2 Å resolution crystal structure of a hammerhead ribozyme from Schistosoma mansoni with a purine substituted for G12 in the active site of the ribozyme was obtained. Comparison of this structure (PDB entry 3zd4), in which A12 is substituted for G, with three previously determined structures that now serve as important experimental controls, allows the identification of structural perturbations that are owing to the purine substitution itself. Kinetic measurements for G12 purine-substituted schistosomal hammerheads confirm a previously observed dependence of rate on the pK(a) of the substituted purine; in both cases inosine, which is similar to G in pK(a) and hydrogen-bonding properties, is unexpectedly inactive. Structural comparisons indicate that this may primarily be owing to the lack of the exocyclic 2-amino group in the G12A and G12I substitutions and its structural effect upon both the nucleotide base and phosphate of A9. The latter involves the perturbation of a previously identified and well characterized metal ion-binding site known to be catalytically important in both minimal and full-length hammerhead ribozyme sequences. The results permit it to be suggested that G12 plays an important role in stabilizing the active-site structure. This result, although not inconsistent with the potential

  1. Catalytic decomposition of gaseous 1,2-dichlorobenzene over CuOx/TiO₂ and CuOx/TiO₂-CNTs catalysts: Mechanism and PCDD/Fs formation.

    Science.gov (United States)

    Wang, Qiu-lin; Huang, Qun-xing; Wu, Hui-fan; Lu, Sheng-yong; Wu, Hai-long; Li, Xiao-dong; Yan, Jian-hua

    2016-02-01

    Gaseous 1,2-dichlorobenzene (1,2-DCBz) was catalytically decomposed in a fixed-bed catalytic reactor using composite copper-based titanium oxide (CuOx/TiO2) catalysts with different copper ratios. Carbon nanotubes (CNTs) were introduced to produce novel CuOx/TiO2-CNTs catalysts by the sol-gel method. The catalytic performances of CuOx/TiO2 and CuOx/TiO2-CNTs on 1,2-DCBz oxidative destruction under different temperatures (150-350 °C) were experimentally examined and the correlation between catalyst structure and catalytic activity was characterized and the role of oxygen in catalytic reaction was discussed. Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) generation during 1,2-DCBz catalytic oxidation by CuOx/TiO2-CNTs composite catalyst was also examined. Results indicate that the 1,2-DCBz destruction/removal efficiencies of CuOx (4 wt%)/TiO2 catalyst at 150 °C and 350 °C with a GHSV of 3400 h(-1) are 59% and 94% respectively and low-temperature (150 °C) catalytic activity of CuOx/TiO2 on 1,2-DCBz oxidation can be improved from 59 to 77% when CNTs are introduced. Furthermore, oxygen either in catalyst or from reaction atmosphere is indispensible in reaction. The former is offered to activate and oxidize the 1,2-DCBz adsorbed on catalyst, thus can be generally consumed during reaction and the oxygen content in catalyst is observed lost from 39.9 to 35.0 wt% after reacting under inert atmosphere; the latter may replenish the vacancy in catalyst created by the consumed oxygen thus extends the catalyst life and raises the destruction/removal efficiency. The introduction of CNTs also increases the Cu(2+)/Cu(+) ratio, chemisorbed oxygen concentration and surface lattice oxygen binding energy which are closely related with catalytic activity. PCDD/Fs is confirmed to be formed when 1,2-DCBz catalytically oxidized by CuOx/TiO2-CNTs composite catalyst with sufficient oxygen (21%), proper temperature (350 °C) and high concentration of 1,2-DCBz feed (120 ppm

  2. MECHANISMS OF THE COMPLEX FORMATION BY d-METALS ON POROUS SUPPORTS AND THE CATALYTIC ACTIVITY OF THE FORMED COMPLEXES IN REDOX REACTIONS

    Directory of Open Access Journals (Sweden)

    T. L. Rakitskaya

    2015-11-01

    Full Text Available The catalytic activity of supported complexes of d metals in redox reactions with participation of gaseous toxicants, PH3, CO, O3, and SO2, depends on their composition. Owing to the variety of physicochemical and structural-adsorption properties of available supports, their influence on complex formation processes, the composition and catalytic activity of metal complexes anchored on them varies over a wide range. The metal complex formation on sup-ports with weak ion-exchanging properties is similar to that in aqueous solutions. In this case, the support role mainly adds up to the ability to reduce the activity of water adsorbed on them. The interaction between a metal complex and a support surface occurs through adsorbed water molecules. Such supports can also affect complex formation processes owing to protolytic reactions on account of acidic properties of sorbents used as supports. The catalytic activity of metal complexes supported on polyphase natural sorbents considerably depends on their phase relationship. In the case of supports with the nonsimple structure and pronounced ion-exchanging properties, for instance, zeolites and laminar silicates, it is necessary to take into account the variety of places where metal ions can be located. Such location places determine distinctions in the coordination environment of the metal ions and the strength of their bonding with surface adsorption sites and, therefore, the catalytic activity of surface complexes formed by theses metal ions. Because of the energy surface inhomogeneity, it is important to determine a relationship between the strength of a metal complex bonding with a support surface and its catalytic activity. For example, bimetallic complexes are catalytically active in the reactions of oxidation of the above gaseous toxicants. In particular, in the case of carbon monoxide oxidation, the most catalytic activity is shown by palladium-copper complexes in which copper(II is strongly

  3. Catalytic reduction of nitrate and nitrite ions by hydrogen : investigation of the reaction mechanism over Pd and Pd-Cu catalysts

    NARCIS (Netherlands)

    Ilinitch, OM; Nosova, LV; Gorodetskii, VV; Ivanov, VP; Trukhan, SN; Gribov, EN; Bogdanov, SV; Cuperus, FP

    2000-01-01

    The catalytic behavior of mono- and bimetallic catalysts with Pd and/or Cu supported over gamma-Al2O3 in the reduction of aqueous nitrate and nitrite ions by hydrogen was investigated. The composition of the supported metal catalysts was analysed using secondary ion mass spectroscopy (SIMS) and

  4. Structure of health-care dyad leadership: an organization's experience.

    Science.gov (United States)

    Saxena, Anurag; Davies, Maura; Philippon, Don

    2018-05-08

    Purpose This study aims to explore the structural aspects (roles, responsibilities and reporting) of dyad leadership in one health-care organization (HCO). Design/methodology/approach The perceptions of 32 leaders (17 physician leaders and 15 dyad co-leaders) in formal leadership positions (six first-level with formal authority limited to teams or divisions, 23 middle-level with wider departmental or program responsibility and three senior-level with institution-wide authority) were obtained through focus groups and surveys. In addition, five senior leaders were interviewed. Descriptive statistics was used for quantitative data, and qualitative data were analyzed for themes by coding and categorization. Findings There are a large number of shared responsibilities in the hybrid model, as most activities in HCOs bridge administrative and professional spheres. These span the leadership (e.g. global performance and quality improvement) and management (e.g. human resources, budgets and education delivery) domains. The individual responsibilities, except for staff and physician engagement are in the management domain (e.g. operations and patient care). Both partners are responsible for joint decision-making, projecting a united front and joint reporting through a quadrat format. The mutual relationship and joint accountability are key characteristics and are critical to addressing potential conflicts and contradictions and achieving coherence. Practical implications Clarity of role will assist development of standardized job descriptions and required competencies, recruitment and leadership development. Originality/value This is an original empirical study presenting an integrated view of dyad leaders and senior leadership, meaningful expansion of shared responsibilities including academic functions and developing mutual relationship and emphasizing the central role of stability generating management functions.

  5. Carborane-stilbene dyads: the influence of substituents and cluster isomers on photoluminescence properties.

    Science.gov (United States)

    Ferrer-Ugalde, A; Cabrera-González, J; Juárez-Pérez, E J; Teixidor, F; Pérez-Inestrosa, E; Montenegro, J M; Sillanpää, R; Haukka, M; Núñez, R

    2017-02-14

    Two novel styrene-containing meta-carborane derivatives substituted at the second carbon cluster atom (C c ) with either a methyl (Me) or a phenyl (Ph) group are introduced herein along with a new set of stilbene-containing ortho- (o-) and meta- (m-) carborane dyads. The latter set of compounds have been prepared from styrene-containing carborane derivatives via a Heck coupling reaction. High regioselectivity has been achieved for these compounds by using a combination of palladium complexes [Pd 2 (dba) 3 ]/[Pd(t-Bu 3 P) 2 ] as a catalytic system, yielding exclusively E isomers. All compounds have been fully characterised and the crystal structures of seven of them were analysed by X-ray diffraction. The absorption spectra of these compounds are similar to those of their respective fluorophore groups (styrene or stilbene), showing a very small influence of the substituent (Me or Ph) linked to the second C c atom or the cluster isomer (o- or m-). On the other hand, fluorescence spectroscopy revealed high emission intensities for Me-o-carborane derivatives, whereas their Ph-o-carborane analogues evidenced an almost total lack of fluorescence, confirming the significant role of the substituent bound to the adjacent C c in o-carboranes. In contrast, all the m-carborane derivatives display similar photoluminescence (PL) behavior regardless of the substituent attached to the second C c , demonstrating its small influence on emission properties. Additionally, m-carborane derivatives are significantly more fluorescent than their o-counterparts, reaching quantum yield values as high as 30.2%. Regarding solid state emission, only stilbene-containing Ph-o-carborane derivatives, which showed very low fluorescence in solution, exhibited notable PL emission in films attributed to aggregation-induced emission. DFT calculations were performed to successfully complement the photoluminescence studies, supporting the experimentally observed photophysical behavior of the styrene and

  6. Synthesis of hierarchically porous perovskite-carbon aerogel composite catalysts for the rapid degradation of fuchsin basic under microwave irradiation and an insight into probable catalytic mechanism

    Science.gov (United States)

    Wang, Yin; Wang, Jiayuan; Du, Baobao; Wang, Yun; Xiong, Yang; Yang, Yiqiong; Zhang, Xiaodong

    2018-05-01

    3D hierarchically porous perovskites LaFe0.5M0.5O3-CA (M = Mn, Cu) were synthesized by a two-step method using PMMA as template and supporting with carbon aerogel, which were characterized with SEM, TEM, XRD, XPS and FT-IR spectroscopy. The as-prepared composites were used in microwave (MW) catalytic degradation of fuchsin basic (FB) dye wastewater. Batch experiment results showed that the catalytic degradation of FB could be remarkably improved by coating with CA. And LaFe0.5Cu0.5O3-CA exhibited higher catalytic performance than LaFe0.5Mn0.5O3-CA, which had a close connection with the activity of substitution metal ion in B site of the catalysts. The FB removal fit pseudo-first-order model and the degradation rate constant increased with initial pH value and MW powder while decreases with initial FB concentration. All catalysts presented favorable recycling and stability in the repeated experiment. Radical scavenger measurements indicated that hydroxyl radicals rather than surface peroxide and hole played an important role in the catalytic process, and its quantity determined the degradation of FB. Furthermore, both Cu and Fe species were involved in the formation of active species, which were responsible to the excellent performance of the LaFe0.5Cu0.5O3-CA/MW system. Therefore, LaFe0.5Cu0.5O3-CA/MW showed to be a promising technology for the removal of organic pollutants in wastewater treatment applications.

  7. Diffusion and Bonding Mechanism of Protective γ-Al2O3 on FeCrAl Foil for Metallic Three-Way Catalytic Converter

    Directory of Open Access Journals (Sweden)

    Feriyanto Dafit

    2017-01-01

    Full Text Available High pollutant level contributed by mobile sources/land transportation that become main problems for the human health. Improving exhaust emission system by improving catalytic converter properties is one of the most effective way to produce healthy air in our environment. It is conducted by two methods i.e. ultrasonic during electroplating (UBDEL and electroplating process (EL which are not fully investigated yet as catalytic converter coating process. UBDEL is conducted using sulphamate types electrolyte solution, Frequency of 35 kHz, current of 1.28A, Voltage of 12 V, and various time of 15, 30, 45, 60 and 75 minutes. Meanwhile El method is conducted using parameters of current of 1.28A, Voltage of 12 V, stirrer speed of 60 rpm and various time of 15, 30, 45, 60 and 75 minutes. Fully γ-Al2O3 bonding to the FeCrAl substrate is shown by UBDEL 75 minutes samples proved by SEM images and Ra and Rq are 4.01 μm and 5.64 μm, respectively. Ni present on the FeCrAl substrate as other protective layer generated by Ni electroplating process that will improve thermal stability of FeCrAl at high temperature of 1000 °C. From the results, can summarized that UBDEL technique is promoted as an effective catalytic converter coating technique.

  8. Diagnostic electrocardiographic dyad criteria of emphysema in left ventricular hypertrophy.

    Science.gov (United States)

    Lanjewar, Swapnil S; Chhabra, Lovely; Chaubey, Vinod K; Joshi, Saurabh; Kulkarni, Ganesh; Kothagundla, Chandrasekhar; Kaul, Sudesh; Spodick, David H

    2013-01-01

    The electrocardiographic diagnostic dyad of emphysema, namely a combination of the frontal vertical P-vector and a narrow QRS duration, can serve as a quasidiagnostic marker for emphysema, with specificity close to 100%. We postulated that the presence of left ventricular hypertrophy in emphysema may affect the sensitivity of this electrocardiographic criterion given that left ventricular hypertrophy generates prominent left ventricular forces and may increase the QRS duration. We reviewed the electrocardiograms and echocardiograms for 73 patients with emphysema. The patients were divided into two groups based on the presence or absence of echocardiographic evidence of left ventricular hypertrophy. The P-vector, QRS duration, and forced expiratory volume in one second (FEV1) were computed and compared between the two subgroups. There was no statistically significant difference in qualitative lung function (FEV1) between the subgroups. There was no statistically significant difference in mean P-vector between the subgroups. The mean QRS duration was significantly longer in patients with left ventricular hypertrophy as compared with those without left ventricular hypertrophy. The presence of left ventricular hypertrophy may not affect the sensitivity of the P-vector verticalization when used as a lone criterion for diagnosing emphysema. However, the presence of left ventricular hypertrophy may significantly reduce the sensitivity of the electrocardiographic diagnostic dyad in emphysema, as it causes a widening of the QRS duration.

  9. Ultrafast spectroscopic investigation of a fullerene poly(3-hexylthiophene) dyad

    Science.gov (United States)

    Banerji, Natalie; Seifter, Jason; Wang, Mingfeng; Vauthey, Eric; Wudl, Fred; Heeger, Alan J.

    2011-08-01

    We present the femtosecond spectroscopic investigation of a covalently linked dyad, PCB-P3HT, formed by a segment of the conjugated polymer P3HT (regioregular poly(3-hexylthiophene)) that is end capped with the fullerene derivative PCB ([6,6]-phenyl-C61-butyric acid ester), adapted from PCBM. The fluorescence of the P3HT segment in tetrahydrofuran (THF) solution is reduced by 64% in the dyad compared to a control compound without attached fullerene (P3HT-OH). Fluorescence upconversion measurements reveal that the partial fluorescence quenching of PCB-P3HT in THF is multiphasic and occurs on an average time scale of 100 ps, in parallel to excited-state relaxation processes. Judging from ultrafast transient absorption experiments, the origin of the quenching is excitation energy transfer from the P3HT donor to the PCB acceptor. Due to the much higher solubility of P3HT compared to PCB in THF, the PCB-P3HT dyad molecules self-assemble into micelles. When pure C60 is added to the solution, it is incorporated into the fullerene-rich center of the micelles. This dramatically increases the solubility of C60 but does not lead to significant additional quenching of the P3HT fluorescence by the C60 contained in the micelles. In PCB-P3HT thin films drop-cast from THF, the micelle structure is conserved. In contrast to solution, quantitative and ultrafast (microscopy images. Ultrafast charge separation occurs also for the fibrous morphology, but the transient absorption experiments show fast loss of part of the charge carriers due to intensity-induced recombination and annihilation processes and monomolecular interfacial trap-mediated or geminate recombination. The yield of the long-lived charge carriers in the highly organized fibers is however comparable to that obtained with annealed P3HT:PCBM blends. PCB-P3HT can therefore be considered as an active material in organic photovoltaic devices.

  10. Insight into the mechanism revealing the peroxidase mimetic catalytic activity of quaternary CuZnFeS nanocrystals: colorimetric biosensing of hydrogen peroxide and glucose

    Science.gov (United States)

    Dalui, Amit; Pradhan, Bapi; Thupakula, Umamahesh; Khan, Ali Hossain; Kumar, Gundam Sandeep; Ghosh, Tanmay; Satpati, Biswarup; Acharya, Somobrata

    2015-05-01

    Artificial enzyme mimetics have attracted immense interest recently because natural enzymes undergo easy denaturation under environmental conditions restricting practical usefulness. We report for the first time chalcopyrite CuZnFeS (CZIS) alloyed nanocrystals (NCs) as novel biomimetic catalysts with efficient intrinsic peroxidase-like activity. Novel peroxidase activities of CZIS NCs have been evaluated by catalytic oxidation of the peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2). CZIS NCs demonstrate the synergistic effect of elemental composition and photoactivity towards peroxidase-like activity. The quaternary CZIS NCs show enhanced intrinsic peroxidase-like activity compared to the binary NCs with the same constituent elements. Intrinsic peroxidase-like activity has been correlated with the energy band position of CZIS NCs extracted using scanning tunneling spectroscopy and ultraviolet photoelectron spectroscopy. Kinetic analyses indicate Michaelis-Menten enzyme kinetic model catalytic behavior describing the rate of the enzymatic reaction by correlating the reaction rate with substrate concentration. Typical color reactions arising from the catalytic oxidation of TMB over CZIS NCs with H2O2 have been utilized to establish a simple and sensitive colorimetric assay for detection of H2O2 and glucose. CZIS NCs are recyclable catalysts showing high efficiency in multiple uses. Our study may open up the possibility of designing new photoactive multi-component alloyed NCs as enzyme mimetics in biotechnology applications.Artificial enzyme mimetics have attracted immense interest recently because natural enzymes undergo easy denaturation under environmental conditions restricting practical usefulness. We report for the first time chalcopyrite CuZnFeS (CZIS) alloyed nanocrystals (NCs) as novel biomimetic catalysts with efficient intrinsic peroxidase-like activity. Novel peroxidase activities of CZIS NCs have been

  11. Catalytic Aminohalogenation of Alkenes and Alkynes.

    Science.gov (United States)

    Chemler, Sherry R; Bovino, Michael T

    2013-06-07

    Catalytic aminohalogenation methods enable the regio- and stereoselective vicinal difunctionalization of alkynes, allenes and alkenes with amine and halogen moieties. A range of protocols and reaction mechanisms including organometallic, Lewis base, Lewis acid and Brønsted acid catalysis have been disclosed, enabling the regio- and stereoselective synthesis of halogen-functionalized acyclic amines and nitrogen heterocycles. Recent advances including aminofluorination and catalytic enantioselective aminohalogenation reactions are summarized in this review.

  12. Drug-protein interactions assessed by fluorescence measurements in the real complexes and in model dyads

    Science.gov (United States)

    Vayá, Ignacio; Pérez-Ruiz, Raúl; Lhiaubet-Vallet, Virginie; Jiménez, M. Consuelo; Miranda, Miguel A.

    2010-02-01

    In the present work, a systematic fluorescence study on supramolecular systems using two serum albumins (HSA or BSA) as hosts and the nonsteroidal antiinflammatory drugs carprofen (CPF) or naproxen (NPX) as guests has been undertaken. In parallel, model dyads containing Tyr or Trp covalently linked to CPF or NPX have also been investigated. In HSA/(S)-CPF and BSA/(S)-CPF ( λexc = 266 nm), at 1:1 M ratio, an important degree (more than 40%) of singlet-singlet energy transfer (SSET) was observed to take place. The distance ( r) calculated for energy transfer from the SAs to (S)-CPF through a FRET mechanism was found to be ca. 21 Å. In the case of HSA/(S)-NPX and BSA/(S)-NPX, energy transfer occurred to a lower extent (ca. 7%), and r was determined as ca. 24 Å. In order to investigate the possible excited state interactions between bound ligands and the relevant amino acids present in the protein binding sites, four pairs of model dyads were designed and synthesised, namely ( S, S)-TyrCPF, ( S, R)-TyrCPF, ( S, S)-TrpCPF, ( S, R)-TrpCPF, ( S, S)-TyrNPX, ( S, R)-TyrNPX, ( S, S)-TrpNPX and ( S, R)-TrpNPX. A complete SSET was observed from Tyr or Trp to CPF, since no contribution from the amino acids was present in the emission of the dyads. Likewise, a very efficient Tyr or Trp to NPX energy transfer was observed. Remarkably, in ( S, S)-TrpNPX and ( S, R)-TrpNPX a configuration-dependent reduction in the emission intensity was observed, revealing a strong and stereoselective intramolecular quenching. This effect can be attributed to exciplex formation and is dynamic in nature, as the fluorescence lifetimes were much shorter in ( S, R)- and ( S, S)-TrpNPX (1.5 and 3.1 ns, respectively) than in (S)-NPX (11 ns).

  13. Interactions between perceived uncertainty types in service dyads

    DEFF Research Database (Denmark)

    Kreye, Melanie

    2018-01-01

    to avoid business failure. A conceptual framework of four uncertainty types is investigated: environmental, technological, organisational, and relational uncertainty. We present insights from four empirical cases of service dyads collected via multiple sources of evidence including 54 semi-structured...... interviews, observations, and secondary data. The cases show seven interaction paths with direct knock-on effects between two uncertainty types and indirect knock-on effects between three or four uncertainty types. The findings suggest a causal chain from environmental, technological, organisational......, to relational uncertainty. This research contributes to the servitization literature by (i) con-firming the existence of uncertainty types, (ii) providing an in-depth characterisation of technological uncertainty, and (iii) showing the interaction paths between four uncertainty types in the form of a causal...

  14. Diagnostic electrocardiographic dyad criteria of emphysema in left ventricular hypertrophy

    Directory of Open Access Journals (Sweden)

    Lanjewar SS

    2013-11-01

    Full Text Available Swapnil S Lanjewar,1 Lovely Chhabra,1 Vinod K Chaubey,1 Saurabh Joshi,1 Ganesh Kulkarni,1 Chandrasekhar Kothagundla,1 Sudesh Kaul,1 David H Spodick21Department of Internal Medicine, 2Department of Cardiovascular Medicine, Saint Vincent Hospital, University of Massachusetts Medical School, Worcester, MA, USABackground: The electrocardiographic diagnostic dyad of emphysema, namely a combination of the frontal vertical P-vector and a narrow QRS duration, can serve as a quasidiagnostic marker for emphysema, with specificity close to 100%. We postulated that the presence of left ventricular hypertrophy in emphysema may affect the sensitivity of this electrocardiographic criterion given that left ventricular hypertrophy generates prominent left ventricular forces and may increase the QRS duration.Methods: We reviewed the electrocardiograms and echocardiograms for 73 patients with emphysema. The patients were divided into two groups based on the presence or absence of echocardiographic evidence of left ventricular hypertrophy. The P-vector, QRS duration, and forced expiratory volume in one second (FEV1 were computed and compared between the two subgroups.Results: There was no statistically significant difference in qualitative lung function (FEV1 between the subgroups. There was no statistically significant difference in mean P-vector between the subgroups. The mean QRS duration was significantly longer in patients with left ventricular hypertrophy as compared with those without left ventricular hypertrophy.Conclusion: The presence of left ventricular hypertrophy may not affect the sensitivity of the P-vector verticalization when used as a lone criterion for diagnosing emphysema. However, the presence of left ventricular hypertrophy may significantly reduce the sensitivity of the electrocardiographic diagnostic dyad in emphysema, as it causes a widening of the QRS duration.Keywords: emphysema, electrocardiogram, left ventricular hypertrophy, chronic

  15. Crystal Structure of Mn2+-bound Escherichia coli L-arabinose Isomerase (ECAI) and Implications in Protein Catalytic Mechanism and Thermo-Stability

    International Nuclear Information System (INIS)

    Zhu, W.; Manjasetty, B.; Chance, M.

    2007-01-01

    The functional properties of proteins depend on their three-dimensional shapes. Protein structures can be determined by X-ray crystallography as a tool. The three-dimensional structure of the apo form of the Escherichia coli L-arabinose isomerase (ECAI) has recently been determined. ECAI is responsible for the initial stage of L-arabinose catabolism, converting arabinose into ribulose in vivo. This enzyme also plays a crucial role in catalyzing the conversion of galactose into tagatose (low calorie natural sugar) in vitro. ECAI utilizes Mn 2+ for its catalytic activity. Crystals of the ECAI + Mn 2+ complex helps to investigate the catalytic properties of the enzyme. Therefore, crystals of ECAI + Mn 2+ complex were grown using hanging drop vapor diffusion method at room temperature. Diffraction data were collected at X4C beamline, National Synchrotron Light Source, Brookhaven National Laboratory. The structure was solved by the molecular replacement technique and has been refined to Rwork of 0.23 at 2.8 (angstrom) resolution using X3A beamline computational facility. The structure was deposited to Protein Data Bank (PDB ID 2HXG). Mn 2+ ion was localized to the previously identified putative active site with octahedral coordination. Comparison of apo and holo form of ECAI structures permits the identification of structural features that are of importance to the intrinsic activity and heat stability of AI

  16. MgATP-concentration dependence of protection of yeast vacuolar V-ATPase from inactivation by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole supports a bi-site catalytic mechanism of ATP hydrolysis

    International Nuclear Information System (INIS)

    Milgrom, Elena M.; Milgrom, Yakov M.

    2012-01-01

    Highlights: ► MgATP protects V-ATPase from inactivation by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. ► V-ATPase activity saturation with MgATP is not sufficient for complete protection. ► The results support a bi-site catalytic mechanism for V-ATPase. -- Abstract: Catalytic site occupancy of the yeast vacuolar V-ATPase during ATP hydrolysis in the presence of an ATP-regenerating system was probed using sensitivity of the enzyme to inhibition by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl). The results show that, regardless of the presence or absence of the proton-motive force across the vacuolar membrane, saturation of V-ATPase activity at increasing MgATP concentrations is accompanied by only partial protection of the enzyme from inhibition by NBD-Cl. Both in the presence and absence of an uncoupler, complete protection of V-ATPase from inhibition by NBD-Cl requires MgATP concentrations that are significantly higher than those expected from the K m values for MgATP. The results are inconsistent with a tri-site model and support a bi-site model for a mechanism of ATP hydrolysis by V-ATPase.

  17. Curricular Goals and Personal Goals in Master's Thesis Projects: Dutch Student-Supervisor Dyads

    Science.gov (United States)

    de Kleijn, Renske A. M.; Meijer, Paulien C.; Brekelmans, Mieke; Pilot, Albert

    2013-01-01

    To be effective, feedback should be goal-related. In order to better understand goal-related feedback in Master's thesis projects, the present study explores the goals of supervisors and students in supervision dyads and similarities and differences within and between these dyads. Twelve supervisors and students were interviewed, and their goals…

  18. Perceptions of vocational interest : Self- and other-reports in student-parent dyads

    NARCIS (Netherlands)

    Holtrop, Djurre; Born, Marise Ph.; de Vries, Reinout Everhard

    2017-01-01

    The current study investigated how self- and other-ratings of vocational interests converge among student–parent dyads. Using the Personal Globe Inventory–Short, we obtained data from a pooled sample of 271 (high school senior and university) student–parent dyads. Participants rated their own

  19. Perceptions of vocational interest: Self- and other-reports in student-parent dyads

    NARCIS (Netherlands)

    Holtrop, Djurre; Born, Marise Ph; de Vries, Reinout E.

    The current study investigated how self- and other-ratings of vocational interests converge among student–parent dyads. Using the Personal Globe Inventory–Short, we obtained data from a pooled sample of 271 (high school senior and university) student–parent dyads. Participants rated their own

  20. Evaluative Language Used by Mandarin-Chinese-Speaking Dyads in Personal Narratives: Age and Socioeconomic Differences

    Science.gov (United States)

    Lai, Wen-Feng; Chen, Yen-Yu

    2016-01-01

    The aim of this study was to determine the effects of age and family socioeconomic status (SES) on the evaluative language performance of Mandarin-Chinese-speaking young children and their mothers. The participants were 65 mother-child dyads recruited in Taiwan. Thirty-four of these dyads were from middle-class families and 31 were from…

  1. Symmetry-breaking intramolecular charge transfer in the excited state of meso-linked BODIPY dyads

    KAUST Repository

    Whited, Matthew T.; Patel, Niral M.; Roberts, Sean T.; Allen, Kathryn; Djurovich, Peter I.; Bradforth, Stephen E.; Thompson, Mark E.

    2012-01-01

    We report the synthesis and characterization of symmetric BODIPY dyads where the chromophores are attached at the meso position, using either a phenylene bridge or direct linkage. Both molecules undergo symmetry-breaking intramolecular charge transfer in the excited state, and the directly linked dyad serves as a visible-light-absorbing analogue of 9,9′-bianthryl.

  2. A preliminary conceptual framework for cancer couple dyads: live with love.

    Science.gov (United States)

    Li, Qiuping; Loke, Alice Y

    2015-01-01

    With the research focus on family caregiving shifting from the individual to the dyadic level, there is a need to develop a conceptual framework that focused on caregiver-patient dyads. The aim of this study was to develop a preliminary conceptual framework for cancer couple dyads, to "Live With Love." A literature search was conducted among 4 electronic databases to identify couple-based intervention studies related to couples coping with cancer. This report differs from a traditional literature review in that we synthesized the models or frameworks used in these studies rather than the outcomes of the studies. A preliminary Live With Love Conceptual Framework (P-LLCF) for cancer couple dyads was developed based on the conceptual frameworks adopted in related literature on spousal caregiving for patients with cancer. This P-LLCF contains 3 domains: event situation, dyadic mediators, and caregiver-patient dyads (appraisal, coping, and adjustment/outcomes). The various components in this P-LLCF will work together to benefit the positive dyadic adjustment/outcomes of the spousal caregiver-patient dyads in the cancer dyads' journey of coping with cancer. This P-LLCF sheds new light on the study of cancer couple dyads. It will be potentially valuable for guiding the related research and development of interventions on cancer couple dyads. Future research is needed to assess the outcome of interventions that focus on different components. It is also needed to develop measurements to assess dyadic adjustment/outcomes in nursing practice.

  3. Autonomy and control in dyads: effects on interaction quality and joint creative performance.

    Science.gov (United States)

    Weinstein, Netta; Hodgins, Holley S; Ryan, Richard M

    2010-12-01

    Two studies examined interaction quality and joint performance on two creative tasks in unacquainted dyads primed for autonomy or control orientations. It was hypothesized that autonomy-primed dyads would interact more constructively, experience more positive mood, and engage the task more readily, and as a result these dyads would perform better. To test this, Study 1 primed orientation and explored verbal creative performance on the Remote Associates Task (RAT). In Study 2, dyads were primed with autonomy and control orientation and videotaped during two joint creative tasks, one verbal (RAT) and one nonverbal (charades). Videotapes were coded for behavioral indicators of closeness and task engagement. Results showed that autonomy-primed dyads felt closer, were more emotionally and cognitively attuned, provided empathy and encouragement to partners, and performed more effectively. The effects of primed autonomy on creative performance were mediated by interpersonal quality, mood, and joint engagement.

  4. How Not to Let Secrets Out When Conducting Qualitative Research With Dyads.

    Science.gov (United States)

    Ummel, Deborah; Achille, Marie

    2016-05-01

    Confidentiality is one of the cornerstones of research involving human participants. Researchers are the frontline gatekeepers of their participants' right to confidentiality, and situations can arise that challenge this responsibility. This is the case when individuals who have shared a common experience (i.e., dyads) are interviewed separately, but interview results are disseminated within the context of dyads. Based on our experience of conducting research with dyads and given how little literature is available to serve as guide, we set out to write this article to share the knowledge we acquired and the solutions we found. We will describe both the ethical challenges and the methodological decisions involved in conducting qualitative research with dyads. The article also describes different modalities of dyadic analysis, their benefits and drawbacks. This endeavor seems especially relevant as research with dyads is emerging in several domains involving couples, families, caregivers and health. © The Author(s) 2016.

  5. On the Structural Context and Identification of Enzyme Catalytic Residues

    Directory of Open Access Journals (Sweden)

    Yu-Tung Chien

    2013-01-01

    Full Text Available Enzymes play important roles in most of the biological processes. Although only a small fraction of residues are directly involved in catalytic reactions, these catalytic residues are the most crucial parts in enzymes. The study of the fundamental and unique features of catalytic residues benefits the understanding of enzyme functions and catalytic mechanisms. In this work, we analyze the structural context of catalytic residues based on theoretical and experimental structure flexibility. The results show that catalytic residues have distinct structural features and context. Their neighboring residues, whether sequence or structure neighbors within specific range, are usually structurally more rigid than those of noncatalytic residues. The structural context feature is combined with support vector machine to identify catalytic residues from enzyme structure. The prediction results are better or comparable to those of recent structure-based prediction methods.

  6. Monodispersed Zinc Oxide Nanoparticle-Dye Dyads and Triads

    Energy Technology Data Exchange (ETDEWEB)

    Gladfelter, Wayne L. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemistry; Blank, David A. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemistry; Mann, Kent R. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemistry

    2017-06-22

    The overall energy conversion efficiency of photovoltaic cells depends on the combined efficiencies of light absorption, charge separation and charge transport. Dye-sensitized solar cells are photovoltaic devices in which a molecular dye absorbs light and uses this energy to initiate charge separation. The most efficient dye-sensitized solar cells (DSSCs) use nanocrystal titanium dioxide films to which are attached ruthenium complexes. Numerous studies have provided valuable insight into the dynamics of these and analogous photosystems, but the lack of site homogeneity in binding dye molecules to metal oxide films and nanocrystals (NCs) is a significant impediment to extracting fundamental details about the electron transfer across the interface. Although zinc oxide is emerging as a potential semiconducting component in DSSCs, there is less known about the factors controlling charge separation across the dye/ZnO interface. Zinc oxide crystallizes in the wurtzite lattice and has a band gap of 3.37 eV. One of the features that makes ZnO especially attractive is the remarkable ability to control the morphology of the films. Using solution deposition processes, one can prepare NCs, nanorods and nanowires having a variety of shapes and dimensions. This project solved problems associated with film heterogeneity through the use of dispersible sensitizer/ZnO NC ensembles. The overarching goal of this research was to study the relationship between structure, energetics and dynamics in a set of synthetically controlled donor-acceptor dyads and triads. These studies provided access to unprecedented understanding of the light absorption and charge transfer steps that lie at the heart of DSSCs, thus enabling significant future advances in cell efficiencies. The approach began with the construction of well-defined dye-NC dyads that were sufficiently dispersible to allow the use of state of the art pulsed laser spectroscopic and kinetic methods to understand the charge transfer

  7. SHORT COMMUNICATION CATALYTIC KINETIC ...

    African Journals Online (AJOL)

    IV) catalyzes the discoloring reaction of DBS-arsenazo oxidized by potassium bromate, a new catalytic kinetic spectrophotometric method for the determination of trace titanium (IV) was developed. The linear range of the determination of ...

  8. Catalytic distillation process

    Science.gov (United States)

    Smith, L.A. Jr.

    1982-06-22

    A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  9. Measles Antibodies in Mother-Infant Dyads in Tianjin, China.

    Science.gov (United States)

    Boulton, Matthew L; Wang, Xiexiu; Wagner, Abram L; Zhang, Ying; Carlson, Bradley F; Gillespie, Brenda W; Ding, Yaxing

    2017-11-27

    Many measles cases in Tianjin, China, occur in infants whose mothers were born after widespread vaccination programs. We assessed age-specific decreases in maternal measles antibodies in infants and examined maternal and infant characteristics in relation to infant antibody titers. Infant and mother dyads were enrolled from a sample of immunization clinics in all Tianjin districts. Participants' antibody titers were measured from dried blood spots. A multivariable log-linear model regressed infant antibody titers onto infant and mother characteristics. Among 551 infants aged ≤8 months, protective levels of measles antibodies were observed in infants whose mothers had measles titers ≥800 IU/mL (mean antibody titer, 542.5 IU/mL) or 400 to measles and an accordingly low efficiency of transplacental transmission to a fetus. Current vaccination programs, which target children aged 8 months through adolescence may be ineffective in controlling transmission of measles to infants. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  10. Dyad conversations about self-stigma in two Scottish communities.

    Science.gov (United States)

    Mackay, Rob; Bradstreet, Simon; McArthur, Andy; Dunion, Linda

    2015-06-01

    This study explored self-stigma in 2 Scottish communities and strategies for challenging stigma and discrimination. A mixed-methods approach was used encompassing a survey including the Internalized Stigma of Mental Illness Inventory (ISMI) and facilitated dyad conversations with people with lived experience of mental illness. Self-reported experience of self-stigma across 2 communities was most closely associated with the ISMI Alienation cluster, accompanied by a high level of agreement with the Stigma Resistance cluster. Some 44% agreed that stereotypes about people with mental health problems applied to them, and almost 2/3 felt that having a mental health problem had spoiled their lives. Many participants reported reduced confidence, loss of hope, a sense of failure, and protecting oneself through social withdrawal. The findings also offer hope through narratives from people who have "pushed back" and are striving to reduce their own self-stigma by engaging with others and managing their own recovery journey. The journey through self-stigma and beyond has to be informed by what we know works with recovery from a mental health problem. At a policy and practice level, we recommend emphasis on 4 priorities: (a) refocusing antistigma and discrimination efforts more on the experiences of people who report stigma, (b) rights-based approaches, (c) identity-based work, and (d) information sharing and educational strategies. (c) 2015 APA, all rights reserved).

  11. Catalytic distillation structure

    Science.gov (United States)

    Smith, L.A. Jr.

    1984-04-17

    Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

  12. BODIPY-pyrene and perylene dyads as heavy atom-free singlet oxygen sensitizers

    KAUST Repository

    Filatov, Mikhail A.

    2018-02-23

    Dyads combining BODIPY as an electron acceptor and pyrene or perylene as electron donor subunits were prepared and studied their photophysical properties studied by steady-state and transient spectroscopy. Depending on the structure of the subunits and polarity of the media, the dyads show either bright fluorescence or photo-induced electron transfer (PeT) in solution. Charge-transfer (CT) states formed as a result of PeT and were found to yield triplet excited states of the BODIPY. In the presence of molecular oxygen, the dyads sensitize singlet oxygen (1O2) with quantum yields of up to 0.75.

  13. BODIPY-pyrene and perylene dyads as heavy atom-free singlet oxygen sensitizers

    KAUST Repository

    Filatov, Mikhail A.; Karuthedath, Safakath; Polestshuk, Pavel M.; Callaghan, Susan; Flanagan, Keith J.; Wiesner, Thomas; Laquai, Fré dé ric; Senge, Mathias O.

    2018-01-01

    Dyads combining BODIPY as an electron acceptor and pyrene or perylene as electron donor subunits were prepared and studied their photophysical properties studied by steady-state and transient spectroscopy. Depending on the structure of the subunits and polarity of the media, the dyads show either bright fluorescence or photo-induced electron transfer (PeT) in solution. Charge-transfer (CT) states formed as a result of PeT and were found to yield triplet excited states of the BODIPY. In the presence of molecular oxygen, the dyads sensitize singlet oxygen (1O2) with quantum yields of up to 0.75.

  14. Shape and catalytic mechanism of RuO{sub 2} particles at CO oxidation reaction conditions. First-principles based multi-scale modeling

    Energy Technology Data Exchange (ETDEWEB)

    Reuter, Karsten [TU Muenchen (Germany). Lehrstuhl fuer Theoretische Chemie

    2016-11-01

    For model catalyst studies on low-index single-crystal surfaces close agreement between detailed measurements and quantitative microkinetic modeling can increasingly be achieved. However, for 'real' catalyst particles, such structure-morphology-activity relationships are only scarcely established. This is prototypically reflected by the situation for RuO{sub 2}, as a most active catalyst for CO oxidation. Here, existing first-principles kinetic modeling is restricted to just one facet, namely the RuO{sub 2}(110) surface, which is not able to fully account for activity data obtained from polycrystalline RuO{sub 2} powder catalysts. The overarching objective of this project was correspondingly to close this gap and demonstrate that similarly close agreement as for individual single-crystal model catalysts can also be achieved for catalyst particles. Specifically, we addressed experiments where an intact RuO{sub 2} bulk structure is conserved, and establish the atomic-scale structure and reactivity of other RuO{sub 2} low-index facets under the gas-phase conditions characteristic for catalytic CO oxidation.

  15. The mother-offspring dyad: microbial transmission, immune interactions and allergy development.

    Science.gov (United States)

    Jenmalm, M C

    2017-12-01

    The increasing prevalence of allergy in affluent countries may be caused by reduced intensity and diversity of microbial stimulation, resulting in abnormal postnatal immune maturation. Most studies investigating the underlying immunomodulatory mechanisms have focused on postnatal microbial exposure, for example demonstrating that the gut microbiota differs in composition and diversity during the first months of life in children who later do or do not develop allergic disease. However, it is also becoming increasingly evident that the maternal microbial environment during pregnancy is important in childhood immune programming, and the first microbial encounters may occur already in utero. During pregnancy, there is a close immunological interaction between the mother and her offspring, which provides important opportunities for the maternal microbial environment to influence the immune development of the child. In support of this theory, combined pre- and postnatal supplementations seem to be crucial for the preventive effect of probiotics on infant eczema. Here, the influence of microbial and immune interactions within the mother-offspring dyad on childhood allergy development will be discussed. In addition, how perinatal transmission of microbes and immunomodulatory factors from mother to offspring may shape appropriate immune maturation during infancy and beyond, potentially via epigenetic mechanisms, will be examined. Deeper understanding of these interactions between the maternal and offspring microbiome and immunity is needed to identify efficacious preventive measures to combat the allergy epidemic. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  16. Analysis of Participant Reactivity in Dyads Performing a Videotaped Conflict-Management Task.

    Science.gov (United States)

    Semeniuk, Yulia Y; Riesch, Susan K

    2011-01-01

    Videotaping is used frequently in nursing research. A threat to the validity of videotaping is participant reactivity, that is, being recorded by a camera may influence the behavior of interest. This paper's purpose is to report how youth ages 10 to 14 years old and their parent viewed participation in a videotaped conflict-management task. Five dyads, who were part of a randomized clinical trial testing an intervention to promote parent-child communication, participated in a structured interview. All parents were mothers. Youth were eighth graders. Three were boys and two were girls. Findings indicated that (a) dyads felt that the videotaped interaction had a progression of feeling unnatural in the beginning to feeling natural toward the end, (b) dyads found it relatively easy to choose a topic of discussion, and (c) dyads felt that the discussions were meaningful. Based on these data, recommendations for researchers to reduce participant reactivity are provided.

  17. The effect of dyad versus individual simulation-based ultrasound training on skills transfer

    DEFF Research Database (Denmark)

    Tolsgaard, Martin G; Madsen, Mette E; Oxlund, Birgitte S

    2015-01-01

    : This study was conducted to compare the effectiveness of simulation-based ultrasound training in pairs (dyad practice) with that of training alone (single-student practice) on skills transfer. METHODS: In a non-inferiority trial, 30 ultrasound novices were randomised to dyad (n = 16) or single-student (n...... through pre-, post- and transfer tests. The transfer test involved the assessment of a transvaginal ultrasound scan by one of two clinicians using the Objective Structured Assessment of Ultrasound Skills (OSAUS). RESULTS: Thirty participants completed the simulation-based training and 24...... interactions between training type and performance (p = 0.59). The dyad group demonstrated higher training efficiency in terms of simulator score per number of attempts compared with the single-student group (p = 0.03). CONCLUSION: Dyad practice improves the efficiency of simulation-based training and is non...

  18. Psychobiological Factors Affecting Cortisol Variability in Human-Dog Dyads.

    Directory of Open Access Journals (Sweden)

    Iris Schöberl

    Full Text Available Stress responses within dyads are modulated by interactions such as mutual emotional support and conflict. We investigated dyadic psychobiological factors influencing intra-individual cortisol variability in response to different challenging situations by testing 132 owners and their dogs in a laboratory setting. Salivary cortisol was measured and questionnaires were used to assess owner and dog personality as well as owners' social attitudes towards the dog and towards other humans. We calculated the individual coefficient of variance of cortisol (iCV = sd/mean*100 over the different test situations as a parameter representing individual variability of cortisol concentration. We hypothesized that high cortisol variability indicates efficient and adaptive coping and a balanced individual and dyadic social performance. Female owners of male dogs had lower iCV than all other owner gender-dog sex combinations (F = 14.194, p<0.001, whereas owner Agreeableness (NEO-FFI scaled positively with owner iCV (F = 4.981, p = 0.028. Dogs of owners high in Neuroticism (NEO-FFI and of owners who were insecure-ambivalently attached to their dogs (FERT, had low iCV (F = 4.290, p = 0.041 and F = 5.948, p = 0.016, as had dogs of owners with human-directed separation anxiety (RSQ or dogs of owners with a strong desire of independence (RSQ (F = 7.661, p = 0.007 and F = 9.192, p = 0.003. We suggest that both owner and dog social characteristics influence dyadic cortisol variability, with the human partner being more influential than the dog. Our results support systemic approaches (i.e. considering the social context in science and in counselling.

  19. The Clinical Learning Dyad Model: An Innovation in Midwifery Education.

    Science.gov (United States)

    Cohen, Susanna R; Thomas, Celeste R; Gerard, Claudia

    2015-01-01

    There is a national shortage of women's health and primary care providers in the United States, including certified nurse-midwives and certified midwives. This shortage is directly related to how many students can be trained within the existing system. The current model of midwifery clinical training is based on apprenticeship, with one-on-one interaction between a student and preceptor. Thus, the number of newly trained midwifery providers is limited by the number of available and willing preceptors. The clinical learning dyad model (CLDM), which pairs 2 beginning midwifery students with one preceptor in a busy practice, addresses this problem. In addition, this model brings in a senior midwife student as a near-peer mentor when the students are first oriented into outpatient clinical practice. The model began as a pilot project to improve the quality of training and increase available student spots in clinical education. This article discusses the origins of the model, the specifics of its design, and the results of a midterm and one-year postintervention survey. Students and preceptors involved in this model identified several advantages to the program, including increased student accountability, enhanced socialization into the profession, improved learning, and reduced teaching burden on preceptors. An additional benefit of the CLDM is that students form a learning community and collaborate with preceptors to care for women in busy clinical settings. Challenges of the model will also be discussed. Further research is needed to evaluate the effectiveness of the CLDM. This article is part of a special series of articles that address midwifery innovations in clinical practice, education, interprofessional collaboration, health policy, and global health. © 2015 by the American College of Nurse-Midwives.

