WorldWideScience

Sample records for catalytic base arginine

  1. Theoretical insights into catalytic mechanism of protein arginine methyltransferase 1.

    Directory of Open Access Journals (Sweden)

    Ruihan Zhang

    Full Text Available Protein arginine methyltransferase 1 (PRMT1, the major arginine asymmetric dimethylation enzyme in mammals, is emerging as a potential drug target for cancer and cardiovascular disease. Understanding the catalytic mechanism of PRMT1 will facilitate inhibitor design. However, detailed mechanisms of the methyl transfer process and substrate deprotonation of PRMT1 remain unclear. In this study, we present a theoretical study on PRMT1 catalyzed arginine dimethylation by employing molecular dynamics (MD simulation and quantum mechanics/molecular mechanics (QM/MM calculation. Ternary complex models, composed of PRMT1, peptide substrate, and S-adenosyl-methionine (AdoMet as cofactor, were constructed and verified by 30-ns MD simulation. The snapshots selected from the MD trajectory were applied for the QM/MM calculation. The typical SN2-favored transition states of the first and second methyl transfers were identified from the potential energy profile. Deprotonation of substrate arginine occurs immediately after methyl transfer, and the carboxylate group of E144 acts as proton acceptor. Furthermore, natural bond orbital analysis and electrostatic potential calculation showed that E144 facilitates the charge redistribution during the reaction and reduces the energy barrier. In this study, we propose the detailed mechanism of PRMT1-catalyzed asymmetric dimethylation, which increases insight on the small-molecule effectors design, and enables further investigations into the physiological function of this family.

  2. Effect of L-arginine on the catalytic activity and stability of nickel nanoparticles for hydrolytic dehydrogenation of ammonia borane

    Science.gov (United States)

    Umegaki, Tetsuo; Xu, Qiang; Kojima, Yoshiyuki

    2012-10-01

    Amorphous nickel catalysts were synthesized by reducing the nickel(II) species in an aqueous NaBH4/NH3BH3 solution with and without L-arginine. The nickel catalyst with L-arginine maintains relatively high activity for hydrolysis of NH3BH3 to generate a stoichiometric amount of hydrogen with the cycle number up to 11 (827 mL s-1 (mol-Ni)-1 at the 11th cycle with L-arginine = 35 mg), while the reaction rate in the presence of the bare nickel catalyst was relatively low through the cycle number up to 11 (232 mL s-1 (mol-Ni)-1 at the 11th cycle). After catalytic reaction, the nickel catalyst with L-arginine possesses the high dispersion (diameters of nickel nanoparticles L-arginine maintains the dispersion of nickel nanoparticles (diameters of nickel nanoparticles <10 nm), leading to higher activity against cycle tests than the bare nickel catalyst.

  3. 3-Nitropropionic Acid is a Suicide Inhibitor of MitochondrialRespiration that, Upon Oxidation by Complex II, Forms a Covalent AdductWith a Catalytic Base Arginine in the Active Site of the Enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li-shar; Sun, Gang; Cobessi, David; Wang, Andy C.; Shen,John T.; Tung, Eric Y.; Anderson, Vernon E.; Berry, Edward A.

    2005-12-01

    We report three new structures of mitochondrial respiratory Complex II (succinate ubiquinone oxidoreductase, E.C. 1.3.5.1) at up to 2.1 {angstrom} resolution, with various inhibitors. The structures define the conformation of the bound inhibitors and suggest the residues involved in substrate binding and catalysis at the dicarboxylate site. In particular they support the role of Arg297 as a general base catalyst accepting a proton in the dehydrogenation of succinate. The dicarboxylate ligand in oxaloacetate-containing crystals appears to be the same as that reported for Shewanella flavocytochrome c treated with fumarate. The plant and fungal toxin 3-nitropropionic acid, an irreversible inactivator of succinate dehydrogenase, forms a covalent adduct with the side chain of Arg297. The modification eliminates a trypsin cleavage site in the flavoprotein, and tandem mass spectroscopic analysis of the new fragment shows the mass of Arg 297 to be increased by 83 Da and to have potential of losing 44 Da, consistent with decarboxylation, during fragmentation.

  4. Role of Arginine 293 and Glutamine 288 in Communication between Catalytic and Allosteric Sites in Yeast Ribonucleotide Reductase

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Md. Faiz; Kaushal, Prem Singh; Wan, Qun; Wijerathna, Sanath R.; An, Xiuxiang; Huang, Mingxia; Dealwis, Chris Godfrey (Case Western); (Colorado)

    2012-11-01

    Ribonucleotide reductases (RRs) catalyze the rate-limiting step of de novo deoxynucleotide (dNTP) synthesis. Eukaryotic RRs consist of two proteins, RR1 ({alpha}) that contains the catalytic site and RR2 ({beta}) that houses a diferric-tyrosyl radical essential for ribonucleoside diphosphate reduction. Biochemical analysis has been combined with isothermal titration calorimetry (ITC), X-ray crystallography and yeast genetics to elucidate the roles of two loop 2 mutations R293A and Q288A in Saccharomyces cerevisiae RR1 (ScRR1). These mutations, R293A and Q288A, cause lethality and severe S phase defects, respectively, in cells that use ScRR1 as the sole source of RR1 activity. Compared to the wild-type enzyme activity, R293A and Q288A mutants show 4% and 15%, respectively, for ADP reduction, whereas they are 20% and 23%, respectively, for CDP reduction. ITC data showed that R293A ScRR1 is unable to bind ADP and binds CDP with 2-fold lower affinity compared to wild-type ScRR1. With the Q288A ScRR1 mutant, there is a 6-fold loss of affinity for ADP binding and a 2-fold loss of affinity for CDP compared to the wild type. X-ray structures of R293A ScRR1 complexed with dGTP and AMPPNP-CDP [AMPPNP, adenosine 5-({beta},{gamma}-imido)triphosphate tetralithium salt] reveal that ADP is not bound at the catalytic site, and CDP binds farther from the catalytic site compared to wild type. Our in vivo functional analyses demonstrated that R293A cannot support mitotic growth, whereas Q288A can, albeit with a severe S phase defect. Taken together, our structure, activity, ITC and in vivo data reveal that the arginine 293 and glutamine 288 residues of ScRR1 are crucial in facilitating ADP and CDP substrate selection.

  5. A new arginine-based dental adhesive system: formulation, mechanical and anti-caries properties.

    Science.gov (United States)

    Geraldeli, Saulo; Soares, Eveline F; Alvarez, Andres J; Farivar, Tanaz; Shields, Robert C; Sinhoreti, Mario A C; Nascimento, Marcelle M

    2017-08-01

    Secondary caries at the margins of composite restorations has been attributed to adhesive failure and consequent accumulation of cariogenic biofilms. To develop and evaluate an etch-and-rinse adhesive system containing arginine for sustainable release and recharge without affecting its mechanical properties. Arginine metabolism by oral bacteria generates ammonia, which neutralizes glycolytic acids and creates a neutral environmental pH that is less favorable to the growth of caries pathogens, thus reducing the caries risk at the tooth-composite interface. Experimental adhesives were formulated with methacrylate monomers and arginine at 5%, 7%, and 10% or no arginine (control). Adhesives were tested for: (i) mechanical properties of true stress (FS and UTS), modulus of elasticity (E), degree of conversion (DC), Knoop hardness number (KHN) and dentin microtensile bond strength (μ-TBS), (ii) arginine release and recharge, and (iii) antibacterial activities. Data was analyzed by t-test, one-way ANOVA and Tukey's tests. FS and UTS results showed no statistically significant differences between the 7% arginine-adhesive and control, while the results for E, DC, KHN and μ-TBS showed no difference among all groups. The 7% arginine-adhesive showed a high release rate of arginine (75.0μmol/cm 2 ) at 2h, and a more sustainable, controlled release rate (up to 0.2μmol/cm 2 ) at 30days. Incorporation of 7% arginine did not affect the physical and mechanical properties of the adhesive. Arginine was released from the adhesive at a rate and concentration that exhibited antibacterial effects, regardless of shifts in biofilm conditions such as sugar availability and pH. Secondary caries is recognized as the main reason for failure of dental restorations. The development of an arginine-based adhesive system has the potential to dramatically reduce the incidence and severity of secondary caries in adhesive restorations in a very economical fashion. Copyright © 2017 Elsevier Ltd

  6. Protein structure based prediction of catalytic residues

    Science.gov (United States)

    2013-01-01

    Background Worldwide structural genomics projects continue to release new protein structures at an unprecedented pace, so far nearly 6000, but only about 60% of these proteins have any sort of functional annotation. Results We explored a range of features that can be used for the prediction of functional residues given a known three-dimensional structure. These features include various centrality measures of nodes in graphs of interacting residues: closeness, betweenness and page-rank centrality. We also analyzed the distance of functional amino acids to the general center of mass (GCM) of the structure, relative solvent accessibility (RSA), and the use of relative entropy as a measure of sequence conservation. From the selected features, neural networks were trained to identify catalytic residues. We found that using distance to the GCM together with amino acid type provide a good discriminant function, when combined independently with sequence conservation. Using an independent test set of 29 annotated protein structures, the method returned 411 of the initial 9262 residues as the most likely to be involved in function. The output 411 residues contain 70 of the annotated 111 catalytic residues. This represents an approximately 14-fold enrichment of catalytic residues on the entire input set (corresponding to a sensitivity of 63% and a precision of 17%), a performance competitive with that of other state-of-the-art methods. Conclusions We found that several of the graph based measures utilize the same underlying feature of protein structures, which can be simply and more effectively captured with the distance to GCM definition. This also has the added the advantage of simplicity and easy implementation. Meanwhile sequence conservation remains by far the most influential feature in identifying functional residues. We also found that due the rapid changes in size and composition of sequence databases, conservation calculations must be recalibrated for specific

  7. Neuraminidase-mediated haemagglutination of recent human influenza A(H3N2) viruses is determined by arginine 150 flanking the neuraminidase catalytic site.

    Science.gov (United States)

    Mögling, Ramona; Richard, Mathilde J; Vliet, Stefan van der; Beek, Ruud van; Schrauwen, Eefje J A; Spronken, Monique I; Rimmelzwaan, Guus F; Fouchier, Ron A M

    2017-06-01

    Over the last decade, an increasing proportion of circulating human influenza A(H3N2) viruses exhibited haemagglutination activity that was sensitive to neuraminidase inhibitors. This change in haemagglutination as compared to older circulating A(H3N2) viruses prompted an investigation of the underlying molecular basis. Recent human influenza A(H3N2) viruses were found to agglutinate turkey erythrocytes in a manner that could be blocked with either oseltamivir or neuraminidase-specific antisera, indicating that agglutination was driven by neuraminidase, with a low or negligible contribution of haemagglutinin. Using representative virus recombinants it was shown that the haemagglutinin of a recent A(H3N2) virus indeed had decreased activity to agglutinate turkey erythrocytes, while its neuraminidase displayed increased haemagglutinating activity. Viruses with chimeric and mutant neuraminidases were used to identify the amino acid substitution histidine to arginine at position 150 flanking the neuraminidase catalytic site as the determinant of this neuraminidase-mediated haemagglutination. An analysis of publicly available neuraminidase gene sequences showed that viruses with histidine at position 150 were rapidly replaced by viruses with arginine at this position between 2005 and 2008, in agreement with the phenotypic data. As a consequence of neuraminidase-mediated haemagglutination of recent A(H3N2) viruses and poor haemagglutination via haemagglutinin, haemagglutination inhibition assays with A(H3N2) antisera are no longer useful to characterize the antigenic properties of the haemagglutinin of these viruses for vaccine strain selection purposes. Continuous monitoring of the evolution of these viruses and potential consequences for vaccine strain selection remains important.

  8. Arginine-based biodegradable ether-ester polymers with low cytotoxicity as potential gene carriers.

    Science.gov (United States)

    Memanishvili, Tamar; Zavradashvili, Nino; Kupatadze, Nino; Tugushi, David; Gverdtsiteli, Marekh; Torchilin, Vladimir P; Wandrey, Christine; Baldi, Lucia; Manoli, Sagar S; Katsarava, Ramaz

    2014-08-11

    The success of gene therapy depends on safe and effective gene carriers. Despite being widely used, synthetic vectors based on poly(ethylenimine) (PEI), poly(l-lysine) (PLL), or poly(l-arginine) (poly-Arg) are not yet fully satisfactory. Thus, both improvement of established carriers and creation of new synthetic vectors are necessary. A series of biodegradable arginine-based ether-ester polycations was developed, which consists of three main classes: amides, urethanes, and ureas. Compared to that of PEI, PLL, and poly-Arg, much lower cytotoxicity was achieved for the new cationic arginine-based ether-ester polymers. Even at polycation concentrations up to 2 mg/mL, no significant negative effect on cell viability was observed upon exposure of several cell lines (murine mammary carcinoma, human cervical adenocarcinoma, murine melanoma, and mouse fibroblast) to the new polymers. Interaction with plasmid DNA yielded compact and stable complexes. The results demonstrate the potential of arginine-based ether-ester polycations as nonviral carriers for gene therapy applications.

  9. Mannitol/l-Arginine-Based Formulation Systems for Freeze Drying of Protein Pharmaceuticals: Effect of the l-Arginine Counter Ion and Formulation Composition on the Formulation Properties and the Physical State of Mannitol.

    Science.gov (United States)

    Stärtzel, Peter; Gieseler, Henning; Gieseler, Margit; Abdul-Fattah, Ahmad M; Adler, Michael; Mahler, Hanns-Christian; Goldbach, Pierre

    2016-10-01

    Previous studies have shown that protein storage stability in freeze-dried l-arginine-based systems improved in the presence of chloride ions. However, chloride ions reduced the glass transition temperature of the freeze concentrate (Tg') and made freeze drying more challenging. In this study, l-arginine was freeze dried with mannitol to obtain partially crystalline solids that can be freeze dried in a fast process and result in elegant cakes. We characterized the effect of different l-arginine counter ions on physicochemical properties of mannitol compared with mannitol/sucrose systems. Thermal properties of formulations with different compositions were correlated to thermal history during freeze drying and to physicochemical properties (cake appearance, residual moisture, reconstitution time, crystallinity). Partially crystalline solids were obtained even at the highest l-arginine level (mannitol:l-arginine of 2:1) used in this study. All l-arginine-containing formulations yielded elegant cakes. Only cakes containing l-arginine chloride and succinate showed a surface "crust" formed by phase separation. X-ray powder diffraction showed that inhibition of mannitol crystallization was stronger for l-arginine compared with sucrose and varied with the type of l-arginine counter ion. The counter ion affected mannitol polymorphism and higher levels of mannitol hemi-hydrate were obtained at high levels of l-arginine chloride. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. Catalytic

    Directory of Open Access Journals (Sweden)

    S.A. Hanafi

    2014-03-01

    Full Text Available A series of dealuminated Y-zeolites impregnated by 0.5 wt% Pt catalysts promoted by different amounts of Ni, Pd or Cr (0.3 and 0.6 wt% were prepared and characterized as hydrocracking catalysts. The physicochemical and structural characterization of the solid catalysts were investigated and reported through N2 physisorption, XRD, TGA-DSC, FT-IR and TEM techniques. Solid catalysts surface acidities were investigated through FT-IR spectroscopy aided by pyridine adsorption. The solid catalytic activities were evaluated through hydroconversion of n-hexane and n-heptane employing micro-catalytic pulse technique directly connected to a gas chromatograph analyzer. The thermal stability of the solids was also investigated up to 800 °C. Crystallinity studies using the XRD technique of all modified samples proved analogous to the parent Y-zeolite, exhibiting nearly an amorphous and microcrystalline character of the second metal oxides. Disclosure of bimetallic catalysts crystalline characterization, through XRD, was not viable. The nitrogen adsorption–desorption isotherms for all samples concluded type I adsorption isotherms, without any hysteresis loop, indicating that the entire pore system is composed of micropores. TEM micrographs of the solid catalysts demonstrate well-dispersed Pt, Ni and Cr nanoparticles having sizes of 2–4 nm and 7–8 nm, respectively. The catalytic activity results indicate that the bimetallic (0.5Pt–0.3Cr/D18H–Y catalyst is the most active towards n-hexane and n-heptane isomerization while (0.5Pt–0.6Ni/D18H–Y catalyst can be designed as most suitable as a cracking catalyst.

  11. Monomeric Corynebacterium glutamicum N-acetyl glutamate kinase maintains sensitivity to L-arginine but has a lower intrinsic catalytic activity.

    Science.gov (United States)

    Huang, Yuanyuan; Li, Cheng; Zhang, Hao; Liang, Shuli; Han, Shuangyan; Lin, Ying; Yang, Xiaorong; Zheng, Suiping

    2016-02-01

    N-acetyl glutamate kinase (NAGK) is a key enzyme in the synthesis of L-arginine, and L-arginine-sensitive NAGK typically has hexameric architecture. Defining the relationship between this architecture and L-arginine inhibition can provide a foundation to identify the key amino acids involved in the allosteric regulation network of L-arginine. In the present study, the key amino acids in the N-terminal helix (N-helix) of Corynebacterium glutamicum (Cg) NAGK required for hexamer formation were determined using structural homology modeling and site-directed mutagenesis. It was also verified that hexameric architecture is required for the positive cooperativity of inhibition by L-arginine and for efficient catalysis, but that it is not the determinant of inhibition by L-arginine. Monomeric mutants retained a similar sensitivity to L-arginine as the hexameric form, indicating that monomers contain an independent, sensitive signal transduction network of L-arginine to mediate allosteric regulation. Mutation studies of CgNAGKs also revealed that amino acid residues 18-23 of the N-helix are required for inhibition by L-arginine, and that E19 may be an essential amino acid influencing the apparent affinity of L-arginine. Collectively, these studies may illuminate the basic mechanism of metabolic homeostasis of C. glutamicum.

  12. Arginine-based cationic liposomes for efficient in vitro plasmid DNA delivery with low cytotoxicity

    Directory of Open Access Journals (Sweden)

    Sarker SR

    2013-04-01

    Full Text Available Satya Ranjan Sarker, Yumiko Aoshima, Ryosuke Hokama, Takafumi Inoue, Keitaro Sou, Shinji Takeoka Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns, Tokyo, Japan Background: Currently available gene delivery vehicles have many limitations such as low gene delivery efficiency and high cytotoxicity. To overcome these drawbacks, we designed and synthesized two cationic lipids comprised of n-tetradecyl alcohol as the hydrophobic moiety, 3-hydrocarbon chain as the spacer, and different counterions (eg, hydrogen chloride [HCl] salt or trifluoroacetic acid [TFA] salt in the arginine head group. Methods: Cationic lipids were hydrated in 4-(2-hydroxyethyl-1-piperazineethanesulfonic acid (HEPES buffer to prepare cationic liposomes and characterized in terms of their size, zeta potential, phase transition temperature, and morphology. Lipoplexes were then prepared and characterized in terms of their size and zeta potential in the absence or presence of serum. The morphology of the lipoplexes was determined using transmission electron microscopy and atomic force microscopy. The gene delivery efficiency was evaluated in neuronal cells and HeLa cells and compared with that of lysine-based cationic assemblies and Lipofectamine™ 2000. The cytotoxicity level of the cationic lipids was investigated and compared with that of Lipofectamine™ 2000. Results: We synthesized arginine-based cationic lipids having different counterions (ie, HCl-salt or TFA-salt that formed cationic liposomes of around 100 nm in size. In the absence of serum, lipoplexes prepared from the arginine-based cationic liposomes and plasmid (p DNA formed large aggregates and attained a positive zeta potential. However, in the presence of serum, the lipoplexes were smaller in size and negative in zeta potential. The morphology of the lipoplexes was vesicular. Arginine-based cationic liposomes with HCl-salt showed the

  13. Mass spectrometry-based identification and characterisation of lysine and arginine methylation in the human proteome.

    Science.gov (United States)

    Bremang, Michael; Cuomo, Alessandro; Agresta, Anna Maria; Stugiewicz, Magdalena; Spadotto, Valeria; Bonaldi, Tiziana

    2013-09-01

    Protein methylation is a post-translational modification (PTM) by which a variable number of methyl groups are transferred to lysine and arginine residues within proteins. Despite increased interest in this modification due to its reversible nature and its emerging role in a diverse set of biological pathways beyond chromatin, global identification of protein methylation has remained an unachieved goal. To characterise sites of lysine and arginine methylation beyond histones, we employed an approach that combines heavy methyl stable isotope labelling by amino acids in cell culture (hmSILAC) with high-resolution mass spectrometry-based proteomics. Through a broad evaluation of immuno-affinity enrichment and the application of two classical protein separation techniques prior to mass spectrometry, to nucleosolic and cytosolic fractions separately, we identified a total of 501 different methylation types, on 397 distinct lysine and arginine sites, present on 139 unique proteins. Our results considerably extend the number of known in vivo methylation sites and indicate their significant presence on several protein complexes involved at all stages of gene expression, from chromatin remodelling and transcription to splicing and translation. In addition, we describe the potential of the hmSILAC approach for accurate relative quantification of methylation levels between distinct functional states.

  14. Highly efficient catalytic systems based on Pd-coated microbeads

    Science.gov (United States)

    Lim, Jin Hyun; Cho, Ahyoung; Lee, Seung Hwan; Park, Bumkyo; Kang, Dong Woo; Koo, Chong Min; Yu, Taekyung; Park, Bum Jun

    2018-01-01

    The efficiency of two prototype catalysis systems using palladium (Pd)-coated microparticles was investigated with regard to the recovery and recyclability of the catalytic particles. One such system was the interface-adsorption method, in which polymer particles coated with Pd nanoparticles strongly and irreversibly attach to the oil-water interface. Due to the irreversible adsorption of the catalytic particles to the interface, particle loss was completely prevented while mixing the aqueous solution and while collecting the products. The other system was based on the magnetic field-associated particle recovery method. The use of polymeric microparticles containing Pd nanoparticles and magnetite nanoparticles accelerated the sedimentation of the particles in the aqueous phase by applying a strong magnetic field, consequently suppressing drainage of the particles from the reactor along the product stream. Upon multiple runs of the catalytic reactions, it was found that conversion does not change significantly, demonstrating the excellent recyclability and performance efficiency in the catalytic processes.

  15. Freeze-Drying of L-Arginine/Sucrose-Based Protein Formulations, Part 2: Optimization of Formulation Design and Freeze-Drying Process Conditions for an L-Arginine Chloride-Based Protein Formulation System.

    Science.gov (United States)

    Stärtzel, Peter; Gieseler, Henning; Gieseler, Margit; Abdul-Fattah, Ahmad M; Adler, Michael; Mahler, Hanns-Christian; Goldbach, Pierre

    2015-12-01

    We recently reported that the presence of chloride counter ions in freeze-dried l-arginine/sucrose formulations provided the greatest protein stability, but led to low collapse temperatures and glass transition temperatures of the freeze concentrates. The objectives of this study were to identify l-arginine chloride-based formulations and optimize freeze-drying process conditions to deliver a freeze-dried product with good physical quality attributes (including cake appearance, residual moisture, and reconstitution time). Additional properties were tested such as thermal properties, cake microstructure, and protein physical stability. Excipient concentrations were varied with and without a model protein (bovine serum albumin, BSA). Formulations were frozen with and without annealing or with and without controlled nucleation. Primary drying was conducted at high and low shelf temperature. Cakes with least defects and optimum physical attributes were achieved when protein to excipient ratios were high. Controlled nucleation led to elegant cakes for most systems at a low shelf temperature. Replacing BSA by a monoclonal antibody showed that protein (physical) stability was slightly improved under stress storage temperature (i.e., 40°C) in the presence of a low concentration of l-arginine in a sucrose-based formulation. At higher l-arginine concentrations, cake defects increased. Using optimized formulation design, addition of l-arginine chloride to a sucrose-based formulation provided elegant cakes and benefits for protein stability. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. Ni(II) complexes of arginine Schiff-bases and its interaction with DNA

    International Nuclear Information System (INIS)

    Sallam, S.A.; Abbas, A.M.

    2013-01-01

    Ni(II) complexes with Schiff-bases obtained by condensation of arginine with salicylaldehyde; 2,3-; 2,4-; 2,5-dihydroxybenzaldehyde and o-hydroxynaphthaldehyde have been synthesized using the template method in ethanol or ammonia media. They were characterized by elemental analyses, conductivity measurements, magnetic moment, UV, IR and 1 H NMR spectra as well as thermal analysis (TG, DTG and DTA). The Schiff-bases are dibasic tridentate donors and the complexes have diamagnetic square planar and octahedral structures. The complexes decompose in three steps where kinetic and thermodynamic parameters of the decomposition steps were computed. The interactions of the formed complexes with FM-DNA were monitored by UV and fluorescence spectroscopy. -- Highlights: ► Arginine Schiff-bases and their nickel(II) complexes have been synthesized. ► Magnetic and spectral data show diamagnetic square planar and octahedral complexes. ► The complexes thermally decompose in three stages. Interaction with FM-DNA shows hyperchromism with blue shift

  17. Polydiacetylenyl β-cyclodextrin based smart vesicles for colorimetric assay of arginine and lysine

    Science.gov (United States)

    Cho, Eunae; Kim, Hwanhee; Choi, Youngjin; Paik, Seung R.; Jung, Seunho

    2016-08-01

    Selective visualization of arginine and lysine has been explored among 20 amino acids using the hybrid conjugate of β-cyclodextrin (β-CD) and polydiacetylene (PDA). The mono pentacosa-10,12-diynyl aminomethyl group was successfully coupled to either the primary or the secondary face of β-CD, where mono-6-amino-6-deoxy-β-CD or mono-3-amino-3-deoxy-β-CD reacted with the N-hydroxysuccinimide ester of 10,12-pentacosadiynoic acid. In this combinatorial system, the cylindrical β-cyclodextrin functions as a channel for the introduction of the cationic amino acids to the artificial membrane. The membrane perturbation and aggregation by the target amino acids could be exclusively visualized as a blue to red color change based on the responsive polydiacetylene domain. These interesting findings demonstrated that the developed β-CD conjugated PDA system may offer a new method of cell-penetrating mechanism, a promising vector system, as well as impact the production industry of arginine or lysine.

  18. Freeze drying of L-arginine/sucrose-based protein formulations, part I: influence of formulation and arginine counter ion on the critical formulation temperature, product performance and protein stability.

    Science.gov (United States)

    Stärtzel, Peter; Gieseler, Henning; Gieseler, Margit; Abdul-Fattah, Ahmad M; Adler, Michael; Mahler, Hanns-Christian; Goldbach, Pierre

    2015-07-01

    The objective of this study was to investigate product performance of freeze dried l-arginine/sucrose-based formulations under variation of excipient weight ratios, l-arginine counter ions and formulation pH as a matrix to stabilize a therapeutic monoclonal antibody (MAb) during freeze drying and shelf life. Protein and placebo formulations were lyophilized at aggressive primary drying conditions and key attributes of the freeze dried solids were correlated to their thermal properties and critical formulation temperature. Stability (physical) during processing and long-term storage of the MAb in different formulations was assessed by SE-HPLC. Thermal properties of the mixtures were greatly affected by the type of l-arginine counter ion. High glass transition temperatures were achieved by adding multivalent acids, whereas the temperature values significantly decreased in the presence of chloride ions. All mixtures were stable during freeze drying, but storage stability varied for the different preparations and counter ions. For l-arginine-based formulations, the protein was most stable in the presence of chloride ion, showing no obvious correlation to estimated global mobility of the glass. Besides drying behavior and thermal properties of the freeze dried solids, the counter ion of l-arginine must be considered relevant for protein shelf life stability. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  19. Arginine-based inhibitors of nitric oxide synthase: therapeutic potential and challenges.

    Science.gov (United States)

    Víteček, Jan; Lojek, Antonín; Valacchi, Giuseppe; Kubala, Lukáš

    2012-01-01

    In the past three decades, nitric oxide has been well established as an important bioactive molecule implicated in regulation of cardiovascular, nervous, and immune systems. Therefore, it is not surprising that much effort has been made to find specific inhibitors of nitric oxide synthases (NOS), the enzymes responsible for production of nitric oxide. Among the many NOS inhibitors developed to date, inhibitors based on derivatives and analogues of arginine are of special interest, as this category includes a relatively high number of compounds with good potential for experimental as well as clinical application. Though this group of inhibitors covers early nonspecific compounds, modern drug design strategies such as biochemical screening and computer-aided drug design have provided NOS-isoform-specific inhibitors. With an emphasis on major advances in this field, a comprehensive list of inhibitors based on their structural characteristics is discussed in this paper. We provide a summary of their biochemical properties as well as their observed effects both in vitro and in vivo. Furthermore, we focus in particular on their pharmacology and use in recent clinical studies. The potential of newly designed specific NOS inhibitors developed by means of modern drug development strategies is highlighted.

