WorldWideScience

Sample records for catalytic combustion pem

  1. Systems Analysis of Technologies for Energy Recovery from Waste. Part I. Gasification followed by Catalytic Combustion, PEM Fuel Cells and Solid Oxide Fuel Cells for Stationary Applications in Comparison with Incineration. Part - II. Catalytic combustion - Experimental part

    Energy Technology Data Exchange (ETDEWEB)

    Assefa, Getachew; Frostell, Bjoern [Royal Inst. of Technology, Stockholm (Sweden). Div. of Industrial Ecology; Jaeraas, Sven; Kusar, Henrik [Royal Inst. of Technology, Stockholm (Sweden). Div. of Chemical Technology

    2005-02-01

    This project is entitled 'Systems Analysis: Energy Recovery from waste, catalytic combustion in comparison with fuel cells and incineration'. Some of the technologies that are currently developed by researchers at the Royal Institute of Technology include catalytic combustion and fuel cells as downstream units in a gasification system. The aim of this project is to assess the energy turnover as well as the potential environmental impacts of biomass/waste-to-energy technologies. In second part of this project economic analyses of the technologies in general and catalytic combustion and fuel cell technologies in particular will be carried out. Four technology scenarios are studied: (1) Gasification followed by Low temperature fuel cells (Proton Exchange Membrane (PEM) fuel cells) (2) Gasification followed by high temperature fuel cells (Solid Oxide Fuel Cells (SOFC) (3) Gasification followed by catalytic combustion and (4) Incineration with energy recovery. The waste used as feedstock is an industrial waste containing parts of household waste, paper waste, wood residues and poly ethene. In the study compensatory district heating is produced by combustion of biofuel. The power used for running the processes in the scenarios will be supplied by the waste-to-energy technologies themselves while compensatory power is assumed to be produced from natural gas. The emissions from the system studied are classified and characterised using methodology from Life Cycle Assessment in to the following environmental impact categories: Global Warming Potential, Acidification Potential, Eutrophication Potential and finally Formation of Photochemical Oxidants. Looking at the result of the four technology chains in terms of the four impact categories with impact per GWh electricity produced as a unit of comparison and from the perspective of the rank each scenario has in all the four impact categories, SOFC appears to be the winner technology followed by PEM and CC as second

  2. Systems Analysis of Technologies for Energy Recovery from Waste. Part I. Gasification followed by Catalytic Combustion, PEM Fuel Cells and Solid Oxide Fuel Cells for Stationary Applications in Comparison with Incineration. Part - II. Catalytic combustion - Experimental part

    International Nuclear Information System (INIS)

    Assefa, Getachew; Frostell, Bjoern; Jaeraas, Sven; Kusar, Henrik

    2005-02-01

    This project is entitled 'Systems Analysis: Energy Recovery from waste, catalytic combustion in comparison with fuel cells and incineration'. Some of the technologies that are currently developed by researchers at the Royal Institute of Technology include catalytic combustion and fuel cells as downstream units in a gasification system. The aim of this project is to assess the energy turnover as well as the potential environmental impacts of biomass/waste-to-energy technologies. In second part of this project economic analyses of the technologies in general and catalytic combustion and fuel cell technologies in particular will be carried out. Four technology scenarios are studied: (1) Gasification followed by Low temperature fuel cells (Proton Exchange Membrane (PEM) fuel cells) (2) Gasification followed by high temperature fuel cells (Solid Oxide Fuel Cells (SOFC) (3) Gasification followed by catalytic combustion and (4) Incineration with energy recovery. The waste used as feedstock is an industrial waste containing parts of household waste, paper waste, wood residues and poly ethene. In the study compensatory district heating is produced by combustion of biofuel. The power used for running the processes in the scenarios will be supplied by the waste-to-energy technologies themselves while compensatory power is assumed to be produced from natural gas. The emissions from the system studied are classified and characterised using methodology from Life Cycle Assessment in to the following environmental impact categories: Global Warming Potential, Acidification Potential, Eutrophication Potential and finally Formation of Photochemical Oxidants. Looking at the result of the four technology chains in terms of the four impact categories with impact per GWh electricity produced as a unit of comparison and from the perspective of the rank each scenario has in all the four impact categories, SOFC appears to be the winner technology followed by PEM and CC as second and third

  3. Catalytic Combustion of Gasified Waste

    Energy Technology Data Exchange (ETDEWEB)

    Kusar, Henrik

    2003-09-01

    This thesis concerns catalytic combustion for gas turbine application using a low heating-value (LHV) gas, derived from gasified waste. The main research in catalytic combustion focuses on methane as fuel, but an increasing interest is directed towards catalytic combustion of LHV fuels. This thesis shows that it is possible to catalytically combust a LHV gas and to oxidize fuel-bound nitrogen (NH{sub 3}) directly into N{sub 2} without forming NO{sub x} The first part of the thesis gives a background to the system. It defines waste, shortly describes gasification and more thoroughly catalytic combustion. The second part of the present thesis, paper I, concerns the development and testing of potential catalysts for catalytic combustion of LHV gases. The objective of this work was to investigate the possibility to use a stable metal oxide instead of noble metals as ignition catalyst and at the same time reduce the formation of NO{sub x} In paper II pilot-scale tests were carried out to prove the potential of catalytic combustion using real gasified waste and to compare with the results obtained in laboratory scale using a synthetic gas simulating gasified waste. In paper III, selective catalytic oxidation for decreasing the NO{sub x} formation from fuel-bound nitrogen was examined using two different approaches: fuel-lean and fuel-rich conditions. Finally, the last part of the thesis deals with deactivation of catalysts. The various deactivation processes which may affect high-temperature catalytic combustion are reviewed in paper IV. In paper V the poisoning effect of low amounts of sulfur was studied; various metal oxides as well as supported palladium and platinum catalysts were used as catalysts for combustion of a synthetic gas. In conclusion, with the results obtained in this thesis it would be possible to compose a working catalytic system for gas turbine application using a LHV gas.

  4. Materials for High-Temperature Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ersson, Anders

    2003-04-01

    Catalytic combustion is an environmentally friendly technique to combust fuels in e.g. gas turbines. Introducing a catalyst into the combustion chamber of a gas turbine allows combustion outside the normal flammability limits. Hence, the adiabatic flame temperature may be lowered below the threshold temperature for thermal NO{sub X} formation while maintaining a stable combustion. However, several challenges are connected to the application of catalytic combustion in gas turbines. The first part of this thesis reviews the use of catalytic combustion in gas turbines. The influence of the fuel has been studied and compared over different catalyst materials. The material section is divided into two parts. The first concerns bimetallic palladium catalysts. These catalysts showed a more stable activity compared to their pure palladium counterparts for methane combustion. This was verified both by using an annular reactor at ambient pressure and a pilot-scale reactor at elevated pressures and flows closely resembling the ones found in a gas turbine combustor. The second part concerns high-temperature materials, which may be used either as active or washcoat materials. A novel group of materials for catalysis, i.e. garnets, has been synthesised and tested in combustion of methane, a low-heating value gas and diesel fuel. The garnets showed some interesting abilities especially for combustion of low-heating value, LHV, gas. Two other materials were also studied, i.e. spinels and hexa aluminates, both showed very promising thermal stability and the substituted hexa aluminates also showed a good catalytic activity. Finally, deactivation of the catalyst materials was studied. In this part the sulphur poisoning of palladium, platinum and the above-mentioned complex metal oxides has been studied for combustion of a LHV gas. Platinum and surprisingly the garnet were least deactivated. Palladium was severely affected for methane combustion while the other washcoat materials were

  5. Efficient catalytic combustion in integrated micropellistors

    International Nuclear Information System (INIS)

    Bársony, I; Ádám, M; Fürjes, P; Dücső, Cs; Lucklum, R; Hirschfelder, M; Kulinyi, S

    2009-01-01

    This paper analyses two of the key issues of the development of catalytic combustion-type sensors: the selection and production of active catalytic particles on the micropellistor surface as well as the realization of a reliable thermal conduction between heater element and catalytic surface, for the sensing of temperature increase produced by the combustion. The report also demonstrates that chemical sensor product development by a MEMS process is a continuous struggle for elimination of all uncertainties influencing reliability and sensitivity of the final product

  6. Investigation of combustion and thermodynamic performance of a lean burn catalytic combustion gas turbine system

    International Nuclear Information System (INIS)

    Yin Juan; Weng Yiwu

    2011-01-01

    The goals of this research were to investigate the combustion and thermodynamic performance of a lean burn catalytic combustion gas turbine. The characteristics of lean burn catalytic combustion were investigated by utilising 1D heterogeneous plug flow model which was validated by experiments. The effects of operating parameters on catalytic combustion were numerically analysed. The system models were built in ASPEN Plus and three independent design variables, i.e. compressor pressure ratio (PR), regenerator effectiveness (RE) and turbine inlet temperature (TIT) were selected to analyse the thermodynamic performance of the thermal cycle. The main results show that: simulations from 1D heterogeneous plug flow model can capture the trend of catalytic combustion and describe the behavior of the catalytic monolith in detail. Inlet temperature is the most significant parameter that impacts operation of the catalytic combustor. When TIT and RE are constant, the increase of PR results in lowering the inlet temperature of the catalytic combustor, which results in decreasing methane conversion. The peak thermal efficiency and the optimal PR at a constant TIT increase with the increase of TIT; and at the constant PR, the thermal efficiency increases with the increase of TIT. However, with lower TIT conditions, the optimal PR and the peak efficiency at a constant TIT of the LBCCGT cycle are relative low to that of the conventional cycle. When TIT and PR are constant, the decrease of RE may result in lower methane conversion. The influences of RE on the methane conversion and the thermal efficiency are more significant at higher PRs. The higher thermal efficiency for the lower RE is achieved at lower PR.

  7. Oxyfuel combustion using a catalytic ceramic membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xiaoyao; Li, K. [Department of Chemical Engineering, Imperial College London, University of London, South Kensington, London SW7 2AZ (United Kingdom); Thursfield, A.; Metcalfe, I.S. [School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom)

    2008-02-29

    Membrane catalytic combustion (MCC) is an environmentally friendly technique for heat and power generation from methane. This work demonstrates the performances of a MCC perovskite hollow fibre membrane reactor for the catalytic combustion of methane. The ionic-electronic La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{alpha}} (LSCF6428) mixed conductor, in the form of an oxygen-permeable hollow fibre membrane, has been prepared successfully by means of a phase-inversion spinning/sintering technique. For this process polyethersulfone (PESf) was used as a binder, N-methyl-2-pyrrollidone (NMP) as solvent and polyvinylpyrrolidone (PVP, K16-18) as an additive. With the prepared LSCF6428 hollow fibre membranes packed with catalyst, hollow fibre membrane reactors (HFMRs) have been assembled to perform the catalytic combustion of methane. A simple mathematical model that combines the local oxygen permeation rate with approximate catalytic reaction kinetics has been developed and can be used to predict the performance of the HFMRs for methane combustion. The effects of operating temperature and methane and air feed flow rates on the performance of the HFMR have been investigated both experimentally and theoretically. Both the methane conversion and oxygen permeation rate can be improved by means of coating platinum on the air side of the hollow fibre membranes. (author)

  8. Predictive emission monitoring system (PEMS) for emission control in biomass fired plants; Predikterande emissionsmaetsystem (PEMS) foer emissionskontroll i biobraensleeldade foerbraenningsanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Harnevie, H; Sarkoezi, L; Trenkle, S

    1996-08-01

    An alternative method for estimation of NO{sub x}-emissions from biomass fired plants has been investigated. The method, `Predictive emission monitoring` (PEMS), implicates the creation of a mathematical formula. The formula expresses the relations between NO{sub x}-emissions and various operating and external parameters, such as flue gas temperature, excess combustion air and heat load. In this study the applicability of PEMS has been tested for two plants both of type travelling stokers. The most important results of the study are: PEMS is suitable for emission monitoring for some types of biomass fired plants (for example travelling stokers) even if the plant is fired with fuel with varying water content. In most cases it should be sufficient if the relation is based on oxygen level in the flue gas and plant load, with the possible addition of flue gas temperature and/or furnace temperature rate. These parameters are usually measured in any case, which means that no additional investment in instrumentation is necessary. In this study many measured parameters (for example the throttle levels) did not affect the NO{sub x}-emissions. A PEMS relation is only applicable for a specific plant and for a fixed validity range. Thus the function should be performed in such a way that it covers the limits of the operating parameters of the plant. Usage of different fuels or drift optimization can only be done within the validity range. Good combustion conditions could be necessary to receive a usable PEMS-function. Before creating the PEMS-function the combustion and the emission levels must be optimized. In plants with very fluctuating combustion, for example fixed stokers, it is possible that PEMS leads to not satisfying results. The total cost for a PEM-function can be calculated to be about 50-70% compared to a CEM during a period of a decade. 8 refs, 13 figs, 15 tabs, 8 appendices

  9. Catalytic combustion in small wood burning appliances

    Energy Technology Data Exchange (ETDEWEB)

    Oravainen, H [VTT Energy, Jyvaeskylae (Finland)

    1997-12-31

    There is over a million hand fired small heating appliances in Finland where about 5,4 million cubic meters of wood fuel is used. Combustion in such heating appliances is a batch-type process. In early stages of combustion when volatiles are burned, the formation of carbon monoxide (CO) and other combustible gases are difficult to avoid when using fuels that have high volatile matter content. Harmful emissions are formed mostly after each fuel adding but also during char burnout period. When the CO-content in flue gases is, say over 0.5 %, also other harmful emissions will be formed. Methane (CH{sub 4}) and other hydrocarbons are released and the amount of polycyclic aromatic hydrocarbons (PAH)-compounds can be remarkable. Some PAH-compounds are very carcinogenic. It has been estimated that in Finland even more than 90 % of hydrocarbon and PAH emissions are due to small scale wood combustion. Emissions from transportation is excluded from these figures. That is why wood combustion has a net effect on greenhouse gas phenomena. For example carbon monoxide emissions from small scale wood combustion are two fold compared to that of energy production in power plants. Methane emission is of the same order as emission from transportation and seven fold compared with those of energy production. Emissions from small heating appliances can be reduced by developing the combustion techniques, but also by using other means, for example catalytic converters. In certain stages of the batch combustion, temperature is not high enough, gas mixing is not good enough and residence time is too short for complete combustion. When placed to a suitable place inside a heating appliance, a catalytic converter can oxidize unburned gases in the flue gas into compounds that are not harmful to the environment. (3 refs.)

  10. Catalytic combustion in small wood burning appliances

    Energy Technology Data Exchange (ETDEWEB)

    Oravainen, H. [VTT Energy, Jyvaeskylae (Finland)

    1996-12-31

    There is over a million hand fired small heating appliances in Finland where about 5,4 million cubic meters of wood fuel is used. Combustion in such heating appliances is a batch-type process. In early stages of combustion when volatiles are burned, the formation of carbon monoxide (CO) and other combustible gases are difficult to avoid when using fuels that have high volatile matter content. Harmful emissions are formed mostly after each fuel adding but also during char burnout period. When the CO-content in flue gases is, say over 0.5 %, also other harmful emissions will be formed. Methane (CH{sub 4}) and other hydrocarbons are released and the amount of polycyclic aromatic hydrocarbons (PAH)-compounds can be remarkable. Some PAH-compounds are very carcinogenic. It has been estimated that in Finland even more than 90 % of hydrocarbon and PAH emissions are due to small scale wood combustion. Emissions from transportation is excluded from these figures. That is why wood combustion has a net effect on greenhouse gas phenomena. For example carbon monoxide emissions from small scale wood combustion are two fold compared to that of energy production in power plants. Methane emission is of the same order as emission from transportation and seven fold compared with those of energy production. Emissions from small heating appliances can be reduced by developing the combustion techniques, but also by using other means, for example catalytic converters. In certain stages of the batch combustion, temperature is not high enough, gas mixing is not good enough and residence time is too short for complete combustion. When placed to a suitable place inside a heating appliance, a catalytic converter can oxidize unburned gases in the flue gas into compounds that are not harmful to the environment. (3 refs.)

  11. Desarrollo y validación experimental de un modelo computacional de pilas de combustible tipo PEM y su aplicación al análisis de monoceldas

    OpenAIRE

    Iranzo Paricio, Alfredo

    2010-01-01

    La presente tesis doctoral tiene como objetivo fundamental el desarrollo de un modelo computacional para pilas de combustible tipo PEM, que suponga un avance con respecto al estado actual del modelado de pilas de combustible. ... * Desarrollo de un model

  12. Catalytic combustion of gasified waste - Experimental part. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jaeraas, Sven; Kusar, Henrik [Royal Institute of Technology, Stockholm (Sweden). Chemical Engineering and Technology

    2003-08-01

    This final report covers the work that has been performed within the project P 10547-2, 'Catalytic combustion of gasified waste - system analysis ORWARE'. This project is part of the research programme 'Energy from Waste' financed by the Swedish National Energy Administration. The project has been carried out at the division of Industrial Ecology and at the division of Chemical Technology at Royal Inst. of Technology. The aim of the project has been to study the potentials for catalytic combustion of gasified waste. The supposed end user of the technique is a smaller community in Sweden with 15,000-20,000 inhabitants. The project contains of two sub projects: an experimental part carried out at Chemical Technology and a system analysis carried out at Industrial Ecology. This report covers the experimental part of the project carried out at Chemical Technology. The aim for the experimental part has been to develop and test catalysts with long life-time and a high performance, to reduce the thermal-NO{sub x} below 5 ppm and to significantly reduce NO{sub x} formed from fuel-bound nitrogen. Different experimental studies have been carried out within the project: a set-up of catalytic materials have been tested over a synthetic mixture of the gasified waste, the influence of sulfur present in the gas stream, NO{sub x} formation from fuel bound nitrogen, kinetic studies of CO and H{sub 2} with and without the presence of water and the effects of adding a co-metal to palladium catalysts Furthermore a novel annular reactor design has been used to carry out experiments for kinetic measurements. Real gasification tests of waste pellets directly coupled to catalytic combustion have successfully been performed. The results obtained from the experiments, both the catalytic combustion and from the gasification, have been possible to use in the system analysis. The aim of the system analysis of catalytic combustion of gasified waste takes into consideration

  13. Catalytic combustion for the elimination of methane, BTEX and other VOC : IV

    International Nuclear Information System (INIS)

    Hayes, R.E.; Wanke, S.E.

    2008-01-01

    Options for volatile organic compound combustion include homogeneous combustion (flaring) or catalytic combustion involving a flameless combustion process that uses a solid catalyst to promote the combustion reaction. This presentation discussed relative reactivity testing for volatile organic compounds (VOCs) over commercial catalysts. Several commercial pad catalysts were tested, as well as other powders. The relative reactivity of methane as well as benzene, toluene, ethylbenzene, and xylene (BTEX) were investigated. The purpose of the project was to evaluate combustion of concentrated methane streams that contained BTEX compounds; evaluate catalytic combustion using a counter diffusive radiant heater; develop mathematical models for the reactor to enhance design and understanding; improve the catalyst for BTEX combustion; and target application-dehydrator units. Topics that were addressed in the presentation included methane and benzene conversion; catalytic radiant heaters; small industrial and commercial units; measured temperature distribution; fuel slippage, methane conversion; the effect of water and hydrocarbons; the effect of water-liquid injection; and water addition as vapour. Several observations were offered, including that high percentages of injected liquid water can reduce reactor operating temperature; combustion of BTEX remained highly efficient, however liquid injection could also cause temperature reductions and ultimately the reactor would extinguish; and pre-heating the feed can eliminate the temperature drop and pad wetness problem. It was concluded that BTEX compounds are reactive, and the technology appears promising. 19 figs

  14. Catalytic combustion for the elimination of methane, BTEX and other VOC : IV

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, R.E.; Wanke, S.E. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2008-07-01

    Options for volatile organic compound combustion include homogeneous combustion (flaring) or catalytic combustion involving a flameless combustion process that uses a solid catalyst to promote the combustion reaction. This presentation discussed relative reactivity testing for volatile organic compounds (VOCs) over commercial catalysts. Several commercial pad catalysts were tested, as well as other powders. The relative reactivity of methane as well as benzene, toluene, ethylbenzene, and xylene (BTEX) were investigated. The purpose of the project was to evaluate combustion of concentrated methane streams that contained BTEX compounds; evaluate catalytic combustion using a counter diffusive radiant heater; develop mathematical models for the reactor to enhance design and understanding; improve the catalyst for BTEX combustion; and target application-dehydrator units. Topics that were addressed in the presentation included methane and benzene conversion; catalytic radiant heaters; small industrial and commercial units; measured temperature distribution; fuel slippage, methane conversion; the effect of water and hydrocarbons; the effect of water-liquid injection; and water addition as vapour. Several observations were offered, including that high percentages of injected liquid water can reduce reactor operating temperature; combustion of BTEX remained highly efficient, however liquid injection could also cause temperature reductions and ultimately the reactor would extinguish; and pre-heating the feed can eliminate the temperature drop and pad wetness problem. It was concluded that BTEX compounds are reactive, and the technology appears promising. 19 figs.

  15. Effect of support on the catalytic activity of manganese oxide catalyts for toluene combustion

    International Nuclear Information System (INIS)

    Pozan, Gulin Selda

    2012-01-01

    Highlights: ► α-Al 2 O 3 , obtained from Bohmite, as a support for enhancing of the activity. ► The support material for catalytic oxidation. ► The manganese state and oxygen species effect on the catalytic combustion reaction. - Abstract: The aim of this work was to study combustion of toluene (1000 ppm) over MnO 2 modified with different supports. α-Al 2 O 3 and γ-Al 2 O 3 obtained from Boehmite, γ-Al 2 O 3 (commercial), SiO 2 , TiO 2 and ZrO 2 were used as commercial support materials. In view of potential interest of this process, the influence of support material on the catalytic performance was discussed. The deposition of 9.5MnO 2 was performed by impregnation over support. The catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction and oxidation (TPR/TPO) and thermogravimetric analysis (TGA). The catalytic tests were carried out at atmospheric pressure in a fixed-bed flow reactor. 9.5MnO 2 /α-Al 2 O 3 (B) (synthesized from Boehmite) catalyst exhibits the highest catalytic activity, over which the toluene conversion was up to 90% at a temperature of 289 °C. Considering all the characterization and reaction data reported in this study, it was concluded that the manganese state and oxygen species played an important role in the catalytic activity.

  16. Experimental comparison of standard fuel cells PEM in radial configuration, coil and spiral; Comparacion experimental de celdas de combustible tipo PEM en configuracion radial, serpentin y espiral

    Energy Technology Data Exchange (ETDEWEB)

    Cano Andrade, Sergio

    2008-12-15

    sustituir al petroleo surge la siguiente pregunta: cual de todas las fuentes posibles es la adecuada? Sin duda se debe tomar en cuenta otro factor importante en la eleccion de dicha fuente, el cual tiene que ver con el gran problema que la humanidad trata a diario: el efecto invernadero. Tomando en cuenta el efecto invernadero, las celdas de combustible en base a hidrogeno son la fuente de energia mas viable para sustituir al petroleo, ya que en su funcionamiento son amigables con el medio ambiente pues no producen contaminantes, reduciendo enormemente el problema del calentamiento global en que esta enfrascado el planeta. Es muy cierto que aun existen muchas desventajas en estas celdas de combustible en base a hidrogeno, pero las arduas investigaciones realizadas hasta la actualidad auguran un excelente futuro donde el plantea podra satisfacer su demanda energetica diaria en base a la tecnologia de hidrogeno. En trabajos futuros se debe tener especial cuidado en el control de la humedad de los gases antes de entrar a la celda de combustible, ya que es un parametro importante en el funcionamiento correcto de las celdas de combustible tipo PEM. En la presente investigacion se ilustra el avance en el estado del arte de la tecnologia de hidrogeno, especificamente con la generacion de electricidad en base a las novedosas configuraciones de celdas de combustible tipo PEM. Hasta el momento no se ha encontrado en bibliografia trabajo semejante donde se experimente con este tipo de configuracion radial para las tecnologias de hidrogeno. La geometria y los resultados presentados en este analisis corresponden a un trabajo de la mas alta categoria en el estado del arte de las celdas de combustible, ademas de que se tiene una amplia expectativa debido a los resultados altamente satisfactorios encontrados tanto numericamente como experimentalmente, en comparacion con otras geometrias.

  17. Non-platinum electrocatalysts for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.; Zhang, L.; Shi, Z.; Hui, R.; Zhang, J. [National Research Council of Canada, Vancouver, BC (Canada). Inst. For Fuel Cell Innovation

    2008-07-01

    High cost, low reliability and durability are the main barriers preventing widespread commercialization of fuel cells. In particular, the platinum (Pt)-based electrocatalysts used in proton exchange membrane (PEM) fuel cells, including direct methanol fuel cells (DMFCs) are major contributors to the high cost of PEM fuel cells. The Institute for Fuel Cell Innovation at the National Research Council of Canada has developed several new non-Pt electrocatalysts for PEM fuel cell applications. This paper presented the research results on these catalysts, including transition metal macrocycles, chalcogenides, and Ir- or Pd-based alloys. It also described catalyst structure modes via theoretical density functional theory (DFT) calculations. Research activities on these electrocatalysts was summarized in terms of catalytic activity and the oxygen reduction reaction (ORR). Typical catalysts such as cobalt(Co)-polypyrrole (PPy) and the chalcogenides show promising results in terms of catalytic activity and a 4-electron reaction mechanism. Efforts are underway to modify both catalyst structure and synthesis methods in order to further improve catalyst performance. 4 refs., 2 figs.

  18. Utilization and mitigation of VAM/CMM emissions by a catalytic combustion gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, K.; Yoshino, Y.; Kashihara, H. [Kawasaki Heavy Industries Ltd., Hyougo (Japan); Kajita, S.

    2013-07-01

    A system configured with a catalytic combustion gas turbine generator unit is introduced. The system has been developed using technologies produced by Kawasaki Heavy Industries, Ltd., such as small gas turbines, recuperators and catalytic combustors, and catalytic oxidation units which use exhaust heat from gas turbines. The system combusts (oxidizes) ventilation air methane (less than 1% concentration) and low concentration coal mine methane (30% concentration or less) discharged as waste from coal mines. Thus, it cannot only reduce the consumption of high- quality fuel for power generation, but also mitigate greenhouse gas emissions.

  19. Catalytic reduction of emissions from small scale wood combustion. State of the art

    Energy Technology Data Exchange (ETDEWEB)

    Hargitai, T.; Silversand, F.A. [Katator AB, Lund (Sweden)

    1998-12-31

    Small-scale combustion of big-fuel often results in excessive emissions of volatile organic compounds (VOC), polyaromatic compounds (PAM) and carbon monoxide (CO). These compounds have a negative impact on human health and urban air quality. The predominant volatile organic compounds present in flue gases from big-fuel combustion are propylene, ethylene, butadiene, methanol, ethanol, methane, phenol and benzene. The poor combustion performance of some wood stoves has in certain cases led to legislation against small-scale combustion of big-fuel in urban areas. Catalytic cleaning is one very efficient way of decreasing the environmental impacts of big-fuel combustion. Several studies concerning catalytic purification of flue gases from big-fuel combustion have been presented over the years. Several problems must be addressed when designing a catalyst for this application: Clogging problems from deposition of ashes and particulates in the catalyst; Catalyst poisoning by sulphur, phosphorus, alkali metals etc.; Catalyst fouling due to deposition of ashes and particulates; Catalyst overheating at high flue-gas temperatures and Poor catalyst performance during start-up Most studies have been focused on monolith-type catalysts and- the conversion of CO, VOC and PAH typically is above 80 %. The observed problems are associated with increased pressure drop due to catalyst clogging and decreased catalyst performance due to fouling and poisoning. In most cases precious metals, preferably Pt. have been used as active combustion catalyst. Precious metals have a high activity for the combustion of CO and hydrocarbons and a fair stability against poisoning with compounds present in flue gases from big-fuel, e.g. sulphur and alkali metals. The majority of the studies on precious metals have been focused on Pt. Rh and Pd, which are especially active in catalytic combustion. Some metal oxides are used in catalytic combustion, especially at low temperatures (e.g. in VOC abatement

  20. Parameter changes during gradual flooding of a PEM fuel cell through EIS studies; Cambio en parametros de una celda de combustible PEM durante inundacion gradual mediante estudios de EIS

    Energy Technology Data Exchange (ETDEWEB)

    Cano Castillo, Ulises; Cruz Manzo, Samuel; Arriaga Hurtado, Gerardo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Ortiz, Alondra; Orozco, German [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C. (CIDETEQ) (Mexico)

    2008-07-01

    The gradual flooding of a single PEM fuel cell was produced and Electrochemical Impedance Spectroscopy (EIS) measurements were realized in order to follow changes of the fuel cell impedance parameters. These changes were followed by using two equivalent circuit models: one simple model of the Randles type accounting for cathode and anode interfaces and a more complex model based on distributed elements, more suitable for porous electrodes in order to include protonic resistance of the catalyst layers. [Spanish] La inundacion gradual de una monocelda de combustible tipo PEM fue estudiada empleando espectroscopia de impedancia electroquimica (EIS), con el proposito de seguir cambios en los parametros de impedancia de la celda. Estos cambios fueron estudiados utilizando dos circuitos equivalentes: un modelo simple de tipo Randles, el cual considerara las interfaces del catodo y del anodo, y un modelo mas complejo basado en elementos distribuidos, el cual fuera adecuado para electrodos porosos, a fin de incluir la resistencia protonica de las capas catalizadoras.

  1. Component Development to Accelerate Commercial Implementation of Ultra-Low Emissions Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    McCarty, Jon; Berry, Brian; Lundberg, Kare; Anson, Orris

    2003-03-31

    This final report describes a 2000-2003 program for the development of components and processes to enhance the commercialization of ultra-low emissions catalytic combustion in industrial gas turbines. The range of project tasks includes: development of more durable, lower-cost catalysts and catalytic combustor components; development and design of a catalytic pre-burner and a catalytic pilot burner for gas turbines, and on-site fuel conversion processing for utilization of liquid fuel.

  2. Performance of the PdNi and PdNiSe as cathodes in PEM fuel cells; Desempeno de PdNi y PdNiSe como catodos en celdas de combustible tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Santana, A.; Ramos-Sanchez, G.; Vazquez, G.; Solorza-Feria, O. [Centro de Investigaciones y de Estudios Avanzados del IPN, Mexico D.F. (Mexico)]. E-mail: gramos@cinvestav.mx

    2009-09-15

    The search for new materials capable of catalyzing oxygen reactions in low temperature fuel cells continues to be one of the key issues in the development of a hydrogen economy. Electrochemical and physical characterization studies have demonstrated that the PdNi and PdNiSe catalysts have adequate properties for use as cathodes in fuel cells. Nevertheless, the performance of the materials in proton exchange membrane (PEM) fuel cells depends not only on the catalytic properties but also on the adequate preparation of the electrocatalyst membrane interface (EMI). This work presents the results of the search for optimal conditions to prepare the EMIs with PdNi and PdNiSe cathodes. There are many variables for handling the preparation of the interfaces, nevertheless our search focuses on two: catalyst ratio/Vulcan Carbon® and the catalyst amount. Interfaces were prepared with an active area of 5 cm{sup 2} with PdNi and PdNiSe cathodes and carbon fabric anode with Pt E-tek®. These interfaces were tested with an ElectroChem model under different gas pressure and temperature conditions. The optimization method was carried out using a simplex method with the variables mentioned above and power density per unit mass and catalyst area as response variables. [Spanish] La busqueda de nuevos materiales capaces de catalizar la Reaccion de Oxigeno (RRO) en celdas de combustible de baja temperatura, sigue siendo uno de los temas clave para el desarrollo de una Economia del Hidrogeno. Estudios electroquimicos y de caracterizacion fisica han demostrado que los catalizadores PdNi y PdNiSe, tienen las propiedades adecuadas para poder ser utilizados como catodos en celdas de combustible; sin embargo el desempeno de los materiales en celdas de combustible de membrana de intercambio protonico (PEM), no solo depende de las propiedades del catalizador, sino tambien de la preparacion adecuada del Ensamble Membrana Electrocatalizador (EME). En este trabajo se presentan los resultados de la

  3. Catalytic Palladium Film Deposited by Scalable Low-Temperature Aqueous Combustion.

    Science.gov (United States)

    Voskanyan, Albert A; Li, Chi-Ying Vanessa; Chan, Kwong-Yu

    2017-09-27

    This article describes a novel method for depositing a dense, high quality palladium thin film via a one-step aqueous combustion process which can be easily scaled up. Film deposition of Pd from aqueous solutions by conventional chemical or electrochemical methods is inhibited by hydrogen embrittlement, thus resulting in a brittle palladium film. The method outlined in this work allows a direct aqueous solution deposition of a mirror-bright, durable Pd film on substrates including glass and glassy carbon. This simple procedure has many advantages including a very high deposition rate (>10 cm 2 min -1 ) and a relatively low deposition temperature (250 °C), which makes it suitable for large-scale industrial applications. Although preparation of various high-quality oxide films has been successfully accomplished via solution combustion synthesis (SCS) before, this article presents the first report on direct SCS production of a metallic film. The mechanism of Pd film formation is discussed with the identification of a complex formed between palladium nitrate and glycine at low temperature. The catalytic properties and stability of films are successfully tested in alcohol electrooxidation and electrochemical oxygen reduction reaction. It was observed that combustion deposited Pd film on a glassy carbon electrode showed excellent catalytic activity in ethanol oxidation without using any binder or additive. We also report for the first time the concept of a reusable "catalytic flask" as illustrated by the Suzuki-Miyaura cross-coupling reaction. The Pd film uniformly covers the inner walls of the flask and eliminates the catalyst separation step. We believe the innovative concept of a reusable catalytic flask is very promising and has the required features to become a commercial product in the future.

  4. Catalytic combustion of methane over mixed oxides derived from Co-Mg/Al ternary hydrotalcites

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zheng [Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, OX1 3QR (United Kingdom); Research Centre of Eco-Environmental Sciences, CAS, Beijing 100085 (China); Jesus College, University of Oxford, OX1 3DW (United Kingdom); Yu, Junjie; Cheng, Jie; Hao, Zhengping [Research Centre of Eco-Environmental Sciences, CAS, Beijing 100085 (China); Xiao, Tiancun; Edwards, Peter P. [Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, OX1 3QR (United Kingdom); Jones, Martin O. [Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, OX1 3QR (United Kingdom); Rutherford Appleton Laboratory, Didcot, OX11 0QX (United Kingdom)

    2010-01-15

    Co{sub x}Mg{sub 3-x} /Al composite oxides (xCoMAO-800) were prepared by calcination of Co{sub x}Mg{sub 3-x}/Al hydrotalcites (x=0.0,0.5,1.0,1.5,2.0,2.5,3.0, respectively) at 800 C. The materials were characterized using XRD, TG-DSC, N{sub 2} adsorption-desorption and TPR. The methane catalytic combustion over the xCoMAO-800 was assessed in a fixed bed micro-reactor. The results revealed that cobalt can be homogenously dispersed into the matrices of the hydrotalcites and determines the structure, specific surface areas and porosity of the derived xCoMAO-800 oxide catalysts. The thermal stability and homogeneity of the hydrotalcites markedly depends on the cobalt concentration in the hydrotalcites. The Co-based hydrotalcite-derived oxides exhibit good activity in the catalytic combustion of methane. The catalytic activity over the xCoMAO-800 oxides enhances with increasing x up to 1.5, but subsequently decreases dramatically as cobalt loadings are further increased. The 1.5CoMAO-800 catalyst shows the best methane combustion activity, igniting methane at 450 C and completing methane combustion around 600 C. The catalytic combustion activity over the xCoMAO-800 oxides are closely related to the strong Co-Mg/Al interaction within the mixed oxides according to the TG-DSC, TPR and activity characteristics. (author)

  5. Methane combustion in catalytic premixed burners

    International Nuclear Information System (INIS)

    Cerri, I.; Saracco, G.; Specchia, V.

    1999-01-01

    Catalytic premixed burners for domestic boiler applications were developed with the aim of achieving a power modularity from 10 to 100% and pollutant emissions limited to NO x 2 , where the combustion took place entirely inside the burner heating it to incandescence and allowing a decrease in the flame temperature and NO x emissions. Such results were confirmed through further tests carried out in a commercial industrial-scale boiler equipped with the conical panels. All the results, by varying the excess air and the heat power employed, are presented and discussed [it

  6. Observación de la fracción de agua líquida en pilas de combustible tipo PEM de cátodo abierto

    OpenAIRE

    Luna, Julio; Costa Castelló, Ramón

    2017-01-01

    En este trabajo se diseña un observador no-lineal basado en modos deslizantes para la estimación de la fracción de agua líquida en una pila de combustible tipo PEM de cátodo abierto. La pila de combustible se modela con dos estados dinámicos: la temperatura de la pila y la saturación de agua líquida. La estrategia de observación se valida en simulación mediante un ciclo de conducción ARTEMIS.

  7. Evaluation of catalytic combustion of actual coal-derived gas

    Science.gov (United States)

    Blanton, J. C.; Shisler, R. A.

    1982-01-01

    The combustion characteristics of a Pt-Pl catalytic reactor burning coal-derived, low-Btu gas were investigated. A large matrix of test conditions was explored involving variations in fuel/air inlet temperature and velocity, reactor pressure, and combustor exit temperature. Other data recorded included fuel gas composition, reactor temperatures, and exhaust emissions. Operating experience with the reactor was satisfactory. Combustion efficiencies were quite high (over 95 percent) over most of the operating range. Emissions of NOx were quite high (up to 500 ppm V and greater), owing to the high ammonia content of the fuel gas.

  8. Physical and combustion characterization of pyrolytic oils derived from biomass material upgraded by catalytic hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Vitolo, S.; Ghetti, P. (Universita di Pisa, Pisa (Italy). Dipartimento di Ingegneria Chimica)

    1994-11-01

    Physical and combustion properties of a pyrolytic bio-oil are determined both as-obtained and after catalytic hydrodeoxygenation. The tests demonstrate that the hydrogenation treatment improves the oil as regards combustibility, viscosity and acidity. Combustion properties of the oil have been characterized by evaporation and temperature programmed combustion profiles. Short communication. 21 refs., 4 figs., 2 tabs.

  9. Catalytically stabilized combustion of lean methane-air-mixtures: a numerical model

    Energy Technology Data Exchange (ETDEWEB)

    Dogwiler, U; Benz, P; Mantharas, I [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The catalytically stabilized combustion of lean methane/air mixtures has been studied numerically under conditions closely resembling the ones prevailing in technical devices. A detailed numerical model has been developed for a laminar, stationary, 2-D channel flow with full heterogeneous and homogeneous reaction mechanisms. The computations provide direct information on the coupling between heterogeneous-homogeneous combustion and in particular on the means of homogeneous ignitions and stabilization. (author) 4 figs., 3 refs.

  10. Development of a syngas-fired catalytic combustion system for hybrid solar-thermal applications

    International Nuclear Information System (INIS)

    Gupta, Mayank; Pramanik, Santanu; Ravikrishna, R.V.

    2016-01-01

    Highlights: • Syngas-fired combustor concept as hybrid heat source for solar thermal application. • Experimental characterization of catalytic combustor under fuel-rich conditions. • Stable operation, quick startup, and high turn-down ratio demonstrated. • Reacting flow CFD simulations of single channel of catalytic monolith. - Abstract: This paper describes the development and operation of a catalytic combustion system for use with syngas as an important component of a hybrid heating source for solar-thermal power generation. The reactor consists of a cylindrical ceramic monolith with porous alumina washcoat in which platinum is distributed as the catalyst. Two fuel-rich equivalence ratios were studied over a range of flow rates. The fuel-rich conditions permit low temperature combustion without the problem of hotspots likely to occur under fuel-lean conditions with hydrogen-containing fuels. Experimental data of temperature and species concentration at the exit of the reactor have been reported for a maximum fuel thermal input of 34 kW. The system exhibited quick start-up with a light-off time of around 60 s and a steady-state time of around 200 s as determined from the transient temperature profiles. The experimental results have also been complemented with detailed two-dimensional numerical simulations for improved understanding of the combustion characteristics in the reactor. The simulations suggest that the combustion system can be operated at a turn-down ratios far in excess of 1.67, which is the maximum value that has been investigated in the present setup. Stable operation, quick startup, and high turn-down ratio are some of the key features that enable the proposed combustion system to accommodate the transients in solar-thermal applications.

  11. Low temperature catalytic combustion of natural gas - hydrogen - air mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Newson, E; Roth, F von; Hottinger, P; Truong, T B [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The low temperature catalytic combustion of natural gas - air mixtures would allow the development of no-NO{sub x} burners for heating and power applications. Using commercially available catalysts, the room temperature ignition of methane-propane-air mixtures has been shown in laboratory reactors with combustion efficiencies over 95% and maximum temperatures less than 700{sup o}C. After a 500 hour stability test, severe deactivation of both methane and propane oxidation functions was observed. In cooperation with industrial partners, scaleup to 3 kW is being investigated together with startup dynamics and catalyst stability. (author) 3 figs., 3 refs.

  12. GenHyPEM: an EC-supported STREP program on high pressure PEM water electrolysis

    International Nuclear Information System (INIS)

    Millet, P.

    2006-01-01

    GenHyPEM (generateur d'hydrogene PEM) is an international research project related to the electrolytic production of hydrogen from water, using proton exchange membrane (PEM) - based electrochemical generators. The specificity of this project is that all basic research efforts are devoted to the optimization of already existing electrolysers of industrial size, in order to facilitate the introduction of this technology in the industry and to propose technological solutions for the industrial and domestic production of electrolytic hydrogen. GenHyPEM is a three years long research program financially supported by the European Commission, gathering partners from academic institutions and from the industry, in order to reach three main technological objectives aimed at improving the performances of current 1000 Nliter/hour H 2 industrial PEM water electrolysers: (i) Development of alternative low-cost membrane electrode assemblies and stack components with electrochemical performances similar to those of state-of-the-art systems. The objectives are the development of nano-scaled electrocatalytic structures for reducing the amount of noble metals; the synthesis and characterization of non-noble metal catalytic compounds provided by molecular chemistry and bio-mimetic approaches; the preparation of new composite membrane materials for high current density, high pressure and high temperature operation; the development and optimization of low-cost porous titanium sheets acting as current collectors in the electrolysis stack; (ii) Development of an optimized stack structure for high current density (1 A.cm-2) and high pressure (50 bars) operation for direct pressurized storage; (iii) Development of an automated and integrated electrolysis unit allowing gas production from intermittent renewable sources of energy such as photovoltaic-solar and wind. Current status of the project as well as perspectives are described in this paper. This project, coordinated by University of

  13. New Metamaterials with Combined Subnano - and Mesoscale Topology for High-efficiency Catalytic Combustion Chambers of Innovative Gas Turbine Engines

    Science.gov (United States)

    Knysh, Yu A.; Xanthopoulou, G. G.

    2018-01-01

    The object of the study is a catalytic combustion chamber that provides a highly efficient combustion process through the use of effects: heat recovery from combustion, microvortex heat transfer, catalytic reaction and acoustic resonance. High efficiency is provided by a complex of related technologies: technologies for combustion products heat transfer (recuperation) to initial mixture, catalytic processes technology, technology for calculating effective combustion processes based on microvortex matrices, technology for designing metamaterials structures and technology for obtaining the required topology product by laser fusion of metal powder compositions. The mesoscale level structure provides combustion process with the use of a microvortex effect with a high intensity of heat and mass transfer. High surface area (extremely high area-to-volume ratio) created due to nanoscale periodic structure and ensures catalytic reactions efficiency. Produced metamaterial is the first multiscale product of new concept which due to combination of different scale level periodic topologies provides qualitatively new set of product properties. This research is aimed at solving simultaneously two global problems of the present: ensure environmental safety of transport systems and power industry, as well as the economy and rational use of energy resources, providing humanity with energy now and in the foreseeable future.

  14. Experiment and modeling of low-concentration methane catalytic combustion in a fluidized bed reactor

    International Nuclear Information System (INIS)

    Yang, Zhongqing; Yang, Peng; Zhang, Li; Guo, Mingnv; Ran, Jingyu

    2016-01-01

    Highlights: • The catalytic combustion of 0.15~3 vol. % low concentration methane in a fluidized bed was studied. • A mathematical model was proposed on the basis of gas–solid flow theory. • A comparative analysis of the established model with plug flow, mixed flow and K-L models was carried out. • The axial methane profile along fluidized bed was predicted by using the mathematical model. • The bed temperature has greater impact on methane conversion than fluidized velocity. - Abstract: This study undertakes a theoretical analysis and an experimental investigation into the characteristics of low-concentration methane catalytic combustion in a bubbling fluidized bed reactor using 0.5 wt.% Pd/Al_2O_3 as catalytic particles. A mathematical model is established based on gas–solid flow theory and is used to study the effects of bed temperature and fluidized velocity on methane catalytic combustion, and predict the dimensionless methane concentration axial profile in reactor. It is shown that methane conversion increases with bed temperature, but decreases with increasing fluidized velocity. These theoretical results are found to correlate well with the experimental measurement, with a deviation within 5%. A comparative analysis of the developed model with plug flow, mixed flow and K-L models is also carried out, and this further verifies that the established model better reflects the characteristics of low-concentration methane catalytic combustion in a bubbling fluidized bed. Using this reaction model, it was found that the difference in methane conversion between dense and freeboard zones gradually increases with bed temperature; the dense zone reaction levels off at 650 °C, thereby minimizing the difference between the dense and freeboard regions to around 15%. With an increase in bed temperature, the dimensionless methane concentration in the dense zone decreases exponentially, while in the splash zone, it varies from an exponential decay to a slow

  15. Thermodynamic characteristics of a low concentration methane catalytic combustion gas turbine

    International Nuclear Information System (INIS)

    Yin, Juan; Su, Shi; Yu, Xin Xiang; Weng, Yiwu

    2010-01-01

    Low concentration methane, emitted from coal mines, landfill, animal waste, etc. into the atmosphere, is not only a greenhouse gas, but also a waste energy source if not utilised. Methane is 23 times more potent than CO 2 in terms of trapping heat in the atmosphere over a timeframe of 100 years. This paper studies a novel lean burn catalytic combustion gas turbine, which can be powered with about 1% methane (volume) in air. When this technology is successfully developed, it can be used not only to mitigate the methane for greenhouse gas reduction, but also to utilise such methane as a clean energy source. This paper presents our study results on the thermodynamic characteristics of this new lean burn catalytic combustion gas turbine system by conducting thermal performance analysis of the turbine cycle. The thermodynamic data including thermal efficiencies and exergy loss of main components of the turbine system are presented under different pressure ratios, turbine inlet temperatures and methane concentrations.

  16. Comparative analysis between a PEM fuel cell and an internal combustion engine driving an electricity generator: Technical, economical and ecological aspects

    International Nuclear Information System (INIS)

    Braga, Lúcia Bollini; Silveira, Jose Luz; Evaristo da Silva, Marcio; Machin, Einara Blanco; Pedroso, Daniel Travieso; Tuna, Celso Eduardo

    2014-01-01

    In the recent years the fuel cells have received much attention. Among various technologies, the Proton Exchange Membrane Fuel Cell (PEMFC) is currently the most appropriate and is used in several vehicles prototype. A comparative technical, economical and ecological analysis between an Internal Combustion Engine fueled with Diesel driving an electricity Generator (ICE-G) and a PEMFC fed by hydrogen produced by ethanol steam reforming was performed. The technical analysis showed the advantages of the PEMFC in comparison to the ICE-G based in energetic and exergetic aspects. The economic analysis shows that fuel cells are not economic competitive when compared to internal combustion engine driving an electricity generator with the same generation capacity; it will only be economically feasible in a long term; due to the large investments required. The environmental analysis was based on concepts of CO 2 equivalent, pollution indicator and ecological efficiency. Different to the ICE-G system, the Fuel Cell does not emit pollutants directly and the emission related to this technology is linked mainly with hydrogen production. The ecological efficiency of PEMFC was 96% considering the carbon dioxide cycle, for ICE-G system this parameter reach 51%. -- Highlights: • The exergetic efficiency of ICE-G was 22% and for the fuel cell was 40%. • The PEM fuel cell at long-term become economically competitive compared to ICE-G. • The ecological efficiency of PEM fuel cell was 96% and Diesel ICE-G was 51%

  17. Effect of support on the catalytic activity of manganese oxide catalyts for toluene combustion.

    Science.gov (United States)

    Pozan, Gulin Selda

    2012-06-30

    The aim of this work was to study combustion of toluene (1000ppm) over MnO(2) modified with different supports. α-Al(2)O(3) and γ-Al(2)O(3) obtained from Boehmite, γ-Al(2)O(3) (commercial), SiO(2), TiO(2) and ZrO(2) were used as commercial support materials. In view of potential interest of this process, the influence of support material on the catalytic performance was discussed. The deposition of 9.5MnO(2) was performed by impregnation over support. The catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction and oxidation (TPR/TPO) and thermogravimetric analysis (TGA). The catalytic tests were carried out at atmospheric pressure in a fixed-bed flow reactor. 9.5MnO(2)/α-Al(2)O(3)(B) (synthesized from Boehmite) catalyst exhibits the highest catalytic activity, over which the toluene conversion was up to 90% at a temperature of 289°C. Considering all the characterization and reaction data reported in this study, it was concluded that the manganese state and oxygen species played an important role in the catalytic activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Effect of Dopant Loading on the Structural and Catalytic Properties of Mn-Doped SrTiO3 Catalysts for Catalytic Soot Combustion

    Directory of Open Access Journals (Sweden)

    Santiago Iván Suárez-Vázquez

    2018-02-01

    Full Text Available Soot particles have been associated with respiratory diseases and cancer. To decrease these emissions, perovskite-mixed oxides have been proposed due to their thermal stability and redox surface properties. In this work, SrTiO3 doped with different amounts of Mn were synthesized by the hydrothermal method and tested for soot combustion. Results show that at low Mn content, structural distortion, and higher Oads/Olat ratio were observed which was attributed to the high content of Mn3+ in Ti sites. On the other hand, increasing the Mn content led to surface segregation of manganese oxide. All synthesized catalysts showed mesopores in the range of 32–47 nm. In the catalytic combustion of soot, the samples synthesized in this work lowered the combustion temperature by more than 100 °C compared with the uncatalyzed reaction. The sample doped with 1 wt % of Mn showed the best catalytic activity. The activation energy of these samples was also calculated, and the order of decreasing activation energy is as follows: uncatalyzed > Mn0 > Mn8 > Mn4 > Mn1. The best catalytic activity for Mn1 was attributed to its physicochemical properties and the mobility of the oxygen from the bulk to the surface at temperatures higher than 500 °C.

  19. CATALYTIC COMBUSTION OF METHANE OVER Pt/γ-Al2O3 IN MICRO-COMBUSTOR WITH DETAILED CHEMICAL KINETIC MECHANISMS

    Directory of Open Access Journals (Sweden)

    JUNJIE CHEN

    2014-11-01

    Full Text Available Micro-scale catalytic combustion characteristics and heat transfer processes of preheated methane-air mixtures (φ = 0.4 in the plane channel were investigated numerically with detailed chemical kinetic mechanisms. The plane channel of length L = 10.0 mm, height H =1.0 mm and wall thickness δ = 0.1 mm, which inner horizontal surfaces contained Pt/γ-Al2O3 catalyst washcoat. The computational results indicate that the presence of the gas phase reactions extends mildly the micro-combustion stability limits at low and moderate inlet velocities due to the strong flames establishment, and have a more profound effect on extending the high-velocity blowout limits by allowing for additional heat release originating mainly from the incomplete CH4 gas phase oxidation in the plane channel. When the same mass flow rate (ρin × Vin is considered, the micro-combustion stability limits at p: 0.1 MPa are much narrower than at p: 0.6 MPa due to both gas phase and catalytic reaction activities decline with decreasing pressure. Catalytic micro-combustor can achieve stable combustion at low solid thermal conductivity ks < 0.1 W∙m-1•K-1, while the micro-combustion extinction limits reach their larger extent for the higher thermal conductivity ks = 20.0-100.0 W∙m-1•K-1. The existence of surface radiation heat transfers significantly effects on the micro-combustion stability limits and micro-combustors energy balance. Finally, gas phase combustion in catalytic micro-combustors can be sustained at the sub-millimeter scale (plane channel height of 0.25 mm.

  20. Fuel rich and fuel lean catalytic combustion of the stabilized confined turbulent gaseous diffusion flames over noble metal disc burners

    Directory of Open Access Journals (Sweden)

    Amal S. Zakhary

    2014-03-01

    Full Text Available Catalytic combustion of stabilized confined turbulent gaseous diffusion flames using Pt/Al2O3 and Pd/Al2O3 disc burners situated in the combustion domain under both fuel-rich and fuel-lean conditions was experimentally studied. Commercial LPG fuel having an average composition of: 23% propane, 76% butane, and 1% pentane was used. The thermal structure of these catalytic flames developed over Pt/Al2O3 and Pd/Al2O3 burners were examined via measuring the mean temperature distribution in the radial direction at different axial locations along the flames. Under-fuel-rich condition the flames operated over Pt catalytic disc attained high temperature values in order to express the progress of combustion and were found to achieve higher activity as compared to the flames developed over Pd catalytic disc. These two types of catalytic flames demonstrated an increase in the reaction rate with the downstream axial distance and hence, an increase in the flame temperatures was associated with partial oxidation towards CO due to the lack of oxygen. However, under fuel-lean conditions the catalytic flame over Pd catalyst recorded comparatively higher temperatures within the flame core in the near region of the main reaction zone than over Pt disc burner. These two catalytic flames over Pt and Pd disc burners showed complete oxidation to CO2 since the catalytic surface is covered by more rich oxygen under the fuel-lean condition.

  1. Feasibility of implementation of an autonomous hybrid system for PEM fuel cells to electrify localities in rural Cuba; Factibilidad de implementacion de un sistema hibrido autonomo con celda de combustible PEM para electrificar localidades rurales en Cuba

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Torres, Yamir [Centro de Estudios de Tecnologias Energeticas Renovables (CETER), Ciudad de la Habana (Cuba)] e-mail: yamir@ceter.cujae.edu.cu

    2009-09-15

    The use of PEM fuel cells to produce electric energy in autonomous systems is closely linked with the production and storage of hydrogen. Eventually joined with sources of renewable energy, this creates an ecologically clean and sustainable system. In several developing countries, localities exist that do not have electricity but have significant unexploited renewable energy power, where an autonomous hybrid system can be designed to electrify these population centers. This work presents a hybrid electricity scheme with a PEM fuel cell to produce hydrogen and electricity in order to electrify rural zones far from the national power grid in Cuba. The electric demand of the zone and available energy power was calculated using the informatics modeling and simulation programs HOMER, PVSYST and Matlab 1,2,3. Variability in wind and photovoltage power was determined based on daylight hours and seasonal periods throughout the year as well as their effect on the production of hydrogen and electricity. It was shown that the energy demand is met even for the most adverse scenarios. This work offers a detailed description of the behavior of the system and evidence of no effect on the environment, enabling the electrification and wellbeing of residents of the locality. [Spanish] El uso de celdas de combustible PEM para la produccion de energia electrica en sistemas autonomos esta estrechamente ligado a la produccion y almacenamiento de hidrogeno. Esto eventualmente unido a las fuentes renovables de energia forma un sistema ecologicamente limpio y sustentable. En varios paises subdesarrollados existen localidades que no cuentan con electricidad y que tienen importantes potenciales energeticos renovables no explotados actualmente en los cuales se puede disenar un sistema hibrido autonomo para electrificar estas poblaciones. En este trabajo se presenta el esquema de un sistema hibrido autonomo con celda de combustible PEM, para la produccion de hidrogeno y electricidad encaminado

  2. A 25 kWe low concentration methane catalytic combustion gas turbine prototype unit

    International Nuclear Information System (INIS)

    Su, Shi; Yu, Xinxiang

    2015-01-01

    Low concentration methane, emitted from various industries e.g. coal mines and landfills into atmosphere, is not only an important greenhouse gas, but also a wasted energy resource if not utilized. In the past decade, we have been developing a novel VAMCAT (ventilation air methane catalytic combustion gas turbine) technology. This turbine technology can be used to mitigate methane emissions for greenhouse gas reduction, and also to utilize the low concentration methane as an energy source. This paper presents our latest research results on the development and demonstration of a 25 kWe lean burn catalytic combustion gas turbine prototype unit. Recent experimental results show that the unit can be operated with 0.8 vol% of methane in air, producing about 19–21 kWe of electricity output. - Highlights: • A novel low concentration methane catalytic turbine prototype unit was developed. • The 25 kWe unit can be operated with ∼0.8 vol.% CH 4 in air with 19–21 kWe output. • A new start-up method was developed for the prototype unit

  3. Analysis of the market for diesel PEM fuel cell auxiliary power units onboard long-haul trucks and of its implications for the large-scale adoption of PEM FCs

    International Nuclear Information System (INIS)

    Contestabile, Marcello

    2010-01-01

    Proton exchange membrane fuel cells (PEM FCs) offer a promising alternative to internal combustion engines in road transport. During the last decade PEM FC research, development and demonstration (RD and D) activities have been steadily increasing worldwide, and targets have been set to begin their commercialisation in road transport by 2015-2020. However, there still is considerable uncertainty on whether these targets will actually be met. The picture is complex and market and technology issues are closely interlinked; investment in RD and D projects is essential but not sufficient; the development of suitable early markets is also necessary and policy is set to play an important role. Auxiliary power units (APUs) are generally regarded as one important early market for FCs in transport. This paper analyses the possible future market for diesel PEM FC APUs onboard long-haul trucks and its implications for the development of PEM FCs in general. The analysis, part of the project HyTRAN (EC Contract no. 502577), is aided by the use of a dynamic simulation model of technology and markets developed by the author. Results suggest that an interesting window of opportunity for diesel PEM FC APUs exists but this is subject to additional research particularly targeted at the rapid development of fuel processors.

  4. Catalytic combustion in gas stoves - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Hjelm, Anna-Karin [CATATOR AB, Lund (Sweden)

    2003-06-01

    Several independent studies show that gas stoves to some degree contribute to the indoor emissions of NO{sub x} especially in situations were the ventilation flow is poor. The peak-NO{sub x} concentrations can reach several hundred ppb but the integral concentration seldom exceeds about 20 - 50 ppb, which corresponds to an indoor-outdoor ratio of about 1 - 2.5. Epidemiological studies indicate increasing problems with respiratory symptoms in sensitive people at concentrations as low as 15 ppb of NO{sub 2}. Consequently, the NO{sub x}-concentration in homes where gas stoves are used is high enough to cause health effects. However, in situations where the ventilation flow is high (utilisation of ventilation hoods) the NO{sub x}-emissions are not likely to cause any health problems. This study has been aimed at investigating the possibilities to reduce the NO{sub x} emissions from gas stoves by replacing the conventional flame combustion with catalytic combustion. The investigation is requested by Swedish Gas Center, and is a following-up work of an earlier conducted feasibility study presented in April-2002. The present investigation reports on the possibility to use cheap and simple retro-fit catalytic design suggestions for traditional gas stoves. Experiments have been conducted with both natural and town gas, and parameters such as emissions of NO{sub x}, CO and unburned fuel gas and thermal efficiency, etc, have been examined and are discussed. The results show that it is possible to reduce the NO{sub x} emissions up to 80% by a simple retro-fit installation, without decreasing the thermal efficiency of the cooking plate. The measured source strengths correspond to indoor NO{sub x} concentrations that are below or equal to the average outdoor concentration, implying that no additional detrimental health effects are probable. The drawback of the suggested installations is that the concentration of CO and in some cases also CH{sub 4} are increased in the flue gases

  5. PEM fuel cell cost minimization using ``Design For Manufacture and Assembly`` techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lomax, F.D. Jr.; James, B.D. [Directed Technologies, Inc., Arlington, VA (United States); Mooradian, R.P. [Ford Motor Co., Dearborn, MI (United States)

    1997-12-31

    Polymer Electrolyte Membrane (PEM) fuel cells fueled with direct hydrogen have demonstrated substantial technical potential to replace Internal Combustion Engines (ICE`s) in light duty vehicles. Such a transition to a hydrogen economy offers the potential of substantial benefits from reduced criteria and greenhouse emissions as well as reduced foreign fuel dependence. Research conducted for the Ford Motor Co. under a US Department of Energy contract suggests that hydrogen fuel, when used in a fuel cell vehicle (FCV), can achieve a cost per vehicle mile less than or equal to the gasoline cost per mile when used in an ICE vehicle. However, fuel cost parity is not sufficient to ensure overall economic success: the PEM fuel cell power system itself must be of comparable cost to the ICE. To ascertain if low cost production of PEM fuel cells is feasible, a powerful set of mechanical engineering tools collectively referred to as Design for Manufacture and Assembly (DFMA) has been applied to several representative PEM fuel cell designs. The preliminary results of this work are encouraging, as presented.

  6. INVESTIGATION OF PEM FUEL CELL FOR AUTOMOTIVE USE

    Directory of Open Access Journals (Sweden)

    A. K. M. Mohiuddin

    2015-11-01

    Full Text Available This paper provides a brief investigation on suitability of Proton-exchange  membrane fuel cells (PEMFCs as the source of power for transportation purposes. Hydrogen is an attractive alternative transportation fuel. It is the least polluting fuel that can be used in an internal combustion engine (ICE and it is widely available. If hydrogen is used in a fuel cell which converts the chemical energy of hydrogen into electricity, (NOx emissions are eliminated. The investigation was carried out on a  fuel cell car model by implementing polymer electrolyte membrane (PEM types of fuel cell as the source of power to propel the prototype car. This PEMFC has capability to propel the electric motor by converting chemical energy stored in hydrogen gas into useful electrical energy. PEM fuel cell alone is used as the power source for the electric motor without the aid of any other power source such as battery associated with it. Experimental investigations were carried out to investigate the characteristics of fuel cell used and the performance of the fuel cell car. Investigated papameters are the power it develops, voltage, current and speed it produces under different load conditions. KEYWORDS: fuel cell; automotive; proton exchange membrane; polymer electrolyte membrane; internal combustion engine

  7. Optimal combustor dimensions for the catalytic combustion of methane-air mixtures in micro-channels

    International Nuclear Information System (INIS)

    Chen, Junjie; Song, Wenya; Xu, Deguang

    2017-01-01

    Highlights: • The effect of combustor dimensions on the combustion stability was elucidated. • Wall thermal properties are important for optimizing combustor dimensions. • The optimal wall thickness increases with flow velocity. • The optimal combustor length depends on the wall thermal conductivity. • Stability diagrams were constructed and design recommendations were made. - Abstract: This paper addresses the question of choosing appropriate combustor dimensions for the self-sustained catalytic combustion in parallel plate micro-channels. The combustion characteristics and stability of methane-air mixtures over platinum in catalytic micro-combustors were studied, using a two-dimensional computational fluid dynamics (CFD) model with detailed chemistry and transport. The effects of gap size, wall thickness, and combustor length on the combustion stability and combustor performance were explored to provide guidelines for optimal design of combustor dimensions. Combustion stability diagrams were constructed, and design recommendations were made. The effect of wall thermal conductivity on the mechanisms of extinction and blowout, and its implications on optimal combustor geometry were studied. It was shown that combustor dimensions are vital in determining the combustion stability of the system. The choice of appropriate combustor dimensions is crucial in achieving stable combustion, due to a rather narrow operating space determined by stability, material, and conversion constraints. The optimal gap size depends on whether the flow velocity or flow rate is kept constant. For most practical wall materials in the range of metals to highly conductive ceramics, larger combustors are more stable at a fixed flow velocity, whereas smaller combustors are recommended for a fixed flow rate at the expense of hot spots. The optimal wall thickness increases with flow velocity. Higher flow velocities can be sustained in combustors with low-conductivity materials using

  8. Thermogravimetric analysis of rice and wheat straw catalytic combustion in air- and oxygen-enriched atmospheres

    International Nuclear Information System (INIS)

    Yu Zhaosheng; Ma Xiaoqian; Liu Ao

    2009-01-01

    By thermogravimetric analysis (TGA) study, the influences of different catalysts on the ignition and combustion of rice and wheat straw in air- and oxygen-enriched atmospheres have been investigated in this paper. Straw combustion is divided into two stages. One is the emission and combustion of volatiles and the second is the combustion of fixed carbon. The existence of catalysts in the first step enhances the emission of volatiles from the straw. The action of catalysts in the second step of straw combustion may be as a carrier of oxygen to the fixed carbon. Two parameters have been used to compare the characteristics of ignition and combustion of straw under different catalysts and in various oxygen concentrations. One is the temperature when the conversion degree combustible (CDC) of straw is 5%, the other is the CDC when the temperature is 900 deg. C. By comparing the different values of the two parameters, the different influences of the catalysts and oxygen concentration on the ignition and combustion of straw have been studied, the action of these catalysts for straw ignition and combustion in air and oxygen-enriched atmosphere is effective except the oxygen-enriched catalytic combustion of wheat straw fixed carbon

  9. An alternative approach to continuous compliance monitoring and turbine plant optimization using a PEMS (predictive emission monitoring system)

    International Nuclear Information System (INIS)

    Swanson, B.G.; Lawrence, P.

    2009-01-01

    This paper reviewed the use of a predictive emissions monitoring system (PEMS) at 3 different gas turbine facilities in the United States and highlighted the costs and benefits of using a PEMS for documenting emissions of priority pollutants and greenhouse gases (GHG). The PEMS interfaces directly to the turbine control system and represents a lower cost alternative to the traditional continuous emission monitoring system (CEMS). The PEMS can track combustion efficiency through modeling of the turbine's operation and emissions. Excess emissions can be tracked and the causes of pollution can be determined and mitigated. The PEMS installed at the 3 turbine plants must meet rigorous performance specification criteria and the sites perform ongoing quality assurance tasks such as periodic audits with portable analyzers. The PEMS is much less expensive to install, operate, and maintain compared to the standard CEMS gas analyzer. Empirical PEMS achieves very high accuracy levels and has demonstrated superior reliability over CEMS for various types of continuous process applications under existing air compliance regulations in the United States. Annual accuracy testing at the gas turbine sites have shown that the PEMS predictions are usually within 5 per cent of the reference method. PEMS can be certified as an alternative to gas analyzer based CEMS for nitrogen oxides and carbon dioxide compliance and for GHG trading purposes. 5 refs., 8 figs.

  10. An investigation of turbulent catalytically stabilized channel flow combustion of lean hydrogen - air mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Mantzaras, I; Benz, P; Schaeren, R; Bombach, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The catalytically stabilised thermal combustion (CST) of lean hydrogen-air mixtures was investigated numerically in a turbulent channel flow configuration using a two-dimensional elliptic model with detailed heterogeneous and homogeneous chemical reactions. Comparison between turbulent and laminar cases having the same incoming mean properties shows that turbulence inhibits homogeneous ignition due to increased heat transport away from the near-wall layer. The peak root-mean-square temperature and species fluctuations are always located outside the extent of the homogeneous reaction zone indicating that thermochemical fluctuations have no significant influence on gaseous combustion. (author) 4 figs., 6 refs.

  11. Low temperature catalytic combustion of propane over Pt-based catalyst with inverse opal microstructure in microchannel reactor

    NARCIS (Netherlands)

    Guan, G.; Zapf, R.; Kolb, G.A.; Men, Y.; Hessel, V.; Löwe, H.; Ye, J.; Zentel, R.

    2007-01-01

    novel Pt-based catalyst with highly regular, periodic inverse opal microstructure was fabricated in a microchannel reactor, and catalytic testing revealed excellent conversion and stable activity for propane combustion at low temperatures

  12. Development of integrated DMFC and PEM fuel cell units. Final report; Udvikling af integrerede DMFC og PEM braendselscelle enheder. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Odgaard, M. (IRD Fuel Cell Technology, Svendborg (DK))

    2007-06-15

    The 36-month long project 'Development of integrated DMFC and PEM fuel cell units' has been completed. The project goal was to develop a completely new MEA concept for integrated PEM and DMFC unit cells with enhanced power density and in this way obtain a price reduction. The integrated unit cell consists of a MEA, a gas diffusion layer with flow fields completed with bipolar plates and seals. The main focus of the present project was to: 1) Develop new catalyst materials fabricated by the use of FSD (flame spray deposition method). 2) Optimisation of the state-of-the-art MEA materials and electrode structure. 3) Implementation of a model to account for the CO poisoning of PEM fuel cells. Results and progress obtained in the project established that the individual unit cell components were able to meet and follow the road map of LT-PEM FC regarding electrode catalyst loading and fulfilled the targets for Year 2006. The project has resulted in some important successes. The highlights are as follows: The project has resulted in some important successes. The highlights are as follows: 1) MEA structure knowledge acquired in the project provide a sound basis for further progress. 2) A novel method for the synthesis of electrode by using flame spray synthesis was explored. 3) Electrochemical and catalytic behaviours of catalysts activity for CH{sub 3}OH explored. 4) Implementation of a sub model to account for the CO poisoning of PEM FC has been developed. 5) Numerical study of the flow distribution in FC manifolds was developed and completed with experimental data. 6) The electrode catalyst loading targets for year 2006 achieved. 7) The DMFC MEA performance has been improved by 35%. 8) Optimisation of the MEAs fabrication process has been successfully developed. 9) A new simple flow field design has been designed. 10) A procedure for integrated seals has been developed (au)

  13. Design and construction of a go-kart hybrid PEM fuel cell / rechargeable battery; Diseno y construccion de un go-kart hibrido pila de combustible PEM / bateria recargable

    Energy Technology Data Exchange (ETDEWEB)

    Suarez Alcantara, Karina; Rodriguez Castellanos, Andres; Soloza Feria, Omar [Centro de Investigacion y de Estudios Avanzados del IPN, Mexico D.F. (Mexico)]. E-mail: k.suarez.alcantara@gmail.com

    2008-11-15

    An hybrid Polymer Electrolyte Membrane Fuel Cell, PEMFC-Rechargeable Battery Go-kart has been designed and manufactured using AutoCAD software for the design and a CNC mechanical machine for the manufacture of components of the fuel cell. The membrane-electrode assemblies, MEAs, were integrated with a Gore-Select membrane and carbon cloth with Pt (20 wt % /C) 0.5 mg/cm{sup 2} anode and cathode electrode catalysts loading. High density graphite collector plates with 5mm thickness were used as collector plates. The estimated weigh of the go-kart with a driver is about 120 kg. The demand of the motor of the go-kart is 20 V and 5 A (100W), supplied by an hybrid system integrated by three 30Watts PEMFC. The commercially available Pb/acid rechargeable battery supplies energy for peripheral equipment. [Spanish] En este trabajo se presenta el diseno y la construccion de un go-kart hibrido pila de combustible con membrana de conduccion protonica tipo PEM (Proton Exchange Membrane, por sus siglas en ingles) y pila recargable. El diseno de los colectores de corriente de la pila se realizo utilizando el programa AutoCAD y la construccion mediante una fresadora con control numerico, CNC. Los ensambles membrana-electrocatalizador de la pila estan formados por membranas Gore-Select y por electrodos de Pt soportado en tela de carbon al 20 %peso/C con carga de 0.5 mg /cm{sup 2}, en anodo y catodo. Los platos colectores de corriente fueron manufacturados en grafito de alta densidad con espesor de 5 mm. La caracterizacion de la pila de combustible se realizo mediante ensayos de polarizacion potenciostatica. El peso total del go-kart y una persona a bordo es de 120 kg. La potencia del go-kart es generada por un motor de corriente directa de 20 V y 5 A (100 Watts). Para tal efecto, se construyeron tres pilas de combustible de 30 W cada una, con un respaldo de baterias recargables comerciales de Pb/acido para energizar equipos perifericos.

  14. Catalytically enhanced combustion process

    International Nuclear Information System (INIS)

    Rodriguez, C.