  20. synthesis, characterization, electrical and catalytic studies of some

    African Journals Online (AJOL)

    B. S. Chandravanshi

    catalytic activity of the VO(IV) and Mn(III) complexes have been tested in the epoxidation reaction of styrene ... Vanadyl sulfate pentahydrate, chromium chloride hexahydrate, anhydrous ferric ..... The catalytic oxidation of styrene gives the products styrene oxide, benzaldehyde, benzoic acid, ... bond via a radical mechanism.

  1. Photoinduced electron transfer within a novel synthesized short-chain dyad

    International Nuclear Information System (INIS)

    Bhattacharya, Sudeshna; Bardhan, Munmun; Kumar De, Avijit; De, Asish; Ganguly, Tapan

    2010-01-01

    The investigations were made by using electrochemical, steady state and time resolved spectroscopic (time correlated single photon counting and laser flash photolysis) techniques on a novel synthesized dyad, 1-(4-chloro-phenyl)-3-(4-methoxy-naphthalen-1-yl)-propenone (MNCA) where the donor 1-methoxy-naphthalene (MNT) is connected with the acceptor p-chloroacetophenone (PCA) by an unsaturated olefinic bond. This dyad possesses mainly extended (E-type) conformation both in the ground and excited state. The unchanged conformational geometry of this dyad even after photoexcitation makes it different from the previously studied benzothiophene-p-chloroacetophenone dyads, though both the donors present are isosteric molecules. In the cases of the latter dyads though E-type isomeric structure dominates in the ground state, considerable amount of Z-type (folded) species are produced in the excited state. It is hinted that the proximity effect of methoxy functionality in donor moiety, may be the reason for the formation of mostly E-isomeric species in the case of the present dyad MNCA system. The observed unchanged values of charge recombination and ion-pair lifetime, estimated from the analysis of transient absorption spectra of the dyad in presence of βCD and without it, confirm the proposition about the maintenance of the extended conformation even upon photoexcitation. From the transient absorption measurements it appears that due to increase of delay times between the exciting and probe pulses, higher triplet T n of the donor being generated gets involved in PET reactions with the surrounding medium ACN. From the present findings, MNCA in aqueous medium seems to be better candidate to build light energy conversion devices than the previously studied benzothiophene dyads where artificial devices like βCD were used to make elongated geometry. This geometry would help to prevent charge recombination processes within the redox components due to minimal overlapping between

  2. Dansyl-anthracene dyads for ratiometric fluorescence recognition of Cu2+.

    Science.gov (United States)

    Kaur, Kuljit; Kumar, Subodh

    2011-03-21

    Dansyl-anthracene dyads 1 and 2 in CH(3)CN-H(2)O (7:3) selectively recognize Cu(2+) ions amongst alkali, alkaline earth and other heavy metal ions using both absorbance and fluorescence spectroscopy. In absorbance, the addition of Cu(2+) to the solution of dyads 1 or 2 results in appearance of broad absorption band from 200 nm to 725 nm for dyad 1 and from 200 nm to 520 nm for dyad 2. This is associated with color change from colorless to blue (for 1) and fluorescent green (for 2). This bathochromic shift of the spectrum could be assigned to internal charge transfer from sulfonamide nitrogen to anthracene moiety. In fluorescence, under similar conditions dyads 1 and 2 on addition of Cu(2+) selectively quench fluorescence due to dansyl moiety between 520-570 nm (for 1)/555-650 nm (for 2) with simultaneous fluorescence enhancement at 470 nm and 505 nm for dyads 1 and 2, respectively. Hence these dyads provide opportunity for ratiometric analysis of 1-50 μM Cu(2+). The other metal ions viz. Fe(3+), Co(2+), Ni(2+), Cd(2+), Zn(2+), Hg(2+), Ag(+), Pb(2+), Li(+), Na(+), K(+), Mg(2+), Ca(2+), Ba(2+) do not interfere in the estimation of Cu(2+) except Cr(3+) in case of dyad 1. The coordination of dimethylamino group of dansyl unit with Cu(2+) causes quenching of fluorescence due to dansyl moiety between 520-600 nm and also restricts the photoinduced electron transfer from dimethylamino to anthracene moiety to release fluorescence between 450-510 nm. This simultaneous quenching and release of fluorescence respectively due to dansyl and anthracene moieties emulates into Cu(2+) induced ratiometric change.

  3. Photoinduced electron transfer within a novel synthesized short-chain dyad

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Sudeshna; Bardhan, Munmun; Kumar De, Avijit [Department of Spectroscopy, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal (India); De, Asish [Department of Physics, Belda College, Midnapore, West Bengal (India); Ganguly, Tapan, E-mail: sptg@mahendra.iacs.res.i [Department of Spectroscopy, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal (India)

    2010-07-15

    The investigations were made by using electrochemical, steady state and time resolved spectroscopic (time correlated single photon counting and laser flash photolysis) techniques on a novel synthesized dyad, 1-(4-chloro-phenyl)-3-(4-methoxy-naphthalen-1-yl)-propenone (MNCA) where the donor 1-methoxy-naphthalene (MNT) is connected with the acceptor p-chloroacetophenone (PCA) by an unsaturated olefinic bond. This dyad possesses mainly extended (E-type) conformation both in the ground and excited state. The unchanged conformational geometry of this dyad even after photoexcitation makes it different from the previously studied benzothiophene-p-chloroacetophenone dyads, though both the donors present are isosteric molecules. In the cases of the latter dyads though E-type isomeric structure dominates in the ground state, considerable amount of Z-type (folded) species are produced in the excited state. It is hinted that the proximity effect of methoxy functionality in donor moiety, may be the reason for the formation of mostly E-isomeric species in the case of the present dyad MNCA system. The observed unchanged values of charge recombination and ion-pair lifetime, estimated from the analysis of transient absorption spectra of the dyad in presence of betaCD and without it, confirm the proposition about the maintenance of the extended conformation even upon photoexcitation. From the transient absorption measurements it appears that due to increase of delay times between the exciting and probe pulses, higher triplet T{sub n} of the donor being generated gets involved in PET reactions with the surrounding medium ACN. From the present findings, MNCA in aqueous medium seems to be better candidate to build light energy conversion devices than the previously studied benzothiophene dyads where artificial devices like betaCD were used to make elongated geometry. This geometry would help to prevent charge recombination processes within the redox components due to minimal

  4. Patient and caregiver congruence: the importance of dyads in heart failure care.

    Science.gov (United States)

    Retrum, Jessica H; Nowels, Carolyn T; Bekelman, David B

    2013-01-01

    Informal (family) caregivers are integrally involved in chronic heart failure (HF) care. Few studies have examined HF patients and their informal caregiver as a unit in a relationship, or a dyad. Dyad congruence, or consistency in perspective, is relevant to numerous aspects of living with HF and HF care. Incongruence or lack of communication could impair disease management and advance care planning. The purpose of this qualitative study was to examine for congruence and incongruence between HF patients and their informal (family) caregivers. Secondary analyses examined the relationship of congruence to emotional distress and whether dyad relationship characteristics (eg, parent-child vs spouse) were associated with congruence. Thirty-four interviews consisting of HF patients and their current informal caregiver (N = 17 dyads) were conducted. Each dyad member was asked similar questions about managing HF symptoms, psychosocial care, and planning for the future. Interviews were transcribed and analyzed using the general inductive approach. Congruence, incongruence, and lack of communication between patients and caregivers were identified in areas such as managing illness, perceived care needs, perspectives about the future of HF, and end-of-life issues. Seven dyads were generally congruent, 4 were incongruent, and 6 demonstrated a combination of congruence and incongruence. Much of the tension and distress among dyads related to conflicting views about how emotions should be dealt with or expressed. Dyad relationship (parent-child vs spouse) was not clearly associated with congruence, although the relationship did appear to be related to perceived caregiving roles. Several areas of HF clinical and research relevance, including self-care, advance care planning, and communication, were affected by congruence. Further research is needed to define how congruence is related to other relationship characteristics, such as relationship quality, how congruence can best be

  5. Catalytic nanoporous membranes

    Science.gov (United States)

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  6. Possible involvement of membrane lipids peroxidation and oxidation of catalytically essential thiols of the cerebral transmembrane sodium pump as component mechanisms of iron-mediated oxidative stress-linked dysfunction of the pump's activity

    Directory of Open Access Journals (Sweden)

    T.I. Omotayo

    2015-04-01

    Full Text Available The precise molecular events defining the complex role of oxidative stress in the inactivation of the cerebral sodium pump in radical-induced neurodegenerative diseases is yet to be fully clarified and thus still open. Herein we investigated the modulation of the activity of the cerebral transmembrane electrogenic enzyme in Fe2+-mediated in vitro oxidative stress model. The results show that Fe2+ inhibited the transmembrane enzyme in a concentration dependent manner and this effect was accompanied by a biphasic generation of aldehydic product of lipid peroxidation. While dithiothreitol prevented both Fe2+ inhibitory effect on the pump and lipid peroxidation, vitamin E prevented only lipid peroxidation but not inhibition of the pump. Besides, malondialdehyde (MDA inhibited the pump by a mechanism not related to oxidation of its critical thiols. Apparently, the low activity of the pump in degenerative diseases mediated by Fe2+ may involve complex multi-component mechanisms which may partly involve an initial oxidation of the critical thiols of the enzyme directly mediated by Fe2+ and during severe progression of such diseases; aldehydic products of lipid peroxidation such as MDA may further exacerbate this inhibitory effect by a mechanism that is likely not related to the oxidation of the catalytically essential thiols of the ouabain-sensitive cerebral electrogenic pump.

  7. The optimization, kinetics and mechanism of m-cresol degradation via catalytic wet peroxide oxidation with sludge-derived carbon catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yamin [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wei, Huangzhao; Zhao, Ying [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Sun, Wenjing [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Sun, Chenglin, E-mail: clsun@dicp.ac.cn [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2017-03-15

    Highlights: • The sludge derived carbon modified with 0 °C acid was used as catalyst in CWPO. • RSM was used to optimize CWPO reaction conditions of m-cresol for the first time. • The kinetic model was disclosed to be correlated with residue target concentration. • The proposed degradation pathways of m-cresol were well proven by DFT method. - Abstract: The sludge-derived carbon catalyst modified with 0 °C HNO{sub 3} solution was tested in catalytic wet peroxide oxidation of m-cresol (100 mg L{sup −1}) with systematical mathematical models and theoretical calculation for the first time. The reaction conditions were optimized by response surface methodology (RSM) as T = 60 °C, initial pH = 3.0, C{sub 0,H2O2(30%)} = 1.20 g L{sup −1} (lower than the stoichiometric amount of 1.80 g L{sup −1}) and C{sub cat} = 0.80 g L{sup −1}, with 96% of m-cresol and 47% of TOC converted after 16 min and 120 min of reaction, respectively, and ξ (mg TOC/g H{sub 2}O{sub 2} fed) = 83.6 mg/g. The end time of the first kinetic period in m-cresol model was disclosed to be correlated with the fixed residue m-cresol concentration of about 33%. Furthermore, the kinetic constants in models of TOC and H{sub 2}O{sub 2} exactly provide convincing proof of three-dimensional response surfaces analysis by RSM, which showed the influence of the interaction between organics and H{sub 2}O{sub 2} on effective H{sub 2}O{sub 2} utilization. The reaction intermediates over time were identified by gas chromatography–mass spectrometer based on kinetics analysis. Four degradation pathways for m-cresol were proposed, of which the possibility and feasibility were well proven by frontier molecule orbital theory and atomic charge distribution via density functional theory method.

  8. Steam reformer with catalytic combustor

    Science.gov (United States)

    Voecks, Gerald E. (Inventor)

    1990-01-01

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  9. Structure, computational and biochemical analysis of PcCel45A endoglucanase from Phanerochaete chrysosporium and catalytic mechanisms of GH45 subfamily C members

    DEFF Research Database (Denmark)

    Godoy, Andre S.; Pereira, Caroline S.; Ramia, Marina Paglione

    2018-01-01

    The glycoside hydrolase family 45 (GH45) of carbohydrate modifying enzymes is mostly comprised of ß-1,4-endoglucanases. Significant diversity between the GH45 members has prompted the division of this family into three subfamilies: A, B and C, which may differ in terms of the mechanism, general a...

  10. Depression impacts the physiological responsiveness of mother–daughter dyads during social interaction

    Science.gov (United States)

    Amole, Marlissa C.; Cyranowski, Jill M.; Wright, Aidan G. C.; Swartz, Holly A.

    2017-01-01

    Background Maternal depression is associated with increased risk of psychiatric illness in offspring. While risk may relate to depressed mothers' difficulties regulating emotions in the context of interacting with offspring, physiological indicators of emotion regulation have rarely been examined during mother–child interactions—and never among mother–adolescent dyads in which both mother and adolescent have histories of major depressive disorder (MDD). Methods We examined changes in high-frequency heart rate variability (HF-HRV), an indicator of parasympathetic (vagal) function that has been related to depression, stress, social engagement, and emotion regulation, in 46 mother–daughter dyads (23 in which both mother and daughter had an MDD history and 23 never-depressed controls). Hierarchical linear models evaluated changes in HF-HRV while mother–daughter dyads engaged in discussions about shared pleasant events and relationship conflicts. Results While control dyads displayed positive slopes (increases) in HF-HRV during both discussions, MDD dyads displayed minimal change in HF-HRV across discussions. Among controls, HF-HRV slopes were positively correlated between mothers and daughters during the pleasant events' discussion. In contrast, HF-HRV slopes were negatively correlated between MDD mothers and daughters during both discussions. Conclusions Vagal responses observed in control mother–daughter dyads suggest a pattern of physiological synchrony and reciprocal positive social engagement, which may play a role in adolescent development of secure social attachments and healthy emotion regulation. In contrast, MDD mothers and daughters displayed diminished and discordant patterns of vagal responsiveness. More research is needed to understand the development and consequences of these patterns of parasympathetic responses among depressed mother–daughter dyads. PMID:28060443

  11. Depression impacts the physiological responsiveness of mother-daughter dyads during social interaction.

    Science.gov (United States)

    Amole, Marlissa C; Cyranowski, Jill M; Wright, Aidan G C; Swartz, Holly A

    2017-02-01

    Maternal depression is associated with increased risk of psychiatric illness in offspring. While risk may relate to depressed mothers' difficulties regulating emotions in the context of interacting with offspring, physiological indicators of emotion regulation have rarely been examined during mother-child interactions-and never among mother-adolescent dyads in which both mother and adolescent have histories of major depressive disorder (MDD). We examined changes in high-frequency heart rate variability (HF-HRV), an indicator of parasympathetic (vagal) function that has been related to depression, stress, social engagement, and emotion regulation, in 46 mother-daughter dyads (23 in which both mother and daughter had an MDD history and 23 never-depressed controls). Hierarchical linear models evaluated changes in HF-HRV while mother-daughter dyads engaged in discussions about shared pleasant events and relationship conflicts. While control dyads displayed positive slopes (increases) in HF-HRV during both discussions, MDD dyads displayed minimal change in HF-HRV across discussions. Among controls, HF-HRV slopes were positively correlated between mothers and daughters during the pleasant events' discussion. In contrast, HF-HRV slopes were negatively correlated between MDD mothers and daughters during both discussions. Vagal responses observed in control mother-daughter dyads suggest a pattern of physiological synchrony and reciprocal positive social engagement, which may play a role in adolescent development of secure social attachments and healthy emotion regulation. In contrast, MDD mothers and daughters displayed diminished and discordant patterns of vagal responsiveness. More research is needed to understand the development and consequences of these patterns of parasympathetic responses among depressed mother-daughter dyads. © 2016 Wiley Periodicals, Inc.

  12. Catalytic Conversion of Biofuels

    DEFF Research Database (Denmark)

    Jørgensen, Betina

    This thesis describes the catalytic conversion of bioethanol into higher value chemicals. The motivation has been the unavoidable coming depletion of the fossil resources. The thesis is focused on two ways of utilising ethanol; the steam reforming of ethanol to form hydrogen and the partial oxida...

  13. CATALYTIC KINETIC SPECTROPHOTOMETRIC DETERMINATION ...

    African Journals Online (AJOL)

    Preferred Customer

    acetylchlorophosphonazo(CPApA) by hydrogen peroxide in 0.10 M phosphoric acid. A novel catalytic kinetic-spectrophotometric method is proposed for the determination of copper based on this principle. Copper(II) can be determined spectrophotometrically ...

  14. Catalytic methanol dissociation

    International Nuclear Information System (INIS)

    Alcinikov, Y.; Fainberg, V.; Garbar, A.; Gutman, M.; Hetsroni, G.; Shindler, Y.; Tatrtakovsky, L.; Zvirin, Y.

    1998-01-01

    Results of the methanol dissociation study on copper/potassium catalyst with alumina support at various temperatures are presented. The following gaseous and liquid products at. The catalytic methanol dissociation is obtained: hydrogen, carbon monoxide, carbon dioxide, methane, and dimethyl ether. Formation rates of these products are discussed. Activation energies of corresponding reactions are calculated

  15. Catalytic conversion of methane: Carbon dioxide reforming and oxidative coupling

    KAUST Repository

    Takanabe, Kazuhiro

    2012-01-01

    and the oxidative coupling of methane. These two reactions have tremendous technological significance for practical application in industry. An understanding of the fundamental aspects and reaction mechanisms of the catalytic reactions reviewed in this study would

  16. Quantum-mechanical analysis of amino acid residues function in the proton transport during F0F1-ATP synthase catalytic cycle

    Science.gov (United States)

    Ivontsin, L. A.; Mashkovtseva, E. V.; Nartsissov, Ya R.

    2017-11-01

    Implications of quantum-mechanical approach to the description of proton transport in biological systems are a tempting subject for an overlapping of fundamental physics and biology. The model of proton transport through the integrated membrane enzyme FoF1-ATP synthase responsible for ATP synthesis was developed. The estimation of the mathematical expectation of the proton transfer time through the half-channel was performed. Observed set of proton pathways through the inlet half-channel showed the nanosecond timescale highly dependable of some amino acid residues. There were proposed two types of crucial amino acids: critically localized (His245) and being a part of energy conserving system (Asp119).

  17. Atomically Precise Metal Nanoclusters for Catalytic Application

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Rongchao [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2016-11-18

    works include: i) Effects of ligand, cluster charge state, and size on the catalytic reactivity in CO oxidation, semihydrogenation of alkynes; ii) Size-controlled synthesis of Au-n clusters and structural elucidation; iii) Catalytic mechanisms and correlation with structures of cluster catalyst; iv) Catalytic properties of Au nanorods in chemoselective hydrogenation of nitrobenzaldehyde and visible light driven photocatalytic reactions.

  18. Stepwise dissection and visualization of the catalytic mechanism of haloalkane dehalogenase LinB using molecular dynamics simulations and computer graphics.

    Science.gov (United States)

    Negri, Ana; Marco, Esther; Damborsky, Jiri; Gago, Federico

    2007-10-01

    The different steps of the dehalogenation reaction carried out by LinB on three different substrates have been characterized using a combination of quantum mechanical calculations and molecular dynamics simulations. This has allowed us to obtain information in atomic detail about each step of the reaction mechanism, that is, substrate entrance and achievement of the near-attack conformation, transition state stabilization within the active site, halide stabilization, water molecule activation and subsequent hydrolytic attack on the ester intermediate with formation of alcohol, and finally product release. Importantly, no bias or external forces were applied during the whole procedure so that both intermediates and products were completely free to sample configuration space in order to adapt to the plasticity of the active site and/or search for an exit. Differences in substrate reactivity were found to be correlated with the ease of adopting the near-attack conformation and two different exit pathways were found for product release that do not interfere with substrate entrance. Additional support for the different entry and exit pathways was independently obtained from an examination of the enzyme's normal modes.

  19. Recruitment of Older Adult Patient-Caregiver Dyads for an Online Caregiver Resource Program: Lessons Learned.

    Science.gov (United States)

    Nahm, Eun-Shim; Orwig, Denise; Resnick, Barbara; Magaziner, Jay; Bellantoni, Michele; Sterling, Robert

    2012-01-12

    Hip fracture is a significant health problem for older adults and generally requires surgery followed by intensive rehabilitation. Informal caregivers (CGs) can provide vital assistance to older adults recovering from hip fracture. Caregiving is a dyadic process that affects both CGs and care recipients (CRs). In a feasibility study, we assessed the effects of using a theory-based online hip fracture resource program for CGs on both CGs and CRs. In this article, we discuss our recruitment process and the lessons learned. Participants were recruited from six acute hospitals, and CGs used the online resource program for 8 weeks. A total of 256 hip fracture patients were screened, and 164 CRs were ineligible. CG screening was initiated when CRs were determined to be eligible. Among 41 eligible dyads, 36 dyads were recruited. Several challenges to the recruitment of these dyads for online studies were identified, including a low number of eligible dyads in certain hospitals and difficulty recruiting both the CR and the CG during the short hospital stay. Field nurses often had to make multiple trips to the hospital to meet with both the CR and the CG. Thus, when a subject unit is a dyad recruited from acute settings, the resources required for the recruitment may be more than doubled. These challenges could be successfully alleviated with careful planning, competent field staff members, collaboration with hospital staff members, and efficient field operations.

  20. The Relations of Family Members’ Unique and Shared Perspectives of Family Dysfunction to Dyad Adjustment

    Science.gov (United States)

    Jager, Justin; Yuen, Cynthia X.; Bornstein, Marc H.; Putnick, Diane L.; Hendricks, Charlene

    2017-01-01

    Among a community sample of families (N = 128), this study examined how family members’ shared and unique perspectives of family dysfunction relate to dyad members’ shared views of dyad adjustment within adolescent-mother, adolescent-father, and mother-father dyads. Independent of a family’s family perspective (shared perspective of family dysfunction), the adolescent’s unique perspective was associated with lower security and higher conflict with both mother and father, the father’s unique perspective was associated with lower security and higher conflict with the adolescent as well as lower marital quality with mother, and the mother unique perspective was associated with lower marital quality with the father. Moreover, for adolescent-parent dyads, compared to the parent unique perspective, the adolescent unique perspective was more strongly associated with dyad adjustment. These findings indicate that both shared and unique views of the family system – the adolescent’s unique view in particular - independently relate to the health of family subsystems. They also suggest that research as well as therapeutic interventions that focus on just the shared view of the family may miss important elements of family dysfunction. PMID:24884682

  1. A trident dithienylethene-perylenemonoimide dyad with super fluorescence switching speed and ratio

    Science.gov (United States)

    Li, Chong; Yan, Hui; Zhao, Ling-Xi; Zhang, Guo-Feng; Hu, Zhe; Huang, Zhen-Li; Zhu, Ming-Qiang

    2014-12-01

    Photoswitchable fluorescent diarylethenes are promising in molecular optical memory and photonic devices. However, the performance of current diarylethenes is far from satisfactory because of the scarcity of high-speed switching capability and large fluorescence on-off ratio. Here we report a trident perylenemonoimide dyad modified by triple dithienylethenes whose photochromic fluorescence quenching ratio at the photostationary state exceeds 10,000 and the fluorescence quenching efficiency is close to 100% within seconds of ultraviolet irradiation. The highly sensitive fluorescence on/off switching of the trident dyad enables recyclable fluorescence patterning and all-optical transistors. The prototype optical device based on the trident dyad enables the optical switching of incident light and conversion from incident light wavelength to transmitted light wavelength, which is all-optically controlled, reversible and wavelength-convertible. In addition, the trident dyad-staining block copolymer vesicles are observed via optical nanoimaging with a sub-100 nm resolution, portending a potential prospect of the dithienylethene dyad in super-resolution imaging.

  2. Wechsler Adult Intelligence Scale-IV Dyads for Estimating Global Intelligence.

    Science.gov (United States)

    Girard, Todd A; Axelrod, Bradley N; Patel, Ronak; Crawford, John R

    2015-08-01

    All possible two-subtest combinations of the core Wechsler Adult Intelligence Scale-IV (WAIS-IV) subtests were evaluated as possible viable short forms for estimating full-scale IQ (FSIQ). Validity of the dyads was evaluated relative to FSIQ in a large clinical sample (N = 482) referred for neuropsychological assessment. Sample validity measures included correlations, mean discrepancies, and levels of agreement between dyad estimates and FSIQ scores. In addition, reliability and validity coefficients were derived from WAIS-IV standardization data. The Coding + Information dyad had the strongest combination of reliability and validity data. However, several other dyads yielded comparable psychometric performance, albeit with some variability in their particular strengths. We also observed heterogeneity between validity coefficients from the clinical and standardization-based estimates for several dyads. Thus, readers are encouraged to also consider the individual psychometric attributes, their clinical or research goals, and client or sample characteristics when selecting among the dyadic short forms. © The Author(s) 2014.

  3. Determination of the Structure and Catalytic Mechanism of Sorghum bicolor Caffeic Acid O-Methyltransferase and the Structural Impact of Three brown midrib12 Mutations1[W

    Science.gov (United States)

    Green, Abigail R.; Lewis, Kevin M.; Barr, John T.; Jones, Jeffrey P.; Lu, Fachuang; Ralph, John; Vermerris, Wilfred; Sattler, Scott E.; Kang, ChulHee

    2014-01-01

    Using S-adenosyl-methionine as the methyl donor, caffeic acid O-methyltransferase from sorghum (Sorghum bicolor; SbCOMT) methylates the 5-hydroxyl group of its preferred substrate, 5-hydroxyconiferaldehyde. In order to determine the mechanism of SbCOMT and understand the observed reduction in the lignin syringyl-to-guaiacyl ratio of three brown midrib12 mutants that carry COMT gene missense mutations, we determined the apo-form and S-adenosyl-methionine binary complex SbCOMT crystal structures and established the ternary complex structure with 5-hydroxyconiferaldehyde by molecular modeling. These structures revealed many features shared with monocot ryegrass (Lolium perenne) and dicot alfalfa (Medicago sativa) COMTs. SbCOMT steady-state kinetic and calorimetric data suggest a random bi-bi mechanism. Based on our structural, kinetic, and thermodynamic results, we propose that the observed reactivity hierarchy among 4,5-dihydroxy-3-methoxycinnamyl (and 3,4-dihydroxycinnamyl) aldehyde, alcohol, and acid substrates arises from the ability of the aldehyde to stabilize the anionic intermediate that results from deprotonation of the 5-hydroxyl group by histidine-267. Additionally, despite the presence of other phenylpropanoid substrates in vivo, sinapaldehyde is the preferential product, as demonstrated by its low Km for 5-hydroxyconiferaldehyde. Unlike its acid and alcohol substrates, the aldehydes exhibit product inhibition, and we propose that this is due to nonproductive binding of the S-cis-form of the aldehydes inhibiting productive binding of the S-trans-form. The S-cis-aldehydes most likely act only as inhibitors, because the high rotational energy barrier around the 2-propenyl bond prevents S-trans-conversion, unlike alcohol substrates, whose low 2-propenyl bond rotational energy barrier enables rapid S-cis/S-trans-interconversion. PMID:24948836

  4. Determination of the Structure and Catalytic Mechanism of Sorghum bicolor Caffeic Acid O-Methyltransferase and the Structural Impact of Three brown midrib12 Mutations.

    Science.gov (United States)

    Green, Abigail R; Lewis, Kevin M; Barr, John T; Jones, Jeffrey P; Lu, Fachuang; Ralph, John; Vermerris, Wilfred; Sattler, Scott E; Kang, ChulHee

    2014-08-01

    Using S-adenosyl-methionine as the methyl donor, caffeic acid O-methyltransferase from sorghum (Sorghum bicolor; SbCOMT) methylates the 5-hydroxyl group of its preferred substrate, 5-hydroxyconiferaldehyde. In order to determine the mechanism of SbCOMT and understand the observed reduction in the lignin syringyl-to-guaiacyl ratio of three brown midrib12 mutants that carry COMT gene missense mutations, we determined the apo-form and S-adenosyl-methionine binary complex SbCOMT crystal structures and established the ternary complex structure with 5-hydroxyconiferaldehyde by molecular modeling. These structures revealed many features shared with monocot ryegrass (Lolium perenne) and dicot alfalfa (Medicago sativa) COMTs. SbCOMT steady-state kinetic and calorimetric data suggest a random bi-bi mechanism. Based on our structural, kinetic, and thermodynamic results, we propose that the observed reactivity hierarchy among 4,5-dihydroxy-3-methoxycinnamyl (and 3,4-dihydroxycinnamyl) aldehyde, alcohol, and acid substrates arises from the ability of the aldehyde to stabilize the anionic intermediate that results from deprotonation of the 5-hydroxyl group by histidine-267. Additionally, despite the presence of other phenylpropanoid substrates in vivo, sinapaldehyde is the preferential product, as demonstrated by its low K m for 5-hydroxyconiferaldehyde. Unlike its acid and alcohol substrates, the aldehydes exhibit product inhibition, and we propose that this is due to nonproductive binding of the S-cis-form of the aldehydes inhibiting productive binding of the S-trans-form. The S-cis-aldehydes most likely act only as inhibitors, because the high rotational energy barrier around the 2-propenyl bond prevents S-trans-conversion, unlike alcohol substrates, whose low 2-propenyl bond rotational energy barrier enables rapid S-cis/S-trans-interconversion. © 2014 American Society of Plant Biologists. All Rights Reserved.

  5. Concentric catalytic combustor

    Science.gov (United States)

    Bruck, Gerald J [Oviedo, FL; Laster, Walter R [Oviedo, FL

    2009-03-24

    A catalytic combustor (28) includes a tubular pressure boundary element (90) having a longitudinal flow axis (e.g., 56) separating a first portion (94) of a first fluid flow (e.g., 24) from a second portion (95) of the first fluid flow. The pressure boundary element includes a wall (96) having a plurality of separate longitudinally oriented flow paths (98) annularly disposed within the wall and conducting respective portions (100, 101) of a second fluid flow (e.g., 26) therethrough. A catalytic material (32) is disposed on a surface (e.g., 102, 103) of the pressure boundary element exposed to at least one of the first and second portions of the first fluid flow.

  6. Rectifying behaviour of self assembled porphyrin/fullerene dyads on Au(111)

    International Nuclear Information System (INIS)

    Matino, F; Arima, V; Maruccio, G; Phaneuf, R J; Sole, R Del; Mele, G; Vasapollo, G; Cingolani, R; Rinaldi, R

    2007-01-01

    Here we present an Ultra High Vacuum Scanning Tunnelling Microscopy (UHVSTM) and Scanning Tunnelling Spectroscopy (STS) study of self assembled donor-acceptor conjugate dyads, consisting of fulleropyrrolidines and metallo-porphyrins immobilized on gold. The coverage in the fulleropyrrolidine layers was optimized up to obtain isolated protrusions which we identify with isolated dyads since their lateral dimensions are consistent with the fullerene size. The STS study reveals a diode-like asymmetric behaviour of the dyads, different from the surrounding areas. We investigate also the influence of the tunneling conditions on the rectifying ratio which is found to be dependent on the initial set point conditions and to increase by increasing the tip-sample distance

  7. Rectifying behaviour of self assembled porphyrin/fullerene dyads on Au(111)

    Energy Technology Data Exchange (ETDEWEB)

    Matino, F [National Nanotechnology Laboratory (CNR-INFM)- Distretto Tecnologico ISUFI-Universita degli studi di Lecce - via Arnesano, 73100 Lecce (Italy); Arima, V [National Nanotechnology Laboratory (CNR-INFM)- Distretto Tecnologico ISUFI-Universita degli studi di Lecce - via Arnesano, 73100 Lecce (Italy); Maruccio, G [National Nanotechnology Laboratory (CNR-INFM)- Distretto Tecnologico ISUFI-Universita degli studi di Lecce - via Arnesano, 73100 Lecce (Italy); Phaneuf, R J [National Nanotechnology Laboratory (CNR-INFM)- Distretto Tecnologico ISUFI-Universita degli studi di Lecce - via Arnesano, 73100 Lecce (Italy); Sole, R Del [Dipartimento di Ingegneria dell' Innovazione - Universita degli Studi di Lecce- via Arnesano, 73100 Lecce (Italy); Mele, G [Dipartimento di Ingegneria dell' Innovazione - Universita degli Studi di Lecce- via Arnesano, 73100 Lecce (Italy); Vasapollo, G [Dipartimento di Ingegneria dell' Innovazione - Universita degli Studi di Lecce- via Arnesano, 73100 Lecce (Italy); Cingolani, R [National Nanotechnology Laboratory (CNR-INFM)- Distretto Tecnologico ISUFI-Universita degli studi di Lecce - via Arnesano, 73100 Lecce (Italy); Rinaldi, R [National Nanotechnology Laboratory (CNR-INFM)- Distretto Tecnologico ISUFI-Universita degli studi di Lecce - via Arnesano, 73100 Lecce (Italy)

    2007-04-15

    Here we present an Ultra High Vacuum Scanning Tunnelling Microscopy (UHVSTM) and Scanning Tunnelling Spectroscopy (STS) study of self assembled donor-acceptor conjugate dyads, consisting of fulleropyrrolidines and metallo-porphyrins immobilized on gold. The coverage in the fulleropyrrolidine layers was optimized up to obtain isolated protrusions which we identify with isolated dyads since their lateral dimensions are consistent with the fullerene size. The STS study reveals a diode-like asymmetric behaviour of the dyads, different from the surrounding areas. We investigate also the influence of the tunneling conditions on the rectifying ratio which is found to be dependent on the initial set point conditions and to increase by increasing the tip-sample distance.

  8. Gray Wolf (Canis lupus) dyad monthly association rates by demographic group.

    Science.gov (United States)

    Barber-Meyer, Shannon M.; Mech, L. David

    2015-01-01

    Preliminary data from GPS-collared wolves (Canis lupus) in the Superior National Forest of northeastern Minnesota indicated wolves had low association rates with packmates during summer. However, aerial-telemetry locations of very high frequency (VHF)-radioed wolves in this same area showed high associations among packmates during winter. We analyzed aerial-telemetry-location data from VHF-collared wolves in several packs (n=18 dyads) in this same area from 1994-2012 by month, and found lowest association rates occurred during June. While other studies have found low association among wolf packmates during summer, information on differences in association patterns depending on the wolf associates’ demographics is sparse. During May-July, association rates were greatest for breeding pairs, followed by sibling dyads, and lowest for parent– offspring dyads. Our findings improve our understanding of how individual wolf relationships affect monthly association rates. We highlight some important remaining questions regarding wolf packmate associations.

  9. Recent Advances on Electro-Oxidation of Ethanol on Pt- and Pd-Based Catalysts: From Reaction Mechanisms to Catalytic Materials

    Directory of Open Access Journals (Sweden)

    Ye Wang

    2015-09-01

    Full Text Available The ethanol oxidation reaction (EOR has drawn increasing interest in electrocatalysis and fuel cells by considering that ethanol as a biomass fuel has advantages of low toxicity, renewability, and a high theoretical energy density compared to methanol. Since EOR is a complex multiple-electron process involving various intermediates and products, the mechanistic investigation as well as the rational design of electrocatalysts are challenging yet essential for the desired complete oxidation to CO2. This mini review is aimed at presenting an overview of the advances in the study of reaction mechanisms and electrocatalytic materials for EOR over the past two decades with a focus on Pt- and Pd-based catalysts. We start with discussion on the mechanistic understanding of EOR on Pt and Pd surfaces using selected publications as examples. Consensuses from the mechanistic studies are that sufficient active surface sites to facilitate the cleavage of the C–C bond and the adsorption of water or its residue are critical for obtaining a higher electro-oxidation activity. We then show how this understanding has been applied to achieve improved performance on various Pt- and Pd-based catalysts through optimizing electronic and bifunctional effects, as well as by tuning their surface composition and structure. Finally we point out the remaining key problems in the development of anode electrocatalysts for EOR.

  10. Catalytic exhaust control

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, H

    1973-09-01

    Recent achievements and problems in the development of exhaust control devices in the USA are reviewed. To meet the 1976 emission standards, catalytic systems for the oxidation of carbon monoxide and hydrocarbons and for the reduction of nitrogen oxides to nitrogen and water are needed. While oxidizing catalysts using platinum, palladium, copper, vanadium, and chromium appplied on alumina or ceramic materials are more or less effective in emission control, there are no catalytic devices for the reduction of nitrogen oxides with the required useful life of 25,000 to 50,000 miles as yet available. In the case of platinum catalysts on monolithic supports, the operating temperature of 650 to 750/sup 0/C as required for the oxidation process may cause inactivation of the catalysts and fusion of the support material. The oxidation of CO and hydrocarbons is inhibited by high concentrations of CO, nitric oxide, and hydrocarbons. The use of catalytic converters requires the use of lead-free or low-lead gasoline. The nitrogen oxides conversion efficiency is considerably influenced by the oxygen-to-CO ratio of the exhaust gas, which makes limitation of this ratio necessary.

  11. Fe(Ⅲ) ions enhanced catalytic properties of (BiO)2CO3 nanowires and mechanism study for complete degradation of xanthate.

    Science.gov (United States)

    Guo, Yujiao; Cui, Kuixin; Hu, Mingyi; Jin, Shengming

    2017-08-01

    The wire-like Fe 3+ -doped (BiO) 2 CO 3 photocatalyst was synthesized by a hydrothermal method. The photocatalytic property of Fe 3+ -doped (BiO) 2 CO 3 nanowires was evaluated through degradation of sodium isopropyl xanthate under UV-visible light irradiation. The as-prepared Fe 3+ -doped (BiO) 2 CO 3 nanowires were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), UV-visible diffuse reflectance spectroscopy (UV-vis DRS), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) in detail. The results of XRD showed that the crystallinity of (BiO) 2 CO 3 nanowires decreased when Fe 3+ ions were introduced into the solution system. XPS results illustrated that xanthate could be absorbed on the surface of Fe 3+ -doped (BiO) 2 CO 3 nanowires to produce BiS bond at the beginning of the reaction, which could broaden the visible light absorption. FTIR spectra confirmed the formation of SO 4 2- after photocatalytic decomposition of xanthate solution. The Fe 3+ -doped (BiO) 2 CO 3 nanowires showed an enhanced photocatalytic activity for decomposition of xanthate due to the narrower band gap and larger BET surface area, comparing with pure (BiO) 2 CO 3 nanowires. By the results of UV-vis spectra of the solution and FTIR spectra of recycled Fe 3+ -doped (BiO) 2 CO 3 , the xanthate was oxidized completely into CO 2 and SO 4 2- . The photocatalytic degradation process of xanthate followed a pseudo-second-order kinetics model. The mechanism of enhanced photocatalytic activity was proposed as well. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A Study of the Effect of Dyad Practice Versus That of Individual Practice on Simulation-Based Complex Skills Learning and of Students’ Perceptions of How and Why Dyad Practice Contributes to Learning

    DEFF Research Database (Denmark)

    Räder, Sune Bernd Emil Werner; Henriksen, Ann-Helen; Butrymovich, Vitalij

    2014-01-01

    PURPOSE: The aims of this study were (1) to explore the effectiveness of dyad practice compared with individual practice on a simulator for learning a complex clinical skill and (2) to explore medical students' perceptions of how and why dyad practice on a simulator contributes to learning...... a complex skill. METHOD: In 2011, the authors randomly assigned 84 medical students to either the dyad or the individual practice group to learn coronary angiography skills using instruction videos and a simulator. Two weeks later, participants each performed two video-recorded coronary angiographies...... of the two groups (mean±standard deviation, 68%±13% for individual versus 63%±16% for dyad practice; P=.18). Dyad practice participants noted that several key factors contributed to their learning: being equal-level novices, the quality of the cooperation between partners, observational learning and overt...

  13. Homo- or Hetero- Triplet-Triplet Annihilation? A Case Study with Perylene-Bodipy Dyads/Triads

    KAUST Repository

    Cui, Xiaoneng; El-Zohry, Ahmed M.; Wang, Zhijia; Zhao, Jianzhang; Mohammed, Omar F.

    2017-01-01

    The photophysical processes of intramolecular ‘ping-pong’ energy transfers in the iodinated reference dyad BDP-I2-Py, as well as the uniodinated dyad BDP-Py and triad BDP-2Py, were studied. For BDP-I2-Py, a forward Förster resonance energy transfer

  14. Catalytic biomass pyrolysis process

    Science.gov (United States)

    Dayton, David C.; Gupta, Raghubir P.; Turk, Brian S.; Kataria, Atish; Shen, Jian-Ping

    2018-04-17

    Described herein are processes for converting a biomass starting material (such as lignocellulosic materials) into a low oxygen containing, stable liquid intermediate that can be refined to make liquid hydrocarbon fuels. More specifically, the process can be a catalytic biomass pyrolysis process wherein an oxygen removing catalyst is employed in the reactor while the biomass is subjected to pyrolysis conditions. The stream exiting the pyrolysis reactor comprises bio-oil having a low oxygen content, and such stream may be subjected to further steps, such as separation and/or condensation to isolate the bio-oil.

  15. Catalytic reforming methods

    Science.gov (United States)

    Tadd, Andrew R; Schwank, Johannes

    2013-05-14

    A catalytic reforming method is disclosed herein. The method includes sequentially supplying a plurality of feedstocks of variable compositions to a reformer. The method further includes adding a respective predetermined co-reactant to each of the plurality of feedstocks to obtain a substantially constant output from the reformer for the plurality of feedstocks. The respective predetermined co-reactant is based on a C/H/O atomic composition for a respective one of the plurality of feedstocks and a predetermined C/H/O atomic composition for the substantially constant output.

  16. Observed Sensitivity during Family Interactions and Cumulative Risk: A Study of Multiple Dyads per Family

    Science.gov (United States)

    Browne, Dillon T.; Leckie, George; Prime, Heather; Perlman, Michal; Jenkins, Jennifer M.

    2016-01-01

    The present study sought to investigate the family, individual, and dyad-specific contributions to observed cognitive sensitivity during family interactions. Moreover, the influence of cumulative risk on sensitivity at the aforementioned levels of the family was examined. Mothers and 2 children per family were observed interacting in a round robin…

  17. Acceptability and Feasibility Results of a Strength-Based Skills Training Program for Dementia Caregiving Dyads

    Science.gov (United States)

    Judge, Katherine S.; Yarry, Sarah J.; Orsulic-Jeras, Silvia

    2010-01-01

    Purpose: The current article provides an in-depth description of a dyadic intervention for individuals with dementia and their family caregivers. Using a strength-based approach, caregiving dyads received skills training across 5 key areas: (a) education regarding dementia and memory loss, (b) effective communication, (c) managing memory loss, (d)…

  18. Effects of a Cooperative Learning Program on the Elaborations of Students Working in Dyads

    NARCIS (Netherlands)

    Krol, K.; Janssen, J.J.H.M.; Veenman, S.A.M.; Linden, A.A.M. van der

    2004-01-01

    In this study, the effects of a school improvement program on cooperative learning (CL) with respect to the elaborations of 6th-grade students working in mixed-ability and mixed-sex dyads on 2 cooperative tasks were examined. A posttest-only design with a control group was used to investigate the

  19. Identity Styles and Conflict Resolution Styles: Associations in Mother-Adolescent Dyads

    Science.gov (United States)

    Missotten, Lies Christine; Luyckx, Koen; Branje, Susan; Vanhalst, Janne; Goossens, Luc

    2011-01-01

    Adolescent identity and parent-adolescent conflict have each attracted considerable research interest. However, few studies have examined the important link between the two constructs. The present study examined the associations between adolescent identity processing styles and adolescent conflict resolution styles in the mother-adolescent dyad.…

  20. Antecedents of Toddler Aggression: Dysfunctional Parenting in Mother-Toddler Dyads

    Science.gov (United States)

    Del Vecchio, Tamara; O'Leary, Susan G.

    2006-01-01

    Aggression is stable as early as 2 years of age and predicts many negative adult outcomes. Although longitudinal predictors of child aggression have been identified, information is lacking regarding the proximal precursors of toddlers' aggression. During a 30-min interaction, 54 mother-toddler dyads were observed. Toddlers were categorized as…

  1. Tridimensional Acculturation and Adaptation among Jamaican Adolescent-Mother Dyads in the United States

    Science.gov (United States)

    Ferguson, Gail M.; Bornstein, Marc H.; Pottinger, Audrey M.

    2012-01-01

    A bidimensional acculturation framework cannot account for multiple destination cultures within contemporary settlement societies. A "tridimensional model" is proposed and tested among Jamaican adolescent-mother dyads in the United States compared to Jamaican Islander, European American, African American, and other Black and non-Black U.S.…

  2. Structural Features of Sibling Dyads and Attitudes toward Sibling Relationships in Young Adulthood

    Science.gov (United States)

    Riggio, Heidi R.

    2006-01-01

    This study examined sibling-dyad structural variables (sex composition, age difference, current coresidence, position adjacency, family size, respondent and/or sibling ordinal position) and attitudes toward adult sibling relationships. A sample of 1,053 young adults (M age = 22.1 years) described one sibling using the Lifespan Sibling Relationship…

  3. PATTERNS OF EMOTIONAL AVAILABILITY IN MOTHER-INFANT DYADS: ASSOCIATIONS WITH MULTIPLE LEVELS OF CONTEXT.

    Science.gov (United States)

    Mingo, M Verónica; Easterbrooks, M Ann

    2015-01-01

    This study explored emotional availability (EA)- an individual's emotional responsiveness and attunement to another's needs and goals (R.N. Emde, 1980)- among a high social risk group of 226 adolescent mothers and their infants (average = 12 months old). The aim was to identify dyadic patterns of EA and to examine their association with multiple indicators of the ecological context. Maternal sensitivity, maternal nonhostility, and child responsiveness were assessed with the Emotional Availability Scales, Third Edition (Z. Biringen, J. Robinson, & R.N. Emde, 1998) during free play and teaching observations at home. Four EA patterns were identified using k-means cluster analysis: (a) "low functioning," (b) "high functioning," (c) "low functioning dyads with nonhostile mothers," and (d) "inconsistently sensitive mother and responsive child." These patterns had distinct associations with (a) mothers' parenting attitudes regarding children's power and independence and parent-child role reversal, (b) mothers' strategies in conflict resolution with their partners and their children, and (c) the dyads' living arrangements. This study makes a contribution to the understanding of the mother-child relationship from a systemic and relational perspective and explores the association of EA patterns with the dyads' relational context. Implications for programs and treatment approaches aimed at supporting dyads at social risk are discussed. © 2015 Michigan Association for Infant Mental Health.