  20. Arginine-Based Inhibitors of Nitric Oxide Synthase: Therapeutic Potential and Challenges

    Directory of Open Access Journals (Sweden)

    Jan Víteček

    2012-01-01

    Full Text Available In the past three decades, nitric oxide has been well established as an important bioactive molecule implicated in regulation of cardiovascular, nervous, and immune systems. Therefore, it is not surprising that much effort has been made to find specific inhibitors of nitric oxide synthases (NOS, the enzymes responsible for production of nitric oxide. Among the many NOS inhibitors developed to date, inhibitors based on derivatives and analogues of arginine are of special interest, as this category includes a relatively high number of compounds with good potential for experimental as well as clinical application. Though this group of inhibitors covers early nonspecific compounds, modern drug design strategies such as biochemical screening and computer-aided drug design have provided NOS-isoform-specific inhibitors. With an emphasis on major advances in this field, a comprehensive list of inhibitors based on their structural characteristics is discussed in this paper. We provide a summary of their biochemical properties as well as their observed effects both in vitro and in vivo. Furthermore, we focus in particular on their pharmacology and use in recent clinical studies. The potential of newly designed specific NOS inhibitors developed by means of modern drug development strategies is highlighted.

  1. Development and cytotoxicity of Schiff base derivative as a fluorescence probe for the detection of L-Arginine

    Science.gov (United States)

    Shang, Xuefang; Li, Jie; Guo, Kerong; Ti, Tongyu; Wang, Tianyun; Zhang, Jinlian

    2017-04-01

    Inspired from biological counter parts, chemical modification of Schiff base derivatives with function groups may provide a highly efficient method to detect amino acids. Therefore, a fluorescent probe involving Schiff base and hydroxyl group has been designed and prepared, which showed high response and specificity for Arginine (Arg) among normal eighteen standard kinds of amino acids (Alanine, Valine, Leucine, Isoleucine, Methionine, Asparticacid, Glutamicacid, Arginine, Glycine, Serine, Threonine, Asparagine, Phenylalanine, Histidine, Tryptophan, Proline, Lysine, Glutamine, Tyrosine and Cysteine). Furthermore, theoretical investigation further illustrated the possible binding mode in the host-guest interaction and the roles of molecular frontier orbitals in molecular interplay. In addition, the synthesized fluorescent probe exhibited high binding ability for Arg and low cytotoxicity to MCF-7 cells over a concentration range of 0-200 μg mL-1 which can be also used as a biosensor for the Arg detection in vivo.

  2. Neutral loss fragmentation pattern based screening for arginine-rich natural products in Xenorhabdus and Photorhabdus.

    Science.gov (United States)

    Fuchs, Sebastian W; Sachs, Christian C; Kegler, Carsten; Nollmann, Friederike I; Karas, Michael; Bode, Helge B

    2012-08-21

    Although sharing a certain degree of structural uniformity, natural product classes exhibit variable functionalities such as different amino acid or acyl residues. During collision induced dissociation, some natural products exhibit a conserved fragmentation pattern close to the precursor ion. The observed fragments result from a shared set of neutral losses, creating a unique fragmentation pattern, which can be used as a fingerprint for members of these natural product classes. The culture supernatants of 69 strains of the entomopathogenic bacteria Photorhabdus and Xenorhabdus were analyzed by MALDI-MS(2), and a database comprising MS(2) data from each strain was established. This database was scanned for concordant fragmentation patterns of different compounds using a customized software, focusing on relative mass differences of the fragment ions to their precursor ion. A novel group of related natural products comprising 25 different arginine-rich peptides from 16 different strains was identified due to its characteristic neutral loss fragmentation pattern, and the structures of eight compounds were elucidated. Two biosynthesis gene clusters encoding nonribosomal peptide synthetases were identified, emphasizing the possibility to identify a group of structurally and biosynthetically related natural products based on their neutral loss fragmentation pattern.

  3. Catalytic Hydroisomerization Upgrading of Vegetable Oil-Based Insulating Oil

    Directory of Open Access Journals (Sweden)

    Dieu-Phuong Phan

    2018-03-01

    Full Text Available Due to its high biodegradability, high dielectric strength, and good thermal stability, vegetable oil is under consideration as an alternative transformer fluid for power system equipment, replacing traditional petroleum-based insulating oils. Its main drawbacks are its poor low-temperature properties arising from the crystallization of its long-chain normal paraffins, and its lower oxidative stability arising from its higher concentration of unsaturated fatty acids. Hydroisomerization/isomerization over bifunctional catalysts is considered to be an efficient pathway to upgrade vegetable oil-based insulating oil; this converts saturated/unsaturated long-chain fatty acids to branched isomers. The efficiency of this process depends crucially on the behavior of the catalyst system. This paper extensively reviews recent results on the influence that the metal phase and acidity, the effects of pore channels, and the balance between metal and acid sites have upon the activity and selectivity of catalytic hydroisomerization.

  4. Catalytic Transformation of Ethylbenzene over Y-Zeolite-based Catalysts

    KAUST Repository

    Al-Khattaf, Sulaiman

    2008-11-19

    Catalytic transformation of ethylbenzene (EB) has been investigated over ultrastable Y (USY)-zeolite-based catalysts in a novel riser simulator at different operating conditions. The effect of reaction conditions on EB conversion is reported. The USY catalyst (FCC-Y) was modified by steaming to form a significantly lower acidity catalyst (FCC-SY). The current study shows that the FCC-SY catalyst favors EB disproportionation more than cracking. A comparison has been made between the results of EB conversion over the lowly acidic catalyst (FCC-SY) and the highly acidic catalyst (FCC-Y) under identical conditions. It was observed that increase in catalyst acidity favored cracking of EB at the expense of disproportionation. Kinetic parameters for EB disappearance during disproportionation reaction over the FCC-SY catalyst were calculated using the catalyst activity decay function based on time on stream (TOS). © 2008 American Chemical Society.

  5. Highly sensitive methane catalytic combustion micro-sensor based on mesoporous structure and nano-catalyst.

    Science.gov (United States)

    Su, Jiacan; Cao, Liehu; Li, Liang; Wei, Jie; Li, Gengnan; Yuan, Yinyin

    2013-10-21

    In order to get a methane catalytic combustion micro-sensor, two different catalytic systems used in traditional methane catalytic combustion sensors were fabricated into a mesoporous structure and their catalytic activities were investigated. In comparison, the Rh2O3-Al2O3 system can form more a uniform mesoporous structure and has a much higher specific surface area. Even more importantly, it has relatively higher catalytic activity and stability for the methane catalytic combustion reaction. After being coated on a microelectro-mechanical system (MEMS) micro-heater, a catalytic combustion type methane micro-sensor was fabricated. The meso-structured Rh2O3-Al2O3 hybrid based MEMS sensor demonstrated a short T90 response time, relatively high signal output, high enough signal/noise ratio for practical detecting and strong anti-poison properties.

  6. Arginine-Based Inhibitors of Nitric Oxide Synthase: Therapeutic Potential and Challenges

    Czech Academy of Sciences Publication Activity Database

    Víteček, J.; Lojek, Antonín; Valacchi, G.; Kubala, Lukáš

    2012-01-01

    Roč. 2012, č. 2012 (2012), ID 318087 ISSN 0962-9351 R&D Projects: GA ČR(CZ) GA524/08/1753 Institutional support: RVO:68081707 Keywords : METHYL-L- ARGININE * HIGHLY SELECTIVE INHIBITORS * CARDIOVASCULAR RISK-FACTOR Subject RIV: BO - Biophysics Impact factor: 3.882, year: 2012

  7. Glutamine, glutamate, and arginine-based acid resistance in Lactobacillus reuteri.

    Science.gov (United States)

    Teixeira, Januana S; Seeras, Arisha; Sanchez-Maldonado, Alma Fernanda; Zhang, Chonggang; Su, Marcia Shu-Wei; Gänzle, Michael G

    2014-09-01

    This study aimed to determine whether glutamine deamidation improves acid resistance of Lactobacillus reuteri, and to assess whether arginine, glutamine, and glutamate-mediated acid resistance are redundant or complementary mechanisms of acid resistance. Three putative glutaminase genes, gls1, gls2, and gls3, were identified in L. reuteri 100-23. All three genes were expressed during growth in mMRS and wheat sourdough. L. reuteri consistently over-expressed gls3 and the glutamate decarboxylase gadB. L. reuteri 100-23ΔgadB over-expressed gls3 and the arginine deiminase gene adi. Analysis of the survival of L. reuteri in acidic conditions revealed that arginine conversion is effective at pH of 3.5 while glutamine or glutamate conversion were effective at pH of 2.5. Arginine conversion increased the pHin but not ΔΨ; glutamate decarboxylation had only a minor effect on the pHin but increased the ΔΨ. This study demonstrates that glutamine deamidation increases the acid resistance of L. reuteri independent of glutamate decarboxylase activity. Arginine and glutamine/glutamate conversions confer resistance to lactate at pH of 3.5 and phosphate at pH of 2.5, respectively. Knowledge of L. reuteri's acid resistance improves the understanding of the adaptation of L. reuteri to intestinal ecosystems, and facilitates the selection of probiotic and starter cultures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. MEMS-based fuel cells with integrated catalytic fuel processor and method thereof

    Science.gov (United States)

    Jankowski, Alan F [Livermore, CA; Morse, Jeffrey D [Martinez, CA; Upadhye, Ravindra S [Pleasanton, CA; Havstad, Mark A [Davis, CA

    2011-08-09

    Described herein is a means to incorporate catalytic materials into the fuel flow field structures of MEMS-based fuel cells, which enable catalytic reforming of a hydrocarbon based fuel, such as methane, methanol, or butane. Methods of fabrication are also disclosed.

  9. Succinimide Formation from an NGR-Containing Cyclic Peptide: Computational Evidence for Catalytic Roles of Phosphate Buffer and the Arginine Side Chain

    Directory of Open Access Journals (Sweden)

    Ryota Kirikoshi

    2017-02-01

    Full Text Available The Asn-Gly-Arg (NGR motif and its deamidation product isoAsp-Gly-Arg (isoDGR have recently attracted considerable attention as tumor-targeting ligands. Because an NGR-containing peptide and the corresponding isoDGR-containing peptide target different receptors, the spontaneous NGR deamidation can be used in dual targeting strategies. It is well known that the Asn deamidation proceeds via a succinimide derivative. In the present study, we computationally investigated the mechanism of succinimide formation from a cyclic peptide, c[CH2CO-NGRC]-NH2, which has recently been shown to undergo rapid deamidation in a phosphate buffer. An H2PO4− ion was explicitly included in the calculations. We employed the density functional theory using the B3LYP functional. While geometry optimizations were performed in the gas phase, hydration Gibbs energies were calculated by the SM8 (solvation model 8 continuum model. We have found a pathway leading to the five-membered ring tetrahedral intermediate in which both the H2PO4− ion and the Arg side chain act as catalyst. This intermediate, once protonated at the NH2 group on the five-membered ring, was shown to easily undergo NH3 elimination leading to the succinimide formation. This study is the first to propose a possible catalytic role for the Arg side chain in the NGR deamidation.

  10. The NMR and X-ray study of L-arginine derived Schiff bases and its cadmium complexes

    Science.gov (United States)

    Kołodziej, B.; Grech, E.; Schilf, W.; Kamieński, B.; Pazio, A.; Woźniak, K.

    2014-04-01

    The structure study of five Schiff bases derived from L-arginine (L-Arg) and 2-hydroxy carbonyl compounds were performed in both solution and solid state using NMR and X-ray methods. Both analytical methods applied to the solid state sample of two Schiff bases showed a significant difference in molecular structures of unsubstituted and 7-CH3 substituted compounds. This effect was explained as a steric interaction of methyl group. Additionally the structure of two Cd2+ complexes with some Schiff bases were determined by NMR methods in DMSO solution and in the solid state. On the base of heteronuclear NMR measurement (13C, 15N and 113Cd) it was possible to define the complexation site on nitrogen atom. The large set of spectral parameters: chemical shifts, homo- and heteronuclear coupling constants, were used in structure study.

  11. Arginine requirement and apparent absence of a lysine-arginine antagonist in fingerling channel catfish.

    Science.gov (United States)

    Robinson, E H; Wilson, R P; Poe, W E

    1981-01-01

    A series of growth studies, utilizing casein-gelatin based diets supplemented with crystalline amino acids, were conducted to determine the arginine requirement for fingerling channel catfish (Ictalurus punctatus) and to evaluate the effects of excessive levels of dietary lysine and arginine. Weight gain and feed efficiency data indicate the arginine requirement to be 1.03 +/- 0.07% and 1.00 +/- 0.06% of the dry diet, respectively. Based on growth this corresponds to 4.29% of the dietary protein. There was no evidence of an arginine-lysine antagonism when excess lysine was fed in diets adequate or marginal in arginine. Similarly, growth and feed efficiency data suggest the lack of an antagonism when excess arginine is added to diets marginal in lysine. Apparently channel catfish are not as sensitive to disproportionate lysine and arginine levels as are other animals.

  12. Geopolymer based catalysts-New group of catalytic materials

    Czech Academy of Sciences Publication Activity Database

    Sazama, Petr; Bortnovsky, O.; Dědeček, Jiří; Tvarůžková, Zdenka; Sobalík, Zdeněk

    2011-01-01

    Roč. 164, č. 1 (2011), s. 92-99 ISSN 0920-5861. [Joint International Conference /1./ of the Tokyo Conference on Advanced Catalytic Science and Technology /11./ Asia Pacific Congress on Catalysis /5./. Sapporo, 18.07.2010-23.07.2010] R&D Projects: GA MPO FT-TA4/068; GA AV ČR KAN100400702 Institutional research plan: CEZ:AV0Z40400503 Keywords : geopolymers * redox catalysis * SCR- NOx Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.407, year: 2011

  13. L-Arginine

    Science.gov (United States)

    ... with this combination.Talk with your health provider.Sildenafil (Viagra)Sildenafil (Viagra) can lower blood pressure. L-arginine can also lower blood pressure. Taking sildenafil (Viagra) and L-arginine together might cause the ...

  14. Cobaloxime-based photo-catalytic devices for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Fihri, A.; Artero, V.; Razavet, M.; Baffert, C.; Fontecave, M. [CEA Grenoble, DSV, iRTSV, Lab Chim et Biol Metaux, CNRS, UMR 5249, Univ Grenoble 1, F-38054 Grenoble 9 (France); Leibl, W. [CEA, DSV, iBiTecS, Lab Photocatalyse et Biohydrogene, CNRS, URA 2096, Gif Sur Yvette (France)

    2008-07-01

    In this paper is described the synthesis and activity of a series of novel hetero-dinuclear ruthenium-cobaloxime photo-catalysts able to achieve the photochemical production of hydrogen with the highest turnover numbers so far reported for such devices. First of all, substituting cobalt for rare and expensive platinum, palladium, or rhodium metals in photo-catalysts is a first step toward economically viable hydrogen production. Cobaloximes appear to be good candidates for H{sub 2}-evolving catalysts, and they may provide a good basis for the design of photo-catalysts that function in pure water as both the solvent and the sustainable proton source. Secondly, a molecular connection between the sensitizer and the H{sub 2}-evolving catalyst seems to provide advantages regarding the photo-catalytic activity. Structural modifications of this connection should allow a better tuning of the electron transfer between the light-harvesting unit and the catalytic center and thus an increase of the efficiency of the system. (O.M.)

  15. Alkali resistivity of Cu based selective catalytic reduction catalysts

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Jensen, Anker Degn; Riisager, Anders

    2012-01-01

    The deactivation of V2O5–WO3–TiO2, Cu–HZSM5 and Cu–HMOR plate type monolithic catalysts was investigated when exposed to KCl aerosols in a bench-scale reactor. Fresh and exposed catalysts were characterized by selective catalytic reduction (SCR) activity measurements, scanning electron microscope...... and Cu–HMOR catalysts only experienced a slight loss of acidity while the V2O5–WO3–TiO2 catalyst lost most of the acidity. High alkali resistivity seems to be characteristic of the zeolite supported SCR catalysts which thus could be attractive for flue gas cleaning in biomass plants....

  16. Catalytic flash pyrolysis of oil-impregnated-wood and jatropha cake using sodium based catalysts

    KAUST Repository

    Imran, Ali

    2015-11-24

    Catalytic pyrolysis of wood with impregnated vegetable oil was investigated and compared with catalytic pyrolysis of jatropha cake making use of sodium based catalysts to produce a high quality bio-oil. The catalytic pyrolysis was carried out in two modes: in-situ catalytic pyrolysis and post treatment of the pyrolysis vapors. The in-situ catalytic pyrolysis was carried out in an entrained flow reactor system using a premixed feedstock of Na2CO3 and biomass and post treatment of biomass pyrolysis vapor was conducted in a downstream fixed bed reactor of Na2CO3/γ-Al2O3. Results have shown that both Na2CO3 and Na2CO3/γ-Al2O3 can be used for the production of a high quality bio-oil from catalytic pyrolysis of oil-impregnated-wood and jatropha cake. The catalytic bio-oil had very low oxygen content, water content as low as 1wt.%, a neutral pH, and a high calorific value upto 41.8MJ/kg. The bio-oil consisted of high value chemical compounds mainly hydrocarbons and undesired compounds in the bio-oil were either completely removed or considerably reduced. Increasing the triglycerides content (vegetable oil) in the wood enhanced the formation of hydrocarbons in the bio-oil. Post treatment of the pyrolysis vapor over a fixed bed of Na2CO3/γ-Al2O3 produced superior quality bio-oil compared to in-situ catalytic pyrolysis with Na2CO3. This high quality bio-oil may be used as a precursor in a fractionating process for the production of alternative fuels. © 2015 Elsevier B.V.

  17. The Influence of Arginine on the Response of Enamel Matrix Derivative (EMD Proteins to Thermal Stress: Towards Improving the Stability of EMD-Based Products.

    Directory of Open Access Journals (Sweden)

    Alessandra Apicella

    Full Text Available In a current procedure for periodontal tissue regeneration, enamel matrix derivative (EMD, which is the active component, is mixed with a propylene glycol alginate (PGA gel carrier and applied directly to the periodontal defect. Exposure of EMD to physiological conditions then causes it to precipitate. However, environmental changes during manufacture and storage may result in modifications to the conformation of the EMD proteins, and eventually premature phase separation of the gel and a loss in therapeutic effectiveness. The present work relates to efforts to improve the stability of EMD-based formulations such as Emdogain™ through the incorporation of arginine, a well-known protein stabilizer, but one that to our knowledge has not so far been considered for this purpose. Representative EMD-buffer solutions with and without arginine were analyzed by 3D-dynamic light scattering, UV-Vis spectroscopy, transmission electron microscopy and Fourier transform infrared spectroscopy at different acidic pH and temperatures, T, in order to simulate the effect of pH variations and thermal stress during manufacture and storage. The results provided evidence that arginine may indeed stabilize EMD against irreversible aggregation with respect to variations in pH and T under these conditions. Moreover, stopped-flow transmittance measurements indicated arginine addition not to suppress precipitation of EMD from either the buffers or the PGA gel carrier when the pH was raised to 7, a fundamental requirement for dental applications.

  18. The Influence of Arginine on the Response of Enamel Matrix Derivative (EMD) Proteins to Thermal Stress: Towards Improving the Stability of EMD-Based Products

    Science.gov (United States)

    Bolisetty, Sreenath; Marascio, Matteo; Gemperli Graf, Anja; Garamszegi, Laszlo; Mezzenga, Raffaele; Fischer, Peter; Månson, Jan-Anders

    2015-01-01

    In a current procedure for periodontal tissue regeneration, enamel matrix derivative (EMD), which is the active component, is mixed with a propylene glycol alginate (PGA) gel carrier and applied directly to the periodontal defect. Exposure of EMD to physiological conditions then causes it to precipitate. However, environmental changes during manufacture and storage may result in modifications to the conformation of the EMD proteins, and eventually premature phase separation of the gel and a loss in therapeutic effectiveness. The present work relates to efforts to improve the stability of EMD-based formulations such as Emdogain™ through the incorporation of arginine, a well-known protein stabilizer, but one that to our knowledge has not so far been considered for this purpose. Representative EMD-buffer solutions with and without arginine were analyzed by 3D-dynamic light scattering, UV-Vis spectroscopy, transmission electron microscopy and Fourier transform infrared spectroscopy at different acidic pH and temperatures, T, in order to simulate the effect of pH variations and thermal stress during manufacture and storage. The results provided evidence that arginine may indeed stabilize EMD against irreversible aggregation with respect to variations in pH and T under these conditions. Moreover, stopped-flow transmittance measurements indicated arginine addition not to suppress precipitation of EMD from either the buffers or the PGA gel carrier when the pH was raised to 7, a fundamental requirement for dental applications. PMID:26670810

  19. Catalytic thermal treatment (catalytic thermolysis) of a rice grain-based biodigester effluent of an alcohol distillery plant.

    Science.gov (United States)

    Prajapati, Abhinesh Kumar; Chaudhari, Parmesh Kumar; Mazumdar, Bidyut; Choudhary, Rumi

    2015-01-01

    The catalytic thermolysis (CT) process is an effective and novel approach to treat rice grain-based biodigester effluent (BDE) of the distillery plant. CT treatment of rice grain-based distillery wastewater was carried out in a 0.5 dm(3) thermolytic batch reactor using different catalysts such as CuO, copper sulphate and ferrous sulphate. With the CuO catalyst, a temperature of 95°C, catalyst loading of 4 g/dm(3) and pH 5 were found to be optimal, obtaining a maximum chemical oxygen demand (COD) and colour removal of 80.4% and 72%, respectively. The initial pH (pHi) was an important parameter to remove COD and colour from BDE. At higher pHi (pH 9.5), less COD and colour reduction were observed. The settling characteristics of CT-treated sludge were also analysed at different temperatures. It was noted that the treated slurry at a temperature of 80°C gave best settling characteristics. Characteristics of residues are also analysed at different pH.

  20. Base-free hydrogen generation from methanol using a bi-catalytic system.

    Science.gov (United States)

    Monney, Angèle; Barsch, Enrico; Sponholz, Peter; Junge, Henrik; Ludwig, Ralf; Beller, Matthias

    2014-01-21

    A bi-catalytic system, in which Ru-MACHO-BH and Ru(H)2(dppe)2 interact in a synergistic manner, was developed for the base-free dehydrogenation of methanol. A total TON > 4200 was obtained with only trace amounts of CO contamination (<8 ppm) in the produced gas.

  1. Cross-catalytic peptide nucleic acid (PNA) replication based on templated ligation

    DEFF Research Database (Denmark)

    Singhal, Abhishek; Nielsen, Peter E

    2014-01-01

    We report the first PNA self-replicating system based on template directed cross-catalytic ligation, a process analogous to biological replication. Using two template PNAs and four pentameric precursor PNAs, all four possible carbodiimide assisted amide ligation products were detected...

  2. Gaseous Heterogeneous Catalytic Reactions over Mn-Based Oxides for Environmental Applications: A Critical Review.

    Science.gov (United States)

    Xu, Haomiao; Yan, Naiqiang; Qu, Zan; Liu, Wei; Mei, Jian; Huang, Wenjun; Zhao, Songjian

    2017-08-15

    Manganese oxide has been recognized as one of the most promising gaseous heterogeneous catalysts due to its low cost, environmental friendliness, and high catalytic oxidation performance. Mn-based oxides can be classified into four types: (1) single manganese oxide (MnOx), (2) supported manganese oxide (MnOx/support), (3) composite manganese oxides (MnOx-X), and (4) special crystalline manganese oxides (S-MnOx). These Mn-based oxides have been widely used as catalysts for the elimination of gaseous pollutants. This review aims to describe the environmental applications of these manganese oxides and provide perspectives. It gives detailed descriptions of environmental applications of the selective catalytic reduction of NOx with NH 3 , the catalytic combustion of volatile organic compounds, Hg 0 oxidation and adsorption, and soot oxidation, in addition to some other environmental applications. Furthermore, this review mainly focuses on the effects of structure, morphology, and modified elements and on the role of catalyst supports in gaseous heterogeneous catalytic reactions. Finally, future research directions for developing manganese oxide catalysts are proposed.

  3. Exploration of the catalytic use of alkali metal bases

    OpenAIRE

    Bao, Wei

    2017-01-01

    This PhD thesis project was concerned with the use of alkali metal amide Brønsted bases and alkali metal alkoxide Lewis bases in (asymmetric) catalysis. The first chapter deals with formal allylic C(sp3)–H bond activation of aromatic and functionalized alkenes for subsequent C–C and C–H bond formations. The second chapter is focused on C(sp3)–Si bond activation of fluorinated pro-nucleophiles in view of C–C bond formations. In the first chapter, a screening of various metal amides...

  4. Position-based quantum cryptography and catalytic computation

    NARCIS (Netherlands)

    Speelman, F.

    2016-01-01

    In this thesis, we present several results along two different lines of research. The first part concerns the study of position-based quantum cryptography, a topic in quantum cryptography. By combining quantum mechanics with special relativity theory, new cryptographic tasks can be developed that

  5. A new surface catalytic model for silica-based thermal protection material for hypersonic vehicles

    Directory of Open Access Journals (Sweden)

    Li Kai

    2015-10-01

    Full Text Available Silica-based materials are widely employed in the thermal protection system for hypersonic vehicles, and the investigation of their catalytic characteristics is crucially important for accurate aerothermal heating prediction. By analyzing the disadvantages of Norman’s high and low temperature models, this paper combines the two models and proposes an eight-reaction combined surface catalytic model to describe the catalysis between oxygen and silica surface. Given proper evaluation of the parameters according to many references, the recombination coefficient obtained shows good agreement with experimental data. The catalytic mechanisms between oxygen and silica surface are then analyzed. Results show that with the increase of the wall temperature, the dominant reaction contributing to catalytic coefficient varies from Langmuir–Hinshelwood (LH recombination (TW  1350 K. The surface coverage of chemisorption areas varies evidently with the dominant reactions in the high temperature (HT range, while the surface coverage of physisorption areas varies within quite low temperature (LT range (TW < 250 K. Recommended evaluation of partial parameters is also given.

  6. Regulation of catalytic behaviour of hydrolases through interactions with functionalized carbon-based nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Pavlidis, Ioannis V. [University of Ioannina, Laboratory of Biotechnology, Department of Biological Applications and Technologies (Greece); Vorhaben, Torge [Institute of Biochemistry, Greifswald University, Department of Biotechnology and Enzyme Catalysis (Germany); Gournis, Dimitrios [University of Ioannina, Department of Materials Science and Engineering (Greece); Papadopoulos, George K. [Epirus Institute of Technology, Laboratory of Biochemistry and Biophysics, Faculty of Agricultural Technology (Greece); Bornscheuer, Uwe T. [Institute of Biochemistry, Greifswald University, Department of Biotechnology and Enzyme Catalysis (Germany); Stamatis, Haralambos, E-mail: hstamati@cc.uoi.gr [University of Ioannina, Laboratory of Biotechnology, Department of Biological Applications and Technologies (Greece)

    2012-05-15

    The interaction of enzymes with carbon-based nanomaterials (CBNs) is crucial for the function of biomolecules and therefore for the design and development of effective nanobiocatalytic systems. In this study, the effect of functionalized CBNs, such as graphene oxide (GO) and multi-wall carbon nanotubes (CNTs), on the catalytic behaviour of various hydrolases of biotechnological interest was monitored and the interactions between CBNs and proteins were investigated. The enzyme-nanomaterial interactions significantly affect the catalytic behaviour of enzymes, resulting in an increase up to 60 % of the catalytic efficiency of lipases and a decrease up to 30 % of the esterase. Moreover, the use of CNTs and GO derivatives, especially those that are amine-functionalized, led to increased thermal stability of most the hydrolases tested. Fluorescence and circular dichroism studies indicated that the altered catalytic behaviour of enzymes in the presence of CBNs arises from specific enzyme-nanomaterial interactions, which can lead to significant conformational changes. In the case of lipases, the conformational changes led to a more active and rigid structure, while in the case of esterases this led to destabilization and unfolding. Kinetic and spectroscopic studies indicated that the extent of the interactions between CBNs and hydrolases can be mainly controlled by the functionalization of nanomaterials than by their geometry.

  7. Mono-, bi-, and tri-metallic Ni-based catalysts for the catalytic hydrotreatment of pyrolysis liquids

    NARCIS (Netherlands)

    Yin, Wang; Venderbosch, Robbie H.; He, Songbo; Bykova, Maria V.; Khromova, Sofia A.; Yakovlev, Vadim A.; Heeres, Hero J.