    1992-01-01

    This patent describes a fuel having improved combustion efficiency. It comprises a petroleum based liquid hydrocarbon; and a combustion catalyst comprising from about 18 to about 21 weight percent naphthalene, from about 75 to about 80 weight percent toluene, and from about 2.8 to about 3.2 weight percent benzyl alcohol

  15. Design and Experimentation with Sandwich Microstructure for Catalytic Combustion-Type Gas Sensors

    Directory of Open Access Journals (Sweden)

    Jun-Tao Gu

    2014-03-01

    Full Text Available The traditional handmade catalytic combustion gas sensor has some problems such as a pairing difficulty, poor consistency, high power consumption, and not being interchangeable. To address these issues, integrated double catalytic combustion of alcohol gas sensor was designed and manufactured using silicon micro-electro-mechanical systems (MEMS technology. The temperature field of the sensor is analyzed using the ANSYS finite element analysis method. In this work, the silicon oxide-PECVD-oxidation technique is used to manufacture a SiO2-Si3N2-SiO2 microstructure carrier with a sandwich structure, while wet etching silicon is used to form a beam structure to reduce the heat consumption. Thin-film technology is adopted to manufacture the platinum-film sensitive resistance. Nano Al2O3-ZrO-ThO is coated to format the sensor carrier, and the sensitive unit is dipped in a Pt-Pd catalyst solution to form the catalytic sensitive bridge arm. Meanwhile the uncoated catalyst carrier is considered as the reference unit, realizing an integrated chip based on a micro double bridge and forming sensors. The lines of the Pt thin-film resistance have been observed with an electronic microscope. The compensation of the sensitive material carriers and compensation materials have been analyzed using an energy spectrum. The results show that the alcohol sensor can detect a volume fraction between 0 and 4,500 × 10−6 and has good linear output characteristic. The temperature ranges from −20 to +40 °C. The humidity ranges from 30% to 85% RH. The zero output of the sensor is less than ±2.0% FS. The power consumption is ≤0.2 W, and both the response and recovery time are approximately 20 s.

  16. Study of the catalytic activity of ceramic nano fibers in the methane combustion

    International Nuclear Information System (INIS)

    Reolon, R.P.; Berutti, F.A.; Alves, A.K.; Bergmann, C.P.

    2009-01-01

    In this work titanium oxide fibers, doped with cerium and copper, were synthesized using the electro spinning process. Titanium propoxide was used as a precursor in the electro spinning synthesis. The obtained fibers were heat treated after receive a spray with an alcoholic solution of cerium acetate and copper nitrate. The non-tissue material obtained was characterized by X-ray diffraction to determine the phase and crystallite size, X-ray photoelectron spectroscopy (XPS), BET method to determine the surface and SEM to analyze the microstructure of the fibers. The catalytic activity was evaluated by methane and air combustion under different temperatures. The amount of combustion gases such as NO x , C x H y , CO e CO 2 , were analyzed. (author)

  17. Catalytic combustion of particulate matter Catalysts of alkaline nitrates supported on hydrous zirconium

    International Nuclear Information System (INIS)

    Galdeano, N.F.; Carrascull, A.L.; Ponzi, M.I.; Lick, I.D.; Ponzi, E.N.

    2004-01-01

    In order to explore a method to remove particulate matter, catalysts of different alkaline nitrates (Li, K and Cs) supported on hydrous zirconium were prepared by the method of incipient humidity and tested as catalysts for particulate matter combustion. The catalytic activity was determined by using the temperature programmed oxidation technique (TPO), utilizing two equipments, a thermogravimetric reactor and other of fixed bed. In the first case the particulate matter/catalyst mixture was milled carefully in a mortar (tight contact) while in the second case more realistic operative conditions were used, particulate matter/catalyst mixture was made with a spatula (loose contact). All prepared catalysts showed good activity for the particulate matter combustion. The cesium catalyst was the one that presented higher activity, decreasing the combustion temperature between 200 and 250 deg. C with respect to the combustion without catalyst. The catalyst with lithium nitrate became active at higher temperature than its melting point and the same occurred with the potassium catalyst. This did not occur for the catalyst containing cesium nitrate that melts at 407 deg. C and became active from 350 deg. C

  18. Design and construction of an electrolyte PEM test; Diseno y construccion de un electrolizador PEM de prueba

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Huerta, R. G.; Santillan-Aragon, G. [Instituto Politecnico Nacional, Mexico, D.F. (Mexico)]. E-mail: rosgonzalez_h@yahoo.com.mx; Solorza-Feria, O. [CINVESTAV-IPN, Mexico D.F. (Mexico)

    2009-09-15

    The use of hydrogen as a fuel is directly linked to its efficient and clean production. One of the most promising methods is water electrolysis, which coupled with a renewable energy source prevents the emission of pollutants into the atmosphere. If a proton exchange membrane (PEM) electrolysis is used, a highly pure hydrogen is produced, ready to be used in a fuel battery. Many studies and investigations in this area concentrate on finding different stable and selective electrocatalysts for the cathode reaction (production of hydrogen) and anode reaction (production of oxygen). To conduct these studies, equipment is needed to perform electrochemical studies and determine the stability and performance of different electrocatalysts. This work presents the design and construction of an a PEM electrolysis test to determine the performance of different anode electrocatalysts. Its active area is 4 cm{sup 2}, its structure is graphite and the current distribution mesh is made of stainless steel. Its performance was determined using as electrocatalysts 10% Pt/C E-tek® anodes and a 50%-50%, 25%-75% and 75%-25% combination of RuO{sub 2}-IrO{sub 2}. The authors wish to thank the ICYTDF (PICS08-37) for financial support and IPN (SIP-20090433) and architect Nestor Romero for the electrolysis machining. [Spanish] La utilizacion del hidrogeno como combustible esta ligado directamente a su produccion eficiente y limpia, uno de los metodos mas prometedores es la electrolisis del agua, ya que acoplado con una fuente de energia renovable se evita la emision de contaminantes a la atmosfera. Si se utiliza un electrolizador de membrana de intercambio protonico (Tipo PEM), el hidrogeno que se produce es de alta pureza, listo para ser utilizado en una pila de combustible. Muchos estudios e investigaciones en esta area se concentran en encontrar distintos electrocatalizadores estables y selectivos para la reaccion catodica (produccion de hidrogeno) y anodica (produccion de oxigeno). Para

  19. Partial substitution of manganese with cerium in SrMnO_3 nano-perovskite catalyst. Effect of the modification on the catalytic combustion of dilute acetone

    International Nuclear Information System (INIS)

    Rezlescu, Nicolae; Rezlescu, Elena; Popa, Paul Dorin; Doroftei, Corneliu; Ignat, Maria

    2016-01-01

    Ultrafine SrMn_1_−_xCe_xO_3 (x = 0, 02) perovskites were prepared by self-combustion method and heat treatment at 1000 °C for 4 h. The structure and surface properties were investigated by X-ray powder diffraction, scanning electron microscopy (SEM), EDX spectroscopy, and BET analysis. The catalyst properties of the perovskite nanopowders were tested in the catalytic combustion of dilute acetone at atmospheric pressure. The results revealed that the partial substitution of Mn by Ce ions (x = 0.2) in perovskite structure of SrMnO_3 had significantly improved catalytic activity of the perovskite. The SrMn_0_._8Ce_0_,_2O_3 perovskite composition can be a good candidate for catalytic combustion of low concentration acetone (1–2‰ in air) at low temperatures. The acetone conversion over this catalyst exceeds 90% at 200 °C, whereas over SrMnO_3 it is only 50%. Compared with SrMnO_3, T_5_0 is decreased by 75 °C and T_9_0 is decreased by 70 °C. The enhancement of the catalytic activity at a Ce doping of 0.2 may be ascribed to smaller crystallite sizes, larger specific surface area and the presence of Ce and Mn cations with variable valence in the perovskite structure. - Highlights: • A non-conventional method was used to make nanostructured perovskite samples. • XRD study confirms perovskite structure and nanosize of crystallites. • EDX analyses confirm homogeneity and purity of the samples. • The catalytic testing was carried out in the flameless combustion of dilute acetone. • SrMn_0_._8Ce_0_._2O_3 perovskite can be a promising catalyst for acetone combustion at low temperature.

  20. Experimental analysis of a PEM fuel cell 15 W; Analise experimental de uma celula a combustivel PEM 15W

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Raphael Guardini; Bazzo, Edson [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Combustao e Engenharia de Sistemas Termicos], e-mail: miyake@labcet.ufsc.br, e-mail: ebazzo@emc.ufsc.br

    2006-07-01

    Fuel cells have been considered a promising alternative for electric energy generation. In order to contribute with the development of this technology, a PEM fuel cell was installed and new experiments were carried out at LabCET (Laboratory of Combustion and Thermal System Engineering). Previous results have shown polarization curves identifying the need of rigorous controlling of humidification temperature of the fuel cell. In this paper, new results were carried out considering the use of a fan connected to the fuel cell and possible degradation in the electrolyte, after a relative long time operation. New polarization curves were plotted for comparison with previous results. (author)

  1. Partial substitution of manganese with cerium in SrMnO{sub 3} nano-perovskite catalyst. Effect of the modification on the catalytic combustion of dilute acetone

    Energy Technology Data Exchange (ETDEWEB)

    Rezlescu, Nicolae, E-mail: nicolae.rezlescu@gmail.com [National Institute of Research and Development for Technical Physics, Iasi (Romania); Rezlescu, Elena; Popa, Paul Dorin; Doroftei, Corneliu [National Institute of Research and Development for Technical Physics, Iasi (Romania); Ignat, Maria [“Al. I. Cuza” University, Faculty of Chemistry, Iasi (Romania)

    2016-10-01

    Ultrafine SrMn{sub 1−x}Ce{sub x}O{sub 3} (x = 0, 02) perovskites were prepared by self-combustion method and heat treatment at 1000 °C for 4 h. The structure and surface properties were investigated by X-ray powder diffraction, scanning electron microscopy (SEM), EDX spectroscopy, and BET analysis. The catalyst properties of the perovskite nanopowders were tested in the catalytic combustion of dilute acetone at atmospheric pressure. The results revealed that the partial substitution of Mn by Ce ions (x = 0.2) in perovskite structure of SrMnO{sub 3} had significantly improved catalytic activity of the perovskite. The SrMn{sub 0.8}Ce{sub 0,2}O{sub 3} perovskite composition can be a good candidate for catalytic combustion of low concentration acetone (1–2‰ in air) at low temperatures. The acetone conversion over this catalyst exceeds 90% at 200 °C, whereas over SrMnO{sub 3} it is only 50%. Compared with SrMnO{sub 3}, T{sub 50} is decreased by 75 °C and T{sub 90} is decreased by 70 °C. The enhancement of the catalytic activity at a Ce doping of 0.2 may be ascribed to smaller crystallite sizes, larger specific surface area and the presence of Ce and Mn cations with variable valence in the perovskite structure. - Highlights: • A non-conventional method was used to make nanostructured perovskite samples. • XRD study confirms perovskite structure and nanosize of crystallites. • EDX analyses confirm homogeneity and purity of the samples. • The catalytic testing was carried out in the flameless combustion of dilute acetone. • SrMn{sub 0.8}Ce{sub 0.2}O{sub 3} perovskite can be a promising catalyst for acetone combustion at low temperature.

  2. A comparative parametric study of a catalytic plate methane reformer coated with segmented and continuous layers of combustion catalyst for hydrogen production

    Science.gov (United States)

    Mundhwa, Mayur; Parmar, Rajesh D.; Thurgood, Christopher P.

    2017-03-01

    A parametric comparison study is carried out between segmented and conventional continuous layer configurations of the coated combustion-catalyst to investigate their influence on the performance of methane steam reforming (MSR) for hydrogen production in a catalytic plate reactor (CPR). MSR is simulated on one side of a thin plate over a continuous layer of nickel-alumina catalyst by implementing an experimentally validated surface microkinetic model. Required thermal energy for the MSR reaction is supplied by simulating catalytic methane combustion (CMC) on the opposite side of the plate over segmented and continuous layer of a platinum-alumina catalyst by implementing power law rate model. The simulation results of both coating configurations of the combustion-catalyst are compared using the following parameters: (1) co-flow and counter-flow modes between CMC and MSR, (2) gas hourly space velocity and (3) reforming-catalyst thickness. The study explains why CPR designed with the segmented combustion-catalyst and co-flow mode shows superior performance not only in terms of high hydrogen production but also in terms of minimizing the maximum reactor plate temperature and thermal hot-spots. The study shows that the segmented coating requires 7% to 8% less combustion-side feed flow and 70% less combustion-catalyst to produce the required flow of hydrogen (29.80 mol/h) on the reforming-side to feed a 1 kW fuel-cell compared to the conventional continuous coating of the combustion-catalyst.

  3. Synthesis, characterization of nickel aluminate nanoparticles by microwave combustion method and their catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Ragupathi, C. [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College (Autonomous), Chennai 600034 (India); Vijaya, J. Judith, E-mail: jjvijayaloyola@yahoo.co.in [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College (Autonomous), Chennai 600034 (India); Kennedy, L. John [Materials Division, School of Advanced Sciences, Vellore Institute of Technology (VIT) University, Chennai Campus, Chennai 600127 (India)

    2014-05-01

    Highlights: • Simple route for the preparation of nickel aluminate. • NiAl{sub 2}O{sub 4} microwave absorbent was invented by a simple method. • High specific surface area was obtained at low temperature. • Evaluation of magnetic, optical and catalytic properties. - Abstract: Microwave combustion method (MCM) is a direct method to synthesize NiAl{sub 2}O{sub 4} nanoparticles and for the first time we report the using of Sesame (Sesame indicum L.) plant extract in the present study. Solutions of metal nitrates and plant extract as a gelling agent are subsequently combusted using microwave. The structure and morphology of NiAl{sub 2}O{sub 4} nanoparticles are investigated by X-ray diffraction (XRD), Fourier transforms infrared spectra (FT-IR), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray analysis (EDX), high resolution transmission electron microscopy (HR-TEM), diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) spectroscopy, Brunauer–Emmett–Teller (BET) analysis and vibrating sample magnetometer (VSM). XRD pattern confirmed the formation of cubic phase NiAl{sub 2}O{sub 4}. The formation of NiAl{sub 2}O{sub 4} is also confirmed by FT-IR. The formation of NiAl{sub 2}O{sub 4} nanoparticles is confirmed by HR-SEM and HR-TEM. Furthermore, the microwave combustion leads to the formation of fine particles with uniform morphology. The magnetic properties of the synthesized NiAl{sub 2}O{sub 4} nano and microstructures were investigated by vibrating sample magnetometer (VSM) and their hysteresis loops were obtained at room temperature. Further, NiAl{sub 2}O{sub 4} prepared by MCM using Sesame (S. indicum L.) plant extract is tested for the catalytic activity toward the oxidation of benzyl alcohol.

  4. Auto-combustion synthesis, Mössbauer study and catalytic properties of copper-manganese ferrites

    International Nuclear Information System (INIS)

    Velinov, N.; Petrova, T.; Tsoncheva, T.; Genova, I.; Koleva, K.; Kovacheva, D.; Mitov, I.

    2016-01-01

    Spinel ferrites with nominal composition Cu _0_._5Mn _0_._5Fe _2O_4 and different distribution of the ions are obtained by auto-combustion method. Mössbauer spectroscopy, X-ray Diffraction, Thermogravimetry-Differential Scanning Calorimetry, Scanning Electron Microscopy and catalytic test in the reaction of methanol decomposition is used for characterization of synthesized materials. The spectral results evidence that the phase composition, microstructure of the synthesized materials and the cation distribution depend on the preparation conditions. Varying the pH of the initial solution microstructure, ferrite crystallite size, cation oxidation state and distribution of ions in the in the spinel structure could be controlled. The catalytic behaviour of ferrites in the reaction of methanol decomposition also depends on the pH of the initial solution. Reduction transformations of mixed ferrites accompanied with the formation of Hägg carbide χ-Fe _5C_2 were observed by the influence of the reaction medium.

  5. Auto-combustion synthesis, Mössbauer study and catalytic properties of copper-manganese ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Velinov, N., E-mail: nikivelinov@ic.bas.bg; Petrova, T. [Institute of Catalysis, Bulgarian Academy of Sciences (Bulgaria); Tsoncheva, T.; Genova, I. [Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences (Bulgaria); Koleva, K. [Institute of Catalysis, Bulgarian Academy of Sciences (Bulgaria); Kovacheva, D. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences (Bulgaria); Mitov, I. [Institute of Catalysis, Bulgarian Academy of Sciences (Bulgaria)

    2016-12-15

    Spinel ferrites with nominal composition Cu {sub 0.5}Mn {sub 0.5}Fe {sub 2}O{sub 4} and different distribution of the ions are obtained by auto-combustion method. Mössbauer spectroscopy, X-ray Diffraction, Thermogravimetry-Differential Scanning Calorimetry, Scanning Electron Microscopy and catalytic test in the reaction of methanol decomposition is used for characterization of synthesized materials. The spectral results evidence that the phase composition, microstructure of the synthesized materials and the cation distribution depend on the preparation conditions. Varying the pH of the initial solution microstructure, ferrite crystallite size, cation oxidation state and distribution of ions in the in the spinel structure could be controlled. The catalytic behaviour of ferrites in the reaction of methanol decomposition also depends on the pH of the initial solution. Reduction transformations of mixed ferrites accompanied with the formation of Hägg carbide χ-Fe {sub 5}C{sub 2} were observed by the influence of the reaction medium.

  6. Effect of compressive force on PEM fuel cell performance

    Science.gov (United States)

    MacDonald, Colin Stephen

    Polymer electrolyte membrane (PEM) fuel cells possess the potential, as a zero-emission power source, to replace the internal combustion engine as the primary option for transportation applications. Though there are a number of obstacles to vast PEM fuel cell commercialization, such as high cost and limited durability, there has been significant progress in the field to achieve this goal. Experimental testing and analysis of fuel cell performance has been an important tool in this advancement. Experimental studies of the PEM fuel cell not only identify unfiltered performance response to manipulation of variables, but also aid in the advancement of fuel cell modelling, by allowing for validation of computational schemes. Compressive force used to contain a fuel cell assembly can play a significant role in how effectively the cell functions, the most obvious example being to ensure proper sealing within the cell. Compression can have a considerable impact on cell performance beyond the sealing aspects. The force can manipulate the ability to deliver reactants and the electrochemical functions of the cell, by altering the layers in the cell susceptible to this force. For these reasons an experimental study was undertaken, presented in this thesis, with specific focus placed on cell compression; in order to study its effect on reactant flow fields and performance response. The goal of the thesis was to develop a consistent and accurate general test procedure for the experimental analysis of a PEM fuel cell in order to analyse the effects of compression on performance. The factors potentially affecting cell performance, which were a function of compression, were identified as: (1) Sealing and surface contact; (2) Pressure drop across the flow channel; (3) Porosity of the GDL. Each factor was analysed independently in order to determine the individual contribution to changes in performance. An optimal degree of compression was identified for the cell configuration in

  7. Effect of A-site deficiency in LaMn_0_._9Co_0_._1O_3 perovskites on their catalytic performance for soot combustion

    International Nuclear Information System (INIS)

    Dinamarca, Robinson; Garcia, Ximena; Jimenez, Romel; Fierro, J.L.G.; Pecchi, Gina

    2016-01-01

    Highlights: • A-site defective perovskites increases the oxidation state of the B-cation. • Not always non-stoichiometric perovskites exhibit higher catalytic activity in soot combustion. • The highly symmetric cubic crystalline structure diminishes the redox properties of perovskites. - Abstract: The influence of lanthanum stoichiometry in Ag-doped (La_1_-_xAg_xMn_0_._9Co_0_._1O_3) and A-site deficient (La_1_-_xMn_0_._9Co_0_._1O_3_-_δ) perovskites with x equal to 10, 20 and 30 at.% has been investigated in catalysts for soot combustion. The catalysts were prepared by the amorphous citrate method and characterized by XRD, nitrogen adsorption, XPS, O_2-TPD and TPR. The formation of a rhombohedral excess-oxygen perovskite for Ag-doped and a cubic perovskite structure for an A-site deficient series is confirmed. The efficient catalytic performance of the larger Ag-doped perovskite structure is attributed to the rhombohedral crystalline structure, Ag_2O segregated phases and the redox pair Mn"4"+/Mn"3"+. A poor catalytic activity for soot combustion was observed with A-site deficient perovskites, despite the increase in the redox pair Mn"4"+/Mn"3"+, which is attributed to the cubic crystalline structure.

  8. A flameless catalytic combustion-based thermoelectric generator for powering electronic instruments on gas pipelines

    International Nuclear Information System (INIS)

    Xiao, Heng; Qiu, Kuanrong; Gou, Xiaolong; Ou, Qiang

    2013-01-01

    Highlights: ► MPPT is used to improve the feature that TEG output is sensitive to load variation. ► The improved feature makes TEG suitable to power electronic device on gas pipeline. ► Test shows heat transfer uniformity plays an important role in improving TEG output. ► It can get an optimized TEG by uniformly filling a thermal insulation material. - Abstract: This paper presents a flameless catalytic combustion-based thermoelectric power generator that uses commercial thermoelectric modules. The structure of the thermoelectric generator (TEG) is introduced and the power performance is measured based on a designed circuit system. The open circuit voltage of the TEG is about 7.3 V. The maximum power output can reach up to 6.5 W when the load resistance matches the TEG internal resistance. However, the system output is sensitive to load variation. To improve this characteristic, maximum power point tracking technique is used and results in an open circuit voltage of 13.8 V. The improved characteristic makes the TEG system a good charger to keep the lead acid battery fully charged so as to meet the needs of electronic instruments on gas pipelines. In addition, the combustion features have been investigated based on the temperature measurement. Test results show that the uniformity of combustion heat transfer process and the combustion chamber structure play important roles in improving system power output. It can get an optimized TEG system (maximum power output: 8.3 W) by uniformly filling a thermal insulation material (asbestos) to avoid a non-uniform combustion heat transfer process

  9. Methane combustion over lanthanum-based perovskite mixed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Arandiyan, Hamidreza [New South Wales Univ., Sydney (Australia). School of Chemical Engineering

    2015-11-01

    This book presents current research into the catalytic combustion of methane using perovskite-type oxides (ABO{sub 3}). Catalytic combustion has been developed as a method of promoting efficient combustion with minimum pollutant formation as compared to conventional catalytic combustion. Recent theoretical and experimental studies have recommended that noble metals supported on (ABO{sub 3}) with well-ordered porous networks show promising redox properties. Three-dimensionally ordered macroporous (3DOM) materials with interpenetrated and regular mesoporous systems have recently triggered enormous research activity due to their high surface areas, large pore volumes, uniform pore sizes, low cost, environmental benignity, and good chemical stability. These are all highly relevant in terms of the utilization of natural gas in light of recent catalytic innovations and technological advances. The book is of interest to all researchers active in utilization of natural gas with novel catalysts. The research covered comes from the most important industries and research centers in the field. The book serves not only as a text for researcher into catalytic combustion of methane, 3DOM perovskite mixed oxide, but also explores the field of green technologies by experts in academia and industry. This book will appeal to those interested in research on the environmental impact of combustion, materials and catalysis.

  10. Pilas de combustible de membrana polimérica

    OpenAIRE

    Asensio, Juan Antonio

    2011-01-01

    En aquest treball revisem breument les piles de combustible polimèriques (PEM) basades en membranes d’intercanvi protònic i que constitueixen la tecnologia idònia de piles de combustible de baixa temperatura, i per tant les més adequades per a aplicació en transport. Revisarem els materials que les componen però també els desenvolupaments necessaris per a la seva implantació definitiva en un mercat inclement amb les tecnologies cares, per netes que siguin. En este trabajo revisamos breveme...

  11. Pilas de combustible de Membrana polimérica

    OpenAIRE

    Asensio, Juan; Peña, Juan; Pérez-Coll, Domingo; Ruiz-Morales, Juan; Marrero -López, David; Núñez, Pedro; Ballesteros, Belèn; Canales-Vázquez, Jesús; Borrós, Salvador; Gómez-Romero, Pedro

    2011-01-01

    En este trabajo revisamos brevemente las pilas de combustible poliméricas (PEM) basadas en membranas de intercambio protónico y que constituyen la tecnología idónea de pilas de combustible de baja temperatura, y por tanto las más adecuadas para aplicación en transporte. Revisaremos los materiales que las componen pero tambíen los desarrollos necesarios para su implantación definitiva en un mercado inclemente con las tecnologías caras, por límpias que sean.

  12. Catalytic Combustion of Low Concentration Methane over Catalysts Prepared from Co/Mg-Mn Layered Double Hydroxides

    Directory of Open Access Journals (Sweden)

    Hongfeng Liu

    2014-01-01

    Full Text Available A series of Co/Mg-Mn mixed oxides were synthesized through thermal decomposition of layered double hydroxides (LDHs precursors. The resulted catalysts were then subjected for catalytic combustion of methane. Experimental results revealed that the Co4.5Mg1.5Mn2LDO catalyst possessed the best performance with the T90=485°C. After being analyzed via XRD, BET-BJH, SEM, H2-TPR, and XPS techniques, it was observed that the addition of cobalt had significantly improved the redox ability of the catalysts whilst certain amount of magnesium was essential to guarantee the catalytic activity. The presence of Mg was helpful to enhance the oxygen mobility and, meanwhile, improved the dispersion of Co and Mn oxides, preventing the surface area loss after calcination.

  13. PORTABLE PEM FUEL CELL SYSTEM: WATER AND HEAT MANAGEMENT

    Directory of Open Access Journals (Sweden)

    SITI NAJIBAH ABD RAHMAN

    2016-07-01

    Full Text Available Portable polymer electrolyte membrane (PEM fuel cell power generator is a PEM fuel cell application that is used as an external charger to supply the demand for high energy. Different environments at various ambient temperatures and humidity levels affect the performance of PEM fuel cell power generators. Thermal and water management in portable PEM fuel cells are a critical technical barrier for the commercialization of this technology. The size and weight of the portable PEM fuel cells used for thermal and water management systems that determine the performance of portable PEM fuel cells also need to be considered. The main objective of this paper review was to determine the importance of water and thermal management systems in portable PEM fuel cells. Additionally, this review investigated heat transfer and water transport in PEM fuel cells. Given that portable PEM fuel cells with different powers require different thermal and water management systems, this review also discussed and compared management systems for low-, medium-, and high-power portable PEM fuel cells.

  14. System catalytic neutralization control of combustion engines waste gases in mining technologies

    Science.gov (United States)

    Korshunov, G. I.; Solnitsev, R. I.

    2017-10-01

    The paper presents the problems solution of the atmospheric air pollution with the exhaust gases of the internal combustion engines, used in mining technologies. Such engines are used in excavators, bulldozers, dump trucks, diesel locomotives in loading and unloading processes and during transportation of minerals. NOx, CO, CH emissions as the waste gases occur during engine operation, the concentration of which must be reduced to the standard limits. The various methods and means are used for the problem solution, one of which is neutralization based on platinum catalysts. A mathematical model of a controlled catalytic neutralization system is proposed. The simulation results confirm the increase in efficiency at start-up and low engine load and the increase in the catalyst lifetime.

  15. Catalytic burners in larger boiler appliances

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, Fredrik; Persson, Mikael (Catator AB, Lund (Sweden))

    2009-02-15

    This project focuses on the scale up of a Catator's catalytic burner technology to enable retrofit installation in existing boilers and the design of new innovative combinations of catalytic burners and boilers. Different design approaches are discussed and evaluated in the report and suggestions are made concerning scale-up. Preliminary test data, extracted from a large boiler installation are discussed together with an accurate analysis of technical possibilities following an optimization of the boiler design to benefit from the advantages of catalytic combustion. The experimental work was conducted in close collaboration with ICI Caldaie (ICI), located in Verona, Italy. ICI is a leading European boiler manufacturer in the effect segment ranging from about 20 kWt to several MWt. The study shows that it is possibly to scale up the burner technology and to maintain low emissions. The boilers used in the study were designed around conventional combustion and were consequently not optimized for implementation of catalytic burners. From previous experiences it stands clear that the furnace volume can be dramatically decreased when applying catalytic combustion. In flame combustion, this volume is normally dimensioned to avoid flame impingement on cold surfaces and to facilitate completion of the gas-phase reactions. The emissions of nitrogen oxides can be reduced by decreasing the residence time in the furnace. Even with the over-dimensioned furnace used in this study, we easily reached emission values close to 35 mg/kWh. The emissions of carbon monoxide and unburned hydrocarbons were negligible (less than 5 ppmv). It is possible to decrease the emissions of nitrogen oxides further by designing the furnace/boiler around the catalytic burner, as suggested in the report. Simultaneously, the size of the boiler installation can be reduced greatly, which also will result in material savings, i.e. the production cost can be reduced. It is suggested to optimize the

  16. Study of a SOFC-PEM hybrid system

    International Nuclear Information System (INIS)

    Fillman, B.; Bjornbom, P.; Sylwan, C.

    2004-01-01

    'Full text:' In the present project a system study of a SOFC-PEM hybrid system is in progress. Positive synergy effects are expected when combining a SOFC system with a PEM system. By combining the advantages of each fuel cell type it is promising that the hybrid system has higher overall efficiency than a SOFC-only system or a reformer-PEM system. A SOFC stack produces electricity and a reformate gas that can be further processed to hydrogen by the shift reaction. The produced hydrogen can be used by PEM stack in order to produce further electricity. In the PEM system case the complex fuel reformer processing could be eliminated. The simulations were performed with the flowsheeting simulation software Aspen Plus. (author)

  17. Development of a catalytically assisted combustor for a gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ozawa, Yasushi; Fujii, Tomoharu; Sato, Mikio [Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-01 (Japan); Kanazawa, Takaaki; Inoue, Hitoshi [Kansai Electric Power Company, Inc., 3-11-20 Nakoji, Amagasaki, Hyoho 661 (Japan)

    1999-01-01

    A catalytically assisted low NO{sub x} combustor has been developed which has the advantage of catalyst durability. This combustor is composed of a burner section and a premixed combustion section behind the burner section. The burner system consists of six catalytic combustor segments and six premixing nozzles, which are arranged alternately and in parallel. Fuel flow rate for the catalysts and the premixing nozzles are controlled independently. The catalytic combustion temperature is maintained under 1000C, additional premixed gas is injected from the premixing nozzles into the catalytic combustion gas, and lean premixed combustion at 1300C is carried out in the premixed combustion section. This system was designed to avoid catalytic deactivation at high temperature and thermal or mechanical shock fracture of the honeycomb monolith. In order to maintain the catalyst temperature under 1000C, the combustion characteristics of catalysts at high pressure were investigated using a bench scale reactor and an improved catalyst was selected for the combustor test. A combustor for a 20MW class multi-can type gas turbine was designed and tested under high pressure conditions using LNG fuel. Measurements of NO{sub x}, CO and unburned hydrocarbon were made and other measurements were made to evaluate combustor performance under various combustion temperatures and pressures. As a result of the tests, it was proved that NO{sub x} emission was lower than 10ppm converted at 16% O{sub 2}, combustion efficiency was almost 100% at 1300C of combustor outlet temperature and 13.5ata of combustor inlet pressure

  18. Combustion

    CERN Document Server

    Glassman, Irvin

    2008-01-01

    Combustion Engineering, a topic generally taught at the upper undergraduate and graduate level in most mechanical engineering programs, and many chemical engineering programs, is the study of rapid energy and mass transfer usually through the common physical phenomena of flame oxidation. It covers the physics and chemistry of this process and the engineering applications-from the generation of power such as the internal combustion automobile engine to the gas turbine engine. Renewed concerns about energy efficiency and fuel costs, along with continued concerns over toxic and particulate emissions have kept the interest in this vital area of engineering high and brought about new developments in both fundamental knowledge of flame and combustion physics as well as new technologies for flame and fuel control. *New chapter on new combustion concepts and technologies, including discussion on nanotechnology as related to combustion, as well as microgravity combustion, microcombustion, and catalytic combustion-all ...

  19. Quantify and improve PEM fuel cell durability. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Grahl-Madsen, L.; Odgaard, M.; Munksgaard Nielsen, R. (IRD Fuel Cell A/S, Svendborg (Denmark)); Li, Q.; Jensen, Jens Oluf (Technical Univ. of Denmark, Dept. of Chemistry, Kgs. Lyngby (Denmark)); Andersen, Shuang Ma; Speder, J.; Skou, E. (Syddansk Univ. (SDU), Odense (Denmark))

    2010-07-01

    approx 4,000 hours of operation correspond to a loss of catalytic active area of 58% for the anode and 69% for the cathode respectively, and the MEA can be expected to perform equivalent to MEAs with less than half the catalyst loating. DMFC durability tests were carried out on both Nafion and Hydrocarbon membrane based MEAs using different electrode designs. Several single DMFC cells and stacks have been tested up to 3,000 hours. The degradation rates found for both single cells and stacks were in the range between 10-90 muV/hours per cell, depending on the MEA configuration. Certain performance losses incurred by the cell during the steady-state operation were recovered, fully or in part, after the regular OCV hold. Regeneration of the Pt-catalyst particles include electro-reduction of the surface PtO that gradually forms over time, surface electro-oxidation of adsorbed poisons (namely CO formed from methanol crossover), and chemical reduction of PtO and/or PtOH via crossover methanol. The HT PEM FC results indicate that a degradation rate of approx 5 muV/h for HT PEM FC can be expected under continuous operation with hydrogen and air at 150-160 C, corresponding to a lifetime of 12,000 hours before 10% performance loss. This lifetime is somewhat shorter than aimed at in the national Danish HT PEM Road map (2009: 20,000 h), but it is in this context important to remember the limited knowledge on HT PEM lifetime at the time of the roadmap definition in 2008. The accelerated durability test with potential cycling showed significant catalyst degradation, primarily due to the corrosion of carbon supports, which triggers the platinum sintering/agglomeration. Modified catalyst supports in form of graphite or carbon nanotubes improve the catalyst and therefore the PBI cell durability. (LN)

  20. Durability of PEM Fuel Cell Membranes

    Science.gov (United States)

    Huang, Xinyu; Reifsnider, Ken

    Durability is still a critical limiting factor for the commercialization of polymer electrolyte membrane (PEM) fuel cells, a leading energy conversion technology for powering future hydrogen fueled automobiles, backup power systems (e.g., for base transceiver station of cellular networks), portable electronic devices, etc. Ionic conducting polymer (ionomer) electrolyte membranes are the critical enabling materials for the PEM fuel cells. They are also widely used as the central functional elements in hydrogen generation (e.g., electrolyzers), membrane cell for chlor-alkali production, etc. A perfluorosulfonic acid (PFSA) polymer with the trade name Nafion® developed by DuPont™ is the most widely used PEM in chlor-alkali cells and PEM fuel cells. Similar PFSA membranes have been developed by Dow Chemical, Asahi Glass, and lately Solvay Solexis. Frequently, such membranes serve the dual function of reactant separation and selective ionic conduction between two otherwise separate compartments. For some applications, the compromise of the "separation" function via the degradation and mechanical failure of the electrolyte membrane can be the life-limiting factor; this is particularly the case for PEM in hydrogen/oxygen fuel cells.

  1. PEMS. Advanced predictive emission monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Sandvig Nielsen, J.

    2010-07-15

    In the project PEMS have been developed for boilers, internal combustion engines and gas turbines. The PEMS models have been developed using two principles: The one called ''first principles'' is based on thermo-kinetic modeling of the NO{sub x}-formation by modeling conditions (like temperature, pressure and residence time) in the reaction zones. The other one is data driven using artificial neural network (ANN) and includes no physical properties and no thermo-kinetic formulation. Models of first principles have been developed for gas turbines and gas engines. Data driven models have been developed for gas turbines, gas engines and boilers. The models have been tested on data from sites located in Denmark and the Middle East. Weel and Sandvig has conducted the on-site emission measurements used for development and testing the PEMS models. For gas turbines, both the ''first principles'' and the data driven models have performed excellent considering the ability to reproduce the emission levels of NO{sub x} according to the input variables used for calibration. Data driven models for boilers and gas engines have performed excellent as well. The rather comprehensive first principle model, developed for gas engines, did not perform as well in the prediction of NO{sub x}. Possible a more complex model formulation is required for internal combustion engines. In general, both model types have been validated on data extracted from the data set used for calibration. The data for validation have been selected randomly as individual samplings, and is scattered over the entire measuring campaign. For one natural gas engine a secondary measuring campaign was conducted half a year later than the campaign used for training the data driven model. In the meantime, this engine had been through a refurbishment that included new pistons, piston rings and cylinder linings and cleaning of the cylinder heads. Despite the refurbishment, the

  2. Modelling and Optimization of Reforming Systems for use in PEM Fuel Cell

    DEFF Research Database (Denmark)

    Berry, Melissa; Korsgaard, Anders Risum; Nielsen, Mads Pagh

    2004-01-01

    Three different reforming methods for the conversion of natural gas to hydrogen are studied and compared: Steam Reforming (SR), Auto-thermal Reforming (ATR), and Catalytic Partial Oxidation (CPOX). Thermodynamic and kinetic models are developed for the reforming reactors as well as the subsequent...... reactors needed for CO removal to make the synthesis gas suitable for use in a PEM fuel cell. The systems are optimized to minimize the total volume, and must supply adequate hydrogen to a fuel cell with a 100kW load. The resultant system efficiencies are calculated. The CPOX system is the smallest...

  3. Combustion synthesis and catalytic activity of LaCoO{sub 3} for HMX thermal decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Zhi-Xian; Chi, Ying-Nan [Department of Chemistry, Institute for Chemical Physics, Beijing Institute of Technology (China); Hu, Chang-Wen [State Key Laboratory of Explosion Science, Technology Beijing Institute of Technology, Beijing (China); Liu, Hai-Yan [Department of Chemistry, Science Institute, North China University, Taiyuan, Shanxi (China)

    2009-10-15

    Perovskite-type LaCoO{sub 3} was prepared by stearic acid solution combustion method and characterized by XRD, DSC-TG, and XPS techniques. The catalytic activities of LaCoO{sub 3} for HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) thermal decomposition were investigated. The as-prepared LaCoO{sub 3} shows higher activity than the calcined one. This could be due to higher concentration of surface-adsorbed oxygen and hydroxyl species as well as higher BET surface area of the as-prepared LaCoO{sub 3}. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  4. Catalytic combustion of propane in a membrane reactor with separate feed of reactants—II. Operation in presence of trans-membrane pressure gradients

    NARCIS (Netherlands)

    Saracco, Guido; Veldsink, Jan Willem; Versteeg, Geert F.; Swaaij, Wim P.M. van

    1995-01-01

    This is the second communication of a series dealing with an experimental and modelling study on propane catalytic combustion in a membrane reactor with separate feed of reactants. In paper I the behaviour of the reactor in the absence of trans-membrane pressure gradients was presented and

  5. PEM fuel cells thermal and water management fundamentals

    CERN Document Server

    Wang, Yun; Cho, Sung Chan

    2014-01-01

    Polymer Electrolyte Membrane (PEM) fuel cells convert chemical energy in hydrogen into electrical energy with water as the only by-product. Thus, PEM fuel cells hold great promise to reduce both pollutant emissions and dependency on fossil fuels, especially for transportation-passenger cars, utility vehicles, and buses-and small-scale stationary and portable power generators. But one of the greatest challenges to realizing the high efficiency and zero emissions potential of PEM fuel cells technology is heat and water management. This book provides an introduction to the essential concepts for effective thermal and water management in PEM fuel cells and an assessment on the current status of fundamental research in this field. The book offers you: An overview of current energy and environmental challenges and their imperatives for the development of renewable energy resources, including discussion of the role of PEM fuel cells in addressing these issues; Reviews of basic principles pertaining to PEM fuel cel...

  6. Reliability analysis and utilization of PEMs in space application

    Science.gov (United States)

    Jiang, Xiujie; Wang, Zhihua; Sun, Huixian; Chen, Xiaomin; Zhao, Tianlin; Yu, Guanghua; Zhou, Changyi

    2009-11-01

    More and more plastic encapsulated microcircuits (PEMs) are used in space missions to achieve high performance. Since PEMs are designed for use in terrestrial operating conditions, the successful usage of PEMs in space harsh environment is closely related to reliability issues, which should be considered firstly. However, there is no ready-made methodology for PEMs in space applications. This paper discusses the reliability for the usage of PEMs in space. This reliability analysis can be divided into five categories: radiation test, radiation hardness, screening test, reliability calculation and reliability assessment. One case study is also presented to illuminate the details of the process, in which a PEM part is used in a joint space program Double-Star Project between the European Space Agency (ESA) and China. The influence of environmental constrains including radiation, humidity, temperature and mechanics on the PEM part has been considered. Both Double-Star Project satellites are still running well in space now.

  7. Characterization of PM-PEMS for in-use measurements conducted during validation testing for the PM-PEMS measurement allowance program

    Science.gov (United States)

    Khan, M. Yusuf; Johnson, Kent C.; Durbin, Thomas D.; Jung, Heejung; Cocker, David R.; Bishnu, Dipak; Giannelli, Robert

    2012-08-01

    This study provides an evaluation of the latest Particulate Matter-Portable Emissions Measurement Systems (PM-PEMS) under different environmental and in-use conditions. It characterizes four PM measurement systems based on different measurement principles. At least three different units were tested for each PM-PEMS to account for variability. These PM-PEMS were compared with a UC Riverside's mobile reference laboratory (MEL). PM measurements were made from a class 8 truck with a 2008 Cummins diesel engine with a diesel particulate filter (DPF). A bypass around the DPF was installed in the exhaust to achieve a brake specific PM (bsPM) emissions level of 25 mg hp-1h-1. PM was dominated by elemental carbon (EC) during non-regeneration conditions and by hydrated sulfate (H2SO4.6H2O) during regeneration. The photo-acoustic PM-PEMS performed best, with a linear regression slope of 0.90 and R2 of 0.88 during non-regenerative conditions. With the addition of a filter, the photo-acoustic PM-PEMS slightly over reported than the total PM mass (slope = 1.10, R2 = 0.87). Under these same non-regeneration conditions, a PM-PEMS equipped with a quartz crystal microbalance (QCM) technology performed the poorest, and had a slope of 0.22 and R2 of 0.13. Re-tests performed on upgraded QCM PM-PEMS showed a better slope (0.66), and a higher R2 of 0.25. In the case of DPF regeneration, all PM-PEMS performed poorly, with the best having a slope of 0.20 and R2 of 0.78. Particle size distributions (PSD) showed nucleation during regeneration, with a shift of particle size to smaller diameters (˜64 nm to ˜13 nm) with elevated number concentrations when compared to non-regeneration conditions.

  8. Influence of morphology of ceramic fibers in catalytic combustion of methane

    International Nuclear Information System (INIS)

    Tabarelli, A.C.; Alves, A.K.; Bergmann, C.P.

    2012-01-01

    Methane, considered as the main constituent of natural gas has been widely used as an energy source. During its combustion are produced pollutants that cause concern and necessity to eliminate or reduce the emission of these agents in the atmosphere. One of the main means of controlling emissions is the use of catalysts. In order to contribute to the development of new catalysts, this study analyzed the morphology of ceramic fibers of cerium oxide (ceria) doped with copper fabricated by electrospinning, in order to verify their effects on catalytic activity. Parameters were varied in distance from the electrodes, the diameter of the capillary and applied voltage between electrodes. The characterizations were performed: scanning electron microscopy, thermogravimetric analysis, BET and Xray diffraction (DXR). The results indicate that after the thermal treatment there was a reduction of approximately 40% fiber diameter and specific surface area ranging between 28.929 and 34.501 m 2 /g. (author)

  9. Effect of A-site deficiency in LaMn{sub 0.9}Co{sub 0.1}O{sub 3} perovskites on their catalytic performance for soot combustion

    Energy Technology Data Exchange (ETDEWEB)

    Dinamarca, Robinson [Department of Physical Chemistry, Faculty of Chemical Sciences, University of Concepción, Concepción (Chile); Garcia, Ximena; Jimenez, Romel [Department of Chemical Engineering, Faculty of Engineering, University of Concepción, Concepción (Chile); Fierro, J.L.G. [Instituto de Catálisis y Petroleoquímica, CSIC, Cantoblanco, 28049 Madrid (Spain); Pecchi, Gina, E-mail: gpecchi@udec.cl [Department of Physical Chemistry, Faculty of Chemical Sciences, University of Concepción, Concepción (Chile)

    2016-09-15

    Highlights: • A-site defective perovskites increases the oxidation state of the B-cation. • Not always non-stoichiometric perovskites exhibit higher catalytic activity in soot combustion. • The highly symmetric cubic crystalline structure diminishes the redox properties of perovskites. - Abstract: The influence of lanthanum stoichiometry in Ag-doped (La{sub 1-x}Ag{sub x}Mn{sub 0.9}Co{sub 0.1}O{sub 3}) and A-site deficient (La{sub 1-x}Mn{sub 0.9}Co{sub 0.1}O{sub 3-δ}) perovskites with x equal to 10, 20 and 30 at.% has been investigated in catalysts for soot combustion. The catalysts were prepared by the amorphous citrate method and characterized by XRD, nitrogen adsorption, XPS, O{sub 2}-TPD and TPR. The formation of a rhombohedral excess-oxygen perovskite for Ag-doped and a cubic perovskite structure for an A-site deficient series is confirmed. The efficient catalytic performance of the larger Ag-doped perovskite structure is attributed to the rhombohedral crystalline structure, Ag{sub 2}O segregated phases and the redox pair Mn{sup 4+}/Mn{sup 3+}. A poor catalytic activity for soot combustion was observed with A-site deficient perovskites, despite the increase in the redox pair Mn{sup 4+}/Mn{sup 3+}, which is attributed to the cubic crystalline structure.

  10. Estudio de Algoritmos 2-Deslizantes Aplicados al Control de Pilas de Combustible

    OpenAIRE

    Cristian Kunusch; Paul F. Puleston; Miguel A. Mayosky

    2008-01-01

    Resumen: En este trabajo se hace un estudio comparativo de tres diferentes técnicas de control por modo deslizante de segundo orden, aplicadas al problema específico del control de respiración de una pila de combustible PEM. Los algoritmos diseñados se contrastan por simulación utilizando el modelo completo del sistema, poniendo particular énfasis en la respuesta transitoria y la robustez frente a perturbaciones. Palabras clave: Pilas de Combustible, Control no lineal, Modo Deslizante

  11. The generation of electricity by gas turbines using the catalytic combustion of low-Btu gases

    DEFF Research Database (Denmark)

    Frederiksen, O.P.; Qvale, Einar Bjørn

    1989-01-01

    Various systems for the generation of electricity by gas turbines using catalytic combustion of low-Btu gases have been investigated. Parametric studies of three configurations that are deemed to be practically feasible have been completed. It is shown that thermodynamic efficiency of these systems...... may be quite high. The system design has been made to comply with generally accepted limitations on the operation of the compressors, turbines and heat exchangers. The heat catalyst has been investigated experimentally in order to establish design information. The system design has been carried out...... on the basis of these experiments and of commonly accepted limits on the operation of the compressors, turbines, and heat exchangers...

  12. Catalytic combustion of propane in a membrane reactor with separate feed of reactants—I. Operation in absence of trans-membrane pressure gradients

    NARCIS (Netherlands)

    Saracco, Guido; Veldsink, Jan Willem; Versteeg, Geert F.; Swaaij, Wim P.M. van

    1995-01-01

    A pilot plant study on propane catalytic combustion in a membrane reactor with separate reactant feeds is presented. The membrane consisted of a porous alumina tube activated by insertion into its pores of a Pt/γ-Al2O3 catalyst. The role of reactants concentration and of the feed flow rates were

  13. Simulation study of a proton exchange membrane (PEM) fuel cell system with autothermal reforming

    Energy Technology Data Exchange (ETDEWEB)

    Ersoz, Atilla [TUBITAK Marmara Research Centre, Energy Systems and Environmental Research Institute, 41470 Gebze, Kocaeli (Turkey); Olgun, Hayati [TUBITAK Marmara Research Centre, Energy Systems and Environmental Research Institute, 41470 Gebze, Kocaeli (Turkey); Ozdogan, Sibel [Marmara University, Faculty of Engineering, Department of Mechanical Engineering, 81040 Goztepe, Istanbul (Turkey)

    2006-08-15

    This paper presents the results of a study for a 100 kW net electrical power PEM fuel cell system. The major system components are an autothermal reformer, high and low temperature shift reactors, a preferential oxidation reactor, a PEM fuel cell, a combustor and an expander. Intensive heat integration within the PEM fuel cell system has been necessary to achieve acceptable net electrical efficiency levels. The calculations comprise the auxiliary equipment such as pumps, compressors, heaters, coolers, heat exchangers and pipes. The process simulation package 'ASPEN-HYSYS 3.1' has been used along with conventional calculations. The operation conditions of the autothermal reformer have been studied in detail to determine the values, which lead to the production of a hydrogen rich gas mixture with CO concentration at ppm level. The operation parameters of the other reactors have been determined considering the limitations implied by the catalysts involved. A gasoline type hydrocarbon fuel has been studied as the source for hydrogen production. The chemical composition of the hydrocarbon fuel affects the favorable operation conditions of autothermal reforming and the following fuel purification steps. Thermal efficiencies have been calculated for all of the major system components for selected operation conditions. The fuel cell stack efficiency has been calculated as a function of the number of cells (500-1250 cells). Efficiencies of all of the major system components along with auxiliary unit efficiencies determine the net electrical efficiency of the PEM fuel cell system. The obtained net electrical efficiency levels are between 30 (500 cells) and 37% (1250 cells). Hence, they are comparable with or higher than those of the conventional gasoline based internal combustion engine systems, in terms of the mechanical power efficiency.

  14. Simulation study of a proton exchange membrane (PEM) fuel cell system with autothermal reforming

    International Nuclear Information System (INIS)

    Ersoz, Atilla; Olgun, Hayati; Ozdogan, Sibel

    2006-01-01

    This paper presents the results of a study for a 100 kW net electrical power PEM fuel cell system. The major system components are an autothermal reformer, high and low temperature shift reactors, a preferential oxidation reactor, a PEM fuel cell, a combustor and an expander. Intensive heat integration within the PEM fuel cell system has been necessary to achieve acceptable net electrical efficiency levels. The calculations comprise the auxiliary equipment such as pumps, compressors, heaters, coolers, heat exchangers and pipes. The process simulation package 'ASPEN-HYSYS 3.1' has been used along with conventional calculations. The operation conditions of the autothermal reformer have been studied in detail to determine the values, which lead to the production of a hydrogen rich gas mixture with CO concentration at ppm level. The operation parameters of the other reactors have been determined considering the limitations implied by the catalysts involved. A gasoline type hydrocarbon fuel has been studied as the source for hydrogen production. The chemical composition of the hydrocarbon fuel affects the favorable operation conditions of autothermal reforming and the following fuel purification steps. Thermal efficiencies have been calculated for all of the major system components for selected operation conditions. The fuel cell stack efficiency has been calculated as a function of the number of cells (500-1250 cells). Efficiencies of all of the major system components along with auxiliary unit efficiencies determine the net electrical efficiency of the PEM fuel cell system. The obtained net electrical efficiency levels are between 30 (500 cells) and 37% (1250 cells). Hence, they are comparable with or higher than those of the conventional gasoline based internal combustion engine systems, in terms of the mechanical power efficiency

  15. Reconstruction of Clear-PEM data with STIR

    CERN Document Server

    Martins, M V; Rodrigues, P; Trindade, A; Oliveira, N; Correia, M; Cordeiro, H; Ferreira, N C; Varela, J; Almeida, P

    2006-01-01

    The Clear-PEM scanner is a device based on planar detectors that is currently under development within the Crystal Clear Collaboration, at CERN. The basis for 3D image reconstruction in Clear-PEM is the software for tomographic image reconstruction (STIR). STIR is an open source object-oriented library that efficiently deals with the 3D positron emission tomography data sets. This library was originally designed for the traditional cylindrical scanners. In order to make its use compatible with planar scanner data, new functionalities were introduced into the library's framework. In this work, Monte Carlo simulations of the Clear-PEM scanner acquisitions were used as input for image reconstruction with the 3D OSEM algorithm available in STIR. The results presented indicate that dual plate PEM data can be accurately reconstructed using the enhanced STIR framework.

  16. Development of advanced PEM water electrolysers

    International Nuclear Information System (INIS)

    A Deschamps; C Etievant; C Puyenchet; V Fateev; S Grigoriev; A Kalinnikov; V Porembsky; P Millet

    2006-01-01

    Concerning the production of electrolytic hydrogen, the goal of present R and D is to develop advanced hydrogen generator based on proton exchange membrane (PEM) water electrolysers. PEM-based water electrolysis offers a number of advantages, such as ecological safety, high gas purity (more than 99.99% for hydrogen), the possibility of producing compressed gases (up to 200 bar) for direct pressurized storage without additional power inputs, etc. PEM electrolysers are considered as rather attractive devices to accelerate the transition to the hydrogen economy and develop a hydrogen infrastructure network (for example for the development of re-filling stations for cars, using electric power stations at night hours and renewable energy sources). The work presented here result from a cooperation between Hydrogen Energy and Plasma Technology Institute (HEPTI) of Russian Research Center (RRC) 'Kurchatov Institute', Universite Paris - Sud XI and Compagnie d'Etudes des Technologies de l'Hydrogene. This project is supported by the Commission of the European Communities within the frame of the 6. Framework Programme (GenHyPEM, STREP no 019802). (authors)

  17. Estudio de Algoritmos 2-Deslizantes Aplicados al Control de Pilas de Combustible

    Directory of Open Access Journals (Sweden)

    Cristian Kunusch

    2008-07-01

    Full Text Available Resumen: En este trabajo se hace un estudio comparativo de tres diferentes técnicas de control por modo deslizante de segundo orden, aplicadas al problema específico del control de respiración de una pila de combustible PEM. Los algoritmos diseñados se contrastan por simulación utilizando el modelo completo del sistema, poniendo particular énfasis en la respuesta transitoria y la robustez frente a perturbaciones. Palabras clave: Pilas de Combustible, Control no lineal, Modo Deslizante

  18. GenHyPEM: A research program on PEM water electrolysis supported by the European Commission

    Energy Technology Data Exchange (ETDEWEB)

    Millet, Pierre; Dragoe, Diana [Institut de Chimie Moleculaire et des Materiaux d' Orsay, UMR CNRS no 8182, Universite Paris-Sud 11, 15 rue Georges Clemenceau, 91405 Orsay Cedex (France); Grigoriev, Serguey; Fateev, Vladimir [Hydrogen Energy and Plasma Technology, Institute of Russian Research Center, Kurchatov Institute, 1, Kurchatov sq., 123182 Moscow (Russian Federation); Etievant, Claude [Compagnie Europeenne des Technologies de l' Hydrogene (CETH), Innov' Valley Entreprise, Batiment D0, Route de Nozay, 91461 Marcoussis Cedex (France)

    2009-06-15

    GenHyPEM (Generateur d'Hydrogene par electrolyse de l'eau PEM <>) is an STREP programme (no 019802) supported by the European Commission in the course of the 6th framework research programme. This R and D project which started in October 2005, is a 2.6 MEUR research effort over three years. It gathers partners from Belgium, Germany, Romania, Federation of Russia, Armenia and France. The main goal of the project is to develop low-cost and high pressure (50 bar) PEM water electrolysers for the production of up to several Nm{sup 3} H{sub 2}/h. The purpose of this communication is to present the current status of GenHyPEM. Major results and technological achievements obtained so far in the fields of academic (electrocatalysis, polymer electrolyte) and applied (stack development and performances) research are presented. Non-noble electrocatalysts have been identified to replace platinum for the HER and stable performances have been obtained during operation at high (1 A cm{sup -2}) current density, paving the way to substantial cost reductions. Prototype electrolysers producing from 0.1 to 5 Nm{sup 3} H{sub 2}/h have been successfully developed. (author)

  19. Numerical simulation of catalysis combustion inside micro free-piston engine

    International Nuclear Information System (INIS)

    Wang, Qian; Zhang, Di; Bai, Jin; He, Zhixia

    2016-01-01

    Highlights: • A modeling study is applied on methane HCCI process of micro power device. • Mathematical formulas are established to predict the combustion characteristics. • Impacts of catalysis on the combustion characteristics are analyzed respectively. • The catalyst can improve the work steadily and reliability of micro power device. - Abstract: In order to investigate the catalytic combustion characteristics concerning homogeneous charge compression ignition (HCCI) in micro power device, numerical simulations with a 3D computation model that coupled motion of free piston and fluid dynamics of methane–air mixture flow were carried out and detailed gas-phase and surface catalytic reaction mechanisms of methane–air mixture were applied to the catalytic reactions model, a series of mathematical formula are established to predict the characteristics of compression ignition condition, impacts of catalysis on temperature, pressure, work capacity and other factors were analyzed respectively. Simulation results reveal that catalytic combustion facilitates the improvement of energy conversion efficiency and extends the ignition limit of methane–air mixture obviously, the ignition timing is brought forward as well, while compression ratio decreases and ignition delay period shrinks significantly. Numerical results demonstrate that the existence of catalytic wall helped to restrain the peak combustion pressure and maximum rate of pressure rise contributing to the steadily and reliability of operation inside micro free-piston power device.

  20. Surface kinetics for catalytic combustion of hydrogen-air mixtures on platinum at atmospheric pressure in stagnation flows

    Science.gov (United States)

    Ikeda, H.; Sato, J.; Williams, F. A.

    1995-03-01

    Experimental studies of the combustion of premixed hydrogen-air mixtures impinging on the surface of a heated platinum plate at normal atmospheric pressure were performed and employed to draw inferences concerning surface reaction mechanisms and rate parameters applicable under practical conditions of catalytic combustion. Plate and gas temperatures were measured by thermocouples, and concentration profiles of major stable species in the gas were measured by gas-chromatographic analyses of samples withdrawn by quartz probes. In addition, ignition and extinction phenomena were recorded and interpreted with the aid of a heat balance at the surface and a previous flow-field analysis of the stagnation-point boundary layer. From the experimental and theoretical results, conclusions were drawn concerning the surface chemical-kinetic mechanisms and values of the elementary rate parameters that are consistent with the observations. In particular, the activation energy for the surface oxidation step H + OH → H 2O is found to be appreciably less at these high surface coverages than in the low-coverage limit.

  1. Low Concentration Fe-Doped Alumina Catalysts Using Sol-Gel and Impregnation Methods: The Synthesis, Characterization and Catalytic Performance during the Combustion of Trichloroethylene

    Directory of Open Access Journals (Sweden)

    Carolina Solis Maldonado

    2014-03-01

    Full Text Available The role of iron in two modes of integration into alumina catalysts was studied at 0.39 wt% Fe and tested in trichloroethylene combustion. One modified alumina was synthesized using the sol-gel method with Fe added in situ during hydrolysis; another modification was performed using calcined alumina, prepared using the sol-gel method and impregnated with Fe. Several characterization techniques were used to study the level of Fe modification in the γ-Al2O3 phase formed and to correlate the catalytic properties during trichloroethylene (TCE combustion. The introduction of Fe in situ during the sol-gel process influenced the crystallite size, and three iron species were generated, namely, magnetite, maghemite and hematite. The impregnated Fe-alumina formed hematite and maghemite, which were highly dispersed on the γ-Al2O3 surface. The X-ray photoelectron spectra (XPS, FT-IR and Mössbauer spectroscopy analyses revealed how Fe interacted with the γ-Al2O3 lattice in both catalysts. The impregnated Fe-catalyst showed the best catalytic performance compared to the catalyst that was Fe-doped in situ by the sol-gel method; both had better catalytic activity than pure alumina. This difference in activity was correlated with the accessibility of the reactants to the hematite iron species on the surface. The chlorine poisoning for all three catalysts was less than 1.8%.

  2. Low Concentration Fe-Doped Alumina Catalysts Using Sol-Gel and Impregnation Methods: The Synthesis, Characterization and Catalytic Performance during the Combustion of Trichloroethylene.

    Science.gov (United States)

    Maldonado, Carolina Solis; De la Rosa, Javier Rivera; Lucio-Ortiz, Carlos J; Hernández-Ramírez, Aracely; Barraza, Felipe F Castillón; Valente, Jaime S

    2014-03-12

    The role of iron in two modes of integration into alumina catalysts was studied at 0.39 wt% Fe and tested in trichloroethylene combustion. One modified alumina was synthesized using the sol-gel method with Fe added in situ during hydrolysis; another modification was performed using calcined alumina, prepared using the sol-gel method and impregnated with Fe. Several characterization techniques were used to study the level of Fe modification in the γ-Al₂O₃ phase formed and to correlate the catalytic properties during trichloroethylene (TCE) combustion. The introduction of Fe in situ during the sol-gel process influenced the crystallite size, and three iron species were generated, namely, magnetite, maghemite and hematite. The impregnated Fe-alumina formed hematite and maghemite, which were highly dispersed on the γ-Al₂O 3 surface. The X-ray photoelectron spectra (XPS), FT-IR and Mössbauer spectroscopy analyses revealed how Fe interacted with the γ-Al₂O₃ lattice in both catalysts. The impregnated Fe-catalyst showed the best catalytic performance compared to the catalyst that was Fe-doped in situ by the sol-gel method; both had better catalytic activity than pure alumina. This difference in activity was correlated with the accessibility of the reactants to the hematite iron species on the surface. The chlorine poisoning for all three catalysts was less than 1.8%.

  3. Catalytic combustion of the retentate gas from a CO2/H2 separation membrane reactor for further CO2 enrichment and energy recovery

    International Nuclear Information System (INIS)

    Hwang, Kyung-Ran; Park, Jin-Woo; Lee, Sung-Wook; Hong, Sungkook; Lee, Chun-Boo; Oh, Duck-Kyu; Jin, Min-Ho; Lee, Dong-Wook; Park, Jong-Soo

    2015-01-01

    The CCR (catalytic combustion reaction) of the retentate gas, consisting of 90% CO 2 and 10% H 2 obtained from a CO 2 /H 2 separation membrane reactor, was investigated using a porous Ni metal catalyst in order to recover energy and further enrich CO 2 . A disc-shaped porous Ni metal catalyst, namely Al[0.1]/Ni, was prepared by a simple method and a compact MCR (micro-channel reactor) equipped with a catalyst plate was designed for the CCR. CO 2 and H 2 concentrations of 98.68% and 0.46%, respectively, were achieved at an operating temperature of 400 °C, GHSV (gas-hourly space velocity) of 50,000 h −1 and a H 2 /O 2 ratio (R/O) of 2 in the unit module. In the case of the MCR, a sheet of the Ni metal catalyst was easily installed along with the other metal plates and the concentration of CO 2 in the retentate gas increased up to 96.7%. The differences in temperatures measured before and after the CCR were 31 °C at the product outlet and 19 °C at the N 2 outlet in the MCR. The disc-shaped porous metal catalyst and MCR configuration used in this study exhibit potential advantages, such as high thermal transfer resulting in improved energy recovery rate, simple catalyst preparation, and easy installation of the catalyst in the MCR. - Highlights: • The catalytic combustion of a retentate gas obtained from the H 2 /CO 2 separation membrane. • A disc-shaped porous nickel metal catalyst and a micro-channel reactor for catalytic hydrogen combustion. • CO 2 enrichment up to 98.68% at 400 °C, 50,000 h −1 and H 2 /O 2 ratio of 2.

  4. Experimental investigation of the catalytic decomposition and combustion characteristics of a non-toxic ammonium dinitramide (ADN)-based monopropellant thruster

    Science.gov (United States)

    Chen, Jun; Li, Guoxiu; Zhang, Tao; Wang, Meng; Yu, Yusong

    2016-12-01

    Low toxicity ammonium dinitramide (ADN)-based aerospace propulsion systems currently show promise with regard to applications such as controlling satellite attitude. In the present work, the decomposition and combustion processes of an ADN-based monopropellant thruster were systematically studied, using a thermally stable catalyst to promote the decomposition reaction. The performance of the ADN propulsion system was investigated using a ground test system under vacuum, and the physical properties of the ADN-based propellant were also examined. Using this system, the effects of the preheating temperature and feed pressure on the combustion characteristics and thruster performance during steady state operation were observed. The results indicate that the propellant and catalyst employed during this work, as well as the design and manufacture of the thruster, met performance requirements. Moreover, the 1 N ADN thruster generated a specific impulse of 223 s, demonstrating the efficacy of the new catalyst. The thruster operational parameters (specifically, the preheating temperature and feed pressure) were found to have a significant effect on the decomposition and combustion processes within the thruster, and the performance of the thruster was demonstrated to improve at higher feed pressures and elevated preheating temperatures. A lower temperature of 140 °C was determined to activate the catalytic decomposition and combustion processes more effectively compared with the results obtained using other conditions. The data obtained in this study should be beneficial to future systematic and in-depth investigations of the combustion mechanism and characteristics within an ADN thruster.

  5. Method of monitoring CO concentrations in hydrogen feed to a PEM fuel cell

    Science.gov (United States)

    Grot, Stephen Andreas; Meltser, Mark Alexander; Gutowski, Stanley; Neutzler, Jay Kevin; Borup, Rodney Lynn; Weisbrod, Kirk

    2000-01-01

    The CO concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H.sub.2 fuel stream. The PEM-probe is intermittently purged of any CO build-up on the anode catalyst (e.g., by (1) flushing the anode with air, (2) short circuiting the PEM-probe, or (3) reverse biasing the PEM-probe) to keep the PEM-probe at peak performance levels.

  6. Comparison of catalytic converter performance in internal combustion engine fueled with Ron 95 and Ron 97 gasoline

    Science.gov (United States)

    Leman, A. M.; Rahman, Fakhrurrazi; Jajuli, Afiqah; Feriyanto, Dafit; Zakaria, Supaat

    2017-09-01

    Generating ideal stability between engine performance, fuel consumption and emission is one of the main challenges in the automotive industry. The characteristics of engine combustion and creation of emission might simply change with different types of operating parameters. This study aims in investigating the relationship between two types of fuels on the performance and exhaust emission of internal combustion engine using ceramic and metallic catalytic converters. Experimental tests were performed on Mitsubishi 4G93 engine by applying several ranges of engine speeds to determine the conversion of pollutant gases released by the engine. The obtained results specify that the usage of RON 97 equipped with metallic converters might increase the conversion percentage of 1.31% for CO and 126 ppm of HC gases. The metallic converters can perform higher conversion compared to ceramic because in the high space velocities, metallic has higher surface geometry area and higher amount of transverse Peclet number (Pi). Ceramic converters achieved conversion at 2496 ppm of NOx gas, which is higher than the metallic converter.

  7. Catalytic reduction of emissions from small-scale combustion of biomass

    International Nuclear Information System (INIS)

    Berg, Magnus; Gustavsson, Patrik; Berge, Niklas

    1998-01-01

    This report covers a study on the prospect of using catalytic techniques for the abatement of emissions from small-scale combustion of biomass. The results show that there is a great potential for catalytic techniques and that the emissions of primarily CO and unburned hydrocarbons can be reduced but also that indirectly the emissions of NO x can be reduced. The aim of the project was to methodically indicate the requirement that both the catalyst and the stove must meet to enable the development of low emission stoves utilising this technique. The project should also aim at the development of catalysts that meet these requirements and apply the technique on small-scale stoves. By experimental work these appliances have been evaluated and conclusions drawn on the optimisation of the technique. The project has been performed in close collaboration between TPS Termiska Processer AB, Department of Chemical Technology at KTH, Perstorp AB and CTC-PARCA AB. The development of new catalysts have been conduc ted by KTH in collaboration with Perstorp while the work performed by TPS have been directed towards the integration of the monolithic catalysts in two different stoves that have been supplied by CTC. In one of these stoves a net based catalyst developed by KATATOR have also been tested. Within the project it has been verified experimentally that in a wood fired stove a reduction of the CO-emissions of 60% can be achieved for the monolithic catalysts. This reduction could be achieved even without any optimisation of the design. Experiments in a smaller scale and under well controlled conditions have shown that almost 100% reduction of CO can be achieved. The parameters that limits the conversion over the catalyst, and thereby prevents that the targeted low emissions can be reached, have been identified as: * Short residence time, * Mass transport limitations caused by the large channel width, * Uneven temperature profile over the catalyst, and * Insufficient mixing

  8. Prescription-event monitoring in Japan (J-PEM).

    Science.gov (United States)

    Kubota, Kiyoshi

    2002-01-01

    In prescription-event monitoring in Japan (J-PEM), patients are identified by prescriptions in individual pharmacies where drugs are dispensed. The methodology is somewhat different to that used by the Drug Safety Research Unit in the UK, in that two questionnaires, one to the pharmacist and the other to the doctor are sent for each patient and the method of concurrent control is employed in J-PEM. In the data analysis, the list of events reported as a suspected reaction or a reason for stopping the drug is made to generate a signal. In addition, a signal may be generated for some events with the statistically significant difference of crude rates followed by the regression analysis or a follow-up study. In J-PEM, Medical Dictionary for Regulatory Activities (MedDRA) terminology is used for data entry and data analysis. Lowest level terms (LLTs) in MedDRA are used in data entry while a signal is generated using preferred terms (PTs). However, to generate a signal effectively, some PTs may be grouped as one term. In addition, if two terms are so similar, it may be instructed that one of those two terms is normally selected in data entry to avoid confusion. Many more PEM studies could be undertaken to determine if MedDRA can be used for effective signal generation, but the usefulness of MedDRA in J-PEM is still to be determined.

  9. Study on Pt-structured anodic alumina catalysts for catalytic combustion of toluene: Effects of competitive adsorbents and competitive impregnation methods

    Science.gov (United States)

    Zhang, Qi; Luan, Hongjuan; Li, Tao; Wu, Yongqiang; Ni, Yanhui

    2016-01-01

    Novel competitive impregnation methods were used to prepare high dispersion Pt-structured anodic alumina catalysts. It is found that competitive adsorbents owning different acidity result in different Pt loading amount and also exert great effects on Pt distribution, particle size and redox ability. The suitable adsorption ability of lactic acid led to its best activity for catalytic combustion of toluene. Co-competitive and pre-competitive impregnation methods were also compared and the mechanisms of two competitive methods were proposed. Co-competitive impregnation made Pt distribute more uniformly through pore channels and resulted in better catalytic activity, because of the weaker spatial constraint effect of lactic acid. Furthermore, the optimized Pt-structured anodic alumina catalyst also showed a good chlorine-resistance under moisture atmosphere, because water could promote the reaction of dichloromethane (DCM) transformation and clean chloride by-products to release more active sites.

  10. Sintering of Catalytic Nanoparticles: Particle Migration or Ostwald Ripening?

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; DeLaRiva, Andrew T.; Challa, Sivakumar R.

    2013-01-01

    deactivation, is an important mechanism for the loss of catalyst activity. This is especially true for high temperature catalytic processes, such as steam reforming, automotive exhaust treatment, or catalytic combustion. With dwindling supplies of precious metals and increasing demand, fundamental...

  11. Performance optimization of a PEM hydrogen-oxygen fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy and Environment Foundation, Al-Najaf, P.O.Box 39 (Iraq)

    2013-07-01

    The objective was to develop a semi-empirical model that would simulate the performance of proton exchange membrane (PEM) fuel cells without extensive calculations. A fuel cell mathematical module has been designed and constructed to determine the performance of a PEM fuel cell. The influence of some operating parameters on the performance of PEM fuel cell has been investigated using pure hydrogen on the anode side and oxygen on the cathode side. The present model can be used to investigate the influence of process variables for design optimization of fuel cells, stacks, and complete fuel cell power system. The possible mechanisms of the parameter effects and their interrelationships are discussed. In order to assess the validity of the developed model a real PEM fuel cell system has been used to generate experimental data. The comparison shows good agreements between the modelling results and the experimental data. The model is shown a very useful for estimating the performance of PEM fuel cell stacks and optimization of fuel cell system integration and operation.

  12. Clear-PEM: A dedicated PET camera for improved breast cancer detection

    International Nuclear Information System (INIS)

    Abreu, M. C.; Almeida, P.; Balau, F.; Ferreira, N. C.; Fetal, S.; Fraga, F.; Martins, M.; Matela, N.; Moura, R.; Ortigao, C.; Peralta, L.; Rato, P.; Ribeiro, R.; Rodrigues, P.; Santos, A. I.; Trindade, A.; Varela, J.