  4. Enhanced intersystem crossing via a high energy charge transfer state in a perylenediimide-perylenemonoimide dyad

    NARCIS (Netherlands)

    Veldman, D.; Chopin-Cado, S.M.A; Meskers, S.C.J.; Janssen, R.A.J.

    2008-01-01

    The electronic relaxation processes of a photoexcited linear perylenediimide-perylenemonoimide (PDI-PMI) acceptor-donor dyad were studied. PDI-PMI serves as a model compound for donor-acceptor systems in photovoltaic devices and has been designed to have a high-energy PDI--PMI + charge transfer (CT)

  5. Exciplex mediated photoinduced electron transfer reactions of phthalocyanine-fullerene dyads.

    Science.gov (United States)

    Niemi, Marja; Tkachenko, Nikolai V; Efimov, Alexander; Lehtivuori, Heli; Ohkubo, Kei; Fukuzumi, Shunichi; Lemmetyinen, Helge

    2008-07-31

    Evidences of an intramolecular exciplex intermediate in a photoinduced electron transfer (ET) reaction of double-linked free-base and zinc phthalocyanine-C60 dyads were found. This was the first time for a dyad with phthalocyanine donor. Excitation of the phthalocyanine moiety of the dyads results in rapid ET from phthalocyanine to fullerene via an exciplex state in both polar and nonpolar solvents. Relaxation of the charge-separated (CS) state Pc(*+)-C60(*-) in a polar solvent occurs directly to the ground state in 30-70 ps. In a nonpolar solvent, roughly 20% of the molecules undergo transition from the CS state to phthalocyanine triplet state (3)Pc*-C60 before relaxation to the ground state. Formation of the CS state was confirmed with electron spin resonance measurements at low temperature in both polar and nonpolar solvent. Reaction schemes for the photoinduced ET reactions of the dyads were completed with rate constants obtained from the time-resolved absorption and emission measurements and with state energies obtained from the fluorescence, phosphorescence, and voltammetric measurements.

  6. The Broader Autism Phenotype and Friendships in Non-Clinical Dyads

    Science.gov (United States)

    Wainer, Allison L.; Block, Nicole; Donnellan, M. Brent; Ingersoll, Brooke

    2013-01-01

    The broader autism phenotype (BAP) is a set of subclinical traits qualitatively similar to those observed in autism spectrum disorders. The current study sought to elucidate the association between self- and informant-reports of the BAP and friendships, in a non-clinical sample of college student dyads. Self-informant agreement of the BAP and…

  7. Working in Dyads and Alone: Examining Process Variables in Solving Insight Problems

    Science.gov (United States)

    Tidikis, Viktoria; Ash, Ivan K.

    2013-01-01

    This study investigated the effects of working in dyads and their associated gender composition on performance (solution rate and time) and process variables (number of impasses, number of passed solutions, and number of problem solving suggestions and interactions) in a set of classic insight problem solving tasks. Two types of insight problems…

  8. Photoinduced electron transfer and photocurrent in multicomponent organic molecular films containing oriented porphyrin-fullerene dyad

    NARCIS (Netherlands)

    Kaunisto, Kimmo; Vuorinen, Tommi; Vahasalo, Heidi; Chukharev, Vladimir; Tkachenko, Nikolai V.; Efimov, Alexander; Tolkki, Antti; Lehtivuori, Heli; Lemmetyinen, Helge

    2008-01-01

    Layers of poly(3-hexylthiophene), PHT, phenyl vinyl thiophene, PVT3, poly(p-phenylene-2,3′-bis(3,2′-diphenyl)-quinoxaline-7-7′- diyl), PPQ, and covalently linked porphyrin-fullerene donor-acceptor dyad, P-F, were deposited as various multilayer films, which then were used to study photoinduced

  9. Influences on Infant Feeding: Perceptions of Mother-Father Parent Dyads.

    Science.gov (United States)

    Majee, Wilson; Thullen, Matthew J; Davis, Alexandra N; Sethi, Tarunjot K

    The purpose of this study was to examine interrelational-, organizational-, and community-level influences on how coparents collaborate about infant and toddler feeding. Using qualitative methods, we interviewed mother-father parent dyads to explore the potential influences on infant and toddler feeding. Participants were purposively recruited from two Midwest, rural, university-system pediatric clinics. Thematic analysis was used to code the data. Mother-father dyadic interviews were conducted using a semistructured interview schedule. Twenty-four mother-father dyads who had a child between the ages of 6 and 36 months were interviewed together. Major themes include interpersonal factors (peer behavior reinforcement, dyad and important others infant feeding conflict, conflict resolution proactiveness), organizational factors (healthcare provider infant-feeding support, workplace flexibility), and community factors (public perception on breastfeeding and social media influence). Community-based collaboration can be a platform for mother-father dyads, researchers, public health nurses, and other healthcare providers to proactively create interventions that include opportunity for building coparenting skills and infant-feeding knowledge that promote team management of common early childhood feeding challenges.

  10. Catalytic mechanisms of direct pyrrole synthesis via dehydrogenative coupling mediated by PNP-Ir or PNN-Ru pincer complexes: Crucial role of proton-transfer shuttles in the PNP-Ir system

    KAUST Repository

    Qu, Shuanglin

    2014-04-02

    Kempe et al. and Milstein et al. have recently advanced the dehydrogenative coupling methodology to synthesize pyrroles from secondary alcohols (e.g., 3) and β-amino alcohols (e.g., 4), using PNP-Ir (1) and PNN-Ru (2) pincer complexes, respectively. We herein present a DFT study to characterize the catalytic mechanism of these reactions. After precatalyst activation to give active 1A/2A, the transformation proceeds via four stages: 1A/2A-catalyzed alcohol (3) dehydrogenation to give ketone (11), base-facilitated C-N coupling of 11 and 4 to form an imine-alcohol intermediate (18), base-promoted cyclization of 18, and catalyst regeneration via H2 release from 1R/2R. For alcohol dehydrogenations, the bifunctional double hydrogen-transfer pathway is more favorable than that via β-hydride elimination. Generally, proton-transfer (H-transfer) shuttles facilitate various H-transfer processes in both systems. Notwithstanding, H-transfer shuttles play a much more crucial role in the PNP-Ir system than in the PNN-Ru system. Without H-transfer shuttles, the key barriers up to 45.9 kcal/mol in PNP-Ir system are too high to be accessible, while the corresponding barriers (<32.0 kcal/mol) in PNN-Ru system are not unreachable. Another significant difference between the two systems is that the addition of alcohol to 1A giving an alkoxo complex is endergonic by 8.1 kcal/mol, whereas the addition to 2A is exergonic by 8.9 kcal/mol. The thermodynamic difference could be the main reason for PNP-Ir system requiring lower catalyst loading than the PNN-Ru system. We discuss how the differences are resulted in terms of electronic and geometric structures of the catalysts and how to use the features in catalyst development. © 2014 American Chemical Society.

  11. Communication: Charge-transfer rate constants in zinc-porphyrin-porphyrin-derived dyads: A Fermi golden rule first-principles-based study

    International Nuclear Information System (INIS)

    Manna, Arun K.; Dunietz, Barry D.

    2014-01-01

    We investigate photoinduced charge transfer (CT) processes within dyads consisting of porphyrin derivatives in which one ring ligates a Zn metal center and where the rings vary by their degree of conjugation. Using a first-principles approach, we show that molecular-scale means can tune CT rates through stabilization affected by the polar environment. Such means of CT tuning are important for achieving high efficiency optoelectronic applications using organic semiconducting materials. Our fully quantum mechanical scheme is necessary for reliably modeling the CT process across different regimes, in contrast to the pervading semi-classical Marcus picture that grossly underestimates transfer in the far-inverted regime

  12. Adolescent-Parent Dyad Descriptions of the Decision to Start the HPV Vaccine Series.

    Science.gov (United States)

    Chang, Jane; Ipp, Lisa S; de Roche, Ariel M; Catallozzi, Marina; Breitkopf, Carmen Radecki; Rosenthal, Susan L

    2018-02-01

    To examine how adolescent-parent dyads describe decision-making regarding initiation of the human papillomavirus (HPV) vaccine series, specifically who they viewed as making the final decision. Semistructured interviews with adolescent-parent dyads were audio-recorded and transcribed. Responses to the question: "How did you make a decision about whether or not to receive the HPV vaccine series?" were content-coded for each individual member of the dyad. Adolescent medicine clinics of 2 large urban medical centers and through snowball sampling. Adolescents 14-17 years of age and a parent (N = 262). Qualitative analyses were conducted for those who agreed that they were offered and started the HPV vaccine series (n = 109). None. Descriptions of the decision-making included 1 person (adolescent or parent) making the decision or joint decision-making by the adolescent and parent together. More than half of the dyads did not agree on who made the decision to start the vaccine. Most adolescents and parents described a similar account about when they were offered the HPV vaccine, although the interpretation of the event in terms of the decision-maker might have differed. More than half of adolescents and parents individually mentioned the health care provider in their description of the HPV vaccine decision-making process even though they were not queried about the role of the provider. Understanding the range of descriptions of these dyads is helpful to guide interventions to promote vaccine uptake in a manner that balances provider expertise, adolescent autonomy, and parental involvement. Copyright © 2017 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  13. Autonomous Motivation and Fruit/Vegetable Intake in Parent–Adolescent Dyads

    Science.gov (United States)

    Dwyer, Laura A.; Bolger, Niall; Laurenceau, Jean-Philippe; Patrick, Heather; Oh, April Y.; Nebeling, Linda C.; Hennessy, Erin

    2017-01-01

    Introduction Autonomous motivation (motivation to engage in a behavior because of personal choice, interest, or value) is often associated with health behaviors. The present study contributes to research on motivation and eating behaviors by examining: (1) how autonomous motivation is correlated within parent–adolescent dyads; and (2) whether parent- and adolescent-reported autonomous motivation predicts the parent–adolescent correlation in fruit and vegetable (FV) intake frequency. Methods Data were drawn from the Family Life, Activity, Sun, Health, and Eating (FLASHE) Study, a cross-sectional U.S. survey of parent–adolescent dyads led by the National Cancer Institute and fielded between April and October 2014. In 2016, data were analyzed from dyads who had responses on a six-item self-report measure of daily frequency of FV consumption and a two-item self-report measure of autonomous motivation for consuming FVs. Results Parents' and adolescents' reports of autonomous motivation and FV intake frequency were positively correlated. Both parents' and adolescents' autonomous motivation predicted higher levels of their own FV intake frequency and that of their dyad partner (p-values ≤0.001). These effects of autonomous motivation explained 22.6% of the parent–adolescent correlation in FV intake frequency. Actor effects (one's motivation predicting their own FV intake frequency) were stronger than partner effects (one's motivation predicting their partner's FV intake frequency). Conclusions Parent–adolescent similarity in autonomous motivation for healthy eating may contribute to similarity in eating behaviors. Future research should further examine how individual-level health behavior correlates influence health behaviors within dyads. PMID:28526363

  14. Autonomous Motivation and Fruit/Vegetable Intake in Parent-Adolescent Dyads.

    Science.gov (United States)

    Dwyer, Laura A; Bolger, Niall; Laurenceau, Jean-Philippe; Patrick, Heather; Oh, April Y; Nebeling, Linda C; Hennessy, Erin

    2017-06-01

    Autonomous motivation (motivation to engage in a behavior because of personal choice, interest, or value) is often associated with health behaviors. The present study contributes to research on motivation and eating behaviors by examining (1) how autonomous motivation is correlated within parent-adolescent dyads and (2) whether parent- and adolescent-reported autonomous motivation predicts the parent-adolescent correlation in fruit and vegetable (FV) intake frequency. Data were drawn from the Family Life, Activity, Sun, Health, and Eating (FLASHE) Study, a cross-sectional U.S. survey of parent-adolescent dyads led by the National Cancer Institute and fielded between April and October 2014. In 2016, data were analyzed from dyads who had responses on a six-item self-report measure of daily frequency of FV consumption and a two-item self-report measure of autonomous motivation for consuming FVs. Parents' and adolescents' reports of autonomous motivation and FV intake frequency were positively correlated. Both parents' and adolescents' autonomous motivation predicted higher levels of their own FV intake frequency and that of their dyad partner (p-values ≤0.001). These effects of autonomous motivation explained 22.6% of the parent-adolescent correlation in FV intake frequency. Actor effects (one's motivation predicting their own FV intake frequency) were stronger than partner effects (one's motivation predicting their partner's FV intake frequency). Parent-adolescent similarity in autonomous motivation for healthy eating may contribute to similarity in eating behaviors. Future research should further examine how individual-level health behavior correlates influence health behaviors within dyads. Published by Elsevier Inc.

  15. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  16. Effect of radioactive radiation on catalytic properties of solid materials

    Energy Technology Data Exchange (ETDEWEB)

    Sokol' skii, D V; Kuzembaev, K K; Kel' man, I V [AN Kazakhskoj SSR, Alma-Ata. Inst. Organicheskogo Kataliza i Ehlektrokhimii

    1977-05-01

    General survey is made of the problem of radiation modification of the action of solid catalysts with respect to the various types of heterogeneous catalytic reactions. Consideration is given to the key mechanisms responsible for radiation damage in the interaction of high-energy radiation with a solid body. The effect of ionizing radiation on the adsorption capacity and catalytic activity of solid bodies is discussed.

  17. Attenuation of reserpine-induced pain/depression dyad by gentiopicroside through downregulation of GluN2B receptors in the amygdala of mice.

    Science.gov (United States)

    Liu, Shui-bing; Zhao, Rong; Li, Xu-sheng; Guo, Hong-ju; Tian, Zhen; Zhang, Nan; Gao, Guo-dong; Zhao, Ming-gao

    2014-06-01

    Epidemiological studies demonstrate that pain frequently occurs comorbid with depression. Gentiopicroside (Gent) is a secoiridoid compound isolated from Gentiana lutea that exhibits analgesic properties and inhibits the expression of GluN2B-containing N-methyl-D-aspartate (NMDA) receptors in the anterior cingulate cortex of mice. However, the effects of Gent on the reserpine-induced pain/depression dyad and its underlying mechanisms are unclear. Reserpine administration (1 mg/kg subcutaneous daily for 3 days) caused a significant decrease in the nociceptive threshold as evidenced by the reduced paw withdrawal latency in response to a radiant heat source and mechanical allodynia. Behavioral detection indicated a significant increase in immobility time during a forced swim test, as well as decreased time in the central area and total travel distance in an open field test. Furthermore, reserpinized animals exhibited increased oxidative stress. Systemic Gent administration dose-dependently ameliorated the behavioral deficits associated with reserpine-induced pain/depression dyad. At the same time, the decrease in biogenic amine levels (norepinephrine, dopamine, and serotonin) was integrated with the increase in caspase-3 levels and GluN2B-containing NMDA receptors in the amygdala of the reserpine-injected mice. Gent significantly reversed the changes in the levels of biogenic amines, caspase-3, and GluN2B-containing NMDA receptors in amygdala. However, Gent did not affect the expression of GluN2A-containing NMDA receptors. The inhibitory effects of Gent on oxidative stress were occluded by simultaneous treatment of GluN2B receptors antagonist Ro25-6981. Our study provides strong evidence that Gent inhibits reserpine-induced pain/depression dyad by downregulating GluN2B receptors in the amygdala.

  18. Structural and In Vivo Studies on Trehalose-6-Phosphate Synthase from Pathogenic Fungi Provide Insights into Its Catalytic Mechanism, Biological Necessity, and Potential for Novel Antifungal Drug Design

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yi; Tenor, Jennifer L.; Toffaletti, Dena L.; Maskarinec, Stacey A.; Liu, Jiuyu; Lee, Richard E.; Perfect, John R.; Brennan, Richard G.; Hendrickson, Wayne A.

    2017-07-25

    ABSTRACT

    The disaccharide trehalose is critical to the survival of pathogenic fungi in their human host. Trehalose-6-phosphate synthase (Tps1) catalyzes the first step of trehalose biosynthesis in fungi. Here, we report the first structures of eukaryotic Tps1s in complex with substrates or substrate analogues. The overall structures of Tps1 fromCandida albicansandAspergillus fumigatusare essentially identical and reveal N- and C-terminal Rossmann fold domains that form the glucose-6-phosphate and UDP-glucose substrate binding sites, respectively. These Tps1 structures with substrates or substrate analogues reveal key residues involved in recognition and catalysis. Disruption of these key residues severely impaired Tps1 enzymatic activity. Subsequent cellular analyses also highlight the enzymatic function of Tps1 in thermotolerance, yeast-hypha transition, and biofilm development. These results suggest that Tps1 enzymatic functionality is essential for the fungal stress response and virulence. Furthermore, structures of Tps1 in complex with the nonhydrolyzable inhibitor, validoxylamine A, visualize the transition state and support an internal return-like catalytic mechanism that is generalizable to other GT-B-fold retaining glycosyltransferases. Collectively, our results depict key Tps1-substrate interactions, unveil the enzymatic mechanism of these fungal proteins, and pave the way for high-throughput inhibitor screening buttressed and guided by the current structures and those of high-affinity ligand-Tps1 complexes.

    IMPORTANCEInvasive fungal diseases have emerged as major threats, resulting in more than 1.5 million deaths annually worldwide. This epidemic has been further complicated by increasing resistance to all major classes of antifungal drugs in the clinic. Trehalose biosynthesis is essential for the fungal stress response and virulence. Critically, this biosynthetic pathway is absent in

  19. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    Extensive studies have been conducted to establish sound basis for design and engineering of reactors for practising such catalytic reactions and for realizing improvements in reactor performance. In this article, application of recent (and not so recent) developments in engineering reactors for catalytic reactions is ...

  20. Non-thermal plasmas for non-catalytic and catalytic VOC abatement

    International Nuclear Information System (INIS)

    Vandenbroucke, Arne M.; Morent, Rino; De Geyter, Nathalie; Leys, Christophe

    2011-01-01

    Highlights: → We review the current status of catalytic and non-catalytic VOC abatement based on a vast number of research papers. → The underlying mechanisms of plasma-catalysis for VOC abatement are discussed. → Critical process parameters that determine the influent are discussed and compared. - Abstract: This paper reviews recent achievements and the current status of non-thermal plasma (NTP) technology for the abatement of volatile organic compounds (VOCs). Many reactor configurations have been developed to generate a NTP at atmospheric pressure. Therefore in this review article, the principles of generating NTPs are outlined. Further on, this paper is divided in two equally important parts: plasma-alone and plasma-catalytic systems. Combination of NTP with heterogeneous catalysis has attracted increased attention in order to overcome the weaknesses of plasma-alone systems. An overview is given of the present understanding of the mechanisms involved in plasma-catalytic processes. In both parts (plasma-alone systems and plasma-catalysis), literature on the abatement of VOCs is reviewed in close detail. Special attention is given to the influence of critical process parameters on the removal process.

  1. Catalytic detritiation of water

    International Nuclear Information System (INIS)

    Rogers, M.L.; Lamberger, P.H.; Ellis, R.E.; Mills, T.K.

    1977-01-01

    A pilot-scale system has been used at Mound Laboratory to investigate the catalytic detritiation of water. A hydrophobic, precious metal catalyst is used to promote the exchange of tritium between liquid water and gaseous hydrogen at 60 0 C. Two columns are used, each 7.5 m long by 2.5 cm ID and packed with catalyst. Water flow is 5-10 cm 3 /min and countercurrent hydrogen flow is 9,000-12,000 cm 3 /min. The equipment, except for the columns, is housed in an inert atmosphere glovebox and is computer controlled. The hydrogen is obtained by electrolysis of a portion of the water stream. Enriched gaseous tritium is withdrawn for further enrichment. A description of the system is included along with an outline of its operation. Recent experimental data are discussed

  2. Dansyl-naphthalimide dyads as molecular probes: effect of spacer group on metal ion binding properties.

    Science.gov (United States)

    Shankar, Balaraman H; Ramaiah, Danaboyina

    2011-11-17

    Interaction of a few dansyl-naphthalimide conjugates 1a-e linked through polymethylene spacer groups with various metal ions was investigated through absorption, fluorescence, NMR, isothermal calorimetric (ITC), and laser flash photolysis techniques. The characteristic feature of these dyads is that they exhibit competing singlet-singlet energy transfer (SSET) and photoinduced electron transfer (PET) processes, both of which decrease with the increase in spacer length. Depending on the spacer group, these dyads interact selectively with divalent Cu(2+) and Zn(2+) ions, as compared to other mono- and divalent metal ions. Jobs plot analysis showed that these dyads form 2:3 complexes with Cu(2+) ions, while 1:1 complexes were observed with Zn(2+) ions. The association constants for the Zn(2+) and Cu(2+) complexes were determined and are found to be in the order 10(3)-10(5) M(-1). Irrespective of the length of the spacer group, these dyads interestingly act as fluorescence ratiometric molecular probes for Cu(2+) ions by altering the emission intensity of both dansyl and naphthalimide chromophores. In contrast, only the fluorescence intensity of the naphthalimide chromophore of the lower homologues (n = 1-3) was altered by Zn(2+) ions. (1)H NMR and ITC measurements confirmed the involvement of both sulfonamide and dimethylamine groups in the complexation with Cu(2+) ions, while only the latter group was involved with Zn(2+) ions. Laser excitation of the dyads 1a-e showed formation of a transient absorption which can be attributed to the radical cation of the naphthalimide chromophore, whereas only the triplet excited state of the dyads 1a-e was observed in the presence of Cu(2+) ions. Uniquely, the complexation of 1a-e with Cu(2+) ions affects both PET and SSET processes, while only the PET process was partially inhibited by Zn(2+) ions in the lower homologues (n = 1-3) and the higher homologues exhibited negligible changes in their emission properties. Our results

  3. Catalytic Combustion of Gasified Waste

    Energy Technology Data Exchange (ETDEWEB)

    Kusar, Henrik

    2003-09-01

    This thesis concerns catalytic combustion for gas turbine application using a low heating-value (LHV) gas, derived from gasified waste. The main research in catalytic combustion focuses on methane as fuel, but an increasing interest is directed towards catalytic combustion of LHV fuels. This thesis shows that it is possible to catalytically combust a LHV gas and to oxidize fuel-bound nitrogen (NH{sub 3}) directly into N{sub 2} without forming NO{sub x} The first part of the thesis gives a background to the system. It defines waste, shortly describes gasification and more thoroughly catalytic combustion. The second part of the present thesis, paper I, concerns the development and testing of potential catalysts for catalytic combustion of LHV gases. The objective of this work was to investigate the possibility to use a stable metal oxide instead of noble metals as ignition catalyst and at the same time reduce the formation of NO{sub x} In paper II pilot-scale tests were carried out to prove the potential of catalytic combustion using real gasified waste and to compare with the results obtained in laboratory scale using a synthetic gas simulating gasified waste. In paper III, selective catalytic oxidation for decreasing the NO{sub x} formation from fuel-bound nitrogen was examined using two different approaches: fuel-lean and fuel-rich conditions. Finally, the last part of the thesis deals with deactivation of catalysts. The various deactivation processes which may affect high-temperature catalytic combustion are reviewed in paper IV. In paper V the poisoning effect of low amounts of sulfur was studied; various metal oxides as well as supported palladium and platinum catalysts were used as catalysts for combustion of a synthetic gas. In conclusion, with the results obtained in this thesis it would be possible to compose a working catalytic system for gas turbine application using a LHV gas.

  4. Synthesis of mesogenic phthalocyanine-C60 donor–acceptor dyads designed for molecular heterojunction photovoltaic devices

    Directory of Open Access Journals (Sweden)

    Yves Henri Geerts

    2009-10-01

    Full Text Available A series of phthalocyanine-C60 dyads 2a–d was synthesized. Key steps in their synthesis are preparation of the low symmetry phthalocyanine intermediate by the statistical condensation of two phthalonitriles, and the final esterification of the fullerene derivative bearing a free COOH group. Structural characterization of the molecules in solution was performed by NMR spectroscopy, UV–vis spectroscopy and cyclic voltammetry. Preliminary studies suggest formation of liquid crystalline (LC mesophases for some of the prepared dyads. To the best of our knowledge, this is the first example of LC phthalocyanine-C60 dyads.

  5. Mutual regulation between infant facial affect and maternal touch in depressed and nondepressed dyads

    DEFF Research Database (Denmark)

    Egmose, Ida; Cordes, Katharina; Smith-Nielsen, Johanne

    2017-01-01

    research suggests that touch is an important means through which parents regulate their infants’ affects. Also, previous research has shown that post-partum depressed (PPD) mothers and nonclinical mothers differ in their touching behaviors when interacting with their infants. We examined the affect......-regulating function of affectionate, caregiving and playful maternal touch in 24 PPD and 47 nonclinical mother-infant dyads when infants were four months old. In order to investigate the direction of effects and to account for repeated observations, the data were analysed using time-window sequential analysis......, only in the PPD dyads, were the mothers more likely to initiate affectionate touch when their infants were displaying negative facial affect. Our results also showed that mothers use specific touch types to regulate infants’ negative and positive affects; infants are more likely to initiate positive...

  6. Interplay between singlet and triplet excited states in a conformationally locked donor–acceptor dyad

    KAUST Repository

    Filatov, Mikhail A.

    2015-10-13

    The synthesis and photophysical characterization of a palladium(II) porphyrin – anthracene dyad bridged via short and conformationally rigid bicyclo[2.2.2]octadiene spacer were achieved. A spectroscopic investigation of the prepared molecule in solution has been undertaken to study electronic energy transfer in excited singlet and triplet states between the anthracene and porphyrin units. By using steady-state and time-resolved photoluminescence spectroscopy it was shown that excitation of the singlet excited state of the anthracene leads to energy transfer to the lower-lying singlet state of porphyrin. Alternatively, excitation of the porphyrin followed by intersystem crossing to the triplet state leads to very fast energy transfer to the triplet state of anthracene. The rate of this energy transfer has been determined by transient absorption spectroscopy. Comparative studies of the dynamics of triplet excited states of the dyad and reference palladium octaethylporphyrin (PdOEP) have been performed.

  7. Daily Associations of Stress and Eating in Mother-Child Dyads.

    Science.gov (United States)

    Dunton, Genevieve F; Dzubur, Eldin; Huh, Jimi; Belcher, Britni R; Maher, Jaclyn P; O'Connor, Sydney; Margolin, Gayla

    2017-06-01

    This study used Ecological Momentary Assessment (EMA) in mother-child dyads to examine the day-level associations of stress and eating. Mothers and their 8- to 12-year-old children ( N = 167 dyads) completed between three (weekday) and eight (weekend) EMA survey prompts per day at random nonschool times across 8 days. EMA measured perceived stress, and past 2-hour healthy (i.e., fruit and vegetables) and unhealthy (e.g., pastries/sweets, soda/energy drinks) eating. Children reported more healthy and unhealthy eating on days when their mothers also engaged in more healthy and unhealthy eating, respectively. On days when mothers' perceived stress was greater than usual, they reported more healthy eating. Eating behaviors were coupled between mothers and children at the day level. Mothers' stress was related to their own eating but not to children's eating.

  8. Interplay between singlet and triplet excited states in a conformationally locked donor–acceptor dyad

    KAUST Repository

    Filatov, Mikhail A.; Etzold, Fabian; Gehrig, Dominik; Laquai, Fré dé ric; Busko, Dmitri; Landfester, Katharina; Baluschev, Stanislav

    2015-01-01

    The synthesis and photophysical characterization of a palladium(II) porphyrin – anthracene dyad bridged via short and conformationally rigid bicyclo[2.2.2]octadiene spacer were achieved. A spectroscopic investigation of the prepared molecule in solution has been undertaken to study electronic energy transfer in excited singlet and triplet states between the anthracene and porphyrin units. By using steady-state and time-resolved photoluminescence spectroscopy it was shown that excitation of the singlet excited state of the anthracene leads to energy transfer to the lower-lying singlet state of porphyrin. Alternatively, excitation of the porphyrin followed by intersystem crossing to the triplet state leads to very fast energy transfer to the triplet state of anthracene. The rate of this energy transfer has been determined by transient absorption spectroscopy. Comparative studies of the dynamics of triplet excited states of the dyad and reference palladium octaethylporphyrin (PdOEP) have been performed.

  9. Catalytic production of biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Theilgaard Madsen, A.

    2011-07-01

    The focus of this thesis is the catalytic production of diesel from biomass, especially emphasising catalytic conversion of waste vegetable oils and fats. In chapter 1 an introduction to biofuels and a review on different catalytic methods for diesel production from biomass is given. Two of these methods have been used industrially for a number of years already, namely the transesterification (and esterification) of oils and fats with methanol to form fatty acid methyl esters (FAME), and the hydrodeoxygenation (HDO) of fats and oils to form straight-chain alkanes. Other possible routes to diesel include upgrading and deoxygenation of pyrolysis oils or aqueous sludge wastes, condensations and reductions of sugars in aqueous phase (aqueous-phase reforming, APR) for monofunctional hydrocarbons, and gasification of any type of biomass followed by Fischer-Tropsch-synthesis for alkane biofuels. These methods have not yet been industrialised, but may be more promising due to the larger abundance of their potential feedstocks, especially waste feedstocks. Chapter 2 deals with formation of FAME from waste fats and oils. A range of acidic catalysts were tested in a model fat mixture of methanol, lauric acid and trioctanoin. Sulphonic acid-functionalised ionic liquids showed extremely fast convertion of lauric acid to methyl laurate, and trioctanoate was converted to methyl octanoate within 24 h. A catalyst based on a sulphonated carbon-matrix made by pyrolysing (or carbonising) carbohydrates, so-called sulphonated pyrolysed sucrose (SPS), was optimised further. No systematic dependency on pyrolysis and sulphonation conditions could be obtained, however, with respect to esterification activity, but high activity was obtained in the model fat mixture. SPS impregnated on opel-cell Al{sub 2}O{sub 3} and microporous SiO{sub 2} (ISPS) was much less active in the esterification than the original SPS powder due to low loading and thereby low number of strongly acidic sites on the

  10. A Multi-Addressable Dyad with Switchable CMY Colors for Full-Color Rewritable Papers.

    Science.gov (United States)

    Qin, Tianyou; Han, Jiaqi; Geng, Yue; Ju, Le; Sheng, Lan; Zhang, Sean Xiao-An

    2018-06-23

    Reversible multicolor displays on solid media using single molecule pigments have been a long-awaited goal. Herein, a new and simple molecular dyad, which can undergo switchable CMY color changes both in solution and solid substrate upon exposure to light, water/acid, and nucleophiles, is designed and synthesized. The stimuli used in this work can be applied independent of each other, which is beneficial for color changes without mutual interference. As a comparison, the mixtures of the two molecular switching motifs forming the basis of the dyad were also studied. The dyad greatly outperforms the corresponding mixed system with respect to reversible color-switching on the paper substrate. Its potential for full-color rewritable paper with excellent reversibility has been demonstrated. Legible multicolor prints, that is, high color contrast and resolution, good dispersion, excellent reversibility, were achieved using common water-jet and light-based printers. This work provides a very promising approach for further development of full-color switchable molecules, materials and displays. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Interpersonal Attraction in Dyads and Groups: Effects of the Hearts of the Beholder and the Beheld.

    Science.gov (United States)

    Malloy, Thomas E

    2018-04-01

    Dyadic interpersonal attraction (IA) was studied within groups of very highly acquainted family members, friends and co-workers. IA was determined by the perceiver (i.e., the heart of the beholder), the target (i.e., the heart of the beheld), and in specific dyads, by the unique combination of the two. The consistency of one's attraction to others and others' attraction to the person across groups were addressed using the key person design . Attraction to a person in one group was independent of attraction to that person in another, although people predicted that members of different groups were similarly attracted to them. A new model (ARRMA) was specified to simultaneously study assumed reciprocity, actual reciprocity, and metaperception accuracy of attraction (i.e., accurate predictions of others' attraction to oneself). Assumed reciprocity of IA was substantial at the individual and dyadic levels. Reciprocity of attraction at the individual level, a heretofore unconfirmed "plausible hypothesis" (Newcomb, 1979), was supported; dyadic reciprocity was weak. Meta-accuracy of IA was observed among individuals but was weak in dyads. Perceived interpersonal similarity predicted IA among individuals and in specific dyads. Considering dyadic attraction within and between groups, and the use of componential analysis permitted the specification of new IA phenomena and resolved a long standing theoretical problem regarding the reciprocity of attraction.

  12. Electrochemical catalytic treatment of phenol wastewater

    International Nuclear Information System (INIS)

    Ma Hongzhu; Zhang Xinhai; Ma Qingliang; Wang Bo

    2009-01-01

    The slurry bed catalytic treatment of contaminated water appears to be a promising alternative for the oxidation of aqueous organic pollutants. In this paper, the electrochemical oxidation of phenol in synthetic wastewater catalyzed by ferric sulfate and potassium permanganate adsorbed onto active bentonite in slurry bed electrolytic reactor with graphite electrode has been investigated. In order to determine the optimum operating condition, the orthogonal experiments were devised and the results revealed that the system of ferric sulfate, potassium permanganate and active bentonite showed a high catalytic efficiency on the process of electrochemical oxidation phenol in initial pH 5. When the initial concentration of phenol was 0.52 g/L (the initial COD 1214 mg/L), up to 99% chemical oxygen demand (COD) removal was obtained in 40 min. According to the experimental results, a possible mechanism of catalytic degradation of phenol was proposed. Environmental estimation was also done and the results showed that the treated wastewater have little impact on plant growth and could totally be applied to irrigation.

  13. Catalytic applications of bio-inspired nanomaterials

    Science.gov (United States)

    Pacardo, Dennis Kien Balaong

    The biomimetic synthesis of Pd nanoparticles was presented using the Pd4 peptide, TSNAVHPTLRHL, isolated from combinatorial phage display library. Using this approach, nearly monodisperse and spherical Pd nanoparticles were generated with an average diameter of 1.9 +/- 0.4 nm. The peptide-based nanocatalyst were employed in the Stille coupling reaction under energy-efficient and environmentally friendly reaction conditions of aqueous solvent, room temperature and very low catalyst loading. To this end, the Pd nanocatalyst generated high turnover frequency (TOF) value and quantitative yields using ≥ 0.005 mol% Pd as well as catalytic activities with different aryl halides containing electron-withdrawing and electron-donating groups. The Pd4-capped Pd nanoparticles followed the atom-leaching mechanism and were found to be selective with respect to substrate identity. On the other hand, the naturally-occurring R5 peptide (SSKKSGSYSGSKGSKRRIL) was employed in the synthesis of biotemplated Pd nanomaterials which showed morphological changes as a function of Pd:peptide ratio. TOF analysis for hydrogenation of olefinic alcohols showed similar catalytic activity regardless of nanomorphology. Determination of catalytic properties of these bio-inspired nanomaterials are important as they serve as model system for alternative green catalyst with applications in industrially important transformations.

  14. Vapor-Driven Propulsion of Catalytic Micromotors

    Science.gov (United States)

    Dong, Renfeng; Li, Jinxing; Rozen, Isaac; Ezhilan, Barath; Xu, Tailin; Christianson, Caleb; Gao, Wei; Saintillan, David; Ren, Biye; Wang, Joseph

    2015-08-01

    Chemically-powered micromotors offer exciting opportunities in diverse fields, including therapeutic delivery, environmental remediation, and nanoscale manufacturing. However, these nanovehicles require direct addition of high concentration of chemical fuel to the motor solution for their propulsion. We report the efficient vapor-powered propulsion of catalytic micromotors without direct addition of fuel to the micromotor solution. Diffusion of hydrazine vapor from the surrounding atmosphere into the sample solution is instead used to trigger rapid movement of iridium-gold Janus microsphere motors. Such operation creates a new type of remotely-triggered and powered catalytic micro/nanomotors that are responsive to their surrounding environment. This new propulsion mechanism is accompanied by unique phenomena, such as the distinct off-on response to the presence of fuel in the surrounding atmosphere, and spatio-temporal dependence of the motor speed borne out of the concentration gradient evolution within the motor solution. The relationship between the motor speed and the variables affecting the fuel concentration distribution is examined using a theoretical model for hydrazine transport, which is in turn used to explain the observed phenomena. The vapor-powered catalytic micro/nanomotors offer new opportunities in gas sensing, threat detection, and environmental monitoring, and open the door for a new class of environmentally-triggered micromotors.

  15. Electrochemical catalytic treatment of phenol wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Ma Hongzhu, E-mail: hzmachem@snnu.edu.cn [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China); Zhang Xinhai [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China); Ma Qingliang [Department of Applied Physics, College of Sciences, Taiyuan University of Technology, 030024 Taiyuan (China); Wang Bo [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China)

    2009-06-15

    The slurry bed catalytic treatment of contaminated water appears to be a promising alternative for the oxidation of aqueous organic pollutants. In this paper, the electrochemical oxidation of phenol in synthetic wastewater catalyzed by ferric sulfate and potassium permanganate adsorbed onto active bentonite in slurry bed electrolytic reactor with graphite electrode has been investigated. In order to determine the optimum operating condition, the orthogonal experiments were devised and the results revealed that the system of ferric sulfate, potassium permanganate and active bentonite showed a high catalytic efficiency on the process of electrochemical oxidation phenol in initial pH 5. When the initial concentration of phenol was 0.52 g/L (the initial COD 1214 mg/L), up to 99% chemical oxygen demand (COD) removal was obtained in 40 min. According to the experimental results, a possible mechanism of catalytic degradation of phenol was proposed. Environmental estimation was also done and the results showed that the treated wastewater have little impact on plant growth and could totally be applied to irrigation.

  16. Catalytic cracking of lignites

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, M.; Nowak, S.; Naegler, T.; Zimmermann, J. [Hochschule Merseburg (Germany); Welscher, J.; Schwieger, W. [Erlangen-Nuernberg Univ. (Germany); Hahn, T. [Halle-Wittenberg Univ., Halle (Germany)

    2013-11-01

    A most important factor for the chemical industry is the availability of cheap raw materials. As the oil price of crude oil is rising alternative feedstocks like coal are coming into focus. This work, the catalytic cracking of lignite is part of the alliance ibi (innovative Braunkohlenintegration) to use lignite as a raw material to produce chemicals. With this new one step process without an input of external hydrogen, mostly propylene, butenes and aromatics and char are formed. The product yield depends on manifold process parameters. The use of acid catalysts (zeolites like MFI) shows the highest amount of the desired products. Hydrogen rich lignites with a molar H/C ratio of > 1 are to be favoured. Due to primary cracking and secondary reactions the ratio between catalyst and lignite, temperature and residence time are the most important parameter to control the product distribution. Experiments at 500 C in a discontinuous rotary kiln reactor show yields up to 32 wt-% of hydrocarbons per lignite (maf - moisture and ash free) and 43 wt-% char, which can be gasified. Particularly, the yields of propylene and butenes as main products can be enhanced four times to about 8 wt-% by the use of catalysts while the tar yield decreases. In order to develop this innovative process catalyst systems fixed on beads were developed for an easy separation and regeneration of the used catalyst from the formed char. (orig.)

  17. Electric field dependent photocurrent generation in a thin-film organic photovoltaic device with a [70]fullerene-benzodifuranone dyad.

    Science.gov (United States)

    Ulmann, Pirmin A; Tanaka, Hideyuki; Matsuo, Yutaka; Xiao, Zuo; Soga, Iwao; Nakamura, Eiichi

    2011-12-21

    A [70]fullerene-benzodifuranone acceptor dyad synthesized by a Ag⁺-mediated coupling reaction was used to construct a thin-film organic solar cell. The fullerene and the benzodifuranone dye in the dyad have close-lying LUMO levels in the range of 3.7-3.9 eV, so that energy transfer from the dye to the fullerene can take place. A p-n heterojunction photovoltaic device consisting of a tetrabenzoporphyrin and a [70]fullerene-benzodifuranone dyad showed a weak but discernible contribution from light absorption of the dyad to the photocurrent under both a positive and a negative effective bias. These results indicate that the benzodifuranone moiety attached to the acceptor contributes to light-harvesting by energy transfer.

  18. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    126, No. 2, March 2014, pp. 341–351. c Indian Academy of Sciences. ... enhancement was realized by catalyst design, appropriate choice of reactor, better injection and .... Gas–liquid and liquid–solid transport processes in catalytic reactors.5.

  19. Control of triplet state generation in heavy atom-free BODIPY-anthracene dyads by media polarity and structural factors

    KAUST Repository

    Filatov, Mikhail A.; Karuthedath, Safakath; Polestshuk, Pavel M; Callaghan, Susan; Flanagan, Keith; Telitchko, Maxime; Wiesner, Thomas; Laquai, Fré dé ric; Senge, Mathias O

    2018-01-01

    A family of heavy atom-free BODIPY-anthracene dyads (BADs) exhibiting triplet excited state formation from charge-transfer states is reported. Four types of BODIPY scaffolds, different in the alkyl substitution pattern, and four anthracene derivatives have been used to access BADs. The fluorescence and intersystem crossing (ISC) in these dyads depend on donor-acceptor couplings and can be accurately controlled by the substitution or media polarity. Under conditions that do not allow charge transfer (CT), the dyads exhibit fluorescence with high quantum yields. Formation of charge-transfer states triggers ISC and the formation of long-lived triplet excited states in the dyads. The excited state properties were studied by steady-state techniques and ultrafast pump-probe spectroscopy to determine the parameters of the observed processes. Structural information for various BADs was derived from single crystal X-ray structure determinations alongside DFT molecular geometry optimization, revealing the effects of mutual orientation of subunits on the photophysical properties. The calculations showed that alkyl substituents on the BODIPY destabilize CT states in the dyads, thus controlling the charge transfer between the subunits. The effect of the dyad structure on the ISC efficiency was considered at M06-2X level of theory and a correlation between mutual orientation of the subunits and the energy gap between singlet and triplet CT states was studied using multireference CASSCF method.

  20. Control of triplet state generation in heavy atom-free BODIPY-anthracene dyads by media polarity and structural factors

    KAUST Repository

    Filatov, Mikhail A.

    2018-02-12

    A family of heavy atom-free BODIPY-anthracene dyads (BADs) exhibiting triplet excited state formation from charge-transfer states is reported. Four types of BODIPY scaffolds, different in the alkyl substitution pattern, and four anthracene derivatives have been used to access BADs. The fluorescence and intersystem crossing (ISC) in these dyads depend on donor-acceptor couplings and can be accurately controlled by the substitution or media polarity. Under conditions that do not allow charge transfer (CT), the dyads exhibit fluorescence with high quantum yields. Formation of charge-transfer states triggers ISC and the formation of long-lived triplet excited states in the dyads. The excited state properties were studied by steady-state techniques and ultrafast pump-probe spectroscopy to determine the parameters of the observed processes. Structural information for various BADs was derived from single crystal X-ray structure determinations alongside DFT molecular geometry optimization, revealing the effects of mutual orientation of subunits on the photophysical properties. The calculations showed that alkyl substituents on the BODIPY destabilize CT states in the dyads, thus controlling the charge transfer between the subunits. The effect of the dyad structure on the ISC efficiency was considered at M06-2X level of theory and a correlation between mutual orientation of the subunits and the energy gap between singlet and triplet CT states was studied using multireference CASSCF method.

  1. Heterogeneous-catalytic redox reactions in nitrate - formate systems

    International Nuclear Information System (INIS)

    Ananiev, A.V.; Shilov, V.P.; Tananaev, I.G.; Brossard, Ph.; Broudic, J.Ch.

    2000-01-01

    It was found that an intensive destruction of various organic and mineral substances - usual components of aqueous waste solutions (oxalic acid, complexones, urea, hydrazine, ammonium nitrate, etc.) takes place under the conditions of catalytic denitration. Kinetics and mechanisms of urea and ammonium nitrate decomposition in the system HNO 3 - HCOOH - Pt/SiO 2 are comprehensively investigated. The behaviour of uranium, neptunium and plutonium under the conditions of catalytic denitration is studied. It is shown, that under the certain conditions the formic acid is an effective reducer of the uranium (VI), neptunium (VI, V) and plutonium (VI, IV) ions. Kinetics of heterogeneous-catalytic red-ox reactions of uranium (VI), neptunium (VI, V) and plutonium (VI, IV) with formic acid are investigated. The mechanisms of the appropriate reactions are evaluated. (authors)

  2. Poisoning of bubble propelled catalytic micromotors: the chemical environment matters.

    Science.gov (United States)

    Zhao, Guanjia; Sanchez, Samuel; Schmidt, Oliver G; Pumera, Martin

    2013-04-07

    Self-propelled catalytic microjets have attracted considerable attention in recent years and these devices have exhibited the ability to move in complex media. The mechanism of propulsion is via the Pt catalysed decomposition of H2O2 and it is understood that the Pt surface is highly susceptible to poisoning by sulphur-containing molecules. Here, we show that important extracellular thiols as well as basic organic molecules can significantly hamper the motion of catalytic microjet engines. This is due to two different mechanisms: (i) molecules such as dimethyl sulfoxide can quench the hydroxyl radicals produced at Pt surfaces and reduce the amount of oxygen gas generated and (ii) molecules containing -SH, -SSR, and -SCH3 moieties can poison the catalytically active platinum surface, inhibiting the motion of the jet engines. It is essential that the presence of such molecules in the environment be taken into consideration for future design and operation of catalytic microjet engines. We show this effect on catalytic micromotors prepared by both rolled-up and electrodeposition approaches, demonstrating that such poisoning is universal for Pt catalyzed micromotors. We believe that our findings will contribute significantly to this field to develop alternative systems or catalysts for self-propulsion when practical applications in the real environment are considered.