    Catalytic hydrotreatment is a promising technology to convert pyrolysis liquids into intermediates with improved properties. Here, we report a catalyst screening study on the catalytic hydrotreatment of pyrolysis liquids using bi- and tri-metallic nickel-based catalysts in a batch autoclave (initial

  8. Pulsed plasma sources for the production of intense ion beams based on catalytic resonance ionization

    International Nuclear Information System (INIS)

    Knyazev, B.A.; Mel'nikov, P.I.; Bluhm, H.

    1994-01-01

    In this paper we describe a technique to produce planar and volumetric ion sources of nearly every element. This technique is based on a generalization of the LIBORS-process (Laser Ionization Based On Resonant Saturation) which because of its similarity to chemical catalytic reactions has been called CATRION (CATalytic Resonance IONization). A vapor containing the desired atomic species is doped with a suitable element processing resonance transitions that can be pumped ro saturation with a laser. By superelastic collisions with the excited atoms and by simulated bremsstrahlung absorption seed electrons are heated. It is the heated electron component which then by collisional processes ionizes the desired atomic species and are multiplied. 41 refs.; 4 figs.; 3 tabs

  9. Direct catalytic transformation of carbohydrates into 5-ethoxymethylfurfural with acid–base bifunctional hybrid nanospheres

    DEFF Research Database (Denmark)

    Li, Hu; Khokarale, Santosh Govind; Kotni, Ramakrishna

    2014-01-01

    A series of acid–base bifunctional hybrid nanospheres prepared from the self-assembly of basic amino acids and phosphotungstic acid (HPA) with different molar ratios were employed as efficient and recyclable catalysts for synthesis of liquid biofuel 5-ethoxymethylfurfural (EMF) from various carbo...... glucopyranoside in good yields could be obtained from glucose in ethanol. Moreover, the nanocatalyst functionalized with acid and basic sites was able to be reused several times with no significant loss in catalytic activity...

  10. Catalytic mechanism of LENR in quasicrystals based on localized anharmonic vibrations and phasons

    OpenAIRE

    Dubinko, Volodymyr; Laptev, Denis; Irwin, Klee

    2016-01-01

    Quasicrystals (QCs) are a novel form of matter, which are neither crystalline nor amorphous. Among many surprising properties of QCs is their high catalytic activity. We propose a mechanism explaining this peculiarity based on unusual dynamics of atoms at special sites in QCs, namely, localized anharmonic vibrations (LAVs) and phasons. In the former case, one deals with a large amplitude (~ fractions of an angstrom) time-periodic oscillations of a small group of atoms around their stable posi...

  11. Catalytic wet air oxidation of 2-chlorophenol over sewage sludge-derived carbon-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Yuting [Institut de recherches sur la catalyse et l’environnement de Lyon (IRCELYON), CNRS – Université Claude Bernard Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex (France); School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Xiong, Ya; Tian, Shuanghong [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275 (China); Kong, Lingjun [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Descorme, Claude, E-mail: claude.descorme@ircelyon.univ-lyon1.fr [Institut de recherches sur la catalyse et l’environnement de Lyon (IRCELYON), CNRS – Université Claude Bernard Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex (France)

    2014-07-15

    Highlights: • A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared. • FeSC exhibited high catalytic activity in the wet air oxidation of 2-chlorophenol. • A strong correlation was observed between the 2-CP conversion, the iron leaching and the pH. • Using an acetate buffer, the iron leaching was suppressed while keeping some catalytic activity. • A simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst. - Abstract: A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared and used in the Catalytic Wet Air Oxidation (CWAO) of 2-chlorophenol (2-CP). The catalysts were characterized in terms of elemental composition, surface area, pH{sub PZC}, XRD and SEM. The performances of the FeSC catalyst in the CWAO of 2-CP was assessed in a batch reactor operated at 120 °C under 0.9 MPa oxygen partial pressure. Complete decomposition of 2-CP was achieved within 5 h and 90% Total Organic Carbon (TOC) was removed after 24 h of reaction. Quite a straight correlation was observed between the 2-CP conversion, the amount of iron leached in solution and the pH of the reaction mixture at a given reaction time, indicating a strong predominance of the homogeneous catalysis contribution. The iron leaching could be efficiently prevented when the pH of the solution was maintained at values higher than 4.5, while the catalytic activity was only slightly reduced. Upon four successive batch CWAO experiments, using the same FeSC catalyst recovered by filtration after pH adjustment, only a very minor catalyst deactivation was observed. Finally, based on all the identified intermediates, a simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst.

  12. THE ARGININE AND PREARGININE GROUPS IN EDESTIN.

    Science.gov (United States)

    Simms, H S

    1930-09-20

    The author corroborates the data of Schmidt showing that the dissociation index of the third group of arginine is pK(3)' = 12.5. New titration data of edestin have been obtained in very alkaline solutions and show that there is a corresponding group with a titration index of pG' = 12.0, but present in much less quantity than can account for the arginine found on hydrolysis. The data support the theory that the combination of strong base or strong acid with proteins is produced by the formation of salts with the "extra groups" of those trivalent amino acids which can be isolated from the protein, with the exception of arginine. Arginine contributes to the titration curve in much smaller amount than is found on hydrolysis. This deficiency in the arginine group may be accounted for by the basic group in proteins having a titration index of pG' = 3.8 to 4.6 (depending on the protein), which apparently yields arginine on hydrolysis, and may properly be called prearginine.

  13. Direct catalytic transformation of carbohydrates into 5-ethoxymethylfurfural with acid–base bifunctional hybrid nanospheres

    International Nuclear Information System (INIS)

    Li, Hu; Govind, Khokarale Santosh; Kotni, Ramakrishna; Shunmugavel, Saravanamurugan; Riisager, Anders; Yang, Song

    2014-01-01

    Graphical abstract: Catalytic conversion of carbohydrates into HMF and EMF in ethanol/DMSO with acid–base bifunctional hybrid nanospheres prepared from self-assembly of corresponding basic amino acids and HPA. - Highlights: • Acid–base bifunctional nanospheres were efficient for production of EMF from sugars. • Synthesis of EMF in a high yield of 76.6% was realized from fructose. • Fructose based biopolymers could also be converted into EMF with good yields. • Ethyl glucopyranoside was produced in good yields from glucose in ethanol. - Abstract: A series of acid–base bifunctional hybrid nanospheres prepared from the self-assembly of basic amino acids and phosphotungstic acid (HPA) with different molar ratios were employed as efficient and recyclable catalysts for synthesis of liquid biofuel 5-ethoxymethylfurfural (EMF) from various carbohydrates. A high EMF yield of 76.6%, 58.5%, 42.4%, and 36.5% could be achieved, when fructose, inulin, sorbose, and sucrose were used as starting materials, respectively. Although, the acid–base bifunctional nanocatalysts were inert for synthesis of EMF from glucose based carbohydrates, ethyl glucopyranoside in good yields could be obtained from glucose in ethanol. Moreover, the nanocatalyst functionalized with acid and basic sites was able to be reused several times with no significant loss in catalytic activity

  14. Automated Prediction of Catalytic Mechanism and Rate Law Using Graph-Based Reaction Path Sampling.

    Science.gov (United States)

    Habershon, Scott

    2016-04-12

    In a recent article [ J. Chem. Phys. 2015 , 143 , 094106 ], we introduced a novel graph-based sampling scheme which can be used to generate chemical reaction paths in many-atom systems in an efficient and highly automated manner. The main goal of this work is to demonstrate how this approach, when combined with direct kinetic modeling, can be used to determine the mechanism and phenomenological rate law of a complex catalytic cycle, namely cobalt-catalyzed hydroformylation of ethene. Our graph-based sampling scheme generates 31 unique chemical products and 32 unique chemical reaction pathways; these sampled structures and reaction paths enable automated construction of a kinetic network model of the catalytic system when combined with density functional theory (DFT) calculations of free energies and resultant transition-state theory rate constants. Direct simulations of this kinetic network across a range of initial reactant concentrations enables determination of both the reaction mechanism and the associated rate law in an automated fashion, without the need for either presupposing a mechanism or making steady-state approximations in kinetic analysis. Most importantly, we find that the reaction mechanism which emerges from these simulations is exactly that originally proposed by Heck and Breslow; furthermore, the simulated rate law is also consistent with previous experimental and computational studies, exhibiting a complex dependence on carbon monoxide pressure. While the inherent errors of using DFT simulations to model chemical reactivity limit the quantitative accuracy of our calculated rates, this work confirms that our automated simulation strategy enables direct analysis of catalytic mechanisms from first principles.

  15. New URJC-1 Material with Remarkable Stability and Acid-Base Catalytic Properties

    Directory of Open Access Journals (Sweden)

    Pedro Leo

    2016-02-01

    Full Text Available Emerging new metal-organic structures with tunable physicochemical properties is an exciting research field for diverse applications. In this work, a novel metal-organic framework Cu(HIT(DMF0.5, named URJC-1, with a three-dimensional non-interpenetrated utp topological network, has been synthesized. This material exhibits a microporous structure with unsaturated copper centers and imidazole–tetrazole linkages that provide accessible Lewis acid/base sites. These features make URJC-1 an exceptional candidate for catalytic application in acid and base reactions of interest in fine chemistry. The URJC-1 material also displays a noteworthy thermal and chemical stability in different organic solvents of different polarity and boiling water. Its catalytic activity was evaluated in acid-catalyzed Friedel–Crafts acylation of anisole with acetyl chloride and base-catalyzed Knoevenagel condensation of benzaldehyde with malononitrile. In both cases, URJC-1 material showed very good performance, better than other metal organic frameworks and conventional catalysts. In addition, a remarkable structural stability was proven after several consecutive reaction cycles.

  16. Reduced arginine availability and nitric oxide production

    NARCIS (Netherlands)

    Hallemeesch, M. M.; Lamers, W. H.; Deutz, N. E. P.

    2002-01-01

    The precursor for nitric oxide (NO) synthesis is the amino acid arginine. Reduced arginine availability may limit NO production. Arginine availability for NO synthesis may be regulated by de novo arginine production from citrulline, arginine transport across the cell membrane, and arginine breakdown

  17. Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery.

    Science.gov (United States)

    Chew, Thiam Leng; Bhatia, Subhash

    2008-11-01

    In Malaysia, there has been interest in the utilization of palm oil and oil palm biomass for the production of environmental friendly biofuels. A biorefinery based on palm oil and oil palm biomass for the production of biofuels has been proposed. The catalytic technology plays major role in the different processing stages in a biorefinery for the production of liquid as well as gaseous biofuels. There are number of challenges to find suitable catalytic technology to be used in a typical biorefinery. These challenges include (1) economic barriers, (2) catalysts that facilitate highly selective conversion of substrate to desired products and (3) the issues related to design, operation and control of catalytic reactor. Therefore, the catalytic technology is one of the critical factors that control the successful operation of biorefinery. There are number of catalytic processes in a biorefinery which convert the renewable feedstocks into the desired biofuels. These include biodiesel production from palm oil, catalytic cracking of palm oil for the production of biofuels, the production of hydrogen as well as syngas from biomass gasification, Fischer-Tropsch synthesis (FTS) for the conversion of syngas into liquid fuels and upgrading of liquid/gas fuels obtained from liquefaction/pyrolysis of biomass. The selection of catalysts for these processes is essential in determining the product distribution (olefins, paraffins and oxygenated products). The integration of catalytic technology with compatible separation processes is a key challenge for biorefinery operation from the economic point of view. This paper focuses on different types of catalysts and their role in the catalytic processes for the production of biofuels in a typical palm oil and oil palm biomass-based biorefinery.

  18. Polyelectrolyte Brush-Grafted Polydopamine-Based Catalysts with Enhanced Catalytic Activity and Stability.

    Science.gov (United States)

    Kaang, Byung Kwon; Han, Nara; Lee, Ha-Jin; Choi, Won San

    2018-01-10

    Three types of surface treatments, namely, polyethyleneimine (PEI) coating, short PEI (S-PEI) grafting, and long PEI (L-PEI) grafting, were performed on polydopamine (Pdop)-based catalysts to enhance their catalytic activity and stability. Brush-grafted catalysts were prepared by the stepwise synthesis of Au and short (or long) PEI brushes on Pdop particles (PdopP/Au/S- or L-PEI grafting). PEI-coated Pdop-based catalysts (PdopP/Au/PEI coating) were also prepared as non-brush-grafted catalysts. Among the surface-treated PdopP/Au catalysts, the brush-grafted catalysts (S-PEI and L-PEI grafting) exhibited excellent and stable catalytic performance because the brush grafting enabled the protection of the catalysts against harsh conditions, effective transfer of reactants to the catalysts, and confinement of reactants around the catalysts. The brush-grafted catalysts could also more effectively decompose larger dyes than the non-brush-grafted catalysts. The process-to-effectiveness of PEI coating is the best because the release of Pdop from PdopP/Au was moderately inhibited by the presence of only one layer of PEI coating on the PdopP/Au. Thus, this approach could be an alternative method to enhance the stability of PdopP/Au catalysts.

  19. Ruthenium(II) hydrazone Schiff base complexes: Synthesis, spectral study and catalytic applications

    Science.gov (United States)

    Manikandan, R.; Viswanathamurthi, P.; Muthukumar, M.

    2011-12-01

    Ruthenium(II) hydrazone Schiff base complexes of the type [RuCl(CO)(B)(L)] (were B = PPh 3, AsPh 3 or Py; L = hydrazone Schiff base ligands) were synthesized from the reactions of hydrazone Schiff base ligand (obtained from isonicotinoylhydrazide and different hydroxy aldehydes) with [RuHCl(CO)(EPh 3) 2(B)] (where E = P or As; B = PPh 3, AsPh 3 or Py) in 1:1 molar ratio. All the new complexes have been characterized by analytical and spectral (FT-IR, electronic, 1H, 13C and 31P NMR) data. They have been tentatively assigned an octahedral structure. The synthesized complexes have exhibited catalytic activity for oxidation of benzyl alcohol to benzaldehyde and cyclohexanol to cyclohexanone in the presence of N-methyl morpholine N-oxide (NMO) as co-oxidant. They were also found to catalyze the transfer hydrogenation of aliphatic and aromatic ketones to alcohols in KOH/Isopropanol.

  20. Catalytic Graphitization of Coal-Based Carbon Materials with Light Rare Earth Elements.

    Science.gov (United States)

    Wang, Rongyan; Lu, Guimin; Qiao, Wenming; Yu, Jianguo

    2016-08-30

    The catalytic graphitization mechanism of coal-based carbon materials with light rare earth elements was investigated using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, selected-area electron diffraction, and high-resolution transmission electron microscopy. The interface between light rare earth elements and carbon materials was carefully observed, and two routes of rare earth elements catalyzing the carbon materials were found: dissolution-precipitation and carbide formation-decomposition. These two simultaneous processes certainly accelerate the catalytic graphitization of carbon materials, and light rare earth elements exert significant influence on the microstructure and thermal conductivity of graphite. Moreover, by virtue of praseodymium (Pr), it was found that a highly crystallographic orientation of graphite was induced and formed, which was reasonably attributed to the similar arrangements of the planes perpendicular to (001) in both graphite and Pr crystals. The interface between Pr and carbon was found to be an important factor for the orientation of graphite structure.

  1. Kinetic spectrophotometric determination of iron based on catalytic oxidation of p-acetylarsenazo

    Directory of Open Access Journals (Sweden)

    Qing-Zhou Zhai

    2009-12-01

    Full Text Available A novel catalytic kinetic spectrophotometric method for the determination of iron is developed based on the catalytic effect of Fe(III on the oxidation reaction of p-acetylarsenazo(ASApA by potassium periodate. Maximum absorbance of the Fe(III−ASApA−KIO4 system in 8.0 × 10-3 M sulfuric acid occurs at the wavelength of 540 nm. The change in absorbance (ΔA is linearly related with the concentration of iron(III in the range of 0.10−4.0 ng/mL and fitted the equation: ΔA = 4.91 × 10-2 C (C: ng/mL + 0.017, with a regression coefficient of 0.9966 at the wavelength. The detection limit of the method is 0.031 ng/mL. The relative standard deviation of the method was from 1.34% to 1.78% for 11 replicate determinations. The standard addition recovery of the method ranged from 95.71% to 103.3%. The method was used to determine iron in the black gingili paste, oat slice, sleeve-fish silk food samples. The determined results were in agreement with those by atomic absorption spectrometry.

  2. Safety of long-term dietary supplementation with L-arginine in rats.

    Science.gov (United States)

    Yang, Ying; Wu, Zhenlong; Jia, Sichao; Dahanayaka, Sudath; Feng, Shuo; Meininger, Cynthia J; McNeal, Catherine J; Wu, Guoyao

    2015-09-01

    This study was conducted with rats to determine the safety of long-term dietary supplementation with L-arginine. Beginning at 6 weeks of age, male and female rats were fed a casein-based semi-purified diet containing 0.61 % L-arginine and received drinking water containing L-arginine-HCl (0, 1.8, or 3.6 g L-arginine/kg body-weight/day; n = 10/group). These supplemental doses of L-arginine were equivalent to 0, 286, and 573 mg L-arginine/kg body-weight/day, respectively, in humans. After a 13-week supplementation period, blood samples were obtained from rats for biochemical analyses. Supplementation with L-arginine increased plasma concentrations of arginine, ornithine, proline, homoarginine, urea, and nitric oxide metabolites without affecting those for lysine, histidine, or methylarginines, while reducing plasma concentrations of ammonia, glutamine, free fatty acids, and triglycerides. L-Arginine supplementation enhanced protein gain and reduced white-fat deposition in the body. Based on general appearance, feeding behavior, and physiological parameters, all animals showed good health during the entire experimental period; Plasma concentrations of all measured hormones (except leptin) did not differ between control and arginine-supplemented rats. L-Arginine supplementation reduced plasma levels of leptin. Additionally, L-arginine supplementation increased L-arginine:glycine amidinotransferase activity in kidneys but not in the liver or small intestine, suggesting tissue-specific regulation of enzyme expression by L-arginine. Collectively, these results indicate that dietary supplementation with L-arginine (e.g., 3.6 g/kg body-weight/day) is safe in rats for at least 91 days. This dose is equivalent to 40 g L-arginine/kg body-weight/day for a 70-kg person. Our findings help guide clinical studies to determine the safety of long-term oral administration of L-arginine to humans.

  3. High performance catalytic distillation using CNTs-based holistic catalyst for production of high quality biodiesel

    Science.gov (United States)

    Zhang, Dongdong; Wei, Dali; Li, Qi; Ge, Xin; Guo, Xuefeng; Xie, Zaiku; Ding, Weiping

    2014-02-01

    For production of biodiesel from bio oils by heterogeneous catalysis, high performance catalysts of transesterification and the further utilization of glycerol have been the two points of research. The process seemed easy, however, has never been well established. Here we report a novel design of catalytic distillation using hierachically integrated CNTs-based holistic catalyst to figure out the two points in one process, which shows high performance both for the conversion of bio oils to biodiesel and, unexpectedly, for the conversion of glycerol to more valuable chemicals at the same time. The method, with integration of nano, meso to macro reactor, has overwhelming advantages over common technologies using liquid acids or bases to catalyze the reactions, which suffer from the high cost of separation and unsolved utilization of glycerol.

  4. A novel mass spectrometry-based method for simultaneous determination of asymmetric and symmetric dimethylarginine, l-arginine and l-citrulline optimized for LC-MS-TOF and LC-MS/MS.

    Science.gov (United States)

    Wiśniewski, Jerzy; Fleszar, Mariusz G; Piechowicz, Joanna; Krzystek-Korpacka, Małgorzata; Chachaj, Angelika; Szuba, Andrzej; Lorenc-Kukula, Katarzyna; Masłowski, Leszek; Witkiewicz, Wojciech; Gamian, Andrzej

    2017-11-01

    Nitric oxide (NO) is a regulatory molecule involved in many biological processes. NO is produced by nitric oxide synthase by conversion of l-arginine to l-citrulline. l-Arginine methylated derivatives, asymmetric and symmetric dimethylarginines (asymmetric dimethylarginine, ADMA, and symmetric dimethylarginine, SDMA), regulate l-arginine availability and the activity of nitric oxide synthase. As such, they have been frequently investigated as potential biomarkers in pathologies associated with dysfunctions in NO synthesis. Here, we present a new multistep analytical methodology based on liquid chromatography combined with mass spectrometry for the accurate identification of l-arginine, l-citrulline, ADMA and SDMA. Compounds are measured as stable 2,3,4,5,6-pentafluorobenzoyl chloride derivatives, which allows for simultaneous analysis of all compounds through chromatographic separation of ADMA and SDMA using a reverse-phase column. Serum aliquots (100 μL) were spiked with isotope-labeled internal standards and sodium carbonate buffer. The derivatization process was carried out at 25°C for 10 minu using pentafluorobenzoyl chloride as derivatization reagent. Calibration demonstrated good linearity (R 2  = 0.9966-0.9986) for all derivatized compounds. Good accuracy (94.67-99.91%) and precision (1.92-11.8%) were observed for the quality control samples. The applicability of the method was evaluated in a cohort of angiological patients and healthy volunteers. The method discerned significantly lower l-arginine and l-citrulline in angiologic patients. This robust and fast LC-ESI-MS method may be a useful tool in quantitative analysis of l-arginine, ADMA, SDMA and l-citrulline. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Identification of a Novel Protein Arginine Methyltransferase 5 Inhibitor in Non-small Cell Lung Cancer by Structure-Based Virtual Screening

    Directory of Open Access Journals (Sweden)

    Qianqian Wang

    2018-03-01

    Full Text Available Protein arginine methyltransferase 5 (PRMT5 is able to regulate gene transcription by catalyzing the symmetrical dimethylation of arginine residue of histone, which plays a key role in tumorigenesis. Many efforts have been taken in discovering small-molecular inhibitors against PRMT5, but very few were reported and most of them were SAM-competitive. EPZ015666 is a recently reported PRMT5 inhibitor with a new binding site, which is different from S-adenosylmethionine (SAM-binding pocket. This new binding site provides a new clue for the design and discovery of potent and specific PRMT5 inhibitors. In this study, the structure-based virtual screening targeting this site was firstly performed to identify potential PRMT5 inhibitors. Then, the bioactivity of the candidate compound was studied. MTT results showed that compound T1551 decreased cell viability of A549 and H460 non-small cell lung cancer cell lines. By inhibiting the methyltransferase activity of PRMT5, T1551 reduced the global level of H4R3 symmetric dimethylation (H4R3me2s. T1551 also downregulated the expression of oncogene FGFR3 and eIF4E, and disturbed the activation of related PI3K/AKT/mTOR and ERK signaling in A549 cell. Finally, we investigated the conformational spaces and identified collective motions important for description of T1551/PRMT5 complex by using molecular dynamics simulation and normal mode analysis methods. This study provides a novel non-SAM-competitive hit compound for developing small molecules targeting PRMT5 in non-small cell lung cancer.

  6. Identification of a Novel Protein Arginine Methyltransferase 5 Inhibitor in Non-small Cell Lung Cancer by Structure-Based Virtual Screening.

    Science.gov (United States)

    Wang, Qianqian; Xu, Jiahui; Li, Ying; Huang, Jumin; Jiang, Zebo; Wang, Yuwei; Liu, Liang; Leung, Elaine Lai Han; Yao, Xiaojun

    2018-01-01

    Protein arginine methyltransferase 5 (PRMT5) is able to regulate gene transcription by catalyzing the symmetrical dimethylation of arginine residue of histone, which plays a key role in tumorigenesis. Many efforts have been taken in discovering small-molecular inhibitors against PRMT5, but very few were reported and most of them were SAM-competitive. EPZ015666 is a recently reported PRMT5 inhibitor with a new binding site, which is different from S-adenosylmethionine (SAM)-binding pocket. This new binding site provides a new clue for the design and discovery of potent and specific PRMT5 inhibitors. In this study, the structure-based virtual screening targeting this site was firstly performed to identify potential PRMT5 inhibitors. Then, the bioactivity of the candidate compound was studied. MTT results showed that compound T1551 decreased cell viability of A549 and H460 non-small cell lung cancer cell lines. By inhibiting the methyltransferase activity of PRMT5, T1551 reduced the global level of H4R3 symmetric dimethylation (H4R3me2s). T1551 also downregulated the expression of oncogene FGFR3 and eIF4E, and disturbed the activation of related PI3K/AKT/mTOR and ERK signaling in A549 cell. Finally, we investigated the conformational spaces and identified collective motions important for description of T1551/PRMT5 complex by using molecular dynamics simulation and normal mode analysis methods. This study provides a novel non-SAM-competitive hit compound for developing small molecules targeting PRMT5 in non-small cell lung cancer.

  7. Imidazolium- and Triazine-Based Porous Organic Polymers for Heterogeneous Catalytic Conversion of CO2 into Cyclic Carbonates.

    Science.gov (United States)

    Zhong, Hong; Su, Yanqing; Chen, Xingwei; Li, Xiaoju; Wang, Ruihu

    2017-12-22

    CO 2 adsorption and concomitant catalytic conversion into useful chemicals are promising approaches to alleviate the energy crisis and effects of global warming. This is highly desirable for developing new types of heterogeneous catalytic materials containing CO 2 -philic groups and catalytic active sites for CO 2 chemical transformation. Here, we present an imidazolium- and triazine-based porous organic polymer with counter chloride anion (IT-POP-1). The porosity and CO 2 affinity of IT-POP-1 may be modulated at the molecular level through a facile anion-exchange strategy. Compared with the post-modified polymers with iodide and hexafluorophosphate anions, IT-POP-1 possesses the highest surface area and the best CO 2 uptake capacity with excellent adsorption selectivity over N 2 . The roles of the task-specific components such as triazine, imidazolium, hydroxyl, and counter anions in CO 2 absorption and catalytic performance were illustrated. IT-POP-1 exhibits the highest catalytic activity and excellent recyclability in solvent- and additive-free cycloaddition reaction of CO 2 with epoxides. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Simultaneous Elimination of Soot and NOX through Silver-Barium Based Catalytic Materials

    Directory of Open Access Journals (Sweden)

    Ganesh Chandra Dhal

    2017-04-01

    Full Text Available In this research paper, the nanometric size effect, the effects of the intrinsic factors including structure, and the redox properties of three systems of nanometric of silver-based catalysts were summarized. In this work, these catalysts were investigated for the simultaneous removal of particulate matter (diesel soot, and NOX was compared with that of a model of Pt-Ba/Al2O3 catalyst. The Silver-Barium based catalytic materials of Ag (5 wt%-Ba(10 wt%/MO (MO=Al2O3, CeO2, ZrO2, and Ag (5 wt%-Sr (10 wt%/CeO2 catalysts have been prepared by wetness impregnation method and characterized by BET, XRD, HRTEM, XPS and TPR (temperature-programmed reduction experiments. The behavior of the catalyst in the soot combustion (under tight conditions and NOX elimination has been separately analyzed by means of temperature programmed oxidation and isothermal concentration step change experiments, respectively. The results showed that all the catalysts were active in soot combustion with an indicative decrease of oxidation onset temperature compared to uncatalyzed soot oxidation. The removal of NOX in the presence and in the absence of soot was investigated under cycling conditions, i.e. alternating lean-rich phases according to the LNT approach. It has been found that the Ag-based samples were able to simultaneously remove soot and NOX. In particular, studying the behavior of the prepared catalysts, the Ba-containing systems exhibited higher NOX storage capacity than Sr-catalyst; also, the nitrogen selectivity increased even if resulted lower than the traditional LNT Pt-based catalyst. An adverse effect of soot on the NOX storage activity has been also observed. Copyright © 2017 BCREC GROUP. All rights reserved Received: 18th August 2016; Revised: 19th October 2016; Accepted: 19th October 2016 How to Cite: Dhal, G.C., Dey, S., Prasad, R., Mohan, D. (2017. Simultaneous Elimination of Soot and NOX through Silver-Barium Based Catalytic Materials. Bulletin of

  9. Industrial wastewater advanced treatment via catalytic ozonation with an Fe-based catalyst.

    Science.gov (United States)

    Li, Xufang; Chen, Weiyu; Ma, Luming; Wang, Hongwu; Fan, Jinhong

    2018-03-01

    An Fe-based catalyst was used as a heterogeneous catalyst for the ozonation of industrial wastewater, and key operational parameters (pH and catalyst dosage) were studied. The results indicated that the Fe-based catalyst significantly improved the mineralization of organic pollutants in wastewater. TOC (total organic carbon) removal was high, at 78.7%, with a catalyst concentration of 200 g/L, but only 31.6% with ozonation alone. The Fe-based catalyst significantly promoted ozone decomposition by 70% in aqueous solution. Hydroxyl radicals (·OH) were confirmed to be existed directly via EPR (electron paramagnetic resonance) experiments, and ·OH were verified to account for about 34.4% of TOC removal with NaHCO 3 as a radical scavenger. Through characterization by SEM-EDS (field emission scanning electron microscope with energy-dispersive spectrometer), XRD (X-ray powder diffraction) and XPS (X-ray photoelectron spectroscopy), it was deduced that FeOOH on the surface of the catalyst was the dominant contributor to the catalytic efficiency. The catalyst was certified as having good stability and excellent reusability based on 50 successive operations and could be used as a filler simultaneously. Thereby, it is a promising catalyst for practical industrial wastewater advanced treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Structure and acidity of individual Fluid Catalytic Cracking catalyst particles studied by synchrotron-based infrared micro-spectroscopy

    NARCIS (Netherlands)

    Buurmans, I.L.C.|info:eu-repo/dai/nl/31406592X; Soulimani, F.|info:eu-repo/dai/nl/313889449; Ruiz Martinez, J.|info:eu-repo/dai/nl/341386405; van der Bij, H.E.|info:eu-repo/dai/nl/328201294; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397

    2013-01-01

    A synchrotron-based infrared micro-spectroscopy study has been conducted to investigate the structure as well as the Brønsted and Lewis acidity of Fluid Catalytic Cracking (FCC) catalyst particles at the individual particle level. Both fresh and laboratory-deactivated catalyst particles have been

  11. Conjugate-base-stabilized Brønsted acids: catalytic enantioselective Pictet-Spengler reactions with unmodified tryptamine.