    2005-01-01

    Positron emission mammography (PEM) can offer a non-invasive method for the diagnosis of breast cancer. Metabolic images from PEM using 18 F-fluoro-deoxy-glucose, contain unique information not available from conventional morphologic imaging techniques like X-ray radiography. In this work, the concept of Clear-PEM, the system presently developed in the frame of the Crystal Clear Collaboration at CERN, is described. Clear-PEM will be a dedicated scanner, offering better perspectives in terms of position resolution and detection sensitivity. (authors)

  13. Performance optimization of a PEM hydrogen-oxygen fuel cell

    OpenAIRE

    Maher A.R. Sadiq Al-Baghdadi

    2013-01-01

    The objective was to develop a semi-empirical model that would simulate the performance of proton exchange membrane (PEM) fuel cells without extensive calculations. A fuel cell mathematical module has been designed and constructed to determine the performance of a PEM fuel cell. The influence of some operating parameters on the performance of PEM fuel cell has been investigated using pure hydrogen on the anode side and oxygen on the cathode side. The present model can be used to investigate t...

  14. Catalytic oxidation of soot over alkaline niobates

    International Nuclear Information System (INIS)

    Pecchi, G.; Cabrera, B.; Buljan, A.; Delgado, E.J.; Gordon, A.L.; Jimenez, R.

    2013-01-01

    Highlights: ► No previous reported studies about alkaline niobates as catalysts for soot oxidation. ► NaNbO 3 and KNbO 3 perovskite-type oxides show lower activation energy than other lanthanoid perovskite-type oxides. ► The alkaline niobate does not show deactivation by metal loss. - Abstract: The lack of studies in the current literature about the assessment of alkaline niobates as catalysts for soot oxidation has motivated this research. In this study, the synthesis, characterization and assessment of alkaline metal niobates as catalysts for soot combustion are reported. The solids MNbO 3 (M = Li, Na, K, Rb) are synthesized by a citrate method, calcined at 450 °C, 550 °C, 650 °C, 750 °C, and characterized by AAS, N 2 adsorption, XRD, O 2 -TPD, FTIR and SEM. All the alkaline niobates show catalytic activity for soot combustion, and the activity depends basically on the nature of the alkaline metal and the calcination temperature. The highest catalytic activity, expressed as the temperature at which combustion of carbon black occurs at the maximum rate, is shown by KNbO 3 calcined at 650 °C. At this calcination temperature, the catalytic activity follows an order dependent on the atomic number, namely: KNbO 3 > NaNbO 3 > LiNbO 3 . The RbNbO 3 solid do not follow this trend presumably due to the perovskite structure was not reached. The highest catalytic activity shown by of KNbO 3 , despite the lower apparent activation energy of NaNbO 3 , stress the importance of the metal nature and suggests the hypothesis that K + ions are the active sites for soot combustion. It must be pointed out that alkaline niobate subjected to consecutive soot combustion cycles does not show deactivation by metal loss, due to the stabilization of the alkaline metal inside the perovskite structure.

  15. Fuel Flexible, Low Emission Catalytic Combustor for Opportunity Fuel Applications

    Energy Technology Data Exchange (ETDEWEB)

    Eteman, Shahrokh

    2013-06-30

    Limited fuel resources, increasing energy demand and stringent emission regulations are drivers to evaluate process off-gases or process waste streams as fuels for power generation. Often these process waste streams have low energy content and/or highly reactive components. Operability of low energy content fuels in gas turbines leads to issues such as unstable and incomplete combustion. On the other hand, fuels containing higher-order hydrocarbons lead to flashback and auto-ignition issues. Due to above reasons, these fuels cannot be used directly without modifications or efficiency penalties in gas turbine engines. To enable the use of these wide variety of fuels in gas turbine engines a rich catalytic lean burn (RCL®) combustion system was developed and tested in a subscale high pressure (10 atm.) rig. The RCL® injector provided stability and extended turndown to low Btu fuels due to catalytic pre-reaction. Previous work has shown promise with fuels such as blast furnace gas (BFG) with LHV of 85 Btu/ft3 successfully combusted. This program extends on this work by further modifying the combustor to achieve greater catalytic stability enhancement. Fuels containing low energy content such as weak natural gas with a Lower Heating Value (LHV) of 6.5 MJ/m3 (180 Btu/ft3 to natural gas fuels containing higher hydrocarbon (e.g ethane) with LHV of 37.6 MJ/m3 (1010 Btu/ft3) were demonstrated with improved combustion stability; an extended turndown (defined as the difference between catalytic and non-catalytic lean blow out) of greater than 250oF was achieved with CO and NOx emissions lower than 5 ppm corrected to 15% O2. In addition, for highly reactive fuels the catalytic region preferentially pre-reacted the higher order hydrocarbons with no events of flashback or auto-ignition allowing a stable and safe operation with low NOx and CO emissions.

  16. Efficient fully controlled up-to-date equipment for catalytic treatment of waste gases

    International Nuclear Information System (INIS)

    Dvorak, Radek; Stulir, Roman; Cagas, Pavel

    2007-01-01

    This paper describes research and development of a new unit for catalytic destruction of waste gases polluted mainly by volatile organic compounds (VOC), halogenated organic compounds (HOC) or carbon monoxide. Novel equipment has considerable advantages compared with commonly used arrangement (combustion chamber (catalytic reactor)-pipeline-heat exchanger). It is very compact and light and has the combustion chamber, catalytic reactor and heat exchanger integrated into one unit. Maximum utilizing heat losses in the combustion chamber and catalytic reactor is achieved. During the development of this unit experience from tests of previously developed equipment used for thermal treatment of waste gases was used, as well as from experimental studies of catalytic disposal of various VOC carried out in the newly built experimental unit. During the development calculation methods were created allowing design modifications of this unit for real industrial applications. The newly developed unit can be used in various branches of industry such as paint shops, refining plants, sewage treatment plants, food processing industry, pharmaceutical industry, but also in companies processing and transporting crude-oil or natural gas, etc

  17. Experimental validation of modelling tools for a PEM fuel cell; Validation experimentale d'outils de modelisation d'une pile a combustible de type PEM

    Energy Technology Data Exchange (ETDEWEB)

    Boillot, M.

    2005-10-15

    In this work, a global view of the phenomena occurring in a PEM fuel cell is given. An original methodology was developed in order to determine the main parameters: thermodynamics, kinetics and transport phenomena. The gas flow in bipolar plates was characterised using experimental determination of residence time distributions and numerical simulations. Kinetics of both electrochemical reactions were analysed feeding the cell by diluted gases. In this part, the diffusion of reactants in the membrane electrodes assembly was taken into account. Finally, the relationship between humidity and electrical performance was investigated and the ohmic resistance of the cell was estimated. (author)

  18. Thermal stability control system of photo-elastic interferometer in the PEM-FTs

    Science.gov (United States)

    Zhang, M. J.; Jing, N.; Li, K. W.; Wang, Z. B.

    2018-01-01

    A drifting model for the resonant frequency and retardation amplitude of a photo-elastic modulator (PEM) in the photo-elastic modulated Fourier transform spectrometer (PEM-FTs) is presented. A multi-parameter broadband-matching driving control method is proposed to improve the thermal stability of the PEM interferometer. The automatically frequency-modulated technology of the driving signal based on digital phase-locked technology is used to track the PEM's changing resonant frequency. Simultaneously the maximum optical-path-difference of a laser's interferogram is measured to adjust the amplitude of the PEM's driving signal so that the spectral resolution is stable. In the experiment, the multi-parameter broadband-matching control method is applied to the driving control system of the PEM-FTs. Control of resonant frequency and retardation amplitude stabilizes the maximum optical-path-difference to approximately 236 μm and results in a spectral resolution of 42 cm-1. This corresponds to a relative error smaller than 2.16% (4.28 standard deviation). The experiment shows that the method can effectively stabilize the spectral resolution of the PEM-FTs.

  19. Experimental determination of optimal clamping torque for AB-PEM Fuel cell

    Directory of Open Access Journals (Sweden)

    Noor Ul Hassan

    2016-04-01

    Full Text Available Polymer electrolyte Membrane (PEM fuel cell is an electrochemical device producing electricity by the reaction of hydrogen and oxygen without combustion. PEM fuel cell stack is provided with an appropriate clamping torque to prevent leakage of reactant gases and to minimize the contact resistance between gas diffusion media (GDL and bipolar plates. GDL porous structure and gas permeability is directly affected by the compaction pressure which, consequently, drastically change the fuel cell performance. Various efforts were made to determine the optimal compaction pressure and pressure distributions through simulations and experimentation. Lower compaction pressure results in increase of contact resistance and also chances of leakage. On the other hand, higher compaction pressure decreases the contact resistance but also narrows down the diffusion path for mass transfer from gas channels to the catalyst layers, consequently, lowering cell performance. The optimal cell performance is related to the gasket thickness and compression pressure on GDL. Every stack has a unique assembly pressure due to differences in fuel cell components material and stack design. Therefore, there is still need to determine the optimal torque value for getting the optimal cell performance. This study has been carried out in continuation of deve­lopment of Air breathing PEM fuel cell for small Unmanned Aerial Vehicle (UAV application. Compaction pressure at minimum contact resistance was determined and clamping torque value was calcu­la­ted accordingly. Single cell performance tests were performed at five different clamping torque values i.e 0.5, 1.0, 1.5, 2.0 and 2.5 N m, for achieving optimal cell per­formance. Clamping pressure distribution tests were also performed at these torque values to verify uniform pressure distribution at optimal torque value. Experimental and theoretical results were compared for making inferences about optimal cell perfor­man­ce. A

  20. PEM-fuel cells for mobile application. Sub task: development of electrocatalysts. Final report; PEM-Brennstoffzelle fuer mobile Anwendung. Teilprojekt: Katalysatorenentwicklung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Starz, K A

    1999-01-01

    PEM fuel cells are gaining increasing importance for use in automotive application. The goal of the research program reported here was to develop the basic technology and components for PEMFC stacks for use in transport applications. The sub-task of Degussa was to develop improved electrocatalysts for PEMFC single cells and stacks. The technical objectives of the research project were met. Electrocatalysts, characterized by a high Pt-dispersion, high surface area and excellent activity, were developed. With this material, considerable progress was made to reduce the total platinum loading of PEMFC cells and stacks to about 0,5 mgPt/cm{sup 2}. With this value, the goal of the program (<0,8 mg/cm{sup 2}) was significantly surpassed. Additionally, higher power densities of >0.4 W/cm{sup 2} were achieved at Degussa for hydrogen/air and reformate/air operation of the PEMFC. A CO-tolerant anode electrocatalyst, exhibiting a CO-tolerance of up to 100 ppm CO, enables the operation of PEMFC stacks with on-board generated methanol reformate. The performance of the new electrocatalyst materials was verified by DaimlerChrysler in a PEMFC demonstration stack at the end of the program. (orig.) [Deutsch] PEM-Brennstoffzellen gewinnen fuer die mobile Anwendung immer mehr an Bedeutung. Im Rahmen des hier beschriebenen Leitprojektes sollten die Basistechnologien fuer den Einsatz der PEM-Brennstoffzelle im mobilen Bereich (Elektrotraktion) entwickelt werden. Das Teilprojekt der Degussa befasst sich mit der Entwicklung von verbesserten Elektrokatalysatoren fuer PEM-Brennstoffzellenstacks. Die technischen Arbeitsziele des Vorhabens wurden erreicht. So konnten Elektrokatalysatoren bereitgestellt werden, die sich durch eine hohe Pt-Dispersion, eine grosse Pt-Oberflaeche sowie eine sehr gute Aktivitaet auszeichnen. Mit diesen Elektrokatalysatoren gelang es, die Platinbeladung der PEM-Elektroden (Anode und Kathode) erheblich abzusenken. Mit einer Gesamtplatinbeladung von 0,5 mg/cm{sup 2

  1. Development of a NO/x/-free combustion system

    Science.gov (United States)

    Sadakata, M.; Furusawa, T.; Kunii, D.; Imagawa, M.; Nawada, M.

    1980-04-01

    The development of a NO(x)-free combustion-heating system realizing both pollution control and energy savings is described. An experiment was carried out by using a small model plant. The system consists of a combustion furnace and a new-type multifunctional heat exchanger. The heat exchanger is a rotary continuous type designed for soot collection and for catalytic combustion of CO and H2 as well as for preheating combustion air.

  2. Parameterization of electrical equivalent circuits for pem fuel cells; Parametrierung elektrischer Aequivalentschaltbilder von PEM Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Haubrock, J.

    2007-12-13

    Fuel cells are a very promising technology for energy conversion. For optimization purpose, useful simulation tools are needs. Simulation tools should simulate the static and dynamic electrical behaviour and the models should parameterized by measurment results which should be done easily. In this dissertation, a useful model for simulating a pem fuel cell is developed. the model should parametrizes by V-I curve measurment and by current step respond. The model based on electrical equivalent circuits and it is shown, that it is possible to simulate the dynamic behaviour of a pem fuel cell stack. The simulation results are compared by measurment results. (orig.)

  3. Clear-PEM, a dedicated PET camera for mammography

    CERN Document Server

    Lecoq, P

    2002-01-01

    Preliminary results suggest that Positron Emission Mammography (PEM) can offer a noninvasive method for the diagnosis of breast cancer. Metabolic images from PEM contain unique information not available from conventional morphologic imaging techniques and aid in expeditiously establishing the diagnosis of cancer. A dedicated machine seems to offer better perspectives in terms of position resolution and sensitivity. This paper describes the concept of Clear-PEM, the system presently developed by the Crystal Clear Collaboration at CERN for an evaluation of this approach. This device is based on new crystals introduced by the Crystal Clear as well as on modern data acquisition techniques developed for the large experiments in high energy physics experiments.

  4. Investigation of low glass transition temperature on COTS PEMs reliability

    Science.gov (United States)

    Sandor, M.; Agarwal, S.

    2002-01-01

    Many factors influence PEM component reliability.One of the factors that can affect PEM performance and reliability is the glass transition temperature (Tg) and the coefficient of thermal expansion (CTE) of the encapsulant or underfill. JPL/NASA is investigating how the Tg and CTE for PEMs affect device reliability under different temperature and aging conditions. Other issues with Tg are also being investigated. Some preliminary data will be presented on glass transition temperature test results conducted at JPL.

  5. Detailed experimental characterization of a reformate fuelled PEM stack

    DEFF Research Database (Denmark)

    Korsgaard, Anders; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2006-01-01

    Increasing attention is given to fuel cells for micro combined heat and power systems for local households. Currently, mainly three different types of fuel cells are commercially competitive: SOFC, low- and high-temperature PEM fuel cells. In the present paper the Low Temperature PEM technology i...

  6. Combustion behaviors and kinetics of sewage sludge blended with pulverized coal: With and without catalysts.

    Science.gov (United States)

    Wang, Zhiqiang; Hong, Chen; Xing, Yi; Li, Yifei; Feng, Lihui; Jia, Mengmeng

    2018-04-01

    The combustion behaviors of sewage sludge (SS), pulverized coal (PC), and their blends were studied using a thermogravimetric analyzer. The effect of the mass ratio of SS to PC on the co-combustion characteristics was analyzed. The experiments showed that the ignition performance of the blends improved significantly as the mass percentage of SS increased, but its combustion intensity decreased. The burnout temperature (T b ) and comprehensive combustibility index (S) of the blends were almost unchanged when the mass percentage of SS was less than 10%. However, a high mass percentage of SS (>10%) resulted in a great increase in T b and a notable decrease in S. Subsequently, the effects of different catalysts (CaO, CeO 2 , MnO 2 , and Fe 2 O 3 ) on the combustion characteristics and activation energy of the SS/PC blend were investigated. The four catalysts promoted the release and combustion of volatile matters in the blended fuels and shifted their combustion profiles to a low temperature. In addition, their peak separating tendencies were obvious at 350-550 C, resulting in high peak widths. All the catalysts improved combustion activity of the blended fuel and accelerated fixed carbon combustion, which decreased the ignition temperature and burnout temperature of the fuels. CeO 2 had the best catalytic effects in terms of the comprehensive combustion performance and activation energy, followed closely by Fe 2 O 3 . However, the rare-earth compounds are expensive to be applied in the catalytic combustion process of SS/PC blend at present. Based on both catalytic effects and economy, Fe 2 O 3 was potentially an optimal option for catalytic combustion among the tested catalysts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Building a Predictive Capability for Decision-Making that Supports MultiPEM

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Joshua Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-20

    Multi-phenomenological explosion monitoring (multiPEM) is a developing science that uses multiple geophysical signatures of explosions to better identify and characterize their sources. MultiPEM researchers seek to integrate explosion signatures together to provide stronger detection, parameter estimation, or screening capabilities between different sources or processes. This talk will address forming a predictive capability for screening waveform explosion signatures to support multiPEM.

  8. Use of catalytic reforming to aid natural gas HCCI combustion in engines: experimental and modelling results of open-loop fuel reforming

    Energy Technology Data Exchange (ETDEWEB)

    Peucheret, S.; Wyszynski, M.L.; Lehrle, R.S. [Future Power Systems Group, Mechanical Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Golunski, S. [Johnson Matthey, Technology Centre, Blount' s Court, Sonning Common, Reading RG4 9NH (United Kingdom); Xu, H. [Jaguar Land Rover Research, Jaguar Land Rover W/2/021, Abbey Road, Coventry CV3 4LF (United Kingdom)

    2005-12-01

    The potential of the homogeneous charge compression ignition (HCCI) combustion process to deliver drastically reduced emissions of NO{sub x} and improved fuel economy from internal combustion engines is well known. The process is, however, difficult to initiate and control, especially when methane or natural gas are used as fuel. To aid the HCCI combustion of natural gas, hydrogen addition has been successfully used in this study. This hydrogen can be obtained from on-line reforming of natural gas. Methane reforming is achieved here by reaction with engine exhaust gas and air in a small scale monolith catalytic reactor. The benchmark quantity of H{sub 2} required to enhance the feasibility and engine load range of HCCI combustion is 10%. For low temperature engine exhaust gas, typical for HCCI engine operating conditions, experiments show that additional air is needed to produce this quantity. Experimental results from an open-loop fuel exhaust gas reforming system are compared with two different models of basic thermodynamic equilibria calculations. At the low reactor inlet temperatures needed for the HCCI application (approx. 400 deg C) the simplified three-reaction thermodynamic equilibrium model is in broad agreement with experimental results, while for medium (550-650 deg C) inlet temperature reforming with extra air added, the high hydrogen yields predicted from the multi-component equilibrium model are difficult to achieve in a practical reformer. (author)

  9. Performance of a Novel Hydrophobic Mesoporous Material for High Temperature Catalytic Oxidation of Naphthalene

    Directory of Open Access Journals (Sweden)

    Guotao Zhao

    2014-01-01

    Full Text Available A high surface area, hydrophobic mesoporous material, MFS, has been successfully synthesized by a hydrothermal synthesis method using a perfluorinated surfactant, SURFLON S-386, as the single template. N2 adsorption and TEM were employed to characterize the pore structure and morphology of MFS. Static water adsorption test indicates that the hydrophobicity of MFS is significantly higher than that of MCM-41. XPS and Py-GC/MS analysis confirmed the existence of perfluoroalkyl groups in MFS which led to its high hydrophobicity. MFS was used as a support for CuO in experiments of catalytic combustion of naphthalene, where it showed a significant advantage over MCM-41 and ZSM-5. SEM was helpful in understanding why CuO-MFS performed so well in the catalytic combustion of naphthalene. Experimental results indicated that MFS was a suitable support for catalytic combustion of large molecular organic compounds, especially for some high temperature catalytic reactions when water vapor was present.

  10. Development of PEM fuel cell technology at international fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.J.

    1996-04-01

    The PEM technology has not developed to the level of phosphoric acid fuel cells. Several factors have held the technology development back such as high membrane cost, sensitivity of PEM fuel cells to low level of carbon monoxide impurities, the requirement to maintain full humidification of the cell, and the need to pressurize the fuel cell in order to achieve the performance targets. International Fuel Cells has identified a hydrogen fueled PEM fuel cell concept that leverages recent research advances to overcome major economic and technical obstacles.

  11. Exhaust system of an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    1974-09-04

    A catalytic converter system for internal combustion engines is described that includes a means to maintain the catalyst temperature within a predetermined range for the efficient reduction of nitrogen oxides in the exhaust gas. Upstream of the catalytic converter, the exhaust pipe is encased in a structure such that a space is provided for the flow of a coolant around the exhaust pipe in response to the sensed catalytic temperature. A coolant control valve is actuated in response to the temperature sensor.

  12. Infrastructure of the hydrogen use and materials for fuel cells: key for its soon use; Infraestructura de uso de hidrogeno y materiales para celdas de combustible: clave para su pronto uso

    Energy Technology Data Exchange (ETDEWEB)

    Cano Castillo, Ulises; Rejon Garcia, Leonardo; Ojeda Hernandez, Mirna [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    2000-07-01

    Nowadays, many products for the personal generation of electrical energy exist, such as the batteries and the of internal combustion machines; that have developed and established the infrastructure required for their manufacture, distribution and commercial use. Nevertheless, disadvantages as well as practical limitations and their relationship with the environment exist. The fuel cells are able to increase their applications, as well as to solve practical and environmental challenges, but still they face challenges related to the initial cost and the infrastructure required for their uses. In this article the materials and the fuel cells (PEM) are described (membrane cells of proton interchange or of polymeric membrane electrolyte), of the proton interchanging membrane, gas diffuser, current collector plates of with fields gas flow fields and electrocatalizers. A table of fuel cells applications is shown according to the type of cell from a power of less than 1 KW to greater than 1 MW. Also there is a table of hydrogen production methods and tables where it is represented the hydrogen route in a PEM cell and the basic components of a type PEM fuel cell. In the article appears a table where a comparison of some properties of current collector plates is shown, as well as a graph of the spectra of electrochemical impedances. [Spanish] Hoy en dia, existen muchos productos para la generacion personal de energia electrica, como las baterias y las maquinas de combustion interna; que han desarrollado y establecido la infraestructura requerida para su fabricacion, distribucion y su uso comercial. Sin embargo, existen desventajas en cuanto a limitaciones practicas y su relacion con el ambiente. Las celdas de combustion son capaces de aumentar sus aplicaciones, asi como resolver retos practicos y ambientales, pero asi enfrentan retos relacionados con el costo inicial y las infraestructura requerida para su usos. En este articulo se describen los materiales y la descripcion

  13. Concept for lowest emissions of a hydrogen internal combustion engine; Niedrigstemissionskonzept fuer einen wasserstoffbetriebenen Verbrennungsmotor

    Energy Technology Data Exchange (ETDEWEB)

    Fouquet, Marcel Christian Thomas

    2012-03-15

    This paper describes a concept with lowest emissions for a hydrogen internal combustion engine for passenger cars. With optimisation of the combustion concept the level of nitrogen oxide is below 90%, hydrocarbon and carbon monoxide below 99% of the SULEV target (CARB). This concept enables a potential in power density that is comparable to current supercharged combustion engines at lowest emission level without catalytic aftertreatment. Additionally with a catalytic aftertreatment system, the emission level of a current hydrogen combustion engine (mono-fuel) is lowered to a level, that this car can be labeled as air cleaning vehicle for hydrocarbons and carbon monoxide.

  14. The JPL Direct Methanol Liquid-feed PEM Fuel Cell

    Science.gov (United States)

    Halpert, G.; Surampudi, S.

    1994-01-01

    Recently, there has been a breakthrough in fuel cell technology in the Energy Storage Systems Group at the Jet Propulsion Laboratory with the develpment of a direct methanol, liquid-feed, solid polymer electrolyte membrane (PEM) fuel cell... The methanol liquid-feed, solid polymer electrolyte (PEM) design has numerous system level advantages over the gas-feed design. These include:...

  15. Development of ClearPEM-Sonic, a multimodal mammography system for PET and Ultrasound

    Science.gov (United States)

    Cucciati, G.; Auffray, E.; Bugalho, R.; Cao, L.; Di Vara, N.; Farina, F.; Felix, N.; Frisch, B.; Ghezzi, A.; Juhan, V.; Jun, D.; Lasaygues, P.; Lecoq, P.; Mensah, S.; Mundler, O.; Neves, J.; Paganoni, M.; Peter, J.; Pizzichemi, M.; Siles, P.; Silva, J. C.; Silva, R.; Tavernier, S.; Tessonnier, L.; Varela, J.

    2014-03-01

    ClearPEM-Sonic is an innovative imaging device specifically developed for breast cancer. The possibility to work in PEM-Ultrasound multimodality allows to obtain metabolic and morphological information increasing the specificity of the exam. The ClearPEM detector is developed to maximize the sensitivity and the spatial resolution as compared to Whole-Body PET scanners. It is coupled with a 3D ultrasound system, the SuperSonic Imagine Aixplorer that improves the specificity of the exam by providing a tissue elasticity map. This work describes the ClearPEM-Sonic project focusing on the technological developments it has required, the technical merits (and limits) and the first multimodal images acquired on a dedicated phantom. It finally presents selected clinical case studies that confirm the value of PEM information.

  16. Development of ClearPEM-Sonic, a multimodal mammography system for PET and Ultrasound

    International Nuclear Information System (INIS)

    Cucciati, G; Vara, N Di; Ghezzi, A; Paganoni, M; Pizzichemi, M; Auffray, E; Frisch, B; Lecoq, P; Bugalho, R; Neves, J; Cao, L; Peter, J; Farina, F; Felix, N; Juhan, V; Mundler, O; Siles, P; Jun, D; Lasaygues, P; Mensah, S

    2014-01-01

    ClearPEM-Sonic is an innovative imaging device specifically developed for breast cancer. The possibility to work in PEM-Ultrasound multimodality allows to obtain metabolic and morphological information increasing the specificity of the exam. The ClearPEM detector is developed to maximize the sensitivity and the spatial resolution as compared to Whole-Body PET scanners. It is coupled with a 3D ultrasound system, the SuperSonic Imagine Aixplorer that improves the specificity of the exam by providing a tissue elasticity map. This work describes the ClearPEM-Sonic project focusing on the technological developments it has required, the technical merits (and limits) and the first multimodal images acquired on a dedicated phantom. It finally presents selected clinical case studies that confirm the value of PEM information

  17. Danish research and development in PEM fuel cell technology. Status for strategy follow up; Dansk forskning og udvikling inden for PEM-braendselscelleteknologi. Status for strategiopfoelgning

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-11-15

    PEM fuel cell technology shows promise as to efficient and environmental friendly production of power and heat. Furthermore, the technology can be used for production of hydrogen through electrolysis of water. In Denmark research and development focus on PEM fuel cells for low temperatures (up to c 80 deg. C) as well as for high temperatures (up to 200 deg. C). This note summarizes the present plane for research and development in PEM in Denmark, including status for development within specific areas i.e. basic research and development, process development, cell and stack development and tests, and system development. (BA)

  18. Analysing Gas-Liquid Flow in PEM Electrolyser Micro-Channels (Poster)

    DEFF Research Database (Denmark)

    Lafmejani, Saeed Sadeghi; Olesen, Anders Christian; Kær, Søren Knudsen

    One means of increasing the hydrogen yield to cost ratio of a PEM water electrolyser, is to increase the operating current density. However, at high current densities (higher than 1 A/cm2), management of heat and mass transfer in the anode current collector and channel becomes crucial and can lead...... to hot spots. Management of heat and fluid flow through the micro-channels play a great role in the capability of PEM water electrolysis when working at high current densities. Despite, many studies have been done on gas-liquid flows; still there is a lack of research on gas-liquid flows in micro......-sized channels (hydraulic diameter of 1 mm) of PEM water electrolysis. Precisely controlling all the parameters that affect the gas-liquid flow in a PEM water electrolysis cell is quite challenging, hence a simplified setup is constructed consisting of only a transparent channel with a sheet of titanium felt...

  19. Process gas generator feeding internal combustion piston engines

    Energy Technology Data Exchange (ETDEWEB)

    Iwantscheff, G; Kostka, H; Henkel, H J

    1978-10-26

    The invention relates to a process gas generator feeding gaseous fuel to internal combustion piston engines. The cylinder linings of the internal combustion engine are enclosed by the catalytic reaction chamber of the process gas generator which contains perforated sintered nozzle bricks as carriers of the catalysts needed for the conversion. The reaction chamber is surrounded by the exhaust gas chamber around which a tube coil is ound which feeds the fuel charge to the reaction chamber after evaporation and mixing with exhaust gas and air. The fuel which may be used for this purpose, e.g., is low-octane gasoline or diesel fuel. In the reaction chamber the fuel is catalytically converted at temperatures above 200/sup 0/C, e.g., into low-molecular paraffins, carbon monoxide and hydrogen. Operation of the internal combustion engine with a process gas generator greatly reduces the pollutant content of the exhaust gases.

  20. Device and materials modeling in PEM fuel cells

    CERN Document Server

    Promislow, Keith

    2009-01-01

    Device and Materials Modeling in PEM Fuel Cells is a specialized text that compiles the mathematical details and results of both device and materials modeling in a single volume. Proton exchange membrane (PEM) fuel cells will likely have an impact on our way of life similar to the integrated circuit. The potential applications range from the micron scale to large scale industrial production. Successful integration of PEM fuel cells into the mass market will require new materials and a deeper understanding of the balance required to maintain various operational states. This book contains articles from scientists who contribute to fuel cell models from both the materials and device perspectives. Topics such as catalyst layer performance and operation, reactor dynamics, macroscopic transport, and analytical models are covered under device modeling. Materials modeling include subjects relating to the membrane and the catalyst such as proton conduction, atomistic structural modeling, quantum molecular dynamics, an...

  1. Modelling and optimization of reforming systems for use in PEM fuel cell systems

    International Nuclear Information System (INIS)

    Berry, M.; Korsgaard, A.R.; Nielsen, M.P.

    2004-01-01

    Three different reforming methods for the conversion of natural gas to hydrogen are studied and compared: Steam Reforming (SR), Auto-thermal Reforming (ATR), and Catalytic Partial Oxidation (CPOX). Thermodynamic and kinetic models are developed for the reforming reactors as well as the subsequent reactors needed for CO removal to make the synthesis gas suitable for use in a PEM fuel cell. The systems are optimized to minimize the total volume, and must supply adequate hydrogen to a fuel cell with a 100kW load. The resultant system efficiencies are calculated. The CPOX system is the smallest and exhibits a comparable efficiency to the SR system. The SR system had the best relation between efficiency and volume increase. Optimal temperature profiles within each reactor were found. It was shown that temperature control can significantly reduce reactor volume and increase conversion capabilities. (author)

  2. HOGEN{trademark} proton exchange membrane hydrogen generators: Commercialization of PEM electrolyzers

    Energy Technology Data Exchange (ETDEWEB)

    Smith, W.F.; Molter, T.M. [Proton Energy Systems, Inc., Rocky Hill, CT (United States)

    1997-12-31

    PROTON Energy Systems` new HOGEN series hydrogen generators are Proton Exchange Membrane (PEM) based water electrolyzers designed to generate 300 to 1000 Standard Cubic Feet Per Hour (SCFH) of high purity hydrogen at pressures up to 400 psi without the use of mechanical compressors. This paper will describe technology evolution leading to the HOGEN, identify system design performance parameters and describe the physical packaging and interfaces of HOGEN systems. PEM electrolyzers have served US and UK Navy and NASA needs for many years in a variety of diverse programs including oxygen generators for life support applications. In the late 1970`s these systems were advocated for bulk hydrogen generation through a series of DOE sponsored program activities. During the military buildup of the 1980`s commercial deployment of PEM hydrogen generators was de-emphasized as priority was given to new Navy and NASA PEM electrolysis systems. PROTON Energy Systems was founded in 1996 with the primary corporate mission of commercializing PEM hydrogen generators. These systems are specifically designed and priced to meet the needs of commercial markets and produced through manufacturing processes tailored to these applications. The HOGEN series generators are the first step along the path to full commercial deployment of PEM electrolyzer products for both industrial and consumer uses. The 300/1000 series are sized to meet the needs of the industrial gases market today and provide a design base that can transition to serve the needs of a decentralized hydrogen infrastructure tomorrow.

  3. Device for the catalytic after-burning of exhaust gases in the exhaust gas system of an internal-combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Lange, K

    1975-06-19

    The invention deals with a device which protects the catalyst for the after-burning of exhaust gases against damage by high temperatures. When the catalyst temperature reaches a certain limiting value, a throttle is activated by an electrical control device influenced by a temperature sensor via a servomotor. The throttle valve opens a by-pass for the exhaust gases which had previously flowed through the system for catalytic after-burning. In order to prevent the throttle from rusting due to its rare use, it is regularly put into use after switching off the ignition of the internal-combustion engine by the still briefly present oil pressure in the engine via an oil pressure switch and the mentioned control device.

  4. DESIGN AND IMPLEMENTATION OF A PEM FUEL CELL EMULATOR FOR STATIC AND DYNAMIC BEHAVIOR

    Directory of Open Access Journals (Sweden)

    CARLOS ANDRÉS RAMOS-PAJA

    2011-01-01

    Full Text Available Este artículo presenta el diseño, implementación y validación experimental de un emulador controlado digitalmente de pilas de combustible con membrana de intercambio protónico (PEM, tanto para comportamiento estático como dinámico, el cual es fácil de usar y proporciona autonomía y portabilidad a bajo costo. El emulador permite la evaluación de sistemas de potencia y estrategias de control en sistemas basados en pilas de combustible. Para la implementación del emulador se seleccionó, ajustó y validó un modelo matemático apropiado. El modelo es procesado digitalmente en el emulador, el cual genera el comportamiento eléctrico apropiado a la carga. La etapa de potencia fue implementada usando un convertidor DC/DC conmutado de dos inductores, controlado directamente con el sistema de procesamiento digital. El artículo presenta el esquema eléctrico y diagrama de bloques de la etapa de potencia, y el comportamiento del emulador es ilustrado con resultados de simulación. Finalmente, el emulador es validado experimentalmente.

  5. A retrospective on the LBNL PEM project

    International Nuclear Information System (INIS)

    Huber, J.S.; Moses, W.W.; Wang, G.C.; Derenzo, S.E.; Huesman, R.H.; Qi, J.; Virador, P.; Choong, W.S.; Mandelli, E.; Beuville, E.; Pedrali-Noy, M.; Krieger, B.; Meddeler, G.

    2004-01-01

    We present a retrospective on the LBNL Positron Emission Mammography (PEM) project, looking back on our design and experiences. The LBNL PEM camera utilizes detector modules that are capable of measuring depth of interaction (DOI) and places them into 4 detector banks in a rectangular geometry. In order to build this camera, we had to develop the DOI detector module, LSO etching, Lumirror-epoxy reflector for the LSO array (to achieve optimal DOI), photodiode array, custom IC, rigid-flex readout board, packaging, DOI calibration and reconstruction algorithms for the rectangular camera geometry. We will discuss the highlights (good and bad) of these developments

  6. Data acquisition electronics for positron emission mammography (PEM) detectors

    International Nuclear Information System (INIS)

    Martinez, J.D.; Sebastia, A.; Cerda, J.; Esteve, R.; Mora, F.J.; Toledo, J.F.; Benlloch, J.M.; Gimenez, N.; Gimenez, M.; Lerche, Ch. W.; Pavon, N.; Sanchez, F.

    2005-01-01

    Positron emission mammography (PEM) is an innovative technique to increase sensitivity and overcome the main drawbacks of conventional X-ray screening. However, dedicated PET imaging systems demand specific hardware solutions for data acquisition and processing that can take advantage of the reduction in the number of channels. Data acquisition issues can affect PEM scanners performance and they should be exhaustively addressed in order to exploit the increment in the event count rate. This is crucial in order to reduce both the scanning time and the total injected dose. This paper presents the electronics for our PEM camera prototype that enables us to achieve very high-count rates and perform comprehensive online processing. Results about acquisition in our detector for a typical clinical setup are studied using Monte Carlo simulation of hot lesion phantoms

  7. Methanol fuel processor and PEM fuel cell modeling for mobile application

    Energy Technology Data Exchange (ETDEWEB)

    Chrenko, Daniela [ISAT, University of Burgundy, Rue Mlle Bourgoise, 58000 Nevers (France); Gao, Fei; Blunier, Benjamin; Bouquain, David; Miraoui, Abdellatif [Transport and Systems Laboratory (SeT) - EA 3317/UTBM, Fuel cell Laboratory (FCLAB), University of Technology of Belfort-Montbeliard, Rue Thierry Mieg 90010, Belfort Cedex (France)

    2010-07-15

    The use of hydrocarbon fed fuel cell systems including a fuel processor can be an entry market for this emerging technology avoiding the problem of hydrogen infrastructure. This article presents a 1 kW low temperature PEM fuel cell system with fuel processor, the system is fueled by a mixture of methanol and water that is converted into hydrogen rich gas using a steam reformer. A complete system model including a fluidic fuel processor model containing evaporation, steam reformer, hydrogen filter, combustion, as well as a multi-domain fuel cell model is introduced. Experiments are performed with an IDATECH FCS1200 trademark fuel cell system. The results of modeling and experimentation show good results, namely with regard to fuel cell current and voltage as well as hydrogen production and pressure. The system is auto sufficient and shows an efficiency of 25.12%. The presented work is a step towards a complete system model, needed to develop a well adapted system control assuring optimized system efficiency. (author)

  8. ANALYSIS OF INTERNAL COMBUSTION ENGINE WITH A NEW CONCEPT OF POROUS MEDIUM COMBUSTION FOR THE FUTURE CLEAN ENGINE

    Directory of Open Access Journals (Sweden)

    Ashok A Dhale

    2010-01-01

    Full Text Available At present, the emissions of internal combustion engine can only be improved by catalytic treatments of the exhaust gases. Such treatments, however, result in high costs and relatively low conversion efficiency. This suggests that a new combustion technique should be developed to yield improved primary combustion processes inside the engine with drastically reduced exhaust gas emissions. To fulfill all requirements, Dr. Franz Drust has proposed a new combustion concept to perform homogenous combustion in internal combustion engines. This concept used the porous medium combustion technique and is called "PM-engine". It is shown that the PM combustion technique can be applied to internal combustion engines. Theoretical considerations are presented for internal combustion engines, indicating that an overall improvement in thermal efficiency can be achieved for the PM-engine. This is explained and general performance of the new PM-engines is demonstrated for a single cylinder, water cooled, direct injection diesel engine. Verification of experiments at primary stage is described that were carried out as a part of the present study.

  9. Urea-nitrate combustion synthesis of MgO/MgAl2O4 nanocatalyst used in biodiesel production from sunflower oil: Influence of fuel ratio on catalytic properties and performance

    International Nuclear Information System (INIS)

    Rahmani Vahid, Behgam; Haghighi, Mohammad

    2016-01-01

    Graphical abstract: As a base catalyst for biodiesel production, MgAl 2 O 4 spinel was successfully synthesized by combustion method with MgO, as the active phase, dispersed on the catalyst surface. The nanocatalysts were characterized by XRD, FESEM, EDX, BET-BJH, TGA and FTIR analyses, so as to optimize the concentration of urea (as fuel) in the combustion synthesis. Analyzing the effect of fuel ratio on the combustion synthesized MgAl 2 O 4 , it was revealed that the synthesized base catalyst with a fuel ratio of 1.5 was of the best specifications for biodiesel production process. Future researches may investigate the catalyst reusability and mild reaction conditions, so as to achieve more economical production of biodiesel. - Highlights: • Efficient synthesis of MgAl 2 O 4 spinel by solution combustion method. • Improvement of catalytic activity and stability by optimum ratio fuel. • Enhanced dispersion of MgO over MgAl 2 O 4 spinel. • Production of biodiesel over MgO/MgAl 2 O 4 at relatively mild reaction conditions. - Abstract: MgO/MgAl 2 O 4 nanocatalyst was synthesized by a simple, cost-effective and rapid method and used in biodiesel production from sunflower oil. MgAl 2 O 4 was synthesized by combustion method at different fuel ratios and then active phase of MgO was dispersed on the samples by impregnation method. The nanocatalysts were characterized by XRD, FESEM, EDX, BET-BJH, TGA and FTIR analyses, so as to optimize the concentration of urea (as fuel) in the combustion synthesis. The physicochemical properties of the nanocatalyst confirmed the sample synthesized with fuel ratio of 1.5 has high surface area, effective morphology and texture properties. Finally, in order to evaluate catalytic activity of the samples in biodiesel production, the transesterification reaction was performed. The results indicated the catalyst prepared by combustion synthesis with a fuel ratio of 1.5 was optimum specifications for biodiesel production. Using this

  10. Efficient low-temperature soot combustion by bimetallic Ag-Cu/SBA-15 catalysts.

    Science.gov (United States)

    Wen, Zhaojun; Duan, Xinping; Hu, Menglin; Cao, Yanning; Ye, Linmin; Jiang, Lilong; Yuan, Youzhu

    2018-02-01

    In this study, the effects of copper (Cu) additive on the catalytic performance of Ag/SBA-15 in complete soot combustion were investigated. The soot combustion performance of bimetallic Ag-Cu/SBA-15 catalysts was higher than that of monometallic Ag and Cu catalysts. The optimum catalytic performance was acquired with the 5Ag 1 -Cu 0.1 /SBA-15 catalyst, on which the soot combustion starts at T ig =225°C with a T 50 =285°C. The temperature for 50% of soot combustion was lower than that of conventional Ag-based catalysts to more than 50°C (Aneggi et al., 2009). Physicochemical characterizations of the catalysts indicated that addition of Cu into Ag could form smaller bimetallic Ag-Cu nanolloy particles, downsizing the mean particle size from 3.7nm in monometallic catalyst to 2.6nm in bimetallic Ag-Cu catalyst. Further experiments revealed that Ag and Cu species elicited synergistic effects, subsequently increasing the content of surface active oxygen species. As a result, the structure modifications of Ag by the addition of Cu strongly intensified the catalytic performance. Copyright © 2017. Published by Elsevier B.V.

  11. Study on modulation amplitude stabilization method for PEM based on FPGA in atomic magnetometer

    Science.gov (United States)

    Wang, Qinghua; Quan, Wei; Duan, Lihong

    2017-10-01

    Atomic magnetometer which uses atoms as sensitive elements have ultra-high precision and has wide applications in scientific researches. The photoelastic modulation method based on photoelastic modulator (PEM) is used in the atomic magnetometer to detect the small optical rotation angle of a linearly polarized light. However, the modulation amplitude of the PEM will drift due to the environmental factors, which reduces the precision and long-term stability of the atomic magnetometer. Consequently, stabilizing the PEM's modulation amplitude is essential to precision measurement. In this paper, a modulation amplitude stabilization method for PEM based on Field Programmable Gate Array (FPGA) is proposed. The designed control system contains an optical setup and an electrical part. The optical setup is used to measure the PEM's modulation amplitude. The FPGA chip, with the PID control algorithm implemented in it, is used as the electrical part's micro controller. The closed loop control method based on the photoelastic modulation detection system can directly measure the PEM's modulation amplitude in real time, without increasing the additional optical devices. In addition, the operating speed of the modulation amplitude stabilization control system can be greatly improved because of the FPGA's parallel computing feature, and the PID control algorithm ensures flexibility to meet different needs of the PEM's modulation amplitude set values. The Modelsim simulation results show the correctness of the PID control algorithm, and the long-term stability of the PEM's modulation amplitude reaches 0.35% in a 3-hour continuous measurement.

  12. Study on the correlation between the surface active species of Pd/cordierite monolithic catalyst and its catalytic activity

    International Nuclear Information System (INIS)

    Liao, Hengcheng; Zuo, Peiyuan; Liu, Miaomiao

    2016-01-01

    Two Pd-loading routes and three Pd-precursor matters were adopted to prepare Pd/(Ce,Y)O_2/γ-Al_2O_3/cordierite monolithic catalyst. The surface active species on the catalyst were characterized by XPS, and its catalytic activity for methane combustion was tested, and the dynamics of the catalytic combustion reaction was also discussed. Pd-loading route and Pd-precursor mass have a significant influence on the catalytic activity and surface active species. The sol dipping method is more advanced than the aqueous solution impregnating method. PN-sol catalyst, by sol dipping combined with Pd(NO_3)_2-precursor, has the best catalytic activity. The physical reason is the unique active Pd phase coexisting with active PdO phase on the surface, and thus the Pd3d_5_/_2 binding energy of surface species and apparent activation energy of combustion reaction are considerably decreased. The catalytic activity index, Pd3d_5_/_2 binding energy and apparent activation energy are highly tied each other with exponential relations.

  13. PEM fuel cell modeling and simulation using Matlab

    CERN Document Server

    Spiegel, Colleen

    2011-01-01

    Although, the basic concept of a fuel cell is quite simple, creating new designs and optimizing their performance takes serious work and a mastery of several technical areas. PEM Fuel Cell Modeling and Simulation Using Matlab, provides design engineers and researchers with a valuable tool for understanding and overcoming barriers to designing and building the next generation of PEM Fuel Cells. With this book, engineers can test components and verify designs in the development phase, saving both time and money.Easy to read and understand, this book provides design and modelling tips for

  14. Multivariable control system for dynamic PEM fuel cell model

    International Nuclear Information System (INIS)

    Tanislav, Vasile; Carcadea, Elena; Capris, Catalin; Culcer, Mihai; Raceanu, Mircea

    2010-01-01

    Full text: The main objective of this work was to develop a multivariable control system of robust type for a PEM fuel cells assembly. The system will be used in static and mobile applications for different values of power, generated by a fuel cell assembly of up to 10 kW. Intermediate steps were accomplished: a study of a multivariable control strategy for a PEM fuel cell assembly; a mathematic modeling of mass and heat transfer inside of fuel cell assembly, defining the response function to hydrogen and oxygen/air mass flow and inlet pressure changes; a testing stand for fuel cell assembly; experimental determinations of transient response for PEM fuel cell assembly, and more others. To define the multivariable control system for a PEM fuel cell assembly the parameters describing the system were established. Also, there were defined the generic mass and energy balance equations as functions of derivative of m i , in and m i , out , representing the mass going into and out from the fuel cell, while Q in is the enthalpy and Q out is the enthalpy of the unused reactant gases and heat produced by the product, Q dis is the heat dissipated to the surroundings, Q c is the heat taken away from the stack by active cooling and W el is the electricity generated. (authors)

  15. Design, Fabrication and Prototype testing of a Chip Integrated Micro PEM Fuel Cell Accumulator combined On-Board Range Extender

    International Nuclear Information System (INIS)

    Balakrishnan, A; Mueller, C; Reinecke, H

    2014-01-01

    In this work we present the design, fabrication and prototype testing of Chip Integrated Micro PEM Fuel Cell Accumulator (CIμ-PFCA) combined On-Board Range Extender (O-BRE). CIμ-PFCA is silicon based micro-PEM fuel cell system with an integrated hydrogen storage feature (palladium metal hydride), the run time of CIμ-PFCA is dependent on the stored hydrogen, and in order to extend its run time an O-BRE is realized (catalytic hydrolysis of chemical hydride, NaBH 4 . Combining the CIμ-PFCA and O-BRE on a system level have few important design requirements to be considered; hydrogen regulation, gas -liquid separator between the CIμ-PFCA and the O-RE. The usage of traditional techniques to regulate hydrogen (tubes), gas-liquid phase membranes (porous membrane separators) are less desirable in the micro domain, due to its space constraint. Our approach is to use a passive hydrogen regulation and gas-liquid phase separation concept; to use palladium membrane. Palladium regulates hydrogen by concentration diffusion, and its property to selectively adsorb only hydrogen is used as a passive gas-liquid phase separator. Proof of concept is shown by realizing a prototype system. The system is an assembly of CIμ-PFCA, palladium membrane and the O-BRE. The CIμ-PFCA consist of 2 individually processed silicon chips, copper supported palladium membrane realized by electroplating followed by high temperature annealing process under inter atmosphere and the O-BRE is realized out of a polymer substrate by micromilling process with platinum coated structures, which functions as a catalyst for the hydrolysis of NaBH 4 . The functionality of the assembled prototype system is demonstrated by the measuring a unit cell (area 1 mm 2 ) when driven by the catalytic hydrolysis of chemical hydride (NaBH 4 and the prototype system shows run time more than 15 hours

  16. UARS PEM Level 2 MEPS V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Particle Environment Monitor (PEM) level 2 Medium-Energy Particle Spectrometer (MEPS) daily product contains the electron and proton high-resolution spectral...

  17. Combustion, performance, and selective catalytic reduction of NOx for a diesel engine operated with combined tri fuel (H_2, CH_4, and conventional diesel)

    International Nuclear Information System (INIS)

    Abu-Jrai, Ahmad M.; Al-Muhtaseb, Ala'a H.; Hasan, Ahmad O.

    2017-01-01

    In this study, the effect of tri fuel (ULSD, H_2, and CH_4) operation under real exhaust gas conditions with different gaseous fuel compositions on the combustion characteristics, engine emissions, and selective catalytic reduction (SCR) after treatment was examined at low, medium, and high engine loads. Pt/Al_2O_3-SCR reactor was used and operated at different exhaust gas temperatures. Results revealed that at low load, the two gaseous fuels (H_2 and CH_4) have the same trend on combustion proccess, where both reduce the in-cylinder pressure and rate of heat release. At the high engine load there was a considerable influence appeared as an increase of the premixed combustion phase and a significant decrease of the total combustion duration. In terms of emissions, it was observed that at high engine load, fuels with high CH_4 content tend to reduce NOx formation, whereas, fuels with high H_2 content tend to reduce PM formation, moreover, combustion of tri fuel with 50:50 fuel mixture resulted in lower BSFC compared to the other ratios and hence, the best engine efficiency. The hydrocarbon-SCR catalyst has shown satisfactory performance in NOx reduction under real diesel exhaust gas in a temperature window of 180–280 °C for all engine loads. - Highlights: • Effect of tri fuel (ULSD, H_2, CH_4) on combustion and engine emissions was examined. • Fuel with high CH_4 content (H50-M50 and H25-M75) tend to reduce NOx formation. • Fuel with high H_2 content (H75-M25 and H50-M50) tend to reduce PM formation. • Increasing the percentage of H_2 in the feed gas improved the NO_x reduction. • The hydrocarbon-SCR catalyst has shown satisfactory performance in NO_x reduction.

  18. Theoretical and experimental studies on emissions from wood combustion

    Energy Technology Data Exchange (ETDEWEB)

    Skreiberg, Oeyvind

    1997-12-31

    This thesis discusses experiments on emissions from wood log combustion and single wood particle combustion, both caused by incomplete combustion and emissions of nitric and nitrous oxide, together with empirical and kinetic NO{sub x} modelling. Experiments were performed in three different wood stoves: a traditional stove, a staged air stove and a stove equipped with a catalytic afterburner. Ideally, biomass fuel does not give a net contribution to the greenhouse effect. However, incomplete combustion was found to result in significant greenhouse gas emissions. Empirical modelling showed the excess air ratio and the combustion chamber temperature to be the most important input variables controlling the total fuel-N to NO{sub x} conversion factor. As the result of an international round robin test of a wood stove equipped with a catalytic afterburner, particle emission measurements were found to be the best method to evaluate the environmental acceptability of the tested stove, since the particle emission level was least dependent of the national standards, test procedures and calculation procedures used. In batch single wood particle combustion experiments on an electrically heated small-scale fixed bed reactor the fuel-N to NO conversion factor varied between 0.11-0.86 depending on wood species and operating conditions. A parameter study and homogeneous kinetic modelling on a plug flow reactor showed that, depending on the combustion compliance in question, there is an optimum combination of primary excess air ratio, temperature and residence time that gives a maximum conversion of fuel-N to N{sub 2}. 70 refs., 100 figs., 26 tabs.

  19. Structured modelling and nonlinear analysis of PEM fuel cells; Strukturierte Modellierung und nichtlineare Analyse von PEM-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Hanke-Rauschenbach, R.

    2007-10-26

    In the first part of this work a model structuring concept for electrochemical systems is presented. The application of such a concept for the structuring of a process model allows it to combine different fuel cell models to form a whole model family, regardless of their level of detail. Beyond this the concept offers the opportunity to flexibly exchange model entities on different model levels. The second part of the work deals with the nonlinear behaviour of PEM fuel cells. With the help of a simple, spatially lumped and isothermal model, bistable current-voltage characteristics of PEM fuel cells operated with low humidified feed gases are predicted and discussed in detail. The cell is found to exhibit current-voltage curves with pronounced local extrema in a parameter range that is of practical interest when operated at constant feed gas flow rates. (orig.)

  20. deNOx catalysts for biomass combustion

    DEFF Research Database (Denmark)

    Kristensen, Steffen Buus

    The present thesis revolves around the challenges involved in removal of nitrogen oxides in biomass fired power plants. Nitrogen oxides are unwanted byproducts formed to some extent during almost any combustion. In coal fired plants these byproducts are removed by selective catalytic reduction......, however the alkali in biomass complicate matters. Alkali in biomass severely deactivates the catalyst used for the selective catalytic reduction in matter of weeks, hence a more alkali resistant catalyst is needed. In the thesis a solution to the problem is presented, the nano particle deNOx catalyst...

  1. Characterization of combustion synthesized zirconia powder by UV

    Indian Academy of Sciences (India)

    . The surface acidbase properties of these samples were also investigated by indicator titration method. The catalytic activity was probed with transfer hydrogenation reaction in liquid phase. It was found that combustion synthesized zirconia did ...

  2. Inverted Fuel Cell: Room-Temperature Hydrogen Separation from an Exhaust Gas by Using a Commercial Short-Circuited PEM Fuel Cell without Applying any Electrical Voltage.

    Science.gov (United States)

    Friebe, Sebastian; Geppert, Benjamin; Caro, Jürgen

    2015-06-26

    A short-circuited PEM fuel cell with a Nafion membrane has been evaluated in the room-temperature separation of hydrogen from exhaust gas streams. The separated hydrogen can be recovered or consumed in an in situ olefin hydrogenation when the fuel cell is operated as catalytic membrane reactor. Without applying an outer electrical voltage, there is a continuous hydrogen flux from the higher to the lower hydrogen partial pressure side through the Nafion membrane. On the feed side of the Nafion membrane, hydrogen is catalytically split into protons and electrons by the Pt/C electrocatalyst. The protons diffuse through the Nafion membrane, the electrons follow the short-circuit between the two brass current collectors. On the cathode side, protons and electrons recombine, and hydrogen is released. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Low concentration volatile organic pollutants removal in combined adsorber-desorber-catalytic reactor system

    Directory of Open Access Journals (Sweden)

    Arsenijević Zorana

    2008-01-01

    Full Text Available The removal of volatile organic compounds (VOCs from numerous emission sources is of crucial importance due to more rigorous demands on air quality. Different technologies can be used to treat the VOCs from effluent gases: absorption, physical adsorption, open flame combustion, thermal and catalytic incineration. Their appropriateness for the specific process depends on several factors such as efficiency, energy consumption, secondary pollution, capital investments etc. The distinctive features of the catalytic combustion are high efficiency and selectivity toward be­nign products, low energy consumption and absence of secondary polluti­on. The supported noble catalysts are widely used for catalytic incineration due to their low ignition temperatures and high thermal and chemical stability. In our combined system adsorption and desorption are applied in the spouted bed with draft tube (SBDT unit. The annular zone, loaded with sorbent, was divided in adsorption and desorption section. Draft tube enabled sorbent recirculation between sections. Combustion of desorbed gases to CO2 and water vapor are realized in additive catalytic reactor. This integrated device provided low concentrations VOCs removal with reduced energy consumption. Experiments were conducted on a pilot unit of 220 m3/h nominal capacity. The sorbent was activated carbon, type K81/B - Trayal Corporation, Krusevac. A sphere shaped commercial Pt/Al2O3 catalyst with "egg-shell" macro-distribution was used for the investigation of xylene deep oxidation. Within this paper the investigations of removal of xylene vapors, a typical pollutant in production of liquid pesticides, in combined adsorber/desorber/catalytic reactor system is presented.

  4. Effect of calcination temperature on the structure and performance of CeO{sub x}–MnO{sub x}/TiO{sub 2} nanoparticles for the catalytic combustion of chlorobenzene

    Energy Technology Data Exchange (ETDEWEB)

    He, Fei; Chen, Yong; Zhao, Pei; Liu, Shantang, E-mail: anliu123@hotmail.com [Wuhan Institute of Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering (China)

    2016-05-15

    In this study, MnO{sub x}/TiO{sub 2}, CeO{sub x}/TiO{sub 2}, and CeO{sub x}–MnO{sub x}/TiO{sub 2} catalysts were prepared by the homogeneous precipitation method. The effect of calcination temperature on the structure and catalytic performance of CeO{sub x}–MnO{sub x}/TiO{sub 2} mixed oxide catalyst in the catalytic combustion of chlorobenzene was investigated. The samples were characterized by X-ray diffraction, nitrogen adsorption–desorption, transmission electron microscopy, Raman spectra, hydrogen temperature-programmed reduction, and X-ray photoelectron spectroscopy. The results indicate that calcination significantly affect the activity of the prepared catalysts. When calcined at a low temperature such as 400 °C, Ce, and Mn species form a solid solution of MnCeO{sub x} in the catalyst, thus locating the O atoms in a perturbed chemical surrounding in the catalysts. This increases the mobility of the O atoms during the reaction, probably contributing to the highest catalytic activity of CeO{sub x}–MnO{sub x}/TiO{sub 2} among all the tested catalysts. However, a further increase in the calcination temperature decreased the performance of the catalyst for the catalytic combustion of chlorobenzene. This is probably because of a reduction in surface chemisorbed oxygen concentration, a decrease in the interface area between metal oxides and MnCeO{sub x} caused by the isolation of MnO{sub x} or CeO{sub 2} from MnCeO{sub x}, and a decrease in the specific surface area of CeO{sub x}–MnO{sub x}/TiO{sub 2} catalyst due to the sintering of catalyst.Graphical Abstract.

  5. A novel analytical analysis of PEM fuel cell

    International Nuclear Information System (INIS)

    Yazdi, Mohamad Zardoshtizade; Kalbasi, Mansour

    2010-01-01

    In this study, a quasi three-dimensional model was developed for a single proton exchange membrane (PEM) fuel cell. The model was used for a half-cell which includes the cathode gas channel, gas diffusion layer (GDL), cathode catalyst layer and membrane is modeled. This model includes mass transfer in the gas channel and GDL, electrochemistry reaction in cathode catalyst layer, and charge transfer in the membrane phase. These expressions were solved by analytical methods. An agglomerate approach was used to describe cathode catalyst layer. By using analytical solution, the expressions can predict the PEM fuel cell behavior in different conditions which is the advantage of this method.

  6. Removal of nitrogen compounds from gasification gas by selective catalytic or non-catalytic oxidation; Typpiyhdisteiden poisto kaasutuskaasusta selektiivisellae katalyyttisellae ja ei-katalyyttisellae hapetuksella

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T. [VTT Energy, Espoo (Finland)

    1996-12-01

    In gasification reactive nitrogenous compounds are formed from fuel nitrogen, which may form nitrogen oxides in gas combustion. In fluidized bed gasification the most important nitrogenous compound is ammonia (NH{sub 3}). If ammonia could be decomposed to N{sub 2} already before combustion, the emissions if nitrogen oxides could be reduced significantly. One way of increasing the decomposition rate of NH{sub 3} could be the addition of suitable reactants to the gas, which would react with NH{sub 3} and produce N{sub 2}. The aim of this research is to create basic information, which can be used to develop a new method for removal of nitrogen compounds from gasification gas. The reactions of nitrogen compounds and added reactants are studied in reductive atmosphere in order to find conditions, in which nitrogen compounds can be oxidized selectively to N{sub 2}. The project consists of following subtasks: (1) Selective non-catalytic oxidation (SNCO): Reactions of nitrogen compounds and oxidizers in the gas phase, (2) Selective catalytic oxidation (SCO): Reactions of nitrogen compounds and oxidizers on catalytically active surfaces, (3) Kinetic modelling of experimental results in co-operation with the Combustion Chemistry Research Group of Aabo Akademi University. The most important finding has been that NH{sub 3} can be made to react selectively with the oxidizers even in the presence of large amounts of CO and H{sub 2}. Aluminium oxides were found to be the most effective materials promoting selectivity. (author)

  7. Investigation of low glass transition temperature on COTS PEM's reliability for space applications

    Science.gov (United States)

    Sandor, M.; Agarwal, S.; Peters, D.; Cooper, M. S.

    2003-01-01

    Plastic Encapsulated Microelectronics (PEM) reliability is affected by many factors. Glass transition temperature (Tg) is one such factor. In this presentation issues relating to PEM reliability and the effect of low glass transition temperature epoxy mold compounds are presented.

  8. Nanoparticle emissions from combustion engines

    CERN Document Server

    Merkisz, Jerzy

    2015-01-01

     This book focuses on particulate matter emissions produced by vehicles with combustion engines. It describes the physicochemical properties of the particulate matter, the mechanisms of its formation and its environmental impacts (including those on human beings). It discusses methods for measuring particulate mass and number, including the state-of-the-art in Portable Emission Measurement System (PEMS) equipment for measuring the exhaust emissions of both light and heavy-duty vehicles and buses under actual operating conditions. The book presents the authors’ latest investigations into the relations between particulate emission (mass and number) and engine operating parameters, as well as their new findings obtained through road tests performed on various types of vehicles, including those using diesel particulate filter regeneration. The book, which addresses the needs of academics and professionals alike, also discusses relevant European regulations on particulate emissions and highlights selected metho...

  9. Reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ersoz, Atilla; Olgun, Hayati [TUBITAK Marmara Research Center, Institute of Energy, Gebze, 41470 Kocaeli (Turkey); Ozdogan, Sibel [Marmara University Faculty of Engineering, Goztepe, 81040 Istanbul (Turkey)

    2006-03-09

    PEM fuel cell systems are considered as a sustainable option for the future transport sector in the future. There is great interest in converting current hydrocarbon based transportation fuels into hydrogen rich gases acceptable by PEM fuel cells on-board of vehicles. In this paper, we compare the results of our simulation studies for 100kW PEM fuel cell systems utilizing three different major reforming technologies, namely steam reforming (SREF), partial oxidation (POX) and autothermal reforming (ATR). Natural gas, gasoline and diesel are the selected hydrocarbon fuels. It is desired to investigate the effect of the selected fuel reforming options on the overall fuel cell system efficiency, which depends on the fuel processing, PEM fuel cell and auxiliary system efficiencies. The Aspen-HYSYS 3.1 code has been used for simulation purposes. Process parameters of fuel preparation steps have been determined considering the limitations set by the catalysts and hydrocarbons involved. Results indicate that fuel properties, fuel processing system and its operation parameters, and PEM fuel cell characteristics all affect the overall system efficiencies. Steam reforming appears as the most efficient fuel preparation option for all investigated fuels. Natural gas with steam reforming shows the highest fuel cell system efficiency. Good heat integration within the fuel cell system is absolutely necessary to achieve acceptable overall system efficiencies. (author)

  10. Reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Science.gov (United States)

    Ersoz, Atilla; Olgun, Hayati; Ozdogan, Sibel

    PEM fuel cell systems are considered as a sustainable option for the future transport sector in the future. There is great interest in converting current hydrocarbon based transportation fuels into hydrogen rich gases acceptable by PEM fuel cells on-board of vehicles. In this paper, we compare the results of our simulation studies for 100 kW PEM fuel cell systems utilizing three different major reforming technologies, namely steam reforming (SREF), partial oxidation (POX) and autothermal reforming (ATR). Natural gas, gasoline and diesel are the selected hydrocarbon fuels. It is desired to investigate the effect of the selected fuel reforming options on the overall fuel cell system efficiency, which depends on the fuel processing, PEM fuel cell and auxiliary system efficiencies. The Aspen-HYSYS 3.1 code has been used for simulation purposes. Process parameters of fuel preparation steps have been determined considering the limitations set by the catalysts and hydrocarbons involved. Results indicate that fuel properties, fuel processing system and its operation parameters, and PEM fuel cell characteristics all affect the overall system efficiencies. Steam reforming appears as the most efficient fuel preparation option for all investigated fuels. Natural gas with steam reforming shows the highest fuel cell system efficiency. Good heat integration within the fuel cell system is absolutely necessary to achieve acceptable overall system efficiencies.

  11. Plastic Encapsulated Microcircuits (PEMs) Reliability Guide

    Science.gov (United States)

    Sandor, M.

    2000-01-01

    It is reported by some users and has been demonstrated by others via testing and qualification that the quality and reliability of plastic-encapsulated microcircuits (PEMs) manufactured today are excellent in commercial applications and closely equivalent, and in some cases superior to their hemetic counterparts.

  12. Influence of Ce-precursor and fuel on structure and catalytic activity of combustion synthesized Ni/CeO2 catalysts for biogas oxidative steam reforming

    International Nuclear Information System (INIS)

    Vita, Antonio; Italiano, Cristina; Fabiano, Concetto; Laganà, Massimo; Pino, Lidia

    2015-01-01

    A series of nanosized Ni/CeO 2 catalysts were prepared by Solution Combustion Synthesis (SCS) varying the fuel (oxalyldihydrazide, urea, carbohydrazide and glycerol), the cerium precursor (cerium nitrate and cerium ammonium nitrate) and the nickel loading (ranging between 3.1 and 15.6 wt%). The obtained powders were characterized by X-ray Diffraction (XRD), N 2 -physisorption, CO-chemisorption, Temperature Programmed Reduction (H 2 -TPR) and Scanning Electron Microscopy (SEM). The catalytic activity towards the Oxy Steam Reforming (OSR) of biogas was assessed. The selected operating variables have a strong influence on the nature of combustion and, in turn, on the morphological and structural properties of the synthesized catalysts. Particularly, the use of urea allows to improve nickel dispersion, surface area, particle size and reducibility of the catalysts, affecting positively the biogas OSR performances. - Highlights: • Synthesis of Ni/CeO 2 nanopowders by quick and easy solution combustion synthesis. • The fuel and precursor drive the structural and morphological properties of the catalysts. • The use of urea as fuel allows to improve nickel dispersion, surface area and particle size. • Ni/CeO 2 (7.8 wt% of Ni loading) powders synthesized by urea route exhibits high performances for the biogas OSR process

  13. Laser Ablation Increases PEM/Catalyst Interfacial Area

    Science.gov (United States)

    Whitacre, Jay; Yalisove, Steve

    2009-01-01

    An investigational method of improving the performance of a fuel cell that contains a polymer-electrolyte membrane (PEM) is based on the concept of roughening the surface of the PEM, prior to deposition of a thin layer of catalyst, in order to increase the PEM/catalyst interfacial area and thereby increase the degree of utilization of the catalyst. The roughening is done by means of laser ablation under carefully controlled conditions. Next, the roughened membrane surface is coated with the thin layer of catalyst (which is typically platinum), then sandwiched between two electrode/catalyst structures to form a membrane/ele c t - rode assembly. The feasibility of the roughening technique was demonstrated in experiments in which proton-conducting membranes made of a perfluorosulfonic acid-based hydrophilic, protonconducting polymer were ablated by use of femtosecond laser pulses. It was found that when proper combinations of the pulse intensity, pulse-repetition rate, and number of repetitions was chosen, the initially flat, smooth membrane surfaces became roughened to such an extent as to be converted to networks of nodules interconnected by filaments (see Figure 1). In further experiments, electrochemical impedance spectroscopy (EIS) was performed on a pristine (smooth) membrane and on two laser-roughened membranes after the membranes were coated with platinum on both sides. Some preliminary EIS data were interpreted as showing that notwithstanding the potential for laser-induced damage, the bulk conductivities of the membranes were not diminished in the roughening process. Other preliminary EIS data (see Figure 2) were interpreted as signifying that the surface areas of the laser-roughened membranes were significantly greater than those of the smooth membrane. Moreover, elemental analyses showed that the sulfur-containing molecular groups necessary for proton conduction remained intact, even near the laser-roughened surfaces. These preliminary results can be taken

  14. Numerical Investigations of the Influencing Factors on a Rotary Regenerator-Type Catalytic Combustion Reactor

    Directory of Open Access Journals (Sweden)

    Zhenkun Sang

    2018-04-01

    Full Text Available Ultra-low calorific value gas (ULCVG not only poses a problem for environmental pollution, but also createsa waste of energy resources if not utilized. A novel reactor, a rotary regenerator-type catalytic combustion reactor (RRCCR, which integrates the functions of a regenerator and combustor into one component, is proposed for the elimination and utilization of ULCVG. Compared to reversal-flow reactor, the operation of the RRCCR is achieved by incremental rotation rather than by valve control, and it has many outstanding characteristics, such as a compact structure, flexible application, and limited energy for circulation. Due to the effects of the variation of the gas flow and concentration on the performance of the reactor, different inlet velocities and concentrations are analyzed by numerical investigations. The results reveal that the two factors have a major impact on the performance of the reactor. The performance of the reactor is more sensitive to the increase of velocity and the decrease of methane concentration. When the inlet concentration (2%vol. is reduced by 50%, to maintain the methane conversion over 90%, the inlet velocity can be reduced by more than three times. Finally, the highly-efficient and stable operating envelope of the reactor is drawn.

  15. Development of coincidence processing module for PEM

    International Nuclear Information System (INIS)

    Feng Baotong; Shuai Lei; Li Ke

    2011-01-01

    For the breast cancer diagnosis and therapy, a prototype of positron emission mammography (PEM) was developed in Institute of High Energy Physics, Chinese Academy of Sciences. In this paper, the design of coincidence processing module (CPM) for this PEM was presented. Both the hardware architecture and the software logic were introduced. In this design, the CPM used the Rocket IO fast interface in FPGA and fiber technology to acquire the preprocessed data from the continuous sampling module (CSM) and then selected the valid event with the coincidence timing window method, which was performed in the FPGA on the daughter board. The CPM transmits the processed data to host computer via gigabit Ethernet. The whole system was controlled by CAN bus. The primary tests indicate that the performance of this design is good. (authors)

  16. A Frequency-Domain Adaptive Filter (FDAF) Prediction Error Method (PEM) Framework for Double-Talk-Robust Acoustic Echo Cancellation

    DEFF Research Database (Denmark)

    Gil-Cacho, Jose M.; van Waterschoot, Toon; Moonen, Marc

    2014-01-01

    to the FDAF-PEM-AFROW algorithm. We show that FDAF-PEM-AFROW is by construction related to the best linear unbiased estimate (BLUE) of the echo path. We depart from this framework to show an improvement in performance with respect to other adaptive filters minimizing the BLUE criterion, namely the PEM......In this paper, we propose a new framework to tackle the double-talk (DT) problem in acoustic echo cancellation (AEC). It is based on a frequency-domain adaptive filter (FDAF) implementation of the so-called prediction error method adaptive filtering using row operations (PEM-AFROW) leading...... regularization (VR) algorithms. The FDAF-PEM-AFROW versions significantly outperform the original versions in every simulation. In terms of computational complexity, the FDAF-PEM-AFROW versions are themselves about two orders of magnitude cheaper than the original versions....

  17. A multi-phase, multi-component PEM fuel cell model. Paper no. IGEC-1-051

    International Nuclear Information System (INIS)

    Baschuk, J.J.; Li, X.

    2005-01-01

    'Full text:' Mathematical modeling is an important tool for PEM fuel cell commercialization. Mathematical models can illustrate the effect of the different processes on the overall performance of a PEM fuel cell; thus, mathematical models can be used to as a design tool to find optimal designs and operating conditions. A general formulation for a comprehensive fuel cell model, based on the conservation principle and volume-averaging, is presented. The model formulation includes the electro-chemical reactions, proton migration, and the mass transport of the gaseous reactants and liquid water. Additionally, the model formulation can be applied to all regions of the PEM fuel cell: the bipolar plates, gas flow channels, electrode backing, catalyst, and polymer electrolyte layers. Numerical results, showing the effect of water flooding on PEM fuel cell performance, are presented. (author)

  18. PEM fuel cell monitoring system

    Science.gov (United States)

    Meltser, Mark Alexander; Grot, Stephen Andreas

    1998-01-01

    Method and apparatus for monitoring the performance of H.sub.2 --O.sub.2 PEM fuel cells. Outputs from a cell/stack voltage monitor and a cathode exhaust gas H.sub.2 sensor are corrected for stack operating conditions, and then compared to predetermined levels of acceptability. If certain unacceptable conditions coexist, an operator is alerted and/or corrective measures are automatically undertaken.