  3. A trouble shared is a trouble halved: social context and status affect pain in mouse dyads.

    Directory of Open Access Journals (Sweden)

    Laura Gioiosa

    Full Text Available In mice behavioral response to pain is modulated by social status. Recently, social context also has been shown to affect pain sensitivity. In our study, we aimed to investigate the effects of interaction between status and social context in dyads of outbred CD-1 male mice in which the dominance/submission relationship was stable. Mice were assessed for pain response in a formalin (1% concentration test either alone (individually tested-IT, or in pairs of dominant and subordinate mice. In the latter condition, they could be either both injected (BI or only one injected (OI with formalin. We observed a remarkable influence of social context on behavioral response to painful stimuli regardless of the social status of the mice. In the absence of differences between OI and IT conditions, BI mice exhibited half as much Paw-licking behavior than OI group. As expected, subordinates were hypoalgesic in response to the early phase of the formalin effects compared to dominants. Clear cut-differences in coping strategies of dominants and subordinates appeared. The former were more active, whereas the latter were more passive. Finally, analysis of behavior of the non-injected subjects (the observers in the OI dyads revealed that dominant observers were more often involved in Self-grooming behavior upon observation of their subordinate partner in pain. This was not the case for subordinate mice observing the pain response of their dominant partner. In contrast, subordinate observers Stared at the dominant significantly more frequently compared to observer dominants in other dyads. The observation of a cagemate in pain significantly affected the observer's behavior. Additionally, the quality of observer's response was also modulated by the dominance/submission relationship.

  4. Ratiometric Fluorescent Detection of Pb2+ by FRET-Based Phthalocyanine-Porphyrin Dyads.

    Science.gov (United States)

    Zhang, Dongli; Zhu, Mengliang; Zhao, Luyang; Zhang, Jinghui; Wang, Kang; Qi, Dongdong; Zhou, Yang; Bian, Yongzhong; Jiang, Jianzhuang

    2017-12-04

    Sensitive and selective detection of Pb 2+ is a very worthwhile endeavor in terms of both human health and environmental protection, as the heavy metal is fairly ubiquitous and highly toxic. In this study, we designed phthalocyanine-porphyrin (Pc-Por) heterodyads, namely, H 2 Pc-α-ZnPor (1) and H 2 Pc-β-ZnPor (2), by connecting a zinc(II) porphyrin moiety to the nonperipheral (α) or peripheral (β) position of a metal-free phthalocyanine moiety. Upon excitation at the porphyrin Soret region (420 nm), both of the dyads exhibited not only a porphyrin emission (605 nm) but also a phthalocyanine emission (ca. 700 nm), indicating the occurrence of intramolecular fluorescence resonance energy transfer (FRET) processes from the porphyrin donor to the phthalocyanine acceptor. The dyads can selectively bind Pb 2+ in the phthalocyanine core leading to a red shift of the phthalocyanine absorption and thus a decrease of spectral overlap between the porphyrin emission and phthalocyanine absorption, which in turn suppresses the intramolecular FRET. In addition, the binding of Pb 2+ can highly quench the emission of phthalocyanine by heavy-metal ion effects. The synergistic coupled functions endow the dyads with remarkable ratiometric fluorescent responses at two distinct wavelengths (F 605 /F 703 for 1 and F 605 /F 700 for 2). The emission intensity ratio increased as a linear function to the concentration of Pb 2+ in the range of 0-4.0 μM, whereas the detection limits were determined to be 3.4 × 10 -9 and 2.2 × 10 -8 M for 1 and 2, respectively. Furthermore, by comparative study of 1 and 2, the effects of distance and relative orientation between Pc and ZnPor fluorophores on the FRET efficiency and sensing performance were highlighted, which is helpful for further optimizing such FRET systems.

  5. The dyad palindromic glutathione transferase P enhancer binds multiple factors including AP1.

    OpenAIRE

    Diccianni, M B; Imagawa, M; Muramatsu, M

    1992-01-01

    Glutathione Transferase P (GST-P) gene expression is dominantly regulated by an upstream enhancer (GPEI) consisting of a dyad of palindromically oriented imperfect TPA (12-O-tetradecanoyl-phorbol-13-acetate)-responsive elements (TRE). GPEI is active in AP1-lacking F9 cells as well in AP1-containing HeLa cells. Despite GPEI's similarity to a TRE, c-jun co-transfection has only a minimal effect on transactivation. Antisense c-jun and c-fos co-transfection experiments further demonstrate the lac...

  6. Estimating time-varying RSA to examine psychophysiological linkage of marital dyads.

    Science.gov (United States)

    Gates, Kathleen M; Gatzke-Kopp, Lisa M; Sandsten, Maria; Blandon, Alysia Y

    2015-08-01

    One of the primary tenets of polyvagal theory dictates that parasympathetic influence on heart rate, often estimated by respiratory sinus arrhythmia (RSA), shifts rapidly in response to changing environmental demands. The current standard analytic approach of aggregating RSA estimates across time to arrive at one value fails to capture this dynamic property within individuals. By utilizing recent methodological developments that enable precise RSA estimates at smaller time intervals, we demonstrate the utility of computing time-varying RSA for assessing psychophysiological linkage (or synchrony) in husband-wife dyads using time-locked data collected in a naturalistic setting. © 2015 Society for Psychophysiological Research.

  7. Exciplex-exciplex energy transfer and annihilation in solid films of porphyrin-fullerene dyads.

    Science.gov (United States)

    Lehtivuori, Heli; Lemmetyinen, Helge; Tkachenko, Nikolai V

    2006-12-20

    Exciplex-exciplex annihilation was observed for the first time in porphyrin-fullerene molecular films. The films were prepared using Langmuir-Blodgett and drop casting methods. The exciplex-exciplex interactions were studied using femtosecond pump-probe method. The exciplex-exciplex annihilation can be seen as a fast (within few picoseconds) decay of the transient absorption at excitation densities higher than 0.4 mJ/cm2. Analysis of the excitation density dependences indicates that in average four dyads are involved in the exciplex-exciplex interaction, suggesting that an exciplex-exciplex energy transfer may precede the annihilation.

  8. Catalytic bioreactors and methods of using same

    Science.gov (United States)

    Worden, Robert Mark; Liu, Yangmu Chloe

    2017-07-25

    Various embodiments provide a bioreactor for producing a bioproduct comprising one or more catalytically active zones located in a housing and adapted to keep two incompatible gaseous reactants separated when in a gas phase, wherein each of the one or more catalytically active zones may comprise a catalytic component retainer and a catalytic component retained within and/or thereon. Each of the catalytically active zones may additionally or alternatively comprise a liquid medium located on either side of the catalytic component retainer. Catalytic component may include a microbial cell culture located within and/or on the catalytic component retainer, a suspended catalytic component suspended in the liquid medium, or a combination thereof. Methods of using various embodiments of the bioreactor to produce a bioproduct, such as isobutanol, are also provided.

  9. Catalytic activity of Au nanoparticles

    DEFF Research Database (Denmark)

    Larsen, Britt Hvolbæk; Janssens, Ton V.W.; Clausen, Bjerne

    2007-01-01

    Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change with par......Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change...... with particle size. We find that the fraction of low-coordinated Au atoms scales approximately with the catalytic activity, suggesting that atoms on the corners and edges of Au nanoparticles are the active sites. This effect is explained using density functional calculations....

  10. Catalytic Ketone Hydrodeoxygenation Mediated by Highly Electrophilic Phosphonium Cations.

    Science.gov (United States)

    Mehta, Meera; Holthausen, Michael H; Mallov, Ian; Pérez, Manuel; Qu, Zheng-Wang; Grimme, Stefan; Stephan, Douglas W

    2015-07-06

    Ketones are efficiently deoxygenated in the presence of silane using highly electrophilic phosphonium cation (EPC) salts as catalysts, thus affording the corresponding alkane and siloxane. The influence of distinct substitution patterns on the catalytic effectiveness of several EPCs was evaluated. The deoxygenation mechanism was probed by DFT methods. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Mediation in dyadic data at the level of the dyads: a Structural Equation Modeling approach.

    Science.gov (United States)

    Ledermann, Thomas; Macho, Siegfried

    2009-10-01

    An extended version of the Common Fate Model (CFM) is presented to estimate and test mediation in dyadic data. The model can be used for distinguishable dyad members (e.g., heterosexual couples) or indistinguishable dyad members (e.g., homosexual couples) if (a) the variables measure characteristics of the dyadic relationship or shared external influences that affect both partners; if (b) the causal associations between the variables should be analyzed at the dyadic level; and if (c) the measured variables are reliable indicators of the latent variables. To assess mediation using Structural Equation Modeling, a general three-step procedure is suggested. The first is a selection of a good fitting model, the second a test of the direct effects, and the third a test of the mediating effect by means of bootstrapping. The application of the model along with the procedure for assessing mediation is illustrated using data from 184 couples on marital problems, communication, and marital quality. Differences with the Actor-Partner Interdependence Model and the analysis of longitudinal mediation by using the CFM are discussed.

  12. On the Role of Physical Interaction on Performance of Object Manipulation by Dyads

    Directory of Open Access Journals (Sweden)

    Keivan Mojtahedi

    2017-11-01

    Full Text Available Human physical interactions can be intrapersonal, e.g., manipulating an object bimanually, or interpersonal, e.g., transporting an object with another person. In both cases, one or two agents are required to coordinate their limbs to attain the task goal. We investigated the physical coordination of two hands during an object-balancing task performed either bimanually by one agent or jointly by two agents. The task consisted of a series of static (holding and dynamic (moving phases, initiated by auditory cues. We found that task performance of dyads was not affected by different pairings of dominant and non-dominant hands. However, the spatial configuration of the two agents (side-by-side vs. face-to-face appears to play an important role, such that dyads performed better side-by-side than face-to-face. Furthermore, we demonstrated that only individuals with worse solo performance can benefit from interpersonal coordination through physical couplings, whereas the better individuals do not. The present work extends ongoing investigations on human-human physical interactions by providing new insights about factors that influence dyadic performance. Our findings could potentially impact several areas, including robotic-assisted therapies, sensorimotor learning and human performance augmentation.

  13. Broadband Two-Photon Absorption Characteristics of Highly Photostable Fluorenyl-Dicyanoethylenylated [60]Fullerene Dyads

    Directory of Open Access Journals (Sweden)

    Seaho Jeon

    2016-05-01

    Full Text Available We synthesized four C60-(light-harvesting antenna dyads C60 (>CPAF-Cn (n = 4, 9, 12, or 18 1-Cn for the investigation of their broadband nonlinear absorption effect. Since we have previously demonstrated their high function as two-photon absorption (2PA materials at 1000 nm, a different 2PA wavelength of 780 nm was applied in the study. The combined data taken at two different wavelength ranges substantiated the broadband characteristics of 1-Cn. We proposed that the observed broadband absorptions may be attributed by a partial π-conjugation between the C60 > cage and CPAF-Cn moieties, via endinitrile tautomeric resonance, giving a resonance state with enhanced molecular conjugation. This transient state could increase its 2PA and excited-state absorption at 800 nm. In addition, a trend of concentration-dependent 2PA cross-section (σ2 and excited-state absorption magnitude was detected showing a higher σ value at a lower concentration that was correlated to increasing molecular separation with less aggregation for dyads C60(>CPAF-C18 and C60(>CPAF-C9, as better 2PA and excited-state absorbers.

  14. Absorption and emission spectroscopic characterisation of a pyrene-flavin dyad

    International Nuclear Information System (INIS)

    Shirdel, J.; Penzkofer, A.; Prochazka, R.; Shen, Z.; Strauss, J.; Daub, J.

    2007-01-01

    The pyrene-flavin (isoalloxazine) dyad, PFD {C 44 H 31 N 5 O 5 ; CA Index name: 1-pyrenepropanoic acid, α-[[4,10-dihydro-2,4-dioxo-10- phenylbenzo[g]pteridin-3(2H)-yl)acetyl]amino]-, phenylmethyl ester (αR)-(9Cl); CA Registry number: 618907-57-6}, dissolved in either dichloromethane or acetonitrile is characterized by absorption and emission spectroscopy. Absorption cross-section spectra, stimulated emission cross-section spectra, fluorescence quantum distributions, quantum yields, and degrees of fluorescence polarisation are determined. The fluorescence decay after femtosecond pulse excitation is determined by fluorescence up-conversion. The ground-state absorption recovery is determined by picosecond pump and probe transmission measurements. The dye photo-stability is investigated by observation of absorption spectral changes due to prolonged blue-light excitation. The absorption spectrum of PFD dyad resembles the superposition of the absorption of isoalloxazine (flavin) and 1-methylpyrene. Long-wavelength photo-excitation of the flavin moiety causes fluorescence quenching by ground-state electron transfer from pyrene to isoalloxazine. Short-wavelength photo-excitation of the pyrene moiety causes (i) excited-state electron transfer from pyrene to isoalloxazine, and (ii) Foerster-type energy transfer from pyrene to flavin followed by ground-state electron transfer from pyrene to flavin.

  15. Student nurse dyads create a community of learning: proposing a holistic clinical education theory.

    Science.gov (United States)

    Ruth-Sahd, Lisa A

    2011-11-01

    This paper is a report of a qualitative study of students' experiences of cooperative learning in the clinical setting. Although cooperative learning is often used successfully in the classroom, it has not been documented in the clinical setting with sophomore nursing students being paired with other sophomore nursing students. Using a grounded theory methodology a sample of 64 participants (32 student nurse dyads, eight clinical groups, in two different acute care institutions) were observed on their first day in the clinical setting while working as cooperative partners. Interviews were also conducted with students, patients and staff preceptors. Data were collected in the fall of 2008, spring and fall of 2009 and the spring of 2010 using semi-structured interviews and reflective surveys. Data were analysed using the constant comparative method. A holistic clinical education theory for student nurses was identified from the data. This theory includes a reciprocal relationship among five categories relevant to a community of learning: supportive clinical experience; improved transition into practice; enhanced socialization into the profession; increased accountability and responsibility; and emergence of self-confidence as a beginning student nurse. The use of student dyads creates a supportive learning environment while students were able to meet the clinical learning objectives. Cooperative learning in the clinical setting creates a community of learning while instilling very early in the education process the importance of teamwork. This approach to clinical instruction eases the transition from the classroom to the clinical learning environment, and improves patient outcomes. © 2011 Blackwell Publishing Ltd.

  16. Designing of an artificial light energy converter in the form of short-chain dyad when combined with core-shell gold/silver nanocomposites.

    Science.gov (United States)

    Dutta Pal, Gopa; Paul, Somnath; Bardhan, Munmun; De, Asish; Ganguly, Tapan

    2017-06-05

    UV-vis absorption, steady state and time resolved fluorescence and absorption spectroscopic investigations demonstrate that the short chain dyad MNTMA when combined with gold-silver core-shell (Au@Ag) nanocomposite , forms elongated conformers in the excited state whereas for the dyad - Ag (spherical) system the majority of dyads remains in a folded conformation. In the dyad-core-shell nanocomposite system, energy wasting charge recombination rate slows down primarily due to elongated conformation and thus it may be anticipated that this hybrid nanocomposite system may serve as a better light energy conversion device. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Electro-catalytic degradation of sulfisoxazole by using graphene anode.

    Science.gov (United States)

    Wang, Yanyan; Liu, Shuan; Li, Ruiping; Huang, Yingping; Chen, Chuncheng

    2016-05-01

    Graphite and graphene electrodes were prepared by using pure graphite as precursor. The electrode materials were characterized by a scanning electron microscope (SEM), X-ray diffraction (XRD) and cyclic voltammetry (CV) measurements. The electro-catalytic activity for degradation of sulfisoxazole (SIZ) was investigated by using prepared graphene or graphite anode. The results showed that the degradation of SIZ was much more rapid on the graphene than that on the graphite electrode. Moreover, the graphene electrode exhibited good stability and recyclability. The analysis on the intermediate products and the measurement of active species during the SIZ degradation demonstrated that indirect oxidation is the dominant mechanism, involving the electro-catalytic generation of OH and O2(-) as the main active oxygen species. This study implies that graphene is a promising potential electrode material for long-term application to electro-catalytic degradation of organic pollutants. Copyright © 2015. Published by Elsevier B.V.

  18. Progress in catalytic naphtha reforming process: A review

    International Nuclear Information System (INIS)

    Rahimpour, Mohammad Reza; Jafari, Mitra; Iranshahi, Davood

    2013-01-01

    Catalytic naphtha reforming process is a vital process for refineries due to the production of high-octane components, which is intensely demanded in our modern life. The significance of this industrial process induced researchers to investigate different aspects of catalytic naphtha reforming process intensively. Some of the investigators try to improve this process by representing more effective catalysts, while others try to elucidate its kinetic and deactivation mechanisms and design more efficient reactor setups. The amount of these established papers is so much that may confuse some of the researchers who want to find collective information about catalytic naphtha reforming process. In the present paper, the published studies from 1949 until now are categorized into three main groups including finding suitable catalyst, revealing appropriate kinetic and deactivation model, and suggesting efficient reactor configuration and mode of operation. These studies are reviewed separately, and a suitable reference is provided for those who want to have access to generalized information about catalytic naphtha reforming process. Finally, various suggestions for revamping the catalytic naphtha reforming process have been proposed as a guideline for further investigations

  19. Catalytic properties of niobium compounds

    International Nuclear Information System (INIS)

    Tanabe, K.; Iizuka, T.

    1983-04-01

    The catalytic activity and selectivity of niobium compounds including oxides, salts, organometallic compounds and others are outlined. The application of these compounds as catalysts to diversified reactions is reported. The nature and action of niobium catalysts are characteristic and sometimes anomalous, suggesting the necessity of basic research and the potential use as catalysts for important processes in the chemical industry. (Author) [pt

  20. Catalytic Decoupling of Quantum Information

    DEFF Research Database (Denmark)

    Majenz, Christian; Berta, Mario; Dupuis, Frédéric

    2017-01-01

    The decoupling technique is a fundamental tool in quantum information theory with applications ranging from quantum thermodynamics to quantum many body physics to the study of black hole radiation. In this work we introduce the notion of catalytic decoupling, that is, decoupling in the presence...... and quantum state merging, and leads to a resource theory of decoupling....

  1. Synthesis, spectroscopic characterization and catalytic oxidation ...

    Indian Academy of Sciences (India)

    were characterized by infrared, electronic, electron paramagnetic resonance ... The catalytic oxidation property of ruthenium(III) complexes were also ... cies at room temperature. ..... aldehyde part of Schiff base ligands, catalytic activ- ity of new ...

  2. Charge-transfer state and large first hyperpolarizability constant in a highly electronically coupled zinc and gold porphyrin dyad.

    Science.gov (United States)

    Fortage, Jérôme; Scarpaci, Annabelle; Viau, Lydie; Pellegrin, Yann; Blart, Errol; Falkenström, Magnus; Hammarström, Leif; Asselberghs, Inge; Kellens, Ruben; Libaers, Wim; Clays, Koen; Eng, Mattias P; Odobel, Fabrice

    2009-09-14

    We report the synthesis and the characterizations of a novel dyad composed of a zinc porphyrin (ZnP) linked to a gold porphyrin (AuP) through an ethynyl spacer. The UV/Vis absorption spectrum and the electrochemical properties clearly reveal that this dyad exhibits a strong electronic coupling in the ground state as evidenced by shifted redox potentials and the appearance of an intense charge-transfer band localized at lambda = 739 nm in dichloromethane. A spectroelectrochemical study of the dyad along with the parent homometallic system (i.e., ZnP-ZnP and AuP-AuP) was undertaken to determine the spectra of the reduced and oxidized porphyrin units. Femtosecond transient absorption spectroscopic analysis showed that the photoexcitation of the heterometallic dyad leads to an ultrafast formation of a charge-separated state ((+)ZnP-AuP(*)) that displays a particularly long lifetime (tau = 4 ns in toluene) for such a short separation distance. The molecular orbitals of the dyad were determined by DFT quantum-chemical calculations. This theoretical study confirms that the observed intense band at lambda = 739 nm corresponds to an interporphyrin charge-transfer transition from the HOMO orbital localized on the zinc porphyrin to LUMO orbitals localized on the gold porphyrin. Finally, a Hyper-Rayleigh scattering study shows that the dyad possesses a large first molecular hyperpolarizability coefficient (beta = 2100x10(-30) esu at lambda = 1064 nm), thus highlighting the valuable nonlinear optical properties of this new type of push-pull porphyrin system.

  3. Mechanics

    CERN Document Server

    Hartog, J P Den

    1961-01-01

    First published over 40 years ago, this work has achieved the status of a classic among introductory texts on mechanics. Den Hartog is known for his lively, discursive and often witty presentations of all the fundamental material of both statics and dynamics (and considerable more advanced material) in new, original ways that provide students with insights into mechanical relationships that other books do not always succeed in conveying. On the other hand, the work is so replete with engineering applications and actual design problems that it is as valuable as a reference to the practicing e

  4. Study of catalytic phenomena in radiation chemistry

    International Nuclear Information System (INIS)

    Dran, J.C.

    1965-01-01

    Two phenomena have been studied: the action of γ rays from radio-cobalt on the adsorption and catalytic properties of ZnO and NiO in. relationship with the heterogeneous oxidation of CO, and the homogeneous catalysis by OsO 4 of the oxidation of various aqueous phase solutes by the same radiation. The prior irradiation of ZnO and of NiO does not modify their catalytic activity but generally increases the adsorption energy of -the gases CO and O 2 . The influence of the radiations appears to be connected with the presence of traces of water on ZnO and of an excess of oxygen on NiO. Osmium tetroxide which is not degraded by irradiation in acid solution, accelerates the radiolytic oxidation of certain compounds (Te IV , Pt 11 , As 111 ) in the presence of oxygen, as a result of its sensitizing effect on the oxidation by H 2 O 2 . In the case of phosphites on the other hand, OsO 4 has a protecting action under certain conditions of acidity and may suppress entirely the chain reaction which characterizes the oxidation of this solute byγ rays. A general mechanism is proposed for these phenomena. The rate constant for the OsO 4 + HO 2 reaction is calculated to be 5.7 x 10 5 l.mol -1 . sec -1 . (author) [fr

  5. Catalytic hydroprocessing of heavy oil feedstocks

    International Nuclear Information System (INIS)

    Okunev, A G; Parkhomchuk, E V; Lysikov, A I; Parunin, P D; Semeikina, V S; Parmon, V N

    2015-01-01

    A grave problem of modern oil refining industry is continuous deterioration of the produced oil quality, on the one hand, and increase in the demand for motor fuels, on the other hand. This necessitates processing of heavy oil feedstock with high contents of sulfur, nitrogen and metals and the atmospheric residue. This feedstock is converted to light oil products via hydrogenation processes catalyzed by transition metal compounds, first of all, cobalt- or nickel-promoted molybdenum and tungsten compounds. The processing involves desulfurization, denitrogenation and demetallization reactions as well as reactions converting heavy hydrocarbons to lighter fuel components. The review discusses the mechanisms of reactions involved in the heavy feedstock hydroprocessing, the presumed structure and state of the catalytically active components and methods for the formation of supports with the desired texture. Practically used and prospective approaches to catalytic upgrading of heavy oil feedstock as well as examples of industrial processing of bitumen and vacuum residues in the presence of catalysts are briefly discussed. The bibliography includes 140 references

  6. Catalytic hydroprocessing of heavy oil feedstocks

    Science.gov (United States)

    Okunev, A. G.; Parkhomchuk, E. V.; Lysikov, A. I.; Parunin, P. D.; Semeikina, V. S.; Parmon, V. N.

    2015-09-01

    A grave problem of modern oil refining industry is continuous deterioration of the produced oil quality, on the one hand, and increase in the demand for motor fuels, on the other hand. This necessitates processing of heavy oil feedstock with high contents of sulfur, nitrogen and metals and the atmospheric residue. This feedstock is converted to light oil products via hydrogenation processes catalyzed by transition metal compounds, first of all, cobalt- or nickel-promoted molybdenum and tungsten compounds. The processing involves desulfurization, denitrogenation and demetallization reactions as well as reactions converting heavy hydrocarbons to lighter fuel components. The review discusses the mechanisms of reactions involved in the heavy feedstock hydroprocessing, the presumed structure and state of the catalytically active components and methods for the formation of supports with the desired texture. Practically used and prospective approaches to catalytic upgrading of heavy oil feedstock as well as examples of industrial processing of bitumen and vacuum residues in the presence of catalysts are briefly discussed. The bibliography includes 140 references.

  7. Influence of environmental health in the cow-calf dyad system

    Directory of Open Access Journals (Sweden)

    Thayná Barcelos Fernandes

    2012-12-01

    Full Text Available Health factors influence the cow-calf dyad system in the postpartum period until the first suckling. The use of maternity paddock is a recommended management to facilitate the monitoring of parturient cows and calves. However, side effects occur due to environmental health conditions of maternity paddock that can affect the behaviour of the cow and result in the separation of calf from the mother, undermining sucking and the formation of the cow-calf dyad. To improve the understanding of this complex and dynamic system we built a conceptual model using the technique of causal loop diagram, Figure 1. By hypothesis, the environmental variables that act in maternity paddock influence the variable "Sources of pathogens in maternity". Those sources present a positive effect (in the same direction in the infection process of the calf and cow. Thus, a recommended practice is exposing the parturient cow to pathogens in maternity for sufficient period to stimulate their immune system and build disease resistance. That process contributes to improve the quality of colostrum that will be consumed by the calf during the first hours postpartum which has the function of increasing calf immunity, minimizing the occurrence of infections. In the model, sanitary environmental factors work in two Balance feedback loops (B1 and B2. The B1 cycle refers to the production of a healthy cow with a low level of infection by means of the variables: “Vaccine”, "Stimulation of cow immune system" and "Health resistance" with delay. The variable "Cow infection" has a negative influence (in the opposite direction in the "Maternal behaviour", thus the more infected the cow, the less investment will occur in maternal behaviour. The B2 cycle refers to the calf’s health condition, which is positively influenced by “Calf infection” which, in turn, has positive influence, contributing to the increase of "Calf diseases". The increase in “Calf diseases” generates an

  8. Single-step electron transfer on the nanometer scale: ultra-fast charge shift in strongly coupled zinc porphyrin-gold porphyrin dyads.

    Science.gov (United States)

    Fortage, Jérôme; Boixel, Julien; Blart, Errol; Hammarström, Leif; Becker, Hans Christian; Odobel, Fabrice

    2008-01-01

    The synthesis, electrochemical properties, and photoinduced electron transfer processes of a series of three novel zinc(II)-gold(III) bisporphyrin dyads (ZnP--S--AuP(+)) are described. The systems studied consist of two trisaryl porphyrins connected directly in the meso position via an alkyne unit to tert-(phenylenethynylene) or penta(phenylenethynylene) spacers. In these dyads, the estimated center to center interporphyrin separation distance varies from 32 to 45 A. The absorption, emission, and electrochemical data indicate that there are strong electronic interactions between the linked elements, thanks to the direct attachment of the spacer on the porphyrin ring through the alkyne unit. At room temperature in toluene, light excitation of the zinc porphyrin results in almost quantitative formation of the charge shifted state (.+)ZnP--S--AuP(.), whose lifetime is in the order of hundreds of picoseconds. In this solvent, the charge-separated state decays to the ground state through the intermediate population of the zinc porphyrin triplet excited state. Excitation of the gold porphyrin leads instead to rapid energy transfer to the triplet ZnP. In dichloromethane the charge shift reactions are even faster, with time constants down to 2 ps, and may be induced also by excitation of the gold porphyrin. In this latter solvent, the longest charge-shifted lifetime (tau=2.3 ns) was obtained with the penta-(phenylenethynylene) spacer. The charge shift reactions are discussed in terms of bridge-mediated super-exchange mechanisms as electron or hole transfer. These new bis-porphyrin arrays, with strong electronic coupling, represent interesting molecular systems in which extremely fast and efficient long-range photoinduced charge shift occurs over a long distance. The rate constants are two to three orders of magnitude larger than for corresponding ZnP--AuP(+) dyads linked via meso-phenyl groups to oligo-phenyleneethynylene spacers. This study demonstrates the critical

  9. Catalytic process for tritium exchange reaction

    International Nuclear Information System (INIS)

    Hansoo Lee; Kang, H.S.; Paek, S.W.; Hongsuk Chung; Yang Geun Chung; Sook Kyung Lee

    2001-01-01

    The catalytic activities for a hydrogen isotope exchange were measured through the reaction of a vapor and gas mixture. The catalytic activity showed to be comparable with the published data. Since the gas velocity is relatively low, the deactivation was not found clearly during the 5-hour experiment. Hydrogen isotope transfer experiments were also conducted through the liquid phase catalytic exchange reaction column that consisted of a catalytic bed and a hydrophilic bed. The efficiencies of both the catalytic and hydrophilic beds were higher than 0.9, implying that the column performance was excellent. (author)

  10. Quality of social interaction in foster dyads at child age 2 and 3 years.

    Science.gov (United States)

    Jacobsen, Heidi; Vang, Kristin Alvestad; Lindahl, Karoline Mentzoni; Wentzel-Larsen, Tore; Smith, Lars; Moe, Vibeke

    2018-06-30

    The main aim of this study was to investigate the quality of social interaction between 60 foster parents and their foster children compared to a group of 55 non-foster families at 2 (T1) and again at 3 (T2) years of age. Video observations were used to investigate child-parent interaction at both time-points. "This is My Baby" interview was administered to investigate foster parents' commitment at T1. The main results revealed significant group differences at T1 on all child-parent social interaction measures, although not at T2. Further, a significant group by time interaction was identified for parental sensitivity, revealing a positive development over time in the foster group. Finally, a significant positive relation was found between commitment at T1 and parental sensitivity. The results convey an optimistic view of the possibilities for foster dyads to develop positive patterns of social interaction over time.

  11. Time-resolved fluorescence study of exciplex formation in diastereomeric naproxen-pyrrolidine dyads.

    Science.gov (United States)

    Khramtsova, Ekaterina A; Plyusnin, Viktor F; Magin, Ilya M; Kruppa, Alexander I; Polyakov, Nikolay E; Leshina, Tatyana V; Nuin, Edurne; Marin, M Luisa; Miranda, Miguel A

    2013-12-19

    The influence of chirality on the elementary processes triggered by excitation of the (S,S)- and (R,S)- diastereoisomers of naproxen-pyrrolidine (NPX-Pyr) dyads has been studied by time-resolved fluorescence in acetonitrile-benzene mixtures. In these systems, the quenching of the (1)NPX*-Pyr singlet excited state occurs through electron transfer and exciplex formation. Fluorescence lifetimes and quantum yields revealed a significant difference (around 20%) between the (S,S)- and (R,S)- diastereomers. In addition, the quantum yields of exciplexes differed by a factor of 2 regardless of solvent polarity. This allows us to suggest a similar influence of the chiral centers on the local charge transfer resulting in exciplex and full charge separation that leads to ion-biradicals. A simplified scheme is proposed to estimate a set of rate constant values (k1-k5) for the elementary stages in each solvent system.

  12. Oscillatory behaviour of catalytic properties, structure and temperature during the catalytic partial oxidation of methane on Pd/Al2O3

    DEFF Research Database (Denmark)

    Kimmerle, B.; Baiker, A.; Grunwaldt, Jan-Dierk

    2010-01-01

    Pd/Al2O3 catalysts showed an oscillatory behaviour during the catalytic partial oxidation (CPO) of methane, which was investigated simultaneously by IR-thermography, X-ray absorption spectroscopy, and online mass-spectrometry to correlate the temperature, state of the catalyst and catalytic...... to self-reduction leading to extinction of the process. The latter was the key driver for the oscillations and thus gave additional insight into the mechanism of partial methane oxidation....

  13. Maternal Obesity, 25-Hydroxy Vitamin D Concentration, and Bone Density in Breastfeeding Dyads.

    Science.gov (United States)

    Sen, Sarbattama; Penfield-Cyr, Annie; Hollis, Bruce W; Wagner, Carol L

    2017-08-01

    To examine the association between maternal body mass index (BMI) and serum 25-hydroxy vitamin D [25(OH)D] concentration and bone density in mother-infant pairs. The study was a secondary analysis of 234 exclusively breastfeeding dyads who were recruited in the first postpartum month for a randomized controlled trial of maternal vs infant vitamin D supplementation. Mean 25(OH)D concentrations and bone mineral density (BMD) were compared by BMI group. The adjusted association between maternal BMI and 25(OH)D and bone density was examined at 1, 4, and 7 months postpartum. Obese breastfeeding women had lower 25(OH)D concentrations and higher BMD than lean women at all 3 time points (P  maternal BMI was associated with lower maternal serum levels of 25(OH)D at 1, 4, and 7 months postpartum (adjusted β = -0.45 ng/ml per kg/m 2 , 95% CI -.076, -0.14, at 1 month) and higher BMD at the same time points (β = 0.006 BMD z score; 95% CI 0.003, 0.01 at 1 month). Seventy-six percent of infants were vitamin D deficient at 1 month of age. Infants born to overweight and obese mothers had lower 25(OH)D concentrations than infants of lean mothers (P maternal supplementation group, higher maternal BMI was associated with lower 25(OH)D concentrations at 4 months (β = -0.68; 95% CI -1.17, -0.20) and lower bone density at 7 months (β = -0.001; 95% CI -0.002, -0.0001). In exclusively breastfeeding dyads, maternal obesity is associated with lower maternal and infant serum 25(OH)D concentrations, which may impact infant bone density. ClinicalTrials.gov: NCT00412074. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Beyond the 'dyad': a qualitative re-evaluation of the changing clinical consultation.

    Science.gov (United States)

    Swinglehurst, Deborah; Roberts, Celia; Li, Shuangyu; Weber, Orest; Singy, Pascal

    2014-09-29

    To identify characteristics of consultations that do not conform to the traditionally understood communication 'dyad', in order to highlight implications for medical education and develop a reflective 'toolkit' for use by medical practitioners and educators in the analysis of consultations. A series of interdisciplinary research workshops spanning 12 months explored the social impact of globalisation and computerisation on the clinical consultation, focusing specifically on contemporary challenges to the clinician-patient dyad. Researchers presented detailed case studies of consultations, taken from their recent research projects. Drawing on concepts from applied sociolinguistics, further analysis of selected case studies prompted the identification of key emergent themes. University departments in the UK and Switzerland. Six researchers with backgrounds in medicine, applied linguistics, sociolinguistics and medical education. One workshop was also attended by PhD students conducting research on healthcare interactions. The contemporary consultation is characterised by a multiplicity of voices. Incorporation of additional voices in the consultation creates new forms of order (and disorder) in the interaction. The roles 'clinician' and 'patient' are blurred as they become increasingly distributed between different participants. These new consultation arrangements make new demands on clinicians, which lie beyond the scope of most educational programmes for clinical communication. The consultation is changing. Traditional consultation models that assume a 'dyadic' consultation do not adequately incorporate the realities of many contemporary consultations. A paradox emerges between the need to manage consultations in a 'super-diverse' multilingual society, while also attending to increasing requirements for standardised protocol-driven approaches to care prompted by computer use. The tension between standardisation and flexibility requires addressing in educational

  15. Bidirectional Associations Between Externalizing Behavior Problems and Maladaptive Parenting Within Parent-Son Dyads Across Childhood.

    Science.gov (United States)

    Besemer, Sytske; Loeber, Rolf; Hinshaw, Stephen P; Pardini, Dustin A

    2016-10-01

    Coercive parent-child interaction models posit that an escalating cycle of negative, bidirectional interchanges influences the development of boys' externalizing problems and caregivers' maladaptive parenting over time. However, longitudinal studies examining this hypothesis have been unable to rule out the possibility that between-individual factors account for bidirectional associations between child externalizing problems and maladaptive parenting. Using a longitudinal sample of boys (N = 503) repeatedly assessed eight times across 6-month intervals in childhood (in a range between 6 and 13 years), the current study is the first to use novel within-individual change (fixed effects) models to examine whether parents tend to increase their use of maladaptive parenting strategies following an increase in their son's externalizing problems, or vice versa. These bidirectional associations were examined using multiple facets of externalizing problems (i.e., interpersonal callousness, conduct and oppositional defiant problems, hyperactivity/impulsivity) and parenting behaviors (i.e., physical punishment, involvement, parent-child communication). Analyses failed to support the notion that when boys increase their typical level of problem behaviors, their parents show an increase in their typical level of maladaptive parenting across the subsequent 6 month period, and vice versa. Instead, across 6-month intervals, within parent-son dyads, changes in maladaptive parenting and child externalizing problems waxed and waned in concert. Fixed effects models to address the topic of bidirectional relations between parent and child behavior are severely underrepresented. We recommend that other researchers who have found significant bidirectional parent-child associations using rank-order change models reexamine their data to determine whether these findings hold when examining changes within parent-child dyads.

  16. Cocaine self-administration in social dyads using custom-built operant conditioning chambers.

    Science.gov (United States)

    Lacy, Ryan T; Strickland, Justin C; Smith, Mark A

    2014-10-30

    Traditionally, the analysis of intravenous drug self-administration is limited to conditions in which subjects are tested in isolation. This limits the translational appeal of these studies because drug use in humans often occurs in the presence of others. We used custom-built operant conditioning chambers that allowed social dyads visual, olfactory, auditory, and limited tactile contact while concurrently self-administering cocaine. Male rats were trained to respond according to a fixed interval schedule of reinforcement (with a limited hold) in order to determine if patterns of cocaine (0.75mg/kg/infusion) self-administration became more similar over time in social pairs. Cocaine self-administration was tested across five days according to a 10-min fixed interval schedule (with a 5-min limited hold). Quarter-life values (time at which 25% of responses were emitted per interval) were analyzed using intraclass correlations. The total number of reinforcers obtained did not vary across the five days of testing; however, quarter-life values became progressively more similar between individuals within the social dyads. Standard operant conditioning chambers are unable to assess responding in multiple animals due to their small size, the need to prevent subjects from responding on the lever of their partner, and the need to prevent infusion lines from entangling. By using custom-built social operant conditioning chambers, we assessed the effects of social contact on cocaine self-administration. Social operant conditioning chambers can be used as a preclinical method to examine social influences on drug self-administration under conditions that approximate human substance use. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Catalytic Fast Pyrolysis: A Review

    Directory of Open Access Journals (Sweden)

    Theodore Dickerson

    2013-01-01

    Full Text Available Catalytic pyrolysis is a promising thermochemical conversion route for lignocellulosic biomass that produces chemicals and fuels compatible with current, petrochemical infrastructure. Catalytic modifications to pyrolysis bio-oils are geared towards the elimination and substitution of oxygen and oxygen-containing functionalities in addition to increasing the hydrogen to carbon ratio of the final products. Recent progress has focused on both hydrodeoxygenation and hydrogenation of bio-oil using a variety of metal catalysts and the production of aromatics from bio-oil using cracking zeolites. Research is currently focused on developing multi-functional catalysts used in situ that benefit from the advantages of both hydrodeoxygenation and zeolite cracking. Development of robust, highly selective catalysts will help achieve the goal of producing drop-in fuels and petrochemical commodities from wood and other lignocellulosic biomass streams. The current paper will examine these developments by means of a review of existing literature.

  18. Catalytic processes for cleaner fuels

    International Nuclear Information System (INIS)

    Catani, R.; Marchionna, M.; Rossini, S.

    1999-01-01

    More stringent limitations on vehicle emissions require different measurement: fuel reformulation is one of the most important and is calling for a noticeable impact on refinery assets. Composition rangers of the future fuels have been defined on a time scale. In this scenario the evolution of catalytic technologies becomes a fundamental tool for allowing refinery to reach the fixed-by-law targets. In this paper, the refinery process options to meet each specific requirements of reformulated fuels are surveyed [it

  19. OPERATING SPECIFICATIONS OF CATALYTIC CLEANING OF GAS FROM BIOMASS GASIFICATION

    Directory of Open Access Journals (Sweden)

    Martin Lisý

    2015-12-01

    Full Text Available The paper focuses on the theoretical description of the cleaning of syngas from biomass and waste gasification using catalytic methods, and on the verification of the theory through experiments. The main obstruction to using syngas from fluid gasification of organic matter is the presence of various high-boiling point hydrocarbons (i.e., tar in the gas. The elimination of tar from the gas is a key factor in subsequent use of the gas in other technologies for cogeneration of electrical energy and heat. The application of a natural or artificial catalyst for catalytic destruction of tar is one of the methods of secondary elimination of tar from syngas. In our experiments, we used a natural catalyst (dolomite or calcium magnesium carbonate from Horní Lánov with great mechanical and catalytic properties, suitable for our purposes. The advantages of natural catalysts in contrast to artificial catalysts include their availability, low purchase prices and higher resilience to the so-called catalyst poison. Natural calcium catalysts may also capture undesired compounds of sulphure and chlorine. Our paper presents a theoretical description and analysis of catalytic destruction of tar into combustible gas components, and of the impact of dolomite calcination on its efficiency. The efficiency of the technology is verified in laboratories. The facility used for verification was a 150 kW pilot gasification unit with a laboratory catalytic filter. The efficiency of tar elimination reached 99.5%, the tar concentration complied with limits for use of the gas in combustion engines, and the tar content reached approximately 35 mg/mn3. The results of the measurements conducted in laboratories helped us design a pilot technology for catalytic gas cleaning.

  20. Physical chemistry of catalytic reduction of nitroarenes using various nanocatalytic systems: past, present, and future

    International Nuclear Information System (INIS)

    Begum, Robina; Rehan, Rida; Farooqi, Zahoor H.; Butt, Zonarah; Ashraf, Sania

    2016-01-01

    The catalytic reduction of nitroarenes under various catalytic systems has been widely reported in the flood of publications during last twenty years. This reaction has become a benchmark for testing catalytic activity of inorganic nanoparticles stabilized in various systems. This tutorial review presents design and classification of inorganic nanocatalysts along with their stabilizing agents used for catalytic reduction of nitroarenes. The techniques used for characterization of catalysts have been highlighted in this review. The mechanism of catalytic reduction has been described in a tutorial way. Factors affecting the rate of reduction of nitroarenes in the presence of metal nanoparticles stabilized in polyelectrolyte brushes, polyionic liquids, micelles, dendrimers, and microgels have been discussed for further development in this area.Graphical abstract

  1. Physical chemistry of catalytic reduction of nitroarenes using various nanocatalytic systems: past, present, and future

    Energy Technology Data Exchange (ETDEWEB)

    Begum, Robina [University of the Punjab, Centre for Undergraduate Studies (Pakistan); Rehan, Rida; Farooqi, Zahoor H., E-mail: zhfarooqi@gmail.com; Butt, Zonarah; Ashraf, Sania [University of the Punjab, Institute of Chemistry (Pakistan)

    2016-08-15

    The catalytic reduction of nitroarenes under various catalytic systems has been widely reported in the flood of publications during last twenty years. This reaction has become a benchmark for testing catalytic activity of inorganic nanoparticles stabilized in various systems. This tutorial review presents design and classification of inorganic nanocatalysts along with their stabilizing agents used for catalytic reduction of nitroarenes. The techniques used for characterization of catalysts have been highlighted in this review. The mechanism of catalytic reduction has been described in a tutorial way. Factors affecting the rate of reduction of nitroarenes in the presence of metal nanoparticles stabilized in polyelectrolyte brushes, polyionic liquids, micelles, dendrimers, and microgels have been discussed for further development in this area.Graphical abstract.

  2. Direct catalytic asymmetric aldol-Tishchenko reaction.

    Science.gov (United States)

    Gnanadesikan, Vijay; Horiuchi, Yoshihiro; Ohshima, Takashi; Shibasaki, Masakatsu

    2004-06-30

    A direct catalytic asymmetric aldol reaction of propionate equivalent was achieved via the aldol-Tishchenko reaction. Coupling an irreversible Tishchenko reaction to a reversible aldol reaction overcame the retro-aldol reaction problem and thereby afforded the products in high enantio and diastereoselectivity using 10 mol % of the asymmetric catalyst. A variety of ketones and aldehydes, including propyl and butyl ketones, were coupled efficiently, yielding the corresponding aldol-Tishchenko products in up to 96% yield and 95% ee. Diastereoselectivity was generally below the detection limit of 1H NMR (>98:2). Preliminary studies performed to clarify the mechanism revealed that the aldol products were racemic with no diastereoselectivity. On the other hand, the Tishchenko products were obtained in a highly enantiocontrolled manner.

  3. The Role of Maternal Factors in Sibling Relationship Quality: A Multilevel Study of Multiple Dyads per Family

    Science.gov (United States)

    Jenkins, Jennifer; Rasbash, Jon; Leckie, George; Gass, Krista; Dunn, Judy

    2012-01-01

    Background: Although many children grow up with more than one sibling, we do not yet know if sibling dyads within families show similarities to one another on sibling affection and hostility. In the present study the hypotheses were tested that (a) there will be significant between family variation in change in sibling affection and hostility and…

  4. Branded into submission: Brand attributes and hierarchisation behavior in same-sex and mixed-sex dyads

    NARCIS (Netherlands)

    Fennis, B.M.

    2008-01-01

    In 2 experiments, the role of brand attributes in the process of nonconscious hierarchization in dyadic interactions was examined. Experiment 1 showed that in same-sex dyads, brands that are associated with an agent and that are rated high on the brand personality dimension of competence (Aaker,

  5. Observed normativity and deviance in friendship dyads' conversations about sex and the relations with youths' perceived sexual peer norms

    NARCIS (Netherlands)

    Bongardt, D. van de; Reitz, E.; Overbeek, G.J.; Boislard, M.A.; Burk, W.J.; Dekovic, M.

    2017-01-01

    The current study examined the relations between observed normativity and deviance during adolescents' and young adults' conversations about sex with their friends and their individual perceptions of sexual peer norms. Participants were 16-21-year-old same-sex friendship dyads (31 male and 30 female

  6. Protege and Mentor Self-Disclosure: Levels and Outcomes within Formal Mentoring Dyads in a Corporate Context

    Science.gov (United States)

    Wanberg, Connie R.; Welsh, Elizabeth T.; Kammeyer-Mueller, John

    2007-01-01

    This study examined the role of self-disclosure within protege/mentor dyads in formal mentoring partnerships within a corporate context as a means of learning more about specific relationship processes that may enhance the positive outcomes of mentoring. While both proteges and mentors self-disclosed in their relationships, proteges disclosed at a…

  7. Photodynamics of charge separation and recombination in solid alternating films of phthalocyanine or phthalocyanine-fullerene dyad and perylene dicarboximide

    NARCIS (Netherlands)

    Lehtivuori, Heli; Kumpulainen, Tatu; Hietala, Matti; Efimov, Alexander; Helge, Lemmetyinen; Kira, Aiko; Imahori, Hiroshi; Tkachenko, Nikolai V.