    Science.gov (United States)

    Mittal, Nisha; Sun, Diana X; Seidel, Daniel

    2014-02-07

    A conjugate-base-stabilized Brønsted acid facilitates catalytic enantioselective Pictet-Spengler reactions with unmodified tryptamine. The chiral carboxylic acid catalyst is readily assembled in just two steps and enables the formation of β-carbolines with up to 92% ee. Achiral acid additives or in situ Boc-protection facilitate catalyst turnover.

  12. Dietary arginine and linear growth

    DEFF Research Database (Denmark)

    van Vught, Anneke J A H; Dagnelie, Pieter C; Arts, Ilja C W

    2013-01-01

    and slopes were defined to estimate the association between arginine intake and growth velocity, including the following covariates: sex; age; baseline height; energy intake; puberty stage at 7-year follow-up and intervention/control group. The association between arginine intake and growth velocity......The amino acid arginine is a well-known growth hormone (GH) stimulator and GH is an important modulator of linear growth. The aim of the present study was to investigate the effect of dietary arginine on growth velocity in children between 7 and 13 years of age. Data from the Copenhagen School...

  13. Synthesis, characterization, electrical and catalytic studies of some coordination compounds derived from unsymmetrical Schiff base ligand

    Directory of Open Access Journals (Sweden)

    G. B. Pethe

    2015-10-01

    Full Text Available New unsymmetrical tetradentate Schiff base ligand derived from 5-chloro-2-hydroxyacetophenone, 2-hydroxy-5-methyl-3-nitro acetophenone and carbohydrazide and its complexes with VO(IV, Cr(III, Mn(III, Fe(III, MoO2(VI, WO2(VI, Zr(IV and UO2(VI have been prepared. They were characterized by elemental analysis, IR and electronic spectra, magnetic susceptibility measurements and thermal analyses. The Schiff base ligand has also been characterised by 1H-NMR spectroscopy. The thermal behaviour of metal complexes shows that the hydrated complexes lose water molecules of hydration in the first and then is immediately followed by decomposition of ligand molecule in the subsequent steps. The IR spectra suggest that ligand acts as dibasic tetradentate nature and coordination takes place through azomethine nitrogen and phenolate oxygen. The crystalline nature of the VO(IV complex was conformed through the powder XRD analysis. The catalytic activity of the VO(IV and Mn(III complexes have been tested in the epoxidation reaction of styrene and conversion of styrene were 11.14-24.35% and 9.64-23.42%, respectively. The solid state electrical conductivity of ligand and its complexes were measured, which could obeyed the relation s = s0 exp (Ea/KT over the temperature range 313-413 K. DOI: http://dx.doi.org/10.4314/bcse.v29i3.6

  14. Catalytic Transfer Hydrogenation of Biomass-Derived Carbonyls over Hafnium-Based Metal-Organic Frameworks.

    Science.gov (United States)

    Rojas-Buzo, Sergio; García-García, Pilar; Corma, Avelino

    2018-01-23

    A series of highly crystalline, porous, hafnium-based metal-organic frameworks (Hf-MOFs) have been shown to catalyze the transfer hydrogenation reaction of levulinic ester to produce γ-valerolactone by using isopropanol as a hydrogen donor. The results are compared with their zirconium-based counterparts. The role of the metal center in Hf-MOFs has been identified and reaction parameters optimized. NMR studies using isotopically labeled isopropanol provide evidence that the transfer hydrogenation occurs through a direct intermolecular hydrogen transfer route. The catalyst, Hf-MOF-808, can be recycled several times with only a minor decrease in catalytic activity. The generality of the procedure has been demonstrated by accomplishing the transformation with aldehydes, ketones, and α,β-unsaturated carbonyl compounds. The combination of Hf-MOF-808 with the Brønsted-acidic Al-Beta zeolite gives the four-step one-pot transformation of furfural to γ-valerolactone in good yield of 75 %. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Quantitative comparison between poly(L-arginine) and poly(L-lysine) at each step of polyplex-based gene transfection using a microinjection technique

    Science.gov (United States)

    Hashimoto, Tomoko; Kawazu, Takeshi; Nagasaki, Takeshi; Murakami, Akira; Yamaoka, Tetsuji

    2012-02-01

    Among the well-studied polypeptide-type gene carriers, transfection efficiency is empirically known to be higher for poly(L-arginine) (PR) than poly(L-lysine) (PK). The big difference between PR and PK should be determined at one of the intracellular trafficking steps based on the different charge densities, structures or PKa values. However, the endosomal escape and the intranuclear transcription efficiency in living cells have not been clarified yet. In this study, a novel method for quantifying the intranuclear transcription efficiency and the nuclear transport of the polyplex is established based on the nuclear and the cytosolic microinjection technique, and the results for PK and PR with different molecular weights (MWs) are compared in living cells. The intranuclear transcription efficiency is the same in PR and PK and it decreases rapidly with increasing MW, in spite of the commonly measured transfection efficiency. The transcription efficiency is strongly suppressed at high MW and strongly correlates with the polyplex forming ability expressed as a critical ratio of the number of polypeptide cationic groups to the number of pDNA anionic groups. When considered with the results of the cellular uptake and in vitro transfection with or without chloroquine, the rate-limiting step for their gene transfer is the buffering effect-independent endosomal escape.

  16. Development of biomimetic catalytic oxidation methods and non-salt methods using transition metal-based acid and base ambiphilic catalysts.

    Science.gov (United States)

    Murahashi, Shun-Ichi

    2011-01-01

    This review focuses on the development of ruthenium and flavin catalysts for environmentally benign oxidation reactions based on mimicking the functions of cytochrome P-450 and flavoenzymes, and low valent transition-metal catalysts that replace conventional acids and bases. Several new concepts and new types of catalytic reactions based on these concepts are described. (Communicated by Ryoji Noyori, M.J.A.).

  17. Development of biomimetic catalytic oxidation methods and non-salt methods using transition metal-based acid and base ambiphilic catalysts

    Science.gov (United States)

    MURAHASHI, Shun-Ichi

    2011-01-01

    This review focuses on the development of ruthenium and flavin catalysts for environmentally benign oxidation reactions based on mimicking the functions of cytochrome P-450 and flavoenzymes, and low valent transition-metal catalysts that replace conventional acids and bases. Several new concepts and new types of catalytic reactions based on these concepts are described. PMID:21558760

  18. A novel sensor based on electropolymerization of β-cyclodextrin and L-arginine on carbon paste electrode for determination of fluoroquinolones

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fenfen [School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China); Gu, Shuqing [Department of Chemistry, Shanghai University, Shanghai 200444 (China); School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China); Ding, Yaping, E-mail: wdingyp@sina.com [Department of Chemistry, Shanghai University, Shanghai 200444 (China); School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China); Zhang, Zhen [School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China); School of Chemistry and Chemical Engineering, Linyi University, 18 TongDa Road, Linyi 276005 (China); Li, Li [Department of Chemistry, Shanghai University, Shanghai 200444 (China)

    2013-04-03

    Graphical abstract: The inner cavities of β-CD could restrain fluoroquinolones to form stable host–guest inclusion complexes, and the guanidyl group of L-arg could enable L-arg to form electrostatic interactions with negatively charged groups -COO{sup −} of fluoroquinolones. Highlights: ► Electropolymerization of β-cyclodextrin and L-arginine on carbon paste electrode. ► The electrooxidation and reaction of FQs on the modified CPE were surmised. ► The sensor is used to detect ciprofloxacin, ofloxacin, norfloxacin and gatifloxacin. ► Determine FQs drugs in pharmaceutical formulations and human serum samples. ► It showed high stability, repeatability, reproducibility, good sensitivity. -- Abstract: An electrochemical sensor for fluoroquinolones (FQs) based on polymerization of β-cyclodextrin (β-CD) and L-arginine (L-arg) modified carbon paste electrode (CPE) (P-β-CD-L-arg/CPE) was built for the first time. Synergistic effect of L-arg and β-CD was used to construct this sensor for quantification of these important antibiotics. Scanning electron microscope (SEM) image shows that polymer of β-CD and L-arg has been successfully modified on electrode. Electrochemical impedance spectroscopy (EIS) and cyclic voltammograms (CV) further indicate that polymer of β-CD and L-arg efficiently decreased the charge transfer resistance value of electrode and improved the electron transfer kinetic between analyte and electrode. Under the optimized conditions, this modified electrode was utilized to determine the concentrations of ciprofloxacin, ofloxacin, norfloxacin and gatifloxacin. The differential pulse voltammogram (DPV) exhibits the oxidation peak currents were linearly proportional to their concentration in the range of 0.05–100 μM for ciprofloxacin, 0.1–100 μM for ofloxacin, 0.1–40 μM for norfloxacin and 0.06–100 μM for gatifloxacin, respectively. This method was also successfully used to detect the concentrations of each drug in

  19. Catalytic Conversion of Carbohydrates to Levulinate Ester over Heteropolyanion-Based Ionic Liquids.

    Science.gov (United States)

    Song, Changhua; Liu, Sijie; Peng, Xinwen; Long, Jinxing; Lou, Wenyong; Li, Xuehui

    2016-12-08

    An efficient one-pot approach for the production of levulinate ester from renewable carbohydrates is demonstrated over heteropolyanion-based ionic liquid (IL-POM) catalysts with alcohols as the promoters and solvents. The relationships between the structure, acidic strength, and solubility of the IL-POM in methanol and the catalytic performance were studied intensively. A cellulose conversion of 100 % could be achieved with a 71.4 % yield of methyl levulinate over the catalyst [PyPS] 3 PW 12 O 40 [PyPS=1-(3-sulfopropyl)pyridinium] at 150 °C for 5 h. This high efficiency is ascribed to the reasonably high activity of the ionic liquid (IL) catalyst and reaction coupling with rapid in situ esterification of the generated levulinic acid with the alcohol promoter, which allows the insolubility of cellulose encountered in biomass conversion to be overcome. Furthermore, the present process exhibits high feedstock adaptability for typical carbohydrates and handy catalyst recovery by a simple self-separation procedure through temperature control. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Bifunctional Porphyrin-Based Nano-Metal-Organic Frameworks: Catalytic and Chemosensing Studies.

    Science.gov (United States)

    Pereira, Carla F; Figueira, Flávio; Mendes, Ricardo F; Rocha, João; Hupp, Joseph T; Farha, Omar K; Simões, Mário M Q; Tomé, João P C; Paz, Filipe A Almeida

    2018-03-13

    The use of 5,10,15,20-tetrakis( p-phenylphosphonic acid)porphyrin (H 10 TPPA) as a linker in the preparation of porphyrin-based metal-organic frameworks (Por-MOFs) through coordination to lanthanides cations is reported. The resulting unprecedented materials, formulated as [M(H 9 TPPA)(H 2 O) x ]Cl 2 · yH 2 O [ x + y = 7; M 3+ = La 3+ (1), Yb 3+ (2), and Y 3+ (3)], prepared using hydrothermal synthesis, were extensively characterized in the solid-state, for both their structure and thermal robustness, using a myriad of solid-state advanced techniques. Materials were evaluated as heterogeneous catalysts in the oxidation of thioanisole by H 2 O 2 and as chemosensors for detection of nitroaromatic compounds (NACs). Nano-Por-MOFs 1-3 proved to be effective as heterogeneous catalysts in the sulfoxidation of thioanisole, with Por-MOF 1 exhibiting the best catalytic performance with a conversion of thioanisole of 89% in the first cycle and with a high selectivity for the sulfoxide derivative (90%). The catalyst maintained its activity roughly constant in three consecutive runs. Por-MOFs 1-3 can be employed as chemosensors because of a measured fluorescence quenching up to 70% for nitrobenzene, 1,4-dinitrobenzene, 4-nitrophenol, and phenol, with 2,4,6-trinitrophenol exhibiting a peculiar fluorescence profile.

  1. Discovery of a new class of inhibitors for the protein arginine deiminase type 4 (PAD4) by structure-based virtual screening.

    Science.gov (United States)

    Teo, Chian Ying; Shave, Steven; Chor, Adam Leow Thean; Salleh, Abu Bakar; Rahman, Mohd Basyaruddin Bin Abdul; Walkinshaw, Malcolm D; Tejo, Bimo A

    2012-01-01

    Rheumatoid arthritis (RA) is an autoimmune disease with unknown etiology. Anticitrullinated protein autoantibody has been documented as a highly specific autoantibody associated with RA. Protein arginine deiminase type 4 (PAD4) is the enzyme responsible for catalyzing the conversion of peptidylarginine into peptidylcitrulline. PAD4 is a new therapeutic target for RA treatment. In order to search for inhibitors of PAD4, structure-based virtual screening was performed using LIDAEUS (Ligand discovery at Edinburgh university). Potential inhibitors were screened experimentally by inhibition assays. Twenty two of the top-ranked water-soluble compounds were selected for inhibitory screening against PAD4. Three compounds showed significant inhibition of PAD4 and their IC50 values were investigated. The structures of the three compounds show no resemblance with previously discovered PAD4 inhibitors, nor with existing drugs for RA treatment. Three compounds were discovered as potential inhibitors of PAD4 by virtual screening. The compounds are commercially available and can be used as scaffolds to design more potent inhibitors against PAD4.

  2. Arginine: New Insights into Growth Performance and Urinary Metabolomic Profiles of Rats

    Directory of Open Access Journals (Sweden)

    Guangmang Liu

    2016-08-01

    Full Text Available Arginine regulates growth performance, nutrient metabolism and health effects, but the underlying mechanism remains unknown. This study aims to investigate the effect of dietary arginine supplementation on rat growth performance and urinary metabolome through 1H-NMR spectroscopy. Twenty rats were randomly assigned to two groups supplemented with 0% or 1.0% l-arginine for 4 weeks. Urine samples were analyzed through NMR-based metabolomics. Arginine supplementation significantly increased the urine levels of 4-aminohippurate, acetate, creatine, creatinine, ethanolamine, formate, hippurate, homogentisate, indoxyl sulfate, and phenylacetyglycine. Conversely, arginine decreased the urine levels of acetamide, β-glucose, cirtulline, ethanol, glycine, isobutyrate, lactate, malonate, methymalonate, N-acetylglutamate, N-methylnicotinamide, and propionate. Results suggested that arginine can alter common systemic metabolic processes, including energy metabolism, amino acid metabolism, and gut microbiota metabolism. Moreover, the results also imply a possible physiological role of the metabolism in mediating the arginine supplementation-supported growth of rats.

  3. Arginine-aromatic interactions and their effects on arginine-induced solubilization of aromatic solutes and suppression of protein aggregation

    KAUST Repository

    Shah, Dhawal

    2011-09-21

    We examine the interaction of aromatic residues of proteins with arginine, an additive commonly used to suppress protein aggregation, using experiments and molecular dynamics simulations. An aromatic-rich peptide, FFYTP (a segment of insulin), and lysozyme and insulin are used as model systems. Mass spectrometry shows that arginine increases the solubility of FFYTP by binding to the peptide, with the simulations revealing the predominant association of arginine to be with the aromatic residues. The calculations further show a positive preferential interaction coefficient, Γ XP, contrary to conventional thinking that positive Γ XP\\'s indicate aggregation rather than suppression of aggregation. Simulations with lysozyme and insulin also show arginine\\'s preference for aromatic residues, in addition to acidic residues. We use these observations and earlier results reported by us and others to discuss the possible implications of arginine\\'s interactions with aromatic residues on the solubilization of aromatic moieties and proteins. Our results also highlight the fact that explanations based purely on Γ XP, which measures average affinity of an additive to a protein, could obscure or misinterpret the underlying molecular mechanisms behind additive-induced suppression of protein aggregation. © 2011 American Institute of Chemical Engineers (AIChE).

  4. Switch in Site of Inhibition: A Strategy for Structure-Based Discovery of Human Topoisomerase IIα Catalytic Inhibitors.

    Science.gov (United States)

    Baviskar, Ashish T; Amrutkar, Suyog M; Trivedi, Neha; Chaudhary, Vikas; Nayak, Anmada; Guchhait, Sankar K; Banerjee, Uttam C; Bharatam, Prasad V; Kundu, Chanakya N

    2015-04-09

    A study of structure-based modulation of known ligands of hTopoIIα, an important enzyme involved in DNA processes, coupled with synthesis and in vitro assays led to the establishment of a strategy of rational switch in mode of inhibition of the enzyme's catalytic cycle. 6-Arylated derivatives of known imidazopyridine ligands were found to be selective inhibitors of hTopoIIα, while not showing TopoI inhibition and DNA binding. Interestingly, while the parent imidazopyridines acted as ATP-competitive inhibitors, arylated derivatives inhibited DNA cleavage similar to merbarone, indicating a switch in mode of inhibition from ATP-hydrolysis to the DNA-cleavage stage of catalytic cycle of the enzyme. The 6-aryl-imidazopyridines were relatively more cytotoxic than etoposide in cancer cells and less toxic to normal cells. Such unprecedented strategy will encourage research on "choice-based change" in target-specific mode of action for rapid drug discovery.

  5. Catalytic Performance for Hydrocarbon Production from Syngas on the Promoted Co-Based Hybrid Catalysts; Influence of Pt Contents

    Directory of Open Access Journals (Sweden)

    Suk-Hwan Kang

    2017-10-01

    How to Cite: Kang, S.H., Ryu, J.H., Kim, J.H., Kim, H.S., Yang, H.C., Chung, D.Y. (2017. Catalytic Performance for Hydrocarbon Production from Syngas on the Promoted Co-Based Hybrid Catalysts; Influence of Pt Contents. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (3: 452-459 (doi:10.9767/bcrec.12.3.592.452-459

  6. Homochiral nickel coordination polymers based on salen(Ni) metalloligands: synthesis, structure, and catalytic alkene epoxidation.

    Science.gov (United States)

    Huang, Yuanbiao; Liu, Tianfu; Lin, Jingxiang; Lü, Jian; Lin, Zujin; Cao, Rong

    2011-03-21

    One-dimensional (1D) homochiral nickel coordination polymers [Ni(3)(bpdc)(RR-L)(2)·(DMF)](n) (2R, RR-L = (R,R)-(-)-1,2-cyclohexanediamino-N,N'-bis(3-tert-butyl-5-(4-pyridyl)salicylidene), bpdc = 4,4'-biphenyldicarboxylic acid) and [Ni(3)(bpdc)(SS-L)(2)·(DMF)](n) (2S, SS-L = (S,S)-(-)-1,2-cyclohexanediamino-N,N'-bis(3-tert-butyl-5-(4-pyridyl)salicylidene) based on enantiopure pyridyl-functionalized salen(Ni) metalloligand units NiL ((1,2-cyclohexanediamino-N,N'-bis(3-tert-butyl-5-(4-pyridyl)salicylidene))Ni(II)) have been synthesized and characterized by microanalysis, IR spectroscopy, solid-state UV-vis spectroscopy, thermogravimetric analysis (TGA), circular dichroism (CD) spectroscopy, cyclic voltammetric measurement, and powder and single crystal X-ray diffraction. Each NiL as unbridging pendant metalloligand uses one terminal pyridyl group to coordinate achiral unit (nickel and bpdc(2-)) building a helical chain, while the other pyridyl group remains uncoordinated. Both 2R and 2S contain left- and right-handed helical chains made of the achiral building blocks, while the NiL as remote external chiral source is perpendicular to the backbone of the helices. The nickel coordination polymers 2R and 2S containing unsaturated active nickel center in metalloligand NiL can be used as self-supported heterogeneous catalysts. They show catalytic activity comparable with their homogeneous counterpart in alkene epoxidation and exhibit great potential as recyclable catalysts.

  7. Principles of water oxidation and O2-based hydrocarbon transformation by multinuclear catalytic sites

    Energy Technology Data Exchange (ETDEWEB)

    Musaev, Djamaladdin G [Chemistry, Emory University; Hill, Craig L [Chemistry, Emory University; Morokuma, Keiji [Chemistry, Emory University

    2014-10-28

    Abstract The central thrust of this integrated experimental and computational research program was to obtain an atomistic-level understanding of the structural and dynamic factors underlying the design of catalysts for water oxidation and selective reductant-free O2-based transformations. The focus was on oxidatively robust polyoxometalate (POM) complexes in which a catalytic active site interacts with proximal metal centers in a synergistic manner. Thirty five publications in high-impact journals arose from this grant. I. Developing an oxidatively and hydrolytically stable and fast water oxidation catalyst (WOC), a central need in the production of green fuels using water as a reductant, has proven particularly challenging. During this grant period we have designed and investigated several carbon-free, molecular (homogenous), oxidatively and hydrolytically stable WOCs, including the Rb8K2[{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2]·25H2O (1) and [Co4(H2O)2(α-PW9O34)2]10- (2). Although complex 1 is fast, oxidatively and hydrolytically stable WOC, Ru is neither abundant nor inexpensive. Therefore, development of a stable and fast carbon-free homogenous WOC, based on earth-abundant elements became our highest priority. In 2010, we reported the first such catalyst, complex 2. This complex is substantially faster than 1 and stable under homogeneous conditions. Recently, we have extended our efforts and reported a V2-analog of the complex 2, i.e. [Co4(H2O)2(α-VW9O34)2]10- (3), which shows an even greater stability and reactivity. We succeeded in: (a) immobilizing catalysts 1 and 2 on the surface of various electrodes, and (b) elucidating the mechanism of O2 formation and release from complex 1, as well as the Mn4O4L6 “cubane” cluster. We have shown that the direct O-O bond formation is the most likely pathway for O2 formation during water oxidation catalyzed by 1. II. Oxo transfer catalysts that contain two proximal and synergistically interacting redox active metal

  8. Chemical mechanisms of histone lysine and arginine modifications.

    Science.gov (United States)

    Smith, Brian C; Denu, John M

    2009-01-01

    Histone lysine and arginine residues are subject to a wide array of post-translational modifications including methylation, citrullination, acetylation, ubiquitination, and sumoylation. The combinatorial action of these modifications regulates critical DNA processes including replication, repair, and transcription. In addition, enzymes that modify histone lysine and arginine residues have been correlated with a variety of human diseases including arthritis, cancer, heart disease, diabetes, and neurodegenerative disorders. Thus, it is important to fully understand the detailed kinetic and chemical mechanisms of these enzymes. Here, we review recent progress towards determining the mechanisms of histone lysine and arginine modifying enzymes. In particular, the mechanisms of S-adenosyl-methionine (AdoMet) dependent methyltransferases, FAD-dependent demethylases, iron dependent demethylases, acetyl-CoA dependent acetyltransferases, zinc dependent deacetylases, NAD(+) dependent deacetylases, and protein arginine deiminases are covered. Particular attention is paid to the conserved active-site residues necessary for catalysis and the individual chemical steps along the catalytic pathway. When appropriate, areas requiring further work are discussed.

  9. Nature inspired catalytic systems using sulfonamido-phosphorus based complexes: Increasing complexity in transition metal catalysis

    NARCIS (Netherlands)

    Terrade, F.G.

    2014-01-01

    Most industrial transformations include at least one catalytic step, as catalysis allows the reduction of waste and reduces the energy consumption. Driven by economic and environmental concerns, chemists are making constant efforts to develop ever-more efficient catalysts. Enzymes, catalysts found

  10. Catalytic Pyrolysis of Wild Reed over a Zeolite-Based Waste Catalyst

    Directory of Open Access Journals (Sweden)

    Myung Lang Yoo

    2016-03-01

    Full Text Available Fast catalytic pyrolysis of wild reed was carried out at 500 °C. Waste fluidized catalytic cracking (FCC catalyst disposed from a petroleum refinery process was activated through acetone-washing and calcination and used as catalyst for pyrolysis. In order to evaluate the catalytic activity of waste FCC catalyst, commercial HY zeolite catalyst with a SiO2/Al2O3 ratio of 5.1 was also used. The bio-oil produced from pyrolysis was analyzed using gas chromatography/mass spectrometry (GC/MS. When the biomass-to-catalyst ratio was 1:1, the production of phenolics and aromatics was promoted considerably by catalysis, whereas the content of oxygenates was affected little. Significant conversion of oxygenates to furans and aromatics was observed when the biomass-to-catalyst ratio of 1:10 was used. Activated waste FCC catalyst showed comparable catalytic activity for biomass pyrolysis to HY in terms of the promotion of valuable chemicals, such as furans, phenolics and aromatics. The results of this study imply that waste FCC catalyst can be an important economical resource for producing high-value-added chemicals from biomass.

  11. Catalytic promiscuity of a proline-based tautomerase : Aldolase activities and enzyme redesign

    NARCIS (Netherlands)

    Rahimi, Mehran

    2016-01-01

    Numerous enzymes have been found to catalyze additional and completely different types of reactions relative to the natural activity they evolved for. This interesting phenomenon, called catalytic promiscuity, has proven to be a fruitful guide for the development of novel biocatalysts for organic

  12. Catalytic enantioselective syn hydration of enones in water using a DNA-based catalyst

    NARCIS (Netherlands)

    Boersma, Arnold J.; Coquière, David; Geerdink, Danny; Rosati, Fiora; Roelfes, Gerard; Feringa, Bernard

    2010-01-01

    The enantioselective addition of water to olefins in an aqueous environment is a common transformation in biological systems, but was beyond the ability of synthetic chemists. Here, we present the first examples of a non-enzymatic catalytic enantioselective hydration of enones, for which we used a

  13. Reference Intervals for Plasma l-Arginine and the l-Arginine:Asymmetric Dimethylarginine Ratio in the Framingham Offspring Cohort123

    Science.gov (United States)

    Lüneburg, Nicole; Xanthakis, Vanessa; Schwedhelm, Edzard; Sullivan, Lisa M.; Maas, Renke; Anderssohn, Maike; Riederer, Ulrich; Glazer, Nicole L.; Vasan, Ramachandran S.; Böger, Rainer H.