  19. Production of hydrogen using composite membrane in PEM water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Santhi priya, E.L.; Mahender, C.; Mahesh, Naga; Himabindu, V. [Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad-500 085, A.P (India); Anjaneyulu, Y. [Director, TLGVRC, JSU Box 18739, JSU, Jackson, MS 32917-0939 (United States)

    2012-07-01

    Electrolysis of water is the best known technology till today to produce hydrogen. The only practical way to produce hydrogen using renewable energy sources is by proton exchange membrane (PEM) water electrolysis. The most commonly used PEM membrane is Nafion. Composite membrane of TiO2 is synthesized by casting method using Nafion 5wt% solution. RuO2 is used as anode and 10 wt% Pd on activated carbon is used as cathode in the water electrolyser system. The performance of this Composite membrane is studied by varying voltage range 1.8 to 2.6V with respect to hydrogen yield and at current density 0.1, 0.2, 0.3, 0.4, and 0.5(A cm-2). This Composite membrane has been tested using in-house fabricated single cell PEM water electrolysis cell with 10cm2 active area at temperatures ranging from 30,45,65 850c and at 1 atmosphere pressure.

  20. Compendium of NASA data base for the global tropospheric experiment's Pacific Exploratory Mission West-B (PEM West-B)

    Science.gov (United States)

    Gregory, Gerald L.; Scott, A. Donald, Jr.

    1995-01-01

    This compendium describes aircraft data that are available from NASA's Pacific Exploratory Mission West-B (PEM West-B). PEM West is a component of the International Global Atmospheric Chemistry's (IGAC) East Asia/North Pacific Regional Study (APARE) project. Objectives of PEM West are to investigate the atmospheric chemistry of ozone over the northwest Pacific -- natural budgets and the impact of anthropogenic/continental sources; and to investigate sulfur chemistry -- continental and marine sulfur sources. The PEM West program encompassed two expeditions. PEM West-A was conducted in September 1991 during which the predominance of tropospheric air was from mid-Pacific (marine) regions, but (at times) was modified by Asian outflow. PEM West-B was conducted during February 1994, a period characterized by maximum Asian outflow. Results from PEM West-A and B are public domain. PEM West-A data are summarized in NASA TM 109177 (published February 1995). Flight experiments were based at Guam, Hong Kong, and Japan. This document provides a representation of NASA DC-8 aircraft data that are available from NASA Langley's Distributed Active Archive Center (DAAC). The DAAC includes numerous other data such as meteorological and modeling products, results from surface studies, satellite observations, and sonde releases.

  1. Compendium of NASA data base for the Global Tropospheric Experiment's Pacific Exploratory Mission West-A (PEM West-A)

    Science.gov (United States)

    Gregory, G. L.; Scott, A. D., Jr.

    1995-01-01

    This compendium describes aircraft data that are available from NASA's Pacific Exploratory Mission West-A (PEM West-A). PEM West is a component of the International Global Atmospheric Chemistry's (IGAC) East Asia/North Pacific Regional Study (APARE) project. The PEM- West program encompassed two expeditions to study contrasting meteorological regimes in the Pacific. Objectives of PEM West are to investigate the atmospheric chemistry of ozone over the northwest Pacific -- natural budgets and the impact of anthropogenic sources; and to investigate sulfur chemistry -- continental versus marine sulfur sources. PEM West-A was conducted in September 1991 during which the predominance of tropospheric air is from the mid-Pacific (marine) regions, but (at times) is modified/mixed with Asian continental outflow. PEM West-B was conducted during February 1994, a period characterized by maximum continental outflow. PEM-B data (not included) will become public domain during the Summer of 1995. PEM West-A flight experiments were based at Japan, Hong Kong, and Guam. This document provides a representation of NASA DC-8 aircraft data that are available from NASA Langley's Distributed Active Archive Center (DAAC), which include numerous data such as meteorological observations, modeling products, results from surface studies, satellite observations, and sonde releases.

  2. Selective catalytic oxidation of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J; Koljonen, T [VTT Energy, Espoo (Finland)

    1997-12-31

    In the combustion of fossil fuels, the principal source of nitrogen oxides is nitrogen bound in the fuel structure. In gasification, a large part of fuel nitrogen forms NH{sub 3}, which may form nitrogen oxides during gas combustion. If NH{sub 3} and other nitrogen species could be removed from hot gas, the NO emission could be considerably reduced. However, relatively little attention has been paid to finding new means of removing nitrogen compounds from the hot gasification gas. The possibility of selectively oxidizing NH{sub 3} to N{sub 2} in the hot gasification has been studied at VTT Energy. The largest NH{sub 3} reductions have been achieved by catalytic oxidation on aluminium oxides. (author) (4 refs.)

  3. Selective catalytic oxidation of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T. [VTT Energy, Espoo (Finland)

    1996-12-31

    In the combustion of fossil fuels, the principal source of nitrogen oxides is nitrogen bound in the fuel structure. In gasification, a large part of fuel nitrogen forms NH{sub 3}, which may form nitrogen oxides during gas combustion. If NH{sub 3} and other nitrogen species could be removed from hot gas, the NO emission could be considerably reduced. However, relatively little attention has been paid to finding new means of removing nitrogen compounds from the hot gasification gas. The possibility of selectively oxidizing NH{sub 3} to N{sub 2} in the hot gasification has been studied at VTT Energy. The largest NH{sub 3} reductions have been achieved by catalytic oxidation on aluminium oxides. (author) (4 refs.)

  4. High temperature PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianlu; Xie, Zhong; Zhang, Jiujun; Tang, Yanghua; Song, Chaojie; Navessin, Titichai; Shi, Zhiqing; Song, Datong; Wang, Haijiang; Wilkinson, David P.; Liu, Zhong-Sheng; Holdcroft, Steven [Institute for Fuel Cell Innovation, National Research Council Canada, Vancouver, BC (Canada V6T 1W5)

    2006-10-06

    There are several compelling technological and commercial reasons for operating H{sub 2}/air PEM fuel cells at temperatures above 100{sup o}C. Rates of electrochemical kinetics are enhanced, water management and cooling is simplified, useful waste heat can be recovered, and lower quality reformed hydrogen may be used as the fuel. This review paper provides a concise review of high temperature PEM fuel cells (HT-PEMFCs) from the perspective of HT-specific materials, designs, and testing/diagnostics. The review describes the motivation for HT-PEMFC development, the technology gaps, and recent advances. HT-membrane development accounts for {approx}90% of the published research in the field of HT-PEMFCs. Despite this, the status of membrane development for high temperature/low humidity operation is less than satisfactory. A weakness in the development of HT-PEMFC technology is the deficiency in HT-specific fuel cell architectures, test station designs, and testing protocols, and an understanding of the underlying fundamental principles behind these areas. The development of HT-specific PEMFC designs is of key importance that may help mitigate issues of membrane dehydration and MEA degradation. (author)

  5. Influence of Ce-precursor and fuel on structure and catalytic activity of combustion synthesized Ni/CeO{sub 2} catalysts for biogas oxidative steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Vita, Antonio, E-mail: antonio.vita@itae.cnr.it; Italiano, Cristina; Fabiano, Concetto; Laganà, Massimo; Pino, Lidia

    2015-08-01

    A series of nanosized Ni/CeO{sub 2} catalysts were prepared by Solution Combustion Synthesis (SCS) varying the fuel (oxalyldihydrazide, urea, carbohydrazide and glycerol), the cerium precursor (cerium nitrate and cerium ammonium nitrate) and the nickel loading (ranging between 3.1 and 15.6 wt%). The obtained powders were characterized by X-ray Diffraction (XRD), N{sub 2}-physisorption, CO-chemisorption, Temperature Programmed Reduction (H{sub 2}-TPR) and Scanning Electron Microscopy (SEM). The catalytic activity towards the Oxy Steam Reforming (OSR) of biogas was assessed. The selected operating variables have a strong influence on the nature of combustion and, in turn, on the morphological and structural properties of the synthesized catalysts. Particularly, the use of urea allows to improve nickel dispersion, surface area, particle size and reducibility of the catalysts, affecting positively the biogas OSR performances. - Highlights: • Synthesis of Ni/CeO{sub 2} nanopowders by quick and easy solution combustion synthesis. • The fuel and precursor drive the structural and morphological properties of the catalysts. • The use of urea as fuel allows to improve nickel dispersion, surface area and particle size. • Ni/CeO{sub 2} (7.8 wt% of Ni loading) powders synthesized by urea route exhibits high performances for the biogas OSR process.

  6. DOD Residential Proton Exchange Membrane (PEM) Fuel Cell Demonstration Program. Volume 2. Summary of Fiscal Year 2001-2003 Projects

    Science.gov (United States)

    2005-09-01

    produced many of the Beatles 1970s recordings. This facility was selected to host the UK PEM demonstration project from a selection of four potential sites...funded the Department of Defense (DOD) Residential PEM Demonstration Project to demonstrate domestically-produced, residential Proton Exchange Membrane...PEM) fuel cells at DOD Facilities. The objectives were to: (1) assess PEM fuel cells’ role in supporting sustainability at military installations

  7. Physical properties, evaporation and combustion characteristics of nanofluid-type fuels

    OpenAIRE

    Tanvir, Saad

    2016-01-01

    Nanofluids are liquids with stable suspension of nanoparticles. Limited studies in the past have shown that both energetic and catalytic nanoparticles once mixed with traditional liquid fuels can be advantageous in combustion applications, e.g., increased energy density and shortened ignition delay. Contradictions in existing literature, scarcity of experimental data and lack of understanding on how the added nanoparticles affect the physical properties as well as combustion characteristics o...

  8. Commercialization of proton exchange membrane (PEM) fuel cell technology

    International Nuclear Information System (INIS)

    Goel, N.; Pant, A.; Sera, G.

    1995-01-01

    The MCTTC performed a market assessment for PEM Fuel Cells for terrestrial applications for the Center for Space Power (CSP). The purpose of the market assessment was to gauge the market and commercial potential for PEM fuel cell technology. Further, the market assessment was divided into subsections of technical and market overview, competitive environment, political environment, barriers to market entry, and keys to market entry. The market assessment conducted by the MCTTC involved both secondary and primary research. The primary target markets for PEM fuel cells were transportation and utilities in the power range of 10 kW to 100 kW. The fuel cell vehicle market size was estimated under a pessimistic scenario and an optimistic scenario. The estimated size of the fuel cell vehicle market in dollar terms for the year 2005 is $17.3 billion for the pessimistic scenario and $34.7 billion for the optimistic scenario. The fundamental and applied research funded and conducted by the National Aeronautics and Space Administration (NASA) and DOE in the area of fuel cells presents an excellent opportunity to commercialize dual-use technology and enhance U.S. business competitiveness. copyright 1995 American Institute of Physics

  9. Investigation of a novel concept for hydrogen production by PEM water electrolysis integrated with multi-junction solar cells

    International Nuclear Information System (INIS)

    Ferrero, Domenico; Santarelli, Massimo

    2017-01-01

    Highlights: • A 2D model of a PEM water electrolyzer is developed and validated. • A novel system integrating PEM and multi-junction solar cells is proposed. • The model is applied to the simulation of the novel system. • The integration of PEM and MJ cells enhances the hydrogen production efficiency. - Abstract: A 2D finite element model of a high-pressure PEM water electrolyzer is developed and validated over experimental data obtained from a demonstration prototype. The model includes the electrochemical, fluidic and thermal description of the repeating unit of a PEM electrolyzer stack. The model is applied to the simulation of a novel system composed by a high-temperature, high-pressure PEM electrochemical cell coupled with a photovoltaic multi-junction solar cell installed in a solar concentrator. The thermo-electrochemical characterization of the solar-driven PEM electrolysis system is presented and the advantages of the high-temperature operation and of the direct coupling of electrolyzer and solar cell are assessed. The results show that the integration of the multi-junction cell enhances the performance of the electrolyzer and allows to achieve higher system efficiency compared to separated photovoltaic generation and hydrogen production by electrolysis.

  10. UARS PEM Level 2 AXIS 1 V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The UARS Particle Environment Monitor (PEM) level 2 Atmosphere X-Ray Imaging Spectrometer (AXIS) unit 1 daily product contains the X-ray high-resolution spectral...

  11. UARS PEM Level 2 AXIS 2 V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The UARS Particle Environment Monitor (PEM) level 2 Atmosphere X-Ray Imaging Spectrometer (AXIS) unit 2 daily product contains the X-ray high-resolution spectral...

  12. Combustion Synthesis Of Ultralow-density Nanoporous Gold Foams

    Energy Technology Data Exchange (ETDEWEB)

    Tappan, Bruce C [Los Alamos National Laboratory; Mueller, Alex H [Los Alamos National Laboratory; Steiner, Stephen A [Los Alamos National Laboratory; Luther, Erik P [Los Alamos National Laboratory

    2008-01-01

    A new synthetic pathway for producing nanoporous gold monoliths through combustion synthesis from Au bistetrazoJeamine complexes has been demonstrated. Applications of interest for Au nanofoams include new substrates for nanoparticle-mediated catalysis, embedded antennas, and spectroscopy. Integrated support-and-catalystin-one nanocomposites prepared through combustion synthesis of mixed AuBTA/metal oxide pellets would also be an interesting technology approach for low-cost in-line catalytic conversion media. Furthermore, we envision preparation of ultrahigh surface area gold electrodes for application in electrochemical devices through this method.

  13. Combustion of hydrogen-air in micro combustors with catalytic Pt layer

    Energy Technology Data Exchange (ETDEWEB)

    Yang Wang; Zhijun Zhou; Weijuan Yang; Junhu Zhou; Jianzhong Liu; Zhihua Wang; Cen, Kefa [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang (China)

    2010-06-15

    Micro power generators have high power density. However, their key components micro combustors have low stability. In this experiment, catalyst is applied to improve the stability. The catalytic micro combustor is made from an alumina ceramic tube. It has inner diameter of 1 mm, outer diameter of 2.02 mm and length of 24.5 mm. It is prepared through impregnation of aqueous solution of H{sub 2}PtCl{sub 6}. The flammability limits and surface temperatures under different operation conditions are measured. The flow rates range from 0.08 to 0.4 L/min. According to the experimental results, catalyst is effective to inhibit extinction. For example, At 0.8 L/min, the stability limit is 0.193-14.9 in the non-catalytic combustor. After applying catalyst, the lean limit is near 0, and the rich limit is 29.3. But catalyst is less effective to inhibit blow out. Increasing flow rates also inhibits extinction. In the non-catalytic combustor, while the flow rates increase from 0.08 to 0.2 L/min, the lean stability limit decreases from 0.193 to 0.125. The experimental results indicate that catalyst induces shift downstream in the stoichiometric and rich cases. The numeric simulation verifies that the heterogeneous reaction weakens the homogeneous reaction through consuming fuels. Thus, the insufficient heat recirculation makes the reaction region shift downstream. However, lean mixture has intense reaction in the catalytic combustor. It is attributed to the high mass diffusion and low thermal diffusion of lean mixture. (author)

  14. Combustion of hydrogen-air in micro combustors with catalytic Pt layer

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yang; Zhou Zhijun [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang (China); Yang Weijuan, E-mail: 10508107@zju.edu.c [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang (China); Zhou Junhu; Liu Jianzhong; Wang Zhihua; Cen Kefa [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang (China)

    2010-06-15

    Micro power generators have high power density. However, their key components micro combustors have low stability. In this experiment, catalyst is applied to improve the stability. The catalytic micro combustor is made from an alumina ceramic tube. It has inner diameter of 1 mm, outer diameter of 2.02 mm and length of 24.5 mm. It is prepared through impregnation of aqueous solution of H{sub 2}PtCl{sub 6}. The flammability limits and surface temperatures under different operation conditions are measured. The flow rates range from 0.08 to 0.4 L/min. According to the experimental results, catalyst is effective to inhibit extinction. For example, At 0.8 L/min, the stability limit is 0.193-14.9 in the non-catalytic combustor. After applying catalyst, the lean limit is near 0, and the rich limit is 29.3. But catalyst is less effective to inhibit blow out. Increasing flow rates also inhibits extinction. In the non-catalytic combustor, while the flow rates increase from 0.08 to 0.2 L/min, the lean stability limit decreases from 0.193 to 0.125. The experimental results indicate that catalyst induces shift downstream in the stoichiometric and rich cases. The numeric simulation verifies that the heterogeneous reaction weakens the homogeneous reaction through consuming fuels. Thus, the insufficient heat recirculation makes the reaction region shift downstream. However, lean mixture has intense reaction in the catalytic combustor. It is attributed to the high mass diffusion and low thermal diffusion of lean mixture.

  15. Combustion of hydrogen-air in micro combustors with catalytic Pt layer

    International Nuclear Information System (INIS)

    Wang Yang; Zhou Zhijun; Yang Weijuan; Zhou Junhu; Liu Jianzhong; Wang Zhihua; Cen Kefa

    2010-01-01

    Micro power generators have high power density. However, their key components micro combustors have low stability. In this experiment, catalyst is applied to improve the stability. The catalytic micro combustor is made from an alumina ceramic tube. It has inner diameter of 1 mm, outer diameter of 2.02 mm and length of 24.5 mm. It is prepared through impregnation of aqueous solution of H 2 PtCl 6 . The flammability limits and surface temperatures under different operation conditions are measured. The flow rates range from 0.08 to 0.4 L/min. According to the experimental results, catalyst is effective to inhibit extinction. For example, At 0.8 L/min, the stability limit is 0.193-14.9 in the non-catalytic combustor. After applying catalyst, the lean limit is near 0, and the rich limit is 29.3. But catalyst is less effective to inhibit blow out. Increasing flow rates also inhibits extinction. In the non-catalytic combustor, while the flow rates increase from 0.08 to 0.2 L/min, the lean stability limit decreases from 0.193 to 0.125. The experimental results indicate that catalyst induces shift downstream in the stoichiometric and rich cases. The numeric simulation verifies that the heterogeneous reaction weakens the homogeneous reaction through consuming fuels. Thus, the insufficient heat recirculation makes the reaction region shift downstream. However, lean mixture has intense reaction in the catalytic combustor. It is attributed to the high mass diffusion and low thermal diffusion of lean mixture.

  16. Successful design and application of SNCR parallel to combustion modification

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dongxian; Tang, Leping; Shao, Xiaozhen; Meng, Derun; Li, Hongjian [Tongfang Environment CO., LTD., Beijing (China); Zhou, Wei; Xu, Guang [GE Energy, Anaheim, CA (United States)

    2013-07-01

    Various De-NOx methods have been recently adopted in China to control NOx emissions including Selective Non-Catalytic Reaction (SNCR) technology. Usually, the design of SNCR system is carried out after the combustion modification technologies, such as low NOx burner (LNB) and over fire air (OFA), have already been installed and in operation. This article discusses how to design the SNCR system parallel to the combustion modification. The SNCR process design consists of three steps: (1) boiler baseline test, (2) computational fluid dynamics simulation (CFD) facilitated design and (3) SNCR system performance predictions and optimizations. The first step is to conduct boiler baseline test to characterize the boiler operating conditions at a load range. The test data can also be used to calibrate the CFD model. The second step is to develop a three-dimensional boiler coal combustion CFD model to simulate the operation of the boilers at both baseline and post combustion modification conditions. The simulation reveals velocity, temperature and combustible distributions in the furnace. The last step is to determine the position and numbers of the injectors for SNCR reagent. The final field tests upon the project completion have shown that the average SNCR De-NOx efficiency has reached 35.1% with the maximum removal efficiency of 45% on full load. The project also couples the SNCR and SCR (Selective Catalytic Reduction) technologies. The combined removal efficiency of combustion modifications, SNCR and SCR is higher than 82%. This paper shows a successful example for retrofitting aged power-generating units with limited space.

  17. TOXIC SUBSTANCES FROM COAL COMBUSTION-A COMPREHENSIVE ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    C.L. Senior; F. Huggins; G.P. Huffman; N. Shah; N. Yap; J.O.L. Wendt; W. Seames; M.R. Ames; A.F. Sarofim; S. Swenson; J.S. Lighty; A. Kolker; R. Finkelman; C.A. Palmer; S.J. Mroczkowski; J.J. Helble; R. Mamani-Paco; R. Sterling; G. Dunham; S. Miller

    2001-06-30

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the National Energy Technology Laboratory (NETL), the Electric Power Research Institute, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NOx combustion systems, and new power generation plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). The work discussed in this report covers the Phase II program. Five coals were studied (three in Phase I and two new ones in Phase II). In this work UK has used XAFS and Moessbauer spectroscopies to characterize elements in project coals. For coals, the principal use was to supply direct information about certain hazardous and other key elements (iron) to complement the more complete indirect investigation of elemental modes of occurrence being carried out by colleagues at USGS. Iterative selective leaching using ammonium acetate, HCl, HF, and HNO3, used in conjunction with mineral identification/quantification, and microanalysis of individual mineral grains, has allowed USGS to delineate modes of occurrence for 44 elements. The Phase II coals show rank-dependent systematic differences in trace-element modes of occurrence. The work at

  18. Framework for the assessment of PEMS (Portable Emissions Measurement Systems) uncertainty.

    Science.gov (United States)

    Giechaskiel, Barouch; Clairotte, Michael; Valverde-Morales, Victor; Bonnel, Pierre; Kregar, Zlatko; Franco, Vicente; Dilara, Panagiota

    2018-06-13

    European regulation 2016/427 (the first package of the so-called Real-Driving Emissions (RDE) regulation) introduced on-road testing with Portable Emissions Measurement Systems (PEMS) to complement the chassis dynamometer laboratory (Type I) test for the type approval of light-duty vehicles in the European Union since September 2017. The Not-To-Exceed (NTE) limit for a pollutant is the Type I test limit multiplied by a conformity factor that includes a margin for the additional measurement uncertainty of PEMS relative to standard laboratory equipment. The variability of measured results related to RDE trip design, vehicle operating conditions, and data evaluation remain outside of the uncertainty margin. The margins have to be reviewed annually (recital 10 of regulation 2016/646). This paper lays out the framework used for the first review of the NO x margin, which is also applicable to future margin reviews. Based on experimental data received from the stakeholders of the RDE technical working group in 2017, two NO x margin scenarios of 0.24-0.43 were calculated, accounting for different assumptions of possible zero drift behaviour of the PEMS during the tests. The reduced uncertainty margin compared to the one foreseen for 2020 (0.5) reflects the technical improvement of PEMS over the past few years. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Highly time-resolved imaging of combustion and pyrolysis product concentrations in solid fuel combustion: NO formation in a burning cigarette.

    Science.gov (United States)

    Zimmermann, Ralf; Hertz-Schünemann, Romy; Ehlert, Sven; Liu, Chuan; McAdam, Kevin; Baker, Richard; Streibel, Thorsten

    2015-02-03

    The highly dynamic, heterogeneous combustion process within a burning cigarette was investigated by a miniaturized extractive sampling probe (microprobe) coupled to photoionization mass spectrometry using soft laser single photon ionization (SPI) for online real-time detection of molecular ions of combustion and pyrolysis products. Research cigarettes smoked by a smoking machine are used as a reproducible model system for solid-state biomass combustion, which up to now is not addressable by current combustion-diagnostic tools. By combining repetitively recorded online measurement sequences from different sampling locations in an imaging approach, highly time- and space-resolved quantitative distribution maps of, e.g., nitrogen monoxide, benzene, and oxygen concentrations were obtained at a near microscopic level. The obtained quantitative distribution maps represent a time-resolved, movie-like imaging of the respective compound's formation and destruction zones in the various combustion and pyrolysis regions of a cigarette during puffing. Furthermore, spatially resolved kinetic data were ascertainable. The here demonstrated methodology can also be applied to various heterogenic combustion/pyrolysis or reaction model systems, such as fossil- or biomass-fuel pellet combustion or to a positional resolved analysis of heterogenic catalytic reactions.

  20. OPERATING SPECIFICATIONS OF CATALYTIC CLEANING OF GAS FROM BIOMASS GASIFICATION

    Directory of Open Access Journals (Sweden)

    Martin Lisý

    2015-12-01

    Full Text Available The paper focuses on the theoretical description of the cleaning of syngas from biomass and waste gasification using catalytic methods, and on the verification of the theory through experiments. The main obstruction to using syngas from fluid gasification of organic matter is the presence of various high-boiling point hydrocarbons (i.e., tar in the gas. The elimination of tar from the gas is a key factor in subsequent use of the gas in other technologies for cogeneration of electrical energy and heat. The application of a natural or artificial catalyst for catalytic destruction of tar is one of the methods of secondary elimination of tar from syngas. In our experiments, we used a natural catalyst (dolomite or calcium magnesium carbonate from Horní Lánov with great mechanical and catalytic properties, suitable for our purposes. The advantages of natural catalysts in contrast to artificial catalysts include their availability, low purchase prices and higher resilience to the so-called catalyst poison. Natural calcium catalysts may also capture undesired compounds of sulphure and chlorine. Our paper presents a theoretical description and analysis of catalytic destruction of tar into combustible gas components, and of the impact of dolomite calcination on its efficiency. The efficiency of the technology is verified in laboratories. The facility used for verification was a 150 kW pilot gasification unit with a laboratory catalytic filter. The efficiency of tar elimination reached 99.5%, the tar concentration complied with limits for use of the gas in combustion engines, and the tar content reached approximately 35 mg/mn3. The results of the measurements conducted in laboratories helped us design a pilot technology for catalytic gas cleaning.

  1. Experimental Characterization and Modeling of PEM Fuel Cells

    DEFF Research Database (Denmark)

    Jespersen, Jesper Lebæk

    fundamental knowledge of the transport and electrochemical processes of PEM fuel cells and to provide methods for obtaining high quality data for PEM fuel cell simulation model validation. In this thesis three different areas of experimental characterization techniques was investigated, they include: Stack...... for obtaining very detailed data of the manifold flow. Moreover, the tools complement each other well, as high quality validation data can be obtained from PIV measurements to verify CFD models. AC Impedance Spectroscopy was used to thoroughly characterize a HTPEM single cell. The measurement method...... was furthermore transferred onto a Labview platform, which signiffcantly improves the exibility and lowers the cost of using this method. This technique is expected to bea very important future tool, used both for material characterization, celldiagnostic, system optimization and as a control input parameter...

  2. Experimental characterization of the Clear-PEM scanner spectrometric performance

    Energy Technology Data Exchange (ETDEWEB)

    Bugalho, R; Carrico, B; Ferreira, C S; Frade, M; Ferreira, M; Moura, R; Ortigao, C; Pinheiro, J F; Rodrigues, P; Rolo, I; Silva, J C; Trindade, A; Varela, J [Laboratorio de Instrumentacao e Fisica Experimental de Particulas (LIP), Av. Elias Garcia 14-1, 1000-149 Lisboa (Portugal)], E-mail: frade@lip.pt

    2009-10-15

    In the framework of the Clear-PEM project for the construction of a high-resolution and high-specificity scanner for breast cancer imaging, a Positron Emission Mammography tomograph has been developed and installed at the Instituto Portugues de Oncologia do Porto hospital. The Clear-PEM scanner is mainly composed by two planar detector heads attached to a robotic arm, trigger/data acquisition electronics system and computing servers. The detector heads hold crystal matrices built from 2 x 2 x 20 mm{sup 3} LYSO:Ce crystals readout by Hamamatsu S8550 APD arrays. The APDs are optically coupled to both ends of the 6144 crystals in order to extract the DOI information for each detected event. Each one of 12288 APD's pixels is read and controlled by Application Specific Integrated Circuits water-cooled by an external cooling unit. The Clear-PEM frontend boards innovative design results in a unprecedented integration of the crystal matrices, APDs and ASICs, making Clear-PEM the PET scanner with the highest number of APD pixels ever integrated so far. In this paper, the scanner's main technical characteristics, calibration strategies and the first spectrometric performance evaluation in a clinical environment are presented. The first commissioning results show 99.7% active channels, which, after calibration, have inter-pixel and absolute gain distributions with dispersions of, respectively, 12.2% and 15.3%, demonstrating that despite the large number of channels, the system is uniform. The mean energy resolution at 511 keV is of 15.9%, with a 8.8% dispersion, and the mean C{sub DOI}{sup -1} is 5.9%/mm, with a 7.8% dispersion. The coincidence time resolution, at 511 keV, for a energy window between 400 and 600 keV, is 5.2 ns FWHM.

  3. Salt Effects on Surface Structures of Polyelectrolyte Multilayers (PEMs) Investigated by Vibrational Sum Frequency Generation (SFG) Spectroscopy.

    Science.gov (United States)

    Ge, Aimin; Matsusaki, Michiya; Qiao, Lin; Akashi, Mitsuru; Ye, Shen

    2016-04-26

    Sum frequency generation (SFG) vibrational spectroscopy was employed to investigate the surface structures of polyelectrolyte multilayers (PEMs) constructed by sequentially alternating adsorption of poly(diallyldimethylammonium chloride) (PDDA) and poly(styrenesulfonate) (PSS). It was found that the surface structures and surface charge density of the as-deposited PEMs of PDDA/PSS significantly depend on the concentration of sodium chloride (NaCl) present in the polyelectrolyte solutions. Furthermore, it was found that the surface structure of the as-deposited PEMs is in a metastable state and will reach the equilibrium state by diffusion of the polyelectrolyte chain after an aging process, resulting in a polyelectrolyte mixture on the PEM surfaces.

  4. Water droplet accumulation and motion in PEM (Proton Exchange Membrane) fuel cell mini-channels

    International Nuclear Information System (INIS)

    Carton, J.G.; Lawlor, V.; Olabi, A.G.; Hochenauer, C.; Zauner, G.

    2012-01-01

    Effective water management is one of the key strategies for improving low temperature PEM (Proton Exchange Membrane) fuel cell performance and durability. Phenomena such as membrane dehydration, catalyst layer flooding, mass transport and fluid flow regimes can be affected by the interaction, distribution and movement of water in flow plate channels. In this paper a literature review is completed in relation to PEM fuel cell water flooding. It is clear that droplet formation, movement and interaction with the GDL (Gas Diffusion Layer) have been studied extensively. However slug formation and droplet accumulation in the flow channels has not been analysed in detail. In this study, a CFD (Computational Fluid Dynamic) model and VOF (Volume of Fluid) method is used to simulate water droplet movement and slug formation in PEM fuel cell mini-channels. In addition, water slug visualisation is recorded in ex situ PEM fuel cell mini-channels. Observation and simulation results are discussed with relation to slug formation and the implications to PEM fuel cell performance. -- Highlights: ► Excess water in mini-channels from the collision and coalescence of droplets can directly form slugs in PEM fuel cells. ► Slugs can form at low flow rates so increasing the flow rate can reduce the size and frequency of slugs. ► One channel of a double serpentine mini-channel may become blocked due to the redistribution of airflow and pressure caused by slug formation. ► Correct GDL and mini-channel surface coatings are essential to reduce slug formation and stagnation. ► Having geometry changes (bends and steps) in the flow fields can disrupt slug movement and avoid channel blockages.

  5. Fuel starvation. Irreversible degradation mechanisms in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Rangel, Carmen M.; Silva, R.A.; Travassos, M.A.; Paiva, T.I.; Fernandes, V.R. [LNEG, National Laboratory for Energy and Geology, Lisboa (Portugal). UPCH Fuel Cells and Hydrogen Unit

    2010-07-01

    PEM fuel cell operates under very aggressive conditions in both anode and cathode. Failure modes and mechanism in PEM fuel cells include those related to thermal, chemical or mechanical issues that may constrain stability, power and lifetime. In this work, the case of fuel starvation is examined. The anode potential may rise to levels compatible with the oxidization of water. If water is not available, oxidation of the carbon support will accelerate catalyst sintering. Diagnostics methods used for in-situ and ex-situ analysis of PEM fuel cells are selected in order to better categorize irreversible changes of the cell. Electrochemical Impedance Spectroscopy (EIS) is found instrumental in the identification of fuel cell flooding conditions and membrane dehydration associated to mass transport limitations / reactant starvation and protonic conductivity decrease, respectively. Furthermore, it indicates that water electrolysis might happen at the anode. Cross sections of the membrane catalyst and gas diffusion layers examined by scanning electron microscopy indicate electrode thickness reduction as a result of reactions taking place during hydrogen starvation. Catalyst particles are found to migrate outwards and located on carbon backings. Membrane degradation in fuel cell environment is analyzed in terms of the mechanism for fluoride release which is considered an early predictor of membrane degradation. (orig.)

  6. Novel, Regenerable Microlith Catalytic Reactor for CO2 Reduction via Bosch Process, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Precision Combustion, Inc. (PCI) proposes to develop an extremely compact, lightweight and regenerable MicrolithREG catalytic CO2 reduction reactor, capable of...

  7. Corrections for the effects of accidental coincidences, Compton scatter, and object size in positron emission mammography (PEM) imaging

    Energy Technology Data Exchange (ETDEWEB)

    Raymond Raylman; Stanislaw Majewski; Randolph Wojcik; Andrew Weisenberger; Brian Kross; Vladimir Popov

    2001-06-01

    Positron emission mammography (PEM) has begun to show promise as an effective method for the detection of breast lesions. Due to its utilization of tumor-avid radiopharmaceuticals labeled with positron-emitting radionuclides, this technique may be especially useful in imaging of women with radiodense or fibrocystic breasts. While the use of these radiotracers affords PEM unique capabilities, it also introduces some limitations. Specifically, acceptance of accidental and Compton-scattered coincidence events can decrease lesion detectability. The authors studied the effect of accidental coincidence events on PEM images produced by the presence of 18F-Fluorodeoxyglucose in the organs of a subject using an anthropomorphic phantom. A delayed-coincidence technique was tested as a method for correcting PEM images for the occurrence of accidental events. Also, a Compton scatter correction algorithm designed specifically for PEM was developed and tested using a compressed breast phantom.

  8. Corrections for the effects of accidental coincidences, Compton scatter, and object size in positron emission mammography (PEM) imaging

    International Nuclear Information System (INIS)

    Raymond Raylman; Stanislaw Majewski; Randolph Wojcik; Andrew Weisenberger; Brian Kross; Vladimir Popov

    2001-01-01

    Positron emission mammography (PEM) has begun to show promise as an effective method for the detection of breast lesions. Due to its utilization of tumor-avid radiopharmaceuticals labeled with positron-emitting radionuclides, this technique may be especially useful in imaging of women with radiodense or fibrocystic breasts. While the use of these radiotracers affords PEM unique capabilities, it also introduces some limitations. Specifically, acceptance of accidental and Compton-scattered coincidence events can decrease lesion detectability. The authors studied the effect of accidental coincidence events on PEM images produced by the presence of 18F-Fluorodeoxyglucose in the organs of a subject using an anthropomorphic phantom. A delayed-coincidence technique was tested as a method for correcting PEM images for the occurrence of accidental events. Also, a Compton scatter correction algorithm designed specifically for PEM was developed and tested using a compressed breast phantom

  9. Characterization of microstructure and catalytic of cerium oxide obtained by colloidal solution

    International Nuclear Information System (INIS)

    Senisse, C.A.L.; Bergmann, C.P.; Alves, A.K.

    2012-01-01

    This study investigated to obtain particles of cerium oxide, for use as catalysts for the combustion of methane using the technique of through polymeric colloidal solution. Obtaining the colloidal system is based on hydrolysis of salts such as cerium acetylacetonate, cerium nitrate in the presence of additives such as polyvinylbutyral (PVB), polyvinylpyrrolidone (PVP) and polyvinyl acetate (PVA), at concentrations of 5, 10 and 15% in aqueous or alcoholic medium. These solutions containing ions of interest were subjected to a heat treatment at 650° C for 30 minutes, with heating rate of 2 ° C/ min. After heat treatment, the fibers were characterized according to their morphology, surface area, crystallinity, weight loss and catalytic activity. Samples obtained from cerium acetylacetonate were more reactive than the cerium nitrate to the combustion of methane, as showed greater conversions and higher temperatures reached during the process, which is of utmost importance since the combustion catalytic methane is used for generating thermal energy. After the reaction with methane, the samples underwent significant change in surface area, probably due to the intensity of combustion reactions of the nitrate and the generation of heat involved in this reaction, which gave rise to coarse particles. During the combustion process using the obtained from particles of cerium acetylacetonate, there was the release of large quantities of nitrogen compared to the results of assays with the particles obtained with cerium nitrate. (author)

  10. Catalytic Unmixed Combustion of Coal with Zero Pollution

    Energy Technology Data Exchange (ETDEWEB)

    George Rizeq; Parag Kulkarni; Raul Subia; Wei Wei

    2005-12-01

    GE Global Research is developing an innovative energy-based technology for coal combustion with high efficiency and near-zero pollution. This Unmixed Combustion of coal (UMC-Coal) technology simultaneously converts coal, steam and air into two separate streams of high pressure CO{sub 2}-rich gas for sequestration, and high-temperature, high-pressure vitiated air for producing electricity in gas turbine expanders. The UMC process utilizes an oxygen transfer material (OTM) and eliminates the need for an air separation unit (ASU) and a CO{sub 2} separation unit as compared to conventional gasification based processes. This is the final report for the two-year DOE-funded program (DE-FC26-03NT41842) on this technology that ended in September 30, 2005. The UMC technology development program encompassed lab- and pilot-scale studies to demonstrate the UMC concept. The chemical feasibility of the individual UMC steps was established via lab-scale testing. A pilot plant, designed in a related DOE funded program (DE-FC26-00FT40974), was reconstructed and operated to demonstrate the chemistry of UMC process in a pilot-scale system. The risks associated with this promising technology including cost, lifetime and durability OTM and the impact of contaminants on turbine performance are currently being addressed in detail in a related ongoing DOE funded program (DE-FC26-00FT40974, Phase II). Results obtained to date suggest that this technology has the potential to economically meet future efficiency and environmental performance goals.

  11. PEM - fuel cell system for residential applications

    Energy Technology Data Exchange (ETDEWEB)

    Britz, P. [Viessmann Werke GmbH and Co KG, 35107 Allendorf (Germany); Zartenar, N.

    2004-12-01

    Viessmann is developing a PEM fuel cell system for residential applications. The uncharged PEM fuel cell system has a 2 kW electrical and 3 kW thermal power output. The Viessmann Fuel Processor is characterized by a steam-reformer/burner combination in which the burner supplies the required heat to the steam reformer unit and the burner exhaust gas is used to heat water. Natural gas is used as fuel, which is fed into the reforming reactor after passing an integrated desulphurisation unit. The low temperature (600 C) fuel processor is designed on the basis of steam reforming technology. For carbon monoxide removal, a single shift reactor and selective methanisation is used with noble metal catalysts on monoliths. In the shift reactor, carbon monoxide is converted into hydrogen by the water gas shift reaction. The low level of carbon monoxide at the outlet of the shift reactor is further reduced, to approximately 20 ppm, downstream in the methanisation reactor, to meet PEM fuel cell requirements. Since both catalysts work at the same temperature (240 C), there is no requirement for an additional heat exchanger in the fuel processor. Start up time is less than 30 min. In addition, Viessmann has developed a 2 kW class PEFC stack, without humidification. Reformate and dry air are fed straight to the stack. Due to the dry operation, water produced by the cell reaction rapidly diffuses through the electrolyte membrane. This was achieved by optimising the MEA, the gas flow pattern and the operating conditions. The cathode is operated by an air blower. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  12. Low and medium heating value coal gas catalytic combustor characterization

    Science.gov (United States)

    Schwab, J. A.

    1982-01-01

    Catalytic combustion with both low and medium heating value coal gases obtained from an operating gasifier was demonstrated. A practical operating range for efficient operation was determined, and also to identify potential problem areas were identified for consideration during stationary gas turbine engine design. The test rig consists of fuel injectors, a fuel-air premixing section, a catalytic reactor with thermocouple instrumentation and a single point, water cooled sample probe. The test rig included inlet and outlet transition pieces and was designed for installation into an existing test loop.

  13. Exhaust gas afterburner for internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Haertel, G

    1977-05-12

    The invention pertains to an exhaust gas afterburner for internal combustion engines, with an auxiliary fuel device arranged upstream from the afterburner proper and controlled by the rotational speed of the engine, which is additionally controlled by an oxygen or carbon monoxide sensor. The catalytic part of the afterburner, together with a rotochamber, is a separate unit.

  14. Development of PEM fuel cell stack for small combined heat and power units; Udvikling af PEM braendselscellestak for smaa decentrale kraftvarmeanlaeg

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    The aim of the project was to further develop cells and stack elements in order to reach a higher yield, longer service life, lower production costs and reduced demands for the plants' help, security and SRO (control - regulation - monitoring) systems, i.e. take the PEM fuel cell core technology's yield and cost to a level that will make power generating plants based on PEM fuel cells commercial interesting for CHP production within a capacity area of a few kW. The project focused on development of materials and processes for the individual cell and stack elements, including optimization of materials and production processes for MEAs (membrane electrode assemblies) with integrated diffusion layer, development of materials and production processes for bipolar graphite plates and development of manifold end plates for casting in polymer sandwich construction. (BA)

  15. Evaluation of the impact of two flow field designs with bipolar plate flow on the performance of a PEM fuel cell; Evaluacion del impacto de dos disenos de campo de flujo de placa bipolar en el desempeno de una celda de combustible tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Loyola-Morales, F.; Cano-Castillo, U. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: feloyola@yahoo.com.mx

    2009-09-15

    The flow field (FF) designs of bipolar plates play a fundamental role in the performance of a set of PEM fuel cells. The FF is directly related with diverse processes that occur inside the cells, such as: feeding and uniform distribution of reactant gases and the handling of water produced by the overall electrochemical reaction. Therefore, a FF design that promotes each one of those processes in an optimal manner is of utmost importance to attain the best performance of a set of fuel cells. The present work evaluated the impact of two different FF on the performance of a fuel cell. The FF designs evaluated were 4 serpentine and parallels (4SP) and 2 serpentine counter flow (SC). The stability tests for the operation of the cell applied to each of the flow fields were: flood tolerance, dehydration tolerance conditions and stoichiometry performance of 1.1, 1.3, 1.5 and 2.5. The 4SP design showed high performance stability during operation with a gradual process of flooding the system and operating at different stoichiometries. Only for the test with dehydration conditions was there a gradual decrease in its performance, of up to 27%. Compared to these results, the SC design showed a rapid fall of 45% in its performance when operating under gradual flooding of the system, a constant fall in its performance (also around 45%) with stoichiometries of 1.1, 1.3 and 1.5 due to accumulation of water, and only with a stoichiometry of 2.5 did it have highly stable performance as a result of good water handling. In the test of operations under dehydration conditions, the performance of the SC design dropped to 40% and remained at this value during the rest of the test. According to these results, the performance of the 4SP design was more stable than the SC design for all of the tests implemented. [Spanish] Los disenos de campo de flujo (CF) de las placas bipolares tienen un papel fundamental en el desempeno de un conjunto de celdas de combustible tipo PEM. Los CF tienen una

  16. Proceedings of the 1999 international joint power generation conference (FACT-vol. 23). Volume 1: Fuels and combustion technologies; Gas turbines; and Nuclear engineering

    International Nuclear Information System (INIS)

    Penfield, S.R. Jr.; Moussa, N.A.

    1999-01-01

    Papers are arranged under the following topical sections: Gas turbine combustion; Advanced energy conversion; Low NOx solutions; Burner developments; Alternative fuels combustion; Advanced energy conversion technologies; Numerical modeling of combustion; Fluidized bed combustion; Coal combustion; Combustion research; Gasification systems; Mercury emissions; Highly preheated air combustion; Selective catalytic reduction; Special topics in combustion research; Gas turbines and advanced energy; and How can the nuclear industry become more efficient? Papers within scope have been processed separately for inclusion on the database

  17. Bipolar Plates for PEM Systems

    OpenAIRE

    Lædre, Sigrid

    2016-01-01

    Summary of thesis: The Bipolar Plate (BPP) is an important component in both Proton Exchange Membrane Fuel Cells (PEMFCs) and Proton Exchange Membrane Water Electrolyzers (PEMWEs). Bipolar plate material and processing constitutes for a large fraction of the cost and weight of a PEM cell stack. The main tasks for the bipolar plates in both systems are to separate single cell in a stack, conduct current between single cells and remove heat from active areas. In addition, the BPPs distribu...

  18. A comprehensive, consistent and systematic mathematical model of PEM fuel cells

    International Nuclear Information System (INIS)

    Baschuk, J.J.; Li Xianguo

    2009-01-01

    This paper presents a comprehensive, consistent and systematic mathematical model for PEM fuel cells that can be used as the general formulation for the simulation and analysis of PEM fuel cells. As an illustration, the model is applied to an isothermal, steady state, two-dimensional PEM fuel cell. Water is assumed to be in either the gas phase or as a liquid phase in the pores of the polymer electrolyte. The model includes the transport of gas in the gas flow channels, electrode backing and catalyst layers; the transport of water and hydronium in the polymer electrolyte of the catalyst and polymer electrolyte layers; and the transport of electrical current in the solid phase. Water and ion transport in the polymer electrolyte was modeled using the generalized Stefan-Maxwell equations, based on non-equilibrium thermodynamics. Model simulations show that the bulk, convective gas velocity facilitates hydrogen transport from the gas flow channels to the anode catalyst layers, but inhibits oxygen transport. While some of the water required by the anode is supplied by the water produced in the cathode, the majority of water must be supplied by the anode gas phase, making operation with fully humidified reactants necessary. The length of the gas flow channel has a significant effect on the current production of the PEM fuel cell, with a longer channel length having a lower performance relative to a shorter channel length. This lower performance is caused by a greater variation in water content within the longer channel length

  19. CarbonNanoTubes (CNT) in bipolar plates for PEM fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Grundler, M.; Derieth, T.; Beckhaus, P.; Heinzel, A. [centre for fuel cell technology ZBT GmbH (Germany)

    2010-07-01

    Using standard mass production techniques for the fabrication of fuel cell components, such as bipolar plates, is a main issue for the commercialisation of PEM fuel cell systems. Bipolar plates contribute significantly to the cost structure of PEM stacks. In an upcoming fuel cell market a large number of bipolar plates with specific high-quality standards will be needed. At the Centre for Fuel Cell Technology (ZBT) together with the University of Duisburg-Essen fuel cell stacks based on injection moulded bipolar plates have been developed and demonstrated successfully [1]. This paper focuses on the interactions between carbon filling materials (graphite, carbon black and carbon nanotubes (CNT)) in compound based bipolar plates and especially the potential of CNTs, which were used in bipolar plates for the first time. The entire value added chain based on the feedstock, the compounding and injection moulding process, the component bipolar plate, up to the operation of a PEM single fuel cell stack with CNT-based bipolar plates is disclosed. (orig.)

  20. Microemulsions in the Preparation of Highly Active Combustion Catalysts

    Czech Academy of Sciences Publication Activity Database

    Rymeš, Jan; Ehret, G.; Hilaire, L.; Boutonnet, M.; Jirátová, Květa

    2002-01-01

    Roč. 75, 1-4 (2002), s. 297-303 ISSN 0920-5861 R&D Projects: GA ČR GA106/02/0523 Institutional research plan: CEZ:AV0Z4072921 Keywords : microemulsion s * catalytic combustion * VOC Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.146, year: 2002

  1. Degradation mechanisms and accelerated testing in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Borup, Rodney L [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory

    2010-01-01

    The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Although there has been recent progress in improving durability, further improvements are needed to meet the commercialization targets. Past improvements have largely been made possible because of the fundamental understanding of the underlying degradation mechanisms. By investigating component and cell degradation modes; defining the fundamental degradation mechanisms of components and component interactions new materials can be designed to improve durability. Various factors have been shown to affect the useful life of PEM fuel cells. Other issues arise from component optimization. Operational conditions (such as impurities in either the fuel and oxidant stream), cell environment, temperature (including subfreezing exposure), pressure, current, voltage, etc.; or transient versus continuous operation, including start-up and shutdown procedures, represent other factors that can affect cell performance and durability. The need for Accelerated Stress Tests (ASTs) can be quickly understood given the target lives for fuel cell systems: 5000 hours ({approx} 7 months) for automotive, and 40,000 hrs ({approx} 4.6 years) for stationary systems. Thus testing methods that enable more rapid screening of individual components to determine their durability characteristics, such as off-line environmental testing, are needed for evaluating new component durability in a reasonable turn-around time. This allows proposed improvements in a component to be evaluated rapidly and independently, subsequently allowing rapid advancement in PEM fuel cell durability. These tests are also crucial to developers in order to make sure that they do not sacrifice durability while making improvements in costs (e.g. lower platinum group metal [PGM] loading) and performance (e.g. thinner membrane or a GDL with better water management properties). To

  2. Structural and Morphological Features of Acid-Bearing Polymers for PEM Fuel Cells

    DEFF Research Database (Denmark)

    Yang, Yunsong; Siu, Ana; Peckham, Timothy J.

    2008-01-01

    Chemical structure, polymer microstructure, sequence distribution, and morphology of acid-bearing polymers are important factors in the design of polymer electrolyte membranes (PEMs) for fuel cells. The roles of ion aggregation and phase separation in vinylic- and aromatic-based polymers in proton...... conductivity and water transport are described. The formation, dimensions, and connectivity of ionic pathways are consistently found to play an important role in determining the physicochemical properties of PEMs. For polymers that possess low water content, phase separation and ionic channel formation...

  3. Catalytic Destruction of a Surrogate Organic Hazardous Air Pollutant as a Potential Co-benefit for Coal-fired Selective Catalyst Reduction Systems

    Science.gov (United States)

    Catalytic destruction of benzene (C6H6), a surrogate for organic hazardous air pollutants (HAPs) produced from coal combustion, was investigated using a commercial selective catalytic reduction (SCR) catalyst for evaluating the potential co-benefit of the SCR technology for reduc...

  4. A combustão catalítica do metano: estudo estatístico do efeito das variáveis de preparação e pré-tratamento de catalisadores de paládio suportado sobre a atividade catalítica The catalytic combustion of methane: statistical study of preparation and pretreatment conditions of palladium supported catalysts and their relationship with catalytic activity

    Directory of Open Access Journals (Sweden)

    Maria da Graça Carneiro da Rocha

    2001-04-01

    Full Text Available The catalytic combustion of methane on alumina supported palladium catalysts was studied. It has been reported that the activity of the catalyst increases with its time on line, despite of an increase of the palladium particle size. However, different preparation, pretreatment and testing conditions can be the reason for the observed different results. An experimental design, which allows to verify the influence of several parameters at the same time with a good statistical quality, was used. A Plackett-Burman design was selected for the screening of the variables which have an effect on the increase of the catalyst activity.

  5. Psychometric Evaluation of the Young Children's Participation and Environment Measure (YC-PEM) for use in Singapore.

    Science.gov (United States)

    Lim, Chun Yi; Law, Mary; Khetani, Mary; Rosenbaum, Peter; Pollock, Nancy

    2018-08-01

    To estimate the psychometric properties of a culturally adapted version of the Young Children's Participation and Environment Measure (YC-PEM) for use among Singaporean families. This is a prospective cohort study. Caregivers of 151 Singaporean children with (n = 83) and without (n = 68) developmental disabilities, between 0 and 7 years, completed the YC-PEM (Singapore) questionnaire with 3 participation scales (frequency, involvement, and change desired) and 1 environment scale for three settings: home, childcare/preschool, and community. Setting-specific estimates of internal consistency, test-retest reliability, and construct validity were obtained. Internal consistency estimates varied from .59 to .92 for the participation scales and .73 to .79 for the environment scale. Test-retest reliability estimates from the YC-PEM conducted on two occasions, 2-3 weeks apart, varied from .39 to .89 for the participation scales and from .65 to .80 for the environment scale. Moderate to large differences were found in participation and perceived environmental support between children with and without a disability. YC-PEM (Singapore) scales have adequate psychometric properties except for low internal consistency for the childcare/preschool participation frequency scale and low test-retest reliability for home participation frequency scale. The YC-PEM (Singapore) may be used for population-level studies involving young children with and without developmental disabilities.

  6. Simulation study of a PEM fuel cell system fed by hydrogen produced by partial oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Ozdogan, S [Marmara University, Faculty of Engineering, Istanbul (Turkey); Ersoz, A; Olgun, H [TUBITAK Marmara Research Center, Energy Systems and Environmental Research Institute, Kocaeli (Turkey)

    2003-09-01

    Within the frame of sustainable development, efficient and clean, if possible zero emission energy production technologies are of utmost importance in various sectors such as utilities, industry, households and transportation. Low-temperature fuel cell systems are suitable for powering transportation systems such as automobiles and trucks in an efficient and low-emitting manner. Proton exchange membrane (PEM) fuel cell systems constitute the most promising low temperature fuel cell option being developed globally. PEM fuel cells generate electric power from air and hydrogen or from a hydrogen rich gas via electrochemical reactions. Water and waste heat are the only by-products of PEM fuel cells. There is great interest in converting current hydrocarbon based common transportation fuels such as gasoline and diesel into hydrogen rich gases acceptable by PEM fuel cells. Hydrogen rich gases can be produced from conventional transportation fuels via various reforming technologies. Steam reforming, partial oxidation and auto-thermal reforming are the three major reforming technologies. In this paper, we discuss the results of a simulation study for a PEM fuel cell with partial oxidation. The Aspen HYSYS 3.1 code has been used for simulation purposes. Two liquid hydrocarbon fuels have been selected to investigate the effect of average molecular weights of hydrocarbons, on the fuel processing efficiency. The overall system efficiency depends on the fuel preparation and fuel cell efficiencies as well as on the heat integration within the system. It is desired to investigate the overall system efficiencies for net electrical power production at 100 kW considering bigger scale transport applications. Results indicate that fuel properties, fuel preparation system operating parameters and PEM fuel cell polarization curve characteristics all affect the overall system efficiency. (authors)

  7. Development of an approach to correcting MicroPEM baseline drift.

    Science.gov (United States)

    Zhang, Ting; Chillrud, Steven N; Pitiranggon, Masha; Ross, James; Ji, Junfeng; Yan, Beizhan

    2018-07-01

    Fine particulate matter (PM 2.5 ) is associated with various adverse health outcomes. The MicroPEM (RTI, NC), a miniaturized real-time portable particulate sensor with an integrated filter for collecting particles, has been widely used for personal PM 2.5 exposure assessment. Five-day deployments were targeted on a total of 142 deployments (personal or residential) to obtain real-time PM 2.5 levels from children living in New York City and Baltimore. Among these 142 deployments, 79 applied high-efficiency particulate air (HEPA) filters in the field at the beginning and end of each deployment to adjust the zero level of the nephelometer. However, unacceptable baseline drift was observed in a large fraction (> 40%) of acquisitions in this study even after HEPA correction. This drift issue has been observed in several other studies as well. The purpose of the present study is to develop an algorithm to correct the baseline drift in MicroPEM based on central site ambient data during inactive time periods. A running baseline & gravimetric correction (RBGC) method was developed based on the comparison of MicroPEM readings during inactive periods to ambient PM 2.5 levels provided by fixed monitoring sites and the gravimetric weight of PM 2.5 collected on the MicroPEM filters. The results after RBGC correction were compared with those using HEPA approach and gravimetric correction alone. Seven pairs of duplicate acquisitions were used to validate the RBGC method. The percentages of acquisitions with baseline drift problems were 42%, 53% and 10% for raw, HEPA corrected, and RBGC corrected data, respectively. Pearson correlation analysis of duplicates showed an increase in the coefficient of determination from 0.75 for raw data to 0.97 after RBGC correction. In addition, the slope of the regression line increased from 0.60 for raw data to 1.00 after RBGC correction. The RBGC approach corrected the baseline drift issue associated with MicroPEM data. The algorithm developed

  8. Electrochemical generation of energy: from the portable electronic devices to industrial plants; Generacion electroquimica de energia electrica: de los dispositivos electronicos portatiles a las plantas industriales

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Varela, Javier [Centro de Investigacion y de Estudios Avanzados (CINVESTAV), Unidad Saltillo (Mexico)

    2006-10-15

    This article proposes the electrical energy generation via electrochemistry as substitute of petroleum and discusses on the development of low and high temperature fuel cells fed by diverse types of fuels: electrolyte fuel cells of polymeric membrane, PEM cells H{sub 2}/O{sub 2}, cell of direct alcohol consumption, PEM cells and bio-fuel cells, SOFC cells and bio-fuel cells. It presents its constitution, operation principles, and use plausibility, present situation in the market, advantages and disadvantages, as well as already made cell insertion projects. [Spanish] Este trabajo propone la generacion de energia electrica via electroquimica como sustituto del petroleo y discurre sobre el desarrollo de celdas de combustible de baja y alta temperatura alimentadas por diversos tipos de combustibles: celdas de combustible de electrolito de membrana polimerica, celda PEM H{sub 2}/O{sub 2}, celda de consumo directo de alcohol, celdas PEM y biocombustibles, celdas de combustible de oxido solido y biocombustibles. Expone su constitucion, principios de operacion, plausibilidad de uso, situacion actual en el mercado, ventajas y desventajas, asi como proyectos de insercion de celdas ya realizados.

  9. Enhanced activity and stability of La-doped CeO2 monolithic catalysts for lean-oxygen methane combustion.

    Science.gov (United States)

    Zhu, Wenjun; Jin, Jianhui; Chen, Xiao; Li, Chuang; Wang, Tonghua; Tsang, Chi-Wing; Liang, Changhai

    2018-02-01

    Effective utilization of coal bed methane is very significant for energy utilization and environment protection. Catalytic combustion of methane is a promising way to eliminate trace amounts of oxygen in the coal bed methane and the key to this technology is the development of high-efficiency catalysts. Herein, we report a series of Ce 1-x La x O 2-δ (x = 0-0.8) monolithic catalysts for the catalytic combustion of methane, which are prepared by citric acid method. The structural characterization shows that the substitution of La enhance the oxygen vacancy concentration and reducibility of the supports and promote the migration of the surface oxygen, as a result improve the catalytic activity of CeO 2 . M-Ce 0.8 La 0.2 O 2-δ (monolithic catalyst, Ce 0.8 La 0.2 O 2-δ coated on cordierite honeycomb) exhibits outstanding activity for methane combustion, and the temperature for 10 and 90% methane conversion are 495 and 580 °C, respectively. Additionally, Ce 0.8 La 0.2 O 2-δ monolithic catalyst presents excellent stability at high temperature. These Ce 1-x La x O 2-δ monolithic materials with a small amount of La incorporation therefore show promises as highly efficient solid solution catalysts for lean-oxygen methane combustion. Graphical abstract ᅟ.

  10. Thermal modeling and temperature control of a PEM fuel cell system for forklift applications

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2014-01-01

    Temperature changes in PEM fuel cell stacks are considerably higher during load variations and have a negative impact as they generate thermal stresses and stack degradation. Cell hydration is also of vital importance in fuel cells and it is strongly dependent on operating temperature....... A combination of high temperature and reduced humidity increases the degradation rate. Stack thermal management and control are, thus, crucial issues in PEM fuel cell systems especially in automotive applications such as forklifts. In this paper we present a control–oriented dynamic model of a liquid–cooled PEM...... fuel cell system for studying temperature variations over fast load changes. A temperature dependent cell polarization and hydration model integrated with the compressor, humidifier and cooling system are simulated in dynamic condition. A feedback PID control was implemented for stack cooling...

  11. Phase 1 feasibility study of an integrated hydrogen PEM fuel cell system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Luczak, F.

    1998-03-01

    Evaluated in the report is the use of hydrogen fueled proton exchange membrane (PEM) fuel cells for devices requiring less than 15 kW. Metal hydrides were specifically analyzed as a method of storing hydrogen. There is a business and technical part to the study that were developed with feedback from each other. The business potential of a small PEM product is reviewed by examining the markets, projected sales, and required investment. The major technical and cost hurdles to a product are also reviewed including: the membrane and electrode assembly (M and EA), water transport plate (WTP), and the metal hydrides. It was concluded that the best potential stationary market for hydrogen PEM fuel cell less than 15 kW is for backup power use in telecommunications applications.

  12. Performance and quality control of Clear-PEM detector modules

    International Nuclear Information System (INIS)

    Amaral, Pedro; Carrico, Bruno; Ferreira, Miguel; Moura, Rui; Ortigao, Catarina; Rodrigues, Pedro; Da Silva, Jose C.; Trindade, Andreia; Varela, Joao

    2007-01-01

    Clear-PEM is a dedicated PET scanner for breast and axilla cancer diagnosis, under development within the framework of the Crystal Clear Collaboration at CERN, aiming at the detection of tumors down to 2 mm in diameter. The camera consists of two planar detector heads with active dimensions 16.0x14.5 cm 2 . Each head has 96 Clear-PEM detector modules consisting of 32 LYSO:Ce pixels with dimensions 2x2x20 mm 3 packed in a 4x8 BaSO 4 reflector matrix compressed between two Hamamatsu S8550 APD arrays in a double-readout configuration for Depth-of-Interaction (DoI) determination. The modules are individually measured and characterized before being grouped into Supermodules (comprised of 24 modules). Measured properties include photo-peak position, relative gain dispersion, energy resolution, cross-talk and DoI resolution. Optical inspection of matrices was also performed with the aid of a microscope, to search for pixel misalignments and matrix defects. Modules' performance was thoroughly evaluated with a 511 keV collimated beam to exactly determine DoI resolution. In addition, a fast quality control (QC) procedure using flood irradiations from a 137 Cs source was applied systematically. The overall performance of the 24 detector modules complies with the design goals of the Clear-PEM detector, showing energy resolution around 15%, DoI resolution of about 2 mm and gain dispersion among pixels of 15%

  13. PEM Fuel Cells with Bio-Ethanol Processor Systems A Multidisciplinary Study of Modelling, Simulation, Fault Diagnosis and Advanced Control

    CERN Document Server

    Feroldi, Diego; Outbib, Rachid

    2012-01-01

    An apparently appropriate control scheme for PEM fuel cells may actually lead to an inoperable plant when it is connected to other unit operations in a process with recycle streams and energy integration. PEM Fuel Cells with Bio-Ethanol Processor Systems presents a control system design that provides basic regulation of the hydrogen production process with PEM fuel cells. It then goes on to construct a fault diagnosis system to improve plant safety above this control structure. PEM Fuel Cells with Bio-Ethanol Processor Systems is divided into two parts: the first covers fuel cells and the second discusses plants for hydrogen production from bio-ethanol to feed PEM fuel cells. Both parts give detailed analyses of modeling, simulation, advanced control, and fault diagnosis. They give an extensive, in-depth discussion of the problems that can occur in fuel cell systems and propose a way to control these systems through advanced control algorithms. A significant part of the book is also given over to computer-aid...

  14. Bi-polarized translation of ascidian maternal mRNA determinant pem-1 associated with regulators of the translation machinery on cortical Endoplasmic Reticulum (cER).

    Science.gov (United States)

    Paix, Alexandre; Le Nguyen, Phuong Ngan; Sardet, Christian

    2011-09-01

    Polarized cortical mRNA determinants such as maternal macho-1 and pem-1 in ascidians, like budding yeast mating factor ASH1 reside on the cER-mRNA domain a subdomain of cortical Endoplasmic Reticulum(ER) and are translated in its vicinity. Using high resolution imaging and isolated cortical fragments prepared from eggs and embryos we now find that macho-1 and pem-1 RNAs co-localize with phospho-protein regulators of translation initiation (MnK/4EBP/S6K). Translation of cortical pem-1 RNA follows its bi-polarized relocalization. About 10 min after fertilization or artificial activation with a calcium ionophore, PEM1 protein is detected in the vegetal cortex in the vicinity of pem-1 RNA. About 40 min after fertilization-when pem-1 RNA and P-MnK move to the posterior pole-PEM1 protein remains in place forming a network of cortical patches anchored at the level of the zygote plasma membrane before disappearing. Cortical PEM1 protein is detected again at the 4 cell stage in the posterior centrosome attracting body (CAB) region where the cER-mRNA domain harboring pem-1/P-MnK/P-4EBP/P-S6K is concentrated. Bi-polarized PEM1 protein signals are not detected when pem-1 morpholinos are injected into eggs or zygotes or when MnK is inhibited. We propose that localized translation of the pem-1 RNA determinant is triggered by the fertilization/calcium wave and that the process is controlled by phospho-protein regulators of translation initiation co-localized with the RNA determinant on a sub-domain of the cortical Endoplasmic Reticulum. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Adaptive Process Controls and Ultrasonics for High Temperature PEM MEA Manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Walczyk, Daniel F. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2015-08-26

    The purpose of this 5-year DOE-sponsored project was to address major process bottlenecks associated with fuel cell manufacturing. New technologies were developed to significantly reduce pressing cycle time for high temperature PEM membrane electrode assembly (MEA) through the use of novel, robust ultrasonic (U/S) bonding processes along with low temperature (<100°C) PEM MEAs. In addition, greater manufacturing uniformity and performance was achieved through (a) an investigation into the causes of excessive variation in ultrasonically and thermally bonded MEAs using more diagnostics applied during the entire fabrication and cell build process, and (b) development of rapid, yet simple quality control measurement techniques for use by industry.

  16. Simulation results of a veto counter for the ClearPEM

    CERN Document Server

    Trummer, J; Lecoq, P

    2009-01-01

    The Crystal Clear Collaboration (CCC) has built a prototype of a novel positron emission tomograph dedicated to functional breast imaging, the ClearPEM. The ClearPEM uses the common radio pharmaceutical FDG for imaging cancer. As FDG is a rather non-specific radio tracer, it accumulates not only in cancer cells but in all cells with a high energy consumption, such as the heart and liver. This fact poses a problem especially in breast imaging, where the vicinity of the heart and other organs to the breast leads to a high background noise level in the scanner. In this work, a veto counter to reduce the background is described. Different configurations and their effectiveness were studied using the GATE simulation package.

  17. Corrections for the effects of accidental coincidences, Compton scatter, and object size in positron emission mammography (PEM) imaging

    Science.gov (United States)

    Raylman, R. R.; Majewski, S.; Wojcik, R.; Weisenberger, A. G.; Kross, B.; Popov, V.

    2001-06-01

    Positron emission mammography (PEM) has begun to show promise as an effective method for the detection of breast lesions. Due to its utilization of tumor-avid radiopharmaceuticals labeled with positron-emitting radionuclides, this technique may be especially useful in imaging of women with radiodense or fibrocystic breasts. While the use of these radiotracers affords PEM unique capabilities, it also introduces some limitations. Specifically, acceptance of accidental and Compton-scattered coincidence events can decrease lesion detectability. The authors studied the effect of accidental coincidence events on PEM images produced by the presence of /sup 18/F-Fluorodeoxyglucose in the organs of a subject using an anthropomorphic phantom. A delayed-coincidence technique was tested as a method for correcting PEM images for the occurrence of accidental events. Also, a Compton scatter correction algorithm designed specifically for PEM was developed and tested using a compressed breast phantom. Finally, the effect of object size on image counts and a correction for this effect were explored. The imager used in this study consisted of two PEM detector heads mounted 20 cm apart on a Lorad biopsy apparatus. The results demonstrated that a majority of the accidental coincidence events (/spl sim/80%) detected by this system were produced by radiotracer uptake in the adipose and muscle tissue of the torso. The presence of accidental coincidence events was shown to reduce lesion detectability. Much of this effect was eliminated by correction of the images utilizing estimates of accidental-coincidence contamination acquired with delayed coincidence circuitry built into the PEM system. The Compton scatter fraction for this system was /spl sim/14%. Utilization of a new scatter correction algorithm reduced the scatter fraction to /spl sim/1.5%. Finally, reduction of count recovery due to object size was measured and a correction to the data applied. Application of correction techniques

  18. Hydrogen combustion modelling in large-scale geometries

    International Nuclear Information System (INIS)

    Studer, E.; Beccantini, A.; Kudriakov, S.; Velikorodny, A.

    2014-01-01

    Hydrogen risk mitigation issues based on catalytic recombiners cannot exclude flammable clouds to be formed during the course of a severe accident in a Nuclear Power Plant. Consequences of combustion processes have to be assessed based on existing knowledge and state of the art in CFD combustion modelling. The Fukushima accidents have also revealed the need for taking into account the hydrogen explosion phenomena in risk management. Thus combustion modelling in a large-scale geometry is one of the remaining severe accident safety issues. At present day there doesn't exist a combustion model which can accurately describe a combustion process inside a geometrical configuration typical of the Nuclear Power Plant (NPP) environment. Therefore the major attention in model development has to be paid on the adoption of existing approaches or creation of the new ones capable of reliably predicting the possibility of the flame acceleration in the geometries of that type. A set of experiments performed previously in RUT facility and Heiss Dampf Reactor (HDR) facility is used as a validation database for development of three-dimensional gas dynamic model for the simulation of hydrogen-air-steam combustion in large-scale geometries. The combustion regimes include slow deflagration, fast deflagration, and detonation. Modelling is based on Reactive Discrete Equation Method (RDEM) where flame is represented as an interface separating reactants and combustion products. The transport of the progress variable is governed by different flame surface wrinkling factors. The results of numerical simulation are presented together with the comparisons, critical discussions and conclusions. (authors)

  19. A comparative evaluation on the emission characteristics of ceramic and metallic catalytic converter in internal combustion engine

    Science.gov (United States)

    Leman, A. M.; Jajuli, Afiqah; Rahman, Fakhrurrazi; Feriyanto, Dafit; Zakaria, Supaat

    2017-09-01

    Enforcement of a stricter regulation on exhaust emission by many countries has led to utilization of catalytic converter to reduce the harmful pollutant emission. Ceramic and metallic catalytic converters are the most common type of catalytic converter used. The purpose of this study is to evaluate the performance of the ceramic and metallic catalytic converter on its conversion efficiency using experimental measurement. Both catalysts were placed on a modified exhaust system equipped with a Mitshubishi 4G93 single cylinder petrol engine that was tested on an eddy current dynamometer under steady state conditions for several engine speeds. The experimental results show that the metallic catalytic converter reduced a higher percentage of CO up to 98.6% reduction emissions while ceramic catalytic converter had a better reduction efficiency of HC up to 85.4% and 87.2% reduction of NOx.

  20. Energy flows modelling of a PEM electrolyzer-Photovoltaic generator-PEM fuel cell coupling dedicated to stationary applications

    International Nuclear Information System (INIS)

    Agbli, Krehi Serge

    2012-01-01

    A standalone multi-source system based on the coupling of photovoltaic energy and both a PEM electrolyzer and a PEMFC for stationary application is studied. The system gathers photovoltaic array as main energy source, ultra-capacitors and batteries packs in order to smooth respectively fast and medium dynamic by supplying the load or by absorbing photovoltaic source overproduction. Because of the necessity of fuel availability, especially for islanding application like this one, a PEM electrolyzer is integrated to the system for in situ hydrogen production. The relevance of PEMFC system powered by solar hydrogen is pointed out before examining hydrogen storage issue. Energetic and economic analyses have been performed leading to the choice of the pressurised hydrogen storage (in the bottle) rather than hydrogen storage both as liquid and within metal hydride. The main purpose being the proper management of the power flows in order to meet the energy requirement (the load) without power cut, a graphical modelling tool namely Energetic Macroscopic Representation (EMR) is used because of its analysis and control strengths. The EMR ability to describe multi-physics energetic tools is used to develop a PEM electrolyzer model. The multi-domain interaction between the electrical, the electrochemical, the thermodynamic and the fluidic domain is emphasised. Moreover, the temperature variation influence on the electrochemical parameters of the electrolyzer is taken into account by the developed EMR model. Afterwards, thanks to the modular feature of the EMR, the different models of each energetic entity of the system are performed before their assembling leading to the overall system EMR model. By using scale effect allowing extending the energetic tool power range from the experimental validation one to another one, the energetic system sizing is performed according to a household power profile. Then, by the help of the multi-level representation, the maximal control

  1. Investigation of Catalytic effect sewage sludge combustion ash in the formation of HAPs

    Energy Technology Data Exchange (ETDEWEB)

    Fullana, A.; Sidhu, S.; Font, R.; Conesa, A.

    2002-07-01

    Incineration is a very important technique in the treatment of sewage sludge. In 1998 approximately 1,5 million and 2,5 million dry tons of sewage sludge were incinerated in the United States and European Union (EU), respectively. In 1985, only 10% of EU sludge was incinerated, but by 2005 approximately 40% of EU sludge is expected to be incinerated. Use of sewage sludge as agricultural fertilizer was considered the best application for sludge until it was discovered that the presence of heavy metals in sludge could contaminate farmland. The limitations facing landfills and recycling plants and the planned ban on sea disposal has led to the expectation that the role of incineration will increase in the future. The expected increase in sludge incineration has also led to increased scrutiny of the main drawback to the incineration of sewage sludge: the formation of hazard air pollutants (HAP). Sewage sludge incineration has been identified as a very important source of HAPs such as chloro benzenes, chloro phenols, and PCDD/Fs. One of the more important characteristics of sewage sludge incineration is the formation of large amounts of ash, which is rich in known HAP formation catalysts such as Cu and Fe. Thus, the sludge incineration ash is expected to play an important role in the formation of HAPs in the post-combustion zone of a sludge incinerator. in this paper, we present results of our investigation of the catalytic effect of sewage sludge ash on the formation of chloro benzenes and chloro phenols. In this study, pyrolytic gas from sewage sludge was used as reaction gas instead of the synthetic organic mix that has been used in most previous HAPs formation studies. (Author) 4 refs.