    2009-01-01

    Alternate bilayer structures of N,N'-bis(2,5-di-tert-butylphenyl)-3,4,9,10- perylene dicarboximide (PDI), freebase phthalocyanines (Pc), and double-linked free-base phthalocyanine-fullerene dyad (Pc-C 60) were prepared by the Langmuir-Schäfer method and studied using a range of optical spectroscopy

  8. Multivariate Models of Parent-Late Adolescent Gender Dyads: The Importance of Parenting Processes in Predicting Adjustment

    Science.gov (United States)

    McKinney, Cliff; Renk, Kimberly

    2008-01-01

    Although parent-adolescent interactions have been examined, relevant variables have not been integrated into a multivariate model. As a result, this study examined a multivariate model of parent-late adolescent gender dyads in an attempt to capture important predictors in late adolescents' important and unique transition to adulthood. The sample…

  9. What Happens When Parents and Children Go Grocery Shopping? An Observational Study of Latino Dyads in Southern California, USA.

    Science.gov (United States)

    Calderon, Joanna; Ayala, Guadalupe X; Elder, John P; Belch, George E; Castro, Iana A; Weibel, Nadir; Pickrel, Julie

    2017-02-01

    The objective of this study was to observe parent-child interactions in tiendas, limited assortment food stores catering to Latinos in the United States, and to examine the extent to which child involvement influenced these interactions and their purchase outcomes. Two confederates, one posing as a tienda employee and one posing as a customer, observed the entire shopping trip of 100 Latino parent-child (mean age = 8 years) dyads and coded the following: number and type of parent- and child-initiated request interactions, types of purchase influence attempts used by children and how parents responded, and whether the product was purchased. Level of child involvement was examined as a potential influencing factor on purchasing. The observations were relatively short (mean duration of 10 minutes), reflecting the "quick trip" nature of the observed shopping trips. From the 100 parent-child dyads, 144 request interactions were observed, and among dyads with at least 1 request interaction during the shopping trip, the average number of request interactions per dyad was 2. Children initiated most of the request interactions by asking for a product or simply placing it in the basket; parents initiated 24% of the request interactions. Child involvement in shopping and checkout were associated with spending and purchase outcomes. These results indicate that children and parents influence each other during grocery shopping, and children who are more involved have greater influence over purchases. Furthermore, this study identified a number of targets for future family/parent and consumer food environment interventions.

  10. Commercial exchanges in B2B Dyads. A new model of decision-making in fast changing markets

    NARCIS (Netherlands)

    Moreno Bragado, Elisa

    2003-01-01

    This dissertation presents a Model of Commercial Exchanges in B2B Dyads. This model explains how buying and selling decisions are made in industrial markets that are subject to continuous change, particularly the market for telecommunication products and services.Buying and selling decision-making

  11. Homo- or Hetero- Triplet-Triplet Annihilation? A Case Study with Perylene-Bodipy Dyads/Triads

    KAUST Repository

    Cui, Xiaoneng

    2017-07-06

    The photophysical processes of intramolecular ‘ping-pong’ energy transfers in the iodinated reference dyad BDP-I2-Py, as well as the uniodinated dyad BDP-Py and triad BDP-2Py, were studied. For BDP-I2-Py, a forward Förster resonance energy transfer (FRET) from the perylene (Py) unit to the diiodoBDP unit (7 ps) and a backward triplet energy transfer (TTET, 3 ns) from the diiodoBDP unit to the Py unit were observed. For the BDP-Py and BDP-2Py systems, a FRET (5 ~ 8 ps) and a photo-induced electron transfer (PET) (1-1.5 ns) were observed in acetonitrile. The uniodinated dyad and triad were used as the triplet energy acceptor and emitter for a TTA upconversion with palladium tetraphenyltetrabenzoporphyrin as the triplet photosensitizer. A maximum upconversion quantum yield of 12.6 % was measured. Given that the dyad (BDP-Py) contains one BDP unit and one Py unit, while the triad (BDP-2Py) contains two Py units and one BDP unit, and based on the results from steady-state femtosecond and nanosecond transient optical spectroscopies, it is concluded that neither intramolecular homo- triplet-triplet annihilation (TTA) nor intramolecular hetero-TTA is possible during a TTA upconversion for those upconversion systems.

  12. Congruence of therapeutic bond perceptions and its relation to treatment outcome: Within- and between-dyad effects.

    Science.gov (United States)

    Rubel, Julian A; Bar-Kalifa, Eran; Atzil-Slonim, Dana; Schmidt, Sebastian; Lutz, Wolfgang

    2018-04-01

    The present study investigates the association between congruence of patients' and therapists' perceptions of the therapeutic bond and symptom improvement. Bond congruence-outcome associations were examined on the within- and between-dyad level for 580 patients (mainly depression and anxiety) receiving cognitive-behavioral therapy. Symptom change was assessed on a session-to-session level as well as from pre- to posttreatment. For the between-dyad analyses, the truth and bias model was applied. For the within-dyad analyses, polynomial regression and response surface analysis were conducted. On the between-dyad level, higher temporal congruence between patients' and therapists' bond ratings (i.e., their correlation) was associated with better treatment outcomes. Additionally, the average discrepancy between therapists' and patients' bond ratings showed a significant quadratic association with treatment outcome. A tendency for therapists to moderately rate the bond lower than their patients' showed lowest posttreatment symptom scores. On the within-dyad level, we found that when patients' and therapists' ratings were in "agreement," higher bond scores were associated with fewer next-session symptoms. For "disagreement," the results showed that if therapists rated the bond as weak, whereas their patients rated it as strong, higher subsequent symptom distress was observed than if patients rated the bond as weak and their therapists rated it as strong. The present study highlights the importance of therapists being vigilant to session-to-session changes in the therapeutic bond to adjust their interventions accordingly. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  13. Quality of life in stroke survivor-caregiver dyads: a new conceptual framework and longitudinal study protocol.

    Science.gov (United States)

    Savini, Serenella; Buck, Harleah G; Dickson, Victoria Vaughan; Simeone, Silvio; Pucciarelli, Gianluca; Fida, Roberta; Matarese, Maria; Alvaro, Rosaria; Vellone, Ercole

    2015-03-01

    To describe a new conceptual framework and the research protocol of a study designed to examine the quality of life in stroke survivor-caregiver dyads. Stroke has a significant impact on the patient-caregiver dyad. Few studies have been guided by a specific conceptual framework which considers the interactions among pre-existing situations prior to stroke, the new situation caused by the stroke and the moderating effects of environmental and caregiver-related variables. Longitudinal study. A sample of stroke survivor-caregiver dyads will be enrolled at patient discharge from rehabilitation hospitals and will be surveyed every 3 months for 1-year. Hypotheses generated from the conceptual framework will test predictors, mediators and moderators of stroke survivor and caregiver quality of life from the pre-existing situation prior to the stroke, the new situation mediation poststroke and situation moderators. The study is supported by a grant from the Centre of Excellence for Nursing Scholarship, Rome, December 2013. This study seeks to identify variables in the pre-existing situation prior to the stroke (e.g. living condition), the new situation mediation poststroke (e.g. type of stroke and caregiver burden) as well as situation moderators (e.g. social support) that influence stroke survivor-caregiver dyad's quality of life across the stroke trajectory. Also, the study will inform clinical practice and research by identifying variables that are potentially modifiable and therefore amenable to intervention. The proposed framework will also be helpful for future research focused on stroke survivor-caregiver dyads. © 2014 John Wiley & Sons Ltd.

  14. Catalytic combustion in gas stoves - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Hjelm, Anna-Karin [CATATOR AB, Lund (Sweden)

    2003-06-01

    . To overcome the latter, improved aeration of the system is needed, e.g. modification of nozzle-size and/or flame port plate. The effects of installing a retro-fit catalytic design onto the burner in the gas oven were also examined. Similar to the burners of the cooking plates, the emitted NO{sub x} was greatly reduced, i.e. up to 90 %. Other on-going projects using similar catalyst concepts as in this study have shown that the life-time of the catalyst, i.e. the mechanical stability and the catalytic activity, is extremely good (> 1000 h). To examine if this durability of the catalyst is limited in this specific application by deactivation caused by possible food spillage, a number of commonly used food ingredients were painted onto the catalysts and the activity of the catalyst prior to and after the 'deactivation' was investigated. The results show that no ingredients of organic type (fat, milk, egg, sugar) have any significant impact on the catalytic activity. Salt however was seen to block active reaction sites of the catalyst, but the tests showed that the catalyst could in this case be easily re-activated by simply washing it in water. The design modifications are very modest and the amount of catalyst is small, costing about 6-10 SEK (0.80-1.2 USD) per cooking plate.

  15. Mechanics

    CERN Document Server

    Chester, W

    1979-01-01

    When I began to write this book, I originally had in mind the needs of university students in their first year. May aim was to keep the mathematics simple. No advanced techniques are used and there are no complicated applications. The emphasis is on an understanding of the basic ideas and problems which require expertise but do not contribute to this understanding are not discussed. How­ ever, the presentation is more sophisticated than might be considered appropri­ ate for someone with no previous knowledge of the subject so that, although it is developed from the beginning, some previous acquaintance with the elements of the subject would be an advantage. In addition, some familiarity with element­ ary calculus is assumed but not with the elementary theory of differential equations, although knowledge of the latter would again be an advantage. It is my opinion that mechanics is best introduced through the motion of a particle, with rigid body problems left until the subject is more fully developed. Howev...

  16. Catalytic activity of metal borides in the reaction of decomposition

    International Nuclear Information System (INIS)

    Labodi, I.; Korablev, L.I.; Tavadyan, L.A.; Blyumberg, Eh.A.

    1982-01-01

    Catalytic effect of CoB, MoB 2 , ZrB 2 and NbB 2 , prepared by the method of self-propagating high-temperature synthesis, on decomposition of tertiary butyl hydroperoxide has been studied. A technigue of determination of action mechanism of heterogeneous catalysts in liquid-phase process is suggested. It is established that CoB in contrast to other metal borides catalyzes only hydroperoxide decomposition into radicals

  17. Kinetics of heterogeneous catalytic reactions

    CERN Document Server

    Boudart, Michel

    2014-01-01

    This book is a critical account of the principles of the kinetics of heterogeneous catalytic reactions in the light of recent developments in surface science and catalysis science. Originally published in 1984. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase acc

  18. Catalytic Organometallic Reactions of Ammonia

    Science.gov (United States)

    Klinkenberg, Jessica L.

    2012-01-01

    Until recently, ammonia had rarely succumbed to catalytic transformations with homogeneous catalysts, and the development of such reactions that are selective for the formation of single products under mild conditions has encountered numerous challenges. However, recently developed catalysts have allowed several classes of reactions to create products with nitrogen-containing functional groups from ammonia. These reactions include hydroaminomethylation, reductive amination, alkylation, allylic substitution, hydroamination, and cross-coupling. This Minireview describes examples of these processes and the factors that control catalyst activity and selectivity. PMID:20857466

  19. Catalytic cracking of hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    1940-09-12

    A process is described for the vapor phase catalytic cracking of hydrocarbon oils boiling substantially in the gas oil range. The reaction takes place in the presence of a solid catalyst between 700 to 900/sup 0/F under pressure between atmospheric and 400 psi. A gas containing between 20 and 90 mol % of free hydrogen is used. The reaction is allowed to proceed until consumption of the free begins. The reaction is discontinued at that point and the catalyst is regenerated for further use.

  20. Molecular catalytic coal liquid conversion

    Energy Technology Data Exchange (ETDEWEB)

    Stock, L.M.; Yang, Shiyong [Univ. of Chicago, IL (United States)

    1995-12-31

    This research, which is relevant to the development of new catalytic systems for the improvement of the quality of coal liquids by the addition of dihydrogen, is divided into two tasks. Task 1 centers on the activation of dihydrogen by molecular basic reagents such as hydroxide ion to convert it into a reactive adduct (OH{center_dot}H{sub 2}){sup {minus}} that can reduce organic molecules. Such species should be robust withstanding severe conditions and chemical poisons. Task 2 is focused on an entirely different approach that exploits molecular catalysts, derived from organometallic compounds that are capable of reducing monocyclic aromatic compounds under very mild conditions. Accomplishments and conclusions are discussed.

  1. Catalytic enantioselective Reformatsky reaction with ketones

    NARCIS (Netherlands)

    Fernandez-Ibanez, M. Angeles; Macia, Beatriz; Minnaard, Adriaan J.; Feringa, Ben L.

    2008-01-01

    Chiral tertiary alcohols were obtained with good yields and enantioselectivities via a catalytic Reformatsky reaction with ketones, including the challenging diaryl ketones, using chiral BINOL derivatives.

  2. Dyads affected by chronic heart failure: a randomized study evaluating effects of education and psychosocial support to patients with heart failure and their partners.

    Science.gov (United States)

    Ågren, Susanna; Evangelista, Lorraine S; Hjelm, Carina; Strömberg, Anna

    2012-05-01

    Chronic heart failure (CHF) causes great suffering for both patients and their partners. The aim of this study was to evaluate the effects of an integrated dyad care program with education and psychosocial support to patients with CHF and their partners during a postdischarge period after acute deterioration of CHF. One hundred fifty-five patient-caregiver dyads were randomized to usual care (n = 71) or a psychoeducation intervention (n = 84) delivered in 3 modules through nurse-led face-to-face counseling, computer-based education, and other written teaching materials to assist dyads to develop problem-solving skills. Follow-up assessments were completed after 3 and 12 months to assess perceived control, perceived health, depressive symptoms, self-care, and caregiver burden. Baseline sociodemographic and clinical characteristics of dyads in the experimental and control groups were similar at baseline. Significant differences were observed in patients' perceived control over the cardiac condition after 3 (P effect was seen for the caregivers.No group differences were observed over time in dyads' health-related quality of life and depressive symptoms, patients' self-care behaviors, and partners' experiences of caregiver burden. Integrated dyad care focusing on skill-building and problem-solving education and psychosocial support was effective in initially enhancing patients' levels of perceived control. More frequent professional contact and ongoing skills training may be necessary to have a higher impact on dyad outcomes and warrants further research. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Brush Polymer of Donor-Accepter Dyads via Adduct Formation between Lewis Base Polymer Donor and All Carbon Lewis Acid Acceptor

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2017-09-01

    Full Text Available A synthetic method that taps into the facile Lewis base (LB→Lewis acid (LA adduct forming reaction between the semiconducting polymeric LB and all carbon LA C60 for the construction of covalently linked donor-acceptor dyads and brush polymer of dyads is reported. The polymeric LB is built on poly(3-hexylthiophene (P3HT macromers containing either an alkyl or vinyl imidazolium end group that can be readily converted into the N-heterocyclic carbene (NHC LB site, while the brush polymer architecture is conveniently constructed via radical polymerization of the macromer P3HT with the vinyl imidazolium chain end. Simply mixing of such donor polymeric LB with C60 rapidly creates linked P3HT-C60 dyads and brush polymer of dyads in which C60 is covalently linked to the NHC junction connecting the vinyl polymer main chain and the brush P3HT side chains. Thermal behaviors, electronic absorption and emission properties of the resulting P3HT-C60 dyads and brush polymer of dyads have been investigated. The results show that a change of the topology of the P3HT-C60 dyad from linear to brush architecture enhances the crystallinity and Tm of the P3HT domain and, along with other findings, they indicate that the brush polymer architecture of donor-acceptor domains provides a promising approach to improve performances of polymer-based solar cells.

  4. Petrochemical promoters in catalytic cracking

    International Nuclear Information System (INIS)

    Gomez, Maria; Vargas, Clemencia; Lizcano, Javier

    2010-01-01

    This study is based on the current scheme followed by a refinery with available Catalytic Cracking capacity to process new feedstocks such as Straight Run Naphtha and Naphthas from FCC. These feedstocks are of petrochemical interest to produce Ethane, Ethylene, Propylene, i-Butane, Toluene and Xylene. To evaluate the potential of these new streams versus the Cracking-charged Residues, it was performed a detailed chemical analysis on the structural groups in carbons [C1-C12] at the reactor product obtained in pilot plant. A catalyst with and without Propylene Promoter Additive was used. This study analyzes the differences in the chemical composition of the feedstocks, relating them to the yield of each petrochemical product. Straight Run Naphthas with a high content of Naphthenes, and Paraffines n[C5-C12] and i[C7-C12] are selective to the production of i-Butane and Propane, while Naphthas from FCC with a high content of n[C5-C12]Olefins, i-Olefins, and Aromatics are more selective to Propylene, Toluene, and Xylene. Concerning Catalytic Cracking of Naphthas, the Additive has similar selectivity for all the petrochemical products, their yields increase by about one point with 4%wt of Additive, while in cracking of Residues, the Additive increases in three points Propylene yield, corresponding to a selectivity of 50% (?C3= / ?LPG).

  5. Catalytic conversion of light alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  6. Catalytic converters in the fireplace

    International Nuclear Information System (INIS)

    Kouki, J.

    1995-01-01

    In addition to selecting the appropriate means of heating and using dry fuel, the amount of harmful emissions contained by flue gases produced by fireplaces can be reduced by technical means. One such option is to use an oxidising catalytic converter. Tests at TTS Institute's Heating Studies Experimental Station have focused on two such converters (dense and coarse) mounted in light-weight iron heating stoves. The ability of the dense catalytic converter to oxidise carbon monoxide gases proved to be good. The concentration of carbon monoxide in the flue gases was reduced by as much as 90 %. Measurements conducted by VTT (Technical Research Centre of Finland) showed that the conversion of other gases, e.g. of methane, was good. The exhaust resistance caused by the dense converter was so great as to necessitate the mounting of a fluegas evacuation fan in the chimney for the purpose of creating sufficient draught. When relying on natural draught, the dense converter requires a chimney of at least 7 metres and a by-pass connection while the fire is being lit. In addition, the converter will have to be constructed to be less dense and this will mean that it's capability to oxidise non-combusted gases will be reduced. The coarse converter did not impair the draught but it's oxidising property was insufficient. With the tests over, the converter was not observed to have become blocked up by impurities

  7. Communication strategies to reduce cancer disparities: Insights from African-American mother-daughter dyads.

    Science.gov (United States)

    Mosavel, Maghboeba; Wilson Genderson, Maureen; Ports, Katie A; Carlyle, Kellie E

    2015-12-01

    Mothers and daughters share a powerful and unique bond, which has potential for the dissemination of information on a variety of women's health issues, including the primary and secondary prevention of breast and cervical cancer. This study presents formative research from a long-term project examining the potential of mother-daughter communication in promoting cancer screening among African American women. Thirty-two mother-daughter pairs (N = 64) completed orally administered surveys regarding their cancer knowledge, beliefs and attitudes, and barriers to care. This study compares the attitudes and beliefs of low-income, urban, African American mothers and their adolescent daughters regarding cervical and breast cancer screening. Both mothers and daughters had fairly high levels of knowledge about breast and cervical cancer. In addition, there was a high concordance rate between mothers' and daughters' responses, suggesting a potential sharing of health knowledge between mother and daughter. These results have implications for selecting communication strategies to reduce health disparities, and support that the mother-daughter dyad could be a viable unit to disseminate targeted screening information. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  8. Contaminated and uncontaminated feeding influence perceived intimacy in mixed-sex dyads.

    Science.gov (United States)

    Alley, Thomas R

    2012-06-01

    It was expected that viewers watching adult mixed-sex pairs dining together will give higher ratings of the perceived intimacy and involvement of the pair if feeding is displayed while eating, especially if the feeding involves contaminated (i.e., with potential germ transfer) foods. Our hypotheses were tested using a design in which participants viewed five videotapes in varying order. Each video showed different mixed-sex pairs of actors sharing meal and included a distinct form of food sharing or none. These were shown to 50 small groups of young adults in quasi-random sequences to control for order effects. Immediately after each video, viewers were asked about the attractiveness, attraction and intimacy in the dyad they had just observed. As predicted, videos featuring contaminated feeding consistently produced higher ratings on involvement and attraction than those showing uncontaminated feeding which, in turn, mostly produced higher ratings on involvement and attraction than those showing no feeding behaviors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Educational processes in the family: Linkage between the quality of dyad and triad relations

    Directory of Open Access Journals (Sweden)

    Mihić Ivana

    2009-01-01

    Full Text Available The goal of the research presented in this paper is to describe the relations between educational styles as dyad and co-parenting relations, as well as triad relations in the family which include processes of upbringing and taking care of the child. The sample comprised families with an adolescent. Data were obtained from 200 respondents, of the average age of 18. Respondents evaluated educational styles of their parents (separately father's, separately mother's in the Questionnaire for evaluating parenting style, and then also the quality of co-parenting cooperation in their families in the questionnaire Co-parenting relations in the family. The results indicate a significant correlation between the dimensions of parental styles and co-parenting relation. In that process, more prominent is the contribution of affective dimensions of parenting style, and what was also perceived and described are the differences in mutual relations of educational styles and co-parenting cooperation regarding parent's gender. The effects of the evaluated co-parental cooperation on educational behavior of the father are more evident.

  10. The dyad palindromic glutathione transferase P enhancer binds multiple factors including AP1.

    Science.gov (United States)

    Diccianni, M B; Imagawa, M; Muramatsu, M

    1992-10-11

    Glutathione Transferase P (GST-P) gene expression is dominantly regulated by an upstream enhancer (GPEI) consisting of a dyad of palindromically oriented imperfect TPA (12-O-tetradecanoyl-phorbol-13-acetate)-responsive elements (TRE). GPEI is active in AP1-lacking F9 cells as well in AP1-containing HeLa cells. Despite GPEI's similarity to a TRE, c-jun co-transfection has only a minimal effect on transactivation. Antisense c-jun and c-fos co-transfection experiments further demonstrate the lack of a role for AP1 in GPEI mediated trans-activation in F9 cells, although endogenously present AP1 can influence GPEI in HeLa cells. Co-transfection of delta fosB with c-jun, which forms an inactive c-Jun/delta FosB heterodimer that binds TRE sequences, inhibits GPEI-mediated transcription in AP1-lacking F9 cells as well as AP1-containing HeLa cells. These data suggest novel factor(s) other than AP1 are influencing GPEI. Binding studies reveal multiple nucleoproteins bind to GPEI. These factors are likely responsible for the high level of GPEI-mediated transcription observed in the absence of AP1 and during hepatocarcinogenesis.

  11. Surrogate utility estimation by long-term partners and unfamiliar dyads.

    Science.gov (United States)

    Tunney, Richard J; Ziegler, Fenja V

    2015-01-01

    To what extent are people able to make predictions about other people's preferences and values?We report two experiments that present a novel method assessing some of the basic processes in surrogate decision-making, namely surrogate-utility estimation. In each experiment participants formed dyads who were asked to assign utilities to health related items and commodity items, and to predict their partner's utility judgments for the same items. In experiment one we showed that older adults in long-term relationships were able to accurately predict their partner's wishes. In experiment two we showed that younger adults who were relatively unfamiliar with one another were also able to predict other people's wishes. Crucially we demonstrated that these judgments were accurate even after partialling out each participant's own preferences indicating that in order to make surrogate utility estimations people engage in perspective-taking rather than simple anchoring and adjustment, suggesting that utility estimation is not the cause of inaccuracy in surrogate decision-making. The data and implications are discussed with respect to theories of surrogate decision-making.

  12. Surrogate utility estimation by long-term partners and unfamiliar dyads

    Directory of Open Access Journals (Sweden)

    Richard J Tunney

    2015-03-01

    Full Text Available To what extent are people able to make predictions about other people’s preferences and values? We report two experiments that present a novel method assessing some of the basic processes in surrogate decision-making, namely surrogate-utility estimation. In each experiment participants formed dyads who were asked to assign utilities to health related items and commodity items, and to predict their partner’s utility judgments for the same items. In experiment one we showed that older adults in long-term relationships were able to accurately predict their partner’s wishes. In experiment two we showed that younger adults who were relatively unfamiliar with one another were also able to predict other people’s wishes. Crucially we demonstrated that these judgments were accurate even after partialling out each participant’s own preferences indicating that in order to make surrogate utility estimations people engage in perspective-taking rather than simple anchoring and adjustment, suggesting that utility estimation is not the cause of inaccuracy in surrogate decision-making. The data and implications are discussed with respect to theories of surrogate decision-making.

  13. Emotion suppression, emotional eating, and eating behavior among parent-adolescent dyads.

    Science.gov (United States)

    Ferrer, Rebecca A; Green, Paige A; Oh, April Y; Hennessy, Erin; Dwyer, Laura A

    2017-10-01

    Emotion suppression may lead to ironic increases in emotional experience. More important, suppression is a transactional process, creating stress and disrupting interactions for the suppressor and those in social interactions with individuals who are suppressing emotion. However, no research has examined the behavioral consequences of emotion suppression in close relationships. We examine the possibility that emotion suppression will predict eating behaviors as a secondary emotion regulatory strategy among 1,556 parent-adolescent dyads (N = 3,112), consistent with evidence suggesting that suppression influences eating at the individual-level. Actor-partner interdependence models and structural equation modeling demonstrate that one's own emotion suppression was associated with emotional eating; greater consumption of hedonic-low nutrient, high energy dense-foods; and lower consumption of fruits and vegetables (actor effects). One's partner's emotion suppression was also independently associated with one's own emotional eating; lower consumption of fruits and vegetables; and greater consumption of hedonic foods (partner effects), although this association was most consistent for adolescents' suppression and parents' eating (compared with the converse). These analyses suggest that dyadic emotion regulatory processes have implications on eating behavior. Moreover, analyses suggest that emotion suppression has potential implications on eating behaviors of others within close relationships with a suppressor, consistent with the notion that emotion regulation is a transactional process. These findings suggest that interventions to improve eating habits of parents and their adolescent children should consider dyadic emotion regulatory processes. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  14. Simulation of solution phase electron transfer in a compact donor-acceptor dyad.

    Science.gov (United States)

    Kowalczyk, Tim; Wang, Lee-Ping; Van Voorhis, Troy

    2011-10-27

    Charge separation (CS) and charge recombination (CR) rates in photosynthetic architectures are difficult to control, yet their ratio can make or break photon-to-current conversion efficiencies. A rational design approach to the enhancement of CS over CR requires a mechanistic understanding of the underlying electron-transfer (ET) process, including the role of the environment. Toward this goal, we introduce a QM/MM protocol for ET simulations and use it to characterize CR in the formanilide-anthraquinone dyad (FAAQ). Our simulations predict fast recombination of the charge-transfer excited state, in agreement with recent experiments. The computed electronic couplings show an electronic state dependence and are weaker in solution than in the gas phase. We explore the role of cis-trans isomerization on the CR kinetics, and we find strong correlation between the vertical energy gaps of the full simulations and a collective solvent polarization coordinate. Our approach relies on constrained density functional theory to obtain accurate diabatic electronic states on the fly for molecular dynamics simulations, while orientational and electronic polarization of the solvent is captured by a polarizable force field based on a Drude oscillator model. The method offers a unified approach to the characterization of driving forces, reorganization energies, electronic couplings, and nonlinear solvent effects in light-harvesting systems.

  15. Current perspectives on attachment and bonding in the dog–human dyad

    Science.gov (United States)

    Payne, Elyssa; Bennett, Pauleen C; McGreevy, Paul D

    2015-01-01

    This article reviews recent research concerning dog–human relationships and how attributes that arise from them can be measured. It highlights the influence of human characteristics on dog behavior, and consequently, the dog–human bond. Of particular importance are the influences of human attitudes and personality. These themes have received surprisingly little attention from researchers. Identifying human attributes that contribute to successful dog–human relationships could assist in the development of a behavioral template to ensure dyadic potential is optimized. Additionally, this article reveals how dyadic functionality and working performance may not necessarily be mutually inclusive. Potential underpinnings of various dog–human relationships and how these may influence dogs’ perceptions of their handlers are also discussed. The article considers attachment bonds between humans and dogs, how these may potentially clash with or complement each other, and the effects of different bonds on the dog–human dyad as a whole. We review existing tools designed to measure the dog–human bond and offer potential refinements to improve their accuracy. Positive attitudes and affiliative interactions seem to contribute to the enhanced well-being of both species, as reflected in resultant physiological changes. Thus, promoting positive dog–human relationships would capitalize on these benefits, thereby improving animal welfare. Finally, this article proposes future research directions that may assist in disambiguating what constitutes successful bonding between dogs and the humans in their lives. PMID:25750549

  16. Current perspectives on attachment and bonding in the dog-human dyad.

    Science.gov (United States)

    Payne, Elyssa; Bennett, Pauleen C; McGreevy, Paul D

    2015-01-01

    This article reviews recent research concerning dog-human relationships and how attributes that arise from them can be measured. It highlights the influence of human characteristics on dog behavior, and consequently, the dog-human bond. Of particular importance are the influences of human attitudes and personality. These themes have received surprisingly little attention from researchers. Identifying human attributes that contribute to successful dog-human relationships could assist in the development of a behavioral template to ensure dyadic potential is optimized. Additionally, this article reveals how dyadic functionality and working performance may not necessarily be mutually inclusive. Potential underpinnings of various dog-human relationships and how these may influence dogs' perceptions of their handlers are also discussed. The article considers attachment bonds between humans and dogs, how these may potentially clash with or complement each other, and the effects of different bonds on the dog-human dyad as a whole. We review existing tools designed to measure the dog-human bond and offer potential refinements to improve their accuracy. Positive attitudes and affiliative interactions seem to contribute to the enhanced well-being of both species, as reflected in resultant physiological changes. Thus, promoting positive dog-human relationships would capitalize on these benefits, thereby improving animal welfare. Finally, this article proposes future research directions that may assist in disambiguating what constitutes successful bonding between dogs and the humans in their lives.

  17. Garden of Ambivalence The Topology of the Mother-child Dyad in Grey Gardens

    Directory of Open Access Journals (Sweden)

    Defne Tüzün

    2012-04-01

    Full Text Available The Maysles brothers’ 1975 documentary, Grey Gardens, portrays the lives of Edith Bouvier Beale and her daughter, Edith, known as Little Edie, the aunt and first cousin, respectively, of Jacqueline Bouvier Kennedy Onassis. The mother and daughter live together in their East Hampton house that is literally falling apart. As their identical names imply, the Beales share a symbiotic relationship which is reflected in every aspect of their life. I argue that Grey Gardens calls for Julia Kristeva’s insistence on abjection as a crucial struggle with “spatial ambivalence (inside/outside uncertainty” and an attempt to mark out a space in the undifferentiated field of the mother-child symbiosis. In Powers of Horror, Kristeva (1982 states, “abjection preserves what existed in the archaism of pre-objectal relationship” (p. 10. Grey Gardens portrays the topology of the mother-child dyad, which pertains to a particular spatio-temporality: where this primordial relationship is concerned, object and subject crumble, and the distinction between past and present is irrelevant.

  18. Interdependence of attachment styles and relationship quality in parent-adolescent dyads.

    Science.gov (United States)

    Chow, Chong Man; Hart, Ellen; Ellis, Lillian; Tan, Cin Cin

    2017-12-01

    The current study examined how attachment styles of parents and adolescents may jointly influence the quality of their relationship. Parent-adolescent (N dyads  = 77) pairs were recruited from a Midwestern town in the United States. The mean of adolescents' age was 16.25. Both members reported their attachment styles, relationship closeness, and relationship discord. The Actor-Partner Interdependence Model (APIM) showed that both members' attachment avoidance was associated with self-report lower levels of closeness. Parents' attachment anxiety was related to relationship discord. Parents with higher avoidant attachment reported lower closeness when adolescents were higher in avoidant attachment. Higher parents' anxious attachment was related to higher relationship closeness when adolescents were higher on anxious attachment. Such an association was negative when adolescents had lower anxious attachment. Higher parents' anxious attachment was related to greater discord when adolescents were lower on anxiety attachment. This study reveals the complex dyadic dynamics of relationship quality in parent-adolescent pairs. Copyright © 2017 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  19. Predictors of parent-child interaction style in dyads with autism.

    Science.gov (United States)

    Hudry, Kristelle; Aldred, Catherine; Wigham, Sarah; Green, Jonathan; Leadbitter, Kathy; Temple, Kathryn; Barlow, Katherine; McConachie, Helen

    2013-10-01

    Parent synchrony has been shown to be developmentally important for the growth of communication skills in young children with autism. Understanding individual-differences in parent synchrony and other associated features of dyadic interaction therefore presents as an important step toward the goal of appreciating how and why some parent-child dyads come to adopt more optimal interaction styles, while for others, parent interaction is more asynchronous and less developmentally facilitative. Within the large, well-characterized Preschool Autism Communication Trial (PACT) cohort, baseline parent-child interaction samples were coded for three key aspects of dyadic interaction style; - Parent Synchrony, Child Initiation, and Shared Attention. We explored associations among these measures, demographic characteristics and standardized child assessment scores. While various child factors were associated with each of the interaction measures, very few associations were observed with parent/familial factors. Child language age-equivalence was a significant positive predictor of variation in each interaction measure, while child repetitive symptoms predicted reduced Shared Attention. The three interaction measures were moderately positively inter-related. In the context of childhood autism, variation in dyadic interaction style appears to be driven more by child language and repetitive behaviors than age, social-communication symptoms and non-verbal ability. Parent/family factors contributed little to explaining variability in parent-child interaction, in the current study. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  20. Resident Dyads Providing Transition Care to Adolescents and Young Adults With Chronic Illnesses and Neurodevelopmental Disabilities.

    Science.gov (United States)

    Chung, Richard J; Jasien, Joan; Maslow, Gary R

    2017-04-01

    Youth with special health care needs often experience difficulty transitioning from pediatric to adult care. These difficulties may derive in part from lack of physician training in transition care and the challenges health care providers experience establishing interdisciplinary partnerships to support these patients. This educational innovation sought to improve pediatrics and adult medicine residents' interdisciplinary communication and collaboration. Residents from pediatrics, medicine-pediatrics, and internal medicine training programs participated in a transitions clinic for patients with chronic health conditions aged 16 to 26 years. Residents attended 1 to 4 half-day clinic sessions during 1-month ambulatory rotations. Pediatrics/adult medicine resident dyads collaboratively performed psychosocial and medical transition consultations that addressed health care navigation, self-care, and education and vocation topics. Two to 3 attending physicians supervised each clinic session (4 hours) while concurrently seeing patients. Residents completed a preclinic survey about baseline attitudes and experiences, and a postclinic survey about their transitions clinic experiences, changes in attitudes, and transition care preparedness. A total of 46 residents (100% of those eligible) participated in the clinic and completed the preclinic survey, and 25 (54%) completed the postclinic survey. A majority of respondents to the postclinic survey reported positive experiences. Residents in both pediatrics and internal medicine programs reported improved preparedness for providing transition care to patients with chronic health conditions and communicating effectively with colleagues in other disciplines. A dyadic model of collaborative transition care training was positively received and yielded improvements in immediate self-assessed transition care preparedness.

  1. A parent-child dyad approach to the assessment of health status and health-related quality of life in children with asthma.

    Science.gov (United States)

    Ungar, Wendy J; Boydell, Katherine; Dell, Sharon; Feldman, Brian M; Marshall, Deborah; Willan, Andrew; Wright, James G

    2012-08-01

    Assessment of health state and health-related quality of life (HR-QOL) are limited by a child's age and cognitive ability. Parent-proxy reports are known to differ from children's reports. Simultaneous assessment using a parent-child dyad is an alternative approach. Our objective was to assess the validity, reliability and responsiveness of a parent-child dyad approach to utility and HR-QOL assessment of paediatric asthma health states. The setting was specialist care in a hospital-based asthma clinic. Participants were 91 girls and boys with asthma aged 8 to 17 years and 91 parents. The intervention employed was parent-child dyad administration of the Health Utilities Index (HUI) 2 and 3, the Pediatric Quality of Life Inventory™ (PedsQL™) Core and Asthma modules, and the Pediatric Asthma Quality of Life Questionnaire (PAQLQ). Questionnaires were administered by interview to children and parents separately and then together as a dyad to assess the child's health state. The dyad interview was repeated at the next clinic visit. Dyad-child agreement was measured by intra-class correlation (ICC) coefficient; Spearman correlations were used to assess convergent validity. Test-retest reliability was assessed in 28 children who remained clinically stable between visits with a two-way ICC coefficient. Responsiveness to change from baseline was assessed with Spearman coefficients in 30 children who demonstrated clinical change between visits. There was no significant agreement between parent and child for the HUI2 or HUI3 whereas agreement between dyad and child was 0.55 (95% confidence interval [CI] 0.36, 0.69) for the HUI2 and 0.74 (95% CI 0.61, 0.82) for the HUI3 overall. With respect to dyad performance characteristics, both HUI2 and HUI3 overall scores demonstrated moderate convergent validity with the generic PedsQL™ Core domains (range r = 0.30-0.52; p  0.4; p < 0.05) was observed for dyad HUI2 total score change over time as correlated with dyad

  2. Development of a catalytically assisted combustor for a gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ozawa, Yasushi; Fujii, Tomoharu; Sato, Mikio [Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-01 (Japan); Kanazawa, Takaaki; Inoue, Hitoshi [Kansai Electric Power Company, Inc., 3-11-20 Nakoji, Amagasaki, Hyoho 661 (Japan)

    1999-01-01

    A catalytically assisted low NO{sub x} combustor has been developed which has the advantage of catalyst durability. This combustor is composed of a burner section and a premixed combustion section behind the burner section. The burner system consists of six catalytic combustor segments and six premixing nozzles, which are arranged alternately and in parallel. Fuel flow rate for the catalysts and the premixing nozzles are controlled independently. The catalytic combustion temperature is maintained under 1000C, additional premixed gas is injected from the premixing nozzles into the catalytic combustion gas, and lean premixed combustion at 1300C is carried out in the premixed combustion section. This system was designed to avoid catalytic deactivation at high temperature and thermal or mechanical shock fracture of the honeycomb monolith. In order to maintain the catalyst temperature under 1000C, the combustion characteristics of catalysts at high pressure were investigated using a bench scale reactor and an improved catalyst was selected for the combustor test. A combustor for a 20MW class multi-can type gas turbine was designed and tested under high pressure conditions using LNG fuel. Measurements of NO{sub x}, CO and unburned hydrocarbon were made and other measurements were made to evaluate combustor performance under various combustion temperatures and pressures. As a result of the tests, it was proved that NO{sub x} emission was lower than 10ppm converted at 16% O{sub 2}, combustion efficiency was almost 100% at 1300C of combustor outlet temperature and 13.5ata of combustor inlet pressure

  3. Exciplex-like emission from a closely-spaced, orthogonally-sited anthracenyl-boron dipyrromethene (Bodipy) molecular dyad.

    Science.gov (United States)

    Benniston, Andrew C; Harriman, Anthony; Whittle, Victoria L; Zelzer, Mischa; Harrington, Ross W; Clegg, William

    2010-07-30

    A molecular dyad, , has been prepared that incorporates a boron dipyrromethene (Bodipy) group functionalized at the meso position with an anthracenyl unit. Emission from the dyad contains contributions from both localized fluorescence from the Bodipy unit and exciplex-like emission associated with an intramolecular charge-transfer state. The peak position, intensity and lifetime of this exciplex emission are solvent dependent and the shift in the emission maximum shows a linear relationship to the solvent polarity function (Deltaf). The calculated dipole moment for the exciplex is 22.5 +/- 2.2 D. The radiative rate constant (k(RAD)) for exciplex emission decreases progressively with increasing solvent polarity. In this latter case, k(RAD) shows an obvious dependence on the energy gap between the exciplex state and the first-excited singlet state resident on the Bodipy unit. The emission characteristics for dissolved in perfluorooctane are used to characterize the refractive index and dielectric constant of the solvent.

  4. Health Disparities Score Composite of Youth and Parent Dyads from an Obesity Prevention Intervention: iCook 4-H

    Directory of Open Access Journals (Sweden)

    Melissa D. Olfert

    2018-05-01

    Full Text Available iCook 4-H is a lifestyle intervention to improve diet, physical activity and mealtime behavior. Control and treatment dyads (adult primary meal preparer and a 9–10-year-old youth completed surveys at baseline and 4, 12, and 24 months. A Health Disparity (HD score composite was developed utilizing a series of 12 questions (maximum score = 12 with a higher score indicating a more severe health disparity. Questions came from the USDA short form U.S. Household Food Security Survey (5, participation in food assistance programs (1, food behavior (2, level of adult education completed (1, marital status (1, and race (1 adult and 1 child. There were 228 dyads (control n = 77; treatment n = 151 enrolled in the iCook 4-H study. Baseline HD scores were 3.00 ± 2.56 among control dyads and 2.97 ± 2.91 among treatment dyads, p = 0.6632. There was a significant decline in the HD score of the treatment group from baseline to 12 months (p = 0.0047 and baseline to 24 months (p = 0.0354. A treatment by 12-month time interaction was found (baseline mean 2.97 ± 2.91 vs. 12-month mean 1.78 ± 2.31; p = 0.0406. This study shows that behavioral change interventions for youth and adults can help improve factors that impact health equity; although, further research is needed to validate this HD score as a measure of health disparities across time.

  5. Neighborhood Qualification of the Association between Parenting and Problem Behavior Trajectories among Mexican-origin Father-Adolescent Dyads

    OpenAIRE

    White, Rebecca M. B.; Liu, Yu; Gonzales, Nancy A.; Knight, George P.; Tein, Jenn-Yun

    2016-01-01

    To address the combined importance of fathers and neighborhoods for adolescent adjustment, we examined whether associations between fathers' parenting and adolescents' problem behaviors were qualified by neighborhood adversity. We captured both mainstream (e.g., authoritative) and alternative (e.g., no-nonsense, reduced involvement) parenting styles and examined parenting and neighborhood effects on changes over time in problem behaviors among a sample of Mexican-origin father-adolescent dyad...

  6. Heterogeneous catalytic degradation of polyacrylamide solution | Hu ...

    African Journals Online (AJOL)

    Modified with trace metal elements, the catalytic activity of Fe2O3/Al2O3 could be changed greatly. Among various trace metal elements, Fe2O3/Al2O3 catalysts modified with Co and Cu showed great increase on catalytic activity. International Journal of Engineering, Science and Technology, Vol. 2, No. 7, 2010, pp. 110- ...

  7. Catalytic briquettes from low-rank coal for NO reduction

    Energy Technology Data Exchange (ETDEWEB)

    A. Boyano; M.E. Galvez; R. Moliner; M.J. Lazaro [Instituto de Carboquimica, CSIC, Zaragoza (Spain)

    2007-07-01

    The briquetting is one of the most ancient and widespread techniques of coal agglomeration which is nowadays becoming useless for combustion home applications. However, the social increasing interest in environmental protection opens new applications to this technique, especially in developed countries. In this work, a series of catalytic briquettes were prepared from low-rank Spanish coal and commercial pitch by means of a pressure agglomeration method. After that, they were cured in air and doped by equilibrium impregnation with vanadium compounds. Preparation conditions (especially those of activation and oxidizing process) were changed to study their effects on catalytic behaviour. Catalytic briquettes showed a relative high NO conversion at low temperatures in all cases, however, a strong relation between the preparation process and the reached NO conversion was observed. Preparation procedure has an effect not only on the NO reduction efficiency but also on the mechanical strength of the briquettes as a consequence of the structural and chemical changes carried out during the activation and oxidation procedures. Generally speaking mechanical resistance is enhanced by an optimal porous volume and the creation of new carboxyl groups on surface. Just on the contrary, NO reduction is promoted by high microporous structures and higher amounts of surface oxygen groups. Both facts force to find an optimum point in the preparation produce which will depend on the application. 24 refs., 4 figs., 3 tabs.

  8. Influenza Transmission in the Mother-Infant Dyad Leads to Severe Disease, Mammary Gland Infection, and Pathogenesis by Regulating Host Responses.

    Science.gov (United States)

    Paquette, Stéphane G; Banner, David; Huang, Stephen S H; Almansa, Raquel; Leon, Alberto; Xu, Luoling; Bartoszko, Jessica; Kelvin, David J; Kelvin, Alyson A

    2015-10-01

    Seasonal influenza viruses are typically restricted to the human upper respiratory tract whereas influenza viruses with greater pathogenic potential often also target extra-pulmonary organs. Infants, pregnant women, and breastfeeding mothers are highly susceptible to severe respiratory disease following influenza virus infection but the mechanisms of disease severity in the mother-infant dyad are poorly understood. Here we investigated 2009 H1N1 influenza virus infection and transmission in breastfeeding mothers and infants utilizing our developed infant-mother ferret influenza model. Infants acquired severe disease and mortality following infection. Transmission of the virus from infants to mother ferrets led to infection in the lungs and mother mortality. Live virus was also found in mammary gland tissue and expressed milk of the mothers which eventually led to milk cessation. Histopathology showed destruction of acini glandular architecture with the absence of milk. The virus was localized in mammary epithelial cells of positive glands. To understand the molecular mechanisms of mammary gland infection, we performed global transcript analysis which showed downregulation of milk production genes such as Prolactin and increased breast involution pathways indicated by a STAT5 to STAT3 signaling shift. Genes associated with cancer development were also significantly increased including JUN, FOS and M2 macrophage markers. Immune responses within the mammary gland were characterized by decreased lymphocyte-associated genes CD3e, IL2Ra, CD4 with IL1β upregulation. Direct inoculation of H1N1 into the mammary gland led to infant respiratory infection and infant mortality suggesting the influenza virus was able to replicate in mammary tissue and transmission is possible through breastfeeding. In vitro infection studies with human breast cells showed susceptibility to H1N1 virus infection. Together, we have shown that the host-pathogen interactions of influenza virus

  9. Method of fabricating a catalytic structure

    Science.gov (United States)

    Rollins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2009-09-22

    A precursor to a catalytic structure comprising zinc oxide and copper oxide. The zinc oxide has a sheet-like morphology or a spherical morphology and the copper oxide comprises particles of copper oxide. The copper oxide is reduced to copper, producing the catalytic structure. The catalytic structure is fabricated by a hydrothermal process. A reaction mixture comprising a zinc salt, a copper salt, a hydroxyl ion source, and a structure-directing agent is formed. The reaction mixture is heated under confined volume conditions to produce the precursor. The copper oxide in the precursor is reduced to copper. A method of hydrogenating a carbon oxide using the catalytic structure is also disclosed, as is a system that includes the catalytic structure.