    2011-01-01

    l-Arginine, as a precursor of NO synthesis, has attracted much scientific attention in recent years. Experimental mouse models suggest that l-arginine supplementation can retard, halt, or even reverse atherogenesis. In human studies, supplementation with l-arginine improved endothelium-dependent vasodilation. However, l-arginine levels are best interpreted in the context of levels of asymmetric dimethylarginine (ADMA), a competitive inhibitor of NO synthase. Thus, reference limits for circulating l-arginine and the l-arginine:ADMA ratio may help to determine the nutritional state of individuals at high cardiovascular risk in light of increased ADMA levels. We defined reference limits for plasma l-arginine in 1141 people and for the l-arginine:ADMA ratio in 1138 relatively healthy individuals from the Framingham Offspring Cohort. Plasma l-arginine and ADMA concentrations were determined by using a stable isotope-based LC-MS/MS method. The reference limits (2.5th and 97.5th percentiles) for plasma l-arginine were 41.0 μmol/L (95% CI = 39.5–42.5 μmol/L) and 114 μmol/L (95% CI = 112–115 μmol/L), whereas corresponding reference limits (2.5th and 97.5th percentiles) for the l-arginine:ADMA ratio were 74.3 μmol/L (95% CI = 71.1–77.3 μmol/L) and 225 μmol/L (95% CI = 222–228 μmol/L). Plasma l-arginine was positively associated with the estimated glomerular filtration rate (eGFR) and blood glucose levels, whereas the l-arginine:ADMA ratio was positively associated with eGFR and diastolic blood pressure but inversely associated with homocysteine and (log)C-reactive protein. We report reference levels for plasma l-arginine and for the l-arginine:ADMA ratio that may be helpful for evaluation of the effects of l-arginine supplementation in participants with an impaired l-arginine/NO pathway. PMID:22031661

  14. Thermo-Catalytic Methane Decomposition for Hydrogen Production: Effect of Palladium Promoter on Ni-based Catalysts

    Directory of Open Access Journals (Sweden)

    Irene Lock Sow Mei

    2016-08-01

    Full Text Available Hydrogen production from the direct thermo-catalytic decomposition of methane is a promising alternative for clean fuel production. However, thermal decomposition of methane can hardly be of any practical and empirical interest in the industry unless highly efficient and effective catalysts, in terms of both catalytic activity and operational lifetime have been developed. In this study, the effect of palladium (Pd as a promoter onto Ni supported on alumina catalyst has been investigated by using co-precipitation technique. The introduction of Pd promotes better catalytic activity, operational lifetime and thermal stability of the catalyst. As expected, highest methane conversion was achieved at reaction temperature of 800 °C while the bimetallic catalyst (1 wt.% Ni -1wt.% Pd/Al2O3 gave the highest methane conversion of 70% over 15 min of time-on-stream (TOS. Interestingly, the introduction of Pd as promoter onto Ni-based catalyst also has a positive effect on the operational lifetime and thermal stability of the catalyst as the methane conversion has improved significantly over 240 min of TOS. Copyright © 2016 BCREC GROUP. All rights reserved Received: 21st January 2016; Revised: 6th February 2016; Accepted: 6th March 2016 How to Cite: Mei, I.L.S., Lock, S.S.M., Vo, D.V.N., Abdullah, B. (2016. Thermo-Catalytic Methane Decomposition for Hydrogen Production: Effect of Palladium Promoter on Ni-based Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (2: 191-199 (doi:10.9767/bcrec.11.2.550.191-199 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.2.550.191-199

  15. Production of phenolic-rich bio-oil from catalytic fast pyrolysis of biomass using magnetic solid base catalyst

    International Nuclear Information System (INIS)

    Zhang, Zhi-bo; Lu, Qiang; Ye, Xiao-ning; Li, Wen-tao; Hu, Bin; Dong, Chang-qing

    2015-01-01

    Highlights: • Phenolic-rich bio-oil was selectively produced from catalytic fast pyrolysis of biomass using magnetic solid base catalyst. • The actual yield of twelve major phenolic compounds reached 43.9 mg/g. • The peak area% of all phenolics reached 68.5% at the catalyst-to-biomass ratio of 7. • The potassium phosphate/ferroferric oxide catalyst possessed promising recycling properties. - Abstract: A magnetic solid base catalyst (potassium phosphate/ferroferric oxide) was prepared and used for catalytic fast pyrolysis of poplar wood to selectively produce phenolic-rich bio-oil. Pyrolysis–gas chromatography/mass spectrometry experiments were conducted to investigate the effects of pyrolysis temperature and catalyst-to-biomass ratio on the product distribution. The actual yields of important pyrolytic products were quantitatively determined by the external standard method. Moreover, recycling experiments were performed to determine the re-utilization abilities of the catalyst. The results showed that the catalyst exhibited promising activity to selectively produce phenolic-rich bio-oil, due to its capability of promoting the decomposition of lignin to generate phenolic compounds and meanwhile inhibiting the devolatilization of holocellulose. The maximal phenolic yield was obtained at the pyrolysis temperature of 400 °C and catalyst-to-biomass ratio of 2. The concentration of the phenolic compounds increased monotonically along with the increasing of the catalyst-to-biomass ratio, with the peak area% value increasing from 28.1% in the non-catalytic process to as high as 68.5% at the catalyst-to-biomass ratio of 7. The maximal total actual yield of twelve quantified major phenolic compounds was 43.9 mg/g, compared with the value of 29.0 mg/g in the non-catalytic process. In addition, the catalyst could be easily recovered and possessed promising recycling properties.

  16. Feed intake and brain neuropeptide Y (NPY) and cholecystokinin (CCK) gene expression in juvenile cobia fed plant-based protein diets with different lysine to arginine ratios.

    Science.gov (United States)

    Nguyen, Minh Van; Jordal, Ann-Elise Olderbakk; Espe, Marit; Buttle, Louise; Lai, Hung Van; Rønnestad, Ivar

    2013-07-01

    Cobia (Rachycentron canadum, Actinopterygii, Perciformes;10.5±0.1g) were fed to satiation with three plant-based protein test diets with different lysine (L) to arginine (A) ratios (LL/A, 0.8; BL/A, 1.1; and HL/A, 1.8), using a commercial diet as control for six weeks. The test diets contained 730 g kg(-1) plant ingredients with 505-529 g protein, 90.2-93.9 g lipid kg(-1) dry matter; control diet contained 550 g protein and 95 g lipid kg(-1) dry matter. Periprandial expression of brain NPY and CCK (npy and cck) was measured twice (weeks 1 and 6). At week one, npy levels were higher in pre-feeding than postfeeding cobia for all diets, except LL/A. At week six, npy levels in pre-feeding were higher than in postfeeding cobia for all diets. cck in pre-feeding cobia did not differ from that in postfeeding for all diets, at either time point. Cobia fed LL/A had lower feed intake (FI) than cobia fed BL/A and control diet, but no clear correlations between dietary L/A ratio and FI, growth and expression of npy and cck were detected. The data suggest that NPY serves as an orexigenic factor, but further studies are necessary to describe links between dietary L/A and regulation of appetite and FI in cobia. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Protein arginine deiminase 2 binds calcium in an ordered fashion: implications for inhibitor design.

    Science.gov (United States)

    Slade, Daniel J; Fang, Pengfei; Dreyton, Christina J; Zhang, Ying; Fuhrmann, Jakob; Rempel, Don; Bax, Benjamin D; Coonrod, Scott A; Lewis, Huw D; Guo, Min; Gross, Michael L; Thompson, Paul R

    2015-04-17

    Protein arginine deiminases (PADs) are calcium-dependent histone-modifying enzymes whose activity is dysregulated in inflammatory diseases and cancer. PAD2 functions as an Estrogen Receptor (ER) coactivator in breast cancer cells via the citrullination of histone tail arginine residues at ER binding sites. Although an attractive therapeutic target, the mechanisms that regulate PAD2 activity are largely unknown, especially the detailed role of how calcium facilitates enzyme activation. To gain insights into these regulatory processes, we determined the first structures of PAD2 (27 in total), and through calcium-titrations by X-ray crystallography, determined the order of binding and affinity for the six calcium ions that bind and activate this enzyme. These structures also identified several PAD2 regulatory elements, including a calcium switch that controls proper positioning of the catalytic cysteine residue, and a novel active site shielding mechanism. Additional biochemical and mass-spectrometry-based hydrogen/deuterium exchange studies support these structural findings. The identification of multiple intermediate calcium-bound structures along the PAD2 activation pathway provides critical insights that will aid the development of allosteric inhibitors targeting the PADs.

  18. Sulfur and Water Resistance of Mn-Based Catalysts for Low-Temperature Selective Catalytic Reduction of NOx: A Review

    Directory of Open Access Journals (Sweden)

    Chen Gao

    2018-01-01

    Full Text Available Selective catalytic reduction (SCR with NH3 is the most efficient and economic flue gas denitrification technology developed to date. Due to its high low-temperature catalytic activity, Mn-based catalysts present a great prospect for application in SCR de-NOx at low temperatures. However, overcoming the poor resistance of Mn-based catalysts to H2O and SO2 poison is still a challenge. This paper reviews the recent progress on the H2O and SO2 resistance of Mn-based catalysts for the low-temperature SCR of NOx. Firstly, the poison mechanisms of H2O and SO2 are introduced in detail, respectively. Secondly, Mn-based catalysts are divided into three categories—single MnOx catalysts, Mn-based multi-metal oxide catalysts, and Mn-based supported catalysts—to review the research progress of Mn-based catalysts for H2O and SO2 resistance. Thirdly, several strategies to reduce the poisonous effects of H2O and SO2, such as metal modification, proper support, the combination of metal modification and support, the rational design of structure and morphology, are summarized. Finally, perspectives and future directions of Mn-based catalysts for the low-temperature SCR of NOx are proposed.

  19. Preparation of arginine (guanide 14C)

    International Nuclear Information System (INIS)

    Pichat, L.; Baret, C.

    1960-01-01

    Reaction of anhydrous ammoniac at 800 deg. C on 14 CO 3 Ba gives rise to barium cyanamide 14 C with a yield of about 98 per cent. Addition on H 2 S on cyanamide 14 C leads to thiourea 14 C with a 85 per cent yield, which is quantitatively transformed into S-ethyl-isothiouronium iodide by treatment with methyl iodide. This 14 C-isothiouronium salt is used to introduce 14 C guanide group in α-N-tosyl-ornithine; tosyl group in α-N-tosyl-arginine thus obtained is then removed by hydrolysis with hydrochloric acid. Arginine is separated as flavianic acid salt and is purified on exchange resin Dowex-50. The overall yield based on 14 CO 3 Ba is 25 per cent. (author) [fr

  20. Support effects on adsorption and catalytic activation of O2 in single atom iron catalysts with graphene-based substrates.

    Science.gov (United States)

    Gao, Zheng-Yang; Yang, Wei-Jie; Ding, Xun-Lei; Lv, Gang; Yan, Wei-Ping

    2018-03-07

    The adsorption and catalytic activation of O 2 on single atom iron catalysts with graphene-based substrates were investigated systematically by density functional theory calculation. It is found that the support effects of graphene-based substrates have a significant influence on the stability of the single atom catalysts, the adsorption configuration, the electron transfer mechanism, the adsorption energy and the energy barrier. The differences in the stable adsorption configuration of O 2 on single atom iron catalysts with different graphene-based substrates can be well understood by the symmetrical matching principle based on frontier molecular orbital analysis. There are two different mechanisms of electron transfer, in which the Fe atom acts as the electron donor in single vacancy graphene-based substrates while the Fe atom mainly acts as the bridge for electron transfer in double vacancy graphene-based substrates. The Fermi softness and work function are good descriptors of the adsorption energy and they can well reveal the relationship between electronic structure and adsorption energy. This single atom iron catalyst with single vacancy graphene modified by three nitrogen atoms is a promising non-noble metal single atom catalyst in the adsorption and catalytic oxidation of O 2 . Furthermore, the findings can lay the foundation for the further study of graphene-based support effects and provide a guideline for the development and design of new non-noble-metal single atom catalysts.

  1. Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2009-01-01

    In this study, waste cooking oil has subjected to transesterification reaction by potassium hydroxide (KOH) catalytic and supercritical methanol methods obtaining for biodiesel. In catalyzed methods, the presence of water has negative effects on the yields of methyl esters. In the catalytic transesterification free fatty acids and water always produce negative effects since the presence of free fatty acids and water causes soap formation, consumes catalyst, and reduces catalyst effectiveness. Free fatty acids in the waste cooking oil are transesterified simultaneously in supercritical methanol method. Since waste cooking oil contains water and free fatty acids, supercritical transesterification offers great advantage to eliminate the pre-treatment and operating costs. The effects of methanol/waste cooking oils ratio, potassium hydroxide concentration and temperature on the biodiesel conversion were investigated

  2. Low Temperature Steam Methane Reforming Over Ni Based Catalytic Membrane Prepared by Electroless Palladium Plating.

    Science.gov (United States)

    Lee, Sang Moon; Hong, Sung Chang; Kim, Sung Su

    2018-09-01

    A Pd/Ni-YSZ porous membrane with different palladium loadings and hydrazine as a reducing reagent was prepared by electroless plating and evaluated for the steam methane reforming activity. The steam-reforming activity of a Ni-YSZ porous membrane was greatly increased by the deposition of 4 g/L palladium in the low-temperature range (600 °C). With an increasing amount of reducing reagent, the Pd clusters were well dispersed on the Ni-YSZ surface and were uniform in size (∼500 nm). The Pd/Ni-YSZ catalytic porous membrane prepared by 1 of Pd/hydrazine ratio possessed an abundant amount of metallic Pd. The optimal palladium loadings and Pd/hydrazine ratio increased the catalytic activity in both the steam-reforming reaction and the Pd dispersion.

  3. Synthesis, spectral, characterization, catalytic and biological studies of new RuII N2O Schiff base complexes

    International Nuclear Information System (INIS)

    Balasubramanian, K.P.; Manivannan, S.; Chinnusamy, V.

    2008-01-01

    Complexes of the type (RuCl(CO)(B)(L)) (B = PPh 3 , AsPh 3 , py or pip; L monobasic tridentate Schiff base) have been synthesized by the reaction of equimolar amounts of (RuHCl(CO)(EPh 3 ) 2 (B)) and Schiff bases in benzene. The resulting complexes have been characterized by analytical and spectral (IR, electronic, NMR) data. An octahedral structure has been assigned to all these complexes. The new complexes have been exhibit catalytic activity for the oxidation of benzyl alcohol and cyclohexanol in the presence of N-methylmorpholine-N-oxide as co-oxidant. (author)

  4. Engineering of Syndiotactic and Isotactic Polystyrene-Based Copolymers via Stereoselective Catalytic Polymerization

    Directory of Open Access Journals (Sweden)

    Eva Laur

    2017-04-01

    Full Text Available This contribution presents an updated overview of the different copolymers containing stereoregular polystyrene blocks. Special emphasis is placed on syndiospecific and isospecific copolymerization of styrene with co-monomers (ethylene and α-olefins, conjugated and non-conjugated dienes, styrene derivatives, etc.. The catalytic systems involved are described and the polymerization mechanisms are discussed. Alternative approaches (simultaneous, living, chain-transfer and graft copolymerization and the resulting detailed structures and characteristics of the copolymers are also reported.

  5. Biogas Catalytic Reforming Studies on Nickel-Based Solid Oxide Fuel Cell Anodes

    DEFF Research Database (Denmark)

    Johnson, Gregory B.; Hjalmarsson, Per; Norrman, Kion

    2016-01-01

    of experiments were performed to study catalytic activity and effect of sulfur poisoning: (i) CH4 and CO2 dissociation; (ii) biogas (60% CH4 and 40% CO2) temperature-programmed reactions (TPRxn); and (iii) steady-state biogas reforming reactions followed by postmortem catalyst characterization by temperature......-programmed oxidation and time-of-flight secondary ion mass spectrometry. Results showed thatNi/ScYSZ/Pd-CGO was more active for catalytic dissociation of CH4 at 750°C and subsequent reactivity of deposited carbonaceous species. Sulfur deactivated most catalytic reactions except CO2 dissociation at 750°C. The presence...... of Pd-CGO helped to mitigate sulfur deactivation effect; e.g. lowering the onset temperature (up to 190°C) for CH4 conversion during temperature-programmed reactions. Both Ni/ScYSZ and Ni/ScYSZ/Pd-CGO anode catalysts were more active for dry reforming of biogas than they were for steam reforming...

  6. Hyperbranched lysine-arginine copolymer for gene delivery.

    Science.gov (United States)

    Peng, Qi; Zhu, Jianjun; Yu, Yongsheng; Hoffman, Lee; Yang, Xingkun

    2015-01-01

    Based on the reactivity of amine groups and carboxyl groups of L-lysine and L-arginine, thermal polymerization of these two natural amino acids results in hyperbranched lysine-arginine copolymers (P-lys-argX, where X refers to the relevant molar ratio of arginine to lysine). Hyperbranched polylysine (P-lys) and two derivatives (P-lys-arg0.10 and P-lys-arg0.20) have been prepared. The arginine-rich hyperbranched polymers can interact with plasmid DNA to form nano-sized particles. The polyplexes were physicochemically analyzed by agarose gel electrophoresis, dynamic light scattering, and zeta potential measurements. Furthermore, their transfection efficiency was assessed, employing COS-7, 293T, and HeLa cell lines. It was found that P-lys showed poorly in its ability of condensation with DNA and transfection efficiency. On the other hand, arginine-rich products resulted to significant enhancement of its transfection efficiency, which is dependent on the content of arginine in the polymers, and the cell line used. P-lys-arg0.20 exhibited better transfection efficiency under all the condition studied. Besides, P-lys-arg0.20 showed lower toxicity in COS-7 cells.

  7. The Hydrophobic Region of the DmsA Twin-Arginine Leader Peptide Determines Specificity with Chaperone DmsD

    OpenAIRE

    Winstone, Tara M. L.; Tran, Vy A.; Turner, Raymond J.

    2013-01-01

    The system specific chaperone DmsD plays a role in the maturation of the catalytic subunit of dimethyl sulfoxide (DMSO) reductase, DmsA. Pre-DmsA contains a 45-amino acid twin-arginine leader peptide that is important for targeting and translocation of folded and cofactor-loaded DmsA by the twin-arginine translocase. DmsD has previously been shown to interact with the complete twin-arginine leader peptide of DmsA. In this study, isothermal titration calorimetry was used to investigate the the...

  8. Xenoestrogens regulate the activity of arginine methyltransferases.

    Science.gov (United States)

    Cheng, Donghang; Bedford, Mark T

    2011-01-24

    Arginine methylation is a common post-translational modification that has been strongly implicated in transcriptional regulation. The arginine methyltransferases (PRMTs) were first reported as transcriptional coactivators for the estrogen and androgen receptors. Compounds that inhibit these enzymes will provide us with valuable tools for dissecting the roles of these enzymes in cells, and will possibly also have therapeutic applications. In order to identify such inhibitors of the PRMTs, we have previously performed a high-throughput screen using a small molecule library. These compounds were named arginine methyltransferase inhibitors (AMIs). The majority of these inhibitors were polyphenols, and one in particular (AMI-18) shared additional features with a group of known xenoestrogens. We, thus, tested a panel of xenoestrogens and found that a number of them possess the ability to inhibit PRMT activity, in vitro. These inhibitors primarily target CARM1, and include licochalcone A, kepone, benzyl 4-hydroxybenzoate, and tamoxifen. We developed a cell-based reporter system for CARM1 activity, and showed that tamoxifen (IC(50) =30 μM) inhibits this PRMT. The ability of these compounds to regulate the activity of transcriptional coactivators may be an unappreciated mechanism of action for xenoestrogens, and might also explain the efficacy of high-dose tamoxifen treatment on estrogen receptor negative cancers. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Assessment of primary eye and skin irritants by in vitro cytotoxicity and phototoxicity models: an in vitro approach of new arginine-based surfactant-induced irritation

    International Nuclear Information System (INIS)

    Benavides, T.; Mitjans, M.; Martinez, V.; Clapes, P.; Infante, M.R.; Clothier, R.H.; Vinardell, M.P.

    2004-01-01

    Extensive efforts have been made, recently, to find surfactants with lower irritation potential than those presently commercially available, for use in pharmaceutical and cosmetic preparations. Cytotoxic and phototoxic effects of a novel family of dicationic arginine-diglyceride surfactant compounds, 1,2-diacyl,3-O-(L-arginyl)-rac-glycerol with alkyl chain lengths in the range from 8 to 14 carbon atoms, were compared to three commercial surfactants. The end-points used to assess toxicity were the red blood cell lysis assay and uptake of the vital dye neutral red 24 h after dosing (NRU), respectively. Two immortalized cell lines, murine fibroblast cell line, 3T3, and one human keratinocyte cell line, HaCaT, were used as in vitro models to predict the potential phototoxicity which could result in irritation, determined by resazurin reduction to resorufin and neutral red uptake (NRU). All tested surfactants had cytotoxicity effects as demonstrated by and decrease of NR uptake, which showed a clear concentration-response relationship. Concentrations resulting in 50% inhibition of NR uptake (IC 50 ) range from 1 μmol l -1 (hexadecyl trimethyl ammonium bromide) to 565 μmol l -1 (12,12-L-arginine). Erythrocyte haemolysis also showed a clear concentration-response relationship, the 50% of haemolysis ranged from 37 μmol l -1 (10,10-L-arginine) to 151 μmol l -1 (sodium lauryl sulphate). Phototoxicity was performed with 12,12-L-acetyl-arginine, the most stable chemical structure. The validated 3T3 NRU photoxicity assay was used and revealed a phototoxic potential

  10. New Element Organic Frameworks Based on Sn, Sb, and Bi, with Permanent Porosity and High Catalytic Activity

    Directory of Open Access Journals (Sweden)

    Julia Fritsch

    2010-03-01

    Full Text Available We present new element organic frameworks based on Sn, Sb and Bi atoms connected via organic linkers by element-carbon bonds. The open frameworks are characterized by specific surface areas (BET of up to 445 m2 g-1 and a good stability under ambient conditions resulting from a highly hydrophobic inner surface. They show good performance as heterogeneous catalysts in the cyanosylilation of benzaldehyde as a test reaction. Due to their catalytic activity, this class of materials might be able to replace common homogeneous element-organic and often highly toxic catalysts especially in the food industry.

  11. System and method for controlling an engine based on ammonia storage in multiple selective catalytic reduction catalysts

    Science.gov (United States)

    Sun, MIn; Perry, Kevin L.

    2015-11-20

    A system according to the principles of the present disclosure includes a storage estimation module and an air/fuel ratio control module. The storage estimation module estimates a first amount of ammonia stored in a first selective catalytic reduction (SCR) catalyst and estimates a second amount of ammonia stored in a second SCR catalyst. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the first amount, the second amount, and a temperature of a substrate disposed in the second SCR catalyst.

  12. Synthesis of New Chiral Ligands Based on Thiophene Derivatives for Use in Catalytic Asymmetric Oxidation of Sulfides

    International Nuclear Information System (INIS)

    Jeong, Yong Chul; Ahn, Dae Jun; Lee, Woo Sun; Lee, Seung Han; Ahn, Kwang Hyun

    2011-01-01

    We discovered that the vanadium complexes of new Schiff base ligands and prepared from thiophene derivatives efficiently catalyze the asymmetric oxidation of sulfides by hydrogen peroxide to provide sulfoxides with enantioselectivities up to 79% ee and in yields up to 89%. Notably, Schiff base showed better or similar enantioselectivity than the well-studied Schiff base. These results suggest possible applications of Schiff bases derived from and in other catalytic asymmetric reactions. Chiral sulfoxides are important functional groups for various applications. For example, the biological activities of sulfoxide containing drugs such as omeprazole are strongly related to the chirality of the sulfoxide group; for this reason, esomeprazole, the enantiomerically pure form of omeprazole, was later developed. There are several chiral sulfoxide based drugs that have been introduced by the pharmaceutical industry including armodafinil, aprikalim, oxisurane, and ustiloxin. Chiral sulfoxides have also been utilized as chiral auxiliaries in asymmetric syntheses of chiral intermediates

  13. Biomarkers of arginine and lysine excess.

    Science.gov (United States)

    Luiking, Yvette C; Deutz, Nicolaas E P

    2007-06-01

    Arginine supplementation is used in several disease states. In arginine-deficient states, supplementation is a logical choice of therapy. However, the definition of an arginine-deficient state is complex. For example, plasma arginine levels could be within normal range but intracellular arginine levels could be reduced because of membrane transport problems. Lysine competes with arginine for transport into the cell. In these situations, arginine supplementation of higher than required levels is proposed. Arginine has several important functions in metabolism as it is a precursor of metabolically active components such as nitric oxide (NO), ornithine, creatine, and polyamines. Supplementing arginine in excess could potentially overstimulate metabolism via enhanced production of NO. NO is a reactive component that, via production of radicals, will inactivate proteins. NO is also a powerful vasodilator, which could lead to severe hemodynamic instability. A good marker for excess supplementation of arginine or lysine could be an increased or reduced production rate of NO. However, NO production is difficult to measure because NO is a very labile component and is rapidly oxidized in blood. Stable isotope-labeled arginine and citrulline are used to trace the arginine-NO route. During supplementation of arginine in septic pigs or patients in septic shock, NO production, measured with stable isotope technology, is enhanced.

  14. Safety of long-term dietary supplementation with L-arginine in pigs.

    Science.gov (United States)

    Hu, Shengdi; Li, Xilong; Rezaei, Reza; Meininger, Cynthia J; McNeal, Catherine J; Wu, Guoyao

    2015-05-01

    This study was conducted with a swine model to determine the safety of long-term dietary supplementation with L-arginine-HCl or L-arginine free base. Beginning at 30 days of age, pigs were fed a corn- and soybean meal-based diet (31.5 g/kg body weight/day) supplemented with 0, 1.21, 1.81 or 2.42 % L-arginine-HCl (Experiment 1) or with 0, 1, 1.5 or 2 % L-arginine (Experiment 2). The supplemental doses of 0, 1, 1.5, and 2 % L-arginine provided pigs with 0, 315, 473, and 630 mg L-arginine/kg body weight/day, respectively, which were equivalent to 0, 286, 430, and 573 mg L-arginine/kg body weight/day, respectively, in humans. At 121 days of age (91 days after initiation of supplementation), blood samples were obtained from the jugular vein of pigs at 1 and 4 h after feeding for hematological and clinical chemistry tests. Dietary supplementation with L-arginine increased plasma concentrations of arginine, ornithine, proline, albumin and reticulocytes, while reducing plasma concentrations of ammonia, free fatty acids, triglyceride, cholesterol, and neutrophils. L-Arginine supplementation enhanced protein gain and reduced white-fat deposition in the body. Other variables in standard hematology and clinical chemistry tests, serum concentrations of insulin, growth hormone and insulin-like growth factor-I did not differ among all the groups of pigs. These results indicate that dietary supplementation with L-arginine (up to 630 mg/kg body weight/day) is safe in pigs for at least 91 days. Our findings help guide clinical studies to determine the safety of long-term oral administration of L-arginine to humans.

  15. Catalytic Emulsion Based on Janus Nanosheets for Ultra-Deep Desulfurization.

    Science.gov (United States)

    Xia, Lixin; Zhang, Hairan; Wei, Zhichao; Jiang, Yi; Zhang, Ling; Zhao, Jie; Zhang, Junhui; Dong, Li; Li, Erni; Ruhlmann, Laurent; Zhang, Qian

    2017-02-03

    Catalytic Janus nanosheets were synthesized by using an anion-exchange reaction between heteropolyacids (HPAs) and the modified ionic-liquid (IL) moieties of Janus nanosheets. Their morphology and surface properties were characterized by using SEM, energy-dispersive spectroscopy (EDS), FTIR spectroscopy, and X-ray photoelectron spectroscopy (XPS) studies. Because of their inherent Janus structure, the nanosheets exhibited good amphipathic character with ILs and oil to form a stable ILs-in-oil emulsion. Therefore, these Janus nanosheets can be used as both emulsifiers and catalysts to perform emulsive desulfurization. During this process, sulfur-containing compounds at the interface could be easily oxidized and efficiently removed from a model oil. Application of this Janus emulsion brings an efficient, useful, and green procedure to the desulfurization process. Compared with the desulfurization catalyzed by using HPAs in a conventional two-phase system, the sulfur removal of dibenzothiophene (DBT) achieved in a Janus emulsion system was improved from 68 to 97 % within 1.5 h. Moreover, this emulsion system could be demulsified easily by simple centrifugation to recover both the nanosheets and the ILs. Owing to the good structural stability of the Janus nanosheets, the sulfur removal efficiency of DBT could still reach 99.9 % after the catalytic nanosheets had been recycled at least six times. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Catalytic turnover-based phage selection for engineering the substrate specificity of Sfp phosphopantetheinyl transferase.

    Science.gov (United States)

    Sunbul, Murat; Marshall, Norman J; Zou, Yekui; Zhang, Keya; Yin, Jun

    2009-04-10

    We report a high-throughput phage selection method to identify mutants of Sfp phosphopantetheinyl transferase with altered substrate specificities from a large library of the Sfp enzyme. In this method, Sfp and its peptide substrates are co-displayed on the M13 phage surface as fusions to the phage capsid protein pIII. Phage-displayed Sfp mutants that are active with biotin-conjugated coenzyme A (CoA) analogues would covalently transfer biotin to the peptide substrates anchored on the same phage particle. Affinity selection for biotin-labeled phages would enrich Sfp mutants that recognize CoA analogues for carrier protein modification. We used this method to successfully change the substrate specificity of Sfp and identified mutant enzymes with more than 300-fold increase in catalytic efficiency with 3'-dephospho CoA as the substrate. The method we developed in this study provides a useful platform to display enzymes and their peptide substrates on the phage surface and directly couples phage selection with enzyme catalysis. We envision this method to be applied to engineering the catalytic activities of other protein posttranslational modification enzymes.

  17. Investigating the Synthesis, Structure, and Catalytic Properties of Versatile Gold-Based Nanocatalvsts

    Science.gov (United States)

    Pretzer, Lori A.

