WorldWideScience

Sample records for catalytic coal conversion

  1. Molecular catalytic coal liquid conversion

    Energy Technology Data Exchange (ETDEWEB)

    Stock, L.M.; Yang, Shiyong [Univ. of Chicago, IL (United States)

    1995-12-31

    This research, which is relevant to the development of new catalytic systems for the improvement of the quality of coal liquids by the addition of dihydrogen, is divided into two tasks. Task 1 centers on the activation of dihydrogen by molecular basic reagents such as hydroxide ion to convert it into a reactive adduct (OH{center_dot}H{sub 2}){sup {minus}} that can reduce organic molecules. Such species should be robust withstanding severe conditions and chemical poisons. Task 2 is focused on an entirely different approach that exploits molecular catalysts, derived from organometallic compounds that are capable of reducing monocyclic aromatic compounds under very mild conditions. Accomplishments and conclusions are discussed.

  2. Recovery of alkali metal constituents from catalytic coal conversion residues

    Science.gov (United States)

    Soung, W.Y.

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide to precipitate silicon constituents, the pH of the resultant solution is increased, preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  3. Catalytic Process for the Conversion of Coal-derived Syngas to Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    James Spivery; Doug Harrison; John Earle; James Goodwin; David Bruce; Xunhau Mo; Walter Torres; Joe Allison Vis Viswanathan; Rick Sadok; Steve Overbury; Viviana Schwartz

    2011-07-29

    The catalytic conversion of coal-derived syngas to C{sub 2+} alcohols and oxygenates has attracted great attention due to their potential as chemical intermediates and fuel components. This is particularly true of ethanol, which can serve as a transportation fuel blending agent, as well as a hydrogen carrier. A thermodynamic analysis of CO hydrogenation to ethanol that does not allow for byproducts such as methane or methanol shows that the reaction: 2 CO + 4 H{sub 2} {yields} C{sub 2}H{sub 5}OH + H{sub 2}O is thermodynamically favorable at conditions of practical interest (e.g,30 bar, {approx}< 250 C). However, when methane is included in the equilibrium analysis, no ethanol is formed at any conditions even approximating those that would be industrially practical. This means that undesired products (primarily methane and/or CO{sub 2}) must be kinetically limited. This is the job of a catalyst. The mechanism of CO hydrogenation leading to ethanol is complex. The key step is the formation of the initial C-C bond. Catalysts that are selective for EtOH can be divided into four classes: (a) Rh-based catalysts, (b) promoted Cu catalysts, (c) modified Fischer-Tropsch catalysts, or (d) Mo-sulfides and phosphides. This project focuses on Rh- and Cu-based catalysts. The logic was that (a) Rh-based catalysts are clearly the most selective for EtOH (but these catalysts can be costly), and (b) Cu-based catalysts appear to be the most selective of the non-Rh catalysts (and are less costly). In addition, Pd-based catalysts were studied since Pd is known for catalyzing CO hydrogenation to produce methanol, similar to copper. Approach. The overall approach of this project was based on (a) computational catalysis to identify optimum surfaces for the selective conversion of syngas to ethanol; (b) synthesis of surfaces approaching these ideal atomic structures, (c) specialized characterization to determine the extent to which the actual catalyst has these structures, and (d) testing

  4. Catalytic Conversion of Biofuels

    DEFF Research Database (Denmark)

    Jørgensen, Betina

    This thesis describes the catalytic conversion of bioethanol into higher value chemicals. The motivation has been the unavoidable coming depletion of the fossil resources. The thesis is focused on two ways of utilising ethanol; the steam reforming of ethanol to form hydrogen and the partial oxida...

  5. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Final technical report, Volume 1 - effects of solvents, catalysts and temperature conditions on conversion and structural changes of low-rank coals

    Energy Technology Data Exchange (ETDEWEB)

    Lili Huang; Schobert, H.H.; Chunshan Song

    1998-01-01

    The main objectives of this project were to study the effects of low-temperature pretreatments on coal structure and their impacts on subsequent liquefaction. The effects of pretreatment temperatures, catalyst type, coal rank, and influence of solvent were examined. Specific objectives were to identify the basic changes in coal structure induced by catalytic and thermal pretreatments, and to determine the reactivity of the catalytically and thermally treated coals for liquefaction. In the original project management plan it was indicated that six coals would be used for the study. These were to include two each of bituminous, subbituminous, and lignite rank. For convenience in executing the experimental work, two parallel efforts were conducted. The first involved the two lignites and one subbituminous coal; and the second, the two bituminous coals and the remaining subbituminous coal. This Volume presents the results of the first portion of the work, studies on two lignites and one subbituminous coal. The remaining work accomplished under this project will be described and discussed in Volume 2 of this report. The objective of this portion of the project was to determine and compare the effects of solvents, catalysts and reaction conditions on coal liquefaction. Specifically, the improvements of reaction conversion, product distribution, as well as the structural changes in the coals and coal-derived products were examined. This study targeted at promoting hydrogenation of the coal-derived radicals, generated during thermal cleavage of chemical bonds, by using a good hydrogen donor-solvent and an effective catalyst. Attempts were also made in efforts to match the formation and hydrogenation of the free radicals and thus to prevent retrogressive reaction.

  6. Catalytic Conversion of Biomass

    Directory of Open Access Journals (Sweden)

    Rafael Luque

    2016-09-01

    Full Text Available Petroleum, natural gas and coal supply most of the energy consumed worldwide and their massive utilization has allowed our society to reach high levels of development in the past century.[...

  7. Catalytic conversion of biomass to fuels. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Garten, R. L.; Ushiba, K. K.; Cooper, M.; Mahawili, I.

    1978-01-01

    This report presents an assessment and perspective concerning the application of catalytic technologies to the thermochemical conversion of biomass resources to fuels. The major objectives of the study are: to provide a systematic assessment of the role of catalysis in the direct thermochemical conversion of biomass into gaseous and liquid fuels; to establish the relationship between potential biomass conversion processes and catalytic processes currently under development in other areas, with particular emphasis on coal conversion processes; and to identify promising catalytic systems which could be utilized to reduce the overall costs of fuels production from biomass materials. The report is divided into five major parts which address the above objectives. In Part III the physical and chemical properties of biomass and coal are compared, and the implications for catalytic conversion processes are discussed. With respect to chemical properties, biomass is shown to have significant advantages over coal in catalytic conversion processes because of its uniformly high H/C ratio and low concentrations of potential catalyst poisons. The physical properties of biomass can vary widely, however, and preprocessing by grinding is difficult and costly. Conversion technologies that require little preprocessing and accept a wide range of feed geometries, densities, and particle sizes appear desirable. Part IV provides a comprehensive review of existing and emerging thermochemical conversion technologies for biomass and coal. The underlying science and technology for gasification and liquefaction processes are presented.

  8. Catalytic Conversion of Carbohydrates

    DEFF Research Database (Denmark)

    Osmundsen, Christian Mårup

    Modern civilization is dependent on oil to supply energy for power, heating and transportation and carbon for the production of the plethora of chemicals needed. Oil is however a limited resource and alternatives need to be identified before we freeze in the dark [1]. This thesis deals with the p......Modern civilization is dependent on oil to supply energy for power, heating and transportation and carbon for the production of the plethora of chemicals needed. Oil is however a limited resource and alternatives need to be identified before we freeze in the dark [1]. This thesis deals......-BEA was studied using DFT calculations, which indicate that the strongest, and most stable, acid site is formed through the introduction of a silicon vacancy adjacent to the tin site. Aromatics are an important class of compounds. In particular benzene, toluene and p-xylene finds use in a wide range of industries...... a renewable route to aromatics. The conversion of biomass by high temperature processes is a desirable prospect due to the high volumetric production rates which can be achieved, and the ability of these types of processes to convert a wide range of substrates. Current processes however typically have rather...

  9. Catalytic conversion of light alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  10. Shungite carbon catalytic effect on coal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Grigorieva, E.N.; Rozhkova, N.N. [Russian Academy of Sciences, Moscow (Russian Federation). Institute for High Temperature

    1999-07-01

    The catalytic ability of shungite carbon in reactions of coal organic matter models appeared to be due to its fullerene structure only. Transition metal sulphides present in shungite carbon are not active in the conditions of coal treatment. Shungite carbon was shown to exhibit an acceleration of thermolysis of coal and organic matter models, mainly dehydrogenation. 5 refs., 1 tabs.

  11. Catalytic coal liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Weller, S W

    1981-01-01

    Monolith catalysts of MoO/sub 3/-CoO-Al/sub 2/O/sub 3/ were prepared and tested for coal liquefaction in a stirred autoclave. In general, the monolith catalysts were not as good as particulate catalysts prepared on Corning alumina supports. Measurement of O/sub 2/ chemisorption and BET surface area has been made on a series of Co/Mo/Al/sub 2/O/sub 3/ catalysts obtained from PETC. The catalysts were derived from Cyanamid 1442A and had been tested for coal liquefaction in batch autoclaves and continuous flow units. MoO/sub 3/-Al/sub 2/O/sub 3/ catalysts over the loading range 3.9 to 14.9 wt % MoO/sub 3/ have been studied with respect to BET surface (before and after reduction), O/sub 2/ chemisorption at -78/sup 0/C, redox behavior at 500/sup 0/C, and activity for cyclohexane dehydrogenation at 500/sup 0/C. In connection with the fate of tin catalysts during coal liquefaction, calculations have been made of the relative thermodynamic stability of SnCl/sub 2/, Sn, SnO/sub 2/, and SnS in the presence of H/sub 2/, HCl, H/sub 2/S and H/sub 2/O. Ferrous sulfate dispersed in methylnaphthalene has been shown to be reduced to ferrous sulfide under typical coal hydroliquefaction conditions (1 hour, 450/sup 0/C, 1000 psi initial p/sub H/sub 2//). This suggests that ferrous sulfide may be the common catalytic ingredient when either (a) ferrous sulfate impregnated on powdered coal, or (b) finely divided iron pyrite is used as the catalyst. Old research on impregnated ferrous sulfate, impregnated ferrous halides, and pyrite is consistent with this assumption. Eight Co/Mo/Al/sub 2/O/sub 3/ catalysts from commercial suppliers, along with SnCl/sub 2/, have been studied for the hydrotreating of 1-methylnaphthalene (1-MN) in a stirred autoclave at 450 and 500/sup 0/C.

  12. Understanding catalytic biomass conversion through data mining

    NARCIS (Netherlands)

    E.J. Ras; B. McKay; G. Rothenberg

    2010-01-01

    Catalytic conversion of biomass is a key challenge that we chemists face in the twenty-first century. Worldwide, research is conducted into obtaining bulk chemicals, polymers and fuels. Our project centres on glucose valorisation via furfural derivatives using catalytic hydrogenation. We present her

  13. Catalytic Cracking Conversion of Tar Component in High Temperature Coal Gas%高温煤气中焦油组分的催化裂解

    Institute of Scientific and Technical Information of China (English)

    赵国靖; 李海涛; 豆斌林; 沙兴中

    2001-01-01

    在固定床反应器条件下对焦油组分(以1-甲基萘作为焦油的模型化合物)进行了催化裂解研究,选择镍基催化剂、5A分子筛、CaO催化剂、矾土和石英砂等5种催化剂为焦油组分裂解催化剂。研究表明此5种催化剂对1-甲基萘的裂解都具有催化活性,10h反应时间内,5A分子筛和Ni基催化剂对1-甲基萘的转化率为100%,CaO催化剂、矾土和石英砂对1-甲基萘的转化率则较低。同时研究了温度对Ni-3催化剂和5A分子筛的转化率的影响。为了进行比较也测试了Ni-3催化剂对苯的转化率,总包一级反应线性回归出催化剂在250~500℃的裂解活化能为22.17kJ/mol。%The tar decomposition activities of five catalysts including Nibased catalyst, alumina, 5A molecular sieve, CaO catalyst, quartz sand catalysts are compared in a fixed bed catalytic reactor. 1-methylnaphthalene is used as a tar model compound. All these catalysts show to be active and useful for tar cracking reactions, deactivations of Ni based and 5A molecular sieve catalyst are not found within 10 h reaction time with space velocity of 3 000 h-1 at temperature of 550 ℃. Especially, with increasing temperature, the conversion of 1-methylnaphthalene is improved. At same time, Ni-3 catalyst is found to be effective for benzene conversion at 550 ℃ and 650 ℃. Using a simple first-order kinetic model for the overall reaction, an apparent activation energies (22.17 kJ/mol for Ni-3 catalyst) is obtained at 250~500 ℃.

  14. Catalytic hydroliquefaction of coal: about the methodology in batch experiments

    Energy Technology Data Exchange (ETDEWEB)

    Besson, M.; Bacaud, R.; Charcosset, H.; Cebolla-Burillo, V.; Oberson, M.

    1986-03-01

    The results of catalytic hydroliquefaction under batch conditions depend on a large number of variables. The present results concern a few of these variables, in particular the influence of the catalyst concentration, of the mode of sulfidation or (and) of introduction of the catalyst in the coal/solvent mixture, and of the nature of the model compound solvent. The results indicate that increasing the concentration of catalyst increase the conversion of coal into toluene soluble products and the hydrogen consumption but has a small effect on oil formation. An inhibition of the figst fractions of a NiMo/Al/sub 2/O/sub 3/ catalyst added is shown. Strong effects of the sulfiding mode of an iron oxide catalyst, and of the temperature of introduction of the iron oxide into the autoclave are observed relative to the hydrogenation activity of the iron catalyst, when at the same time there is no influence on coal conversions. The replacement of tetralin by a non-donor solvent, 1-methylnaphthalene, suggests that the direct hydrogen transfer process from molecular hydrogen to coal fragment radicals on the catalyst surface may be important. 9 tabs., 4 firs., 16 refs.

  15. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

    2001-12-01

    The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO{sub x}). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process.

  16. Studies on Catalytic Conversion of Ethylene

    Institute of Scientific and Technical Information of China (English)

    Fuyu Liu; Chunyi Li; Xue Ding; Xinghua You

    2007-01-01

    FCC dry gas contains a large amount of ethylene.It is used by most of the refineries in China as fuel or simply burned in atmosphere.Few refineries make good use of the dry gas,so the precious ethylene resource in the dry gas is wasted.In this article,the possibility of catalytic conversion of ethylene to C3,C4,and some high molecular weight hydrocarbons in a fixed bed micro-reactor using LTB-1 catalyst,with pure ethylene as feedstock was studied.Effects of reaction temperature,reaction pressure,and feedstock flow rate,on the conversion of ethylene and the distribution of products were investigated to determine the proper reaction parameters to be used in practice.Good results indicate that this study may provide a new way of using the ethylene resource in the FCC dry gas.

  17. Coal conversion. 1977 technical report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The status and progress in US DOE's projects in coal gasification, liquefaction, and fluidized-bed combustion are reviewed with financing, flowsheets, history, progress and status of each (57 projects). (LTN)

  18. Catalytic coal conversion support: use of laser flash-pyrolysis for structural analysis. Progress report, April 15, 1979-September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Verzino, Jr, W J; Rofer-DePoorter, C K; Hermes, R E

    1982-03-01

    Untreated Fruitland subbituminous coal and Fruitland coal treated with several gasification catalysts were pyrolyzed with both Nd-glass and CO/sub 2/ lasers (1.06-..mu..m and 10.6-..mu..m wavelengths, respectively) to give both gaseous and intermediate-molecular weight products, which were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The catalysts used were AlCl/sub 3/, K/sub 2/H/sub 2/Sb/sub 2/O/sub 7/, CoCl/sub 2/, PbCl/sub 2/, Pb(NO/sub 3/)/sub 2/, Na/sub 2/Pb(OH)/sub 6/, Na/sub 2/MoO/sub 4/, NiCl/sub 2/, K/sub 2/CO/sub 3/, KHCO/sub 3/, Na/sub 2/CO/sub 3/, NaHCO/sub 3/, Na/sub 2/Ti/sub 3/O/sub 7/, NaVO/sub 3/, ZnCl/sub 2/, and NaZn(OH)/sub 3/. Gaseous products were analyzed from the Nd-glass laser pyrolysis; of the various catalysts, ZnCl/sub 2/ was found to affect N/sub 2/ production during pyrolysis most significantly. Intermediate products were analyzed from the CO/sub 2/ laser pyrolysis; product distribution was found to depend upon particle size (and consequent thermal history in pyrolysis) as well as on catalyst and heat treatment. Pyrolysis products could not be correlated in a statistically reliable way with coal or char structure. A supercritical extraction method with a Soxhlet extractor inside a pressure vessel was developed for liquid CO/sub 2/ as extractant. Gases evolved during processing of the coal-catalyst mixtures were analyzed by GC for several of the catalysts.

  19. Coal conversion. 1979 technical report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    Individual reports are made on research programs which are being conducted by various organizations and institutions for the commercial development of processes for converting coal into products that substitute for these derived from oil and natural gas. Gasification, liquefaction, and demonstration processes and plants are covered. (DLC)

  20. Biological exposure sensors in coal conversion technologies

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, Jr., A. S.

    1980-01-01

    When research was begun at ORNL in coal conversion technologies, the Health Division undertook to put together a surveillance package appropriate to the special needs of this group. This report describes the monitoring program instituted to evaluate the health of the population exposed to the chemical constituents of conversion products, effluents, process stream contents or wastes. Particular attention was paid to polycyclic aromatic hydrocarbons (PAH's). (ACR)

  1. Study of catalytic effects of mineral matter level on coal reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Mazzocco, Nestor J.; Klunder, Edgar B.; Krastman, Donald

    1981-03-01

    Coal liquefaction experiments using a 400-lb/day bubble-column reactor tested the catalytic effects of added mineral matter level on coal conversion, desulfurization, and distillate yields in continuous operation under recycle conditions, with specific emphasis on the use of a disposable pyrite catalyst indigenous to the feed coal. Western Kentucky No. 11 run-of-mine (ROM) and washed coals were used as feedstocks to determine the effects of levels of mineral matter, specifically iron compounds. Liquefaction reactivity as characterized by total distillate yield was lower for washed coal, which contained less mineral matter. Liquefaction reactivity was regained when pyrite concentrate was added as a disposable catalyst to the washed coal feed in sufficient quantity to match the feed iron concentration of the run-of-mine coal liquefaction test run.

  2. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Song, C.; Huang, L.; Wenzel, K.; Saini, A.K.; Burgess, C.; Hatcher, P.G.; Schobert, H.H.

    1992-12-01

    During this quarterly period progress has been made in the following three subjects related to the effects of low-temperature thermal and catalytic pretreatments on coal structure and reactivity in liquefaction. First, the liquefaction behavior of three bituminous coals with a carbon content ranging from 77% to 85% was evaluated spectroscopically by [sup 13]C NMR and pyrolysis/gas chromatography/mass spectrometry to delineate the structural changes that occur in the coal during liquefaction. Complementary data includes ultimate and proximate analysis, along with optical microscopy for maceral determinations. Even though these are all bituminous coals they exhibit quite different physical and chemical characteristics. The coals vary in rank, ranging from HvC b to HvA b, in petrographic composition, different maceral percentages, and in chemical nature, percent of carbon and of volatiles. It is these variations that govern the products, their distribution, and conversion percentages. Some of the products formed can be traced to a specific maceral group. Second, pyrolysis-GC-MS and FTIR techniques were used to characterize Wyodak coal before and after drying in vacuum and in air and the residues from its thermal and catalytic liquefactions. The analysis of the air-dried coal shows a decrease in the phenolic type structures in the coal network and increase in the carbonyl structures as the oxidative drying proceeds. An enhanced decrease in the carbonyl structure is observed in the liquefaction residues from the raw coal as compared to that of the vacuum dried coal. The analyses of the liquefaction residues of the air-dried coal show an increase in the ether linkages which may have a negative impact on liquefaction. The extent of the solvent adduction also increases during liquefaction with the extent of oxidation of the coal. Finally, the effects of reaction conditions were investigated on conversion of low-rank coals using a Texas subbituminous coal.

  3. Enzymantic Conversion of Coal to Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Richard Troiano

    2011-01-31

    The work in this project focused on the conversion of bituminous coal to liquid hydrocarbons. The major steps in this process include mechanical pretreatment, chemical pretreatment, and finally solubilization and conversion of coal to liquid hydrocarbons. Two different types of mechanical pretreatment were considered for the process: hammer mill grinding and jet mill grinding. After research and experimentation, it was decided to use jet mill grinding, which allows for coal to be ground down to particle sizes of 5 {mu}m or less. A Fluid Energy Model 0101 JET-O-MIZER-630 size reduction mill was purchased for this purpose. This machine was completed and final testing was performed on the machine at the Fluid Energy facilities in Telford, PA. The test results from the machine show that it can indeed perform to the required specifications and is able to grind coal down to a mean particle size that is ideal for experimentation. Solubilization and conversion experiments were performed on various pretreated coal samples using 3 different approaches: (1) enzymatic - using extracellular Laccase and Manganese Peroxidase (MnP), (2) chemical - using Ammonium Tartrate and Manganese Peroxidase, and (3) enzymatic - using the live organisms Phanerochaete chrysosporium. Spectral analysis was used to determine how effective each of these methods were in decomposing bituminous coal. After analysis of the results and other considerations, such as cost and environmental impacts, it was determined that the enzymatic approaches, as opposed to the chemical approaches using chelators, were more effective in decomposing coal. The results from the laccase/MnP experiments and Phanerochaete chrysosporium experiments are presented and compared in this final report. Spectra from both enzymatic methods show absorption peaks in the 240nm to 300nm region. These peaks correspond to aromatic intermediates formed when breaking down the coal structure. The peaks then decrease in absorbance over time

  4. Catalytic coal liquefaction with treated solvent and SRC recycle

    Science.gov (United States)

    Garg, Diwakar; Givens, Edwin N.; Schweighardt, Frank K.

    1986-01-01

    A process for the solvent refining of coal to distillable, pentane soluble products using a dephenolated and denitrogenated recycle solvent and a recycled, pentane-insoluble, solvent-refined coal material, which process provides enhanced oil-make in the conversion of coal.

  5. Materials for coal conversion and utilization

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1981-01-01

    The Sixth annual conference on materials for coal conversion and utilization was held October 13-15, 1981 at the National Bureau of Standards Gaithersburg, Maryland. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the Gas Research Institute and the National Bureau of Standards. Fifty-eight papers from the proceedings have been entered individually into EDB and ERA; four papers had been entered previously from other sources. (LTN)

  6. Trends and Challenges in Catalytic Biomass Conversion

    DEFF Research Database (Denmark)

    Osmundsen, Christian Mårup; Egeblad, Kresten; Taarning, Esben

    2013-01-01

    . The conversion of biomass-derived substrates, such as glycerol, by hydrogenolysis to the important chemicals ethylene glycol and propane diols. Secondly, the conversion of carbohydrates by Lewis acidic zeolites to yield alkyl lactates, and finally the conversion of lignin, an abundant low value source of biomass...

  7. A Review of Thermal Co-Conversion of Coal and Biomass/Waste

    Directory of Open Access Journals (Sweden)

    Aime Hilaire Tchapda

    2014-02-01

    Full Text Available Biomass is relatively cleaner than coal and is the only renewable carbon resource that can be directly converted into fuel. Biomass can significantly contribute to the world’s energy needs if harnessed sustainably. However, there are also problems associated with the thermal conversion of biomass. This paper investigates and discusses issues associated with the thermal conversion of coal and biomass as a blend. Most notable topics reviewed are slagging and fouling caused by the relatively reactive alkali and alkaline earth compounds (K2O, Na2O and CaO found in biomass ash. The alkali and alkaline earth metals (AAEM present and dispersed in biomass fuels induce catalytic activity during co-conversion with coal. The catalytic activity is most noticeable when blended with high rank coals. The synergy during co-conversion is still controversial although it has been theorized that biomass acts like a hydrogen donor in liquefaction. Published literature also shows that coal and biomass exhibit different mechanisms, depending on the operating conditions, for the formation of nitrogen (N and sulfur species. Utilization aspects of fly ash from blending coal and biomass are discussed. Recommendations are made on pretreatment options to increase the energy density of biomass fuels through pelletization, torrefaction and flash pyrolysis to reduce transportation costs.

  8. Some aspects of catalytic activity of pyrolyzed coals

    Energy Technology Data Exchange (ETDEWEB)

    Zubkova, Valentina [Institute of Chemistry, Jan Kochanowski University, Swietokrzyska Str.15G, 25-406 Kielce (Poland); Grigoreva, Evgenija [Institute of High Temperature, The Russian Academy of Science, 13/19 Izhorskaja Street, Moscow (Russian Federation); Strojwas, Andrzej, E-mail: andrzej.strojwas@wp.pl [Institute of Chemistry, Jan Kochanowski University, Swietokrzyska Str.15G, 25-406 Kielce (Poland); Czaplicka, Marianna [Institute of Non-Ferrous Metals, J. Sowińskiego Str. 5, 44-100 Gliwice (Poland); Prezhdo, Victor; Pruszkowska, Jolanta [Institute of Chemistry, Jan Kochanowski University, Swietokrzyska Str.15G, 25-406 Kielce (Poland)

    2013-10-10

    Graphical abstract: - Highlights: • The pyrolysates of coal were investigated using XRD, SEM, FT–IR and GC–MS. • The pyrolyzed coal in the m.s.g. increases the destruction rate constant by 16.7 times. • In the m.s.g. some substances have catalytic influence on breakage of ether bonding. - Abstract: The influence of additives of initial coal and selected pyrolysates of this coal on the reaction rate constant was investigated during the test reaction of breakage of ether bonding. It was stated that pyrolyzed coal at the stage of maximally swollen grains increases the destruction rate constant by 16.7 times. The pyrolysates were investigated using X-ray diffraction, electron scanning microscopy (SEM), and FT–IR spectroscopy. The resistivity values were measured for the coal and its pyrolysates. Dichloromethane extracts of the pyrolyzed coals were analyzed by gas chromatography. It was proved that the composition and structure of substances in the layer of maximally swollen grains differ substantially from those of substances in the nearby layers. The authors suggest that in the maximally swollen grains some substances can be formed which have catalytic influence on the reaction of breakage of ether bonding.

  9. Measurement and modeling of advanced coal conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. (Advanced Fuel Research, Inc., East Hartford, CT (United States)); Smoot, L.D.; Brewster, B.S. (Brigham Young Univ., Provo, UT (United States))

    1991-01-01

    The objective of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines.

  10. Catalytic conversion of methanol to light olefins

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.S.; Stead, G.E.

    1987-05-12

    A process is described for converting a methanol-containing feed to an olefin-containing hydrocarbon product having a propylene-methylene weight ratio of at least 35.1:6.4. The process comprises contacting the methanol-containing feed in a reaction zone under methanol conversion conditions with a ZSM-12 zeolite catalyst modified by incorporation of a minor amount of a modifier selected from magnesium oxide, manganese oxide and a combination of both magnesium oxide and manganese oxide.

  11. Recent Advances in Catalytic Conversion of Ethanol to Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Junming; Wang, Yong

    2014-04-30

    With increased availability and decreased cost, ethanol is potentially a promising platform molecule for the production of a variety of value-added chemicals. In this review, we provide a detailed summary of recent advances in catalytic conversion of ethanol to a wide range of chemicals and fuels. We particularly focus on catalyst advances and fundamental understanding of reaction mechanisms involved in ethanol steam reforming (ESR) to produce hydrogen, ethanol conversion to hydrocarbons ranging from light olefins to longer chain alkenes/alkanes and aromatics, and ethanol conversion to other oxygenates including 1-butanol, acetaldehyde, acetone, diethyl ether, and ethyl acetate.

  12. Atmospheric methanol measurement using selective catalytic methanol to formaldehyde conversion

    Directory of Open Access Journals (Sweden)

    S. J. Solomon

    2005-05-01

    Full Text Available A novel atmospheric methanol measurement technique, employing selective gas-phase catalytic conversion of methanol to formaldehyde followed by detection of the formaldehyde product, has been developed and tested. The effects of temperature, gas flow rate, gas composition, reactor-bed length, and reactor-bed composition on the methanol conversion efficiency of a molybdenum-rich, iron-molybdate catalyst [Mo-Fe-O] were studied. Best results were achieved using a 1:4 mixture (w/w of the catalyst in quartz sand. Optimal methanol to formaldehyde conversion (>95% efficiency occurred at a catalyst housing temperature of 345°C and an estimated sample-air/catalyst contact time of <0.2 s. Potential interferences arising from conversion of methane and a number of common volatile organic compounds (VOC to formaldehyde were found to be negligible under most atmospheric conditions and catalyst housing temperatures. Using the new technique, atmospheric measurements of methanol were made at the University of Bremen campus from 1 to 15 July 2004. Methanol mixing ratios ranged from 1 to 5 ppb with distinct maxima at night. Formaldehyde mixing ratios, obtained in conjunction with methanol by periodically bypassing the catalytic converter, ranged from 0.2 to 1.6 ppb with maxima during midday. These results suggest that selective, catalytic methanol to formaldehyde conversion, coupled with existing formaldehyde measurement instrumentation, is an inexpensive and effective means for monitoring atmospheric methanol.

  13. Atmospheric methanol measurement using selective catalytic methanol to formaldehyde conversion

    Directory of Open Access Journals (Sweden)

    S. J. Solomon

    2005-01-01

    Full Text Available A novel atmospheric methanol measurement technique, employing selective gas-phase catalytic conversion of methanol to formaldehyde followed by detection of the formaldehyde product, has been developed and tested. The effects of temperature, gas flow rate, gas composition, reactor-bed length, and reactor-bed composition on the methanol conversion efficiency of a molybdenum-rich, iron-molybdate catalyst [Mo-Fe-O] were studied. Best results were achieved using a 1:4 mixture (w/w of the catalyst in quartz sand. Optimal methanol to formaldehyde conversion (>95% efficiency occurred at a catalyst housing temperature of 345°C and an estimated sample-air/catalyst contact time of <0.2 seconds. Potential interferences arising from conversion of methane and a number of common volatile organic compounds (VOC to formaldehyde were found to be negligible under most atmospheric conditions and catalyst housing temperatures. Using the new technique, atmospheric measurements of methanol were made at the University of Bremen campus from 1 to 15 July 2004. Methanol mixing ratios ranged from 1 to 5 ppb with distinct maxima at night. Formaldehyde mixing ratios, obtained in conjunction with methanol by periodically bypassing the catalytic converter, ranged from 0.2 to 1.6 ppb with maxima during midday. These results suggest that selective, catalytic methanol to formaldehyde conversion, coupled with existing formaldehyde measurement instrumentation, is an inexpensive and effective means for monitoring atmospheric methanol.

  14. Catalytic Conversion of Methanol by Oxidative Dehydrogenation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This study investigates the effects of addition of oxygen on the oxidative dehydrogenation (ODH) of methanol when a fluorotetrasilicic mica ion-exchanged with palladium (Pd2+-TSM) was used as the catalyst. The reaction proceeded at a very low temperature in the presence of oxygen, and HCOOCH3 was obtained at high selectivity. By calculating the equilibrium conversion, it has been shown that substantial ODH took place for HCOOCH3 production. Consequently, this reaction would make dehydrogenation the dominant reaction at equilibrium. Not all the H dissociated from CH3OH was converted to H2O by oxidation. It has been shown that the H2O was not produced from oxidative dehydrogenation by the direct reaction of CH3OH and O2 when an attempt was made to carry out oxidative dehydrogenation using an isotope oxygen trace method in the gas phase. Therefore, when CH3OH was converted to CO2 and dehydrogenated to HCOOCH3, the C-O bonds were not dissociated.

  15. Catalytic spectrophotometric determination of iodine in coal by pyrohydrolysis decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Wu Daishe [School of Environmental Science and Engineering, Nanchang University, Nanchang 330031 (China); Institute of Geographic Sciences and Resources Research, CAS, Beijing 100101 (China)], E-mail: dswu@ncu.edu.cn; Deng Haiwen [School of Environmental Science and Engineering, Nanchang University, Nanchang 330031 (China); Wang Wuyi [Institute of Geographic Sciences and Resources Research, CAS, Beijing 100101 (China); Xiao Huayun [School of Environmental Science and Engineering, Nanchang University, Nanchang 330031 (China)

    2007-10-10

    A method for the determination of iodine in coal using pyrohydrolysis for sample decomposition was proposed. A pyrohydrolysis apparatus system was constructed, and the procedure was designed to burn and hydrolyse coal steadily and completely. The parameters of pyrohydrolysis were optimized through the orthogonal experimental design. Iodine in the absorption solution was evaluated by the catalytic spectrophotometric method, and the absorbance at 420 nm was measured by a double-beam UV-visible spectrophotometer. The limit of detection and quantification of the proposed method were 0.09 {mu}g g{sup -1} and 0.29 {mu}g g{sup -1}, respectively. After analysing some Chinese soil reference materials (SRMs), a reasonable agreement was found between the measured values and the certified values. The accuracy of this approach was confirmed by the analysis of eight coals spiked with SRMs with an indexed recovery from 94.97 to 109.56%, whose mean value was 102.58%. Six repeated tests were conducted for eight coal samples, including high sulfur coal and high fluorine coal. A good repeatability was obtained with a relative standard deviation value from 2.88 to 9.52%, averaging 5.87%. With such benefits as simplicity, precision, accuracy and economy, this approach can meet the requirements of the limits of detection and quantification for analysing iodine in coal, and hence it is highly suitable for routine analysis.

  16. Catalytic spectrophotometric determination of iodine in coal by pyrohydrolysis decomposition.

    Science.gov (United States)

    Wu, Daishe; Deng, Haiwen; Wang, Wuyi; Xiao, Huayun

    2007-10-10

    A method for the determination of iodine in coal using pyrohydrolysis for sample decomposition was proposed. A pyrohydrolysis apparatus system was constructed, and the procedure was designed to burn and hydrolyse coal steadily and completely. The parameters of pyrohydrolysis were optimized through the orthogonal experimental design. Iodine in the absorption solution was evaluated by the catalytic spectrophotometric method, and the absorbance at 420 nm was measured by a double-beam UV-visible spectrophotometer. The limit of detection and quantification of the proposed method were 0.09 microg g(-1) and 0.29 microg g(-1), respectively. After analysing some Chinese soil reference materials (SRMs), a reasonable agreement was found between the measured values and the certified values. The accuracy of this approach was confirmed by the analysis of eight coals spiked with SRMs with an indexed recovery from 94.97 to 109.56%, whose mean value was 102.58%. Six repeated tests were conducted for eight coal samples, including high sulfur coal and high fluorine coal. A good repeatability was obtained with a relative standard deviation value from 2.88 to 9.52%, averaging 5.87%. With such benefits as simplicity, precision, accuracy and economy, this approach can meet the requirements of the limits of detection and quantification for analysing iodine in coal, and hence it is highly suitable for routine analysis. PMID:17920390

  17. Catalytic Conversion of Cellulose to Levulinic Acid by Metal Chlorides

    Directory of Open Access Journals (Sweden)

    Beixiao Zhang

    2010-08-01

    Full Text Available The catalytic performance of various metal chlorides in the conversion of cellulose to levulinic acid in liquid water at high temperatures was investigated. The effects of reaction parameters on the yield of levulinic acid were also explored. The results showed that alkali and alkaline earth metal chlorides were not effective in conversion of cellulose, while transition metal chlorides, especially CrCl3, FeCl3 and CuCl2 and a group IIIA metal chloride (AlCl3, exhibited high catalytic activity. The catalytic performance was correlated with the acidity of the reaction system due to the addition of the metal chlorides, but more dependent on the type of metal chloride. Among those metal chlorides, chromium chloride was found to be exceptionally effective for the conversion of cellulose to levulinic acid, affording an optimum yield of 67 mol % after a reaction time of 180 min, at 200 °C, with a catalyst dosage of 0.02 M and substrate concentration of 50 wt %. Chromium metal, most of which was present in its oxide form in the solid sample and only a small part in solution as Cr3+ ion, can be easily separated from the resulting product mixture and recycled. Finally, a plausible reaction scheme for the chromium chloride catalyzed conversion of cellulose in water was proposed.

  18. Advanced Coal Conversion Process Demonstration: A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2005-04-01

    The objective of this project was to demonstrate a process for upgrading subbituminous coal by reducing its moisture and sulfur content and increasing its heating value using the Advanced Coal Conversion Process (ACCP) unit. The ACCP unit, with a capacity of 68.3 tons of feed coal per hour (two trains of 34 tons/hr each), was located next to a unit train loading facility at WECo's Rosebud Coal Mine near Colstrip, Montana. Most of the coal processed was Rosebud Mine coal, but several other coals were also tested. The SynCoal® produced was tested both at utilities and at several industrial sites. The demonstration unit was designed to handle about one tenth of the projected throughput of a commercial facility.

  19. Self-catalytic conversion of pure quantum states

    Science.gov (United States)

    Duarte, Cristhiano; Drumond, Raphael C.; Terra Cunha, Marcelo

    2016-04-01

    Conversion of entangled states under (stochastic) local operations and classical communication ((S)LOCC) admits the phenomenon of catalysis. Here we explore the possibility of a copy of the initial state itself performing as a catalyst, which we call a self-catalytic process. We show explicit examples of self-catalysis. Necessary and sufficient conditions for the phenomenon to take place are discussed. We numerically estimate how frequent it is and we show that increasing the number of copies used as catalyst can increase the probability of conversion, but does not make the process deterministic. By the end we conjecture that under LOCC the probability of finding a self-catalytic reaction does not increase monotonically with the dimensions whereas under SLOCC, it does increase.

  20. Computer-aided Siting of Coal Conversion Facilities

    Science.gov (United States)

    Moreno, D. D.

    1982-01-01

    The value of using geographic information systems in site selection for coal conversion plants is discussed. Environmental and cultural factors and capital/operating costs were considered to determine site suitability.

  1. Effect of in-situ solvent soaking and heating pre-treatment on coal conversion and oil yield during liquefaction of demineralized low-rank Malaysian coal

    Energy Technology Data Exchange (ETDEWEB)

    M.A.M. Ishak; M.F. Abdullah; K. Ismail; M.O.A. Kadir; A.R. Mohamed [University Technology MARA, Perlis (Malaysia). Fuel Combustion Research Laboratory, Faculty of Applied Sciences

    2005-07-01

    The effect of in-situ solvent soaking and heating (SSH) pre-treatment on demineralized low-rank Malaysian coal towards coal conversion and oil yield during direct liquefaction was investigated. Demineralization of coal was carried out by leaching with strong protic acids such as HCl, HF and HNO{sub 3} whereby more than 95 % of mineral content in the coal was reduced. Apparently, the mineral matter that was removed by the HCl treatment (i.e. cationics) exhibits more catalytic effect during the liquefaction process. The reduction in the mineral content increased the coal porosity that enabled the solvent to penetrate into the coal macropores during the SSH pre-treatment process. The results of liquefaction on the pre-treated SSH demineralized coal at 420{sup o}C and at 4 MPa, however show comparable amount of coal conversion with slightly lower amount of oil yield being obtained with comparison to the raw and SSH-raw coals. Thus, besides the in-situ solvent soaking and heating pre-treatment, the presence of mineral matters in coal prove to be beneficial during coal liquefaction process.

  2. Coal liquefaction and gas conversion contractors review conference: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This volume contains 55 papers presented at the conference. They are divided into the following topical sections: Direct liquefaction; Indirect liquefaction; Gas conversion (methane conversion); and Advanced research liquefaction. Papers in this last section deal mostly with coprocessing of coal with petroleum, plastics, and waste tires, and catalyst studies. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  3. Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, Oleg

    2013-12-31

    Under the cooperative agreement program of DOE and funding from Wyoming State’s Clean Coal Task Force, Western Research Institute and Thermosolv LLC studied the direct conversion of Wyoming coals and coal-lignin mixed feeds into liquid fuels in conditions highly relevant to practice. During the Phase I, catalytic direct liquefaction of sub-bituminous Wyoming coals was investigated. The process conditions and catalysts were identified that lead to a significant increase of desirable oil fraction in the products. The Phase II work focused on systematic study of solvothermal depolymerization (STD) and direct liquefaction (DCL) of carbonaceous feedstocks. The effect of the reaction conditions (the nature of solvent, solvent/lignin ratio, temperature, pressure, heating rate, and residence time) on STD was investigated. The effect of a number of various additives (including lignin, model lignin compounds, lignin-derivable chemicals, and inorganic radical initiators), solvents, and catalysts on DCL has been studied. Although a significant progress has been achieved in developing solvothermal depolymerization, the side reactions – formation of considerable amounts of char and gaseous products – as well as other drawbacks do not render aqueous media as the most appropriate choice for commercial implementation of STD for processing coals and lignins. The trends and effects discovered in DCL point at the specific features of liquefaction mechanism that are currently underutilized yet could be exploited to intensify the process. A judicious choice of catalysts, solvents, and additives might enable practical and economically efficient direct conversion of Wyoming coals into liquid fuels.

  4. Catalytic gasification of char from co-pyrolysis of coal and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenkui [State key Laboratory of Multi-phase Complex system, the Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080 (China); Graduate University, Chinese Academy of Sciences, Beijing 100080 (China); Song, Wenli; Lin, Weigang [State key Laboratory of Multi-phase Complex system, the Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080 (China)

    2008-09-15

    The catalytic gasification of char from co-pyrolysis of coal and wheat straw was studied. Alkali metal salts, especially potassium salts, are considered as effective catalysts for carbon gasification by steam and CO{sub 2}, while too expensive for industry application. The herbaceous type of biomass, which has a high content of potassium, may be used as an inexpensive source of catalyst by co-processing with coal. The reactivity of chars from co-pyrolysis of coal and straw was experimentally examined. The chars were prepared in a spout-entrained reactor with different ratios of coal to straw. The gasification characteristics of chars were measured by thermogravimetric analysis (TGA). The co-pyrolysis chars revealed higher gasification reactivity than that of char from coal, especially at high level of carbon conversion. The influence of the alkali in the char and the pyrolysis temperature on the reactivity of co-pyrolysis char was investigated. The experimental results show that the co-pyrolysis char prepared at 750 C have the highest alkali concentration and reactivity. (author)

  5. Coal conversion. 1978 technical report. [US DOE

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-09-01

    The United States has more energy available in coal than in petroleum, natural gas, oil shale, and tar sands combined. Nationwide energy shortages, together with the availability of abundant coal reserves, make commercial production of synthetic fuels from coal vital to the Nation's total supply of clean energy. In response to this need, the Division of Fossil Fuel Processing - US Department of Energy is conducting a research, development and demonstration program to provide technology that will permit rapid commercialization of processes for converting coal into products that substitute for those derived from oil and natural gas. These substitute fuels include crude oil, fuel oil and distillates; chemical feedstocks; pipeline quality and fuel gas; and other products such as char that may be useful in energy production.

  6. Opportunities for coal to methanol conversion

    Energy Technology Data Exchange (ETDEWEB)

    1980-04-01

    The accumulations of mining residues in the anthracite coal regions of Pennsylvania offer a unique opportunity to convert the coal content into methanol that could be utilized in that area as an alternative to gasoline or to extend the supplies through blending. Additional demand may develop through the requirements of public utility gas turbines located in that region. The cost to run this refuse through coal preparation plants may result in a clean coal at about $17.00 per ton. After gasification and synthesis in a 5000 ton per day facility, a cost of methanol of approximately $3.84 per million Btu is obtained using utility financing. If the coal is to be brought in by truck or rail from a distance of approximately 60 miles, the cost of methanol would range between $4.64 and $5.50 per million Btu depending upon the mode of transportation. The distribution costs to move the methanol from the synthesis plant to the pump could add, at a minimum, $2.36 per million Btu to the cost. In total, the delivered cost at the pump for methanol produced from coal mining wastes could range between $6.20 and $7.86 per million Btu.

  7. Catalytic conversion of methane: Carbon dioxide reforming and oxidative coupling

    KAUST Repository

    Takanabe, Kazuhiro

    2012-01-01

    Natural gas conversion remains one of the essential technologies for current energy needs. This review focuses on the mechanistic aspects of the development of efficient and durable catalysts for two reactions, carbon dioxide reforming and the oxidative coupling of methane. These two reactions have tremendous technological significance for practical application in industry. An understanding of the fundamental aspects and reaction mechanisms of the catalytic reactions reviewed in this study would support the design of industrial catalysts. CO 2 reforming of methane utilizes CO 2, which is often stored in large quantities, to convert as a reactant. Strategies to eliminate carbon deposition, which is the major problem associated with this reaction, are discussed. The oxidative coupling of methane directly produces ethylene in one reactor through a slightly exothermic reaction, potentially minimizing the capital cost of the natural gas conversion process. The focus of discussion in this review will be on the attainable yield of C 2 products by rigorous kinetic analyses.

  8. Conversion of Coal Mine Gas to LNG

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-02-05

    This project evolved from a 1995, DOE-NETL competitive solicitation for practical CMM capture and utilization concepts. Appalachian Pacific was one of three companies selected to proceed with the construction and operation of a cost-shared demonstration plant. In the course of trying to proceed with this demonstration plant, AP examined several liquefaction technologies, discussed obtaining rights to coal mine methane with a number of coal companies, explored marketing potential with a wide variety of customers in many sections of the United States, studied in great detail the impact of a carbon credit exchange, and developed a suite of analytical tools with which to evaluate possible project options. In the end, the newness of the product, reluctance on the part of the coal companies to venture away from time tested practices, difficulty with obtaining financing, the failure of a carbon credit market to develop and the emergence of shale derived gas production prevented a demonstration plant from being built.

  9. Survey of industrial coal conversion equipment capabilities: rotating components

    Energy Technology Data Exchange (ETDEWEB)

    Williams, W. R.; Horton, J. R.; Boudreau, W. F.; Siman-Tov, M.

    1978-04-01

    At the request of the Major Facilities Project Management Division of the Energy Research and Development Administration, Fossil Energy Division, a study was undertaken to determine the capabilities of U.S. industry to supply the rotating equipment needed for future coal conversion facilities. Furthermore, problem areas were to be identified and research and development needs determined for producing advanced designs of the required equipment: Pumps, compressors, hydraulic turbines, and gas expanders. It has been concluded that equipment for essentially all clean-stream applications likely to be encountered in coal conversion facilities is generally available except high-pressure oxygen compressors. These oxygen compressors as well as slurry pumps need to be developed or significantly upgraded. Also, fans and blower for dirty-gas streams need developmental work, as do expanders for high-temperature service. Hydraulic turbines, which were not specified but which might be used for slurry applications in future coal conversion plants, are not available.

  10. Fourth annual conference on materials for coal conversion and utilization

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The fourth annual conference on materials for coal conversion and utilization was held October 9 to 11, 1979, at the National Bureau of Standards, Gaithersburg, Maryland. It was sponsored by the National Bureau of Standards, the Electric Power Research Institute, the US Department of Energy, and the Gas Research Institute. The papers have been entered individually into EDB and ERA. (LTN)

  11. Catalytic conversion of biomass to bio-syncrude oil

    Energy Technology Data Exchange (ETDEWEB)

    Mante, Ofei Daku [Virginia Polytechnic Institute and State University, Biological Systems Engineering, Blacksburg, VA (United States); Agblevor, Foster A. [Utah State University, Biological Engineering, Logan, UT (United States)

    2011-12-15

    The conversion of biomass to transportation fuels and chemicals has been of immense interest in recent years. In this study, the production of high quality bio-oil (bio-syncrude oil) was achieved by catalytically cracking pyrolysis vapors from hybrid poplar in a dual-fluidized bed reactor. The catalytic deoxygenation of the primary pyrolysis vapors was achieved with a commercial HZSM-5 at 425-450 C. The organic, water, char, coke, and gas yields were 11.9, 20.9, 16.5, 3.8, and 46.8 wt.%, respectively. This work demonstrated that the use of a fluidized bed reactor for the catalytic upgrading reduces coke formation and increases catalyst lifetime. The concentration of the permanent gases was in the order of CO > CO{sub 2}> C{sub 3}H{sub 6}> CH{sub 4}> H{sub 2}> other C{sub 2}-C{sub 4}. The light bio-syncrude (LBS) oil collected from the condenser was predominately aromatic hydrocarbons. The heavy bio-syncrude (HBS) oil collected from the electrostatic precipitator consisted of mainly phenols, methyl-substituted phenols, naphthalenes, benzenediols, and naphthalenol. The bio-syncrude oils were low in oxygen, less viscous, less acidic, stable, and high in energy density. The higher heating value of the light and heavy bio-syncrude oil was 36.89 and 33.98 MJ/kg, respectively. The distillate yields from the atmospheric distillation showed that 91 wt.% of the LBS oil distills up to 220 C and 76 wt.% of the HBS oil distills up to 440 C. Accelerated stability test of the oils at 90 C for 24 h and storage of the oils at room temperature for 10 months showed that the bio-syncrude oils were stable. The catalytic deoxygenation of the pyrolysis vapors resulted in the removal of undesirable oxygenates such as levoglucosan, carboxylic acids, aldehydes, and ketones. The bio-syncrude oil can be considered as a suitable feed for use in a petroleum refinery for the production of transportation fuels and chemicals. (orig.)

  12. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Technical progress report, August 1992--November 1992

    Energy Technology Data Exchange (ETDEWEB)

    Song, C.; Huang, L.; Wenzel, K.; Saini, A.K.; Burgess, C.; Hatcher, P.G.; Schobert, H.H.

    1992-12-01

    During this quarterly period progress has been made in the following three subjects related to the effects of low-temperature thermal and catalytic pretreatments on coal structure and reactivity in liquefaction. First, the liquefaction behavior of three bituminous coals with a carbon content ranging from 77% to 85% was evaluated spectroscopically by {sup 13}C NMR and pyrolysis/gas chromatography/mass spectrometry to delineate the structural changes that occur in the coal during liquefaction. Complementary data includes ultimate and proximate analysis, along with optical microscopy for maceral determinations. Even though these are all bituminous coals they exhibit quite different physical and chemical characteristics. The coals vary in rank, ranging from HvC b to HvA b, in petrographic composition, different maceral percentages, and in chemical nature, percent of carbon and of volatiles. It is these variations that govern the products, their distribution, and conversion percentages. Some of the products formed can be traced to a specific maceral group. Second, pyrolysis-GC-MS and FTIR techniques were used to characterize Wyodak coal before and after drying in vacuum and in air and the residues from its thermal and catalytic liquefactions. The analysis of the air-dried coal shows a decrease in the phenolic type structures in the coal network and increase in the carbonyl structures as the oxidative drying proceeds. An enhanced decrease in the carbonyl structure is observed in the liquefaction residues from the raw coal as compared to that of the vacuum dried coal. The analyses of the liquefaction residues of the air-dried coal show an increase in the ether linkages which may have a negative impact on liquefaction. The extent of the solvent adduction also increases during liquefaction with the extent of oxidation of the coal. Finally, the effects of reaction conditions were investigated on conversion of low-rank coals using a Texas subbituminous coal.

  13. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Song, C.; Saini, A.; Huang, L.; Wenzel, K.; Hatcher, P.G.; Schobert, H.H.

    1992-01-01

    Low-temperature catalytic pretreatment is a promising approach to the development of an improved liquefaction process. This work is a fundamental study on effects of pretreatments on coal structure and reactivity in liquefaction. The main objectives of this project are to study the coal structural changes induced by low-temperature catalytic and thermal pretreatments by using spectroscopic techniques; and to clarify the pretreatment-induced changes in reactivity or convertibility of coals in the subsequent liquefaction. This report describes the progress of our work during the first quarterly period. Substantial progress has been made in the spectroscopic characterization of fresh and THF-extracted samples of two subbituminous coals and fresh samples of three bituminous coals using cross-polarization magic angle spinning (CPMAS) solid state {sup 13}C NMR and pyrolysis-GC-MS techniques. CPMAS {sup 13}C NMR and pyrolysis-GC-MS provided important information on carbon distribution/functionality and molecular components/structural units, respectively, for these coal samples. Pyrolysis-GC-MS revealed that there are remarkable structural differences in structural units between the subbituminous coals and the bituminous coals. Furthermore, significant progress has been made in the pretreatments and spectroscopic characterization of catalytically and thermally pretreated as well as physically treated Wyodak subbituminous coal, and temperature-staged and temperature-programmed thermal and catalytic liquefaction of a Montana subbituminous coal.

  14. Proceedings of the third annual underground coal conversion symposium

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The Third Annual Underground Coal Conversion Symposium was held at Fallen Leaf Lake, CA, June 6--9, 1977. It was sponsored by the U.S. Department of Energy and hosted by Lawrence Livermore Laboratory. Forty-one papers have been entered individually into EDB and ERA; ten papers had been entered previously from other sources. The papers cover the in-situ gasification of lignite, subbituminous coal and bituminous coal, in flat lying seams and a steeply dipping beds, at moderate and at greater depths, and describe various technologies of (borehole linking, well spacings, gasifying agents (air, oxygen, steam, hydrogen, including mixtures). Measuring instruments for diagnostic and process control purposes are described. Environmental impacts (ground subsidence and possible groundwater pollution) are the subject of several papers. Finally, mathematical modelling and projected economics of the process are developed. (LTN)

  15. Assessment of environmental control technology for coal conversion aqueous wastes

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.A.; Barker, R.E.

    1978-07-01

    A hydrocarbonization process has been studied to assess environmental control technology for coal conversion wastewaters. Fifteen major wastewater streams were identified; 2 present serious environmental problems not routinely encountered in industry. These are the hydrocarbonization condensate and the ash sluicing waste from the gasifier. The hydrocarbonization product water is high in phenolics, ammonia, cyanide, thiocyanate, and other sulfur compounds. This stream will present a significant wastewater treatment problem unless the stream can be recycled internally. The gasifier-ash sluicing water will probably be similar to ash sluicing water from coal-fired power generating plants. However, the large quantity of toxic trace elements may be more easily dissolved from ash produced at the lower-temperature and reducing conditions encountered in gasification. A number of cleanup technologies relevant to the cleanup of coal conversion aqueous effluents have ben assessed for their adaptability to the specific pollutants found in coal hydrocarbonization wastewater. A summary of these processes lists the potential applicability, economics, raw material requirements, process compatibility, operating conditions, state of development, environmental problems, energy requirements, and availability of each. Indications are that almost any level of removal can be achieved if one is willing to pay the cost. The optimum amount of cleanup will require much future interaction between industry, environmental control technology developers, human and environmental effects assessors, and federal effluent regulations administrators.

  16. Coal conversion processes and their materials requirements. Physical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, J.B.; Voorde, M. van de; Betteridge, W.

    1984-01-01

    The coal conversion processes combustion, gasification and liquefaction are discussed with respect to current industrial developments and material problems in industrial plants due to fouling, corrosion and erosion. The available materials are discussed by means of high temperature corrosion, erosion, ductibility, creep, fatigue and physical properties. Ceramics and refractories which are particularly used as thermal insulation are also discussed by means of corrosion and erosion and mechanical properties.

  17. Proceedings of the 5th underground coal conversion symposium

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-05-01

    The 5th underground coal conversion symposium was held at Alexandria, Virginia, June 18--21, 1979. Thirty-three papers have been entered individually into EDB and ERA. Seven papers were also abstracted for Energy Abstracts for Policy Analysis. Seven papers had been entered previously from other sources. The symposium was sponsored by the US Department of Energy, Division of Fossil Fuel Extraction. (LTN)

  18. COST OF SELECTIVE CATALYTIC REDUCTION (SCR) APPLICATION FOR NOX CONTROL ON COAL-FIRED BOILERS

    Science.gov (United States)

    The report provides a methodology for estimating budgetary costs associated with retrofit applications of selective catalytic reduction (SCR) technology on coal-fired boilers. SCR is a postcombustion nitrogen oxides (NOx) control technology capable of providing NOx reductions >90...

  19. Performance and economics of advanced energy conversion systems for coal and coal-derived fuels

    Science.gov (United States)

    Corman, J. C.; Fox, G. R.

    1978-01-01

    The desire to establish an efficient Energy Conversion System to utilize the fossil fuel of the future - coal - has produced many candidate systems. A comparative technical/economic evaluation was performed on the seven most attractive advanced energy conversion systems. The evaluation maintains a cycle-to-cycle consistency in both performance and economic projections. The technical information base can be employed to make program decisions regarding the most attractive concept. A reference steam power plant was analyzed to the same detail and, under the same ground rules, was used as a comparison base. The power plants were all designed to utilize coal or coal-derived fuels and were targeted to meet an environmental standard. The systems evaluated were two advanced steam systems, a potassium topping cycle, a closed cycle helium system, two open cycle gas turbine combined cycles, and an open cycle MHD system.

  20. Integrated Biomass Gasification with Catalytic Partial Oxidation for Selective Tar Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lingzhi; Wei, Wei; Manke, Jeff; Vazquez, Arturo; Thompson, Jeff; Thompson, Mark

    2011-05-28

    Biomass gasification is a flexible and efficient way of utilizing widely available domestic renewable resources. Syngas from biomass has the potential for biofuels production, which will enhance energy security and environmental benefits. Additionally, with the successful development of low Btu fuel engines (e.g. GE Jenbacher engines), syngas from biomass can be efficiently used for power/heat co-generation. However, biomass gasification has not been widely commercialized because of a number of technical/economic issues related to gasifier design and syngas cleanup. Biomass gasification, due to its scale limitation, cannot afford to use pure oxygen as the gasification agent that used in coal gasification. Because, it uses air instead of oxygen, the biomass gasification temperature is much lower than well-understood coal gasification. The low temperature leads to a lot of tar formation and the tar can gum up the downstream equipment. Thus, the biomass gasification tar removal is a critical technology challenge for all types of biomass gasifiers. This USDA/DOE funded program (award number: DE-FG36-O8GO18085) aims to develop an advanced catalytic tar conversion system that can economically and efficiently convert tar into useful light gases (such as syngas) for downstream fuel synthesis or power generation. This program has been executed by GE Global Research in Irvine, CA, in collaboration with Professor Lanny Schmidt's group at the University of Minnesota (UoMn). Biomass gasification produces a raw syngas stream containing H2, CO, CO2, H2O, CH4 and other hydrocarbons, tars, char, and ash. Tars are defined as organic compounds that are condensable at room temperature and are assumed to be largely aromatic. Downstream units in biomass gasification such as gas engine, turbine or fuel synthesis reactors require stringent control in syngas quality, especially tar content to avoid plugging (gum) of downstream equipment. Tar- and ash-free syngas streams are a critical

  1. Technology and development requirements for advanced coal conversion systems

    Science.gov (United States)

    1981-01-01

    A compendium of coal conversion process descriptions is presented. The SRS and MC data bases were utilized to provide information paticularly in the areas of existing process designs and process evaluations. Additional information requirements were established and arrangements were made to visit process developers, pilot plants, and process development units to obtain information that was not otherwise available. Plant designs, process descriptions and operating conditions, and performance characteristics were analyzed and requirements for further development identified and evaluated to determine the impact of these requirements on the process commercialization potential from the standpoint of economics and technical feasibility. A preliminary methodology was established for the comparative technical and economic assessment of advanced processes.

  2. Mesoporous zeolite single crystals for catalytic hydrocarbon conversion

    DEFF Research Database (Denmark)

    Schmidt, I.; Christensen, C.H.; Hasselriis, Peter;

    2005-01-01

    Recently, mesoporous zeolite single crystals were discovered. They constitute a novel family of materials that features a combined micropore and mesopore architecture within each individual crystal. Here, we briefly summarize recent catalytic results from cracking and isomerization of alkalies, a...

  3. Survey of industrial coal conversion equipment capabilities: valves

    Energy Technology Data Exchange (ETDEWEB)

    Bush, W. A.; Slade, E. C.

    1978-06-01

    A survey of the industrial capabilities of the valve and valve-actuator industry to supply large, high-pressure stop valves for the future coal conversion industry is presented in this report. Also discussed are development and testing capabilities of valve and valve-actuator manufacturers and anticipated lead times required to manufacture advanced design valves for the most stringent service applications. Results indicate that the valve and valve-actuator industry is capable of manufacturing in quantity equipment of the size and for the pressure and temperature ranges which would be required in the coal conversion industry. Valve manufacturers do not, however, have sufficient product application experience to predict the continuing functional ability of valves used for lock-hopper feeders, slurry feeders, and slag-char letdown service. Developmental and testing efforts to modify existing valve designs or to develop new valve concepts for these applications were estimated to range from 1 to 6 years. A testing facility to simulate actuation of critical valves under service conditions would be beneficial.

  4. Coal conversion control technology. Volume II. Gaseous emissions, solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Bostwick, L.E.; Smith, M.R.; Moore, D.O.; Webber, D.K.

    1979-10-01

    Information has been gathered on coal conversion process streams. Available and developing control technology has been evaluated in view of the requirements of present and proposed federal, state, regional and international environmental standards. The study indicates that it appears possible to evolve technology to reduce each of the components of each process stream to an environmentally acceptable level. The conclusion has also been reached that such an approach would be costly and difficult of execution. Because all coal conversion processes are net users of water, liquid effluents need be treated only for recycling within the process, thus achieving essentially zero discharge. Further, with available technology gaseous emissions can be controlled to meet present environmental standards, particulates can be controlled or eliminated and disposal of solid wastes can be managed to avoid deleterious environmental effects. Volume I focuses on environmental regulations for gaseous, liquid, and solid wastes, and the control technology for liquid effluents. Volume II deals with the control technology of gaseous emissions and solid wastes. Volume III includes a program for economic analysis of control technology and includes the appendix.

  5. Proximate analysis of coal and solid products from coal conversion by thermogravimetric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Iacchelli, A.; Selucky, M.

    1983-01-01

    Proximate analysis of coals consists of the determination of moisture, volatile matter, ash and fixed carbon in a sample. This report shows that this analysis can be accomplished using thermal gravimetric analysis (TGA) as a procedure which can simulate all conditions involved. The influence of various variables, such as sample size, purge gas flow rate, temperature program and coal rank have been studied using coal samples ranging in rank from low volatile bituminous coals to lignites. The TGA procedure practically eliminates sample contact with ambient air and reduces sample handling to detemining (automatically) its original weight before the start of the analysis. The whole proximate analysis is essentially a one-step procedure. The use of oxygen after volatile matter removal allows direct burning of fixed carbon as a direct determination of its weight. The method is fast and well repeatable and is recommended as a semiroutine procedure, especially for very small samples from minibomb experiments, or where additional information on the course of sample devolatilization is of interest, such as in the analysis of pyridine and toluene extracts and the various insoluble materials form coal conversion experiments. 7 refs., 13 figs., 4 tabs.

  6. Catalytic multi-stage liquefaction of coal at HTI: Bench-scale studies in coal/waste plastics coprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, V.R.; Lee, L.K.; Stalzer, R.H. [Hydrocarbon Technologies, Inc., Lawrenceville, NJ (United States)] [and others

    1995-12-31

    The development of Catalytic Multi-Stage Liquefaction (CMSL) at HTI has focused on both bituminous and sub-bituminous coals using laboratory, bench and PDU scale operations. The crude oil equivalent cost of liquid fuels from coal has been curtailed to about $30 per barrel, thus achieving over 30% reduction in the price that was evaluated for the liquefaction technologies demonstrated in the late seventies and early eighties. Contrary to the common belief, the new generation of catalytic multistage coal liquefaction process is environmentally very benign and can produce clean, premium distillates with a very low (<10ppm) heteroatoms content. The HTI Staff has been involved over the years in process development and has made significant improvements in the CMSL processing of coals. A 24 month program (extended to September 30, 1995) to study novel concepts, using a continuous bench scale Catalytic Multi-Stage unit (30kg coal/day), has been initiated since December, 1992. This program consists of ten bench-scale operations supported by Laboratory Studies, Modelling, Process Simulation and Economic Assessments. The Catalytic Multi-Stage Liquefaction is a continuation of the second generation yields using a low/high temperature approach. This paper covers work performed between October 1994- August 1995, especially results obtained from the microautoclave support activities and the bench-scale operations for runs CMSL-08 and CMSL-09, during which, coal and the plastic components for municipal solid wastes (MSW) such as high density polyethylene (HDPE)m, polypropylene (PP), polystyrene (PS), and polythylene terphthlate (PET) were coprocessed.

  7. Enhanced Heterogeneous Catalytic Conversion of Furfuryl Alcohol into Butyl Levulinate

    NARCIS (Netherlands)

    P.D.. Carà; R. Ciriminna; N.R. Shiju; G. Rothenberg; M. Pagliaro

    2014-01-01

    We study the catalytic condensation of furfuryl alcohol with 1-butanol to butyl levulinate. A screening of several commercial and as-synthesized solid acid catalysts shows that propylsulfonic acid-functionalized mesoporous silica outperforms the state-of-the-art phosphotungstate acid catalysts. The

  8. Conceptual flow sheets development for coal conversion plant coal handling-preparation and ash/slag removal operations

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    This report presents 14 conceptual flow sheets and major equipment lists for coal handling and preparation operations that could be required for future, commercial coal conversion plants. These flow sheets are based on converting 50,000 tons per day of clean coal representative of the Pittsburgh and Kentucky No. 9 coal seams. Flow sheets were used by Union Carbide Corporation, Oak Ridge National Laboratory, in a survey of coal handling/preparation equipment requirements for future coal conversion plants. Operations covered in this report include run-of-mine coal breaking, coarse coal cleaning, fine coal cleaning, live storage and blending, fine crushing (crushing to top sizes ranging from 1/4-inch to 20 mesh), drying, and grinding (70 percent minus 200 mesh). Two conceptual flow sheets and major equipment lists are also presented for handling ash or granulated slag and other solid wastes produced by nine leading coal conversion processes. These flow sheets provide for solid wastes transport to an environmentally acceptable disposal site as either dry solids or as a water slurry.

  9. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    K. C. Kwon

    2006-09-30

    CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash or carbon coats, and catalytic metals, to develop a catalytic regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives using a monolithic catalyst reactor, experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 40-560 seconds at 120-150 C to evaluate effects of reaction temperatures, total pressure, space time, and catalyst regeneration on conversion of hydrogen sulfide into elemental sulfur and formation of COS. Simulated coal gas mixtures consist of 3,600-4,000-ppmv hydrogen sulfide, 1,800-2,000 ppmv sulfur dioxide, 23-27 v% hydrogen, 36-41 v% CO, 10-12 v% CO{sub 2}, 0-10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 30-180 SCCM. The temperature of the reactor is controlled in an oven at 120-150 C. The pressure of the reactor

  10. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    K. C. Kwon

    2006-09-30

    CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash or carbon coats, and catalytic metals, to develop a catalytic regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives using a monolithic catalyst reactor, experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 40-560 seconds at 120-150 C to evaluate effects of reaction temperatures, total pressure, space time, and catalyst regeneration on conversion of hydrogen sulfide into elemental sulfur and formation of COS. Simulated coal gas mixtures consist of 3,600-4,000-ppmv hydrogen sulfide, 1,800-2,000 ppmv sulfur dioxide, 23-27 v% hydrogen, 36-41 v% CO, 10-12 v% CO{sub 2}, 0-10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 30-180 SCCM. The temperature of the reactor is controlled in an oven at 120-150 C. The pressure of the reactor

  11. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    K. C. Kwon

    2007-09-30

    CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash or carbon coats, and catalytic metals, to develop a catalytic regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 130-156 seconds at 120-140 C to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases, evaluate removal capabilities of hydrogen sulfide and COS from coal gases with formulated catalysts, and develop an economic regeneration method of deactivated catalysts. Simulated coal gas mixtures consist of 3,300-3,800-ppmv hydrogen sulfide, 1,600-1,900 ppmv sulfur dioxide, 18-21 v% hydrogen, 29-34 v% CO, 8-10 v% CO{sub 2}, 5-18 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 114-132 SCCM. The temperature of the reactor is controlled in an oven at 120-140 C. The pressure of the reactor

  12. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    K. C. Kwon

    2007-09-30

    CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash or carbon coats, and catalytic metals, to develop a catalytic regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 130-156 seconds at 120-140 C to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases, evaluate removal capabilities of hydrogen sulfide and COS from coal gases with formulated catalysts, and develop an economic regeneration method of deactivated catalysts. Simulated coal gas mixtures consist of 3,300-3,800-ppmv hydrogen sulfide, 1,600-1,900 ppmv sulfur dioxide, 18-21 v% hydrogen, 29-34 v% CO, 8-10 v% CO{sub 2}, 5-18 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 114-132 SCCM. The temperature of the reactor is controlled in an oven at 120-140 C. The pressure of the reactor

  13. Catalytic conversion of alcohols to hydrocarbons with low benzene content

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2016-09-06

    A method for converting an alcohol to a hydrocarbon fraction having a lowered benzene content, the method comprising: converting said alcohol to a hydrocarbon fraction by contacting said alcohol, under conditions suitable for converting said alcohol to said hydrocarbon fraction, with a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon fraction, and contacting said hydrocarbon fraction with a benzene alkylation catalyst, under conditions suitable for alkylating benzene, to form alkylated benzene product in said hydrocarbon fraction. Also described is a catalyst composition useful in the method, comprising a mixture of (i) a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon, and (ii) a benzene alkylation catalyst, in which (i) and (ii) may be in a mixed or separated state. A reactor for housing the catalyst and conducting the reaction is also described.