  2. Risk Assessment for Distribution Systems Using an Improved PEM-Based Method Considering Wind and Photovoltaic Power Distribution

    Directory of Open Access Journals (Sweden)

    Qingwu Gong

    2017-03-01

    Full Text Available The intermittency and variability of permeated distributed generators (DGs could cause many critical security and economy risks to distribution systems. This paper applied a certain mathematical distribution to imitate the output variability and uncertainty of DGs. Then, four risk indices—EENS (expected energy not supplied, PLC (probability of load curtailment, EFLC (expected frequency of load curtailment, and SI (severity index—were established to reflect the system risk level of the distribution system. For the certain mathematical distribution of the DGs’ output power, an improved PEM (point estimate method-based method was proposed to calculate these four system risk indices. In this improved PEM-based method, an enumeration method was used to list the states of distribution systems, and an improved PEM was developed to deal with the uncertainties of DGs, and the value of load curtailment in distribution systems was calculated by an optimal power flow algorithm. Finally, the effectiveness and advantages of this proposed PEM-based method for distribution system assessment were verified by testing a modified IEEE 30-bus system. Simulation results have shown that this proposed PEM-based method has a high computational accuracy and highly reduced computational costs compared with other risk assessment methods and is very effective for risk assessments.

  3. Novel High Temperature Membrane for PEM Fuel Cells, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation proposed in this STTR program is a high temperature membrane to increase the efficiency and power density of PEM fuel cells. The NASA application is...

  4. UARS Particle Environment Monitor (PEM) Level 3TP V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Particle Environment Monitor (PEM) Level 3TP data product consists of daily, 65.536 second and 2.048 interval time-ordered, vertical profiles of electron and...

  5. Air pollution emission reduction techniques in combustion plants; Technique de reduction des emissions de polluants atmospheriques dans les installations de combustion

    Energy Technology Data Exchange (ETDEWEB)

    Bouscaren, R. [CITEPA, Centre Interprofessionnel Technique d`Etudes de la Pollution Atmospherique, 75 - Paris (France)

    1996-12-31

    Separating techniques offer a large choice between various procedures for air pollution reduction in combustion plants: mechanical, electrical, filtering, hydraulic, chemical, physical, catalytic, thermal and biological processes. Many environment-friendly equipment use such separating techniques, particularly for dust cleaning and fume desulfurizing and more recently for the abatement of volatile organic pollutants or dioxins and furans. These processes are briefly described

  6. Design of metallic bipolar plates for PEM fuel cells.

    Science.gov (United States)

    2012-01-01

    This project focused on the design and production of metallic bipolar plates for use in PEM fuel cells. Different metals were explored : and stainless steel was found out to be best suited to our purpose. Following the selection of metal, it was calc...

  7. An efficient mathematical model for air-breathing PEM fuel cells

    International Nuclear Information System (INIS)

    Ismail, M.S.; Ingham, D.B.; Hughes, K.J.; Ma, L.; Pourkashanian, M.

    2014-01-01

    Graphical abstract: The effects of the ambient humidity on the performance of air-breathing PEM fuel cells become more pronounced as the ambient temperature increases. The polarisation curves have been generated using the in-house developed MATLAB® application, Polarisation Curve Generator, which is available in the supplementary data. - Highlights: • An efficient mathematical model has been developed for an air-breathing PEM fuel cell. • The fuel cell performance is significantly over-predicted if the Joule and entropic heats are neglected. • The fuel cell performance is highly sensitive to the state of water at the thermodynamic equilibrium. • The cell potential dictates the favourable ambient conditions for the fuel cell. - Abstract: A simple and efficient mathematical model for air-breathing proton exchange membrane (PEM) fuel cells has been built. One of the major objectives of this study is to investigate the effects of the Joule and entropic heat sources, which are often neglected, on the performance of air-breathing PEM fuel cells. It is found that the fuel cell performance is significantly over-predicted if one or both of these heat sources is not incorporated into the model. Also, it is found that the performance of the fuel cell is highly sensitive to the state of the water at the thermodynamic equilibrium magnitude as both the entropic heat and the Nernst potential considerably increase if water is assumed to be produced in liquid form rather than in vapour form. Further, the heat of condensation is shown to be small and therefore, under single-phase modelling, has a negligible effect on the performance of the fuel cell. Finally, the favourable ambient conditions depend on the operating cell potential. At intermediate cell potentials, a mild ambient temperature and low humidity are favoured to maintain high membrane conductivity and mitigate water flooding. At low cell potentials, low ambient temperature and high humidity are favoured to

  8. A parametric study of assembly pressure, thermal expansion, and membrane swelling in PEM fuel cells

    OpenAIRE

    Maher A.R. Sadiq Al-Baghdadi

    2016-01-01

    Proton Exchange membrane (PEM) fuel cells are still undergoing intense development, and the combination of new and optimized materials, improved product development, novel architectures, more efficient transport processes, and design optimization and integration are expected to lead to major gains in performance, efficiency, durability, reliability, manufacturability and cost-effectiveness. PEM fuel cell assembly pressure is known to cause large strains in the cell components. All components ...

  9. High-throughput approach to the catalytic combustion of diesel soot

    Energy Technology Data Exchange (ETDEWEB)

    Iojoiu, Eduard Emil; Bassou, Badr; Guilhaume, Nolven; Farrusseng, David; Desmartin-Chomel, Arnold; Bianchi, Daniel; Mirodatos, Claude [Institut de recherches sur la catalyse et l' environnement de Lyon IRCELYON, UMR5256 CNRS Universite Lyon 1, 2 avenue Albert Einstein, F-69626 Villeurbanne Cedex (France); Lombaert, Karine [Renault, Diesel Innovative Catalytic Materials, Direction de l' Ingenierie Materiaux, 1 Allee Cornuel, 91510 Lardy (France)

    2008-08-30

    A methodology for the evaluation of diesel soot oxidation catalysts by high-throughput (HT) screening was developed. The optimal experimental conditions (soot amount, catalyst/soot ratio, type of contact, composition and flow rate of gas reactants) ensuring a reliable and reproducible detection of light-off temperatures in a 16 parallel channels reactor were set up. The temperature profile measured in the catalyst/soot bed under TPO conditions when the exothermic combustion of soot takes place was shown to provide an accurate measurement of the ignition. Its reproducibility and relevance were checked. The results obtained with a reference noble metal free catalyst (La{sub 0.8}Cr{sub 0.8}Li{sub 0.2}O{sub 3} perovskite) agree very well with literature data. Qualitative mechanistic features could be derived from these experiments, stressing the likely limiting step of oxygen transfer from catalyst surface to soot particulates to ignite the soot combustion. Ceria material was shown to be more appropriate than perovskite one. From an HT screening of a large diverse library (over 100 mixed oxides catalysts) under optimized conditions, about 10 new formulations were found to perform better than selected noble metal free reference materials. (author)

  10. Modeling nitrogen chemistry in combustion

    DEFF Research Database (Denmark)

    Glarborg, Peter; Miller, James A.; Ruscic, Branko

    2018-01-01

    the accuracy of engineering calculations and thereby the potential of primary measures for NOx control. In this review our current understanding of the mechanisms that are responsible for combustion-generated nitrogen-containing air pollutants is discussed. The thermochemistry of the relevant nitrogen...... via NNH or N2O are discussed, along with the chemistry of NO removal processes such as reburning and Selective Non-Catalytic Reduction of NO. Each subset of the mechanism is evaluated against experimental data and the accuracy of modeling predictions is discussed....

  11. Nitrogen Isotope Composition of Thermally Produced NOx from Various Fossil-Fuel Combustion Sources.

    Science.gov (United States)

    Walters, Wendell W; Tharp, Bruce D; Fang, Huan; Kozak, Brian J; Michalski, Greg

    2015-10-06

    The nitrogen stable isotope composition of NOx (δ(15)N-NOx) may be a useful indicator for NOx source partitioning, which would help constrain NOx source contributions in nitrogen deposition studies. However, there is large uncertainty in the δ(15)N-NOx values for anthropogenic sources other than on-road vehicles and coal-fired energy generating units. To this end, this study presents a broad analysis of δ(15)N-NOx from several fossil-fuel combustion sources that includes: airplanes, gasoline-powered vehicles not equipped with a three-way catalytic converter, lawn equipment, utility vehicles, urban buses, semitrucks, residential gas furnaces, and natural-gas-fired power plants. A relatively large range of δ(15)N-NOx values was measured from -28.1‰ to 8.5‰ for individual exhaust/flue samples that generally tended to be negative due to the kinetic isotope effect associated with thermal NOx production. A negative correlation between NOx concentrations and δ(15)N-NOx for fossil-fuel combustion sources equipped with selective catalytic reducers was observed, suggesting that the catalytic reduction of NOx increases δ(15)N-NOx values relative to the NOx produced through fossil-fuel combustion processes. Combining the δ(15)N-NOx measured in this study with previous published values, a δ(15)N-NOx regional and seasonal isoscape was constructed for the contiguous U.S., which demonstrates seasonal and regional importance of various NOx sources.

  12. Thermogravimetric analysis of co-combustion between microalgae and textile dyeing sludge.

    Science.gov (United States)

    Peng, Xiaowei; Ma, Xiaoqian; Xu, Zhibin

    2015-03-01

    The synergistic interaction and kinetics of microalgae, textile dyeing sludge and their blends were investigated under combustion condition by thermogravimetric analysis. The textile dyeing sludge was blended with microalgae in the range of 10-90wt.% to investigate their co-combustion behavior. Results showed that the synergistic interaction between microalgae and textile dyeing sludge improved the char catalytic effect and alkali metals melt-induced effect on the decomposition of textile dyeing sludge residue at high temperature of 530-800°C. As the heating rate increasing, the entire combustion process was delayed but the combustion intensity was enhanced. The lowest average activation energy was obtained when the percentage of microalgae was 60%, which was 227.1kJ/mol by OFW and 227.4kJ/mol by KAS, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Microscale combustion and power generation

    CERN Document Server

    Cadou, Christopher; Ju, Yiguang

    2014-01-01

    Recent advances in microfabrication technologies have enabled the development of entirely new classes of small-scale devices with applications in fields ranging from biomedicine, to wireless communication and computing, to reconnaissance, and to augmentation of human function. In many cases, however, what these devices can actually accomplish is limited by the low energy density of their energy storage and conversion systems. This breakthrough book brings together in one place the information necessary to develop the high energy density combustion-based power sources that will enable many of these devices to realize their full potential. Engineers and scientists working in energy-related fields will find: An overview of the fundamental physics and phenomena of microscale combustion; Presentations of the latest modeling and simulation techniques for gasphase and catalytic micro-reactors; The latest results from experiments in small-scale liquid film, microtube, and porous combustors, micro-thrusters, a...

  14. Gas turbines with complete continuous combustion of the fuels

    Energy Technology Data Exchange (ETDEWEB)

    Koch, C

    1976-10-21

    The invention concerns a gas turbine plant with complete continuous combustion of the fuel. The fuel is taken to a gas generator in which the preheated fuel is catalytically converted at high temperature in a fuel mixture using an oxygen carrier. Heating of the fuel takes place in a heat exchanger which is situated in the outlet pipe of the turbine. The efficiency is increased and the emission of noxious gas is kept as low as possible using the heat exchanger as a fuel evaporator and by using part of the waste formed in the combustion chamber to carry oxygen to the gas generator via an outlet pipe.

  15. Using the PAW/PEM monitoring systems to support operations at Point Lepreau

    International Nuclear Information System (INIS)

    MacDonald, S.; McIntyre, M.; Dai, H.

    1997-01-01

    The plant data logger was brought on-line at the Point Lepreau Generating Station (PLGS) in 1992 in order to record information from instruments throughout the plant. Using the System Engineers Data Extraction (SEDE) utility, current plant data is at the fingertips of anyone with a network connection. System engineers can monitor the performance of their systems at any time and take pro-active measures to avoid problems with performance, as well as monitor behaviour during tests and plant upsets. Nuclear Safety personnel gather data for use in simulation and analysis validation, as well as to ensure that plant parameters are kept within the safe operating envelope. The PLGS operational safety group embarked on a project to develop a data management system. The project and the monitoring process has come to be known as the Plant Analysis Workbench (PAW). When the need for complex monitoring of safety system signals was identified, this led to a similar project called the Plant Expert Monitor (PEM). In this paper we present an overview of the functionality of both PAW and PEM, outlining in particular the expert system architecture in PEM and giving an example of its day-to-day use

  16. Final Scientific Report, New Proton Conductive Composite Materials for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Lvov, Serguei

    2010-11-08

    This project covered one of the main challenges in present-day PEM fuel cell technology: to design a membrane capable of maintaining high conductivity and mechanical integrity when temperature is elevated and water vapor pressure is severely reduced. The DOE conductivity milestone of 0.1 S cm-1 at 120 degrees C and 50 % relative humidity (RH) for designed membranes addressed the target for the project. Our approach presumed to develop a composite membrane with hydrophilic proton-conductive inorganic material and the proton conductive polymeric matrix that is able to “bridge” the conduction paths in the membrane. The unique aspect of our approach was the use of highly functionalized inorganic additives to benefit from their water retention properties and high conductivity as well. A promising result turns out that highly hydrophilic phosphorsilicate gels added in Nafion matrix improved PEM fuel cell performance by over 50% compared with bare Nafion membrane at 120 degrees C and 50 % RH. This achievement realizes that the fuel cell operating pressure can be kept low, which would make the PEM fuel cell much more cost efficient and adaptable to practical operating conditions and facilitate its faster commercialization particularly in automotive and stationary applications.

  17. Study of the flooding and dehydration processes of a PEM fuel cell using the EIS technique; Estudio de los procesos de inundacion y deshidratacion en una celda de combustible tipo PEM mediante la tecnica EIS

    Energy Technology Data Exchange (ETDEWEB)

    Loyola-Morales, F.; Cano-Castillo, U. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: feloyola@yahoo.com.mx

    2009-09-15

    In this work, a study was conducted of the flooding and dehydration processes of a PEM fuel cell using the EIS technique. The experiments were conducted in a 50 cm{sup 2} cell. The gradual flooding of the system was induced by operating the cell at a potential of 0.3 V and maintaining the gas outlet closed (that is, stoichiometry of 1 for the anode (H{sub 2}) and the cathode (O{sub 2})) to enable the water produced by the reaction to accumulate inside. The gradual dehydration was induced by operating the cell at a potential of 0.3V and establishing a oxidized gas flow at a stoichiometry of 4. EIS tests were applied throughout both processes. The results showed that the EIS technique is highly sensitive for the analysis of the different degrees of the flooding processes by monitoring variations in the imaginary components of total impedance (Z{sup )} or the phase angle ({theta}). For low degrees of flooding, the technique had good sensitivity, between 1 and 6 Hz, while at high degrees of flooding the technique's greatest sensitivity was limited to a range between 1 and 2 Hz. In the case of the dehydration process of the system, the results showed that this type of process can be analyzed for variations in the value of the real component (Z{sup '}) as well as for the imaginary component of total impedance and variations in the phase angle. The analysis of dehydration with Z{sup '} was possible at a rather wide range, from 100 to 1000 Hz; with Z{sup }or {theta} it was only possible at a range of 20 to 200 Hz. [Spanish] En el presente trabajo, se llevo a cabo el estudio de los procesos de inundacion y deshidratacion de una celda de combustible tipo PEM mediante la tecnica EIS. Los experimentos fueron realizados en una celda de 50 cm{sup 2}. La inundacion gradual del sistema se indujo operando la celda a un potencial de 0.3 V de celda y manteniendo la salida de gases cerrada (i. e. estequiometria de 1 tanto en anodo (H{sub 2}) como en catodo (O{sub 2

  18. High Temperature PEM Fuel Cell Systems, Control and Diagnostics

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Justesen, Kristian Kjær

    2015-01-01

    fuels utilizes one of the main advantages of the high temperature PEM fuel cell: robustness to fuel quality and impurities. In order for such systems to provide efficient, robust, and reliable energy, proper control strategies are needed. The complexity and nonlinearity of many of the components...

  19. Non-traditional Process of Hydrogen Containing Fuel Mixtures Production for Internal-combustion Engines

    Directory of Open Access Journals (Sweden)

    Gennady G. Kuvshinov

    2012-12-01

    Full Text Available The article justifies the perspectives of development of the environmentally sound technology of hydrogen containing fuel mixtures for internal-combustion engines based on the catalytic process of low-temperature decomposition of hydrocarbons into hydrogen and nanofibrous carbon.

  20. Synchrotron radiography and tomography of a PEM fuel cell; Synchrotron-Radiographie und -Tomographie einer PEM-Brennstoffzelle

    Energy Technology Data Exchange (ETDEWEB)

    Markoetter, Henning; Manke, Ingo [Helmholtzzentrum Berlin fuer Materialien und Energie, Berlin (Germany). Fachgruppe Bildgebende Verfahren; Arlt, Tobias [TU Berlin, Berlin (Germany); Banhart, John [TU Berlin, Institut fuer angewandte Materialforschung, Berlin (Germany); TU Berlin, Institut fuer Werkstoffwissenschaften und -technologien, Berlin (Germany); Riesemeier, Heinrich [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Arbeitsgruppe Synchrotronstrahlanalytik (Germany); Krueger, Philipp [CONSULECTRA Unternehmensberatung GmbH, Hamburg (Germany); Haussmann, Jan; Klages, Merle [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung, Stuttgart (Germany); Scholta, Joachim [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung, Stuttgart (Germany). Fachgruppe Brennstoffzellen-Stacks

    2013-06-01

    The three dimensional water distribution and transport pathways in gas diffusion layers (GDL) of a polymer electrolyte membrane fuell cell (PEM FC) are analysed at various operating conditions. The method of quasi in-situ X-ray tomography is used for a three dimensional visualization of the water distribution and the GDL structure. Based on the results of dynamic radiographic measurements water transport pathways are located and subsequently investigated in detail by means of tomography. The combination of 2D and 3D techniques allows for an identification of 3D transport pathways through the GDl.

  1. Polymers and composites synthesis and characterization for application on PEM type fuel cells; Sintese e caracterizacao de polimeros e compositos para aplicacao em celulas a combustivel do tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Fiuza, Raigenis da Paz; Souza, Daniele Ribeiro; Barreto, Ednardo Gomes; Boaventura Filho, Jaime Soares; Jose, Nadia Mamede [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil)]. E-mail: raigenis@gmail.com

    2006-07-01

    The PEM (proton exchanging membrane) type fuel cell presents good potential for the energy production without the residue generation. However, its manufacture presents high costs for commercial application, mainly due to the electrolyte. Sulfonated Peek (polish-ether-ether-ketone) supported or auto immobilized the in a silicone matrix is an interesting alternative as electrolyte for PEM fuel cells. The commercial PEEK in powder form was functionalized with sulfuric acid, giving the SPEEK (Sulfonated PEEK). The membranes were produced by hot pressing the SPEEK immobilized in a silicone matrix produced by the sol-gel process. The membranes obtained were characterized by DRX, FTIR, TGA, MEV, DSC and protonic conductivity measurements. (author)

  2. California dreaming?[PEM stacks

    Energy Technology Data Exchange (ETDEWEB)

    Crosse, J.

    2002-06-01

    Hyundai's Santa Fe FCEV will be on sale by the end of 2002. Hyundai uses PEM stacks that are manufactured by International Fuel Cells (IFC), a division of United Technologies. Santa Fe is equipped with a 65 kW electric powertrain of Enova systems and Shell's new gasoline reformer called Hydrogen Source. Eugene Jang, Senior Engineer - Fuel Cell and Materials at Hyundai stated that the compressor related losses on IFC system are below 3%. The maximum speed offered by the vehicle is estimated as 123km/hr while the petrol equivalent fuel consumption is quoted between 5.6L/100 km and 4.8L/100 km. Santa Fe is a compact vehicle offering better steering response and a pleasant drive. (author)

  3. 400 W High Temperature PEM Fuel Cell Stack Test

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2006-01-01

    This work demonstrates the operation of a 30 cell high temperature PEM (HTPEM) fuel cell stack. This prototype stack has been developed at the Institute of Energy Technology, Aalborg University, as a proof-of-concept for a low pressure cathode air cooled HTPEM stack. The membranes used are Celtec...

  4. Influence of morphology of ceramic fibers in catalytic combustion of methane; Influencia da morfologia de fibras ceramicas na combustao catalitica do metano

    Energy Technology Data Exchange (ETDEWEB)

    Tabarelli, A.C.; Alves, A.K.; Bergmann, C.P., E-mail: andretabarelli@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Departamento de Materiais

    2012-07-01

    Methane, considered as the main constituent of natural gas has been widely used as an energy source. During its combustion are produced pollutants that cause concern and necessity to eliminate or reduce the emission of these agents in the atmosphere. One of the main means of controlling emissions is the use of catalysts. In order to contribute to the development of new catalysts, this study analyzed the morphology of ceramic fibers of cerium oxide (ceria) doped with copper fabricated by electrospinning, in order to verify their effects on catalytic activity. Parameters were varied in distance from the electrodes, the diameter of the capillary and applied voltage between electrodes. The characterizations were performed: scanning electron microscopy, thermogravimetric analysis, BET and Xray diffraction (DXR). The results indicate that after the thermal treatment there was a reduction of approximately 40% fiber diameter and specific surface area ranging between 28.929 and 34.501 m{sup 2}/g. (author)

  5. Super-adiabatic combustion in Al2O3 and SiC coated porous media for thermoelectric power conversion

    International Nuclear Information System (INIS)

    Mueller, Kyle T.; Waters, Oliver; Bubnovich, Valeri; Orlovskaya, Nina; Chen, Ruey-Hung

    2013-01-01

    The combustion of ultra-lean fuel/air mixtures provides an efficient way to convert the chemical energy of hydrocarbons and low-calorific fuels into useful power. Matrix-stabilized porous medium combustion is an advanced technique in which a solid porous medium within the combustion chamber conducts heat from the hot gaseous products in the upstream direction to preheat incoming reactants. This heat recirculation extends the standard flammability limits, allowing the burning of ultra-lean and low-calorific fuel mixtures and resulting a combustion temperature higher than the thermodynamic equilibrium temperature of the mixture (i.e., super-adiabatic combustion). The heat generated by this combustion process can be converted into electricity with thermoelectric generators, which is the goal of this study. The design of a porous media burner coupled with a thermoelectric generator and its testing are presented. The combustion zone media was a highly-porous alumina matrix interposed between upstream and downstream honeycomb structures with pore sizes smaller than the flame quenching distance, preventing the flame from propagating outside of the central section. Experimental results include temperature distributions inside the combustion chamber and across a thermoelectric generator; along with associated current, voltage and power output values. Measurements were obtained for a catalytically inert Al 2 O 3 medium and a SiC coated medium, which was tested for the ability to catalyze the super-adiabatic combustion. The combustion efficiency was obtained for stoichiometric and ultra-lean (near the lean flammability limit) mixtures of CH 4 and air. - Highlights: • Design of a porous burner coupled with a thermoelectric module. • Super-adiabatic combustion in a highly-porous ceramic matrix was investigated. • Both alumina and silicon carbide ceramic surfaces were used as porous media. • Catalytic properties of Al 2 O 3 and SiC ceramic surfaces were studied

  6. Use of hydrogen-deuterium exchange for contrast in {sup 1}H NMR microscopy investigations of an operating PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Feindel, Kirk W.; Bergens, Steven H.; Wasylishen, Roderick E. [Department of Chemistry, Gunning/Lemieux Chemistry Centre, University of Alberta, Edmonton, Alta. T6G 2G2 (Canada)

    2007-11-08

    The use of hydrogen-deuterium (H-D) exchange as a method to introduce contrast in {sup 1}H NMR microscopy images and to investigate the dynamic distribution of water throughout an operating H{sub 2}/O{sub 2} polymer electrolyte membrane fuel cell, PEMFC, is demonstrated. Cycling D{sub 2}O(l) through the flow channels of a PEMFC causes H-D exchange with water in the PEM to result in a D{sub 2}O-saturated PEM and thus concomitant removal of the {sup 1}H NMR signal. Subsequent operation of the PEMFC with H{sub 2}(g) enables visualization of the redistribution of water from wet or flooded conditions as H-D exchange occurs with D{sub 2}O in the PEM and results in recovery of the {sup 1}H NMR signal. Alternating between H{sub 2}(g) and D{sub 2}(g) as fuel allows observation of water distributions in the PEM while the cell is operating at a steady-state under low relative humidity. At similar currents, the rate of observable H-D exchange in the PEM during fuel cell operation was faster when the PEM was saturated with water than when under low relative humidity. These results are consistent with the known proportions of the conductive hydrophilic and nonconductive hydrophobic domains of Nafion when exposed to different relative humidities. (author)

  7. Habitat Demonstration Unit (HDU) Pressurized Excursion Module (PEM) Systems Integration Strategy

    Science.gov (United States)

    Gill, Tracy; Merbitz, Jerad; Kennedy, Kriss; Tri, Terry; Toups, Larry; Howe, A. Scott

    2011-01-01

    The Habitat Demonstration Unit (HDU) project team constructed an analog prototype lunar surface laboratory called the Pressurized Excursion Module (PEM). The prototype unit subsystems were integrated in a short amount of time, utilizing a rapid prototyping approach that brought together over 20 habitation-related technologies from a variety of NASA centers. This paper describes the system integration strategies and lessons learned, that allowed the PEM to be brought from paper design to working field prototype using a multi-center team. The system integration process was based on a rapid prototyping approach. Tailored design review and test and integration processes facilitated that approach. The use of collaboration tools including electronic tools as well as documentation enabled a geographically distributed team take a paper concept to an operational prototype in approximately one year. One of the major tools used in the integration strategy was a coordinated effort to accurately model all the subsystems using computer aided design (CAD), so conflicts were identified before physical components came together. A deliberate effort was made following the deployment of the HDU PEM for field operations to collect lessons learned to facilitate process improvement and inform the design of future flight or analog versions of habitat systems. Significant items within those lessons learned were limitations with the CAD integration approach and the impact of shell design on flexibility of placing systems within the HDU shell.

  8. ClearPEM: prototype PET device dedicated to breast imaging

    CERN Multimedia

    Joao Varela

    2009-01-01

    Clinical trials have begun in Portugal on a new breast imaging system (ClearPEM) using positron emission tomography (PET). The system, developed by a Portuguese consortium in collaboration with CERN and laboratories participating in the Crystal Clear collaboration, will detect even the smallest tumours and thus help avoid unnecessary biopsies.

  9. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

    2014-01-07

    A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

  10. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles

    2016-01-19

    A method and apparatus for producing heat used in a synthesis gas production process is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the steam reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5

  11. Numerical Simulations and Diagnostic Studies of Meteorological Conditions During PEM-Tropics B

    Science.gov (United States)

    Fuelberg, Henry E.

    2001-01-01

    Provides a final report on the work accomplished by several meteorological scientists under a NASA grant in conjunction with the DC-8 component of Pacific Exploratory Mission (PEM)-Tropics B. The responsibilities of the principal investigator included collaboration with the Science Team on flight planning, presentation of forecasts, and the preparation of map discussions for each flight. In a published manuscript, the principal investigator summarized the meteorological conditions during PEM-TB which included mean flow patterns, subtropical anticyclones, the South Pacific Convergence Zone (SPCZ), and the Intertropical Convergence Zone (ITCZ). Methodologies used included streamlines, ten day backward trajectories, thermodynamic soundings, and satellite imagery. Other interests included air sampling for the purpose of determining pollution levels.

  12. Trends in catalytic NO decomposition over transition metal surfaces

    DEFF Research Database (Denmark)

    Falsig, Hanne; Bligaard, Thomas; Rass-Hansen, Jeppe

    2007-01-01

    The formation of NOx from combustion of fossil and renewable fuels continues to be a dominant environmental issue. We take one step towards rationalizing trends in catalytic activity of transition metal catalysts for NO decomposition by combining microkinetic modelling with density functional...... theory calculations. We show specifically why the key problem in using transition metal surfaces to catalyze direct NO decomposition is their significant relative overbinding of atomic oxygen compared to atomic nitrogen....

  13. Study of Catalysts and Electrocatalysts for NO{sub x} Removal in Combustion Gases ELECTRONOX Project Final Report; Estudio de Catalizadores y Electrocatalizadores para la Eliminacion de NO{sub x} en Gases de Combustion. Informe Final Proyecto ELECTRONOX

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Martinez, E; Marono Bujan, M; Sanchez-Hervas, J M

    2009-12-11

    The final aim of the ELECTRONOX project was to develop new methodologies and technologies for NO{sub x} removal. To fulfil this objective, studies of selective catalytic reduction of NO{sub x} with hydrocarbons, both conventional and with electrochemical promotion, have been undertaken at pilot plant level, using appropriate catalyst/electrocatalysts configurations and in conditions similar to those required in their possible practical application. None of the catalysts/electrocatalysts studied is active and stable enough, under realistic conditions, to consider its possible industrial application, because the value of NO{sub x} conversion achieved by selective catalytic reduction with hydrocarbons, both conventional and with electrochemical promotion, decreases in presence of the different inhibitors and poisons present in the combustion gas, while the promotional effect on the catalytic activity and selectivity is more pronounced. In addition, the catalysts/electrocatalysts suffer from different deactivation processes, such as: sulphur poisoning, carbon deposition and sintering. However, the developed electrochemical catalyst looks promising for NO{sub x} removal in combustion gases, because it can be promoted under realistic operating conditions. (Author) 23 refs.

  14. Down-hole catalytic upgrading of heavy crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Weissman, J.G.; Kessler, R.V.; Sawicki, R.A.; Belgrave, J.D.M.; Laureshen, C.J.; Mehta, S.A.; Moore, R.G.; Ursenbach, M.G. [University of Calgary, Calgary, AB (Canada). Dept. of Chemical and Petroleum Engineering

    1996-07-01

    Several processing options have been developed to accomplish near-well bore in-situ upgrading of heavy crude oils. These processes are designed to pass oil over a fixed bed of catalyst prior to entering the production well, the catalyst being placed by conventional gravel pack methods. The presence of brine and the need to provide heat and reactant gases in a down-hole environment provide challenges not present in conventional processing. These issues were addressed and the processes demonstrated by use of a modified combustion tube apparatus. Middle-Eastern heavy crude oil and the corresponding brine were used at the appropriate reservoir conditions. In-situ combustion was used to generate reactive gases and to drive fluids over a heated sand or catalysts bed, simulating the catalyst contacting portion of the proposed processes. The heavy crude oil was found to be amenable to in-situ combustion at anticipated reservoir conditions, with a relatively low air requirement. Forcing the oil to flow over a heated zone prior to production results in some upgrading of the oil, as compared to the original oil, due to thermal effects. Passing the oil over a hydroprocessing catalyst located in the heated zone results in a product that is significantly upgraded as compared to either the original oil or thermally processed oil. Catalytic upgrading is due to hydrogenation and the results in about a 50% sulfur removal and an 8{degree} API gravity increase. Additionally, the heated catalyst was found to be efficient at converting CO to additional H{sub 2}. While all of the technologies needed for a successful field trial of in-situ catalytic upgrading exist, a demonstration has yet to be undertaken. 27 refs., 5 figs., 5 tabs.

  15. Hybrid plasma-catalytic reforming of ethanol aerosol

    International Nuclear Information System (INIS)

    Solomenko, O.V.; Nedybaliuk, O.A.; Chernyak, V.Ya.; Iukhymenko, V.V.; Veremii, Iu.P.; Iukhymenko, K.V.; Martysh, E.V.; Fedirchyk, I.I.; Demchina, V.P.; Levko, D.S.; Tsymbalyuk, O.M.; Liptuga, A.I.; Dragnev, S.V.

    2015-01-01

    Hybrid plasma-catalytic reforming of the ethanol aerosol with plasma activation of only the oxidant (air) was studied. Part of the oxidant (∼20%) was activated by means of rotational gliding arc with solid electrodes and injected into the reaction (pyrolytic) chamber as a plasma torch. This part of the oxidant interacted with a mixture of hydrocarbons and the rest of the oxidant (∼80%) in the reaction chamber. Temperature changes in the reaction chamber, the composition of the synthesis-gas and the products of synthesis-gas combustion were analyzed

  16. Analysis of the Coupling Behavior of PEM Fuel Cells and DC-DC Converters

    Directory of Open Access Journals (Sweden)

    Achim Kienle

    2009-03-01

    Full Text Available The connection between PEM fuel cells and common DC-DC converters is examined. The analysis is model-based and done for boost, buck and buck-boost converters. In a first step, the effect of the converter ripples upon the PEM fuel cell is shown. They introduce oscillations in the fuel cell. Their appearance is explained, discussed and possibilities for their suppression are given. After that, the overall behaviors of the coupled fuel cell-converter systems are analyzed. It is shown, that neither stationary multiplicities nor oscillations can be introduced by the couplings and therefore separate control approaches for both the PEMFC and the DC-DC converters are applicable.

  17. Session 4: Combinatorial research of methane catalytic decomposition on supported nitride catalysts for CO-free hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Jianghan, Shen; Hua, Wang; Zhongmin, Liu; Hongchao, Liu [Natural Gas Utilization and Applied Catalysis Lab., Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian P. R. (China)

    2004-07-01

    CO-free Hydrogen production is needed for proton exchange membrane fuel cells (PEMs) because CO strongly poisons the anode-electrocatalysts. Methane directly catalytic decomposition is an attractive way to produce CO-free hydrogen for the large abundance of methane and its high H/C ratio. It is more effective to employ high-throughput screening (HTS) technology in heterogeneous catalysis. In this paper, a combinatorial multi-stream reaction system with online multi-stream mass spectrometer screening (MSMSS) detection technique was applied to study the decomposition of methane over supported MoN{sub x}O{sub y} catalysts (supports = Al{sub 2}O{sub 3}, SiO{sub 2}, SBA-15, ZSM-5,13X, and NaY), which is a catalyst system seldom reported recently. (authors)

  18. Method of producing gaseous products using a downflow reactor

    Science.gov (United States)

    Cortright, Randy D; Rozmiarek, Robert T; Hornemann, Charles C

    2014-09-16

    Reactor systems and methods are provided for the catalytic conversion of liquid feedstocks to synthesis gases and other noncondensable gaseous products. The reactor systems include a heat exchange reactor configured to allow the liquid feedstock and gas product to flow concurrently in a downflow direction. The reactor systems and methods are particularly useful for producing hydrogen and light hydrocarbons from biomass-derived oxygenated hydrocarbons using aqueous phase reforming. The generated gases may find used as a fuel source for energy generation via PEM fuel cells, solid-oxide fuel cells, internal combustion engines, or gas turbine gensets, or used in other chemical processes to produce additional products. The gaseous products may also be collected for later use or distribution.

  19. The combustion of biomass - the impact of its types and combustion technologies on the emission of nitrogen oxide

    Directory of Open Access Journals (Sweden)

    Mladenović Milica R.

    2016-01-01

    Full Text Available Harmonization of environmental protection and the growing energy needs of modern society promote the biomass application as a replacement for fossil fuels and a viable option to mitigate the green house gas emissions. For domestic conditions this is particularly important as more than 60% of renewables belongs to biomass. Beside numerous benefits of using biomass for energy purposes, there are certain drawbacks, one of which is a possible high emission of NOx during the combustion of these fuels. The paper presents the results of the experiments with multiple biomass types (soybean straw, cornstalk, grain biomass, sunflower oil, glycerin and paper sludge, using different combustion technologies (fluidized bed and cigarette combustion, with emphasis on the emission of NOx in the exhaust gas. A presentation of the experimental installations is given, as well as an evaluation of the effects of the fuel composition, combustion regimes and technology on the NOx emissions. As the biomass combustion took place at temperatures low enough that thermal and prompt NOx can be neglected, the conclusion is the emissions of nitrogen oxides primarily depend on the biomass composition- it is increasing with the increase of the nitrogen content, and decreases with the increase of the char content which provides catalytic surface for NOx reduction by CO. [Projekat Ministarstva nauke Republike Srbije, br. TR33042: Improvement of the industrial fluidized bed facility, in scope of technology for energy efficient and environmentally feasible combustion of various waste materials in fluidized bed i br. III42011: Development and improvement of technologies for efficient use of energy of several forms of agricultural and forest biomass in an environmentally friendly manner, with the possibility of cogeneration

  20. Hydrogen production by a PEM electrolyser

    International Nuclear Information System (INIS)

    Aragón-González, G; León-Galicia, A; Camacho, J M Rivera; Uribe-Salazar, M; González-Huerta, R

    2015-01-01

    A PEM electrolyser for hydrogen production was evaluated. It was fed with water and a 400 mA, 3.5 V cc electrical power source. The electrolyser was built with two acrylic plates to form the anode and the cathode, two meshes to distribute the current, two seals, two gas diffusers and an assembly membrane-electrode. A small commercial neoprene sheet 1.7 mm thin was used to provide for the water deposit in order to avoid the machining of the structure. For the assembly of the proton interchange membrane a thin square 50 mm layer of Nafion 115 was used

  1. Steam and partial oxidation reforming options for hydrogen production from fossil fuels for PEM fuel cells

    OpenAIRE

    Yousri M.A. Welaya; Mohamed M. El Gohary; Nader R. Ammar

    2012-01-01

    Proton exchange membrane fuel cell (PEM) generates electrical power from air and from hydrogen or hydrogen rich gas mixtures. Therefore, there is an increasing interest in converting current hydrocarbon based marine fuels such as natural gas, gasoline, and diesel into hydrogen rich gases acceptable to the PEM fuel cells on board ships. Using chemical flow sheeting software, the total system efficiency has been calculated. Natural gas appears to be the best fuel for hydrogen rich gas productio...

  2. Atomic layer deposition of cerium oxide for potential use in diesel soot combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, Tatiana V., E-mail: tatiana.ivanova@lut.fi, E-mail: ivanova.tatyana.v@gmail.com; Toivonen, Jenni; Maydannik, Philipp S.; Kääriäinen, Tommi; Sillanpää, Mika [ASTRaL Team, Laboratory of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Homola, Tomáš; Cameron, David C. [R& D Centre for Low-Cost Plasma and Nanotechnology Surface Modification, Masaryk University, Kotlářská 267/2, 611 37 Brno (Czech Republic)

    2016-05-15

    The particulate soot emission from diesel motors has a severe impact on the environment and people's health. The use of catalytic convertors is one of the ways to minimize the emission and decrease the hazard level. In this paper, the activity of cerium oxide for catalytic combustion of diesel soot was studied. Thin films of cerium dioxide were synthesized by atomic layer deposition using tetrakis(2,2,6,6-tetramethyl-3,5-heptanedionato)cerium [Ce(thd){sub 4}] and ozone as precursors. The characteristics of the films were studied as a function of deposition conditions within the reaction temperature range of 180–350 °C. Thickness, crystallinity, elemental composition, and morphology of the CeO{sub 2} films deposited on Si (100) were characterized by ellipsometry, x-ray diffraction, x-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscopy, respectively. The growth rate of CeO{sub 2} was observed to be 0.30 Å/cycle at temperatures up to 250 °C with a slight increase to 0.37 Å/cycle at 300 °C. The effect of CeO{sub 2} films grown on stainless steel foil supports on soot combustion was measured with annealing tests. Based on the analysis of these, in catalytic applications, CeO{sub 2} has been shown to be effective in lowering the soot combustion temperature from 600 °C for the uncoated substrates to 370 °C for the CeO{sub 2} coated ones. It was found that the higher deposition temperatures had a positive effect on the catalyst performance.

  3. HyLIFT-0. 'Development and benchmarking of a 1st gen. HT-PEM/Li-lon hybrid motive power system for forklifts'. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, Karsten (H2 Logic A/S, Herning (Denmark)); Elkjaer Toennesen, A. (Teknologisk Institut, AArhus (Denmark)); Torrendrup, C. (Lithium Balance A/S, Ishoej (Denmark)); Sangers, A. (Grundfos DK A/S, Bjerringbro (Denmark)); Junge, S. (Atlet Danmark A/S, Engesvang (Denmark))

    2010-04-15

    In the HyLIFT-0 project a HT-PEM/Li-Ion hybrid system for a forklift was developed and built. The system has been benchmark'et and tested both at H2 Logic, in a test bench at the Teknologisk Institut and by an end user, Grene A/S, who already has a hydrogen hybrid vehicle in service with LT-PEM system. The HT-PEM/Li-Ion system is based on a 1 kW SerEnergy fuel cell, with a 2.5 kWh Li-Ion battery pack and the newly developed BMS. Both Fuel cell systems were measured in the test bench at Teknologisk Institut. The conclusions are not fully accurate because there are many factors influencing such as the HT-PEM system not being fully optimized. The benchmark at Grene, showed that the heat up time is critical for the vehicle, but once it is in operation, there are no difference to the LT-PEM system, either in experienced performance or in user experience. The purpose of HyLIFT-0 project is met since the measurements and the benchmark has revealed the technology's advantages and disadvantages. Above all the conclusion is that HT-PEM/Li-Ion hybrid fuel cell system at the present stage of development is not a disruptive technology compared to known LT-PEM systems. There are numerous advantages of the system, but there are also some disadvantages, doing that, overall, it is not a usable technology in forklifts - it is especially the long start-up time of up to 45 minutes that is unacceptable for the fork lifter user; the user wants to have immediate maximum output and the battery cannot handle this during the time it lasts until the HT-PEM fuel cell is warm and producing power. The HT-PEM/Li-Ion system is relatively simple to build and it saves a number of components compared to the LT-PEM system, but the economic advantage of this is counterbalanced by the fuel cell being rather expensive and furthermore it has a relatively low efficiency. This will probably change over time when the technology completed development and volume increase. (LN)

  4. A computational model of a PEM fuel cell with finite vapor absorption rate

    Energy Technology Data Exchange (ETDEWEB)

    Vorobev, A.; Zikanov, O.; Shamim, T. [Department of Mechanical Engineering, University of Michigan-Dearborn, 48128-1491 Dearborn, MI (United States)

    2007-03-30

    The paper presents a new computational model of non-steady operation of a PEM fuel cell. The model is based on the macroscopic hydrodynamic approach and assumptions of low humidity operation and one-dimensionality of transport processes. Its novelty and advantage in comparison with similar existing models is that it takes into account the finite-time equilibration between vapor and membrane-phase liquid water within the catalyst layers. The phenomenon is described using an additional parameter with the physical meaning of the typical reciprocal time of the equilibration. A computational parametric study is conducted to identify the effect of the finite-time equilibration on steady-state and transient operation of a PEM fuel cell. (author)

  5. Review: Durability and degradation issues of PEM fuel cell components

    NARCIS (Netherlands)

    Bruijn, de F.A.; Dam, V.A.T.; Janssen, G.J.M.

    2008-01-01

    Besides cost reduction, durability is the most important issue to be solved before commercialisation of PEM Fuel Cells can be successful. For a fuel cell operating under constant load conditions, at a relative humidity close to 100% and at a temperature of maximum 75 °C, using optimal stack and flow

  6. Long-term stability of the Clear-PEM detector modules

    International Nuclear Information System (INIS)

    Amaral, Pedro; Bruyndonckx, Peter; Carrico, Bruno; Ferreira, Miguel; Luyten, Joan; Moura, Rui; Ortigao, Catarina; Rodrigues, Pedro; Silva, Jose C. da; Trindade, Andreia; Varela, Joao

    2007-01-01

    Experimental evaluation of the imaging system Clear-PEM for positron emission mammography, under development within the framework of the crystal clear collaboration at CERN, is presented in terms of its long-term stability. The detector modules and experimental setup are described. Time evolution results of signal yield, energy resolution, depth-of-interaction and inter-channel crosstalk for a reference detector module are reported

  7. Decrease of noxious emissions in the residual fuel oil combustion; Disminucion de emisiones nocivas en la combustion de aceite combustible residual

    Energy Technology Data Exchange (ETDEWEB)

    Mandoki W, Jorge [Econergia S. de R. L. de C. V. Mexico, D. F. (Mexico)

    1994-12-31

    The residual fuel oil combustion emits noxious substances such as carbonaceous particulate, nitrogen oxides, and sulfur trioxide at unacceptable levels. Water emulsified in the fuel substantially reduces such emissions, achieving besides, in most of the cases, a net saving in the fuel consumption. The beneficial effects are shown in burning the residual fuel oil as a water emulsion, as well as the method to produce an adequate emulsion. The emulsified fuel technology offers a low cost option to reduce air pollution. The fuel oil quality has been declining during the last decades due to: 1. Increase in the production of crude heavy oils, generally with higher content of asphaltens and sulfur. 2. Less availability of vacuum distillation residues due to its conversion into greater value products. 3. More intensive conversion processes such as catalytic cracking, visbreaking, etc. that increase the asphaltenes concentration in the bottoms, causing instability problems. 4. The increase in the vanadium and other metals content as the concentration of asphaltenes increases. The use of emulsified fuel oil provides an efficient and economical method to substantially reduce the noxious emissions to the atmosphere. The emulsion contains water particles in a diameter between 2 and 20 microns, uniformly distributed in the fuel oil, generally in a proportion generally of 5 to 10%; besides, it contains a tensioactive agent to assure a stable emulsion capable of withstanding the shearing forces of the pumping and distribution systems. When the atomized oil drops get into the combustion chamber, the emulsified water flashes into high pressure steam, originating a violent secondary atomization. The effect of this secondary atomization is the rupture of the oil drops of various hundred microns, producing drops of 5 to 15 microns in diameter. Since the necessary time for combustion is an exponential function of the drop diameter, a very substantial improvement in the combustion is

  8. Future combustion methods for biomethane powered tractor engines

    International Nuclear Information System (INIS)

    Prehn, Sascha; Harndorf, Horst; Wichmann, Volker; Beberdick, Wolfgang

    2016-01-01

    Biomethane represents an alternative to fossil fuels (petrol, diesel), not only in the on-road sector. Methane-based fuels come in focus of farmers in the agriculture sector, due to cost constraints, increasing regulation of pollutant emissions and reduction of carbondioxid. To represent a monovalent gas operation, a functional model is derived from a series diesel engine for agricultural use. On the test engine, systematic studies on the combustion process are carried out by cylinder pressure indication and exhaust-emission measurement. Combustion under stoichiometric conditions (with or without exhaust gas recirculation) as well as the conversion of fuel from excess air is observed. The study shows that with a natural-gas engine, a complex post-treatment system of exhaust gas (DOC + DPF + SCR) that is typically for diesel engines can be dispensed with. The exhaust gas limits in force since 2014 and a limitation of methane on 0,5 g/kWh can be met with a stoichiometric combustion concept and a three way catalytic converter optimized for the methane oxidation.

  9. PEM fuel cells operated at 0% relative humidity in the temperature range of 23-120 oC

    International Nuclear Information System (INIS)

    Zhang, Jianlu; Tang, Yanghua; Song, Chaojie; Cheng, Xuan; Zhang, Jiujun; Wang, Haijiang

    2007-01-01

    Operation of a proton exchange membrane (PEM) fuel cell without external humidification (or 0% relative humidity, abbreviated as 0% RH) of the reactant gases is highly desirable, because it can eliminate the gas humidification system and thus decrease the complexity of the PEM fuel cell system and increase the system volume power density (W/l) and weight power density (W/kg). In this investigation, a PEM fuel cell was operated in the temperature range of 23-120 o C, in particular in a high temperature PEM fuel cell operation range of 80-120 o C, with dry reactant gases, and the cell performance was examined according to varying operation parameters. An ac impedance method was used to compare the performance at 0% RH with that at 100% RH; the results suggested that the limited proton transfer process to the Pt catalysts, mainly in the inonomer within the membrane electrode assembly (MEA) could be responsible for the performance drop. It was demonstrated that operating a fuel cell using a commercially available membrane (Nafion (registered) 112) is feasible under certain conditions without external humidification. However, the cell performance at 0% RH decreased with increasing operation temperature and reactant gas flow rate and decreasing operation pressure

  10. Analysis of transport phenomena and electrochemical reactions in a micro PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy and Environment Foundation, Najaf, P.O.Box 39 (Iraq)

    2013-07-01

    Micro-fuel cells are considered as promising electrochemical power sources in portable electronic devices. The presence of microelectromechanical system (MEMS) technology makes it possible to manufacture the miniaturized fuel cell systems. The majority of research on micro-scale fuel cells is aimed at micro-power applications. Performance of micro-fuel cells are closely related to many factors, such as designs and operating conditions. CFD modeling and simulation for heat and mass transport in micro PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize the micro fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal computational fluid dynamics model of a micro proton exchange membrane (PEM) fuel cell has been developed. This comprehensive model accounts for the major transport phenomena such as convective and diffusive heat and mass transfer, electrode kinetics, transport and phase-change mechanism of water, and potential fields in a micro PEM fuel cell. The model explains many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally. Three-dimensional results of the species profiles, temperature distribution, potential distribution, and local current density distribution are presented and analysed, with the focus on the physical insight and fundamental understanding.

  11. Dual-Fuel Combustion for Future Clean and Efficient Compression Ignition Engines

    Directory of Open Access Journals (Sweden)

    Jesús Benajes

    2016-12-01

    Full Text Available Stringent emissions limits introduced for internal combustion engines impose a major challenge for the research community. The technological solution adopted by the manufactures of diesel engines to meet the NOx and particle matter values imposed in the EURO VI regulation relies on using selective catalytic reduction and particulate filter systems, which increases the complexity and cost of the engine. Alternatively, several new combustion modes aimed at avoiding the formation of these two pollutants by promoting low temperature combustion reactions, are the focus of study nowadays. Among these new concepts, the dual-fuel combustion mode known as reactivity controlled compression ignition (RCCI seems more promising because it allows better control of the combustion process by means of modulating the fuel reactivity depending on the engine operating conditions. The present experimental work explores the potential of different strategies for reducing the energy losses with RCCI in a single-cylinder research engine, with the final goal of providing the guidelines to define an efficient dual-fuel combustion system. The results demonstrate that the engine settings combination, piston geometry modification, and fuel properties variation are good methods to increase the RCCI efficiency while maintaining ultra-low NOx and soot emissions for a wide range of operating conditions.

  12. Analysis of coupled proton and water transport in a PEM fuel cell using the binary friction membrane model

    International Nuclear Information System (INIS)

    Carnes, B.; Djilali, N.

    2006-01-01

    Transport of liquid water within a polymer electrolyte membrane (PEM) is critical to the operation of a PEM fuel cell, due to the strong dependence of the membrane transport coefficients on water content. In addition, enhanced predictive abilities are particularly significant in the context of passive air breathing fuel cell designs where lower water contents will prevail in the membrane. We investigate and analyze the numerical predictions of a recently proposed rational model for transport of protons and water in a PEM, when compared to a widely used empirical model. While the performance is similar for a saturated membrane, for PEMs with low water content, the difference in computed current density and membrane water crossover can be substantial. The effects of coupling partially saturated gas diffusion electrodes (GDLs) with the membrane are studied in both a 1D and 2D context. In addition, a simplified 1D analytical membrane water transport model is validated against the complete 1D model predictions. Our numerical results predict a higher current density and more uniform membrane hydration using a dry cathode instead of a dry anode, and illustrate that the strongest 2D effects are for water vapor transport

  13. Design and experimental characterization of a 350 W High Temperature PEM fuel cell stack

    Directory of Open Access Journals (Sweden)

    Nicola Zuliani

    2011-01-01

    Full Text Available High Temperature Proton Exchange Membrane (HT PEM fuel cell based on polybenzimidazole (PBI polymer and phosphoric acid, can be operated at temperature between 120 °C and 180 °C. Reactants humidification is not required and CO content up to 2% in the fuel can be tolerated, affecting only marginally performance. This is what makes HT PEM very attractive, as low quality reformed hydrogen can be used and water management problems are avoided. Till nowadays, from experimental point of view, only few studies relate to the development and characterization of high temperature stacks. The aim of this work is to present the main design features and the performance curves of a 25 cells HT PEM stack based on PBI and phosphoric acid membranes. Performance curves refer to the stack operating with two type of fuels: pure hydrogen and a gas mixture simulating a typical steam reformer output. The stack voltage distribution analysis and the stack temperature distribution analysis suggest that cathode air could be used as coolant leading to a better thermal management. This could simplify stack design and system BOP, thus increasing system performance.

  14. Diseño, modelado e implementación de un sistema de alimentación para aplicaciones portátiles basado en pilas de combustible

    OpenAIRE

    Rubio García-Caro, Angel Luis

    2010-01-01

    Este proyecto fin de carrera se ha realizado dentro del Grupo de Sistemas Electrónicos de Potencia, perteneciente al departamento de Tecnología Electrónica de la Universidad Carlos III de Madrid. Este trabajo ha sido desarrollado en el marco de un proyecto de investigación del grupo y está orientado al estudio de sistemas de alimentación basados en pilas de combustible tipo PEM (“Proton Exchange Membrane”). El objetivo principal del presente proyecto es realizar el diseño de un sistema de ...

  15. Performance of a PEM water electrolyser using a TaC-supported iridium oxide electrocatalyst

    DEFF Research Database (Denmark)

    Polonský, J.; Mazúr, P.; Paidar, M.

    2014-01-01

    by dispersing the precious metal compound onto a catalyst support. Electrocatalysts with 50, 70 and 90 wt.% of IrO2 on a TaC support were tested in a laboratory PEM water electrolyser and compared with pure IrO2. The temperature was set at 90, 110, 120 and 130 °C respectively and the cell voltage was varied......Polymer electrolyte membrane (PEM) water electrolysis is an attractive way of producing carbon-free hydrogen. One of the drawbacks of this method is the need for precious metal-based electrocatalysts. This calls for a highly efficient utilization of the precious metal, which can be obtained...

  16. Full-scale demonstration of EBS construction technology II. Design, manufacturing and transportation of pre-fabricated EBS module (PEM)

    International Nuclear Information System (INIS)

    Asano, Hidekazu; Toguri, Satohito; Iwata, Yumiko; Kawakami, Susumu; Nagasawa, Yuji; Yoshida, Takeshi

    2008-01-01

    PEM was investigated as a full-scale demonstration for the design, manufacturing and construction by using simulated buffer material and overpack in consideration of horizontal emplacement. Also near full-scale tests were conducted to examine the applicability of air-bearing system which can be used to transport a heavy load at the drift tunnel as for PEM. With regard to PEM casing, design requirements were selected from the viewpoints of EBS performance and operation safety issues. The construction procedure was examined in consideration of the shapes of buffer material, which are previously positioned inside the casing. And design procedure of the casing was also examined and presented. A full-scale PEM casing as a longitudinally two-part divided cylinder type with connection flanges was manufactured by using carbon steel plate. The wall thickness of this non-leak tight type PEM casing was evaluated its mechanical integrity by 2-dimensional stress analysis in consideration of the emplacement condition on the drift tunnel basement. Mechanical integrity of a percolated type casing was also examined its mechanical integrity. Air-bearing unit, which originally apply to a flat/smooth surface, was modified to fit a curved surface of the drift tunnel. Two units were aligned with two parallel lines, which estimate to be able to lift 12 tons, about two-fifth of the total weight of full scale PEM. On the conducted transportation tests of the air-bearing units, considering the surface roughness of the drift tunnel, especially for its unevenness, capability and availability of the run-over such gaps were investigated. And effect of covering sheets which can improve the gapped surface into relatively smooth was also examined by using several candidate materials. Through these tests, combination of the covering sheets and the maximum available height difference were evaluated and identified. Also the maximum traction force to toe the loading was measured to design the air

  17. Modelling membrane hydration and water balance of a pem fuel cell

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Nielsen, Mads Pagh

    2015-01-01

    Polymer electrolyte membrane (PEM) fuel cells requires an appropriate hydration in order to ensure high efficiency and long durability. As water is essential for promoting proton conductivity in the membrane, it is important to control membrane water hydration to avoid flooding. In this study we...

  18. Controllable clock circuit design in PEM system

    International Nuclear Information System (INIS)

    Sun Yunhua; Wang Peihua; Hu Tingting; Feng Baotong; Shuai Lei; Huang Huan; Wei Shujun; Li Ke; Zhao Jingwei; Wei Long

    2011-01-01

    A high-precision synchronized clock circuit design will be presented, which can supply steady, reliable and anti-jamming clock signal for the data acquirement (DAQ) system of Positron Emission Mammography (PEM). This circuit design is based on the Single-Chip Microcomputer and high-precision clock chip, and can achieve multiple controllable clock signals. The jamming between the clock signals can be reduced greatly with the differential transmission. Meanwhile, the adoption of CAN bus control in the clock circuit can prompt the clock signals to be transmitted or masked simultaneously when needed. (authors)

  19. Controllable clock circuit design in PEM system

    International Nuclear Information System (INIS)

    Sun Yunhua; Wang Peilin; Hu Tingting; Feng Baotong; Shuai Lei; Huang Huan; Wei Shujun; Li Ke; Zhao Jingwei; Wei Long

    2010-01-01

    A high-precision synchronized clock circuit design will be presented, which can supply steady, reliable and anti-jamming clock signal for the data acquirement (DAQ) system of Positron Emission Mammography (PEM). This circuit design is based on the Single-Chip Microcomputer and high-precision clock chip, and can achieve multiple controllable clock signals. The jamming between the clock signals can be reduced greatly with the differential transmission. Meanwhile, the adoption of CAN bus control in the clock circuit can prompt the clock signals to be transmitted or masked simultaneously when needed. (authors)

  20. Evaluation of the CR{sub 3}C{sub 2}(NICR) coating deposited on S4400 with the HVOF process for PEM fuel flow plates; Evaluacion del recubrimiento CR{sub 3}C{sub 2}(NICR) depositado sobre S4400 por el proceso HVOF para placas de flujo de celdas de combustible PEM

    Energy Technology Data Exchange (ETDEWEB)

    Rendon Belmonte, M.; Perez Quiroz, J.T. [Instituto Mexicano del Transporte, Queretaro, Queretaro (Mexico)]. E-mail: marielarb17@hotmail.com; Porcayo Calderon, J. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Orozco, G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S. C., Queretaro, Queretaro (Mexico)

    2009-09-15

    .15 mV/s de acuerdo a las normas ASTM G5 y ASTM G59. Previo a los ensayos se midio el Ecorr con un multimetro de alta impedancia (10{sup 6}). El aspecto morfologico del recubrimiento evaluado fue analizado por MEB (microscopia electronica de barrido). Con base en los valores obtenidos de icorr 1.7*10{sup -4} mA/cm{sup 2} por un periodo de 576 hrs, podemos afirmar que este recubrimiento cumple con los criterios de resistencia a la corrosion requeridos por el DOE (Departamento de Energia de Estados Unidos) para considerar su uso en placas de flujo de una celda de combustible PEM.

  1. Catalytic Oxidation of Soot on a Novel Active Ca-Co Dually-Doped Lanthanum Tin Pyrochlore Oxide

    Directory of Open Access Journals (Sweden)

    Lijie Ai

    2018-04-01

    Full Text Available A novel active Ca-Co dually-doping pyrochlore oxide La2−xCaxSn2−yCoyO7 catalyst was synthesized by the sol-gel method for catalytic oxidation of soot particulates. The microstructure, atomic valence, reduction, and adsorption performance were investigated by X-ray powder diffraction (XRD, scanning electron microscope (SEM, Fourier-transform infrared spectroscopy (FT-IR, X-ray photoelectron spectroscopy (XPS, H2-TPR (temperature-programmed reduction, and in situ diffuse reflection infrared Fourier transformed (DRIFTS techniques. Temperature programmed oxidation (TPO tests were performed with the mixture of soot-catalyst under tight contact conditions to evaluate the catalytic activity for soot combustion. Synergetic effect between Ca and Co improved the structure and redox properties of the solids, increased the surface oxygen vacancies, and provided a suitable electropositivity for oxide, directly resulting in the decreased ignition temperature for catalyzed soot oxidation as low as 317 °C. The presence of NO in O2 further promoted soot oxidation over the catalysts with the ignition temperature decreased to about 300 °C. The DRIFTS results reveal that decomposition of less stable surface nitrites may account for NO2 formation in the ignition period of soot combustion, which thus participate in the auxiliary combustion process.

  2. Use of biogas in PEM fuel cells; Einsatz von Biogas in PEM-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Volkhard; Schmersahl, Ralf; Ellner, Janine (comps.)

    2009-06-15

    This research project was dedicated to two problems: 1. What demands must biogas meet in order to conform to the specifications of PEM fuel cell systems and permit safe operation? 2. How must a fuel cell system be designed and operated in order to be well-adapted to the special features of biogas as opposed to natural gas? For this purpose biogas samples were taken from laboratory-scale and commercial plants and analysed by gas chromatography using various substrates and methods. By combining this with the use of a mass spectroscopy detector (GC-MS system) it was possible to perform a qualitative and quantitative analysis of sulphurious trace gases in the biogas which might cause damage to the fuel cell system. Investigations were performed on an experimental reformer using either modelled or native biogas of different compositions, the intent being to obtain information for the design of the individual process stages. The two operating parameters steam-methane ratio (or S/C ratio) and reforming temperature were varied to optimise parameter settings in terms of energy efficiency. By linking the reformer to a 500 W fuel cell it was possible confirm the suitability of the reformed biogas for use in fuel cells. [German] In diesm Forschungsvorhaben werden zwei Fragestellungen bearbeitet: 1. Welche Anforderungen ergeben sich an das Biogas, um den Spezifikationen von PEM-Brennstoffzellensystemen zu genuegen und eine sicheren Betrieb zu ermoeglichen? 2. Wie muss das Brennstoffzellensystem ausgelegt und gefuehrt werden, um den Besonderheiten von Biogas im Vergleich zu Erdgas Rechnung zu tragen? Dazu wurden Biogasproben aus Labor- und Praxisanlagen unter Beruecksichtigung unterschiedlicher Substrate und Verfahren gaschromatisch analysiert. Die Kopplung mit einem massenspektroskopischen Detektor (GC-MS System) ermoeglicht dabei die Qualifizierung und Quantifizierung der vorhandenen schwefelhaltigen Spurengase, die eine Schaedigung von Brennstoffzellenanlagen verursachen. Die

  3. Development of Novel PEM Membrane and Multiphase CD Modeling of PEM Fuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    K. J. Berry; Susanta Das

    2009-12-30

    To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtained from the CFD two-phase flow model simulations show improvement in cell performance as well as water management under PEMFCs operational conditions as compared to the results of a single phase flow model available in the literature. The quantitative information obtained from the two-phase model simulation results helped to develop a CFD control algorithm for low temperature PEM fuel cell stacks which opens up a route in designing improvement of PEMFC for better operational efficiency and performance. To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtained from the CFD two-phase flow model simulations show improvement in cell

  4. Patriot Script 1.0.13 User Guide for PEM 1.3.2

    Energy Technology Data Exchange (ETDEWEB)

    Cleland, Timothy James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kubicek, Deborah Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stroud, Phillip David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cuellar-Hengartner, Leticia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mathis, Mark [Descartes Labs, Inc., Los Alamos, NM (United States)

    2015-11-02

    This document provides an updated user guide for Patriot Script Version 1.0.13, for release with PEM 1.3.1 (LAUR-1422817) that adds description and instructions for the new excursion capability (see section 4.5.1).

  5. CFD modelling of cooling channel geometry of PEM fuel cell for ...

    African Journals Online (AJOL)

    In this study, a numerical investigation was carried out to deter mine the impact of cooling channel geometry in combination with temperature dependent operating parameters on thermal management and overall performance of a PEM fuel cell system. The evaluation is performed using a computational fluid dynamics ...

  6. Modelagem da eletro-oxidação de etanol sobre catalisador PtSn/C aplicada a células a combustível de etanol direto do tipo membrana trocadora de prótons (DEPEMFC)

    OpenAIRE

    Piña, Renzo Fabricio Figueroa

    2014-01-01

    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Mecânica, Florianópolis, 2014 Neste trabalho desenvolve-se a modelagem da reação eletroquímica de oxidação de etanol em células a combustível de etanol direto tipo PEM (DEPEMFC). O modelo da célula DEPEMFC considera a cinética de eletro-oxidação de etanol, o transporte de massa e a resistência elétrica dos diversos materiais que formam a célula a combustível. A reação elet...

  7. Development of a 400 W High Temperature PEM Fuel Cell Power Pack

    DEFF Research Database (Denmark)

    Schaltz, Erik; Jespersen, Jesper Lebæk; Rasmussen, Peter Omand

    2006-01-01

    reformer design because CO removal is not needed. A fuel like methanol would be a preferable choice for reforming when using HTPEM fuel cells because of its high energy density and low reforming temperatures. The thermal integration and use of HTPEM fuel cells with methanol reformers show promising results......When using pressurized hydrogen to fuel a fuel cell, much space is needed for fuel storage. This is undesirable especially with mobile or portable fuel cell systems, where refuelling also often is inconvenient. Using a reformed liquid carbonhydrate can reduce this fuel volume considerably. Nafion...... based low temperature PEM (LTPEM) fuel cells are very intolerant to reformate gas because of the presence of CO. PBI based high temperature PEM (HTPEM) fuel cells can operate stable at much higher CO concentrations. This makes the HTPEM very suitable for applications using a reformer, and could simplify...

  8. Regeneration of CO poisoned PEM fuel cells by periodic pulsed oxidation

    International Nuclear Information System (INIS)

    Adams, W.A.; Blair, J.; Bullock, K.R.; Gardner, C.L.

    2004-01-01

    CO poisoning is a major issue when reformate is used as a fuel in PEM fuel cells. Normally it is necessary to reduce the CO to very low levels (∼5 ppm) and CO tolerant catalysts, such as Pt-Ru, are often employed. As an alternative approach, we have studied the use of pulsed oxidation for the regeneration of CO poisoned cells. Results are presented for the regeneration of Pt and Pt-Ru anodes in a PEM fuel cell fed with CO concentrations as high as 10,000 ppm. The results show periodic removal of CO from the catalyst surface by pulsed oxidation can increase the average cell potential and increase overall efficiency. A method for enhancing the performance of a fuel cell stack using a microprocessor-based Fuel Cell Health Manager (FCHM) has been developed. The results of a cost/benefit analysis for the use of a FCHM on a 4 kW residential fuel cell system are presented. (author)

  9. Combustion and Gasification Collection of Diesel Soot by Means of Microwave Heating

    Directory of Open Access Journals (Sweden)

    Xueshi YAO

    2014-06-01

    Full Text Available The experiment of integrated purification of diesel soot was made by means of microwave heating. The experiment includes combustion and gasification collection. The catalytic effect of ceramic carrier was used in the combustion process. In order to improve the purification efficiency of PM2.5 particles, the surfactants were used in gasification collection. The model of computer control was set up so that the purification course could be controlled. The experimental principle was analyzed. Experiment result indicated that the diesel soot purifying efficiency is more than 90 %. The purification efficiency can be improved further by the optimization design of experimental device.

  10. Method for operating a spark-ignition, direct-injection internal combustion engine

    Science.gov (United States)

    Narayanaswamy, Kushal; Koch, Calvin K.; Najt, Paul M.; Szekely, Jr., Gerald A.; Toner, Joel G.

    2015-06-02

    A spark-ignition, direct-injection internal combustion engine is coupled to an exhaust aftertreatment system including a three-way catalytic converter upstream of an NH3-SCR catalyst. A method for operating the engine includes operating the engine in a fuel cutoff mode and coincidentally executing a second fuel injection control scheme upon detecting an engine load that permits operation in the fuel cutoff mode.

  11. Sound transmission in narrow pipes with superimposed uniform mean flow and acoustic modelling of automobile catalytic converters

    Science.gov (United States)

    Dokumaci, E.

    1995-05-01

    The theory of Zwikker and Kosten for axisymmetric wave propagation in circular pipes has been extended to include the effect of uniform mean flow. This formulation can be used in acoustical modelling of both the honeycomb pipes in monolithic catalytic converters and the standard pipes in internal combustion engine exhaust lines. The effects of mean flow on the propagation constants are shown. Two-port elements for acoustic modelling of the honeycomb structure of monolithic catalytic converters are developed and applied to the prediction of the transmission loss characteristics.

  12. Characterization and quality control of avalanche photodiode arrays for the Clear-PEM detector modules

    International Nuclear Information System (INIS)

    Abreu, Conceicao; Amaral, Pedro; Carrico, Bruno; Ferreira, Miguel; Luyten, Joan; Moura, Rui; Ortigao, Catarina; Rato, Pedro; Varela, Joao

    2007-01-01

    Clear-PEM is a Positron Emission Mammography (PEM) prototype being developed in the framework of the Crystal Clear Collaboration at CERN. This device is a dedicated PET camera for mammography, based on LYSO:Ce scintillator crystals, Avalanche PhotoDiodes (APD) and a fast, low-noise electronics readout system, designed to examine both the breast and the axillary lymph node areas, and aiming at the detection of tumors down to 2 mm in diameter. The prototype has two planar detector heads, each composed of 96 detector modules. The Clear-PEM detector module is composed of a matrix of 32 identical 2x2x20 mm 3 LYSO:Ce crystals read at both ends by Hamamatsu S8550 APD arrays (4x8) for Depth-of-Interaction (DoI) capability. The APD arrays were characterized by the measurement of gain and dark current as a function of bias voltage, under controlled temperature conditions. Two independent setups were used. The full set of 398 APD arrays followed a well-defined quality control (QC) protocol, aiming at the rejection of arrays not complying within defined specifications. From a total of 398 arrays, only 2 (0.5%) were rejected, reassuring the trust in these detectors for prototype assembly and future developments

  13. The effect of material properties on the performance of a new geometry PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Khazaee, Iman [Islamic Azad University, Department of Mechanical Engineering, Torbat-e-jam Branch, Torbat-e-jam (Iran, Islamic Republic of); Ghazikhani, Mohsen [Ferdowsi University of Mashhad, Department of Mechanical Engineering, Faculty of Engineering, Mashhad (Iran, Islamic Republic of)

    2012-05-15

    In this paper a computational dynamics model for duct-shaped geometry proton exchange membrane (PEM) fuel cell was used to investigate the effect of changing gas diffusion layer and membrane properties on the performances, current density and gas concentration. The proposed model is a full cell model, which includes all the parts of the PEM fuel cell, flow channels, gas diffusion electrodes, catalyst layers and the membrane. Coupled transport and electrochemical kinetics equations are solved in a single domain; therefore no interfacial boundary condition is required at the internal boundaries between cell components. This computational fluid dynamics code is used as the direct problem solver, which is used to simulate the 2-dimensional mass, momentum and species transport phenomena as well as the electron- and proton-transfer process taking place in a PEMFC that cannot be investigated experimentally. The results show that by increasing the thickness and decreasing the porosity of GDL the performance of the cell enhances that it is different with planner PEM fuel cell. Also the results show that by increasing the thermal conductivity of the GDL and membrane, the overall cell performance increases. (orig.)

  14. A CFD analysis of transport phenomena and electrochemical reactions in a tubular-shaped PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy and Environment Foundation, Al-Najaf, P.O.Box 39 (Iraq)

    2013-07-01

    A fuel cell is most interesting new power source because it solves not only the environment problem but also natural resource exhaustion problem. CFD modeling and simulation for heat and mass transport in PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal computational fluid dynamics model of a tubular-shaped proton exchange membrane (PEM) fuel cell has been developed. This comprehensive model accounts for the major transport phenomena such as convective and diffusive heat and mass transfer, electrode kinetics, transport and phase-change mechanism of water, and potential fields in a tubular-shaped PEM fuel cell. The model explains many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally. Three-dimensional results of the species profiles, temperature distribution, potential distribution, and local current density distribution are presented and analysed, with the focus on the physical insight and fundamental understanding.