    Transition metal nanomaterials are used to catalyze many chemical reactions, including those key to environmental, medicinal, and petrochemical fields. Improving their catalytic properties and lifetime would have significant economic and environmental rewards. Potentially expedient options to make such advancements are to alter the shape, size, or composition of transition metal nanocatalysts. This work investigates the relationships between structure and catalytic properties of synthesized Au, Pd-on-Au, and Au-enzyme model transition metal nanocatalysts. Au and Pd-on-Au nanomaterials were studied due to their wide-spread application and structure-dependent electronic and geometric properties. The goal of this thesis is to contribute design procedures and synthesis methods that enable the preparation of more efficient transition metal nanocatalysts. The influence of the size and composition of Pd-on-Au nanoparticles (NPs) was systematically investigated and each was found to affect the catalyst's surface structure and catalytic properties. The catalytic hydrodechlorination of trichloroethene and reduction of 4-nitrophenol by Pd-on-Au nanoparticles were investigated as these reactions are useful for environmental and pharmaceutical synthesis applications, respectively. Structural characterization revealed that the dispersion and oxidation state of surface Pd atoms are controlled by the Au particle size and concentration of Pd. These structural changes are correlated with observed Pd-on-Au NP activities for both probe reactions, providing new insight into the structure-activity relationships of bimetallic nanocatalysts. Using the structure-dependent electronic properties of Au NPs, a new type of light-triggered biocatalyst was prepared and used to remotely control a model biochemical reaction. This biocatalyst consists of a model thermophilic glucokinase enzyme covalently attached to the surface of Au nanorods. The rod-like shape of the Au nanoparticles made the

  18. Regulation of Arginine-Ornithine Exchange and the Arginine Deiminase Pathway in Streptococcus lactis

    NARCIS (Netherlands)

    POOLMAN, B; DRIESSEN, AJM; KONINGS, WN

    1987-01-01

    Streptococcus lactis metabolizes arginine by the argiqine deiminase (ADI) pathway. Resting cells of S. lactis grown in the presence of galactose and arginine maintain a high intracellular ornithine pool in the absence of arginine and other exogenous energy sources. Addition of arginine results in a

  19. The arginine-ornithine antiporter ArcD contributes to biological fitness of Streptococcus suis

    Directory of Open Access Journals (Sweden)

    Marcus eFulde

    2014-08-01

    Full Text Available The arginine-ornithine antiporter (ArcD is part of the Arginine Deiminase System (ADS, a catabolic, energy-providing pathway found in a variety of different bacterial species, including the porcine zoonotic pathogen Streptococcus suis. The ADS has recently been shown to play a role in the pathogenicity of S. suis, in particular in its survival in host cells. The contribution of arginine and arginine transport mediated by ArcD, however, has yet to be clarified. In the present study, we showed by experiments using [U-13C6]arginine as a tracer molecule that S. suis is auxotrophic for arginine and that bacterial growth depends on the uptake of extracellular arginine. To further study the role of ArcD in arginine metabolism, we generated an arcD-specific mutant strain and characterized its growth compared to the wild-type (WT strain, a virulent serotype 2 strain. The mutant strain showed a markedly reduced growth rate in chemically defined media supplemented with arginine when compared to the WT strain, indicating that ArcD promotes arginine uptake. To further evaluate the in vivo relevance of ArcD, we studied the intracellular bacterial survival of the arcD mutant strain in an epithelial cell culture infection model. The mutant strain was substantially attenuated, and its reduced intracellular survival rate correlated with a lower ability to neutralize the acidified environment. Based on these results, we propose that ArcD, by its function as an arginine-ornithine antiporter, is important for supplying arginine as substrate of the ADS and, thereby, contributes to biological fitness and virulence of S. suis in the host.

  20. How accurate and statistically robust are catalytic site predictions based on closeness centrality?

    Directory of Open Access Journals (Sweden)

    Livesay Dennis R

    2007-05-01

    Full Text Available Abstract Background We examine the accuracy of enzyme catalytic residue predictions from a network representation of protein structure. In this model, amino acid α-carbons specify vertices within a graph and edges connect vertices that are proximal in structure. Closeness centrality, which has shown promise in previous investigations, is used to identify important positions within the network. Closeness centrality, a global measure of network centrality, is calculated as the reciprocal of the average distance between vertex i and all other vertices. Results We benchmark the approach against 283 structurally unique proteins within the Catalytic Site Atlas. Our results, which are inline with previous investigations of smaller datasets, indicate closeness centrality predictions are statistically significant. However, unlike previous approaches, we specifically focus on residues with the very best scores. Over the top five closeness centrality scores, we observe an average true to false positive rate ratio of 6.8 to 1. As demonstrated previously, adding a solvent accessibility filter significantly improves predictive power; the average ratio is increased to 15.3 to 1. We also demonstrate (for the first time that filtering the predictions by residue identity improves the results even more than accessibility filtering. Here, we simply eliminate residues with physiochemical properties unlikely to be compatible with catalytic requirements from consideration. Residue identity filtering improves the average true to false positive rate ratio to 26.3 to 1. Combining the two filters together has little affect on the results. Calculated p-values for the three prediction schemes range from 2.7E-9 to less than 8.8E-134. Finally, the sensitivity of the predictions to structure choice and slight perturbations is examined. Conclusion Our results resolutely confirm that closeness centrality is a viable prediction scheme whose predictions are statistically

  1. Ultrasensitive aptamer-based multiplexed electrochemical detection by coupling distinguishable signal tags with catalytic recycling of DNase I.

    Science.gov (United States)

    Tang, Dianping; Tang, Juan; Li, Qunfang; Su, Biling; Chen, Guonan

    2011-10-01

    This work reports an aptamer-based, disposable, and multiplexed sensing platform for simultaneous electrochemical determination of small molecules, employing adenosine triphosphate (ATP) and cocaine as the model target analytes. The multiplexed sensing strategy is based on target-induced release of distinguishable redox tag-conjugated aptamers from a magnetic graphene platform. The electronic signal of the aptasensors could be further amplified by coupling DNase I with catalytic recycling of self-produced reactants. The assay was based on the change in the current at the various peak potentials in the presence of the corresponding signal tags. Experimental results revealed that the multiplexed electrochemical aptasensor enabled the simultaneous monitoring of ATP and cocaine in a single run with wide working ranges and low detection limits (LODs: 0.1 pM for ATP and 1.5 pM for cocaine). This concept offers promise for rapid, simple, and cost-effective analysis of biological samples.

  2. The development and validation of a new technology, based upon 1.5% arginine, an insoluble calcium compound and fluoride, for everyday use in the prevention and treatment of dental caries.

    Science.gov (United States)

    Cummins, D

    2013-08-01

    This paper briefly discusses caries prevalence, the multi-factorial nature of caries etiology, caries risk and the role and efficacy of fluoride. The paper also highlights research on bacterial metabolism which provided understanding of the mouth's natural defenses against caries and the basis for the development of a new technology for the everyday prevention and treatment of caries. Finally, evidence that the technology complements and enhances the anti-caries efficacy of fluoride toothpaste is summarized. Global data show that dental caries is a prevalent disease, despite the successful introduction of fluoride. Caries experience depends on the balance between consumption of sugars and oral hygiene and the use of fluoride. Three scientific concepts are fundamental to new measures to detect, treat and monitor caries: (1) dental caries is a dynamic process, (2) dental caries is a continuum of stages from reversible, pre-clinical to irreversible, clinically detectable lesions, and (3) the caries process is a balance of pathological and protective factors that can be modulated to manage caries. Fluoride functions as a protective factor by arresting and reversing the caries process, but fluoride does not prevent pathological factors that initiate the process. A novel technology, based upon arginine and an insoluble calcium compound, has been identified which targets dental plaque to prevent initiation of the caries process by reducing pathological factors. As the mechanisms of action of arginine and fluoride are highly complementary, a new dentifrice, which combines arginine with fluoride, has been developed and clinically proven to provide superior caries prevention. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Bactericidal and catalytic performance of green nanocomposite based-on chitosan/carbon black fiber supported monometallic and bimetallic nanoparticles.

    Science.gov (United States)

    Ali, Fayaz; Khan, Sher Bahadar; Kamal, Tahseen; Anwar, Yasir; Alamry, Khalid A; Asiri, Abdullah M

    2017-12-01

    Nanoparticles were synthesized on the surface of green nanocomposite based on carbon black dispersed in chitosan (CB-CS) fibres. The nanoparticles were monometallic Co, Ag and Cu and bimetallic Co + Cu and Co + Ag. The CB-CS fibres were prepared and introduced into separate metal salt solutions containing Co 2+ , Ag + and Cu 2+ and mixed Co 2+ +Cu 2+ and Co 2+ +Ag + ions. The metal ions immobilized on the surface of CB-CS were reduced using sodium borohydride (NaBH 4 ) as reducing agent to synthesize the corresponding zero-valent metal nanoparticles-loaded CB-CS fibres. All the nanoparticles-loaded CB-CS samples were characterized using field emission-scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction techniques. When tested as catalysts, the nanoparticles-loaded CB-CS showed excellent catalytic ability for the reduction of toxic and environmentally unwanted pollutants of para-nitrophenol, congo red and methyl orange dyes. Afterwards, the antimicrobial activities of virgin and metal-loaded CB-CS fibres were tested and the metal-loaded CB-CS fibres were found to be effective against Escherichia coli. In addition, the catalyst can be recovered easily by simply removing the fibres from the reaction mixture and can be recycled several times while maintaining high catalytic efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Arginine homeostasis in allergic asthma

    NARCIS (Netherlands)

    Maarsingh, Harm; Zaagsma, Johan; Meurs, Herman

    2008-01-01

    Allergic asthma is a chronic disease characterized by early and late asthmatic reactions, airway hyperresponsiveness, airway inflammation and airway remodelling. Changes in L-arginine homeostasis may contribute to all these features of asthma by decreased nitric oxide (NO) production and increased

  5. Catalytic devices

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ming; Zhang, Xiang

    2018-01-23

    This disclosure provides systems, methods, and apparatus related to catalytic devices. In one aspect, a device includes a substrate, an electrically insulating layer disposed on the substrate, a layer of material disposed on the electrically insulating layer, and a catalyst disposed on the layer of material. The substrate comprises an electrically conductive material. The substrate and the layer of material are electrically coupled to one another and configured to have a voltage applied across them.

  6. L-arginine as dietary supplement for improving microvascular function.

    Science.gov (United States)

    Melik, Ziva; Zaletel, Polona; Virtic, Tina; Cankar, Ksenija

    2017-01-01

    Reduced availability of nitric oxide leads to dysfunction of endothelium which plays an important role in the development of cardiovascular diseases. The aim of the present study was to determine whether the dietary supplement L-arginine improves the endothelial function of microvessels by increasing nitric oxide production. We undertook experiments on 51 healthy male volunteers, divided into 4 groups based on their age and physical activity since regular physical activity itself increases endothelium-dependent vasodilation. The skin laser Doppler flux was measured in the microvessels before and after the ingestion of L-arginine (0.9 g). The endothelium-dependent vasodilation was assessed by acetylcholine iontophoresis and the endothelium-independent vasodilation by sodium nitroprusside iontophoresis. In addition, we measured endothelium-dependent and endothelium-independent vasodilation in 81 healthy subjects divided into four age groups. After the ingestion of L-arginine, the endothelium-dependent vasodilation in the young trained subjects increased (paired t-test, p L-arginine. With aging endothelium-independent vasodilation decreased while endothelium-dependent vasodilation remained mainly unchanged. Obtained results demonstrated that a single dose of L-arginine influences endothelium-dependent vasodilation predominantly in young, trained individuals.

  7. Structural determinants of the catalytic inhibition of human topoisomerase IIα by salicylate analogs and salicylate-based drugs.

    Science.gov (United States)

    Bau, Jason T; Kurz, Ebba U

    2014-06-15

    We previously identified salicylate as a novel catalytic inhibitor of human DNA topoisomerase II (topo II; EC 5.99.1.3) that preferentially targets the alpha isoform by interfering with topo II-mediated DNA cleavage. Many pharmaceuticals and compounds found in foods are salicylate-based. We have now investigated whether these are also catalytic inhibitors of topo II and the structural determinants modulating these effects. We have determined that a number of hydroxylated benzoic acids attenuate doxorubicin-induced DNA damage signaling mediated by the ATM protein kinase and inhibit topo II decatenation activity in vitro with varying potencies. Based on the chemical structures of these and other derivatives, we identified unique properties influencing topo II inhibition, including the importance of substitutions at the 2'- and 5'-positions. We extended our findings to a number of salicylate-based pharmaceuticals including sulfasalazine and diflunisal and found that both were effective at attenuating doxorubicin-induced DNA damage signaling, topo II DNA decatenation and they blocked stabilization of doxorubicin-induced topo II cleavable complexes in cells. In a manner similar to salicylate, we determined that these agents inhibit topo II-mediated DNA cleavage. This was accompanied by a concomitant decrease in topo II-mediated ATP-hydrolysis. Taken together, these findings reveal a novel function for the broader class of salicylate-related compounds and highlight the need for additional studies into whether they may impact the efficacy of chemotherapy regimens that include topo II poisons. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Bio-based phenols and fuel production from catalytic microwave pyrolysis of lignin by activated carbons.

    Science.gov (United States)

    Bu, Quan; Lei, Hanwu; Wang, Lu; Wei, Yi; Zhu, Lei; Zhang, Xuesong; Liu, Yupeng; Yadavalli, Gayatri; Tang, Juming

    2014-06-01

    The aim of this study is to explore catalytic microwave pyrolysis of lignin for renewable phenols and fuels using activated carbon (AC) as a catalyst. A central composite experimental design (CCD) was used to optimize the reaction condition. The effects of reaction temperature and weight hourly space velocity (WHSV, h(-1)) on product yields were investigated. GC/MS analysis showed that the main chemical compounds of bio-oils were phenols, guaiacols, hydrocarbons and esters, most of which were ranged from 71% to 87% of the bio-oils depending on different reaction conditions. Bio-oils with high concentrations of phenol (45% in the bio-oil) were obtained. The calorific value analysis revealed that the high heating values (HHV) of the lignin-derived biochars were from 20.4 to 24.5 MJ/kg in comparison with raw lignin (19 MJ/kg). The reaction mechanism of this process was analyzed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Catalytic Characteristics of New Antibacterials Based on Hexahistidine-Containing Organophosphorus Hydrolase

    Directory of Open Access Journals (Sweden)

    Olga Maslova

    2017-09-01

    Full Text Available Catalytic characteristics of hexahistidine-containing organophosphorus hydrolase (His6-OPH and its enzyme-polyelectrolyte complexes with poly-l-glutamic acid or poly-l-aspartic acid (His6-OPH/PLD50, hydrolyzing organophosphorous compounds, and N-acyl homoserine lactones were studied in the presence of various antibiotics (ampicillin, gentamicin, kanamycin, and rifampicin. The antibiotics at concentrations below 1 g·L−1 had a negligible inhibiting effect on the His6-OPH activity. Mixed inhibition of His6-OPH was established for higher antibiotic concentrations, and rifampicin was the most potent inhibitor. Stabilization of the His6-OPH activity was observed in the presence of antibiotics at a concentration of 0.2 g·L−1 during exposure at 25–41 °C. Molecular docking of antibiotics to the surface of His6-OPH dimer revealed the antibiotics binding both to the area near active centers of the enzyme subunits and to the region of contact between subunits of the dimer. Such interactions between antibiotics and His6-OPH were verified with Fourier-transform infrared (FTIR spectroscopy. Considering all the results of the study, the combination of His6-OPH/PLD50 with β-lactam antibiotic ampicillin was established as the optimal one in terms of exhibition and persistence of maximal lactonase activity of the enzyme.

  10. CATALYTIC KINETIC SPECTROPHOTOMETRIC DETERMINATION ...

    African Journals Online (AJOL)

    Preferred Customer

    acetylchlorophosphonazo(CPApA) by hydrogen peroxide in 0.10 M phosphoric acid. A novel catalytic kinetic-spectrophotometric method is proposed for the determination of copper based on this principle. Copper(II) can be determined spectrophotometrically ...

  11. CATALYTIC KINETIC SPECTROPHOTOMETRIC DETERMINATION ...

    African Journals Online (AJOL)

    Based on the property that in 0.12 M sulfuric acid medium titanium(IV) catalyzes the discoloring reaction of DBS-arsenazo oxidized by potassium bromate, a new catalytic kinetic spectrophotometric method for the determination of trace titanium (IV) was developed. The linear range of the determination of titanium is

  12. Synthesis, structure and catalytic activities of nickel(II) complexes bearing N4 tetradentate Schiff base ligand

    Science.gov (United States)

    Sarkar, Saikat; Nag, Sanat Kumar; Chattopadhyay, Asoke Prasun; Dey, Kamalendu; Islam, Sk. Manirul; Sarkar, Avijit; Sarkar, Sougata

    2018-05-01

    Two new nickel(II) complexes [Ni(L)Cl2] (1) and [Ni(L)(NCS)2] (2) of a neutral tetradentate mono-condensed Schiff base ligand, 3-(2-(2-aminoethylamino)ethylimino)butan-2-one oxime (L) have been synthesized and characterized using different physicochemical techniques e.g. elemental analyses, spectroscopic (IR, Electronic, NMR) methods, conductivity and molecular measurements. The crystal structure of complex (2) has been determined by using single crystal X-ray diffraction method and it suggests a distorted octahedral geometry around nickel(II) having a NiN6 coordinating atmosphere. The non-coordinated Osbnd H group on the ligand L remain engaged in H-bonding interactions with the S end of the coordinated thiocyanate moiety. These H-bonding interactions lead to Osbnd S separations of 3.132 Å and play prominent role in crystal packing. It is observed that the mononuclear units are glued together with such Osbnd H…S interactions and finally results in an 1D supramolecular sheet-like arrangement. DFT/TDDFT based theoretical calculations were also performed on the ligand and the complexes aiming at the accomplishment of idea regarding their optimized geometry, electronic transitions and the molecular energy levels. Finally the catalytic behavior of the complexes for oxidation of styrene has also been carried out. A variety of reaction conditions like the effect of solvent, effect of temperature and time as well as the effect of ratio of substrate to oxidant were thoroughly studied to judge the catalytic efficiency of the Ni(II) coordination entity.

  13. Enhanced catalytic properties of Pt-based electrode by doped Cu and Ce

    Science.gov (United States)

    Yue, Dehuai; Yang, Bin

    2017-08-01

    Novel PtCuCeO x composite membrane electrode materials were fabricated on the surface of graphite fibrous cloth by ion beam sputtering (IBS). The cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were used to analyze the influence of doped Cu and Ce on the membrane electrocatalysis performance in a tri-electrode system. The phase composition, surface structure, interfacial structure and catalytic performance of PtCuCeO x membrane were studied by x-ray diffraction (XRD) and high resolution transmission electron microscope (HR-TEM&STEM). The results indicate that surface particles of membrane electrode are made up of PtCu alloy grains and a few CeO x grains, and the interface structure of oxide metal is formed between them. The crystal plane spacing between PtCu alloy grain is reduced by about 1.11% after the corrosion, which helps increase the electron density on Pt atom. As a result, the catalysis capability of PtCu alloy is enhanced. When the content of Ce is less than or equal to 0.28 wt.%, CeO x exists in the form of amorphous. It is exciting to demonstrate that the existence of CeO x enhances the dispersion of PtCuCeO x catalyst particles. The experimental results reveal that the synthesized material possesses the best electrochemical activity surface area (ESA) and exchange current density (i 0). Compared to pure Pt catalyst, this PtCuCeO x catalyst contains much less Pt content (only 42% of Pt catalyst). However, the electrochemical performance is enhanced by 71.8% compared with pure Pt.

  14. Detection of Cytosolic Shigella flexneri via a C-Terminal Triple-Arginine Motif of GBP1 Inhibits Actin-Based Motility

    Directory of Open Access Journals (Sweden)

    Anthony S. Piro

    2017-12-01

    Full Text Available Dynamin-like guanylate binding proteins (GBPs are gamma interferon (IFN-γ-inducible host defense proteins that can associate with cytosol-invading bacterial pathogens. Mouse GBPs promote the lytic destruction of targeted bacteria in the host cell cytosol, but the antimicrobial function of human GBPs and the mechanism by which these proteins associate with cytosolic bacteria are poorly understood. Here, we demonstrate that human GBP1 is unique among the seven human GBP paralogs in its ability to associate with at least two cytosolic Gram-negative bacteria, Burkholderia thailandensis and Shigella flexneri. Rough lipopolysaccharide (LPS mutants of S. flexneri colocalize with GBP1 less frequently than wild-type S. flexneri does, suggesting that host recognition of O antigen promotes GBP1 targeting to Gram-negative bacteria. The targeting of GBP1 to cytosolic bacteria, via a unique triple-arginine motif present in its C terminus, promotes the corecruitment of four additional GBP paralogs (GBP2, GBP3, GBP4, and GBP6. GBP1-decorated Shigella organisms replicate but fail to form actin tails, leading to their intracellular aggregation. Consequentially, the wild type but not the triple-arginine GBP1 mutant restricts S. flexneri cell-to-cell spread. Furthermore, human-adapted S. flexneri, through the action of one its secreted effectors, IpaH9.8, is more resistant to GBP1 targeting than the non-human-adapted bacillus B. thailandensis. These studies reveal that human GBP1 uniquely functions as an intracellular “glue trap,” inhibiting the cytosolic movement of normally actin-propelled Gram-negative bacteria. In response to this powerful human defense program, S. flexneri has evolved an effective counterdefense to restrict GBP1 recruitment.

  15. Fast and quantitative differentiation of single-base mismatched DNA by initial reaction rate of catalytic hairpin assembly.

    Science.gov (United States)

    Li, Chenxi; Li, Yixin; Xu, Xiao; Wang, Xinyi; Chen, Yang; Yang, Xiaoda; Liu, Feng; Li, Na

    2014-10-15

    The widely used catalytic hairpin assembly (CHA) amplification strategy generally needs several hours to accomplish one measurement based on the prevailingly used maximum intensity detection mode, making it less practical for assays where high throughput or speed is desired. To make the best use of the kinetic specificity of toehold domain for circuit reaction initiation, we developed a mathematical model and proposed an initial reaction rate detection mode to quantitatively differentiate the single-base mismatch. Using the kinetic mode, assay time can be reduced substantially to 10 min for one measurement with the comparable sensitivity and single-base mismatch differentiating ability as were obtained by the maximum intensity detection mode. This initial reaction rate based approach not only provided a fast and quantitative differentiation of single-base mismatch, but also helped in-depth understanding of the CHA system, which will be beneficial to the design of highly sensitive and specific toehold-mediated hybridization reactions. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Determination of the level of DNA modification with cisplatin by catalytic hydrogen evolution at mercury-based electrodes.

    Science.gov (United States)

    Horáková, Petra; Tesnohlídková, Lucie; Havran, Ludek; Vidláková, Pavlína; Pivonková, Hana; Fojta, Miroslav

    2010-04-01

    Electrochemical methods proved useful as simple and inexpensive tools for the analysis of natural as well as chemically modified nucleic acids. In particular, covalently attached metal-containing groups usually render the DNA well-pronounced electrochemical activity related to redox processes of the metal moieties, which can in some cases be coupled to catalytic hydrogen evolution at mercury or some types of amalgam electrodes. In this paper we used voltammetry at the mercury-based electrodes for the monitoring of DNA modification with cis-diamminedichloroplatinum (cisplatin), a representative of metallodrugs used in the treatment of various types of cancer or being developed for such purpose. In cyclic voltammetry at the mercury electrode, the cisplatin-modified DNA yielded catalytic currents the intensity of which reflected DNA modification extent. In square-wave voltammetry, during anodic polarization after prereduction of the cisplatinated DNA, a well-developed, symmetrical signal (peak P) was obtained. Intensity of the peak P linearly responded to the extent of DNA modification at levels relevant for biochemical studies (rb = 0.01-0.10, where rb is the number of platinum atoms bound per DNA nucleotide). We demonstrate a correlation between the peak P intensity and a loss of sequence-specific DNA binding by tumor suppressor protein p53, as well as blockage of DNA digestion by a restriction endonuclease Msp I (both caused by the DNA cisplatination). Application of the electrochemical technique in studies of DNA reactivity with various anticancer platinum compounds, as well as for an easy determination of the extent of DNA platination in studies of its biochemical effects, is discussed.

  17. The effect of noble metals on catalytic methanation reaction over supported Mn/Ni oxide based catalysts

    Directory of Open Access Journals (Sweden)

    Wan Azelee Wan Abu Bakar

    2015-09-01

    Full Text Available Carbon dioxide (CO2 in sour natural gas can be removed using green technology via catalytic methanation reaction by converting CO2 to methane (CH4 gas. Using waste to wealth concept, production of CH4 would increase as well as creating environmental friendly approach for the purification of natural gas. In this research, a series of alumina supported manganese–nickel oxide based catalysts doped with noble metals such as ruthenium and palladium were prepared by wetness impregnation method. The prepared catalysts were run catalytic screening process using in-house built micro reactor coupled with Fourier Transform Infra Red (FTIR spectroscopy to study the percentage CO2 conversion and CH4 formation analyzed by GC. Ru/Mn/Ni(5:35:60/Al2O3 calcined at 1000 °C was found to be the potential catalyst which gave 99.74% of CO2 conversion and 72.36% of CH4 formation at 400 °C reaction temperature. XRD diffractogram illustrated that the supported catalyst was in polycrystalline with some amorphous state at 1000 °C calcination temperature with the presence of NiO as active site. According to FESEM micrographs, both fresh and used catalysts displayed spherical shape with small particle sizes in agglomerated and aggregated mixture. Nitrogen Adsorption analysis revealed that both catalysts were in mesoporous structures with BET surface area in the range of 46–60 m2/g. All the impurities have been removed at 1000 °C calcination temperature as presented by FTIR, TGA–DTA and EDX data.

  18. Potentiality of application of the conductometric L-arginine biosensors for the real sample analysis

    Directory of Open Access Journals (Sweden)

    Jaffrezic-Renault N.

    2012-12-01

    Full Text Available Aim. To determine an influence of serum components on the L-arginine biosensor sensitivity and to formulate practical recommendations for its reliable analysis. Methods. The L-arginine biosensor comprised arginase and urease co-immobilized by cross-linking. Results. The biosensor specificity was investigated based on a series of representative studies (namely, through urea determination in the serum; inhibitory effect studies of mercury ions; high temperature treatment of sensors; studying the biosensor sensitivity to the serum treated by enzymes, and selectivity studies. It was found that the response of the biosensor to the serum injections was determined by high sensitivity of the L-arginine biosensor toward not only to L-arginine but also toward two other basic amino acids (L-lysine and L-histidine. Conclusions. A detailed procedure of optimization of the conductometric biosensor for L-arginine determination in blood serum has been proposed.

  19. Nucleation studies of ZTC doped with L-arginine in supersaturated aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Balu, T. [Department of Physics, Aditanar College of Arts and Science, Tiruchendur 628 216 (India); Rajasekaran, T.R., E-mail: trrajasekaran@yahoo.co [Department of Physics, Manonmaniam Sundaranar University, Tirunelveli 627 012 (India); Murugakoothan, P. [Post Graduate and Research Department of Physics, Pachaiyappa' s College, Chennai 600 030 (India)

    2009-06-01

    The metastable zonewidth studies are carried out for various temperatures for supersaturated aqueous solutions of zinc thiourea chloride added with 1 mole % of L-arginine. The metastable zonewidth is increased with the addition of L-arginine. The induction period is experimentally determined and various critical nucleation parameters such as radius of critical nucleus, number of molecules in the critical nucleus, critical free energy of nucleus and interfacial tension are also calculated based on the classical theory for homogeneous crystal nucleation. The induction period is increased with the increase of L-arginine addition. The critical nucleation parameters vary with increase in doping concentration. It is also observed that the nucleation rate increases with the increase of supersaturation. The second harmonic generation (SHG) efficiency measurements are carried out with different doping concentration of L-arginine reveal that nonlinear optical (NLO) property is enhanced by L-arginine dopant.

  20. Radio-Frequency-Based NH3-Selective Catalytic Reduction Catalyst Control: Studies on Temperature Dependency and Humidity Influences

    Directory of Open Access Journals (Sweden)

    Markus Dietrich

    2017-07-01

    Full Text Available The upcoming more stringent automotive emission legislations and current developments have promoted new technologies for more precise and reliable catalyst control. For this purpose, radio-frequency-based (RF catalyst state determination offers the only approach for directly measuring the NH3 loading on selective catalytic reduction (SCR catalysts and the state of other catalysts and filter systems. Recently, the ability of this technique to directly control the urea dosing on a current NH3 storing zeolite catalyst has been demonstrated on an engine dynamometer for the first time and this paper continues that work. Therefore, a well-known serial-type and zeolite-based SCR catalyst (Cu-SSZ-13 was investigated under deliberately chosen high space velocities. At first, the full functionality of the RF system with Cu-SSZ-13 as sample was tested successfully. By direct RF-based NH3 storage control, the influence of the storage degree on the catalyst performance, i.e., on NOx conversion and NH3 slip, was investigated in a temperature range between 250 and 400 °C. For each operation point, an ideal and a critical NH3 storage degree was found and analyzed in the whole temperature range. Based on the data of all experimental runs, temperature dependent calibration functions were developed as a basis for upcoming tests under transient conditions. Additionally, the influence of exhaust humidity was observed with special focus on cold start water and its effects to the RF signals.