  14. Catalytic conversion of alcohols to hydrocarbons with low benzene content

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2016-03-08

    A method for converting an alcohol to a hydrocarbon fraction having a lowered benzene content, the method comprising: converting said alcohol to a hydrocarbon fraction by contacting said alcohol, under conditions suitable for converting said alcohol to said hydrocarbon fraction, with a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon fraction, and contacting said hydrocarbon fraction with a benzene alkylation catalyst, under conditions suitable for alkylating benzene, to form alkylated benzene product in said hydrocarbon fraction. Also described is a catalyst composition useful in the method, comprising a mixture of (i) a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon, and (ii) a benzene alkylation catalyst, in which (i) and (ii) may be in a mixed or separated state. A reactor for housing the catalyst and conducting the reaction is also described.

  15. Multiscale-tailored bioelectrode surfaces for optimized catalytic conversion efficiency.

    Science.gov (United States)

    Bon Saint Côme, Yémima; Lalo, Hélène; Wang, Zhijie; Etienne, Mathieu; Gajdzik, Janine; Kohring, Gert-Wieland; Walcarius, Alain; Hempelmann, Rolf; Kuhn, Alexander

    2011-10-18

    We describe the elaboration of a multiscale-tailored bioelectrocatalytic system. The combination of two enzymes, D-sorbitol dehydrogenase and diaphorase, is studied with respect to the oxidation of D-sorbitol as a model system. The biomolecules are immobilized in an electrodeposited paint (EDP) layer. Reproducible and efficient catalysis of D-sorbitol oxidation is recorded when this system is immobilized on a gold electrode modified by a self-assembled monolayer of 4-carboxy-(2,5,7-trinitro-9-fluorenylidene)malonitrile used as a mediator. The insertion of mediator-modified gold nanoparticles into the EDP film increases significantly the active surface area for the catalytic reaction, which can be further enhanced when the whole system is immobilized in macroporous gold electrodes. This multiscale architecture finally leads to a catalytic device with optimized efficiency for potential use in biosensors, bioelectrosynthesis, and biofuel cells.

  16. PARAMETRIC EVALUATION OF VOC CONVERSION VIA CATALYTIC INCINERATION

    Directory of Open Access Journals (Sweden)

    Kaskantzis Neto G.

    1997-01-01

    Full Text Available Abstract - A pilot-scale catalytic incineration system was used to investigate the effectiveness of catalytic incineration as a means of reducing volatile organic compound (VOC air pollutants. The objectives of the study were: 1 to investigate the effects of operating and design variables on the reduction efficiency of VOCs; and 2 to evaluate reduction efficiencies for specific compounds in different chemical classes. The study results verified that the following factors affect the catalyst performance: inlet temperature, space velocity, compound type, and compound inlet concentration. Tests showed that reduction efficiencies exceeding 98% were possible, given sufficiently high inlet gas temperatures for the following classes of compounds: alcohols, acetates, ketones, hydrocarbons, and aromatics

  17. Effects of Gas Velocity and Temperature on Nitric Oxide Conversion in Simulated Catalytic Converter

    OpenAIRE

    Sathaporn Chuepeng

    2012-01-01

    Problem statement: Gaseous emissions from gasoline engine such as carbon monoxide, unburned hydrocarbon and nitrogen oxides were usually reduced in three-way catalytic converter simultaneously around theoretical fuel and air combustion. Engine speed and load and other parameters were varied over a wide range of operating conditions, resulting in different exhaust gas composition and condition intake into catalytic converter. This work was studied the conversion of Nitric Oxide (NO) in exhaust...

  18. Heterogeneous catalytic conversion of CO2: a comprehensive theoretical review

    Science.gov (United States)

    Li, Yawei; Chan, Siew Hwa; Sun, Qiang

    2015-05-01

    The conversion of CO2 into fuels and useful chemicals has been intensively pursued for renewable, sustainable and green energy. However, due to the negative adiabatic electron affinity (EA) and large ionization potential (IP), the CO2 molecule is chemically inert, thus making the conversion difficult under normal conditions. Novel catalysts, which have high stability, superior efficiency and low cost, are urgently needed to facilitate the conversion. As the first step to design such catalysts, understanding the mechanisms involved in CO2 conversion is absolutely indispensable. In this review, we have summarized the recent theoretical progress in mechanistic studies based on density functional theory, kinetic Monte Carlo simulation, and microkinetics modeling. We focus on reaction channels, intermediate products, the key factors determining the conversion of CO2 in solid-gas interface thermocatalytic reduction and solid-liquid interface electrocatalytic reduction. Furthermore, we have proposed some possible strategies for improving CO2 electrocatalysis and also discussed the challenges in theory, model construction, and future research directions.

  19. Conversion of existing oil and gas units to coal fuel

    Energy Technology Data Exchange (ETDEWEB)

    Talmud, F.M.

    1978-01-01

    The feasibility and technical aspects of various alternatives for converting gas- or oil-fired utility and industrial boilers to coal firing are reviewed. These alternatives involve direct coal firing, the use of modified coal fuels, and firing with fuels produced by coal gasification. (LCL)

  20. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    K.C. Kwon

    2009-09-30

    CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash coat, and catalytic metals, to develop a regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor. The task of developing kinetic rate equations and modeling the direct oxidation process to assist in the design of large-scale plants will be abandoned since formulation of catalysts suitable for the removal of H{sub 2}S and COS is being in progress. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 46-570 seconds under reaction conditions to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases and evaluate their capabilities in reducing hydrogen sulfide and COS in coal gases. Simulated coal gas mixtures consist of 3,200-4,000-ppmv hydrogen sulfide, 1,600-20,000-ppmv sulfur dioxide, 18-27 v% hydrogen, 29-41 v% CO, 8-12 v% CO{sub 2}, 0-10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of simulated coal gas mixtures to the reactor are 30 - 180 cm{sup 3}/min at 1 atm and 25 C (SCCM). The temperature of the reactor is

  1. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    K.C. Kwon

    2009-09-30

    CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash coat, and catalytic metals, to develop a regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor. The task of developing kinetic rate equations and modeling the direct oxidation process to assist in the design of large-scale plants will be abandoned since formulation of catalysts suitable for the removal of H{sub 2}S and COS is being in progress. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 46-570 seconds under reaction conditions to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases and evaluate their capabilities in reducing hydrogen sulfide and COS in coal gases. Simulated coal gas mixtures consist of 3,200-4,000-ppmv hydrogen sulfide, 1,600-20,000-ppmv sulfur dioxide, 18-27 v% hydrogen, 29-41 v% CO, 8-12 v% CO{sub 2}, 0-10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of simulated coal gas mixtures to the reactor are 30 - 180 cm{sup 3}/min at 1 atm and 25 C (SCCM). The temperature of the reactor is

  2. Molecular catalytic hydrogenation of aromatic hydrocarbons and hydrotreating of coal liquids.

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shiyong; Stock, L.M.

    1996-05-01

    This report presents the results of research on the development of new catalytic pathways for the hydrogenation of multiring aromatic hydrocarbons and the hydrotreating of coal liquids at The University of Chicago under DOE Contract No. DE-AC22-91PC91056. The work, which is described in three parts, is primarily concerned with the research on the development of new catalytic systems for the hydrogenation of aromatic hydrocarbons and for the improvement of the quality of coal liquids by the addition of dihydrogen. Part A discusses the activation of dihydrogen by very basic molecular reagents to form adducts that can facilitate the reduction of multiring aromatic hydrocarbons. Part B examines the hydrotreating of coal liquids catalyzed by the same base-activated dihydrogen complexes. Part C concerns studies of molecular organometallic catalysts for the hydrogenation of monocyclic aromatic hydrocarbons under mild conditions.

  3. Catalytic Conversion of Glucose into 5-Hydroxymethylfurfural by Hf(OTf4 Lewis Acid in Water

    Directory of Open Access Journals (Sweden)

    Junjie Li

    2015-12-01

    Full Text Available A series of Lewis acidic metal salts were used for glucose dehydration to 5-hydroymethylfurfural (HMF in water. Effect of valence state, ionic radii of Lewis acidic cation, and the type of anions on the catalytic performance have been studied systematically. The experimental results showed that the valence state played an important role in determining catalytic activity and selectivity. It was found that a higher glucose conversion rate and HMF selectivity could be obtained over high valent Lewis acid salts, where the ionic radii of these Lewis acidic metal salts are usually relatively small. Analysis on the effect of the anions of Lewis acid salts on the catalytic activity and the selectivity suggested that a higher glucose conversion and HMF selectivity could be readily obtained with Cl−. Furthermore, the recyclability of high valence state Lewis acid salt was also studied, however, inferior catalytic performance was observed. The deactivation mechanism was speculated to be the fact that high valence state Lewis acid salt was comparatively easier to undergo hydrolysis to yield complicated metal aqua ions with less catalytic activity. The Lewis acidic activity could be recovered by introducing a stoichiometric amount of hydrochloric acid (HCl to the catalytic before the reaction.

  4. One-Pot Catalytic Conversion of Cellulose and of Woody Biomass Solids to Liquid Fuels

    NARCIS (Netherlands)

    Matson, Theodore D.; Barta, Katalin; Iretskii, Alexei V.; Ford, Peter C.

    2011-01-01

    Efficient methodologies for converting biomass solids to liquid fuels have the potential to reduce dependence on imported petroleum while easing the atmospheric carbon dioxide burden. Here, we report quantitative catalytic conversions of wood and cellulosic solids to liquid and gaseous products in a

  5. Direct conversion of wood to methane by catalytic hydrothermal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, C.; Schneebeli, J.; Binkert, P.; Biollaz, S.; Stucki, S

    2003-03-01

    Green production of substitute natural gas (SNG) from wood by a catalytic hydrothermal process was studied in a laboratory batch reactor suitable for high feed concentrations (10-30 wt%) at 350-460{sup o}C and 27-33 MPa. Raney Nickel was much more active than Ni/a-Al{sub 2}O{sub 3} at the conditions studied. A maximum methane yield of 0.24 g CH{sub 4}/g wood was obtained, corresponding to 67% of the theoretical maximum of 0.36 g CH{sub 4}/g wood. The carbon gasification was limited to 80% in our equipment due to accumulation of phenols and other aromatics in the condenser. At supercritical conditions the remaining liquid phase was always tar-free, colorless and contained less than 1 wt% of the feed carbon. An economic analysis for a 20 MWth SNG plant (calculated thermal process efficiency 85%) located in Switzerland yielded SNG production costs of 10 USD/GJ. Almost half of the SNG cost is made up by the feedstock cost. (author)

  6. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Technical progress report, July--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Song, C.; Saini, A.K.; Huang, L.; Schobert, H.H.; Hatcher, P.G.

    1994-01-01

    In this quarter, progress has been made in the following two aspects: (1) spectroscopic and chemical reaction studies on the effects of drying and mild oxidation of a Wyodak subbituminous coal on its structure and pretreatment/liquefaction at 350{degrees}C; and (2) effects of dispersed catalyst and solvent on conversion and structural changes of a North Dakota lignite. Drying and oxidation of Wyodak subbituminous coal at 100-150{degrees}C have been shown to have significant effects on its structure and on its catalytic and non-catalytic low-severity liquefaction at 350{degrees}C for 30 min under 6.9 MPa H{sub 2}. Spectroscopic analyses using solid-state {sup 13}C NMR, Pyrolysis-GC-MS, and FT-IR revealed that oxidative drying at 100-150{degrees}C causes the transformation of phenolics and catechol into other related structures (presumably via condensation) and high-severity air drying at 150{degrees}C for 20 h leads to disappearance of catechol-like structure. Increasing air drying time or temperature increases oxidation to form more oxygen functional groups at the expense of aliphatic carbons. Such a clearly negative impact of severe oxidation is considered to arise from significantly increased oxygen functionality which enhances the cross-link formation in the early stage of coal liquefaction. Physical, chemical, and surface physicochemical aspects of drying and oxidation and the role of water are also discussed. A North Dakota lignite (DECS-1) coal was studied for its behaviors in non-catalytic and catalytic liquefaction. Reactions were carried out at temperatures between 250 and 450{degrees}C. Regardless the reaction solvents and the catalyst being used, the optimum temperature was found to be 400{degrees}C. The donor solvent has a significant effect over the conversion especially at temperatures higher than 350{degrees}C.

  7. Preparation of nitric humic acid by catalytic oxidation from Guizhou coal with catalysts

    Institute of Scientific and Technical Information of China (English)

    Yang Zhiyuan; Gong Liang; Ran Pan

    2012-01-01

    Nitric humic acid was prepared by catalytic oxidation between nitric acid and Guizhou coal,with added catalysts.We investigated catalytic oxidation processes and the factors that affect the reactions.The effects of different catalysts,including NiSO4 support on active carbon (AC-NiSO4),NiSO4 support on silicon dioxide (SiO2-NiSO4),composites of SO42-/Fe2O3,Zr-iron and vanadium-iron composite were studied.As well.we investigated nitric humic acid yields and the chemical structure of products by element analysis,FT-IR and E4/E6 (an absorbance ratio at wavelengths of 465 and 665 nm of humic acid alkaline extraction solutions).The results show that the catalytic oxidation reaction with added catalysts can increase humic acid yields by 18.7%,16.36%,12.94%,5.61% and 8.59%,respectively.The highest yield of humic acid,i.e.,36.0%,was obtained with AC-NiSO4 as the catalyst.The amounts of C and H decreased with the amount of nitrogen.The increase in the E4/E6 ratio in catalytic oxidation of (Guizhou) coal shows that small molecular weights and high yields of nitric humic acid can be obtained by catalytic oxidation reactions.

  8. Catalytic Conversion of Syngas into Higher Alcohols over Carbide Catalysts

    DEFF Research Database (Denmark)

    Christensen, Jakob Munkholt; Duchstein, Linus Daniel Leonhard; Wagner, Jakob Birkedal;

    2012-01-01

    This work investigates the use of the bulk carbides Mo2C, WC, and NbC as catalysts for the conversion of syngas into higher alcohols. K2CO3/WC produces mainly CH3OH and CH4 with a low activity. NbC has a very low activity in CO hydrogenation. K2CO3/Mo2C produces mixed alcohols with a reasonable...... activity and selectivity. In a 94 h test the activity and the specific surface area of the K2CO3/Mo2C catalyst decreased significantly, but X-ray diffraction and transmission electron microscopy did not indicate a strong sintering of the carbide. A likely cause for the deactivation is the formation...... of carbonaceous deposits on the catalyst. At the same general activity level Li, K, and Cs provide similar promotional effects for Mo2C, although K at a loading level of alkali metal/Mo = 0.164 mol/mol provides the better behavior at equal conditions. The effect of further additives on the K2CO3/Mo2C system...

  9. Design of generic coal conversion facilities: Indirect coal liquefaction, Fischer-Tropsch synthesis

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    A comprehensive review of Fischer-Tropsch (F-T) technology, including fixed, fluidized, and bubble column reactors, was undertaken in order to develop an information base before initiating the design of the Fischer-Tropsch indirect liquefaction PDU as a part of the Generic Coal Conversion Facilities to be built at the Pittsburgh Energy Technology Center (PETC). The pilot plant will include a fixed bed and slurry bubble column reactor for the F-T mode of operation. The review encompasses current status of both these technologies, their key variables, catalyst development, future directions, and potential improvement areas. However, more emphasis has been placed on the slurry bubble column reactor since this route is likely to be the preferred technology for commercialization, offering process advantages and, therefore, better economics than fixed and fluidized bed approaches.

  10. Quantitative relation between the macromolecular characteristics of brown coal and its reactivity in conversion with tetralin

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, P.N.; Kuznetsova, L.I.; Bimer, J.; Salbut, P.; Gruber, R.; Brodzki, D. [Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk (Russian Federation)

    1997-01-01

    The reactivity of Kansk-Achinsk brown coal in thermochemical conversion with tetralin is a linear function of the network flexibility, which is primarily controlled by ionic cross-linking with carboxylate bridges via polyvalent cations such as Ca{sup 2+}. Selective chemical pretreatments were used to modify specific oxygen functionalities. This allowed better defined correlations with coal characteristics to be evaluated and the principal structural units responsible for coal behaviour to be identified. 24 refs., 3 figs., 7 tabs.

  11. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 1: Executive summary. [using coal or coal derived fuels

    Science.gov (United States)

    Corman, J. C.

    1976-01-01

    A data base for the comparison of advanced energy conversion systems for utility applications using coal or coal-derived fuels was developed. Estimates of power plant performance (efficiency), capital cost, cost of electricity, natural resource requirements, and environmental intrusion characteristics were made for ten advanced conversion systems. Emphasis was on the energy conversion system in the context of a base loaded utility power plant. All power plant concepts were premised on meeting emission standard requirements. A steam power plant (3500 psig, 1000 F) with a conventional coal-burning furnace-boiler was analyzed as a basis for comparison. Combined cycle gas/steam turbine system results indicated competitive efficiency and a lower cost of electricity compared to the reference steam plant. The Open-Cycle MHD system results indicated the potential for significantly higher efficiency than the reference steam plant but with a higher cost of electricity.

  12. Catalytic conversion reactions in nanoporous systems with concentration-dependent selectivity: Statistical mechanical modeling

    Science.gov (United States)

    García, Andrés; Wang, Jing; Windus, Theresa L.; Sadow, Aaron D.; Evans, James W.

    2016-05-01

    Statistical mechanical modeling is developed to describe a catalytic conversion reaction A →Bc or Bt with concentration-dependent selectivity of the products, Bc or Bt, where reaction occurs inside catalytic particles traversed by narrow linear nanopores. The associated restricted diffusive transport, which in the extreme case is described by single-file diffusion, naturally induces strong concentration gradients. Furthermore, by comparing kinetic Monte Carlo simulation results with analytic treatments, selectivity is shown to be impacted by strong spatial correlations induced by restricted diffusivity in the presence of reaction and also by a subtle clustering of reactants, A .

  13. Effects of Gas Velocity and Temperature on Nitric Oxide Conversion in Simulated Catalytic Converter

    Directory of Open Access Journals (Sweden)

    Sathaporn Chuepeng

    2012-01-01

    Full Text Available Problem statement: Gaseous emissions from gasoline engine such as carbon monoxide, unburned hydrocarbon and nitrogen oxides were usually reduced in three-way catalytic converter simultaneously around theoretical fuel and air combustion. Engine speed and load and other parameters were varied over a wide range of operating conditions, resulting in different exhaust gas composition and condition intake into catalytic converter. This work was studied the conversion of Nitric Oxide (NO in exhaust gas catalytic converter affected by gas velocity and inlet temperature using numerical modeling. Approach: The simulation was based on a one-dimensional time-dependent model within a single monolith channel of the converter. Upon certain assumptions, the study was considered heterogeneous combustion reaction between gas and solid phases based on lumped kinetic reactions. In this study, constants and variables used for mass and heat transfers were dependent on gas or solid phase temperature and mole fraction. Finite difference scheme incorporated with the generated computer code was established for solving species and energy balances within gas and solid phases. Results: The NO conversion was increased with transient period in initial and reached steady state at different values. The lower inlet gas temperature was resulted in lesser NO conversion at the same inlet NO concentration and gas velocity. The light-off temperatures were up to 520 K and a sudden rise in NO conversion was from 550-605 K and decreasing onwards, generating working temperature window. NO conversion increased throughout the catalyst bed from the inlet and the conversion decreased as the gas velocity increased. Conclusion/Recommendations: Gas space velocity and gas temperature intake to the converter affected the NO conversion over the time and the axial distance from the catalyst bed inlet. The numerical results have summarily demonstrated a good approximation compared to experimental

  14. Challenges of coal conversion for decarbonized energy in Poland

    Energy Technology Data Exchange (ETDEWEB)

    Sciazko, Marek; Jalosinski, Krzysztof; Majchrzak, Henryk; Michalski, Mieczyslaw; Tymowski, Henryk; Witos, Tadeusz; Wroblewska, Elzbieta

    2010-09-15

    Carbon dioxide is considered to be the main challenge for the coal-based power generation as well as for any other industrial application of coal. Poland's energy sector is primarily based on coal combustion that covers almost 90% of demand. Future development of that sector depends on the restriction on value of carbon dioxide emission or trading allowances. There are two main technological approaches to development of new coal based generation capacity, namely: gasification and pre-combustion capture; supercritical combustion and post-combustion capture. The current situation in development of three this type projects in Poland is presented.

  15. Catalytic activity of pyrite for coal liquefaction reaction; Tennen pyrite no shokubai seino ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, K.; Kozu, M.; Okada, T.; Kobayashi, M. [Nippon Coal Oil Co. Ltd., Tokyo (Japan)

    1996-10-28

    Since natural pyrite is easy to obtain and cheap as coal liquefaction catalyst, it is to be used for the 150 t/d scale NEDOL process bituminous coal liquefaction pilot plant. NEDO and NCOL have investigated the improvement of catalytic activity of pulverized natural pyrite for enhancing performance and economy of the NEDOL process. In this study, coal liquefaction tests were conducted using natural pyrite catalyst pulverized by dry-type bowl mill under nitrogen atmosphere. Mechanism of catalytic reaction of the natural pyrite was discussed from relations between properties of the catalyst and liquefaction product. The natural pyrite provided an activity to transfer gaseous hydrogen into the liquefaction product. It was considered that pulverized pyrite promotes the hydrogenation reaction of asphaltene because pulverization increases its contact rate with reactant and the amount of active points on its surface. It was inferred that catalytic activity of pyrite is affected greatly by the chemical state of Fe and S on its surface. 3 refs., 4 figs., 1 tab.

  16. The Investigation of Reducing PAHs Emission from Coal Pyrolysis by Gaseous Catalytic Cracking

    Directory of Open Access Journals (Sweden)

    Yulong Wang

    2014-01-01

    Full Text Available The catalytic cracking method of PAHs for the pyrolysis gaseous products is proposed to control their pollution to the environment. In this study, the Py-GC-MS is used to investigate in situ the catalytic effect of CaO and Fe2O3 on the 16 PAHs from Pingshuo coal pyrolysis under different catalytic temperatures and catalyst particle sizes. The results demonstrate that Fe2O3 is effective than that of CaO for catalytic cracking of 16 PAHs and that their catalytic temperature corresponding to the maximum PAHs cracking rates is different. The PAHs cracking rate is up to 60.59% for Fe2O3 at 600°C and is 52.88% at 700°C for CaO. The catalytic temperature and particle size of the catalysts have a significant effect on PAHs cracking rate and CaO will lose the capability of decreasing 16 PAHs when the temperature is higher than 900°C. The possible cracking process of 16 PAHs is deduced by elaborately analyzing the cracking effect of the two catalysts on 16 different species of PAHs.

  17. A comparison of thermal conversion process for several coal tar pitches

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Y.; Shui, H.; Yuan, X. [East China Metallurgical Institute, Ma`anshan (China)

    1995-03-01

    The property and constituents of coal tar pitch are of great importance to the production of raw material for needle coke. Structural constituents of five coal tar pitches were determined using {sup 1}H-NMR. Besides, thermal conversion process of these pitches in which primary quinoline in soluble fraction was removed by centrifugal separation method was also investigated. The experimental results show Baogang (I) and Meishan coal tar pitches meet the requirements of raw material for needle coke. The thermal conversion data was correlated with structural parameters. 6 refs.,1 fig., 1 tab.

  18. Modular High Temperature Gas-Cooled Reactor heat source for coal conversion

    International Nuclear Information System (INIS)

    In the industrial nations, transportable fuels in the form of natural gas and petroleum derivatives constitute a primary energy source nearly equivalent to that consumed for generating electric power. Nations with large coal deposits have the option of coal conversion to meet their transportable fuel demands. But these processes themselves consume huge amounts of energy and produce undesirable combustion by-products. Therefore, this represents a major opportunity to apply nuclear energy for both the environmental and energy conservation reasons. Because the most desirable coal conversion processes take place at 800 degree C or higher, only the High Temperature Gas-Cooled Reactors (HTGRs) have the potential to be adapted to coal conversion processes. This report provides a discussion of this utilization of HTGR reactors

  19. Chemical coal conversion yesterday, today, and tomorrow; Der Chemierohstoff Kohle: gestern, heute und morgen

    Energy Technology Data Exchange (ETDEWEB)

    Talbiersky, J. [UCP Chemicals AG, Wien (Austria)

    2007-01-15

    Shortage in mineral oil and gas as well as a high price level have caused a renaissance in coal conversion technologies, at the end of the 70's. Today we have a similar situation. Now coal coversion technologies will be in the focus again but hopefully as a longterm strategy. The most important coal conversion technologies as liquefaction, gasification, coking and calcium carbide synthesis are discussed regarding their use for the production of chemicals. The most important source for aromatic chemicals from coal is till now coal tar with an availability of 22 Mio. t/a. The manufacturing of coal tar is discussed as an example for making aromatic products from a complex feed stock that you get by the fixed bed gasification, coal liquefaction and coking. Also the special marketing strategy that is necessary to be competitive against products from the petroindustry. It can be expected, that coal gasification as a source for synthesis gas will become more and more important. Synthesis gas is the access to aliphatic hydrocarbons by Fischer Tropsch synthesis and to methanol, a chemical with a high synthetic potential. Also the new hydrothermal carbonization of biomass to synthetic coal is mentioned. (orig.)

  20. Measurement and modeling of advanced coal conversion processes, Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. [and others

    1993-06-01

    A two dimensional, steady-state model for describing a variety of reactive and nonreactive flows, including pulverized coal combustion and gasification, is presented. The model, referred to as 93-PCGC-2 is applicable to cylindrical, axi-symmetric systems. Turbulence is accounted for in both the fluid mechanics equations and the combustion scheme. Radiation from gases, walls, and particles is taken into account using a discrete ordinates method. The particle phase is modeled in a lagrangian framework, such that mean paths of particle groups are followed. A new coal-general devolatilization submodel (FG-DVC) with coal swelling and char reactivity submodels has been added.

  1. Task 3.3: Warm Syngas Cleanup and Catalytic Processes for Syngas Conversion to Fuels Subtask 3: Advanced Syngas Conversion to Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lebarbier Dagel, Vanessa M.; Li, J.; Taylor, Charles E.; Wang, Yong; Dagle, Robert A.; Deshmane, Chinmay A.; Bao, Xinhe

    2014-03-31

    activity was to develop methods and enabling materials for syngas conversion to SNG with readily CO2 separation. Suitable methanation catalyst and CO2 sorbent materials were developed. Successful proof-of-concept for the combined reaction-sorption process was demonstrated, which culminated in a research publication. With successful demonstration, a decision was made to switch focus to an area of fuels research of more interest to all three research institutions (CAS-NETL-PNNL). Syngas-to-Hydrocarbon Fuels through Higher Alcohol Intermediates There are two types of processes in syngas conversion to fuels that are attracting R&D interest: 1) syngas conversion to mixed alcohols; and 2) syngas conversion to gasoline via the methanol-to-gasoline process developed by Exxon-Mobil in the 1970s. The focus of this task was to develop a one-step conversion technology by effectively incorporating both processes, which is expected to reduce the capital and operational cost associated with the conversion of coal-derived syngas to liquid fuels. It should be noted that this work did not further study the classic Fischer-Tropsch reaction pathway. Rather, we focused on the studies for unique catalyst pathways that involve the direct liquid fuel synthesis enabled by oxygenated intermediates. Recent advances made in the area of higher alcohol synthesis including the novel catalytic composite materials recently developed by CAS using base metal catalysts were used.

  2. Coal liquefaction and gas conversion: Proceedings. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    Volume I contains papers presented at the following sessions: AR-Coal Liquefaction; Gas to Liquids; and Direct Liquefaction. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  3. Catalytic activity of carbon nanotubes in the conversion of aliphatic alcohols

    Science.gov (United States)

    Zhitnev, Yu. N.; Tveritinova, E. A.; Chernyak, S. A.; Savilov, S. V.; Lunin, V. V.

    2016-06-01

    Carbon nanotubes (CNTs) obtained via the catalytic pyrolysis of hexane at 750°C were studied as the catalysts in conversion of C2-C4 alcohols. The efficiency of CNTs as catalysts in dehydration and dehydrogenation of ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, and tert-butanol was studied by means of pulse microcatalysis. The surface and structural characteristics of CNTs are investigated via SEM, TEM, DTA, BET, and XPS. CNTs are shown to be effective catalysts in the conversion of alcohols and do not require additional oxidative treatment. The regularities of the conversion of aliphatic alcohols, related to the properties of the CNTs surface and the structure of the alcohols are identified.

  4. Heterogeneous Catalytic Conversion of Biobased Chemicals into Liquid Fuels in the Aqueous Phase.

    Science.gov (United States)

    Wu, Kejing; Wu, Yulong; Chen, Yu; Chen, Hao; Wang, Jianlong; Yang, Mingde

    2016-06-22

    Different biobased chemicals are produced during the conversion of biomass into fuels through various feasible technologies (e.g., hydrolysis, hydrothermal liquefaction, and pyrolysis). The challenge of transforming these biobased chemicals with high hydrophilicity is ascribed to the high water content of the feedstock and the inevitable formation of water. Therefore, aqueous-phase processing is an interesting technology for the heterogeneous catalytic conversion of biobased chemicals. Different reactions, such as dehydration, isomerization, aldol condensation, ketonization, and hydrogenation, are applied for the conversion of sugars, furfural/hydroxymethylfurfural, acids, phenolics, and so on over heterogeneous catalysts. The activity, stability, and reusability of the heterogeneous catalysts in water are summarized, and deactivation processes and several strategies are introduced to improve the stability of heterogeneous catalysts in the aqueous phase. PMID:27158985

  5. A thermogravimetric analysis (TGA) method to determine the catalytic conversion of cellulose from carbon-supported hydrogenolysis process

    Energy Technology Data Exchange (ETDEWEB)

    Leal, Glauco F. [Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), C.P. 6192, 13083-970 Campinas, SP (Brazil); Institute of Chemistry of São Carlos (IQSC), University of São Paulo (USP), C.P. 780, CEP 13560-970 São Carlos, SP (Brazil); Ramos, Luiz A. [Institute of Chemistry of São Carlos (IQSC), University of São Paulo (USP), C.P. 780, CEP 13560-970 São Carlos, SP (Brazil); Barrett, Dean H. [Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), C.P. 6192, 13083-970 Campinas, SP (Brazil); Curvelo, Antonio Aprígio S. [Institute of Chemistry of São Carlos (IQSC), University of São Paulo (USP), C.P. 780, CEP 13560-970 São Carlos, SP (Brazil); Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in Energy and Materials (CNPEM), C.P. 6179, 13083-970 Campinas, SP (Brazil); Rodella, Cristiane B., E-mail: cristiane.rodella@lnls.br [Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), C.P. 6192, 13083-970 Campinas, SP (Brazil)

    2015-09-20

    Graphical abstract: - Highlights: • A new method to determine the catalytic conversion of cellulose using TGA has been developed. • TGA is able to differentiate between carbon from cellulose and carbon from the catalyst. • Building an analytical curve from TGA results enables the accurate determination of cellulose conversion. - Abstract: The ability to determine the quantity of solid reactant that has been transformed after a catalytic reaction is fundamental in accurately defining the conversion of the catalyst. This quantity is also central when investigating the recyclability of a solid catalyst as well as process control in an industrial catalytic application. However, when using carbon-supported catalysts for the conversion of cellulose this value is difficult to obtain using only a gravimetric method. The difficulty lies in weighing errors caused by loss of the solid mixture (catalyst and non-converted cellulose) after the reaction and/or moisture adsorption by the substrate. These errors are then propagated into the conversion calculation giving erroneous results. Thus, a quantitative method using thermogravimetric analysis (TGA) has been developed to determine the quantity of cellulose after a catalytic reaction by using a tungsten carbide catalyst supported on activated carbon. Stepped separation of TGA curves was used for quantitative analysis where three thermal events were identified: moisture loss, cellulose decomposition and CO/CO{sub 2} formation. An analytical curve was derived and applied to quantify the residual cellulose after catalytic reactions which were performed at various temperatures and reaction times. The catalytic conversion was calculated and compared to the standard gravimetric method. Results showed that catalytic cellulose conversion can be determined using TGA and exhibits lower uncertainty (±2%) when compared to gravimetric determination (±5%). Therefore, it is a simple and relatively inexpensive method to determine

  6. Non-catalytic transfer hydrogenation in supercritical CO2 for coal liquefaction

    Science.gov (United States)

    Elhussien, Hussien

    This thesis presents the results of the investigation on developing and evaluating a low temperature (products of coal dissolution were non-polar and polar while the supercritical CO2, which enhanced the rates of hydrogenation and dissolution of the non-polar molecules and removal from the reaction site, was non-polar. The polar modifier (PM) for CO2 was added to the freed to aid in the dissolution and removal of the polar components. The addition of a phase transfer agent (PTA) allowed a seamless transport of the ions and by-product between the aqueous and organic phases. DDAB, used as the PTA, is an effective phase transfer catalyst and showed enhancement to the coal dissolution process. COAL + DH- +H 2O → COAL.H2 + DHO-- This process has a great feature due to the fact that the chemicals were obtained without requir-ing to first convert coal to CO and H2 units as in indirect coal liquefaction. The experiments were conducted in a unique reactor set up that can be connected through two lines. one line to feed the reactor with supercritical CO 2 and the other connected to gas chromatograph. The use of the supercritical CO2 enhanced the solvent option due to the chemical extraction, in addition to the low environmental impact and energy cost. In this thesis the experiment were conducted at five different temperatures from atmos-pheric to 140°C, 3000 - 6000 psi with five component of feed mixture, namely water, HTA, PTA, coal, and PM in semi batch vessels reactor system with a volume of 100 mL. The results show that the chemicals were obtained without requiring to first convert coal to CO and H2 units as in indirect coal liquefaction. The results show that the conversion was found to be 91.8% at opti-mum feed mixtures values of 3, 1.0 and 5.4 for water: PM, HTA: coal, water: coal respectively. With the oil price increase and growing in energy demand, the coal liquefaction remain affordable and available energy alternative.

  7. Carbon Dioxide Conversion to Valuable Chemical Products over Composite Catalytic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, Robert A.; Hu, Jianli; Jones, Susanne B.; Wilcox, Wayne A.; Frye, John G.; White, J. F.; Jiang, Juyuan; Wang, Yong

    2013-05-01

    Presented is an experimental study on catalytic conversion of carbon dioxide into methanol, ethanol and acetic acid. Catalysts having different catalytic functions were synthesized and combined in different ways to enhance selectivity to desired products. The combined catalyst system possessed the following functions: methanol synthesis, Fischer-Tropsch synthesis, water-gas-shift and hydrogenation. Results showed that the methods of integrating these catalytic functions played important role in achieving desired product selectivity. It was speculated that if methanol synthesis sites were located adjacent to the C-C chain growth sites, the formation rate of C2 oxygenates would be enhanced. The advantage of using high temperature methanol catalyst PdZnAl in the combined catalyst system was demonstrated. In the presence of PdZnAl catalyst, the combined catalyst system was stable at temperature of 380oC. It was observed that, at high temperature, kinetics favored oxygenate formation. Results implied that the process can be intensified by operating at high temperature using Pd-based methanol synthesis catalyst. Steam reforming of the byproduct organics was demonstrated as a means to provide supplemental hydrogen. Preliminary process design, simulation, and economic analysis of the proposed CO2 conversion process were carried out. Economic analysis indicates how ethanol production cost was affected by the price of CO2 and hydrogen.

  8. Dual-Bed Catalytic System for Direct Conversion of Methane to Liquid Hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    N.A.S.Amin; Sriraj Ammasi

    2006-01-01

    A dual-bed catalytic system is proposed for the direct conversion of methane to liquid hydrocarbons. In this system, methane is converted in the first stage to oxidative coupling of methane (OCM) products by selective catalytic oxidation with oxygen over La-supported MgO catalyst. The second bed, comprising of the HZSM-5 zeolite catalyst, is used for the oligomerization of OCM light hydrocarbon products to liquid hydrocarbons. The effects of temperature (650-800 ℃), methane to oxygen ratio (4-10), and SiO2/Al2O3 ratio of the HZSM-5 zeolite catalyst on the process are studied. At higher reaction temperatures, there is considerable dealumination of HZSM-5, and thus its catalytic performance is reduced. The acidity of HZSM-5 in the second bed is responsible for the oligomerization reaction that leads to the formation of liquid hydrocarbons. The activities of the oligomerization sites were unequivocally affected by the SiO2/Al2O3 ratio. The relation between the acidity and the activity of HZSM-5 is studied by means of TPD-NH3 techniques. The rise in oxygen concentration is not beneficial for the C5+ selectivity, where the combustion reaction of intermediate hydrocarbon products that leads to the formation of carbon oxide (CO+CO2) products is more dominant than the oligomerization reaction. The dual-bed catalytic system is highly potential for directly converting methane to liquid fuels.

  9. CATALYTIC CONVERSION OF FORMIC ACID TO METHANOL WITH Cu AND Al UNDER HYDROTHERMAL CONDITIONS

    Directory of Open Access Journals (Sweden)

    Hansong Yao,

    2012-01-01

    Full Text Available Catalytic conversion of formic acid into methanol was investigated with Cu as a catalyst and Al as a reductant under hydrothermal conditions. It was found that formic acid can be converted into methanol by such means. The highest yield of methanol (30.4% was attained with a temperature of 300 °C and a reaction time of 9 h. The AlO(OH formed from Al oxidation may also play a catalytic role in the formation of methanol. This process may provide a promising solution to producing methanol from carbohydrate biomass combined with the process of converting the carbohydrate into formic acid, which is expected to emit no CO2.

  10. Catalytic conversion of light alkanes, Phase 1. Topical report, January 1990--January 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The authors have found a family of new catalytic materials which, if successfully developed, will be effective in the conversion of light alkanes to alcohols or other oxygenates. Catalysts of this type have the potential to convert natural gas to clean-burning high octane liquid fuels directly without requiring the energy-intensive steam reforming step. In addition they also have the potential to upgrade light hydrocarbons found in natural gas to a variety of high value fuel and chemical products. In order for commercially useful processes to be developed, increases in catalytic life, reaction rate and selectivity are required. Recent progress in the experimental program geared to the further improvement of these catalysts is outlined.

  11. Recent Developments on the Production of Transportation Fuels via Catalytic Conversion of Microalgae: Experiments and Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Fan; Wang, Ping; Duan, Yuhua; Link, Dirk; Morreale, Bryan

    2012-08-02

    Due to continuing high demand, depletion of non-renewable resources and increasing concerns about climate change, the use of fossil fuel-derived transportation fuels faces relentless challenges both from a world markets and an environmental perspective. The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to grow in unconventional scenarios, and inherent carbon neutrality. Moreover, the use of microalgae would minimize “food versus fuel” concerns associated with several biomass strategies, as microalgae do not compete with food crops in the food chain. This paper reviews the progress of recent research on the production of transportation fuels via homogeneous and heterogeneous catalytic conversions of microalgae. This review also describes the development of tools that may allow for a more fundamental understanding of catalyst selection and conversion processes using computational modelling. The catalytic conversion reaction pathways that have been investigated are fully discussed based on both experimental and theoretical approaches. Finally, this work makes several projections for the potential of various thermocatalytic pathways to produce alternative transportation fuels from algae, and identifies key areas where the authors feel that computational modelling should be directed to elucidate key information to optimize the process.

  12. Recent developments in the production of liquid fuels via catalytic conversion of microalgae: experiments and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Shi,Fan; Wang, Pin; Duan, Yuhua; Link, Dirk; Morreale, Bryan

    2012-01-01

    Due to continuing high demand, depletion of non-renewable resources and increasing concerns about climate change, the use of fossil fuel-derived transportation fuels faces relentless challenges both from a world markets and an environmental perspective. The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to grow in unconventional scenarios, and inherent carbon neutrality. Moreover, the use of microalgae would minimize ‘‘food versus fuel’’ concerns associated with several biomass strategies, as microalgae do not compete with food crops in the food chain. This paper reviews the progress of recent research on the production of transportation fuels via homogeneous and heterogeneous catalytic conversions of microalgae. This review also describes the development of tools that may allow for a more fundamental understanding of catalyst selection and conversion processes using computational modelling. The catalytic conversion reaction pathways that have been investigated are fully discussed based on both experimental and theoretical approaches. Finally, this work makes several projections for the potential of various thermocatalytic pathways to produce alternative transportation fuels from algae, and identifies key areas where the authors feel that computational modelling should be directed to elucidate key information to optimize the process.

  13. Catalytic Conversion of Biomass to Fuels and Chemicals Using Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Zheng, Richard; Brown, Heather; Li, Joanne; Holladay, John; Cooper, Alan; Rao, Tony

    2012-04-13

    This project provides critical innovations and fundamental understandings that enable development of an economically-viable process for catalytic conversion of biomass (sugar) to 5-hydroxymethylfurfural (HMF). A low-cost ionic liquid (Cyphos 106) is discovered for fast conversion of fructose into HMF under moderate reaction conditions without any catalyst. HMF yield from fructose is almost 100% on the carbon molar basis. Adsorbent materials and adsorption process are invented and demonstrated for separation of 99% pure HMF product and recovery of the ionic liquid from the reaction mixtures. The adsorbent material appears very stable in repeated adsorption/regeneration cycles. Novel membrane-coated adsorbent particles are made and demonstrated to achieve excellent adsorption separation performances at low pressure drops. This is very important for a practical adsorption process because ionic liquids are known of high viscosity. Nearly 100% conversion (or dissolution) of cellulose in the catalytic ionic liquid into small molecules was observed. It is promising to produce HMF, sugars and other fermentable species directly from cellulose feedstock. However, several gaps were identified and could not be resolved in this project. Reaction and separation tests at larger scales are needed to minimize impacts of incidental errors on the mass balance and to show 99.9% ionic liquid recovery. The cellulose reaction tests were troubled with poor reproducibility. Further studies on cellulose conversion in ionic liquids under better controlled conditions are necessary to delineate reaction products, dissolution kinetics, effects of mass and heat transfer in the reactor on conversion, and separation of final reaction mixtures.

  14. Study on Effect and Catalytic Mechanism of the Catalysts for Coal Oxidation in Alkaline Medium%Study on Effect and Catalytic Mechanism of the Catalysts for Coal Oxidation in Alkaline Medium

    Institute of Scientific and Technical Information of China (English)

    刘怀有; 吕经康; 赵永刚; 周尉; 印仁和

    2011-01-01

    Coal electro-oxidation in sodium hydroxide solution with catalysts, K3Fe(CN)6, sodium hypochlorite and sup- ported FeS, were investigated, respectively. Gas produced from electro-analysis of coal slurry was collected by drainage-method and l-t curves were recorded to testify the catalysis of each catalyst for coal oxidation. The results show that the three kinds of catalysts can obviously improve the coal oxidation current. Furthermore, K3Fe(CN)6 and sodium hypochlorite played an indirect oxidation role in the electrolysis process. Catalysts bridge the coal par- ticles and the solid electrode surface, thus increase the coal oxidation rates. The changes of catalyst content during the electrolysis were further determined by quantitative titration to discuss the catalytic Mechanism. The dynamic transition of K3Fe(CN)6/K4Fe(CN)6 and ClO^-/Cl^- are proposed by iodometric method.

  15. Advanced Coal Conversion Process Demonstration Project. Final technical progress report, January 1, 1995--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1995 through December 31, 1995. This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal Process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal upgrading, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. The SynCoal Process enhances low-rank, western coals, usually with a moisture content of 25 to 55 percent, sulfur content of 0.5 to 1.5 percent, and heating value of 5,5000 to 9,000 British thermal units per pound (Btu/lb), by producing a stable, upgraded, coal product with a moisture content as low as 1 percent, sulfur content as low as 0.3 percent, and heating value up to 12,000 Btu/lb. During this reporting period, the primary focus for the ACCP Demonstration Project team was to expand SynCoal market awareness and acceptability for both the products and the technology. The ACCP Project team continued to focus on improving the operation, developing commercial markets, and improving the SynCoal products as well as the product`s acceptance.

  16. Characterization of selected Ohio coals to predict their conversion behavior relative to 104 North American Coals. [Factors correlating with liquefaction behavior

    Energy Technology Data Exchange (ETDEWEB)

    Whitacre, T. P.; Hunt, T. J.; Kneller, W. A.

    1982-02-01

    Twenty-six coal samples from Ohio were collected as washed and seam samples, and lithobodies within the seams. Characterization of these samples included determination of % maceral, % anti R/sub max/, LTA, chlorine content and proximate/ultimate and qualitative mineral analyses. These data were compared to data from a similar project by Yarzab, R.F., et al., 1980 completed at Pennsylvania State University using tetralin as the hydrogen donor solvent. The characteristics of these coals were correlated with liquefaction conversion and other data accrued on 104 North American coals by statistical analyses. Utilizing percent carbon, sulfur, volatile matter, reflectance, vitrinite and total reactive macerals, Q-mode cluster analysis demonstrated that Ohio coals are more similar to the coals of the Interior province than to those of the Appalachian province. Linear multiple regression analysis for the 104 North American coals provided a prediction equation for conversion (R = .96). The predicted conversion values for the samples range from 58.8 to 79.6%, with the Lower Kittanning (No. 5) and the Middle Kittanning (No. 6) coal seams showing the highest predicted percent conversion (respectively, 73.4 and 72.2%). The moderately low FSI values for the No. 5 and No. 6 coals (respectively, 2.5 and 3) and their moderately high alkaline earth content (respectively, 0.69 and 0.74%) suggest that these coals possess the best overall properties for conversion. Stepwise regression has indicated that the most important coal characteristics affecting conversion are, in decreasing order of importance: % volatile matter, % vitrinite and % total sulfur. Conversion processes can be expected to produce higher yields with Ohio coals due to the presence of such mineral catalysts as pyrite and kaolinite. It is believed that the presence of these disposable catalysts increases the marketability of Ohio coals.

  17. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Karthikeyan K.; Gray, Michel J.; Job, Heather M.; Smith, Colin D.; Wang, Yong

    2016-04-10

    tA highly versatile ethanol conversion process to selectively generate high value compounds is pre-sented here. By changing the reaction temperature, ethanol can be selectively converted to >C2alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3cata-lyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensationor the acetone formation is the path taken in changing the product composition. This article containsthe catalytic activity comparison between the mono-functional and physical mixture counterpart to thehydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.

  18. Catalytic oxidative conversion of cellulosic biomass to formic acid and acetic acid with exceptionally high yields

    KAUST Repository

    Zhang, Jizhe

    2014-09-01

    Direct conversion of raw biomass materials to fine chemicals is of great significance from both economic and ecological perspectives. In this paper, we report that a Keggin-type vanadium-substituted phosphomolybdic acid catalyst, namely H4PVMo11O40, is capable of converting various biomass-derived substrates to formic acid and acetic acid with high selectivity in a water medium and oxygen atmosphere. Under optimized reaction conditions, H4PVMo11O40 gave an exceptionally high yield of formic acid (67.8%) from cellulose, far exceeding the values achieved in previous catalytic systems. Our study demonstrates that heteropoly acids are generally effective catalysts for biomass conversion due to their strong acidities, whereas the composition of metal addenda atoms in the catalysts has crucial influence on the reaction pathway and the product selectivity. © 2013 Elsevier B.V.

  19. Measurement and modeling of advanced coal conversion processes. Twenty-first quarterly report, October 1, 1991--December 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. [Advanced Fuel Research, Inc., East Hartford, CT (United States); Smoot, L.D.; Brewster, B.S. [Brigham Young Univ., Provo, UT (United States)

    1991-12-31

    The objective of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines.

  20. New Advances in Catalytic Systems for Conversion of CH4 and CO2

    Institute of Scientific and Technical Information of China (English)

    Gengliang Chen

    2002-01-01

    One of the main goals for developing the C1 chemical industry is the direct conversion of methane and carbon dioxide to useful products. To realize this goal, researches on new catalytic systems are being globally focused. The exploration has been evolved from traditional heterogeneous catalysis into homogeneous catalysis. Coordinate complexes, biochemical and bionics, and photo- and electrochemical catalysis have been extensively studied in recent years. Tests in laboratories have verified for the direct conversion of CH4 to CH3OH that single-pass converstion of CH4 can reach over 70% in both Hg(Ⅱ) salt and Pt(Ⅱ) complex systems. The main problem of these systems is the obstacles involving reaction kinetics, so they must be solved before moving to pilot tests. Other catalytic systems discussed in the present article include explorations in the early stage. Among them, features of photo and enzymatic catalyst systems, such as mild reaction conditions, better selectivity and environmentally friendliness have been explored, and these researches are significant both in theory and in practical application.

  1. Catalytic conversion of carbohydrates to 5-hydroxymethylfurfural from the waste liquid of acid hydrolysis NCC.

    Science.gov (United States)

    Sun, Yonghui; Liu, Pengtao; Liu, Zhong

    2016-05-20

    The principal goal of this work was to reuse the carbohydrates and recycle sulfuric acid in the waste liquid of acid hydrolysis nanocrystalline cellulose (NCC). Therefore, in this work, the optimizations of further hydrolysis of waste liquid of acid hydrolysis NCC and catalytic conversion of L4 to 5-hydroxymethylfurfural (5-HMF) were studied. Sulfuric acid was separated by spiral wound diffusion dialysis (SWDD). The results revealed that cellulose can be hydrolyze to glucose absolutely under the condition of temperature 35 °C, 3 h, and sulfuric acid's concentration 62 wt%. And 78.3% sulfuric acid was recovered by SWDD. The yield of 5-HMF was highest in aqueous solution under the optimal condition was as follows, temperature 160 °C, 3 h, and sulfuric acid's concentration 12 wt%. Then the effect of biphasic solvent systems catalytic conversion and inorganic salt as additives were still examined. The results showed that both of them contributed to prepare 5-HMF. The yield and selectivity of 5-HMF was up to 21.0% and 31.4%, respectively. PMID:26917388

  2. Superacid Catalyzed Coal Conversion Chemistry. Final Technical Report, September 1, 1983-September 1, 1986

    Science.gov (United States)

    Olah, G. A.

    1986-01-01

    This research project involved the study of a raw comparatively mild coal conversion process. The goal of the project was to study model systems to understand the basic chemistry involved and to provide a possible effective pretreatment of coal which significantly improves liquefaction-depolymerization under mild conditions. The conversion process operates at relatively low temperatures (170 degrees C) and pressures and uses an easily recyclable, stable superacid catalysts (HF-BF{sub 3}). It consequently offers an attractive alternative to currently available processes. From the present studies it appears that the modification of coal structure by electrophilic alkylation and subsequent reaction of alkylated coal with HF-BF{sub 3}-H{sub 2} system under mild conditions considerably improves the extractability of coal in pyridine and cyclohexane. On the other hand, nitration of coal and its subsequent reaction with HF-BF{sub 3}H{sub 2} decreases the pyridine and cyclohexane extractability. Study of model compounds under conditions identical with the superacidic HF/BF{sub 3}/H{sub 2} system provided significant information about the basic chemistry of the involved cleavage-hydrogenation reactions.

  3. Proceedings of the 2nd symposium on valves for coal conversion and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Maxfield, D.A. (ed.)

    1981-01-01

    The 2nd symposium on valves for coal conversion and utilization was held October 15 to 17, 1980. It was sponsored by the US Department of Energy, Morgantown Energy Technology Center, in cooperation with the Valve Manufacturers Association. Seventeen papers have been entered individually into EDB and ERA. (LTN)

  4. Coal conversion control technology. Volume III. Economic analysis; appendix. Final report Apr 77-Nov 78

    Energy Technology Data Exchange (ETDEWEB)

    Bostwick, L.E.; Smith, M.R.; Moore, D.O.; Webber, D.K.

    1979-10-01

    This volume is the product of an information-gathering effort relating to coal conversion process streams. Available and developing control technology has been evaluated in view of the requirements of present and proposed federal, state, regional, and international environmental standards.

  5. Rationale for continuing R&D in direct coal conversion to produce high quality transportation fuels

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, R.D.; McIlvried, H.G. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Gray, D. [Mitre Corp, McLean, VA (United States)] [and others

    1995-12-31

    For the foreseeable future, liquid hydrocarbon fuels will play a significant role in the transportation sector of both the United States and the world. Factors favoring these fuels include convenience, high energy density, and the vast existing infrastructure for their production and use. At present the U.S. consumes about 26% of the world supply of petroleum, but this situation is expected to change because of declining domestic production and increasing competition for imports from countries with developing economies. A scenario and time frame are developed in which declining world resources will generate a shortfall in petroleum supply that can be allieviated in part by utilizing the abundant domestic coal resource base. One option is direct coal conversion to liquid transportation fuels. Continued R&D in coal conversion technology will results in improved technical readiness that can significantly reduce costs so that synfuels can compete economically in a time frame to address the shortfall.

  6. System Study of Rich Catalytic/Lean burn (RCL) Catalytic Combustion for Natural Gas and Coal-Derived Syngas Combustion Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Shahrokh Etemad; Lance Smith; Kevin Burns

    2004-12-01

    Rich Catalytic/Lean burn (RCL{reg_sign}) technology has been successfully developed to provide improvement in Dry Low Emission gas turbine technology for coal derived syngas and natural gas delivering near zero NOx emissions, improved efficiency, extending component lifetime and the ability to have fuel flexibility. The present report shows substantial net cost saving using RCL{reg_sign} technology as compared to other technologies both for new and retrofit applications, thus eliminating the need for Selective Catalytic Reduction (SCR) in combined or simple cycle for Integrated Gasification Combined Cycle (IGCC) and natural gas fired combustion turbines.

  7. Coal conversion at Picatinny Arsenal and Forts Campbell, Bragg, and Gordon: A feasibility study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lin, M.C.; Thurber, L.; Durbin, T.; Tarvin, R.

    1993-12-01

    Public Law 99-190 requires the Department of Defense to increase the use of coal at its facilities in the United States. This study investigated the feasibility of converting oil- and gas-fired heating plants to coal firing at four Army installations: Fort Bragg, NC; Fort Campbell, KY; Fort Gordon, GA; and Picatinny Arsenal, NJ. Information on the energy systems at the selected sites was gathered by site visit and survey, and project life cycle cost (LCC) was computationally estimated. The study concluded that, for the four installations, there would be a lower life-cycle cost (LCC) in maintaining the status quo than in building new plants. However, where new plant construction is planned, the larger the plants, the better its potential for cost-effectively using coal as a plant fuel. The use of coal at a new plant at Fort Bragg was found to be more cost effective than gas or oil, and may result in significant cost savings. For the other three installations studied, significant price increases in alternate fuels would be required before coal would become economically feasible (31 to 73 percent for gas, and 50 to 84 percent for 6 fuel oil). Ft. Bragg, NC, Army coal conversion program, Ft. Campbell, KY, Coal-fixed technologies, Ft. Gordon, GA, Cost-effectiveness.

  8. Research on coal staged conversion poly-generation system based on fluidized bed

    Institute of Scientific and Technical Information of China (English)

    Mingjiang Ni; Chao Li; Mengxiang Fang; Qinhui Wang; Zhongyang Luo; Kefa Cen

    2014-01-01

    A new coal staged conversion poly-generation system combined coal combustion and pyrolysis has been developed for clean and high efficient utilization of coal. Coal is the first pyrolysed in a fluidized pyrolyzer. The pyrolysis gas is then purified and used for chemical product or liquid fuel production. Tar is collected during purification and can be processed to extract high value product and to make liquid fuels by hydro-refining. Semi-coke from the pyrolysis reactor is burned in a circulating fluidized bed (CFB) combustor for heat or power generation. The system can realize coal multi-product generation and has a great potential to increase coal utilization value. A 1 MW poly-generation system pilot plant and a 12 MW CFB gas, tar, heat and power poly-generation system was erected. The experimental study focused on the two fluidized bed operation and characterization of gas, tar and char yields and compositions. The results showed that the system could operate stable, and produce about 0.12 m3/kg gas with 22 MJ/m3 heating value and about 10 wt%tar when using Huainan bituminous coal under pyrolysis temperature between 500 and 600 ?C. The produced gases were mainly H2, CH4, CO, CO2, C2H4, C2H6, C3H6 and C3H8. The CFB combustor can burn semi-coke steadily. The application prospect of the new system was discussed.

  9. Factors Influencing Conversion of Pyritic Sulfur in Coal by Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    SUI Jian-cai; XU Ming-hou; QIU Ji-hua; CHENG Rong

    2005-01-01

    The high sulfur coal from southwest of China was used to examine the influence of different factors such as irradiation time, particle size of coal, and leachant (Na2CO3, NaOH and CuCl2.2H2O)on the conversion rate of pyrite to pyrrhotite by microwave irradiation. Single factor experiment was performed firstly, then orthogonal test method was used to explore these factors. The result shows that the optimal treating conditions for the conversion are a treatment time of 3 min, a particle size from 0.086 mm to 0.102 mm, and a favorable leachant of sodium hydroxide. Under these conditions the conversion rate of pyrite can reach 45.7 %.

  10. First-principles quantum-mechanical investigations: The role of water in catalytic conversion of furfural on Pd(111)

    Science.gov (United States)

    Xue, Wenhua; Borja, Miguel Gonzalez; Resasco, Daniel E.; Wang, Sanwu

    2015-03-01

    In the study of catalytic reactions of biomass, furfural conversion over metal catalysts with the presence of water has attracted wide attention. Recent experiments showed that the proportion of alcohol product from catalytic reactions of furfural conversion with palladium in the presence of water is significantly increased, when compared with other solvent including dioxane, decalin, and ethanol. We investigated the microscopic mechanism of the reactions based on first-principles quantum-mechanical calculations. We particularly identified the important role of water and the liquid/solid interface in furfural conversion. Our results provide atomic-scale details for the catalytic reactions. Supported by DOE (DE-SC0004600). This research used the supercomputer resources at NERSC, of XSEDE, at TACC, and at the Tandy Supercomputing Center.

  11. Catalytic conversion of carboxylic acids in bio-oil for liquid hydrocarbons production

    International Nuclear Information System (INIS)

    Bio-oil must be upgraded to be suitable for use as a high-grade transport fuel. Crude bio-oil has a high content of carboxylic acids which can cause corrosion, and the high oxygen content of these acids also reduces the oil’s heating value. In this paper, acetic acid and propanoic acid were chosen as the model carboxylic acids in bio-oil. Their behavior in the production of liquid hydrocarbons during a catalytic conversion process was investigated in a micro-fixed bed reactor. The liquid organic phase from this catalytic conversion process mainly consisted of liquid hydrocarbons and phenol derivatives. Under the condition of low Liquid Hourly Space Velocity (LHSV), the liquid organic phase from acetic acid cracking had a selectivity of 22% for liquid hydrocarbons and a selectivity of 65% for phenol derivatives. The composition of the organic products changed considerably with the LHSV increasing to 3 h−1. The selectivity for liquid hydrocarbons increased up to 52% while that for phenol derivatives decreased to 32%. Propanoic acid performed much better in producing liquid hydrocarbons than acetic acid. Its selectivity for liquid hydrocarbons was as high as 80% at LHSV = 3 h−1. A mechanism for this catalytic conversion process was proposed according to the analysis of the components in the liquid organic phases. The pathways of the main compounds formation in the liquid organic phases were proposed, and the reason why liquid hydrocarbons were more effectively produced when using propanoic acid rather than acetic acid was also successfully explained. In addition, BET and SEM characterization were used to analyze the catalyst coke deposition. -- Graphical abstract: Display Omitted Highlights: ► High content of carboxylic acids in bio-oil causes its corrosiveness. ► Acetic acid and propanoic acid are two dominant acids in bio-oil. ► Liquid hydrocarbons were produced by cracking of these two dominant acids. ► A mechanism model was proposed to explain the

  12. MERCURY OXIDATION PROMOTED BY A SELECTIVE CATALYTIC REDUCTION CATALYST UNDER SIMULATED POWDER RIVER BASIN COAL COMBUSTION CONDITIONS

    Science.gov (United States)

    A bench-scale reactor consisting of a natural gas burner and an electrically heated reactor housing a selective catalytic reduction (SCR) catalyst was constructed for studying elemental mercury oxidation under SCR conditions. A low sulfur Power River Basin (PRB) coal combustion ...

  13. A characterization and evaluation of coal liquefaction process streams. The kinetics of coal liquefaction distillation resid conversion

    Energy Technology Data Exchange (ETDEWEB)

    Klein, M.T.; Calkins, W.H.; Huang, H.; Wang, S.; Campbell, D.

    1998-03-01

    Under subcontract from CONSOL Inc., the University of Delaware studied the mechanism and kinetics of coal liquefaction resid conversion. The program at Delaware was conducted between August 15, 1994, and April 30, 1997. It consisted of two primary tasks. The first task was to develop an empirical test to measure the reactivity toward hydrocracking of coal-derived distillation resids. The second task was to formulate a computer model to represent the structure of the resids and a kinetic and mechanistic model of resid reactivity based on the structural representations. An introduction and Summary of the project authored by CONSOL and a report of the program findings authored by the University of Delaware researchers are presented here.

  14. Time-depth conversion of transient electromagnetic method used in coal mines

    Institute of Scientific and Technical Information of China (English)

    YU Jing-cun; WANG Yang-zhou; LIU Jian; ZENG Xiao-bo

    2008-01-01

    Accuracy of time-depth conversion in data processing of transient electromagnetic prospecting always affects the accurate positioning of water bodies in coal mines. In order to improve the accuracy of time-depth conversion, we established a mathematical model of time-depth conversion for a transient electromagnetic method based on the theory of "double smoke ring effect"of full space transient electromagnetic field transmission. Using a 3-layer as well as a 4-layer geo-electric model for roadway floors,we performed the time-depth conversion of theoretical curves of apparent resistance varying over time. In these curves, the depth corresponding to extreme value points is nearly the same as the depth of a geo-electric model. The position of water body determined by our time-depth conversion method agrees well with the result of borehole drilling, indicating that the established time-depth conversion model can clearly improve the accuracy of spatial positioning of water bodies in coal mines.

  15. Chemistry and catalysis of coal liquefaction: catalytic and thermal upgrading of coal liquid and hydrogenation of CO to produce fuels. Quarterly progress report, January-March 1980

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, W.H.

    1980-08-01

    Analysis of a group of coal liquids produced by catalytic hydrogenation of Utah coals with ZnCl/sub 2/ catalyst was begun. Carbon-13 nuclear magnetic resonance and liquid chromatography techniques will be used to correlate chemical properties with hydrogenation reactivity. Equipment previously used for downflow measurements of heat and momentum transfer in a gas-coal suspension was modified for upflow measurements. The catalytic hydrodeoxygenation of methyl benzoate has been studied to elucidate the reactions of ester during upgrading of coal-derived liquids. The kinetics of hydrogenation of phenanthrene have also been determined. The catalytic cracking mechanism of octahydroanthracene is reported in detail. Studies of the hydrodesulfurization of thiophene indicate that some thiophene is strongly adsorbed as a hydrogen-deficient polymer on cobalt-molybdate catalyst. Part of the polymer can be desorbed as thiophene by hydrogenation. Poisoning of the catalyst inhibits the hydrosulfurization activity to a greater degree than the hydrogenation activity. Iron-manganese catalysts for carbon monoxide hydrogenation is studied to determine the role of iron carbide formation on selectivity. Pure iron catalyst forms a Hagg iron carbide phase under reaction conditions.

  16. Catalytic conversion of light alkanes phase II. Topical report, January 1990--January 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The Topical Report on Phase II of the project entitled, Catalytic Conversion of Light Alkanes reviews work done between January 1, 1990 and September 30, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products which can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon transportation fuel. This Topical Report documents our efforts to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. Research on the Cooperative Agreement is divided into three Phases relating to three molecular environments for the active catalytic species that we are trying to generate. In this report we present our work on catalysts which have oxidation-active metals in polyoxoanions (PHASE II).

  17. Catalytic conversion of light alkanes: Quarterly report, January 1-March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Biscardi, J.; Bowden, P.T.; Durante, V.A.; Ellis, P.E. Jr.; Gray, H.B.; Gorbey, R.G.; Hayes, R.C.; Hodge, J.; Hughes, M.; Langdale, W.A.; Lyons, J.E.; Marcus, B.; Messick, D.; Merrill, R.A.; Moore, F.A.; Myers, H.K. Jr.; Seitzer, W.H.; Shaikh, S.N.; Tsao, W.H.; Wagner, R.W.; Warren, R.W.; Wijesekera, T.P.

    1997-05-01

    The first Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between January 1. 1992 and March 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products which can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon transportation fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient porphryinic macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE III).

  18. Catalytic conversion of light alkanes. Quarterly progress report, April 1--June 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  19. Conversion of the refractory ammonia and acetic acid in catalytic wet air oxidation of animal byproducts

    Institute of Scientific and Technical Information of China (English)

    Virginie Fontanier; Sofiane Zalouk; Stéphane Barbati

    2011-01-01

    Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) of slaughtered animal byproducts (ABPs) were investigated.Two step experiment was carried out consisting ofa non-catalysed WAO run followed by a CWAO run at 170-275℃, 20 MPa, and reaction time 180 min.The WAO (1st step) of sample (5 g/L total organic carbon (TOC)) yielded (82.0 ± 4)% TOC removal and (78.4 ± 13.2)%conversion of the initial organic-N into NH4+-N.Four metal catalysts (Pd, Pt, Rh, Ru) supported over alumina have been tested in catalytic WAO (2nd step) at elevated pH to enhance ammonia conversion and organic matter removal, particularly acetic acid.It was found that the catalysts Ru, Pt, and Rh had significant effects on the TOC removal (95.1%, 99.5% and 96.7%, respectively) and on the abatement of ammonia (93.4%, 96.7% and 96.3%, respectively) with high nitrogen selectivity.The catalyst Pd was found to have the less activity while Pt had the best performance.The X-Ray diffraction analysis showed that the support of catalyst was not stable under the experimental conditions since it reacted with phosphate present in solution.Nitrite and nitrate ions were monitored during the oxidation reaction and it was concluded that CWAO of ammonia in real waste treatment framework was in good agreement with the results obtained from the literature for ideal solutions of ammonia.