  15. Steam and partial oxidation reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Directory of Open Access Journals (Sweden)

    Yousri M.A. Welaya

    2012-06-01

    Full Text Available Proton exchange membrane fuel cell (PEM generates electrical power from air and from hydrogen or hydrogen rich gas mixtures. Therefore, there is an increasing interest in converting current hydrocarbon based marine fuels such as natural gas, gasoline, and diesel into hydrogen rich gases acceptable to the PEM fuel cells on board ships. Using chemical flow sheeting software, the total system efficiency has been calculated. Natural gas appears to be the best fuel for hydrogen rich gas production due to its favorable composition of lower molecular weight compounds. This paper presents a study for a 250 kW net electrical power PEM fuel cell system utilizing a partial oxidation in one case study and steam reformers in the second. This study has shown that steam-reforming process is the most competitive fuel processing option in terms of fuel processing efficiency. Partial oxidation process has proved to posses the lowest fuel processing efficiency. Among the options studied, the highest fuel processing efficiency is achieved with natural gas steam reforming system.

  16. Silicon carbide-silicon as a support material for oxygen evolution reaction in PEM steam electrolysers

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Petrushina, Irina; Christensen, Erik

    cells. In the present work a commercial SiC-Si, produced by the Acheson process, with a fraction of free silicon around 20% wt. was investigated as a catalyst support for anode electrocatalyst in PEM steam electrolysers. This electrocatalyst system was characterized using several techniques such as XRD......, cyclic voltammetry, SEM, EDX and steady state electrochemical polarisation in a working PEM steam electrolyser. Several SiC-Si-IrO2 electrodes have been prepared and tested. The iridium oxide content at the electrode active layer varied from x=0.2 to x=1, corresponding to the general formula (1-x...... for phosphoric acid doped membrane steam electrolysers....

  17. Modeling a Distributed Power Flow Controller with a PEM Fuel Cell for Power Quality Improvement

    Directory of Open Access Journals (Sweden)

    J. Chakravorty

    2018-02-01

    Full Text Available Electrical power demand is increasing at a relatively fast rate over the last years. Because of this increasing demand the power system is becoming very complex. Both electric utilities and end users of electric power are becoming increasingly concerned about power quality. This paper presents a new concept of distributed power flow controller (DPFC, which has been implemented with a proton exchange membrane (PEM fuel cell. In this paper, a PEM fuel cell has been simulated in Simulink/MATLAB and then has been used in the proposed DPFC model. The new proposed DPFC model has been tested on a IEEE 30 bus system.

  18. Modeling two-phase flow in PEM fuel cell channels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yun; Basu, Suman; Wang, Chao-Yang [Electrochemical Engine Center (ECEC), and Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)

    2008-05-01

    This paper is concerned with the simultaneous flow of liquid water and gaseous reactants in mini-channels of a proton exchange membrane (PEM) fuel cell. Envisaging the mini-channels as structured and ordered porous media, we develop a continuum model of two-phase channel flow based on two-phase Darcy's law and the M{sup 2} formalism, which allow estimate of the parameters key to fuel cell operation such as overall pressure drop and liquid saturation profiles along the axial flow direction. Analytical solutions of liquid water saturation and species concentrations along the channel are derived to explore the dependences of these physical variables vital to cell performance on operating parameters such as flow stoichiometric ratio and relative humility. The two-phase channel model is further implemented for three-dimensional numerical simulations of two-phase, multi-component transport in a single fuel-cell channel. Three issues critical to optimizing channel design and mitigating channel flooding in PEM fuel cells are fully discussed: liquid water buildup towards the fuel cell outlet, saturation spike in the vicinity of flow cross-sectional heterogeneity, and two-phase pressure drop. Both the two-phase model and analytical solutions presented in this paper may be applicable to more general two-phase flow phenomena through mini- and micro-channels. (author)

  19. An Open-Source Toolbox for PEM Fuel Cell Simulation

    Directory of Open Access Journals (Sweden)

    Jean-Paul Kone

    2018-05-01

    Full Text Available In this paper, an open-source toolbox that can be used to accurately predict the distribution of the major physical quantities that are transported within a proton exchange membrane (PEM fuel cell is presented. The toolbox has been developed using the Open Source Field Operation and Manipulation (OpenFOAM platform, which is an open-source computational fluid dynamics (CFD code. The base case results for the distribution of velocity, pressure, chemical species, Nernst potential, current density, and temperature are as expected. The plotted polarization curve was compared to the results from a numerical model and experimental data taken from the literature. The conducted simulations have generated a significant amount of data and information about the transport processes that are involved in the operation of a PEM fuel cell. The key role played by the concentration constant in shaping the cell polarization curve has been explored. The development of the present toolbox is in line with the objectives outlined in the International Energy Agency (IEA, Paris, France Advanced Fuel Cell Annex 37 that is devoted to developing open-source computational tools to facilitate fuel cell technologies. The work therefore serves as a basis for devising additional features that are not always feasible with a commercial code.

  20. Hydrogen-Oxygen PEM Regenerative Fuel Cell Energy Storage System

    Science.gov (United States)

    Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.

    2005-01-01

    An introduction to the closed cycle hydrogen-oxygen polymer electrolyte membrane (PEM) regenerative fuel cell (RFC), recently constructed at NASA Glenn Research Center, is presented. Illustrated with explanatory graphics and figures, this report outlines the engineering motivations for the RFC as a solar energy storage device, the system requirements, layout and hardware detail of the RFC unit at NASA Glenn, the construction history, and test experience accumulated to date with this unit.

  1. Passive autocatalytic recombiners for combustible gas control in advanced light water reactors

    International Nuclear Information System (INIS)

    Wolff, U.; Sliter, G.

    2004-01-01

    A key aspect of the worldwide effort to develop advanced nuclear power plants is designing to address severe accident phenomena, including the generation of hydrogen during core melt progression (metal-water and core-concrete reactions). This design work not only resolves safety concerns with hydrogen, but also supports the development of a technical basis for simplification of off-site emergency planning. The dominant challenge to any emergency planning approach is a large, early containment failure due to pressure excursions. Among the potential contributors to large and rapid increases in containment pressure is hydrogen combustion. The more improbable a containment-threatening combustion becomes, the more appropriate the argument for significant emergency planning simplification. As discussed in this paper, catalytic recombiners provide a means to passively and reliably limit hydrogen combustion to a continuous oxidation process with virtually no potential for containment failure in passive advanced light water reactors (ALWRs). (author)

  2. Development and Study of Tantalum and Niobium Carbides as Electrocatalyst Supports for the Oxygen Electrode for PEM Water Electrolysis at Elevated Temperatures

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Petrushina, Irina; Prag, Carsten Brorson

    2013-01-01

    Polymer electrolyte membrane (PEM) water electrolysis is a prospective method of producing hydrogen. We focused on one of its issues – the lack of a suitable support material for the anode electrocatalyst. TaC and NbC were studied as possible electrocatalyst supports for the PEM water electrolysis...

  3. Influence of inorganic compounds on the combustion of coal. III. The effect of water of constitution of added compounds, moisture, and mineral matter in coal

    Energy Technology Data Exchange (ETDEWEB)

    Newall, H F

    1939-01-01

    The effects on the combustion rate from excess moisture and the addition of selected inorganic substances to powdered coals were determined. The catalytic effect of 19 known inorganic ash constituents on combustion rates was also examined. Alumina and silica were found to inhibit combustion while ferric oxide accelerated it. Titanium, Ge, and B oxides, along with gypsum and calcium phosphate, decreased the rate of combusion, while Ca, Mg, Mn, and V oxides increased combustion rates. Although several of the ash constituents in coal directly affected combustion rates, the effect of adding them to the coal prior to combustion did not correlate with the effect of the mineral matter already in the coal.

  4. RuPd, RuCo, PdCo and RuPdCo materials as candidates for cathode catalyzers in PEM fuel cells; Materiales RuPd, RuCo, PdCo y RuPdCo como candidatos a catalizadores catodicos en celdas de combustible tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Leyva Noyola, Fatima; Solorza Feria, Omar [Centro de Investigacion y Estudios Superiores del IPN, Mexico, D.F. (Mexico)]. E-mail: fleyva@cinvestav.mx

    2009-09-15

    This work reports on the catalytic activity of RuPd, RuCo, PdCo and RuPdCo material for oxygen reduction reaction (ORR). These materials were synthesized using chemical reduction with NaBH{sub 4} as a reducing agent in THF, in ambient temperature and pressure conditions. The evaluation of the catalytic activity was done using cyclic voltamperometry (CV) and rotary disc electrode (RDE) in H{sub 2}SO{sub 4} 0.5 M. The kinetic results showed that the electrochemical reaction involves 4 electrons and the transfer of the first electron is the determinant stage. The values of {alpha}, i0 and the Tafel slope were very similar for the four materials studied, around 0.4, 5x10{sup -6} mA cm{sup -2} and 60 mV dec-1, respectively. Although these values are less than those reported for nanostructured platinum, they are better than those reported for other materials such as pure Pd, which enables them to be considered as cathode catalysts for a proton exchange membrane fuel cell. [Spanish] En este trabajo se reporta la actividad catalitica de los materiales RuPd, RuCo, PdCo y RuPdCo para la reaccion de reduccion de oxigeno (RRO). Estos materiales fueron sintetizados por el metodo de reduccion quimica, usando NaBH{sub 4} como agente reductor en THF, en condiciones de temperatura y presion ambiental. La evaluacion de la actividad catalitica fue realizada usando Voltamperometria Ciclica (VC) y Electrodo Disco Rotatorio (EDR) en H{sub 2}SO{sub 4} 0.5 M. Los resultados cineticos mostraron que la reaccion electroquimica procede por la via de 4 electrones y la etapa determinante es la transferencia del primer electron. Los valores de {alpha}, i0 y pendiente de Tafel fueron muy similares para los 4 materiales estudiados, siendo estos de alrededor de 0.4, 5x10{sup -6} mA cm{sup -2} y 60 mV dec{sup -1}, respectivamente. Sin embargo, aun cuando estos valores son menores que los reportados para platino nanoestructurado, son mejores que los reportados para otros materiales como el Pd puro

  5. Development of an angled Si-PM-based detector unit for positron emission mammography (PEM) system

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Kouhei, E-mail: nakanishi.kouhei@c.mbox.nagoya-u.ac.jp; Yamamoto, Seiichi

    2016-11-21

    Positron emission mammography (PEM) systems have higher sensitivity than clinical whole body PET systems because they have a smaller ring diameter. However, the spatial resolution of PEM systems is not high enough to detect early stage breast cancer. To solve this problem, we developed a silicon photomultiplier (Si-PM) based detector unit for the development of a PEM system. Since a Si-PM's channel is small, Si-PM can resolve small scintillator pixels to improve the spatial resolution. Also Si-PM based detectors have inherently high timing resolution and are able to reduce the random coincidence events by reducing the time window. We used 1.5×1.9×15 mm LGSO scintillation pixels and arranged them in an 8×24 matrix to form scintillator blocks. Four scintillator blocks were optically coupled to Si-PM arrays with an angled light guide to form a detector unit. Since the light guide has angles of 5.625°, we can arrange 64 scintillator blocks in a nearly circular shape (a regular 64-sided polygon) using 16 detector units. We clearly resolved the pixels of the scintillator blocks in a 2-dimensional position histogram where the averages of the peak-to-valley ratios (P/Vs) were 3.7±0.3 and 5.7±0.8 in the transverse and axial directions, respectively. The average energy resolution was 14.2±2.1% full-width at half-maximum (FWHM). By including the temperature dependent gain control electronics, the photo-peak channel shifts were controlled within ±1.5% with the temperature from 23 °C to 28 °C. With these results, in addition to the potential high timing performance of Si-PM based detectors, our developed detector unit is promising for the development of a high-resolution PEM system.

  6. Catalytic incineration of CO and VOC emissions over supported metal oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Per-Olof

    1999-05-01

    can be due to an epitaxial relationship during reaction conditions, or that the CeO{sub 2}(001) surface has a greater ability, compared with the CeO{sub 2}(111) surface, to assist the copper oxide in changing valences and supplying oxygen to the CO. A CuO{sub x}-CeO{sub 2}/Al{sub 2}O{sub 3} catalyst was more active than a CuMn{sub 2}O{sub 4}/Al{sub 2}O{sub 3} catalyst for CO oxidation, but the CuMn{sub 2}O{sub 4}/Al{sub 2}O{sub 3} catalyst was more active for combustion of ethyl acetate and ethanol. This shows that the activity order for complete oxidation over different metal oxide catalysts depends on the combustible component. In addition, these metal oxide catalysts were found to be more active than a Pt/Al{sub 2}O{sub 3} catalyst for the combustion of ethyl acetate and ethanol. However, for methanol and formaldehyde combustion the Pt/Al{sub 2}O{sub 3} catalyst was the best alternative. Consequently, catalytic waste gas incineration can be more efficient by using the right type of catalyst in each application. By-products as acetaldehyde and acetic acid were observed during catalytic combustion of an ethyl acetate/ethanol mixture. However, in stationary catalytic incineration it is easy to secure complete oxidation to CO{sub 2} and H{sub 2}O 61 refs, 29 figs, 4 tabs

  7. Proton tunneling-induced bistability, oscillations and enhanced performance of PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Katsaounis, A.; Balomenou, S.; Tsiplakides, D.; Brosda, S.; Vayenas, C.G. [Department of Chemical Engineering, University of Patras, Patras GR 26504 (Greece); Neophytides, S. [Institute of Chemical Engineering and High Temperature Chemical Processes, FORTH, 26500 Patras (Greece)

    2005-03-25

    Proton migration through hydrated Nafion membranes in polymer electrolyte membrane (PEM) fuel cells occurs both in the aqueous phase of the membrane and on the sulfonate groups on the surface of the membrane pores. Here we show using D{sub 2} and H{sub 2} fuel and basic quantum mechanical equations that this surface proton migration is largely due to proton tunneling between adjacent sulfonate groups, leading to an exponential variation of Nafion conductivity with cell potential. This amphibious mode of proton migration, particle-like in the aqueous phase and wave-like in the narrow pores, is shown to be the major cause of cell overpotential, bistability and oscillations of state-of-the-art PEM fuel cells operating on H{sub 2}, reformate or methanol fuel. We also show that this phenomenon can be exploited via introduction of a third auxiliary electrode to independently control the anode-cathode potential difference and dramatically enhance fuel cell power output even in absence of noble metals at the anode.

  8. Coupling of a 2.5 kW steam reformer with a 1 kW el PEM fuel cell

    Science.gov (United States)

    Mathiak, J.; Heinzel, A.; Roes, J.; Kalk, Th.; Kraus, H.; Brandt, H.

    The University of Duisburg-Essen has developed a compact multi-fuel steam reformer suitable for natural gas, propane and butane. This steam reformer was combined with a polymer electrolyte membrane fuel cell (PEM FC) and a system test of the process chain was performed. The fuel processor comprises a prereformer step, a primary reformer, water gas shift reactors, a steam generator, internal heat exchangers in order to achieve an optimised heat integration and an external burner for heat supply as well as a preferential oxidation step (PROX) as CO purification. The fuel processor is designed to deliver a thermal hydrogen power output from 500 W to 2.5 kW. The PEM fuel cell stack provides about 1 kW electrical power. In the following paper experimental results of measurements of the single components PEM fuel cell and fuel processor as well as results of the coupling of both to form a process chain are presented.

  9. A reversible electrolyzer-fuel cell system based on PEM technology

    International Nuclear Information System (INIS)

    Grigoriev, S.A.; Millet, P.; Fateev, V.N.

    2009-01-01

    'Full text': A reversible electrolyzer-fuel cell is an electrochemical system which can be alternatively operated in water electrolysis or H 2 /O 2 (air) fuel cell modes. Whereas proton-exchange membrane (PEM) water electrolysis and PEM fuel cell technologies are individually well-established, it is still a very challenging task to develop efficient reversible systems which can maintain interesting electrochemical performances during a significant number of cycles. Results reported in this communication are related to R and D on bi-functional catalysts, electrocatalytic layers, gas diffusion layers/current collectors and reversible PEM stack design. Electrodes which do not change their redox status when the operation mode of the cell is switched from electrolysis to fuel cell are more specifically considered. In particular, it is shown that, when the anode is composed of Pt-Ir layers (ca. 0.5/0.5 wt. ratio), best electrochemical performances are obtained (for both for water and hydrogen oxidation reactions) when an Ir layer is placed face-to-face with the membrane. Cathodic electrocatalytic layers made of Pt/C were prepared and optimized by adding PTFE to obtain the required hydrophobic-hydrophilic properties for effective oxygen and protons electro-reduction. Gas diffusion electrodes made of porous carbon materials and bi-porous titanium sheets with appropriate water management properties have also been developed. A two-cell stack with 250 cm 2 active area electrodes has been assembled using the optimized components and successfully tested. Results are rather close to those obtained for individual water electrolysis and H 2 /O 2 fuel cells with the same noble metal loadings and similar operating conditions. For instance, at a current density of 0.2 A/cm 2 , typical cell voltages of ca. 1.55 and 0.70 V were respectively obtained during water electrolysis and H 2 /O 2 fuel cell operation, using Nafion-1135 as solid polymer electrolyte and noble metal loadings 2

  10. PEM fuel cells with injection moulded bipolar plates of highly filled graphite compounds; PEM-Brennstoffzellen mit spritzgegossenen Bipolarplatten aus hochgefuelltem Graphit-Compound

    Energy Technology Data Exchange (ETDEWEB)

    Kreuz, Can

    2008-04-11

    This work concerns with the injection moulding of highly filled graphite compounds to bipolar plates for PEM fuel cells in a power output range between 100 - 500 Watts. A particular focus is laid on the combination of the three multidisciplinary scopes like material development, production technology and component development / design. The results of the work are specified by the process-oriented characterisation of the developed and manufactured bipolar plates as well as their application in a functioning fuel cell. (orig.)

  11. Teledyne Energy Systems, Inc., Proton Exchange Member (PEM) Fuel Cell Engineering Model Powerplant. Test Report: Initial Benchmark Tests in the Original Orientation

    Science.gov (United States)

    Loyselle, Patricia; Prokopius, Kevin

    2011-01-01

    Proton Exchange Membrane (PEM) fuel cell technology is the leading candidate to replace the alkaline fuel cell technology, currently used on the Shuttle, for future space missions. During a 5-yr development program, a PEM fuel cell powerplant was developed. This report details the initial performance evaluation test results of the powerplant.

  12. Lean premixed combustion stabilized by radiation feedback and heterogeneous catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Dibble, R.W.; Jyh-Yuan Chen; Sawyer, R.F. [Univ. of California, Berkeley, CA (United States)

    1995-10-01

    Gas-turbine based systems are becoming the preferred approach to electric power generation from gaseous and liquid fossil-fuels and from biomass. As coal gasification becomes, gas turbines will also become important in the generation of electricity from coal. In smaller, distributed installations, gas turbines will also become important in the generation of electricity from coal. In smaller, distributed installations, gas turbines offer the prospect of cogeneration of electricity and heat, with increased efficiency and reduced pollutant emissions. One of the most important problems facing combustion-based power generation is the control of air pollutants, primarily nitrogen oxides (NO{sub x}, consisting of NO and NO{sub 2}) and carbon monoxide (CO). Nitric oxide (NO) is formed during gas-phase combustion and is the precursor of nitrogen dioxide (NO{sub 2}), the principal component of photochemical smog. Recent research into the mechanisms and control of NO{sub x} formation has been spurred by increasingly stringent emission standards. The principal objective of this research project is the development of effective models for the simulation of catalytic combustion applications.

  13. Experimental study on the impact of operating conditions and fuel composition on PCCI combustion

    Energy Technology Data Exchange (ETDEWEB)

    Leermakers, C.A.J.

    2010-03-15

    Premixed Charge Compression Ignition (PCCI) is a combustion concept that holds the promise of combining emission levels of a spark-ignition (SI) engine with the efficiency of a compressionignition (CI) engine. In a short term scenario, PCCI combustion will be used in the low load part of the engine operating range only. This would guarantee low engine-out emission levels at operating conditions where exhaust temperatures are too low for effective NOx reduction through catalytic after treatment. At higher loads, the engine would run in conventional CI combustion mode, with emission requirements met through catalytic NOx reduction. Implicit with this scenario is that engine hardware design would be very close to that of current modern diesel engines. Compression ratio could be made load dependent through implementation of variable valve actuation. The PCCI experiments presented here have been performed using a modified 6 cylinder 12.6 liter heavy duty DI DAF XE 355 C engine. Experiments are conducted in one dedicated cylinder, which is equipped with a stand-alone fuel injection system, EGR circuit, and air compressor. For the low to medium load operating range the compression ratio has been lowered to 12:1 by means of a thicker head gasket. As engine hardware should - in the short term - preferably remain close to current diesel engines, optimizing operating conditions should focus on parameters like EGR level, intake temperature, intake pressure and injection timing. While past work in the Combustion Technology group has focused on low load PCCI combustion, in this report the effects on engine performance and emission behavior are investigated for both low and medium load PCCI combustion, up to 40% of full load. In the interpretation of experimental results, emphasis lies on the effect on combustion phasing and maximum pressure rise rate, which are inherent challenges to enable viable PCCI combustion. As in the short term scenario fuels will be used that are not too

  14. Hydrogen production via catalytic steam reforming of fast pyrolysis oil fractions

    International Nuclear Information System (INIS)

    Wang, D.; Czernik, S.; Montane, D.; Mann, M.; Chornet, E.

    1997-01-01

    Hydrogen is the prototype of the environmentally cleanest fuel of interest for power generation using fuel cells, and as a co-adjuvant or autonomous transportation fuel in internal combustion engines. The conversion of biomass to hydrogen can be carried out through two distinct thermochemical strategies: (a) gasification followed by shift conversion; (b) catalytic steam reforming and shift conversion of specific fractions derived from fast pyrolysis and aqueous/steam processes of biomass. This paper shows that fast pyrolysis of biomass results in a bio-oil that can be adequately fractionated into valuable co-products leaving as by-product an aqueous fraction containing soluble organics (a mixture of alcohols, aldehydes and acids). This fraction can be converted to hydrogen by catalytic steam reforming followed by a shift conversion step. The methods used, the yields obtained and their economic significance will be discussed. (author)

  15. Analysis of an Internal Combustion Engine Using Porous Foams for Thermal Energy Recovery

    Directory of Open Access Journals (Sweden)

    Mehdi Ali Ehyaei

    2016-03-01

    Full Text Available Homogeneous and complete combustion in internal combustion engines is advantageous. The use of a porous foam in the exhaust gas in an engine cylinder for heat recovery is examined here with the aim of reducing engine emissions. The internal combustion engine with a porous core regenerator is modeled using SOPHT software, which solved the differential equations for the thermal circuit in the engine. The engine thermal efficiency is observed to increase from 43% to 53% when the porous core regenerator is applied. Further, raising the compression ratio causes the peak pressure and thermal efficiency to increase, e.g., increasing the compression ratio from 13 to 15 causes the thermal efficiency and output work to increase from 53% to 55% and from 4.86 to 4.93 kJ, respectively. The regenerator can also be used as a catalytic converter for fine particles and some other emissions. The regenerator oxidizes unburned hydrocarbons. Meanwhile, heat recovered from the exhaust gases can reduce fuel consumption, further reducing pollutant emissions from the internal combustion engine.

  16. Compendium of NASA Data Base for the Global Tropospheric Experiment's Pacific Exploratory Mission-Tropics B (PEM-Tropics B). Volume 1; DC-8

    Science.gov (United States)

    Scott, A. Donald, Jr.; Kleb, Mary M.; Raper, James L.

    2000-01-01

    This report provides a compendium of NASA aircraft data that are available from NASA's Global Tropospheric Experiment's (GTE) Pacific Exploratory Mission-Tropics B (PEM-Tropics B) conducted in March and April 1999. PEM-Tropics B was conducted during the southern-tropical wet season when the influence from biomass burning observed in PEM-Tropics A was minimal. Major deployment sites were Hawaii, Kiritimati (Christmas Island), Tahiti, Fiji, and Easter Island. The broad goals of PEM-Tropics B were to improved understanding of the oxidizing power of the atmosphere and the processes controlling sulfur aerosol formation and to establish baseline values for chemical species that are directly coupled to the oxidizing power and aerosol loading of the troposphere. The purpose of this document is to provide a representation of aircraft data that will be available in archived format via NASA Langley's Distributed Active Archive Center (DAAC) or are available through the GTE Project Office archive. The data format is not intended to support original research/analysis, but to assist the reader in identifying data that are of interest.

  17. Influence from sea water constituents on the efficiency of water electrolysis by PEM-cells

    DEFF Research Database (Denmark)

    Agersted, Karsten; Bentzen, Janet Jonna; Yde-Andersen, S.

    Among the sea-water specific impurities tested, magnesium has the most profound effect on PEM-cell degradation. Significant amounts of the cation was retrieved in the NAFION®-membrane structure after testing. Degradation was seen from a magnesium concentration as low as 3 10-7 mol/l, and increasing...... with concentration it led to a 86% increase of the area specific resistance at a concentration of 3 10-5 mol/l; equivalent to a conductivity of ~5 μS/cm. Other species (Cl-, Na+, SO4 2- ) seems to affect, though slowly, the performance negatively. If PEM will be used for electrolysis it seems therefore necessary...... to purify the feed water to ~1 μS/cm or even further while particularly focusing on the concentrations of polyvalent cations. e.g. magnesium....

  18. Structural analysis of CuO / CeO2-based catalytic materials intended for PROX reaction: Part I

    International Nuclear Information System (INIS)

    Neiva, L.S.; Simoes, A.N.; Bispo, A.; Ribeiro, M.A.; Gama, L.

    2011-01-01

    This work relates the synthesis process of CuO/CeO 2 catalytic materials by a combustion reaction method as well as it introduces a structural analysis of the developed material, this structural analysis had as main focus to evaluate the influence of the doping substance (CuO) when being incorporated in the hostess matrix structure that is CeO 2 . The CuO/CeO catalytic materials developed in this work are destined to preferential oxidation of CO reaction (PROX). The developed materials were characterized by XRD, SEM and textural complete analysis by the BET method. According to the results, the CuO incorporation changed crystallinity of the structure of the catalytic materials. On the other hand, the morphologic and textural characteristics did not showed significant differences regarding the presence of the doping substance (CuO) in the structure of the developed materials. The porosity of the structures of the developed catalytic materials belongs to the type macroporous. (author)

  19. Catalytic combustion of trichloroethylene over TiO2-SiO2 supported catalysts

    NARCIS (Netherlands)

    Kulazynski, M.; van Ommen, J.G.; Trawczynski, J.; Walendziewski, J.

    2002-01-01

    Combustion of trichloroethylene (TCE) on Cr2O3, V2O5, Pt or Pd catalysts supported on TiO2-SiO2 as a carrier has been investigated. It was found that oxide catalysts are very active but their activity quickly diminishes due to loss of the active component, especially at higher reaction temperatures

  20. Hydrogen metal hydride storage with integrated catalytic recombiner for mobile application

    Energy Technology Data Exchange (ETDEWEB)

    Marinescu-Pasoi, L.; Behrens, U.; Langer, G.; Gramatte, W.; Rastogi, A.K.; Schmitt, R.E. (Battelle-Institut e.V., Frankfurt am Main (DE). Dept. of Energy Technology)

    1991-01-01

    A novel, thermodynamically efficient device is under development at Battelle in Frankfurt, by which the range of hydrogen-driven cars with a metal hydride tank might be roughly doubled. The device makes use of the properties of metal hydrides, combined with catalytic combustion. Its development is funded by the Hessian Ministry of Economic Affairs and Technology; it is to be completed by the end of 1990. High-temperature hydrides (HTH) have about three times the storage capacity of low temperature hydrides (LTH), but require relatively large amounts of heat at high temperatures to release the hydrogen. The exhaust heat from combustion-engine-driven vehicles is insufficient for this, and vehicles with electric (fuel cell) drive produce practically no exhaust heat at all. The Battelle-developed device is a combination of an HTH storage cell, an LTH storage cell and a catalyst. (author).

  1. Pre-Combustion Capture of CO2 in IGCC Plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-12-15

    Pre-combustion capture involves reacting a fuel with oxygen or air and/or steam to give mainly a 'synthesis gas (syngas)' or 'fuel gas' composed of carbon monoxide and hydrogen. The carbon monoxide is reacted with steam in a catalytic reactor, called a shift converter, to produce CO2 and more hydrogen. CO2 is then separated, usually by a physical or chemical absorption process, resulting in a hydrogen-rich fuel which can be used in many applications, such as boilers, furnaces, gas turbines, engines and fuel cells. Pre-combustion capture is suitable for use in integrated gasification combined cycle (IGCC) plants especially since the CO2 partial pressures in the fuel gas are higher than in the flue gas. After the introduction there follows a short discussion of the water-gas shift (WGS) reaction. This is followed by chapters on the means of CO2 capture by physical and chemical solvents, solid sorbents, and membranes. The results and conclusions of techno-economic studies are introduced followed by a look at some of the pilot and demonstration plants relevant to pre-combustion capture in IGCC plants.

  2. Oxyfuel combustion for below zero CO{sub 2} emissions

    Energy Technology Data Exchange (ETDEWEB)

    Boeg Toftegaard, M; Hansen, Kim G; Fisker, D [DONG Energy Power, Hvidovre (Denmark); Brix, J; Brun Hansen, B; Putluru, S S.R.; Jensen, Peter Arendt; Glarborg, Peter; Degn Jensen, A [Technical Univ. of Denmark. CHEC Research Centre, Kgs. Lyngby (Denmark); Montgomery, M [Technical Univ. of Denmark. DTU Mechanical Engineering, Kgs. Lyngby (Denmark)

    2011-07-01

    The reduction of CO{sub 2} emissions is of highest concern in relation to limiting the anthropogenic impacts on the environment. Primary focus has gathered on the large point sources of CO{sub 2} emissions constituted by large heat and power stations and other heavy, energy-consuming industry. Solutions are sought which will enable a significant reduction of the anthropogenic CO{sub 2} emissions during the transformation period from the use of fossil fuels to renewable sources of energy. Carbon capture and storage (CCS) has the potential to significantly reduce CO{sub 2} emissions from power stations while allowing for the continuous utilisation of the existing energy producing system in the transformation period. Oxyfuel combustion is one of the possible CCS technologies which show promising perspectives for implementation in industrial scale within a relatively short period of time. Oxyfuel combustion deviates from conventional combustion in air by using a mixture of pure oxygen and recirculated flue gas as the combustion medium thereby creating a flue gas highly concentrated in CO{sub 2} making the capture process economically more feasible compared to technologies with capture from more dilute CO{sub 2} streams. This project has investigated a number of the fundamental and practical issues of the oxyfuel combustion process by experimental, theoretical, and modelling investigations in order to improve the knowledge of the technology. The subjects investigated cover: general combustion characteristics of coal and biomass (straw) and mixtures thereof, formation and emission of pollutants, ash characteristics, flue gas cleaning for SO{sub 2} by wet scrubbing with limestone and for NO{sub x} by selective catalytic reduction (SCR), corrosion of boiler heat transfer surfaces, operation and control of large suspension-fired boilers, and the perspectives for the implementation of oxyfuel combustion s a CO{sub 2} sequestration solution in the Danish power production

  3. Prediction of deformation and hygro-thermal stresses distribution in PEM fuel cell vehicle using three-dimensional CFD model

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy & Environment Foundation, Al-Najaf, P.O.Box 39 (Iraq)

    2012-07-01

    Durability is one of the most critical remaining issues impeding successful commercialization of broad PEM fuel cell transportation energy applications. Automotive fuel cells are likely to operate with neat hydrogen under load-following or load-levelled modes and be expected to withstand variations in environmental conditions, particularly in the context of temperature and atmospheric composition. In addition, they are also required to survive over the course of their expected operational lifetimes i.e., around 5,500 hrs, while undergoing as many as 30,000 startup/shutdown cycles. The damage mechanisms in a PEM fuel cell are accelerated by mechanical stresses arising during fuel cell assembly (bolt assembling), and the stresses arise during fuel cell running, because it consists of the materials with different thermal expansion and swelling coefficients. Therefore, in order to acquire a complete understanding of the damage mechanisms in the membrane, mechanical response under steady-state hygro-thermal stresses should be studied under real cell operating conditions and in real cell geometry (three-dimensional). In this work, full three-dimensional, non-isothermal computational fluid dynamics model of a PEM fuel cell has been developed to simulate the stresses inside the PEM fuel cell, which are occurring during fuel cell assembly (bolt assembling), and the stresses arise during fuel cell running due to the changes of temperature and relative humidity. A unique feature of the present model is to incorporate the effect of hygro and thermal stresses into actual three-dimensional fuel cell model. In addition, the temperature and humidity dependent material properties are utilize in the simulation for the membrane. The model is shown to be able to understand the many interacting, complex electrochemical, transport phenomena, and stresses distribution that have limited experimental data. This model is used to study and analyse the effect of operating parameters on the

  4. Recent Development of Catalysts for Removal of Volatile Organic Compounds in Flue Gas by Combustion: A Review

    Directory of Open Access Journals (Sweden)

    Marco Tomatis

    2016-01-01

    Full Text Available Volatile organic compounds (VOCs emitted from anthropogenic sources pose direct and indirect hazards to both atmospheric environment and human health due to their contribution to the formation of photochemical smog and potential toxicity including carcinogenicity. Therefore, to abate VOCs emission, the catalytic oxidation process has been extensively studied in laboratories and widely applied in various industries. This report is mainly focused on the benzene, toluene, ethylbenzene, and xylene (BTEX with additional discussion about chlorinated VOCs. This review covers the recent developments in catalytic combustion of VOCs over noble metal catalysts, nonnoble metal catalysts, perovskite catalysts, spinel catalysts, and dual functional adsorbent-catalysts. In addition, the effects of supports, coke formation, and water effects have also been discussed. To develop efficient and cost-effective catalysts for VOCs removal, further research in catalytic oxidation might need to be carried out to strengthen the understanding of catalytic mechanisms involved.

  5. Modelling of a High Temperature PEM Fuel Cell Stack using Electrochemical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Jespersen, Jesper Lebæk; Kær, Søren Knudsen

    2008-01-01

    This work presents the development of an equivalent circuit model of a 65 cell high temperature PEM (HTPEM) fuel cell stack using Electrochemical Impedance Spectroscopy (EIS). The HTPEM fuel cell membranes used are PBI-based and uses phosphoric acid as proton conductor. The operating temperature...

  6. Performance of PEM Liquid-Feed Direct Methanol-Air Fuel Cells

    Science.gov (United States)

    Narayanan, S. R.

    1995-01-01

    A direct methanol-air fuel cell operating at near atmospheric pressure, low-flow rate air, and at temperatures close to 60oC would tremendously enlarge the scope of potential applications. While earlier studies have reported performance with oxygen, the present study focuses on characterizing the performance of a PEM liquid feed direct methanol-air cell consisting of components developed in house. These cells employ Pt-Ru catalyst in the anode, Pt at the cathode and Nafion 117 as the PEM. The effect of pressure, flow rate of air and temperature on cell performance has been studied. With air, the performance level is as high as 0.437 V at 300 mA/cm2 (90oC, 20 psig, and excess air flow) has been attained. Even more significant is the performance level at 60oC, 1 atm and low flow rates of air (3-5 times stoichiometric), which is 0.4 V at 150 mA/cm2. Individual electrode potentials for the methanol and air electrode have been separated and analyzed. Fuel crossover rates and the impact of fuel crossover on the performance of the air electrode have also been measured. The study identifies issues specific to the methanol-air fuel cell and provides a basis for improvement strategies.

  7. UARS PEM Level 2 AXIS 2 V001 (UARPE2AXIS2) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The UARS Particle Environment Monitor (PEM) level 2 Atmosphere X-Ray Imaging Spectrometer (AXIS) unit 2 daily product contains the X-ray high-resolution spectral...

  8. UARS PEM Level 2 AXIS 1 V001 (UARPE2AXIS1) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The UARS Particle Environment Monitor (PEM) level 2 Atmosphere X-Ray Imaging Spectrometer (AXIS) unit 1 daily product contains the X-ray high-resolution spectral...

  9. Template-Assisted Wet-Combustion Synthesis of Fibrous Nickel-Based Catalyst for Carbon Dioxide Methanation and Methane Steam Reforming.

    Science.gov (United States)

    Aghayan, M; Potemkin, D I; Rubio-Marcos, F; Uskov, S I; Snytnikov, P V; Hussainova, I

    2017-12-20

    Efficient capture and recycling of CO 2 enable not only prevention of global warming but also the supply of useful low-carbon fuels. The catalytic conversion of CO 2 into an organic compound is a promising recycling approach which opens new concepts and opportunities for catalytic and industrial development. Here we report about template-assisted wet-combustion synthesis of a one-dimensional nickel-based catalyst for carbon dioxide methanation and methane steam reforming. Because of a high temperature achieved in a short time during reaction and a large amount of evolved gases, the wet-combustion synthesis yields homogeneously precipitated nanoparticles of NiO with average particle size of 4 nm on alumina nanofibers covered with a NiAl 2 O 4 nanolayer. The as-synthesized core-shell structured fibers exhibit outstanding activity in steam reforming of methane and sufficient activity in carbon dioxide methanation with 100% selectivity toward methane formation. The as-synthesized catalyst shows stable operation under the reaction conditions for at least 50 h.

  10. Compendium of NASA Data Base for the Global Tropospheric Experiment's Pacific Exploratory Mission - Tropics B (PEM-Tropics B). Volume 2; P-3B

    Science.gov (United States)

    Scott, A. Donald, Jr.; Kleb, Mary M.; Raper, James L.

    2000-01-01

    This report provides a compendium of NASA aircraft data that are available from NASA's Global Tropospheric Experiment's (GTE) Pacific Exploratory Mission-Tropics B (PEM-Tropics B) conducted in March and April 1999. PEM-Tropics B was conducted during the southern-tropical wet season when the influence from biomass burning observed in PEM-Tropics A was minimal. Major deployment sites were Hawaii, Kiritimati (Christmas Island), Tahiti, Fiji, and Easter Island. The broad goals of PEM-Tropics B were to improved understanding of the oxidizing power of the atmosphere and the processes controlling sulfur aerosol formation and to establish baseline values for chemical species that are directly coupled to the oxidizing power and aerosol loading of the troposphere. The purpose of this document is to provide a representation of aircraft data that will be available in archived format via NASA Langley's Distributed Active Archive Center (DAAC) or are available through the GTE Project Office archive. The data format is not intended to support original research/analysis, but to assist the reader in identifying data that are of interest.

  11. The use of PEM united regenerative fuel cells in solar- hydrogen systems for remote area power supply

    International Nuclear Information System (INIS)

    Arun K Doddathimmaiah; John Andrews

    2006-01-01

    Remote area power supply (RAPS) is a potential early market for renewable energy - hydrogen systems because of the relatively high costs of conventional energy sources in remote regions. Solar hydrogen RAPS systems commonly employ photovoltaic panels, a Proton Exchange Membrane (PEM) electrolyser, a storage for hydrogen gas, and a PEM fuel cell. Currently such systems are more costly than conventional RAPS systems employing diesel generator back up or battery storage. Unitized regenerative fuel cells (URFCs) have the potential to lower the costs of solar hydrogen RAPS systems since a URFC employs the same hardware for both the electrolyser and fuel cell functions. The need to buy a separate electrolyser and a separate fuel cell, both expensive items, is thus avoided. URFCs are in principle particularly suited for use in RAPS applications since the electrolyser function and fuel cell function are never required simultaneously. The present paper reports experimental findings on the performance of a URFC compared to that of a dedicated PEM electrolyser and a dedicated fuel cell. A design for a single-cell PEM URFC for use in experiments is described. The experimental data give a good quantitative description of the performance characteristics of all the devices. It is found that the performance of the URFC in the electrolyser mode is closely similar to that of the stand-alone electrolyser. In the fuel cell mode the URFC performance is, however, lower than that of the stand-alone fuel cell. The wider implications of these findings for the economics of future solar-hydrogen RAPS systems are discussed, and a design target of URFCs for renewable-energy RAPS applications proposed. (authors)

  12. Effect of inlet temperature on the performance of a catalytic reactor. [air pollution control

    Science.gov (United States)

    Anderson, D. N.

    1978-01-01

    A 12 cm diameter by 15 cm long catalytic reactor was tested with No. 2 diesel fuel in a combustion test rig at inlet temperatures of 700, 800, 900, and 1000 K. Other test conditions included pressures of 3 and 6 x 10 to the 5th power Pa, reference velocities of 10, 15, and 20 m/s, and adiabatic combustion temperatures in the range 1100 to 1400 K. The combustion efficiency was calculated from measurements of carbon monoxide and unburned hydrocarbon emissions. Nitrogen oxide emissions and reactor pressure drop were also measured. At a reference velocity of 10 m/s, the CO and unburned hydrocarbons emissions, and, therefore, the combustion efficiency, were independent of inlet temperature. At an inlet temperature of 1000 K, they were independent of reference velocity. Nitrogen oxides emissions resulted from conversion of the small amount (135 ppm) of fuel-bound nitrogen in the fuel. Up to 90 percent conversion was observed with no apparent effect of any of the test variables. For typical gas turbine operating conditions, all three pollutants were below levels which would permit the most stringent proposed automotive emissions standards to be met.

  13. Numerical simulation of ammonium dinitramide (ADN)-based non-toxic aerospace propellant decomposition and combustion in a monopropellant thruster

    International Nuclear Information System (INIS)

    Zhang, Tao; Li, Guoxiu; Yu, Yusong; Sun, Zuoyu; Wang, Meng; Chen, Jun

    2014-01-01

    Highlights: • Decomposition and combustion process of ADN-based thruster are studied. • Distribution of droplets is obtained during the process of spray hit on wire mesh. • Two temperature models are adopted to describe the heat transfer in porous media. • The influences brought by different mass flux and porosity are studied. - Abstract: Ammonium dinitramide (ADN) monopropellant is currently the most promising among all ‘green propellants’. In this paper, the decomposition and combustion process of liquid ADN-based ternary mixtures for propulsion are numerically studied. The R–R distribution model is used to study the initial boundary conditions of droplet distribution resulting from spray hit on a wire mesh based on PDA experiment. To simulate the heat-transfer characteristics between the gas–solid phases, a two-temperature porous medium model in a catalytic bed is used. An 11-species and 7-reactions chemistry model is used to study the catalytic and combustion processes. The final distribution of temperature, pressure, and other kinds of material component concentrations are obtained using the ADN thruster. The results of simulation conducted in the present study are well agree with previous experimental data, and the demonstration of the ADN thruster confirms that a good steady-state operation is achieved. The effects of spray inlet mass flux and porosity on monopropellant thruster performance are analyzed. The numerical results further show that a larger inlet mass flux results in better thruster performance and a catalytic bed porosity value of 0.5 can exhibit the best thruster performance. These findings can serve as a key reference for designing and testing non-toxic aerospace monopropellant thrusters

  14. Breaking down the barriers to commercialization of fuel cells in transportation through Government - industry R&D programs

    Energy Technology Data Exchange (ETDEWEB)

    Chalk, S.G. [Dept. of Energy, Washington, DC (United States); Venkateswaran, S.R. [Energetics, Inc., Columbia, MD (United States)

    1996-12-31

    PEM fuel cell technology is rapidly emerging as a viable propulsion alternative to the internal combustion engine. Fuel cells offer the advantages of low emissions, high efficiency, fuel flexibility, quiet and continuous operation, and modularity. Over the last decade, dramatic advances have been achieved in the performance and cost of PEM fuel cell technologies for automotive applications. However, significant technical barriers remain to making fuel cell propulsion systems viable alternatives to the internal combustion engine. This paper focuses on the progress achieved and remaining technical barriers while highlighting Government-industry R&D efforts that are accelerating fuel cell technology toward commercialization.

  15. Carbon nanofibers: a versatile catalytic support

    Directory of Open Access Journals (Sweden)

    Nelize Maria de Almeida Coelho

    2008-09-01

    Full Text Available The aim of this article is present an overview of the promising results obtained while using carbon nanofibers based composites as catalyst support for different practical applications: hydrazine decomposition, styrene synthesis, direct oxidation of H2S into elementary sulfur and as fuel-cell electrodes. We have also discussed some prospects of the use of these new materials in total combustion of methane and in ammonia decomposition. The macroscopic carbon nanofibers based composites were prepared by the CVD method (Carbon Vapor Deposition employing a gaseous mixture of hydrogen and ethane. The results showed a high catalytic activity and selectivity in comparison to the traditional catalysts employed in these reactions. The fact was attributed, mainly, to the morphology and the high external surface of the catalyst support.

  16. Optimization of a thermoelectric generator subsystem for high temperature PEM fuel cell exhaust heat recovery

    DEFF Research Database (Denmark)

    Gao, Xin; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2014-01-01

    In previous work, a thermoelectric (TE) exhaust heat recovery subsystem for a high temperature polymer electrolyte membrane (HT-PEM) fuel cell stack was developed and modeled. Numerical simulations were conducted and have identified an optimized subsystem configuration and 4 types of compact heat...... modules are now connected into branches. The procedures of designing and optimizing this TE exhaust heat recovery subsystem are drawn out. The contribution of TE exhaust heat recovery to the HT-PEM fuel cell power system is preliminarily concluded. Its feasibility is also discussed....... exchangers with superior performance for further analysis. In this work, the on-design performances of the 4 heat exchangers are more thoroughly assessed on their corresponding optimized subsystem configurations. Afterward, their off-design performances are compared on the whole working range of the fuel...

  17. The effect of test configuration on the true operating conditions of PEM fuel cells. Paper no. IGEC-1-124

    International Nuclear Information System (INIS)

    Simpson, T.; Li, X.

    2005-01-01

    The operating conditions of a single PEM fuel cell can be significantly affected by the configuration in which the fuel cell test is setup. This study investigates the effect on the gas dewpoint temperature of not insulating the inlet fittings to a PEM fuel cell and the effect of non-optimal stack control thermocouple placement on fuel cell stack operating temperature. Both of these setup configurations can significantly affect fuel cell membrane humidification conditions, especially in a single fuel cell as demonstrated through the sample test conditions presented in this paper. (author)

  18. Catalytic briquettes from low-rank coal for NO reduction

    Energy Technology Data Exchange (ETDEWEB)

    A. Boyano; M.E. Galvez; R. Moliner; M.J. Lazaro [Instituto de Carboquimica, CSIC, Zaragoza (Spain)

    2007-07-01

    The briquetting is one of the most ancient and widespread techniques of coal agglomeration which is nowadays becoming useless for combustion home applications. However, the social increasing interest in environmental protection opens new applications to this technique, especially in developed countries. In this work, a series of catalytic briquettes were prepared from low-rank Spanish coal and commercial pitch by means of a pressure agglomeration method. After that, they were cured in air and doped by equilibrium impregnation with vanadium compounds. Preparation conditions (especially those of activation and oxidizing process) were changed to study their effects on catalytic behaviour. Catalytic briquettes showed a relative high NO conversion at low temperatures in all cases, however, a strong relation between the preparation process and the reached NO conversion was observed. Preparation procedure has an effect not only on the NO reduction efficiency but also on the mechanical strength of the briquettes as a consequence of the structural and chemical changes carried out during the activation and oxidation procedures. Generally speaking mechanical resistance is enhanced by an optimal porous volume and the creation of new carboxyl groups on surface. Just on the contrary, NO reduction is promoted by high microporous structures and higher amounts of surface oxygen groups. Both facts force to find an optimum point in the preparation produce which will depend on the application. 24 refs., 4 figs., 3 tabs.

  19. WC as a non-platinum hydrogen evolution electrocatalyst for high temperature PEM water electrolysers

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Petrushina, Irina; Christensen, Erik

    2012-01-01

    Tungsten carbide (WC) nanopowder was tested as a non-platinum cathode electrocatalyst for polymer electrolyte membrane (PEM) water electrolysers, operating at elevated temperatures. It was prepared in thermal plasma reactor with confined plasma jet from WO3 precursor in combination with CH4...

  20. Dioxin formation mechanisms: Implications for combustion technologies. Report for October 1997--March 1998

    International Nuclear Information System (INIS)

    Gullett, B.K.

    1998-01-01

    The paper discusses current mechanistic theories relating to the formation of polychlorinated dibenzodioxin and polychlorinated dibenzofuran (PCDD/F) and how these theories relate to coal combustion, diesel vehicles, and open burning practices that may be of interest for the Asia-Pacific region. Co-firing coal with waste combustion has been shown to significantly decrease PCDD/F formation, likely by affecting the catalytic activity of the fly ash. On-road sampling results for diesel trucks have shown that modern, electronically controlled vehicles are likely a minor source of PCDD/F, although older vehicles remain a virtually uncharacterized and potentially significant source. Recent results from open burning of municipal waste have shown that PCDD/F emission factors are at least 14 orders of magnitude higher than modern waste combustors

  1. Modeling and experimental validation of water mass balance in a PEM fuel cell stack

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Araya, Samuel Simon; Olesen, Anders Christian

    2016-01-01

    Polymer electrolyte membrane (PEM) fuel cells require good hydration in order to deliver high performance and ensure long life operation. Water is essential for proton conductivity in the membrane which increases by nearly six orders of magnitude from dry to fully hydrated. Adequate water...... management in PEM fuel cell is crucial in order to avoid an imbalance between water production and water removal from the fuel cell. In the present study, a novel mathematical zero-dimensional model has been formulated for the water mass balance and hydration of a polymer electrolyte membrane. This model...... is validated against experimental data. In the results it is shown that the fuel cell water balance calculated by this model shows better fit with experimental data-points compared with model where only steady state operation were considered. We conclude that this discrepancy is due a different rate of water...

  2. PEM-Scoot - Control system and analysis of operation; PEM-Scoot. Steuerung und Betriebsanalyse. Diplomarbeit 2006/07

    Energy Technology Data Exchange (ETDEWEB)

    Naegeli, M.; Kaiser, R.

    2007-07-01

    This diploma thesis presented at the Bernese University of Applied Sciences, Switzerland, describes a project concerning a new drive technology. The PEM-Scoot is a scooter with an electric drive which is powered by a fuel cell, using hydrogen and oxygen stored in two pressure cylinders. That only water is exhausted during operation is considered to be an important advantage. The work done in the project consisted on the one hand of the writing of software for the control and putting it into service and, on the other hand, of various driving tests carried out in order to optimise the control software for stand-alone handling. The planning of the project is described, as are the various components used. The software for the operation of the vehicle is described in detail. The results of driving tests are presented. The report is complemented with a comprehensive appendix.

  3. Cobalt and KNO3 supported on alumina catalysts for diesel soot combustion

    International Nuclear Information System (INIS)

    Grzona, Claudia B.; Lick, Ileana D.; Castellon, Enrique Rodriguez; Ponzi, Marta I.; Ponzi, Esther N.

    2010-01-01

    The catalytic combustion of diesel soot was studied in the presence of fresh and aged catalysts: Co/Al 2 O 3 , KNO 3 /Al 2 O 3 and Co/KNO 3 /Al 2 O 3 . The catalysts were prepared by impregnation using nitrate solutions. The catalysts were characterized by X-ray diffraction, thermal programmed reduction, vibrational spectroscopy and X-ray photoelectron spectroscopy. Fresh and aged catalysts present high activity in presence of O 2 and O 2 /NO. The values of the combustion temperature decrease more than 200 deg. C with respect to that observed in the process without catalysis. The activity is associated with the presence of KNO 3 and the role of this salt can be attributed to the contribution of NO 3 - /NO 2 - redox cycle.

  4. Construction, evaluation and demonstration of mobile catalytic combustion units for destruction of methane and different odor pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Jannasch, Anna-Karin [Catator AB, Lund (Sweden)

    2012-02-15

    This project reports on the construction, the evaluation and the demonstration of novel, mobile small-scale (< 100 Nm{sup 3}/h) combustion units for reduction of methane and/or different odour pollutants (e.g. hydrogen sulfide, ammonia, VOC) existing in small concentrations in process air streams. The evaluated units include a regenerative (MeshRegenOx/MRO) and a recuperative, catalytic unit (Deodoron), respectively, which both are based on Catator's proprietary wire mesh catalyst technology. The evaluation and the demonstration work have involved laboratory tests with synthetic gases and a number of field tests at plants for biogas production, water and waste treatment. The results show that: 1. In comparison to conventional thermal emission abatement systems, the wire mesh catalyst technology opens up for the construction of very compact (V=0.6 Nm, W=500 kg for 1000 Nm{sup 3}/h) and thermo-economical systems (> 95 %), which technology can easily be scaled up and integrated into existing industrial and/or process streams. 2. Catator's MRO-prototype enables for autothermal oxidation of methane, with a conversion degree of 97-98 %, from an inlet concentration of 0.2 vol% at an operation temperature of 660-700 deg, i.e. 200-300 deg less than when conventional homogenous flame combustion is applied. 3. The performance of the MRO-unit was seen to be somewhat unstable, with an oscillating conversion degree during the operation cycle. This should however be able to overcome by further optimizing the integrated catalyst package and the heat exchanger. Significant improvements in efficiency and stability are also to be expected by the scale-up due to a decreasing heat loss with an increasing capacity 4. Close to 100 % removal of different odorants, with a thermal efficiency of around 80 %, can be obtained by the use of Catator's unit Deodoron at an operation temperature of 300-400 deg. The results were verified by odor tests performed up- and downstream the

  5. Modeling of Pem Fuel Cell Systems Including Controls and Reforming Effects for Hybrid Automotive Applications

    National Research Council Canada - National Science Library

    Boettner, Daisie

    2001-01-01

    .... This study develops models for a stand-alone Proton Exchange Membrane (PEM) fuel cell stack, a direct-hydrogen fuel cell system including auxiliaries, and a methanol reforming fuel cell system for integration into a vehicle performance simulator...

  6. Research and development of hydrogen and fuel cells technology at the IIE; Investigacion y desarrollo de tecnologia de hidrogeno y celdas de combustible en el IIE

    Energy Technology Data Exchange (ETDEWEB)

    Cano C, Ulises; Arriaga H, Gerardo; Romero C, T; Medrano V, M. Consolacion; Gonzalez, A. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2005-07-01

    In April, 2001, a fuel cells project was initiated at the Instituto de Investigaciones Electricas (IIE) as a part of the interest of this institution for such a technology. Towards end of that same year, a group dedicated to research and development (R and D) activities was implemented and efforts were initiated for the assembly of a laboratory with specialized infrastructure that would support these activities. Thus, in the last two years, the hydrogen and fuel cells group has taken under its responsibility the task of renewing and conditioning a space to receive specialized instrumentation and to initiate its operation, as well as to develop its own knowledge on the technology of fuel cells. The R and D work related to fuel cells was initiated from basic electrochemical studies of platinum electrodes on vitreous coal in acid solutions, to determine kinetic parameters and structural properties. Since the main components of PEM cells to a great extent define the cost of the technology, other additional efforts related to basic studies for the development of components as bipolar plates, are described by the same author in 2001. Other work on basic research is bound to the response of fuel monocells under different operation conditions, and that also will be reviewed in this article. [Spanish] En abril del 2001, se inicio un proyecto de celdas de combustible en el IIE como parte del interes de esta institucion por tal tecnologia. Hacia finales de ese mismo ano, se conformo un grupo dedicado a actividades de investigacion y desarrollo (I y D) y se iniciaron esfuerzos para el montaje de un laboratorio con infraestructura especializada que apoyara estas actividades. Asi, en los ultimos dos anos, el grupo de hidrogeno y celdas de combustible se ha dado a la tarea de renovar y acondicionar un espacio para recibir instrumentacion especializada e iniciar su operacion, asi como a desarrollar su propio conocimiento de tecnologia de celdas de combustible. Los trabajos de I y

  7. Effect of urea on PCDD/F formation during combustion of coal and olive kernels in a pilot scale boiler

    Energy Technology Data Exchange (ETDEWEB)

    Skodras, G. [Laboratory of Environmental and Energy Processes, Thermi-Thessaloniki (Greece). Chemical Process Engineering Research Institute]|[Institute for Solid Fuels Technology and Applications, Center for Research and Technology Hellas, Ptolemais (Greece)]|[Aristotle Univ. of Thessaloniki (Greece). Dept. of Chemical Engineering; Palladas, A.; Sakellaropoulos, G.P. [Laboratory of Environmental and Energy Processes, Thermi-Thessaloniki (Greece). Chemical Process Engineering Research Institute]|[Institute for Solid Fuels Technology and Applications, Center for Research and Technology Hellas, Ptolemais (Greece)

    2004-09-15

    Solid fuel combustion is a major source of Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) that are highly toxic compounds even in trace amounts. In addition, the complex conditions of the flue gases could favor, in same cases, PCDD/F formation. Thus, the presence of chlorine and metal catalysts (i.e. copper) in the flue gases, could lead, through heterogeneous reactions, to PCDD/F formation between 250-400 C. Three major theories have been established to elucidate the formation of PCDD/Fs in combustion systems: PCDD/Fs are already present in the incoming feed and are incompletely destroyed or transformed during combustion PCDD/Fs can be formed during combustion and PCDD/Fs can be formed by de novo mechanism that is in the low-temperature post-combustion zone of incinerators through some heterogeneous catalytic reactions that occur in the flue gas-fly ash environment. Post-combustion and precombustion techniques have been elaborated to minimize the PCDD/F emissions. Post combustion techniques utilize gas-cleaning devices to capture or destroy them after formation, while certain compounds could be added in the raw, prior the combustion zone, to inhibit PCDD/Fs formation (pre-combustion measures). In his work the PCDD/F emissions during the combustion of lignite, olive kernel and blends were measured and the efficiency of urea to act as potential inhibitor in PCDD/F formation was investigated also.

  8. Investigations for the implementation of catalytic recombiners in large dry containments in Germany

    International Nuclear Information System (INIS)

    Rohde, J.; Tiltmann, M.; Froehmel, T.

    1997-01-01

    During the past few years, several concepts of mitigation have been developed and tested to limit the hydrogen concentrations in the containment atmosphere during the course of a severe accident. Extensive efforts have been given, especially in Germany and Canada, to investigate the use of catalytic recombiners. Based on the outcome of these research efforts in Germany it was recommended by the Reactor Safety Commission (RSK) in June 1994 to implement a hydrogen mitigation system, based on catalytic recombiners in large dry containments of PWR plants. Investigations are carried out at GRS, sponsored by the German Ministry of Environment, Nature Conservation and Nuclear Safety (BMU), to develop basic requirements for the implementation of a catalytic recombiner system in large dry containments. Severe accidents scenarios were calculated with the system code MELCOR to determine the mass- and energy release rates from the primary system into the containment, necessary to prepare the input data for the containment code calculations. A detailed nodalisation of the containment system of a German PWR plant (Konvoi-type) was developed for the code RA-LOC MOD4 to investigate the effectiveness of a catalytic recombiner system which consists of 53 of such devices, being distributed in the complex room arrangement. The effectiveness of such a system is demonstrated by comparing a representative severe accident sequence without and with the catalytic recombination of hydrogen. The results showed, that only in some limited areas in the containment combustible gas mixtures were formed for a limited time span and that at the end of the first day after the onset of the accident the catalytic reaction is limited due to oxygen depletion. The work is still in progress while additional severe accident sequences have to be analyzed to develop some generic guidelines for the implementation of a catalytic recombiner system in large dry containments. (author)

  9. Catalytic converters in the fireplace

    International Nuclear Information System (INIS)

    Kouki, J.

    1995-01-01

    In addition to selecting the appropriate means of heating and using dry fuel, the amount of harmful emissions contained by flue gases produced by fireplaces can be reduced by technical means. One such option is to use an oxidising catalytic converter. Tests at TTS Institute's Heating Studies Experimental Station have focused on two such converters (dense and coarse) mounted in light-weight iron heating stoves. The ability of the dense catalytic converter to oxidise carbon monoxide gases proved to be good. The concentration of carbon monoxide in the flue gases was reduced by as much as 90 %. Measurements conducted by VTT (Technical Research Centre of Finland) showed that the conversion of other gases, e.g. of methane, was good. The exhaust resistance caused by the dense converter was so great as to necessitate the mounting of a fluegas evacuation fan in the chimney for the purpose of creating sufficient draught. When relying on natural draught, the dense converter requires a chimney of at least 7 metres and a by-pass connection while the fire is being lit. In addition, the converter will have to be constructed to be less dense and this will mean that it's capability to oxidise non-combusted gases will be reduced. The coarse converter did not impair the draught but it's oxidising property was insufficient. With the tests over, the converter was not observed to have become blocked up by impurities

  10. Mercury Oxidation via Catalytic Barrier Filters Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Seames; Michael Mann; Darrin Muggli; Jason Hrdlicka; Carol Horabik

    2007-09-30

    In 2004, the Department of Energy National Energy Technology Laboratory awarded the University of North Dakota a Phase II University Coal Research grant to explore the feasibility of using barrier filters coated with a catalyst to oxidize elemental mercury in coal combustion flue gas streams. Oxidized mercury is substantially easier to remove than elemental mercury. If successful, this technique has the potential to substantially reduce mercury control costs for those installations that already utilize baghouse barrier filters for particulate removal. Completed in 2004, Phase I of this project successfully met its objectives of screening and assessing the possible feasibility of using catalyst coated barrier filters for the oxidation of vapor phase elemental mercury in coal combustion generated flue gas streams. Completed in September 2007, Phase II of this project successfully met its three objectives. First, an effective coating method for a catalytic barrier filter was found. Second, the effects of a simulated flue gas on the catalysts in a bench-scale reactor were determined. Finally, the performance of the best catalyst was assessed using real flue gas generated by a 19 kW research combustor firing each of three separate coal types.

  11. Device for controlling the composition of the mixture burnt in the combustion spaces of an internal combustion engine. Einrichtung zur Regelung der Zusammensetzung des in den Brennraeumen einer Brennkraftmaschine zur Verbrennung kommenden Betriebsgemisches

    Energy Technology Data Exchange (ETDEWEB)

    Latsch, R; Bianchi, V

    1986-07-31

    The purpose of the invention is to create a device by which the extent of the reaction to the control of the composition of the mixture burnt in the combustion spaces of an internal combustion engine can be measured in a sensitive, responsive and safe way, where the position of the elements detecting the reaction should have a relatively small effect on the accuracy of the measurement and the extent of measurement. According to the invention, this problem is solved by the use of 2 thermal sensors connected to a control device (photo-electric diode, photo-electric transistor), one of which acts catalytically and causes the parts of the gas mixture there to react. The thermal sensor output signals are periodically integrated via the piston work and are entered in the control device. The measured temperature is a measure of how far the method of operation of the internal combustion engine has approached its limits. (HWJ).

  12. Study of the influence of the amount of PBI-H{sub 3}PO{sub 4} in the catalytic layer of a high temperature PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Lobato, Justo; Canizares, Pablo; Rodrigo, Manuel A.; Linares, Jose J.; Pinar, F. Javier [Chemical Engineering Department, Enrique Costa Building, University of Castilla-La Mancha, Av. Camilo Jose Cela, n 12, 13071, Ciudad Real (Spain)

    2010-02-15

    The influence of the amount of polybenzimidazole (PBI)-H{sub 3}PO{sub 4} (normalized with respect to the PBI loading, which expressed as C/PBI weight ratio) content in both the anode and cathode has been studied for a PBI-based high temperature proton exchange membrane (PEM) fuel cell. The electrodes prepared with different amounts of PBI have been characterized physically, by measuring the pore size distribution, and visualizing the surface microstructure. Afterwards, the electrochemical behaviour of the electrodes has been evaluated. The catalytic electrochemical activity has been measured by voltamperometry for each electrode prepared with a different PBI content, and the cell performance results have been studied, supported by the impedance spectra, in order to determine the influence of the PBI loading in each electrode. The best results have been achieved with a C/PBI weight ratio of 20, for both the anode and the cathode. A lower C/PBI weight ratio (larger amount of PBI in the catalytic layer) reduced the electrocatalytic activity, and impaired the mass transport processes, due to the large amount of polymer covering the catalyst particle, lowering the cell performance. A higher C/PBI weight ratio (lower amount of PBI in the catalytic layer) reduced the electrocatalytic activity, and slightly increased the ohmic resistance. The low amount of the polymeric ionic carrier PBI-H{sub 3}PO{sub 4} limited the proton mobility, despite of the presence of large amounts of ''free'' H{sub 3}PO{sub 4} in the catalytic layer. (author)

  13. Assessing techniques and performance of thin OGFC/PEM overlay on micro-milled surface : final report.

    Science.gov (United States)

    2014-08-01

    The practice of placing an open-graded friction course (OGFC) or a porous European mix (PEM) : directly on top of a conventional milled surface has rarely been done in Georgia due to concerns that this : rehabilitation method could potentially cause ...

  14. Energy efficiency analyses of active flow aftertreatment systems for lean burn internal combustion engines

    International Nuclear Information System (INIS)

    Zheng Ming; Reader, Graham T.

    2004-01-01

    The use of three way catalytic converters in stoichiometric burn reciprocating internal combustion engine systems has proved to be an effective and efficient method for reducing the level of criteria pollutants. However, such passive systems have not been as successful in emission amelioration when combined with lean burn engines. This is because of the thermochemical nature of the exhaust gases generated by such engines. The high content of exhaust oxygen largely negates the effectiveness of three way catalytic converters, and the comparatively low temperature of the combusted gases means that supplemental energy has to be added to these gases to enable the converter to function correctly. This requirement severely reduces the energy efficiency of conventional passive aftertreatment systems. However, initial empirical studies have indicated that a possible means of improving the performance of aftertreatment devices when used with lean burn engine systems is to use active flow control of the exhaust gases. These results are reported in this paper. This concept has been further investigated by developing an energy efficiency analysis that enables the effects on aftertreatment performance of different gas flow rates, flow reversal frequencies and monolith solid properties to be investigated. Simulation results indicate that through active thermal management, the supplemental energy consumption can be drastically reduced

  15. Drying apparatus with catalytic combustion of the exhaust gases and with heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Betz, E C

    1975-11-20

    The invention applies to a drying kiln whose charge is dried by a heating gas flow. In order to conserve energy, the thermal energy is transferred back from the catalytically oxydized exhaust gas flow to the heating gas flow. This is done by means of a heat exchanger which contains a heat transfer liquid whose pressure is set to make its boiling temperature the same as the maximum permissible heating gas temperature. The fuel supply to the heating gas burner is controlled by a temperature sensor across a control mechanism.

  16. NEW MATERIAL NEEDS FOR HYDROCARBON FUEL PROCESSING: Generating Hydrogen for the PEM Fuel Cell

    Science.gov (United States)

    Farrauto, R.; Hwang, S.; Shore, L.; Ruettinger, W.; Lampert, J.; Giroux, T.; Liu, Y.; Ilinich, O.

    2003-08-01

    The hydrogen economy is fast approaching as petroleum reserves are rapidly consumed. The fuel cell promises to deliver clean and efficient power by combining hydrogen and oxygen in a simple electrochemical device that directly converts chemical energy to electrical energy. Hydrogen, the most plentiful element available, can be extracted from water by electrolysis. One can imagine capturing energy from the sun and wind and/or from the depths of the earth to provide the necessary power for electrolysis. Alternative energy sources such as these are the promise for the future, but for now they are not feasible for power needs across the globe. A transitional solution is required to convert certain hydrocarbon fuels to hydrogen. These fuels must be available through existing infrastructures such as the natural gas pipeline. The present review discusses the catalyst and adsorbent technologies under development for the extraction of hydrogen from natural gas to meet the requirements for the proton exchange membrane (PEM) fuel cell. The primary market is for residential applications, where pipeline natural gas will be the source of H2 used to power the home. Other applications including the reforming of methanol for portable power applications such as laptop computers, cellular phones, and personnel digital equipment are also discussed. Processing natural gas containing sulfur requires many materials, for example, adsorbents for desulfurization, and heterogeneous catalysts for reforming (either autothermal or steam reforming) water gas shift, preferential oxidation of CO, and anode tail gas combustion. All these technologies are discussed for natural gas and to a limited extent for reforming methanol.

  17. Catalytic steam reforming of ethanol for hydrogen production: Brief status

    Directory of Open Access Journals (Sweden)

    Bineli Aulus R.R.

    2016-01-01

    Full Text Available Hydrogen represents a promising fuel since it is considered as a cleanest energy carrier and also because during its combustion only water is emitted. It can be produced from different kinds of renewable feedstocks, such as ethanol, in this sense hydrogen could be treated as biofuel. Three chemical reactions can be used to achieve this purpose: the steam reforming (SR, the partial oxidation (POX and the autothermal reforming (ATR. In this study, the catalysts implemented in steam reforming of ethanol were reviewed. A wide variety of elements can be used as catalysts for this reaction, such as base metals (Ni, Cu and Co or noble metals (Rh, Pt and Ru usually deposited on a support material that increases surface area and improves catalytic function. The use of Rh, Ni and Pt supported or promoted with CeO2, and/or La2O3 shows excellent performance in ethanol SR catalytic process. The ratio of water to ethanol, reaction temperatures, catalysts loadings, selectivity and activity are also discussed as they are extremely important for high hydrogen yields.

  18. The positron emission mammography/tomography breast imaging and biopsy system (PEM/PET): design, construction and phantom-based measurements

    Science.gov (United States)

    Raylman, Raymond R.; Majewski, Stan; Smith, Mark F.; Proffitt, James; Hammond, William; Srinivasan, Amarnath; McKisson, John; Popov, Vladimir; Weisenberger, Andrew; Judy, Clifford O.; Kross, Brian; Ramasubramanian, Srikanth; Banta, Larry E.; Kinahan, Paul E.; Champley, Kyle

    2008-02-01

    Tomographic breast imaging techniques can potentially improve detection and diagnosis of cancer in women with radiodense and/or fibrocystic breasts. We have developed a high-resolution positron emission mammography/tomography imaging and biopsy device (called PEM/PET) to detect and guide the biopsy of suspicious breast lesions. PET images are acquired to detect suspicious focal uptake of the radiotracer and guide biopsy of the area. Limited-angle PEM images could then be used to verify the biopsy needle position prior to tissue sampling. The PEM/PET scanner consists of two sets of rotating planar detector heads. Each detector consists of a 4 × 3 array of Hamamatsu H8500 flat panel position sensitive photomultipliers (PSPMTs) coupled to a 96 × 72 array of 2 × 2 × 15 mm3 LYSO detector elements (pitch = 2.1 mm). Image reconstruction is performed with a three-dimensional, ordered set expectation maximization (OSEM) algorithm parallelized to run on a multi-processor computer system. The reconstructed field of view (FOV) is 15 × 15 × 15 cm3. Initial phantom-based testing of the device is focusing upon its PET imaging capabilities. Specifically, spatial resolution and detection sensitivity were assessed. The results from these measurements yielded a spatial resolution at the center of the FOV of 2.01 ± 0.09 mm (radial), 2.04 ± 0.08 mm (tangential) and 1.84 ± 0.07 mm (axial). At a radius of 7 cm from the center of the scanner, the results were 2.11 ± 0.08 mm (radial), 2.16 ± 0.07 mm (tangential) and 1.87 ± 0.08 mm (axial). Maximum system detection sensitivity of the scanner is 488.9 kcps µCi-1 ml-1 (6.88%). These promising findings indicate that PEM/PET may be an effective system for the detection and diagnosis of breast cancer.