  10. Catalytic hydrogenation of carbon monoxide

    International Nuclear Information System (INIS)

    Wayland, B.B.

    1993-12-01

    Focus of this project is on developing new approaches for hydrogenation of carbon monoxide to produce organic oxygenates at mild conditions. The strategies to accomplish CO reduction are based on favorable thermodynamics manifested by rhodium macrocycles for producing a series of intermediates implicated in the catalytic hydrogenation of CO. Metalloformyl complexes from reactions of H 2 and CO, and CO reductive coupling to form metallo α-diketone species provide alternate routes to organic oxygenates that utilize these species as intermediates. Thermodynamic and kinetic-mechanistic studies are used in guiding the design of new metallospecies to improve the thermodynamic and kinetic factors for individual steps in the overall process. Electronic and steric effects associated with the ligand arrays along with the influences of the reaction medium provide the chemical tools for tuning these factors. Non-macrocyclic ligand complexes that emulate the favorable thermodynamic features associated with rhodium macrocycles, but that also manifest improved reaction kinetics are promising candidates for future development

  11. Selective catalytic oxidation of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J; Koljonen, T [VTT Energy, Espoo (Finland)

    1997-12-31

    In the combustion of fossil fuels, the principal source of nitrogen oxides is nitrogen bound in the fuel structure. In gasification, a large part of fuel nitrogen forms NH{sub 3}, which may form nitrogen oxides during gas combustion. If NH{sub 3} and other nitrogen species could be removed from hot gas, the NO emission could be considerably reduced. However, relatively little attention has been paid to finding new means of removing nitrogen compounds from the hot gasification gas. The possibility of selectively oxidizing NH{sub 3} to N{sub 2} in the hot gasification has been studied at VTT Energy. The largest NH{sub 3} reductions have been achieved by catalytic oxidation on aluminium oxides. (author) (4 refs.)

  12. Non-catalytic recuperative reformer

    Science.gov (United States)

    Khinkis, Mark J.; Kozlov, Aleksandr P.; Kurek, Harry

    2015-12-22

    A non-catalytic recuperative reformer has a flue gas flow path for conducting hot flue gas from a thermal process and a reforming mixture flow path for conducting a reforming mixture. At least a portion of the reforming mixture flow path is embedded in the flue gas flow path to permit heat transfer from the hot flue gas to the reforming mixture. The reforming mixture flow path contains substantially no material commonly used as a catalyst for reforming hydrocarbon fuel (e.g., nickel oxide, platinum group elements or rhenium), but instead the reforming mixture is reformed into a higher calorific fuel via reactions due to the heat transfer and residence time. In a preferred embodiment, extended surfaces of metal material such as stainless steel or metal alloy that are high in nickel content are included within at least a portion of the reforming mixture flow path.

  13. Studies of Catalytic Model Systems

    DEFF Research Database (Denmark)

    Holse, Christian

    The overall topic of this thesis is within the field of catalysis, were model systems of different complexity have been studied utilizing a multipurpose Ultra High Vacuum chamber (UHV). The thesis falls in two different parts. First a simple model system in the form of a ruthenium single crystal...... of the Cu/ZnO nanoparticles is highly relevant to industrial methanol synthesis for which the direct interaction of Cu and ZnO nanocrystals synergistically boost the catalytic activity. The dynamical behavior of the nanoparticles under reducing and oxidizing environments were studied by means of ex situ X......-ray Photoelectron Electron Spectroscopy (XPS) and in situ Transmission Electron Microscopy (TEM). The surface composition of the nanoparticles changes reversibly as the nanoparticles exposed to cycles of high-pressure oxidation and reduction (200 mbar). Furthermore, the presence of metallic Zn is observed by XPS...

  14. Selective catalytic oxidation of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T. [VTT Energy, Espoo (Finland)

    1996-12-31

    In the combustion of fossil fuels, the principal source of nitrogen oxides is nitrogen bound in the fuel structure. In gasification, a large part of fuel nitrogen forms NH{sub 3}, which may form nitrogen oxides during gas combustion. If NH{sub 3} and other nitrogen species could be removed from hot gas, the NO emission could be considerably reduced. However, relatively little attention has been paid to finding new means of removing nitrogen compounds from the hot gasification gas. The possibility of selectively oxidizing NH{sub 3} to N{sub 2} in the hot gasification has been studied at VTT Energy. The largest NH{sub 3} reductions have been achieved by catalytic oxidation on aluminium oxides. (author) (4 refs.)

  15. The evolution of catalytic function

    Science.gov (United States)

    Maurel, Marie-Christine; Ricard, Jacques

    2006-03-01

    It is very likely that the main driving force of enzyme evolution is the requirement to improve catalytic and regulatory efficiency which results from the intrinsic performance as well as from the spatial and functional organization of enzymes in living cells. Kinetic co-operativity may occur in simple monomeric proteins if they display “slow” conformational transitions, at the cost of catalytic efficiency. Oligomeric enzymes on the other hand can be both efficient and co-operative. We speculate that the main reason for the emergence of co-operative oligomeric enzymes is the need for catalysts that are both cooperative and efficient. As it is not useful for an enzyme to respond to a change of substrate concentration in a complex kinetic way, the emergence of symmetry has its probable origin in a requirement for “functional simplicity”. In a living cell, enzyme are associated with other macromolecules and membranes. The fine tuning of their activity may also be reached through mutations of the microenvironment. Our hypothesis is that these mutations are related to the vectorial transport of molecules, to achieve the hysteresis loops of enzyme reactions generated by the coupling of reaction and diffusion, through the co-operativity brought about by electric interactions between a charged substrate and a membrane, and last but not least, through oscillations. As the physical origins of these effects are very simple and do not require complex molecular devices, it is very likely that the functional advantage generated by the spatial and functional organization of enzyme molecules within the cell have appeared in prebiotic catalysis or very early during the primeval stages of biological evolution. We shall began this paper by presenting the nature of the probable earliest catalysts in the RNA world.

  16. Psychological adaptation to life-threatening injury in dyads: the role of dysfunctional disclosure of trauma

    Directory of Open Access Journals (Sweden)

    Laura Pielmaier

    2011-12-01

    Full Text Available Certain modes of trauma disclosure have been found to be associated with more severe symptoms of posttraumatic stress (PTS in different trauma populations: the reluctance to disclose trauma-related thoughts and feelings, a strong urge to talk about it, and physical as well as emotional reactions during disclosure. Although social-contextual influences gain more and more interest in trauma research, no study has yet investigated these “dysfunctional disclosure tendencies” and their association with PTS from an interpersonal perspective.(1 To replicate previous findings on dysfunctional disclosure tendencies in patients with life-threatening injury and their significant others and (2 to study interpersonal associations between dysfunctional disclosure style and PTS at a dyadic level.PTS symptom severity and self-reports on dysfunctional disclosure tendencies were assessed in N=70 dyads comprising one individual with severe traumatic brain injury and a significant other (“proxy” 3 months after injury.Regression analyses predicting PTS symptom severity revealed dysfunctional disclosure tendencies to have incremental validity above and beyond sex, age, and trauma severity within the individual (both patient and proxy, with moderate effect sizes. The interaction between patient's and proxy's disclosure style explained additional portions of the variance in patients’ PTS symptom severity.Findings suggest that dysfunctional disclosure tendencies are related to poorer psychological adaptation to severe traumatic brain injury. This intrapersonal association may be exacerbated by dysfunctional disclosure tendencies on the part of a significant other. Although the results require replication in other trauma samples without brain injury to further generalize the findings beyond the observed population, the study contributes to the expanding literature on the crucial role of interpersonal relationships in trauma recovery.For the abstract or full

  17. Perceptions about family planning and contraceptive practice in a marital dyad.

    Science.gov (United States)

    Lee, Taewha; Lee, Hyeonkyeong; Ahn, Hyun Mi; Jang, Younkyoung; Shin, Hyejeong; Kim, Myeong Seon

    2014-04-01

    To examine couple interactions to predict wives' contraceptive use as well as that of their husbands in rural Ethiopia. Previous studies stated that men's power and their preferences regarding family planning have a significant role in the adoption of contraception, as well as women's general reproductive health. Spousal communication on reproductive matters helped couples to be aware of each other's perspectives and enhanced the usage of family planning through shared decision-making. A cross-sectional descriptive design was used to analyse the Actor and Partner effects within the marital dyad. The study sample included 389 married couples who were recruited from households in seven enumeration areas randomly selected from Hetosa Woreda in Ethiopia. We used a face-to-face interview survey. Data were collected between 22 October and 21 November 2010 and analysed using descriptive statistics, chi-squared test, t-test, Pearson's correlation and the Actor-Partner interdependence model. There were significant differences in perceptions about family planning, contraceptive knowledge and contraceptive use between wives and husbands. Wives' perceptions about family planning affected theirs as well as that of their husbands' knowledge and use of contraceptive methods. However, husbands' perceptions about family planning did not affect their knowledge and use of contraceptive methods, but did influence their wives'. The application of couple data enhanced our understanding of the complex interactions between wives and husbands, which may lead to novel dyadic-based interventions to improve family planning practice. Couples must be educated and informed not only about the adoption of contraception, but also about reproductive rights and responsibilities through changes in educational and motivational strategies. © 2013 John Wiley & Sons Ltd.

  18. Current perspectives on attachment and bonding in the dog–human dyad

    Directory of Open Access Journals (Sweden)

    Payne E

    2015-02-01

    Full Text Available Elyssa Payne,1 Pauleen C Bennett,2 Paul D McGreevy1 1Faculty of Veterinary Science, University of Sydney, Sydney, NSW, Australia; 2School of Psychological Science, La Trobe University, Bendigo, VIC, Australia Abstract: This article reviews recent research concerning dog–human relationships and how attributes that arise from them can be measured. It highlights the influence of human characteristics on dog behavior, and consequently, the dog–human bond. Of particular importance are the influences of human attitudes and personality. These themes have received surprisingly little attention from researchers. Identifying human attributes that contribute to successful dog–human relationships could assist in the development of a behavioral template to ensure dyadic potential is optimized. Additionally, this article reveals how dyadic functionality and working performance may not necessarily be mutually inclusive. Potential underpinnings of various dog–human relationships and how these may influence dogs' perceptions of their handlers are also discussed. The article considers attachment bonds between humans and dogs, how these may potentially clash with or complement each other, and the effects of different bonds on the dog–human dyad as a whole. We review existing tools designed to measure the dog–human bond and offer potential refinements to improve their accuracy. Positive attitudes and affiliative interactions seem to contribute to the enhanced well-being of both species, as reflected in resultant physiological changes. Thus, promoting positive dog–human relationships would capitalize on these benefits, thereby improving animal welfare. Finally, this article proposes future research directions that may assist in disambiguating what constitutes successful bonding between dogs and the humans in their lives. Keywords: human–animal bond, personality, attitudes, social learning, affective state, dog

  19. Postnatal Mother-to-Infant Attachment in Subclinically Depressed Mothers: Dyads at Risk?

    Science.gov (United States)

    Behrendt, Hannah F; Konrad, Kerstin; Goecke, Tamme W; Fakhrabadi, Roya; Herpertz-Dahlmann, Beate; Firk, Christine

    -child relationship. Therefore, early interventions are needed that focus on the mother-child dyad and target not only clinically but also subclinically depressed mothers. © 2016 S. Karger AG, Basel.

  20. Catalytic strategy used by the myosin motor to hydrolyze ATP.

    Science.gov (United States)

    Kiani, Farooq Ahmad; Fischer, Stefan

    2014-07-22

    Myosin is a molecular motor responsible for biological motions such as muscle contraction and intracellular cargo transport, for which it hydrolyzes adenosine 5'-triphosphate (ATP). Early steps of the mechanism by which myosin catalyzes ATP hydrolysis have been investigated, but still missing are the structure of the final ADP·inorganic phosphate (Pi) product and the complete pathway leading to it. Here, a comprehensive description of the catalytic strategy of myosin is formulated, based on combined quantum-classical molecular mechanics calculations. A full exploration of catalytic pathways was performed and a final product structure was found that is consistent with all experiments. Molecular movies of the relevant pathways show the different reorganizations of the H-bond network that lead to the final product, whose γ-phosphate is not in the previously reported HPγO4(2-) state, but in the H2PγO4(-) state. The simulations reveal that the catalytic strategy of myosin employs a three-pronged tactic: (i) Stabilization of the γ-phosphate of ATP in a dissociated metaphosphate (PγO3(-)) state. (ii) Polarization of the attacking water molecule, to abstract a proton from that water. (iii) Formation of multiple proton wires in the active site, for efficient transfer of the abstracted proton to various product precursors. The specific role played in this strategy by each of the three loops enclosing ATP is identified unambiguously. It explains how the precise timing of the ATPase activation during the force generating cycle is achieved in myosin. The catalytic strategy described here for myosin is likely to be very similar in most nucleotide hydrolyzing enzymes.

  1. Contrasting intermolecular and intramolecular exciplex formation of a 1,4-dicyano-2-methylnaphthalene-N,N-dimethyl-p-toluidine dyad.

    Science.gov (United States)

    Imoto, Mitsutaka; Ikeda, Hiroshi; Fujii, Takayuki; Taniguchi, Hisaji; Tamaki, Akihiro; Takeda, Motonori; Mizuno, Kazuhiko

    2010-05-07

    An intramolecular exciplex is formed upon excitation of the cyclohexane solution of the 1,4-dicyano-2-methylnaphthalene-N,N-dimethyl-p-toluidine dyad, but little if any intramolecular CT complex exists in the ground state of this substance in solution. In contrast, in the crystalline state, the dyad forms an intermolecular mixed-stack CT complex in the ground state and an intermolecular exciplex when it is photoexcited.

  2. Dimerization interface of 3-hydroxyacyl-CoA dehydrogenase tunes the formation of its catalytic intermediate.

    Directory of Open Access Journals (Sweden)

    Yingzhi Xu

    Full Text Available 3-Hydroxyacyl-CoA dehydrogenase (HAD, EC 1.1.1.35 is a homodimeric enzyme localized in the mitochondrial matrix, which catalyzes the third step in fatty acid β-oxidation. The crystal structures of human HAD and subsequent complexes with cofactor/substrate enabled better understanding of HAD catalytic mechanism. However, numerous human diseases were found related to mutations at HAD dimerization interface that is away from the catalytic pocket. The role of HAD dimerization in its catalytic activity needs to be elucidated. Here, we solved the crystal structure of Caenorhabditis elegans HAD (cHAD that is highly conserved to human HAD. Even though the cHAD mutants (R204A, Y209A and R204A/Y209A with attenuated interactions on the dimerization interface still maintain a dimerization form, their enzymatic activities significantly decrease compared to that of the wild type. Such reduced activities are in consistency with the reduced ratios of the catalytic intermediate formation. Further molecular dynamics simulations results reveal that the alteration of the dimerization interface will increase the fluctuation of a distal region (a.a. 60-80 that plays an important role in the substrate binding. The increased fluctuation decreases the stability of the catalytic intermediate formation, and therefore the enzymatic activity is attenuated. Our study reveals the molecular mechanism about the essential role of the HAD dimerization interface in its catalytic activity via allosteric effects.

  3. Microstructural analysis and the mechanism if the coke formation in a refractory castable used in a fluidized catalytic cracking unit; Analise microestructural e mecanismo de formacao do coque em um concreto refratario utilizado em unidades de craqueamento catalitico fludizado

    Energy Technology Data Exchange (ETDEWEB)

    Cabrelon, M.D.; Rodrigues, J.A. [Universidade Federal de Sao Carlos (GEMM/UFSCAR), Sao Carlos, SP (Brazil). Grupo de Engenharia de Microestrutura de Materiais], Email: marcelodezena@gmail.com; Medeiros, J. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas; Toledo Filho, R.D. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Estruturas e Materiais

    2010-07-01

    The cokes formation in the refractory castables for FCC's unit is cited as one the most relevant problem in the internal face of the petrochemical Riser, but its mechanism is still unknown. In this sense, was made a microstructural study with a anti-erosive refractory castable class C, exposed to a cokemaker atmosphere, aiming to identify a mechanism to explain the coke's formation. For this reason, test samples were molded and subjected to a cokemaker process in the reactor pilot from CENPES-PETROBRAS-RJ, under an atmosphere of propene, as one temperature of 540 deg C and soaking time ranging between 10 and 480h. These samples had their internal and surface microstructures analyzed by Optical and Scanning Electron Microscopy. The results showed that the aggregates had deterioration and your internal pores were filled with coke. In this point, starts the growth of microspheres of coke on the external face, coalescing and forming 'columns' in which become denser when increasing the exposure time to a saturated atmosphere with hydrocarbon. (author)

  4. Microstructural analysis and the mechanism if the coke formation in a refractory castable used in a fluidized catalytic cracking unit; Analise microestructural e mecanismo de formacao do coque em um concreto refratario utilizado em unidades de craqueamento catalitico fludizado

    Energy Technology Data Exchange (ETDEWEB)

    Cabrelon, M D; Rodrigues, J.A. [Universidade Federal de Sao Carlos (GEMM/UFSCAR), Sao Carlos, SP (Brazil). Grupo de Engenharia de Microestrutura de Materiais], Email: marcelodezena@gmail.com; Medeiros, J [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas; Toledo Filho, R D [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Estruturas e Materiais

    2010-07-01

    The cokes formation in the refractory castables for FCC's unit is cited as one the most relevant problem in the internal face of the petrochemical Riser, but its mechanism is still unknown. In this sense, was made a microstructural study with a anti-erosive refractory castable class C, exposed to a cokemaker atmosphere, aiming to identify a mechanism to explain the coke's formation. For this reason, test samples were molded and subjected to a cokemaker process in the reactor pilot from CENPES-PETROBRAS-RJ, under an atmosphere of propene, as one temperature of 540 deg C and soaking time ranging between 10 and 480h. These samples had their internal and surface microstructures analyzed by Optical and Scanning Electron Microscopy. The results showed that the aggregates had deterioration and your internal pores were filled with coke. In this point, starts the growth of microspheres of coke on the external face, coalescing and forming 'columns' in which become denser when increasing the exposure time to a saturated atmosphere with hydrocarbon. (author)

  5. Catalytic modification of cellulose and hemicellulose - Sugarefine

    Energy Technology Data Exchange (ETDEWEB)

    Repo, T. [Helsinki Univ. (Finland),Laboratory of Inorganic Chemistry], email: timo.repo@helsinki.fi

    2012-07-01

    The main goal of the project is to develop catalytic methods for the modification of lignocellulose-based saccharides in the biorefineries. The products of these reactions could be used for example as biofuel components, raw materials for the chemical industry, solvents and precursors for biopolymers. The catalyst development aims at creating efficient, selective and green catalytic methods for profitable use in biorefineries. The project is divided in three work packages: In WP1 (Catalytic dehydration of cellulose) the aim is at developing non-toxic, efficient methods for the catalytic dehydration of cellulose the target molecule being here 5-hydroxymethylfurfural (5-HMF). 5-HMF is an interesting platform chemical for the production of fuel additives, solvents and polymers. In WP2 (Catalytic reduction), the objective of the catalytic reduction studies is to produce commercially interesting monofunctional chemicals, such as 1-butanol or 2-methyltetrahydrofuran (2-MeTHF). In WP3 (Catalytic oxidation), the research focuses on developing a green and efficient oxidation method for producing acids. Whereas acetic and formic acids are bulk chemicals, diacids such as glucaric and xylaric acids are valuable specialty chemicals for detergent, polymer and food production.

  6. Catalytic Wittig and aza-Wittig reactions

    Directory of Open Access Journals (Sweden)

    Zhiqi Lao

    2016-11-01

    Full Text Available This review surveys the literature regarding the development of catalytic versions of the Wittig and aza-Wittig reactions. The first section summarizes how arsenic and tellurium-based catalytic Wittig-type reaction systems were developed first due to the relatively easy reduction of the oxides involved. This is followed by a presentation of the current state of the art regarding phosphine-catalyzed Wittig reactions. The second section covers the field of related catalytic aza-Wittig reactions that are catalyzed by both phosphine oxides and phosphines.

  7. Catalytic models developed through social work

    DEFF Research Database (Denmark)

    Jensen, Mogens

    2015-01-01

    of adolescents placed in out-of-home care and is characterised using three situated cases as empirical data. Afterwards the concept of catalytic processes is briefly presented and then applied in an analysis of pedagogical treatment in the three cases. The result is a different conceptualisation of the social......The article develops the concept of catalytic processes in relation to social work with adolescents in an attempt to both reach a more nuanced understanding of social work and at the same time to develop the concept of catalytic processes in psychology. The social work is pedagogical treatment...

  8. Efficient catalytic combustion in integrated micropellistors

    International Nuclear Information System (INIS)

    Bársony, I; Ádám, M; Fürjes, P; Dücső, Cs; Lucklum, R; Hirschfelder, M; Kulinyi, S

    2009-01-01

    This paper analyses two of the key issues of the development of catalytic combustion-type sensors: the selection and production of active catalytic particles on the micropellistor surface as well as the realization of a reliable thermal conduction between heater element and catalytic surface, for the sensing of temperature increase produced by the combustion. The report also demonstrates that chemical sensor product development by a MEMS process is a continuous struggle for elimination of all uncertainties influencing reliability and sensitivity of the final product

  9. Protein tyrosine phosphatases: regulatory mechanisms.

    NARCIS (Netherlands)

    den Hertog, J.; Ostman, A.; Bohmer, F.D.

    2008-01-01

    Protein-tyrosine phosphatases are tightly controlled by various mechanisms, ranging from differential expression in specific cell types to restricted subcellular localization, limited proteolysis, post-translational modifications affecting intrinsic catalytic activity, ligand binding and

  10. Brain-to-brain synchrony in parent-child dyads and the relationship with emotion regulation revealed by fNIRS-based hyperscanning.

    Science.gov (United States)

    Reindl, Vanessa; Gerloff, Christian; Scharke, Wolfgang; Konrad, Kerstin

    2018-05-25

    Parent-child synchrony, the coupling of behavioral and biological signals during social contact, may fine-tune the child's brain circuitries associated with emotional bond formation and the child's development of emotion regulation. Here, we examined the neurobiological underpinnings of these processes by measuring parent's and child's prefrontal neural activity concurrently with functional near-infrared spectroscopy hyperscanning. Each child played both a cooperative and a competitive game with the parent, mostly the mother, as well as an adult stranger. During cooperation, parent's and child's brain activities synchronized in the dorsolateral prefrontal and frontopolar cortex (FPC), which was predictive for their cooperative performance in subsequent trials. No significant brain-to-brain synchrony was observed in the conditions parent-child competition, stranger-child cooperation and stranger-child competition. Furthermore, parent-child compared to stranger-child brain-to-brain synchrony during cooperation in the FPC mediated the association between the parent's and the child's emotion regulation, as assessed by questionnaires. Thus, we conclude that brain-to-brain synchrony may represent an underlying neural mechanism of the emotional connection between parent and child, which is linked to the child's development of adaptive emotion regulation. Future studies may uncover whether brain-to-brain synchrony can serve as a neurobiological marker of the dyad's socio-emotional interaction, which is sensitive to risk conditions, and can be modified by interventions. Copyright © 2018. Published by Elsevier Inc.

  11. Longitudinal associations between maternal disrupted representations, maternal interactive behavior and infant attachment: a comparison between full-term and preterm dyads.

    Science.gov (United States)

    Hall, R A S; Hoffenkamp, H N; Tooten, A; Braeken, J; Vingerhoets, A J J M; van Bakel, H J A

    2015-04-01

    This prospective study examined whether or not a mother's representations of her infant were more often disrupted after premature childbirth. Furthermore, the study examined if different components of maternal interactive behavior mediated the relation between maternal disrupted representations and infant attachment. The participants were mothers of full-term (n = 75), moderately preterm (n = 68) and very preterm infants (n = 67). Maternal representations were assessed by the Working Model of the Child Interview at 6 months post-partum. Maternal interactive behavior was evaluated at 6 and 24 months post-partum, using the National Institute of Child Health and Human Development Early Care Research Network mother-infant observation scales. Infant attachment was observed at 24 months post-partum and was coded by the Attachment Q-Set. The results reveal that a premature childbirth does not necessarily generate disrupted maternal representations of the infant. Furthermore, maternal interactive behavior appears to be an important mechanism through which maternal representations influence the development of infant attachment in full-term and preterm infants. Early assessment of maternal representations can identify mother-infant dyads at risk, in full-term and preterm samples.

  12. Key parameters controlling the performance of catalytic motors

    Energy Technology Data Exchange (ETDEWEB)

    Esplandiu, Maria J.; Afshar Farniya, Ali [Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona (Spain); Reguera, David, E-mail: dreguera@ub.edu [Departament de Física Fonamental, Universitat de Barcelona, C/Martí i Franquès 1, 08028 Barcelona (Spain)

    2016-03-28

    The development of autonomous micro/nanomotors driven by self-generated chemical gradients is a topic of high interest given their potential impact in medicine and environmental remediation. Although impressive functionalities of these devices have been demonstrated, a detailed understanding of the propulsion mechanism is still lacking. In this work, we perform a comprehensive numerical analysis of the key parameters governing the actuation of bimetallic catalytic micropumps. We show that the fluid motion is driven by self-generated electro-osmosis where the electric field originates by a proton current rather than by a lateral charge asymmetry inside the double layer. Hence, the surface potential and the electric field are the key parameters for setting the pumping strength and directionality. The proton flux that generates the electric field stems from the proton gradient induced by the electrochemical reactions taken place at the pump. Surprisingly the electric field and consequently the fluid flow are mainly controlled by the ionic strength and not by the conductivity of the solution, as one could have expected. We have also analyzed the influence of the chemical fuel concentration, electrochemical reaction rates, and size of the metallic structures for an optimized pump performance. Our findings cast light on the complex chemomechanical actuation of catalytic motors and provide important clues for the search, design, and optimization of novel catalytic actuators.

  13. High aspect ratio catalytic reactor and catalyst inserts therefor

    Science.gov (United States)

    Lin, Jiefeng; Kelly, Sean M.

    2018-04-10

    The present invention relates to high efficient tubular catalytic steam reforming reactor configured from about 0.2 inch to about 2 inch inside diameter high temperature metal alloy tube or pipe and loaded with a plurality of rolled catalyst inserts comprising metallic monoliths. The catalyst insert substrate is formed from a single metal foil without a central supporting structure in the form of a spiral monolith. The single metal foil is treated to have 3-dimensional surface features that provide mechanical support and establish open gas channels between each of the rolled layers. This unique geometry accelerates gas mixing and heat transfer and provides a high catalytic active surface area. The small diameter, high aspect ratio tubular catalytic steam reforming reactors loaded with rolled catalyst inserts can be arranged in a multi-pass non-vertical parallel configuration thermally coupled with a heat source to carry out steam reforming of hydrocarbon-containing feeds. The rolled catalyst inserts are self-supported on the reactor wall and enable efficient heat transfer from the reactor wall to the reactor interior, and lower pressure drop than known particulate catalysts. The heat source can be oxygen transport membrane reactors.

  14. Vacuum-insulated catalytic converter

    Science.gov (United States)

    Benson, David K.

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  15. Catalytic hydrotreatment of refinery waste

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The object of the project is to produce liquid hydrocarbons by the catalytic hydroprocessing of solid refinery wastes (hard pitches) in order to improve the profitability of deep conversion processes and reduce the excess production of heavy fuels. The project was mostly carried out on the ASVAHL demonstration platform site, at Solaize, and hard pitches were produced primarily by deasphalting of atmospheric or vacuum distillation residues. The project includes two experimental phases and an economic evaluation study phase. In phase 1, two granular catalysts were used to transform pitch into standard low sulphur fuel oil: a continuously moving bed, with demetallation and conversion catalyst; a fixed bed, with hydrorefining catalyst. In phase 2 of the project, it was proven that a hydrotreatment process using a finely dispersed catalyst in the feedstock, can, under realistic operating conditions, transform with goods yields hard pitch into distillates that can be refined through standard methods. In phase 3 of the project, it was shown that the economics of such processes are tightly linked to the price differential between white and black oil products, which is expected to increase in the future. Furthermore, the evolution of environmental constraints will impel the use of such methods, thus avoiding the coproduction of polluting solid residues.

  16. Thermal desorption studies of heterogeneous catalytic reactions--3. The stepwise mechanism of n-hexane dehydrocyclization (to benzene) over a Pt/Al/sub 2/O/sub 3/ catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Rozanov, V V; Sklyarov, A V

    1978-12-01

    The interactions of n-hexane, benzene, and the possible intermediates of n-hexane dehydrocyclization by different mechanisms with a 0.68Vertical Bar3< Pt/..gamma..-Al/sub 2/O/sub 3/ catalyst and over pure ..gamma..-Al/sub 2/O/sub 3/ were studied by recording thermal desorption (TD) spectra of these compounds. The kinetic parameters, calculated from the TD data, for benzene formation from n-hexane, 1-hexene and 1,5-hexadiene coincided, suggesting a common reaction route involving these three species. TD spectra of methylcyclopentane indicated that this compound is not an important intermediate in n-hexane dehydrocyclization. These findings suggested that the process starts by two-step dehydrogenation of n-hexane to 1-hexene and 1,5-hexadiene and is followed by a rate-limiting step of hexadiene conversion. Formation of cyclohexadiene, the immediate precursor of benzene, occurs either by direct cyclization of hexadiene or via cyclohexene or hexatriene intermediates, but these routes are alternative rather than competing under the conditions studied.

  17. Hydrogen Production on Ag-Pd/TiO2 Bimetallic Catalysts: Is there a Combined Effect of Surface Plasmon Resonance with Schottky Mechanism on the Photo-Catalytic Activity?

    KAUST Repository

    Nadeem, Muhammad A.; Al-Oufi, Maher; Wahab, Ahmed K.; Anjum, Dalaver H.; Idriss, Hicham

    2017-01-01

    Despite many observations that plasmonics can enhance photocatalytic reactions, their relative role in the overall reaction rate is not thoroughly investigated. Here we report that silver nanoparticles contribution in the reaction rate by its plasmonic effect is negligible when compared to that of Pd (Schottky effect). To conduct the study a series of Ag−Pd/TiO2 catalysts have been prepared, characterized and tested for H2 production from water in the presence of an organic sacrificial agent. Pd was chosen as a standard high work function metal needed for the Schottky junction to pump away electrons from the conduction band of the semiconductor and Ag (whose work function is ca. 1 eV lower than that of Pd) for its high plasmonic resonance response at the edge of the bandgap of TiO2. While H2 production rates showed linear dependency on plasmonic response of Ag in the Pd−Ag series, the system performed less than that of pure Pd. In other words, the plasmonic contribution of Ag in the Ag−Pd/TiO2 catalyst for hydrogen production, while confirmed using different excitation energies, is small. Therefore, the “possible” synergistic effect of plasmonic (in the case of Ag) and Schottky-mechanism (in the case of Pd) is minor when compared to that of Schottky-effect alone.

  18. Hydrogen Production on Ag-Pd/TiO2 Bimetallic Catalysts: Is there a Combined Effect of Surface Plasmon Resonance with Schottky Mechanism on the Photo-Catalytic Activity?

    KAUST Repository

    Nadeem, Muhammad A.

    2017-03-28

    Despite many observations that plasmonics can enhance photocatalytic reactions, their relative role in the overall reaction rate is not thoroughly investigated. Here we report that silver nanoparticles contribution in the reaction rate by its plasmonic effect is negligible when compared to that of Pd (Schottky effect). To conduct the study a series of Ag−Pd/TiO2 catalysts have been prepared, characterized and tested for H2 production from water in the presence of an organic sacrificial agent. Pd was chosen as a standard high work function metal needed for the Schottky junction to pump away electrons from the conduction band of the semiconductor and Ag (whose work function is ca. 1 eV lower than that of Pd) for its high plasmonic resonance response at the edge of the bandgap of TiO2. While H2 production rates showed linear dependency on plasmonic response of Ag in the Pd−Ag series, the system performed less than that of pure Pd. In other words, the plasmonic contribution of Ag in the Ag−Pd/TiO2 catalyst for hydrogen production, while confirmed using different excitation energies, is small. Therefore, the “possible” synergistic effect of plasmonic (in the case of Ag) and Schottky-mechanism (in the case of Pd) is minor when compared to that of Schottky-effect alone.

  19. Feeding styles and child weight status among recent immigrant mother-child dyads

    Directory of Open Access Journals (Sweden)

    Tovar Alison

    2012-05-01

    Full Text Available Abstract Background Research has shown that parental feeding styles may influence children’s food consumption, energy intake, and ultimately, weight status. We examine this relationship, among recent immigrants to the US. Given that immigrant parents and children are at greater risk for becoming overweight/obese with increased time in the US, identification of risk factors for weight gain is critical. Methods Baseline data was collected on 383 mother-child dyads enrolled in Live Well, a community-based, participatory, randomized controlled lifestyle intervention to prevent weight gain in recent immigrant mothers. Socio-demographic information together with heights and weights were collected for both mother and child. Acculturation, behavioral data, and responses to the Caregiver’s Feeding Styles Questionnaire (CFSQ were also obtained from the mother. Results The children’s average age was 6.2 ± 2.7 years, 58% male. Mothers had been in the country for an average of 6.0 ± 3.3 years, and are Brazilian (36%, Haitian (34% and Latino (30%. Seventy-two percent of the mothers were overweight/obese, while 43% of the children were overweight/obese. Fifteen percent of mothers reported their feeding style as being high demanding/high responsive; 32% as being high demanding/low responsive; 34% as being low demanding/high responsive and 18% as being low demanding/low responsive. In bivariate analyses, feeding styles significantly differed by child BMIz-score, ethnic group, and mother’s perceived stress. In multiple linear regression, a low demanding/high responsive feeding style was found to be positively associated (ß = 0.56 with a higher child weight as compared to high demanding/high responsive, controlling for known covariates (p = 0.01. Conclusions Most mothers report having a low demanding/high responsive feeding style, which is associated with higher child weight status in this diverse immigrant population. This finding adds to the growing

  20. Feeding styles and child weight status among recent immigrant mother-child dyads.

    Science.gov (United States)

    Tovar, Alison; Hennessy, Erin; Pirie, Alex; Must, Aviva; Gute, David M; Hyatt, Raymond R; Kamins, Christina Luongo; Hughes, Sheryl O; Boulos, Rebecca; Sliwa, Sarah; Galvão, Heloisa; Economos, Christina D

    2012-05-29

    Research has shown that parental feeding styles may influence children's food consumption, energy intake, and ultimately, weight status. We examine this relationship, among recent immigrants to the US. Given that immigrant parents and children are at greater risk for becoming overweight/obese with increased time in the US, identification of risk factors for weight gain is critical. Baseline data was collected on 383 mother-child dyads enrolled in Live Well, a community-based, participatory, randomized controlled lifestyle intervention to prevent weight gain in recent immigrant mothers. Socio-demographic information together with heights and weights were collected for both mother and child. Acculturation, behavioral data, and responses to the Caregiver's Feeding Styles Questionnaire (CFSQ) were also obtained from the mother. The children's average age was 6.2 ± 2.7 years, 58% male. Mothers had been in the country for an average of 6.0 ± 3.3 years, and are Brazilian (36%), Haitian (34%) and Latino (30%). Seventy-two percent of the mothers were overweight/obese, while 43% of the children were overweight/obese. Fifteen percent of mothers reported their feeding style as being high demanding/high responsive; 32% as being high demanding/low responsive; 34% as being low demanding/high responsive and 18% as being low demanding/low responsive. In bivariate analyses, feeding styles significantly differed by child BMIz-score, ethnic group, and mother's perceived stress. In multiple linear regression, a low demanding/high responsive feeding style was found to be positively associated (ß = 0.56) with a higher child weight as compared to high demanding/high responsive, controlling for known covariates (p = 0.01). Most mothers report having a low demanding/high responsive feeding style, which is associated with higher child weight status in this diverse immigrant population. This finding adds to the growing literature that suggests this type of feeding style may be a risk

  1. An in Situ NMR Study of the Mechanism for the Catalytic Conversion of Fructose to 5-Hydroxymethylfurfural and then to Levulinic Acid Using 13 C Labeled d -Fructose

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing [Department of Chemistry and Institute for Atom Efficient; Weitz, Eric [Department of Chemistry and Institute for Atom Efficient

    2012-04-26

    The pathways for the formation of 5-hydroxymethylfurfural (HMF) by dehydration of d-fructose and for the formation of levulinic acid and formic acid from HMF by rehydration were investigated by in situ13C and 1H NMR using both unlabeled and 13C-labeled fructose. Water or DMSO was used as the solvent with Amberlyst 70, PO43–/niobic acid, or sulfuric acid as catalysts. Only HMF is observed using NMR for fructose dehydration in DMSO with any of the three catalysts or without a catalyst. For each system, results with 13C-labeled fructose indicate that the first carbon (C-1) or sixth carbon (C-6) of fructose maps onto the corresponding carbons of HMF. For fructose dehydration in H2O with a PO43–/niobic acid catalyst, in addition to HMF, furfural was observed as a product. However, we show that furfural is not a reaction product deriving from HMF under our conditions. Rather our data indicate that there is a parallel reaction pathway open to fructose when the reaction takes place in H2O with a PO43–/niobic acid catalyst. The corresponding 13C-labeled results show that the first carbon in fructose maps onto the first carbon (aldehyde carbon) in furfural. Using 13C-enriched HMF formed from dehydration of 13C-labeled fructose in DMSO or H2O, we investigated the pathway for HMF rehydration to levulinic and formic acid. The data in different solvents and with different catalysts are consistent with a common mechanism for HMF rehydration, which results in the C-1 and C-6 carbon of HMF being transformed to the carbon of formic acid and methyl carbon (C-5) of levulinic acid, respectively.

  2. Chemistry and engineering of catalytic hydrodesulfurization

    NARCIS (Netherlands)

    Schuit, G.C.A.; Gates, B.C.

    1973-01-01

    A review with 74 refs. on catalytic hydrodesulfurization of pure compds. and petroleum feedstocks, with emphasis on reaction intermediates and structures of Al2O3-supported Ni-W and Co-Mo catalysts. [on SciFinder (R)

  3. Long-Range Electrostatics-Induced Two-Proton Transfer Captured by Neutron Crystallography in an Enzyme Catalytic Site.

    Science.gov (United States)

    Gerlits, Oksana; Wymore, Troy; Das, Amit; Shen, Chen-Hsiang; Parks, Jerry M; Smith, Jeremy C; Weiss, Kevin L; Keen, David A; Blakeley, Matthew P; Louis, John M; Langan, Paul; Weber, Irene T; Kovalevsky, Andrey

    2016-04-11

    Neutron crystallography was used to directly locate two protons before and after a pH-induced two-proton transfer between catalytic aspartic acid residues and the hydroxy group of the bound clinical drug darunavir, located in the catalytic site of enzyme HIV-1 protease. The two-proton transfer is triggered by electrostatic effects arising from protonation state changes of surface residues far from the active site. The mechanism and pH effect are supported by quantum mechanics/molecular mechanics (QM/MM) calculations. The low-pH proton configuration in the catalytic site is deemed critical for the catalytic action of this enzyme and may apply more generally to other aspartic proteases. Neutrons therefore represent a superb probe to obtain structural details for proton transfer reactions in biological systems at a truly atomic level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Kinetic catalytic studies of scorpion's hemocyanin

    International Nuclear Information System (INIS)

    Queinnec, E.; Vuillaume, M.; Gardes-Albert, M.; Ferradini, C.; Ducancel, F.

    1991-01-01

    Hemocyanins are copper proteins which function as oxygen carriers in the haemolymph of Molluscs and Arthropods. They possess enzymatic properties: peroxidatic and catalatic activities, although they have neither iron nor porphyrin ring at the active site. The kinetics of the catalytic reaction is described. The reaction of superoxide anion with hemocyanin has been studied using pulse radiolysis at pH 9. The catalytic rate constant is 3.5 X 10 7 mol -1 .l.s -1 [fr

  5. Long-range electron transfer in zinc-phthalocyanine-oligo(phenylene-ethynylene)-based donor-bridge-acceptor dyads.

    Science.gov (United States)

    Göransson, Erik; Boixel, Julien; Fortage, Jérôme; Jacquemin, Denis; Becker, Hans-Christian; Blart, Errol; Hammarström, Leif; Odobel, Fabrice

    2012-11-05

    In the context of long-range electron transfer for solar energy conversion, we present the synthesis, photophysical, and computational characterization of two new zinc(II) phthalocyanine oligophenylene-ethynylene based donor-bride-acceptor dyads: ZnPc-OPE-AuP(+) and ZnPc-OPE-C(60). A gold(III) porphyrin and a fullerene has been used as electron accepting moieties, and the results have been compared to a previously reported dyad with a tin(IV) dichloride porphyrin as the electron acceptor (Fortage et al. Chem. Commun. 2007, 4629). The results for ZnPc-OPE-AuP(+) indicate a remarkably strong electronic coupling over a distance of more than 3 nm. The electronic coupling is manifested in both the absorption spectrum and an ultrafast rate for photoinduced electron transfer (k(PET) = 1.0 × 10(12) s(-1)). The charge-shifted state in ZnPc-OPE-AuP(+) recombines with a relatively low rate (k(BET) = 1.0 × 10(9) s(-1)). In contrast, the rate for charge transfer in the other dyad, ZnPc-OPE-C(60), is relatively slow (k(PET) = 1.1 × 10(9) s(-1)), while the recombination is very fast (k(BET) ≈ 5 × 10(10) s(-1)). TD-DFT calculations support the hypothesis that the long-lived charge-shifted state of ZnPc-OPE-AuP(+) is due to relaxation of the reduced gold porphyrin from a porphyrin ring based reduction to a gold centered reduction. This is in contrast to the faster recombination in the tin(IV) porphyrin based system (k(BET) = 1.2 × 10(10) s(-1)), where the excess electron is instead delocalized over the porphyrin ring.

  6. Emotional reactions of mothers facing premature births: study of 100 mother-infant dyads 32 gestational weeks.

    Science.gov (United States)

    Eutrope, Julien; Thierry, Aurore; Lempp, Franziska; Aupetit, Laurence; Saad, Stéphanie; Dodane, Catherine; Bednarek, Nathalie; De Mare, Laurence; Sibertin-Blanc, Daniel; Nezelof, Sylvie; Rolland, Anne-Catherine

    2014-01-01

    This current study has been conducted to clarify the relationship between the mother's post-traumatic reaction triggered by premature birth and the mother-infant interactions. In this article, the precocious maternal feelings are described. A multicenter prospective study was performed in three French hospitals. 100 dyads with 100 very premature infants and their mothers were recruited. Mothers completed, at two different times self-questionnaires of depression/anxiety, trauma and social support. The quality of interactions in the dyads was evaluated. Thirty-nine percent of the mothers obtained a score at HADS suggesting a high risk of depression at the first visit and approximately one-third at visit two. Seventy-five percent of the mothers were at risk of suffering from an anxiety disorder at visit one and half remained so at visit two. A "depressed" score at visits one and two correlated with a hospitalization for a threatened premature labor. We noted a high risk of trauma for 35% of the mothers and high interactional synchrony was observed for approximately two-thirds of the dyads. The mothers' psychological reactions such as depression and anxiety or postnatal depression correlate strongly with the presence of an initial trauma. At visit one and visit two, a high score of satisfaction concerning social support correlates negatively with presence of a trauma. A maternal risk of trauma is more frequent with a C-section delivery. Mothers' psychological reactions such as depression and anxiety correlate greatly with the presence of an initial trauma. The maternal traumatic reaction linked to premature birth does not correlate with the term at birth, but rather with the weight of the baby. Social support perceived by the mother is correlated with the absence of maternal trauma before returning home, and also seems to inhibit from depressive symptoms from the time of the infant's premature birth.

  7. Emotional reactions of mothers facing premature births: study of 100 mother-infant dyads 32 gestational weeks.

    Directory of Open Access Journals (Sweden)

    Julien Eutrope

    Full Text Available OBJECTIVES: This current study has been conducted to clarify the relationship between the mother's post-traumatic reaction triggered by premature birth and the mother-infant interactions. In this article, the precocious maternal feelings are described. METHODS: A multicenter prospective study was performed in three French hospitals. 100 dyads with 100 very premature infants and their mothers were recruited. Mothers completed, at two different times self-questionnaires of depression/anxiety, trauma and social support. The quality of interactions in the dyads was evaluated. RESULTS: Thirty-nine percent of the mothers obtained a score at HADS suggesting a high risk of depression at the first visit and approximately one-third at visit two. Seventy-five percent of the mothers were at risk of suffering from an anxiety disorder at visit one and half remained so at visit two. A "depressed" score at visits one and two correlated with a hospitalization for a threatened premature labor. We noted a high risk of trauma for 35% of the mothers and high interactional synchrony was observed for approximately two-thirds of the dyads. The mothers' psychological reactions such as depression and anxiety or postnatal depression correlate strongly with the presence of an initial trauma. At visit one and visit two, a high score of satisfaction concerning social support correlates negatively with presence of a trauma. A maternal risk of trauma is more frequent with a C-section delivery. CONCLUSIONS: Mothers' psychological reactions such as depression and anxiety correlate greatly with the presence of an initial trauma. The maternal traumatic reaction linked to premature birth does not correlate with the term at birth, but rather with the weight of the baby. Social support perceived by the mother is correlated with the absence of maternal trauma before returning home, and also seems to inhibit from depressive symptoms from the time of the infant's premature birth.

  8. A Small Number of Residues Can Determine if Linker Histones Are Bound On or Off Dyad in the Chromatosome.

    Science.gov (United States)

    Zhou, Bing-Rui; Feng, Hanqiao; Ghirlando, Rodolfo; Li, Shipeng; Schwieters, Charles D; Bai, Yawen

    2016-10-09

    Linker histones bind to the nucleosome and regulate the structure and function of chromatin. We have previously shown that the globular domains of chicken H5 and Drosophila H1 linker histones bind to the nucleosome with on- or off-dyad modes, respectively. To explore the determinant for the distinct binding modes, we investigated the binding of a mutant globular domain of H5 to the nucleosome. This mutant, termed GH5_pMut, includes substitutions of five globular domain residues of H5 with the corresponding residues in the globular domain of Drosophila H1. The residues at these five positions play important roles in nucleosome binding by either H5 or Drosophila H1. NMR and spin-labeling experiments showed that GH5_pMut bound to the nucleosome off the dyad. We further found that the nucleosome array condensed by either the GH5_pMut or the globular domain of Drosophila H1 displayed a similar sedimentation coefficient, whereas the same nucleosome array condensed by the wild-type globular domain of H5 showed a much larger sedimentation coefficient. Moreover, NMR and spin-labeling results from the study of the nucleosome in complex with the full-length human linker histone H1.0, whose globular domain shares high sequence conservation with the corresponding globular domain of H5, are consistent with an on-dyad binding mode. Taken together, our results suggest that a small number of residues in the globular domain of a linker histone can control its binding location on the nucleosome and higher-order chromatin structure. Copyright © 2016. Published by Elsevier Ltd.