  20. Blending Influence on the Conversion Efficiency of the Cogasification Process of Corn Stover and Coal

    Directory of Open Access Journals (Sweden)

    Anthony Ike Anukam

    2016-01-01

    Full Text Available Characterizations of biomass and coal were undertaken in order to compare their properties and determine the combustion characteristics of both feedstocks. The study was also intended to establish whether the biomass (corn stover used for this study is a suitable feedstock for blending with coal for the purpose of cogasification based on composition and properties. Proximate and ultimate analyses as well as energy value of both samples including their blends were undertaken and results showed that corn stover is a biomass material well suited for blending with coal for the purpose of cogasification, given its high volatile matter content which was measured and found to be 75.3% and its low ash content of 3.3% including its moderate calorific value of 16.1%. The results of the compositional analyses of both pure and blended samples of corn stover and coal were used to conduct computer simulation of the cogasification processes in order to establish the best blend that would result in optimum cogasification efficiency under standard gasifier operating conditions. The final result of the cogasification simulation process indicated that 90% corn stover/10% coal resulted in a maximum efficiency of about 58% because conversion was efficiently achieved at a temperature that is intermediate to that of coal and corn stover independently.

  1. Potential for Coal-to-Liquids Conversion in the United States-Fischer-Tropsch Synthesis

    International Nuclear Information System (INIS)

    The United States has the world's largest coal reserves and Montana the highest potential for mega-mine development. Consequently, a large-scale effort to convert coal to liquids (CTL) has been proposed to create a major source of domestic transportation fuels from coal, and some prominent Montanans want to be at the center of that effort. We calculate that the energy efficiency of the best existing Fischer-Tropsch (FT) process applied to average coal in Montana is less than 1/2 of the corresponding efficiency of an average crude oil refining process. The resulting CO2 emissions are 20 times (2000%) higher for CTL than for conventional petroleum products. One barrel of the FT fuel requires roughly 800 kg of coal and 800 kg of water. The minimum energy cost of subsurface CO2 sequestration would be at least 40% of the FT fuel energy, essentially halving energy efficiency of the process. We argue therefore that CTL conversion is not the most valuable use for the coal, nor will it ever be, as long as it is economical to use natural gas for electric power generation. This finding results from the low efficiency inherent in FT synthesis, and is independent of the monumental FT plant construction costs, mine construction costs, acute lack of water, and the associated environmental impacts for Montana

  2. Preliminary evaluation of PETC-coal conversion solid and hazardous wastes. Progress report, September 15, 1977--September 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Neufeld, R.D.; Shapiro, M.; Chen, C.; Wallach, S.; Sain, S.

    1978-09-30

    This progress report reviews issues and local area practice relative to the disposal of small quantity laboratory solid and chemical wastes from the PETC site. Research efforts to date have been in two major directions, a) solid and hazardous waste problems relative to PETC, and b) solid and hazardous waste problems relative to coal gasification and liquefaction conversion processes. It is intended that bench scale coal conversion processes located at PETC be considered as small but typical models for residuals sample generation. A literature search activity has begun in order to develop a data bank of coal conversion residual characterizations, and identify other centers of hazardous waste handling research expertise.

  3. Low-severity catalytic two-stage liquefaction process: Illinois coal conceptual commercial plant design and economics

    Energy Technology Data Exchange (ETDEWEB)

    Abrams, L.M.; Comolli, A.G.; Popper, G.A.; Wang, C.; Wilson, G.

    1988-09-01

    Hydrocarbon Research, Inc. (HRI) is conducting a program for the United States Department of Energy (DOE) to evaluate a Catalytic Two-Stage Liquefaction (CTSL) Process. This program which runs through 1987, is a continuation of an earlier DOE sponsored program (1983--1985) at HRI to develop a new technology concept for CTSL. The earlier program included bench-scale testing of improved operating conditions for the CTSL Process on Illinois No. 6 bituminous coal and Wyoming sub-bituminous coal, and engineering screening studies to identify the economic incentive for CTSL over the single-stage H-Coal/reg sign/ Process for Illinois No. 6 coal. In the current program these engineering screening studies are extended to deep-cleaned Illinois coal and use of heavy recycle. The results from this comparison will be used as a guide for future experiments with respect to selection of coal feedstocks and areas for further process optimization. A preliminary design for CTSL of Illinois deep-cleaned coal was developed based on demonstrated bench-scale performance in Run No. 227-47(I-27), and from HRI's design experience on the Breckinridge Project and H-Coal/reg sign/ Process pilot plant operations at Catlettsburg. Complete conceptual commercial plant designs were developed for a grassroots facility using HRI's Process Planning Model. Product costs were calculated and economic sensitivities analyzed. 14 refs., 11 figs., 49 tabs.

  4. Catalytic conversion of chloromethane to methanol and dimethyl ether over two catalytic beds: a study of acid strength

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, D.R.; Leite, T.C.M.; Mota, C.J.A. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Quimica], e-mail: cmota@iq.ufrj.br

    2010-07-15

    The catalytic hydrolysis of chloromethane to methanol and dimethyl ether (DME) was studied over metal-exchanged Beta and Mordenite zeolites, acidic MCM-22 and SAPO-5. The use of a second catalytic bed with HZSM-5 zeolite increased the selectivity to DME, due to methanol dehydration on the acid sites. The effect was more significant on catalysts presenting medium and weak acid site distribution, showing that dehydration of methanol to DME is accomplished over sites of higher acid strength. (author)

  5. A Reduced Reaction Scheme for Volatile Nitrogen Conversion in Coal Combustion

    DEFF Research Database (Denmark)

    Pedersen, Lars Saaby; Glarborg, Peter; Dam-Johansen, Kim

    1998-01-01

    In pulverised coal flames, the most important volatile nitrogen component forming NOx is HCN. To be able to model the nitrogen chemistry in coal flames it is necessary to have an adequate model for HCN oxidation. The present work was concerned with developing a model for HCN/NH3/NO conversion based...... that the CO/H-2 chemistry was described adequately, the reduced HCN/NH3/NO model compared very well with the detailed model over a wide range of stoichiometries. Decoupling of the HCN chemistry from the CO/H-2 chemistry resulted in over-prediction of the HCN oxidation rate under fuel rich conditions, but had...... negligible effect on the CO/H-2 chemistry. Comparison with simplified HCN models from the literature revealed significant differences, indicating that these models should be used cautiously in modelling volatile nitrogen conversion....

  6. Coal conversion control technology. Volume II. Gaseous emissions; solid wastes. Final report, April 1977-November 1978

    Energy Technology Data Exchange (ETDEWEB)

    Bostwick, L.E.; Smith, M.R.; Moore, D.O.; Webber, D.K.

    1979-10-01

    This volume is the product of an information-gathering effort relating to coal conversion process streams. Available and developing control technology has been evaluated in view of the requirements of present and proposed federal, state, regional, and international environmental standards. The study indicates that it appears possible to evolve technology to reduce each component of each process stream to an environmentally acceptable level. It also indicates that such an approach would be costly and difficult to execute. Because all coal conversion processes are net users of water, liquid effluents need be treated only for recycling within the process, thus achieving essentially zero discharge. With available technology, gaseous emissions can be controlled to meet present environmental standards, particulates can be controlled or eliminated, and disposal of solid wastes can be managed to avoid deleterious environmental effects. This volume (II) deals with the control technology of gaseous emissions and solid wastes.

  7. Coal conversion control technology. Volume I. Environmental regulations; liquid effluents. Final report, April 1977-November 1978

    Energy Technology Data Exchange (ETDEWEB)

    Bostwick, L.E.; Smith, M.R.; Moore, D.O.; Webber, D.K.

    1979-10-01

    This volume is the product of an information-gathering effort relating to coal conversion process streams. Available and developing control technology has been evaluated in view of the requirements of present and proposed federal, state, regional, and international environmental standards. The study indicates that it appears possible to evolve technology to reduce each component of each process stream to an environmentally acceptable level. It also indicates that such an approach would be costly and difficult to execute. Because all coal conversion processes are net users of water, liquid effluents need be treated only for recycling within the process, thus achieving essentially zero discharge. With available technology, gaseous emissions can be controlled to meet present environmental standards, particulates can be controlled or eliminated, and disposal of solid wastes can be managed to avoid deleterious environmental effects. This volume (I) focuses on environmental regulations for gaseous, liquid, and solid wastes, and the control technology for liquid effluents.

  8. Iodine-catalyzed coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, J.T.; Duffield, J.E.; Davidson, M.G. (Amoco Oil Company, Naperville, IL (USA). Research and Development Dept.)

    Coals of two different ranks were liquefied in high yields using catalytic quantities of elemental iodine or iodine compounds. Iodine monochloride was found to be especially effective for enhancing both coal conversion and product quality. It appears that enhancement in coal conversion is due to the unique ability of iodine to catalyze radical-induced bond scission and hydrogen addition to the coal macromolecule or coal-derived free radicals. The starting iodine can be fully accounted for in the reaction products as both organic-bound and water-soluble forms. Unconverted coal and the heavy product fractions contain the majority of the organic-bound iodine. The results of iodine-catalyzed coal reactions emphasize the need for efficient hydrogen atom transfer along with bond scission to achieve high conversion and product quality. 22 refs., 12 tabs.

  9. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Technical progress report, October 1991--December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Song, C.; Saini, A.; Huang, L.; Wenzel, K.; Hatcher, P.G.; Schobert, H.H.

    1992-01-01

    Low-temperature catalytic pretreatment is a promising approach to the development of an improved liquefaction process. This work is a fundamental study on effects of pretreatments on coal structure and reactivity in liquefaction. The main objectives of this project are to study the coal structural changes induced by low-temperature catalytic and thermal pretreatments by using spectroscopic techniques; and to clarify the pretreatment-induced changes in reactivity or convertibility of coals in the subsequent liquefaction. This report describes the progress of our work during the first quarterly period. Substantial progress has been made in the spectroscopic characterization of fresh and THF-extracted samples of two subbituminous coals and fresh samples of three bituminous coals using cross-polarization magic angle spinning (CPMAS) solid state {sup 13}C NMR and pyrolysis-GC-MS techniques. CPMAS {sup 13}C NMR and pyrolysis-GC-MS provided important information on carbon distribution/functionality and molecular components/structural units, respectively, for these coal samples. Pyrolysis-GC-MS revealed that there are remarkable structural differences in structural units between the subbituminous coals and the bituminous coals. Furthermore, significant progress has been made in the pretreatments and spectroscopic characterization of catalytically and thermally pretreated as well as physically treated Wyodak subbituminous coal, and temperature-staged and temperature-programmed thermal and catalytic liquefaction of a Montana subbituminous coal.

  10. Coal conversion and biomass conversion: Volume 1: Final report on USAID (Agency for International Development)/GOI (Government of India) Alternate Energy Resources and Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, A.; Saluja, J.

    1987-06-30

    The United States Agency for International Development (AID), in joint collaboration with the Government of India (GOI), supported a research and development program in Alternate Energy Resources during the period March 1983 to June 1987. The primary emphasis of this program was to develop new and advanced coal and biomass conversion technologies for the efficient utilization of coal and biomass feedstocks in India. This final ''summary'' report is divided into two volumes. This Report, Volume I, covers the program overview and coal projects and Volume II summarizes the accomplishments of the biomass projects. The six projects selected in the area of coal were: Evaluation of the Freeboard Performance in a Fluidized-Bed Combustor; Scale-up of AFBC boilers; Rheology, Stability and Combustion of Coal-Water Slurries; Beneficiation of Fine Coal in Dense Medium Cyclones; Hot Gas Cleanup and Separation; and Cold Gas Cleanup and Separation.

  11. Advanced coal conversion process demonstration. Technical progress report for the period July 1, 1995--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from July 1, 1995 through September 30, 1995. The ACCP Demonstration Project is a US Department of Energy (DOE) Clean Coal Technology Project. This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal upgrading, the cola is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.

  12. Catalytic properties of pure and K{sup +}-doped Cu O/Mg O system towards 2-propanol conversion

    Energy Technology Data Exchange (ETDEWEB)

    El-Molla, S. A.; Amin, N. H.; Hammed, M. N.; Sultan, S. N. [Ain Shams University, Faculty of Education, Chemistry Department, Roxy, Heliopolis, Cairo 11757 (Egypt); El-Shobaky, G. A., E-mail: saharelmolla@yahoo.com [National Research Center, Dokki, Cairo (Egypt)

    2013-08-01

    Cu O/Mg O system having different compositions was prepared by impregnation method followed by calcination at 400-900 C. The effect of Cu O content, calcination temperature and doping with small amounts of K{sup +} species (1-3 mol %) on physicochemical, surface and catalytic properties of the system were investigated using X-ray diffraction, adsorption of N{sub 2} at - 196 C, and conversion of isopropyl alcohol at 150-400 C using a flow technique. The results revealed that the solids having the formulae 0.2 and 0.3 Cu O/Mg O calcined at 400 C consisted of nano sized Mg O and Cu O as major phases together with Cu{sub 2}O as minor phase. The Bet-surface areas of different absorbents are decreased by increasing Cu O content, calcination temperature and K{sup +}-doping. Mg O-support material showed very small catalytic activity in 2-propanol conversion. The investigated system behaved as selective catalyst for dehydrogenation of 2-propanol with selectivity >80%. The catalytic activity increased by increasing Cu O content and decreased by increasing the calcination temperature within 400-900 C. K{sup +}-doping increased the catalytic activity and catalytic durability. (Author)

  13. Catalytic properties of pure and K+-doped Cu O/Mg O system towards 2-propanol conversion

    International Nuclear Information System (INIS)

    Cu O/Mg O system having different compositions was prepared by impregnation method followed by calcination at 400-900 C. The effect of Cu O content, calcination temperature and doping with small amounts of K+ species (1-3 mol %) on physicochemical, surface and catalytic properties of the system were investigated using X-ray diffraction, adsorption of N2 at - 196 C, and conversion of isopropyl alcohol at 150-400 C using a flow technique. The results revealed that the solids having the formulae 0.2 and 0.3 Cu O/Mg O calcined at 400 C consisted of nano sized Mg O and Cu O as major phases together with Cu2O as minor phase. The Bet-surface areas of different absorbents are decreased by increasing Cu O content, calcination temperature and K+-doping. Mg O-support material showed very small catalytic activity in 2-propanol conversion. The investigated system behaved as selective catalyst for dehydrogenation of 2-propanol with selectivity >80%. The catalytic activity increased by increasing Cu O content and decreased by increasing the calcination temperature within 400-900 C. K+-doping increased the catalytic activity and catalytic durability. (Author)

  14. Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur from Coal-Derived Fuel Gases

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Todd H.; Berry, David A.; Lyons, K. David; Beer, Stephen K.; Monahan, Michael J.

    2001-11-06

    The development of low cost, highly efficient, desulfurization technology with integrated sulfur recovery remains a principle barrier issue for Vision 21 integrated gasification combined cycle (IGCC) power generation plants. In this plan, the U. S. Department of Energy will construct ultra-clean, modular, co-production IGCC power plants each with chemical products tailored to meet the demands of specific regional markets. The catalysts employed in these co-production modules, for example water-gas-shift and Fischer-Tropsch catalysts, are readily poisoned by hydrogen sulfide (H{sub 2}S), a sulfur contaminant, present in the coal-derived fuel gases. To prevent poisoning of these catalysts, the removal of H{sub 2}S down to the parts-per-billion level is necessary. Historically, research into the purification of coal-derived fuel gases has focused on dry technologies that offer the prospect of higher combined cycle efficiencies as well as improved thermal integration with co-production modules. Primarily, these concepts rely on a highly selective process separation step to remove low concentrations of H{sub 2}S present in the fuel gases and produce a concentrated stream of sulfur bearing effluent. This effluent must then undergo further processing to be converted to its final form, usually elemental sulfur. Ultimately, desulfurization of coal-derived fuel gases may cost as much as 15% of the total fixed capital investment (Chen et al., 1992). It is, therefore, desirable to develop new technology that can accomplish H{sub 2}S separation and direct conversion to elemental sulfur more efficiently and with a lower initial fixed capital investment.

  15. Exxon catalytic coal gasification process development program. Quarterly technical progress report, January 1-March 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    This report covers the activites for the Exxon Catalytic Coal Gasification Development Program during the quarter January 1-March 31, 1979. Construction of a bench apparatus to study reactions of product and recycle gas in furnace and heat exchanger tubes was completed and checkout of the apparatus was begun. A Startup and Initial Operation Schedule, a Checkout Test Plan, and an Initial Startup Plan were developed for the Process Develoment Unit (PDU). The PDU will be started up in a sequential manner, with the gasification system being started up on a once-through basis first. The gas separation system will be started up next, followed by the catalyst recovery system. The programmable controller, which handles valve sequencing, alarming, and other miscellaneous functions on the PDU, was programmed and checkout was completed on the coal feed, gas feed, and filter systems. Work continued on defining the cause of the breakdown of char and lime during digestion in the prototype catalyst recovery unit. It was concluded that both the lime and char particles are fragile and will break down to fines if handled roughly. Removal of the potassium from the char by water washing does not cause the char particles to disintegrate. The perferred processing sequence for catalyst recovery in the PDU has been identified. Bench scale tests confirmed that the change in catalyst from K/sub 2/CO/sub 3/ to KOH was not responsible for the differences in fluidized bed densities between the present and the predevelopment operations of the FBG. Work was completed on a revised offsites facilities definition and cost estimate to update the CCG Commercial Plant Study Design prepared during the predevelopment program.

  16. Measurement and modeling of advanced coal conversion processes, Volume I, Part 1. Final report, September 1986--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. [and others

    1995-09-01

    The objective of this program was the development of a predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. The foundation to describe coal specific conversion behavior was AFR`s Functional Group and Devolatilization, Vaporization and Crosslinking (DVC) models, which had been previously developed. The combined FG-DVC model was integrated with BYU`s comprehensive two-dimensional reactor model for combustion and coal gasification, PCGC-2, and a one-dimensional model for fixed-bed gasifiers, FBED-1. Progress utilizing these models is described.

  17. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 1: Introduction and summary and general assumptions. [energy conversion systems for electric power plants using coal - feasibility

    Science.gov (United States)

    Beecher, D. T.

    1976-01-01

    Nine advanced energy conversion concepts using coal or coal-derived fuels are summarized. They are; (1) open-cycle gas turbines, (2) combined gas-steam turbine cycles, (3) closed-cycle gas turbines, (4) metal vapor Rankine topping, (5) open-cycle MHD; (6) closed-cycle MHD; (7) liquid-metal MHD; (8) advanced steam; and (9) fuel cell systems. The economics, natural resource requirements, and performance criteria for the nine concepts are discussed.

  18. Improvements of instrumental proximate and ultimate analysis of coals and coal conversion products

    Energy Technology Data Exchange (ETDEWEB)

    Selucky, M.L.; Iacchelli, A.; Murray, C.; Lieshout, T. van.

    1982-06-01

    Comparison of proximate analyses obtained using ASTM (American Society for Testing of Materials) methods with those from the Fisher coal analyzer shows that the analyzer gives consistently low moisture and ash values, and high volatile matter values. While the accuracy of moisture and ash determinations can be improved by introducing various instrument and crucible modifications, volatile matter values are less accurate, mainly because of differences in heating rates. However, reproducibility of results is very good and, with modifications, the instrument can be used to advantage for internal purposes, chiefly because of its large sample capacity. In ultimate analysis of coals using the Perkin-Elmer element analyzer, the main problem is that the initial purge gas flushing period after sample introduction partially removes water from the sample. Various methods of sample drying have shown that the best approach is to dry the sample directly in the instrument at the temperature used for moisture determination; with this modification of the analystical cycle, excellent reproducibility and correlation with the ASTM method have been achieved. The proximate and ultimate analysis of samples of extracts and extract residue are impaired by the presence of residual solvent. The samples can contain up to 10% residual solvent which appear as moisture in the proximate analysis. The report describes several ways of removing the solvent so that accurate analysis can be obtained. The foregoing modifications to procedures and equipment have considerably improved both accuracy and reliability of results obtained by instrumental methods. In consequence, considerably more samples can be handled than by using ASTM standard procedures. 4 refs., 1 figs., 19 tabs.

  19. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Catalytic Conversion of Sugars to Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.; Tao, L.; Scarlata, C.; Tan, E. C. D.; Ross, J.; Lukas, J.; Sexton, D.

    2015-03-01

    This report describes one potential conversion process to hydrocarbon products by way of catalytic conversion of lignocellulosic-derived hydrolysate. This model leverages expertise established over time in biomass deconstruction and process integration research at NREL, while adding in new technology areas for sugar purification and catalysis. The overarching process design converts biomass to die die diesel- and naphtha-range fuels using dilute-acid pretreatment, enzymatic saccharification, purifications, and catalytic conversion focused on deoxygenating and oligomerizing biomass hydrolysates.

  20. Effect of structure and surface properties on the catalytic activity of nanodiamond in the conversion of 1,2-dichloroethane

    Science.gov (United States)

    Tveritinova, E. A.; Zhitnev, Yu. N.; Kulakova, I. I.; Maslakov, K. I.; Nesterova, E. A.; Kharlanov, A. N.; Ivanov, A. S.; Savilov, S. V.; Lunin, V. V.

    2015-04-01

    The catalytic activity of a detonation nanodiamond and its Ni-containing forms in the conversion of 1,2-dichloroethane is studied and compared with the activity of other carbon and nanocarbon materials: carbon nanotubes, "Dalan" synthetic diamond, and fluorinated graphite. The surface and structure of the carbon materials are characterized using XRD, diffuse reflectance IR spectroscopy, XPS, BET, and TPR. The catalytic properties of the materials are studied using the pulsed microcatalytic method. It is found that the synthetic diamond, the nanodiamond, and its Ni-containing forms are catalysts for dichloroethane conversion in a nitrogen atmosphere, where the main product is ethylene. It is noted that the catalytic activity of deactivated diamond catalysts is restored after hydrogen treatment. It is shown that the carbon structure of the nanodiamond and the "Dalan" synthetic diamond with hydrogen groups located on it plays a key role in the dichloroethane conversion. It is found that the nanodiamond acts simultaneously as a catalyst and an adsorbent of chlorine-containing products of dichloroethane conversion.

  1. Low pressure catalytic co-conversion of biogenic waste (rapeseed cake) and vegetable oil.

    Science.gov (United States)

    Giannakopoulou, Kanellina; Lukas, Michael; Vasiliev, Aleksey; Brunner, Christoph; Schnitzer, Hans

    2010-05-01

    Zeolite catalysts of three types (H-ZSM-5, Fe-ZSM-5 and H-Beta) were tested in the catalytic co-conversion of rapeseed cake and safflower oil into bio-fuel. This low pressure process was carried out at the temperatures of 350 and 400 degrees Celsius. The yields and compositions of the product mixtures depended on the catalyst nature and the process temperatures. The produced organic phases consisted mainly of hydrocarbons, fatty acids and nitriles. This mixture possessed improved characteristics (e.g. heating value, water content, density, viscosity, pH) compared with the bio-oils, making possible its application as a bio-fuel. The most effective catalyst, providing the highest yield of organic liquid phase, was the highly acidic/wide-pore H-Beta zeolite. The products obtained on this catalyst demonstrated the highest degree of deoxygenation and the higher HHV (Higher Heating Value). The aqueous liquid phase contained water-soluble carboxylic acids, phenols and heterocyclic compounds. PMID:20060714

  2. Enhancement of biomass conversion in catalytic fast pyrolysis by microwave-assisted formic acid pretreatment.

    Science.gov (United States)

    Feng, Yu; Li, Guangyu; Li, Xiangyu; Zhu, Ning; Xiao, Bo; Li, Jian; Wang, Yujue

    2016-08-01

    This study investigated microwave-assisted formic acid (MW-FA) pretreatment as a possible way to improve aromatic production from catalytic fast pyrolysis (CFP) of lignocellulosic biomass. Results showed that short duration of MW-FA pretreatment (5-10min) could effectively disrupt the recalcitrant structure of beech wood and selectively remove its hemicellulose and lignin components. This increased the accessibility of cellulose component of biomass to subsequent thermal conversion in CFP. Consequently, the MW-FA pretreated beech wood produced 14.0-28.3% higher yields (26.4-29.8C%) for valuable aromatic products in CFP than the untreated control (23.2C%). In addition, the yields of undesired solid residue (char/coke) decreased from 33.1C% for the untreated control to 28.6-29.8C% for the MW-FA pretreated samples. These results demonstrate that MW-FA pretreatment can provide an effective way to improve the product distribution from CFP of lignocellulose. PMID:27176672

  3. CATALYTIC CONVERSION OF MUNICIPAL WASTE PLASTIC INTO GASOLINE-RANGE PRODUCTS OVER MESOPOROUS MATERIALS

    Institute of Scientific and Technical Information of China (English)

    Jorge Norberto Beltramini

    2006-01-01

    In the last 20 years, it has become apparent that waste produced from plastics was becoming an environmental problem because of their low biodegradability. Though several methods have been proposed for recycling waste plastics, it is generally accepted that material recovery is not a long-term solution to the present problem, and that energy or chemical recovery is a more attractive alternative, including cracking into the monomer constituents, combustion to produce energy, and thermal or catalytic conversion to produce useful intermediate chemicals.This paper is a contribution in the area of the last option for energy recovery. There have been a number of publications reporting the use of molecular sieves and amorphous silica-alumina catalysts for the cracking of polymers into a range of hydrocarbons. The research work reported here demonstrates the ability of mesoporous catalysts in cracking polyethylene into gasoline range products.It was found that for mesoporous MCM-41 catalysts, its cracking activity increases with its crystallinity, displaying higher activity with smaller pore diameters. The hydrocarbon product distribution strongly indicates a carbenium ion cracking mechanism. The product distribution was also compared with those obtained from thermal cracking tests.

  4. Exxon catalytic coal-gasification process development program. Quarterly technical progress report, October-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Euker, Jr, C. A.

    1980-03-01

    Work continued on the catalyst recovery screening studies to evaluate the economic impacts of alternative processing approaches and solid-liquid separation techniques. Equipment specifications have been completed for two cases with countercurrent water washing using rotary-drum filters for the solid-liquid separations. Material and energy balances have been completed for an alternative methane recovery process configuration using low pressure stripping which requires 26% less horsepower than the Study Design system. A study has been initiated to identify trace components which might be present in the CCG gas loop and to assess their potential impacts on the CCG process. This information will be used to assist in planning an appropriate series of analyses for the PDU gasifier effluent. A study has been initiated to evaluate the use of a small conventional steam reformer operating in parallel with a preheat furnace for heat input to the catalytic gasifier which avoids the potential problem of carbon laydown. Preliminary replies from ten manufacturers are being evaluated as part of a study to determine the types and performance of coal crushing equipment appropriate for commercial CCG plants. A material and energy balance computer model for the CCG reactor system has been completed. The new model will provide accurate, consistent and cost-efficient material and energy balances for the extensive laboratory guidance and process definition studies planned under the current program. Other activities are described briefly.

  5. Catalytic Enhancement of Carbon Black and Coal-Fueled Hybrid Direct Carbon Fuel Cells

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Ippolito, Davide; Kammer Hansen, Kent

    2015-01-01

    , Ce1-xREExO2-δ (REE = Pr, Sm)) and metal oxides (LiMn2O4, Ag2O). Materials showing the highest activity in carbon black (Mn2O3, CeO2, Ce0.6Pr0.4O2-δ, Ag2O) were subsequently tested for catalytic activity toward bituminous coal, as revealed by both I-V-P curves and electrochemical impedance......Hybrid direct carbon fuel cells (HDCFCs) consisting of a solid carbon (carbon black)-molten carbonate ((62–38 wt% Li-K)2CO3) mixtures in the anode chamber of an anode-supported solid oxide fuel cell type full-cell are tested for their electrochemical performance between 700 and 800°C. Performance...... was investigated using current-voltage-power density curves. In the anode chamber, catalysts are mixed with the carbon-carbonate mixture. These catalysts include various manganese oxides (MnO2, Mn2O3, Mn3O4, MnO), metal carbonates (Ag2CO3, MnCO3, Ce2(CO3)3), metals (Ag, Ce, Ni), doped-ceria (CeO2, Ce1-xGdxO2-x/2...

  6. Catalytic Destruction of a Surrogate Organic Hazardous Air Pollutant as a Potential Co-benefit for Coal-fired Selective Catalyst Reduction Systems

    Science.gov (United States)

    Catalytic destruction of benzene (C6H6), a surrogate for organic hazardous air pollutants (HAPs) produced from coal combustion, was investigated using a commercial selective catalytic reduction (SCR) catalyst for evaluating the potential co-benefit of the SCR technology for reduc...

  7. PILOT-SCALE STUDY OF THE EFFECT OF SELECTIVE CATALYTIC REDUCTION CATALYST ON MERCURY SPECIATION IN ILLINOIS AND POWDER RIVER BASIN COAL COMBUSTION FLUE GASES

    Science.gov (United States)

    A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur and chlorine) and one Po...

  8. The prospects for coal-to-liquid conversion: A general equilibrium analysis

    Energy Technology Data Exchange (ETDEWEB)

    Henry Chen, Y.-H., E-mail: chenyh@colorado.edu [Development Research Group at the World Bank, 1818 H Street NW, Washington, DC 20433 (United States); Reilly, John M., E-mail: jreilly@mit.edu [MIT Joint Program on the Science and Policy of Global Change, Cambridge, MA 02139 (United States); Paltsev, Sergey, E-mail: paltsev@mit.edu [MIT Joint Program on the Science and Policy of Global Change, Cambridge, MA 02139 (United States)

    2011-09-15

    We investigate the economics of coal-to-liquid (CTL) conversion, a polygeneration technology that produces liquid fuels, chemicals, and electricity by coal gasification and Fischer-Tropsch process. CTL is more expensive than extant technologies when producing the same bundle of output. In addition, the significant carbon footprint of CTL may raise environmental concerns. However, as petroleum prices rise, this technology becomes more attractive especially in coal-abundant countries such as the U.S. and China. Furthermore, including a carbon capture and storage (CCS) option could greatly reduce its CO{sub 2} emissions at an added cost. To assess the prospects for CTL, we incorporate the engineering data for CTL from the U.S. Department of Energy (DOE) into the MIT Emissions Prediction and Policy Analysis (EPPA) model, a computable general equilibrium model of the global economy. Based on DOE's plant design that focuses mainly on liquid fuels production, we find that without climate policy, CTL has the potential to account for up to a third of the global liquid fuels supply by 2050 and at that level would supply about 4.6% of global electricity demand. A tight global climate policy, on the other hand, severely limits the potential role of the CTL even with the CCS option, especially if low-carbon biofuels are available. Under such a policy, world demand for petroleum products is greatly reduced, depletion of conventional petroleum is slowed, and so the price increase in crude oil is less, making CTL much less competitive. - Highlights: > We apply an economy-wide model to assess the economics of coal-to-liquid (CTL) conversion. > Our approach allows us to consider how CTL competes with other conversion technologies. > We find that without climate policy, CTL may account for a third of global liquid fuels by 2050. > With climate policy, CTL may not be viable due to high conversion cost and huge carbon footprint. > Although adding CCS reduces CO{sub 2} emissions

  9. Mechanistic Insights into the Structure-Dependent Selectivity of Catalytic Furfural Conversion on Platinum Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Qiuxia; Wang, Jianguo; Wang, Yang-Gang; Mei, Donghai

    2015-11-01

    The effects of structure and size on the selectivity of catalytic furfural conversion over supported Pt catalysts in the presence of hydrogen have been studied using first principles density functional theory (DFT) calculations and microkinetic modeling. Four Pt model systems, i.e., periodic Pt(111), Pt(211) surfaces, as well as small nanoclusters (Pt13 and Pt55) are chosen to represent the terrace, step, and corner sites of Pt nanoparticles. Our DFT results show that the reaction routes for furfural hydrogenation and decarbonylation are strongly dependent on the type of reactive sites, which lead to the different selectivity. On the basis of the size-dependent site distribution rule, we correlate the site distributions as a function of the Pt particle size. Our microkinetic results indicate the critical particle size that controls the furfural selectivity is about 1.0 nm, which is in good agreement with the reported experimental value under reaction conditions. This work was supported by National Basic Research Program of China (973 Program) (2013CB733501) and the National Natural Science Foundation of China (NSFC-21306169, 21176221, 21136001, 21101137 and 91334103). This work was also partially supported by the US Department of Energy (DOE), the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.

  10. Soft-chemical synthesis and catalytic activity of Ni-Al and Co-Al layered double hydroxides (LDHs intercalated with anions with different charge density

    Directory of Open Access Journals (Sweden)

    Takahiro Takei

    2014-09-01

    Full Text Available Co-Al and Ni-Al layered double hydroxides (LDHs intercalated with three types of anionic molecules, dodecylsulfate (C12H25SO4−, DS, di-2-ethylsulfosuccinate ([COOC2H3EtBu]2C2H3SO3−, D2ES, and polytungstate (H2W12O4210−, HWO were prepared by means of ion-exchange and co-precipitation processes. With the use of DS and D2ES as intercalation agents, high crystallinity was maintained after intercalation into the LDHs. In the case of HWO, the intercalated LDHs could be obtained by ion-exchange as well as co-precipitation with a decline in the crystallinity; however, unreacted LDH was detected in the ion-exchange samples, and some unwanted phases such as hydroxide and pyrochlore were generated by the co-precipitation process. The maximum specific surface area and pore volume of the Ni-Al sample with intercalated HWO, prepared by the ion-exchange process were 74 m2/g and 0.174 mL/g, respectively. The occupancies of DS, D2ES, and HWO within the interlayer space were approximately 0.3–0.4, 0.5–0.6, and 0.1–0.2, respectively, in the Co-Al and Ni-Al LDHs. Analysis of the catalytic activity demonstrated that the DS-intercalated Ni-Al LDH sample exhibited relatively good catalytic activity for conversion of cyclohexanol to cyclohexanone.

  11. DEVELOPMENT OF HIGH ACTIVITY, COAL-DERIVED, PROMOTED CATALYTIC SYSTEMS FOR NOx REDUCTION AT LOW TEMPERATURES

    Energy Technology Data Exchange (ETDEWEB)

    Joseph M. Calo

    2000-07-21

    This project is directed at an investigation of catalytic NO{sub x} reduction mechanisms on coal-derived, activated carbon supports at low temperatures. Promoted carbon systems offer some potentially significant advantages for heterogeneous NO{sub x} reduction. These include: low cost; high activity at low temperatures, which minimizes carbon loss; oxygen resistance; and a support material which can be engineered with respect to porosity, transport and catalyst dispersion characteristics. During the reporting period, the following has been accomplished: (1) Steady-state reactivity studies in the packed bed reactor were extended to the NO/CO-carbon reaction system as a function of temperature and NO and CO concentrations. It was found that the NO reaction rate increased in the presence of CO, and the apparent activation energy decreased to about 75 {+-} 8 kJ/mol. In addition, the influence of mass transfer limitations were noted at low NO and CO concentrations. (2) The packed bed reactor/gas flow system has been applied to performing post-reaction temperature programmed desorption (TPD) studies of intermediate surface complexes following steady-state reaction. It was found that the amount of CO-evolving intermediate surface complexes exceeded that of the N{sub 2}-evolving surface complexes, and that both increased with reaction temperature. The TPD spectra indicates that both types of complexes desorb late, suggesting that they have high desorption activation energies. Plans for the next reporting period include extending the temperature programmed desorption studies in the packed bed reactor system to the NO/CO reaction system, including exposure to just CO, as well as NO/CO mixtures.

  12. Gas cleaning and hydrogen sulfide removal for COREX coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer.

    Science.gov (United States)

    Sun, Tonghua; Shen, Yafei; Jia, Jinping

    2014-02-18

    This paper proposes a novel self-developed JTS-01 desulfurizer and JZC-80 alkaline adsorbent for H2S removal and gas cleaning of the COREX coal gas in small-scale and commercial desulfurizing devices. JTS-01 desulfurizer was loaded with metal oxide (i.e., ferric oxides) catalysts on the surface of activated carbons (AC), and the catalyst capacity was improved dramatically by means of ultrasonically assisted impregnation. Consequently, the sulfur saturation capacity and sulfur capacity breakthrough increased by 30.3% and 27.9%, respectively. The whole desulfurizing process combined selective adsorption with catalytic oxidation. Moreover, JZC-80 adsorbent can effectively remove impurities such as HCl, HF, HCN, and ash in the COREX coal gas, stabilizing the system pressure drop. The JTS-01 desulfurizer and JZC-80 adsorbent have been successfully applied for the COREX coal gas cleaning in the commercial plant at Baosteel, Shanghai. The sulfur capacity of JTS-01 desulfurizer can reach more than 50% in industrial applications. Compared with the conventional dry desulfurization process, the modified AC desulfurizers have more merit, especially in terms of the JTS-01 desulfurizer with higher sulfur capacity and low pressure drop. Thus, this sorption enhanced catalytic desulfurization has promising prospects for H2S removal and other gas cleaning. PMID:24456468

  13. Gas cleaning and hydrogen sulfide removal for COREX coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer.

    Science.gov (United States)

    Sun, Tonghua; Shen, Yafei; Jia, Jinping

    2014-02-18

    This paper proposes a novel self-developed JTS-01 desulfurizer and JZC-80 alkaline adsorbent for H2S removal and gas cleaning of the COREX coal gas in small-scale and commercial desulfurizing devices. JTS-01 desulfurizer was loaded with metal oxide (i.e., ferric oxides) catalysts on the surface of activated carbons (AC), and the catalyst capacity was improved dramatically by means of ultrasonically assisted impregnation. Consequently, the sulfur saturation capacity and sulfur capacity breakthrough increased by 30.3% and 27.9%, respectively. The whole desulfurizing process combined selective adsorption with catalytic oxidation. Moreover, JZC-80 adsorbent can effectively remove impurities such as HCl, HF, HCN, and ash in the COREX coal gas, stabilizing the system pressure drop. The JTS-01 desulfurizer and JZC-80 adsorbent have been successfully applied for the COREX coal gas cleaning in the commercial plant at Baosteel, Shanghai. The sulfur capacity of JTS-01 desulfurizer can reach more than 50% in industrial applications. Compared with the conventional dry desulfurization process, the modified AC desulfurizers have more merit, especially in terms of the JTS-01 desulfurizer with higher sulfur capacity and low pressure drop. Thus, this sorption enhanced catalytic desulfurization has promising prospects for H2S removal and other gas cleaning.

  14. Selective catalytic conversion of ethanol to basic chemicals over phosphorus-modified H-ZSM-5 zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Danilina, N.; Reschetilowski, W. [Technische Univ. Dresden (Germany). Inst. fuer Technische Chemie; Toufar, H. [TRICAT Zeolites, Bitterfeld (Germany)

    2006-07-01

    The activity and selectivity of unmodified and phosphorus-modified H-ZSM-5 zeolites (Si/Al = 11) in the conversion of ethanol was studied. The post-synthesis modification of H-ZSM-5 was done using phosphoric acid; the phosphorus loading was varied between 0.33 and 1.3 wt.-%. The catalytic tests were performed at 450 C and under atmospheric pressure in a plug-flow reactor. All catalyst samples were characterized with XRD, AAS, EDX, IR, and 31P MAS NMR. The acidic properties were determined with in situ FTIR measurements of temperature-programmed ammonia-desorption. The incorporation of phosphorus in H-ZSM-5 zeolites by post-synthesis modification leads to highly active and selective catalysts for the conversion of ethanol to aromatics. The conversion of ethanol increases to up to 100 % and the selectivity to aromatics to maximally 80 wt.-%. (orig.)

  15. Proceedings of the symposium on assessing the industrial hygiene monitoring needs for the coal conversion and oil shale industries

    Energy Technology Data Exchange (ETDEWEB)

    White, O. Jr. (ed.)

    1979-03-01

    This work was supported by the United States Department of Energy, Division of Biomedical and Environmental Research, Analysis and Assessment Program, through the Safety and Environmental Protection Division at Brookhaven National Laboratory. The symposium program included presentations centering around the themes: Recognition of Occupational Health Monitoring Requirements for the Coal Conversion and Oil Shale Industries and Status of Dosimetry Technology for Occupational Health Monitoring for the Coal Conversion and Oil Shale Industries. Sixteen papers have been entered individually into EDB and ERA; six had been entered previously from other sources. (LTN)

  16. Superacid Catalyzed Depolymerization and Conversion of Coals. Final Technical Report. [HF:BF{sub 2}/H{sub 2}

    Science.gov (United States)

    Olah, G.

    1980-01-01

    We were interested in applying superacid catalyzed cleavage-depolymerization and ionic hydrogenation low temperature conversion of coal to liquid hydrocarbon, as well as obtaining information about the reactions involved and the structure of intermediates of the coal liquefaction process. In order to show the feasibility of our proposed research we have carried out preliminary investigation in these areas. Preceding our work there was no practical application of a superacid system to coal liquefaction. We carried out an extensive study of the potential of the HF:BF{sub 3}/H{sub 2} system for coal hydroliquefaction. Under varying conditions of reactant ratio, reaction time and temperature, we were able to obtain over 95% pyridine extractible product by treating coal in HF:BF{sub 3}:H{sub 2} system at approx. 100 degrees C for 4 hours. The coal to acid ratio was 1:5 and FB{sub 3} at 900 psi and H{sub 2} at 500 psi were used. These are extremely encouraging results in that the conditions used are drastically milder than those used in any known process, such as Exxon donor solvent and related processes. The cyclohexane extractibility of the treated coal was as high as 27% and the yield of liquid distillate at 400 degrees C/5 x 10{sup -3}/sup torr/ was approx. 30%. The infrared spectrum of product coal, extracts and distillates were distinctly different from the starting coal and show a significant increase in the amount of saturates. The {sup 1}H NMR spectrum of cyclohexane extract of the treated coal shows essentially all aliphatic photons. The spectra of other treated coal extracts show increased amounts and types of aliphatic protons as well as significant amounts of protons bound to unsaturated sites. This again indicates that the HF-BF{sub 3} system is depolymerizing the coal to small fragments which are soluble in non-polar solvents.

  17. IN-SITU MAGIC ANGLE SPINNING NMR INVESTIGATIONS ON CATALYTIC CONVERSION OF BIOGENIC MOLECULES IN THE PRESENCE OF AQUEOUS WATER

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Mary Y.; Feng, Ju; Camaioni, Donald M.; Turcu, Romulus VF; Peden, Charles HF; Lercher, Johannes A.; Hu, Jian Z.

    2012-09-01

    The catalyzed conversion of biomass to hydrocarbon energy carriers requires a cascade of reactions that deconstruct and reduce the polymeric, highly oxofunctionalized biomass material. While lignin is the most intractable component of lignocellulose, its conversion to useful products is key in this catalytic chemistry, because the carbon in lignin is the most reduced one in lignocellulose. This chemistry faces steep challenges, as most of the reactions have to be performed in an aqueous environment under conditions that are highly corrosive towards catalysts. The anticipated scale of the transformations demands that the complex catalysts involved be highly efficient, stable, regenerable, and economically viable catalysts. Currently, none of the known heterogeneous solid catalysts meets these requirements. In order to develop new catalysts satisfying these requirements, a fundamental understanding of the active centers, reaction intermediates and reaction dynamics/kinetics associated with the multi-step conversion of biomass/biomass components, or biomass related polar molecules, i.e., the precursor molecules to fuels, on multifunctional catalytic surfaces is critically needed.

  18. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Volume 2, appendices. Final technical report, October 1, 1991--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., AL (United States); Chander, S. [Pennsylvania State Univ., College Park, PA (United States); Gutterman, C.

    1995-04-01

    Liquefaction experiments were undertaken using subbituminous Black Thunder mine coal to observe the effects of aqueous SO{sub 2} coal beneficiation and the introduction of various coal swelling solvents and catalyst precursors. Aqueous SO{sub 2} beneficiation of Black Thunder coal removed alkali metals and alkaline earth metals, increased the sulfur content and increased the catalytic liquefaction conversion to THF solubles compared to untreated Black Thunder coal. The liquefaction solvent had varying effects on coal conversion, depending upon the type of solvent added. The hydrogen donor solvent, dihydroanthracene, was most effective, while a coal-derived Wilsonville solvent promoted more coal conversion than did relatively inert 1-methylnaphthalene. Swelling of coal with hydrogen bonding solvents tetrahydrofuran (THF), isopropanol, and methanol, prior to reaction resulted in increased noncatalytic conversion of both untreated and SO{sub 2} treated Black Thunder coals, while dimethylsulfoxide (DMSO), which was absorbed more into the coal than any other swelling solvent, was detrimental to coal conversion. Swelling of SO{sub 2} treated coal before liquefaction resulted in the highest coal conversions; however, the untreated coal showed the most improvements in catalytic reactions when swelled in either THF, isopropanol, or methanol prior to liquefaction. The aprotic solvent DMSO was detrimental to coal conversion.

  19. Valorization of Waste Lipids through Hydrothermal Catalytic Conversion to Liquid Hydrocarbon Fuels with in Situ Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongwook; Vardon, Derek R.; Murali, Dheeptha; Sharma, Brajendra K.; Strathmann, Timothy J.

    2016-03-07

    We demonstrate hydrothermal (300 degrees C, 10 MPa) catalytic conversion of real waste lipids (e.g., waste vegetable oil, sewer trap grease) to liquid hydrocarbon fuels without net need for external chemical inputs (e.g., H2 gas, methanol). A supported bimetallic catalyst (Pt-Re/C; 5 wt % of each metal) previously shown to catalyze both aqueous phase reforming of glycerol (a triacylglyceride lipid hydrolysis coproduct) to H2 gas and conversion of oleic and stearic acid, model unsaturated and saturated fatty acids, to linear alkanes was applied to process real waste lipid feedstocks in water. For reactions conducted with an initially inert headspace gas (N2), waste vegetable oil (WVO) was fully converted into linear hydrocarbons (C15-C17) and other hydrolyzed byproducts within 4.5 h, and H2 gas production was observed. Addition of H2 to the initial reactor headspace accelerated conversion, but net H2 production was still observed, in agreement with results obtained for aqueous mixtures containing model fatty acids and glycerol. Conversion to liquid hydrocarbons with net H2 production was also observed for a range of other waste lipid feedstocks (animal fat residuals, sewer trap grease, dry distiller's grain oil, coffee oil residual). These findings demonstrate potential for valorization of waste lipids through conversion to hydrocarbons that are more compatible with current petroleum-based liquid fuels than the biodiesel and biogas products of conventional waste lipid processing technologies.

  20. DEVELOPMENT OF HIGH ACTIVITY, COAL-DERIVED, PROMOTED CATALYTIC SYSTEMS FOR NOx REDUCTION AT LOW TEMPERATURES

    Energy Technology Data Exchange (ETDEWEB)

    Joseph M. Calo

    2000-07-24

    This project is directed at an investigation of catalytic NO{sub x} reduction mechanisms on coal-derived, activated carbon supports at low temperatures. Promoted carbon systems offer some potentially significant advantages for heterogeneous NO{sub x} reduction. These include: low cost; high activity at low temperatures, which minimizes carbon loss; oxygen resistance; and a support material which can be engineered with respect to porosity, transport and catalyst dispersion characteristics. During the reporting period, TPD studies were conducted following steady-state reaction in NO/CO mixtures in helium. From these studies, the following points have been concluded: (1) The total amount of CO and N{sub 2} evolved following reaction in NO increases with reaction temperature. The TPD spectra are skewed to high temperatures, indicating more stable surface complexes with high desorption activation energies. (2) The total amount of CO evolved following exposure of the char sample to CO at reaction temperatures decreases with reaction temperature, similar to chemisorption behavior. The CO TPD spectra are shifted to lower temperatures, indicating more labile oxygen surface complexes with lower desorption activation energies. (3) The total amount of CO evolved following reaction in NO/CO mixtures decreases with reaction temperature, while the evolved N{sub 2} still increases with reaction temperature. The CO TPD spectra appear more similar to those obtained following exposure to pure CO, while the N{sub 2} TPD spectra are more similar to those obtained followed reaction in just CO. Based on the preceding observations, a simple mechanism was formulated whereby two different types of surface complexes are formed by NO and CO; the former are more stable, and the latter more labile. This produces two parallel routes for the NO-carbon reaction: (a) the C(O) complexes formed directly by NO desorb as CO; and (b) The C(CO) complexes formed by CO, react with NO to produce CO{sub 2

  1. Investigating the Influence of Mesoporosity in Zeolite Beta on its Catalytic Performance for the Conversion of Methanol to Hydrocarbons

    KAUST Repository

    Liu, Zhaohui

    2015-08-26

    Hierarchically porous zeolite Beta (Beta-MS) synthesized by a soft-templating method contains remarkable intra-crystalline mesoporosity, which reduces the diffusion length in zeolite channels down to several nanometers and alters the distribution of Al among distinct crystallographic sites. When used as a catalyst for the conversion of methanol to hydrocarbons (MTH) at 330 oC, Beta-MS exhibited a 2.7-fold larger conversion capacity, a 2.0-fold faster reaction rate, and a remarkably longer lifetime than conventional zeolite Beta (Beta-C). The superior catalytic performance of Beta-MS is attributed to its hierarchical structure, which offers full accessibility to all catalytic active sites. In contrast, Beta-C was easily deactivated because a layer of coke quickly deposited on the outer surfaces of the catalyst crystals, impeding access to interior active sites. This difference is clearly demonstrated by using electron microscopy combined with electron energy loss spectroscopy to probe the distribution of coke in the deactivated catalysts. At both low and high conversions, ranging from 20% to 100%, Beta-MS gave higher selectivity towards higher aliphatics (C4-C7) but lower ethene selectivity compared to Beta-C. Therefore, we conclude that a hierarchical structure decreases the residence time of methylbenzenes in zeolite micropores, disfavoring the propagation of the aromatic-based catalytic cycle. This conclusion is consistent with a recent report on ZSM-5 and is also strongly supported by our analysis of soluble coke species residing in the catalysts. Moreover, we identified an oxygen-containing compound, 4-methyl-benzaldehyde, in the coke, which has not been observed in the MTH reaction before.  

  2. VAPOR-PHASE CATALYTIC CONVERSION OF ETHANOL INTO 1,3-BUTADIENE ON Cr-Ba/MCM-41 CATALYSTS

    OpenAIRE

    N. La-Salvia; J. J. Lovón-Quintana; G.P. VALENÇA

    2015-01-01

    AbstractAl-MCM-41, 16%Ba/Al-MCM-41 and 1.4%Cr-16%Ba/Al-MCM-41 were used as catalysts in the vapor-phase catalytic conversion of ethanol. Physical-chemical properties of the catalysts and the effect of barium and chromium on the Al-MCM-41 activity and 1,3-butadiene yield were studied. The catalysts were characterized by X-ray diffraction (XRD), N2 physisorption (BET method), CO2chemisorption and Fourier transform infrared spectroscopy (FT-IR). When ethanol was completely converted on Al-MCM-41...

  3. Structural analysis of Catliq® bio-oil produced by catalytic liquid conversion of biomass

    OpenAIRE

    Toor, Saqib Sohail; Rosendahl, Lasse; Nielsen, Mads Pagh; Rudolf, Andreas

    2008-01-01

    The potential offered by biomass for solving some of the world's energy problems is widely recognized. The energy contained in biomass can be utilized either directly as in combustion or by converting the biomass into a liquid fuel for transportation. The Catliq® (catalytic liquid conversion) process is a second generation process for the production of bio-oil from different biomass-based waste materials. The process is carried out at subcritical conditions (280-350 °C and 180-250 bar) and in...

  4. Innovative clean coal technology (ICCT): demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NOx) emission from high-sulfur, coal-fired boilers - economic evaluation of commercial-scale SCR applications for utility boilers

    International Nuclear Information System (INIS)

    This report presents the results of an economic evaluation produced as part of the Innovative Clean Coal Technology project, which demonstrated selective catalytic reduction (SCR) technology for reduction of NOx emissions from utility boilers burning U.S. high-sulfur coal. The document includes a commercial-scale capital and O ampersand M cost evaluation of SCR technology applied to a new facility, coal-fired boiler utilizing high-sulfur U.S. coal. The base case presented herein determines the total capital requirement, fixed and variable operating costs, and levelized costs for a new 250-MW pulverized coal utility boiler operating with a 60-percent NOx removal. Sensitivity evaluations are included to demonstrate the variation in cost due to changes in process variables and assumptions. This report also presents the results of a study completed by SCS to determine the cost and technical feasibility of retrofitting SCR technology to selected coal-fired generating units within the Southern electric system

  5. Tracing catalytic conversion on single zeolite crystals in 3D with nonlinear spectromicroscopy

    NARCIS (Netherlands)

    Domke, K.F.; Riemer, T.A.; Rago, G.; Parvulescu, A.N.; Bruijnincx, P.C.A.; Enejder, A.; Weckhuysen, B.M.; Bonn, M.

    2012-01-01

    The cost- and material-efficient development of nextgeneration catalysts would benefit greatly from a molecular-level understanding of the interaction between reagents and catalysts in chemical conversion processes. Here, we trace the conversion of alkene and glycol in single zeolite catalyst partic

  6. Catalytic conversion of inulin and fructose into 5-hydroxymethylfurfural by lignosulfonic acid in ionic liquids.

    Science.gov (United States)

    Xie, Haibo; Zhao, Zongbao K; Wang, Qian

    2012-05-01

    In this work, we found that lignosulfonic acid (LS), which is a waste byproduct from the paper industry, in ionic liquids (ILs) can catalyze the dehydration of fructose and inulin into 5-hydroxymethylfurfural (HMF) efficiently, which is a promising potential substitute for petroleum-based building blocks. The effects of reaction time, temperature, catalyst loading, and reusability of the catalytic system were studied. It was found that a 94.3% yield of HMF could be achieved in only 10 min at 100 °C under mild conditions. The reusability study of the LS-IL catalytic system after removal of HMF by ethyl acetate extraction demonstrated that the catalytic activity decreased from 77.4 to 62.9% after five cycles and the catalytic activity could be recovered after simply removing the accumulated humins by filtration after adding ethanol to the LS-ILs. The integrated utilization of a biorenewable feedstock, catalyst, and ILs is an example of an ideal green chemical process. PMID:22517537

  7. Catalytic Conversion of Alcohols into Olefins: Spectroscopy, Kinetics and Catalyst Deactivation

    NARCIS (Netherlands)

    Qian, Q.

    2014-01-01

    The alcohols-to-olefins (ATO) catalytic process, a technology based on oil-alternative feedstocks, has gained increasing attention due to the current high price of crude oil as well as the growing environmental concerns. Intensive academic and industrial research, mainly performed under ex-situ cond

  8. Conversion of Fuel-N to N2O and NOx during Coal Combustion in Combustors of Different Scale

    Institute of Scientific and Technical Information of China (English)

    周昊; 黄燕; 莫桂源; 廖子昱; 岑可法

    2013-01-01

    With focus on investigating the effect of combustor scale on the conversion of fuel-N to NOx and N2O, experiments are carried out in three combustors, including single coal particle combustion test rig, laboratory scale circulating fluidized-bed boiler (CFB) and full scale CFB in this work. For single coal particle combustion, the ma-jority of fuel-N (65%-82%) is released as NOx, while only a little (less than 8%) fuel-N yields N2O. But in labora-tory scale CFB, the conversion of fuel-N to N2O is increases, but the conversion of fuel-N to NOx is quite less than that of single coal particle combustion. This is because much char in CFB can promote the NOx reduction by in-creasing N2O formation. In full scale CFB, both of the conversion of fuel-N to NOx and the conversion of fuel-N to N2O are smaller than laboratory scale CFB.

  9. Coal devolatilization and char conversion under suspension fired conditions in O2/N2 and O2/CO2 atmospheres

    DEFF Research Database (Denmark)

    Jensen, Anker Degn; Brix, Jacob; Jensen, Peter Arendt

    2010-01-01

    was burned at 1573 K and 1673 K a faster conversion was found in N2 suggesting that the lower molecular diffusion coefficient of O2 in CO2 lowers the char conversion rate when external mass transfer influences combustion. The reaction of char with CO2 was not observed to have an influence on char conversion......The aim of the present investigation is to examine differences between O2/N2 and O2/CO2 atmospheres during devolatilization and char conversion of a bituminous coal at conditions covering temperatures between 1173 K and 1673 K and inlet oxygen concentrations between 5 and 28 vol.%. The experiments...... indicates that a shift from air to oxy-fuel combustion does not influence the devolatilization process significantly. Char combustion experiments yielded similar char conversion profiles when N2 was replaced with CO2 under conditions where combustion was primarily controlled by chemical kinetics. When char...

  10. Characteristics of American coals in relation to their conversion into clean-energy fuels. Final report. [1150 samples of US coals

    Energy Technology Data Exchange (ETDEWEB)

    Spackman, W.; Davis, A.; Walker, P.L.; Lovell, H.L.; Vastola, F.J.; Given, P.H.; Suhr, N.H.; Jenkins, R.G.

    1982-06-01

    To further characterize the Nation's coals, the Penn State Coal Sample Bank and Data Base were expanded to include a total of 1150 coal samples. The Sample Bank includes full-seam channel samples as well as samples of lithotypes, seam benches, and sub-seam sections. To the extent feasible and appropriate basic compositional data were generated for each sample and validated and computerized. These data include: proximate analysis, ultimate analysis, sulfur forms analysis, calorific value, maceral analysis, vitrinite reflectance analysis, ash fusion analysis, free-swelling index determination, Gray-King coke type determination, Hardgrove grindability determination, Vicker's microhardness determination, major and minor element analysis, trace element analysis, and mineral species analysis. During the contract period more than 5000 samples were prepared and distributed. A theoretical and experimental study of the pyrolysis of coal has been completed. The reactivity of chars, produced from all ranks of American coals, has been studied with regard to reactivity to air, CO/sub 2/, H/sub 2/ and steam. Another area research has concerned the catalytic effect of minerals and various cations on the gasification processes. Combustion of chars, low volatile fuels, coal-oil-water-air emulsions and other subjects of research are reported here. The products of this research can be found in 23 DOE Technical Research Reports and 49 published papers. As another mechanism of technology transfer, the results have been conveyed via more than 70 papers presented at a variety of scientific meetings. References to all of these are contained in this report.

  11. Superacid Catalyzed Coal Conversion Chemistry. 1st and 2nd Quarterly Technical Progress Reports, September 1, 1983-March 30, 1984.

    Science.gov (United States)

    Olah, G. A.

    1984-01-01

    In our laboratories we have previously developed a mild coal conversion process. This involves the use of a superacid system consisting of HF and BF{sub 3} in presence of hydrogen and/or a hydrogen donor solvent. In order to understand the chemistry involved in the process of depolymerization of coal by the HF:BF{sub 3}:H{sub 2} system we are carrying out a systematic study of a number of coal model compounds. The model compounds selected for present study have two benzene rings connected with various bridging units such as alkylidene, ether, sulfide etc. From studies so far carried out it appears that high pyridine extractibilities achieved by treating coal at temperature below 100 degrees C results from the cleavage of bridges such as present in bibenzyl, diphenyl methane, dibenzyl ether, dibenzyl sulfide etc. On the other hand the increased cyclohexane extractibility and distillability observed at relatively higher temperatures and hydrogen pressures reflects the hydrogenation and cleavage of the aromatic backbone in coal structure similar to what is seen in the conversion of model compounds such as biphenyl, diphenyl ether, diphenyl sulfide, anthracene, etc.

  12. Catalytic Conversion of 2-Naphthol to 2-Hydroxy-1,4-naphthoquinone Under Mild Conditions

    Institute of Scientific and Technical Information of China (English)

    YAN,Yan(阎雁); GUO,Hong-Wei(郭红卫); JIAN,Wen-Ping(菅文平); YANG,Ke-Er(杨克儿); TONG,Shan-Ling(佟珊玲); FANG,Chi-Guang(方赤光); Ll,Qing(李青); CHANG,Xin(常新)

    2004-01-01

    2-Hydroxy-l,4-naphthaquinone (HNQ) was selectively synthesized from catalytic oxidation of 2-naphthol by molecular oxygen over tetra(4-methoxyl-phenyl)porphyrinate iron(III) chloride (TMOPPFeC1) catalyst in an alkali methanol solution under mild conditions.The influences of solvents,temperature,time,as well as amounts of catalysts and alkali were studied.The quantitative data show that 32.9% of 2-naphthol (0.093 mol/dm3) was catalytically converted to HNQ with the selectivity of 100% at 323 K for 9 h over TMOPPFeC1 catalyst (2.54×10-4mol/dm3) in alkali media (30 mL of methanol containing 2.5 mol/dm3 of NaOH) by flowing molecular oxygen (flowing rate of 45 mL/min).

  13. Environmental quality and energy conservation in coal conversion processes. [Overall minimization of energy required for sulfur pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, G.L.; Hill, A.H.; Fleming, D.K.

    1979-01-01

    In general, controlling emissions from a coal conversion process is an energy consuming process. In this paper, a parametric assessment of energy requirements for sulfur management in a coal gasification process to produce substitute natural gas is presented. The results of this assessment suggest that the least energy intensive sulfur management practice to utilize in coal gasification plants using low sulfur coal (< 3.5%) is an H/sub 2/S selective removal process providing a Claus plant feed-stream containing 10% or less H/sub 2/S with tail gas from the Claus plant being incinerated in the coal-fired boiler and the additional SO/sub 2/ removed in the flue gas desulfurization (FGD) system. For high sulfur coals (> 3.5%), energy consumptions for all combinations were similar for a given FGD SO/sub 2/ removal specification. As the SO/sub 2/ specification increases for the FGD system, the total energy required for sulfur management also increases. Finally, contrary to expectations, the total energy requirements for sulfur management decrease with increasing sulfur content of the feed coal indicating that the energy requiements of the H/sub 2/S removal process dominates. The total energy requirements for the two Claus plant tail gas treatment processes are similar. Incineration in the boiler is slightly more energy efficient. For low sulfur coals (< 3.5%) the total energy requirements decreased rapidly as the level of H/sub 2/S selective acid-gas removal process decreased from 30% to 10%. For high sulfur coals (> 3.5%) the total energy requirements were similar for all levels of H/sub 2/S in the Claus plant feed gas with a possible minimum in energy requirements for the 15% H/sub 2/S cases.

  14. Conversion of Isoprenoid Oil by Catalytic Cracking and Hydrocracking over Nanoporous Hybrid Catalysts

    OpenAIRE

    Toshiyuki Kimura; Chen Liu; Xiaohong Li; Takaaki Maekawa; Sachio Asaoka

    2012-01-01

    In order to produce petroleum alternatives from biomass, a significant amount of research has been focused on oils from microalgae due to their origin, which would not affect food availability. Nanoporous hybrid catalysts composed of ns Al2O3 and zeolites have been proven to be very useful compared to traditional catalysts in hydrotreating (HT), hydrocracking (HC), and catalytic cracking (CC) of large molecules. To evaluate the reaction scheme and products from model isoprenoid compounds of m...

  15. Catalytic Conversion of Alcohols into Olefins: Spectroscopy, Kinetics and Catalyst Deactivation

    OpenAIRE

    Qian, Q

    2014-01-01

    The alcohols-to-olefins (ATO) catalytic process, a technology based on oil-alternative feedstocks, has gained increasing attention due to the current high price of crude oil as well as the growing environmental concerns. Intensive academic and industrial research, mainly performed under ex-situ conditions with bulk characterization techniques as well as advanced theoretical calculations, have yielded important insights into the ATO reaction mechanism, which follows the so-called “hydrocarbon ...

  16. Catalytic Conversion of Pinus densiflora Over Mesoporous Catalysts Using Pyrolysis Process.

    Science.gov (United States)

    Joo, Sung Kyun; Lee, In-Gu; Lee, Hyung Won; Chea, Kwang-Seok; Jo, Tae Su; Jung, Sang-Chul; Kim, Sang Chai; Ko, Chang Hyun; Park, Young-Kwon

    2016-02-01

    Catalytic pyrolysis experiments were conducted to investigate the possibility of obtaining valuable chemicals from Pinus densiflora, a native Korean tree species occupying 21.4% of the total area under forests in South Korea. Two representative mesoporous catalysts, Al-MCM-41 and Al-MSU-F, as well as hierarchical mesoporous MFI (Meso-MFI) that has both mesopores and micropores, were used as catalysts. Compared to non-catalytic pyrolysis, catalytic pyrolysis was shown to reduce the fractions of levoglucosan, phenolics, and acids in bio-oil, while increasing the fractions of aromatics, PAHs, and furans. Meso-MFI with strong acid sites showed a high selectivity toward aromatics and PAHs, whereas Al-MCM-41 and Al-MSU-F with weak acid sites exhibited a high selectivity toward furanic compounds. The results of this study indicate that choosing a catalyst with an adequate quantity of acidic sites with the required strength is critical for enhancing the production of desired chemicals from Pinus densiflora. PMID:27433632

  17. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass.

    Science.gov (United States)

    Ennaert, Thijs; Van Aelst, Joost; Dijkmans, Jan; De Clercq, Rik; Schutyser, Wouter; Dusselier, Michiel; Verboekend, Danny; Sels, Bert F

    2016-02-01

    Increasing demand for sustainable chemicals and fuels has pushed academia and industry to search for alternative feedstocks replacing crude oil in traditional refineries. As a result, an immense academic attention has focused on the valorisation of biomass (components) and derived intermediates to generate valuable platform chemicals and fuels. Zeolite catalysis plays a distinct role in many of these biomass conversion routes. This contribution emphasizes the progress and potential in zeolite catalysed biomass conversions and relates these to concepts established in existing petrochemical processes. The application of zeolites, equipped with a variety of active sites, in Brønsted acid, Lewis acid, or multifunctional catalysed reactions is discussed and generalised to provide a comprehensive overview. In addition, the feedstock shift from crude oil to biomass involves new challenges in developing fields, like mesoporosity and pore interconnectivity of zeolites and stability of zeolites in liquid phase. Finally, the future challenges and perspectives of zeolites in the processing of biomass conversion are discussed.

  18. Catalytic conversion of alcohols having at least three carbon atoms to hydrocarbon blendstock

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Chaitanya K.; Davison, Brian H.

    2015-11-13

    A method for producing a hydrocarbon blendstock, the method comprising contacting at least one saturated acyclic alcohol having at least three and up to ten carbon atoms with a metal-loaded zeolite catalyst at a temperature of at least 100°C and up to 550°C, wherein the metal is a positively-charged metal ion, and the metal-loaded zeolite catalyst is catalytically active for converting the alcohol to the hydrocarbon blendstock, wherein the method directly produces a hydrocarbon blendstock having less than 1 vol % ethylene and at least 35 vol % of hydrocarbon compounds containing at least eight carbon atoms.

  19. Catalytic Conversion of Dihydroxyacetone to Lactic Acid Using Metal Salts in Water

    NARCIS (Netherlands)

    Rasrendra, Carolus B.; Fachri, Boy A.; Makertihartha, I. Gusti B. N.; Adisasmito, Sanggono; Heeres, Hero J.

    2011-01-01

    We herein present a study on the application of homogeneous catalysts in the form of metal salts on the conversion of trioses, such as dihydroxyacetone (DHA), and glyceraldehyde (GLY) to lactic acid (LA) in water. A wide range of metal salts (26 in total) were examined. Al(III) salts were identified

  20. The Catalytic Conversion of D-Glucose to 5-Hydroxymethylfurfural in DMSO Using Metal Salts

    NARCIS (Netherlands)

    Rasrendra, C. B.; Soetedjo, J. N. M.; Makertihartha, I. G. B. N.; Adisasmito, S.; Heeres, H. J.; Albrecht, Karl O.; Holladay, Johnathan E.