  1. Nanocrystalline Ferrihydrite-Based Catalysts for Fischer-Tropsch Synthesis: Part II. Effects of Activation Gases on the Catalytic Performance.

    Science.gov (United States)

    Rhim, Geun Bae; Hong, Seok Yong; Park, Ji Chan; Jung, Heon; Rhee, Young Woo; Chun, Dong Hyun

    2016-02-01

    Fischer-Tropsch synthesis (FTS) was carried out over nanocrystalline ferrihydrite-based (Fe9O2(OH)23) catalysts activated by different reducing agents: syngas (H2+CO), CO, and H2. The syngas activation successfully changed the ferrihydrite-based catalysts into an active and stable catalytic structure with chi-carbide (Fe2.5 C) and epsilon'-carbide (Fe2.2 C). The crystal structure of the catalysts obtained by syngas activation was similar to the structure obtained by CO activation; this similarity was probably due to the peculiar reduction behavior of the ferrihydrite-based catalysts, which exhibit much greater reducibility in CO atmosphere than in H2 atmosphere. The performance of the catalysts activated by syngas was much higher than the performance of the catalysts activated by H2 and was comparable to the performance of the catalysts activated by CO. This strongly demonstrates that the ferrihydrite-based catalysts are advantageous for industrial FTS processes because syngas can be commonly used for both activation pre-treatment and subsequent reaction.

  2. A bio-based ‘green’ process for catalytic adipic acid production from lignocellulosic biomass using cellulose and hemicellulose derived γ-valerolactone

    International Nuclear Information System (INIS)

    Han, Jeehoon

    2016-01-01

    Highlights: • A bio-based ‘green’ process for catalytic conversion of corn stover to adipic acid (ADA) is studied. • New separations for effective recovery of biomass derivatives are developed. • Separations are integrated with cellulose/hemicellulose-to-ADA conversions. • Proposed process can compete economically with the current petro-based process. - Abstract: A bio-based ‘green’ process is presented for the catalytic conversion of corn stover to adipic acid (ADA) based on experimental studies. ADA is used for biobased nylon 6.6 manufacturing from lignocellulosics as carbon and energy source. In this process, the cellulose and hemicellulose fractions are catalytically converted to γ-valerolactone (GVL), using cellulose and hemicellulose-derived GVL as a solvent, and subsequently upgrading to ADA. Experimental studies showed maximal carbon yields (biomass-to-GVL: 41% and GVL-to-ADA: 46%) at low concentrations (below 16 wt% solids) using large volumes of GVL solvents while requiring efficient interstage separations and product recovery. This work presents an integrated process, including catalytic conversion and separation subsystems for GVL and ADA production and recovery, and designs a heat exchanger network to satisfy the total energy requirements of the integrated process via combustion of biomass residues (lignin and humins). Finally, an economic analysis shows that 2000 metric tonnes (Mt) per day of corn stover feedstock processing results in a minimum selling price of $633 per Mt if using the best possible parameters.

  3. Physiological implications of arginine metabolism in plants

    Directory of Open Access Journals (Sweden)

    Gudrun eWinter

    2015-07-01

    Full Text Available Nitrogen is a limiting resource for plant growth in most terrestrial habitats since large amounts of nitrogen are needed to synthesize nucleic acids and proteins. Among the 21 proteinogenic amino acids, arginine has the highest nitrogen to carbon ratio, which makes it especially suitable as a storage form of organic nitrogen. Synthesis in chloroplasts via ornithine is apparently the only operational pathway to provide arginine in plants, and the rate of arginine synthesis is tightly regulated by various feedback mechanisms in accordance with the overall nutritional status. While several steps of arginine biosynthesis still remain poorly characterized in plants, much wider attention has been paid to inter- and intracellular arginine transport as well as arginine-derived metabolites. A role of arginine as alternative source besides glutamate for proline biosynthesis is still discussed controversially and may be prevented by differential subcellular localization of enzymes. Apparently, arginine is a precursor for nitric oxide (NO, although the molecular mechanism of NO production from arginine remains unclear in higher plants. In contrast, conversion of arginine to polyamines is well documented, and in several plant species also ornithine can serve as a precursor for polyamines. Both NO and polyamines play crucial roles in regulating developmental processes as well as responses to biotic and abiotic stress. It is thus conceivable that arginine catabolism serves on the one hand to mobilize nitrogen storages, while on the other hand it may be used to fine-tune development and defense mechanisms against stress. This review summarizes the recent advances in our knowledge about arginine metabolism, with a special focus on the model plant Arabidopsis thaliana, and pinpoints still unresolved critical questions.

  4. Convergent evolution of the arginine deiminase pathway : the ArcD and ArcE arginine/ornithine exchangers

    NARCIS (Netherlands)

    Noens, Elke E E; Lolkema, Juke S

    2016-01-01

    The arginine deiminase (ADI) pathway converts L-arginine into L-ornithine and yields 1 mol of ATP per mol of L-arginine consumed. The L-arginine/L-ornithine exchanger in the pathway takes up L-arginine and excretes L-ornithine from the cytoplasm. Analysis of the genomes of 1281 bacterial species

  5. L-arginine biosensors: A comprehensive review

    Directory of Open Access Journals (Sweden)

    Neelam Verma

    2017-12-01

    Full Text Available Arginine has been considered as the most potent nutraceutics discovered ever, due to its powerful healing property, and it's been known to scientists as the Miracle Molecule. Arginine detection in fermented food products is necessary because, high level of arginine in foods forms ethyl carbamate (EC during the fermentation process. Therefore, L-arginine detection in fermented food products is very important as a control measure for quality of fermented foods, food supplements and beverages including wine. In clinical analysis arginine detection is important due to their enormous inherent versatility in various metabolic pathways, topmost in the synthesis of Nitric oxide (NO and tumor growth. A number of methods are being used for arginine detection, but biosensors technique holds prime position due to rapid response, high sensitivity and high specificity. However, there are many problems still to be addressed, including selectivity, real time analysis and interference of urea presence in the sample. In the present review we aim to emphasize the significant role of arginine in human physiology and foods. A small attempt has been made to discuss the various techniques used for development of arginine biosensor and how these techniques affect their performance. The choice of transducers for arginine biosensor ranges from optical, pH sensing, ammonia gas sensing, ammonium ion-selective, conductometric and amperometric electrodes because ammonia is formed as a final product.

  6. Characterization of catalytic supports based in mixed oxides for control reactions of NO and N2O

    International Nuclear Information System (INIS)

    Garcia C, M.A.; Perez H, R.; Gomez C, A.; Diaz, G.

    1999-01-01

    The catalytic supports Al 2 O 3 , La 2 O 3 and Al 2 O 3 -La 2 O 3 were prepared by the Precipitation and Coprecipitation techniques. The catalytic supports Al 2 O 3 , La 2 O 3 and Al 2 O 3 -La 2 O 3 were characterized by several techniques to determine: texture (Bet), crystallinity (XRD), chemical composition (Sem)(Ftir) and it was evaluated their total acidity by reaction with 2-propanol. The investigation will be continued with the cobalt addition and this will be evaluated for its catalytic activity in control reactions of N O and N 2 O. (Author)

  7. Novel Base Metal-Palladium Catalytic Diesel Filter Coating with NO2 Reducing Properties

    DEFF Research Database (Denmark)

    Johansen, K.; Dahl, S.; Mogensen, G.

    2007-01-01

    A novel alternative base metal/palladium coat has been developed that has limited NO2 formation and which even removes NO2 in a wide temperature range.Soot combustion, HC conversion and CO conversion properties are comparable to current platinum based solutions but the coating has a more attracti...

  8. Model-based design of low-temperature carbon nanotube synthesis via catalytic oxidation for supercapacitor application.

    Science.gov (United States)

    Vasenkov, A V; Carnahan, D L

    2010-12-01

    Novel electrochemical double layer capacitors with carbon nanotube (CNT) electrode, often referred to as supercapacitors, have a potential to bridge a power and energy gap between traditional dielectric capacitors and chemical batteries. However, their future is uncertain because current fabrication technologies involve difficult-to-control post-growth manipulations of CNTs. This paper addresses this problem by introducing model-based design of low-temperature CNT synthesis that is suitable for in-situ fabrication of CNT-based supercapacitor electrode. The insight to the surface kinetics during low-temperature CNT synthesis via catalytic oxidation was obtained via coupled Molecular Dynamics and Quantum Semiempirical Hamiltonian simulations. It was determined that the presence of oxygen on the surface of catalyst increases, by several times, the time necessary for the decomposition of hydrocarbons as well as shifts the reaction zone from the surface of catalyst to the catalyst underlayer. Theoretical trends were confirmed by CNT growth experiments. A contact between conducting CNTs and zinc oxide binding layer was analyzed in detail since its properties strongly affect the performance of CNT electrode. It was demonstrated that the formed CNT-zinc oxide interface was free from unbonded oxygen atoms and/or clusters of zinc atoms and was weakly affected by defects in CNTs.

  9. Sugar-based micro/mesoporous hypercross-linked polymers with in situ embedded silver nanoparticles for catalytic reduction

    Directory of Open Access Journals (Sweden)

    Qing Yin

    2017-06-01

    Full Text Available Porous hypercross-linked polymers based on perbenzylated monosugars (SugPOP-1–3 have been synthesized by Friedel–Crafts reaction using formaldehyde dimethyl acetal as an external cross-linker. Three perbenzylated monosugars with similar chemical structure were used as monomers in order to tune the porosity. These obtained polymers exhibit microporous and mesoporous features. The highest Brunauer–Emmett–Teller specific surface area for the resulting polymers was found to be 1220 m2 g−1, and the related carbon dioxide storage capacity was found to be 14.4 wt % at 1.0 bar and 273 K. As the prepared porous polymer SugPOP-1 is based on hemiacetal glucose, Ag nanoparticles (AgNPs can be successfully incorporated into the polymer by an in situ chemical reduction of freshly prepared Tollens’ reagent. The obtained AgNPs/SugPOP-1 composite demonstrates good catalytic activity in the reduction of 4-nitrophenol (4-NP with an activity factor ka = 51.4 s−1 g−1, which is higher than some reported AgNP-containing composite materials.

  10. Sugar-based micro/mesoporous hypercross-linked polymers with in situ embedded silver nanoparticles for catalytic reduction.

    Science.gov (United States)

    Yin, Qing; Chen, Qi; Lu, Li-Can; Han, Bao-Hang

    2017-01-01

    Porous hypercross-linked polymers based on perbenzylated monosugars ( SugPOP-1-3 ) have been synthesized by Friedel-Crafts reaction using formaldehyde dimethyl acetal as an external cross-linker. Three perbenzylated monosugars with similar chemical structure were used as monomers in order to tune the porosity. These obtained polymers exhibit microporous and mesoporous features. The highest Brunauer-Emmett-Teller specific surface area for the resulting polymers was found to be 1220 m 2 g -1 , and the related carbon dioxide storage capacity was found to be 14.4 wt % at 1.0 bar and 273 K. As the prepared porous polymer SugPOP-1 is based on hemiacetal glucose, Ag nanoparticles (AgNPs) can be successfully incorporated into the polymer by an in situ chemical reduction of freshly prepared Tollens' reagent. The obtained AgNPs/ SugPOP-1 composite demonstrates good catalytic activity in the reduction of 4-nitrophenol (4-NP) with an activity factor k a = 51.4 s -1 g -1 , which is higher than some reported AgNP-containing composite materials.

  11. Synthesis of copper/nickel nanoparticles using newly synthesized Schiff-base metals complexes and their cytotoxicity/catalytic activities.

    Science.gov (United States)

    Aazam, Elham S; El-Said, Waleed Ahmed

    2014-12-01

    Transition metal complexes compounds with Schiff bases ligand representing an important class of compounds that could be used to develop new metal-based anticancer agents and as precursors of metal NPs. Herein, 2,3-bis-[(3-ethoxy-2-hydroxybenzylidene)amino]but-2-enedinitrile Schiff base ligand and its corresponding copper/nickel complexes were synthesized. Also, we reported a facile and rapid method for synthesis nickel/copper nanoparticles based on thermal reduction of their complexes. Free ligand, its metal complexes and metals nanoparticles have been characterized based on elemental analysis, transmission electron microscopy, powder X-ray diffraction, magnetic measurements and by various spectroscopic (UV-vis, FT-IR, (1)H NMR, GC-MS) techniques. Additionally, the in vitro cytotoxic activity of free ligand and its complexes compounds were assessed against two cancer cell lines (HeLa and MCF-7 cells)and one healthy cell line (HEK293 cell). The copper complex was found to be active against these cancer cell lines at very low LD50 than the free ligand, while nickel complex did not show any anticancer activity against these cell lines. Also, the antibacterial activity of as-prepared copper nanoparticles were screened against Escherichia coli, which demonstrated minimum inhibitory concentration and minimum bactericidal concentration values lower than those values of the commercial Cu NPs as well as the previous reported values. Moreover, the synthesized nickel nanoparticles demonstrated remarkable catalytic performance toward hydrogenation of nitrobenzene that producing clean aniline with high selectivity (98%). This reactivity could be attributed to the high degree of dispersion of Ni nanoparticles. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Catalytic thermal barrier coatings

    Science.gov (United States)

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  13. Colorimetric detection of trace copper ions based on catalytic leaching of silver-coated gold nanoparticles.

    Science.gov (United States)

    Lou, Tingting; Chen, Lingxin; Chen, Zhaopeng; Wang, Yunqing; Chen, Ling; Li, Jinhua

    2011-11-01

    A colorimetric, label-free, and nonaggregation-based silver coated gold nanoparticles (Ag/Au NPs) probe has been developed for detection of trace Cu(2+) in aqueous solution, based on the fact that Cu(2+) can accelerate the leaching rate of Ag/Au NPs by thiosulfate (S(2)O(3)(2-)). The leaching of Ag/Au NPs would lead to dramatic decrease in the surface plasmon resonance (SPR) absorption as the size of Ag/Au NPs decreased. This colorimetric strategy based on size-dependence of nanoparticles during their leaching process provided a highly sensitive (1.0 nM) and selective detection toward Cu(2+), with a wide linear detection range (5-800 nM) over nearly 3 orders of magnitude. The cost-effective probe allows rapid and sensitive detection of trace Cu(2+) ions in water samples, indicating its potential applicability for the determination of copper in real samples.

  14. Lanthanide-Based Metal Organic Frameworks: Synthetic Strategies and Catalytic Applications

    NARCIS (Netherlands)

    Pagis, C.; Ferbinteanu, M.; Rothenberg, G.; Grecea, S.

    2016-01-01

    This short critical review outlines the main synthetic strategies used in the designed synthesis of lanthanide-based metal organic frameworks (Ln-MOFs). It explains the impact of the choice of organic linker on the final network topology, and it highlights the applications of Ln-MOFs in the

  15. Self-Sustained Flameless Heat Generator Based on Catalytic Oxidation of Methane or Propane-Butane Mixture for Various Object Heating Including Field Heating

    Directory of Open Access Journals (Sweden)

    Strizhak, P.Ye.

    2016-09-01

    Full Text Available An effective catalyst based on ceramic block support with honeycomb structure made of synthetic cordierite with low coefficient of temperature linear expansion has been developed. Flameless heat generator based on oxidation of methane or propane-butane mixture has been designed. Laboratory and bench testing revealed that the effectiveness of the generators is identical to foreign analogues. The production of self-sustained flameless heat catalytic generators and the catalysts have been adjusted.

  16. Corticotropin-releasing hormone and arginine vasopressin in depression focus on the human postmortem hypothalamus

    NARCIS (Netherlands)

    Bao, Ai-Min; Swaab, Dick F.

    2010-01-01

    The neuropeptides corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) are crucially involved in the pathogenesis of depression. The close correlation between the etiology of depression and dysregulation of the stress responses is based upon a hyperactivity of the

  17. Citric acid induced promoted dispersion of Pt on the support and enhanced catalytic activities for a Pt-based catalyst

    Science.gov (United States)

    Cheng, Tianqiong; Wang, Jianli; Wang, Suning; Cui, Yajuan; Zhang, Hailong; Yan, Shuang; Yuan, Shandong; Chen, Yaoqiang

    2017-12-01

    Citric acid (CA), as the chelating agent, was introduced to obtain the enhanced Pt dispersion and catalytic activities for the Pt-based catalysts supported on oxygen-storage material. The role and content of CA were investigated systematically. It was found that the citric acid-assisted catalysts showed better Pt dispersion and smaller nanoparticle size of Pt. Thus, the catalyst had lower reduction temperature, preferable thermostability and possessed more oxidation state of Pt species under the oxidation atmosphere. The citric acid-induced fresh catalysts were excellent to convert CO and the corresponding aged ones exhibited higher activities for the elimination of all the target pollutants. Among the aged catalysts, P2-a (the mole ratio of Pt/CA is 2:1) presented the best performance. Particularly, compared with the reference sample (Pc-a), the light-off temperatures (T50) of NO, HC and CO for P2-a decreased by 39 °C, 42 °C and 72 °C, respectively, and the full-conversion temperatures (T90) of NO, HC and CO for P2-a decreased by 44 °C, 44 °C and 48 °C, respectively. Therefore, this work provides a facile and valid method to manufacture advanced catalysts for purification of the vehicle exhaust in the future.

  18. Development of advanced catalytic layer based on vertically aligned conductive polymer arrays for thin-film fuel cell electrodes

    Science.gov (United States)

    Jiang, Shangfeng; Yi, Baolian; Cao, Longsheng; Song, Wei; Zhao, Qing; Yu, Hongmei; Shao, Zhigang

    2016-10-01

    The degradation of carbon supports significantly influences the performance of proton exchange membrane fuel cells (PEMFCs), particularly in the cathode, which must be overcome for the wide application of fuel cells. In this study, advanced catalytic layer with electronic conductive polymer-polypyrrole (PPy) nanowire as ordered catalyst supports for PEMFCs is prepared. A platinum-palladium (PtPd) catalyst thin layer with whiskerette shapes forms along the long axis of the PPy nanowires. The resulting arrays are hot-pressed on both sides of a Nafion® membrane to construct a membrane electrode assembly (without additional ionomer). The ordered thin catalyst layer (approximately 1.1 μm) is applied in a single cell as the anode and the cathode without additional Nafion® ionomer. The single cell yields a maximum performance of 762.1 mW cm-2 with a low Pt loading (0.241 mg Pt cm-2, anode + cathode). The advanced catalyst layer indicates better mass transfer in high current density than that of commercial Pt/C-based electrode. The mass activity is 1.08-fold greater than that of DOE 2017 target. Thus, the as-prepared electrodes have the potential for application in fuel cells.

  19. Kinetic spectrophotometric determination of Bi(III based on its catalytic effect on the oxidation of phenylfluorone by hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    SOFIJA M. RANČIĆ

    2009-08-01

    Full Text Available A new reaction was suggested and a new kinetic method was elaborated for determination of Bi(III in solution, based on its catalytic effect on the oxidation of phenyl-fluorone (PF by hydrogen peroxide in ammonia buffer. By application of spectrophotometric technique, a limit of quantification (LQ of 128 ng cm-3 was reached, and the limit of detection (LD of 37 ng cm-3 was obtained, where LQ was defined as the ratio signal:noise = 10:1 and LD was defined as signal 3:1 against the blank. The RSD value was found to be in the range 2.8–4.8 % for the investigated concentration range of Bi(III. The influence of some ions upon the reaction rate was tested. The method was confirmed by determining Bi(III in a stomach ulcer drug (“Bicit HP”, Hemofarm A.D.. The obtained results were compared to those obtained by AAS and good agreement of results was obtained.

  20. Application of sludge-based carbonaceous materials in a hybrid water treatment process based on adsorption and catalytic wet air oxidation.

    Science.gov (United States)

    Julcour Lebigue, Carine; Andriantsiferana, Caroline; N'Guessan Krou; Ayral, Catherine; Mohamed, Elham; Wilhelm, Anne-Marie; Delmas, Henri; Le Coq, Laurence; Gerente, Claire; Smith, Karl M; Pullket, Suangusa; Fowler, Geoffrey D; Graham, Nigel J D

    2010-12-01

    This paper describes a preliminary evaluation of the performance of carbonaceous materials prepared from sewage sludges (SBCMs) in a hybrid water treatment process based on adsorption and catalytic wet air oxidation; phenol was used as the model pollutant. Three different sewage sludges were treated by either carbonisation or steam activation, and the physico-chemical properties of the resultant carbonaceous materials (e.g. hardness, BET surface area, ash and elemental content, surface chemistry) were evaluated and compared with a commercial reference activated carbon (PICA F22). The adsorption capacity for phenol of the SBCMs was greater than suggested by their BET surface area, but less than F22; a steam activated, dewatered raw sludge (SA_DRAW) had the greatest adsorption capacity of the SBCMs in the investigated range of concentrations (<0.05 mol L(-1)). In batch oxidation tests, the SBCMs demonstrated catalytic behaviour arising from their substrate adsorptivity and metal content. Recycling of SA_DRAW in successive oxidations led to significant structural attrition and a hardened SA_DRAW was evaluated, but found to be unsatisfactory during the oxidation step. In a combined adsorption-oxidation sequence, both the PICA carbon and a selected SBCM showed deterioration in phenol adsorption after oxidative regeneration, but a steady state performance was reached after 2 or 3 cycles. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Reduced graphene oxide wrapped Fe3O4-Co3O4 yolk-shell nanostructures for advanced catalytic oxidation based on sulfate radicals

    Science.gov (United States)

    Zhang, Lishu; Yang, Xijia; Han, Erfen; Zhao, Lijun; Lian, Jianshe

    2017-02-01

    In this work, we designed and synthesized a high performance catalyst of reduced graphene oxide (RGO) wrapped Fe3O4-Co3O4 (RGO/Fe3O4-Co3O4) yolk-shell nanostructures for advanced catalytic oxidation based on sulfate radicals. The synergistic catalytic action of the RGO/Fe3O4-Co3O4 yolk-shell nanostructures activate the peroxymonosulfate (PMS) to produce sulfate radicals (SO4rad -) for organic dyes degradation, and the Orange II can be almost completely degradated in 5 min. Meanwhile the RGO wrapping prevents the loss of cobalt in the catalytic process, and the RGO/Fe3O4-Co3O4 can be recycled after catalyzed reaction due to the presence of magnetic iron core. What's more, it can maintain almost the same high catalytic activity even after 10 cycles through repeated NaBH4 reduction treatment. Hence, RGO/Fe3O4-Co3O4 yolk-shell nanostructures possess a great opportunity to become a promising candidate for waste water treatment in industry.

  2. High performance anodes with tailored catalytic properties for La5.6WO11.4-δ based proton conducting fuel cells

    DEFF Research Database (Denmark)

    Balaguer, M.; Solis, C.; Bozza, Francesco

    2013-01-01

    A new generation of anodes for PC-SOFCs based on catalytically promoted La0.75Ce0.1Sr0.15CrO3−δ (LSCCe) is presented. LSCCe is selected as the electrode backbone structure, due to its superior total conductivity over that of LSC. The infiltration of catalytically highly active nickel nanoparticle...

  3. Base-enhanced catalytic water oxidation by a carboxylate–bipyridine Ru(II) complex

    Energy Technology Data Exchange (ETDEWEB)

    Song, Na [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry; Brookhaven National Lab. (BNL), Upton, NY (United States); Concepcion, Javier J. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry; Binstead, Robert A. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry; Rudd, Jennifer A. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry; Vannucci, Aaron K. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry; Univ. of South Carolina, Columbia, SC (United States). Dept. of Chemistry and Biochemistry; Dares, Christopher J. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry; Coggins, Michael K. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry; Meyer, Thomas J. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry

    2015-04-06

    In aqueous solution above pH 2.4 with 4% (vol/vol) CH3CN, the complex [RuII(bda)(isoq)2] (bda is 2,2'-bipyridine-6,6'-dicarboxylate; isoq is isoquinoline) exists as the open-arm chelate, [RuII(CO2-bpy-CO2$-$)(isoq)2(NCCH3)], as shown by 1H and 13C-NMR, X-ray crystallography, and pH titrations. Rates of water oxidation with the open-arm chelate are remarkably enhanced by added proton acceptor bases, as measured by cyclic voltammetry (CV). In 1.0 M PO43–, the calculated half-time for water oxidation is ~7 μs. In conclusion, the key to the rate accelerations with added bases is direct involvement of the buffer base in either atom–proton transfer (APT) or concerted electron–proton transfer (EPT) pathways.

  4. Study on the mechanism of a manganese-based catalyst for catalytic NOX flue gas denitration

    Science.gov (United States)

    Zhang, Lei; Wen, Xin; Lei, Zhang; Gao, Long; Sha, Xiangling; Ma, Zhenhua; He, Huibin; Wang, Yusu; Jia, Yang; Li, Yonghui

    2018-04-01

    Manganese-based bimetallic catalysts were prepared with self-made pyrolysis coke as carrier and its denitration performance of low-temperature SCR (selective catalyst reduction) was studied. The effects of different metal species, calcination temperature, calcination time and the metal load quantity on the denitration performance of the catalyst were studied by orthogonal test. The denitration mechanism of the catalyst was analyzed by XRD (X-ray diffraction), SEM (scanning electron microscope), BET test and transient test. The experiments show that: * The denitration efficiency of Mn-based bimetallic catalysts mainly relates to the metal type, the metal load quantity and the catalyst adjuvant type. * The optimal catalyst preparation conditions are as follows: the load quantity of monometallic MnO2 is 10%, calcined at 300°C for 4h, and then loaded with 8% CeO2, calcined at 350°Cfor 3h. * The denitration mechanism of manganese-based bimetallic oxide catalysts is stated as: NH3 is firstly adsorbed by B acid center Mn-OH which nears Mn4+==O to form NH4+, NH4+ was then attacked by the gas phase NO to form N2, H2O and Mn3+-OH. Finally, Mn3+-OH was oxidized by O2 to regenerate Mn4+.

  5. Efficient and recyclable Rh-catalytic system with involvement of phosphine-functionalized phosphonium-based ionic liquids for tandem hydroformylation–acetalization

    Directory of Open Access Journals (Sweden)

    Peng Wang

    2017-10-01

    Full Text Available The phosphine-functionalized phosphonium-based ionic liquids (dppm-Q, dppe-Q, dppp-Q and dppb-Q as the bi-functional ligands enable the efficient one-pot tandem hydroformylation–acetalization. It was found that, in dppm-Q, dppe-Q, dppp-Q and dppb-Q, the incorporated phosphino-fragments were responsible for Rh-catalyzed hydroformylation and the phosphoniums were in charge of the subsequent acetalization as the Lewis acid catalysts. Moreover, the diphosphonium-based ionic liquid of dppb-DQ could be applied as a co-solvent to immobilize the Rh/dppb-Q catalytic system with the advantages of the improved catalytic performance, the available catalyst recyclability, and the wide generality for the substrates. Keywords: Phosphines, Phosphonium-based ionic liquids, Bi-functional ligands, Recyclability of homogeneous catalysts, Tandem hydroformylation–acetalization

  6. Catalytic activity of calcium-based mixed metal oxides nanocatalysts in transesterification reaction of palm oil

    Science.gov (United States)

    Hassan, Noraakinah; Ismail, Kamariah Noor; Hamid, Ku Halim Ku; Hadi, Abdul

    2017-12-01

    Nowadays, biodiesel has become the forefront development as an alternative diesel fuel derived from biological sources such as oils of plant and fats. Presently, the conventional transesterification of vegetable oil to biodiesel gives rise to some technological problem. In this sense, heterogeneous nanocatalysts of calcium-based mixed metal oxides were synthesized through sol-gel method. It was found that significant increase of biodiesel yield, 91.75 % was obtained catalyzed by CaO-NbO2 from palm oil compared to pure CaO of 53.99 % under transesterification conditions (methanol/oil ratio 10:1, reaction time 3 h, catalyst concentration 4 wt%, reaction temperature 60 °C, and mixing speed of 600 rpm). The phase structure and crystallinity as well as the texture properties of the prepared catalysts were characterized by X-ray Diffraction (XRD) and the textural properties were characterized by N2 adsorption-desorption analysis. Sol-gel method has been known as versatile method in controlling the structural and chemical properties of the catalyst. Calcium-based mixed oxide synthesized from sol-gel method was found to exist as smaller crystallite size with high surface area.