  19. The positron emission mammography/tomography breast imaging and biopsy system (PEM/PET): design, construction and phantom-based measurements

    Energy Technology Data Exchange (ETDEWEB)

    Raylman, Raymond R [Center for Advanced Imaging, Department of Radiology, West Virginia University, Morgantown, WV (United States); Majewski, Stan [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Smith, Mark F [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Proffitt, James [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Hammond, William [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Srinivasan, Amarnath [Center for Advanced Imaging, Department of Radiology, West Virginia University, Morgantown, WV (United States); McKisson, John [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Popov, Vladimir [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Weisenberger, Andrew [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Judy, Clifford O [Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV (United States); Kross, Brian [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Ramasubramanian, Srikanth [Center for Advanced Imaging, Department of Radiology, West Virginia University, Morgantown, WV (United States); Banta, Larry E [Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV (United States); Kinahan, Paul E [Department of Radiology, University of Washington, Seattle, WA (United States); Champley, Kyle [Department of Radiology, University of Washington, Seattle, WA (United States)

    2008-02-07

    Tomographic breast imaging techniques can potentially improve detection and diagnosis of cancer in women with radiodense and/or fibrocystic breasts. We have developed a high-resolution positron emission mammography/tomography imaging and biopsy device (called PEM/PET) to detect and guide the biopsy of suspicious breast lesions. PET images are acquired to detect suspicious focal uptake of the radiotracer and guide biopsy of the area. Limited-angle PEM images could then be used to verify the biopsy needle position prior to tissue sampling. The PEM/PET scanner consists of two sets of rotating planar detector heads. Each detector consists of a 4 x 3 array of Hamamatsu H8500 flat panel position sensitive photomultipliers (PSPMTs) coupled to a 96 x 72 array of 2 x 2 x 15 mm{sup 3} LYSO detector elements (pitch = 2.1 mm). Image reconstruction is performed with a three-dimensional, ordered set expectation maximization (OSEM) algorithm parallelized to run on a multi-processor computer system. The reconstructed field of view (FOV) is 15 x 15 x 15 cm{sup 3}. Initial phantom-based testing of the device is focusing upon its PET imaging capabilities. Specifically, spatial resolution and detection sensitivity were assessed. The results from these measurements yielded a spatial resolution at the center of the FOV of 2.01 {+-} 0.09 mm (radial), 2.04 {+-} 0.08 mm (tangential) and 1.84 {+-} 0.07 mm (axial). At a radius of 7 cm from the center of the scanner, the results were 2.11 {+-} 0.08 mm (radial), 2.16 {+-} 0.07 mm (tangential) and 1.87 {+-} 0.08 mm (axial). Maximum system detection sensitivity of the scanner is 488.9 kcps {mu}Ci{sup -1} ml{sup -1} (6.88%). These promising findings indicate that PEM/PET may be an effective system for the detection and diagnosis of breast cancer.

  20. Combustion

    CERN Document Server

    Glassman, Irvin

    1997-01-01

    This Third Edition of Glassman's classic text clearly defines the role of chemistry, physics, and fluid mechanics as applied to the complex topic of combustion. Glassman's insightful introductory text emphasizes underlying physical and chemical principles, and encompasses engine technology, fire safety, materials synthesis, detonation phenomena, hydrocarbon fuel oxidation mechanisms, and environmental considerations. Combustion has been rewritten to integrate the text, figures, and appendixes, detailing available combustion codes, making it not only an excellent introductory text but also an important reference source for professionals in the field. Key Features * Explains complex combustion phenomena with physical insight rather than extensive mathematics * Clarifies postulates in the text using extensive computational results in figures * Lists modern combustion programs indicating usage and availability * Relates combustion concepts to practical applications.

  1. Future combustion methods for biomethane powered tractor engines; Zukuenftige Brennverfahren fuer biomethanbetriebene Traktormotoren

    Energy Technology Data Exchange (ETDEWEB)

    Prehn, Sascha; Harndorf, Horst [Rostock Univ. (Germany). Lehrstuhl fuer Kolbenmaschinen und Verbrennungsmotoren; Wichmann, Volker [Rostock Univ. (Germany). Maschinenlabor; Beberdick, Wolfgang

    2016-08-01

    Biomethane represents an alternative to fossil fuels (petrol, diesel), not only in the on-road sector. Methane-based fuels come in focus of farmers in the agriculture sector, due to cost constraints, increasing regulation of pollutant emissions and reduction of carbondioxid. To represent a monovalent gas operation, a functional model is derived from a series diesel engine for agricultural use. On the test engine, systematic studies on the combustion process are carried out by cylinder pressure indication and exhaust-emission measurement. Combustion under stoichiometric conditions (with or without exhaust gas recirculation) as well as the conversion of fuel from excess air is observed. The study shows that with a natural-gas engine, a complex post-treatment system of exhaust gas (DOC + DPF + SCR) that is typically for diesel engines can be dispensed with. The exhaust gas limits in force since 2014 and a limitation of methane on 0,5 g/kWh can be met with a stoichiometric combustion concept and a three way catalytic converter optimized for the methane oxidation.

  2. Optimal Control of a PEM Fuel Cell for the Inputs Minimization

    Directory of Open Access Journals (Sweden)

    José de Jesús Rubio

    2014-01-01

    Full Text Available The trajectory tracking problem of a proton exchange membrane (PEM fuel cell is considered. To solve this problem, an optimal controller is proposed. The optimal technique has the objective that the system states should reach the desired trajectories while the inputs are minimized. The proposed controller uses the Hamilton-Jacobi-Bellman method where its Riccati equation is considered as an adaptive function. The effectiveness of the proposed technique is verified by two simulations.

  3. Engineered Sulfur‐Resistant Catalyst System with an Assisted Regeneration Strategy for Lean‐Burn Methane Combustion

    Science.gov (United States)

    Kallinen, Kauko; Maunula, Teuvo; Suvanto, Mika

    2018-01-01

    Abstract Catalytic combustion of methane, the main component of natural gas, is a challenge under lean‐burn conditions and at low temperatures owing to sulfur poisoning of the Pd‐rich catalyst. This paper introduces a more sulfur‐resistant catalyst system that can be regenerated during operation. The developed catalyst system lowers the barrier that has restrained the use of liquefied natural gas as a fuel in energy production. PMID:29780434

  4. Identification of novel mazEF/pemIK family toxin-antitoxin loci and their distribution in the Staphylococcus genus.

    Science.gov (United States)

    Bukowski, Michal; Hyz, Karolina; Janczak, Monika; Hydzik, Marcin; Dubin, Grzegorz; Wladyka, Benedykt

    2017-10-18

    The versatile roles of toxin-antitoxin (TA) systems in bacterial physiology and pathogenesis have been investigated for more than three decades. Diverse TA loci in Bacteria and Archaea have been identified in genome-wide studies. The advent of massive parallel sequencing has substantially expanded the number of known bacterial genomic sequences over the last 5 years. In staphylococci, this has translated into an impressive increase from a few tens to a several thousands of available genomes, which has allowed us for the re-evalution of prior conclusions. In this study, we analysed the distribution of mazEF/pemIK family TA system operons in available staphylococcal genomes and their prevalence in mobile genetic elements. 10 novel m azEF/pemIK homologues were identified, each with a corresponding toxin that plays a potentially different and undetermined physiological role. A detailed characterisation of these TA systems would be exceptionally useful. Of particular interest are those associated with an SCCmec mobile genetic element (responsible for multidrug resistance transmission) or representing the joint horizontal transfer of TA systems and determinants of vancomycin resistance from enterococci. The involvement of TA systems in maintaining mobile genetic elements and the associations between novel mazEF/pemIK loci and those which carry drug resistance genes highlight their potential medical importance.

  5. Polarization Curve of a Non-Uniformly Aged PEM Fuel Cell

    Directory of Open Access Journals (Sweden)

    Andrei Kulikovsky

    2014-01-01

    Full Text Available We develop a semi-analytical model for polarization curve of a polymer electrolyte membrane (PEM fuel cell with distributed (aged along the oxygen channel MEA transport and kinetic parameters of the membrane–electrode assembly (MEA. We show that the curve corresponding to varying along the channel parameter, in general, does not reduce to the curve for a certain constant value of this parameter. A possibility to determine the shape of the deteriorated MEA parameter along the oxygen channel by fitting the model equation to the cell polarization data is demonstrated.

  6. PEM fuel cell bipolar plate material requirements for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Borup, R.L.; Stroh, K.R.; Vanderborgh, N.E. [Los Alamos National Lab., NM (United States)] [and others

    1996-04-01

    Cost effective bipolar plates are currently under development to help make proton exchange membrane (PEM) fuel cells commercially viable. Bipolar plates separate individual cells of the fuel cell stack, and thus must supply strength, be electrically conductive, provide for thermal control of the fuel stack, be a non-porous materials separating hydrogen and oxygen feed streams, be corrosion resistant, provide gas distribution for the feed streams and meet fuel stack cost targets. Candidate materials include conductive polymers and metal plates with corrosion resistant coatings. Possible metals include aluminium, titanium, iron/stainless steel and nickel.

  7. Modeling efficiency and water balance in PEM fuel cell systems with liquid fuel processing and hydrogen membranes

    Science.gov (United States)

    Pearlman, Joshua B.; Bhargav, Atul; Shields, Eric B.; Jackson, Gregory S.; Hearn, Patrick L.

    Integrating PEM fuel cells effectively with liquid hydrocarbon reforming requires careful system analysis to assess trade-offs associated with H 2 production, purification, and overall water balance. To this end, a model of a PEM fuel cell system integrated with an autothermal reformer for liquid hydrocarbon fuels (modeled as C 12H 23) and with H 2 purification in a water-gas-shift/membrane reactor is developed to do iterative calculations for mass, species, and energy balances at a component and system level. The model evaluates system efficiency with parasitic loads (from compressors, pumps, and cooling fans), system water balance, and component operating temperatures/pressures. Model results for a 5-kW fuel cell generator show that with state-of-the-art PEM fuel cell polarization curves, thermal efficiencies >30% can be achieved when power densities are low enough for operating voltages >0.72 V per cell. Efficiency can be increased by operating the reformer at steam-to-carbon ratios as high as constraints related to stable reactor temperatures allow. Decreasing ambient temperature improves system water balance and increases efficiency through parasitic load reduction. The baseline configuration studied herein sustained water balance for ambient temperatures ≤35 °C at full power and ≤44 °C at half power with efficiencies approaching ∼27 and ∼30%, respectively.

  8. Comparison of the combustion engine operating parameters and the ecological indicators of an urban bus in dynamic type approval tests and in actual operating conditions

    Directory of Open Access Journals (Sweden)

    Rymaniak Lukasz

    2017-01-01

    Full Text Available The article presents the considerations regarding a city bus combustion engine performanceparameters in dynamic type approval tests and in real operating conditions when servicing an urban bus line. A comparison of the designated engine operating time shares with respect to load and crankshaft rotational speed was made. The analysis included the ETC and WHTC tests, which showed significant discrepancies in the work areas of internal combustion engines in these test when compared to actual driving conditions. The details of the type approval tests used and the method of their denormalization for the drive unit were presented. The vehicle used for this research was an eighteen meter city bus equipped with a CI engine with a displacement of 9.2 dm3. The latest PEMS mobile equipment technology was used to conduct the road measurements. This allowed the emission indicators for CO, HC, NOx and PM to be determined, including specific emissions. The obtained values were then compared with the Euro V limits.The analysis of the test results was supplemented with the calculation of fuel consumption using the carbonbalance method.

  9. XAS Investigations of PEM Fuel Cells

    Science.gov (United States)

    Roth, Christina; Ramaker, David E.

    Polymer-electrolyte membrane (PEM) fuel cells are still far from an area-wide market launch due in part to long-term stability, reliability and cost issues. A more detailed knowledge of the underlying reaction mechanisms is expected to further their application, as it would allow for the design of tailor-made catalysts. However, this will only be possible by complementing traditional in situ studies on single-crystals in electrochemical cells with more sophisticated metal/electrolyte interfacial studies by novel spectroscopic methodologies, which can provide complementary insights into the behaviour of commercial catalysts under real fuel cell operating conditions. This review will focus on the advances of Xray absorption spectroscopy (XAS) in applied fuel cell research utilizing several examples. XAS enables both the nanoparticle morphology and the adsorbate coverage and binding site to be investigated with just one technique. The latter is possible when complementing the conventional extended X-ray absorption fine structure (EXAFS) analysis with the more novel Δμ XANES approach.

  10. Model-supported characterization of a PEM water electrolysis cell for the effect of compression

    DEFF Research Database (Denmark)

    Frensch, Steffen Henrik; Olesen, Anders Christian; Simon Araya, Samuel

    2018-01-01

    This paper investigates the influence of the cell compression of a PEM water electrolysis cell. A small single cell is therefore electrochemically analyzed by means of polarization behavior and impedance spectroscopy throughout a range of currents (0.01 A cm−2 to 2.0 A cm−2) at two temperatures (60...

  11. Combustion technology developments in power generation in response to environmental challenges

    Energy Technology Data Exchange (ETDEWEB)

    BeerBeer, J.M. [Massachusetts Inst. of Technology, Dept. of Chemical Engineering, Cambridge, MA (United States)

    2000-07-01

    greenhouse gas debate. This is adding the task of raising the thermodynamic efficiency of the power generating cycle to the existing demands for reduced pollutant emission. Reassessment of the long-term availability of natural gas, and the development of low NO{sub x} and highly efficient gas turbine-steam combined cycles made this mode of power generation greatly attractive also for base load operation. However, the real prize and challenge of power generation R&D remains to be the development of highly efficient and clean coal-fired systems. The most promising of these include pulverised coal combustion in a supercritical steam boiler, pressurised fluid bed combustion without or with topping combustion, air heater gas turbine-steam combined cycle, and integrated gasification combined cycle. In the longer term, catalytic combustion in gas turbines and coal gasification-fuel cell systems hold out promise for even lower emissions and higher thermodynamic cycle efficiency. The present state of these advanced power-generating cycles together with their potential for application in the near future is discussed, and the key role of combustion science and technology as a guide in their continuing development highlighted. (Author)

  12. Combustion engineering

    CERN Document Server

    Ragland, Kenneth W

    2011-01-01

    Introduction to Combustion Engineering The Nature of Combustion Combustion Emissions Global Climate Change Sustainability World Energy Production Structure of the Book   Section I: Basic Concepts Fuels Gaseous Fuels Liquid Fuels Solid Fuels Problems Thermodynamics of Combustion Review of First Law Concepts Properties of Mixtures Combustion StoichiometryChemical EnergyChemical EquilibriumAdiabatic Flame TemperatureChemical Kinetics of CombustionElementary ReactionsChain ReactionsGlobal ReactionsNitric Oxide KineticsReactions at a Solid SurfaceProblemsReferences  Section II: Combustion of Gaseous and Vaporized FuelsFlamesLaminar Premixed FlamesLaminar Flame TheoryTurbulent Premixed FlamesExplosion LimitsDiffusion FlamesGas-Fired Furnaces and BoilersEnergy Balance and EfficiencyFuel SubstitutionResidential Gas BurnersIndustrial Gas BurnersUtility Gas BurnersLow Swirl Gas BurnersPremixed-Charge Engine CombustionIntroduction to the Spark Ignition EngineEngine EfficiencyOne-Zone Model of Combustion in a Piston-...

  13. CHARACTERIZATION OF CATALYTIC COMBUSTOR TURBULENCE AND ITS INFLUENCE ON VANE AND ENDWALL HEAT TRANSFER AND ENDWALL FILM COOLING

    Energy Technology Data Exchange (ETDEWEB)

    Forrest E. Ames

    2002-10-01

    Endwall heat transfer distributions taken in a large-scale low speed linear cascade facility are documented for mock catalytic and dry low NOx (DLN) combustion systems. Inlet turbulence levels range from about 1.0 percent for the mock Catalytic combustor condition to 14 percent for the mock dry low NOx combustor system. Stanton number contours are presented at both turbulence conditions for Reynolds numbers based on true chord length and exit conditions ranging from 500,000 to 2,000,000. Catalytic combustor endwall heat transfer shows the influence of the complex three-dimensional flow field, while the effects of individual vortex systems are less evident for the mock dry low NOx cases. Turbulence scales have been documented for both cases. Inlet boundary layers are relatively thin for the mock catalytic combustor case while inlet flow approximates a channel flow with high turbulence for the mock DLN combustor case. Inlet boundary layer parameters are presented across the inlet passage for the three Reynolds numbers and both the mock catalytic and DLN combustor inlet cases. Both midspan and 95 percent span pressure contours are included. This research provides a well-documented database taken across a range of Reynolds numbers and turbulence conditions for assessment of endwall heat transfer predictive capabilities.

  14. Suitability of some promising soot combustion catalysts for application in diesel exhaust treatment

    Energy Technology Data Exchange (ETDEWEB)

    Badini, Claudio; Saracco, Guido; Serra, Valentina; Specchia, Vito [Dipartimento di Scienza dei Materiali ed Ingegneria Chimica, Politecnico di Torino, Corso Duca degli Abruzzi, 24-10129 Torino (Italy)

    1998-09-21

    In this work, the effect of thermal treatment at 380C and 600C, under gaseous atmospheres containing some typical components of diesel emissions (SO{sub 2} and water), was studied on some promising catalysts for diesel particulate combustion. In particular, the ageing behaviour of two novel catalysts (based on CsVO{sub 3}+KCl and KVO{sub 3}+KCl, respectively) and of a more widely studied Cu-K-V-Cl catalyst was investigated. The catalytic activities of these novel catalysts were lower than that of the Cu-K-V-Cl one, but, contrary to this last counterpart, they almost completely maintained their activity during ageing treatments in dry or humid air at 380C and 600C, respectively. Moreover, after prolonged thermal exposure in wet air, the activity of the Cu-K-V-Cl catalyst became comparable with that of the CsVO{sub 3}+KCl one, while remaining still slightly higher than that of the KVO{sub 3}+KCl catalyst. The thermal treatments of all the catalysts under investigation in an atmosphere containing SO{sub 2} did not cause an activity decrease. X-ray diffraction analyses showed the formation of new phases (sulphates and vanadates with a K/V ratio different from that of metavanadates) which could also improve the catalytic activity, counterbalancing the loss of active components due to evaporation at high temperatures. Furthermore, the catalyst activity was evaluated after employing repeatedly these catalysts in carbon combustion. The catalytic activities were generally slightly lowered by the repeated use, even though, from this viewpoint, that of Cu-K-V-Cl was more affected than those of the other catalysts. On the basis of the obtained results the CsVO{sub 3}+KCl catalyst was found to allow the best compromise between satisfactory catalyst activity and stability

  15. Investigation on the co-combustion of low calorific oil shale and its semi-coke by using thermogravimetric analysis

    International Nuclear Information System (INIS)

    Yang, Yu; Lu, Xiaofeng; Wang, Quanhai

    2017-01-01

    Highlights: • The co-combustion characteristic parameters were studied. • The co-combustion of oil shale and semi-coke could be expressed roughly by the addition of individual components. • Activation energy was calculated by Coats-Redfern, distributed activation energy model and Flynn-Wall-Ozawa methods. - Abstract: In the present work, thermogravimetric analysis was employed to investigate co-combustion behaviors of Fushun low calorific oil shale and its semi-coke. The synergy effect was estimated by using the interaction coefficient and the relative error of mean square root. In addition, activation energy was also calculated by means of Coats-Redfern, distributed activation energy model and Flynn-Wall-Ozawa methods. Results indicated that with the increase of oil shale mass fraction and oxygen concentration, combustion characteristics of the samples were improved. And some little interaction did occur during the co-combustion process, but it was relatively slight. Consequently, the co-combustion of oil shale and semi-coke still could be expressed roughly by the addition of individual components of the mixtures. Furthermore, activation energy of the samples decreased slowly at the initial stage attributed to the minerals’ catalytic effects, and in the final stage, it jumped to a high value, suggesting that the burnout of the samples was difficult. Besides, the mix proportion of oil shale which was added to stabilize the combustion in the circulating fluidized bed was also theoretically calculated.

  16. Energy from Waste--clean, efficient, renewable: transitions in combustion efficiency and NOx control.

    Science.gov (United States)

    Waldner, M H; Halter, R; Sigg, A; Brosch, B; Gehrmann, H J; Keunecke, M

    2013-02-01

    Traditionally EfW (Energy from Waste) plants apply a reciprocating grate to combust waste fuel. An integrated steam generator recovers the heat of combustion and converts it to steam for use in a steam turbine/generator set. This is followed by an array of flue gas cleaning technologies to meet regulatory limitations. Modern combustion applies a two-step method using primary air to fuel the combustion process on the grate. This generates a complex mixture of pyrolysis gases, combustion gases and unused combustion air. The post-combustion step in the first pass of the boiler above the grate is intended to "clean up" this mixture by oxidizing unburned gases with secondary air. This paper describes modifications to the combustion process to minimize exhaust gas volumes and the generation of noxious gases and thus improving the overall thermal efficiency of the EfW plant. The resulting process can be coupled with an innovative SNCR (Selective Non-Catalytic Reduction) technology to form a clean and efficient solid waste combustion system. Measurements immediately above the grate show that gas compositions along the grate vary from 10% CO, 5% H(2) and 0% O(2) to essentially unused "pure" air, in good agreement with results from a mathematical model. Introducing these diverse gas compositions to the post combustion process will overwhelm its ability to process all these gas fractions in an optimal manner. Inserting an intermediate step aimed at homogenizing the mixture above the grate has shown to significantly improve the quality of combustion, allowing for optimized process parameters. These measures also resulted in reduced formation of NO(x) (nitrogenous oxides) due to a lower oxygen level at which the combustion process was run (2.6 vol% O(2,)(wet) instead of 6.0 vol% O(2,)(wet)). This reduction establishes optimal conditions for the DyNOR™ (Dynamic NO(x) Reduction) NO(x) reduction process. This innovative SNCR technology is adapted to situations typically

  17. A portable power system using PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Long, E. [Ball Aerospace and Technologies Corp., Boulder, CO (United States)

    1997-12-31

    Ball has developed a proof-of-concept, small, lightweight, portable power system. The power system uses a proton exchange membrane (PEM) fuel cell stack, stored hydrogen, and atmospheric oxygen as the oxidant to generate electrical power. Electronics monitor the system performance to control cooling air and oxidant flow, and automatically do corrective measures to maintain performance. With the controller monitoring the system health, the system can operate in an ambient environment from 0 C to +50 C. The paper describes system testing, including load testing, thermal and humidity testing, vibration and shock testing, field testing, destructive testing of high-pressure gas tanks, and test results on the fuel cell power system, metal hydride hydrogen storage, high-pressure hydrogen gas storage, and chemical hydride hydrogen storage.

  18. Performance evaluation of an open-cathode PEM fuel cell stack under ambient conditions: Case study of United Arab Emirates

    International Nuclear Information System (INIS)

    Al-Zeyoudi, Hend; Sasmito, Agus P.; Shamim, Tariq

    2015-01-01

    Highlights: • Performance evaluation of open-cathode PEM fuel cell stacks with forced air-convection. • Stack performance can vary up to 40% from winter to summer. • Hot and arid condition leads to membrane drying and performance deterioration. • Anode humidification improves the stack performance up to 40% during summer. - Abstract: The open-cathode polymer electrolyte membrane (PEM) fuel cell stack has been a promising candidate as a sustainable energy conversion system for replacing fossil fuel-based energy conversion devices in portable and automotive applications. As the ambient air is directly used to provide both oxidant and cooling, the complex cooling loop can be avoided which reduces the complexity and cost. However, the stack performance is highly affected by ambient conditions, i.e., ambient temperature and humidity. In this study, the effect of monthly ambient air conditions (temperature and humidity) is evaluated with respect to the stack’s power production performance as well as thermal, water and gas management by employing a validated three-dimensional open-cathode PEM fuel cell stack model. The annual climate data from the hot and arid environment of Abu Dhabi, United Arab Emirates (UAE) are used as a case study. The objective is to develop a better fundamental understanding of the interactions of physical phenomena in a fuel cell stack, which can assist in improving the performance and operation of an open-cathode PEM fuel cell-powered vehicle. The results indicate that the stack performance can vary significantly (up to 40%) from winter to summer, especially at high operating currents, with significant changes in the stack temperature and the water content at the membrane. Moreover, the anode humidification results in a significant improvement in the stack performance (up to 40%) in hot and dry conditions. However, a careful balance has to be struck between the humidifier parasitic load and the stack power.

  19. Multifunctional (NOx/CO/O2) Solid-State Sensors For Coal Combustion Control

    Energy Technology Data Exchange (ETDEWEB)

    Eric D. Wachsman

    2006-12-31

    Solid-state sensors were developed for coal combustion control and the understanding of sensing mechanisms was advanced. Several semiconducting metal oxides (p-type and n-type) were used to fabricate sensor electrodes. The adsorption/desorption characteristics and catalytic activities of these materials were measured with Temperature Programmed Desorption (TPD) and Temperature Programmed Reaction (TPR) experiments. The sensitivity, selectivity, and response time of these sensors were measured for steps of NO, NO{sub 2}, CO, CO{sub 2}, O{sub 2}, and H{sub 2}O vapor in simple N{sub 2}-balanced and multi-component, simulated combustion-exhaust streams. The role of electrode microstructure and fabrication parameters on sensing performance was investigated. Proof for the proposed sensing mechanism, Differential Electrode Equilibria, was demonstrated by relating the sensing behavior (sensitivities and cross-sensitivities) of the various electrode materials to their gas adsorption/desorption behaviors and catalytic activities. A multifunctional sensor array consisting of three sensing electrodes and an integrated heater and temperature sensors was fabricated with tape-casting and screen-printing and its NO{sub x} sensing performance was measured. The multifunctional sensor demonstrated it was possible to measure NO{sub 2} independent of NO by locally heating one of the sensing electrodes. The sensor technology was licensed to Fuel FX International, Inc. Fuel FX has obtained investor funding and is developing prototype sensors as a first step in their commercialization strategy for this technology.

  20. Development of Low Temperature Catalysts for an Integrated Ammonia PEM Fuel Cell

    OpenAIRE

    Hill, Alfred

    2014-01-01

    It is proposed that an integrated ammonia-PEM fuel cell could unlock the potential of ammonia to act as a high capacity chemical hydrogen storage vector and enable renewable energy to be delivered eectively to road transport applications. Catalysts are developed for low temperature ammonia decomposition with activity from 450 K (ruthenium and cesium on graphitised carbon nanotubes). Results strongly suggest that the cesium is present on the surface and close proximity to ruthenium nanoparticl...

  1. Processing of mixed waste via quantum-catalytic extraction processing (Q-CEP trademark), a case study

    International Nuclear Information System (INIS)

    Evans, L.; Richards, T.; McGowan, B.

    1996-01-01

    Catalytic Extraction Processing (CEP) as developed by Molten Metal Technology (MMT), Inc. employs the use of a refractory-lined, steel-shell reactor vessel and an inductively-heated metal bath. When molten, the metal bath can process gaseous, liquid, and solid wastes and recycle their constituents into commercially valuable products. Quantum-Catalytic Extraction Processing, or Q-CEP, is the application of CEP technology to radioactive and mixed wastes. The Q-CEP technology can take wastes in various physical forms (gas, liquid, slurry, sludge, or grindable solid) and inject them into the molten metal bath of iron, nickel, or copper. The bath acts as both a catalyst and solvent and breaks the compounds of the waste feed into their original constituent elements. The flexibility and robustness of the Q-CEP process are attributed to the open-quote singular close-quote dissolved elemental intermediate through which reactions proceed. open-quotes Singular close-quote refers to the fact that the catalytic and salvation effects of the liquid metal ensure that the constituents of the feed are only found in the liquid metal as dissolved elements (e.g. dissolved carbon). As a result, Q-CEP feed conversion is independent of the complexity of the molecular structure of the feed molecule. Destruction and Removal Efficiencies (DREs) exceeding 99.9999% (six nines) are typical in CEP regardless of the complexity of feed materials. Q-CEP is not a combustion technology. Unlike incineration where wastes are volume reduced and residuals buried, Q-CEP allows for the formation of commercially valuable products. Chemical reactions are performed in a highly reducing environment which results in extremely low concentrations of free oxygen, preventing the formation of furans, dioxins, or other products of incomplete combustion

  2. Combustion

    CERN Document Server

    Glassman, Irvin

    1987-01-01

    Combustion, Second Edition focuses on the underlying principles of combustion and covers topics ranging from chemical thermodynamics and flame temperatures to chemical kinetics, detonation, ignition, and oxidation characteristics of fuels. Diffusion flames, flame phenomena in premixed combustible gases, and combustion of nonvolatile fuels are also discussed. This book consists of nine chapters and begins by introducing the reader to heats of reaction and formation, free energy and the equilibrium constants, and flame temperature calculations. The next chapter explores the rates of reactio

  3. Commercial Optimization of a 100 kg/day PEM based Hydrogen Generator For Energy and Industrial Applications

    International Nuclear Information System (INIS)

    Moulthrop, L.; Anderson, E.; Chow, O.; Friedland, R.; Maloney, T.; Schiller, M.

    2006-01-01

    Commercial hydrogen generators using PEM water electrolysis are well proven, serving industrial applications worldwide in over 50 countries. Now, market and environmental requirements are converging to demand larger on-site hydrogen generators. North American liquid H 2 shortages, increasing trucking costs, developing economies with no liquid infrastructure, utilities, and forklift fuel cell fueling applications are all working to increase market demand for commercial on-site H 2 generation. These commercial applications may be satisfied by a 100 kg H 2 /day module; this platform can be the pathway towards a 500 kg H 2 /day generator desired for small fore-court hydrogen vehicle fueling stations. This paper discusses the steps necessary and activities already underway to develop a 100 to 500 kg H 2 /day PEM hydrogen generator platform to meet commercial market cost targets and approach US DoE transportation fueling cost targets. (authors)

  4. Development of a computational model applied to a unitary 144 CM{sup 2} proton exchange membrane fuel cell; Desenvolvimento de um modelo numerico computacional aplicado a uma celula a combustivel unitaria de 144 CM{sup 2} tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Robalinho, Eric

    2009-07-01

    This work presents the development of a numerical computer model and methodology to study and design polymeric exchange membrane fuel cell - PEM. For the validation of experimental results, a sequence of routines, appropriate to fit the data obtained in the laboratory, was described. At the computational implementation it was created a new strategy of coupling two 3-dimensional models to satisfy the requirements of the comprehensive model of the fuel cell, including its various geometries and materials, as well as the various physical and chemical processes simulated. To effective assessment of the real cell analogy with numerical model, numerical studies were carried out. Comparisons with values obtained in the literature, characterization of variables through laboratory experiments and estimates from models already tested in the literature were also performed. Regarding the experimental part, a prototype of a fuel cell unit of 144 cm{sup 2} of geometric area was designed, produced and operated at laboratory with the purpose of validating the numerical computer model proposed, with positive results. The results of simulations for the 2D and 3D geometries proposed are presented in the form of polarization curves, highlighting the catalytic layer model based on the geometry of agglomerates. Parametric and sensitivity studies are presented to illustrate the change in performance of the fuel cell studied. The final model is robust and useful as a tool for design and optimization of PEM type fuel cells in a wide range of operating conditions. (author)

  5. Development of a computational model applied to a unitary 144 cm{sup 2} proton exchange membrane fuel cell; Desenvolvimento de um modelo numerico computacional aplicado a uma celula a combustivel unitaria de 144 CM{sup 2} tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Robalinho, Eric

    2009-07-01

    This work presents the development of a numerical computer model and methodology to study and design polymeric exchange membrane fuel cell - PEM. For the validation of experimental results, a sequence of routines, appropriate to fit the data obtained in the laboratory, was described. At the computational implementation it was created a new strategy of coupling two 3-dimensional models to satisfy the requirements of the comprehensive model of the fuel cell, including its various geometries and materials, as well as the various physical and chemical processes simulated. To effective assessment of the real cell analogy with numerical model, numerical studies were carried out. Comparisons with values obtained in the literature, characterization of variables through laboratory experiments and estimates from models already tested in the literature were also performed. Regarding the experimental part, a prototype of a fuel cell unit of 144 cm of geometric area was designed, produced and operated at laboratory with the purpose of validating the numerical computer model proposed, with positive results. The results of simulations for the 2D and 3D geometries proposed are presented in the form of polarization curves, highlighting the catalytic layer model based on the geometry of agglomerates. Parametric and sensitivity studies are presented to illustrate the change in performance of the fuel cell studied. The final model is robust and useful as a tool for design and optimization of PEM type fuel cells in a wide range of operating conditions. (author)

  6. Pulsating combustion - Combustion characteristics and reduction of emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, Annika

    1999-11-01

    In the search for high efficiency combustion systems pulsating combustion has been identified as one of the technologies that potentially can meet the objectives of clean combustion and good fuel economy. Pulsating combustion offers low emissions of pollutants, high heat transfer and efficient combustion. Although it is an old technology, the interest in pulsating combustion has been renewed in recent years, due to its unique features. Various applications of pulsating combustion can be found, mainly as drying and heating devices, of which the latter also have had commercial success. It is, however, in the design process of a pulse combustor, difficult to predict the operating frequency, the heat release etc., due to the lack of a well founded theory of the phenomenon. Research concerning control over the combustion process is essential for developing high efficiency pulse combustors with low emissions. Natural gas fired Helmholtz type pulse combustors have been the experimental objects of this study. In order to investigate the interaction between the fluid dynamics and the chemistry in pulse combustors, laser based measuring techniques as well as other conventional measuring techniques have been used. The experimental results shows the possibilities to control the combustion characteristics of pulsating combustion. It is shown that the time scales in the large vortices created at the inlet to the combustion chamber are very important for the operation of the pulse combustor. By increasing/decreasing the time scale for the large scale mixing the timing of the heat release is changed and the operating characteristics of the pulse combustor changes. Three different means for NO{sub x} reduction in Helmholtz type pulse combustors have been investigated. These include exhaust gas recirculation, alteration of air/fuel ratio and changed inlet geometry in the combustion chamber. All used methods achieved less than 10 ppm NO{sub x} emitted (referred to stoichiometric

  7. The influence of iridium chemical oxidation state on the performance and durability of oxygen evolution catalysts in PEM electrolysis

    Science.gov (United States)

    Siracusano, S.; Baglio, V.; Grigoriev, S. A.; Merlo, L.; Fateev, V. N.; Aricò, A. S.

    2017-10-01

    Nanosized Ir-black (3 nm) and Ir-oxide (5 nm) oxygen evolution electrocatalysts showing high performance in polymer electrolyte membrane (PEM) water electrolysis based on Aquivion® short-side chain ionomer membrane are investigated to understand the role of the Ir oxidation state on the electrocatalytic activity and stability. Despite the smaller mean crystallite size, the Ir-black electrocatalyst shows significantly lower initial performance than the Ir-oxide. During operation at high current density, the Ir-black shows a decrease of cell potential with time whereas the Ir-oxide catalyst shows increasing cell potential resulting in a degradation rate of about 10 μV/h, approaching 1000 h. The unusual behaviour of the Ir-black results from the oxidation of metallic Ir to IrOx. The Ir-oxide catalyst shows instead a hydrated structure on the surface and a negative shift of about 0.5 eV for the Ir 4f binding energy after 1000 h electrolysis operation. This corresponds to the formation of a sub-stoichiometric Ir-oxide on the surface. These results indicate that a hydrated IrO2 with high oxidation state on the surface is favourable in decreasing the oxygen evolution overpotential. Modifications of the Ir chemical oxidation state during operation can affect significantly the catalytic activity and durability of the electrolysis system.

  8. Simulation of a 250 kW diesel fuel processor/PEM fuel cell system

    Science.gov (United States)

    Amphlett, J. C.; Mann, R. F.; Peppley, B. A.; Roberge, P. R.; Rodrigues, A.; Salvador, J. P.

    Polymer-electrolyte membrane (PEM) fuel cell systems offer a potential power source for utility and mobile applications. Practical fuel cell systems use fuel processors for the production of hydrogen-rich gas. Liquid fuels, such as diesel or other related fuels, are attractive options as feeds to a fuel processor. The generation of hydrogen gas for fuel cells, in most cases, becomes the crucial design issue with respect to weight and volume in these applications. Furthermore, these systems will require a gas clean-up system to insure that the fuel quality meets the demands of the cell anode. The endothermic nature of the reformer will have a significant affect on the overall system efficiency. The gas clean-up system may also significantly effect the overall heat balance. To optimize the performance of this integrated system, therefore, waste heat must be used effectively. Previously, we have concentrated on catalytic methanol-steam reforming. A model of a methanol steam reformer has been previously developed and has been used as the basis for a new, higher temperature model for liquid hydrocarbon fuels. Similarly, our fuel cell evaluation program previously led to the development of a steady-state electrochemical fuel cell model (SSEM). The hydrocarbon fuel processor model and the SSEM have now been incorporated in the development of a process simulation of a 250 kW diesel-fueled reformer/fuel cell system using a process simulator. The performance of this system has been investigated for a variety of operating conditions and a preliminary assessment of thermal integration issues has been carried out. This study demonstrates the application of a process simulation model as a design analysis tool for the development of a 250 kW fuel cell system.

  9. A CFD analysis on the effect of ambient conditions on the hygro-thermal stresses distribution in a planar ambient air-breathing PEM fuel cell

    OpenAIRE

    Maher A.R. Sadiq Al-Baghdadi

    2011-01-01

    The need for improved lifetime of air-breathing proton exchange membrane (PEM) fuel cells for portable applications necessitates that the failure mechanisms be clearly understood and life prediction models be developed, so that new designs can be introduced to improve long-term performance. An operating air-breathing PEM fuel cell has varying local conditions of temperature and humidity. As a result of in the changes in temperature and moisture, the membrane, GDL and bipolar plates will all e...

  10. Numerical study of the behavior of methane-hydrogen/air pre-mixed flame in a micro reactor equipped with catalytic segmented bluff body

    International Nuclear Information System (INIS)

    Baigmohammadi, Mohammadreza; Tabejamaat, Sadegh; Zarvandi, Jalal

    2015-01-01

    In this work, combustion characteristics of premixed methane-hydrogen/air in a micro reactor equipped with a catalytic bluff body is investigated numerically. In this regard, the detailed chemistry schemes for gas phase (homogeneous) and the catalyst surface (heterogeneous) are used. The applied catalytic bluff body is coated with a thin layer of platinum (Pt) on its surface. Also, the lean reactive mixture is entered to the reactor with equivalence ratio 0.9. The results of this study showed that the use of catalytic bluff body in the center of a micro reactor can significantly increase the flame stability, especially at high velocities. Moreover, it is found that a catalytic bluff body with several cavities on its surface and also high thermal conductivity improves the flame stability more than a catalytic bluff body without cavities and low thermal conductivity. Finally, it is maintained that the most advantage of using the catalytic bluff body is its easy manufacturing process as compared to the catalytic wall. This matter seems to be more prevalent when we want to create several cavities with various sizes on the bluff-body. - Highlights: • Presence of a bluff body in a micro reactor can move the flame towards the upstream. • Catalytic bluff body can significantly increase flame stability at high velocities. • Creating non-catalytic cavities on the bluff body promotes homogeneous reactions. • Segmented catalytic bluff body improves the flame stability more than a simple one. • Creating the segments on a bluff body is easier compared to a wall

  11. Advanced Combustion Diagnostics and Control for Furnaces, Fired Heaters and Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Tate, J. D.; Le, Linh D.; Knittel,Trevor; Cowie, Alan

    2010-03-20

    The objective of this project was to develop and apply enabling tools and methods towards advanced combustion diagnostics and control of fired-equipment in large-scale petrochemical manufacturing. There are a number of technology gaps and opportunities for combustion optimization, including technologies involving advanced in-situ measurements, modeling, and thermal imaging. These technologies intersect most of manufacturing and energy systems within the chemical industry. This project leveraged the success of a previous DOE funded project led by Dow, where we co-developed an in-situ tunable diode laser (TDL) analyzer platform (with Analytical Specialties Inc, now owned by Yokogawa Electric Corp.). The TDL platform has been tested and proven in a number of combustion processes within Dow and outside of Dow. The primary focus of this project was on combustion diagnostics and control applied towards furnaces, fired heaters and boilers. Special emphasis was placed on the development and application of in-situ measurements for O2, CO and methane since these combustion gases are key variables in optimizing and controlling combustion processes safely. Current best practice in the industry relies on measurements that suffer from serious performance gaps such as limited sampling volume (point measurements), poor precision and accuracy, and poor reliability. Phase I of the project addressed these gaps by adding improved measurement capabilities such as CO and methane (ppm analysis at combustion zone temperatures) as well as improved optics to maintain alignment over path lengths up to 30 meters. Proof-of-concept was demonstrated on a modern olefins furnace located at Dow Chemical's facility in Freeport TX where the improved measurements were compared side-by-side to accepted best practice techniques (zirconium oxide and catalytic bead or thick film sensors). After developing and installing the improved combustion measurements (O2, CO, and methane), we also demonstrated

  12. Synthesis of protons exchange polymeric membranes via co-poly-esters doped with sodium dodecyl sulfate for application in PEM fuel cells; Sintese de membranas polimericas condutoras de protons por imobilizacao de MDs em copoliesteres para aplicacao em PEM-FC

    Energy Technology Data Exchange (ETDEWEB)

    Fiuza, R.A.; Brioude, M.M.; Bresciani, D.; Jose, N.M.; Boaventura, J.S. [Universidade Federal da Bahia (IQ/UFBA), Salvador, BA (Brazil). Inst. de Quimica

    2008-07-01

    Polymers are largely studied for use in PEM-type fuel cell (Proton Exchange membrane, PEMFC). These fuel cells are based on polymer membranes as electrolyte, also called protons conductor. This work developed co-polyesters made electrical conductors by doping with sodium dodecyl sulfate. The copolymers were synthesized from the copolymerization of terephthalic and adipic acids with glycerol. The material was processed in a reactor and shaped by hot pressing, yielding homogeneous and flexible plates, with excellent surface finish. The co-polyesters were analyzed by SEM, FTIR, TG, DSC, and XRD. The thermal analysis showed that the composites were thermally stable up to about 250 deg C. The micrographics revealed the MDS homogeneously dispersed in the polymeric matrix. These copolymers showed electrical conductivity between 10-7 to 10-1 S/cm, suggesting strong potential use in PEM fuel cells. (author)

  13. Process for recycling components of a PEM fuel cell membrane electrode assembly

    Science.gov (United States)

    Shore, Lawrence [Edison, NJ

    2012-02-28

    The membrane electrode assembly (MEA) of a PEM fuel cell can be recycled by contacting the MEA with a lower alkyl alcohol solvent which separates the membrane from the anode and cathode layers of the assembly. The resulting solution containing both the polymer membrane and supported noble metal catalysts can be heated under mild conditions to disperse the polymer membrane as particles and the supported noble metal catalysts and polymer membrane particles separated by known filtration means.

  14. Characterisation and Modelling of a High Temperature PEM Fuel Cell Stack using Electrochemical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Jespersen, Jesper Lebæk; Schaltz, Erik

    2009-01-01

    temperature PEM (HTPEM) fuel cell stack. A Labview virtual instrument has been developed to perform the signal generation and data acquisition which is needed to perform EIS. The typical output of an EIS measurement on a fuel cell, is a Nyquist plot, which shows the imaginary and real part of the impedance...

  15. Study of calcium substitution proportion influence in the catalytic activity at La{sub (1-x)}Ca {sub (x)}MNO{sub 3} (x=0,2 e 0,4) perovskites; Estudo da influencia da proporcao do substituinte calcio na atividade catalitica na rede da perovskita La{sub (1-x)}Ca {sub (x)}MNO{sub 3} (x=0,2 e 0,4)

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, M.C.M.; Marques, A.C.; Paiva, A.K.O.; Ruiz, Juan A.C.; Borges, F.M.M., E-mail: marizacmfernandes@hotmail.com [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2016-07-01

    The study of perovskite structured materials has grown due to the interest in producing automotive catalysts with this material. These catalysts aim to convert pollutant gases in gases less harmful the environment. Studies show that the partial substitution of lanthanum atom by a calcium atom improves the material's catalytic activity. In this work two proportions of partial substitution, 20 and 40 mol% were compared. The objective was evaluate the behavior of catalytic activity in methane combustion reactions. The synthesis were made by polymeric precursors method according to Pechini. The material was calcined at 700 and 900 °C for 4h and characterized by Thermogravimetric analysis, X ray diffraction and Scanning electron microscopy. The samples were submitted to Catalytic test in methane combustion reactions. The composition with 20 mol% presented a greater catalytic activity. (author)

  16. Production of hydrogen from bio-ethanol in catalytic membrane reactor

    International Nuclear Information System (INIS)

    Gernot, E.; Aupretre, F.; Deschamps, A.; Etievant, C.; Epron, F.; Marecot, P.; Duprez, D.

    2006-01-01

    Production of hydrogen from renewable energy sources offers a great potential for CO 2 emission reduction, responsible for global warming. Among renewable energies, liquid biofuels are very convenient hydrogen carriers for decentralized applications such as micro-cogeneration and transports. Ethanol, produced from sugar plants and cereals, allows a reduction of more than 60% of CO 2 emissions in comparison to gasoline. BIOSTAR is an R and D project, co-funded by the French Agency for Environment and Energy Management (ADEME) which aims at developing an efficient source of hydrogen from bio-ethanol, suitable for proton exchange membrane fuel cell systems. The objectives are to obtain, through catalytic process at medium temperature range, an efficient conversion of bio-ethanol into pure hydrogen directly usable for PEMFC. CETH has developed a catalytic membrane reformer (CMR), based on a patented technology, integrating a steam reforming catalyst as well as a combustion catalyst. Both catalysts have been developed and optimized for membrane reactor in partnership with the University of Poitiers. The composite metallic membrane developed by CETH allows hydrogen extraction near the hydrogen production sites, which enhances both efficiency and compactness. (authors)

  17. Effects of clamping force on the water transport and performance of a PEM (proton electrolyte membrane) fuel cell with relative humidity and current density

    International Nuclear Information System (INIS)

    Cha, Dowon; Ahn, Jae Hwan; Kim, Hyung Soon; Kim, Yongchan

    2015-01-01

    The clamping force should be applied to a proton electrolyte membrane (PEM) fuel cell due to its structural characteristics. The clamping force affects the ohmic and mass transport resistances in the PEM fuel cell. In this study, the effects of the clamping force on the water transport and performance characteristics of a PEM fuel cell are experimentally investigated with variations in the relative humidity and current density. The water transport characteristics were analyzed by calculating the net drag coefficient. The ohmic resistance decreased with the increase in the clamping force due to the reduced contact resistance and more even membrane hydration. However, the mass transport resistance increased with the increase in the clamping force due to the gas diffusion layer compression. The net drag coefficient decreased with the increase in the clamping force due to high water back-diffusion. Additionally, the relationship between the total resistance and the net drag coefficient was investigated. - Highlights: • Effects of clamping force on the performance of a PEM fuel cell are investigated. • Water transport characteristics are analyzed using net drag coefficient. • Ohmic resistance decreased with clamping force, but mass transport resistance increased. • Net drag coefficient decreased with the increase in clamping force. • Total resistance was significantly degraded for a net drag coefficient below 0.2.

  18. Catalytically supported reduction of emissions from small-scale biomass furnace systems

    International Nuclear Information System (INIS)

    Hartmann, Ingo; Lenz, Volker; Schenker, Marian; Thiel, Christian; Kraus, Markus; Matthes, Mirjam; Roland, Ulf; Bindig, Rene; Einicke, Wolf-Dietrich

    2011-01-01

    The increased use of solid biomass in small combustion for generating heat from renewable energy sources is unfortunately associated with increased emissions of airborne pollutants. The reduction is possible on the one hand by the use of high-quality modern furnaces to the latest state of the art. On the other hand, several promising approaches method for retrofitting small-scale furnaces are currently being developed that will allow an effective emission reduction by the subsequent treatment of the exhaust gas. The overview of current available emission control technologies for small-scale biomass combustion plants shows that there is still considerable need for research on the sustainable production of heat from solid biofuels. The amendment to the 1st BImSchV provides a necessary drastic reduction of discharged pollutants from small-scale biomass furnaces. When using the fuel wood in modern central heating boilers the required limits can be met at full load. However, dynamic load changes can cause brief dramatic emission increases even with wood central heating boilers. Firebox and control optimization must contribute in the future to a further reduction of emissions. The typical simple single-room fireplaces like hand-fed wood stoves are suitable under type test conditions to comply the limit values. By contrast, in practical operation, the harmful gas emissions be exceeded without secondary measures normally. The performed experimental investigations show that a reduction of both CO and of organic compounds by catalytic combustion is possible. In addition to developing specially adapted catalysts, it is necessary to provide additional dust separation by combined processes, since conventional catalysts are not suitable for deposition and retention of particulate matter or would lose their activity due to dust accumulation on the active surface, when the catalyst would act as a filter at the same time. To enable sufficiently high reaction temperatures and thus a

  19. Cobalt and KNO{sub 3} supported on alumina catalysts for diesel soot combustion

    Energy Technology Data Exchange (ETDEWEB)

    Grzona, Claudia B. [25 de mayo 284, INTEQUI-CONICET-UNSL, Facultad de Ingenieria y Ciencias Economico-Sociales, Villa Mercedes, 5730 (Argentina); Lick, Ileana D. [Calle 47 No 257, CINDECA (CCT-LaPlata-CONICET-UNLP), Departamento de Quimica, Facultad de Ciencias Exactas, La Plata, 1900 (Argentina); Castellon, Enrique Rodriguez [Departamento de Quimica Inorganica, Cristalografia y Mineralogia, Facultad de Ciencias, Universidad de Malaga, Campus de Teatinos, Malaga, 29071 (Spain); Ponzi, Marta I. [25 de mayo 284, INTEQUI-CONICET-UNSL, Facultad de Ingenieria y Ciencias Economico-Sociales, Villa Mercedes, 5730 (Argentina); Ponzi, Esther N., E-mail: eponzi@quimica.unlp.edu.ar [Calle 47 No 257, CINDECA (CCT-LaPlata-CONICET-UNLP), Departamento de Quimica, Facultad de Ciencias Exactas, La Plata, 1900 (Argentina)

    2010-10-01

    The catalytic combustion of diesel soot was studied in the presence of fresh and aged catalysts: Co/Al{sub 2}O{sub 3}, KNO{sub 3}/Al{sub 2}O{sub 3} and Co/KNO{sub 3}/Al{sub 2}O{sub 3}. The catalysts were prepared by impregnation using nitrate solutions. The catalysts were characterized by X-ray diffraction, thermal programmed reduction, vibrational spectroscopy and X-ray photoelectron spectroscopy. Fresh and aged catalysts present high activity in presence of O{sub 2} and O{sub 2}/NO. The values of the combustion temperature decrease more than 200 deg. C with respect to that observed in the process without catalysis. The activity is associated with the presence of KNO{sub 3} and the role of this salt can be attributed to the contribution of NO{sub 3}{sup -}/NO{sub 2}{sup -} redox cycle.

  20. Combustible structural composites and methods of forming combustible structural composites

    Science.gov (United States)

    Daniels, Michael A.; Heaps, Ronald J.; Steffler, Eric D.; Swank, W. David

    2013-04-02

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  1. Estimation of Engine Intake Air Mass Flow using a generic Speed-Density method

    OpenAIRE

    Vojtíšek Michal; Kotek Martin

    2014-01-01

    Measurement of real driving emissions (RDE) from internal combustion engines under real-world operation using portable, onboard monitoring systems (PEMS) is becoming an increasingly important tool aiding the assessment of the effects of new fuels and technologies on environment and human health. The knowledge of exhaust flow is one of the prerequisites for successful RDE measurement with PEMS. One of the simplest approaches for estimating the exhaust flow from virtually any engine is its comp...

  2. A New Control and Design of PEM Fuel Cell System Powered Diffused Air Aeration System

    Directory of Open Access Journals (Sweden)

    Hassen T. Dorrah

    2012-06-01

    Full Text Available The goal of aquaculture ponds is to maximize production and profits while holding labor and management efforts to the minimum. Poor water quality in most ponds causes risk of fish kills, disease outbreaks which lead to minimization of pond production. Dissolved Oxygen (DO is considered to be among the most important water quality parameters in fish culture. Fish ponds in aquaculture farms are usually located in remote areas where grid lines are at far distance. Aeration of ponds is required to prevent mortality and to intensify production, especially when feeding is practical, and in warm regions. To increase pond production it is necessary to control dissolved oxygen. Aeration offers the most immediate and practical solution to water quality problems encountered at higher stocking and feeding rates. Many units of aeration system are electrical units so using a continuous, high reliability, affordable, and environmentally friendly power sources is necessary. Fuel cells have become one of the major areas of research in the academia and the industry. Aeration of water by using PEM fuel cell power is not only a new application of the renewable energy, but also, it provides an affordable method to promote biodiversity in stagnant ponds and lakes. This paper presents a new design and control of PEM fuel cell powered a diffused air aeration system for a shrimp farm in Mersa Matruh in Egypt. Also Artificial intelligence (AI control techniques are used to control the fuel cell output power by controlling its input gases flow rate. Moreover the mathematical modeling and simulation of PEM fuel cell is introduced. A comparative study is applied between the performance of fuzzy logic controller (FLC and neural network controller (NNC. The results show the effectiveness of NNC over FLC.

  3. Internal combustion engines fueled by natural gas-hydrogen mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Akansu, S.O.; Kahraman, N. [Erciyes University, Kayseri (Turkey). Engineering Faculty; Dulger, Z. [Kocaeli University (Turkey). Engineering Faculty; Veziroglu, T.N. [University of Miami, Coral Gables, FL (United States). College of Engineering

    2004-11-01

    In this study, a survey of research papers on utilization of natural gas-hydrogen mixtures in internal combustion engines is carried out. In general, HC, CO{sub 2}, and CO emissions decrease with increasing H{sub 2}, but NO{sub x} emissions generally increase. If a catalytic converter is used, NO{sub x} emission values can be decreased to extremely low levels. Consequently, equivalence zero emission vehicles (EZEV) standards may be reached. Efficiency values vary with H{sub 2} amount, spark timing, compression ratio, equivalence ratio, etc. Under certain conditions, efficiency values can be increased. In terms of BSFC, emissions and BTE, a mixture of low hydrogen percentage is suitable for using. (author)

  4. The use of a medical dictionary for regulatory activities terminology (MedDRA) in prescription-event monitoring in Japan (J-PEM).

    Science.gov (United States)

    Yokotsuka, M; Aoyama, M; Kubota, K

    2000-07-01

    The Medical Dictionary for Regulatory Activities Terminology (MedDRA) version 2.1 (V2.1) was released in March 1999 accompanied by the MedDRA/J V2.1J specifically for Japanese users. In prescription-event monitoring in Japan (J-PEM), we have employed the MedDRA/J for data entry, signal generation and event listing. In J-PEM, the lowest level terms (LLTs) in the MedDRA/J are used in data entry because the richness of LLTs is judged to be advantageous. A signal is generated normally at the preferred term (PT) level, but it has been found that various reporters describe the same event using descriptions that are potentially encoded by LLTs under different PTs. In addition, some PTs are considered too specific to generate the proper signal. In the system used in J-PEM, when an LLT is selected as a candidate to encode an event, another LLT under a different PT, if any, is displayed on the computer screen so that it may be coded instead of, or in addition to, the candidate LLT. The five-level structure of the MedDRA is used when listing events but some modification is required to generate a functional event list.

  5. Center for commercial applications of combustion in space (CCACS); A partnership for space commercialization at the Colorado School of Mines

    Science.gov (United States)

    Schowengerdt, F. D.; Kee, Bob; Linne, Mark; McKinnon, Tom; Moore, John; Parker, Terry; Readey, Dennis; Tilton, John E.; Helble, Joe

    1997-01-01

    The Center for Commercial Applications of Combustion in Space (CCACS) is a NASA/Industry/University consortium at the Colorado School of Mines (CSM). The mission of the Center is to assist industry in developing commercial products by conducting combustion research which takes advantage of the unique properties of space. By conducting experiments in near-zero gravity, convection and buoyancy effects can be minimized and new fundamental design-related knowledge can be gained which can be used to improve combustion-related products and processes on earth. Companies, government laboratories and universities most actively involved in CCACS at present include ABB Combustion, ADA Technologies, Advanced Refractory Technologies, Golden Technologies, Lockheed-Martin, Southwest Sciences, Space Systems/Lora, NASA-Lewis, JPL, the Baylor Dental School and the University of Connecticut. Products and processes of interest to the Center participants include industrial process combustors; catalytic combustion; Halon replacements; ceramic powders, whiskers and fibers; metal-matrix composites; NiTi for bone replacement; diamond coatings for oil-well drill bits; zeolites; imaging sensor arrays and other instrumentation for flame and particulate diagnostics. The center also assists member companies in marketing the resulting products and processes.

  6. Development of an exhaust sensor for control of internal combustion engines and exhaust treatment systems - CatSens. Final report; Entwicklung eines Abgassensors zur Regelung von Verbrennungsmotoren und Abgasnachbehandlungssystemen - CatSens. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Lepperhoff, G.; Milanovic, I.

    2002-05-01

    A sensor system for controlling combustion processes in small-scale furnaces and internal combustion engines and for on-board diagnosis of exhaust treatment systems, e.g. NO{sub x} adsorber catalytic converters in motor cars, was developed. [German] Im Rahmen des Verbundprojektes soll ein Sensorsystem zur Regelung der Verbrennungsprozesse in Kleinfeuerungsanlagen und Verbrennungsmotoren sowie zur Regelung und Ueberwachung (On-Board Diagnose) von Abgasnachbehandlungseinrichtungen wie z.B. NO{sub x}-Adsorberkatalysatoren in Kraftfahrzeugen, entwickelt werden. (orig.)

  7. Combustion Stratification for Naphtha from CI Combustion to PPC

    KAUST Repository

    Vallinayagam, R.

    2017-03-28

    This study demonstrates the combustion stratification from conventional compression ignition (CI) combustion to partially premixed combustion (PPC). Experiments are performed in an optical CI engine at a speed of 1200 rpm for diesel and naphtha (RON = 46). The motored pressure at TDC is maintained at 35 bar and fuelMEP is kept constant at 5.1 bar to account for the difference in fuel properties between naphtha and diesel. Single injection strategy is employed and the fuel is injected at a pressure of 800 bar. Photron FASTCAM SA4 that captures in-cylinder combustion at the rate of 10000 frames per second is employed. The captured high speed video is processed to study the combustion homogeneity based on an algorithm reported in previous studies. Starting from late fuel injection timings, combustion stratification is investigated by advancing the fuel injection timings. For late start of injection (SOI), a direct link between SOI and combustion phasing is noticed. At early SOI, combustion phasing depends on both intake air temperature and SOI. In order to match the combustion phasing (CA50) of diesel, the intake air temperature is increased to 90°C for naphtha. The combustion stratification from CI to PPC is also investigated for various level of dilution by displacing oxygen with nitrogen in the intake. The start of combustion (SOC) was delayed with the increase in dilution and to compensate for this, the intake air temperature is increased. The mixture homogeneity is enhanced for higher dilution due to longer ignition delay. The results show that high speed image is initially blue and then turned yellow, indicating soot formation and oxidation. The luminosity of combustion images decreases with early SOI and increased dilution. The images are processed to generate the level of stratification based on the image intensity. The level of stratification is same for diesel and naphtha at various SOI. When O concentration in the intake is decreased to 17.7% and 14

  8. Fabrication and in vitro evaluation of the collagen/hyaluronic acid PEM coating crosslinked with functionalized RGD peptide on titanium.

    Science.gov (United States)

    Huang, Ying; Luo, Qiaojie; Li, Xiaodong; Zhang, Feng; Zhao, Shifang

    2012-02-01

    Surface modification of titanium (Ti) using biomolecules has attracted much attention recently. In this study, a new strategy has been employed to construct a stable and bioactive coating on Ti. To this end, a derivative of hyaluronic acid (HA), i.e. HA-GRGDSPC-(SH), was synthesized. The disulfide-crosslinked Arg-Gly-Asp (RGD)-containing collagen/hyaluronic acid polyelectrolyte membrane (PEM) coating was then fabricated on Ti through the alternate deposition of collagen and HA-GRGDSPC-(SH) with five assembly cycles and subsequent crosslinking via converting free sulphydryl groups into disulfide linkages (RGD-CHC-Ti group). The assembly processes for PEM coating and the physicochemical properties of the coating were carefully characterized. The stability of PEM coating in phosphate-buffered saline solution could be adjusted by the crosslinking degree, while its degradation behaviors in the presence of glutathione were glutathione concentration dependent. The adhesion and proliferation of MC3T3-E1 cells were significantly enhanced in the RGD-CHC-Ti group. Up-regulated bone specific genes, enhanced alkaline phosphatase activity and osteocalcin production, the increased areas of mineralization were also observed in the RGD-CHC-Ti group. These results indicate that the strategy employed herein may function as an effective way to construct stable, RGD-containing bioactive coatings on Ti. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Nitrogen chemistry in combustion and gasification - mechanisms and modeling

    International Nuclear Information System (INIS)

    Kilpinen, P.; Hupa, M.

    1998-01-01

    The objective of this work has been to increase the understanding of the complex details of gaseous emission formation in energy production techniques based on combustion and/or gasification. The aim has also been to improve the accuracy of mathematical furnace models when they are used for predicting emissions. The main emphasis has been on nitrogen oxides (NO x , N 2 O). The work supports development of cleaner and more efficient combustion technology. The main emphasis has been on combustion systems that are based on fluidized bed technology including both atmospheric and pressurized conditions (BFBC, CFBC, PFBC/G). The work has consisted of advanced theoretical modeling and of experiments in laboratory devices that have partly been made in collaboration with other LIEKKI projects. Two principal modeling tools have been used: detailed homogeneous chemical kinetic modeling and computational fluid dynamic simulation. In this report, the most important results of the following selected items will be presented: (1) Extension of a detailed kinetic nitrogen and hydrocarbon oxidation mechanism into elevated pressure, and parametric studies on: effect of pressure on fuel-nitrogen oxidation under PFBC conditions, effect of pressure on selective non-catalytic NO x reduction under PFBC conditions, effect of different oxidizers on hot-gas cleaning of ammonia by means of selective oxidation in gasification gas. (2) Extension of the above mechanism to include chlorine reactions at atmospheric pressure, and parametric studies on: effect of HCl on CO burn-out in FBC combustion of waste. (3) Development of more accurate emission prediction models: incorporation of more accurate submodels on hydrocarbon oxidation into CFD furnace models, and evaluation of different concepts describing the interaction between turbulence and chemical reaction, development of a mechanistic detailed 1.5-dimensional emission model for circulating fluidized bed combustors. (orig.) 14 refs

  10. Development of integrated system to operational control and monitoring for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Mauricio Stelita; Ferreira, Valdemar Stelita [NovoCell Sistemas de Energia S.A., Santa Barbara D' Oeste, SP (Brazil)], Email: mauricio.ferreira@novocell.ind.br

    2010-07-01

    The demonstration of fuel cells prototype in some applications such as in stationary systems and vehicles has been increased, but higher costs and lack of criteria for system longevity still prevent their mass production. Acting directly on this aspect, Novocell has proposed to develop innovative processes and materials to manufacture at scale and with competitive cost for these systems. Thus, this paper presents solutions that enable its production line of PEM fuel cells. (author)

  11. Effect of the nature of the support on molybdenum catalytic behavior in diesel particulate combustion

    International Nuclear Information System (INIS)

    Braun, Silvana; Appel, Lucia G.; Schmal, Martin

    2002-01-01

    Mo/SiO 2 and Mo/TiO 2 catalysts with three different molybdenum contents were prepared using non-porous supports and the thermal spreading method for the combustion of a particulate material (PM). The results of scanning electron microscopy (SEM) and N 2 adsorption/desorption techniques showed that the thermal spreading preparation method does not induce relevant textural changes on the supports. X-ray diffraction (XRD) results showed the occurrence of thermal spreading of MoO 3 onto silica and titania supports. Diffuse reflection spectroscopy (DRS) results provided clear evidence of different Mo species on these systems: highly dispersed species on the silica catalysts and polymolybdates on the titania catalysts. It may be inferred that when prepared by the thermal spreading method the nature of the support determines the kind of molybdenum species formed in these catalysts, irrespective of the Mo content. The reactive data were evaluated by differential scanning calorimetry (DSC), using a physical mixture of PM and the catalysts. The silica-supported catalysts showed higher reactivity for PM combustion than the titania-supported ones, being the most active the systems with the Mo monolayer. The results suggested that the dispersed species are far more active than the polymolybdates or MoO 3 itself

  12. Sliding-Mode Control of PEM Fuel Cells

    CERN Document Server

    Kunusch, Cristian; Mayosky, Miguel

    2012-01-01

    Recent advances in catalysis technologies and new materials make fuel cells an economically appealing and clean energy source with massive market potential in portable devices, home power generation and the automotive industry. Among the more promising fuel-cell technologies are proton exchange membrane fuel cells (PEMFCs). Sliding-Mode Control of PEM Fuel Cells demonstrates the application of higher-order sliding-mode control to PEMFC dynamics. Fuel-cell dynamics are often highly nonlinear and the text shows the advantages of sliding modes in terms of robustness to external disturbance, modelling error and system-parametric disturbance using higher-order control to reduce chattering. Divided into two parts, the book first introduces the theory of fuel cells and sliding-mode control. It begins by contextualising PEMFCs both in terms of their development and within the hydrogen economy and today’s energy production situation as a whole. The reader is then guided through a discussion of fuel-cell operation pr...

  13. Non-metal single/dual doped carbon quantum dots: a general flame synthetic method and electro-catalytic properties

    Science.gov (United States)

    Han, Yuzhi; Tang, Di; Yang, Yanmei; Li, Chuanxi; Kong, Weiqian; Huang, Hui; Liu, Yang; Kang, Zhenhui

    2015-03-01

    A combustion flame method is developed for the convenient and scalable fabrication of single- and dual-doped carbon quantum dots (CQDs) (N-CQDs, B-CQDs, P-CQDs, and S-CQDs and dual-doped B,N-CQDs, P,N-CQDs, and S,N-CQDs), and the doping contents can be easily adjusted by simply changing the concentrations of precursors in ethanol. These single/dual-doped CQDs, especially B,N-CQDs, show high catalytic activities for the oxygen reduction reaction.A combustion flame method is developed for the convenient and scalable fabrication of single- and dual-doped carbon quantum dots (CQDs) (N-CQDs, B-CQDs, P-CQDs, and S-CQDs and dual-doped B,N-CQDs, P,N-CQDs, and S,N-CQDs), and the doping contents can be easily adjusted by simply changing the concentrations of precursors in ethanol. These single/dual-doped CQDs, especially B,N-CQDs, show high catalytic activities for the oxygen reduction reaction. Electronic supplementary information (ESI) available: TEM images, UV-Vis absorption, PL, Raman, FTIR, XPS, CV, and LSV data of single/dual doped CQDs, a table for the calculated mass concentrations of different atoms in various B, N, P or S containing CQDs and a table for summary of the ORR performance of various catalysts in an O2-saturated 0.1 M KOH solution. See DOI: 10.1039/c4nr07116f

  14. IEA combustion agreement : a collaborative task on alternative fuels in combustion

    International Nuclear Information System (INIS)

    Larmi, M.

    2009-01-01

    The focus of the alternative fuels in combustion task of the International Energy Agency is on high efficiency engine combustion, furnace combustion, and combustion chemistry. The objectives of the task are to develop optimum combustion for dedicated fuels by fully utilizing the physical and chemical properties of synthetic and renewable fuels; a significant reduction in carbon dioxide, NOx and particulate matter emissions; determine the minimum emission levels for dedicated fuels; and meet future emission standards of engines without or with minimum after-treatment. This presentation discussed the alternative fuels task and addressed issues such as synthetic fuel properties and benefits. The anticipated future roadmap was presented along with a list of the synthetic and renewable engine fuels to be studied, such as neat oxygenates like alcohols and ethers, biogas/methane and gas combustion, fuel blends, dual fuel combustion, high cetane number diesel fuels like synthetic Fischer-Tropsch diesel fuel and hydrogenated vegetable oil, and low CN number fuels. Implementation examples were also discussed, such as fuel spray studies in optical spray bombs; combustion research in optical engines and combustion chambers; studies on reaction kinetics of combustion and emission formation; studies on fuel properties and ignition behaviour; combustion studies on research engines; combustion optimization; implementing the optimum combustion in research engines; and emission measurements. Overall milestone examples and the overall schedule of participating countries were also presented. figs.

  15. DFT studies of hydrocarbon combustion on metal surfaces.

    Science.gov (United States)

    Arya, Mina; Mirzaei, Ali Akbar; Davarpanah, Abdol Mahmood; Barakati, Seyed Masoud; Atashi, Hossein; Mohsenzadeh, Abas; Bolton, Kim

    2018-02-02

    Catalytic combustion of hydrocarbons is an important technology to produce energy. Compared to conventional flame combustion, the catalyst enables this process to operate at lower temperatures; hence, reducing the energy required for efficient combustion. The reaction and activation energies of direct combustion of hydrocarbons (CH → C + H) on a series of metal surfaces were investigated using density functional theory (DFT). The data obtained for the Ag, Au, Al, Cu, Rh, Pt, and Pd surfaces were used to investigate the validity of the Brønsted-Evans-Polanyi (BEP) and transition state scaling (TSS) relations for this reaction on these surfaces. These relations were found to be valid (R 2  = 0.94 for the BEP correlation and R 2  = 1.0 for the TSS correlation) and were therefore used to estimate the energetics of the combustion reaction on Ni, Co, and Fe surfaces. It was found that the estimated transition state and activation energies (E TS  = -69.70 eV and E a  = 1.20 eV for Ni, E TS  = -87.93 eV and E a  = 1.08 eV for Co and E TS  = -92.45 eV and E a  = 0.83 eV for Fe) are in agreement with those obtained by DFT calculations (E TS  = -69.98 eV and E a  = 1.23 eV for Ni, E TS  = -87.88 eV and E a  = 1.08 eV for Co and E TS  = -92.57 eV and E a  = 0.79 eV for Fe). Therefore, these relations can be used to predict energetics of this reaction on these surfaces without doing the time consuming transition state calculations. Also, the calculations show that the activation barrier for CH dissociation decreases in the order Ag ˃ Au ˃ Al ˃ Cu ˃ Pt ˃ Pd ˃ Ni > Co > Rh > Fe.

  16. Preparation of the vulcan XC-72R-supported Pt nanoparticles for the hydrogen evolution reaction in PEM water electrolysers

    International Nuclear Information System (INIS)

    Nguyen, Huy Du; Nguyen, T Thuy Luyen; Nguyen, Khac Manh; Ha, Thuc Huy; Nguyen, Quoc Hien

    2015-01-01

    Pt nanoparticles on vulcan XC-72R support (Pt/vulcan XC-72R) were prepared by the impregnation–reduction method. The Pt content, the morphological properties and the electrochemical catalysis of the Pt/vulcan XC 72R materials have been investigated by ICP-OES analysis, FESEM, TEM, and cyclic voltammetry. These materials were then used as catalyst for hydrogen evolution reaction at the cathode of proton exchange membrane (PEM) water electrolysers. The best catalyst was Pt/vulcan XC-72R prepared by the impregnation–reduction method which is conducted in two reducing steps with the reductants of sodium borohydride and ethylene glycol, respectively. The current density of PEM water electrolysers reached 1.0 A cm"−"2 when applying a voltage of 2.0 V at 25 °C. (paper)

  17. High Temperature PEM Fuel Cells and Organic Fuels

    DEFF Research Database (Denmark)

    Vassiliev, Anton

    of the products. The observation of internal reforming was indirectly confirmed by electrochemical impedance spectroscopy, where the best fits were obtained when a Gerischer element describing preceding chemical reaction and diffusion was included in the equivalent circuit of a methanol/air operated cell...... evaporated liquid stream supply to either of the electrodes. A large number of MEAs with different component compositions have been prepared and tested in different conditions using the constructed setups to obtain a basic understanding of the nature of direct DME HT-PEM FC, to map the processes occurring...... inside the cells and to determine the lifetime. Additionally, comparison was made with methanol as fuel, which is the main competitor to DME in direct oxidation of organic fuels in fuel cells. For the reference, measurements have also been done with conventional hydrogen/air operation. All...

  18. Validation of cell voltage and water content in a PEM (polymer electrolyte membrane) fuel cell model using neutron imaging for different operating conditions

    International Nuclear Information System (INIS)

    Salva, J. Antonio; Iranzo, Alfredo; Rosa, Felipe; Tapia, Elvira

    2016-01-01

    This work presents a one dimensional analytical model developed for a 50 cm"2 PEM (polymer electrolyte membrane) fuel cell with five-channel serpentine flow field. The different coupled physical phenomena such as electrochemistry, mass transfer of hydrogen, oxygen and water (two phases) together with heat transfer have been solved simultaneously. The innovation of this work is that the model has been validated with two different variables simultaneously and quantitatively in order to ensure the accuracy of the results. The selected variables are the cell voltage and the water content within the membrane MEA (Membrane Electrode Assembly) and GDL (gas diffusion layers) experimentally measured by means of neutron radiography. The results show a good agreement for a comprehensive set of different operating conditions of cell temperature, pressure, reactants relative humidity and cathode stoichiometry. The analytical model has a relative error less than 3.5% for the value of the cell voltage and the water content within the GDL + MEA for all experiments performed. This result presents a new standard of validation in the state of art of PEM fuel cell modeling where two variables are simultaneously and quantitatively validated with experimental results. The developed analytical model has been used in order to analyze the behavior of the PEM fuel cell under different values of relative humidity. - Highlights: • One dimensional analytical model has been developed for a PEM fuel cell. • The model is validated with two different variables simultaneously. • New standard of validation is proposed.