    2012-01-01

    A wide range of metal halides and triflates were examined for the conversion of d-glucose to HMF in DMSO. Chromium and aluminium salts were identified as the most promising catalysts. The effect of process variables like initial d-glucose concentration (0.1-1.5 M), reaction time (5-360 min) and reac

  1. Catalytic Hydrothermal Conversion of Wet Biomass Feedstocks and Upgrading – Process Design and Optimization

    DEFF Research Database (Denmark)

    Hoffmann, Jessica; Toor, Saqib; Rosendahl, Lasse

    Liquid biofuels will play a major role for a more sustainable energy system of the future. The CatLiq® process is a 2nd generation biomass conversion process that is based on hydrothermal liquefaction. Hydrothermal liquefaction offers a very efficient and feedstock flexible way of converting...

  2. Characterization of catalytically hydrogenated and pyrolysis coal products. A comparative study of several analytical procedures

    Energy Technology Data Exchange (ETDEWEB)

    Delpuech, J.J.; Nicole, D.; Cagniant, D.; Cleon, P.; Foucheres, M.C.; Dumay, D.; Aune, J.P.; Genard, A.

    1986-03-01

    Liquids and residues obtained from coal by hydroliquefaction and pyrolysis are extremely complex mixtures. They consist mainly of saturated and aromatic polycyclic hydrocarbons. O, S and N heterocycles and polar compounds are also present. Depending on the type of information desired for the sample(s), different separation, fractionation and identification schemes can be chosen. The methods described here were developed for a comparative study of samples obtained under various conditions for hydroliquefaction. Some of these methods were applied to tars and pitches of coal carbonization at low and high temperatures. 22 figs., 5 tabs., 43 refs.

  3. The conversion of anaerobic digestion waste into biofuels via a novel Thermo-Catalytic Reforming process.

    Science.gov (United States)

    Neumann, Johannes; Meyer, Johannes; Ouadi, Miloud; Apfelbacher, Andreas; Binder, Samir; Hornung, Andreas

    2016-01-01

    Producing energy from biomass and other organic waste residues is essential for sustainable development. Fraunhofer UMSICHT has developed a novel reactor which introduces the Thermo-Catalytic Reforming (TCR®) process. The TCR® is a process which can convert any type of biomass and organic feedstocks into a variety of energy products (char, bio-oil and permanent gases). The aim of this work was to demonstrate this technology using digestate as the feedstock and to quantify the results from the post reforming step. The temperature of a post reformer was varied to achieve optimised fuel products. The hydrogen rich permanent gases produced were maximised at a post reforming temperature of 1023 K. The highly de-oxygenated liquid bio-oil produced contained a calorific value of 35.2 MJ/kg, with significantly improved fuel physical properties, low viscosity and acid number. Overall digestate showed a high potential as feedstock in the Thermo-Catalytic Reforming to produce pyrolysis fuel products of superior quality. PMID:26190827

  4. Catalytic conversion of light alkanes. Final report, January 1, 1990--October 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    During the course of the first three years of the Cooperative Agreement (Phase I-III), we uncovered a family of metal perhaloporphyrin complexes which had unprecedented activity for the selective air-oxidation of fight alkanes to alcohols. The reactivity of fight hydrocarbon substrates with air or oxygen was in the order: isobutane>propane>ethane>methane, in accord with their homolytic bond dissociation energies. Isobutane was so reactive that the proof-of concept stage of a process for producing tert-butyl alcohol from isobutane was begun (Phase V). It was proposed that as more active catalytic systems were developed (Phases IV, VI), propane, then ethane and finally methane oxidations will move into this stage (Phases VII through IX). As of this writing, however, the program has been terminated during the later stages of Phases V and VI so that further work is not anticipated. We made excellent progress during 1994 in generating a class of less costly new materials which have the potential for high catalytic activity. New routes were developed for replacing costly perfluorophenyl groups in the meso-position of metalloporphyrin catalysts with far less expensive and lower molecular weight perfluoromethyl groups.

  5. Functional carbons and carbon nanohybrids for the catalytic conversion of biomass to renewable chemicals in the condensed phase

    Energy Technology Data Exchange (ETDEWEB)

    Matthiesen, John; Hoff, Thomas; Liu, Chi; Pueschel, Charles; Rao, Radhika; Tessonnier, Jean-Philippe

    2014-06-01

    The production of chemicals from lignocellulosic biomass provides opportunities to synthesize chemicals with new functionalities and grow a more sustainable chemical industry. However, new challenges emerge as research transitions from petrochemistry to biorenewable chemistry. Compared to petrochemisty, the selective conversion of biomass-derived carbohydrates requires most catalytic reactions to take place at low temperatures (< 300°C) and in the condensed phase to prevent reactants and products from degrading. The stability of heterogeneous catalysts in liquid water above the normal boiling point represents one of the major challenges to overcome. Herein, we review some of the latest advances in the field with an emphasis on the role of carbon materials and carbon nanohybrids in addressing this challenge.

  6. Functional carbons and carbon nanohybrids for the catalytic conversion of biomass to renewable chemicals in the condensed phase

    Institute of Scientific and Technical Information of China (English)

    John Matthiesen; Thomas Hoff; Chi Liu; Charles Pueschel; Radhika Rao; Jean-Philippe Tessonnier

    2014-01-01

    The production of chemicals from lignocellulosic biomass provides opportunities to synthesize chemicals with new functionalities and grow a more sustainable chemical industry. However, new challenges emerge as research transitions from petrochemistry to biorenewable chemistry. Com-pared to petrochemisty, the selective conversion of biomass-derived carbohydrates requires most catalytic reactions to take place at low temperatures (<300 °C) and in the condensed phase to pre-vent reactants and products from degrading. The stability of heterogeneous catalysts in liquid water above the normal boiling point represents one of the major challenges to overcome. Herein, we review some of the latest advances in the field with an emphasis on the role of carbon materials and carbon nanohybrids in addressing this challenge.

  7. High Selectively Catalytic Conversion of Lignin-Based Phenols into para-/m-Xylene over Pt/HZSM-5

    Directory of Open Access Journals (Sweden)

    Guozhu Liu

    2016-01-01

    Full Text Available High selectively catalytic conversion of lignin-based phenols (m-cresol, p-cresol, and guaiacol into para-/m-xylene was performed over Pt/HZSM-5 through hydrodeoxygenation and in situ methylation with methanol. It is found that the p-/m-xylene selectivity is uniformly higher than 21%, and even increase up to 33.5% for m-cresol (with phenols/methanol molar ratio of 1/8. The improved p-/m-xylene selectivity in presence of methanol is attributed to the combined reaction pathways: methylation of m-cresol into xylenols followed by HDO into p-/m-xylene, and HDO of m-cresol into toluene followed by methylation into p-/m-xylene. Comparison of the product distribution over a series of catalysts indicates that both metals and supporters have distinct effect on the p-/m-xylene selectivity.

  8. Monitoring temperatures in coal conversion and combustion processes via ultrasound. [Ultrasonic thermometry proposal

    Energy Technology Data Exchange (ETDEWEB)

    Gopalsami, N.; Raptis, A. C.; Mulcahey, T. P.

    1980-02-01

    A study of the state-of-the-art of instrumentation for monitoring temperatures in coal conversion and combustion systems has been carried out. The instrumentation types studied include Thermocouples, Radiation Pyrometers, and Acoustical Thermometers. The capabilities and limitations of each type are reviewed. The study determined that ultrasonic thermometry has the potential of providing viable instrumentation. Consequently, a feasibility study of the ultrasonic thermometry was undertaken. A mathematical model of a pulse-echo ultrasonic temperature measurement system is developed using linear system theory. The mathematical model lends itself to the adaptation of generalized correlation techniques for the estimation of propagation delays. Computer simulations are made to test the efficacy of the signal processing techniques for noise-free as well as noisy signals. Based on the theoretical study, acoustic techniques to measure temperature in reactors and combustors are feasible. To experimentally verify the technique it is needed (a) to test the available sensor materials at high temperatures under erosive and corrosive conditions and (b) upon the selection of the appropriate sensor material to validate the proposed signal processing technique. The base for the applicability of this technique will be the frequency of operation, which will determine the length of the sensor and the noise background at the frequency of interest. It is, however, believed that the proposed technique will provide reliable estimates under the noise background.

  9. Pretreated Landfill Gas Conversion Process via a Catalytic Membrane Reactor for Renewable Combined Fuel Cell-Power Generation

    Directory of Open Access Journals (Sweden)

    Zoe Ziaka

    2013-01-01

    Full Text Available A new landfill gas-based reforming catalytic processing system for the conversion of gaseous hydrocarbons, such as incoming methane to hydrogen and carbon oxide mixtures, is described and analyzed. The exit synthesis gas (syn-gas is fed to power effectively high-temperature fuel cells such as SOFC types for combined efficient electricity generation. The current research work is also referred on the description and design aspects of permreactors (permeable reformers carrying the same type of landfill gas-reforming reactions. Membrane reactors is a new technology that can be applied efficiently in such systems. Membrane reactors seem to perform better than the nonmembrane traditional reactors. The aim of this research includes turnkey system and process development for the landfill-based power generation and fuel cell industries. Also, a discussion of the efficient utilization of landfill and waste type resources for combined green-type/renewable power generation with increased processing capacity and efficiency via fuel cell systems is taking place. Moreover, pollution reduction is an additional design consideration in the current catalytic processors fuel cell cycles.

  10. Fe-MCM-41 from Coal-Series Kaolin as Catalysts for the Selective Catalytic Reduction of NO with Ammonia

    Science.gov (United States)

    Li, Shuiping; Wu, Qisheng; Lu, Guosen; Zhang, Changsen; Liu, Xueran; Cui, Chong; Yan, Zhiye

    2013-12-01

    Fe-MCM-41, one kind of high-ordered mesoporous materials catalysts, with molar ratio of Fe/Si = 0.01-0.1, was synthesized by hydrothermal method from coal-series kaolin. Fe-MCM-41 catalysts were characterized by Fourier transform infrared spectroscopy, high resolution transmission electron microscopy, N2 adsorption-desorption, x-ray photoelectron spectroscopy, and UV-vis spectroscopy. The results clearly indicated that: (1) all the samples exhibited typical hexagonal arrangement of mesoporous structure; (2) the incorporation of tiny amount of Fe3+ onto the surface and pore channel of MCM-41 mesoporous materials could efficiently promote the deNO x activity of these catalysts. Moreover, the Fe-MCM-41 mesoporous materials were evaluated in the selective catalytic reduction of NO with NH3. The results showed that Fe-MCM-41 catalyst with Fe/Si = 0.05 showed the highest catalytic activity at 350 °C, a gas hourly space velocity of 5000 h-1, n(NH3)/ n(NO) = 1.1, and O2% = 2.5%.

  11. Catalytic spectrophotometric determination of trace vanadium in fly ash and coal gangue by Triton X-100 enhancing effect

    Institute of Scientific and Technical Information of China (English)

    XIA Changbin; HUANG Niandong

    2004-01-01

    Trace V(V) catalyzes mightily the decolorization reaction of arsenazo Ⅲ (AsA Ⅲ) by oxidizing with H2O2 in a pH 4.0 HAc-NaAc buffer solution, and the addition of Triton X-100 can further increase the sensitivity of the reaction and its catalytic extent is linear with the content of V(V). A catalytic spectrophotometric procedure for determining trace V(V)was developed. The results show that the maximun absorption of the color solution is at 560 nm and the detection limit of the method for V(V) is 0.014 mg@L-1 Beer's law is obeyed for V(V) in the range of 0.00-0.20 mg.L-1. The recoveries are 99.0%-104.6%, and the relative standard deviations (RSD) are 2.7%-3.7%. Combined with ion-exchange resin, the method has been applied to the determination of trace vanadium in fly ash and coal gangue with satisfactory results.

  12. Effect of selective catalytic reduction (SCR) on fine particle emission from two coal-fired power plants in China

    Science.gov (United States)

    Li, Zhen; Jiang, Jingkun; Ma, Zizhen; Wang, Shuxiao; Duan, Lei

    2015-11-01

    Nitrogen oxides (NOx) emission abatement of coal-fired power plants (CFPPs) requires large-scaled installation of selective catalytic reduction (SCR), which would reduce secondary fine particulate matter (PM2.5) (by reducing nitrate aerosol) in the atmosphere. However, our field measurement of two CFPPs equipped with SCR indicates a significant increase of SO42- and NH4+ emission in primary PM2.5, due to catalytic enhancement of SO2 oxidation to SO3 and introducing of NH3 as reducing agent. The subsequent formation of (NH4)2SO4 or NH4HSO4 aerosol is commonly concentrated in sub-micrometer particulate matter (PM1) with a bimodal pattern. The measurement at the inlet of stack also showed doubled primary PM2.5 emission by SCR operation. This effect should therefore be considered when updating emission inventory of CFPPs. By rough estimation, the enhanced primary PM2.5 emission from CFPPs by SCR operation would offset 12% of the ambient PM2.5 concentration reduction in cities as the benefit of national NOx emission abatement, which should draw attention of policy-makers for air pollution control.

  13. Investigation of Coal-biomass Catalytic Gasification using Experiments, Reaction Kinetics and Computational Fluid Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, Francine [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Agblevor, Foster [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Klein, Michael [Univ. of Delaware, Newark, DE (United States); Sheikhi, Reza [Northeastern Univ., Boston, MA (United States)

    2015-09-30

    A collaborative effort involving experiments, kinetic modeling, and computational fluid dynamics (CFD) was used to understand co-gasification of coal-biomass mixtures. The overall goal of the work was to determine the key reactive properties for coal-biomass mixed fuels. Sub-bituminous coal was mixed with biomass feedstocks to determine the fluidization and gasification characteristics of hybrid poplar wood, switchgrass and corn stover. It was found that corn stover and poplar wood were the best feedstocks to use with coal. The novel approach of this project was the use of a red mud catalyst to improve gasification and lower gasification temperatures. An important results was the reduction of agglomeration of the biomass using the catalyst. An outcome of this work was the characterization of the chemical kinetics and reaction mechanisms of the co-gasification fuels, and the development of a set of models that can be integrated into other modeling environments. The multiphase flow code, MFIX, was used to simulate and predict the hydrodynamics and co-gasification, and results were validated with the experiments. The reaction kinetics modeling was used to develop a smaller set of reactions for tractable CFD calculations that represented the experiments. Finally, an efficient tool was developed, MCHARS, and coupled with MFIX to efficiently simulate the complex reaction kinetics.

  14. Investigation of Coal-biomass Catalytic Gasification using Experiments, Reaction Kinetics and Computational Fluid Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, Francine [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Agblevor, Foster [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Klein, Michael [Univ. of Delaware, Newark, DE (United States); Sheikhi, Reza [Northeastern Univ., Boston, MA (United States)

    2015-12-31

    A collaborative effort involving experiments, kinetic modeling, and computational fluid dynamics (CFD) was used to understand co-gasification of coal-biomass mixtures. The overall goal of the work was to determine the key reactive properties for coal-biomass mixed fuels. Sub-bituminous coal was mixed with biomass feedstocks to determine the fluidization and gasification characteristics of hybrid poplar wood, switchgrass and corn stover. It was found that corn stover and poplar wood were the best feedstocks to use with coal. The novel approach of this project was the use of a red mud catalyst to improve gasification and lower gasification temperatures. An important results was the reduction of agglomeration of the biomass using the catalyst. An outcome of this work was the characterization of the chemical kinetics and reaction mechanisms of the co-gasification fuels, and the development of a set of models that can be integrated into other modeling environments. The multiphase flow code, MFIX, was used to simulate and predict the hydrodynamics and co-gasification, and results were validated with the experiments. The reaction kinetics modeling was used to develop a smaller set of reactions for tractable CFD calculations that represented the experiments. Finally, an efficient tool was developed, MCHARS, and coupled with MFIX to efficiently simulate the complex reaction kinetics.

  15. Usage of waste products from thermal recycling of plastics waste in enhanced oil recovery or in-situ coal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Fink, M.; Fink, J.K. [Montanuniversitaet Leoben (Austria)

    1998-09-01

    In this contribution a thermal method for crude oil mobilization and in-situ liquefaction of coal is discussed, which will finally yield more organic material, as which has been put in from plastics waste originally into the process. The conversion product from thermal treatment is pumped down into exhausted crude oil reservoirs, where the hydrogen can degrade the residual high viscous oil to cause it to become more prone to flow so that it can be recovered. Such a process will envision two goals: 1. more organic raw material (as crude oil) will be recovered than is initially put in as waste product. 2. atmospheric pollutants from the conversion plant will be trapped in the reservoir, which simplifies the construction of the plant. An analogous process may be performed with coal seams. Coal seams with their high porosity and large specific surface are believed to be in particular useful to filter atmospheric pollutants. Depending on the type of coal the mobilization of organic material by this process may be in the background. (orig./SR)

  16. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor.

    Science.gov (United States)

    Morejudo, S H; Zanón, R; Escolástico, S; Yuste-Tirados, I; Malerød-Fjeld, H; Vestre, P K; Coors, W G; Martínez, A; Norby, T; Serra, J M; Kjølseth, C

    2016-08-01

    Nonoxidative methane dehydroaromatization (MDA: 6CH4 ↔ C6H6 + 9H2) using shape-selective Mo/zeolite catalysts is a key technology for exploitation of stranded natural gas reserves by direct conversion into transportable liquids. However, this reaction faces two major issues: The one-pass conversion is limited by thermodynamics, and the catalyst deactivates quickly through kinetically favored formation of coke. We show that integration of an electrochemical BaZrO3-based membrane exhibiting both proton and oxide ion conductivity into an MDA reactor gives rise to high aromatic yields and improved catalyst stability. These effects originate from the simultaneous extraction of hydrogen and distributed injection of oxide ions along the reactor length. Further, we demonstrate that the electrochemical co-ionic membrane reactor enables high carbon efficiencies (up to 80%) that improve the technoeconomic process viability. PMID:27493179

  17. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor.

    Science.gov (United States)

    Morejudo, S H; Zanón, R; Escolástico, S; Yuste-Tirados, I; Malerød-Fjeld, H; Vestre, P K; Coors, W G; Martínez, A; Norby, T; Serra, J M; Kjølseth, C

    2016-08-01

    Nonoxidative methane dehydroaromatization (MDA: 6CH4 ↔ C6H6 + 9H2) using shape-selective Mo/zeolite catalysts is a key technology for exploitation of stranded natural gas reserves by direct conversion into transportable liquids. However, this reaction faces two major issues: The one-pass conversion is limited by thermodynamics, and the catalyst deactivates quickly through kinetically favored formation of coke. We show that integration of an electrochemical BaZrO3-based membrane exhibiting both proton and oxide ion conductivity into an MDA reactor gives rise to high aromatic yields and improved catalyst stability. These effects originate from the simultaneous extraction of hydrogen and distributed injection of oxide ions along the reactor length. Further, we demonstrate that the electrochemical co-ionic membrane reactor enables high carbon efficiencies (up to 80%) that improve the technoeconomic process viability.

  18. Mercury oxidation promoted by a selective catalytic reduction catalyst under simulated Powder River Basin coal combustion conditions.

    Science.gov (United States)

    Lee, Chun W; Serre, Shannon D; Zhao, Yongxin; Lee, Sung Jun; Hastings, Thomas W

    2008-04-01

    A bench-scale reactor consisting of a natural gas burner and an electrically heated reactor housing a selective catalytic reduction (SCR) catalyst was constructed for studying elemental mercury (Hg(o)) oxidation under SCR conditions. A low sulfur Powder River Basin (PRB) subbituminous coal combustion fly ash was injected into the entrained-flow reactor along with sulfur dioxide (SO2), nitrogen oxides (NOx), hydrogen chloride (HCl), and trace Hg(o). Concentrations of Hg(o) and total mercury (Hg) upstream and downstream of the SCR catalyst were measured using a Hg monitor. The effects of HCl concentration, SCR operating temperature, catalyst space velocity, and feed rate of PRB fly ash on Hg(o) oxidation were evaluated. It was observed that HCl provides the source of chlorine for Hg(o) oxidation under simulated PRB coal-fired SCR conditions. The decrease in Hg mass balance closure across the catalyst with decreasing HCl concentration suggests that transient Hg capture on the SCR catalyst occurred during the short test exposure periods and that the outlet speciation observed may not be representative of steady-state operation at longer exposure times. Increasing the space velocity and operating temperature of the SCR led to less Hg(o) oxidized. Introduction of PRB coal fly ash resulted in slightly decreased outlet oxidized mercury (Hg2+) as a percentage of total inlet Hg and correspondingly resulted in an incremental increase in Hg capture. The injection of ammonia (NH3) for NOx reduction by SCR was found to have a strong effect to decrease Hg oxidation. The observations suggest that Hg(o) oxidation may occur near the exit region of commercial SCR reactors. Passage of flue gas through SCR systems without NH3 injection, such as during the low-ozone season, may also impact Hg speciation and capture in the flue gas. PMID:18422035

  19. Reactors for Catalytic Methanation in the Conversion of Biomass to Synthetic Natural Gas (SNG).

    Science.gov (United States)

    Schildhauer, Tilman J; Biollaz, Serge M A

    2015-01-01

    Production of Synthetic Natural Gas (SNG) from biomass is an important step to decouple the use of bioenergy from the biomass production with respect to both time and place. While anaerobic digestion of wet biomass is a state-of-the art process, wood gasification to producer gas followed by gas cleaning and methanation has only just entered the demonstration scale. Power-to-Gas applications using biogas from biomass fermentation or producer gas from wood gasification as carbon oxide source are under development. Due to the importance of the (catalytic) methanation step in the production of SNG from dry biomass or within Power-to-Gas applications, the specific challenges of this step and the developed reactor types are discussed in this review. PMID:26598404

  20. Integrated Process for the Catalytic Conversion of Biomass-Derived Syngas into Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lebarbier, Vanessa M.; Smith, Colin D.; Flake, Matthew D.; Albrecht, Karl O.; Gray, Michel J.; Ramasamy, Karthikeyan K.; Dagle, Robert A.

    2016-04-19

    Efficient synthesis of renewable fuels that will enable cost competitiveness with petroleum-derived fuels remains a grand challenge for U.S. scientists. In this paper, we report on an integrated catalytic approach for producing transportation fuels from biomass-derived syngas. The composition of the resulting hydrocarbon fuel can be modulated to meet specified requirements. Biomass-derived syngas is first converted over an Rh-based catalyst into a complex aqueous mixture of condensable C2+ oxygenated compounds (predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate). This multi-component aqueous mixture then is fed to a second reactor loaded with a ZnxZryOz mixed oxide catalyst, which has tailored acid-base sites, to produce an olefin mixture rich in isobutene. The olefins then are oligomerized using a solid acid catalyst (e.g., Amberlyst-36) to form condensable olefins with molecular weights that can be targeted for gasoline, jet, and/or diesel fuel applications. The product rich in long-chain olefins (C7+) is finally sent to a fourth reactor that is needed for hydrogenation of the olefins into paraffin fuels. Simulated distillation of the hydrotreated oligomerized liquid product indicates that ~75% of the hydrocarbons present are in the jet-fuel range. Process optimization for the oligomerization step could further improve yield to the jet-fuel range. All of these catalytic steps have been demonstrated in sequence, thus providing proof-of-concept for a new integrated process for the production of drop-in biofuels. This unique and flexible process does not require external hydrogen and also could be applied to non-syngas derived feedstock, such as fermentation products (e.g., ethanol, acetic acid, etc.), other oxygenates, and mixtures thereof containing alcohols, acids, aldehydes and/or esters.

  1. Morphology control of ceria nanocrystals for catalytic conversion of CO2 with methanol

    Science.gov (United States)

    Wang, Shengping; Zhao, Lifang; Wang, Wei; Zhao, Yujun; Zhang, Guanglin; Ma, Xinbin; Gong, Jinlong

    2013-05-01

    This paper describes the synthesis of ceria catalysts with octahedron, nanorod, nanocube and spindle-like morphologies via a template-free hydrothermal method. The surface morphologies, crystal plane and physical-chemical structures were investigated via field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and temperature-programmed desorption of ammonia and carbon dioxide (NH3-TPD and CO2-TPD). The catalytic performance over these ceria catalysts with different exposed planes were tested for dimethyl carbonate (DMC) synthesis from CO2 and methanol. The results showed that the spindle-like CeO2 showed the highest DMC yields, followed by nano-rods, nano-cubes and nano-octahedrons. A synergism among the exposed (111) plane, defect sites, and acid-basic sites was proposed to be crucial to obtaining the high reactivity of DMC formation.This paper describes the synthesis of ceria catalysts with octahedron, nanorod, nanocube and spindle-like morphologies via a template-free hydrothermal method. The surface morphologies, crystal plane and physical-chemical structures were investigated via field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and temperature-programmed desorption of ammonia and carbon dioxide (NH3-TPD and CO2-TPD). The catalytic performance over these ceria catalysts with different exposed planes were tested for dimethyl carbonate (DMC) synthesis from CO2 and methanol. The results showed that the spindle-like CeO2 showed the highest DMC yields, followed by nano-rods, nano-cubes and nano-octahedrons. A synergism among the exposed (111) plane, defect sites, and acid-basic sites was proposed to be crucial to obtaining the high reactivity of DMC formation. Electronic supplementary information (ESI) available. See DOI

  2. Advanced bioreactor systems for gaseous substrates: Conversion of synthesis gas to liquid fuels and removal of SO{sub x} and NO{sub x} from coal combustion gases

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraj, P.T.; Kaufman, E.N.

    1995-06-01

    The purpose of the proposed research program is the development and demonstration of a new generation of gaseous substrate-based bioreactors for the production of liquid fuels from coal synthesis gas and the removal of NO{sub x} and SO{sub x} species from combustion flue gas. Coal is thermochemically converted to synthesis gas consisting of carbon monoxide, hydrogen, and carbon dioxide. Conventional catalytic upgrading of coal synthesis gas into alcohols or other oxychemicals is subject to several processing problems such as interference of the other constituents in the synthesis gases, strict CO/H{sub 2} ratios required to maintain a particular product distribution and yield, and high processing cost due to the operation at high temperatures and pressures. Recently isolated and identified bacterial strains capable of utilizing CO as a carbon source and coverting CO and H{sub 2} into mixed alcohols offer the potential of performing synthesis gas conversion using biocatalysts. Biocatalytic conversion, though slower than the conventional process, has several advantages such as decreased interference of the other constituents in the synthesis gases, no requirement for strict CO/H{sub 2} ratios, and decreased capital and oeprating costs as the biocatalytic reactions occur at ambient temperatures and pressures.

  3. Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: the hydrogen to carbon effective ratio

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Huiyan; Cheng, Yu-Ting; Vispute, Tushar; Xiao, R; Huber, George W.

    2011-01-01

    Catalytic conversion of ten biomass-derived feedstocks, i.e.glucose, sorbitol, glycerol, tetrahydrofuran, methanol and different hydrogenated bio-oil fractions, with different hydrogen to carbon effective (H/C{sub eff}) ratios was conducted in a gas-phase flow fixed-bed reactor with a ZSM-5 catalyst. The aromatic + olefin yield increases and the coke yield decreases with increasing H/C{sub eff} ratio of the feed. There is an inflection point at a H/C{sub eff} ratio = 1.2, where the aromatic + olefin yield does not increase as rapidly as it does prior to this point. The ratio of olefins to aromatics also increases with increasing H/C{sub eff} ratio. CO and CO₂ yields go through a maximum with increasing H/C{sub eff} ratio. The deactivation rate of the catalyst decreases significantly with increasing H/C{sub eff} ratio. Coke was formed from both homogeneous and heterogeneous reactions. Thermogravimetric analysis (TGA) for the ten feedstocks showed that the formation of coke from homogeneous reactions decreases with increasing H/C{sub eff} ratio. Feedstocks with a H/C{sub eff} ratio less than 0.15 produce large amounts of undesired coke (more than 12 wt%) from homogeneous decomposition reactions. This paper shows that the conversion of biomass-derived feedstocks into aromatics and olefins using zeolite catalysts can be explained by the H/C{sub eff} ratio of the feed.

  4. Enhanced catalytic performance of zeolite ZSM-5 for conversion of methanol to dimethyl ether by combining alkaline treatment and partial activation

    NARCIS (Netherlands)

    Wei, Ying; de Jongh, Petra E.; Bonati, Matteo L. M.; Law, David J.; Sunley, Glenn J.; de Jong, Krijn P.

    2015-01-01

    Zeolite ZSM-5 (MFI) due to its excellent hydrothermal stability and high catalytic activity for methanol dehydration to dimethyl ether (MID) has been considered for use in combination with a methanol synthesis catalyst, such as Cu/ZnO/Al2O3, in the conversion of syngas to dimethyl ether. However, th

  5. Catalytic Oxidative Conversion from Naphthol to 2-Hydroxy-1, 4-naphthoquinone over Iron Porphyrin Catalysts by Molecular Oxygen in an Alkaline 2-Propanol Solution

    Institute of Scientific and Technical Information of China (English)

    YANG Ke-er; TONG Shan-ling; YAN Yan; KANG En-hua; XIAO Feng-shou; LI Qing; CHANG Xin; FANG Chi-guang

    2005-01-01

    In an alkaline 2-propanol solution with 5,10,15,20-tetra(4-methoxyl phenyl) porphyrin iron chloride(TOMPPFeCl) as a catalyst and oxygen as a cheap green oxidant, 2-naphthol was conversed to 2-hydroxy-1,4-naphthoquinone(HNQ) with a yield of 62.17% and a selectivity of 100%, and the conversion number of TMOPPFeCl catalyst was 8.32/min. The catalytic oxidation products were characterized by means of UV-Vis, IR, GC-MS, 1H NMR and melting point determination. In this catalytic oxidation, the catalytic activity of TMOPPFeCl was researched in detail and the reacting conditions were optimized. A possible reaction mechanism is summarized based on in situ EPR determination.

  6. Conversion of Isoprenoid Oil by Catalytic Cracking and Hydrocracking over Nanoporous Hybrid Catalysts

    Directory of Open Access Journals (Sweden)

    Toshiyuki Kimura

    2012-01-01

    Full Text Available In order to produce petroleum alternatives from biomass, a significant amount of research has been focused on oils from microalgae due to their origin, which would not affect food availability. Nanoporous hybrid catalysts composed of ns Al2O3 and zeolites have been proven to be very useful compared to traditional catalysts in hydrotreating (HT, hydrocracking (HC, and catalytic cracking (CC of large molecules. To evaluate the reaction scheme and products from model isoprenoid compounds of microalgae oil, nanoporous hybrid catalyst technologies (CC: ns Al2O3/H-USY and ns Al2O3/H-GaAlMFI; HC: [Ni-Mo/γ-Al2O3]/ns Al2O3/H-beta were studied. The major product from CC on ns Al2O3/H-USY was highly aromatic gasoline, while the product from HC was half-isoparaffinic/olefinic kerosene. Although more than 50 wt% of the products from HT/CC on the USY catalyst was liquefied petroleum gas due to overcracking, the product from HT/CC on the MFI catalyst was high-octane-number gasoline. Delightfully, the product from HT/HC was kerosene and its average number was 11, with more than 80 wt% being isoparaffinic. As a result, it was demonstrated that hydrotreating may convert isoprenoid oil from microalgae over nanoporous hybrid catalysts into a variety of products.

  7. Conversion of isoprenoid oil by catalytic cracking and hydrocracking over nanoporous hybrid catalysts.

    Science.gov (United States)

    Kimura, Toshiyuki; Liu, Chen; Li, Xiaohong; Maekawa, Takaaki; Asaoka, Sachio

    2012-01-01

    In order to produce petroleum alternatives from biomass, a significant amount of research has been focused on oils from microalgae due to their origin, which would not affect food availability. Nanoporous hybrid catalysts composed of ns Al₂O₃ and zeolites have been proven to be very useful compared to traditional catalysts in hydrotreating (HT), hydrocracking (HC), and catalytic cracking (CC) of large molecules. To evaluate the reaction scheme and products from model isoprenoid compounds of microalgae oil, nanoporous hybrid catalyst technologies (CC: ns Al₂O₃/H-USY and ns Al₂O₃/H-GaAlMFI; HC: [Ni-Mo/γ-Al₂O₃]/ns Al₂O₃/H-beta) were studied. The major product from CC on ns Al₂O₃/H-USY was highly aromatic gasoline, while the product from HC was half-isoparaffinic/olefinic kerosene. Although more than 50 wt% of the products from HT/CC on the USY catalyst was liquefied petroleum gas due to overcracking, the product from HT/CC on the MFI catalyst was high-octane-number gasoline. Delightfully, the product from HT/HC was kerosene and its average number was 11, with more than 80 wt% being isoparaffinic. As a result, it was demonstrated that hydrotreating may convert isoprenoid oil from microalgae over nanoporous hybrid catalysts into a variety of products. PMID:22791962

  8. Direct Catalytic Conversion of Cellulose to 5-Hydroxymethylfurfural Using Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Sanan Eminov

    2016-10-01

    Full Text Available Cellulose is the single largest component of lignocellulosic biomass and is an attractive feedstock for a wide variety of renewable platform chemicals and biofuels, providing an alternative to petrochemicals and petrofuels. This potential is currently limited by the existing methods of transforming this poorly soluble polymer into useful chemical building blocks, such as 5-hydroxymethylfurfural (HMF. Ionic liquids have been used successfully to separate cellulose from the other components of lignocellulosic biomass and so the use of the same medium for the challenging transformation of cellulose into HMF would be highly attractive for the development of the biorefinery concept. In this report, ionic liquids based on 1-butyl-3-methylimidazolium cations [C4C1im]+ with Lewis basic (X = Cl− and Brønsted acidic (X = HSO4− anions were used to investigate the direct catalytic transformation of cellulose to HMF. Variables probed included the composition of the ionic liquid medium, the metal catalyst, and the reaction conditions (temperature, substrate concentration. Lowering the cellulose loading and optimising the temperature achieved a 58% HMF yield after only one hour at 150 °C using a 7 mol % loading of the CrCl3 catalyst. This compares favourably with current literature procedures requiring much longer reactions times or approaches that are difficult to scale such as microwave irradiation.

  9. Efficient catalytic system for the conversion of fructose into 5-ethoxymethylfurfural.

    Science.gov (United States)

    Wang, Hongliang; Deng, Tiansheng; Wang, Yingxiong; Qi, Yongqin; Hou, Xianglin; Zhu, Yulei

    2013-05-01

    DMSO can improve the selectivity of 5-hydroxymethylfurfural (HMF) in the conversion of carbohydrates. However, one of the bottlenecks in its application is product separation. Thus a one-pot synthesis of 5-ethoxymethylfurfural (EMF) rather than HMF from fructose in ethanol-DMSO was investigated. Phosphotungstic acid was used as an effective catalyst. The yield of EMF can be reached as high as 64% in the mixed solvent system of DMSO and ethanol within 130 min at 140 °C. Ethyl levulinate (LAE) was detected as the main by-product, the yield of which increased with the reaction time, temperature and the amount of catalyst. In addition, the existence of water could significantly reduce the yield of EMF and increased the yield of LAE. Most importantly, it was discovered that EMF could be much more efficiently extracted from the reaction solvent system by some organic solvents than HMF. PMID:23567707

  10. Catalytic conversion of CHx and CO2 on non-noble metallic impurities in graphene.

    Science.gov (United States)

    Tang, Yanan; Liu, Zhiyong; Chen, Weiguang; Ma, Dongwei; Chang, Shanshan; Dai, Xianqi

    2016-06-22

    Density functional theory (DFT) was applied to investigate the geometric, electronic, and magnetic properties of CHx (x = 0, 1, 2, 3, 4) species on non-noble metal embedded graphene (NNM-graphene). It was found that the different stabilities of CHx species can modify the electronic structures and magnetic properties of NNM-graphene systems. The carbonaceous reforming reactions include conversion of CHx (x = 0, 1, 2 and 3) species by hydrogen molecules (H2) to form CHx+2 species or oxidation of C atoms by oxygen molecules to form CO2. In the hydrogenation reactions, deposited C atoms can be converted easily into CHx species overcoming small energy barriers. In comparison, coadsorption of C and O2 to generate CO2 encounters relatively larger energy barriers on the NNM-graphene. Hence, the coadsorption of CHx and H2 as the starting state is energetically more favorable and formation of CHx species can reduce amounts of carbon deposition. Among the NNM-graphene substrates studied, moderate adsorption energies and low reaction barriers of CHx species are more likely to occur on the Co-graphene surface, thus the hydrogenation reaction is able to inhibit carbon deposition on the NNM-graphene surface while maintaining high activity.

  11. Advanced coal conversion process demonstration. Technical progress report, April 1--June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high moisture, low rank coals to a high quality, low sulfur fuel, registered as the SynCoal{reg_sign} process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal upgrading, the coal is put through a deep bed stratifier cleaning process to separate the pyrite rich ash from the coal. The SynCoal process enhances low rank, western coals, usually with a moisture content of 25 to 55 percent, sulfur content of 0.5 to 1.5 percent, and heating value of 5,500 to 9,000 Btu/lb, by producing a stable, upgraded, coal product with a moisture content as low as 1 percent, sulfur content as low as 0.3 percent, and heating value up to 12,000 Btu/lb. The 45 ton per hour unit is located adjacent to a unit train load out facility at Western Energy Company`s Rosebud coal mine near Colstrip, Montana. The demonstration plant is sized at about one-tenth the projected throughput of a multiple processing train commercial facility. During this report period the primary focus has been to continue the operation of the demonstration facility. Production has been going to area power plants. Modifications and maintenance work was also performed this quarter.

  12. Wabash Valley Integrated Gasification Combined Cycle, Coal to Fischer Tropsch Jet Fuel Conversion Study

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Jayesh [Lummus Technology Inc., Bloomfield, NJ (United States); Hess, Fernando [Lummus Technology Inc., Bloomfield, NJ (United States); Horzen, Wessel van [Lummus Technology Inc., Bloomfield, NJ (United States); Williams, Daniel [Lummus Technology Inc., Bloomfield, NJ (United States); Peevor, Andy [JM Davy, London (United Kingdom); Dyer, Andy [JM Davy, London (United Kingdom); Frankel, Louis [Canonsburgh, PA (United States)

    2016-06-01

    This reports examines the feasibility of converting the existing Wabash Integrated Gasification Combined Cycle (IGCC) plant into a liquid fuel facility, with the goal of maximizing jet fuel production. The fuels produced are required to be in compliance with Section 526 of the Energy Independence and Security Act of 2007 (EISA 2007 §526) lifecycle greenhouse gas (GHG) emissions requirements, so lifecycle GHG emissions from the fuel must be equal to or better than conventional fuels. Retrofitting an existing gasification facility reduces the technical risk and capital costs associated with a coal to liquids project, leading to a higher probability of implementation and more competitive liquid fuel prices. The existing combustion turbine will continue to operate on low cost natural gas and low carbon fuel gas from the gasification facility. The gasification technology utilized at Wabash is the E-Gas™ Technology and has been in commercial operation since 1995. In order to minimize capital costs, the study maximizes reuse of existing equipment with minimal modifications. Plant data and process models were used to develop process data for downstream units. Process modeling was utilized for the syngas conditioning, acid gas removal, CO2 compression and utility units. Syngas conversion to Fischer Tropsch (FT) liquids and upgrading of the liquids was modeled and designed by Johnson Matthey Davy Technologies (JM Davy). In order to maintain the GHG emission profile below that of conventional fuels, the CO2 from the process must be captured and exported for sequestration or enhanced oil recovery. In addition the power utilized for the plant’s auxiliary loads had to be supplied by a low carbon fuel source. Since the process produces a fuel gas with sufficient energy content to power the plant’s loads, this fuel gas was converted to hydrogen and exported to the existing gas turbine for low carbon power production. Utilizing low carbon fuel gas and

  13. Wabash Valley Integrated Gasification Combined Cycle, Coal to Fischer Tropsch Jet Fuel Conversion Study

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Jayesh; Hess, Fernando; Horzen, Wessel van; Williams, Daniel; Peevor, Andy; Dyer, Andy; Dyer, Andy; Frankel, Louis

    2016-03-31

    This reports examines the feasibility of converting the existing Wabash Integrated Gasification Combined Cycle (IGCC) plant into a liquid fuel facility, with the goal of maximizing jet fuel production. The fuels produced are required to be in compliance with Section 526 of the Energy Independence and Security Act of 2007 (EISA 2007 §526) lifecycle greenhouse gas (GHG) emissions requirements, so lifecycle GHG emissions from the fuel must be equal to or better than conventional fuels. Retrofitting an existing gasification facility reduces the technical risk and capital costs associated with a coal to liquids project, leading to a higher probability of implementation and more competitive liquid fuel prices. The existing combustion turbine will continue to operate on low cost natural gas and low carbon fuel gas from the gasification facility. The gasification technology utilized at Wabash is the E-Gas™ Technology and has been in commercial operation since 1995. In order to minimize capital costs, the study maximizes reuse of existing equipment with minimal modifications. Plant data and process models were used to develop process data for downstream units. Process modeling was utilized for the syngas conditioning, acid gas removal, CO2 compression and utility units. Syngas conversion to Fischer Tropsch (FT) liquids and upgrading of the liquids was modeled and designed by Johnson Matthey Davy Technologies (JM Davy). In order to maintain the GHG emission profile below that of conventional fuels, the CO2 from the process must be captured and exported for sequestration or enhanced oil recovery. In addition the power utilized for the plant’s auxiliary loads had to be supplied by a low carbon fuel source. Since the process produces a fuel gas with sufficient energy content to power the plant’s loads, this fuel gas was converted to hydrogen and exported to the existing gas turbine for low carbon power production. Utilizing low carbon fuel gas and process steam in the

  14. Coal

    International Nuclear Information System (INIS)

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  15. Direct Production of 5-Hydroxymethylfurfural via Catalytic Conversion of Simple and Complex Sugars over Phosphated TiO2.

    Science.gov (United States)

    Atanda, Luqman; Shrotri, Abhijit; Mukundan, Swathi; Ma, Qing; Konarova, Muxina; Beltramini, Jorge

    2015-09-01

    A water-THF biphasic system containing N-methyl-2-pyrrolidone (NMP) was found to enable the efficient synthesis of 5-hydroxymethylfurfural (HMF) from a variety of sugars (simple to complex) using phosphated TiO2 as a catalyst. Fructose and glucose were selectively converted to HMF resulting in 98 % and 90 % yield, respectively, at 175 °C. Cellobiose and sucrose also gave rise to high HMF yields of 94 % and 98 %, respectively, at 180 °C. Other sugar variants such as starch (potato and rice) and cellulose were also investigated. The yields of HMF from starch (80-85 %) were high, whereas cellulose resulted in a modest yield of 33 %. Direct transformation of cellulose to HMF in significant yield (86 %) was assisted by mechanocatalytic depolymerization-ball milling of acid-impregnated cellulose. This effectively reduced cellulose crystallinity and particle size, forming soluble cello-oligomers; this is responsible for the enhanced substrate-catalytic sites contact and subsequent rate of HMF formation. During catalyst recyclability, P-TiO2 was observed to be reusable for four cycles without any loss in activity. We also investigated the conversion of the cello-oligomers to HMF in a continuous flow reactor. Good HMF yield (53 %) was achieved using a water-methyl isobutyl ketone+NMP biphasic system.

  16. VAPOR-PHASE CATALYTIC CONVERSION OF ETHANOL INTO 1,3-BUTADIENE ON Cr-Ba/MCM-41 CATALYSTS

    Directory of Open Access Journals (Sweden)

    N. La-Salvia

    2015-06-01

    Full Text Available AbstractAl-MCM-41, 16%Ba/Al-MCM-41 and 1.4%Cr-16%Ba/Al-MCM-41 were used as catalysts in the vapor-phase catalytic conversion of ethanol. Physical-chemical properties of the catalysts and the effect of barium and chromium on the Al-MCM-41 activity and 1,3-butadiene yield were studied. The catalysts were characterized by X-ray diffraction (XRD, N2 physisorption (BET method, CO2chemisorption and Fourier transform infrared spectroscopy (FT-IR. When ethanol was completely converted on Al-MCM-41 and 16%Ba/Al-MCM-41, the reaction products showed a high selectivity for ethylene (90-98%. However, on the 1.4%Cr-16%Ba/Al-MCM-41 catalyst, a greater number of reaction products were obtained such as ethylene, acetaldehyde, diethyl ether and 1,3-butadiene. The maximum 1,3-butadiene yield obtained from ethanol reaction was 25% at 723 K and W/FEtOH = 15 g h mol-1. The latter result was obtained in a single step and without addition of reaction promoters (e.g., acetaldehyde, crotonaldehyde, hydrogen in the feed stream to the reactor.

  17. Removal and Conversion of Tar in Syngas from Woody Biomass Gasification for Power Utilization Using Catalytic Hydrocracking

    Directory of Open Access Journals (Sweden)

    Jiu Huang

    2011-08-01

    Full Text Available Biomass gasification has yet to obtain industrial acceptance. The high residual tar concentrations in syngas prevent any ambitious utilization. In this paper a novel gas purification technology based on catalytic hydrocracking is introduced, whereby most of the tarry components can be converted and removed. Pilot scale experiments were carried out with an updraft gasifier. The hydrocracking catalyst was palladium (Pd. The results show the dominant role of temperature and flow rate. At a constant flow rate of 20 Nm3/h and temperatures of 500 °C, 600 °C and 700 °C the tar conversion rates reached 44.9%, 78.1% and 92.3%, respectively. These results could be increased up to 98.6% and 99.3% by using an operating temperature of 700 °C and lower flow rates of 15 Nm3/h and 10 Nm3/h. The syngas quality after the purification process at 700 °C/10 Nm3/h is acceptable for inner combustion (IC gas engine utilization.

  18. Catalytic conversion of oxygenated compounds to low molecular weight olefins. Annual report for January 1--December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, R.G.

    1979-01-01

    The conversion of methanol or synthesis gas is an attractive route for producing ethylene and propylene from coal. Utilizing a chabazite ion exchanged with ammonium and rare earth chlorides, methanol is converted to ethylene, propylene, and propane with carbon yields of 70 to 90% at reaction temperatures of 360 to 450/sup 0/C and pressures from 1 to 18 atmospheres. Carbon disulfide in the feed at concentrations less than 2000 ppm increases the operating time between regenerations from four hours to twenty hours. At carbon disulfide concentrations of 3000 ppm or greater, the catalyst goes through three stages. The first is that of a dehydrogenation catalyst that produces carbon monoxide and hydrogen. The second stage produces ethylene and propylene, and finally, the third stage is a dehydration catalyst that produces dimethyl ether. Water has no detrimental effect on the catalyst, and appears to enhance its activity. Increase in pressure increases the production of propylene and propane at the expense of ethylene. X-ray diffraction studies show the formation of an ultrastable zeolite. No permanent deactivation was observed even though the catalyst was overheated once, and had been deactivated and regenerated for as many as 21 times. Ethylene yields increase as the temperature increases from 360 to 450/sup 0/C. When synthesis gas is passed over the catalyst at pressures equal to or less than 500 psi, methane and carbon dioxide are produced.

  19. Incorporation of catalytic dehydrogenation into Fischer-Tropsch synthesis of liquid fuels from coal to minimize carbon dioxide emissions

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman [University of Kentucky, Lexington, KY (United States). Consortium for Fossil Fuel Science and Department of Chemical & Materials Engineering

    2011-08-15

    Synthesis gas (syngas) produced from coal typically has hydrogen to carbon monoxide ratios in the range of approximately 0.7-1.1, depending on the gasification method. In order to produce liquid fuels from this syngas by Fischer-Tropsch synthesis (FTS), these ratios must be raised to 2.0 or higher. If this is accomplished by the water-gas shift reaction, the traditional method, large emissions of carbon dioxide are produced. In this paper, it is shown that catalytic dehydrogenation (CDH) of the gaseous C1-C4 products of FT synthesis and recycling of the resulting hydrogen to the syngas feed-stream can increase the H{sub 2}/CO ratio to the desired values with little or no production of carbon dioxide. All carbon from the CDH reaction is in the form of a potentially valuable by-product, multi-walled carbon nanotubes (MWCNT). The amounts of hydrogen and MWCNT produced, carbon dioxide emissions avoided, and water saved are calculated for a 50,000 bbl/day FTS-CDH plant and it is demonstrated that the energy balance for the process is favorable. Methods of utilizing the large quantity of MWCNT produced are discussed. 50 refs., 6 figs., 3 tabs.

  20. Catalytic Two-Stage Liquefaction (CTSL{trademark}) process bench studies and PDU scale-up with sub-bituminous coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Comolli, A.G.; Johanson, E.S.; Karolkiewicz, W.F.; Lee, L.K.T.; Stalzer, R.H.; Smith, T.O.

    1993-03-01

    Reported are the details and results of Laboratory and Bench-Scale experiments using sub-bituminous coal conducted at Hydrocarbon Research, Inc., under DOE Contract No. DE-AC22-88PC88818 during the period October 1, 1988 to December 31, 1992. The work described is primarily concerned with testing of the baseline Catalytic Two-Stage Liquefaction (CTSL{trademark}) process with comparisons with other two stage process configurations, catalyst evaluations and unit operations such as solid separation, pretreatments, on-line hydrotreating, and an examination of new concepts. In the overall program, three coals were evaluated, bituminous Illinois No. 6, Burning Star and sub-bituminous Wyoming Black Thunder and New Mexico McKinley Mine seams. The results from a total of 16 bench-scale runs are reported and analyzed in detail. The runs (experiments) concern process variables, variable reactor volumes, catalysts (both supported, dispersed and rejuvenated), coal cleaned by agglomeration, hot slurry treatments, reactor sequence, on-line hydrotreating, dispersed catalyst with pretreatment reactors and CO{sub 2}/coal effects. The tests involving the Wyoming and New Mexico Coals are reported herein, and the tests involving the Illinois coal are described in Topical Report No. 2. On a laboratory scale, microautoclave tests evaluating coal, start-up oils, catalysts, thermal treatment, CO{sub 2} addition and sulfur compound effects were conducted and reported in Topical Report No. 3. Other microautoclave tests are described in the Bench Run sections to which they refer such as: rejuvenated catalyst, coker liquids and cleaned coals. The microautoclave tests conducted for modelling the CTSL{trademark} process are described in the CTSL{trademark} Modelling section of Topical Report No. 3 under this contract.

  1. 纤维素催化转化为高附加值化学品的研究进展%Recent Developments in the Catalytic Conversion of Cellulose into Valuable Chemicals

    Institute of Scientific and Technical Information of China (English)

    Pengfei YANG; Hirokazu KOBAYASHI; Atsushi FUKUOKA

    2011-01-01

    Currently, under huge pressure from energy demands and environmental problems, much attention is bing paid to biomass conversion, which will play an important role in meeting the reauirements for a sustainable society As the most abundant biomass one, earth cellulose is usually used as the first research target for biomass conversion In this review, the recalcitrant stucture of cellulose is discussed and non-catalytic hydrolysis by hot-compressed water and catalytic hydrolysis using solid acids are then considered, we also review the catalytic conversion of cellulose into valuable chemicals including hexitols (sorbitol and mannitol), ethylene glycol, and related compourunds using various heterogeneous catalysts.

  2. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Final technical report, Volume 2 - hydrogenative and hydrothermal pretreatments and spectroscopic characterization using pyrolysis-GC-MS, CPMAS {sup 13}C NMR and FT-IR

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan Song; Hatcher, P.G.; Saini, A.K.; Wenzel, K.A.

    1998-01-01

    It has been indicated by DOE COLIRN panel that low-temperature catalytic pretreatment is a promising approach to the development of an improved liquefaction process. This work is a fundamental study on effects of pretreatments on coal structure and reactivity in liquefaction. The main objectives of this project are to study the coal structural changes induced by low-temperature catalytic and thermal pretreatments by using spectroscopic techniques; and to clarify the pretreatment-induced changes in reactivity or convertibility of coals. As the second volume of the final report, here we summarize our work on spectroscopic characterization of four raw coals including two subbituminous coals and two bituminous coals, tetrahydrofuran (THF)-extracted but unreacted coals, the coals (THF-insoluble parts) that have been thermally pretreated. in the absence of any solvents and in the presence of either a hydrogen-donor solvent or a non-donor solvent, and the coals (THF-insoluble parts) that have been catalytically pretreated in the presence of a dispersed Mo sulfide catalyst in the absence of any solvents and in the presence of either a hydrogen-donor solvent or a non-donor solvent.

  3. Coal liquefaction. Quarterly report, January--March 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    Current ERDA work in coal liquefaction is aimed at improved process configurations for both catalytic and non-catalytic processes to provide more attractive processing economics and lower capital investment. Coal liquefaction can now be achieved under more moderate processing conditions and more rapidly than was the case in the 1930's. The advantage of coal liquefaction is that the entire range of liquid products, including heavy boiler fuel, distillate fuel oil, gasoline, jet fuel, and diesel oil, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquid fuels also have the potential for use as chemical feedstocks. To determine the most efficient means of utilizing coal resources, ERDA is sponsoring the development of several conversion processes that are currently in the pilot plant stage. Nineteen projects under development are described and progress for each in the quarter is detailed briefly. (LTN)

  4. Solid waste management of coal conversion residuals from a commercial-size facility: environmental engineering aspects. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bern, J.; Neufeld, R. D.; Shapiro, M. A.

    1980-11-30

    Major residuals generated by the conversion process and its auxiliary operations include: (a) coal preparation wastes; (b) gasifier ash; (c) liquefaction solids-char; (d) tail gas or flue gas desulfurization sludge; (e) boiler flyash and bottom ash; (f) raw water treatment sludge, and; (g) biosludges from process wastewater treatment. Recovered sulfur may also require disposal management. Potential environmental and health impacts from each of the residues are described on the basis of characterization of the waste in the perspective of water quality degradation. Coal gasification and liquefaction systems are described in great detail with respect to their associated residuals. Management options are listed with the conclusion that land disposal of the major residual streams is the only viable choice. On-site versus off-site disposal is analyzed with the selection of on-site operations to reduce political, social and institutional pressures, and to optimize the costs of the system. Mechanisms for prevention of leachate generation are described, and various disposal site designs are outlined. It is concluded that co-disposal feasibility of some waste streams must be established in order to make the most preferred solid waste management system feasible. Capacity requirements for the disposal operation were calculated for a 50,000 bbl/day coal liquefaction plant or 250 million SCF/day gasification operation.

  5. Conversion to a Coal-Fueled Industrial ATS (CFATS): Topical report, May 1997

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, G.M.

    1998-06-01

    The task objective is to identify system changes to the selected Gas Fueled Advanced Turbine System (GFATS) hardware that are necessary to adapt it for the burning of coal-derived fuels. Using GFATS configuration results of Task 6, a study was initiated to determine the required engine system changes that are needed to utilize coal derived gas fuels. An imposed goal of this Task, was to maintain the following engine conditions, which are the same as the engine GFATS power and airflow levels defined in Task 3. Engine Compressor Airflow 496.4 lbs/sec. Power Output 131.9 MW (Simple Cycle) and 158.6 MW (Combined Cycle). The initial effort for this study was to select a coal gasification system that had the potential of being used in a commercial environment and then to determine the impact on the engine system. Four gasifier systems have been reviewed for constituent content, heating value of the gas fuel output, and the engine bleed flow needed to maintain the required power level. After review of four available coal gasification systems and based on General Electric`s experience, the Shell coal gasification system was chosen for additional study. The resulting engine interface schematic is provided.

  6. Direct coal liquefaction using iron-titanium hydride as a hydrogen distribution and catalytic material. Yearly report No. 1, September 1, 1984-August 31, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.E. Jr.

    1985-09-29

    During this year the experimental apparatus was completed after substantial delays by the manufacturer and eight direct coal liquefaction experiments were accomplished. These experiments have produced conversion and selectivity data on samples of Utah coal slurried in tetralin and catalyzed using iron-titanium hydride. Hydrogen loading of the alloy, catalyst particle size, catalyst concentration, coal particle size, operating temperatures for alloy addition and liquefaction without the catalysts present, have all been studied during these experiments. Conversions as high as 61% DAF in 30 min have been recorded at 500/sup 0/F and 500 psia. Product selectivities favor the oil fraction during the initial phase of the reaction, but as the reaction proceeds the heavier fractions are observed to increase at the expense of the oil fraction. We are currently working on a kinetic model in an effort to predict these results. Additionally, proton NMR, fractional distillation, and chromatographic analyses are currently being performed on the recovered product. We have completed the study of Utah coal and are moving on to samples of Kentucky and Alabama coals after a minor modification of the experimental apparatus is completed. Equipment manufacture, delivery, and installation delays, totaling over 6 months, greatly reduced the time available for research, making a 6 month no cost extension necessary. The extended time will permit completion of the proposed research tasks. 10 figs., 8 tabs.

  7. Impregnation of Catalytic Metals in Single-Walled Carbon Nanotubes for Toxic Gas Conversion in Life Support System

    Science.gov (United States)

    Li, Jing; Wignarajah, Kanapathipillai; Cinke, Marty; Partridge, Harry; Fisher, John

    2004-01-01

    Carbon nanotubes (CNTs) possess extraordinary properties such as high surface area, ordered chemical structure that allows functionalization, larger pore volume, and very narrow pore size distribution that have attracted considerable research attention from around the world since their discovery in 1991. The development and characterization of an original and innovative approach for the control and elimination of gaseous toxins using single walled carbon nanotubes (SWNTs) promise superior performance over conventional approaches due to the ability to direct the selective uptake of gaseous species based on their controlled pore size, increased adsorptive capacity due to their increased surface area and the effectiveness of carbon nanotubes as catalyst supports for gaseous conversion. We present our recent investigation of using SWNTs as catalytic supporting materials to impregnate metals, such as rhodium (Rh), palladium (Pd) and other catalysts. A protocol has been developed to oxidize the SWNTs first and then impregnate the Rh in aqueous rhodium chloride solution, according to unique surface properties of SWNTs. The Rh has been successfully impregnated in SWNTs. The Rh-SWNTs have been characterized by various techniques, such as TGA, XPS, TEM, and FTIR. The project is funded by a NASA Research Announcement Grant to find applications of single walled nanocarbons in eliminating toxic gas Contaminant in life support system. This knowledge will be utilized in the development of a prototype SWNT KO, gas purification system that would represent a significant step in the development of high efficiency systems capable of selectively removing specific gaseous for use in regenerative life support system for human exploration missions.

  8. Biological CO2 conversion to acetate in subsurface coal-sand formation using a high-pressure reactor system

    Directory of Open Access Journals (Sweden)

    Yoko eOhtomo

    2013-12-01

    Full Text Available Geological CO2 sequestration in unmineable subsurface oil/gas fields and coal formations has been proposed as a means of reducing anthropogenic greenhouse gasses in the atmosphere. However, the feasibility of injecting CO2 into subsurface depends upon a variety of geological and economic conditions, and the ecological consequences are largely unpredictable. In this study, we developed a new flow-through-type reactor system to examine potential geophysical, geochemical and microbiological impacts associated with CO2 injection by simulating in situ pressure (0–100 MPa and temperature (0–70°C conditions. Using the reactor system, anaerobic artificial fluid and CO2 (flow rate: 0.002 and 0.00001 mL/min, respectively were continuously supplemented into a column comprised of bituminous coal and sand under a pore pressure of 40 MPa (confined pressure: 41 MPa at 40°C for 56 days. 16S rRNA gene analysis of the bacterial components showed distinct spatial separation of the predominant taxa in the coal and sand over the course of the experiment. Cultivation experiments using sub-sampled fluids revealed that some microbes survived, or were metabolically active, under CO2-rich conditions. However, no methanogens were activated during the experiment, even though hydrogenotrophic and methylotrophic methanogens were obtained from conventional batch-type cultivation at 20°C. During the reactor experiment, the acetate and methanol concentration in the fluids increased while the δ13Cacetate, H2 and CO2 concentrations decreased, indicating the occurrence of homo-acetogenesis. 16S rRNA genes of homo-acetogenic spore-forming bacteria related to the genus Sporomusa were consistently detected from the sandstone after the reactor experiment. Our results suggest that the injection of CO2 into a natural coal-sand formation preferentially stimulates homo-acetogenesis rather than methanogenesis, and that this process is accompanied by biogenic CO2 conversion to

  9. Quantum chemical study on the catalytic mechanism of Na/K on NO-char heterogeneous reactions during the coal reburning process

    Institute of Scientific and Technical Information of China (English)

    Zheng-cheng WEN; Zhi-hua WANG; Jun-hu ZHOU; Ke-fa CEN

    2009-01-01

    Quantum chemical simulation was used to investigate the catalytic mechanism of Na/K on NO-char heterogeneous reactions during the coal reburning process. Both NO-char and NO-NaYK reactions were considered as three-step processes in this calculation. Based on geometry optimizations made using the UB3LYP/6-31 G(d) method, the activation energies of NO-char and NO-Na/K reactions were calculated using the QC1SD(T)/6-3 i 1G(d, p) method; Results showed that the activation energy of the NO-Na/K reaction (107.9/82.0 kJ/mol) was much lower than that of the NO-char reaction (245.1 kJ/mol). The reactions of NaO/KO and Na2P/K2O reduced by char were also studied, and their thermodynamics were calculated using the UB3LYP/6-31G(d) method; Results showed that both Na and K can be refreshed easily and rapidly by char at high temperature during the coal rebuming process. Based on the calculations and analyses, the catalytic mechanism of Na/K on NO-char het-erogeneous reactions during the coal reburning process was clarified.

  10. Coal conversion rate in 1t/d PSU liquefaction reactor; 1t/d PSU ekika hannoto ni okeru sekitan tenka sokudo no kento

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, K.; Imada, K. [Nippon Steel Corp., Tokyo (Japan); Nogami, Y.; Inokuchi, K. [Mitsui SRC Development Co. Ltd., Tokyo (Japan)

    1996-10-28

    To investigate the coal liquefaction characteristics, coal slurry samples were taken from the outlets of the reactors and slurry preheater of NEDOL process 1 t/d process supporting unit (PSU), and were analyzed. Tanito Harum coal was used for liquefaction, and the slurry was prepared with recycle solvent. Liquefaction was performed using synthetic iron sulfide catalyst at reaction temperatures, 450 and 465{degree}C. Solubility of various solid samples was examined against n-hexane, toluene, and tetrahydrofuran (THF). When considering the decrease of IMO (THF-insoluble and ash) as a characteristic of coal conversion reaction, around 20% at the outlet of the slurry preheater, around 70% within the first reactor, and several percents within the successive second and third reactors were converted against supplied coal. Increase of reaction temperature led to the increase of evaporation of oil fraction, which resulted in the decrease of actual slurry flow rate and in the increase of residence time. Thus, the conversion of coal was accelerated by the synergetic effect of temperature and time. Reaction rate constant of the coal liquefaction was around 2{times}10{sup -1} [min{sup -1}], which increased slightly with increasing the reaction temperature from 450 to 465{degree}C. 3 refs., 5 figs., 1 tab.

  11. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers: Volume 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO.) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO. to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal- fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: 1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels. 2) performance of the technology and effects on the balance-of- plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. 3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacturer under typical high-sulfur coal-fired utility operating conditions. These uncertainties were explored by operating nine small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. In addition, the test facility operating experience provided a basis for an economic study investigating the implementation of SCR technology.

  12. Coal liquefaction. Quarterly report, October-December 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    DOE's program for the conversion of coal to liquid fuels was begun by two of DOE's predecessor agencies: Office of Coal Research (OCR) in 1962, and ERDA. The Bureau of Mines, US Department of the Interior, had started work in the 1930's. Current work is aimed at improved process configurations for both catalytic and noncatalytic processes to provide more attractive processing economics and lower capital investment. The advantage of coal liquefaction is that the entire range of liquid products, especially boiler fuel, distillate fuel oil, and gasoline, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquids have the potential for use as chemical feedstocks. To provide efficient and practical means of utilizing coal resources, DOE is supporting the development of several conversion processes that are currently in the pilot plant stage. Each of these processes are described briefly.

  13. Reaction kinetics study of coal catalytic gasification in lab scale fixed bed reactor%小型固定床煤催化气化动力学研究

    Institute of Scientific and Technical Information of China (English)

    高攀; 顾松园; 钟思青; 金永明; 曹勇

    2015-01-01

    K2CO3 catalytic gasification of Neimeng brown coal was studied in a fixed bed reactor. The effects of catalyst loading, temperature, gasification agents, such as H2O and H2, and partial pressure of H2O on the carbon conversion and reaction rate were investigated. The results showed that K2CO3 could accelerated the rate of coal-steam gasification obviously, and the carbon conversion reached 70% with the addition of only 10% K2CO3 by mass at 700℃, while H2 inhibited the coal-steam gasification seriously. A kinetic reaction equation was proposed based on an n order and Langmuir-Hinshewood expression by evaluating the carbon conversion behavior. The gasification activity significantly increased with steam partial pressure. In the n order expression, the order nwas 0.87 and the activation energy was 169.2kJ/mol, and, in the L-H expression, the activation energy was 121.9kJ/mol.%以K2CO3和内蒙褐煤为研究对象,在小型固定床上考察了催化剂负载量、温度,氢气以及水蒸气分压对碳转化率和气化反应速率的影响。结果表明,K2CO3对煤焦-水蒸气气化反应有明显的催化作用,700℃,当添加10%的K2CO3,碳的转化率为70%,氢气的含量对煤焦-水蒸气的反应有明显的抑制作用,并采用n级速率方程和Langmuir-Hinshelwood速率方程考察了水蒸气分压的影响,分压提高,煤焦-水蒸气气化反应活性提高,采用n级速率方程得到煤-水蒸气气化反应级数为0.87,活化能为169.2kJ/mol;采用L-H方程得到活化能为121.9kJ/mol。

  14. Biological CO2 conversion to acetate in subsurface coal-sand formation using a high-pressure reactor system

    Science.gov (United States)

    Ohtomo, Y.; Ijiri, A.; Ikegawa, Y.; Tsutsumi, M.; Imachi, H.; Uramoto, G.; Hoshino, T.; Morono, Y.; Tanikawa, W.; Hirose, T.; Inagaki, F.

    2013-12-01

    belonged to a methylotrophic methanogen within the genus Methanosarcina. For the acetate-fed culture, no cell proliferation and methane-production were observed after two-years incubation. During the injection of CO2 and fluid, increase of dissolved CH4 concentration was observed, of which δ13CCH4 were constantly similar to those of the absorbed coal-bed methane (δ13CCBM, ~70‰), suggesting the enhanced gas recovery with fluid flow. The output volume of CO2 (ΣCO2out, 22.1 to 125.6 mM) was smaller than initial concentration (ΣCO2in, 138.38 mM), which can be explained by either adsorption on coal, formation of carbonate minerals, or microbial consumption. Increase of acetate concentration in the fluids was also observed, whereas δ13Cacetate depleted during experiment. Considering with the decrease of additive H2, it is most likely that homo-acetogenesis would occur during experiments, which is consistent with detection of Sporomusa-related 16S rRNA genes, homo-acetogenic bacterium, in cloning analysis of sandstone after experiment. Decrease of formate concentrations and increase of δ13Cformate indicate bacterial consumption of formate and isotopic fractionation. Our results suggest that CO2 injection to natural coal-sand formation stimulates homo-acetogenesis rather than methanogenesis, accompanied by biogenic CO2 conversion to acetate.