  9. Effects of Self-esteem, Optimism, and Perceived Control on Depressive Symptoms in Stroke Survivor-Spouse Dyads.

    Science.gov (United States)

    Chung, Misook L; Bakas, Tamilyn; Plue, Laura D; Williams, Linda S

    2016-01-01

    Depressive symptoms are common in stroke survivors and their family caregivers. Given the interdependent relationship between the members of dyads in poststroke management, improving depressive symptoms in dyads may depend on their partner's characteristics. Self-esteem, optimism, and perceived control, all known to be associated with depressive symptoms in an individual, may also contribute to their partner's depressive symptoms. The purpose of this study is to examine actor and partner effects of self-esteem, optimism, and perceived control on depression in stroke survivors and their spousal caregivers. A total of 112 ischemic stroke survivors (78% white, 34% women; mean age, 62.5 ± 12.3 years) and their spouses (mean age, 60.6 ± 12.9 years) completed surveys in which depressive symptoms, self-esteem, optimism, and perceived control were assessed using the Patient Health Questionnaire, the Rosenberg Self-esteem Scale, the Revised Life Orientation Test, and the Sense of Control Scale. Multilevel modeling, actor-partner interdependence model regression was used to determine influences on depressive symptoms within the dyad. Individuals with lower self-esteem, optimism, and perceived control had higher levels of depressive symptoms. Stroke survivors whose spouses had lower levels of self-esteem (B = -0.338, P self-esteem (B = -0.047, P = .036) also had higher levels of depressive symptoms. We found significant partner effects of self-esteem on depression for both members and partner effect of optimism on patient's depressive symptoms. These findings suggest that further research is needed to determine if dyadic interventions may help to improve self-esteem, optimism, and depressive symptoms in both patients and their caregivers.

  10. Social dominance in prepubertal dairy heifers allocated in continuous competitive dyads: Effects on body growth, metabolic status, and reproductive development.

    Science.gov (United States)

    Fiol, C; Carriquiry, M; Ungerfeld, R

    2017-03-01

    The objective of this study was to compare the body weight (BW) and size, metabolic status, and reproductive development of dominant and subordinate prepubertal dairy heifers allocated in competitive dyads. Sixteen Holstein and Jersey × Holstein prepubertal heifers (means ± SEM; 250.8 ± 9.8 d; 208.5 ± 13.9 kg of BW) were assigned to 8 homogeneous dyads according to breed, age, and BW. Dyads were housed in pens separated 1 m from each other during 120 d, receiving a total mixed ration on a 5% restriction of their potential dry matter intake, and had access to the same feeder (60 cm) throughout the experiment. Dominant and subordinate heifers were defined based on the winning agonistic interactions in each dyad. Body development was recorded every 20 d in all heifers, and blood samples were collected on the same days to determine endocrine and metabolic status. The maximum follicle diameter, number of follicles >6 mm, and the presence of corpus luteum were observed weekly by ultrasound. Heifer BW (269.3 vs. 265.3 ± 1.5 kg) and average daily gains (0.858 vs. 0.770 ± 0.02 kg/d) were greater in dominant than subordinate heifers. On d 30, 37, and 53, dominant heifers had more follicles than subordinate heifers, and maximum follicle diameter was greater in dominant than in subordinate heifers (10.0 vs. 9.0 ± 0.3 mm). Dominant heifers achieved puberty earlier than subordinate heifers (313.9 ± 4.9 vs. 329.6 ± 5.7 d) with similar BW (279.4 ± 2.6 vs. 277.4 ± 5.8 kg). Glucose concentrations were greater in dominant than subordinate heifers (89.2 vs. 86.8 ± 1.2 mg/dL), but cholesterol concentrations were greater in subordinate than dominant heifers (86.1 vs. 90.2 ± 2.6 mg/dL). We concluded that, under continuous competitive situations, dominant heifers were more precocious than subordinate ones, achieving an earlier puberty. Dominant heifers had greater body growth and glucose concentrations than subordinate heifers, which may be responsible, at least in part, for

  11. Do mothers affect daughter's behaviors? Diet, physical activity, and sedentary behaviors in Kuwaiti mother-daughter dyads.

    Science.gov (United States)

    Shaban, Lemia H; Vaccaro, Joan A; Sukhram, Shiryn D; Huffman, Fatma G

    2018-01-01

    The objective of the study was to evaluate 169 Kuwaiti mother-daughter dyads and their associations with health behaviors for eating healthy, engaging in physical activity, daughters perceived body weight, time spent with computer/video, and time viewing television. Female students aged 10-14 years were selected from private and public schools in the State of Kuwait. Results demonstrated that daughters exhibited similar behaviors to their mothers in their perceived eating behavior, physical activity, computer/video game use, and TV screen time. Future research is essential to determine the role of mothers in effective health behavior intervention strategies for female Kuwaiti adolescents.

  12. Catalytic Conversion of Glucose into 5-Hydroxymethylfurfural by Hf(OTf4 Lewis Acid in Water

    Directory of Open Access Journals (Sweden)

    Junjie Li

    2015-12-01

    Full Text Available A series of Lewis acidic metal salts were used for glucose dehydration to 5-hydroymethylfurfural (HMF in water. Effect of valence state, ionic radii of Lewis acidic cation, and the type of anions on the catalytic performance have been studied systematically. The experimental results showed that the valence state played an important role in determining catalytic activity and selectivity. It was found that a higher glucose conversion rate and HMF selectivity could be obtained over high valent Lewis acid salts, where the ionic radii of these Lewis acidic metal salts are usually relatively small. Analysis on the effect of the anions of Lewis acid salts on the catalytic activity and the selectivity suggested that a higher glucose conversion and HMF selectivity could be readily obtained with Cl−. Furthermore, the recyclability of high valence state Lewis acid salt was also studied, however, inferior catalytic performance was observed. The deactivation mechanism was speculated to be the fact that high valence state Lewis acid salt was comparatively easier to undergo hydrolysis to yield complicated metal aqua ions with less catalytic activity. The Lewis acidic activity could be recovered by introducing a stoichiometric amount of hydrochloric acid (HCl to the catalytic before the reaction.

  13. Catalytic hydrogenation of carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Wayland, B.B.

    1992-12-01

    This project is focused on developing strategies to accomplish the reduction and hydrogenation of carbon monoxide to produce organic oxygenates at mild conditions. Our approaches to this issue are based on the recognition that rhodium macrocycles have unusually favorable thermodynamic values for producing a series of intermediate implicated in the catalytic hydrogenation of CO. Observations of metalloformyl complexes produced by reactions of H{sub 2} and CO, and reductive coupling of CO to form metallo {alpha}-diketone species have suggested a multiplicity of routes to organic oxygenates that utilize these species as intermediates. Thermodynamic and kinetic-mechanistic studies are used in constructing energy profiles for a variety of potential pathways, and these schemes are used in guiding the design of new metallospecies to improve the thermodynamic and kinetic factors for individual steps in the overall process. Variation of the electronic and steric effects associated with the ligand arrays along with the influences of the reaction medium provide the chemical tools for tuning these factors. Emerging knowledge of the factors that contribute to M-H, M-C and M-O bond enthalpies is directing the search for ligand arrays that will expand the range of metal species that have favorable thermodynamic parameters to produce the primary intermediates for CO hydrogenation. Studies of rhodium complexes are being extended to non-macrocyclic ligand complexes that emulate the favorable thermodynamic features associated with rhodium macrocycles, but that also manifest improved reaction kinetics. Multifunctional catalyst systems designed to couple the ability of rhodium complexes to produce formyl and diketone intermediates with a second catalyst that hydrogenates these imtermediates are promising approaches to accomplish CO hydrogenation at mild conditions.

  14. Tuning CNT Properties for Metal-Free Environmental Catalytic Applications

    Directory of Open Access Journals (Sweden)

    Raquel P. Rocha

    2016-06-01

    Full Text Available The application of carbon nanotubes (CNTs as metal-free catalysts is a novel approach for heterogeneous liquid phase catalytic systems. Textural and chemical modifications by liquid/gas phase or mechanical treatments, as well as solid state reactions, were successfully applied to obtain carbon nanotubes with different surface functionalities. Oxygen, nitrogen, and sulfur are the most common heteroatoms introduced on the carbon surface. This short-review highlights different routes used to develop metal-free carbon nanotube catalysts with enhanced properties for Advanced Oxidation Processes.

  15. Adsorbent catalytic nanoparticles and methods of using the same

    Energy Technology Data Exchange (ETDEWEB)

    Slowing, Igor Ivan; Kandel, Kapil

    2017-01-31

    The present invention provides an adsorbent catalytic nanoparticle including a mesoporous silica nanoparticle having at least one adsorbent functional group bound thereto. The adsorbent catalytic nanoparticle also includes at least one catalytic material. In various embodiments, the present invention provides methods of using and making the adsorbent catalytic nanoparticles. In some examples, the adsorbent catalytic nanoparticles can be used to selectively remove fatty acids from feedstocks for biodiesel, and to hydrotreat the separated fatty acids.

  16. Studies Relevent to Catalytic Activation Co & other small Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Peter C

    2005-02-22

    Detailed annual and triannual reports describing the progress accomplished during the tenure of this grant were filed with the Program Manager for Catalysis at the Office of Basic Energy Sciences. To avoid unnecessary duplication, the present report will provide a brief overview of the research areas that were sponsored by this grant and list the resulting publications and theses based on this DOE supported research. The scientific personnel participating in (and trained by) this grant's research are also listed. Research carried out under this DOE grant was largely concerned with the mechanisms of the homogeneous catalytic and photocatalytic activation of small molecules such as carbon monoxide, dihydrogen and various hydrocarbons. Much of the more recent effort has focused on the dynamics and mechanisms of reactions relevant to substrate carbonylations by homogeneous organometallic catalysts. A wide range of modern investigative techniques were employed, including quantitative fast reaction methodologies such as time-resolved optical (TRO) and time-resolved infrared (TRIR) spectroscopy and stopped flow kinetics. Although somewhat diverse, this research falls within the scope of the long-term objective of applying quantitative techniques to elucidate the dynamics and understand the principles of mechanisms relevant to the selective and efficient catalytic conversions of fundamental feedstocks to higher value materials.

  17. Long Term Follow-Up after a Randomized Integrated Educational and Psychosocial Intervention in Patient-Partner Dyads Affected by Heart Failure.

    Directory of Open Access Journals (Sweden)

    Maria Liljeroos

    Full Text Available To date, contemporary heart failure care remains patient-focused, but awareness of the partners' and families' situation is increasing. Randomized studies have mainly evaluated the short-term effects of dyadic interventions. Therefore, the aim of this study was to determine the 24-month effects of an intervention with psych-educational support in dyads of heart failure patients and their partners.This study used a randomized study design and 155 patient-partner dyads were enrolled. The intervention included a nurse-led program of three sessions addressing psychoeducational support.The intervention did not have any effect on health, depressive symptoms or perceived control among the patient-partner dyads after 24 months. Furthermore, time to first event did not differ significantly between the intervention group and the control patients.This study may be regarded as a first step in trying to understand dyads' need for supportive care. Individualized and more targeted interventions seem necessary to achieve a higher impact on dyad outcomes.ClinicalTrials.gov NCT02398799.

  18. Catalytic partial oxidation of pyrolysis oils

    Science.gov (United States)

    Rennard, David Carl

    2009-12-01

    This thesis explores the catalytic partial oxidation (CPO) of pyrolysis oils to syngas and chemicals. First, an exploration of model compounds and their chemistries under CPO conditions is considered. Then CPO experiments of raw pyrolysis oils are detailed. Finally, plans for future development in this field are discussed. In Chapter 2, organic acids such as propionic acid and lactic acid are oxidized to syngas over Pt catalysts. Equilibrium production of syngas can be achieved over Rh-Ce catalysts; alternatively mechanistic evidence is derived using Pt catalysts in a fuel rich mixture. These experiments show that organic acids, present in pyrolysis oils up to 25%, can undergo CPO to syngas or for the production of chemicals. As the fossil fuels industry also provides organic chemicals such as monomers for plastics, the possibility of deriving such species from pyrolysis oils allows for a greater application of the CPO of biomass. However, chemical production is highly dependent on the originating molecular species. As bio oil comprises up to 400 chemicals, it is essential to understand how difficult it would be to develop a pure product stream. Chapter 3 continues the experimentation from Chapter 2, exploring the CPO of another organic functionality: the ester group. These experiments demonstrate that equilibrium syngas production is possible for esters as well as acids in autothermal operation with contact times as low as tau = 10 ms over Rh-based catalysts. Conversion for these experiments and those with organic acids is >98%, demonstrating the high reactivity of oxygenated compounds on noble metal catalysts. Under CPO conditions, esters decompose in a predictable manner: over Pt and with high fuel to oxygen, non-equilibrium products show a similarity to those from related acids. A mechanism is proposed in which ethyl esters thermally decompose to ethylene and an acid, which decarbonylates homogeneously, driven by heat produced at the catalyst surface. Chapter 4

  19. Contributions to the theory of catalytic titrations-III Neutralization catalytic titrations.

    Science.gov (United States)

    Gaál, F F; Abramović, B F

    1985-07-01

    Neutralization catalytic titrations of weak monoprotic adds and bases with both volumetric and coulometric addition of the titrant (strong base/acid) have been simulated by taking into account the equilibrium concentration of the catalyst during the titration. The influence of several factors on the shape of the simulated catalytic titration curve has been investigated and is discussed.

  20. High-resolution noncontact AFM and Kelvin probe force microscopy investigations of self-assembled photovoltaic donor–acceptor dyads

    Directory of Open Access Journals (Sweden)

    Benjamin Grévin

    2016-06-01

    Full Text Available Self-assembled donor–acceptor dyads are used as model nanostructured heterojunctions for local investigations by noncontact atomic force microscopy (nc-AFM and Kelvin probe force microscopy (KPFM. With the aim to probe the photo-induced charge carrier generation, thin films deposited on transparent indium tin oxide substrates are investigated in dark conditions and upon illumination. The topographic and contact potential difference (CPD images taken under dark conditions are analysed in view of the results of complementary transmission electron microscopy (TEM experiments. After in situ annealing, it is shown that the dyads with longer donor blocks essentially lead to standing acceptor–donor lamellae, where the acceptor and donor groups are π-stacked in an edge-on configuration. The existence of strong CPD and surface photo-voltage (SPV contrasts shows that structural variations occur within the bulk of the edge-on stacks. SPV images with a very high lateral resolution are achieved, which allows for the resolution of local photo-charging contrasts at the scale of single edge-on lamella. This work paves the way for local investigations of the optoelectronic properties of donor–acceptor supramolecular architectures down to the elementary building block level.

  1. Parent-adolescent dyads: association of parental autonomy support and parent-adolescent shared diabetes care responsibility.

    Science.gov (United States)

    Hanna, K M; Dashiff, C J; Stump, T E; Weaver, M T

    2013-09-01

    Parent-adolescent shared responsibility for diabetes care is advocated by experts to achieve beneficial diabetes and psychosocial outcomes for adolescents with type 1 diabetes. Parental autonomy support may be a way to facilitate this sharing. In this dyadic study, we examined parental diabetes-specific autonomy support experienced by adolescents with type 1 diabetes and their parents (n = 89 dyads), and its association with their experience of shared diabetes care responsibility. Path analysis was used to test an Actor-Partner Interdependence Model for parental autonomy support effects on shared responsibility. This was a secondary analysis of data from 89 parent-early/mid-adolescent dyads. Actor effects were identified. Parents' and adolescents' perceptions of parental autonomy support were associated with their respective reports of shared diabetes care responsibility. One partner effect was identified. Adolescents' reports of parental autonomy support were associated with parents' reports of shared responsibility. Parents and adolescents held similar views of autonomy support but discrepant views of shared responsibility. Older adolescents perceived less parental autonomy support. Increasing parental autonomy support may facilitate parent-adolescent sharing of diabetes care responsibility. Adolescent and parent perceptions influence each other and need to be considered when working with them to strengthen parental autonomy support. © 2012 John Wiley & Sons Ltd.

  2. Sunscreen-Based Photocages for Topical Drugs: A Photophysical and Photochemical Study of A Diclofenac-Avobenzone Dyad

    Directory of Open Access Journals (Sweden)

    Isabel Aparici-Espert

    2018-03-01

    Full Text Available Photosensitization by drugs is a problem of increasing importance in modern life. This phenomenon occurs when a chemical substance in the skin is exposed to sunlight. Photosensitizing drugs are reported to cause severe skin dermatitis, and indeed, it is generally advised to avoid sunbathing and to apply sunscreen. In this context, the nonsteroidal anti-inflammatory drug (NSAID diclofenac is a photosensitive drug, especially when administered in topical form. In this work, efforts have been made to design and study an innovative pro-drug/pro-filter system containing diclofenac and the UVA filter avobenzone in order to develop a safer use of this topical drug. The design is based on the presence of a well-established photoremovable phenacyl group in the avobenzone structure. Steady-state photolysis of the dyad in hydrogen-donor solvents, monitored by UV-Vis spectrophotometry and HPLC, confirms the simultaneous photorelease of diclofenac and avobenzone. Laser flash photolysis and phosphorescence emission experiments allow us to gain insight into the photoactive triplet excited-state properties of the dyad. Finally, it is shown that avobenzone provides partial photoprotection to diclofenac from photocyclization to carbazole derivatives.

  3. The role of maternal factors in sibling relationship quality: a multilevel study of multiple dyads per family.

    Science.gov (United States)

    Jenkins, Jennifer; Rasbash, Jon; Leckie, George; Gass, Krista; Dunn, Judy

    2012-06-01

      Although many children grow up with more than one sibling, we do not yet know if sibling dyads within families show similarities to one another on sibling affection and hostility. In the present study the hypotheses were tested that (a) there will be significant between family variation in change in sibling affection and hostility and (b) this between family variation will be explained by maternal affective climate, operationalized as positive and negative ambient parenting, differential parenting and maternal malaise.   A general population sample of families with single and multiple sibling dyads were visited twice, 2 years apart. Up to 2 children in a family acted as informants; 253 relationships were rated in 118 families. A cross-classified, multilevel model was fit to separate between-family and within-family variance in sibling relationships while simultaneously controlling for informant and partner influences.   Thirty-seven percent of the variance in change in sibling affection and 32% of the variance in change in sibling hostility was between family variance. The measured maternal affective climate including, maternal malaise and maternal ambient and differential hostility and affection explained between family differences.   Sibling relationship quality clusters in families and is partly explained by maternal affective climate. © 2011 The Authors. Journal of Child Psychology and Psychiatry © 2011 Association for Child and Adolescent Mental Health.

  4. Quantitative analysis of intramolecular exciplex and electron transfer in a double-linked zinc porphyrin-fullerene dyad.

    Science.gov (United States)

    Al-Subi, Ali Hanoon; Niemi, Marja; Tkachenko, Nikolai V; Lemmetyinen, Helge

    2012-10-04

    Photoinduced charge transfer in a double-linked zinc porphyrin-fullerene dyad is studied. When the dyad is excited at the absorption band of the charge-transfer complex (780 nm), an intramolecular exciplex is formed, followed by the complete charge separated (CCS) state. By analyzing the results obtained from time-resolved transient absorption and emission decay measurements in a range of solvents with different polarities, we derived a dependence between the observable lifetimes and internal parameters controlling the reaction rate constants based on the semiquantum Marcus electron-transfer theory. The critical value of the solvent polarity was found to be ε(r) ≈ 6.5: in solvents with higher dielectric constants, the energy of the CCS state is lower than that of the exciplex and the relaxation takes place via the CCS state predominantly, whereas in solvents with lower polarities the energy of the CCS state is higher and the exciplex relaxes directly to the ground state. In solvents with moderate polarities the exciplex and the CCS state are in equilibrium and cannot be separated spectroscopically. The degree of the charge shift in the exciplex relative to that in the CCS state was estimated to be 0.55 ± 0.02. The electronic coupling matrix elements for the charge recombination process and for the direct relaxation of the exciplex to the ground state were found to be 0.012 ± 0.001 and 0.245 ± 0.022 eV, respectively.

  5. Effects of big-five personality traits on the quality of relationship and satisfaction in Chinese coach-athlete dyads.

    Science.gov (United States)

    Yang, S X; Jowett, S; Chan, D K C

    2015-08-01

    The present study examined the influence of personality traits on the quality of the Chinese coach-athlete relationship and satisfaction through a dyadic research design. A total of 350 coach-athlete dyads completed a self-report instrument that assessed personality traits, as well as perceptions of relationship quality and satisfaction with training. Results revealed that: (a) actor effects (i.e., actor's personality will predict his or her own perceptions of relationship quality) of personality traits, namely, conscientiousness, extroversion, and neuroticism, on both coaches' and athletes' perceptions of relationship quality and (b) partner effects (an actor's own personality will predict his or her partner's perceptions of relationship quality) of only athletes' personality, namely, conscientiousness, extroversion, and neuroticism, on their coaches' perceptions of relationship quality. The findings suggested that each relationship member's personality trait contributed independently to relationship quality, and both actor and partner effects of the relationship quality on satisfaction with training were found to be significant. In Chinese sports culture, there presents a unique dynamics of personality and relationship quality among coach-athlete dyad. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Posttraumatic growth in cancer patients and partners--effects of role, gender and the dyad on couples' posttraumatic growth experience.

    Science.gov (United States)

    Zwahlen, Diana; Hagenbuch, Niels; Carley, Margaret I; Jenewein, Josef; Buchi, Stefan

    2010-01-01

    Little is known about factors influencing positive effects in couples facing a cancer diagnosis. A heterogeneous sample of 224 couples from a multi-site study (four oncology units) completed questionnaire surveys including the Posttraumatic Growth Inventory (PTGI) as a measure of positive psychological effects. The data demonstrated that all three investigated factors--gender, role (patient vs partner) and the dyad (belonging to any of the 224 couples)--significantly contributed to variation in PTGI total scores and subscales. Variability between couples (factor dyad) appeared stronger than variability between patient and partner participants (factor role) and between male and female participants (factor gender). Role and gender analysis showed that patients demonstrated higher levels of posttraumatic growth than partners; and female participants scored higher on PTGI than males. Male patient-female partner pairs show greater association in their experience of posttraumatic growth than female patient-male partner pairs. Correlations also suggested that, regardless of the gender and role composition, patients and partners may experience parallel growth. Our findings indicate that positive psychological experiences may be shared by partners affected by cancer in similar ways as have been shown for negative psychological effects. Intra-couple similarities or processes may have a more important function in experiencing benefits than factors like gender or being the patient or the partner. These results underline the importance of a family approach to understanding negative and positive psychological effects of cancer. (c) 2009 John Wiley & Sons, Ltd.

  7. Reactivity of nanoaggregations of platinum on supports of different nature in reactions of catalytic decomposition of hydrazine in acid media

    International Nuclear Information System (INIS)

    Anan'ev, A.V.; Boltoeva, M.Yu.; Grigor'ev, M.S.; Shilov, V.P.; Sharygin, L.M.

    2006-01-01

    Platinized catalysts on the basis of supports of different chemical nature are tested in reactions of catalytic hydrazine decomposition in perchloric and nitric acid solutions. In perchloric acid catalytic activity of catalysts on the basis of ceramic materials of Termoksid brand is higher of activity of catalysts on the basis of amorphous silica gel. In nitric acid solutions opposite dependence is observed. Tendency of ceramic supports to peptization in acid solutions is pointed out. Results obtained are interpreted using conceptions of energetic heterogeneity of surface atoms and hydrazine catalytic decomposition mechanisms in different media [ru

  8. Microsecond reaction kinetics and catalytic mechanism of bacterial cytochrome oxidases

    NARCIS (Netherlands)

    Paulus, A.

    2017-01-01

    Fundamental biochemical research is of crucial importance for a complete and detailed
    understanding of what drives enzyme activity and how enzyme kinetic properties are
    optimized towards survival of the host organism. When cells fail to produce a fully functional
    enzyme, the organism’s

  9. Structural insight into catalytic mechanism of PET hydrolase

    OpenAIRE

    Han, Xu; Liu, Weidong; Huang, Jian-Wen; Ma, Jiantao; Zheng, Yingying; Ko, Tzu-Ping; Xu, Limin; Cheng, Ya-Shan; Chen, Chun-Chi; Guo, Rey-Ting

    2017-01-01

    PET hydrolase (PETase), which hydrolyzes polyethylene terephthalate (PET) into soluble building blocks, provides an attractive avenue for the bioconversion of plastics. Here we present the structures of a novel PETase from the PET-consuming microbe Ideonella sakaiensis in complex with substrate and product analogs. Through structural analyses, mutagenesis, and activity measurements, a substrate-binding mode is proposed, and several features critical for catalysis are elucidated.

  10. Structural insight into catalytic mechanism of PET hydrolase.

    Science.gov (United States)

    Han, Xu; Liu, Weidong; Huang, Jian-Wen; Ma, Jiantao; Zheng, Yingying; Ko, Tzu-Ping; Xu, Limin; Cheng, Ya-Shan; Chen, Chun-Chi; Guo, Rey-Ting

    2017-12-13

    PET hydrolase (PETase), which hydrolyzes polyethylene terephthalate (PET) into soluble building blocks, provides an attractive avenue for the bioconversion of plastics. Here we present the structures of a novel PETase from the PET-consuming microbe Ideonella sakaiensis in complex with substrate and product analogs. Through structural analyses, mutagenesis, and activity measurements, a substrate-binding mode is proposed, and several features critical for catalysis are elucidated.

  11. Intramolecular Crosstalk between Catalytic Activities of Receptor Kinases

    KAUST Repository

    Kwezi, Lusisizwe

    2018-01-22

    Signal modulation is important for the growth and development of plants and this process is mediated by a number of factors including physiological growth regulators and their associated signal transduction pathways. Protein kinases play a central role in signaling, including those involving pathogen response mechanisms. We previously demonstrated an active guanylate cyclase (GC) catalytic center in the brassinosteroid insensitive receptor (AtBRI1) within an active intracellular kinase domain resulting in dual enzymatic activity. Here we propose a novel type of receptor architecture that is characterized by a functional GC catalytic center nested in the cytosolic kinase domain enabling intramolecular crosstalk. This may be through a cGMP-AtBRI1 complex forming that may induce a negative feedback mechanism leading to desensitisation of the receptor, regulated through the cGMP production pathway. We further argue that the comparatively low but highly localized cGMP generated by the GC in response to a ligand is sufficient to modulate the kinase activity. This type of receptor therefore provides a molecular switch that directly and/or indirectly affects ligand dependent phosphorylation of downstream signaling cascades and suggests that subsequent signal transduction and modulation works in conjunction with the kinase in downstream signaling.

  12. Intramolecular Crosstalk between Catalytic Activities of Receptor Kinases

    KAUST Repository

    Kwezi, Lusisizwe; Wheeler, Janet I; Marondedze, Claudius; Gehring, Christoph A; Irving, Helen R

    2018-01-01

    Signal modulation is important for the growth and development of plants and this process is mediated by a number of factors including physiological growth regulators and their associated signal transduction pathways. Protein kinases play a central role in signaling, including those involving pathogen response mechanisms. We previously demonstrated an active guanylate cyclase (GC) catalytic center in the brassinosteroid insensitive receptor (AtBRI1) within an active intracellular kinase domain resulting in dual enzymatic activity. Here we propose a novel type of receptor architecture that is characterized by a functional GC catalytic center nested in the cytosolic kinase domain enabling intramolecular crosstalk. This may be through a cGMP-AtBRI1 complex forming that may induce a negative feedback mechanism leading to desensitisation of the receptor, regulated through the cGMP production pathway. We further argue that the comparatively low but highly localized cGMP generated by the GC in response to a ligand is sufficient to modulate the kinase activity. This type of receptor therefore provides a molecular switch that directly and/or indirectly affects ligand dependent phosphorylation of downstream signaling cascades and suggests that subsequent signal transduction and modulation works in conjunction with the kinase in downstream signaling.

  13. Modelling of the aerosol deposition in a hydrogen catalytic recombiner

    International Nuclear Information System (INIS)

    Vendel, J.; Studer, E.; Zavaleta, P.; Hadida, Ph.

    1997-01-01

    Catalytic recombiners are used to remove the hydrogen released in case of a severe accident in a nuclear power plant, so as to reduce the risk of deflagration or detonation. H 2 PAR experiments are carried out to precise the behaviour of recombiners in term of poisoning by aerosols. Firstly, some calculations have been done with the Trio-EF code to assess the structure of convection loops in the experimental tent. We note that when the recombiner is active, it may have a strong influence on the flow inside the tent and may even interact with an other heat source such as a furnace. In the second part, we study the deposition of aerosols on catalytic plates for a given recombiner, when it is active or passive. We list the different mechanisms and quantify them by introducing the deposition velocity. In fact, thermophoresis appears to be the main mechanism, compared to brownian diffusion or difrusiophoresis, which governs aerosols deposition. It favours deposition on > plates and acts against it for > plates. (author)

  14. Reactivity of organic compounds in catalytic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Minachev, Kh M; Bragin, O V

    1978-01-01

    A comprehensive review of 1976 Soviet research on catalysis delivered to the 1977 annual session of the USSR Academy of Science Council on Catalysis (Baku 6/16-20/77) covers hydrocarbon reactions, including hydrogenation and hydrogenolysis, dehydrogenation, olefin dimerization and disproportionation, and cyclization and dehydrocyclization (e.g., piperylene cyclization and ethylene cyclotrimerization); catalytic and physicochemical properties of zeolites, including cracking, dehydrogenation, and hydroisomerization catalytic syntheses and conversion of heterocyclic and functional hydrocarbon derivatives, including partial and total oxidation (e.g., of o-xylene to phthalic anhydride); syntheses of thiophenes from alkanes and hydrogen sulfide over certain dehydrogenation catalysts; catalytic syntheses involving carbon oxides ( e.g., the development of a new heterogeneous catalyst for hydroformylation of olefins), and of Co-MgO zeolitic catalysts for synthesis of aliphatic hydrocarbons from carbon dioxide and hydrogen, and fabrication of high-viscosity lubricating oils over bifunctional aluminosilicate catalysts.

  15. Catalytic Organic Transformations Mediated by Actinide Complexes

    Directory of Open Access Journals (Sweden)

    Isabell S. R. Karmel

    2015-10-01

    Full Text Available This review article presents the development of organoactinides and actinide coordination complexes as catalysts for homogeneous organic transformations. This chapter introduces the basic principles of actinide catalysis and deals with the historic development of actinide complexes in catalytic processes. The application of organoactinides in homogeneous catalysis is exemplified in the hydroelementation reactions, such as the hydroamination, hydrosilylation, hydroalkoxylation and hydrothiolation of alkynes. Additionally, the use of actinide coordination complexes for the catalytic polymerization of α-olefins and the ring opening polymerization of cyclic esters is presented. The last part of this review article highlights novel catalytic transformations mediated by actinide compounds and gives an outlook to the further potential of this field.

  16. Highly Dense Isolated Metal Atom Catalytic Sites

    DEFF Research Database (Denmark)

    Chen, Yaxin; Kasama, Takeshi; Huang, Zhiwei

    2015-01-01

    -ray diffraction. A combination of electron microscopy images with X-ray absorption spectra demonstrated that the silver atoms were anchored on five-fold oxygen-terminated cavities on the surface of the support to form highly dense isolated metal active sites, leading to excellent reactivity in catalytic oxidation......Atomically dispersed noble-metal catalysts with highly dense active sites are promising materials with which to maximise metal efficiency and to enhance catalytic performance; however, their fabrication remains challenging because metal atoms are prone to sintering, especially at a high metal...... loading. A dynamic process of formation of isolated metal atom catalytic sites on the surface of the support, which was achieved starting from silver nanoparticles by using a thermal surface-mediated diffusion method, was observed directly by using in situ electron microscopy and in situ synchrotron X...

  17. Modeling and simulation of heterogeneous catalytic processes

    CERN Document Server

    Dixon, Anthony

    2014-01-01

    Heterogeneous catalysis and mathematical modeling are essential components of the continuing search for better utilization of raw materials and energy, with reduced impact on the environment. Numerical modeling of chemical systems has progressed rapidly due to increases in computer power, and is used extensively for analysis, design and development of catalytic reactors and processes. This book presents reviews of the state-of-the-art in modeling of heterogeneous catalytic reactors and processes. Reviews by leading authorities in the respective areas Up-to-date reviews of latest techniques in modeling of catalytic processes Mix of US and European authors, as well as academic/industrial/research institute perspectives Connections between computation and experimental methods in some of the chapters.

  18. Catalytic Intermolecular Cross-Couplings of Azides and LUMO-Activated Unsaturated Acyl Azoliums

    KAUST Repository

    Li, Wenjun

    2017-02-15

    An example for the catalytic synthesis of densely functionalized 1,2,3-triazoles through a LUMO activation mode has been developed. The protocol is enabled by intermolecular cross coupling reactions of azides with in situ-generated alpha,beta-unsaturated acyl azoliums. High yields and broad scope as well as the investigation of reaction mechanism are reported.

  19. Catalytic activity of metall-like carbides in carbon oxide oxidation reaction

    International Nuclear Information System (INIS)

    Kharlamov, A.I.; Kosolapova, T.Ya.; Rafal, A.N.; Kirillova, N.V.

    1980-01-01

    Kinetics of carbon oxide oxidation upon carbides of hafnium, niobium, tantalum, molybdenum, zirconium and chromium is studied. Probable mechanism of the catalysts action is suggested. The established character of the change of the carbide catalytic activity is explained by the change of d-electron contribution to the metal-metal interaction

  20. Investigation of polypyrrole/polyvinyl alcohol–titanium dioxide composite films for photo-catalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Shaoqiang; Zhang, Hongyang; Song, Yuanqing; Zhang, Jianling; Yang, Haigang; Jiang, Long, E-mail: jianglong@scu.edu.cn; Dan, Yi, E-mail: danyichenweiwei@163.com

    2015-07-01

    Graphical abstract: - Highlights: • The study provides an easy and convenient method to fabricate films, which will give guidance for the preparation of three-dimensional materials. • The PPy/PVA–TiO{sub 2} films can keep better photo-catalytic activities both under UV and visible light irradiation when compared with TiO{sub 2} film. • There exist electron transfers between PPy/PVA and TiO{sub 2}. - Abstract: Polypyrrole/polyvinyl alcohol–titanium dioxide (PPy/PVA–TiO{sub 2}) composite films used as photo-catalysts were fabricated by combining TiO{sub 2} sol with PPy/PVA solution in which PPy was synthesized by in situ polymerization of pyrrole (Py) in polyvinyl alcohol (PVA) matrix and loaded on glass. The prepared photo-catalysts were investigated by X-ray diffraction (XRD), ultraviolet–visible diffuse reflection spectroscopy (UV–vis DRS), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectra and photoluminescence (PL). The results indicate that the composites have same crystal structure as the TiO{sub 2} and extend the optic absorption from UV region to visible light region. By detecting the variation ratio, detected by ultraviolet–vis spectroscopy, of model pollutant rhodamine B (RhB) solution in the presence of the composite films under both UV and visible light irradiation, the photo-catalytic performance of the composite films was investigated. The results show that the PPy/PVA–TiO{sub 2} composite films show better photo-catalytic properties than TiO{sub 2} film both under UV and visible light irradiation, and the photo-catalytic degradation of RhB follows the first-order kinetics. The effects of the composition of composite films and the concentration of RhB on the photo-catalytic performance, as well as the possible photo-catalytic mechanism, were also discussed. By photo-catalytic recycle experiments, the structure stability of the PPy/PVA–TiO{sub 2} composite film was investigated and the results show that

  1. Catalytic Wastewater Treatment Using Pillared Clays

    Science.gov (United States)

    Perathoner, Siglinda; Centi, Gabriele

    After introduction on the use of solid catalysts in wastewater treatment technologies, particularly advanced oxidation processes (AOPs), this review discussed the use of pillared clay (PILC) materials in three applications: (i) wet air catalytic oxidation (WACO), (ii) wet hydrogen peroxide catalytic oxidation (WHPCO) on Cu-PILC and Fe-PILC, and (iii) behavior of Ti-PILC and Fe-PILC in the photocatalytic or photo-Fenton conversion of pollutants. Literature data are critically analyzed to evidence the main direction to further investigate, in particularly with reference to the possible practical application of these technologies to treat industrial, municipal, or agro-food production wastewater.

  2. Catalytic Kinetic Resolution of Biaryl Compounds.

    Science.gov (United States)

    Ma, Gaoyuan; Sibi, Mukund P

    2015-08-10

    Biaryl compounds with axial chirality are very common in synthetic chemistry, especially in catalysis. Axially chiral biaryls are important due to their biological activities and extensive applications in asymmetric catalysis. Thus the development of efficient enantioselective methods for their synthesis has attracted considerable attention. This Minireview discusses the progress made in catalytic kinetic resolution of biaryl compounds and chronicles significant advances made recently in catalytic kinetic resolution of biaryl scaffolds. © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Thermal and catalytic pyrolysis of plastic waste

    Directory of Open Access Journals (Sweden)

    Débora Almeida

    2016-02-01

    Full Text Available Abstract The amount of plastic waste is growing every year and with that comes an environmental concern regarding this problem. Pyrolysis as a tertiary recycling process is presented as a solution. Pyrolysis can be thermal or catalytical and can be performed under different experimental conditions. These conditions affect the type and amount of product obtained. With the pyrolysis process, products can be obtained with high added value, such as fuel oils and feedstock for new products. Zeolites can be used as catalysts in catalytic pyrolysis and influence the final products obtained.

  4. Janus droplet as a catalytic micromotor

    Science.gov (United States)

    Shklyaev, Sergey

    2015-06-01

    Self-propulsion of a Janus droplet in a solution of surfactant, which reacts on a half of a drop surface, is studied theoretically. The droplet acts as a catalytic motor creating a concentration gradient, which generates its surface-tension-driven motion; the self-propulsion speed is rather high, 60 μ \\text{m/s} and more. This catalytic motor has several advantages over other micromotors: simple manufacturing, easily attained neutral buoyancy. In contrast to a single-fluid droplet, which demonstrates a self-propulsion as a result of symmetry breaking instability, for the Janus one no stability threshold exists; hence, the droplet radius can be scaled down to micrometers.

  5. Catalytic burners in larger boiler appliances

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, Fredrik; Persson, Mikael (Catator AB, Lund (Sweden))

    2009-02-15

    This project focuses on the scale up of a Catator's catalytic burner technology to enable retrofit installation in existing boilers and the design of new innovative combinations of catalytic burners and boilers. Different design approaches are discussed and evaluated in the report and suggestions are made concerning scale-up. Preliminary test data, extracted from a large boiler installation are discussed together with an accurate analysis of technical possibilities following an optimization of the boiler design to benefit from the advantages of catalytic combustion. The experimental work was conducted in close collaboration with ICI Caldaie (ICI), located in Verona, Italy. ICI is a leading European boiler manufacturer in the effect segment ranging from about 20 kWt to several MWt. The study shows that it is possibly to scale up the burner technology and to maintain low emissions. The boilers used in the study were designed around conventional combustion and were consequently not optimized for implementation of catalytic burners. From previous experiences it stands clear that the furnace volume can be dramatically decreased when applying catalytic combustion. In flame combustion, this volume is normally dimensioned to avoid flame impingement on cold surfaces and to facilitate completion of the gas-phase reactions. The emissions of nitrogen oxides can be reduced by decreasing the residence time in the furnace. Even with the over-dimensioned furnace used in this study, we easily reached emission values close to 35 mg/kWh. The emissions of carbon monoxide and unburned hydrocarbons were negligible (less than 5 ppmv). It is possible to decrease the emissions of nitrogen oxides further by designing the furnace/boiler around the catalytic burner, as suggested in the report. Simultaneously, the size of the boiler installation can be reduced greatly, which also will result in material savings, i.e. the production cost can be reduced. It is suggested to optimize the

  6. Catalytic gasification of oil-shales

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.; Avakyan, T. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation); Strizhakova, Yu. [Samara State Univ. (Russian Federation)

    2012-07-01

    Nowadays, the problem of complex usage of solid fossil fuels as raw materials for obtaining of motor fuels and chemical products is becoming increasingly important. A one of possible solutions of the problem is their gasification with further processing of gaseous and liquid products. In this work we have investigated the process of thermal and catalytic gasification of Baltic and Kashpir oil-shales. We have shown that, as compared with non-catalytic process, using of nickel catalyst in the reaction increases the yield of gas, as well as hydrogen content in it, and decreases the amount of liquid products. (orig.)

  7. Using electron beams to investigate catalytic materials

    International Nuclear Information System (INIS)

    Zhang, Bingsen; Su, Dang Sheng

    2014-01-01

    Transmission Electron microscopy (TEM) enables us, not only to reveal the morphology, but also to provide structural, chemical and electronic information about solid catalysts at the atomic level, providing a dramatic driving force for the development of heterogeneous catalysis. Almost all catalytic materials have been studied with TEM in order to obtain information about their structures, which can help us to establish the synthesis-structure-property relationships and to design catalysts with new structures and desired properties. Herein, several examples will be reviewed to illustrate the investigation of catalytic materials by using electron beams. (authors)

  8. TET2 Regulates Mast Cell Differentiation and Proliferation through Catalytic and Non-catalytic Activities

    Directory of Open Access Journals (Sweden)

    Sara Montagner

    2016-05-01

    Full Text Available Summary: Dioxygenases of the TET family impact genome functions by converting 5-methylcytosine (5mC in DNA to 5-hydroxymethylcytosine (5hmC. Here, we identified TET2 as a crucial regulator of mast cell differentiation and proliferation. In the absence of TET2, mast cells showed disrupted gene expression and altered genome-wide 5hmC deposition, especially at enhancers and in the proximity of downregulated genes. Impaired differentiation of Tet2-ablated cells could be relieved or further exacerbated by modulating the activity of other TET family members, and mechanistically it could be linked to the dysregulated expression of C/EBP family transcription factors. Conversely, the marked increase in proliferation induced by the loss of TET2 could be rescued exclusively by re-expression of wild-type or catalytically inactive TET2. Our data indicate that, in the absence of TET2, mast cell differentiation is under the control of compensatory mechanisms mediated by other TET family members, while proliferation is strictly dependent on TET2 expression. : The impact of TET enzymes on gene expression and cell function is incompletely understood. Montagner et al. investigate the TET-mediated regulation of mast cell differentiation and function, uncover transcriptional pathways regulated by TET2, and identify both enzymatic activity-dependent and -independent functions of TET2. Keywords: differentiation, DNA hydroxymethylation, epigenetics, mast cells, proliferation, TET

  9. KINEMATICS OF A MECHANISM WITH STOPPINGS, BASED ON A HYPOCYCLOID WITH 6 BRANCHES

    Directory of Open Access Journals (Sweden)

    Liliana LUCA

    2010-10-01

    Full Text Available They are studied the positions, velocities and accelerations of a mechanism based on planetary gear and a RRP dyad. The mechanism ensures the plunger stop on a certain subinterval of the cycle, although the leading element is rotating. Because of the approximation of the hypocycloid shortened arc with six branches, by a circle arc, errors occur.

  10. Free-standing hierarchical α-MnO2@CuO membrane for catalytic filtration degradation of organic pollutants.

    Science.gov (United States)

    Luo, Xinsheng; Liang, Heng; Qu, Fangshu; Ding, An; Cheng, Xiaoxiang; Tang, Chuyang Y; Li, Guibai

    2018-06-01

    Catalytic membrane, due to its compact reactor assembling, high catalytic performance as well as low energy consumption, has proved to be more attractive for wastewater treatment. In this work, a free-standing α-MnO 2 @CuO membrane with hierarchical nanostructures was prepared and evaluated as the catalytic membrane to generate radicals from peroxymonosulfate (PMS) for the oxidative degradation of organic dyes in aqueous solution. Benefiting from the high mass transport efficiency and the hierarchical nanostructures, a superior catalytic activity of the membrane was observed for organic dyes degradation. As a typical organic dye, more than 99% of methylene blue (MB) was degraded within 0.23 s using dead-end filtration cell. The effects of flow rate, PMS concentration and buffer solution on MB degradation were further investigated. Besides MB, the catalytic membrane also showed excellent performance for the removal of other dyes, such as congo red, methyl orange, rhodamine B, acid chrome blue K and malachite green. Moreover, the mechanism study indicated that OH and SO 4 - generated from the interaction between PMS and Mn/Cu species with different oxidation states mainly accounted for the dyes degradation. The catalytic filtration process using α-MnO 2 @CuO catalytic membrane could provide a novel method for wastewater purification with high efficiency and low energy consumption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Families that fire together smile together: Resting state connectome similarity and daily emotional synchrony in parent-child dyads.