  19. Remarkable promotion effect of trace sulfation on OMS-2 nanorod catalysts for the catalytic combustion of ethanol.

    Science.gov (United States)

    Zhang, Jie; Zhang, Changbin; He, Hong

    2015-09-01

    OMS-2 nanorod catalysts were synthesized by a hydrothermal redox reaction method using MnSO4 (OMS-2-SO4) and Mn(CH3COO)2 (OMS-2-AC) as precursors. SO4(2-)-doped OMS-2-AC catalysts with different SO4(2-) concentrations were prepared next by adding (NH4)2SO4 solution into OMS-2-AC samples to investigate the effect of the anion SO4(2-) on the OMS-2-AC catalyst. All catalysts were then tested for the catalytic oxidation of ethanol. The OMS-2-SO4 catalyst synthesized demonstrated much better activity than OMS-2-AC. The SO4(2-) doping greatly influenced the activity of the OMS-2-AC catalyst, with a dramatic promotion of activity for suitable concentration of SO4(2-) (SO4/catalyst=0.5% W/W). The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma optical emission spectroscopy (ICP-OES), NH3-TPD and H2-TPR techniques. The results showed that the presence of a suitable amount of SO4(2-) species in the OMS-2-AC catalyst could decrease the Mn-O bond strength and also enhance the lattice oxygen and acid site concentrations, which then effectively promoted the catalytic activity of OMS-2-AC toward ethanol oxidation. Thus it was confirmed that the better catalytic performance of OMS-2-SO4 compared to OMS-2-AC is due to the presence of some residual SO4(2-) species in OMS-2-SO4 samples. Copyright © 2015. Published by Elsevier B.V.

  20. Understanding Catalytic Activity Trends for NO Decomposition and CO Oxidation using Density Functional Theory and Microkinetic Modeling

    DEFF Research Database (Denmark)

    Falsig, Hanne

    -metal surfaces by combining a database of adsorption energies on stepped metal surfaces with known Brønsted–Evans–Polanyi (BEP) relations for the activation barriers of dissociation of diatomic molecules over stepped transition- and noble-metal surfaces. The potential energy diagram directly points to why Pd......The main aim of this thesis is to understand the catalytic activity of transition metals and noble metals for the direct decomposition of NO and the oxidation of CO. The formation of NOx from combustion of fossil and renewable fuels continues to be a dominant environmental issue. We take one step...... towards rationalizing trends in catalytic activity of transition metal catalysts for NO decomposition by combining microkinetic modelling with density functional theory calculations. We establish the full potential energy diagram for the direct NO decomposition reaction over stepped transition...

  1. Internal combustion engine using premixed combustion of stratified charges

    Science.gov (United States)

    Marriott, Craig D [Rochester Hills, MI; Reitz, Rolf D [Madison, WI

    2003-12-30

    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  2. Engine emissions and combustion analysis of biodiesel from East African countries

    Directory of Open Access Journals (Sweden)

    Paul Maina

    2014-03-01

    Full Text Available Environmental, availability and financial problems associated with fossil fuels encourage the manufacture and use of biodiesel. In this study, vegetable oil was extracted from Jatropha curcas seeds sourced from Kenya and Tanzania. A two-step acid base catalytic transesterification process was used to produce biodiesel because of the amount of free fatty acids present in the oil. The test rig used in the experiments was an Audi, 1.9-litre, turbocharged direct injection, compression ignition engine. Emissions were measured using an Horiba emission analyser system while combustion data was collected by a data acquisition system, from which cylinder pressure and rate of heat release of the test engine in every crank angle were calculated. The two biodiesels showed better emission characteristics than the fossil diesel included in the tests for comparison purposes. Cylinder pressure and heat release of the biodiesel were also within acceptable ranges. However, the emission and combustion characteristics differed between the two biodiesels a result likely related to their different origins. These findings prove that the source of biodiesel is an important factor to consider.

  3. Pigmented Epithelioid Melanocytoma (PEM)/Animal Type Melanoma (ATM): Quest for an Origin. Report of One Unusual Case Indicating Follicular Origin and Another Arising in an Intradermal Nevus.

    Science.gov (United States)

    Tarasen, Ashley; Carlson, J Andrew; Leonard, M Kathryn; Merlino, Glenn; Kaetzel, David; Slominski, Andrzej T

    2017-08-15

    Pigmented epithelioid melanocytoma (PEM) is a tumor encompassing epithelioid blue nevus of Carney complex (EBN of CNC) and was previously termed animal-type melanoma. Histologically PEMs are heavily pigmented spindled and epithelioid dermal melanocytic tumors with infiltrative borders, however, their origin remains unclear. Stem cells for the epidermis and hair follicle are located in the bulge area of the hair follicle with the potential to differentiate into multiple lineages. Multiple cutaneous carcinomas, including follicular cutaneous squamous cell carcinoma (FSCC), are thought to arise from stem cells in the follicular bulge. We present two cases of PEM/ATM in a 63 year-old male on the scalp with follicular origin and a 72 year-old female on the upper back arising in an intradermal nevus. Biopsy of both cases revealed a proliferation of heavily pigmented dermal nests of melanocytes with atypia. The Case 1 tumor was in continuation with the outer root sheath of the hair follicle in the bulge region. Case 2 arose in an intradermal melanocytic nevus. Rare mitotic figures, including atypical mitotic figures, were identified in both cases. We present two cases of PEM, with histologic evidence suggesting two origins: one from the follicular bulb and one from an intradermal nevus.

  4. Combustion Stratification for Naphtha from CI Combustion to PPC

    KAUST Repository

    Vallinayagam, R.; Vedharaj, S.; An, Yanzhao; Dawood, Alaaeldin; Izadi Najafabadi, Mohammad; Somers, Bart; Johansson, Bengt

    2017-01-01

    This study demonstrates the combustion stratification from conventional compression ignition (CI) combustion to partially premixed combustion (PPC). Experiments are performed in an optical CI engine at a speed of 1200 rpm for diesel and naphtha (RON

  5. Investigation on the corrosion resistance of PIM 316L stainless steel in PEM fuel cell simulated environment

    International Nuclear Information System (INIS)

    Oliveira, Mara Cristina Lopes de; Costa, Isolda; Antunes, Renato Altobelli

    2009-01-01

    Bipolar plates play main functions in PEM fuel cells, accounting for the most part of the weight and cost of these devices. Powder metallurgy may be an interesting manufacturing process of these components owing to the production of large scale, complex near-net shape parts. However, corrosion processes are a major concern due to the increase of the passive film thickness on the metal surface, lowering the power output of the fuel cell. In this work, the corrosion resistance of PIM AISI 316L stainless steel specimens was evaluated in 1M H 2 SO 4 + 2 ppm HF solution at room temperature during 30 days of immersion. The electrochemical measurements comprised potentiodynamic polarization and electrochemical impedance spectroscopy. The surface morphology of the specimens was observed before and after the corrosion tests through SEM images. The material presented low corrosion current density suggesting that it is suitable to operate in the PEM fuel cell environment. (author)

  6. Fuel and combustion stratification study of Partially Premixed Combustion

    OpenAIRE

    Izadi Najafabadi, M.; Dam, N.; Somers, B.; Johansson, B.

    2016-01-01

    Relatively high levels of stratification is one of the main advantages of Partially Premixed Combustion (PPC) over the Homogeneous Charge Compression Ignition (HCCI) concept. Fuel stratification smoothens heat release and improves controllability of this kind of combustion. However, the lack of a clear definition of “fuel and combustion stratifications” is obvious in literature. Hence, it is difficult to compare stratification levels of different PPC strategies or other combustion concepts. T...

  7. Development of flameless combustion; Desarrollo de la combustion sin flama

    Energy Technology Data Exchange (ETDEWEB)

    Flores Sauceda, M. Leonardo; Cervantes de Gortari, Jaime Gonzalo [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)]. E-mail: 8344afc@prodigy.net.mx; jgonzalo@servidor.unam.mx

    2010-11-15

    The paper intends contribute to global warming mitigation joint effort that develops technologies to capture the CO{sub 2} produced by fossil fuels combustion and to reduce emission of other greenhouse gases like the NO{sub x}. After reviewing existing combustion bibliography is pointed out that (a) touches only partial aspects of the collective system composed by Combustion-Heat transfer process-Environment, whose interactions are our primary interest and (b) most specialists think there is not yet a clearly winning technology for CO{sub 2} capture and storage. In this paper the study of combustion is focused as integrated in the aforementioned collective system where application of flameless combustion, using oxidant preheated in heat regenerators and fluent gas recirculation into combustion chamber plus appropriated heat and mass balances, simultaneously results in energy saving and environmental impact reduction. [Spanish] El trabajo pretende contribuir al esfuerzo conjunto de mitigacion del calentamiento global que aporta tecnologias para capturar el CO{sub 2} producido por la combustion de combustibles fosiles y para disminuir la emision de otros gases invernadero como NOx. De revision bibliografica sobre combustion se concluye que (a) trata aspectos parciales del sistema compuesto por combustion-proceso de trasferencia de calor-ambiente, cuyas interacciones son nuestro principal interes (b) la mayoria de especialistas considera no hay todavia una tecnologia claramente superior a las demas para captura y almacenaje de CO{sub 2}. Se estudia la combustion como parte integrante del mencionado sistema conjunto, donde la aplicacion de combustion sin flama, empleando oxidante precalentado mediante regeneradores de calor y recirculacion de gases efluentes ademas de los balances de masa y energia adecuados, permite tener simultaneamente ahorros energeticos e impacto ambiental reducido.

  8. Novel Montmorillonite/TiO₂/MnAl-Mixed Oxide Composites Prepared from Inverse Microemulsions as Combustion Catalysts.

    Science.gov (United States)

    Napruszewska, Bogna D; Michalik-Zym, Alicja; Rogowska, Melania; Bielańska, Elżbieta; Rojek, Wojciech; Gaweł, Adam; Wójcik-Bania, Monika; Bahranowski, Krzysztof; Serwicka, Ewa M

    2017-11-19

    A novel design of combustion catalysts is proposed, in which clay/TiO₂/MnAl-mixed oxide composites are formed by intermixing exfoliated organo-montmorillonite with oxide precursors (hydrotalcite-like in the case of Mn-Al oxide) obtained by an inverse microemulsion method. In order to assess the catalysts' thermal stability, two calcination temperatures were employed: 450 and 600 °C. The composites were characterized with XRF (X-ray fluorescence), XRD (X-ray diffraction), HR SEM (high resolution scanning electron microscopy, N₂ adsorption/desorption at -196 °C, and H₂ TPR (temperature programmed reduction). Profound differences in structural, textural and redox properties of the materials were observed, depending on the presence of the TiO₂ component, the type of neutralization agent used in the titania nanoparticles preparation (NaOH or NH₃ (aq)), and the temperature of calcination. Catalytic tests of toluene combustion revealed that the clay/TiO₂/MnAl-mixed oxide composites prepared with the use of ammonia showed excellent activity, the composites obtained from MnAl hydrotalcite nanoparticles trapped between the organoclay layers were less active, but displayed spectacular thermal stability, while the clay/TiO₂/MnAl-mixed oxide materials obtained with the aid of NaOH were least active. The observed patterns of catalytic activity bear a direct relation to the materials' composition and their structural, textural, and redox properties.

  9. Hydrogen preheating through waste heat recovery of an open-cathode PEM fuel cell leading to power output improvement

    International Nuclear Information System (INIS)

    Mohamed, W.A.N.W.; Kamikl, M. Haziq M.

    2016-01-01

    Highlights: • A study on the effect of hydrogen preheating using waste heat for low temperature PEM fuel cells. • Theoretical, experimental and analytical framework was established. • The maximum electrical power output increases by 8–10% under specific operating conditions. • Open loop hydrogen supply gives a better performance than closed loop. • The waste heat utilization is less than 10% due to heat capacity limitations. - Abstract: The electrochemical reaction kinetics in a Polymer Electrolyte Membrane (PEM) fuel cell is highly influenced by the reactants supply pressures and electrode temperatures. For an open cathode PEM fuel cell stack, the power output is constrained due to the use of air simultaneously as reactant and coolant. Optimal stack operation temperatures are not achieved especially at low to medium power outputs. Based on the ideal gas law, higher reactant temperatures would lead to higher pressures and subsequently improve the reaction kinetics. The hydrogen supply temperature and its pressure can be increased by preheating; thus, slightly offsetting the limitation of low operating stack temperatures. The exit air stream offers an internal source of waste heat for the hydrogen preheating purpose. In this study, a PEM open-cathode fuel cell was used to experimentally evaluate the performance of hydrogen preheating based on two waste heat recovery approaches: (1) open-loop and (2) closed loop hydrogen flow. The stack waste heat was channelled into a heat exchanger to preheat the hydrogen line before it is being supplied (open loop) or resupplied (closed loop) into the stack. At a constant 0.3 bar hydrogen supply pressure, the preheating increases the hydrogen temperature in the range of 2–13 °C which was dependant on the stack power output and cathode air flow rates. The achievable maximum stack power was increased by 8% for the closed loop and 10% for the open loop. Due to the small hydrogen flow rates, the waste heat utilization

  10. PARs for combustible gas control in advanced light water reactors

    International Nuclear Information System (INIS)

    Hosler, J.; Sliter, G.

    1997-01-01

    This paper discusses the progress being made in the United States to introduce passive autocatalytic recombiner (PAR) technology as a cost-effective alternative to electric recombiners for controlling combustible gas produced in postulated accidents in both future Advanced Light Water Reactors (ALWRs) and certain U. S. operating nuclear plants. PARs catalytically recombine hydrogen and oxygen, gradually producing heat and water vapor. They have no moving parts and are self-starting and self-feeding, even under relatively cold and wet containment conditions. Buoyancy of the hot gases they create sets up natural convective flow that promotes mixing of combustible gases in a containment. In a non-inerted ALWR containment, two approaches each employing a combination of PARs and igniters are being considered to control hydrogen in design basis and severe accidents. In pre-inerted ALWRs, PARs alone control radiolytic oxygen produced in either accident type. The paper also discusses regulatory feedback regarding these combustible gas control approaches and describes a test program being conducted by the Electric Power Research Institute (EPRI) and Electricite de France (EdF) to supplement the existing PAR test database with performance data under conditions of interest to U.S. plants. Preliminary findings from the EPRI/EdF PAR model test program are included. Successful completion of this test program and confirmatory tests being sponsored by the U. S. NRC are expected to pave the way for use of PARs in ALWRs and operating plants. (author)

  11. Measures for a quality combustion (combustion chamber exit and downstream); Mesures pour une combustion de qualite (sortie de chambre de combustion et en aval)

    Energy Technology Data Exchange (ETDEWEB)

    Epinat, G. [APAVE Lyonnaise, 69 (France)

    1996-12-31

    After a review of the different pollutants related to the various types of stationary and mobile combustion processes (stoichiometric, reducing and oxidizing combustion), measures and analyses than may be used to ensure the quality and efficiency of combustion processes are reviewed: opacimeters, UV analyzers, etc. The regulation and control equipment for combustion systems are then listed, according to the generator capacity level

  12. Experimental optimization of catalytic process in-situ for heavy oil and bitumen upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Shah, A.; Fishwick, R.P.; Leeke, G.A.; Wood, J. [Birmingham Univ., Birmingham (United Kingdom); Rigby, S.P.; Greaves, M. [Bath Univ., Bath (United Kingdom)

    2010-07-01

    Peak crude oil production is expected to occur in the second decade of this century, followed by a phase of permanent decline in conventional crude oil production. However, very large resources of heavy oil and bitumen exist throughout the world, most notably in Canada and Venezuela. The high viscosity and density of these non-conventional crude oils require more energy intensive operations for production and upgrading, and also for transportation. As such, they are more costly to extract. This paper described some of the technological innovations that are being considered to extract heavier oil supplies with reduced environmental impact. The toe-to-heel air injection (THAI) process and its catalytic added-on (CAPRI) process combine in-situ combustion with catalytic upgrading using an annular catalyst packed around a horizontal producer well. Results of an experimental study concerning optimization of catalyst type and operating conditions showed that CAPRI can effect further upgrading of partially upgraded THAI oil, with upgrading levels of viscosity and API gravity dependent upon temperature and flow rate. 20 refs., 8 tabs., 10 figs.

  13. Using the multiple regression analysis with respect to ANOVA and 3D mapping to model the actual performance of PEM (proton exchange membrane) fuel cell at various operating conditions

    International Nuclear Information System (INIS)

    Al-Hadeethi, Farqad; Al-Nimr, Moh'd; Al-Safadi, Mohammad

    2015-01-01

    The performance of PEM (proton exchange membrane) fuel cell was experimentally investigated at three temperatures (30, 50 and 70 °C), four flow rates (5, 10, 15 and 20 ml/min) and two flow patterns (co-current and counter current) in order to generate two correlations using multiple regression analysis with respect to ANOVA. Results revealed that increasing the temperature for co-current and counter current flow patterns will increase both hydrogen and oxygen diffusivities, water management and membrane conductivity. The derived mathematical correlations and three dimensional mapping (i.e. surface response) for the co-current and countercurrent flow patterns showed that there is a clear interaction among the various variables (temperatures and flow rates). - Highlights: • Generating mathematical correlations using multiple regression analysis with respect to ANOVA for the performance of the PEM fuel cell. • Using the 3D mapping to diagnose the optimum performance of the PEM fuel cell at the given operating conditions. • Results revealed that increasing the flow rate had direct influence on the consumption of oxygen. • Results assured that increasing the temperature in co-current and counter current flow patterns increases the performance of PEM fuel cell.

  14. Performance, combustion and emission analysis of mustard oil biodiesel and octanol blends in diesel engine

    Science.gov (United States)

    Devarajan, Yuvarajan; Munuswamy, Dinesh Babu; Nagappan, Beemkumar; Pandian, Amith Kishore

    2018-01-01

    Biodiesels from the mustard oil promise to be an alternative to the conventional diesel fuel due to their similarity in properties. Higher alcohols are added to neat Mustard oil biodiesel (M100) to vary the properties of biodiesel for improving its combustion, emission and performance characteristics. N-Octanol has the ability to act as an oxygen buffer during combustion which contributes to the catalytic effect and accelerates the combustion process. N-Octanol is dispersed to neat Mustard oil biodiesel in the form of emulsions at different dosage levels of 10, 20 and 30% by volume. Three emulsion fuels prepared for engine testing constitutes of 90% of biodiesel and 10% of n-Octanol (M90O10), 80% of biodiesel and 20% of n-Octanol (M80O20) and 70% of biodiesel and 30% of n-Octanol (M70O30) by volume respectively. AVL 5402 diesel engine is made to run on these fuels to study the effect of n-Octanol on combustion, emission and performance characteristics of the mustard oil biodiesel. Experimental results show that addition of n-octanol has a positive effect on performance, combustion and emission characteristics owing to its inbuilt oxygen content. N-octanol was found to be the better oxidizing catalyst as it was more effective in reducing HC and CO emissions. A significant reduction in NOx emission was found when fuelled with emulsion techniques. The blending of n-octanol to neat Mustard oil biodiesel reduces the energy and fuel consumption and a marginal increase in brake thermal efficiency. Further, n-octanol also reduces the ignition delay and aids the combustion.

  15. Performance, combustion and emission analysis of mustard oil biodiesel and octanol blends in diesel engine

    Science.gov (United States)

    Devarajan, Yuvarajan; Munuswamy, Dinesh Babu; Nagappan, Beemkumar; Pandian, Amith Kishore

    2018-06-01

    Biodiesels from the mustard oil promise to be an alternative to the conventional diesel fuel due to their similarity in properties. Higher alcohols are added to neat Mustard oil biodiesel (M100) to vary the properties of biodiesel for improving its combustion, emission and performance characteristics. N-Octanol has the ability to act as an oxygen buffer during combustion which contributes to the catalytic effect and accelerates the combustion process. N-Octanol is dispersed to neat Mustard oil biodiesel in the form of emulsions at different dosage levels of 10, 20 and 30% by volume. Three emulsion fuels prepared for engine testing constitutes of 90% of biodiesel and 10% of n-Octanol (M90O10), 80% of biodiesel and 20% of n-Octanol (M80O20) and 70% of biodiesel and 30% of n-Octanol (M70O30) by volume respectively. AVL 5402 diesel engine is made to run on these fuels to study the effect of n-Octanol on combustion, emission and performance characteristics of the mustard oil biodiesel. Experimental results show that addition of n-octanol has a positive effect on performance, combustion and emission characteristics owing to its inbuilt oxygen content. N-octanol was found to be the better oxidizing catalyst as it was more effective in reducing HC and CO emissions. A significant reduction in NOx emission was found when fuelled with emulsion techniques. The blending of n-octanol to neat Mustard oil biodiesel reduces the energy and fuel consumption and a marginal increase in brake thermal efficiency. Further, n-octanol also reduces the ignition delay and aids the combustion.

  16. Effect of calcination temperature on the H{sub 2}O{sub 2} decomposition activity of nano-crystalline Co{sub 3}O{sub 4} prepared by combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Makhlouf, M.Th. [Chemistry Department, Faculty of Science, Assiut University, 71516 Assiut (Egypt); Abu-Zied, B.M., E-mail: babuzied@aun.edu.eg [Chemistry Department, Faculty of Science, Assiut University, 71516 Assiut (Egypt); Mansoure, T.H. [Chemistry Department, Faculty of Science, Assiut University, 71516 Assiut (Egypt)

    2013-06-01

    Cobalt oxide nano-particles were prepared by combustion method using urea as a combustion fuel. The effects of calcination temperature, 350–1000 °C, on the physicochemical, surface and catalytic properties of the prepared Co{sub 3}O{sub 4} nano-particles were studied. The products were characterized by thermal analyses (TGA and DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. Textural features of the obtained catalysts were investigated using nitrogen adsorption at −196 °C. X-ray diffraction confirmed that the resulting oxide was pure single-crystalline Co{sub 3}O{sub 4} nano-particles. Transmission electron microscopy indicating that, the crystallite size of Co{sub 3}O{sub 4} nano-crystals was in the range of 8–34 nm. The catalytic activities of prepared nano-crystalline Co{sub 3}O{sub 4} catalysts were tested for H{sub 2}O{sub 2} decomposition at 35–50 °C temperature range. Experimental results revealed that, the catalytic decomposition of H{sub 2}O{sub 2} decreases with increasing the calcination temperature. This was correlated with the observed particle size increase accompanying the calcination temperature rise.

  17. Optimization Design of Bipolar Plate Flow Field in PEM Stack

    Science.gov (United States)

    Wen, Ming; He, Kanghao; Li, Peilong; Yang, Lei; Deng, Li; Jiang, Fei; Yao, Yong

    2017-12-01

    A new design of bipolar plate flow field in proton exchange membrane (PEM) stack was presented to develop a high-performance transfer efficiency of the two-phase flow. Two different flow fields were studied by using numerical simulations and the performance of the flow fields was presented. the hydrodynamic properties include pressure gap between inlet and outlet, the Reynold’s number of the two types were compared based on the Navier-Stokes equations. Computer aided optimization software was implemented in the design of experiments of the preferable flow field. The design of experiments (DOE) for the favorable concept was carried out to study the hydrodynamic properties when changing the design parameters of the bipolar plate.

  18. Current density distribution mapping in PEM fuel cells as an instrument for operational measurements

    Energy Technology Data Exchange (ETDEWEB)

    Geske, M.; Heuer, M.; Heideck, G.; Styczynski, Z. A. [Otto-von-Guericke University Magdeburg, Chair Electric Power Networks and Renewable Energy Sources, Magdeburg (Germany)

    2010-07-01

    A newly developed measurement system for current density distribution mapping has enabled a new approach for operational measurements in proton exchange membrane fuel cells (PEMFC). Taking into account previously constructed measurement systems, a method based on a multi layer printed circuit board was chosen for the development of the new system. This type of system consists of a sensor, a special electronic device and the control and visualization PC. For the acquisition of the current density distribution values, a sensor device was designed and installed within a multilayer printed circuit board with integrated shunt resistors. Varying shunt values can be taken into consideration with a newly developed and evaluated calibration method. The sensor device was integrated in a PEM fuel cell stack to prove the functionality of the whole measurement system. A software application was implemented to visualize and save the measurement values. Its functionality was verified by operational measurements within a PEMFC system. Measurement accuracy and possible negative reactions of the sensor device during PEMFC operation are discussed in detail in this paper. The developed system enables operational measurements for different operating phases of PEM fuel cells. Additionally, this can be seen as a basis for new opportunities of optimization for fuel cell design and operation modes. (author)

  19. Current Density Distribution Mapping in PEM Fuel Cells as An Instrument for Operational Measurements

    Directory of Open Access Journals (Sweden)

    Martin Geske

    2010-04-01

    Full Text Available A newly developed measurement system for current density distribution mapping has enabled a new approach for operational measurements in proton exchange membrane fuel cells (PEMFC. Taking into account previously constructed measurement systems, a method based on a multi layer printed circuit board was chosen for the development of the new system. This type of system consists of a sensor, a special electronic device and the control and visualization PC. For the acquisition of the current density distribution values, a sensor device was designed and installed within a multilayer printed circuit board with integrated shunt resistors. Varying shunt values can be taken into consideration with a newly developed and evaluated calibration method. The sensor device was integrated in a PEM fuel cell stack to prove the functionality of the whole measurement system. A software application was implemented to visualize and save the measurement values. Its functionality was verified by operational measurements within a PEMFC system. Measurement accuracy and possible negative reactions of the sensor device during PEMFC operation are discussed in detail in this paper. The developed system enables operational measurements for different operating phases of PEM fuel cells. Additionally, this can be seen as a basis for new opportunities of optimization for fuel cell design and operation modes.

  20. A full Monte Carlo simulation of the YAP-PEM prototype for breast tumor detection

    Science.gov (United States)

    Motta, A.; Righi, S.; Del Guerra, A.; Belcari, N.; Vaiano, A.; De Domenico, G.; Zavattini, G.; Campanini, R.; Lanconelli, N.; Riccardi, A.

    2004-07-01

    A prototype for Positron Emission Mammography, the YAP-PEM, is under development within a collaboration of the Italian Universities of Pisa, Ferrara, and Bologna. The aim is to detect breast lesions, with dimensions of 5 mm in diameter, and with a specific activity ratio of 10:1 between the cancer and breast tissue. The YAP-PEM is composed of two stationary detection heads of 6×6 cm 2, composed of a matrix of 30×30 YAP:Ce finger crystals of 2×2×30 mm 3 each. The EGSnrc Monte Carlo code has been used to simulate several characteristics of the prototype. A fast EM algorithm has been adapted to reconstruct all of the collected lines of flight, also at large incidence angles, by achieving 3D positioning capability of the lesion in the FOV. The role of the breast compression has been studied. The performed study shows that a 5 mm diameter tumor of 37 kBq/cm 3 (1 μCi/cm 3), embedded in active breast tissue with 10:1 tumor/background specific activity ratio, is detected in 10 min with a Signal-to-Noise Ratio of 8.7±1.0. Two hot lesions in the active breast phantom are clearly visible in the reconstructed image.

  1. Combustion stratification for naphtha from CI combustion to PPC

    NARCIS (Netherlands)

    Vallinayagam, R.; Vedharaj, S.; An, Y.; Dawood, A.; Izadi Najafabadi, M.; Somers, L.M.T.; Johansson, B.H.

    2017-01-01

    This study demonstrated the change in combustion homogeneity from conventional diesel combustion via partially premixed combustion towards HCCI. Experiments are performed in an optical diesel engine at a speed of 1200 rpm with diesel fuel. Single injection strategy is employed and the fuel is

  2. Low NOx combustion technologies for high-temperature natural gas combustion

    International Nuclear Information System (INIS)

    Flamme, Michael

    1999-01-01

    Because of the high process temperature which is required for some processes like glass melting and the high temperature to which the combustion air is preheated, NOx emission are extremely high. Even at these high temperatures, NOx emissions could be reduced drastically by using advanced combustion techniques such as staged combustion or flame-less oxidation, as experimental work has shown. In the case of oxy-fuel combustion, the NOx emission are also very high if conventional burners are used. The new combustion techniques achieve similar NOx reductions. (author)

  3. Design and Control of High Temperature PEM Fuel Cell Systems using Methanol Reformers with Air or Liquid Heat Integration

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Sahlin, Simon Lennart

    2013-01-01

    The present work describes the ongoing development of high temperature PEM fuel cell systems fuelled by steam reformed methanol. Various fuel cell system solutions exist, they mainly differ depending on the desired fuel used. High temperature PEM (HTPEM) fuel cells offer the possibility of using...... methanol is converted to a hydrogen rich gas with CO2 trace amounts of CO, the increased operating temperatures allow the fuel cell to tolerate much higher CO concentrations than Nafion-based membranes. The increased tolerance to CO also enables the use of reformer systems with less hydrogen cleaning steps...... liquid fuels such as methanol, due to the increased robustness of operating at higher temperatures (160-180oC). Using liquid fuels such as methanol removes the high volume demands of compressed hydrogen storages, simplifies refueling, and enables the use of existing fuel distribution systems. The liquid...

  4. International research cooperation in fiscal 1997. Report on the research, development, and evaluation of environmentally-friendly combustion technologies; Kokusai kyoryoku jigyo. Kankyo chowagata nensho gijutsu ni kansuru kenkyu kaihatsu hyoka hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Concerning the research and development of environmentally-friendly combustion technologies that had been conducted for six years beginning in 1992, analysis and discussion were made by a special committee dedicated to the evaluation of the efforts, and the outcome is stated. In the study of zeolite-base catalysts, a highly active catalyst was developed which assumes a multilayer structure of mordenite, etc., with titanium introduced thereinto using an NO-selective reducing catalyst. As for metal complex oxide-base catalysts, various catalysts high in activity were developed, based on saponite which is a laminar, clayey compound. As for alumina-base catalysts, details were learned of the reaction mechanism and catalysis activation sites and, helped by the findings, a silver-supporting alumina catalyst was produced. In the study of direct decomposition type NOx removing catalysts, a success was achieved in causing NO to be decomposed with high selectivity in an oxygen atmosphere by use of new-type electrodes, functional layers, and solid electrolytes. In the field of catalytic combustion, a PdO-Pt/Ba-Al2O3 catalyst was developed, which is to serve for a hybrid type catalytic combustion method. 19 refs., 112 figs., 25 tabs.

  5. Combustion instability control in the model of combustion chamber

    International Nuclear Information System (INIS)

    Akhmadullin, A N; Ahmethanov, E N; Iovleva, O V; Mitrofanov, G A

    2013-01-01

    An experimental study of the influence of external periodic perturbations on the instability of the combustion chamber in a pulsating combustion. As an external periodic disturbances were used sound waves emitted by the electrodynamics. The purpose of the study was to determine the possibility of using the method of external periodic perturbation to control the combustion instability. The study was conducted on a specially created model of the combustion chamber with a swirl burner in the frequency range from 100 to 1400 Hz. The study found that the method of external periodic perturbations may be used to control combustion instability. Depending on the frequency of the external periodic perturbation is observed as an increase and decrease in the amplitude of the oscillations in the combustion chamber. These effects are due to the mechanisms of synchronous and asynchronous action. External periodic disturbance generated in the path feeding the gaseous fuel, showing the high efficiency of the method of management in terms of energy costs. Power required to initiate periodic disturbances (50 W) is significantly smaller than the thermal capacity of the combustion chamber (100 kW)

  6. Investigation of the purging effect on a dead-end anode PEM fuel cell-powered vehicle during segments of a European driving cycle

    International Nuclear Information System (INIS)

    Gomez, Alberto; Sasmito, Agus P.; Shamim, Tariq

    2015-01-01

    Highlights: • Experimental study of a dead-end anode PEM fuel cell stack during a driving cycle. • Low purging duration is preferred at high current. • High purging frequency can sustain a better performance over time. • Lower cathode stoichiometry is preferred to minimize the parasitic loads. - Abstract: The dynamic performance of the PEM fuel cell is one of the key factors for successful operation of a fuel cell-powered vehicle. Maintaining fast time response while keeping stable and high stack performance is of importance, especially during acceleration and deceleration. In this paper, we evaluate the transient response of a PEM fuel cell stack with a dead-end anode during segments of a legislated European driving cycle together with the effect of purging factors. The PEM fuel cell stack comprises of 24 cells with a 300 cm"2 active catalyst area and operates at a low hydrogen and air pressure. Humidified air is supplied to the cathode side and the dry hydrogen is fed to the anode. The liquid coolant is circulated to the stack and the radiator to maintain the thermal envelope throughout the stack. The stack performance deterioration over time is prevented by utilizing the purging, which removes the accumulated water and impurities. The effect of purging period, purging duration, coolant flow rate and cathode stoichiometry are examined with regard to the fuel cell’s transient performance during the driving cycle. The results show that a low purging duration may avoid the undesired deceleration at a high current, and a high purging period may sustain a better performance over time. Moreover, the coolant flow rate is found to be an important parameter, which affects the stack temperature–time response of the cooling control and the stack performance, especially at high operating currents.

  7. Electro-activity of cobalt and nickel complexes for the reduction of protons into di-hydrogen. Application to PEM water electrolysis

    International Nuclear Information System (INIS)

    Pantani, O.; Anxolabehere, E.; Aukauloo, A.; Millet, P.

    2006-01-01

    Proton exchange membrane (PEM) water electrolysis is a safe and efficient way to perform water splitting into di-hydrogen and di-oxygen. In a PEM water electrolyser, platinum is commonly used as electro-catalyst on the cathodic side of the cells, mostly because of its efficiency for hydrogen evolution. But for cost considerations, there is a need to find alternative low-cost electrocatalysts. Molecular chemistry offers the possibility of synthesizing new compounds for this purpose, such as transition metal complexes. Results obtained with nickel- and cobalt-oximes compounds are presented in this paper. They have been chemically (1H NMR, EPR) and electrochemically (voltametry, spectro-electrochemistry) characterized. Their ability to electrochemically reduce protons into di-hydrogen when they are either dissolved in solution or immobilized at the surface of a solid electrode is discussed. (authors)

  8. Rotary combustion device

    NARCIS (Netherlands)

    2008-01-01

    Rotary combustion device (1) with rotary combustion chamber (4). Specific measures are taken to provide ignition of a combustible mixture. It is proposed that a hollow tube be provided coaxially with the axis of rotation (6), so that a small part of the mixture is guided into the combustion chamber.

  9. Fuel and engine characterization study of catalytically cracked waste transformer oil

    KAUST Repository

    Prasanna Raj Yadav, S.

    2015-05-01

    This research work targets on the effective utilization of WTO (waste transformer oil) in a diesel engine and thereby, reducing the environmental problems caused by its disposal into open land. The novelty of the work lies in adoption of catalytic cracking process to chemically treat WTO, wherein waste fly ash has been considered as a catalyst for the first time. Interestingly, both the oil and catalyst used are waste products, enabling reduction in total fuel cost and providing additional benefit of effective waste management. With the considerable token that use of activated fly ash as catalyst requires lower reaction temperature, catalytic cracking was performed only in the range of 350-400°C. As a result of this fuel treatment process, the thermal and physical properties of CCWTO (catalytically cracked waste transformer oil), as determined by ASTM standard methods, were found to be agreeable for its use in a diesel engine. Further, FTIR analysis of CCWTO discerned the presence of essential hydrocarbons such as carbon and hydrogen. From the experimental investigation of CCWTO - diesel blends in a diesel engine, performance and combustion characteristics were shown to be improved, with a notable increase in BTE (brake thermal efficiency) and PHRR (peak heat release rate) for CCWTO 50 by 7.4% and 13.2%, respectively, than that of diesel at full load condition. In the same note, emissions such as smoke, HC (hydrocarbon) and CO (carbon monoxide) were noted to be reduced at the expense of increased NOx (nitrogen oxides) emission. © 2015 Elsevier Ltd. All rights reserved.

  10. Fuel and engine characterization study of catalytically cracked waste transformer oil

    KAUST Repository

    Prasanna Raj Yadav, S.; Saravanan, Chinnusamy G.; Vallinayagam, R.; Vedharaj, S.; Roberts, William L.

    2015-01-01

    This research work targets on the effective utilization of WTO (waste transformer oil) in a diesel engine and thereby, reducing the environmental problems caused by its disposal into open land. The novelty of the work lies in adoption of catalytic cracking process to chemically treat WTO, wherein waste fly ash has been considered as a catalyst for the first time. Interestingly, both the oil and catalyst used are waste products, enabling reduction in total fuel cost and providing additional benefit of effective waste management. With the considerable token that use of activated fly ash as catalyst requires lower reaction temperature, catalytic cracking was performed only in the range of 350-400°C. As a result of this fuel treatment process, the thermal and physical properties of CCWTO (catalytically cracked waste transformer oil), as determined by ASTM standard methods, were found to be agreeable for its use in a diesel engine. Further, FTIR analysis of CCWTO discerned the presence of essential hydrocarbons such as carbon and hydrogen. From the experimental investigation of CCWTO - diesel blends in a diesel engine, performance and combustion characteristics were shown to be improved, with a notable increase in BTE (brake thermal efficiency) and PHRR (peak heat release rate) for CCWTO 50 by 7.4% and 13.2%, respectively, than that of diesel at full load condition. In the same note, emissions such as smoke, HC (hydrocarbon) and CO (carbon monoxide) were noted to be reduced at the expense of increased NOx (nitrogen oxides) emission. © 2015 Elsevier Ltd. All rights reserved.

  11. Combustion physics

    Science.gov (United States)

    Jones, A. R.

    1985-11-01

    Over 90% of our energy comes from combustion. By the year 2000 the figure will still be 80%, even allowing for nuclear and alternative energy sources. There are many familiar examples of combustion use, both domestic and industrial. These range from the Bunsen burner to large flares, from small combustion chambers, such as those in car engines, to industrial furnaces for steel manufacture or the generation of megawatts of electricity. There are also fires and explosions. The bountiful energy release from combustion, however, brings its problems, prominent among which are diminishing fuel resources and pollution. Combustion science is directed towards finding ways of improving efficiency and reducing pollution. One may ask, since combustion is a chemical reaction, why physics is involved: the answer is in three parts. First, chemicals cannot react unless they come together. In most flames the fuel and air are initially separate. The chemical reaction in the gas phase is very fast compared with the rate of mixing. Thus, once the fuel and air are mixed the reaction can be considered to occur instantaneously and fluid mechanics limits the rate of burning. Secondly, thermodynamics and heat transfer determine the thermal properties of the combustion products. Heat transfer also plays a role by preheating the reactants and is essential to extracting useful work. Fluid mechanics is relevant if work is to be performed directly, as in a turbine. Finally, physical methods, including electric probes, acoustics, optics, spectroscopy and pyrometry, are used to examine flames. The article is concerned mainly with how physics is used to improve the efficiency of combustion.

  12. Clear-PEM: A PET imaging system dedicated to breast cancer diagnostics

    CERN Document Server

    Abreu, M C; Albuquerque, E; Almeida, F G; Almeida, P; Amaral, P; Auffray, Etiennette; Bento, P; Bruyndonckx, P; Bugalho, R; Carriço, B; Cordeiro, H; Ferreira, M; Ferreira, N C; Gonçalves, F; Lecoq, Paul; Leong, C; Lopes, F; Lousã, P; Luyten, J; Martins, M V; Matela, N; Rato-Mendes, P; Moura, R; Nobre, J; Oliveira, N; Ortigão, C; Peralta, L; Rego, J; Ribeiro, R; Rodrigues, P; Santos, A I; Silva, J C; Silva, M M; Tavernier, Stefaan; Teixeira, I C; Texeira, J P; Trindade, A; Trummer, Julia; Varela, J

    2007-01-01

    The Clear-PEM scanner for positron emission mammography under development is described. The detector is based on pixelized LYSO crystals optically coupled to avalanche photodiodes and readout by a fast low-noise electronic system. A dedicated digital trigger (TGR) and data acquisition (DAQ) system is used for on-line selection of coincidence events with high efficiency, large bandwidth and small dead-time. A specialized gantry allows to perform exams of the breast and of the axilla. In this paper we present results of the measurement of detector modules that integrate the system under construction as well as the imaging performance estimated from Monte Carlo simulated data.

  13. Corrosion of metal bipolar plates for PEM fuel cells: A review

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Renato A. [Engenharia de Materiais, Universidade Federal do ABC (UFABC), 09210-170 Santo Andre, SP (Brazil); Oliveira, Mara Cristina L.; Ett, Gerhard; Ett, Volkmar [Electrocell Ind. Com. Equip. Elet. LTDA, Centro de Inovacao, Empreendedorismo e Tecnologia (CIETEC), 05508-000 Sao Paulo, SP (Brazil)

    2010-04-15

    PEM fuel cells are of prime interest in transportation applications due to their relatively high efficiency and low pollutant emissions. Bipolar plates are the key components of these devices as they account for significant fractions of their weight and cost. Metallic materials have advantages over graphite-based ones because of their higher mechanical strength and better electrical conductivity. However, corrosion resistance is a major concern that remains to be solved as metals may develop oxide layers that increase electrical resistivity, thus lowering the fuel cell efficiency. This paper aims to present the main results found in recent literature about the corrosion performance of metallic bipolar plates. (author)

  14. Fuzzy control for the operation of an electrical energy generation system based on standard fuel cells PEM; Control difuso para la operacion de un sistema de generacion de energia electrica basado en celdas de combustible tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez R, Miguel; Gutierrez A, Ruben [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Rodriguez P, Alejandro [Centro Nacional de Investigacion y Desarrollo Tecnologico (Cenidet), Cuernavaca, Morelos (Mexico)

    2005-07-01

    Fuel cells, as totally clean power plants, have many applications in the industry in general, in the transport system, in the electricity generation for domestic consumption and in the communication systems, among others. When developing new forms of generation with renewable energy sources, it must be considered that petroleum will stop in being an available power resource. The interest in the study of the fuel cells has been increased in the last years because it is considered a solution to the supply of distributed energy problem. Therefore, already exist research institutions that are developing work on this technology. A generation of electrical energy system based on fuel cells is a nonlinear system where the control of the variables of the process, such as the temperature of the system and the pressurization of the reactants, are an important aspect for its proper operation, since it influences in the water balance and therefore in the global efficiency of the system. [Spanish] Las celdas de combustible, como fuente de energia totalmente limpia, tienen muchas aplicaciones en la industria en general: en el sistema de transporte, en la generacion de electricidad para consumo domestico y en los sistemas de comunicacion, entre otros. Al desarrollar nuevas formas de generacion con fuentes de energia renovables, se debe considerar que el petroleo dejara de ser un recurso energetico disponible. El interes en el estudio de las celdas de combustible se ha incrementado en los ultimos anos debido a que se le considera una solucion al problema de abasto de energia distribuida. Por lo tanto, ya existen instituciones de investigacion que estan desarrollando trabajos sobre esta tecnologia. Un sistema de generacion de energia electrica basado en celdas de combustible es un sistema no lineal en donde el control de las variables del proceso, tales como la temperatura del sistema y la presurizacion de los reactantes, es un aspecto importante para su buen funcionamiento, ya que

  15. Amperometric NOx-sensor for Combustion Exhaust Gas Control. Studies on transport properties and catalytic activity of oxygen permeable ceramic membranes

    International Nuclear Information System (INIS)

    Romer, E.W.J.

    2001-01-01

    The aim of the research described in this thesis is the development of a mixed conducting oxide layer, which can be used as an oxygen permselective membrane in an amperometric NOx sensor. The sensor will be used in exhaust gas systems. The exhaust gas-producing engine will run in the lean mix mode. The preparation of this sensor is carried out using screen-printing technology, in which the different layers of the sensor are applied successively. Hereafter, a co-firing step is applied in which all layers are sintered together. This co-firing step imposes several demands on the selection of materials. The design specifications of the sensor further include requirements concerning the operating temperature, measurement range and overall stability. The operating temperature of the sensor varies between 700 and 850C, enabling measurement of NOx concentrations between 50 and 1200 ppm with a measurement accuracy of 10 ppm. Concerning the stability of the sensor, it must withstand the exhaust gas atmosphere containing, amongst others, smoke, acids, abrasive particles and sulphur. Because of the chosen lean-mix engine concept, in which the fuel/air mixture switches continuously between lean (excess oxygen) and fat (excess fuel) mixtures, the sensor must withstand alternately oxidising and reducing atmospheres. Besides, it should be resistant to thermal shock and show no cross-sensitivity of NOx with other exhaust gas constituents like oxygen and hydrocarbons. The response time should be short, typically less than 500 ms. Because of the application in combustion engines of cars, the operational lifetime should be longer than 10 years. Demands on the mixed conducting oxide layer include the following ones. The layer should show minimal catalytic activity towards NOx-reduction. The oxygen permeability must be larger than 6.22 10 -8 mol/cm 2 s at a layer thickness between 3-50 μm. Since the mixed conducting oxide layer is coated on the YSZ electrolyte embodiment, the two

  16. Structural, catalytic and magnetic properties of Cu{sub 1-X}Co{sub X}Fe{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Briceno, Sarah, E-mail: sbriceno@ivic.gob.ve [Laboratorio de Fisica de la Materia Condensada, Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas (IVIC), Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of); Del Castillo, Hector [Laboratorio de Cinetica y Catalisis, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101-A (Venezuela, Bolivarian Republic of); Sagredo, V. [Laboratorio de Magnetismo, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101-A (Venezuela, Bolivarian Republic of); Bramer-Escamilla, Werner; Silva, Pedro [Laboratorio de Fisica de la Materia Condensada, Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas (IVIC), Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Cu{sub 1-X}Co{sub X}Fe{sub 2}O{sub 4} ferrite synthesized by sol-gel auto-combustion method. Black-Right-Pointing-Pointer Structural identification, magnetic and catalytic properties were investigated. Black-Right-Pointing-Pointer Characterization by TGA, DTA, XRD, SEM, TEM and VSM techniques. Black-Right-Pointing-Pointer Magnetic properties decrease with the increase of Cu{sup 2+} doping. Black-Right-Pointing-Pointer The selective conversion to N{sub 2} is higher for Cu-Co mixed ferrites. - Abstract: Copper substituted cobalt ferrite Cu{sub 1-X}Co{sub X}Fe{sub 2}O{sub 4} (0 {<=}x {<=} 1) have been synthesized using sol-gel auto combustion method with citric acid as fuel. Structural identification, magnetic and catalytic properties were investigated using thermogravimetric and differential thermal analysis, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry and their application in the selective catalytic reduction of NOx were studied. Analysis of structural properties reveals that all samples have cubic spinel structure. Room temperature magnetic hysteresis measurements as a function of magnetic field infer that the magnetic properties decrease with Cu{sup 2+} doping which may be due to the difference of the magnetic moment of Cu{sup 2+} and Co{sup 2+} ions. The higher activity of the samples in NO selective reduction to N{sub 2} occurs at 350 Degree-Sign C, reaching a maximum of 38% NO conversion and 95% of selective conversion to N{sub 2}. The compositions containing both Cu{sup 2+} and Co{sup 2+} ions are more active to the products selectivity to N{sub 2}, suggesting a synergistic effect on the active surface of ferrite and the effect of Co{sup 2+} is more pronounced than Cu{sup 2+} towards NO conversion.

  17. Fuzzy Logic Based Control of Power of PEM Fuel Cell System for Residential Application

    Directory of Open Access Journals (Sweden)

    Khaled MAMMAR

    2009-07-01

    Full Text Available This paper presents a dynamic model of Fuel cell system for residential power generation. The models proposed include a fuel cell stack model, reformer model and DC/AC inverter model. Furthermore a fuzzy logic (FLC controller is used to control active power of PEM fuel cell system. The controller modifies the hydrogen flow feedback from the terminal load. Simulation results confirmed the high performance capability of the fuzzy logic controller to control power generation.

  18. Effect of the preparation method on the structural and catalytic properties of spinel cobalt-iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hammiche-Bellal, Yasmina, E-mail: yasminahammiche@gmail.com [Laboratoire des Matériaux Catalytiques et Catalyse en Chimie Organique, Faculté de Chimie, USTHB, BP32 El Alia, Bab Ezzouar, 16111, Alger (Algeria); Djadoun, Amar [Laboratoire de Géophysique, FSTGAT, USTHB, BP32 El Alia, Bab Ezzouar, 16111, Alger (Algeria); Meddour-Boukhobza, Laaldja; Benadda, Amel [Laboratoire des Matériaux Catalytiques et Catalyse en Chimie Organique, Faculté de Chimie, USTHB, BP32 El Alia, Bab Ezzouar, 16111, Alger (Algeria); Auroux, Aline [Université Lyon 1, CNRS, UMR 5256, IRCELYON, Institut de Recherches sur la Catalyse et l' Environnement de Lyon, 2 Avenue Albert Einstein, F-69626, Villeurbanne (France); Berger, Marie-Hélène [Centre des Matériaux PIERRE-MARIE Fourt, UMR 7633, Paris (France); Mernache, Fateh [UDEC-CRND, COMENA, BP 43 Draria, 16050, Alger (Algeria)

    2016-07-01

    Spinel cobalt-iron oxide was synthesized by co-precipitation and hydrothermal routes. The effect of the co-precipitation experimental conditions, the calcination temperature and the hydrothermal synthesis time and temperature on the properties of the solids was studied. The prepared powders were evaluated as catalysts in the ethanol combustion reaction, and were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM/EDX), nitrogen adsorption–desorption isotherms (BET, BJH) and temperature programmed reduction (TPR) techniques. Using chloride salts as starting materials and sodium hydroxide as precipitating agent, the CoFe{sub 2}O{sub 4} prepared powders displayed a mesoporous structure with a pore distribution strongly dependent on the experimental conditions. A monophasic spinel phase in the case of the calcined solids was obtained while the hydrothermal process led to the formation of a mixture of single oxides in addition to the spinel phase. The variation of the crystallite size and the lattice parameter as a function of calcination temperature was similar, whereas this variation found to be irregular when the synthesis residence time in autoclave was increased. The hydrothermally treated solids show the best catalytic performance in the total oxidation of ethanol. The catalytic behavior was correlated with the crystallite size and the reduction temperature of cobalt species determined by the TPR analysis. - Highlights: • Pure CoFe{sub 2}O{sub 4} phase is obtained by co-precipitation method at calcination temperatures 500–900 °C. • The temperature of co-precipitation procedure influences strongly the growth of the solids during the calcination step. • The hydrothermal synthesis gives a mixture of oxides; CoFe{sub 2}O{sub 4} is the predominant phase. • The CoFe{sub 2}O{sub 4} spinel showed a good catalytic reactivity in the ethanol combustion reaction. • The catalysts prepared by hydrothermal process are more reactive and

  19. SILICON CARBIDE MICRO-DEVICES FOR COMBUSTION GAS SENSING UNDER HARSH CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Ruby N. Ghosh; Peter Tobias; Roger G. Tobin

    2004-04-01

    A sensor based on the wide bandgap semiconductor, silicon carbide (SiC), has been developed for the detection of combustion products in power plant environments. The sensor is a catalytic gate field effect device that can detect hydrogen containing species in chemically reactive, high temperature environments. Robust metallization and electrical contacting techniques have been developed for device operation at elevated temperatures. To characterize the time response of the sensor responses in the millisecond range, a conceptually new apparatus has been built. Software has been developed to cope with the requirements of fast sensor control and data recording. In addition user friendly software has been developed to facilitate use of the SiC sensors for industrial process control applications.

  20. Characterization of the emissions impacts of hybrid excavators with a portable emissions measurement system (PEMS)-based methodology.

    Science.gov (United States)

    Cao, Tanfeng; Russell, Robert L; Durbin, Thomas D; Cocker, David R; Burnette, Andrew; Calavita, Joseph; Maldonado, Hector; Johnson, Kent C

    2018-04-13

    Hybrid engine technology is a potentially important strategy for reduction of tailpipe greenhouse gas (GHG) emissions and other pollutants that is now being implemented for off-road construction equipment. The goal of this study was to evaluate the emissions and fuel consumption impacts of electric-hybrid excavators using a Portable Emissions Measurement System (PEMS)-based methodology. In this study, three hybrid and four conventional excavators were studied for both real world activity patterns and tailpipe emissions. Activity data was obtained using engine control module (ECM) and global positioning system (GPS) logged data, coupled with interviews, historical records, and video. This activity data was used to develop a test cycle with seven modes representing different types of excavator work. Emissions data were collected over this test cycle using a PEMS. The results indicated the HB215 hybrid excavator provided a significant reduction in tailpipe carbon dioxide (CO 2 ) emissions (from -13 to -26%), but increased diesel particulate matter (PM) (+26 to +27%) when compared to a similar model conventional excavator over the same duty cycle. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Quantum Chemical Study of Supercritical Carbon Dioxide Effects on Combustion Kinetics.

    Science.gov (United States)

    Masunov, Artëm E; Wait, Elizabeth E; Atlanov, Arseniy A; Vasu, Subith S

    2017-05-18

    In oxy-fuel combustion, the pure oxygen (O 2 ), diluted with CO 2 is used as oxidant instead air. Hence, the combustion products (CO 2 and H 2 O) are free from pollution by nitrogen oxides. Moreover, high pressures result in the near-liquid density of CO 2 at supercritical state (sCO 2 ). Unfortunately, the effects of sCO 2 on the combustion kinetics are far from being understood. To assist in this understanding, in this work we are using quantum chemistry methods. Here we investigate potential energy surfaces of important combustion reactions in the presence of the carbon dioxide molecule. All transition states and reactant and product complexes are reported for three reactions: H 2 CO + HO 2 → HCO + H 2 O 2 (R1), 2HO 2 → H 2 O 2 + O 2 (R2), and CO + OH → CO 2 + H (R3). In reaction R3, covalent binding of CO 2 to the OH radical and then the CO molecule opens a new pathway, including hydrogen transfer from oxygen to carbon atoms followed by CH bond dissociation. Compared to the bimolecular OH + CO mechanism, this pathway reduces the activation barrier by 5 kcal/mol and is expected to accelerate the reaction. In the case of hydroperoxyl self-reaction 2HO 2 → H 2 O 2 + O 2 the intermediates, containing covalent bonds to CO 2 are found not to be competitive. However, the spectator CO 2 molecule can stabilize the cyclic transition state and lower the barrier by 3 kcal/mol. Formation of covalent intermediates is also discovered in the H 2 CO + HO 2 → HCO + H 2 O 2 reaction, but these species lead to substantially higher activation barriers, which makes them unlikely to play a role in hydrogen transfer kinetics. The van der Waals complexation with carbon dioxide also stabilizes the transition state and reduces the reaction barrier. These results indicate that the CO 2 environment is likely to have a catalytic effect on combustion reactions, which needs to be included in kinetic combustion mechanisms in supercritical CO 2 .

  2. Some Factors Affecting Combustion in an Internal-Combustion Engine

    Science.gov (United States)

    Rothrock, A M; Cohn, Mildred

    1936-01-01

    An investigation of the combustion of gasoline, safety, and diesel fuels was made in the NACA combustion apparatus under conditions of temperature that permitted ignition by spark with direct fuel injection, in spite of the compression ratio of 12.7 employed. The influence of such variables as injection advance angle, jacket temperature, engine speed, and spark position was studied. The most pronounced effect was that an increase in the injection advance angle (beyond a certain minimum value) caused a decrease in the extent and rate of combustion. In almost all cases combustion improved with increased temperature. The results show that at low air temperatures the rates of combustion vary with the volatility of the fuel, but that at high temperatures this relationship does not exist and the rates depend to a greater extent on the chemical nature of the fuel.

  3. Transients of Water Distribution and Transport in PEM Fuel Cells

    KAUST Repository

    Hussaini, Irfan S.; Wang, Chao-Yang

    2009-01-01

    The response of polymer electrolyte membrane (PEM) fuel cells to a step change in load is investigated experimentally in this work. Voltage undershoot, a characteristic feature of transient response following a step increase in current, is due to transients of water distribution in the membrane and ionomers occurring at subsecond time scales. The use of humidified reactants as a means to control the magnitude of voltage undershoot is demonstrated. Further, the response under a step decrease in current density is explored to determine the existence of hysteresis. Under sufficiently humidified conditions, the responses under forward and reverse step changes are symmetric, but under low relative humidity conditions, voltage undershoot is twice as large as the overshoot. © 2009 The Electrochemical Society.

  4. Reduced NOX combustion method

    International Nuclear Information System (INIS)

    Delano, M.A.

    1991-01-01

    This patent describes a method for combusting fuel and oxidant to achieve reduced formation of nitrogen oxides. It comprises: It comprises: heating a combustion zone to a temperature at least equal to 1500 degrees F.; injecting into the heated combustion zone a stream of oxidant at a velocity within the range of from 200 to 1070 feet per second; injecting into the combustion zone, spaced from the oxidant stream, a fuel stream at a velocity such that the ratio of oxidant stream velocity to fuel stream velocity does not exceed 20; aspirating combustion gases into the oxidant stream and thereafter intermixing the aspirated oxidant stream and fuel stream to form a combustible mixture; combusting the combustible mixture to produce combustion gases for the aspiration; and maintaining the fuel stream substantially free from contact with oxidant prior to the intermixture with aspirated oxidant

  5. Effect of cuprous oxide with different sizes on thermal and combustion behaviors of unsaturated polyester resin.

    Science.gov (United States)

    Hou, Yanbei; Hu, Weizhao; Gui, Zhou; Hu, Yuan

    2017-07-15

    Cuprous oxide (Cu 2 O) as an effective catalyst has been applied to enhance the fire safety of unsaturated polyester resin (UPR), but the particle size influence on combustion behaviors has not been previously reported. Herein, the UPR/Cu 2 O composites (metal oxide particles with average particle-size of 10, 100, and 200nm) were successfully synthesized by thermosetting process. The effects of Cu 2 O with different sizes on thermostability and combustion behaviors of UPR were characterized by TGA, MCC, TG-IR, FTIR, and SSTF. The results revel that the addition of Cu 2 O contributes to sufficient decomposition of oxygen-containing compounds, which is beneficial to the release of nontoxic compounds. The smallest-sized Cu 2 O performs the excellent catalytic decomposition effect and promotes the complete combustion of UPR, which benefits the enhancement of fire safety. While the other additives retard pyrolysis process and yield more char residue, and thus the flame retardancy of UPR composites was improved. Therefore, catalysis plays a major role for smaller-sized particles during thermal decomposition of matrix, while flame retarded effect became gradual distinctly for the larger-sized additives. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. New, efficient and viable system for ethanol fuel utilization on combined electric/internal combustion engine vehicles

    Science.gov (United States)

    Sato, André G.; Silva, Gabriel C. D.; Paganin, Valdecir A.; Biancolli, Ana L. G.; Ticianelli, Edson A.

    2015-10-01

    Although ethanol can be directly employed as fuel on polymer-electrolyte fuel cells (PEMFC), its low oxidation kinetics in the anode and the crossover to the cathode lead to a substantial reduction of energy conversion efficiency. However, when fuel cell driven vehicles are considered, the system may include an on board steam reformer for converting ethanol into hydrogen, but the hydrogen produced contains carbon monoxide, which limits applications in PEMFCs. Here, we present a system consisting of an ethanol dehydrogenation catalytic reactor for producing hydrogen, which is supplied to a PEMFC to generate electricity for electric motors. A liquid by-product effluent from the reactor can be used as fuel for an integrated internal combustion engine, or catalytically recycled to extract more hydrogen molecules. Power densities comparable to those of a PEMFC operating with pure hydrogen are attained by using the hydrogen rich stream produced by the ethanol dehydrogenation reactor.

  7. Steam reformer with catalytic combustor

    Science.gov (United States)

    Voecks, Gerald E. (Inventor)

    1990-01-01

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  8. Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode

    Science.gov (United States)

    Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

    2008-10-07

    This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

  9. Model-based fault diagnosis in PEM fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Escobet, T; de Lira, S; Puig, V; Quevedo, J [Automatic Control Department (ESAII), Universitat Politecnica de Catalunya (UPC), Rambla Sant Nebridi 10, 08222 Terrassa (Spain); Feroldi, D; Riera, J; Serra, M [Institut de Robotica i Informatica Industrial (IRI), Consejo Superior de Investigaciones Cientificas (CSIC), Universitat Politecnica de Catalunya (UPC) Parc Tecnologic de Barcelona, Edifici U, Carrer Llorens i Artigas, 4-6, Planta 2, 08028 Barcelona (Spain)

    2009-07-01

    In this work, a model-based fault diagnosis methodology for PEM fuel cell systems is presented. The methodology is based on computing residuals, indicators that are obtained comparing measured inputs and outputs with analytical relationships, which are obtained by system modelling. The innovation of this methodology is based on the characterization of the relative residual fault sensitivity. To illustrate the results, a non-linear fuel cell simulator proposed in the literature is used, with modifications, to include a set of fault scenarios proposed in this work. Finally, it is presented the diagnosis results corresponding to these fault scenarios. It is remarkable that with this methodology it is possible to diagnose and isolate all the faults in the proposed set in contrast with other well known methodologies which use the binary signature matrix of analytical residuals and faults. (author)

  10. Preliminary design of a small-scale system for the conversion of biogas to electricity by HT-PEM fuel cell

    International Nuclear Information System (INIS)

    Birth, Torsten; Heineken, Wolfram; He, Ling

    2014-01-01

    In this work a novel concept for the decentralized conversion of biogas to electricity is introduced. It consists of five segments: gas supply, gas treatment, gas reforming, gas usage and post-combustion. The system was designed in a regional project called GREEN-FC. The project is dealing with a design study for the conversion of 1 m 3  h −1 biogas to electricity, based on equilibrium calculations for steam reforming and water–gas shift reaction in combination with CFD simulations. The simulation results revealed that the system converts methane fully and delivers a maximum yield of hydrogen with a low concentration of carbon monoxide, thus making it suitable for a high-temperature polymer–electrolyte membrane (HT-PEM) fuel cell. The calculated electrical efficiency of the novel process is approximately 40%. Another important result of this work is the modular prototype design, because the individual components of the prototype can be replaced. For example alternative reactors that convert biogas into hydrogen and other technologies that use hydrogen can be included. - Highlights: • We designed the GREEN-FC process for decentralized hydrogen production from biogas. • We determined optimal process conditions on chemical equilibrium calculations. • The design was evaluated by CFD simulations with chemical reactions included. • The electrical efficiency of the GREEN-FC process is approximately 40%. • The first industrial prototype should have investment costs of 5000 € kW −1

  11. Bipolar plates for PEM fuel cells

    Science.gov (United States)

    Middelman, E.; Kout, W.; Vogelaar, B.; Lenssen, J.; de Waal, E.

    The bipolar plates are in weight and volume the major part of the PEM fuel cell stack, and are also a significant contributor to the stack costs. The bipolar plate is therefore a key component if power density has to increase and costs must come down. Three cell plate technologies are expected to reach targeted cost price levels, all having specific advantages and drawbacks. NedStack has developed a conductive composite materials and a production process for fuel cell plates (bipolar and mono-polar). The material has a high electric and thermal conductivity, and can be processed into bipolar plates by a proprietary molding process. Process cycle time has been reduced to less than 10 s, making the material and process suitable for economical mass production. Other development work to increase material efficiency resulted in thin bipolar plates with integrated cooling channels, and integrated seals, and in two-component bipolar plates. Total thickness of the bipolar plates is now less than 3 mm, and will be reduced to 2 mm in the near future. With these thin integrated plates it is possible to increase power density up to 2 kW/l and 2 kW/kg, while at the same time reducing cost by integrating other functions and less material use.

  12. The Diesel Combustion Collaboratory: Combustion Researchers Collaborating over the Internet

    Energy Technology Data Exchange (ETDEWEB)

    C. M. Pancerella; L. A. Rahn; C. Yang

    2000-02-01

    The Diesel Combustion Collaborator (DCC) is a pilot project to develop and deploy collaborative technologies to combustion researchers distributed throughout the DOE national laboratories, academia, and industry. The result is a problem-solving environment for combustion research. Researchers collaborate over the Internet using DCC tools, which include: a distributed execution management system for running combustion models on widely distributed computers, including supercomputers; web-accessible data archiving capabilities for sharing graphical experimental or modeling data; electronic notebooks and shared workspaces for facilitating collaboration; visualization of combustion data; and video-conferencing and data-conferencing among researchers at remote sites. Security is a key aspect of the collaborative tools. In many cases, the authors have integrated these tools to allow data, including large combustion data sets, to flow seamlessly, for example, from modeling tools to data archives. In this paper the authors describe the work of a larger collaborative effort to design, implement and deploy the DCC.

  13. Different Approaches for Ensuring Performance/Reliability of Plastic Encapsulated Microcircuits (PEMs) in Space Applications

    Science.gov (United States)

    Gerke, R. David; Sandor, Mike; Agarwal, Shri; Moor, Andrew F.; Cooper, Kim A.

    2000-01-01

    Engineers within the commercial and aerospace industries are using trade-off and risk analysis to aid in reducing spacecraft system cost while increasing performance and maintaining high reliability. In many cases, Commercial Off-The-Shelf (COTS) components, which include Plastic Encapsulated Microcircuits (PEMs), are candidate packaging technologies for spacecrafts due to their lower cost, lower weight and enhanced functionality. Establishing and implementing a parts program that effectively and reliably makes use of these potentially less reliable, but state-of-the-art devices, has become a significant portion of the job for the parts engineer. Assembling a reliable high performance electronic system, which includes COTS components, requires that the end user assume a risk. To minimize the risk involved, companies have developed methodologies by which they use accelerated stress testing to assess the product and reduce the risk involved to the total system. Currently, there are no industry standard procedures for accomplishing this risk mitigation. This paper will present the approaches for reducing the risk of using PEMs devices in space flight systems as developed by two independent Laboratories. The JPL procedure involves primarily a tailored screening with accelerated stress philosophy while the APL procedure is primarily, a lot qualification procedure. Both Laboratories successfully have reduced the risk of using the particular devices for their respective systems and mission requirements.

  14. Advanced Approaches to Greatly Reduce Hydrogen Gas Crossover Losses in PEM Electrolyzers Operating at High Pressures and Low Current Densities, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ElectroChem proposes technology advances in its unique PEM IFF water electrolyzer design to meet the NASA requirement for an electrolyzer that will operate very...

  15. Influences of bipolar plate channel blockages on PEM fuel cell performances

    International Nuclear Information System (INIS)

    Heidary, Hadi; Kermani, Mohammad J.; Dabir, Bahram

    2016-01-01

    Highlights: • Effect of partial- or full-blockage of PEMFC flow channels is numerically studied. • The anode blockage does not show any positive effects on cell performance. • Full blockages, despite higher pressure drop, better enhance net electrical power. • Additions of blocks more than five do not improve the cell performance. • Full blockage of cathode channels with five blocks enhances the net power by 30%. - Abstract: In this paper, the effect of partial- or full-block placement along the flow channels of PEM fuel cells is numerically studied. Blockage in the channel of flow-field diverts the flow into the gas diffusion layer (GDL) and enhances the mass transport from the channel core part to the catalyst layer, which in turn improves the cell performance. By partial blockage, only a part of the channel flow is shut off. While in full blockage, in which the flow channel cross sections are fully blocked, the only avenue left for the continuation of the gas is to travel over the blocks via the porous zone (GDL). In this study, a 3D numerical model consisting of a 9-layer PEM fuel cell is performed. A wide spectrum of numerical studies is performed to study the influences of the number of blocks, blocks height, and anode/cathode-side flow channel blockage. The results show that the case of full blockage enhances the net electrical power more than that of the partial blockage, in spite of higher pressure drop. Performed studies show that full blockage of the cathode-side flow channels with five blocks along the 5 cm channel enhances the net power by 30%. The present work provides helpful guidelines to bipolar plate manufacturers.

  16. NO{sub x} emissions from combustion of hydrogen mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Roertveit, Geir Johan

    2002-07-01

    This work includes five different parts each of which has resulted in a paper that is accepted and submitted for publication. Additionally, a short introductory background section precedes these papers. A significant amount of experimental data is presented for the combustion of hydrogen which focus on emission of NO{sub x}. Different dilutes were added to the hydrogen to reduce the flame temperature and subsequently the NO{sub x} emissions. These experiments were performed in a counterflow burner where a flat steady flame layer facilitated accurate measurements. The experiments were compared with numerical calculations to assist the interpretation and discussion of the results. It was found that the experimental results compared well with numerical calculations of NO{sub x} at temperatures of up to 1900 K, while for higher temperatures an increasing discrepancy was found due to the influence of the sampling equipment. Nitrogen diluted methane was enriched by hydrogen from 0to 100 % to study the effect of NO{sub x} with the use of different fuel mixtures in the same counterflow burner. For a similar temperature of the NO{sub x} emitted from a H{sub 2} flame is only 25 % of that of a methane flame. Experiments compared to the pure methane flame showed that there is only a reduction of NO{sub x} when there is very high hydrogen content in the fuel mixture and for most mixtures an actual increase in NO{sub x} is observed. This is found partly due to a triggering of the NO{sub x} from the prompt mechanism. Natural gas and methane have both been substituted by up to 30 % H{sub 2} at constant load in various burners to reveal the effect of H{sub 2} enrichment on emissions. The burners include a swirl burner, a fibre burner, a porous burner and a catalytically supported porous burner. The thermal loads were varied from 2.6 to 21 kW, while excess air ratios were varied form 1 to 1.8. In general little effect of H{sub 2} is found by enriching the fuel. At temperatures of up

  17. New class of combustion processes

    International Nuclear Information System (INIS)

    Merzhanov, A.G.; Borovinskaya, I.P.

    1975-01-01

    A short review is given of the results of work carried out since 1967 on studying the combustion processes caused by the interaction of chemical elements in the condensed phase and leading to the formation of refractory compounds. New phenomena and processes are described which are revealed when investigating the combustion of the systems of this class, viz solid-phase combustion, fast combustion in the condensed phase, filtering combustion, combustion in liquid nitrogen, spinning combustion, self-oscillating combustion, and repeated combustion. A new direction in employment of combustion processes is discussed, viz. a self-propagating high-temperature synthesis of refractory nitrides, carbides, borides, silicides and other compounds

  18. Experimental validation for combustion analysis of GOTHIC code in 2-dimensional combustion chamber

    International Nuclear Information System (INIS)

    Lee, J. W.; Yang, S. Y.; Park, K. C.; Jung, S. H.

    2002-01-01

    In this study, the prediction capability of GOTHIC code for hydrogen combustion phenomena was validated with the results of two-dimensional premixed hydrogen combustion experiment executed by Seoul National University. The experimental chamber has about 24 liter free volume (1x0.024x1 m 3 ) and 2-dimensional rectangular shape. The test were preformed with 10% hydrogen/air gas mixture and conducted with combination of two igniter positions (top center, top corner) and two boundary conditions (bottom full open, bottom right half open). Using the lumped parameter and mechanistic combustion model in GOTHIC code, the SNU experiments were simulated under the same conditions. The GOTHIC code prediction of the hydrogen combustion phenomena did not compare well with the experimental results. In case of lumped parameter simulation, the combustion time was predicted appropriately. But any other local information related combustion phenomena could not be obtained. In case of mechanistic combustion analysis, the physical combustion phenomena of gas mixture were not matched experimental ones. In boundary open cases, the GOTHIC predicted very long combustion time and the flame front propagation could not simulate appropriately. Though GOTHIC showed flame propagation phenomenon in adiabatic calculation, the induction time of combustion was still very long compare with experimental results. Also, it was found that the combustion model of GOTHIC code had some weak points in low concentration of hydrogen combustion simulation

  19. Modeling optimizes PEM fuel cell durability using three-dimensional multi-phase computational fluid dynamics model

    OpenAIRE

    Maher A.R. Sadiq Al-Baghdadi

    2010-01-01

    Damage mechanisms in a proton exchange membrane (PEM) fuel cell are accelerated by mechanical stresses arising during fuel cell assembly (bolt assembling), and the stresses arise during fuel cell running, because it consists of the materials with different thermal expansion and swelling coefficients. Therefore, in order to acquire a complete understanding of the damage mechanisms in the membrane and gas diffusion layers, mechanical response under steady-state hygro-thermal stresses should be ...

  20. Catalytic nanoporous membranes

    Science.gov (United States)

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.