  15. The Fabrication of Ga2O3/ZSM-5 Hollow Fibers for Efficient Catalytic Conversion of n-Butane into Light Olefins and Aromatics

    Directory of Open Access Journals (Sweden)

    Jing Han

    2016-01-01

    Full Text Available In this study, the dehydrogenation component of Ga2O3 was introduced into ZSM-5 nanocrystals to prepare Ga2O3/ZSM-5 hollow fiber-based bifunctional catalysts. The physicochemical features of as-prepared catalysts were characterized by means of XRD, BET, SEM, STEM, NH3-TPD, etc., and their performances for the catalytic conversion of n-butane to produce light olefins and aromatics were investigated. The results indicated that a very small amount of gallium can cause a marked enhancement in the catalytic activity of ZSM-5 because of the synergistic effect of the dehydrogenation and aromatization properties of Ga2O3 and the cracking function of ZSM-5. Compared with Ga2O3/ZSM-5 nanoparticles, the unique hierarchical macro-meso-microporosity of the as-prepared hollow fibers can effectively enlarge the bifunctionality by enhancing the accessibility of active sites and the diffusion. Consequently, Ga2O3/ZSM-5 hollow fibers show excellent catalytic conversion of n-butane, with the highest yield of light olefins plus aromatics at 600 °C by 87.6%, which is 56.3%, 24.6%, and 13.3% higher than that of ZSM-5, ZSM-5 zeolite fibers, and Ga2O3/ZSM-5, respectively.

  16. Three-phase catalytic system of H2O, ionic liquid, and VOPO4-SiO2 solid acid for conversion of fructose to 5-hydroxymethylfurfural.

    Science.gov (United States)

    Tian, Chengcheng; Zhu, Xiang; Chai, Song-Hai; Wu, Zili; Binder, Andrew; Brown, Suree; Li, Lin; Luo, Huimin; Guo, Yanglong; Dai, Sheng

    2014-06-01

    Efficient transformation of biomass-derived feedstocks to chemicals and fuels remains a daunting challenge in utilizing biomass as alternatives to fossil resources. A three-phase catalytic system, consisting of an aqueous phase, a hydrophobic ionic-liquid phase, and a solid-acid catalyst phase of nanostructured vanadium phosphate and mesostructured cellular foam (VPO-MCF), is developed for efficient conversion of biomass-derived fructose to 5-hydroxymethylfurfural (HMF). HMF is a promising, versatile building block for production of value-added chemicals and transportation fuels. The essence of this three-phase system lies in enabling the isolation of the solid-acid catalyst from the aqueous phase and regulation of its local environment by using a hydrophobic ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][Tf2N]). This system significantly inhibits the side reactions of HMF with H2O and leads to 91 mol % selectivity to HMF at 89 % of fructose conversion. The unique three-phase catalytic system opens up an alternative avenue for making solid-acid catalyst systems with controlled and locally regulated microenvironment near catalytically active sites by using a hydrophobic ionic liquid.

  17. Materials technology for coal-conversion processes. Progress report, January-March 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ellingson, William A.

    1980-06-01

    The program entails nondestructive testing, failure analysis, and studies of erosive wear, corrosion, and refractory degradation. Analysis of recent refractory-slag interaction tests suggests that as the chromia content is increased from 10 to 32%, the primary reaction product changes from calcium hexaluminate to spinel, significantly increasing the corrosion resistance of the refractory. Field reliability of the high-temperature ultrasonic erosion scanner was demonstrated at both a coal liquefaction plant (SRC at Tacoma, WA) and a coal gasification plant (Morgantown, WV). Continuous high-temperature operation has been demonstrated and an accuracy of +-0.025 mm seems achievable. Equipment has been ordered for field tests of passive acoustic systems at Exxon. This includes a four-channel tape recorder, differential amplifiers, and signal conditioners. Corrosion studies have been completed on effects of multicomponent gas environments on corrosion mechanisms and uniaxial tensile properties of Fe-Ni-Cr alloys. Results of these and other tests utilizing 10,000-h exposures suggest that corrosion rates of 0.6 mm/y can be expected. Failure analysis activities included studies of compressor diaphragms from the Grand Forks Energy Technology Center coal-liquefaction continuous-process unit. Cracks were found in two of the three diaphragms. Failure of an internal solids transfer line from HYGAS appears to have been caused by severe localized sulfidation of the high-nickel Inconel 182 weld metal used to fabricate the line.

  18. High performance materials in coal conversion utilization. Final report, October 1, 1993--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    McCay, T.D.; Boss, W.H. [ed.; Dahotre, N. [and others

    1996-12-01

    This report describes the research conducted at the University of Tennessee Space Institute on high performance materials for use in corrosive environments. The work was supported by a US Department of Energy University Coal Research grant. Particular attention was given to the silicon carbide particulate reinforced alumina matrix ceramic composite manufactured by Lanxide Corporation as a potential tubular component in a coal-fired recuperative high-temperature air heater. Extensive testing was performed to determine the high temperature corrosion effects on the strength of the material. A computer modeling of the corrosion process was attempted but the problem proved to be too complex and was not successful. To simplify the situation, a computer model was successfully produced showing the corrosion thermodynamics involved on a monolithic ceramic under the High Performance Power System (HIPPS) conditions (see Appendix A). To seal the material surface and thus protect the silicon carbide particulate from corrosive attack, a dense non porous alumina coating was applied to the material surface. The coating was induced by a defocused carbon dioxide laser beam. High temperature corrosion and strength tests proved the effectiveness of the coating. The carbon dioxide laser was also used to successfully join two pieces of the Lanxide material, however, resources did not allow for the testing of the resulting joint.

  19. Kinetics and mechanism of catalytic hydroprocessing of components of coal-derived liquids. Seventh quarterly report, November 16, 1980-February 15, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Gates, B.C.; Katzer, J.R.; Kwart, H.; Olson, J.H.; Schuit, G.C.A.; Stiles, A.B.; Petrakis, L.

    1981-10-21

    An asphaltene-containing SRC-II coal liquid derived from Powhatan No. 5 coal and produced in the Ft. Lewis demonstration plant was selected for study of catalytic hydroprocessing reactions. Separation by liquid chromatography has been carried out to produce nine distinct fractions. Experiments have begun to determine the reactivities of these fractions in high-pressure catalytic hydroprocessing. Hydroprocessing experiments with aromatic hydrocarbons under industrially relevant conditions have shown that the reaction networks involve reversible hydrogenation and isomerization, and significant concentrations of hydroaromatic (hydrogen-donor) species are attainable under practical conditions. The least reactive class of aromatic hydrocarbons consists of substituted benzenes. Biphenyl has been selected for thorough study, and quantitative kinetics of the biphenyl hydrogenation to give cyclohexylbenzene has been determined. Kinetics of hydrodenitrogenation of indole was studied in an autoclave between 321 and 400/sup 0/C and 16.3 to 69 atm, using American Cyanamid HDS-9A catalyst. A reaction network with kinetics parameters was developed for the calculation of product distribution and nitrogen removal. Lumping of components in a reaction network simplifies the kinetics determination of fuel feedstocks. Component lumping simulations involving first-order kinetics were successfully carried out for certain schemes in the quinoline network. This network can be represented by the reactant, the hydrogenated intermediate (lumps), and the denitrogenated product.

  20. Interrelations of catalytic index of coal ash component%煤中灰成分催化指数的相关性

    Institute of Scientific and Technical Information of China (English)

    梁建华; 史世庄; 张康华; 彭靖; 雷耀辉; 吴琼

    2011-01-01

    According to summarizing different methods of defining catalytic index of ash component of coking coal at home and abroad, do experiments with ten kinds of blended coals, discuss the correlation among the various definitions of catalytic index. The results show that there is a good correlation among MBI, MCI, MMCI, MCIy. The correlation coefficient between MBI and MCI is 0. 9905, MCIy and MBI is 0. 9821, MCIy and MCI is 0.9986. To a certain degree, these four methods are interchangeable.%总结国内外不同方法的煤中灰成分催化指数定义的基础上,对10种配合煤进行了试验,探讨了不同方法的催化指数之间的相关性.结果表明,MBI,MCI,MMCI,MCIy四者之间的相关性良好,MBI和MCI之间相关性系数为0.9905,MCL和MBI之间相关性系数为0.9821,MCIy和MCI之间相关性系数为0.9986.在一定程度上,四者可以互换.

  1. Effect of preparation conditions on the catalytic performance of cobalt manganese oxide catalysts for conversion of synthesis gas to light olefins

    Energy Technology Data Exchange (ETDEWEB)

    Mirzaei, Ali A.; Faizi, Mostafa; Habibpour, Razieh [Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan 98135-674 (Iran, Islamic Republic of)

    2006-06-07

    Cobalt manganese oxides are prepared using a co-precipitation procedure and studied for the conversion of synthesis gas to light olefins. In particular, the effect of a range of preparation variables is investigated in detail. The variables investigated include the precipitate ageing time, pH and temperature of precipitation, the [Co]/[Mn] ratio of the precipitation solution and also reactor conditions such as reaction temperature and H{sub 2}/CO molar feed ratio. The effect of different supports on the activity and selectivity of catalysts are also studied. The optimum preparation conditions are identified with respect to catalytic performance for the conversion of synthesis gas to ethylene and propylene. The results are interpreted in terms of the structure of the active catalyst. Generally it has been concluded that catalysts containing cobalt manganese mixed phases are found to be the most active. (author)

  2. Preliminary draft industrial siting administration permit application: Socioeconomic factors technical report. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project in Converse County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Under the with-project scenario, WyCoalGas is projected to make a difference in the long-range future of Converse County. Because of the size of the proposed construction and operations work forces, the projected changes in employment, income, labor force, and population will alter Converse County's economic role in the region. Specifically, as growth occurs, Converse County will begin to satisfy a larger portion of its own higher-ordered demands, those that are currently being satisfied by the economy of Casper. Business-serving and household-serving activities, currently absent, will find the larger income and population base forecast to occur with the WyCoalGas project desirable. Converse County's economy will begin to mature, moving away from strict dependence on extractive industries to a more sophisticated structure that could eventually appeal to national, and certainly, regional markets. The technical demand of the WyCoalGas plant will mean a significant influx of varying occupations and skills. The creation of basic manufacturing, advanced trade and service sectors, and concomitant finance and transportation firms will make Converse County more economically autonomous. The county will also begin to serve market center functions for the smaller counties of eastern Wyoming that currently rely on Casper, Cheyenne or other distant market centers. The projected conditions expected to exist in the absence of the WyCoalGas project, the socioeconomic conditions that would accompany the project, and the differences between the two scenarios are considered. The analysis is keyed to the linkages between Converse County and Natrona County.

  3. Coal conversion systems design and process modeling. Volume 1: Application of MPPR and Aspen computer models

    Science.gov (United States)

    1981-01-01

    The development of a coal gasification system design and mass and energy balance simulation program for the TVA and other similar facilities is described. The materials-process-product model (MPPM) and the advanced system for process engineering (ASPEN) computer program were selected from available steady state and dynamic models. The MPPM was selected to serve as the basis for development of system level design model structure because it provided the capability for process block material and energy balance and high-level systems sizing and costing. The ASPEN simulation serves as the basis for assessing detailed component models for the system design modeling program. The ASPEN components were analyzed to identify particular process blocks and data packages (physical properties) which could be extracted and used in the system design modeling program. While ASPEN physical properties calculation routines are capable of generating physical properties required for process simulation, not all required physical property data are available, and must be user-entered.

  4. China Pushes Ahead with Technology for "Conversion of Coal into Oil"

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Chinese's Academy of Sciences has recently announced an R&D project of a pilot plant scale process on the basis of the Fischer-Tropsch synthesis technology developed in the Institute of Coal Chemistry (ICC),according to the recent reports from the Chinese news media.Currently, major breakthroughs have been made in the low cost catalyst production, the efficient reactor design, and the process integration, Sun Yuhan, director of ICC, said recently. He added that recent technology developed in ICC has greatly reduced the cost ofsynthesis part in the whole process, indicating the economic and environmental feasibility for the development of commercial complexes in China, and a pilot plant test is under way in coalenriched Shanxi province.

  5. Sulfidation of 310 stainless steel at sulfur potentials encountered in coal conversion systems

    Science.gov (United States)

    Rao, D. B.; Nelson, H. G.

    1976-01-01

    The sulfidation of SAE 310 stainless steel was carried out in gas mixtures of hydrogen and hydrogen sulfide over a range of sulfur potentials anticipated in advanced coal gasification processes. The kinetics, composition, and morphology of sulfide scale formation were studied at a fixed temperature of 1065 K over a range of sulfur potentials from .00015N/sqm to 900N/sqm. At all sulfur potentials investigated, the sulfide scales were found to be multilayered. The relative thickness of the individual layers as well as the composition was found to depend on the sulfur potential. The reaction was found to obey the parabolic rate law after an initial transient period. Considerably longer transient periods were found to be due to unsteady state conditions resulting from compositional variations in the spinel layer.

  6. RESIDUES FROM COAL CONVERSION AND UTILIZATION: ADVANCED MINERALOGICAL CHARACTERIZATION AND DISPOSED BYPRODUCT DIAGENESIS

    Energy Technology Data Exchange (ETDEWEB)

    Gregory J. McCarthy; Dean G. Grier

    1998-09-01

    The goals of the project are two-fold: (1) to upgrade semi-quantitative X-ray diffraction (QXRD) methods presently used in analyzing complex coal combustion by-product (CCB) systems, with the quantitative Rietveld method, and (2) to apply this method to a set of by-product materials that have been disposed or utilized for a long period (5 years or more) in contact with the natural environment, to further study the nature of CCB diagenesis. The project is organized into three tasks to accomplish these two goals: (1) thorough characterization of a set of previously analyzed disposed by-product materials, (2) development of a set of CCB-specific protocols for Rietveld QXRD, and (3) characterization of an additional set of disposed CCB materials, including application of the protocols for Rietveld QXRD developed in Task 2.

  7. RESIDUES FROM COAL CONVERSION AND UTILIZATION: ADVANCED MINERALOGICAL CHARACTERIZATION AND DISPOSED BYPRODUCT DIAGENESIS

    Energy Technology Data Exchange (ETDEWEB)

    Gregory J. McCarthy; Dean G. Grier

    1998-03-01

    The goals of the project are two-fold: (1) to upgrade semi-quantitative X-ray diffraction (QXRD) methods presently used in analyzing complex coal combustion by-product (CCB) systems, with the quantitative Rietveld method, and (2) to apply this method to a set of by-product materials that have been disposed or utilized for a long period (5 years or more) in contact with the natural environment, to further study the nature of CCB diagenesis. The project is organized into three tasks to accomplish these two goals: (1) thorough characterization of a set of previously analyzed disposed by-product materials, (2) development of a set of CCB-specific protocols for Rietveld QXRD, and (3) characterization of an additional set of disposed CCB materials, including application of the protocols for Rietveld QXRD developed in Task 2.

  8. Materials technology for coal-conversion processes. Sixteenth quarterly report, October--December 1978

    Energy Technology Data Exchange (ETDEWEB)

    Ellingson, W A

    1978-01-01

    Refractories for slag containment, nondestructive evaluation methods, corrosion, erosion, and component failures were studied. Analysis of coal slags reveal ferritic contents of 18 to 61%, suggesting a partial pressure of 0/sub 2/ in the slagging zone of approx. 10/sup -2/ to 10/sup -4/ Pa. A second field test of the high-temperature ultrasonic erosion-monitoring system was completed. Ultrasonic inspecton of the HYGAS cyclone separator shows a reduced erosive-wear rate at 5000 h in the stellite region. The acoustic leak-detection system for valves was field tested using a 150-mm-dia. valve with a range of pressures from 0.34 to 4.05 MPa. Results suggest a linear relation between detected rms levels and leak rates. Studies on acoustic emissions from refractory concrete continued with further development of a real-time data acquisition system. Corrosion studies were conducted on Incoloy 800, Type 310 stainless steel, Inconel 671 and U.S. Steel Alloy 18-18-2 (as-received, thermally aged, and preexposed for 3.6 Ms to multicomponent gas mixtures). Results suggest a decrease in ultimate tensile strength and flow stress after preexposure. Examination of commercial iron- and nickel-base alloys after 100-h exposures in atmospheric-pressure fluidized-bed combustors suggests that the addition of 0.3 mole % CaCl/sub 2/ to the fluidized bed has no effect on the corrosion behavior of these materials; however, 0.5 mole % NaCl increased the corrosion rate of all materials. Failure-analysis activities included (1) the design and assembly of thermowells (Haynes Alloy 188 and slurry-coated Type 310 stainless steel) and (2) examination of components from the Synthane boiler explosion, the IGT Steam--Iron Pilot Plant, the HYGAS Ash Agglomerating Gasifier, and the Westinghouse Coal Gasification PDU.

  9. A catalytic biofuel production strategy involving separate conversion of hemicellulose and cellulose using 2-sec-butylphenol (SBP) and lignin-derived (LD) alkylphenol solvents.

    Science.gov (United States)

    Kim, Sunghoon; Han, Jeehoon

    2016-03-01

    A strategy in which the hemicellulose and cellulose fractions of lignocellulosic biomass are converted separately to jet fuel-range liquid hydrocarbon fuels (butene oligomers) through catalytic processes is developed. Dilute sulfuric acid (SA)-catalyzed pretreatment fractionates the first biomass into cellulose and hemicellulose-derived xylose, and these are then converted separately to levulinic acid (LA) using 2-sec-butylphenol (SBP) and lignin-derived (LD) alkylphenol solvents, respectively. LA is upgraded catalytically to butene oligomers via γ-valerolactone (GVL) and butene intermediates. Separation subsystems are designed to recover the alkylphenol solvents and biomass-derived intermediates (LA and GVL) for combination with the catalytic conversion subsystems of hemicellulose, cellulose, and lignin. In addition, a heat exchanger network (HEN) design is presented to satisfy the energy requirements of the integrated process from combustion of biomass residues (degradation products). Finally, a technoeconomic analysis shows that the proposed process ($3.37/gallon of gasoline) is an economically competitive alternative to current biofuel production approaches.

  10. Cooperative research program in coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. (ed.)

    1991-01-01

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  11. Thermo-Exfoliated Graphite Containing CuO/Cu2(OH3NO3:(Co2+/Fe3+ Composites: Preparation, Characterization and Catalytic Performance in CO Conversion

    Directory of Open Access Journals (Sweden)

    Vladyslav V. Lisnyak

    2010-01-01

    Full Text Available Thermo-exfoliated graphite (TEG/CuO/Cu2(OH3NO3:(Co2+/Fe3+ composites were prepared using a wet impregnation method and subsequent thermal treatment. The physicochemical characterization of the composites was carried out by powder X-ray diffraction (PXRD, scanning electron microscopy (SEM and Ar temperature-desorption techniques. The catalytic efficiency toward CO conversion to CO2 was examined under atmospheric pressure. Characterization of species adsorbed over the composites taken after the activity tests were performed by means of temperature programmed desorption massspectrometry (TPD MS. (TEG/CuO/Cu2(OH3NO3:(Co2+/Fe3+ composites show superior performance results if lower temperatures and extra treatment with H2SO4 or HNO3 are used at the preparation stages. The catalytic properties enhancements can be related to the Cu2(OH3NO3 phase providing reaction centers for the CO conversion. It has been found that prevalence of low-temperature states of desorbed CO2 over high-temperature ones in the TPD MS spectra is characteristic of the most active composite catalysts.

  12. Coal liquefaction. Quarterly report, July--September 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    ERDA's program for the conversion of coal to liquid fuels is aimed at improved process configurations for both catalytic and noncatalytic processes to provide more attractive processing economics and lower capital investment. The advantage of coal liquefaction is that the entire range of liquid products, including heavy boiler fuel, distillate fuel oil, gasoline, jet fuel, and diesel oil, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquids also have the potential for use as chemical feedstocks. To provide efficient and practical means of utilizing coal resources, ERDA is sponsoring the development of several conversion processes that are currently in the pilot plant stage. Responsibility for the design, construction, and operation of these facilities is given and progress in the quarter is summarized. Several supporting or complementary projects are described similarly. (LTN)

  13. Nondestructive inspection of plasma-sprayed metallic coatings for coal conversion equipment

    Energy Technology Data Exchange (ETDEWEB)

    Scott, G.W.; Snyder, S.D.; Simpson, W.A. Jr.

    1979-12-01

    This report describes the results of a project to develop nondestructive inspection techniques for metallic wear- and process-resistant coatings used in coal system components. Physical properties, especially porosity, and the nominal 0.25 mm (0.010 in.) thickness complicate the inspection of these coatings. The class of coatings selected for laboratory evaluation were CoCrAlY (cobalt-chromium-aluminum-yttrium) types; the specific material used was a Union Carbide spray powder, UCAR LCO-7, which is Co-22.8% Cr-12.9% Al-0.6% Y, sprayed onto alloy 800 substrates. The desired inspection techniques were to: (1) detect cracks or holes in the coating; (2) measure the coating thickness from the coated side; and (3) detect lamellar flaws or separations within the coating layer or between the coating and the substrate. Surface methods (such as liquid penetrant), eddy currents, and radiography were investigated for crack and hole detection; eddy currents, x-ray fluorescence, and ultrasonics were investigated for thickness measurement; and ultrasonics and infrared thermography were investigated for lamellar flaw detection. In general, we determined that significant development effort was required to adapt even the more common and highly developed techniques to the coating inspection problems. Significant progress was made in a number of the investigations undertaken, but financial restraints prevented completion of the planned work.

  14. Projections of Northern Great Plains coal mining and energy conversion development, 1975 to 2000 A. D. Final report, Parts I and II

    Energy Technology Data Exchange (ETDEWEB)

    Power, T.M.; Duffield, J.W.; McBride, J.R.; Stroup, R.L.; Wheeling, T.D.; Tomlinson, W.D.; Thurman, W.J.; Silverman, A.J.

    1976-03-01

    This study projects the probable levels of coal development in Montana and adjacent Northern Great Plains (NGP) states in the next 5, 10, and 25 years under a variety of electric growth rate assumptions. The final report is in four parts. Part I provides an outline of the methodology and a summary of the projection. Part II is a detailed comparison of the results with other projections of NGP coal development, principally the Northern Great Plains Resources Program's National and Regional Energy Considerations Work Group Report and the Federal Energy Administration's Project Independence Report. Part III is a compilation of the fourteen working papers on which the final projections are based. Part IV is a listing of computer programs developed for the project and the printout for the price-sensitive projection model. This is the first step in developing a detailed price-sensitive study of demand for Northern Great Plains coal. The following are explored: the interfuel substitution problem, alternative coal-based technologies that may become commercial on a modest to large scale in the next twenty-five years (MHD, coal liquefaction, in-situ gasification, fluidized bed combustion, and others) is not explored; neither are the restraints that a range of environmental, land use, and taxation laws and regulations may place on coal resource and conversion development.

  15. Coal liquefaction. Quarterly report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The United States has more energy available in coal than in petroleum, natural gas, oil shale, and tar sands combined. Nationwide energy shortages, together with the availability of abundant coal reserves, make commercial production of synthetic fuels from coal vital to the Nation's total supply of clean energy. In response to this need, the Office of Fossil Energy of the Energy Research and Development Administration (ERDA) is conducting a research and development program to provide technology that will permit rapid commercialization of processes for converting coal to synthetic liquid and gaseous fuels and for improved direct combustion of coal. These fuels must be storable and suitable for power generation, transportation, and residential and industrial uses. ERDA's program for the conversion of coal to liquid fuels was begun by two of ERDA's predecessor agencies: Office of Coal Research (OCR) in 1962, and Bureau of Mines, U.S. Department of the Interior, in the 1930's. Current work in coal liquefaction is aimed at improved process configurations for both catalytic and non-catalytic processes to provide more attractive processing economics and lower capital investment. Coal liquefaction can now be achieved under more moderate processing conditions and more rapidly than was the case in the 1930's. The advantage of coal liquefaction is that the entire range of liquid products, including heavy boiler fuel, distillate fuel oil, gasoline, jet fuel, and diesel oil, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquid fuels also have the potential for use as chemical feedstocks. To determine the most efficient means of utilizing coal resources, ERDA is sponsoring the development of several conversion processes that are currently in the pilot plant stage. Nineteen projects under development are described and progress for each in the quarter is detailed briefly

  16. Enhanced performance of the catalytic conversion of allyl alcohol to 3-hydroxypropionic acid using bimetallic gold catalysts.

    Science.gov (United States)

    Falletta, Ermelinda; Della Pina, Cristina; Rossi, Michele; He, Qian; Kiely, Christopher J; Hutchings, Graham J

    2011-01-01

    One of the strategic building blocks in organic synthesis is 3-hydroxypropionic acid, which is particularly important for the manufacture of high performance polymers. However, to date, despite many attempts using both biological and chemical routes, no large scale effective process for manufacturing 3-hydroxypropionic acid has been developed. One potentially useful starting point is from allyl alcohol, as this can be obtained in principle from the dehydration of glycerol, thereby presenting a bio-renewable green pathway to this important building block. The catalytic transformation of allyl alcohol to 3-hydroxypropionic acid presents interesting challenges in catalyst design, particularly with respect to the control of selectivity among the products that can be expected, as acrylic acid, acrolein and glyceric acid can also be formed. In this paper, we present a novel eco-sustainable catalytic pathway leading to 3-hydroxypropionic acid, which highlights the outstanding potential of gold-based and bimetallic catalysts in the aerobic oxidation of allyl alcohol. PMID:22455056

  17. Effect of the Sequence of the Thermoelectric Generator and the Three-Way Catalytic Converter on Exhaust Gas Conversion Efficiency

    Science.gov (United States)

    Su, Chuqi; Tong, Naiqiang; Xu, Yuman; Chen, Shan; Liu, Xun

    2013-07-01

    The potential for thermoelectric exhaust heat recovery in vehicles has increased with recent improvements in the efficiency of thermoelectric generators (TEGs). The problem with using thermoelectric generators for vehicle applications is whether the device is compatible with the original vehicle exhaust system, which determines the quality of the exhaust gas treatment and the realization of energy conservation and emission reduction. Based on ANSYS CFX simulation analysis of the impact of two positional relationships between the TEG and three-way catalytic converter in the exhaust system on the working efficiency of both elements, it is concluded that the layout with the front three-way catalytic converter has an advantage over the other layout mode under current conditions. New ideas for an improvement program are proposed to provide the basis for further research.

  18. Removal and Conversion of Tar in Syngas from Woody Biomass Gasification for Power Utilization Using Catalytic Hydrocracking

    OpenAIRE

    Jiu Huang; Klaus Gerhard Schmidt; Zhengfu Bian

    2011-01-01

    Biomass gasification has yet to obtain industrial acceptance. The high residual tar concentrations in syngas prevent any ambitious utilization. In this paper a novel gas purification technology based on catalytic hydrocracking is introduced, whereby most of the tarry components can be converted and removed. Pilot scale experiments were carried out with an updraft gasifier. The hydrocracking catalyst was palladium (Pd). The results show the dominant role of temperature and flow rate. At a cons...

  19. Coal conversion processes and analysis methodologies for synthetic fuels production. [technology assessment and economic analysis of reactor design for coal gasification

    Science.gov (United States)

    1979-01-01

    Information to identify viable coal gasification and utilization technologies is presented. Analysis capabilities required to support design and implementation of coal based synthetic fuels complexes are identified. The potential market in the Southeast United States for coal based synthetic fuels is investigated. A requirements analysis to identify the types of modeling and analysis capabilities required to conduct and monitor coal gasification project designs is discussed. Models and methodologies to satisfy these requirements are identified and evaluated, and recommendations are developed. Requirements for development of technology and data needed to improve gasification feasibility and economies are examined.

  20. Catalytic conversion of light alkanes-proof-of-concept stage - Phase IV. Topical report, February 1, 1994--January 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This report details the research performed on Phase IV of the extended Cooperative Agreement. This Phase, entitled C{sub 1}-C{sub 4} Research, provides the research support which accompanies the C{sub 4} Proof-of-Concept Phase (Phase V) as the two major activities of the Cooperative Agreement during calendar 1993. It is the objective of this phase to understand the nature of the catalysts and catalytic activity of perhaloporphyrin complexes uncovered during Phases I-III in order that superior catalytic materials can be made and tested which meet commercial criteria for the oxidation of the C{sub 1}-C{sub 4} light alkane gases found in natural gas and other available hydrocarbon streams. During Phase IV, we have examined the physical and electronic structures of the very active perhaloporphyrin catalysts which we have developed, and have gained an understanding of the properties which make them active. This has led us to design and synthesize materials which are cheaper, more active, more robust and, in general superior for carrying out practical catalysis. Our early generation perhaloporphyrin catalysts, while exhibiting unprecedented catalytic activity, were far too expensive for use in converting natural gas or its C{sub 1}-C{sub 4} components.

  1. Systems studies of coal-conversion processes using a reference simulator. Final report, March 12, 1976-August 12, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Reklaitis, G.V.; Sood, M.K.; Soni, Y.; Overturf, B.W.; Wiede, W.; Clark, S.; Buchanan, P.

    1979-12-01

    Methodology and general purpose software were developed which do allow computer-aided design and analysis of large scale coal conversion processes. The LINBAL package for larger scale balance calculations was demonstrated to be quick and efficient in solving problems involving over 100 streams, 20 species, and 80 or more flowsheet units. The LSP simulation package embodies constraint handling, recycle calculation, and information management features which are an advance of the state of the art. The two level strategy available in LSP was demonstrated on a reasonable sized simulation and shown to result in a 1/3 reduction of CPU time over conventional calculation strategies. The Physical Properties Package was used in all of the simulation models developed under this project and proved to be satisfactory within the limits of the thermodynamic correlations and estimation methods which are encoded. Although the package is largely conventional in overall design, it does employ features which make it convenient to use both within LSP and on a stand-along basis. The PCOST package represents a new approach to the design of this type of program. The program has proved to be simple to use, robust, and accurate within the limitations of the literature cost correlations that it contains. In summary, the project has accomplished its primary objectives. However, time and fiscal limitation did not permit the completion of an adequate slate of case studies.

  2. La conversion des résidus et huiles lourdes : au carrefour du thermique et du catalytique Conversion of Residues and Heavy Oils At the Crossroads of Thermal Cracking and Catalytic Reactions

    Directory of Open Access Journals (Sweden)

    Le Page J. F.

    2006-11-01

    Full Text Available Cet article passe en revue les diverses familles de procédés de conversion des résidus et huiles lourdes. Tous les résultats semblent converger pour accréditer l'idée que dans tous ces procédés, y compris les procédés dits catalytiques, l'essentiel de la conversion des espèces de poids moléculaire élevé, résines et asphaltènes, procède par mécanisme radicalaire : la clef de la conversion profonde, c'est paradoxalement la maîtrise de la condensation radicalaire de ces espèces. Hydrogène seul, hydrogène en présence de solvant donneur, d'additifs ou encore mieux de catalyseurs, sont les armes dont dispose tout raffineur pour affirmer cette maîtrise, dans la mesure où il ne tient pas à fabriquer du coke. Tous ces procédés de conversion des résidus donnent par ailleurs naissance à des produits craqués dont la nature et la distribution rappellent celles des produits de première distillation du pétrole brut dont est issu le résidu soumis au craquage. This article reviews the different families of conversion processes for residues and heavy oils. All the results seem to converge to support the idea that in all these processes, including so-called catalytic processes, most of the conversion of high-molecular-weight species (resins and asphaltenes operates by a radical mechanism. The key to in-depth conversion is, paradoxically, the mastery of the radical condensation of these species. Hydrogen alone, hydrogen in the presence of a donor solvent, of additives or, better yet, of catalysts, are the arms at the disposal of all refiners to assert this mastery, to the extent that they do not want to manufacture coke. All such conversion processes for residues also give rise to cracked products whose nature and distribution recall those of first-distillation products of crude oil, from which the residue comes that is subjected to cracking.

  3. DEVELOPMENT OF CONSTRUCTION OF A CATALYTIC REACTOR FOR METHANE OXIDISING IN VENTILATION AIR IN COAL MINES AND THE RESEARCH ON INTEGRATED “HEAT PIPE” RECUPERATOR

    Directory of Open Access Journals (Sweden)

    Lech Hys

    2013-04-01

    Full Text Available The article presents the analysis whose result is the selection of appropriate design and construction of a monolithic CMR reactor intended for oxidising methane from ventilation air in coal mines. The description of “heat-pipe” recuperator cooperating with the reactor was also presented. The research was mainly aimed at verifying the compliance with the work of autothermity premise obtained by the return of part of heat from catalytic reaction. The result of research was to define the range volumetric fume expense ensuring autothermity and the definition of maximum recuperator efficiency. The range of volumetric expense was 18–25 m3/h and maximum value of efficiency coefficient was η = 0.50 for the volumetric expense of 18 m3/h.

  4. RESIDUES FROM COAL CONVERSION AND UTILIZATION: ADVANCED MINERALOGICAL CHARACTERIZATION AND DISPOSED BYPRODUCT DIAGENESIS

    Energy Technology Data Exchange (ETDEWEB)

    Gregory J. McCarthy; Dean G. Grier

    2001-01-01

    Prior to the initiation of this study, understanding of the long-term behavior of environmentally-exposed Coal Combustion By-Products (CCBs) was lacking in (among others) two primary areas addressed in this work. First, no method had been successfully applied to achieve full quantitative analysis of the partitioning of chemical constituents into reactive or passive crystalline or noncrystalline compounds. Rather, only semi-quantitative methods were available, with large associated errors. Second, our understanding of the long-term behavior of various CCBs in contact with the natural environment was based on a relatively limited set of study materials. This study addressed these areas with two objectives, producing (1) a set of protocols for fully quantitative phase analysis using the Rietveld Quantitative X-ray Diffraction (RQXRD) method and (2) greater understanding of the hydrologic and geochemical nature of the long-term behavior of disposed and utilized CCBs. The RQXRD technique was initially tested using (1) mixtures of National Institute of Standards and Technology (NIST) crystalline standards, and (2) mixtures of synthetic reagents simulating various CCBs, to determine accuracy and precision of the method, and to determine the most favorable protocols to follow in order to efficiently quantify multi-phase mixtures. Four sets of borehole samples of disposed or utilized CCBs were retrieved and analyzed by RQXRD according to the protocols developed under the first objective. The first set of samples, from a Class F ash settling pond in Kentucky disposed for up to 20 years, showed little mineralogical alteration, as expected. The second set of samples, from an embankment in Indiana containing a mixture of chain-grate (stoker) furnace ash and fluidized bed combustion (FBC) residues, showed formation of the mineral thaumasite, as observed in previously studied exposed FBC materials. Two high-calcium CCBs studied, including a dry-process flue gas desulfurization

  5. Energy conversion alternatives study

    Science.gov (United States)

    Shure, L. T.

    1979-01-01

    Comparison of coal based energy systems is given. Study identifies and compares various advanced energy conversion systems using coal or coal derived fuels for baselaoad electric power generation. Energy Conversion Alternatives Study (ECAS) reports provede government, industry, and general public with technically consistent basis for comparison of system's options of interest for fossilfired electric-utility application.

  6. Operando magnetic resonance: monitoring the evolution of conversion and product distribution during the heterogeneous catalytic ethene oligomerisation reaction.

    Science.gov (United States)

    Roberts, S Tegan; Renshaw, Matthew P; Lutecki, Michal; McGregor, James; Sederman, Andrew J; Mantle, Mick D; Gladden, Lynn F

    2013-11-18

    Operando magnetic resonance (MR) spectroscopy has been used to follow an ethene oligomerisation reaction performed at 110 °C, 28 barg over a 1 wt% Ni/SiO2-Al2O3 catalyst. Spectra acquired over the timecourse of the reaction allow the calculation of conversion and product distribution as a function of time-on-stream. PMID:24088715

  7. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes

    NARCIS (Netherlands)

    Kondratenko, E.V.; Mul, G.; Baltrusaitis, J.; Larrazábal, G.O.; Pérez-Ramírez, J.

    2013-01-01

    This review highlights recent developments and future perspectives in carbon dioxide usage for the sustainable production of energy and chemicals and to reduce global warming. We discuss the heterogeneously catalysed hydrogenation, as well as the photocatalytic and electrocatalytic conversion of CO2

  8. Comparative Study of the Catalytic Activities of Three Distinct Carbonaceous Materials through Photocatalytic Oxidation, CO Conversion, Dye Degradation, and Electrochemical Measurements

    Science.gov (United States)

    Lee, Hangil; Kim, Yeonwoo; Kim, Min Ji; Kim, Ki-jeong; Kim, Byung-Kwon

    2016-01-01

    In order to compare the catalytic activities of reduced graphene oxide (rGO), graphene oxide (GO), and graphene, we conducted oxidation of 2-aminothiophenol (2-ATP) and reduction of nitrobenzene (NB) in their presence by using high-resolution photoemission spectroscopy (HRPES). In addition, we determined conversion rates of CO to CO2 in the presence of these catalysts by performing a residual gas analyzer (RGA) under a UHV condition, Orange II and methylene blue degradations UV-vis spectrophotometry, and electrochemistry (EC) measurements in an aqueous solution, as well as by obtaining cyclic voltammograms and determining the change of the condition of electrodes before and after the oxidation of 2-ATP. We found that we can successively fabricate GO (oxidation) and graphene (reduction) from rGO by controlling the oxidation or reduction procedure time and then clearly comparing the critical properties among them as we perform various oxidation and reduction activities. PMID:27762289

  9. H3PO4/Al2O3 catalysts: characterization and catalytic evaluation of oleic acid conversion to biofuels and biolubricant

    Directory of Open Access Journals (Sweden)

    Lucia Regina Raddi de Araujo

    2006-06-01

    Full Text Available Al2O3 and H3PO4/Al2O3 catalysts were investigated in the conversion of oleic acid to biofuels and biolubricant at 1 atm and at 623 K. The catalytic tests were performed in a fixed bed and continuous flow reactor, using an oleic acid-catalyst ratio of 4 and N2 as the carrier gas. The reaction products were analyzed by gas chromatography and acidity measurements. N2 adsorption-desorption, X ray diffraction, 31P nuclear magnetic resonance and FT-IR spectroscopy were also employed to evaluate the textural, structural and acidic properties of the catalysts. The results showed that phosphoric acid impregnation improved the alumina decarboxylation activities, generating hydrocarbons in the range of gasoline, diesel oil and lubricant oil. The best catalytic performance was achieved with the highest surface area alumina impregnated with H3PO4, which was the solid that allied high total acidity with a large quantity of mesopores.

  10. Catalytic and Noncatalytic Conversion of Methane to Olefins and Synthesis Gas in an AC Parallel Plate Discharge Reactor

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Khodagholi

    2013-01-01

    Full Text Available Direct conversion of methane to ethylene, acetylene, and synthesis gas at ambient pressure and temperature in a parallel plate discharge reactor was investigated. The experiments were carried out using a quartz reactor of outer diameter of 9 millimeter and a driving force of ac current of 50 Hz. The input power to the reactor to establish a stable gas discharge varied from 9.6 to maximum 15.3 watts (w. The effects of ZSM5, Fe–ZSM5, and Ni–ZSM5 catalysts combined with corona discharge for conversion of methane to more valued products have been addressed. It was found that in presence or absence of a catalyst in gas discharge reactor, the rate of methane and oxygen conversion increased upon higher input power supplied to the reactor. The effect of Fe–ZSM5 catalyst combined with gas discharge plasma yields C2 hydrocarbons up to 21.9%, which is the highest productions of C2 hydrocarbons in this work. The effect of combined Ni–ZSM5 and gas discharge plasma was mainly production of synthesis gas. The advantage of introducing ZSM5 to the plasma zone was increase in synthesis gas and acetylene production. The highest energy efficiency was 0.22 mmol/kJ, which belongs to lower rate of energy injection to the reactor.

  11. Conversion of toluene to benzene and mixed xylenes on old Thermofor Catalytic Cracking Units (TCC) in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Alfonso; Usachev, Nikolai Y.; Kalinin, Valera P. [Russian Academy of Sciences, Moscow (Russian Federation). Zelinsky Institute of Organic Chemistry]. E-mails: romero@orc.ru; ny@ioc.ac.ru

    2004-07-01

    World demand on toluene was in regression during the last years due to environmental and economical reasons, and there is a surplus of this compound from the processing to the petrochemical products. Disproportionation and transalkylation for the production of benzene and xylenes from toluene are now important industrial processes (Ikai Wang, 1999.). We analyze here the possibility of processing toluene on the Russian 43-102 'Houdry' type continuous Catalytic Cracking units (TCC), by studying the behaviour of EMCAT-100 catalyst on the disproportionation of toluene under the VHSV, temperature and catalyst/feed mass ratio characteristic for 43-102 facilities. Our previous results show that toluene disproportionation could be carried out on the Russian TCC units. (author)

  12. Catalytic conversion of light alkanes-proof-of-concept stage -- Phase 6. Final report, February 1--October 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    During the course of the first three years of the Cooperative Agreement, the authors uncovered a family of metal perhaloporphyrin complexes which had unprecedented activity for the selective air-oxidation of light alkanes to alcohols. The reactivity of light hydrocarbon substrates with air or oxygen was in the order: isobutane > propane > ethane > methane, in accord with their homolytic bond dissociation energies. Isobutane was so reactive that the proof-of-concept stage of a process for producing tert-butyl alcohol from isobutane was begun (Phase 5). It was proposed that as more active catalytic systems were developed (Phases 4, 6), propane, then ethane and finally methane oxidations will move into this stage (Phases 7 through 9). As of this writing, however, the program has been terminated during the later stages of Phase 5 and 6 so that further work is not anticipated. 72 refs.

  13. Fractionation of coal extracts prior to hydrocracking: an attempt to link sample structure to conversion levels and catalyst fouling

    Energy Technology Data Exchange (ETDEWEB)

    Suelves, I.; Lazaro, M.-J.; Begon, V.; Morgan, T.J.; Herod, A.A.; Kandiyoti, R. [University of London, Imperial College, London (United Kingdom). Dept. of Chemical Engineering and Chemical Technology

    2001-10-01

    Catalyst fouling during hydrocracking and conversions of larger molecular mass components has been investigated in terms of the structural features of a bituminous coal extract. The sample has been separated into two pairs of fractions: pentane-soluble (PS) and insoluble (PI); toluene-soluble (TS) and -insoluble (TI). Differences between hydrocracked products and levels of carbon-deposition on a commercial presulfided NiMo/{gamma}-Al{sub 2}O{sub 3} catalyst have been examined. Size exclusion chromatograms (SEC) showed MM-distributions of the samples decreasing in the order: TI {gt} PI {gt} TS {gt} PS. This trend closely paralleled those given by TGA-derived boiling point distributions and the ordering of UV-fluorescence (UV-F) derived spectral shifts. In SEC, two different columns were used. The largest molecular mass material did not pass through the column with the smaller molecular size range and was lost for analytical purposes. Within the range where probe mass spectrometry is capable of observation, the hydrocracked products of all the fractions studied contains similar ranges of molecular species, in contrast with data from TGA, SEC, and UV-F. The differences between hydrocracked products from different fractions were confined to masses beyond the range of detection by probe mass spectrometry. A reliable correspondence was found between catalyst fouling levels and the concentration of {gt} 450{degree}C bp material in the feed. The results are consistent with a model of the larger extract molecules, where large ({gt} 300 u) polycyclic aromatic (PCA) ring systems are embedded within a matrix held together by several different structural types of bridges. During hydrocracking, bridging structures between PCA ring systems breakdown although. Larger PCA groups liberated by the hydrocracking process are more likely to deposit on catalyst surfaces. 42 refs., 9 figs., 2 tabs.

  14. High efficiency chemical energy conversion system based on a methane catalytic decomposition reaction and two fuel cells: Part I. Process modeling and validation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qinghua; Tian, Ye; Li, Hongjiao; Jia, Lijun; Xia, Chun; Li, Yongdan [Tianjin Key Laboratory of Catalysis Science and Technology and State Key Laboratory for Chemical Engineering (Tianjin University), School of Chemical Engineering, Tianjin University, Tianjin 300072 (China); Thompson, Levi T. [Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109-2136 (United States)

    2010-10-01

    A highly efficient integrated energy conversion system is built based on a methane catalytic decomposition reactor (MCDR) together with a direct carbon fuel cell (DCFC) and an internal reforming solid oxide fuel cell (IRSOFC). In the MCDR, methane is decomposed to pure carbon and hydrogen. Carbon is used as the fuel of DCFC to generate power and produce pure carbon dioxide. The hydrogen and unconverted methane are used as the fuel in the IRSOFC. A gas turbine cycle is also used to produce more power output from the thermal energy generated in the IRSOFC. The output performance and efficiency of both the DCFC and IRSOFC are investigated and compared by development of exact models of them. It is found that this system has a unique loading flexibility due to the good high-loading property of DCFC and the good low loading property of IRSOFC. The effects of temperature, pressure, current densities, and methane conversion on the performance of the fuel cells and the system are discussed. The CO{sub 2} emission reduction is effective, up to 80%, can be reduced with the proposed system. (author)

  15. Low temperature catalytic conversion of methane to formic acid by simple vanadium compound with use of H_2O_2

    Institute of Scientific and Technical Information of China (English)

    Xin Wei; Linmin Ye; Youzhu Yuan

    2009-01-01

    Selective oxidation of methane with hydrogen peroxide was catalyzed by several simple vanadium compounds in CH_3CN. The reaction could afford formic acid as the major product. Vanadyl oxysulfate (VOSO_4) was found to be an efficient catalyst. Specifically,the selectivity to formic acid of 70% at a methane conversion of 6.5% could be achieved over the VOSO_4 catalyst under the reaction conditions of methane pressure 3.0 MPa and temperature 333 K for 4 h. The UV-Vis spectroscopic measurements revealed that the formation of V~(5+) species during the reaction might be vital for the methane activation. The reaction probably proceeded via radical mechanism.

  16. Catalytic and Noncatalytic Conversion of Methane to Olefins and Synthesis Gas in an AC Parallel Plate Discharge Reactor

    OpenAIRE

    Mohammad Ali Khodagholi; Mohammad Irani

    2013-01-01

    Direct conversion of methane to ethylene, acetylene, and synthesis gas at ambient pressure and temperature in a parallel plate discharge reactor was investigated. The experiments were carried out using a quartz reactor of outer diameter of 9 millimeter and a driving force of ac current of 50 Hz. The input power to the reactor to establish a stable gas discharge varied from 9.6 to maximum 15.3 watts (w). The effects of ZSM5, Fe–ZSM5, and Ni–ZSM5 catalysts combined with corona discharge for co...

  17. Facile synthesis of unique NiO nanostructures for efficiently catalytic conversion of CH4 at low temperature

    Science.gov (United States)

    Ye, Yucheng; Zhao, Yanting; Ni, Liuliu; Jiang, Kedan; Tong, Guoxiu; Zhao, Yuling; Teng, Botao

    2016-01-01

    A simple one-pot thermal decomposition approach to the selective synthesis of NiO nanomaterials was developed. The morphologies of the NiO nanomaterials were nanoparticle-based sheets, octahedra, nanosheet-built agglomerates, and nanoparticle-based microspheres. The samples were characterized by field-emission scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and N2 adsorption analyses. The morphology, crystal size, and texture properties of the products can be easily modulated by selecting various decomposition temperatures and precursors. Samples with high specific surface area and small crystal size were found to easily form at low sintering temperatures and when basic nickel carbonate and nickel oxalate dihydrate were used as precursors. Reduction property and CH4 conversion, as functions of decomposition temperature and precursor type, were systematically investigated. When NiCO3·2Ni(OH)2·4H2O and NiC2O4·2H2O were used as precursors, the as-obtained nanosheet-built agglomerates and nanoparticle-based sheets presented a high CH4 conversion rate because of the small crystal size and large specific surface area.

  18. Wyoming coal-conversion project. Final technical report, November 1980-February 1982. [Proposed WyCoalGas project, Converse County, Wyoming; contains list of appendices with title and identification

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    This final technical report describes what WyCoalGas, Inc. and its subcontractors accomplished in resolving issues related to the resource, technology, economic, environmental, socioeconomic, and governmental requirements affecting a project located near Douglas, Wyoming for producing 150 Billion Btu per day by gasifying sub-bituminous coal. The report summarizes the results of the work on each task and includes the deliverables that WyCoalGas, Inc. and the subcontractors prepared. The co-venturers withdrew from the project for two reasons: federal financial assistance to the project was seen to be highly uncertain; and funds were being expended at an unacceptably high rate.

  19. Catalytic conversion of xylose and corn stalk into furfural over carbon solid acid catalyst in γ-valerolactone.

    Science.gov (United States)

    Zhang, Tingwei; Li, Wenzhi; Xu, Zhiping; Liu, Qiyu; Ma, Qiaozhi; Jameel, Hasan; Chang, Hou-min; Ma, Longlong

    2016-06-01

    A novel carbon solid acid catalyst was synthesized by the sulfonation of carbonaceous material which was prepared by carbonization of sucrose using 4-BDS as a sulfonating agent. TEM, N2 adsorption-desorption, elemental analysis, XPS and FT-IR were used to characterize the catalyst. Then, the catalyst was applied for the conversion of xylose and corn stalk into furfural in GVL. The influence of the reaction time, temperature and dosage of catalyst on xylose dehydration were also investigated. The Brønsted acid catalyst exhibited high activity in the dehydration of xylose, with a high furfural yield of 78.5% at 170°C in 30min. What's more, a 60.6% furfural yield from corn stalk was achieved in 100min at 200°C. The recyclability of the sulfonated carbon catalyst was perfect, and it could be reused for 5times without the loss of furfural yields.

  20. Process concept for hydrogen production by catalytic conversion of defined kerosene fractions; Verfahrenskonzept zur Wasserstofferzeugung durch katalytische Umwandlung definierter Kerosinfraktionen

    Energy Technology Data Exchange (ETDEWEB)

    Frick, Viktoria

    2011-06-15

    The innovative process concept presented in this thesis for on-board hydrogen generation from kerosene for power generation aboard aircrafts by fuel cell systems exhibits significant advantages on reaction and process level compared to the hydrogen production via reforming. It includes the separation of a defined low-sulphur fraction from kerosene via rectification or crystallization which is subsequently converted catalytically to hydrogen. To investigate thermal management and process integration of the overall system four possible process concepts have been identified and their overall efficiency has been compared to a reference concept by process simulation. The key process parameters for fractionation were derived from experimental investigations. The processes with dehydrogenation resulted in the highest hydrogen yield and an overall electrical efficiency of 43 % could be achieved in combination with crystallization, which is a significant increase against the reference concept. Taking aircraft specific boundary conditions into account this process concept has been derived as the lead concept. Moreover, it avoids the unsolved until now problems connected to undesirable production of NO{sub x} and CO. [German] Das im Rahmen dieser Arbeit erarbeitete innovative Prozesskonzept zur on-board Wasserstofferzeugung aus Kerosin fuer den Betrieb von Brennstoffzellensystemen zur Energieversorgung im Flugzeug weist erhebliche reaktions- und verfahrenstechnische Vorteile gegenueber der Wasserstofferzeugung mittels Reformierung auf. Es beinhaltet die Abtrennung, einer definierten schwefelarmen Fraktion des Kerosins mittels Rektifikation oder Kristallisation. Diese wird in einem nachfolgenden Schritt katalytisch zu Wasserstoff umgewandelt. Zur Untersuchung der Waermeintegration und Prozessfuehrung im Gesamtsystem wurden vier moegliche Verfahrenskonzepte identifiziert und deren Systemwirkungsgrade mittels Prozesssimulation mit einem Referenzkonzept verglichen. Die

  1. Inter-conversion of catalytic abilities in a bifunctional carboxyl/feruloyl-esterase from earthworm gut metagenome.

    Science.gov (United States)

    Vieites, José María; Ghazi, Azam; Beloqui, Ana; Polaina, Julio; Andreu, José M; Golyshina, Olga V; Nechitaylo, Taras Y; Waliczek, Agnes; Yakimov, Michail M; Golyshin, Peter N; Ferrer, Manuel

    2010-01-01

    Carboxyl esterases (CE) exhibit various reaction specificities despite of their overall structural similarity. In present study we have exploited functional metagenomics, saturation mutagenesis and experimental protein evolution to explore residues that have a significant role in substrate discrimination. We used an enzyme, designated 3A6, derived from the earthworm gut metagenome that exhibits CE and feruloyl esterase (FAE) activities with p-nitrophenyl and cinnamate esters, respectively, with a [(k(cat)/K(m))](CE)/[(k(cat)/K(m))](FAE) factor of 17. Modelling-guided saturation mutagenesis at specific hotspots (Lys(281), Asp(282), Asn(316) and Lys(317)) situated close to the catalytic core (Ser(143)/Asp(273)/His(305)) and a deletion of a 34-AA-long peptide fragment yielded mutants with the highest CE activity, while cinnamate ester bond hydrolysis was effectively abolished. Although, single to triple mutants with both improved activities (up to 180-fold in k(cat)/K(m) values) and enzymes with inverted specificity ((k(cat)/K(m))(CE)/(k(cat)/K(m))(FAE) ratio of ∼0.4) were identified, no CE inactive variant was found. Screening of a large error-prone PCR-generated library yielded by far less mutants for substrate discrimination. We also found that no significant changes in CE activation energy occurs after any mutation (7.3 to -5.6 J mol(-1)), whereas a direct correlation between loss/gain of FAE function and activation energies (from 33.05 to -13.7 J mol(-1)) was found. Results suggest that the FAE activity in 3A6 may have evolved via introduction of a limited number of 'hot spot' mutations in a common CE ancestor, which may retain the original hydrolytic activity due to lower restrictive energy barriers but conveys a dynamic energetically favourable switch of a second hydrolytic reaction. PMID:21255305

  2. Exploratory Research on Novel Coal

    Energy Technology Data Exchange (ETDEWEB)

    Winschel, R.A.; Brandes, S.D.

    1998-05-01

    The report presents the findings of work performed under DOE Contract No. DE-AC22 -95PC95050, Task 3 - Flow Sheet Development. A novel direct coal liquefaction technology was investigated in a program being conducted by CONSOL Inc. with the University of Kentucky Center for Applied Energy Research and LDP Associates. The process concept explored consists of a first-stage coal dissolution step in which the coal is solubilized by hydride ion donation. In the second stage, the products are catalytically upgraded to refinery feedstocks. Integrated first-stage and solids-separation steps were used to prepare feedstocks for second-stage catalytic upgrading. An engineering and economic evaluation was conducted concurrently with experimental work throughout the program. Parameters were established for a low-cost, low-severity first-stage reaction system. A hydride ion reagent system was used to effect high coal conversions of Black Thunder Mine Wyoming subbituminous coal. An integrated first-stage and filtration step was successfully demonstrated and used to produce product filtrates with extremely low solids contents. High filtration rates previously measured off-line in Task 2 studies were obtained in the integrated system. Resid conversions of first-stage products in the second stage were found to be consistently greater than for conventional two-stage liquefaction resids. In Task 5, elementally balanced material balance data were derived from experimental results and an integrated liquefaction system balance was completed. The economic analysis indicates that the production of refined product (gasoline) via this novel direct liquefaction technology is higher than the cost associated with conventional two-stage liquefaction technologies. However, several approaches to reduce costs for the conceptual commercial plant were recommended. These approaches will be investigated in the next task (Task 4) of the program.

  3. Engineering support services for the DOE/GRI coal gasification research program. Technical and economic assessment of the Exxon Catalytic Coal-Gasification Process

    Energy Technology Data Exchange (ETDEWEB)

    Bostwick, L.E.; Coyle, D.A.; Laramore, R.W.

    1981-04-01

    In this assessment Kellogg utilized operating experience and data from the Exxon PDU wherever possible: modifications to the coal drying system, the catalyst recovery system and gasifier sizing criteria resulted from PDU observation since the previous (1979) screening evaluation. No data describing operation of the gasifier or the pretreatment unit in the PDU were available, however. This study must therefore be regarded as highly speculative, since substantial uncertainties still exist regarding these crucial segments of the Exxon Process. The principal results of this study are that the revised values for total plant investment and net operating cost are reduced by 9 and 2%, respectively, such that the average gas cost is reduced 4%, all in comparison to results of the screening evaluation. Development of additional data during future PDU operation could lead to major increases in capital and operating costs: Kellogg suggests that optimization studies relating the cost of pretreatment and gasification should be undertaken as a high priority task. The overall result of this study agrees with the main conclusion from the screening evaluation: the Exxon CCG process appears to be somewhat superior to the Lurgi process in terms of gas cost. Costs for individual plant sections, for this study, were obtained by modification of costs from the earlier screening evaluation. In general these modifications tended toward decreasing the gas cost. Further changes in the design basis appear (to Kellogg) to be inevitable, however, and could lead to major increases or decreases in the gas cost. Effects of possible changes cannot presently be predicted.

  4. Catalytic Conversion of Short-Chain Alcohols on Atomically Dispersed Au and Pd Supported on Nanoscale Metal Oxides

    Science.gov (United States)

    Wang, Chongyang

    With the development of technologies for cellulosic biomass conversion to fuels and chemicals, bio-alcohols are among the main alternative feedstocks to fossil fuels. The research pursued in my thesis was the investigation of gold and palladium as catalysts for the application of short aliphatic alcohols to hydrogen generation and value-added chemicals production. Specifically, selective methanol steam reforming and non-oxidative ethanol dehydrogenation to hydrogen and acetaldehyde were investigated in this thesis work. A major aim of the thesis was to develop atomically efficient catalysts with tuned surface chemistry for the desired reactions, using suitable synthesis methods. Methanol steam reforming (SRM) for hydrogen production has recently been investigated on gold catalysts to overcome the drawbacks of copper catalysts (deactivation, pyrophoricity). Previous work at Tufts University has shown that both CeO2 and ZnO are suitable supports for gold. In this thesis, nanoscale composite oxides ZnZrOx were prepared by a carbon hard-template method, which resulted in homogeneous distribution of Zn species in the matrix of ZrO2. Tunable surface chemistry of ZnZrO x was demonstrated by varying the Zn/Zr ratio to suppress the strong Lewis acidity of ZrO2, which leads to undesired production of CO through methanol decomposition. With atomic dispersion of gold, Au/ZnZrO x catalyzes the SRM reaction exclusively via the methanol self-coupling pathway up to 375°C. The activity of Au/ZnZrOx catalysts was compared to Au/TiO2, which is another catalyst system demonstrating atomic dispersion of gold. Similarity in the apparent activation energy of SRM on all the supported gold catalysts studied in this thesis and in the literature further confirms the same single-site Au-Ox-MO centers as active sites for SRM with indirect effects of the supports exploited. With this fundamental understanding of gold-catalyzed C1 alcohol reforming, the Au/ZnZrOx catalyst was evaluated for the

  5. Hydrogen and methoxy coadsorption in the computation of the catalytic conversion of methanol on the ceria (111) surface

    Science.gov (United States)

    Beste, Ariana; Overbury, Steven H.

    2016-06-01

    Methanol decomposition to formaldehyde catalyzed by the ceria (111) surface was investigated using the DFT + U method. Our results rationalize experimental temperature programmed desorption experiments on the fully oxidized surface. Particular attention was paid to the effect of coadsorption of methoxy and hydrogen on various aspects of the conversion process. This issue had been raised by the experimental observation of water desorption at low temperature removing hydrogen from the system. Within this context, we also investigated hydrogen diffusion on the ceria surface. The hydrogen/methoxy interaction on ceria was shown to be ionic regardless of separation distance. The barrier for dehydrogenation of methoxy using the ionic model system, where hydrogen is coadsorbed, is above 1 eV. This barrier becomes negligible if an incorrect neutral model without coadsorbed hydrogen is employed. While water formation from isolated surface hydrogen is unlikely at low temperature, the presence of coadsorbed methoxy reduces the reaction energy for water formation considerably. For the dehydrated surface, we observed that the preference of the electron to locate at the methoxy oxygen instead of the cerium atom results in a surface that does not contain Ce3 + ions, despite the existence of a vacancy.

  6. Technical data. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project, Converse County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    This volume includes a description of the railway to transport the coal; possible unbalance in the electrical power supply is considered in detail, as well as communications, signalling, etc. The railway will also be used to transport ashes and sludges for waste disposal. Coal fines in the coal supply will be burned to generate power. A very brief description of the coal gasification plant and its components is accompanied by a printout of the dates final engineering is to be completed. Permit applications are listed and socio-economic factors are discussed. The financing plan is discussed in some detail: basically, a loan guarantee from the Synthetic Fuels Corporation; equity provided by investment tax credit, deferred taxes, AFUDC and the sponsors; price support; and gas purchase agreement (this whole section includes several legal details.). (LTN)

  7. Co-Al Mixed Oxides Prepared via LDH Route Using Microwaves or Ultrasound: Application for Catalytic Toluene Total Oxidation

    Directory of Open Access Journals (Sweden)

    Eric Genty

    2015-05-01

    Full Text Available Co6Al2HT hydrotalcite-like compounds were synthesized by three different methods: co-precipitation, microwaves-assisted and ultrasound-assisted methods. The mixed oxides obtained after calcination were studied by several techniques: XRD, TEM, H2-TPR and XPS. They were also tested as catalysts in the reaction of total oxidation of toluene. The physico-chemical studies revealed a modification of the structural characteristics (surface area, morphology as well as of the reducibility of the formed mixed oxides. The solid prepared by microwaves-assisted synthesis was the most active. Furthermore, a relationship between the ratio of Co2+ on the surface, the reducibility of the Co-Al mixed oxide and the T50 in toluene oxidation was demonstrated. This suggests a Mars Van Krevelen mechanism for toluene total oxidation on these catalysts.

  8. A novel power generation system based on moderate conversion of chemical energy of coal and natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Wei Han; Hongguang Jin; Rumou Lin [Chinese Academy of Sciences, Beijing (China). Institute of Engineering Thermophysics

    2011-01-15

    This paper proposes a novel power generation system that implements mutually beneficial use of natural gas and coal. In conventional power plants fossil fuels are usually directly burned with air to convert the chemical energy to thermal energy for power generation. In combustion processes, about 30% of exergy of fuels is destructed, and the decrease in the irreversibility of combustion processes has large potential to improve the performance of power plants. The new system attempts to use chemical exergy of fuels before combustion through coordinated use of coal and natural gas. First approximate 60% of coal is gasified in a gasifier with air and steam as oxidant, then, the unconverted residuals (char) and natural gas are utilized synthetically based on the method of char-fired reforming to generate syngas, in which the combustion of char will drive the methane/steam-reforming reaction. The fuel gas from the partial gasification of coal and syngas from char-fired reforming are mixed together and fed into a combined cycle for power generation. As a result, the overall thermal efficiency of the new system is about 51.5% based on the current turbine technologies and the net thermal efficiency of coal to electricity of the new system can reach near 48.6%. The results obtained here may provide a new way of using coal and natural gas more efficiently and economically. 28 refs., 6 figs., 6 tabs., 1 app.

  9. Projections of Northern Great Plains coal mining and energy conversion development, 1975 to 2000 A. D. Summary volume

    Energy Technology Data Exchange (ETDEWEB)

    Power, T.M.; Duffield, J.W.; McBride, J.R.; Stroup, R.L.; Wheeling, T.D.; Tomlinson, W.D.; Thurman, W.J.; Silverman, A.J.

    1976-05-01

    The Montana University Coal Demand Study attempts to do three things: Present a systematic way to evaluate what will influence Northern Great Plain (NGP) coal development; indicate the key ''swing variables determining development; and establish how, quantitatively, the level of development will vary if these variables change. The result is a projection that should remain true even through future changes in political or economic conditions, for such changes will simply shift the projection in a quantitatively specified way to different levels. This study is a first, fairly limited attempt to meet the above objectives. All the individual determinants of the demand for NGP coal have not been studied in equal depth. Throughout we have tried to indicate both the Study's limitations and the research that further refinement would require. Two primary sources of demand for NGP coal are analyzed--coal-fired electric generation and gasification of coal into synthetic natural gas. A variety of projections are presented, each dependent upon a particular set of assumptions. These projections are compared with each other and with previous projections--in particular those made by the Northern Great Plains Resources Program and the Federal Energy Administration's Project Independence Report. Finally, the differences among the various projections are critically analyzed.

  10. Coal liquefaction. Quarterly report, April-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-01

    DOE's program for the conversion of coal to liquid fuels was begun by two of DOE's predecessor agencies: Office of Coal Research (OCR) in 1962, and Bureau of Mines, US Department of the Interior, in the 1930's. Current work is aimed at improved process configurations for both catalytic and non-catalytic processes to provide more attractive processing economics and lower capital investment. The advantage of coal liquefaction is that the entire range of liquid products, especially boiler fuel, distillate fuel oil, and gasoline, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquids have the potential for use as chemical feedstocks. To provide efficient and practical means of utilizing coal resources, DOE is supporting the development of several conversion processes that are currently in the pilot plant stage. DOE, together with the Electric Power Research Institue, has contracted with fourteen projects are described brieflly: funding, description, status, history, and progress in the current quarter. (LTN)

  11. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 2: Materials considerations. [materials used in boilers and heat exchangers of energy conversion systems for electric power plants using coal

    Science.gov (United States)

    Thomas, D. E.

    1976-01-01

    Extensive studies are presented which were carried out on materials behavior in nine advanced energy conversion systems employing coal and coal-derived fuels. The areas of materials behavior receiving particular attention in this regard are: (1) fireside corrosion and erosion in boiler and heat exchanger materials, (2) oxidation and hot corrosion of gas turbine materials, (3) liquid metal corrosion and mass transport, (4) high temperature steam corrosion, (5) compatability of materials with coal slag and MHD seed, (6) reaction of materials with impure helium, (7) allowable stresses for boiler and heat exchanger materials, (8) environmental effects on mechanical properties, and (9) liquid metal purity control and instrumentation. Such information was then utilized in recommending materials for use in the critical components of the power systems, and at the same time to identify materials problem areas and to evaluate qualitatively the difficulty of solving those problems. Specific materials recommendations for critical components of the nine advanced systems under study are contained in summary tables.

  12. In situ FTIR spectroscopic assessment of methylbutynol catalytic conversion products in relation to the surface acid-base properties of systematically modified aluminas

    Science.gov (United States)

    Mekhemer, Gamal A. H.; Zaki, Mohamed I.

    2016-10-01

    The present investigation was designed to assess the credibility of methylbutynol (MBOH) as an infrared (IR) reactive probe molecule for surface acid-base properties of metal oxides. Accordingly, pure alumina was systematically modified with varied amounts (0.5-10 wt.%) of K+ or SO42 - additives. Then, the influence of nature and amount of the additive on the following alumina properties were examined: (i) bulk composition and structure by X-ray powder diffractometry and ex-situ IR spectroscopy, (ii) surface area and net charge by N2 sorptiometry and pH-metry, respectively, and (iii) nature and strength of exposed surface acid sites by in-situ IR spectroscopy of adsorbed pyridine at ambient and higher temperatures. Results obtained were correlated with IR-identified product distribution of MBOH catalytic decomposition/conversion at 200 °C. It is thereby concluded that MBOH is superior to conventional IR inactive probe molecules in gauging sensitively the prevailing acid or base character, availability of base sites, relative population of Bronsted to Lewis acid sites, and strength and reactivity of the sites exposed on metal oxide surfaces. Hence, all that is needed to get this information is to handle IR spectra taken from the gas phase, a task that is experimentally much more accessible than taking spectra from adsorbed species of irreactive probe molecules.

  13. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 3: Combustors, furnaces and low-BTU gasifiers. [used in coal gasification and coal liquefaction (equipment specifications)

    Science.gov (United States)

    Hamm, J. R.

    1976-01-01

    Information is presented on the design, performance, operating characteristics, cost, and development status of coal preparation equipment, combustion equipment, furnaces, low-Btu gasification processes, low-temperature carbonization processes, desulfurization processes, and pollution particulate removal equipment. The information was compiled for use by the various cycle concept leaders in determining the performance, capital costs, energy costs, and natural resource requirements of each of their system configurations.