    Science.gov (United States)

    Lee, Tae-Ho; Miernicki, Michelle E; Telzer, Eva H

    2017-05-15

    Despite emerging evidence suggesting a biological basis to our social tiles, our understanding of the neural processes which link two minds is unknown. We implemented a novel approach, which included connectome similarity analysis using resting state intrinsic networks of parent-child dyads as well as daily diaries measured across 14 days. Intrinsic resting-state networks for both parents and their adolescent child were identified using independent component analysis (ICA). Results indicate that parents and children who had more similar RSN connectome also had more similar day-to-day emotional synchrony. Furthermore, dyadic RSN connectome similarity was associated with children's emotional competence, suggesting that being neurally in-tune with their parents confers emotional benefits. We provide the first evidence that dyadic RSN similarity is associated with emotional synchrony in what is often our first and most essential social bond, the parent-child relationship. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Latina Mother–Daughter Dyads: Relations Between Attachment and Sexual Behavior Under the Influence of Alcohol or Drugs

    Science.gov (United States)

    Dillon, Frank R.; Rojas, Patria; Schwartz, Seth J.; Duan, Rui

    2009-01-01

    Associations among mother-daughter attachment, mother and daughter substance abuse, and daughter’s sexual behavior under the influence of drugs and alcohol were investigated among 158 adult U.S. Latina daughters. Latina daughters were sampled from four mother–daughter dyad types: substance abusing mother and daughter, substance abusing mother only, substance abusing daughter only, and nonsubstance-abusing mother and daughter. Substance abusing daughters with substance abusing mothers, and daughters who were less strongly attached to their mothers, reported more sex under the influence of drugs. Age, marital status, substance abuse, and mother’s substance abuse all influenced the daughter’s sex under the influence of alcohol. An unexpected positive association between attachment and sex under the influence of alcohol was found for daughters who were more closely attached to a substance abusing mother. Implications for future research, and HIV/AIDS and drug prevention and treatment programs for Latinas are discussed. PMID:19399605

  13. Neighborhood Qualification of the Association between Parenting and Problem Behavior Trajectories among Mexican-origin Father-Adolescent Dyads

    Science.gov (United States)

    White, Rebecca M. B.; Liu, Yu; Gonzales, Nancy A.; Knight, George P.; Tein, Jenn-Yun

    2016-01-01

    To address the combined importance of fathers and neighborhoods for adolescent adjustment, we examined whether associations between fathers' parenting and adolescents' problem behaviors were qualified by neighborhood adversity. We captured both mainstream (e.g., authoritative) and alternative (e.g., no-nonsense, reduced involvement) parenting styles and examined parenting and neighborhood effects on changes over time in problem behaviors among a sample of Mexican-origin father-adolescent dyads (N = 462). Compared to their counterparts in low-adversity neighborhoods, adolescents in high-adversity neighborhoods experienced greater initial benefits from authoritative fathering, greater long-term benefits from no-nonsense fathering, and fewer costs associated with reduced involvement fathering. The combined influences of alternative paternal parenting styles and neighborhood adversity may set ethnic and racial minority adolescents on different developmental pathways to competence. PMID:28453217

  14. Friendly fire: Longitudinal effects of exposure to violent video games on aggressive behavior in adolescent friendship dyads

    Science.gov (United States)

    Burk, William J.; Stoltz, Sabine E. M. J.; van den Berg, Yvonne H. M.; Cillessen, Antonius H. N.

    2018-01-01

    Research on gaming effects has focused on adolescence, a developmental period in which peer relationships become increasingly salient. However, the impact of peers on the effects of violent gaming on adolescents has been understudied. This study examined whether adolescents’ exposure to violent video games predicted their own and their friend's aggression one year later. Among 705 gaming adolescents, 141 dyads were identified based on reciprocated best friend nominations (73.8% male, Mage = 13.98). Actor‐Partner Interdependence Models indicated that adolescent males’ (but not females’) exposure to violent games positively predicted the aggression of their best friend 1 year later. This effect appeared regardless of whether the friends played video games together or not. The study illustrates the importance of peers in the association between violent gaming and aggression. PMID:29363767

  15. Neighborhood Qualification of the Association Between Parenting and Problem Behavior Trajectories Among Mexican-Origin Father-Adolescent Dyads.

    Science.gov (United States)

    White, Rebecca M B; Liu, Yu; Gonzales, Nancy A; Knight, George P; Tein, Jenn-Yun

    2016-12-01

    To address the combined importance of fathers and neighborhoods for adolescent adjustment, we examined whether associations between fathers' parenting and adolescents' problem behaviors were qualified by neighborhood adversity. We captured both mainstream (e.g., authoritative) and alternative (e.g., no-nonsense, reduced involvement) parenting styles and examined parenting and neighborhood effects on changes over time in problem behaviors among a sample of Mexican-origin father-adolescent dyads (N = 462). Compared to their counterparts in low-adversity neighborhoods, adolescents in high-adversity neighborhoods experienced greater initial benefits from authoritative fathering, greater long-term benefits from no-nonsense fathering, and fewer costs associated with reduced involvement fathering. The combined influences of alternative paternal parenting styles and neighborhood adversity may set ethnic and racial minority adolescents on different developmental pathways to competence. © 2016 The Authors. Journal of Research on Adolescence © 2016 Society for Research on Adolescence.

  16. Friendly fire: Longitudinal effects of exposure to violent video games on aggressive behavior in adolescent friendship dyads.

    Science.gov (United States)

    Verheijen, Geert P; Burk, William J; Stoltz, Sabine E M J; van den Berg, Yvonne H M; Cillessen, Antonius H N

    2018-05-01

    Research on gaming effects has focused on adolescence, a developmental period in which peer relationships become increasingly salient. However, the impact of peers on the effects of violent gaming on adolescents has been understudied. This study examined whether adolescents' exposure to violent video games predicted their own and their friend's aggression one year later. Among 705 gaming adolescents, 141 dyads were identified based on reciprocated best friend nominations (73.8% male, M age  = 13.98). Actor-Partner Interdependence Models indicated that adolescent males' (but not females') exposure to violent games positively predicted the aggression of their best friend 1 year later. This effect appeared regardless of whether the friends played video games together or not. The study illustrates the importance of peers in the association between violent gaming and aggression. © 2018 The Authors. Aggressive Behavior Published by Wiley Periodicals, Inc.

  17. Self-catalytic stabilized Ag-Cu nanoparticles with tailored SERS response for plasmonic photocatalysis

    Science.gov (United States)

    He, Lili; Liu, Changqing; Tang, Jia; Zhou, Youchen; Yang, Hui; Liu, Ruiyu; Hu, Jiugang

    2018-03-01

    In-situ SERS monitoring of direct plasmon-driven photocatalysis was achieved using relatively earth-abundant Cu NPs following their decoration with tiny amounts of silver, which promoted excellent SERS and high catalytic activity. The SERS and catalytic performance of the Ag-Cu NPs can be tuned by changing their composition. In particular, it was found that the surface oxidation state of copper could be switched to its metallic state via self-plasmon catalysis under laser irradiation, highlighting the potential of air-unstable copper NPs as stable plasmonic catalysts. These dual functional Ag-Cu NPs were used for SERS real-time monitoring of plasmon-driven photocatalysis reactions involving the degradation of Rhodamine 6G and the dimerization of 4-nitrothiophenol. The corresponding catalytic reaction mechanisms were discussed.

  18. Practical approaches to the ESI-MS analysis of catalytic reactions.

    Science.gov (United States)

    Yunker, Lars P E; Stoddard, Rhonda L; McIndoe, J Scott

    2014-01-01

    Electrospray ionization mass spectrometry (ESI-MS) is a soft ionization technique commonly coupled with liquid or gas chromatography for the identification of compounds in a one-time view of a mixture (for example, the resulting mixture generated by a synthesis). Over the past decade, Scott McIndoe and his research group at the University of Victoria have developed various methodologies to enhance the ability of ESI-MS to continuously monitor catalytic reactions as they proceed. The power, sensitivity and large dynamic range of ESI-MS have allowed for the refinement of several homogenous catalytic mechanisms and could potentially be applied to a wide range of reactions (catalytic or otherwise) for the determination of their mechanistic pathways. In this special feature article, some of the key challenges encountered and the adaptations employed to counter them are briefly reviewed. Copyright © 2014 John Wiley & Sons, Ltd.

  19. The ab initio study of the catalytic hydrogenation of the oxirene

    Directory of Open Access Journals (Sweden)

    J.B. Mensah

    2008-04-01

    Full Text Available The oxirene is an unsaturated heterocyclic molecule with one oxygen atom and two carbon atoms. Its hydrogenation has been performed on two catalytic site based on molybdenum disulfide (MoS2 and tungsten disulfide (WS2 of MoS3H3+ and WS3H3+ type, respectively. The calculations were carried out using the SCF and MP2 methods and B3LYP functional calculations. The results obtained showed that the hydrogenation of the oxirene is possible on these two kinds of catalytic sites on the one hand, and the reaction product is the acetaldehyde molecule, on the other hand. The reaction process study that led to the results showed that the catalytic hydrogenation of the oxirene is a dissociative process. On the basis of the variation of some parameters during the process, a mechanism of the reaction has been proposed.

  20. Reactivating Catalytic Surface: Insights into the Role of Hot Holes in Plasmonic Catalysis.

    Science.gov (United States)

    Peng, Tianhuan; Miao, Junjian; Gao, Zhaoshuai; Zhang, Linjuan; Gao, Yi; Fan, Chunhai; Li, Di

    2018-03-01

    Surface plasmon resonance of coinage metal nanoparticles is extensively exploited to promote catalytic reactions via harvesting solar energy. Previous efforts on elucidating the mechanisms of enhanced catalysis are devoted to hot electron-induced photothermal conversion and direct charge transfer to the adsorbed reactants. However, little attention is paid to roles of hot holes that are generated concomitantly with hot electrons. In this work, 13 nm spherical Au nanoparticles with small absorption cross-section are employed to catalyze a well-studied glucose oxidation reaction. Density functional theory calculation and X-ray absorption spectrum analysis reveal that hot holes energetically favor transferring catalytic intermediates to product molecules and then desorbing from the surface of plasmonic catalysts, resulting in the recovery of their catalytic activities. The studies shed new light on the use of the synergy of hot holes and hot electrons for plasmon-promoted catalysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Selective Production of Aromatic Aldehydes from Heavy Fraction of Bio-oil via Catalytic Oxidation

    International Nuclear Information System (INIS)

    Li, Yan; Chang, Jie; Ouyang, Yong; Zheng, Xianwei

    2014-01-01

    High value-added aromatic aldehydes (e. g. vanillin and syringaldehyde) were produced from heavy fraction of bio-oil (HFBO) via catalytic oxidation. The concept is based on the use of metalloporphyin as catalyst and hydrogen peroxide (H 2 O 2 ) as oxidant under alkaline condition. The biomimetic catalyst cobalt(II)-sulfonated tetraphenylporphyrin (Co(TPPS 4 )) was prepared and characterized. It exhibited relative high activity in the catalytic oxidation of HFBO. 4.57 wt % vanillin and 1.58 wt % syringaldehyde were obtained from catalytic oxidation of HFBO, compared to 2.6 wt % vanillin and 0.86 wt % syringaldehyde without Co(TPPS 4 ). Moreover, a possible mechanism of HFBO oxidation using Co(TPPS 4 )/H 2 O 2 was proposed by the research of model compounds. The results showed that this is a promising and environmentally friendly method for production of aromatic aldehydes from HFBO under Co(TPPS 4 )/H 2 O 2 system

  2. Observed Normativity and Deviance in Friendship Dyads' Conversations About Sex and the Relations With Youths' Perceived Sexual Peer Norms.

    Science.gov (United States)

    van de Bongardt, Daphne; Reitz, Ellen; Overbeek, Geertjan; Boislard, Marie-Aude; Burk, Bill; Deković, Maja

    2017-08-01

    The current study examined the relations between observed normativity and deviance during adolescents' and young adults' conversations about sex with their friends and their individual perceptions of sexual peer norms. Participants were 16-21-year-old same-sex friendship dyads (31 male and 30 female dyads) who performed a peer interaction task that consisted of five discussion assignments focusing on party planning, sexual double standards, condom use, homosexuality, and consensual sex. Videotaped discussions were coded to capture the amounts of normative talk (e.g., consistent with notions of healthy sexuality) and deviant talk (e.g., consistent with notions of risky sexuality), and the verbal or nonverbal reinforcement thereof. Participants also completed individual questionnaires to assess their perceived sexual descriptive norms, injunctive norms, pressure, and risk norms among their peers. Actor-partner interdependence model (APIM) results revealed that youths' perceived descriptive, injunctive, and risk norms, but not their experienced peer pressure, were related to both their own (actor effects) and their friends' (partner effects) normativity and deviance. Overall, more deviance was related to perceiving friends to be more sexually active, more approving of having sex, and engaging in more risky sex, whereas more normativity was related to these perceptions in the opposite direction. Gender differences in the APIMs indicated that interactive normativity and deviance was related to perceived descriptive, injunctive, and risk norms for boys, but only to perceived injunctive norms for girls. These findings demonstrate the importance of assessing the dyadic nature of youths' sexual communication with friends, their relation to individual sexual peer norm perceptions, and gender differences therein.

  3. Maternal Food-Related Practices, Quality of Diet, and Well-Being: Profiles of Chilean Mother-Adolescent Dyads.

    Science.gov (United States)

    Schnettler, Berta; Grunert, Klaus G; Lobos, Germán; Miranda-Zapata, Edgardo; Denegri, Marianela; Hueche, Clementina

    2018-04-03

    To identify mother-adolescent dyad profiles according to food-related parenting practices and to determine differences in diet quality, family meal frequency, life satisfaction, and sociodemographic characteristics. Cross-sectional study. Mothers and children were surveyed in their homes or at schools in Temuco, Chile. A total of 300 mothers (average age, 41.6 years) and their adolescent children (average age, 13.2 years; 48.7% female). Maternal feeding practices using the abbreviated Family Food Behavior Survey (AFFBS), life satisfaction, food-related and family life satisfaction, diet quality, and eating habits. Principal component factor analysis and confirmatory factor analysis were used to verify Family Food Behavior Survey components in mother and adolescent subsamples. Hierarchical cluster analysis was used to identify profiles. Three AFFBS components were detected: maternal control of child snacking behavior, maternal presence during eating, and child involvement in food consumption. Cluster analysis identified 3 mother-adolescent dyad profiles with different food-related parenting practices (P ≤ .001), mother (P ≤ .05) and child (P ≤ .001) diet quality, frequency of shared family meals (P ≤ .001), and mother (P ≤ .001) and child (P ≤ .05) life satisfaction levels. Results indicated that maternal well-being increased with an increased frequency of shared mealtime. Significantly, in contrast to the findings of previous studies, greater control over child eating habits was shown to affect adolescent well-being positively. These findings, among others, may contribute to the development of strategies for improving diet quality, overall well-being, and well-being in the food and family domains for all family members. Copyright © 2018 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  4. Efficient sensitization of dye-sensitized solar cells by novel triazine-bridged porphyrin-porphyrin dyads.

    Science.gov (United States)

    Zervaki, Galateia E; Roy, Mahesh S; Panda, Manas K; Angaridis, Panagiotis A; Chrissos, Emmanouel; Sharma, Ganesh D; Coutsolelos, Athanassios G

    2013-09-03

    Two novel porphyrin-porphyrin dyads, the symmetrical Zn[Porph]-Zn[Porph] (2) and unsymmetrical Zn[Porph]-H2[Porph] (4), where Zn[Porph] and H2[Porph] are the metalated and free-base forms of 5-(4-aminophenyl)-10,15,20-triphenylporphyrin, respectively, in which two porphyrin units are covalently bridged by 1,3,5-triazine, have been synthesized via the stepwise amination of cyanuric chloride. The dyads are also functionalized by a terminal carboxylic acid group of a glycine moiety attached to the triazine group. Photophysical measurements of 2 and 4 showed broaden and strengthened absorptions in their visible spectra, while electrochemistry experiments and density functional theory calculations revealed negligible interaction between the two porphyrin units in their ground states but appropriate frontier orbital energy levels for use in dye-sensitized solar cells (DSSCs). The 2- and 4-based solar cells have been fabricated and found to exhibit power conversion efficiencies (PCEs) of 3.61% and 4.46%, respectively (under an illumination intensity of 100 mW/cm(2) with TiO2 films of 10 μm thickness). The higher PCE value of the 4-based DSSC, as revealed by photovoltaic measurements (J-V curves) and incident photon-to-current conversion efficiency (IPCE) spectra of the two cells, is attributed to its enhanced short-circuit current (J(sc)) under illumination, high open-circuit voltage (V(oc)), and fill factor (FF) values. Electrochemical impedance spectra demonstrated shorter electron-transport time (τd), longer electron lifetime (τe), and high charge recombination resistance for the 4-based cell, as well as larger dye loading onto TiO2.

  5. Testing a Preliminary Live with Love Conceptual Framework for cancer couple dyads: A mixed-methods study.

    Science.gov (United States)

    Li, Qiuping; Xu, Yinghua; Zhou, Huiya; Loke, Alice Yuen

    2015-12-01

    The purpose of this study was to test the previous proposed Preliminary Live with Love Conceptual Framework (P-LLCF) that focuses on spousal caregiver-patient couples in their journey of coping with cancer as dyads. A mixed-methods study that included qualitative and quantitative approaches was conducted. Methods of concept and theory analysis, and structural equation modeling (SEM) were applied in testing the P-LLCF. In the qualitative approach in testing the concepts included in the P-LLCF, a comparison was made between the P-LLCF with a preliminary conceptual framework derived from focus group interviews among Chinese couples' coping with cancer. The comparison showed that the concepts identified in the P-LLCF are relevant to the phenomenon under scrutiny, and attributes of the concepts are consistent with those identified among Chinese cancer couple dyads. In the quantitative study, 117 cancer couples were recruited. The findings showed that inter-relationships exist among the components included in the P-LLCF: event situation, dyadic mediators, dyadic appraisal, dyadic coping, and dyadic outcomes. In that the event situation will impact the dyadic outcomes directly or indirectly through Dyadic Mediators. The dyadic mediators, dyadic appraisal, and dyadic coping are interrelated and work together to benefit the dyadic outcomes. This study provides evidence that supports the interlinked components and the relationship included in the P-LLCF. The findings of this study are important in that they provide healthcare professionals with guidance and directions according to the P-LLCF on how to plan supportive programs for couples coping with cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Kinetic equation of heterogeneous catalytic isotope exchange

    Energy Technology Data Exchange (ETDEWEB)

    Trokhimets, A I [AN Belorusskoj SSR, Minsk. Inst. Fiziko-Organicheskoj Khimii

    1979-12-01

    A kinetic equation is derived for the bimolecular isotope exchange reaction between AXsub(n)sup(*) and BXsub(m)sup(o), all atoms of element X in each molecule being equivalent. The equation can be generalized for homogeneous and heterogeneous catalytic isotope exchange.

  7. Complementary structure sensitive and insensitive catalytic relationships

    NARCIS (Netherlands)

    Santen, van R.A.

    2009-01-01

    The burgeoning field of nanoscience has stimulated an intense interest in properties that depend on particle size. For transition metal particles, one important property that depends on size is catalytic reactivity, in which bonds are broken or formed on the surface of the particles. Decreased

  8. Toward Facilitative Mentoring and Catalytic Interventions

    Science.gov (United States)

    Smith, Melissa K.; Lewis, Marilyn

    2015-01-01

    In TESOL teacher mentoring, giving advice can be conceptualized as a continuum, ranging from directive to facilitative feedback. The goal, over time, is to lead toward the facilitative end of the continuum and specifically to catalytic interventions that encourage self-reflection and autonomous learning. This study begins by examining research on…

  9. Electrochemical Promotion of Catalytic Reactions Using

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bjerrum, Niels; Cleemann, Lars Nilausen

    2007-01-01

    This paper presents the results of a study on electrochemical promotion (EP) of catalytic reactions using Pt/C/polybenzimidazole(H3PO4)/Pt/C fuel cell performed by the Energy and Materials Science Group (Technical University of Denmark) during the last 6 years[1-4]. The development of our...... understanding of the nature of the electrochemical promotion is also presented....

  10. Novel Metal Nanomaterials and Their Catalytic Applications

    Directory of Open Access Journals (Sweden)

    Jiaqing Wang

    2015-09-01

    Full Text Available In the rapidly developing areas of nanotechnology, nano-scale materials as heterogeneous catalysts in the synthesis of organic molecules have gotten more and more attention. In this review, we will summarize the synthesis of several new types of noble metal nanostructures (FePt@Cu nanowires, Pt@Fe2O3 nanowires and bimetallic Pt@Ir nanocomplexes; Pt-Au heterostructures, Au-Pt bimetallic nanocomplexes and Pt/Pd bimetallic nanodendrites; Au nanowires, CuO@Ag nanowires and a series of Pd nanocatalysts and their new catalytic applications in our group, to establish heterogeneous catalytic system in “green” environments. Further study shows that these materials have a higher catalytic activity and selectivity than previously reported nanocrystal catalysts in organic reactions, or show a superior electro-catalytic activity for the oxidation of methanol. The whole process might have a great impact to resolve the energy crisis and the environmental crisis that were caused by traditional chemical engineering. Furthermore, we hope that this article will provide a reference point for the noble metal nanomaterials’ development that leads to new opportunities in nanocatalysis.

  11. Toward a catalytic site in DNA

    DEFF Research Database (Denmark)

    Jakobsen, Ulla; Rohr, Katja; Vogel, Stefan

    2007-01-01

    A number of functionalized polyaza crown ether building blocks have been incorporated into DNA-conjugates as catalytic Cu(2+) binding sites. The effect of the DNA-conjugate catalyst on the stereochemical outcome of a Cu(2+)-catalyzed Diels-Alder reaction will be presented....

  12. CATALYTIC SPECTROPHOTOMETRIC DETERMINATION OF Mn(II ...

    African Journals Online (AJOL)

    Preferred Customer

    method is based on the catalytic effect of Mn(II) with the oxidation of Celestine blue .... water samples were filtered through a 0.45 μm pore size membrane filter to remove suspended .... slope of the calibration graph as the optimization criterion. ..... In presence of Phen as stability enhancement agent in indicator system. ( ) +.

  13. Catalytic asymmetric synthesis of the alkaloid (+)-myrtine

    NARCIS (Netherlands)

    Pizzuti, Maria Gabriefla; Minnaard, Adriaan J.; Feringa, Ben L.

    2008-01-01

    A new protocol for the asymmetric synthesis of trans-2,6-disubstituted-4-piperidones has been developed using a catalytic enantioselective conjugate addition reaction in combination with a diastereoselective lithiation-substitution sequence; an efficient synthesis of (+)-myrtine has been achieved

  14. Catalytic oxidation of cyclohexane to cyclohexanone

    Indian Academy of Sciences (India)

    ... a precursor and characterized by chemical analysis using the ICP–AES method, XRD, TEM, FTIR and BET surface area determination. The oxidation reaction was carried out at 70°C under atmospheric pressure. The results showed the catalytic performance of Pt/Al2O3 as being very high in terms of turnover frequency.

  15. Catalytic site interactions in yeast OMP synthase

    DEFF Research Database (Denmark)

    Hansen, Michael Riis; Barr, Eric W.; Jensen, Kaj Frank

    2014-01-01

    45 (2006) 5330-5342]. This behavior was investigated in the yeast enzyme by mutations in the conserved catalytic loop and 5-phosphoribosyl-1-diphosphate (PRPP) binding motif. Although the reaction is mechanistically sequential, the wild-type (WT) enzyme shows parallel lines in double reciprocal...

  16. Flame assisted synthesis of catalytic ceramic membranes

    DEFF Research Database (Denmark)

    Johansen, Johnny; Mosleh, Majid; Johannessen, Tue

    2004-01-01

    technology it is possible to make supported catalysts, composite metal oxides, catalytically active surfaces, and porous ceramic membranes. Membrane layers can be formed by using a porous substrate tube (or surface) as a nano-particle filter. The aerosol gas from the flame is led through a porous substrate...

  17. Catalytic Reforming of Oxygenates: State of the Art and Future Prospects.

    Science.gov (United States)

    Li, Di; Li, Xinyu; Gong, Jinlong

    2016-10-12

    This Review describes recent advances in the design, synthesis, reactivity, selectivity, structural, and electronic properties of the catalysts for reforming of a variety of oxygenates (e.g., from simple monoalcohols to higher polyols, then to sugars, phenols, and finally complicated mixtures like bio-oil). A comprehensive exploration of the structure-activity relationship in catalytic reforming of oxygenates is carried out, assisted by state-of-the-art characterization techniques and computational tools. Critical emphasis has been given on the mechanisms of these heterogeneous-catalyzed reactions and especially on the nature of the active catalytic sites and reaction pathways. Similarities and differences (reaction mechanisms, design and synthesis of catalysts, as well as catalytic systems) in the reforming process of these oxygenates will also be discussed. A critical overview is then provided regarding the challenges and opportunities for research in this area with a focus on the roles that systems of heterogeneous catalysis, reaction engineering, and materials science can play in the near future. This Review aims to present insights into the intrinsic mechanism involved in catalytic reforming and provides guidance to the development of novel catalysts and processes for the efficient utilization of oxygenates for energy and environmental purposes.

  18. Catalytic characterization of bi-functional catalysts derived from Pd ...

    Indian Academy of Sciences (India)

    Unknown

    1995; Lyubovsky and Pfefferle 1999; Sales et al 1999;. Hill et al 2000). ... For a catalytic system, whose activity ... catalytic systems containing Pd, supported on various acid- ..... Further studies are needed to optimize a balance between.

  19. Catalytically favorable surface patterns in Pt-Au nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb; Schwingenschlö gl, Udo

    2013-01-01

    Motivated by recent experimental demonstrations of novel PtAu nanoparticles with highly enhanced catalytic properties, we present a systematic theoretical study that explores principal catalytic indicators as a function of the particle size

  20. Catalytic site identification—a web server to identify catalytic site structural matches throughout PDB

    Science.gov (United States)

    Kirshner, Daniel A.; Nilmeier, Jerome P.; Lightstone, Felice C.

    2013-01-01

    The catalytic site identification web server provides the innovative capability to find structural matches to a user-specified catalytic site among all Protein Data Bank proteins rapidly (in less than a minute). The server also can examine a user-specified protein structure or model to identify structural matches to a library of catalytic sites. Finally, the server provides a database of pre-calculated matches between all Protein Data Bank proteins and the library of catalytic sites. The database has been used to derive a set of hypothesized novel enzymatic function annotations. In all cases, matches and putative binding sites (protein structure and surfaces) can be visualized interactively online. The website can be accessed at http://catsid.llnl.gov. PMID:23680785

  1. Another Look Inside the Gap: Ecological Contributions to the Transmission of Attachment in a Sample of Adolescent Mother-Infant Dyads

    Science.gov (United States)

    Tarabulsy, George M.; Bernier, Annie; Provost, Marc A.; Maranda, Johanne; Larose, Simon; Moss, Ellen; Larose, Marie; Tessier, Rejean

    2005-01-01

    Ecological contributions to attachment transmission were studied in a sample of 64 adolescent mother-infant dyads. Maternal sensitivity was assessed when infants were 6 and 10 months old, and infant security was assessed at 15 and 18 months. Maternal attachment state of mind was measured with the Adult Attachment Interview (AAI) after the 1st…

  2. Similarities amid the Difference: Caregiving Burden and Adaptation Outcomes in Dyads of Parents and Their Children with and without Cerebral Palsy

    Science.gov (United States)

    Carona, C.; Crespo, C.; Canavarro, M. C.

    2013-01-01

    This study had two main objectives: first, to examine the direct and indirect effects, via social support, of caregiving burden on the adaptation outcomes of children/adolescents with cerebral palsy and their parents; and second, to assess the invariance of such models in clinical vs. healthy subsamples. Participants were 210 dyads of…

  3. Taking Stress Response out of the Box: Stability, Discontinuity, and Temperament Effects on HPA and SNS across Social Stressors in Mother-Infant Dyads

    Science.gov (United States)

    Laurent, Heidemarie K.; Ablow, Jennifer C.; Measelle, Jeffrey

    2012-01-01

    This study investigated continuity and stability of hypothalamic-pituitary-adrenal (HPA) and sympathetic nervous system (SNS) response measures in mother-infant dyads across 2 different types of social stress sessions. Synchrony of response trajectories across systems (SNS-HPA coordination) and partners (mother-infant attunement) was addressed, as…

  4. The impact of a pilot cooking intervention for parent-child dyads on the consumption of foods prepared away from home.

    Science.gov (United States)

    Robson, Shannon M; Stough, Cathleen Odar; Stark, Lori J

    2016-04-01

    This pilot study investigated the impact of a parent-child dyad cooking intervention on reducing eating dinner away from home. Eating away from home often results in consumption of energy-dense, nutrient-poor foods that can contribute to excess energy consumption in children. A pre-post design to evaluate a 10-week cooking intervention on reducing eating dinner away from home, energy intake, and improving diet quality was implemented. The intervention was delivered at an instructional kitchen on a university campus and assessments were completed at a children's academic medical center. Subjects included six parent-child dyads whom reported eating dinner away from home ≥3 times/week and in which the parent was overweight based on their body mass index (BMI) of ≥25 kg/m(2). Parents were a mean age of 34.7 (SD = 3.9) years, and children were a mean age of 8.7 (SD = 2.0) years. Two-thirds of parents self-identified themselves and their children as White. Results showed the proportion of dinners consumed by parent-child dyads away from home significantly decreased (F (1,161) = 16.1, p cooking between baseline and post-treatment. A cooking intervention that involves parent-child dyads and incorporates behavior management strategies and nutrition education may be an innovative obesity prevention intervention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A Research Experience for American Indian Undergraduates: Utilizing an Actor-Partner Interdependence Model to Examine the Student-Mentor Dyad

    Science.gov (United States)

    Griese, Emily R.; McMahon, Tracey R.; Kenyon, DenYelle Baete

    2017-01-01

    The majority of research examining Undergraduate Research Experiences focuses singularly on student-reported outcomes, often overlooking assessment of the mentor role in student learning and outcomes after these experiences. The goal of the current study was to examine the student-mentor dyad at the beginning and end of a 10-week summer research…

  6. Autism Spectrum Disorder: Does Neuroimaging Support the DSM-5 Proposal for a Symptom Dyad? A Systematic Review of Functional Magnetic Resonance Imaging and Diffusion Tensor Imaging Studies

    Science.gov (United States)

    Pina-Camacho, Laura; Villero, Sonia; Fraguas, David; Boada, Leticia; Janssen, Joost; Navas-Sanchez, Francisco J.; Mayoral, Maria; Llorente, Cloe; Arango, Celso; Parellada, Mara

    2012-01-01

    A systematic review of 208 studies comprising functional magnetic resonance imaging and diffusion tensor imaging data in patients with "autism spectrum disorder" (ASD) was conducted, in order to determine whether these data support the forthcoming DSM-5 proposal of a social communication and behavioral symptom dyad. Studies consistently reported…

  7. Enhanced catalytic activity without the use of an external light source using microwave-synthesized CuO nanopetals

    Directory of Open Access Journals (Sweden)

    Govinda Lakhotiya

    2017-05-01

    Full Text Available We report enhanced catalytic activity of CuO nanopetals synthesized by microwave-assisted wet chemical synthesis. The catalytic reaction of CuO nanopetals and H2O2 was studied with the application of external light source and also under dark conditions for the degradation of the hazardous dye methylene blue. The CuO nanopetals showed significant catalytic activity for the fast degradation of methylene blue and rhodamine B (RhB under dark conditions, without the application of an external light source. This increased catalytic activity was attributed to the co-operative role of H2O2 and the large specific surface area (≈40 m2·g−1 of the nanopetals. We propose a detail mechanism for this fast degradation. A separate study of the effect of different H2O2 concentrations for the degradation of methylene blue under dark conditions is also illustrated.

  8. The use of Phoenics in the design of catalytic converters

    Energy Technology Data Exchange (ETDEWEB)

    Luoma, M. [Kemira Metalkat Oy, Oulu (Finland); Smith, A.G. [S and C Thermofluids Ltd, Bath (United Kingdom)

    1996-12-31

    Manufacturers of automotive catalytic converters are constrained to design a system which is mechanically reliable, puts low back pressure on the engine, has adequate conversion performance, is low cost and of minimum size. In recent years, computational fluid dynamics (CFD) has been widely examined as a means of predicting the performance of catalytic converters to aid with the design process. Kemira Metalkat and S and C Thermofluids have put together and developed a number of existing CFD techniques in order to create a tool which is integrated within the design process. PHOENICS is used in the heart of the system in order to produce predictions of transient (light-off) and steady state catalyst performance. Grid generation tools have been provided to allow simplified and rapid geometry definition with suitable integration (via FEMGEN) within other parts of the catalyst design process. Simplified input techniques have been provided along with associated translators to create specification of the model for PHOENICS. Post-processing software has been provided through FEMVIEW to allow visualisation of catalyst monolith variables and transient performance animation. The whole system is controlled via a menu. The system have been use to study the effects of the catalyst design parameters on the converter performance. The results obtained using the system have so far been more qualitative than quantitative. However, validation studies have been carried out to check pressure drop prediction. A new model for the pressure drop over a metallic monolith has been developed. (author)

  9. The use of Phoenics in the design of catalytic converters

    Energy Technology Data Exchange (ETDEWEB)

    Luoma, M [Kemira Metalkat Oy, Oulu (Finland); Smith, A G [S and C Thermofluids Ltd, Bath (United Kingdom)

    1997-12-31

    Manufacturers of automotive catalytic converters are constrained to design a system which is mechanically reliable, puts low back pressure on the engine, has adequate conversion performance, is low cost and of minimum size. In recent years, computational fluid dynamics (CFD) has been widely examined as a means of predicting the performance of catalytic converters to aid with the design process. Kemira Metalkat and S and C Thermofluids have put together and developed a number of existing CFD techniques in order to create a tool which is integrated within the design process. PHOENICS is used in the heart of the system in order to produce predictions of transient (light-off) and steady state catalyst performance. Grid generation tools have been provided to allow simplified and rapid geometry definition with suitable integration (via FEMGEN) within other parts of the catalyst design process. Simplified input techniques have been provided along with associated translators to create specification of the model for PHOENICS. Post-processing software has been provided through FEMVIEW to allow visualisation of catalyst monolith variables and transient performance animation. The whole system is controlled via a menu. The system have been use to study the effects of the catalyst design parameters on the converter performance. The results obtained using the system have so far been more qualitative than quantitative. However, validation studies have been carried out to check pressure drop prediction. A new model for the pressure drop over a metallic monolith has been developed. (author)

  10. Catalytic degradation of brominated flame retardants by copper oxide nanoparticles

    Science.gov (United States)

    Dror, I.; Yecheskel, Y.; Berkowitz, B.

    2013-12-01

    Brominated flame retardants (BFRs) have been added to various products like plastic, textile, electronics and synthetic polymers at growing rates. In spite of the clear advantages of reducing fire damages, many of these BFRs may be released to the environment after their beneficial use which may lead to contamination of water resources. In this work we present the catalytic degradation of two brominated flame retardants (BFRs), tribromoneopentyl alcohol (TBNPA) and 2,4 dibromophenol (2,4-DBP) by copper oxide nanoparticles (nCuO) in aqueous solution. The degradation kinetics, the debromination, and the formation of intermediates by nCuO catalysis are compared to Fenton oxidation and to reduction by nano zero-valent iron (nZVI). The two studied BFRs are shown to degrade fully by the nCuO system within hours to days. Shorter reaction times showed differences in reaction pathways and kinetics for the two compounds. The 2,4-DBP showed faster degradation than TBNPA, by nCuO catalysis. Relatively high resistance to degradation was recorded for 2,4-DBP with nZVI, yielding 20% degradation after 24 h, while the TBNPA was degraded by 85% within 12 hours. A catalytic mechanism for radical generation and BFR degradation by nCuO is proposed. It is further suggested that H2O2 plays an essential role in the activation of the catalyst.

  11. Reaction Current Phenomenon in Bifunctional Catalytic Metal-Semiconductor Nanostructures

    Science.gov (United States)

    Hashemian, Mohammad Amin

    Energy transfer processes accompany every elementary step of catalytic chemical processes on material surface including molecular adsorption and dissociation on atoms, interactions between intermediates, and desorption of reaction products from the catalyst surface. Therefore, detailed understanding of these processes on the molecular level is of great fundamental and practical interest in energy-related applications of nanomaterials. Two main mechanisms of energy transfer from adsorbed particles to a surface are known: (i) adiabatic via excitation of quantized lattice vibrations (phonons) and (ii) non-adiabatic via electronic excitations (electron/hole pairs). Electronic excitations play a key role in nanocatalysis, and it was recently shown that they can be efficiently detected and studied using Schottky-type catalytic nanostructures in the form of measureable electrical currents (chemicurrents) in an external electrical circuit. These nanostructures typically contain an electrically continuous nanocathode layers made of a catalytic metal deposited on a semiconductor substrate. The goal of this research is to study the direct observations of hot electron currents (chemicurrents) in catalytic Schottky structures, using a continuous mesh-like Pt nanofilm grown onto a mesoporous TiO2 substrate. Such devices showed qualitatively different and more diverse signal properties, compared to the earlier devices using smooth substrates, which could only be explained on the basis of bifunctionality. In particular, it was necessary to suggest that different stages of the reaction are occurring on both phases of the catalytic structure. Analysis of the signal behavior also led to discovery of a formerly unknown (very slow) mode of the oxyhydrogen reaction on the Pt/TiO2(por) system occurring at room temperature. This slow mode was producing surprisingly large stationary chemicurrents in the range 10--50 microA/cm2. Results of the chemicurrent measurements for the bifunctional

  12. Performance simulations of catalytic converters during the Federal Test Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Shen, H.; Shamim, T.; Sengupta, S.; Son, S.; Adamczyk, A.A.

    1999-07-01

    A numerical study is carried out to predict the tailpipe emissions and emission conversion efficiencies of unburned hydrocarbon, nitrogen oxide and carbon monoxide flowing through a catalytic converter during the Federal Test Procedure (FTP). The model considers the effect of heat transfer in the catalytic converter, coupled with catalyst chemical kinetics, including an oxygen storage mechanism. The resulting governing equations based on the conservation of mass and energy are solved by a tridiagonal matrix algorithm (TDMA) with a successive line under relaxation method. The numerical scheme for this non-linear problem is found to have good convergence efficiency. The simulation for the complete FTP cycle is accomplished in less than fifteen minutes on a desktop personal computer. A 13-step reaction mechanism plus a nine-step O{sub 2} storage mechanism is used to simulate the chemical kinetics. The energy equations include the heat loss due to conduction and convection plus the energy liberated by chemical reactions. The effect of radiation is assumed to be negligible and is not considered. The results of the numerical model for both the instantaneous and accumulated emissions are found to be in good agreement with experimental measurements. The conversion efficiencies of HC, CO and NO as predicted by the model are found to be within 5% of those dynamic measurements, and calculated results of accumulated HC, CO and NO{sub x} are in fair agreement with experimental measurements. The transient measurements are also used to check the robustness of the numerical model. The model is found to be robust and hence can simulate various operating conditions of engine output to the converter.

  13. Global analysis of the high temperature infrared emission spectrum of (12)CH4 in the dyad (ν2/ν4) region.

    Science.gov (United States)

    Amyay, Badr; Louviot, Maud; Pirali, Olivier; Georges, Robert; Vander Auwera, Jean; Boudon, Vincent

    2016-01-14

    We report new assignments of vibration-rotation line positions of methane ((12)CH4) in the so-called dyad (ν2/ν4) region (1100-1500 cm(-1)), and the resulting update of the vibration-rotation effective model of methane, previously reported by Nikitin et al. [Phys. Chem. Chem. Phys. 15, 10071 (2013)], up to and including the tetradecad. High resolution (0.01 cm(-1)) emission spectra of methane have been recorded up to about 1400 K using the high-enthalpy source developed at Institut de Physique de Rennes associated with the Fourier transform spectrometer of the SOLEIL synchrotron facility (AILES beamline). Analysis of these spectra allowed extending rotational assignments in the well-known cold band (dyad-ground state (GS)) and related hot bands in the pentad-dyad system (3000 cm(-1)) up to Jmax = 30 and 29, respectively. In addition, 8512 new transitions belonging to the octad-pentad (up to J = 28) and tetradecad-octad (up to J = 21) hot band systems were successfully identified. As a result, the MeCaSDa database of methane was significantly improved. The line positions assigned in this work, together with the information available in the literature, were fitted using 1096 effective parameters with a dimensionless standard deviation σ = 2.09. The root mean square deviations dRMS are 3.60 × 10(-3) cm(-1) for dyad-GS cold band, 4.47 ×10(-3) cm(-1) for the pentad-dyad, 5.43 × 10(-3) cm(-1) for the octad-pentad, and 4.70 × 10(-3) cm(-1) for the tetradecad-octad hot bands. The resulting new line list will contribute to improve opacity and radiative transfer models for hot atmospheres, such as those of hot-Jupiter type exoplanets.

  14. Measuring child awareness for adult symptomatic HIV using a verbal assessment tool: concordance between adult-child dyads on adult HIV-associated symptoms and illnesses.

    Science.gov (United States)

    Becker, Elisabeth; Kuo, Caroline; Operario, Don; Moshabela, Mosa; Cluver, Lucie

    2015-11-01

    This study assessed children's awareness for adult HIV-associated symptoms and illnesses using a verbal assessment tool by analysing inter-rater reliability between adult-child dyads. This study also evaluated sociodemographic and household characteristics associated with child awareness of adult symptomatic HIV. A cross-sectional survey using a representative community sample of adult-child dyads (N=2477 dyads) was conducted in KwaZulu-Natal, South Africa. Analyses focused on a subsample (n=673 adult-child dyads) who completed verbal assessment interviews for symptomatic HIV. We used an existing validated verbal autopsy approach, originally designed to determine AIDS-related deaths by adult proxy reporters. We adapted this approach for use by child proxy reporters for reporting on HIV-associated symptoms and illnesses among living adults. Analyses assessed whether children could reliably report on adult HIV-associated symptoms and illnesses and adult provisional HIV status. Adult-child pairs concurred above the 65th percentile for 9 of the 10 HIV-associated symptoms and illnesses with sensitivities ranging from 10% to 100% and specificities ranging from 20% to 100%. Concordant reporting between adult-child dyads for the adult's provisional HIV status was 72% (sensitivity=68%, specificity=73%). Children were more likely to reliably match adult's reports of provisional HIV status when they lived in households with more household members, and households with more robust socioeconomic indicators including access to potable water, food security and television. Children demonstrate awareness of HIV-associated symptoms and illnesses experienced by adults in their household. Children in households with greater socioeconomic resources and more household members were more likely to reliably report on the adult's provisional HIV status. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. Advances in solid-catalytic and non-catalytic technologies for biodiesel production

    International Nuclear Information System (INIS)

    Islam, Aminul; Taufiq-Yap, Yun Hin; Chan, Eng-Seng; Moniruzzaman, M.; Islam, Saiful; Nabi, Md. Nurun

    2014-01-01

    Highlights: • The recent technologies for promoting biodiesel synthesis were elucidated. • The design of catalyst consideration of biodiesel production was proposed. • The recent advances and remaining difficulties in biodiesel synthesis were outlined. • The future research trend in biodiesel synthesis was highlighted. - Abstract: The insecure supply of fossil fuel coerces the scientific society to keep a vision to boost investments in the renewable energy sector. Among the many renewable fuels currently available around the world, biodiesel offers an immediate impact in our energy. In fact, a huge interest in related research indicates a promising future for the biodiesel technology. Heterogeneous catalyzed production of biodiesel has emerged as a preferred route as it is environmentally benign needs no water washing and product separation is much easier. The number of well-defined catalyst complexes that are able to catalyze transesterification reactions efficiently has been significantly expanded in recent years. The activity of catalysts, specifically in application to solid acid/base catalyst in transesterification reaction depends on their structure, strength of basicity/acidity, surface area as well as the stability of catalyst. There are various process intensification technologies based on the use of alternate energy sources such as ultrasound and microwave. The latest advances in research and development related to biodiesel production is represented by non-catalytic supercritical method and focussed exclusively on these processes as forthcoming transesterification processes. The latest developments in this field featuring highly active catalyst complexes are outlined in this review. The knowledge of more extensive research on advances in biofuels will allow a deeper insight into the mechanism of these technologies toward meeting the critical energy challenges in future

  16. Effect of inlet cone pipe angle in catalytic converter

    Science.gov (United States)

    Amira Zainal, Nurul; Farhain Azmi, Ezzatul; Arifin Samad, Mohd

    2018-03-01

    The catalytic converter shows significant consequence to improve the performance of the vehicle start from it launched into production. Nowadays, the geometric design of the catalytic converter has become critical to avoid the behavior of backpressure in the exhaust system. The backpressure essentially reduced the performance of vehicles and increased the fuel consumption gradually. Consequently, this study aims to design various models of catalytic converter and optimize the volume of fluid flow inside the catalytic converter by changing the inlet cone pipe angles. Three different geometry angles of the inlet cone pipe of the catalytic converter were assessed. The model is simulated in Solidworks software to determine the optimum geometric design of the catalytic converter. The result showed that by decreasing the divergence angle of inlet cone pipe will upsurge the performance of the catalytic converter.

  17. Zeolitic catalytic conversion of alcohols to hydrocarbons

    Science.gov (United States)

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2018-04-10

    A method for converting an alcohol to a hydrocarbon, the method comprising contacting said alcohol with a metal-loaded zeolite catalyst at a temperature of at least 100.degree. C. and up to 550.degree. C., wherein said alcohol can be produced by a fermentation process, said metal is a positively-charged metal ion, and said metal-loaded zeolite catalyst is catalytically active for converting said alcohol to said hydrocarbon.

  18. Method to produce catalytically active nanocomposite coatings

    Science.gov (United States)

    Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat

    2016-02-09

    A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.

  19. Enantioselective catalytic fluorinative aza-semipinacol rearrangement.

    Science.gov (United States)

    Romanov-Michailidis, Fedor; Pupier, Marion; Besnard, Céline; Bürgi, Thomas; Alexakis, Alexandre

    2014-10-03

    An efficient and highly stereoselective fluorinative aza-semipinacol rearrangement is described. The catalytic reaction requires use of Selectfluor in combination with the chiral, enantiopure phosphate anion derived from acid L3. Under optimized conditions, cyclopropylamines A were transformed into β-fluoro cyclobutylimines B in good yields and high levels of diastereo- and enantiocontrol. Furthermore, the optically active cyclobutylimines were reduced diastereoselectively with L-Selectride in the corresponding fluorinated amines C, compounds of significant interest in the pharmacological industry.

  20. Zeolitic catalytic conversion of alochols to hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2017-01-03

    A method for converting an alcohol to a hydrocarbon, the method comprising contacting said alcohol with a metal-loaded zeolite catalyst at a temperature of at least 100.degree. C. and up to 550.degree. C., wherein said alcohol can be produced by a fermentation process, said metal is a positively-charged metal ion, and said metal-loaded zeolite catalyst is catalytically active for converting said alcohol to said hydrocarbon.