  14. Comparative Evaluation of Phase 1 Results from the Energy Conversion Alternatives Study (ECAS). [coal utilization for electric power plants feasibility analysis

    Science.gov (United States)

    1976-01-01

    Ten advanced energy conversion systems for central-station, based-load electric power generation using coal and coal-derived fuels which were studied by NASA are presented. Various contractors were selected by competitive bidding to study these systems. A comparative evaluation is provided of the contractor results on both a system-by-system and an overall basis. Ground rules specified by NASA, such as coal specifications, fuel costs, labor costs, method of cost comparison, escalation and interest during construction, fixed charges, emission standards, and environmental conditions, are presented. Each system discussion includes the potential advantages of the system, the scope of each contractor's analysis, typical schematics of systems, comparison of cost of electricity and efficiency for each contractor, identification and reconciliation of differences, identification of future improvements, and discussion of outside comments. Considerations common to all systems, such as materials and furnaces, are also discussed. Results of selected in-house analyses are presented, in addition to contractor data. The results for all systems are then compared.

  15. Measurement and modeling of advanced coal conversion processes, Volume I, Part 2. Final report, September 1986--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. [and others

    1995-09-01

    This report describes work pertaining to the development of models for coal gasification and combustion processes. This volume, volume 1, part 2, contains research progress in the areas of large particle oxidation at high temperatures, large particle, thick-bed submodels, sulfur oxide/nitrogen oxides submodels, and comprehensive model development and evaluation.

  16. Innovative clean coal technology (ICCT): demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emission from high-sulfur, coal-fired boilers - economic evaluation of commercial-scale SCR applications for utility boilers

    Energy Technology Data Exchange (ETDEWEB)

    Healy, E.C.; Maxwell, J.D.; Hinton, W.S.

    1996-09-01

    This report presents the results of an economic evaluation produced as part of the Innovative Clean Coal Technology project, which demonstrated selective catalytic reduction (SCR) technology for reduction of NO{sub x} emissions from utility boilers burning U.S. high-sulfur coal. The document includes a commercial-scale capital and O&M cost evaluation of SCR technology applied to a new facility, coal-fired boiler utilizing high-sulfur U.S. coal. The base case presented herein determines the total capital requirement, fixed and variable operating costs, and levelized costs for a new 250-MW pulverized coal utility boiler operating with a 60-percent NO{sub x} removal. Sensitivity evaluations are included to demonstrate the variation in cost due to changes in process variables and assumptions. This report also presents the results of a study completed by SCS to determine the cost and technical feasibility of retrofitting SCR technology to selected coal-fired generating units within the Southern electric system.

  17. Influence of reaction parameters on brown coal-polyolefinic plastic co-pyrolysis behavior

    Energy Technology Data Exchange (ETDEWEB)

    Sharypov, V.I.; Beregovtsova, N.G.; Kuznetsov, B.N. [Institute of Chemistry and Chemical Technology SB RAS, K.Marx Str. 42, 660049 Krasnoyarsk (Russian Federation); Cebolla, V.L. [Instituto de Carboquimica, CSIC, Miguel Luesma, 4, 50015 Zaragoza (Spain); Collura, S.; Finqueneisel, G.; Zimny, T.; Weber, J.V. [Laboratoire de Chimie et Applications, Universite de Metz, rue V.Demange, 57500 Saint-Avold (France)

    2007-03-15

    Co-processing of polyolefinic polymers with Kansk-Achinsk (Russia) brown coal was investigated by thermogravimetry (TG) and autoclave pyrolysis under argon and hydrogen pressure in catalytic conditions (or not). Gas chromatography-mass spectrometry (GC-MS) and high performance thin layer chromatography (HPTLC) were used to analyze the distillate products. Some synergistic effects indicate chemical interaction between the products of thermal decomposition of coal and plastic. In co-pyrolysis under H{sub 2} a significant increasing of coal conversion degree as a function of polymer amount in feedstock was found. Simultaneously the coal promoted formation of distillate products from polymers. Some alkyl aromatic and O-containing substances were detected in co-pyrolysis fraction boiling in the range 180-350 C, indicating interactions between coal and plastic. Iron containing ore materials, modified by mechanochemical treatment, demonstrated a catalytic activity in hydropyrolysis process. In catalytic conditions, increases of the mixtures conversion degree by 9-13 wt.%, of distillate fraction yields by 1.2-1.6 times and a decrease of olefins and polycyclic components were observed. (author)

  18. Catalytic Conversion of Biomass Pyrolysis Vapours over Sodium-Based Catalyst; A Study on teh State of Sodium on the Catalyst

    NARCIS (Netherlands)

    Nguyen, Tang Son; Lefferts, Leon; Gupta, K.B. Sai Sankar; Seshan, Kulathuiyer

    2015-01-01

    In situ upgrading of biomass pyrolysis vapours over Na2CO3/γ-Al2O3 catalysts was studied in a laboratory-scale fixed-bed reactor at 500 °C. Catalytic oil exhibits a significant improvement over its non-catalytic counterpart, such as lower oxygen content (12.3 wt % compared to 42.1 wt %), higher ener

  19. A DFT study of planar vs. corrugated graphene-like carbon nitride (g-C3N4) and its role in the catalytic performance of CO2 conversion.

    Science.gov (United States)

    Azofra, Luis Miguel; MacFarlane, Douglas R; Sun, Chenghua

    2016-07-21

    Graphene-like carbon nitride (g-C3N4), a metal-free 2D material that is of interest as a CO2 reduction catalyst, is stabilised by corrugation in order to minimise the electronic repulsions experienced by the N lone pairs located in their structural holes. This conformational change not only stabilises the Fermi level in comparison with the totally planar structure, but also increases the potential depth of the π-holes, representing the active sites where the catalytic CO2 conversion takes place. Finally, as a result of corrugation, our DFT-D3 calculations indicate that the reaction Gibbs free energy for the first H(+)/e(-) addition decreases by 0.49 eV with respect to the totally planar case, suggesting that corrugation not only involves the material's stabilisation but also enhances the catalytic performance for the selective production of CO/CH3OH. PMID:27339031

  20. Application of a validated gasification model to determine the impact of coal particle grinding size on carbon conversion

    KAUST Repository

    Kumar, Mayank

    2013-06-01

    In this paper, we describe the implementation of a comprehensive, previously validated multiscale model of entrained flow gasification to examine the impact of particle size on the gasification process in two different gasifier designs; the MHI and the GE gasifier. We show that the impact of the particle size depends on whether the char conversion process is kinetically limited or boundary layer diffusion-limited. Fine grinding helps accelerate char conversion under diffusion-control conditions, whereas the impact is not as noticeable under kinetic-control operation. The availability of particular gasification agents, namely O2 in the earlier sections of the gasifier or CO2 and H2O in the latter sections, as well as the temperature, are shown to have an impact on the relative importance of kinetics versus diffusion limitation. © 2013 Elsevier Ltd. All rights reserved.

  1. Future coal supply for the world energy balance

    Energy Technology Data Exchange (ETDEWEB)

    Grenon, M. (ed.)

    1979-01-01

    The conference covered aspects of coal resources, exploration and mine planning; mining technology, hydraulic mining, and underground coal gasification; coal transport; evaluation of coal deposits; use of models in developing fuel and energy systems; short-term future of coal, future coal supply and demand; coal conversion; coal and atmosphere CO2; analytical approaches to coal-related systems, coal data systems. The papers have been abstracted separately.

  2. Cooperative research program in coal liquefaction. Quarterly report, August 1, 1991--October 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. [ed.

    1991-12-31

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  3. Method and apparatus for conversion of carbonaceous materials to liquid fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lux, Kenneth W.; Namazian, Mehdi; Kelly, John T.

    2015-12-01

    Embodiments of the invention relates to conversion of hydrocarbon material including but not limited to coal and biomass to a synthetic liquid transportation fuel. The invention includes the integration of a non-catalytic first reaction scheme, which converts carbonaceous materials into a solid product that includes char and ash and a gaseous product; a non-catalytic second reaction scheme, which converts a portion of the gaseous product from the first reaction scheme to light olefins and liquid byproducts; a traditional gas-cleanup operations; and the third reaction scheme to combine the olefins from the second reaction scheme to produce a targeted fuel like liquid transportation fuels.

  4. Catalytic Conversion of Castor Oil to Biodiesel Using Ionic Liquid as Catalyst%碱性离子液体在制备生物柴油中的应用

    Institute of Scientific and Technical Information of China (English)

    马洁; 顾俊; 夏晓莉; 倪邦庆; 王海军

    2012-01-01

    Efficient catalytic conversion of castor oil to biodiesel,is achieved using 1-buthyl-3-methylimidazolium hydroxide(OH) as the catalyst.The influence factors,such as alcohol-oil ratio,catalyst dosage,reaction temperature,reaction time are investigated in detail.The results showed that OH was an efficient catalyst for catalytic conversion of castor oil to biodiesel,and 82.3 % yield of HMF was obtained for 90 min at 50 ℃ in the presence of the load of catalyst was 8 % and the CH3OH: oil ratio was 9∶1.%文章研究了碱性离子液体1-丁基-3-甲基咪唑氢氧盐([Bmim]OH)催化蓖麻油酯交换制备生物柴油的工艺。考察了醇油比、催化剂用量、反应温度、反应时间等因素对脂肪酸甲酯的得率的影响。研究表明以[Bmim]OH为催化剂,脂肪酸甲酯得率达到82.3%。最佳反应条件为:醇油摩尔比9∶1,催化剂用量8%,反应温度50℃,反应时间90 min。

  5. Abstracts of the first ORNL workshop on polycyclic aromatic hydrocarbons: characterization and measurement with a view toward personnel protection. [PAH from coal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Gammage, R.B. (comp.)

    1976-11-01

    This report contains the abstracts of papers presented at a workshop on polycyclic aromatic hydrocarbons (PAH) such as those produced by coal conversion technologies. Their often carcinogenic nature imposes the obligation of providing adequate protection and measurement devices for workers and for the general public. The primary questions are as follows: What should be measured. Where and how should it be measured. What are the maximum permissible concentrations. This workshop and future workshops are intended to bring these problems into better focus and to help establish a consensus on what needs to be done in order to provide a dosimetry effort that will ensure the adequate protection of personnel. There were 32 attendees of this one-day meeting. The papers and discussions included current industrial hygiene practices, the development of government agency guidelines for worker protection, and a wide range of analytical techniques for PAH detection, some of which are still in the research stage and are unproven. The workshop was held at ORNL on February 26, 1976.

  6. Liquid-metal MHD energy conversion. Status report, March 1976--September 1977. [Coal combustion products are mixed with liquid copper and act as working fluid

    Energy Technology Data Exchange (ETDEWEB)

    Petrick, M; Dunn, P F; Pierson, E S; Dauzvardis, P V; Pollack, I

    1979-05-01

    A new open-cycle coal-fired liquid-metal MHD concept has been developed, in which the combustion products are mixed directly with liquid copper and the mixture is then passed through the MHD generator. This concept yields a system with an efficiency comparable to that of open-cycle plasma MHD at combustor temperatures as much as 1000 K lower and MHD generator temperatures more than 1000 K lower than is the case for open-cycle plasma MHD. Significantly, the liquid-metal system uses components that are close to or within present-day technology, and it appears that readily available containment materials are compatible with the fluids. The first commercial system studies for the liquid-metal Rankine-cycle concept show that it yields a higher conversion efficiency than conventional steam cycles for lower-temperature heat sources, such as a liquid-metal fast-breeder reactor, a light-water reactor, or solar collectors without any potential for hazardous reactions betweeen liquid metals (e.g., sodium) and water. Fabrication of the high-temperature liquid-metal MHD facility has been completed, and shakedown runs have been performed, using a substitute mixer-generator test section. Data obtained in this test section agreed well with existing single-phase and newly-developed two-phase correlations for the pressure gradient.

  7. Conversion rates in power plant plumes based on filter pack data. Part I. Coal-fired Cumberland plume

    Energy Technology Data Exchange (ETDEWEB)

    Forrest, J; Garber, R W; Newman, L

    1980-01-01

    The TVA Cumberland Steam Plant plume was monitored during the August 1978 Tennessee Plume Study of Project STATE. Samples were obtained by employing a triple screen high-volume assembly which contained: (1) a quartz filter for collecting particulate SO/sub 4//sup 2 -/, NO/sub 3//sup -/ and NH/sub 4//sup +/, (2) two NaCl-impregnated cellulose filters for collecting gaseous nitrate, and (3) two K/sub 2/CO/sub 3/-impregnated cellulose filters for collecting SO/sub 2/. Formation rates of sulfate and nitrate in the atmosphere were calculated by using total sulfur as a conservative tracer. Conversion of SO/sub 2/ to SO/sub 4//sup 2 -/ varied from approx. 0.1 to 0.8% h/sup -1/ during night and early morning hours; late morning and afternoon rates ranged from approx. 1 to 4% h/sup -1/. Rate of formation of NO/sub 3//sup -/ from NO was approx. 0.1 to 3% h/sup -1/ and approx. 3 to 12% h/sup -1/ for similar time periods. Particulate NH/sub 4//sup +/ concentrations generally increased with plume age, but rates of formation varied widely. Mole ratios of NH/sub 4//sup +//SO/sub 4//sup 2 -/ fell within 1 to 3.

  8. Pyrolysis of Coal

    Directory of Open Access Journals (Sweden)

    Rađenović, A.

    2006-07-01

    Full Text Available The paper presents a review of relevant literature on coal pyrolysis.Pyrolysis, as a process technology, has received considerable attention from many researchers because it is an important intermediate stage in coal conversion.Reactions parameters as the temperature, pressure, coal particle size, heating rate, soak time, type of reactor, etc. determine the total carbon conversion and the transport of volatiles and therebythe product distribution. Part of the possible environmental pollutants could be removed by optimising the pyrolysis conditions. Therefore, this process will be subsequently interesting for coal utilization in the future

  9. Nitrite-triggered surface plasmon-assisted catalytic conversion of p-aminothiophenol to p,p'-dimercaptoazobenzene on gold nanoparticle: surface-enhanced Raman scattering investigation and potential for nitrite detection.

    Science.gov (United States)

    Liu, Xiangjiang; Tang, Longhua; Niessner, Reinhard; Ying, Yibin; Haisch, Christoph

    2015-01-01

    The stunning large enhancement factor (∼10(8)) of the surface-enhanced Raman scattering (SERS) effect leads people to wonder about the underlying enhancement mechanisms of the effect. But, a strong evidence of the existence of one commonly accepted mechanism (chemical enhancement), the origin of the symbolic "b2" bands (ca. 1140,1390, 1432 cm(-1)) of p-aminothiophenol (PATP), was recently found to be a false explanation, which were actually arisen from the product of a surface plasmon-assisted coupling reaction of PATP, p,p'-dimercaptoazobenzene (DMAB). However, the debate is far from over, especially because the mechanism of the above reaction has not been fully understood yet. In this paper, we for the first time report a new surface plasmon-assisted catalytic conversion of PATP to DMAB that NO2(-) ions can trigger the formation of DMAB on gold nanoparticles (GNPs) suspension under light illumination. The mechanism of the conversion is also discussed. All relevant data suggest the nitrite-triggered conversion of PATP to DMAB on GNPs is a surface plasmon-assisted oxidation reaction, involving transfer of multiple electrons from PATP to NO2(-) (electron acceptors) and protons, leading to the formation of DMAB. The proposed mechanisms may also help to understand the unclear surface plasmon-assisted catalytic coupling of PATP on the SERS substrates. Furthermore, inspired by the high selectivity of the above nitrite-triggered catalysis reaction, a simple and fast nitrite screening method was also developed, exhibiting good sensitivity. Considering other advantages of the assay, such as rapidness, simplicity of the detection procedures, and requirement of no sample pretreatment, it is a promising method for on-site fast screening or point-of-care application. PMID:25437255

  10. Hydrogen production from co-gasification of coal and biomass in supercritical water by continuous flow thermal-catalytic reaction system

    Institute of Scientific and Technical Information of China (English)

    YAN Qiuhui; GUO Liejin; LIANG Xing; ZHANG Ximin

    2007-01-01

    Hydrogen is a clean energy carrier.Converting abundant coal sources and green biomass energy into hydrogen effectively and without any pollution promotes environmental protection.The co-gasification performance of coal and a model compound of biomass,carboxymethylcellulose (CMC)in supercritical water (SCW),were investigated experimentally.The influences of temperature,pressure and concentration on hydrogen production from co-gasification of coal and CMC in SCW under the given conditions (20-25 MPa,650℃,15-30 s) are discussed in detail.The experimental results show that H2,CO2 and CH4 are the main gas products,and the molar fraction of hydrogen reaches in excess of 60%.The higher pressure and higher CMC content facilitate hydrogen production;production is decreased remarkably given a longer residence time.

  11. Influence of different preparation conditions on catalytic activity of ag /gama-al/sub 2/o/sub 3/ for hydrogenation of coal slime pyrolysis

    International Nuclear Information System (INIS)

    This paper, introducing variable conditional factors with Ag/AL/sub 2/O/sub 3/ as catalyst, selects five variables to investigate the influences of experimental conditions on Ag/Al2O/sub 3/ catalytic activity and define the optimal process conditions. These variables include Ag loading amount, calcinations temperature, calcinations time, reduction temperature, reduction time. X ray diffraction (XRD), hydrogen temperature-programmed reduction (TPR), X ray photoelectron spectrum (XPS) and scanning electron microscopy (SEM) were utilized to characterize the catalytic activity of Ag/-Al/sub 2/O/sub 3/, active center structure and state and those of carrier were emphatically studied, In the meantime the effects of active center and carrier on catalytic activity are studied. The results showed that: (1) In the range of 600 degree C-900 degree C, the catalytic activity of Ag/-Al/sub 2/O/sub 3/ with different loading showed little difference when changing loading amount, in the range of 900 degree C-1100 degree C, when the loading was 5%, the catalytic activity was very high; From the XRD and SEM characterizations, when the loading was 5%, it showed strong intensity diffraction peak of Ag crystal, crystal Ag is the most important activity center to promote hydrogen yield. (2) the catalytic activity of Ag/-Al/sub 2/O/sub 3/ at 450 degree C was considerably higher than that at 400 degree C and 500 degree C. By BET, XRD and SEM characterization, it can be seen, the diffraction peaks intensity of Ag crystal at 450 degree C is higher and sharper than that at 400 degree C and 500 degree C and with the increase of calcinations temperature, the specific surface area of catalysts also increased. (3) In the range of 600 degree C - 1000 degree C, the effects of calcinations time can be negligible, while, with temperature higher than 1000 degree C, 4-hour-calcinations-time catalyst exhibits a more noticeable catalytic activity than 3-hour and 5-hour catalyst do; From the XRD

  12. RESEARCH ON REUSE OF PAPERMAKING LIGNIN-CONVERSION OF LIGNIN TO BTX BY CATALYTIC PYROLYSIS IN A POWDER PARTICLE FLUIDIZED BED

    Institute of Scientific and Technical Information of China (English)

    ChangWang; ChongwoLi; QingzhuJia

    2004-01-01

    Experiments on the catalytic pyrolysis of the papermaking lignin were conduced by using a new type of powder-particle fluidized bed to improve the yield of the light aromatic hydrocarbon, i.e. benzene, toluene, xylene and naphthalene (BTXN), in which the primary decomposition and secondary catalytic reaction occur simultaneously at ambient pressure. The effect of catalyst species, fluidizing gases and pyrolysis temperature on the yield of the BTXN were investigated. The content of sulfur is high in the papermaking lignin, and the volatile matter is effected by the temperature. In the case of the inert media silica sand, the yield and the distribution of the pyrolysis products were almost unchanged under the different kind of atmosphere. In the case of the catalyst CoMo-B with hydrogen atmosphere, the intermediate BTXN yield reached 2.52wt%, dry, 3.3 times as much as that in the case of silica sand. Therefore, in order to obtain valuable BTXN as an intermediate in the pyrolysis as much as possible, it is extremely important to select high sulfur resistance and hydrogenization activity catalyst.

  13. RESEARCH ON REUSE OF PAPERMAKING LIGNIN-CONVERSION OF LIGNIN TO BTX BY CATALYTIC PYROLYSIS IN A POWDER PARTICLE FLUIDIZED BED

    Institute of Scientific and Technical Information of China (English)

    Chang Wang; Chongwo Li; Qingzhu Jia

    2004-01-01

    Experiments on the catalytic pyrolysis of the papermaking lignin were conduced by using a new type of powder-particle fluidized bed to improve the yield of the light aromatic hydrocarbon, i.e. benzene,toluene, xylene and naphthalene (BTXN), in which the primary decomposition and secondary catalytic reaction occur simultaneously at ambient pressure.The effect of catalyst species, fluidizing gases and pyrolysis temperature on the yield of the BTXN were investigated. The content of sulfur is high in the papermaking lignin, and the volatile matter is effected by the temperature. In the case of the inert media silica sand, the yield and the distribution of the pyrolysis products were almost unchanged under the different kind of atmosphere. In the case of the catalyst CoMo-B with hydrogen atmosphere, the intermediate BTXN yield reached 2.52wt%, dry, 3.3 times as much as that in the case of silica sand.Therefore, in order to obtain valuable BTXN as an intermediate in the pyrolysis as much as possible, it is extremely important to select high sulfur resistance and hydrogenization activity catalyst.

  14. Cellulosic Biomass Sugars to Advantage Jet Fuel: Catalytic Conversion of Corn Stover to Energy Dense, Low Freeze Point Paraffins and Naphthenes: Cooperative Research and Development Final Report, CRADA Number CRD-12-462

    Energy Technology Data Exchange (ETDEWEB)

    Elander, Rick [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-08-04

    NREL will provide scientific and engineering support to Virent Energy Systems in three technical areas: Process Development/Biomass Deconstruction; Catalyst Fundamentals; and Technoeconomic Analysis. The overarching objective of this project is to develop the first fully integrated process that can convert a lignocellulosic feedstock (e.g., corn stover) efficiently and cost effectively to a mix of hydrocarbons ideally suited for blending into jet fuel. The proposed project will investigate the integration of Virent Energy System’s novel aqueous phase reforming (APR) catalytic conversion technology (BioForming®) with deconstruction technologies being investigated by NREL at the 1-500L scale. Corn stover was chosen as a representative large volume, sustainable feedstock.

  15. Numerical simulation of catalytic methanation process of producing natural gas using coal%煤制天然气过程催化甲烷化的数值模拟

    Institute of Scientific and Technical Information of China (English)

    王翠苹; 李刚; 李厚洋; 姜旭

    2015-01-01

    两步法煤制天然气的第一步反应主要生产粗煤气CO和 H2,调整CO与 H2的比值后进行甲烷化反应。在计算软件HSC中分别控制反应温度、压力和CO与H2比例,计算了甲烷化产物变化规律,得到第二步甲烷化反应最适条件是1.8 M Pa、700℃;通过在计算软件FL U EN T 中进行一步对催化甲烷化反应的模拟,0.1 M Pa、720℃时的催化甲烷化即可达到无催化高压条件的甲烷摩尔产率,甲烷化产率最高时对应的n(H2)∶ n(C O )比值为1.8。%The main products from the first step reaction of the two‐step coal gasification are CO and H2 ,and the ratio of CO to H2 can be adjusted for the next methanation reaction step .A computing software HSC was used to compute the methanation product changing trend by controlling the reaction temperature , pressure and CO/H2 ratio , and the optimum condition for the second step reaction was derived as 1 .8 MPa and 700 ℃ .The catalytic methanation reaction was simulated using commercial software Fluent ,and the coal gasification and methanation reaction occurred successively in a one‐step reactor .The methanation productivity of catalytic methanation under the condition of 720 ℃ and 0 .1 MPa is comparable to the high pressure production without catalytic reaction .The CO/H2 ratio of is up to 1 .8 w hen the highest methanation yield is achieved .

  16. High efficiency chemical energy conversion system based on a methane catalytic decomposition reaction and two fuel cells. Part II. Exergy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qinghua; Tian, Ye; Li, Hongjiao; Jia, Lijun; Xia, Chun; Li, Yongdan [Tianjin Key Laboratory of Catalysis Science and Technology and State Key Laboratory for Chemical Engineering (Tianjin University), School of Chemical Engineering, Tianjin University, Tianjin 300072 (China); Thompson, Levi T. [Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109-2136 (United States)

    2010-10-01

    A methane catalytic decomposition reactor-direct carbon fuel cell-internal reforming solid oxide fuel cell (MCDR-DCFC-IRSOFC) energy system is highly efficient for converting the chemical energy of methane into electrical energy. A gas turbine cycle is also used to output more power from the thermal energy generated in the IRSOFC. In part I of this work, models of the fuel cells and the system are proposed and validated. In this part, exergy conservation analysis is carried out based on the developed electrochemical and thermodynamic models. The ratio of the exergy destruction of each unit is examined. The results show that the electrical exergy efficiency of 68.24% is achieved with the system. The possibility of further recovery of the waste heat is discussed and the combined power-heat exergy efficiency is over 80%. (author)

  17. Effects of fractal pore on coal devolatilization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yongli; He, Rong [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering; Wang, Xiaoliang; Cao, Liyong [Dongfang Electric Corporation, Chengdu (China). Centre New Energy Inst.

    2013-07-01

    Coal devolatilization is numerically investigated by drop tube furnace and a coal pyrolysis model (Fragmentation and Diffusion Model). The fractal characteristics of coal and char pores are investigated. Gas diffusion and secondary reactions in fractal pores are considered in the numerical simulations of coal devolatilization, and the results show that the fractal dimension is increased firstly and then decreased later with increased coal conversions during devolatilization. The mechanisms of effects of fractal pores on coal devolatilization are analyzed.

  18. Coal 99

    International Nuclear Information System (INIS)

    in equipment for burning pellets instead of coal. In Linkoeping waste of rubber is mixed with coal. Also Soederenergi AB has rebuilt their three coal boilers and replaced 100 % of the coal by peat and wood fuels. Coal is a reserve fuel. Several co-generation plants like Linkoeping, Norrkoeping, Uppsala and Oerebro use both coal and forest fuels. The use of coal is then concentrated to the electricity production. The average price of steam coal imported in Sweden in 1998 was 370 SEK/ton or the same as in 1997. For the world, the average import price fell about 6 USD/ton to 32 USD/ton. The price fall was concentrated to the 4th quarter. The prices have continued to fall during 1999 as a result of the crisis in Asia but are now stabilising as a result of increasing oil prices. All Swedish plants meet their emission limits of dust, SO2 and NOx, given by county administrations or concession boards. The co-generation plants have all some sort of SO2-removal system. Mostly used is the wet-dry method. The biggest co-generation plant, in Vaesteraas, has recently invested in a catalytic NOx-cleaning system type SCR, which is reducing the emission level 80-90 %. Most other plants are using low NOx- burners or injection systems type SNCR, based on ammonium or urea, which are reducing the emissions 50-70 %. A positive effect of the recently introduced NOx-duties is a 60 % reduction compared to some years ago, when the duties were introduced. World hard coal production was about 3 700 tons in 1998, a minor decrease compared to 1997. The trade, however, has increased about 3 % to 520 mill tons. The coal demand in the OECD-countries has increased about 1,7 % yearly during the last ten years. The coal share of the energy supply is about 20% in the OECD-countries and 27% in the whole world. Several sources estimate a continuing growth during the next 20 years in spite of an increasing use of natural gas and nuclear power. The reason is a strong demand for electrical power in the Asian

  19. Hard coal; Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Loo, Kai van de; Sitte, Andreas-Peter [Gesamtverband Steinkohle e.V., Herne (Germany)

    2013-04-01

    The year 2012 benefited from a growth of the consumption of hard coal at the national level as well as at the international level. Worldwide, the hard coal still is the number one energy source for power generation. This leads to an increasing demand for power plant coal. In this year, the conversion of hard coal into electricity also increases in this year. In contrast to this, the demand for coking coal as well as for coke of the steel industry is still declining depending on the market conditions. The enhanced utilization of coal for the domestic power generation is due to the reduction of the nuclear power from a relatively bad year for wind power as well as reduced import prices and low CO{sub 2} prices. Both justify a significant price advantage for coal in comparison to the utilisation of natural gas in power plants. This was mainly due to the price erosion of the inexpensive US coal which partly was replaced by the expansion of shale gas on the domestic market. As a result of this, the inexpensive US coal looked for an outlet for sales in Europe. The domestic hard coal has continued the process of adaptation and phase-out as scheduled. Two further hard coal mines were decommissioned in the year 2012. RAG Aktiengesellschaft (Herne, Federal Republic of Germany) running the hard coal mining in this country begins with the preparations for the activities after the time of mining.

  20. Effects of Feed Composition and Feed Impurities in the Catalytic Conversion of Syngas to Higher Alcohols over Alkali-Promoted Cobalt–Molybdenum Sulfide

    OpenAIRE

    Christensen, Jakob Munkholt; Jensen, Peter Arendt; Jensen, Anker Degn

    2011-01-01

    Alkali-promoted cobalt–molybdenum sulfide is a potential catalyst for the conversion of syngas into higher alcohols. This work is an investigation of how the feed composition influences the behavior of the sulfide catalyst. In a sulfur-free syngas the production of higher alcohols is observed to be optimal with an equimolar mixture of CO and H2 in the feed, while the methanol production benefits from an increasing hydrogen content in the feed. The influence of NH3 and H2O in the syngas feed h...

  1. Thermoelectric power plant conversion from fuel oil to coal with integration of a CO{sub 2} capture plant. Part 1; Conversion de una central termoelectrica de combustoleo a carbon con integracion de una planta de captura de CO{sub 2}. Parte 1

    Energy Technology Data Exchange (ETDEWEB)

    Huante Perez, Liborio; Rodriguez Martinez, J. Hugo; Arriola Medellin, Alejandro M. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2010-11-15

    The major features in the design of power plant conversion from fuel oil to coal, considering the new technical characteristics of fuel and his transportation to plant, equipment required to comply with Mexican environmental standards and additional requirements of auxiliaries are described. In addition, changes needed on power plant design were considered according to integrates CO{sub 2} capture plant alternatives. [Spanish] En este articulo se describen las caracteristicas principales en el diseno de la conversion de Centrales de combustoleo a carbon, considerando el nuevo combustible y su transporte hasta la central, los equipos requeridos para cumplir con las normas ambientales y los requerimientos adicionales de los servicios auxiliares. Adicionalmente, se lleva a cabo el analisis de los cambios requeridos en el diseno de la conversion considerando diferentes opciones para la integracion de una planta de captura de CO{sub 2}, la cual debera entregar este subproducto para su compresion y envio a su destino final para su almacenamiento.

  2. RESEARCH ON CONVERSION RULES OF POLYCYCLIC AROMATICS IN CATALYTIC CRACKING%多环芳烴在催化裂化过程中的转化规律研究

    Institute of Scientific and Technical Information of China (English)

    刘银亮

    2016-01-01

    在中型催化裂化装置上,采用 MLC-500催化剂,以劣质直馏蜡油为原料,通过考察不同转化率条件下重芳烃在催化裂化重质馏分油(简称重油)中的传递系数,得到各类芳烃在催化裂化反应中的转化规律。结果表明:当多环芳烃转化率低于48.22%时,主要发生多环芳烃侧链断裂反应;转化率为48.22%~62.71%时,三环、四环芳烃在催化裂化重油中的传递系数变化不大,芳核较为稳定,总多环芳烃在重油中的传递系数为0.3~0.4,此转化率区间为高选择性催化裂化合理区间;转化率高于62.71%时,多环芳烃缩合反应加剧,对生焦贡献率增加。%The transfer coefficient and conversion rules of polycyclic aromatic hydrocarbons of heavy oil at different conversion rates were obtained with a FCC pilot plant and MLC-500 catalyst. The test re-sults illustrate that when the conversion rate is below 48.22%,the main reaction of polycyclic aromatic hydrocarbons is the cracking of branched chain;when the conversion rates are in the range of 48.22% to 62.71%,the total transfer coefficients of the three and four ring aromatics in the heavy oil is about 0.3—0.4,the rage is suitable for both the stability of aromatic nucleus and the high selectivity for cata-lytic cracking. The polycyclic aromatic hydrocarbons condensate rapidly if the conversion rate is higher than 62.71%,resulting in coke formation.

  3. Inorganic Constituents in Coal

    Directory of Open Access Journals (Sweden)

    Rađenović A.

    2006-02-01

    Full Text Available Coal contains not only organic matter but also small amounts of inorganic constituents. More thanone hundred different minerals and virtually every element in the periodic table have been foundin coal. Commonly found group minerals in coal are: major (quartz, pyrite, clays and carbonates,minor, and trace minerals. Coal includes a lot of elements of low mass fraction of the orderof w=0.01 or 0.001 %. They are trace elements connected with organic matter or minerals comprisedin coal. The fractions of trace elements usually decrease when the rank of coal increases.Fractions of the inorganic elements are different, depending on the coal bed and basin. A varietyof analytical methods and techniques can be used to determine the mass fractions, mode ofoccurrence, and distribution of organic constituents in coal. There are many different instrumentalmethods for analysis of coal and coal products but atomic absorption spectroscopy – AAS is theone most commonly used. Fraction and mode of occurrence are one of the main factors that haveinfluence on transformation and separation of inorganic constituents during coal conversion.Coal, as an important world energy source and component for non-fuels usage, will be continuouslyand widely used in the future due to its relatively abundant reserves. However, there is aconflict between the requirements for increased use of coal on the one hand and less pollution onthe other. It’s known that the environmental impacts, due to either coal mining or coal usage, canbe: air, water and land pollution. Although, minor components, inorganic constituents can exert asignificant influence on the economic value, utilization, and environmental impact of the coal.

  4. Sustainable development with clean coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

  5. High Pressure Scanning Tunneling Microscopy Studies of Adsorbate Structure and Mobility during Catalytic Reactions. Novel Design of an Ultra High Pressure, High Temperature Scanning Tunneling Microscope System for Probing Catalytic Conversions

    International Nuclear Information System (INIS)

    The aim of the work presented therein is to take advantage of scanning tunneling microscope's (STM) capability for operation under a variety of environments under real time and at atomic resolution to monitor adsorbate structures and mobility under high pressures, as well as to design a new generation of STM systems that allow imaging in situ at both higher pressures (35 atm) and temperatures (350 C). The design of a high pressure, high temperature scanning tunneling microscope system, that is capable of monitoring reactions in situ at conditions from UHV and ambient temperature up to 1 atm and 250 C, is briefly presented along with vibrational and thermal analysis, as this system serves as a template to improve upon during the design of the new ultra high pressure, high temperature STM. Using this existing high pressure scanning tunneling microscope we monitored the co-adsorption of hydrogen, ethylene and carbon dioxide on platinum (111) and rhodium (111) crystal faces in the mTorr pressure range at 300 K in equilibrium with the gas phase. During the catalytic hydrogenation of ethylene to ethane in the absence of CO the metal surfaces are covered by an adsorbate layer that is very mobile on the time scale of STM imaging. We found that the addition of CO poisons the hydrogenation reaction and induces ordered structures on the single crystal surfaces. Several ordered structures were observed upon CO addition to the surfaces pre-covered with hydrogen and ethylene: a rotated (√19 x √19)R23.4o on Pt(111), and domains of c(4 x 2)-CO+C2H3, previously unobserved (4 x 2)-CO+3C2H3, and (2 x 2)-3CO on Rh(111). A mechanism for CO poisoning of ethylene hydrogenation on the metal single crystals was proposed, in which CO blocks surface metal sites and reduces adsorbate mobility to limit adsorption and reaction rate of ethylene and hydrogen. In order to observe heterogeneous catalytic reactions that occur well above ambient pressure and temperature that more closely resemble

  6. Contribution to Conversion of CO2 to fuel by electro-photo-catalytic reduction in hydro-genocarbonated aqueous solution tion

    Science.gov (United States)

    Nezzal, Ghania; Benammar, Souad; Hamouni, Samia; Meziane, Dalila; Naama, Sabrina; Abdessemed, Djamel

    2015-04-01

    Referring to the last World Conference COPENHAGEN (2010), endorsed by the United Nations,to '' RISKS OF CLIMATE CHANGES ', states had not reached an agreement to work fairly, in an international program, to limit Carbon dioxide emissions into the atmosphere, to put off it, to the next (in 2015), the right decisions, despite the recommendations of the 'IPCC'. Based on the natural reaction of photosynthesis, which converts carbon dioxide in the presence of water and sun, to '' OSA'' ', it is natural that scientists believe to implement an artificial conversion of CO2 in a renewable energy faster. Our contribution focuses on the same goals, by a different line. In this perspective, nano-materials, catalysts, pervaporation membranes, pervaporation unit, and a photo-reactor prototype, have been made. A summary of the preliminary results presented: For example, are given the concentrations of the various species present in a aqueous solution of sodium hydrogen carbonate, 0.5M, saturated with CO2, at standard temperature and pressure: (CO2) = 1M; (H2CO3) = 0,038M; (HCO3-) = 0,336M; (CO3 --) = 0,34M; pH = 7.33, an overall concentration = 1,714M, more than three times that of the initial solution. It is in such conditions that the conversion of carbon dioxide by the hydrogen produced in situ by electrolysis, in fuel, must be done in the presence of catalyst, under UV radiation. For electrodes, a nano-porous layer was formed on their surface to receive the suitable catalyst. These lats prepared, are made of porous supports (montmorillonite, aluminum and silicon oxides) into which are inserted the metal precursor, by impregnation interactive, in Iron, cobalt, nickel salt solutions, cobalt, nickel. Their performance has been identified by the reduction of para- nitrophenol, to para-aminophenol in aqueous medium in the presence of sodium borohydride. This is the catalyst 'Cobalt supported by SiO2'' that gave the best conversion, 99.5% instead of 99.7%, for a platinum catalyst

  7. A catalytic cracking process

    Energy Technology Data Exchange (ETDEWEB)

    Degnan, T.F.; Helton, T.E.

    1995-07-20

    Heavy oils are subjected to catalytic cracking in the absence of added hydrogen using a catalyst containing a zeolite having the structure of ZSM-12 and a large-pore crystalline zeolite having a Constraint Index less than about 1. The process is able to effect a bulk conversion of the oil at the same time yielding a higher octane gasoline and increased light olefin content. (author)

  8. Influence of catalytic activity and reaction conditions on the product distribution in coal liquefaction; Sekitan ekikayu no seiseibutsu bunpu ni taisuru shokubai kassei oyobi hanno joken no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Hasuo, H.; Sakanishi, K.; Mochida, I. [Kyushu University, Fukuoka (Japan). Institute of Advanced Material Study

    1996-10-28

    The NiMo sulfide supported on Ketjen Black (KB) was more effective and yielded lighter oil products containing light fractions with their boiling point below 300{degree}C during the two stage liquefaction combining low temperature and high temperature hydrogenation the conventional NiMo/alumina catalyst and FeS2 catalyst. Although the NiMo/alumina yielded increased oil products during the two stage liquefaction, the lighter oil fractions did not increase and the heavier fractions increased mainly. This suggests that the hydrogenation of aromatic rings and successive cleavage of the rings are necessary for producing the light oil, which is derived from the sufficient hydrogenation of aromatic rings using catalysts. For the two stage reaction with NiMo/KB catalyst, it was considered that sufficient hydrogen was directly transferred to coal molecules at the first stage of the low temperature reaction, which promoted the solubilization of coal and the successive hydrogenation at the high temperature reaction. Thus, high activity of the catalyst must be obtained. It is expected that further high quality distillates can be produced through the optimization of catalysts and solvents at the two stage reaction. 1 ref., 4 figs., 1 tab.

  9. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas.

    Science.gov (United States)

    Li, Hailong; Wu, Chang-Yu; Li, Ying; Zhang, Junying

    2011-09-01

    CeO(2)-TiO(2) (CeTi) catalysts synthesized by an ultrasound-assisted impregnation method were employed to oxidize elemental mercury (Hg(0)) in simulated low-rank (sub-bituminous and lignite) coal combustion flue gas. The CeTi catalysts with a CeO(2)/TiO(2) weight ratio of 1-2 exhibited high Hg(0) oxidation activity from 150 to 250 °C. The high concentrations of surface cerium and oxygen were responsible for their superior performance. Hg(0) oxidation over CeTi catalysts was proposed to follow the Langmuir-Hinshelwood mechanism whereby reactive species from adsorbed flue gas components react with adjacently adsorbed Hg(0). In the presence of O(2), a promotional effect of HCl, NO, and SO(2) on Hg(0) oxidation was observed. Without O(2), HCl and NO still promoted Hg(0) oxidation due to the surface oxygen, while SO(2) inhibited Hg(0) adsorption and subsequent oxidation. Water vapor also inhibited Hg(0) oxidation. HCl was the most effective flue gas component responsible for Hg(0) oxidation. However, the combination of SO(2) and NO without HCl also resulted in high Hg(0) oxidation efficiency. This superior oxidation capability is advantageous to Hg(0) oxidation in low-rank coal combustion flue gas with low HCl concentration. PMID:21770402

  10. Effect of properties of iron compounds on the catalytic activity in direct coal liquefaction; Tetsu kagobutsu no keitai to sekitan ekika kassei

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, T.; Tazawa, K. [Mitsubishi Chemical Corp., Tokyo (Japan); Shimasaki, K. [Kobe Steel Ltd. (Japan)

    1998-08-20

    When considering merchandising scale of the coal liquefaction process, it is a preliminary condition that metal used for its catalyst is rich in resource volume, cheap in production cost, without pollution, and so forth, and application of cheap iron ore and ferrous compounds to disposable catalyst is desired. As liquefaction activity of the iron ore was hitherto improved by its micro crushing, its mechanical crush had a limit of about 2 {mu}m in mean particle diameter. However, together with recent crushing technique, crushers with high performance were developed, and then micro crushing by sub-micron became possible industri8ally even for iron ore. In this study, three kinds of Australian iron ores such as limonite of ferric hydroxide type iron ore, pyrite of ferrous sulfide type, and hematite of ferric oxide type were micro crushed to examine coal liquefaction activity and hydrogenation reaction activity of 1-methyl naphthalene (1-MN) and also relationship between properties and activity of catalyst for the latter before and after reaction. 11 refs., 8 figs., 5 tabs.

  11. Catalytic coherence transformations

    Science.gov (United States)

    Bu, Kaifeng; Singh, Uttam; Wu, Junde

    2016-04-01

    Catalytic coherence transformations allow the otherwise impossible state transformations using only incoherent operations with the aid of an auxiliary system with finite coherence that is not being consumed in any way. Here we find the necessary and sufficient conditions for the deterministic and stochastic catalytic coherence transformations between a pair of pure quantum states. In particular, we show that the simultaneous decrease of a family of Rényi entropies of the diagonal parts of the states under consideration is a necessary and sufficient condition for the deterministic catalytic coherence transformations. Similarly, for stochastic catalytic coherence transformations we find the necessary and sufficient conditions for achieving a higher optimal probability of conversion. We thus completely characterize the coherence transformations among pure quantum states under incoherent operations. We give numerous examples to elaborate our results. We also explore the possibility of the same system acting as a catalyst for itself and find that indeed self-catalysis is possible. Further, for the cases where no catalytic coherence transformation is possible we provide entanglement-assisted coherence transformations and find the necessary and sufficient conditions for such transformations.

  12. Pyrolysis of superfine pulverized coal. Part 3. Mechanisms of nitrogen-containing species formation

    International Nuclear Information System (INIS)

    Highlights: • NH3 and NO formation mechanisms during superfine pulverized coal pyrolysis are investigated. • Influences of temperature, heating rate, particle size, atmosphere, and acid wash on the NH3 and NO formation are analyzed. • Transformations of nitrogen-containing structures in coal/char during pyrolysis are recognized through XPS observation. • Relationships among nitrogen-containing gaseous species during pyrolysis are discussed. - Abstract: With more stringent regulations being implemented, elucidating the formation mechanisms of nitrogen-containing species during the initial pyrolysis step becomes important for developing new NOx control strategies. However, there is a lack of agreement on the origins of NOx precursors during coal pyrolysis, in spite of extensive investigations. Hence, it is important to achieve a more precise knowledge of the formation mechanisms of nitrogen-contain species during coal pyrolysis. In this paper, pyrolysis experiments of superfine pulverized coal were performed in a fixed bed at low heating rates. The influences of temperature, coal type, particle size and atmosphere on the NH3 and NO evolution were discussed. There is a central theme to develop knowledge of the relationship between particle sizes and evolving behaviors of nitrogen-containing species. Furthermore, the catalytic role of inherent minerals in coal was proved to be effective on the partitioning of nitrogen during coal pyrolysis. In addition, the conversion pathways of heteroaromatic nitrogen structures in coal/char during pyrolysis were recognized through the X-ray photoelectron spectroscopy (XPS) analysis. Large quantities of pyridinic and quanternary nitrogen functionalities were formed during the thermal degradation. Finally, the relationships among the nitrogen-containing gaseous species during coal pyrolysis were discussed. In brief, a comprehensive picture of the volatile-nitrogen partitioning during coal pyrolysis is obtained in this work

  13. Influences of Different Preparation Conditions on Catalytic Activity of Ag2O-Co3O4/γ-Al2O3 for Hydrogenation of Coal Pyrolysis

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2014-01-01

    Full Text Available A series of catalysts of Ag2O-Co3O4/γ-Al2O3 was prepared by equivalent volume impregnation method. The effects of the metal loading, calcination time, and calcination temperatures of Ag and Co, respectively, on the catalytic activity were investigated. The optimum preparing condition of Ag2O-Co3O4/γ-Al2O3 was decided, and then the influence of different preparation conditions on catalytic activity of Ag2O-Co3O4/γ-Al2O3 was analyzed. The results showed the following: (1 at the same preparation condition, when silver loading was 8%, the Ag2O-Co3O4/γ-Al2O3 showed higher catalyst activity, (2 the catalyst activity had obviously improved when the cobalt loading was 8%, while it was weaker at loadings 5% and 10%, (3 the catalyst activity was influenced by different calcination temperatures of silver, but the influences were not marked, (4 the catalyst activity can be influenced by calcination time of silver, (5 different calcination times of cobalt can also influence the catalyst activity of Ag2O-Co3O4/γ-Al2O3, and (6 the best preparation conditions of the Ag2O-Co3O4/γ-Al2O3 were silver loading of 8%, calcination temperature of silver of 450°C, and calcinations time of silver of 4 h, while at the same time the cobalt loading was 8%, the calcination temperature of cobalt was 450°C, and calcination time of cobalt was 4 h.

  14. A new model to estimate CO2 coal gasification kinetics based only on parent coal characterization properties

    International Nuclear Information System (INIS)

    Highlights: • A mathematical model to predict gasification rate and residence time was proposed. • Gasification rate is affected mainly by micropore surface area and alkaline content. • Residence time for coal gasification can be predicted without a kinetic model. • Surface area based on carbon content is an important parameter in kinetic analysis. • The model can predict the kinetic of coal blends in any ash composition range. - Abstract: A new mathematical model is proposed for the estimation of CO2 gasification kinetics of different rank coals and ash contents. There are no previous reports on the determination of the conversion rate or even residence time of CO2 or steam gasification based on coal characterization and for a wide range of ash content. This new approach can be used to infer the residence time and other parameters required for reactor design and operation optimization of newly mined coals or coal mixtures used as feedstock. The coal micropore surface area and the alkaline content determined by the ash composition were proved to be the most significant variables influencing the gasification rate. These variables were correlated to formulate a semi-empirical expression based on the Arrhenius equation. An equation to infer residence time, independent of the kinetic model, is also presented. The new equation is important in understanding the catalytic effect of the alkaline content in the temperature range where the chemical reaction is the controlling step. It can also be used as the corresponding term of the chemical reaction in a gas–solid kinetic model when working at higher temperatures. This new approach is valid, if there is not loss of alkali and alkaline earth metals due to sublimation or melting, which results in a glassy slag structure. The proposed model has direct industrial application in simulation of gasifiers’ performance with the knowledge of only coal characterization properties

  15. Effect of Pd or Ir on the catalytic performance of Mo/H-ZSM-5 during the non-oxidative conversion of natural gas to petrochemicals

    Institute of Scientific and Technical Information of China (English)

    Ahmed K.Aboul-Gheit; Ahmed E.Awadallah; Salah M.El-Kossy; Abdel-Lateef H.Mahmoud

    2008-01-01

    Natural gas conversion to petrochemicals, principally, benzene, naphthalene, toluene, as well as ethylene under non-oxidative conditions was examined in a fixed bed flow reactor at 700 ℃ and gaseous hourly space velocity (GHSV) of 1500 ml·g-1·h-1 at time-on-stream ranging from 5 min to 4 h using catalysts containing 6.0%Mo/H-ZSM-5 promoted with Pd or Ir metal. The catalysts were characterized by XRD, TPD, and TGA. The addition of Pd or Ir to 6%Mo/H-ZSM-5 catalyst promoted ethylene production but inhibited the cyclization reaction to aromatics owing to the strong interaction between these noble metals and the framework Al species, which were attached to the acid sites during the impregnation process. Coke deposition on the catalysts was found to decrease upon addition of 0.5wt% of Pd or Ir to 6%Mo/H-ZSM-5 catalyst owing to the hydrogenating activity of these metals.

  16. The demonstration of an advanced cyclone coal combustor, with internal sulfur, nitrogen, and ash control for the conversion of a 23 MMBtu/hour oil fired boiler to pulverized coal

    Energy Technology Data Exchange (ETDEWEB)

    Zauderer, B.; Fleming, E.S.

    1991-08-30

    The project objective was to demonstrate a technology which can be used to retrofit oil/gas designed boilers, and conventional pulverized coal fired boilers to direct coal firing, by using a patented sir cooled coal combustor that is attached in place of oil/gas/coal burners. A significant part of the test effort was devoted to resolving operational issues related to uniform coal feeding, efficient combustion under very fuel rich conditions, maintenance of continuous slag flow and removal from the combustor, development of proper air cooling operating procedures, and determining component materials durability. The second major focus of the test effort was on environmental control, especially control of SO{sub 2} emissions. By using staged combustion, the NO{sub x} emissions were reduced by around 3/4 to 184 ppmv, with further reductions to 160 ppmv in the stack particulate scrubber. By injection of calcium based sorbents into the combustor, stack SO{sub 2} emissions were reduced by a maximum of of 58%. (VC)

  17. Chemistry and structure of coal derived asphaltenes and preasphaltenes. Quarterly progress report, April-June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Yen, T. F.

    1980-01-01

    It is the objective of this project to isolate the asphaltene and preasphaltene fractions from coal liquids from a number of liquefaction processes. These processes consist of in general: catalytic hydrogenation, staged pyrolysis and solvent refining. These asphaltene fractions may be further separated by both gradient elution through column chromatography, and molecular size distribution through gel permeation chromatography. Those coal-derived asphaltene and preasphaltene fractions will be investigated by various chemical and physical methods for characterization of their structures. After the parameters are obtained, these parameters will be correlated with the refining and conversion variables which control a given type of liquefaction process. The effects of asphaltene in catalysis, ash or metal removal, desulfurization and denitrification will also be correlated. It is anticipated that understanding the role of asphaltenes in liquefaction processes will enable engineers to both improve existing processes, and to make recommendations for operational changes in planned liquefaction units in the United States. The objective of Phase 1 was to complete the isolation and separation of coal liquid fractions and to initiate their characterization. The objective of Phase 2 is to continue the characterization of coal asphaltenes and other coal liquid fractions by use of physical and instrumental methods. The structural parameters obtained will be used to postulate hypothetical average structures for coal liquid fractions. The objective of Phase 3 is to concentrate on the characterization of the preasphaltene (benzene insoluble fraction) of coal liquid fraction by the available physical and chemical methods to obtain a number of structural parameters.

  18. Chemistry and structure of coal derived asphaltenes and preasphaltenes. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Yen, T. F.

    1979-01-01

    It is the objective of this project to isolate the asphaltene and preasphaltene fractions from coal liquids from a number of liquefaction processes. These processes consist of in general: catalytic hydrogenation, staged pyrolysis and solvent refining. The asphaltene fractions may be further separated by both gradient elution through column chromatography, and molecular size distribution through gel permeation chromatography. These coal-derived asphaltene and preashpaltene fractions will then be investigated by various chemical and physical methods for characterization of their structures. After the parameters are obtained, these parameters will be correlated with the refining and conversion variables which control a given type of liquefaction process. The effects of asphaltene in catalysis, ash or metal removal, desulfurization and denitrification will also be correlated. It is anticipated that understanding the role of asphaltenes in liquefaction processes will enable engineers to both improve existing processes, and to make recommendations for operational changes in planned liquefaction units. The objective of Phase 1 was to complete the isolation and separation of coal liquid fractions and to initiate their characterization. The objective of Phase 2 is to continue the characterization of coal asphaltenes and other coal liquid fractions by use of physical and instrumental methods. The structural parameters obtained will be used to postulate hypothetical average structures for coal liquid fractions.The objective of Phase 3 is to concentrate on the characterization of the preasphaltene (benzene insoluble fraction) of coal liquid fraction by the available physical and chemical methods to obtain a number of structural parameters.

  19. LCC低阶煤转化提质技术的开发与应用%Development and Application for Upgrading Technology of LCC Low-rank Coal Conversion

    Institute of Scientific and Technical Information of China (English)

    陈钢; 黄学群

    2011-01-01

    Author has introduced the development process and application progress for LCC low-rank coal conversion up-gradation technology developed on basis of the American LFC technology;has described the process scheme,process flow,technical features and its main equipment,product property and usage of the LCC technology;has summarized the trial operation effect for the LCC demonstration plant with a capacity of 1000 t/d;has analyzed the engineering application prospect of the LCC low valence coal conversion up-gradation technology.%介绍了在美国LFC技术基础上开发的LCC低阶煤转化提质技术的研发过程和应用进展;阐述了LCC技术的工艺方案、工艺流程、技术特点以及主要设备、产品性质和用途;总结了1 000 t/d LCC示范装置的试运行效果;分析了LCC低阶煤转化提质技术的工程应用前景。

  20. Conversion of CH4/CO2 to syngas over Ni-Co/Al2O3-ZrO2 nanocatalyst synthesized via plasma assisted co-impregnation method: Surface properties and catalytic performance

    International Nuclear Information System (INIS)

    Ni/Al2O3 catalyst promoted by Co and ZrO2 was prepared by co-impregnation method and treated with glow discharge plasma. The catalytic activity of the synthesized nanocatalysts has been tested toward conversion of CH4/CO2 to syngas. The physicochemical characterizations like XRD, EDX, FESEM, TEM, BET, FTIR, and XPS show that plasma treatment results in smaller particle size, more surface concentration, and uniform morphology. The dispersion of nickel in plasma-treated nanocatalyst was also significantly improved, which was helpful for controlling the ensemble size of active phase atoms on the support surface. Improved physicochemical properties caused 20%–30% enhancement in activity of plasma-treated nanocatalyst that means to achieve the same H2 or CO yield, the plasma-treated nanocatalyst needed about 100 °C lower reaction temperature. The H2/CO ratio got closer to 1 at higher temperatures and finally at 850 °C H2/CO = 1 is attained for plasma-treated nanocatalyst. Plasma-treated nanocatalyst due to smaller Ni particles and strong interaction between active phase and support has lower tendency to keep carbon species on its structure and hence excellent stability can be observed for this catalyst

  1. Correlation of coal liquefaction reactivity with coal properties

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, R.M.; Durfee, S.L.; Voorhees, K.J.

    1983-01-01

    A narrow suite of bituminous coals chosen from the DOE/Penn State sample bank has been hydrogenated in a batch stirred autoclave. Rates of conversion to THF-solubles have been measured, and the data modeled using a pseudo-second order rate expression. Extent of conversion and rate of conversion of the coals in the suite have been correlated to coal compositional parameters and structural features. Recent data on reactivity correlations with information from pyrolysis/mass spectrometry and C-NMR are presented. (2 tables, 5 figs., 17 refs.)

  2. Correlation of coal liquefaction reactivity with coal properties

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, R.M.; Durfee, S.L.; Voorhees, K.J.

    1983-01-01

    A narrow suite of bituminous coals chosen from the DOE/Penn State sample bank has been hydrogenated in a batch stirred autoclave. Rates of conversion to THF solubles have been measured, and the data modeled using a pseudo-second order rate expression. Extent of conversion and rate of conversion of the coals in the suite have been correlated to coal compositional parameters and structural features. Recent data on reactivity correlations with information from pyrolysis/mass spectrometry and C-NMR are presented.

  3. Effect of burn-off on physical and chemical properties of coal char; Gas ka shinko ni tomonau sekitan char no tokusei henka

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, T.; Tamura, K.; Hashimoto, H.; Funaki, M.; Suzuki, T. [Kitami Institute of Technology, Hokkaido (Japan)

    1996-10-28

    For high-efficiency coal gasification, investigations were given on effect of coal chars with different conversion rates on coal gasification reactivity. In coal gasification, reactivity of char after pyrolysis governs the efficiency. The reference char conversion in CO2 gasification of coal (weight loss) changes linearly in the initial stage of the reaction, but the reactivity declines as the end point is approached. Char surface area is as large as 400 m{sup 2}/g in the initial stage with the conversion at 20%, but it decreases in the final stage. This phenomenon relates closely with changes in pore size and crystalline structure. Change in the Raman value R which shows incompleteness of char graphite structure and amorphous carbon ratio suggests that an active portion with high reactivity is oxidized preferentially, and a portion with low reactivity remains finally. Minerals in coal are known to accelerate the gasification. However, their catalytic effect is related with chemical forms, and complex as they may change into inactive sulfides and silicates under severe reaction conditions. Change in forms of calcium compounds may also be involved in decline of the reactivity in the latter stage. 8 refs., 4 figs.

  4. Catalytic pyrolysis of Huang Tu Miao coal: TG-FTIR study%应用TG-FTIR技术研究黄土庙煤催化热解特性

    Institute of Scientific and Technical Information of China (English)

    李爽; 陈静升; 冯秀燕; 杨斌; 马晓迅

    2013-01-01

    用浸渍法制备过渡金属氧化物担载型催化剂MOx/USY(M=Co、Mo、Co-Mo),用热重红外联用技术考察了MOx/USY催化剂对黄土庙(HTM)煤热解失重特性和热解产物生成规律的影响.热重实验结果表明,MOx/USY催化剂可使HTM煤热解的二次脱气条件更为温和,热解峰温分别提前14、23和9℃.动力学分析结果表明,MOx/USY催化剂可降低HTM煤样热解的活化能.FT-IR研究表明,MOx/USY催化剂可有效改善HTM煤热解产物的组成和分布,CoOx/USY催化剂能显著提高HTM煤热解产物中高热值气体(CO、CH4)和轻质芳烃以及脂肪烃类化合物的含量;MoOx/USY催化剂没有明显改善HTM煤热解产物组成和分布;MoOx-CoOx/USY催化剂可促进CO、CH4、轻质芳烃和脂肪烃类化合物的生成,却使热解产物的生成向高温区移动,说明USY负载的不同过渡金属氧化物对煤样热解行为和热解产物有较大影响.%MOx/USY catalysts ( M = Co, Mo, Co-Mo) were prepared by incipient wetness impregnation method. Catalytic pyrolysis of Huang Tu Miao (HTM) coal was investigated and the pyrolysis products were examined by TG-FTIR technique. TG results indicate that MOx/USY catalysts are effective in lowering degasifiction temperature (14, 23 and 9℃ respectively) in HTM coal pyrolysis. Kinetic calculations show that MOx/USY catalysts are effective in lowing activation energy of pyrolysis. FT-IR analyses show that the MOX/ USY catalysts are effective in manipulating coal pyrolysis products. CoOx/USY catalyst promote the generation of CH4, CO and aromatic hydrocarbons and aliphatic hydrocarbons in HTM coal pyrolysis. MoOx/USY catalyst show little effect in manipulating pyrolysis products. CoOx-MoOx/USY catalyst is a promising catalyst in giving high yield of volatile products, however the pyrolysis temperature moved to high temperature region. These results indicate that different metal oxides incorporated zeolite USY have different impact on manipulating

  5. Low severity coal liquefaction promoted by cyclic olefins. Quarterly report, January--March 1993

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W.

    1993-07-01

    The combination of some of these methods could further improve low severity conversion. It seems logical that a combination of a proven pretreatment technique with a good dissolution catalyst or a good hydrogen donor would increase reactivity. The importance of surface chemistry with yield and nature of reactions shown in early research indicates the physical importance of pretreatment. Swelling of the coal with an organic solvent improves the contact. This good contact is also important to slowing retrogressive reactions. The best conversions come when the initial products of liquefaction are preserved. In addition to the physical importance of pretreatment, there is a chemical advantage. Shams saw not only the effect of minimization of organic oxygen coupling reactions, but with his process there also seemed to be a demineralization. The minerals removed the catalysts for retrogressive reactions. The chemistry of liquefaction is still not well understood. Stansberry`s attempt to determine whether catalysts liberate species or just further decomposition was largely inconclusive. There was improvement in conversion so the catalysts seemingly assisted in bond breakage. These good catalytic effects were also seen in the work involving coprocessing. The most compelling factor in each of these procedures, is the ability of the coal to receive the hydrogen that it needs to be liquefied. Bedell and Curtis (1991) found that cyclic olefins gave their hydrogen up much more readily than did hydroaromatics. The coal conversion was a significantly improved. The combination of retrogressive reaction suppression and good hydrogen donability should provide for good coal conversion. It was this reasoning that influenced the decision to investigate a combination of the HCl/methanol pretreatment and the usage of cyclic olefins as hydrogen donors. The increased reactivity of the pretreated coal should enhance the effect of the hydrogen donability of the cyclic olefins.

  6. Coal geopolitics

    International Nuclear Information System (INIS)

    This book divided into seven chapters, describes coal economic cycle. Chapter one: coals definition; the principle characteristics and properties (origin, calorific power, international classification...) Chapter two: the international coal cycle: coal mining, exploration, coal reserves estimation, coal handling coal industry and environmental impacts. Chapter three: the world coal reserves. Chapter four: the consumptions, productions and trade. Chapter five: the international coal market (exporting mining companies; importing companies; distributors and spot market operators) chapter six: the international coal trade chapter seven: the coal price formation. 234 refs.; 94 figs. and tabs

  7. Recent progress in selective catalytic conversion of cellulose into key platform molecules%纤维素选择性催化转化为重要平台化合物的研究进展

    Institute of Scientific and Technical Information of China (English)

    邓理; 廖兵; 郭庆祥

    2013-01-01

    Cellulose is the most abundant plant biomass component, which is also an important candidate for replacing fossil resource with the aim of sustainable future. In the present article, authors reviewed the catalytic transformation of cellulose into platform compounds, including glucose, hydroxymethylfurfural, levulinic acid and polyols via ionic liquids, solid acids and noble metal catalysts. Moreover, the application and the further transformation of these compounds were also introduced, for instance, the oxidation and reduction of hydroxymethylfurfural, the conversion of levulinic acid into γ-valerolactone, hydrocarbon, 1,4-butandiol and methyl tetrahydrofuran, and the catalytic reforming of polyols into liquid fuels. The advances on the transformation of cellulose into platform compounds will shed a new light on the sustainable future in terms of the renewable resource.%纤维素是自然界中最丰富的植物生物质组分,拓宽纤维素的利用对于减少化石资源使用和可持续发展非常重要.本文综述了以纤维素为原料,通过化学催化转化得到平台化合物葡萄糖、羟甲基糠醛、乙酰丙酸、多元醇的方法,包括离子液体催化、固体酸催化和贵金属催化加氢等,以及上述平台化合物后续转化的途径.如羟甲基糠醛的氧化与还原,乙酰丙酸制备γ-戊内酯、烃、1,4-戊二醇和甲基四氢呋喃,以及多元醇催化重整制备液体燃料.提出纤维素催化制备平台化合物的研究成果将为可再生资源替代化石资源的可持续发展提供有力的理论支持和实践指导.

  8. Chemistry and morphology of coal liquefaction. Annual report, October 1, 1980-September 20, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, H.

    1981-09-01

    Six tasks are reported: selective synthesis of gasoline range components from synthesis gas; electron microscopic studies of coal during hydrogenation; catalyzed low-temperature hydrogenation of coal; selective hydrogenation, hydrogenolysis, and alkylation of coal and coal liquids by organometallic systems; chemistry of coal solubilization and liquefaction; and coal conversion catalyst deactivation. (DLC)

  9. Development of a self-consistent thermodynamic- and transport-property correlation framework for the coal conversion industry. Phase I. Semiannual report, September 1, 1980-February 28, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Starling, K.E.; Lee, L.L.; Kumar, K.H.

    1981-01-01

    During the first half year of this research program the following elements of research have been performed: (1) the development of an improved pure component data bank, including collection and processing of data which is 70% complete as to substance, (2) calculation of distillable coal fluid thermodynamic properties using a multiparameter corresponding states correlation, (3) application of the most general density-cubic equation of pure fluids and (4) initiation of research to extend the corresponding states correlation framework to polar fluids. Primary conclusions of the first phase of this research program are that the three parameter corresponding states correlation predicts lighter coal fluid properties to a reasonable level of accuracy, and that a cubic equation can predict pure fluid thermodynamic properties on par with non-cubic equations of state.

  10. 菱铁矿石煤基直接还原过程中矿物的转化行为%Conversion Behavior of Minerals in the Coal-based Direct Reduction Process of the Siderite Ore

    Institute of Scientific and Technical Information of China (English)

    闫树芳; 孙体昌; 许言

    2012-01-01

    为了给进一步深入开展菱铁矿石煤基直接还原的工艺研究提供理论指导,以嘉峪关某菱铁矿石为试样,通过XRD、SEM和能谱分析以及热力学计算研究了菱铁矿石煤基直接还原过程中各种矿物的转化行为.结果表明:煤用量较小时,固相反应首先生成铁(镁)橄榄石,多余的铁矿物以孚氏体形式存在并在孚氏体内部形成金属铁核;增加煤用量可使金属铁核周围的孚氏体也被还原为金属铁,从而使铁颗粒得以长大.此外,随着煤用量的增加,主要脉石相铁镁橄榄石也会由于经历铁镁橄榄石→铁橄榄石→孚氏体→金属铁的反应历程而形成部分铁颗粒.%In order to provide theoretical guidance for further research of coal-based direct reduction of siderite ore, a siderite ore from Jiayuguan was chosen for sample to study the conversion behavior of various minerals in the coal-based direct reduction process of the siderite ore, by the technologies of XRD, SEM, energy spectrum analysis and thermodynamics calculation. The results show that: with low consumption of coal, iron (magnesium) oUvine is the first product in the process of solid reaction, then the excess iron minerals exist in the wutite form and forming iron core in some fus body; iron particles are growing up with the coal consumption increasing, through the reduction of the wutite around the iron core to I-ron. In addition, along with the increasing of coal consumption, the main gangue iron magnesium olivine also convert into part of metallic iron through the procedure: iron magnesium olivine-iron peridot-wutite-iron.

  11. Oxidative desulfurization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, S.; Lacount, R.B.; Warzinski, R.P.

    1977-01-01

    Both pyritic and organic sulfur in coal can be removed by a variety of oxidation techniques, including treatment with NO/sub x/, peroxygen compounds, air in the presence of specific organic media, or air and water at elevated temperature and pressure. The most promising method involves contacting an aqueous slurry of coal with air at pressures up to 1000 psi and temperatures of 140/sup 0/ to 200/sup 0/C. Coals from different geographic areas of the US have been treated with air and water in this way, resulting in removal of more than 90% of pyritic sulfur and up to 40% of organic sulfur as sulfuric acid, which is separated from the desulfurized coal by filtration. Fuel value losses are usually less than 10%. Costs for processing coal by this procedure will be somewhere between the less efficient, less thorough and less costly physical coal cleaning methods and the more thorough but much more costly coal conversion techniques. Oxidative desulfurization potentially can upgrade up to 40% of the bituminous coal in the US to environmentally acceptable boiler fuel and can bring most of the rest of the bituminous coals at least close to acceptability with relatively little loss in total fuel value.

  12. Catalytic nanoarchitectonics for environmentally compatible energy generation

    Directory of Open Access Journals (Sweden)

    Hideki Abe

    2016-01-01

    Full Text Available Environmentally compatible energy management is one of the biggest challenges of the 21st century. Low-temperature conversion of chemical to electrical energy is of particular importance to minimize the impact to the environment while sustaining the consumptive economy. In this review, we shed light on one of the most versatile energy-conversion technologies: heterogeneous catalysts. We establish the integrity of structural tailoring in heterogeneous catalysts at different scales in the context of an emerging paradigm in materials science: catalytic nanoarchitectonics. Fundamental backgrounds of energy-conversion catalysis are first provided together with a perspective through state-of-the-art energy-conversion catalysis including catalytic exhaust remediation, fuel-cell electrocatalysis and photosynthesis of solar fuels. Finally, the future evolution of catalytic nanoarchitectonics is overviewed: possible combinations of heterogeneous catalysts, organic molecules and even enzymes to realize reaction-selective, highly efficient and long-life energy conversion technologies which will meet the challenge we face.

  13. Direct Catalytic Conversion of Cellobiose into Sorbitol in Extremely Low Acid over Ruthenium Catalysts%超低酸性环境中Ru/C催化纤维二糖一步法制备山梨醇的研究

    Institute of Scientific and Technical Information of China (English)

    李计彪; 武书彬; 张军

    2012-01-01

    以Ru/C为催化剂,在超低酸环境和氢气气氛下,将纤维二糖一步转化制备山梨醇.考察了反应温度、反应时间以及催化剂用量对山梨醇产率的影响.实验结果表明,在0.05%H3PO4环境,Ru/C催化剂用量15%,转速为600 r/min,反应温度为458 K以及3 MPa氢气条件下反应1h,产物山梨醇的产率最高,可达到87.1%.同时,催化剂重复利用研究表明Ru/C是一种较理想的氢化反应催化剂,可重复利用且催化效率较高.%Ru/C catalyst and extremely low acid were employed for one-step conversion of cellobiose into sorbitol in the presence of hydrogen. Effects of reaction temperature, reaction time and catalyst usage on sorbitol yield were discussed. Experimental results showed that the highest sorbitol yield of 87. 1% was obtained at reaction temperature of 458 K and catalyst usage of 15 % for 1 h under 3 MPa H2 with the stirring rate of 600 r/min. Meanwhile, catalyst recycling showed that Ru/C was an ideal hydro-genation catalyst with high catalytic efficiency, which could be recycled several times.

  14. Advanced bioreactor systems for gaseous substrates: Conversion of synthesis gas to liquid fuels and removal of SO{sub X} and NO{sub X} from coal combustion gases

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraj, P.T.; Kaufman, E.N.

    1996-06-01

    The purpose of this research program is the development and demonstration of a new generation of gaseous substrate based bioreactors for the production of liquid fuels from coal synthesis gas and the removal of NO{sub x} and SO{sub x} species from combustion flue gas. This R&D program is a joint effort between the staff of the Bioprocessing Research and Development Center (BRDC) of ORNL and the staff of Bioengineering Resources, Inc. (BRI) under a Cooperative Research and Development Agreement (CRADA). The Federal Coordinating Council for Science, Engineering, and Technology report entitled {open_quotes}Biotechnology for the 21st Century{close_quotes} and the recent Energy Policy Act of 1992 emphasizes research, development, and demonstration of the conversion of coal to gaseous and liquid fuels and the control of sulfur and nitrogen oxides in effluent streams. This R&D program presents an innovative approach to the use of bioprocessing concepts that will have utility in both of these identified areas.

  15. NITRIC OXIDE FORMATION DURING PULVERIZED COAL COMBUSTION

    Science.gov (United States)

    Data on the overall conversion of coal-nitrogen to NOx were obtained at 1250 K and 1750 K for a residence time of one second. The conversion of coal-nitrogen to NOx decreased monotonically with increasing fuel/oxygen equivalence ratio and decreased slightly with increasing temper...

  16. Formation of N2 in the fixed-bed pyrolysis of low rank coals and the mechanisms; Koteisho netsubunkai ni okeru teitankatan kara no N2 no sisei

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z.; Otsuka, Y. [Tohoku University, Sendai (Japan). Institute for Chemical Reaction Science

    1996-10-28

    In order to establish coal NOx preventive measures, discussions were given on formation of N2 in the fixed-bed pyrolysis of low rank coals and the mechanisms thereof. Chinese ZN coal and German RB coal were used for the discussions. Both coals do not produce N2 at 600{degree}C, and the main product is volatile nitrogen. Conversion into N2 does not depend on heating rates, but increases linearly with increasing temperature, and reaches 65% to 70% at 1200{degree}C. In contrast, char nitrogen decreases linearly with the temperature. More specifically, these phenomena suggest that the char nitrogen or its precursor is the major supply source of N2. When mineral substances are removed by using hydrochloric acid, their catalytic action is lost, and conversion into N2 decreases remarkably. Iron existing in ion-exchanged condition in low-rank coal is reduced and finely diffused into metallic iron particles. The particles react with heterocyclic nitrogen compounds and turn into iron nitride. A solid phase reaction mechanism may be conceived, in which N2 is produced due to decomposition of the iron nitride. 5 refs., 4 figs., 1 tab.

  17. STUDY OF SOLVENT AND CATALYST INTERACTIONS IN DIRECT COAL LIQUEFACTION

    Energy Technology Data Exchange (ETDEWEB)

    Michael T. Klein

    2000-01-01

    There are several aspects of the Direct Coal Liquefaction process which are not fully understood and which if better understood might lead to improved yields and conversions. Among these questions are the roles of the catalyst and the solvent. While the solvent is known to act by transfer of hydrogen atoms to the free radicals formed by thermal breakdown of the coal in an uncatalyzed system, in the presence of a solid catalyst as is now currently practiced, the yields and conversions are higher than in an uncatalyzed system. The role of the catalyst in this case is not completely understood. DOE has funded many projects to produce ultrafine and more active catalysts in the expectation that better contact between catalyst and coal might result. This approach has met with limited success probably because mass transfer between two solids in a fluid medium i.e. the catalyst and the coal, is very poor. It is to develop an understanding of the role of the catalyst and solvent in Direct Liquefaction that this project was initiated. Specifically it was of interest to know whether direct contact between the coal and the catalyst was important. By separating the solid catalyst in a stainless steel basket permeable to the solvent but not the coal in the liquefaction reactor, it was shown that the catalyst still maintains a catalytic effect on the liquefaction process. There is apparently transfer of hydrogen atoms from the catalyst through the basket wall to the coal via the solvent. Strong hydrogen donor solvents appear to be more effective in this respect than weak hydrogen donors. It therefore appears that intimate contact between catalyst and coal is not a requirement, and that the role of the catalyst may be to restore the hydrogen donor strength to the solvent as the reaction proceeds. A range of solvents of varying hydrogen donor strength was investigated. Because of the extensive use of thermogravimetric analysis in this laboratory in was noted that the peak

  18. Coal gasification and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Bell, D.; Towler, B.

    2010-07-01

    This book approaches coal gasification and related technologies from a process engineering point of view, with topics chosen to aid the process engineer who is interested in a complete, coal-to-products system. It provides a perspective for engineers and scientists who analyze and improve components of coal conversion processes. The first topic describes the nature and availability of coal. Next, the fundamentals of gasification are described, followed by a description of gasification technologies and gas cleaning processes. The conversion of syngas to electricity, fuels and chemicals is then discussed. Finally, process economics are covered. Emphasis is given to the selection of gasification technology based on the type of coal fed to the gasifier and desired end product: E.g., lower temperature gasifiers produce substantial quantities of methane, which is undesirable in an ammonia synthesis feed. This book also reviews gasification kinetics which is informed by recent papers and process design studies by the US Department of Energy and other groups. Approaches coal gasification and related technologies from a process engineering point of view, providing a perspective for engineers and scientists who analyze and improve components of coal conversion processes - Describes the fundamentals of gasification, gasification technologies, and gas cleaning processes - Emphasizes the importance of the coal types fed to the gasifier and desired end products - Covers gasification kinetics.

  19. Catalytic and thermal depolymerization of low value post-consumer high density polyethylene plastic

    Science.gov (United States)

    The feasibility of catalytic and non-catalytic pyrolytic conversion of low value post-consumer high density polyethylene (HDPE) plastic into crude oil and subsequent distillation was explored. Translation of optimized conditions for catalytic and non-catalytic pyrolysis from TGA to a bench-scale sys...

  20. From waste to energy -- Catalytic steam gasification of broiler litter

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.A.; Sheth, A.C.

    1999-07-01

    In 1996, the production of broiler chickens in the US was approximately 7.60 billion head. The quantity of litter generated is enormous. In 1992, the Southeast region alone produced over five million tons of broiler litter. The litter removed from the broiler houses is rich in nutrients and often spread over land as a fertilizer. Without careful management, the associated agricultural runoff can cause severe environmental damage. With increasing broiler litter production, the implementation of alternative disposal technologies is essential to the sustainable development of the poultry industry. A process originally developed for the conversion of coals to clean gaseous fuel may provide an answer. Catalytic steam gasification utilities an alkali salt catalyst and steam to convert a carbonaceous feedstock to a gas mixture composed primarily of carbon monoxide, carbon dioxide, hydrogen, and methane. The low to medium energy content gas produced may be utilized as an energy source or chemical feedstock. Broiler litter is an attractive candidate for catalytic steam gasification due to its high potassium content. Experiments conducted in UTSI's bench-scale high-pressure fixed bed gasifier have provided data for technical and economic feasibility studies of the process. Experiments have also been performed to examine the effects of temperature, pressure, and additional catalysts on the gasification rate.

  1. EDS coal liquefaction process development: Phase V. Final technical progress report, Volume I

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-02-01

    All objectives in the EDS Cooperative Agreement for Phases III-B through V have been achieved for the RCLU pilot plants. EDS operations have been successfully demonstrated in both the once-through and bottoms recycle modes for coals of rank ranging from bituminous to lignitic. An extensive data base detailing the effects of process variable changes on yields, conversions and product qualities for each coal has been established. Continuous bottoms recycle operations demonstrated increased overall conversion and improved product slate flexibility over once-through operations. The hydrodynamics of the liquefaction reactor in RCLU were characterized through tests using radioactive tracers in the gas and slurry phases. RCLU was shown to have longer liquid residence times than ECLP. Support work during ECLP operations contributed to resolving differences between ECLP conversions and product yields and those of the small pilot plants. Solvent hydrogenation studies during Phases IIIB-V of the EDS program focused on long term activity maintenance of the Ni-MO-10 catalyst. Process variable studies for solvents from various coals (bituminous, subbituminous, and lignitic), catalyst screening evaluations, and support of ECLP solvent hydrogenation operations. Product quality studies indicate that highly cyclic EDS naphthas represent unique and outstanding catalytic reforming feedstocks. High volumes of high octane motor gasoline blendstock are produced while liberating a considerable quantity of high purity hydrogen.

  2. Significance of RuO2 modified SCR catalyst for elemental mercury oxidation in coal-fired flue gas.

    Science.gov (United States)

    Yan, Naiqiang; Chen, Wanmiao; Chen, Jie; Qu, Zan; Guo, Yongfu; Yang, Shijian; Jia, Jinping

    2011-07-01

    Catalytic conversion of elemental mercury (Hg(0)) to its oxidized form has been considered as an effective way to enhance mercury removal from coal-fired power plants. In order to make good use of the existing selective catalytic reduction of NO(x) (SCR) catalysts as a cobenefit of Hg(0) conversion at lower level HCl in flue gas, various catalysts supported on titanium dioxide (TiO(2)) and commercial SCR catalysts were investigated at various cases. Among the tested catalysts, ruthenium oxides (RuO(2)) not only showed rather high catalytic activity on Hg(0) oxidation by itself, but also appeared to be well cooperative with the commercial SCR catalyst for Hg(0) conversion. In addition, the modified SCR catalyst with RuO(2) displayed an excellent tolerance to SO(2) and ammonia without any distinct negative effects on NO(x) reduction and SO(2) conversion. The demanded HCl concentration for Hg(0) oxidation can be reduced dramatically, and Hg(0) oxidation efficiency over RuO(2) doped SCR catalyst was over 90% even at about 5 ppm HCl in the simulated gases. Ru modified SCR catalyst shows a promising prospect for the cobenefit of mercury emission control.

  3. Research Progress of Technologies for Tar Production during Coal Pyrolysis%煤热解制焦油的工艺研究进展

    Institute of Scientific and Technical Information of China (English)

    贺新福; 杨蕾; 吴红菊; 周安宁

    2014-01-01

    Coal pyrolysis was an important technique for coal conversion.Coal tar , one of the products , was an important raw material for liquid fuels and chemicals.The technologies including pretreatment of coal , change of atmosphere , catalytic pyrolysis and catalytic hydropyrolysis , co -pyrolysis with other material and novel integrated pyrolysis technology were stated that can improve tar yield during coal pyrolysis process , the factors that effected tar yield and the mechanisms were discussed , as well as the advantages and disadvantages of each processes.%煤热解是一种重要的煤炭分质利用技术,中低温热解焦油是制取液体燃料和化学品的重要原料。本文从对煤进行预处理、改变热解气氛、催化热解与催化加氢热解、煤与其它物质共热解、新型耦合热解工艺等方面综述了煤热解制焦油的工艺研究进展,探讨了影响煤热解过程焦油产率的因素及机理,并对各工艺进行了评价。

  4. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 3: Energy conversion subsystems and components. Part 3: Gasification, process fuels, and balance of plant

    Science.gov (United States)

    Boothe, W. A.; Corman, J. C.; Johnson, G. G.; Cassel, T. A. V.

    1976-01-01

    Results are presented of an investigation of gasification and clean fuels from coal. Factors discussed include: coal and coal transportation costs; clean liquid and gas fuel process efficiencies and costs; and cost, performance, and environmental intrusion elements of the integrated low-Btu coal gasification system. Cost estimates for the balance-of-plant requirements associated with advanced energy conversion systems utilizing coal or coal-derived fuels are included.

  5. Catalytic ammonia oxidation to nitrogen (I) oxide

    OpenAIRE

    MASALITINA NATALIYA YUREVNA; SAVENKOV ANATOLIY SERGEEVICH

    2015-01-01

    The process of synthesis of nitrous oxide by low-temperature catalytical oxidation of NH has been investigated for organic synthesis. The investigation has been carried out by the stage separation approach with NH oxidation occurring in several reaction zones, which characterized by different catalytic conditions. The selectivity for N₂O was 92–92,5 % at the ammonia conversion of 98–99.5 % in the optimal temperature range.

  6. Catalytic production of biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Theilgaard Madsen, A.

    2011-07-01

    The focus of this thesis is the catalytic production of diesel from biomass, especially emphasising catalytic conversion of waste vegetable oils and fats. In chapter 1 an introduction to biofuels and a review on different catalytic methods for diesel production from biomass is given. Two of these methods have been used industrially for a number of years already, namely the transesterification (and esterification) of oils and fats with methanol to form fatty acid methyl esters (FAME), and the hydrodeoxygenation (HDO) of fats and oils to form straight-chain alkanes. Other possible routes to diesel include upgrading and deoxygenation of pyrolysis oils or aqueous sludge wastes, condensations and reductions of sugars in aqueous phase (aqueous-phase reforming, APR) for monofunctional hydrocarbons, and gasification of any type of biomass followed by Fischer-Tropsch-synthesis for alkane biofuels. These methods have not yet been industrialised, but may be more promising due to the larger abundance of their potential feedstocks, especially waste feedstocks. Chapter 2 deals with formation of FAME from waste fats and oils. A range of acidic catalysts were tested in a model fat mixture of methanol, lauric acid and trioctanoin. Sulphonic acid-functionalised ionic liquids showed extremely fast convertion of lauric acid to methyl laurate, and trioctanoate was converted to methyl octanoate within 24 h. A catalyst based on a sulphonated carbon-matrix made by pyrolysing (or carbonising) carbohydrates, so-called sulphonated pyrolysed sucrose (SPS), was optimised further. No systematic dependency on pyrolysis and sulphonation conditions could be obtained, however, with respect to esterification activity, but high activity was obtained in the model fat mixture. SPS impregnated on opel-cell Al{sub 2}O{sub 3} and microporous SiO{sub 2} (ISPS) was much less active in the esterification than the original SPS powder due to low loading and thereby low number of strongly acidic sites on the

  7. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan, Song; Kirby, S.; Schmidt, E. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1995-12-31

    The objective of this project is to explore bimetallic dispersed catalysts for more efficient coal liquefaction. Coal liquefaction involves cleavage of methylene, dimethylene and ether bridges connecting various aromatic units and the reactions of various oxygen functional groups. This paper describes recent results on (1) hydrodeoxygenation of O-containing polycyclic model compounds using novel organometallic catalyst precursors; and (2) activity and selectivity of dispersed Fe catalysts from organometallic and inorganic precursors for hydrocracking of 4-(1-naphthylmethyl) bibenzyl. The results showed that some iron containing catalysts have higher activity in the sulfur-free form, contrary to conventional wisdom. Adding sulfur to Fe precursors with Cp-ligands decreased the activity of the resulting catalyst. This is in distinct contrast to the cases with iron pentacarbonyl and superfine Fe{sub 2}O{sub 3}, where S addition increased their catalytic activity substantially. A positive correlation between sulfur addition and increased activity can be seen, but a reversed trend between Fe cluster size and hydrocracking conversion could be observed, for carbonyl-type Fe precursors. It is apparent that the activity and selectivity of Fe catalysts for NMBB conversion depends strongly on both the type of ligand environment, the oxidation state and the number of intermetal bonds in the molecular precursor.

  8. Reforming of methane in tubes with a catalytic active wall

    International Nuclear Information System (INIS)

    The heterogeneous steam reforming process in tubes with catalytic active inner surface is studied. The purpose of this ivestigation is to find a method of predicting the reaction rate of the catalytic conversion of methane by steam. The dependency of the reaction rate upon the temperature, pressure, gas composition, Reynolds number, geometrical sizes of tubes and catalytic behaviour of the catalytic active inner wall of these tubes has been examined. It was found that the reaction rate mainly depends on the temperature. The reaction rate is limited by the catalytic behaviour and the heat resisting properties of the materials used. (author)

  9. Gasification reactivity of various coals at a high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Kenji; Miura, Koichi; Xu, Ji-Jun

    1987-06-20

    Eighteen ranks of coal and twelve ranks of deashed coal were gasified with steam at 1185/sup 0/C by a high-heating rate thermobalance reactor to examine the gasification of coal in the high temperature of 1000/sup 0/C or higher. The minerals have catalytic action on the gasification of low grade coal even at the temperature as high as 1185/sup 0/C, while the minerals contained in high grade coal (C-content: higher than 75%) do not affect it. In the chemical reaction rate-determining gasification process of coal and deashed coal with negligible catalytic action, the gasification rate is lowered with decreasing of the pare surface area of char and with increasing of crystalline size of carbon. Even in the gasification at high temperature, the gasification rate is raised with increasing of the amount of oxygen trapped in the char (by flash desorption method).(25 refs, 10 figs, 1 tab)

  10. Les procédés ASVAHL thermiques et catalytiques sous pression d'hydrogène pour la conversion des bruts lourds et des résidus de bruts classiques Thermal and Catalytic Asvahl Processes under Hydrogen Pressure for Converting Heavy Crudes and Conventional Residues

    Directory of Open Access Journals (Sweden)

    Peries J. P.

    2006-11-01

    Full Text Available Cet article décrit les performances comparées des procédés ASVAHL thermiques (TERVAHL T, TERVAHL H, TERVAHL HC et catalytiques (HYVAHL F, HYVAHL C dans deux cas de traitement: - brut désessencié Boscan (base des études objectif Transport; - résidu sous vide Safaniya (base des études Raffinage de résidu. A travers ces résultats, l'importance de la quantité d'hydrogène fixée est mise en évidence. Elle joue sur la conversion obtenue et sur la qualité des résidus. L'introduction de catalyseur soluble ou en suspension catalytique TERVAHL HC (hydroviscoréduction catalytique ou l'utilisation d'un catalyseur supporté (hydrotraiternent HYVAHL favorisent l'activation de l'hydrogène. C'est la combinaison des réactions de craquage, de polycondensation et d'hydrogénation, et les conditions opératoires (températures, temps de séjour et pression qui définiront les limites de la conversion pour une stabilité donnée des résidus. This article describes the comparative performances of thermal ASVAHL processes (TERVAHL T, TERVAHL H, TERVAHL HQ and catalytic ASVAHL processes (HYVAHL F, HYVAHL C for two types of processing: (1 degasolined Boscan crude (basis of studies for transportation feasibility, and (2 Safaniya vacuum residue (basis of studies for residue refining. The results reveal the importance of the amount of fixed hydrogen, which affects the conversion obtained and the quality of the residues. The introduction of a TERVAHL HC soluble catalyst or one in catalytic suspension (catalytic hydrovisbreaking or the use of a supported catalyst (HYVAHL hydrotreatment enhances the activation of hydrogen. The combination of cracking, polycondensation and hydrogen reactions together with the operating conditions (temperatures, residence time and pressure are what will define the conversion limits for a given stability of residues.

  11. The economic production of alcohol fuels from coal-derived synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Kugler, E.L.; Dadyburjor, D.B.; Yang, R.Y.K. [West Virginia Univ., Morgantown, WV (United States)] [and others

    1995-12-31

    The objectives of this project are to discover, (1) study and evaluate novel heterogeneous catalytic systems for the production of oxygenated fuel enhancers from synthesis gas. Specifically, alternative methods of preparing catalysts are to be investigated, and novel catalysts, including sulfur-tolerant ones, are to be pursued. (Task 1); (2) explore, analytically and on the bench scale, novel reactor and process concepts for use in converting syngas to liquid fuel products. (Task 1); (3) simulate by computer the most energy efficient and economically efficient process for converting coal to energy, with primary focus on converting syngas to fuel alcohols. (Task 2); (4) develop on the bench scale the best holistic combination of chemistry, catalyst, reactor and total process configuration integrated with the overall coal conversion process to achieve economic optimization for the conversion of syngas to liquid products within the framework of achieving the maximum cost effective transformation of coal to energy equivalents. (Tasks 1 and 2); and (5) evaluate the combustion, emission and performance characteristics of fuel alcohols and blends of alcohols with petroleum-based fuels. (Task 2)

  12. Catalytic cracking of lignites

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, M.; Nowak, S.; Naegler, T.; Zimmermann, J. [Hochschule Merseburg (Germany); Welscher, J.; Schwieger, W. [Erlangen-Nuernberg Univ. (Germany); Hahn, T. [Halle-Wittenberg Univ., Halle (Germany)

    2013-11-01

    A most important factor for the chemical industry is the availability of cheap raw materials. As the oil price of crude oil is rising alternative feedstocks like coal are coming into focus. This work, the catalytic cracking of lignite is part of the alliance ibi (innovative Braunkohlenintegration) to use lignite as a raw material to produce chemicals. With this new one step process without an input of external hydrogen, mostly propylene, butenes and aromatics and char are formed. The product yield depends on manifold process parameters. The use of acid catalysts (zeolites like MFI) shows the highest amount of the desired products. Hydrogen rich lignites with a molar H/C ratio of > 1 are to be favoured. Due to primary cracking and secondary reactions the ratio between catalyst and lignite, temperature and residence time are the most important parameter to control the product distribution. Experiments at 500 C in a discontinuous rotary kiln reactor show yields up to 32 wt-% of hydrocarbons per lignite (maf - moisture and ash free) and 43 wt-% char, which can be gasified. Particularly, the yields of propylene and butenes as main products can be enhanced four times to about 8 wt-% by the use of catalysts while the tar yield decreases. In order to develop this innovative process catalyst systems fixed on beads were developed for an easy separation and regeneration of the used catalyst from the formed char. (orig.)

  13. Catalytic pyrolysis of oilsand bitumen over nanoporous catalysts.

    Science.gov (United States)

    Lee, See-Hoon; Heo, Hyeon Su; Jeong, Kwang-Eun; Yim, Jin-Heong; Jeon, Jong-Ki; Jung, Kyeong Youl; Ko, Young Soo; Kim, Seung-Soo; Park, Young-Kwon

    2011-01-01

    The catalytic cracking of oilsand bitumen was performed over nanoporous materials at atmospheric conditions. The yield of gas increased with application of nanoporous catalysts, with the catalytic conversion to gas highest for Meso-MFI. The cracking activity seemed to correlate with pore size rather than weak acidity or surface area. PMID:21446540

  14. Application of the SELECS methodology to evaluate socioeconomic and environmental impacts of commercial-scale coal liquefaction plants at six potential sites in Kentucky. Final report from the study on development of environmental guidelines for the selection of sites for fossil energy conversion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Northrop, G. M.; D' Ambra, C. A.

    1980-11-01

    Environmental and socioeconomic impacts likely to occur during the operational phase of two coal liquefaction processes have been evaluated with SELECS (Site Evaluation for Energy Conversion Systems) for each of six potential sites in Kentucky for commercial scale facilities capable of processing about 26,000 tons of coal per stream day. The processes considered in this evaluation are SRC-I, a direct liquefaction route with solid boiler fuel as the principal product, and Coal-to-Methanol-to-Gasoline, an indirect liquefaction route with transportation fuel as the primary product. For comparative purposes, the impacts of a 2-gigawatt coal-fired steam-electric power plant (with coal requirements comparable to the liquefaction facilities) and an automobile parts manufacturing plant (with employment requirements of 849, comparable to the liquefaction facilities) have also been evaluated at each site. At each site, impacts have been evaluated for one or two nearby cities or towns and four to six counties where significant impacts might be expected. The SELECS methodology affords a well-organized and efficient approach to collecting and assessing a large volume of data needed to comprehensively determine the potential socioeconomic and environmental impacts resulting from the implementation of commercial scale synfuel and other energy conversion facilities. This study has also shown that SELECS is equally applicable to determine the impacts of other facilities, such as automobile parts manufacturing. In brief, the SELECS methodology serves the purpose of objectively screening sites in order to choose one at which adverse impacts will be least, and/or to determine what aspect of a proposed facility might be modified to lessen impacts at a specific site.

  15. Catalytic hydrocracking of primary maceral concentrate extracts prepared in a flowing solvent reactor

    Energy Technology Data Exchange (ETDEWEB)

    Begon, V.; Suelves, I.; Li, W.; Lazaro, M.-J.; Herod, A.A.; Kandiyoti, R. [Imperial College, London (United Kingdom). Dept. of Chemical Engineering and Chemical Technology

    2002-01-01

    Differences between the behaviour of coal macerals during liquefaction and catalytic hydrocracking were investigated. The liquefaction experiments were carried out in tetralin, using a flowing solvent reactor. The extracts were catalytically hydrocracked in a micro-bomb reactor, using a commercial catalyst. Conversions of the vitrinite and the liptinite concentrates during liquefaction were high ({approximately} 89%), while inertinite samples yielded a little over 20% extract. For inertinite, the emerging picture was consistent with high cross-link density. Liptinite was extracted less completely at lower temperatures and more slowly at high temperatures compared to corresponding vitrinites and vitrinitic coals. Long chain aliphatics released from the liptinite concentrate between 340 and 390{sup o}C appeared likely to have originated in lower molecular mass material occluded in the sample matrix and dissolving in tetralin prior to the onset of massive covalent bond scission. SEC chromatograms showed material of larger MMs in liptinite and vitrinite extracts than in the inertinite extract. The molecular mass distributions broadened with increasing extraction temperature. Catalytic hydrocracking experiments were carried out in a micro-bomb reactor for 10 and 120 min at 440{sup o}C, under 190 bar of hydrogen. In hydrocracking, the liptinite was the slowest extract to react at short reaction times ({approximately} 10 min). However, at longer reaction times, its products showed the smallest MM-distribution. Smaller differences were observed between the chromatograms of the 10 and 120 min hydrocracked products of the inertinite extract. Differences between spectra of the three extracts would strongly suggest the presence of larger (and apparently irreducible) polycyclic aromatic ring systems, in the hydrocracked products of the inertinite extract. 52 refs., 14 figs., 2 tabs.

  16. Synthesis of a nano-crystalline solid acid catalyst from fly ash and its catalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Chitralekha Khatri; Ashu Rani [Government P.G. College, Kota (India). Environmental Chemistry Laboratory

    2008-10-15

    The synthesis of nano-crystalline activated fly ash catalyst (AFAC) with crystallite size of 12 nm was carried out by chemical and thermal treatment of fly ash, a waste material generated from coal-burning power plants. Fly ash was chemically activated using sulfuric acid followed by thermal activation at 600{sup o}C. The variation of surface and physico-chemical properties of the fly ash by activation methods resulted in improved acidity and therefore, catalytic activity for acid catalyzed reactions. The AFAC was characterized by X-ray diffraction, FT-IR spectroscopy, N{sub 2}-adsorption-desorption isotherm, scanning electron microscopy, flame atomic absorption spectrophotometry and sulfur content by CHNS/O elemental analysis. It showed amorphous nature due to high silica content (81%) and possessed high BET surface area (120 m{sup 2}/g). The catalyst was found to be highly active solid acid catalyst for liquid phase esterification of salicylic acid with acetic anhydride and methanol giving acetylsalicylic acid and methyl salicylate respectively. A maximum yield of 97% with high purity of acetylsalicylic acid (aspirin) and a very high conversion 87% of salicylic acid to methyl salicylate (oil of wintergreen) was obtained with AFAC. The surface acidity and therefore, catalytic activity in AFAC was originated by increased silica content, hydroxyl content and higher surface area as compared to fly ash. The study shows that coal generated fly ash can be converted into potential solid acid catalyst for acid catalyzed reactions. Furthermore, this catalyst may replace conventional environmentally hazardous homogeneous liquid acids making an ecofriendly; solvent free, atom efficient, solid acid based catalytic process. 27 refs., 5 figs., 2 tabs.

  17. Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, M.; Jones, S.

    2013-03-01

    This technology pathway case investigates the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium (NABC) in collaboration with Virent, Inc. Technical barriers and key research needs that should be pursued for the catalytic conversion of sugars pathway to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks have been identified.

  18. Catalytic Fast Pyrolysis: A Review

    Directory of Open Access Journals (Sweden)

    Theodore Dickerson

    2013-01-01

    Full Text Available Catalytic pyrolysis is a promising thermochemical conversion route for lignocellulosic biomass that produces chemicals and fuels compatible with current, petrochemical infrastructure. Catalytic modifications to pyrolysis bio-oils are geared towards the elimination and substitution of oxygen and oxygen-containing functionalities in addition to increasing the hydrogen to carbon ratio of the final products. Recent progress has focused on both hydrodeoxygenation and hydrogenation of bio-oil using a variety of metal catalysts and the production of aromatics from bio-oil using cracking zeolites. Research is currently focused on developing multi-functional catalysts used in situ that benefit from the advantages of both hydrodeoxygenation and zeolite cracking. Development of robust, highly selective catalysts will help achieve the goal of producing drop-in fuels and petrochemical commodities from wood and other lignocellulosic biomass streams. The current paper will examine these developments by means of a review of existing literature.

  19. Thermocatalytical processing of coal and shales

    Directory of Open Access Journals (Sweden)

    Zhaksyntay Kairbekov

    2012-12-01

    Full Text Available The article investigates the questions of thermocatalytical conversion of organic mass of coal (OMC, it is shown that in the absence of a catalyst process is carried out by a radical process. Accumulated data on the properties for radicals of different structure and therefore different reaction capacity enables us to understand and interpret the conversion of OMC. Thermal conversion of OMC regarded as a kind of depolymerization, accompanied by decomposition of the functional groups with the formation of radicals, competing for hydrogen atom. Catalyst can change the direction and conditions of the process. Modern catalysts can reduce the process pressure up to 50 atm., with a high degree of coal conversion. We consider examples of simultaneous conversion of coal and shale, shale and masut, shale and tar.

  20. Coal marketing in Asia: Opportunities and challenges

    International Nuclear Information System (INIS)

    In Asia, coal currently accounts for over 40 percent of the fossil fuel used for commercial energy. This paper briefly surveys the forces that are likely to decide the future role coal will play as a prime source of energy in the vigorous economies of Asia. As Australia is well placed to profit from Asia's growing need for coal, the challenge to Australian coal suppliers is how to maximize its potential contribution. Four-fifths of all new coal fired electrical generating capacity in the world in the next decade will be located in Asia. Three-quarters of Australia's coal exports are to Asian customers and, conversely, 40 percent of Asian imports are from Australia. Australian coal suppliers have established ties and a depth of marketing experience in the region on which to build. However, pricing policies, and the emergence of the private power producers, together with environmental pressures, will present challenges for the future. (author). 1 fig

  1. Use catalytic combustion for LHV gases

    Energy Technology Data Exchange (ETDEWEB)

    Tucci, E.R.

    1982-03-01

    This paper shows how low heating value (LHV) waste gases can be combusted to recover energy even when the gases won't burn in a normal manner. Significant energy and economic savings can result by adopting this process. Catalytic combustion is a heterogeneous surface-catalyzed air oxidation of fuel, gaseous or liquid, to generate thermal energy in a flameless mode. The catalytic combustion process is quite complex since it involves numerous catalytic surface and gas-phase chemical reactions. During low temperature surface-catalyzed combustion, as in start-up, the combustion stage is under kinetically controlled conditions. The discussion covers the following topics - combustor substrates; combustor washcoating and catalyzing; combustor operational modes (turbine or tabular modes); applications in coal gasification and in-situ gasification; waste process gases. 16 refs.

  2. Rapid Deployment of Rich Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Richard S. Tuthill

    2004-06-10

    The overall objective of this research under the Turbines Program is the deployment of fuel flexible rich catalytic combustion technology into high-pressure ratio industrial gas turbines. The resulting combustion systems will provide fuel flexibility for gas turbines to burn coal derived synthesis gas or natural gas and achieve NO{sub x} emissions of 2 ppmvd or less (at 15 percent O{sub 2}), cost effectively. This advance will signify a major step towards environmentally friendly electric power generation and coal-based energy independence for the United States. Under Phase 1 of the Program, Pratt & Whitney (P&W) performed a system integration study of rich catalytic combustion in a small high-pressure ratio industrial gas turbine with a silo combustion system that is easily scalable to a larger multi-chamber gas turbine system. An implementation plan for this technology also was studied. The principal achievement of the Phase 1 effort was the sizing of the catalytic module in a manner which allowed a single reactor (rather than multiple reactors) to be used by the combustion system, a conclusion regarding the amount of air that should be allocated to the reaction zone to achieve low emissions, definition of a combustion staging strategy to achieve low emissions, and mechanical integration of a Ceramic Matrix Composite (CMC) combustor liner with the catalytic module.

  3. Coal gasification. Quarterly report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The conversion of coal to high-Btu gas requires a chemical and physical transformation of solid coal. However, because coal has widely differing chemical and physical properties, depending on where it is mined, it is difficult to process. Therefore, to develop the most suitable techniques for gasifying coal, ERDA, together with the American Gas Association, is sponsoring the development of several advanced conversion processes. Although the basic coal-gasification chemical reactions are the same for each process, the processes under development have unique characteristics. A number of the processes for converting coal to high Btu and to low Btu gas have reached the pilot plant stage. The responsibility for designing, constructing and operating each of these pilot plants is defined and progress on each during the quarter is described briefly. The accumulation of data for a coal gasification manual and the development of mathematical models of coal gasification processes are reported briefly. (LTN)

  4. CO2催化转化为高附加值燃料:现状、挑战及其未来方向%Catalytic conversion of CO2 to value added fuels:Current status, challenges, and future directions

    Institute of Scientific and Technical Information of China (English)

    Jingjie Wu; Xiao-Dong Zhou

    2016-01-01

    The electrochemical reduction of CO2 into liquid fuels especially coupling with the intermittent renewable electricity offers a promising means of storing electricity in chemical form, which reduc‐es the dependence on fossil fuels and mitigates the negative impact of anthropogenic CO2 emissions on the planet. Although converting CO2 to fuels is not in itself a new concept, the field has not sub‐stantially advanced in the last 30 years primarily because of the challenge of discovery of structural electrocatalysts and the development of membrane architectures for efficient collection of reactants and separation of products. This overview summarizes recent advances in catalytic conversion of CO2 and presents the challenges and future directions in producing value‐added fuels.

  5. Fundamental bioprocessing research for coal applications

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, E.N.

    1996-06-01

    The purpose of this program is to gain a fundamental understanding and sound scientific technical basis for evaluating the potential roles of innovative bioprocessing concepts for the utilization and conversion of coal. The aim is to explore the numerous ways in which advanced biological processes and techniques can open new opportunities for coal utilization or can replace more conventional techniques by use of milder conditions with less energy consumption or loss. There are several roles where biotechnology is likely to be important in coal utilization and conversion. These include potential bioprocessing systems such.

  6. Coal 99; Kol 99

    Energy Technology Data Exchange (ETDEWEB)

    Sparre, C.

    2000-07-01

    in equipment for burning pellets instead of coal. In Linkoeping waste of rubber is mixed with coal. Also Soederenergi AB has rebuilt their three coal boilers and replaced 100 % of the coal by peat and wood fuels. Coal is a reserve fuel. Several co-generation plants like Linkoeping, Norrkoeping, Uppsala and Oerebro use both coal and forest fuels. The use of coal is then concentrated to the electricity production. The average price of steam coal imported in Sweden in 1998 was 370 SEK/ton or the same as in 1997. For the world, the average import price fell about 6 USD/ton to 32 USD/ton. The price fall was concentrated to the 4th quarter. The prices have continued to fall during 1999 as a result of the crisis in Asia but are now stabilising as a result of increasing oil prices. All Swedish plants meet their emission limits of dust, SO{sub 2} and NO{sub x}, given by county administrations or concession boards. The co-generation plants have all some sort of SO{sub 2}-removal system. Mostly used is the wet-dry method. The biggest co-generation plant, in Vaesteraas, has recently invested in a catalytic NO{sub x}-cleaning system type SCR, which is reducing the emission level 80-90 %. Most other plants are using low NO{sub x}- burners or injection systems type SNCR, based on ammonium or urea, which are reducing the emissions 50-70 %. A positive effect of the recently introduced NO{sub x}-duties is a 60 % reduction compared to some years ago, when the duties were introduced. World hard coal production was about 3 700 tons in 1998, a minor decrease compared to 1997. The trade, however, has increased about 3 % to 520 mill tons. The coal demand in the OECD-countries has increased about 1,7 % yearly during the last ten years. The coal share of the energy supply is about 20% in the OECD-countries and 27% in the whole world. Several sources estimate a continuing growth during the next 20 years in spite of an increasing use of natural gas and nuclear power. The reason is a strong

  7. Effect of dry torrefaction on kinetics of catalytic pyrolysis of sugarcane bagasse

    Science.gov (United States)

    Daniyanto, Sutijan, Deendarlianto, Budiman, Arief

    2015-12-01

    Decreasing world reserve of fossil resources (i.e. petroleum oil, coal and natural gas) encourage discovery of renewable resources as subtitute for fossil resources. Biomass is one of the main natural renewable resources which is promising resource as alternate resources to meet the world's energy needs and raw material to produce chemical platform. Conversion of biomass, as source of energy, fuel and biochemical, is conducted using thermochemical process such as pyrolysis-gasification process. Pyrolysis step is an important step in the mechanism of pyrolysis - gasification of biomass. The objective of this study is to obtain the kinetic reaction of catalytic pyrolysis of dry torrified sugarcane bagasse which used Ca and Mg as catalysts. The model of kinetic reaction is interpreted using model n-order of single reaction equation of biomass. Rate of catalytic pyrolysis reaction depends on the weight of converted biomass into char and volatile matters. Based on TG/DTA analysis, rate of pyrolysis reaction is influenced by the composition of biomass (i.e. hemicellulose, cellulose and lignin) and inorganic component especially alkali and alkaline earth metallic (AAEM). From this study, it has found two equations rate of reaction of catalytic pyrolysis in sugarcane bagasse using catalysts Ca and Mg. First equation is equation of pyrolysis reaction in rapid zone of decomposition and the second equation is slow zone of decomposition. Value of order reaction for rapid decomposition is n > 1 and for slow decomposition is n<1. Constant and order of reactions for catalytic pyrolysis of dry-torrified sugarcane bagasse with presence of Ca tend to higher than that's of presence of Mg.

  8. Relationships of coal characteristics to coal reactivity for direct hydrogenation liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, R.M.; Voorhees, K.J.; Durfee, S.L.

    1987-01-01

    Two suites of coals from the US have been liquefied in a batch stirred autoclave reactor under a set of standard conditions. Data from the reactor have permitted both the rate and extent of conversion to be measured. Rate of reaction and extent of conversion of coal have then been used as dependent variables for development of correlations for reactivity with basic coal chemical, geochemical, and structural properties. In general, use of a kinetic definition for reactivity has been shown to be superior in ranking relative reactivities among closely related coals, and for developing correlations with compositional parameters such as volatile matter, reactive macerals, and vitrinite reflectance. Carbon aromaticity as determined by /sup 13/C-NMR and structural parameters as determined by pyrolysis/mass spectrometry have also been found to be useful in providing insight into the relationship between coal structure and coal reactivity. 17 references.

  9. 煤泥的二氧化碳气化动力学%CARBON DIOXIDE GASIFICATION KINETICS OF COAL SLIME

    Institute of Scientific and Technical Information of China (English)

    陈恒宝; 周敏; 贺国章

    2012-01-01

    立足于煤泥的生产现状,利用热分析方法,研究了石圪台煤泥和浮选后的精细煤泥在不同的升温速率条件下的二氧化碳气化反应,得到了气化反应的TG/DTG曲线,并计算了气化转化率,考察了浮选对煤泥气化特性的影响.选用Coats-Redfern和Doyle近似式对气化过程进行动力学模拟,求解了气化反应活化能和指前因子,结果表明,煤泥和精细煤泥的活化能均随升温速率的增大而减小;在相同的升温速率下,两者的活化能相差不大;煤泥中含量较高的矿物质和灰分对气化具有催化作用.%Based on the present utilization situation of coal slime, this paper investigated the carbon dioxide gasification of Shigetai coal slime and fine coal slime after flotation at different heating rates using thermogravimetric analysis, and by TG/DTG curve of the gasification reaction, calculated the gasification conversion and examined the influence of flotation on coal slime gasification. Coats-Redfern and Doyle approximations were used to simulate the gasification behaviors for seeking activation energy and pre-exponential factor. The result showed that the values of the activation energy and the pre-exponential factor of coal slime and fine coal slime decrease with the increase of heating rate, while both are similar at same heating rates high levels of minerals and ash in coal slime have catalytic action on the gasification.

  10. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20141574 Chen Hao(Exploration and Development Research Institute,Daqing Oilfield Company,Daqing 163712,China)High-Resolution Sequences and Coal Accumulating Laws in Nantun Formation of Huhe Lake Sag(Petroleum Geology&Oilfield Development in Daqing,ISSN1000-3754,CN23-1286/TQ,32(4),2013,p.15-19,5 illus.,15 refs.)Key words:coal accumulation regularity,coal

  11. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20091159 Gao Yan(No.3 Prospecting Team of Anhui Bureau of Coal Geology,Suzhou 234000,China) Effect of Depositional Environment of Coal-Bearing Stratum on Major Coal Seams in Suntan Coalmine,Anhui Province(Geology of Anhui,ISSN 1005- 6157,CN34-1111/P,18(2),2008,p.114 -117,5 illus.,1 ref.,with English abstract)

  12. Review of the literature on leachates from coal storage piles

    Energy Technology Data Exchange (ETDEWEB)

    Davis, E.C.; Boegly, W.J. Jr.

    1978-01-01

    Runoff from coal storage piles associated with coal conversion or combustion facilities may represent a potential source of environmental pollution. This report is an assessment of existing information on coal pile leachate. The assessment indicates that few detailed studies have been conducted to date, and these are limited and the results are highly variable. More detailed long-range studies using various types of coal are recommended. These studies should be carried out both in the laboratory and in field-scale experiments.

  13. Effect of cobalt and its adding sequence on the catalytic performance of MoO3/Al2O3 toward sulfur-resistant methanation

    Institute of Scientific and Technical Information of China (English)

    Baowei; Wang; Yuqin; Yao; Minhong; Jiang; Zhenhua; Li; Xinbin; Ma; Shaodong; Qin; Qi; Sun

    2014-01-01

    The effect of promoter cobalt and the sequences of adding cobalt and molybdenum precursors on the performance of sulfur-resistant methanation were investigated. All these samples were prepared by impregnation method and characterized by N2-adsorption, X-ray diffraction(XRD), temperature-programmed reduction(TPR) and laser Raman spectroscopy(LRS). The conversions of CO for Mo-Co/Al, Co-Mo/Al and CoMo/Al catalysts were 59.7%, 54.3% and 53.9%, respectively. Among these catalysts, the Mo-Co/Al catalyst prepared stepwisely by impregnating Mo precursor firstly showed the best catalytic performance. Meanwhile, the conversions of CO were 48.9% for Mo/Al catalyst and 10.5% for Co/Al catalyst. The addition of cobalt species could improve the catalytic activity of Mo/Al catalyst. The N2-adsorption results showed that Co-Mo/Al catalyst had the smallest specific surface area among these catalysts. CoMoO4species in CoMo/Al catalyst were detected with XRD, TPR and LRS. Moreover, crystal MoS2which was reported to be less active than amorphous MoS2was found in both Co-Mo/Al and CoMo/Al catalysts. Mo-Co/Al catalyst showed the best catalytic performance as it had an appropriate surface structure, i.e., no crystal MoS2and very little CoMoO4species.

  14. Effects and characterization of an environmentally-friendly, inexpensive composite Iron-Sodium catalyst on coal gasification

    Science.gov (United States)

    Monterroso, Rodolfo

    Coal gasification has been commercially used for more than 60 years in the production of fuels and chemicals. Recently, and due to the lowered environmental impacts and high efficiency derived from integrated gasification combined cycle (IGCC), this process has received increased attention. Furthermore, upcoming strict CO2 emissions regulations by the U.S. Environmental Protection Agency (EPA) will no longer be achievable by traditional means of coal combustion, therefore, growing dependence on different energy sources has drawn attention to clean coal technologies, such as coal-to-liquids processing, and the core of this process is also gasification. Gasification is an energy intensive process that can be substantially improved in terms of efficiency through the use of catalysts. In this study, the effect of the composite catalyst, FeCO3-Na2CO3, on gasification of a low-sulfur sub-bituminous Wyodak coal from the Powder River Basin (PRB) of Wyoming was investigated. The catalytic effects of the composite catalysts were evaluated by comparing their effluent gas compositions and carbon conversion kinetics to those achieved in the presence of either FeCO3 or Na2CO3 catalyst alone or without the presence of any catalyst. All of the evaluation work was conducted in a fixed bed gasifier at atmospheric pressure. Compared to raw coal with no catalyst, the composite catalyst is efficient in increasing the carbon conversion rate constant by as much as two times within the 700-800°C range due to its ability to reduce the activation energy of gasification by about 30-40%. Compared to pure sodium and iron catalysts, the composite catalyst can increase the yields of desired products H2 and CO at 800°C by 15% and 40%, respectively. The composite catalyst can not only synergize the advantages, but also overcome the challenges of pure iron or pure sodium based catalytic coal gasification processes. Moreover, the mechanisms of this particular catalytic coal gasification process

  15. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20110359 Feng Lijuan(Graduate School,Southwest Petroleum University,Chengdu 610500,China);Guo Dali Experimental Study on the Stress Sensitivity of Coal and Its Impact on the Filtration of the Fracturing Fluid(Coal Geology & Exploration,ISSN1001-1986,CN61-1155/P,38(2),2010,p.14-17,4 illus.,5 tables,9 refs.)Key words:coal seam,stressIn the paper,the relationship between the stress and permeability in the coal r

  16. Catalytic and Gas-Solid Reactions Involving HCN over Limestone

    DEFF Research Database (Denmark)

    Jensen, Anker; Johnsson, Jan Erik; Dam-Johansen, Kim

    1997-01-01

    In coal-fired combustion systems solid calcium species may be present as ash components or limestone added to the combustion chamber. In this study heterogeneous reactions involving HCN over seven different limestones were investigated in a laboratory fixed-bed quartz reactor at 873-1,173 K....... Calcined limestone is an effective catalyst for oxidation of HCN. Under conditions with complete conversion of HCN at O-2 concentrations above about 5,000 ppmv the selectivity for formation of NO and N2O is 50-70% and below 5%, respectively. Nitric oxide can be reduced by HCN to N-2 in the absence of O-2...... and to N-2 and N2O in the presence of O-2. At low O-2 concentrations or low temperatures. HCN may react with CaO, forming calcium cyanamide, CaCN2. The selectivities for formation of NO and N2O from oxidation of CaCN2 is 20-25% for both species. The catalytic activity of limestone for oxidation of HCN...

  17. Demonstration of a Catalytic Converter Using a Lawn Mower Engine

    Science.gov (United States)

    Young, Mark A.

    2010-01-01

    Catalytic conversion is an important tool in environmental-remediation strategies and source removal of pollutants. Because a catalyst is regenerated, the chemistry can be extremely effective for conversion of undesirable pollutant species to less harmful products in situations where the pollutants have accumulated or are being continuously…

  18. Coal fires in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Whitehouse, Alfred E.; Mulyana, Asep A.S. [Office of Surface Mining/Ministry of Energy and Mineral Resources Coal Fire Project, Ministry of Energy and Mineral Resources, Agency for Training and Education, Jl. Gatot Subroto, Kav. 49, Jakarta 12950 (Indonesia)

    2004-07-12

    Indonesia's fire and haze problem is increasingly being ascribed to large-scale forest conversion and land clearing activities making way for pulpwood, rubber and oil palm plantations. Fire is the cheapest tool available to small holders and plantation owners to reduce vegetation cover and prepare and fertilize extremely poor soils. Fires that escaped from agricultural burns have ravaged East Kalimantan forests on the island of Borneo during extreme drought periods in 1982-1983, 1987, 1991, 1994 and 1997-1998. Estimates based on satellite data and ground observations are that more than five million hectares were burned in East Kalimantan during the 1997/1998 dry season. Not only were the economic losses and ecological damage from these surface fires enormous, they ignited coal seams exposed at the ground surface along their outcrops.Coal fires now threaten Indonesia's shrinking ecological resources in Kutai National Park and Sungai Wain Nature Reserve. Sungai Wain has one of the last areas of unburned primary rainforest in the Balikpapan-Samarinda area with an extremely rich biodiversity. Although fires in 1997/1998 damaged nearly 50% of this Reserve and ignited 76 coal fires, it remains the most valuable water catchment area in the region and it has been used as a reintroduction site for the endangered orangutan. The Office of Surface Mining provided Indonesia with the capability to take quick action on coal fires that presented threats to public health and safety, infrastructure or the environment. The US Department of State's Southeast Asia Environmental Protection Initiative through the US Agency for International Development funded the project. Technical assistance and training transferred skills in coal fire management through the Ministry of Energy and Mineral Resource's Training Agency to the regional offices; giving the regions the long-term capability to manage coal fires. Funding was also included to extinguish coal fires as

  19. The coal industry and its greenhouse challenge

    International Nuclear Information System (INIS)

    The Australian coal industry is actively involved in greenhouse gas emission management and abatement issues. An Australian Coal Association (ACA) position paper on greenhouse in November 1989, recommended a number of strategies to minimise the greenhouse effect, including the enhancement of energy utilisation efficiency, improved energy conversion efficiency at coal-fired power stations, expanded use of solar heating, and improved recycling. All of the strategies have been implemented to various degrees. The management and abatement of greenhouse gas emissions within the coal industry has been approached from an individual operational level, and a 'higher' industry level

  20. Application of Fischer–Tropsch Synthesis in Biomass to Liquid Conversion

    Directory of Open Access Journals (Sweden)

    Yongwu Lu

    2012-06-01

    Full Text Available Fischer–Tropsch synthesis is a set of catalytic processes that can be used to produce fuels and chemicals from synthesis gas (mixture of CO and H2, which can be derived from natural gas, coal, or biomass. Biomass to Liquid via Fischer–Tropsch (BTL-FT synthesis is gaining increasing interests from academia and industry because of its ability to produce carbon neutral and environmentally friendly clean fuels; such kinds of fuels can help to meet the globally increasing energy demand and to meet the stricter environmental regulations in the future. In the BTL-FT process, biomass, such as woodchips and straw stalk, is firstly converted into biomass-derived syngas (bio-syngas by gasification. Then, a cleaning process is applied to remove impurities from the bio-syngas to produce clean bio-syngas which meets the Fischer–Tropsch synthesis requirements. Cleaned bio-syngas is then conducted into a Fischer–Tropsch catalytic reactor to produce green gasoline, diesel and other clean biofuels. This review will analyze the three main steps of BTL-FT process, and discuss the issues related to biomass gasification, bio-syngas cleaning methods and conversion of bio-syngas into liquid hydrocarbons via Fischer–Tropsch synthesis. Some features in regard to increasing carbon utilization, enhancing catalyst activity, maximizing selectivity and avoiding catalyst deactivation in bio-syngas conversion process are also discussed.

  1. INVESTIGATION OF SELECTIVE CATALYTIC REDUCTION IMPACT ON MERCURY SPECIATION UNDER SIMULATED NOX EMISSION CONTROL CONDITIONS

    Science.gov (United States)

    Selective catalytic reduction (SCR) technology is being increasingly applied for controlling emissions of nitrogen oxides (NOx) from coal-fired boilers. Some recent field and pilot studies suggest that the operation of SCR could affect the chemical form of mercury in the coal com...

  2. Component Development to Accelerate Commercial Implementation of Ultra-Low Emissions Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    McCarty, Jon; Berry, Brian; Lundberg, Kare; Anson, Orris

    2003-03-31

    This final report describes a 2000-2003 program for the development of components and processes to enhance the commercialization of ultra-low emissions catalytic combustion in industrial gas turbines. The range of project tasks includes: development of more durable, lower-cost catalysts and catalytic combustor components; development and design of a catalytic pre-burner and a catalytic pilot burner for gas turbines, and on-site fuel conversion processing for utilization of liquid fuel.

  3. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR

    Energy Technology Data Exchange (ETDEWEB)

    K.C. Kwon

    2004-01-01

    The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and the hot-gas desulfurization using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process. The objective of this research is to support the near- and long-term process development efforts to commercialize this direct oxidation technology. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 160-{micro}m C-500-04 alumina catalyst particles and a micro bubble reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives, experiments on conversion of hydrogen sulfide into liquid elemental sulfur were carried out for the space time range of 1-6 milliseconds at 125-155 C to evaluate effects of reaction temperature, moisture concentration, reaction pressure on conversion of hydrogen sulfide into liquid elemental sulfur. Simulated coal gas mixtures consist of 70 v% hydrogen, 2,500-7,500-ppmv hydrogen sulfide, 1,250-3,750 ppmv sulfur dioxide, and 0-15 vol% moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to a micro bubble reactor are 100 cm{sup 3}/min at room temperature and atmospheric pressure. The temperature of the reactor is controlled in an oven at 125-155 C. The

  4. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR

    Energy Technology Data Exchange (ETDEWEB)

    K.C. Kwon

    2005-01-01

    The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and the hot-gas desulfurization using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process. The objective of this research is to support the near- and long-term process development efforts to commercialize this direct oxidation technology. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 160-{micro}m C-500-04 alumina catalyst particles and a micro bubble reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives, experiments on conversion of hydrogen sulfide into liquid elemental sulfur were carried out for the space time range of 0.059-0.87 seconds at 125-155 C to evaluate effects of reaction temperature, H{sub 2}S concentration, reaction pressure, and catalyst loading on conversion of hydrogen sulfide into liquid elemental sulfur. Simulated coal gas mixtures consist of 62-78 v% hydrogen, 3,000-7,000-ppmv hydrogen sulfide, 1,500-3,500 ppmv sulfur dioxide, and 10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to a micro bubble reactor are 50 cm{sup 3}/min at room temperature and atmospheric pressure. The temperature of the reactor is controlled in an

  5. Study on methane conversion to syngas over nano Pt-CeO2-ZrO2/MgO catalysts: Structure and catalytic behavior of catalysts prepared by using ion exchange resin method.

    Science.gov (United States)

    Yang, Min; Guo, Haijun; Li, Yansheng; Wang, Wei; Zhou, Le

    2011-06-01

    Nano Pt-Ce02-Zr02/MgO catalysts with 0.8 wt.% Pt, 3.0 wt.% Ce02 and 3.0 wt.% Zr02 were prepared by wet impregnation mothod. Support MgO was obtained using ion exchange resin method or using commercial MgO. SBET, XRD, TEM and C02-TPD were used to characterize the supports and catalysts. CH4-C02 reforming to synthesis gas was performed to test the catalytic behavior of the catalysts. The catalysts prepared using ion exchange resin exhibited more regular structure, more basic sites and higher stability of Pt and MgO than prepared from commercial MgO. At 1073 K, atmospheric pressure, and at high gas hourly space velocity of 36,000 mL/(g-hr) with a stoichiometric feed of CH4 and C02, the catalyst supported on the MOH(GD)-IE showed a higher and more stable activity for CH4-C02 reforming reaction than the catalyst prepared using commercial MgO. The characterisation results demonstrated that the high activity and stability of the catalyst stem from the high dispersion of Pt, the stable structure and the high resistance to carbon deposition on the catalyst.

  6. From greenhouse gas to feedstock: formation of ammonium carbamate from CO{sub 2} and NH{sub 3} in organic solvents and its catalytic conversion into urea under mild conditions

    Energy Technology Data Exchange (ETDEWEB)

    Barzagli, F.; Mani, F.; Peruzzini, M. [University of Florence, Florence (Italy). Dept. of Chemistry

    2011-07-01

    The capture of carbon dioxide by ammonia in both aqueous and non-aqueous solutions was investigated at atmospheric pressure and 273 K under different operating conditions. The CO{sub 2} capture is fast and efficient ranging between 78 and 99%, depending on both the NH{sub 3} concentration and the solvent nature. The precipitation of solid mixtures of ammonium bicarbonate, ammonium carbonate and ammonium carbamate occurred in ethanol-water solution. Selective precipitation of ammonium carbamate was achieved by reacting gaseous CO{sub 2} and NH{sub 3} in anhydrous ethanol, 1-propanol or N,N-dimethylformamide (DMF) in a flow reactor that operates in continuous. In the second step of the process, the pure ammonium carbamate is used to produce urea with good yield (up to 54% on carbamate basis) at 393-413 K in the presence of inexpensive Cu(II) and Zn(II) catalysts. The yield of urea depends on several factors including the catalyst, the reaction temperature and the reaction time. Identification and quantification of urea in the reaction mixtures was obtained by analysis of its {sup 13}C NMR spectrum. A preliminary mechanistic interpretation of the catalytic reaction is also briefly presented and commented.

  7. Enhanced Activity of Nanocrystalline Zeolites for Selective Catalytic Reduction of NOx

    International Nuclear Information System (INIS)

    Nanocrystalline zeolites with discrete crystal sizes of less than 100 nm have different properties relative to zeolites with larger crystal sizes. Nanocrystalline zeolites have improved mass transfer properties and very large internal and external surface areas that can be exploited for many different applications. The additional external surface active sites and the improved mass transfer properties of nanocrystalline zeolites offer significant advantages for selective catalytic reduction (SCR) catalysis with ammonia as a reductant in coal-fired power plants relative to current zeolite based SCR catalysts. Nanocrystalline NaY was synthesized with a crystal size of 15-20 nm and was thoroughly characterized using x-ray diffraction, electron paramagnetic resonance spectroscopy, nitrogen adsorption isotherms and Fourier Transform Infrared (FT-IR) spectroscopy. Copper ions were exchanged into nanocrystalline NaY to increase the catalytic activity. The reactions of nitrogen dioxides (NOx) and ammonia (NH3) on nanocrystalline NaY and CuY were investigated using FT-IR spectroscopy. Significant conversion of NO2 was observed at room temperature in the presence of NH3 as monitored by FT-IR spectroscopy. Copper-exchanged nanocrystalline NaY was more active for NO2 reduction with NH3 relative to nanocrystalline NaY

  8. Conversation Analysis.

    Science.gov (United States)

    Schiffrin, Deborah

    1990-01-01

    Summarizes the current state of research in conversation analysis, referring primarily to six different perspectives that have developed from the philosophy, sociology, anthropology, and linguistics disciplines. These include pragmatics; speech act theory; interactional sociolinguistics; ethnomethodology; ethnography of communication; and…

  9. SIMULATION MATHEMATICAL MODEL OF CATALYTIC SYSTEMS FOR THE PRODUCTION AND CONVERSION OF ENERGY IN ANAEROBIC DIGESTION OF ORGANIC MANURE Имитационная математическая модель функционирования каталитических систем для производства и преобразования энергии при анаэробной переработке органических отходов животноводства

    Directory of Open Access Journals (Sweden)

    Sidiganov U. N.

    2013-09-01

    Full Text Available The article describes the details of modeling of catalytic systems for the production and conversion of energy in anaerobic digestion of organic manure. We have also presented a simulation mathematical model that establishes the relationship between structural and technological parameters of catalytic systems and the parameters characterizing the efficiency of the catalytic system in the production and conversion of thermal energy in the anaerobic treatment of organic manure

  10. Fuel production from coal by the Mobil Oil process using nuclear high-temperature process heat

    International Nuclear Information System (INIS)

    Two processes for the production of liquid hydrocarbons are presented: Direct conversion of coal into fuel (coal hydrogenation) and indirect conversion of coal into fuel (syngas production, methanol synthesis, Mobil Oil process). Both processes have several variants in which nuclear process heat may be used; in most cases, the nuclear heat is introduced in the gas production stage. The following gas production processes are compared: LURGI coal gasification process; steam reformer methanation, with and without coal hydrogasification and steam gasification of coal. (orig./EF)

  11. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20111830 Cai Hou’an(State Key Laboratory of Coal Resources and Safety Mining,China University of Mining and Technology,Beijing 100083,China);Xu Debin The Discovery of Thrust Nappe Structure in Zhangwu-Heishan Area,Liaoning Province and Its Significance for Coal-Searching(Coal Geology & Exploration,ISSN1001-1986,CN61-1155/P,38(5),2010,p.1-6,5 illus.,31 refs.)Key words:coalfield prediction,nappe structure,Liaoning Province Zhangwu-Heishan area in west Liaoning Province is an important perspective area for alternative resources in the periphery of Fuxin Basin.Based on r

  12. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>20122522 Guo Dongxin ( School of Energy Resource,China University of Geosciences,Bei-jing 100083,China );Tang Shuheng Sequence Strata and the Coal Accumulation of Wunite Coafield,Inner Mongolia ( Coal Geology & Exploration,ISSN1001-1986,CN61-1155 / P,39 ( 6 ), 2011,p.1-5,5illus.,16refs. ) Key words:sequence stratigraphy,coal accumulation regularity,Inner Mongolia Based on the study of the stratigraphy sequence of the Bayanhua Formation of Lower Cretaceous in Wunite coafield ,

  13. Environmental data energy technology characterizations: coal

    Energy Technology Data Exchange (ETDEWEB)

    1980-04-01

    This document describes the activities leading to the conversion of coal to electricity. Specifically, the activities consist of coal mining and beneficiation, coal transport, electric power generation, and power transmission. To enhance the usefulness of the material presented, resource requirements, energy products, and residuals for each activity area are normalized in terms of 10/sup 12/ Btus of energy produced. Thus, the total effect of producing electricity from coal can be determined by combining the residuals associated with the appropriate activity areas. Emissions from the coal cycle are highly dependent upon the type of coal consumed as well as the control technology assigned to the activity area. Each area is assumed to be equipped with currently available control technologies that meet environmental regulations. The conventional boiler, for example, has an electrostatic precipitator and a flue gas desulfurization scrubber. While this results in the removal of most of the particulate matter and sulfur dioxide in the flue gas stream, it creates other new environmental residuals -- solid waste, sludge, and ash. There are many different types of mined coal. For informational purposes, two types from two major producing regions, the East and the West, are characterized here. The eastern coal is typical of the Northern Appalachian coal district with a high sulfur and heat content. The western coal, from the Powder River Basin, has much less sulfur, but also has a substantially lower heating value.

  14. Reactivity of organic compounds in catalytic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Minachev, Kh.M.; Bragin, O.V.

    1978-01-01

    A comprehensive review of 1976 Soviet research on catalysis delivered to the 1977 annual session of the USSR Academy of Science Council on Catalysis (Baku 6/16-20/77) covers hydrocarbon reactions, including hydrogenation and hydrogenolysis, dehydrogenation, olefin dimerization and disproportionation, and cyclization and dehydrocyclization (e.g., piperylene cyclization and ethylene cyclotrimerization); catalytic and physicochemical properties of zeolites, including cracking, dehydrogenation, and hydroisomerization catalytic syntheses and conversion of heterocyclic and functional hydrocarbon derivatives, including partial and total oxidation (e.g., of o-xylene to phthalic anhydride); syntheses of thiophenes from alkanes and hydrogen sulfide over certain dehydrogenation catalysts; catalytic syntheses involving carbon oxides ( e.g., the development of a new heterogeneous catalyst for hydroformylation of olefins), and of Co-MgO zeolitic catalysts for synthesis of aliphatic hydrocarbons from carbon dioxide and hydrogen, and fabrication of high-viscosity lubricating oils over bifunctional aluminosilicate catalysts.

  15. Fluidized-bed bioreactor system for the microbial solubilization of coal

    Science.gov (United States)

    Scott, C.D.; Strandberg, G.W.

    1987-09-14

    A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor. 2 figs.

  16. Fixed-bed bioreactor system for the microbial solubilization of coal

    Science.gov (United States)

    Scott, C.D.; Strandberg, G.W.

    1987-09-14

    A fixed-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fixed-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the large scale production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fixed-bed bioreactor. 1 fig., 1 tab.

  17. Fluidized-bed bioreactor process for the microbial solubiliztion of coal

    Science.gov (United States)

    Scott, Charles D.; Strandberg, Gerald W.

    1989-01-01

    A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor.

  18. Cooperative research program in coal liquefaction. Quarterly report, May 1, 1993--October 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, G.P. [ed.

    1994-07-01

    This report summarizes progress in four areas of research under the general heading of Coal Liquefaction. Results of studies concerning the coliquefaction of coal with waste organic polymers or chemical products of these polymers were reported. Secondly, studies of catalytic systems for the production of clean transportation fuels from coal were discussed. Thirdly, investigations of the chemical composition of coals and their dehydrogenated counterparts were presented. These studies were directed toward elucidation of coal liquefaction processes on the chemical level. Finally, analytical methodologies developed for in situ monitoring of coal liquefaction were reported. Techniques utilizing model reactions and methods based on XAFS, ESR, and GC/MS are discussed.

  19. Literature survey of properties of synfuels derived from coal

    Science.gov (United States)

    Reynolds, T. W.; Niedzwiecki, R. W.; Clark, J. S.

    1980-02-01

    A literature survey of the properties of synfuels for ground-based gas turbine applications is presented. Four major concepts for converting coal into liquid fuels are described: solvent extraction, catalytic liquefaction, pyrolysis, and indirect liquefaction. Data on full range syncrudes, various distillate cuts, and upgraded products are presented for fuels derived from various processes, including H-coal, synthoil, solvent-refined coal, donor solvent, zinc chloride hydrocracking, co-steam, and flash pyrolysis. Some typical ranges of data for coal-derived low Btu gases are also presented.

  20. Energy Saving and Pollution Reducing Effects of Coal Combustion Catalysts

    Institute of Scientific and Technical Information of China (English)

    WU Zenghua; YU Zhiwu; ZHU Wentao; ZHOU Rui

    2001-01-01

    Coal catalytic agents (CCS type) have been prepared to improve coal combustion and reduce air pollution.The energy and pollution reductions resulting from the catalysts have been examined with thermal analysis and chromatography.The CCS agents lower the ignition temperature by 30-80℃ and improve the coal combustion efficiency by 10%-25%.The agents also reduce the release of carbon monoxide,sulfur dioxide,and coal particles to environment.The working mechanisms of the catalysts are discussed in terms of their participation in various physico-chemical processes during combustion.

  1. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20132555 Bao Yuan(School of Resources and Geosciences,China University of Mining and Technology,Xuzhou 221008,China);Wei Chongtao Simulation of Geological Evolution History of the Upper Permian Coal Seam No.8in Shuigonghe Syncline,Zhina Coalfield,Guizhou Province(Coal Geology&Exploration,ISSN1001-1986,CN61-1155/P,40(6),2012,p.13-16,23,1illus.,1table,17refs.)

  2. Catalytic conversion of carbon dioxide into dimethyl carbonate using reduced copper-cerium oxide catalysts as low as 353 K and 1.3 MPa and the reaction mechanism

    Directory of Open Access Journals (Sweden)

    Seiki eWada

    2013-06-01

    Full Text Available Synthesis of dimethyl carbonate (DMC from CO2 and methanol under milder reaction conditions was performed using reduced cerium oxide catalysts and reduced copper-promoted Ce oxide catalysts. Although the conversion of methanol was low (0.005–0.11% for 2 h of reaction, DMC was synthesized as low as 353 K and at total pressure of as low as 1.3 MPa using reduced Cu–CeO2 catalyst (0.5 wt% of Cu. The apparent activation energy was 120 kJ mol–1 and the DMC synthesis rates were proportional to the partial pressure of CO2. An optimum amount of Cu addition to CeO2 was 0.1 wt% for DMC synthesis under the conditions at 393 K and total pressure of 1.3 MPa for 2 h (conversion of methanol: 0.15% due to the compromise of two effects of Cu: the activation of H2 during reduction prior to the kinetic tests and the block (cover of the surface active site. The reduction effects in H2 were monitored through the reduction of Ce4+ sites to Ce3+ based on the shoulder peak intensity at 5727 eV in the Ce L3-edge X-ray absorption near-edge structure (XANES. The Ce3+ content was 10% for reduced CeO2 catalyst whereas it increased to 15% for reduced Cu–CeO2 catalyst (0.5wt% of Cu. Moreover, the content of reduced Ce3+ sites (10% associated with the surface O vacancy (defect sites decreased to 5% under CO2 at 290 K for reduced Cu–CeO2 catalyst (0.1wt% of Cu. The adsorption step of CO2 on the defect sites might be the key step in DMC synthesis and thus the DMC synthesis rate dependence on the partial pressure of CO2 was proportional. Subsequent H atom subtraction steps from methanol at the neighboring surface Lewis base sites should combine two methoxy species to the adsorbed CO2 to form DMC, water, and restore the surface O vacancy.

  3. Catalytic conversion of carbon dioxide into dimethyl carbonate using reduced copper-cerium oxide catalysts as low as 353 K and 1.3 MPa and the reaction mechanism

    Science.gov (United States)

    Wada, Seiki; Oka, Kazuki; Watanabe, Kentaro; Izumi, Yasuo

    2013-06-01

    Synthesis of dimethyl carbonate (DMC) from CO2 and methanol under milder reaction conditions was performed using reduced cerium oxide catalysts and reduced copper-promoted Ce oxide catalysts. Although the conversion of methanol was low (0.005-0.11%) for 2 h of reaction, DMC was synthesized as low as 353 K and at total pressure of as low as 1.3 MPa using reduced Cu-CeO2 catalyst (0.5 wt% of Cu). The apparent activation energy was 120 kJ mol-1 and the DMC synthesis rates were proportional to the partial pressure of CO2. An optimum amount of Cu addition to CeO2 was 0.1 wt% for DMC synthesis under the conditions at 393 K and total pressure of 1.3 MPa for 2 h (conversion of methanol: 0.15%) due to the compromise of two effects of Cu: the activation of H2 during reduction prior to the kinetic tests and the block (cover) of the surface active site. The reduction effects in H2 were monitored through the reduction of Ce4+ sites to Ce3+ based on the shoulder peak intensity at 5727 eV in the Ce L3-edge X-ray absorption near-edge structure (XANES). The Ce3+ content was 10% for reduced CeO2 catalyst whereas it increased to 15% for reduced Cu-CeO2 catalyst (0.5wt% of Cu). Moreover, the content of reduced Ce3+ sites (10%) associated with the surface O vacancy (defect sites) decreased to 5% under CO2 at 290 K for reduced Cu-CeO2 catalyst (0.1wt% of Cu). The adsorption step of CO2 on the defect sites might be the key step in DMC synthesis and thus the DMC synthesis rate dependence on the partial pressure of CO2 was proportional. Subsequent H atom subtraction steps from methanol at the neighboring surface Lewis base sites should combine two methoxy species to the adsorbed CO2 to form DMC, water, and restore the surface O vacancy.

  4. Studies of the fate of sulfur trioxide in coal-fired utility boilers based on modified selected condensation methods.

    Science.gov (United States)

    Cao, Yan; Zhou, Hongcang; Jiang, Wu; Chen, Chien-Wei; Pan, Wei-Ping

    2010-05-01

    The formation of sulfur trioxide (SO(3)) in coal-fired utility boilers can have negative effects on boiler performance and operation, such as fouling and corrosion of equipment, efficiency loss in the air preheater (APH), increase in stack opacity, and the formation of PM(2.5). Sulfur trioxide can also compete with mercury when bonding with injected activated carbons. Tests in a lab-scale reactor confirmed there are major interferences between fly ash and SO(3) during SO(3) sampling. A modified SO(3) procedure to maximize the elimination of measurement biases, based on the inertial-filter-sampling and the selective-condensation-collecting of SO(3), was applied in SO(3) tests in three full-scale utility boilers. For the two units burning bituminous coal, SO(3) levels starting at 20 to 25 ppmv at the inlet to the selective catalytic reduction (SCR), increased slightly across the SCR, owing to catalytic conversion of SO(2) to SO(3,) and then declined in other air pollutant control device (APCD) modules downstream to approximately 5 ppmv and 15 ppmv at the two sites, respectively. In the unit burning sub-bituminous coal, the much lower initial concentration of SO(3) estimated to be approximately 1.5 ppmv at the inlet to the SCR was reduced to about 0.8 ppmv across the SCR and to about 0.3 ppmv at the exit of the wet flue gas desulfurization (WFGD). The SO(3) removal efficiency across the WFGD scrubbers at the three sites was generally 35% or less. Reductions in SO(3) across either the APH or the dry electrostatic precipitator (ESP) in units burning high-sulfur bituminous coal were attributed to operating temperatures being below the dew point of SO(3).

  5. Catalytic extraction processing of contaminated scrap metal

    International Nuclear Information System (INIS)

    Molten Metal Technology was awarded a contract to demonstrate the applicability of the Catalytic Extraction Process, a proprietary process that could be applied to US DOE's inventory of low level mixed waste. This paper is a description of that technology, and included within this document are discussions of: (1) Program objectives, (2) Overall technology review, (3) Organic feed conversion to synthetic gas, (4) Metal, halogen, and transuranic recovery, (5) Demonstrations, (6) Design of the prototype facility, and (7) Results

  6. COAL/POLYMER COPROCESSING WITH EFFICIENT USE OF HYDROGEN

    Energy Technology Data Exchange (ETDEWEB)

    DR. LINDA J. BROADBELT; MATTHEW J. DE WITT

    1998-03-20

    Inadequacies of current recovery and disposal methods for mixed plastic wastes drive the exploration of viable strategies for plastics resource recovery. The combination of diminishing landfill space and increasing usage of plastic products poses a significant dilemma, since current recovery methods are costly and ill-suited to handle contaminants. Coprocessing of polymeric waste with other materials may provide potential solutions to the deficiencies of current resource recovery methods, including unfavorable process economics. By incorporating plastic waste as a minor feed into an existing process, variations in supply and composition could be mediated, permitting continuous operation. One attractive option is the coprocessing of polymeric waste with coal under direct liquefaction conditions, allowing for simultaneous conversion of both feedstocks into high-valued products. Catalyst-directed coliquefaction of coal and polymeric materials not only has attractive environmental implications but also has the potential to enhance the economic viability of traditional liquefaction processes. By exploiting the higher H/C ratio of the polymeric material and using it as a hydrogen source, the overall process demand for molecular hydrogen and hydrogen donor solvents may be reduced. A series of model compound experiments has been conducted, providing a starting point for unraveling the complex chemistry underlying coliquefaction of coal and polymeric materials. Tetradecane (C{sub 14} H{sub 30} ) was used as a polyethylene mimic, and 4-(naphthylmethyl)bibenzyl (NBBM) was used as a coal model compound. Neat and binary mixture reactions of tetradecane and NBBM were carried out in an inert atmosphere at both low and high pressures to establish a thermal baseline for subsequent catalytic experiments. Work in the past six months has focused on analysis of light gaseous products for neat reactions of tetradecane, resulting in mass balances greater than 94%. The experimental

  7. 三元催化转化器转化效率影响因素分析%Influencing Factors Analysis of Conversion Efficiency of Three-way Catalytic Converter

    Institute of Scientific and Technical Information of China (English)

    孔祥华; 张海东

    2011-01-01

    针对三元催化转化器的起燃特性,建立转化器的数学模型.给出数值求解方法,讨论了在起燃阶段,进气性质、氢气、孔密度和空速等因素对转化效率的影响.结果表明,增加进气温度,增大孔密度,可缩短起燃时间,提高转化率;适当增大空速有利于提高转化率.%According to the light-off behavior of three-way catalyst, the mathematical model has been developed. Mathematical model was solved by finite difference. It was discussed that inlet gas property, hydrogen, cell density and space velocity can affect the converter efficiency in the light-off period. The results show that light-off time can be reduced by increasing inlet gas temperature and cell density. Conversion efficiency also can be improved by increasing space velocity.

  8. Study in the hydrogen yield and carbon conversion rate of bio-oil - methanol catalytic reforming%生物油-甲醇催化重整制氢的氢产率及碳转化率的研究

    Institute of Scientific and Technical Information of China (English)

    韩红睿; 张瑞芹; 徐兴敏; 刘永刚; 张长森

    2012-01-01

    The mixture of Bio-oil and methanol as raw material was reformed with catalyst for hydrogen production. Orthogonal test design was made in the fixed micro-reactor to systematically examine the ratio of bio-oil and methanol mixture, reaction temperature, steam carbon ratio, and sample flow rate. Under the optimum condition, the hydrogen yield and carbon conversion rate should be arrived at respectively 34.89% and 63.34%.%采用生物油-甲醇催化重整制氢.在微型固定反应装置上通过正交法试验设计,对生物油甲醇混合比例、反应温度、水碳比、进样流速等因素进行了系统的试验.在选择的最佳反应条件下,氢气产率和碳转化率分别为34.89%及63.34%.

  9. Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal.

    Science.gov (United States)

    Cao, Yan; Gao, Zhengyang; Zhu, Jiashun; Wang, Quanhai; Huang, Yaji; Chiu, Chengchung; Parker, Bruce; Chu, Paul; Pant, Wei-Ping

    2008-01-01

    This paper presents a comparison of impacts of halogen species on the elemental mercury (Hg(0)) oxidation in a real coal-derived flue gas atmosphere. It is reported there is a higher percentage of Hg(0) in the flue gas when burning sub-bituminous coal (herein Powder River Basin (PRB) coal) and lignite, even with the use of selective catalytic reduction (SCR). The higher Hg(0)concentration in the flue gas makes it difficult to use the wet-FGD process for the mercury emission control in coal-fired utility boilers. Investigation of enhanced Hg(0) oxidation by addition of hydrogen halogens (HF, HCl, HBr, and HI) was conducted in a slipstream reactor with and without SCR catalysts when burning PRB coal. Two commercial SCR catalysts were evaluated. SCR catalyst no. 1 showed higher efficiencies of both NO reduction and Hg(0) oxidation than those of SCR catalyst no. 2. NH3 addition seemed to inhibit the Hg(0) oxidation, which indicated competitive processes between NH3 reduction and Hg(0) oxidation on the surface of SCR catalysts. The hydrogen halogens, in the order of impact on Hg(0) oxidation, were HBr, HI, and HCl or HF. Addition of HBr at approximately 3 ppm could achieve 80% Hg(0) oxidation. Addition of HI at approximately 5 ppm could achieve 40% Hg(0) oxidation. In comparison to the empty reactor, 40% Hg(0) oxidation could be achieved when HCl addition was up to 300 ppm. The enhanced Hg(0) oxidation by addition of HBr and HI seemed not to be correlated to the catalytic effects by both evaluated SCR catalysts. The effectiveness of conversion of hydrogen halogens to halogen molecules or interhalogens seemed to be attributed to their impacts on Hg(0) oxidation.

  10. Iodine in Chinese coals and its geochemistry during coalification

    Energy Technology Data Exchange (ETDEWEB)

    Wu, D.S.; Deng, H.W.; Zheng, B.S.; Wang, W.Y.; Tang, X.Y.; Xiao, H.Y. [Nanchang University, Nanchang (China)

    2008-08-15

    To determine the I distribution in Chinese coals, a nationwide survey was undertaken based on the distribution, periods of formation, rank and production yields of various coal deposits. A total of 305 coal samples were collected and their I contents were determined by catalytic spectrophotometry with pyrohydrolysis. The geochemistry of I during coalification (including both peat diagenesis and coal metamorphism) was assessed. It was found that the I contents of Chinese coals range from 0.04 mg kg{sup -1} to 39.5 mg kg{sup -1} and exhibit a lognormal distribution, with a geometric mean of 1.27 mg kg{sup -1} Statistical correlation analysis and the observation that I contents increase with coal rank indicate that coal 1 is chalcophile in nature, and not generally organically bound. When peat developed into lignite through diagenesis, 95-99.9% of the original I was lost. The composition and structure of clay minerals present in the coal were controlled by the original depositional environment. The higher the I content of coals, the more likely the original sediments were affected by a marine environment. Iodine contents increased front lignite through sub-bituminous and bituminous coals to anthracite. This indicates that coal absorbed excess I from hydrothermal fluids during metamorphism (including geothermal metamorphism and telemagmatic metamorphism). The telemagmatic metamorphism was caused by magmatic activities that depended on the specific geological structure of the region. In China, most high-rank coals were formed by telemagmatic metamorphism.

  11. Iodine in Chinese coals and its geochemistry during coalification

    Energy Technology Data Exchange (ETDEWEB)

    Wu Daishe [School of Environmental Science and Engineering, Nanchang University, 999 Xuefu Avenue, Honggutan New Zone, Nanchang, Jiangxi Province 330031 (China); Institute of Geographic Sciences and Resources Research, CAS, Beijing 100101 (China)], E-mail: dswu@ncu.edu.cn; Deng Haiwen [School of Environmental Science and Engineering, Nanchang University, 999 Xuefu Avenue, Honggutan New Zone, Nanchang, Jiangxi Province 330031 (China); Zheng Baoshan [State Key Lab of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550002 (China); Wang Wuyi [Institute of Geographic Sciences and Resources Research, CAS, Beijing 100101 (China); Tang Xiuyi [Anhui University of Science and Technology, Huainan 232001 (China); Xiao Huayun [School of Environmental Science and Engineering, Nanchang University, 999 Xuefu Avenue, Honggutan New Zone, Nanchang, Jiangxi Province 330031 (China)

    2008-08-15

    To determine the I distribution in Chinese coals, a nationwide survey was undertaken based on the distribution, periods of formation, rank and production yields of various coal deposits. A total of 305 coal samples were collected and their I contents were determined by catalytic spectrophotometry with pyrohydrolysis. The geochemistry of I during coalification (including both peat diagenesis and coal metamorphism) was assessed. It was found that the I contents of Chinese coals range from 0.04 mg kg{sup -1} to 39.5 mg kg{sup -1} and exhibit a lognormal distribution, with a geometric mean of 1.27 mg kg{sup -1}. Statistical correlation analysis and the observation that I contents increase with coal rank indicate that coal I is chalcophile in nature, and not generally organically bound. When peat developed into lignite through diagenesis, 95-99.9% of the original I was lost. The composition and structure of clay minerals present in the coal were controlled by the original depositional environment. The higher the I content of coals, the more likely the original sediments were affected by a marine environment. Iodine contents increased from lignite through sub-bituminous and bituminous coals to anthracite. This indicates that coal absorbed excess I from hydrothermal fluids during metamorphism (including geothermal metamorphism and telemagmatic metamorphism). The telemagmatic metamorphism was caused by magmatic activities that depended on the specific geological structure of the region. In China, most high-rank coals were formed by telemagmatic metamorphism.

  12. Conversion of the compensation measures for the utilization of a FFH area of the brown coal open mining Cottbus North; Umsetzung der Kompensationsmassnahmen fuer die Inanspruchnahme eines FFH-Gebietes durch den Braunkohletagebau Cottbus-Nord

    Energy Technology Data Exchange (ETDEWEB)

    Gerstgraser, Christoph [gerstgraser - Ingenieurbuero fuer Renaturierung, Cottbus (Germany); Arnold, Ingolf; Dingethal, Heidemarie [Vattenfall Europe Mining AG, Cottbus (Germany)

    2008-08-15

    Since the year 1981, the open mining Cottbus-North (Brandenburg, Federal Republic of Germany) produces brown coal. Presently, 5 million tons of brown coal are produced. This brown coal is used in the power generation at the coal-fired power station Jaenschwalde. Within this area of mining there is the pond's group Lakoma. This pond's group consisted of 22 ponds with a total area of 69 ha. These ponds served for breeding of fishes and accommodated protected animal species. In December 2003, the pond's group Lakoma was suggested as a FFH area by the country Brandenburg. With the planning approval procedure for waters, a FFH area was completely eliminated in the approach of an open mining. A licensing procedure came to the result that a removal of these ponds was permissible with consideration of the public interest, if a reconciliation for the plants and animals is carried out. These compensation measures were realized within short time. Thus the open mining Cottbus-North could be continued according to plan.

  13. Application of microorganisms in coal cleaning processes

    International Nuclear Information System (INIS)

    A secure energy supply is one of the basic pre-requisites for a sound economic system, sustained standard and quality of life and eventually for the social well-being of each individual. For a progressive country like Pakistan, it is obligatory that all energy options must be pursued vigorously including coal utilization, which given the relatively large resources available, is considered to be one of the major options for the next few hundred years. Bioprocessing of coal in an emerging technology which has started to receive considerable research attention. Recent research activities involving coal cleaning, direct coal conversion, and indirect conversion of coal-derived materials have generated a plethora of facts regarding biochemistry, chemistry, and thermodynamic behavior of coal, in that its bioprocessing is on the verge of becoming and acceptable means to great coals. In this research report, investigations pertaining to the various aspects of coal bio processing, including desulfurization and depyritization are discussed. Bituminous coals varying in total sulfur contents of 3-6% were depyritized more than 90% by mesophilic acidophiles like Thiobacillus ferroxidans and Thiobacillus thio oxidans and thermophilic Sulfolobus brierleyi. The archaebacterium, Sulfolobus brierleyi was found to desulfurize inorganic and organic sulfur components of the coal. Conditions were established under which it can remove more than 30% of the organic sulfur present in the coals. Heterotrophic microorganisms including oxenic and soil isolates were also employed for studying sulfurization. A soil isolate, Oil-2, was found to remove more than 70% dibenzothiophenic sulfur present in an oil-water emulsion (1:20 ratio). Pseudomonas putida and the bacterium oil-2 also remove 60-70% organic sulfur present in the shale-oil. Preliminary results indicate the presence of putatively known Kodama's pathway in the oil-2. The mass balance for sulfate indicated the possibility of the presence

  14. Thiophenic Sulfur Compounds Released During Coal Pyrolysis.

    Science.gov (United States)

    Xing, Mengwen; Kong, Jiao; Dong, Jie; Jiao, Haili; Li, Fan

    2013-06-01

    Thiophenic sulfur compounds are released during coal gasification, carbonization, and combustion. Previous studies indicate that thiophenic sulfur compounds degrade very slowly in the environment, and are more carcinogenic than polycyclic aromatic hydrocarbons and nitrogenous compounds. Therefore, it is very important to study the principle of thiophenic sulfur compounds during coal conversion, in order to control their emission and promote clean coal utilization. To realize this goal and understand the formation mechanism of thiophenic sulfur compounds, this study focused on the release behavior of thiophenic sulfur compounds during coal pyrolysis, which is an important phase for all coal thermal conversion processes. The pyrolyzer (CDS-5250) and gas chromatography-mass spectrometry (Focus GC-DSQII) were used to analyze thiophenic sulfur compounds in situ. Several coals with different coal ranks and sulfur contents were chosen as experimental samples, and thiophenic sulfur compounds of the gas produced during pyrolysis under different temperatures and heating rates were investigated. Levels of benzothiophene and dibenzothiophene were obtained during pyrolysis at temperatures ranging from 200°C to 1300°C, and heating rates ranging from 6°C/ms to 14°C/ms and 6°C/s to 14°C/s. Moreover, the relationship between the total amount of benzothiophene and dibenzothiophene released during coal pyrolysis and the organic sulfur content in coal was also discussed. This study is beneficial for understanding the formation and control of thiophenic sulfur compounds, since it provides a series of significant results that show the impact that operation conditions and organic sulfur content in coal have on the amount and species of thiophenic sulfur compounds produced during coal pyrolysis. PMID:23781126

  15. Rosebud SynCoal Partnership, SynCoal{reg_sign} demonstration technology update

    Energy Technology Data Exchange (ETDEWEB)

    Sheldon, R.W. [Rosebud SynCoal Partnership, Billings, MT (United States)

    1997-12-31

    An Advanced Coal Conversion Process (ACCP) technology being demonstrated in eastern Montana (USA) at the heart of one of the world`s largest coal deposits is providing evidence that the molecular structure of low-rank coals can be altered successfully to produce a unique product for a variety of utility and industrial applications. The product is called SynCoal{reg_sign} and the process has been developed by the Rosebud SynCoal Partnership (RSCP) through the US Department of Energy`s multi-million dollar Clean Coal Technology Program. The ACCP demonstration process uses low-pressure, superheated gases to process coal in vibrating fluidized beds. Two vibratory fluidized processing stages are used to heat and convert the coal. This is followed by a water spray quench and a vibratory fluidized stage to cool the coal. Pneumatic separators remove the solid impurities from the dried coal. There are three major steps to the SynCoal{reg_sign} process: (1) thermal treatment of the coal in an inert atmosphere, (2) inert gas cooling of the hot coal, and (3) removal of ash minerals. When operated continuously, the demonstration plant produces over 1,000 tons per day (up to 300,000 tons per year) of SynCoal{reg_sign} with a 2% moisture content, approximately 11,800b Btu/lb and less than 1.0 pound of SO{sub 2} per million Btu. This product is obtained from Rosebud Mine sub-bituminous coal which starts with 25% moisture, 8,600 Btu/lb and approximately 1.6 pounds of SO{sub 2} per million Btu.

  16. Investigation on the catalytic effects of AAEM during steam gasification and the resultant char reactivity in oxygen using Shengli lignite at different forms

    Institute of Scientific and Technical Information of China (English)

    Jianxin Mi; Ningbo Wang; Mingfeng Wang; Pengju Huo; Dan Liu

    2015-01-01

    The purpose of this study is to investigate the catalytic effects of alkali and alkaline earth metallic species (AAEM) on char conversion during the gasification in steam and the changes in ex-situ char reactivity in oxygen after the gasification in steam using different forms (i.e. H-form, Na-form) of Shengli brown coal. The surface area, AAEM concentration and carbon crystallite of chars were obtained to understand the change in char reactivity. It was found that not only Na concentration and carbon structure were the main factors governing the char reactivity in the atmosphere of steam and oxygen, but also they interacted each other. The presence of Na could facilitate the formation of disordering carbon structure in char, and the amorphous carbon structure would in turn affect the distribution of Na and thus its catalytic performance. The surface area and pore volume had very little relationship with the char’s reactivity. Addi-tionally, the morphology of chars from different forms of coals were observed using scanning electron microscope (SEM).

  17. Catalytic conversion of glucose to 5-hydroxymethylfurfural by metal halides%金属氯化物催化葡萄糖制备5-羟甲基糠醛

    Institute of Scientific and Technical Information of China (English)

    朱萍; 范文元; 陈慧

    2015-01-01

    Using metal halides as catalyst and alkali metal halides as co-catalyst catalyzed glucose to dehydrate to make 5-hydroxymethylfurfural(5-HMF).Under the condition that the mass ratio of the material and catalyst is 10∶1 and the mass ratio of the material and co-catalyst is 1∶1,the following observations and studies were made on the influence of the metal halides、co-catalyst、solvent、temperature and time on the yield of 5-HMF.The results showed that,when NaI was used as co-catalyst for the AlCl3-catalyzed conversion of glucose at 130℃for 15 min in N,N-Dimethylacetamide (DMAC) the yield of 5-HMF is up to 30.6%.%用金属氯化物做催化剂,碱金属卤化物做助剂,催化葡萄糖脱水制备5-羟甲基糠醛(5-HMF).在原料与催化剂的质量比为10∶1,原料与助催化剂的质量比为1∶1的情况下,考察金属氯化物、助剂、溶剂、温度、时间对5-HMF收率的影响.结果显示:AlCl3做催化剂、NaI做助剂、溶剂为N,N-二甲基乙酰胺(DMAC)、反应温度为130℃、反应时间为15 min时5-HMF收率可达30.6%.

  18. Modulation of the Acidity and Catalytic Conversion Properties of Y Zeolites Modified by Cerium Cations%Ce改性对Y型分子筛酸性及其催化转化性能的调变机制

    Institute of Scientific and Technical Information of China (English)

    张畅; 秦玉才; 高雄厚; 张海涛; 莫周胜; 初春雨; 张晓彤; 宋丽娟

    2015-01-01

    Y-type zeolites with different cerium ion content were prepared by liquid phase ion exchange (LPIE) and their structural properties were characterized by inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray diffraction (XRD), N2 adsorption isotherm, and temperature-programmed desorption of ammonia (NH3-TPD). The influence of cerium ion modification of the Y-type zeolites on the acidity and catalytic behavior was studied by in situ Fourier transform infrared spectroscopy (in situ FTIR) techniques with pyridine and thiophene as probe molecules. The results indicate that the original crystal structures of the zeolites remain unchanged after modification with cerium ions. During the modification process the Ce species tend to be located in sodalite (SOD) cages after calcination and remain in the supercages upon a gradual increase in Ce cation content. The amount and strength of the Brönsted (B) acid sites in the zeolites generated by the modification increases initial y and then stabilizes with an increase in Ce ion content. The strong and weak Lewis (L) acid sites related to the non-framework aluminum and the rare earth species increase continuously during the modification process. Thiophene adsorption FTIR spectra indicate that the adsorbed thiophene molecules protonate at the strong Brönsted acid sites of the zeolites. The protonated products then oligomerize. The synergy between Ce species and B acid sites is favorable for the thiophene oligomerization reaction.%采用液相离子交换(LPIE)法制备了不同离子交换度的CeY分子筛。运用电感耦合等离子发射光谱(ICP-AES)、X射线衍射(XRD)、N2吸附等温线和氨气程序升温脱附(NH3-TPD)等方法对其进行表征,采用原位傅里叶变换红外(in situ FTIR)光谱技术分别以吡啶和噻吩作为探针分子研究了Ce改性对Y型分子筛酸性能和催化转化性能的影响规律。结果表明, Ce离子改性不改变Y型分子筛晶体的基本骨

  19. Zero emission coal

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, H.; Lackner, K.

    2000-08-01

    We discuss a novel, emission-free process for producing hydrogen or electricity from coal. Even though we focus on coal, the basic design is compatible with any carbonaceous fuel. The process uses cyclical carbonation of calcium oxide to promote the production of hydrogen from carbon and water. The carbonation of the calcium oxide removes carbon dioxide from the reaction products and provides the additional energy necessary to complete hydrogen production without additional combustion of carbon. The calcination of the resulting calcium carbonate is accomplished using the high temperature waste heat from solid oxide fuel cells (SOFC), which generate electricity from hydrogen fuel. Converting waste heat back to useful chemical energy allows the process to achieve very high conversion efficiency from fuel energy to electrical energy. As the process is essentially closed-loop, the process is able to achieve zero emissions if the concentrated exhaust stream of CO{sub 2} is sequestered. Carbon dioxide disposal is accomplished by the production of magnesium carbonate from ultramafic rock. The end products of the sequestration process are stable naturally occurring minerals. Sufficient rich ultramafic deposits exist to easily handle all the world's coal.

  20. Catalytic distillation structure

    Science.gov (United States)

    Smith, Jr., Lawrence A.

    1984-01-01

    Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

  1. Catalytic combustor for hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Mercea, J.; Grecu, E.; Fodor, T.; Kreibik, S.

    1982-01-01

    The performance of catalytic combustors for hydrogen using platinum-supported catalysts is described. Catalytic plates of different sizes were constructed using fibrous and ceramic supports. The temperature distribution as well as the reaction efficiency as a function of the fuel input rate was determined, and a comparison between the performances of different plates is discussed.

  2. Study on Introduction of Frequency Conversion Control Mode for Motor-driven Feed Pump for 330 MW Coal-fired Boiler%330 MW级燃煤机组锅炉电动给水泵变频改造控制方式变更应用研究

    Institute of Scientific and Technical Information of China (English)

    黄文婧

    2014-01-01

    Energy saving is the most important topic in power generation works of coal-fired power plants now, how-ever, the production of subcritical coal-fired units in China still accounts for a large proportion in total power genera-tion at present. As the dominated subcritical coal-fired units in China, the 330MW units usually adopts 3 sets of mo-tor-driven constant speed feed pumps with single capacity of 70%. The boiler feedwater flows under various condi-tions are regulated through changing electric pump output by fluid coupling control, which unavoidably produces power loss and fluid coupling mechanical loss in electric pump in case of medium load or low load. With the develop-ment of frequency conversion technology, the introduction of the technology in boiler motor-driven feed pump can ef-fectively reduce the feed pump station-service power consumption rate and the unit coal consumption, and produce enormous economic benefits. The paper makes a study on the frequency conversion control mode for boiler mo-tor-driven feed pump based on the practical application.%∶节能降耗工作是目前燃煤发电站各项工作的重中之重,而目前国内亚临界燃煤机组在总发电量上仍占很大比重。330 MW级别机组作为目前国内主流的亚临界燃煤机组,大多采用3台70%容量定速锅炉电动给水泵,通过采取液偶控制方式改变电泵出力来调节各种工况下的锅炉给水流量。从而不可避免地存在中低负荷时电泵的电量损失以及液偶机械损失。随着变频技术的发展,将其运用至锅炉电动给水泵之中能有效地降低电动给水泵厂用电率以及机组供电煤耗,产生巨大的经济效益。文章将从实际应用出发对锅炉电动给水泵变频改造控制方式方面进行探讨研究。

  3. Method for reducing NOx during combustion of coal in a burner

    Science.gov (United States)

    Zhou, Bing; Parasher, Sukesh; Hare, Jeffrey J.; Harding, N. Stanley; Black, Stephanie E.; Johnson, Kenneth R.

    2008-04-15

    An organically complexed nanocatalyst composition is applied to or mixed with coal prior to or upon introducing the coal into a coal burner in order to catalyze the removal of coal nitrogen from the coal and its conversion into nitrogen gas prior to combustion of the coal. This process leads to reduced NOx production during coal combustion. The nanocatalyst compositions include a nanoparticle catalyst that is made using a dispersing agent that can bond with the catalyst atoms. The dispersing agent forms stable, dispersed, nano-sized catalyst particles. The catalyst composition can be formed as a stable suspension to facilitate storage, transportation and application of the catalyst nanoparticles to a coal material. The catalyst composition can be applied before or after pulverizing the coal material or it may be injected directly into the coal burner together with pulverized coal.

  4. Reducing catalytic converter pressure loss

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This article examines why approximately 30--40% of total exhaust-system pressure loss occurs in the catalytic converter and what can be done to reduce pressure loss. High exhaust-system backpressure is of concern in the design of power trains for passenger cars and trucks because it penalizes fuel economy and limits peak power. Pressure losses occur due to fluid shear and turning during turbulent flow in the converter headers and in entry separation and developing laminar-flow boundary layers within the substrate flow passages. Some of the loss mechanisms are coupled. For example, losses in the inlet header are influenced by the presence of the flow resistance of a downstream substrate. Conversely, the flow maldistribution and pressure loss of the substrate(s) depend on the design of the inlet header.

  5. Oxidation of elemental mercury by modified spent TiO2-based SCR-DeNOx catalysts in simulated coal-fired flue gas.

    Science.gov (United States)

    Zhao, Lingkui; Li, Caiting; Zhang, Xunan; Zeng, Guangming; Zhang, Jie; Xie, Yin'e

    2016-01-01

    In order to reduce the costs, the recycle of spent TiO2-based SCR-DeNOx catalysts were employed as a potential catalytic support material for elemental mercury (Hg(0)) oxidation in simulated coal-fired flue gas. The catalytic mechanism for simultaneous removal of Hg(0) and NO was also investigated. The catalysts were characterized by Brunauer-Emmett-Teller (BET), scanning electron microscope (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) method. Results indicated that spent TiO2-based SCR-DeNOx catalyst supported Ce-Mn mixed oxides catalyst (CeMn/SCR1) was highly active for Hg(0) oxidation at low temperatures. The Ce1.00Mn/SCR1 performed the best catalytic activities, and approximately 92.80% mercury oxidation efficiency was obtained at 150 °C. The inhibition effect of NH3 on Hg(0) oxidation was confirmed in that NH3 consumed the surface oxygen. Moreover, H2O inhibited Hg(0) oxidation while SO2 had a promotional effect with the aid of O2. The XPS results illustrated that the surface oxygen was responsible for Hg(0) oxidation and NO conversion. Besides, the Hg(0) oxidation and NO conversion were thought to be aided by synergistic effect between the manganese and cerium oxides. PMID:26370819

  6. Oxidation of elemental mercury by modified spent TiO2-based SCR-DeNOx catalysts in simulated coal-fired flue gas.

    Science.gov (United States)

    Zhao, Lingkui; Li, Caiting; Zhang, Xunan; Zeng, Guangming; Zhang, Jie; Xie, Yin'e

    2016-01-01

    In order to reduce the costs, the recycle of spent TiO2-based SCR-DeNOx catalysts were employed as a potential catalytic support material for elemental mercury (Hg(0)) oxidation in simulated coal-fired flue gas. The catalytic mechanism for simultaneous removal of Hg(0) and NO was also investigated. The catalysts were characterized by Brunauer-Emmett-Teller (BET), scanning electron microscope (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) method. Results indicated that spent TiO2-based SCR-DeNOx catalyst supported Ce-Mn mixed oxides catalyst (CeMn/SCR1) was highly active for Hg(0) oxidation at low temperatures. The Ce1.00Mn/SCR1 performed the best catalytic activities, and approximately 92.80% mercury oxidation efficiency was obtained at 150 °C. The inhibition effect of NH3 on Hg(0) oxidation was confirmed in that NH3 consumed the surface oxygen. Moreover, H2O inhibited Hg(0) oxidation while SO2 had a promotional effect with the aid of O2. The XPS results illustrated that the surface oxygen was responsible for Hg(0) oxidation and NO conversion. Besides, the Hg(0) oxidation and NO conversion were thought to be aided by synergistic effect between the manganese and cerium oxides.

  7. Conversion of CH{sub 4}/CO{sub 2} to syngas over Ni-Co/Al{sub 2}O{sub 3}-ZrO{sub 2} nanocatalyst synthesized via plasma assisted co-impregnation method: Surface properties and catalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Rahemi, Nader; Haghighi, Mohammad [Chemical Engineering Faculty, Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of); Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of); Akbar Babaluo, Ali [Chemical Engineering Faculty, Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of); Nanostructure Material Research Center (NMRC), Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of); Fallah Jafari, Mahdi [National Iranian Oil Refining and Distribution Company (NIORDC), National Iranian Oil Company (NIOC), P.O. Box 15815-3499, Tehran (Iran, Islamic Republic of); Khorram, Sirous [Research Institute for Applied Physics and Astronomy (RIAPA), University of Tabriz, P.O. Box: 51665-163, Tabriz (Iran, Islamic Republic of)

    2013-09-07

    Ni/Al{sub 2}O{sub 3} catalyst promoted by Co and ZrO{sub 2} was prepared by co-impregnation method and treated with glow discharge plasma. The catalytic activity of the synthesized nanocatalysts has been tested toward conversion of CH{sub 4}/CO{sub 2} to syngas. The physicochemical characterizations like XRD, EDX, FESEM, TEM, BET, FTIR, and XPS show that plasma treatment results in smaller particle size, more surface concentration, and uniform morphology. The dispersion of nickel in plasma-treated nanocatalyst was also significantly improved, which was helpful for controlling the ensemble size of active phase atoms on the support surface. Improved physicochemical properties caused 20%–30% enhancement in activity of plasma-treated nanocatalyst that means to achieve the same H{sub 2} or CO yield, the plasma-treated nanocatalyst needed about 100 °C lower reaction temperature. The H{sub 2}/CO ratio got closer to 1 at higher temperatures and finally at 850 °C H{sub 2}/CO = 1 is attained for plasma-treated nanocatalyst. Plasma-treated nanocatalyst due to smaller Ni particles and strong interaction between active phase and support has lower tendency to keep carbon species on its structure and hence excellent stability can be observed for this catalyst.

  8. The use of NMR techniques for the analysis of water in coal and the effect of different coal drying techniques on the structure and reactivity of coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Netzel, D.A.; Miknis, F.P.; Wallace, J.C. Jr.; Butcher, C.H.; Mitzel, J.M.; Turner, T.F.; Hurtubise, R.J.

    1995-02-01

    Western Research Institute has conducted a study of different methods of coal drying as pretreatment steps before liquefaction. The objectives of this study were to develop a combined chemical dehydration/nuclear magnetic resonance (NMR) method for measuring the moisture content of coal, to measure the changes in coal structure that occur during drying, and to determine the effects of different drying methods on liquefaction reactivity of coals. Different methods of drying were investigated to determine whether coal drying can be accomplished without reducing the reactivity of coals toward liquefaction. Drying methods included thermal, microwave, and chemical dehydration. Coals of rank lignite to high volatile bituminous were studied. Coals that were dried or partially dried thermally and with microwaves had lower liquefaction conversions than coals containing equilibrium moisture contents. However, chemically dried coals had conversions equal to or greater than the premoisturized coals. The conversion behavior is consistent with changes in the physical structure and cross linking reactions because of drying. Thermal and microwave drying appear to cause a collapse in the pore structure, thus preventing donor solvents such as tetralin from contacting reactive sites inside the coals. Chemical dehydration does not appear to collapse the pore structure. These results are supported by the solvent swelling measurements in which the swelling ratios of thermally dried and microwave-dried coals were lower than those of premoisturized coals, indicating a greater degree of cross linking in the dried coals. The swelling ratios of the chemically dried coals were greater than those of the premoisturized coals because the pore structure remaining unchanged or increased when water was removed. These results are consistent with the NMR results, which did not show significant changes in coal chemical structure.

  9. Behavior of shungite carbon in reactions simulating thermal transformations of coal

    Energy Technology Data Exchange (ETDEWEB)

    Grigor' eva, E.N.; Rozhkova, N.N. [Russian Academy of Science, Moscow (Russian Federation)

    2000-07-01

    The catalytic activity of shungite carbon in reactions of model compounds (tetralin and benzyl phenyl ether) simulating thermolysis of coal was studied. The orders, rate constants, and activation energies of reactions were determined.

  10. 煤液化重质产物的催化加氢裂解研究%Study of catalytic hydrocracking of asphaltenes from heavy products of coal liquefaction

    Institute of Scientific and Technical Information of China (English)

    康士刚; 宗志敏; 水恒福; 王知彩; 魏贤勇

    2011-01-01

    为了使煤直接液化的重质产物转化为轻质油类,利用管式高压反应釜,以四氢萘为溶剂、FeS和S为催化剂,对沥青烯进行了加氢裂解研究.考察了催化剂种类及加入量、反应温度和反应压力等因素对沥青烯加氢液化的转化率和产物分布的影响.利用FTIR与元素分析仪对原料沥青烯及残余沥青烯进行了结构表征.结果表明:在一定实验条件下,FeS加硫后使原料的转化率由30.76%增加至53.94%,油+气的产率也由6.01%增至38.39%,而逆向缩合程度减少了9%;两种催化体系下原料的液化转化率均随着温度的升高而增加,但不加硫时增加的幅度为15.20%,明显小于加硫时的23.83%;随着压力的增加,两种催化条件下原料的转化率均增加,而逆向缩合程度在不加硫时随着压力的增加而增加(16.17%,6~30.54%),加硫时则相反.%In order to upgrading the heavy products from Xiaolongtan lignite liquefaction, the hydrocracking experiments of asphaltenes (AS) were carried out with tetralin as solvent and FeS or sulfur as catalyst in a batch micro-autoclave. The effects of types and amount of catalyst, reaction temperature and hydrogen pressure on the distribution of liquefied products were investigated. The elementary and FTIR analyses were used to illustrate the structural characteristics of feedstock AS and residue ASs. The results indicate that under specific conditions,the addition of sulfur into FeS catalyst increases the conversion of feedstock AS from 30. 76 %to 53.94% with the yield of oil+gas from 6.01% to 38.39%. The retrogressive condensation is reduced by 9%. In the two cases, both the conversions of feedstock AS increase with the increasing of reaction temperature. The conversion increment of 15.20% without sulfur addition is distinctly lower than that of 23.83% with sulfur addition. With the increasing of initial H2 pressure, the conversions of feedstock AS increase in the two cases, where

  11. Low temperature selective catalytic reduction of NO by C3H6 over CeOx loaded on AC treated by HNO3

    Institute of Scientific and Technical Information of China (English)

    楚英豪; 尹华强; 张腾腾; 朱晓帆; 郭家秀; 刘勇军; 刘超

    2015-01-01

    The activated carbons from coal were treated by HNO3 (named as NAC) and used as carriers to load 7% Ce (named as Ce(0.07)/NAC) by impregnation method. The physical and chemical properties were investigated by thermogravimetric-differential thermal analysis (TG-DTA), Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), scanning electron microscopy (SEM) and NH3-temperature programmed desorption (NH3-TPD) and NO-temperature programmed desorption techniques. The catalytic activities of Ce(0.07)/NAC were evaluated for the low temperature selective catalytic reduction (SCR) of NO with C3H6 using temperature-programmed reaction (TP-reaction) in NO, C3H6, O2 and N2 as a balance. The results showed that the specific surface area of Ce(0.07)/NAC was 850.8 m2/g and less than NAC, but Ce oxides could be dispersed highly on the acti-vated carbons. Ce oxides could change acid sites and NO adsorption as well as oxygen-containing functional groups of activated car-bons, and Ce4+ and Ce3+ coexisted in catalysts. The conversion of NO with C3H6 achieved 70% at 280 °C over Ce(0.07)/NAC, but with the increase of O2 concentration, heat accumulation and nonselective combustion were exacerbated, which could cause surface ashing and roughness, resulting in a sharp decrease of catalytic activities. The optimum O2 concentration used in the reaction system was 3% and achieved the high conversion of NO and the widest temperature window. The conversion of NO was closely related to the NO concentrations and [NO]/[C3H6] ratios, and the stoichiometric number was just close to 2:1, but the presence of H2O could af-fect the denitration efficiency of catalyst.

  12. 生物质衍生物γ-戊内酯催化转化制芳烃和2-环戊烯酮的研究%Catalytic conversion of biomass derivativeγ-valerolactone to aromatics over Zn/ZSM-5 catalyst

    Institute of Scientific and Technical Information of China (English)

    夏海岸; 张军; 闫晓沛; 徐思泉; 杨莉

    2015-01-01

    Zn/ZSM-5 zeolite catalysts with different Zn contents were prepared by impregnating method. The influence of reaction temperature, reaction time, catalyst dosage, and the acidic properties of catalysts on the conversion of γ-valerolactone to aromatic compounds was investigated. The results show that the introduction of Zn into H-ZSM-5 channel could effective modify the components of liquid product and influence the yields of gas, liquid, and solid as compared to H-ZSM-5 catalyst and non-catalytic conversion of γ-valerolactone. Zn/ZSM-5 catalyst affords the higher contents of aromatic compound compared to H-ZSM-5 and silica catalysts in the liquid product under identical reaction conditions. Therefore, Zn species of Zn/ZSM-5 can not only effectively improve the conversion of γ-valerolactone, but also enhance the formation of aromatic compounds, suggesting that Zn species play a very key role in the formation of these aromatic compounds.%应用浸渍法在ZSM-5沸石分子筛孔道中引入过渡金属Zn物种,制备了具有不同Zn含量的Zn/ZSM-5。考察了反应温度、催化剂用量、催化剂的酸性性质等条件对γ-戊内酯芳构化产物组成(气、液、固产物)及其液体成分含量的影响。实验结果表明,ZSM-5分子筛孔道中引入Zn后,可以有效改变液体产物成分以及影响气体和固体产物收率。当ZSM-5分子筛孔道中引入Zn物种后,能够明显提高液体产物中苯、甲苯、乙苯、萘等芳香类化合物的含量,表明Zn物种能促进γ-戊内酯芳构化反应的进行。

  13. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20091749 Cai Hou’an(College of Energy Geology,China University of Geosciences,Beijing 100083,China);Xu Debin SHRIMP U-Pb Isotope Age of Volcanic Rocks Distributed in the Badaohao Area,Liaoning Province and Its Significance(Coal Geology & Exploration,ISSN1001-1986,CN61-1155/P,36(4),2008,p.17-20,2 illus.,1 table,16 refs.)Key words:coal measures,volcanic rocks,U-Pb dating,LiaoningA set of andesite volcanic rocks distributes in the Badaohao area in Heishan County,Liaoning Province.It’s geological age and stratigraphy sequence relationship between the Lower Cretaceous Badaohao Formation and the volcanic rocks can not make sure till now and is influencing the further prospect for coals.Zircon

  14. Technology assessment of various coal-fuel options

    International Nuclear Information System (INIS)

    The technology assessment (TA) study of coal-based fuels presented in this report was performed for the Federal Ministry for Research and Technology. Its goal was to support decision-making of the Federal Ministry for Research and Technology in the field of coal conversion. Various technical options of coal liquefaction have been analyzed on the basis of hard coal as well as lignite -- direct liquefaction of coal (hydrogenation) and different possibilities of indirect liquefaction, that is the production of fuels (methanol, gasoline) by processing products of coal gasification. The TA study takes into consideration the entire technology chain from coal mining via coal conversion to the utilization of coal-based fuels in road transport. The analysis focuses on costs of the various options, overall economic effects, which include effects on employment and public budgets, and on environmental consequences compared to the use of liquid fuels derived from oil. Furthermore, requirements of infrastructure and other problems of the introduction of coal-based fuels as well as prospects for the export of technologies of direct and indirect coal liquefaction have been analyzed in the study. 14 figs., 10 tabs

  15. Influence of coal blending on mineral transformation at high temperatures

    Institute of Scientific and Technical Information of China (English)

    BAI Jin; LI Wen; LI Chun-zhu; BAI Zong-qing; LI Bao-qing

    2009-01-01

    Transformation of mineral matter is important for coal utilization at high temperatures. This is especially true for blended coal. XRD and FTIR were employed together to study the transformation of mineral matter at high temperature in blended coals. It was found that the concentration of catalytic minerals, namely iron oxides, increases with an increasing ratio of Shenfu coal, which could improve coal gasification. The transformation characteristics of the minerals in blended coals are not exactly predictable from the blend ratio. This was proved by comparing the iron oxide content to the blending ratio. The results from FTIR are comparable with those from XRD. FTIR is an effective method for examining variation in mineral matter.

  16. Energy Conversion Alternatives Study (ECAS)

    Science.gov (United States)

    1977-01-01

    ECAS compared various advanced energy conversion systems that can use coal or coal-derived fuels for baseload electric power generation. It was conducted in two phases. Phase 1 consisted of parametric studies. From these results, 11 concepts were selected for further study in Phase 2. For each of the Phase 2 systems and a common set of ground rules, performance, cost, environmental intrusion, and natural resource requirements were estimated. In addition, the contractors defined the state of the associated technology, identified the advances required, prepared preliminary research and development plans, and assessed other factors that would affect the implementation of each type of powerplant. The systems studied in Phase 2 include steam systems with atmospheric- and pressurized-fluidized-bed boilers; combined cycle gas turbine/steam systems with integrated gasifiers or fired by a semiclean, coal derived fuel; a potassium/steam system with a pressurized-fluidized-bed boiler; a closed-cycle gas turbine/organic system with a high-temperature, atmospheric-fluidized-bed furnace; a direct-coal-fired, open- cycle magnetohydrodynamic/steam system; and a molten-carbonate fuel cell/steam system with an integrated gasifier. The sensitivity of the results to changes in the ground rules and the impact of uncertainties in capital cost estimates were also examined.

  17. Quantum conversion

    CERN Document Server

    Mazilu, Michael

    2015-01-01

    The electromagnetic momentum transferred transfered to scattering particles is proportional to the intensity of the incident fields, however, the momentum of single photons ($\\hbar k$) does not naturally appear in these classical expressions. Here, we discuss an alternative to Maxwell's stress tensor that renders the classical electromagnetic field momentum compatible to the quantum mechanical one. This is achieved through the introduction of the quantum conversion which allows the transformation, including units, of the classical fields to wave-function equivalent fields.

  18. Coal technology program progress report for November 1976

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    This report, the 28th of a series, is a compendium of monthly progress reports for the ORNL research and development programs that are in support of the increased utilization of coal as a source of clean energy. The projects reported this month include those for coal conversion process development, materials engineering, alkali metal vapor topping cycles, a Critical Components Test Facility, engineering and support studies, environmental assessment studies, and coal-fueled MIUS.

  19. Conversational sensemaking

    Science.gov (United States)

    Preece, Alun; Webberley, Will; Braines, Dave

    2015-05-01

    Recent advances in natural language question-answering systems and context-aware mobile apps create opportunities for improved sensemaking in a tactical setting. Users equipped with mobile devices act as both sensors (able to acquire information) and effectors (able to act in situ), operating alone or in collectives. The currently- dominant technical approaches follow either a pull model (e.g. Apple's Siri or IBM's Watson which respond to users' natural language queries) or a push model (e.g. Google's Now which sends notifications to a user based on their context). There is growing recognition that users need more flexible styles of conversational interaction, where they are able to freely ask or tell, be asked or told, seek explanations and clarifications. Ideally such conversations should involve a mix of human and machine agents, able to collaborate in collective sensemaking activities with as few barriers as possible. Desirable capabilities include adding new knowledge, collaboratively building models, invoking specific services, and drawing inferences. As a step towards this goal, we collect evidence from a number of recent pilot studies including natural experiments (e.g. situation awareness in the context of organised protests) and synthetic experiments (e.g. human and machine agents collaborating in information seeking and spot reporting). We identify some principles and areas of future research for "conversational sensemaking".

  20. MINIMIZATION OF CARBON LOSS IN COAL REBURNING

    International Nuclear Information System (INIS)

    This project develops Fuel-Flexible Reburning (FFR), which combines conventional reburning and Advanced Reburning (AR) technologies with an innovative method of delivering coal as the reburning fuel. The FFR can be retrofit to existing boilers and can be configured in several ways depending on the boiler, coal characteristics, and NOx control requirements. Fly ash generated by the technology will be a saleable byproduct for use in the cement and construction industries. FFR can also reduce NOx by 60%-70%, achieving an emissions level of 0.15 lb/106 Btu in many coal-fired boilers equipped with Low NOx Burners. Total process cost is expected to be one third to one half of that for Selective Catalytic Reduction (SCR). Activities during reporting period included design, manufacture, assembly, and shake down of the coal gasifier and pilot-scale testing of the efficiency of coal gasification products in FFR. Tests were performed in a 300 kW Boiler Simulator Facility. Several coals with different volatiles content were tested. Data suggested that incremental increase in the efficiency of NOx reduction due to the gasification was more significant for less reactive coals with low volatiles content. Experimental results also suggested that the efficiency of NOx reduction in FFR was higher when air was used as a transport media. Up to 14% increase in the efficiency of NOx reduction in comparison with that of basic reburning was achieved with air transport. Temperature and residence time in the gasification zone also affected the efficiency of NOx reduction

  1. NOVEL SLURRY PHASE DIESEL CATALYSTS FOR COAL-DERIVED SYNGAS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Dragomir B. Bukur; Dr. Ketil Hanssen; Alec Klinghoffer; Dr. Lech Nowicki; Patricia O' Dowd; Dr. Hien Pham; Jian Xu

    2001-01-07

    This report describes research conducted to support the DOE program in novel slurry phase catalysts for converting coal-derived synthesis gas to diesel fuels. The primary objective of this research program is to develop attrition resistant catalysts that exhibit high activities for conversion of coal-derived syngas.

  2. Chemistry and morphology of coal liquefaction. Quarterly report, April 1-June 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, H.

    1981-06-01

    In studying product distribution of a Fischer-Tropsch reaction over copper- and potassium-promoted iron catalysts as a function of CO conversion, it was found that relative methane formation declines with increasing conversion. The potassium catalysed reaction of graphite and steam to produce methane and CO/sub 2/ at low temperatures (250/sup 0/C) was further investigated and activation energies were determined. It was shown that potassium as KOH and as K/sub 2/CO/sub 3/, is catalytically effective and that impregnation of the graphite is as effective as surface deposition of K. Other alkali oxides are being investigated. It is hoped that this work may eventually lead to production of higher hydrocarbons. Electron microscope investigations of the potassium-promoted graphite, used in the conversion to methane described clearly show the progressive gasification of the carbon along the graphite-potassium interface. Reaction of hetero-atom containing aromatic model compounds with hydrogen in the presence of homogeneous ruthenium catalysts and a base gave quantitative hydrogenation of the hetero-atom containing ring, without hydrogenation of other rings. Similar results were obtained with homogeneous manganese catalysts and with synthesis gas or with the water-gas shift reaction. If further confirmed, this can be of major importance in reducing the hydrogen requirements of coal liquid hydrocracking.

  3. Catalytic combustion over high temperature stable metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Berg, M. [TPS Termiska Processer AB, Nykoeping (Sweden)

    1996-12-31

    This thesis presents a study of the catalytic effects of two interesting high temperature stable metal oxides - magnesium oxide and manganese substituted barium hexa-aluminate (BMA) - both of which can be used in the development of new monolithic catalysts for such applications. In the first part of the thesis, the development of catalytic combustion for gas turbine applications is reviewed, with special attention to alternative fuels such as low-BTU gas, e.g. produced in an air blown gasifier. When catalytic combustion is applied for such a fuel, the primary advantage is the possibility of decreasing the conversion of fuel nitrogen to NO{sub x}, and achieving flame stability. In the experimental work, MgO was shown to have a significant activity for the catalytic combustion of methane, lowering the temperature needed to achieve 10 percent conversion by 270 deg C compared with homogeneous combustion.The reaction kinetics for methane combustion over MgO was also studied. It was shown that the heterogeneous catalytic reactions were dominant but that the catalytically initiated homogeneous gas phase reactions were also important, specially at high temperatures. MgO and BMA were compared. The latter showed a higher catalytic activity, even when the differences in activity decreased with increasing calcination temperature. For BMA, CO{sub 2} was the only product detected, but for MgO significant amounts of CO and C{sub 2}-hydrocarbons were formed. BMA needed a much lower temperature to achieve total conversion of other fuels, e.g. CO and hydrogen, compared to the temperature for total conversion of methane. This shows that BMA-like catalysts are interesting for combustion of fuel mixtures with high CO and H{sub 2} content, e.g. gas produced from gasification of biomass. 74 refs

  4. Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, Mary J.; Jones, Susanne B.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium (NABC) in collaboration with Virent, Inc.. Technical barriers and key research needs that should be pursued for the catalytic conversion of sugars pathway to be competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks have been identified.

  5. Coal Mines Security System

    OpenAIRE

    Ankita Guhe; Shruti Deshmukh; Bhagyashree Borekar; Apoorva Kailaswar; Milind E. Rane

    2012-01-01

    Geological circumstances of mine seem to be extremely complicated and there are many hidden troubles. Coal is wrongly lifted by the musclemen from coal stocks, coal washeries, coal transfer and loading points and also in the transport routes by malfunctioning the weighing of trucks. CIL —Coal India Ltd is under the control of mafia and a large number of irregularities can be contributed to coal mafia. An Intelligent Coal Mine Security System using data acquisition method utilizes sensor, auto...

  6. Effects of coal drying on the pyrolysis and in-situ gasification characteristics of lignite coals

    International Nuclear Information System (INIS)

    Highlights: • Effect of coal drying on lignite pyrolysis was studied by TG-MS and a novel reactor. • Coal type, final temperature and heating method had key effects during pyrolysis. • We developed a new method to study morphological changes during char gasification. • It initially showed shrinking particle mode, and then changed to shrinking core mode. • Insignificant steam deactivation of char was verified by the active sites mechanism. - Abstract: Pyrolysis behaviors of two lignite coals with different drying conditions were determined by a thermogravimetric analyzer coupled with mass spectrometer (TG-MS) and a high-frequency furnace. An in-situ heating stage microscope was adopted to observe the morphological changes during char-CO2 gasification process. It is concluded that the effects of moisture contents in coals on the gaseous release process during coal pyrolysis mainly depend on coal type, final pyrolysis temperature and heating method. The in-situ heating stage experiments indicate that the shrinking particle mode is suitable to illustrate the gasification reaction mechanism in the initial and midterm reaction stages of all the lignite char samples. Although drying conditions have significant effects on coal pyrolysis process under rapid heating, these dewatering conditions result in little noticeable reactivity loss of the char during the subsequent char-CO2 gasification reaction. The measuring results of catalytic active sites can well explain the similar reactivity of lignite coals with different drying conditions

  7. Catalytic distillation process

    Science.gov (United States)

    Smith, Jr., Lawrence A.

    1982-01-01

    A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  8. Catalytic Functions of Standards

    NARCIS (Netherlands)

    K. Blind (Knut)

    2009-01-01

    textabstractThe three different areas and the examples have illustrated several catalytic functions of standards for innovation. First, the standardisation process reduces the time to market of inventions, research results and innovative technologies. Second, standards themselves promote the diffusi

  9. Solid superacid-catalyzed hydroconversion of an extraction residue from Lingwu bituminous coal

    Institute of Scientific and Technical Information of China (English)

    Xiao-Ming Yue; Xian-Yong Wei; Bing Sun; Ying-Hua Wang; Zhi-Min Zong; Zi-Wu Liu

    2012-01-01

    A solid superacid was prepared as a catalyst.The catalyst was characterized by ammonia temperatureprogrammed desorption,surface property measurement,and analyses with scanning electron microscopy and Fourier transform infrared spectrometry.A extraction residue from Lingwu subbituminous coal was subject to non-catalytic and catalytic hydroconversion using cyclohexane as the solvent under pressurized hydrogen at 300 ℃ for 3h.The results show that the total yield of petroleum ether-extractable arenes from catalytic hydroconversion is much higher than that from non-catalytic hydroconversion.The cleavage of Car-Calk bonds in the residue could significantly proceed during catalytic hydroconversion.

  10. Alcohols as hydrogen-donor solvents for treatment of coal

    Science.gov (United States)

    Ross, David S.; Blessing, James E.

    1981-01-01

    A method for the hydroconversion of coal by solvent treatment at elevated temperatures and pressure wherein an alcohol having an .alpha.-hydrogen atom, particularly a secondary alcohol such as isopropanol, is utilized as a hydrogen donor solvent. In a particular embodiment, a base capable of providing a catalytically effective amount of the corresponding alcoholate anion under the solvent treatment conditions is added to catalyze the alcohol-coal reaction.

  11. Flash pyrolysis of coal-solvent slurry prepared from the oxidized coal and the coal dissolved in solvent; Ichibu yokaishita sanka kaishitsutan slurry no jinsoku netsubunkai

    Energy Technology Data Exchange (ETDEWEB)

    Maki, T.; Mae, K.; Okutsu, H.; Miura, K. [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1996-10-28

    In order to develop a high-efficiency coal pyrolysis method, flash pyrolysis was experimented on slurry prepared by using liquid-phase oxidation reformed coal and a methanol-based solvent mixture. Australian Morwell coal was used for the experiment. The oxidized coal, into which carboxyl groups have been introduced, has the condensation structure relaxed largely, and becomes highly fluid slurry by means of the solvent. Char production can be suppressed by making the oxidation-pretreated coal into slurry, resulting in drastically improved pyrolytic conversion. The slurry was divided into dissolved solution, dried substance, extracted residue, and residual slurry, which were pyrolized independently. The dissolved solution showed very high conversion. Improvement in the conversion is contributed by separating the dissolved substances (coal macromolecules) at molecular levels, coagulating the molecules, suppressing cross-link formation, and reducing molecular weight of the dissolved substances. Oxidized coal can be dissolved to 80% or higher by using several kinds of mixed solvents. As a result of the dissolution, a possibility was suggested on pyrolysis which is easy in handling and high in conversion. 7 refs., 6 figs., 2 tabs.

  12. A non-stationary model for catalytic converters with cylindrical geometry

    OpenAIRE

    Hoernel, J. -D.

    2006-01-01

    We prove some existence and uniqueness results and some qualitative properties for the solution of a system modelling the catalytic conversion in a cylinder. This model couples parabolic partial differential equations posed in a cylindrical domain and on its boundary.

  13. Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction Year 6 - Activity 1.14 - Development of a National Center for Hydrogen Technology

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, Michael; Henderson, Ann

    2012-04-01

    near-zero hazardous air or water pollution. This technology would also be conducive to the efficient coproduction of methane and hydrogen while also generating a relatively pure CO{sub 2} stream suitable for enhanced oil recovery (EOR) or sequestration. Specific results of bench-scale testing in the 4- to 38-lb/hr range in the EERC pilot system demonstrated high methane yields approaching 15 mol%, with high hydrogen yields approaching 50%. This was compared to an existing catalytic gasification model developed by GPE for its process. Long-term operation was demonstrated on both Powder River Basin subbituminous coal and on petcoke feedstocks utilizing oxygen injection without creating significant bed agglomeration. Carbon conversion was greater than 80% while operating at temperatures less than 1400°F, even with the shorter-than-desired reactor height. Initial designs for the GPE gasification concept called for a height that could not be accommodated by the EERC pilot facility. More gas-phase residence time should allow the syngas to be converted even more to methane. Another goal of producing significant quantities of highly concentrated catalyzed char for catalyst recovery and material handling studies was also successful. A Pd–Cu membrane was also successfully tested and demonstrated to produce 2.54 lb/day of hydrogen permeate, exceeding the desired hydrogen permeate production rate of 2.0 lb/day while being tested on actual coal-derived syngas that had been cleaned with advanced warm-gas cleanup systems. The membranes did not appear to suffer any performance degradation after exposure to the cleaned, warm syngas over a nominal 100-hour test.

  14. Catalytic Oxidation of Methane into Methanol over Copper-Exchanged Zeolites with Oxygen at Low Temperature

    OpenAIRE

    Narsimhan, Karthik; Iyoki, Kenta; Dinh, Kimberly; Román-Leshkov, Yuriy

    2016-01-01

    The direct catalytic conversion of methane to liquid oxygenated compounds, such as methanol or dimethyl ether, at low temperature using molecular oxygen is a grand challenge in C–H activation that has never been met with synthetic, heterogeneous catalysts. We report the first demonstration of direct, catalytic oxidation of methane into methanol with molecular oxygen over copper-exchanged zeolites at low reaction temperatures (483–498 K). Reaction kinetics studies show sustained catalytic acti...

  15. Oxidation of Mercury in Products of Coal Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Peter Walsh; Giang Tong; Neeles Bhopatkar; Thomas Gale; George Blankenship; Conrad Ingram; Selasi Blavo Tesfamariam Mehreteab; Victor Banjoko; Yohannes Ghirmazion; Heng Ban; April Sibley

    2009-09-14

    Laboratory measurements of mercury oxidation during selective catalytic reduction (SCR) of nitric oxide, simulation of pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash, and synthesis of new materials for simultaneous oxidation and adsorption of mercury, were performed in support of the development of technology for control of mercury emissions from coal-fired boilers and furnaces. Conversion of gas-phase mercury from the elemental state to water-soluble oxidized form (HgCl{sub 2}) enables removal of mercury during wet flue gas desulfurization. The increase in mercury oxidation in a monolithic V{sub 2}O{sub 5}-WO{sub 3}/TiO{sub 2} SCR catalyst with increasing HCl at low levels of HCl (< 10 ppmv) and decrease in mercury oxidation with increasing NH{sub 3}/NO ratio during SCR were consistent with results of previous work by others. The most significant finding of the present work was the inhibition of mercury oxidation in the presence of CO during SCR of NO at low levels of HCl. In the presence of 2 ppmv HCl, expected in combustion products from some Powder River Basin coals, an increase in CO from 0 to 50 ppmv reduced the extent of mercury oxidation from 24 {+-} 3 to 1 {+-} 4%. Further increase in CO to 100 ppmv completely suppressed mercury oxidation. In the presence of 11-12 ppmv HCl, increasing CO from 0 to {approx}120 ppmv reduced mercury oxidation from {approx}70% to 50%. Conversion of SO{sub 2} to sulfate also decreased with increasing NH{sub 3}/NO ratio, but the effects of HCl and CO in flue gas on SO{sub 2} oxidation were unclear. Oxidation and adsorption of mercury by unburned carbon and fly ash enables mercury removal in a particulate control device. A chemical kinetic mechanism consisting of nine homogeneous and heterogeneous reactions for mercury oxidation and removal was developed to interpret pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash in experiments at pilot

  16. Advanced Catalysis and Nanostructure Design for Solar Energy Conversion

    OpenAIRE

    Shaohua Shen; Ke Sun; Haimin Zhang; Yongqi Liang

    2014-01-01

    Solar energy conversion has been intensively studied in past decades and has been shown to be greatly effective for solving the serious environmental pollution and energy shortage problems. Photoelectrocatalysis and photovoltaics have been considered as the two main approaches for solar energy conversion and utilization, which are generally involved with nanostructured materials and/or catalytic processes, greatly affecting the efficiencies for solar energy conversion. Then, it is necessary t...

  17. Catalytic ignition of light hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    K. L. Hohn; C.-C. Huang; C. Cao

    2009-01-01

    Catalytic ignition refers to phenomenon where sufficient energy is released from a catalytic reaction to maintain further reaction without additional extemai heating. This phenomenon is important in the development of catalytic combustion and catalytic partial oxidation processes, both of which have received extensive attention in recent years. In addition, catalytic ignition studies provide experimental data which can be used to test theoretical hydrocarbon oxidation models. For these reasons, catalytic ignition has been frequently studied. This review summarizes the experimental methods used to study catalytic ignition of light hydrocarbons and describes the experimental and theoretical results obtained related to catalytic ignition. The role of catalyst metal, fuel and fuel concentration, and catalyst state in catalytic ignition are examined, and some conclusions are drawn on the mechanism of catalytic ignition.

  18. Coal industry annual 1997

    International Nuclear Information System (INIS)

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs

  19. Coal industry annual 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  20. Coal industry annual 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.