  7. L-Arginine-Triggered Self-Assembly of CeO2 Nanosheaths on Palladium Nanoparticles in Water.

    Science.gov (United States)

    Wang, Xiao; Zhang, Yibo; Song, Shuyan; Yang, Xiangguang; Wang, Zhuo; Jin, Rongchao; Zhang, Hongjie

    2016-03-24

    Pd@CeO2 core-shell nanostructures with a tunable Pd core size, shape, and nanostructure as well as a tunable CeO2 sheath thickness were obtained by a biomolecule-assisted method. The synthetic process is simple and green, as it involves only the heating of a mixture of Ce(NO3 )3 , l-arginine, and preformed Pd seeds in water without additives. Importantly, the synthesis is free of thiol groups and halide ions, thus providing a possible solution to the problem of secondary pollution by Pd nanoparticles in the sheath-coating process. The Pd/CeO2 nanostructures can be composited well with γ-Al2 O3 to create a heterogeneous catalyst. In subsequent tests of catalytic NO reduction by CO, Pd@CeO2 /Al2 O3 samples based on Pd cubes (6, 10, and 18 nm), Pd octahedra (6 nm), and Pd cuboctahedra (9 nm) as well as a simply loaded Pd cube (6 nm)-CeO2 /Al2 O3 sample were used as catalysts to investigate the effects of the Pd core size and shape and the hybrid nanostructure on the catalytic performance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. High Efficiency Solar-based Catalytic Structure for CO2 Reforming

    Energy Technology Data Exchange (ETDEWEB)

    Menkara, Hisham [PhosphorTech Corporation, Kennesaw, GA (United States)

    2013-09-30

    Throughout this project, we developed and optimized various photocatalyst structures for CO2 reforming into hydrocarbon fuels and various commodity chemical products. We also built several closed-loop and continuous fixed-bed photocatalytic reactor system prototypes for a larger-scale demonstration of CO2 reforming into hydrocarbons, mainly methane and formic acid. The results achieved have indicated that with each type of reactor and structure, high reforming yields can be obtained by refining the structural and operational conditions of the reactor, as well as by using various sacrificial agents (hole scavengers). We have also demonstrated, for the first time, that an aqueous solution containing acid whey (a common bio waste) is a highly effective hole scavenger for a solar-based photocatalytic reactor system and can help reform CO2 into several products at once. The optimization tasks performed throughout the project have resulted in efficiency increase in our conventional reactors from an initial 0.02% to about 0.25%, which is 10X higher than our original project goal. When acid whey was used as a sacrificial agent, the achieved energy efficiency for formic acid alone was ~0.4%, which is 16X that of our original project goal and higher than anything ever reported for a solar-based photocatalytic reactor. Therefore, by carefully selecting sacrificial agents, it should be possible to reach energy efficiency in the range of the photosynthetic efficiency of typical crop and biofuel plants (1-3%).

  9. Catalytic destruction of PCDD/Fs over vanadium oxide-based catalysts.

    Science.gov (United States)

    Yu, Ming-Feng; Lin, Xiao-Qing; Li, Xiao-Dong; Yan, Mi; Prabowo, Bayu; Li, Wen-Wei; Chen, Tong; Yan, Jian-Hua

    2016-08-01

    Vanadium oxide-based catalysts were developed for the destruction of vapour phase PCDD/Fs (polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans). A vapour phase PCDD/Fs generating system was designed to supply stable PCDD/Fs steam with initial concentration of 3.2 ng I-TEQ Nm(-3). Two kinds of titania (nano-TiO2 and conventional TiO2) and alumina were used as catalyst supports. For vanadium-based catalysts supported on nano-TiO2, catalyst activity is enhanced with operating temperature increasing from 160 to 300 °C and then reduces with temperature rising further to 350 °C. It is mainly due to the fact that high volatility of organic compounds at 350 °C suppresses adsorption of PCDD/Fs on catalysts surface and then further inhibits the reaction between catalyst and PCDD/Fs. The optimum loading of vanadium on nano-TiO2 support is 5 wt.% where vanadium oxide presents highly dispersed amorphous state according to the Raman spectra and XRD patterns. Excessive vanadium will block the pore space and form microcrystalline V2O5 on the support surface. At the vanadium loading of 5 wt.%, nano-TiO2-supported catalyst performs best on PCDD/Fs destruction compared to Al2O3 and conventional TiO2. Chemical states of vanadium in the fresh, used and reoxidized VOx(5 %)/TiO2 catalysts at different operating temperature are also analysed by XPS.

  10. Presentation of a new plant design, based on an internally circulating fluidized bed system for catalytic cracking; Fluid Catalytic Cracking: Entwicklung einer neuartigen FCC-Anlage mit intern zirkulierendem Wirbelschichtsystem

    Energy Technology Data Exchange (ETDEWEB)

    Reichhold, A.; Fimberger, W.; Hofbauer, H. [Technische Univ. Vienna (Austria). Inst. fuer Verfahrenstechnik, Brennstofftechnik und Umwelttechnik

    1998-09-01

    An internally circulating fluidized bed system was developed for use as a catalytic cracking system. The plant (hot unit) was conceived for a feed rate of 1 to 4 kg/h. The hot unit was developed based on data obtained from literature (e.g. temperature, cat to oil ratio and contact time). Important fluid dynamic parameters, such as the circulation rate and the gas separation efficiency between reaction and regeneration zone were determined in an acrylic model (cold unit) at room temperature. Scaling relationships based on the theory of Glicksman were used as much as possible to design the cold unit in order to give similitude between cold and hot unit. Important parameters influencing the catalyst circulation rate could be determined exactly. Gas separation efficiency measurements between reaction and regeneration zone proved the safety of the system. The setting of the parameters during the trials was determined based on data from the cold unit and literature (e.g. temperature, cat to oil ratio, and contact time). The trials in the hot unit were carried out with vacuum gas oil and FCC-equilibrium catalyst. The experiments ran successfully and the analysis of the cracking products matched expectations. Furthermore the new system can also be used as a plant for other reactions such as catalytic alkylation and isomerisation. (orig.) [Deutsch] Ein intern zirkulierendes Wirbelschichtsystem zur Durchfuehrung des Fluid Catalytic Cracking Verfahrens wurde entwickelt. Die Technikumsanlage wurde fuer eine Feedrate von ca. 1 bis 4 kg/h ausgelegt. Basierend auf Daten aus der Literatur (z.B. Temperatur, Kat-Oel-Verhaeltnis und Kontaktzeit) wurde das Heissmodell aus einer Spezialstahllegierung gefertigt und aufgebaut. Wichtige stroemungsmechanische Parameter, wie die Umlaufrate und Gastrenneffizienz zwischen dem Reaktor und dem Regenerator, wurden in einem Modell aus Acrylglas (sogenanntes Kaltmodell) bei Raumtemperatur bestimmt. Um die Aehnlichkeit zwischen dem Kalt- und dem

  11. Lewis base activation of Lewis acids: catalytic, enantioselective vinylogous aldol addition reactions.

    Science.gov (United States)

    Denmark, Scott E; Heemstra, John R

    2007-07-20

    The generality of Lewis base catalyzed, Lewis acid mediated, enantioselective vinylogous aldol addition reactions has been investigated. The combination of silicon tetrachloride and chiral phosphoramides is a competent catalyst for highly selective additions of a variety of alpha,beta-unsaturated ketone-, 1,3-diketone-, and alpha,beta-unsaturated amide-derived dienolates to aldehydes. These reactions provided high levels of gamma-site selectivity for a variety of substitution patterns on the dienyl unit. Both ketone- and morpholine amide-derived dienol ethers afforded high enantio- and diastereoselectivity in the addition to conjugated aldehydes. Although alpha,beta-unsaturated ketone-derived dienolate did not react with aliphatic aldehydes, alpha,beta-unsaturated amide-derived dienolates underwent addition at reasonable rates affording high yields of vinylogous aldol product. The enantioselectivities achieved with the morpholine derived-dienolate in the addition to aliphatic aldehydes was the highest afforded to date with the silicon tetrachloride-chiral phosphoramide system. Furthermore, the ability to cleanly convert the morpholine amide to a methyl ketone was demonstrated.

  12. Catalytic and peroxidase-like activity of carbon based-AuPd bimetallic nanocomposite produced using carbon dots as the reductant

    International Nuclear Information System (INIS)

    Yang, Liuqing; Liu, Xiaoying; Lu, Qiujun; Huang, Na; Liu, Meiling; Zhang, Youyu; Yao, Shouzhuo

    2016-01-01

    In this report, carbon-based AuPd bimetallic nanocomposite (AuPd/C NC) was synthesized using carbon dots (C-dots) as the reducing agent and stabilizer by a simple green sequential reduction strategy, without adding other agents. The as synthesized AuPd/C NC showed good catalytic activity and peroxidase-like property. The structure and morphology of these nanoparticles were clearly characterized by UV–Vis spectroscopy, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The AuPd/C NC catalyst exhibits noticeably higher catalytic activity than Pd and Au nanoparticles in catalysis reduction of 4-nitrophenol (4-NP). Moreover, based on the high peroxidase-like property of AuPd/C NC, a new colorimetric detection method for hydrogen peroxide (H 2 O 2 ) has been designed using 3,3′,5,5′-tetramethyl-benzidine (TMB) as the substrate, which provides a simple and sensitive means to detect H 2 O 2 in wide linear range of 5 μM–500 μM and 500 μM–4 mM with low detection limit of 1.6 μM (S/N = 3). Therefore, the facile synthesis strategy for bimetallic nanoparticles by the mild reductant of carbon dot will provide some new thoughts for preparing of carbon-based metal nanomaterials and expand their application in catalysis and analytical chemistry areas. - Highlights: • Carbon-based AuPd bimetallic nanocomposite was synthesized using carbon dots. • The green sequential reduction strategy synthesis method is simple, green, convenient and effective. • The as synthesized AuPd/C NC showed good catalytic activity and peroxidase-like activity. • The AuPd/C NC exhibits noticeably higher catalytic activity in reduction of 4-nitrophenol. • A new colorimetric detection method for hydrogen peroxide based on AuPd/C NC was proposed.

  13. Oral l-Arginine Stimulates GLP-1 Secretion to Improve Glucose Tolerance in Male Mice

    Science.gov (United States)

    Clemmensen, Christoffer; Smajilovic, Sanela; Smith, Eric P.; Woods, Stephen C.; Bräuner-Osborne, Hans; Seeley, Randy J.; D'Alessio, David A.

    2013-01-01

    Pharmacological and surgical interventions that increase glucagon-like peptide 1 (GLP-1) action are effective to improve glucose homeostasis in type 2 diabetes mellitus. In light of this, nutritional strategies to enhance postprandial GLP-1 secretion, particularly in the context of diet-induced obesity, may provide an alternative therapeutic approach. Importantly, recent evidence suggests the amino acid l-arginine, a well-known insulin secretagogue, can also stimulate release of GLP-1 from isolated rat intestine. Here we tested the hypothesis that oral l-arginine acts as a GLP-1 secretagogue in vivo, to augment postprandial insulin secretion and improve glucose tolerance. To test this, we administered l-arginine or vehicle by oral gavage, immediately prior to an oral glucose tolerance test in lean and diet-induced obese mice. In both lean and obese mice oral l-arginine increased plasma GLP-1 and insulin and substantially improved glucose clearance. To directly assess the contribution of GLP-1 receptor (GLP-1R)-signaling to these improvements, l-arginine was given to Glp1r knockout mice and their wild-type littermates. In this experiment oral l-arginine significantly augmented insulin secretion and improved glucose clearance in WT mice, but not in Glp1r knockout littermates. Taken together these findings identify l-arginine as a GLP-1 secretagogue in vivo and demonstrate that improvement of glucose tolerance by oral l-arginine depends on GLP-1R-signaling. These findings raise the intriguing possibility that l-arginine-based nutritional and/or pharmaceutical therapies may benefit glucose tolerance by improving the postprandial GLP-1 response in obese individuals. PMID:23959939

  14. Synergic catalytic effect of Ti hydride and Nb nanoparticles for improving hydrogenation and dehydrogenation kinetics of Mg-based nanocomposite

    Directory of Open Access Journals (Sweden)

    Xiujuan Ma

    2017-02-01

    Full Text Available The Mg-9.3 wt% (TiH1.971-TiH−0.7 wt% Nb nanocomposite has been synthesized by hydrogen plasma-metal reaction (HPMR approach to enhance the hydrogen sorption kinetics of Mg at moderate temperatures by providing nanosizing effect of increasing H “diffusion channels” and adding transition metallic catalysts. The Mg nanoparticles (NPs were in hexagonal shape range from 50 to 350 nm and the average size of the NPs was 177 nm. The small spherical TiH1.971, TiH and Nb NPs of about 25 nm uniformly decorated on the surface of the big Mg NPs. The Mg-TiH1.971-TiH-Nb nanocomposite could quickly absorb 5.6 wt% H2 within 5 min at 573 K and 4.5 wt% H2 within 5 min at 523 K, whereas the pure Mg prepared by HPMR could only absorb 4 and 1.5 wt% H2 at the same temperatures. TiH1.971, TiH and Nb NPs transformed into TiH2 and NbH during hydrogenation and recovered after dehydrogenation process. The apparent activation energies of the nanocomposite for hydrogenation and dehydrogenation were 45.0 and 50.7 kJ mol−1, which are much smaller than those of pure Mg NPs, 123.8 and 127.7 kJ mol−1. The improved sorption kinetics of the Mg-based nanocomposite at moderate temperatures and the small activation energy can be interpreted by the nanostructure of Mg and the synergic catalytic effects of Ti hydrides and Nb NPs.

  15. Effects of L-arginine on intestinal development and endogenous ...

    African Journals Online (AJOL)

    Jane

    2011-08-01

    Aug 1, 2011 ... the underlying mechanism includes dietary L-arginine supplementation which regulated the productions of intestinal polyamine in jejunum, and stimulated endogenous arginine-synthesizing enzymes in neonatal piglets. Key words: Neonatal pig, L-arginine, intestinal development, arginine-synthetases.

  16. Catalytic effect of additional metallic phases on the hydrogen absorption behavior of a Zr-Based alloy

    International Nuclear Information System (INIS)

    Ruiz, F; Peretti, H; Castro, E; Real, S; Visitin, A; Triaca, W

    2005-01-01

    The electrochemical hydrogen absorption of electrodes containing Zr 0 .9Ti 0 .1(Ni 0 .5Mn 0 .25Cr 0 .20V 0 .05) 2 is studied in alkaline media by monitoring the activation and discharge capacity along charge-discharge cycling.The considered alloy is tested in both as melted and annealed condition in order to investigate the catalytic effect of small amounts of micro segregated secondary phases of the Zr-Ni system. Since these catalytic phases are only present in the as melted alloys, tests are also carried out using a composite material elaborated from powders of the annealed alloy with the addition of 18 wt.% of the suspected catalytic phases, melted separately.The hydrogen absorption-desorption behavior for the different cases is discussed and correlated with the metallurgical characterization of the materials.The catalytic effects are studied employing cyclic voltammetry and electrochemical impedance techniques. The results are analyzed in terms of a developed physicochemical model

  17. Catalytic Layer Optimization for Hydrogen Permeation Membranes Based on La5.5WO11.25-δ/La0.87Sr0.13CrO3-δComposites.

    Science.gov (United States)

    Escolástico, Sonia; Solı S, Cecilia; Kjølseth, Christian; Serra, Jose Manuel

    2017-10-18

    (LWO/LSC) composite is one of the most promising mixed ionic-electronic conducting materials for hydrogen separation at high temperature. However, these materials present limited catalytic surface activity toward H 2 activation and water splitting, which determines the overall H 2 separation rate. For the implementation of these materials as catalytic membrane reactors, effective catalytic layers have to be developed that are compatible and stable under the reaction conditions. This contribution presents the development of catalytic layers based on sputtered metals (Cu and Pd), electrochemical characterization by impendace spectroscopy, and the study of the H 2 flow obtained by coating them on 60/40-LWO/LSC membranes. Stability of the catalytic layers is also evaluated under H 2 permeation conditions and CH 4 -containing atmospheres.

  18. Deletion of Genes Encoding Arginase Improves Use of "Heavy" Isotope-Labeled Arginine for Mass Spectrometry in Fission Yeast.

    Directory of Open Access Journals (Sweden)

    Weronika E Borek

    Full Text Available The use of "heavy" isotope-labeled arginine for stable isotope labeling by amino acids in cell culture (SILAC mass spectrometry in the fission yeast Schizosaccharomyces pombe is hindered by the fact that under normal conditions, arginine is extensively catabolized in vivo, resulting in the appearance of "heavy"-isotope label in several other amino acids, most notably proline, but also glutamate, glutamine and lysine. This "arginine conversion problem" significantly impairs quantification of mass spectra. Previously, we developed a method to prevent arginine conversion in fission yeast SILAC, based on deletion of genes involved in arginine catabolism. Here we show that although this method is indeed successful when (13C6-arginine (Arg-6 is used for labeling, it is less successful when (13C6(15N4-arginine (Arg-10, a theoretically preferable label, is used. In particular, we find that with this method, "heavy"-isotope label derived from Arg-10 is observed in amino acids other than arginine, indicating metabolic conversion of Arg-10. Arg-10 conversion, which severely complicates both MS and MS/MS analysis, is further confirmed by the presence of (13C5(15N2-arginine (Arg-7 in arginine-containing peptides from Arg-10-labeled cells. We describe how all of the problems associated with the use of Arg-10 can be overcome by a simple modification of our original method. We show that simultaneous deletion of the fission yeast arginase genes car1+ and aru1+ prevents virtually all of the arginine conversion that would otherwise result from the use of Arg-10. This solution should enable a wider use of heavy isotope-labeled amino acids in fission yeast SILAC.

  19. Large-Scale Identification of the Arginine Methylome by Mass Spectrometry

    DEFF Research Database (Denmark)

    Sylvestersen, Kathrine B; Nielsen, Michael L

    2015-01-01

    , prefractionation using strong cation exchange, and identification using liquid chromatography coupled to tandem mass spectrometry. A strategy for relative quantification is described using stable isotope labeling by amino acids in cell culture (SILAC). Approaches for analysis of arginine methylation site occupancy......The attachment of one or more methylation groups to the side chain of arginine residues is a regulatory mechanism for cellular proteins. Recent advances in mass spectrometry-based characterization allow comprehensive identification of arginine methylation sites by peptide-level enrichment...... strategies. Described in this unit is a 4-day protocol for enrichment of arginine-methylated peptides and subsequent identification of thousands of distinct sites by mass spectrometry. Specifically, the protocol explains step-by-step sample preparation, enrichment using commercially available antibodies...

  20. Dietary L-arginine supplementation enhances placental growth and reproductive performance in sows.

    Science.gov (United States)

    Gao, Kaiguo; Jiang, Zongyong; Lin, Yingcai; Zheng, Chuntian; Zhou, Guilian; Chen, Fang; Yang, Lin; Wu, Guoyao

    2012-06-01

    Suboptimal embryonic/fetal survival and growth remains a significant problem in mammals. Using a swine model, we tested the hypothesis that dietary L-arginine supplementation during gestation may improve pregnancy outcomes through enhancing placental growth and modulating hormonal secretions. Gestating pigs (Yorkshire×Landrace, n=108) were assigned randomly into two groups based on parity and body weight, representing dietary supplementation with 1.0% L-arginine-HCl or 1.7% L-alanine (isonitrogenous control) between days 22 and 114 of gestation. Blood samples were obtained from the ear vein on days 22, 40, 70 and 90 of gestation. On days 40, 70 and 90 of gestation, concentrations of estradiol in plasma were higher (Psupplemented than in control sows. Moreover, arginine supplementation increased (Psupplementation increased (Psupplementation enhanced (Psupplementation during gestation. These results indicate that dietary arginine supplementation beneficially enhances placental growth and the reproductive performance of sows.

  1. A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide.

    Science.gov (United States)

    Anthonysamy, Shahreen Binti Izwan; Afandi, Syahidah Binti; Khavarian, Mehrnoush; Mohamed, Abdul Rahman Bin

    2018-01-01

    Various types of carbon-based and non-carbon-based catalyst supports for nitric oxide (NO) removal through selective catalytic reduction (SCR) with ammonia are examined in this review. A number of carbon-based materials, such as carbon nanotubes (CNTs), activated carbon (AC), and graphene (GR) and non-carbon-based materials, such as Zeolite Socony Mobil-5 (ZSM-5), TiO 2 , and Al 2 O 3 supported materials, were identified as the most up-to-date and recently used catalysts for the removal of NO gas. The main focus of this review is the study of catalyst preparation methods, as this is highly correlated to the behaviour of NO removal. The general mechanisms involved in the system, the Langmuir-Hinshelwood or Eley-Riedeal mechanism, are also discussed. Characterisation analysis affecting the surface and chemical structure of the catalyst is also detailed in this work. Finally, a few major conclusions are drawn and future directions for work on the advancement of the SCR-NH 3 catalyst are suggested.

  2. Cleansing effect of acidic L-arginine on human oral biofilm.

    Science.gov (United States)

    Tada, Ayano; Nakayama-Imaohji, Haruyuki; Yamasaki, Hisashi; Hasibul, Khaleque; Yoneda, Saori; Uchida, Keiko; Nariya, Hirofumi; Suzuki, Motoo; Miyake, Minoru; Kuwahara, Tomomi

    2016-03-22

    Dental plaque formed on tooth surfaces is a complex ecosystem composed of diverse oral bacteria and salivary components. Accumulation of dental plaque is a risk factor for dental caries and periodontal diseases. L-arginine has been reported to decrease the risk for dental caries by elevating plaque pH through the activity of arginine deiminase in oral bacteria. Here we evaluated the potential of L-arginine to remove established oral biofilms. Biofilms were formed using human saliva mixed with Brain Heart Infusion broth supplemented with 1 % sucrose in multi-well plates or on plastic discs. After washing the biofilms with saline, citrate (10 mM, pH3.5), or L-arginine (0.5 M, pH3.5), the retained biofilms were analyzed by crystal violet staining, scanning electron microscopy, and Illumina-based 16S rDNA sequencing. Washing with acidic L-arginine detached oral biofilms more efficiently than saline and significantly reduced biofilm mass retained in multi-well plates or on plastic discs. Illumina-based microbiota analysis showed that citrate (pH3.5) preferentially washed out Streptococcus from mature oral biofilm, whereas acidic L-arginine prepared with 10 mM citrate buffer (pH3.5) non-specifically removed microbial components of the oral biofilm. Acidic L-arginine prepared with citrate buffer (pH3.5) effectively destabilized and removed mature oral biofilms. The acidic L-arginine solution described here could be used as an additive that enhances the efficacy of mouth rinses used in oral hygiene.

  3. Catalytic reforming methods

    Science.gov (United States)

    Tadd, Andrew R; Schwank, Johannes

    2013-05-14

    A catalytic reforming method is disclosed herein. The method includes sequentially supplying a plurality of feedstocks of variable compositions to a reformer. The method further includes adding a respective predetermined co-reactant to each of the plurality of feedstocks to obtain a substantially constant output from the reformer for the plurality of feedstocks. The respective predetermined co-reactant is based on a C/H/O atomic composition for a respective one of the plurality of feedstocks and a predetermined C/H/O atomic composition for the substantially constant output.

  4. Production of gaseous fuel from jatropha oil by cerium oxide based catalytic fuel reactor and its utilisation on diesel engine

    Directory of Open Access Journals (Sweden)

    Mylswamy Thirunavukkarasu

    2016-01-01

    Full Text Available In this study, an attempt is made to produce a hydrocarbon fuel from jatropha vegetable oil for Diesel engine applications. The “catalytic cracking” a process recently introduced by the researchers is chosen as an alternative method to trans-esterification process to match the fuel properties to diesel. Jatropha vegetable oil was cracked into a gas using the cerium oxide catalyst in a fixed bed catalytic reactor. The produced gas is introduced at constant rate into the inlet manifold of the Diesel engine. The experimental work was carried out in single cylinder water cooled direct injection Diesel engine coupled with eddy current dynamometer. The combustion parameters are measured by AVL combustion analyser. From the experimental results, the increase in brake thermal efficiency of the engine for full load was observed to be 10% (relative compared with diesel. Notably, emissions such as HC, CO, and smoke are reduced by 18%, 61%, and 18%, respectively, when compared with diesel.

  5. Preparation, structural characterization, and catalytic performance of Pd(II) and Pt(II) complexes derived from cellulose Schiff base

    Science.gov (United States)

    Baran, Talat; Yılmaz Baran, Nuray; Menteş, Ayfer

    2018-05-01

    In this study, we reported production, characterization, and catalytic behavior of two novel heterogeneous palladium(II) and platinum(II) catalysts derived from cellulose biopolymer. In order to eliminate the use of toxic organic or inorganic solvents and to reduce the use of excess energy in the coupling reactions, we have developed a very simple, rapid, and eco-friendly microwave irradiation protocol. The developed microwave-assisted method of Suzuki cross coupling reactions produced excellent reaction yields in the presence of cellulose supported palladium and platinum (II) catalysts. Moreover, the catalysts easily regenerated after simple filtration, and they gave good reusability. This study revealed that the designed catalysts and method provide clean, simple, rapid, and impressive catalytic performance for Suzuki coupling reactions.

  6. Mononuclear Nickel(II Complexes with Schiff Base Ligands: Synthesis, Characterization, and Catalytic Activity in Norbornene Polymerization

    Directory of Open Access Journals (Sweden)

    Yi-Mei Xu

    2017-03-01

    Full Text Available The nickel(II catalyst has manifested higher catalytic activity compared to that of other late transition metal catalysts for norbornene polymerization. Therefore, several structurally similar trans-nickel(II compounds of N,O-chelate bidentate ligands were synthesized and characterized. Both the electronic effect and the steric hindrance influence polymerization. The molecular structures of 2, 4 and 5 were further confirmed by single-crystal X-ray diffraction.

  7. Binary and Ternary Catalytic Systems for Olefin Metathesis Based on MoCl5/SiO2

    Science.gov (United States)

    Bykov, Victor I.; Belyaev, Boris A.; Butenko, Tamara A.; Finkelshtein, Eugene Sh.

    Kinetics of α-olefin metathesis in the presence of binary (MoCl5/ SiO2-Me4Sn) and ternary catalytic systems (MoCl5/SiO2-Me4Sn-ECl4, E = Si or Ge) was studied. Specifically, kinetics and reactivity of 1-decene, 1-octene, and 1-hexene in the metathesis reaction at 27°C and 50°C in the presence of MoCl5/ SiO2-SnMe4 were examined and evaluated in detail. It was shown that experimental data comply well with the simple kinetic equation for the rate of formation of symmetrical olefins with allowance for the reverse reaction and catalyst deactivation: r = left( {k_1 \\cdot c_α - k_{ - 1} \\cdot c_s } right) \\cdot e^{ - k_d \\cdot tilde n_{tot} } . The coefficients for this equation were determined, and it was shown that these α-olefins had practically the same reactivity. It was found that reactivation in the course of metathesis took place due to the addition of a third component (silicon tetrachloride or germanium tetrachloride in combination with tetramethyltin) to a partially deactivated catalyst. The number of active centers was determined (5-6% of the amount of Mo) and the mechanisms of formation, deactivation, and reactivation were proposed for the binary and ternary catalytic systems. The role of individual components of the catalytic systems was revealed.

  8. Dye sensitized solar cell based on platinum decorated multiwall carbon nanotubes as catalytic layer on the counter electrode

    International Nuclear Information System (INIS)

    Mathew, Ambily; Rao, G. Mohan; Munichandraiah, N.

    2011-01-01

    Graphical abstract: I-V characteristics of the DSSCs with Pt CE and Pt/MWCNT CE measured at 100 mW/cm 2 . It shows relatively better performance with Pt/MWCNT counter electrodes. Highlights: → Synthesis of multiwalled carbon nanotubes by pyrolysis. → Synthesis of Pt/MWCNT composite by chemical reduction. → Fabrication DSSC using Pt/MWCNT as catalytic layer on the counter electrode. → Study of catalytic activity by Electrochemical Impedance Spectroscopy. -- Abstract: In this study we have employed multiwall carbon nanotubes (MWCNT), decorated with platinum as catalytic layer for the reduction of tri-iodide ions in dye sensitized solar cell (DSSC). MWCNTs have been prepared by a simple one step pyrolysis method using ferrocene as the catalyst and xylene as the carbon source. Platinum decorated MWCNTs have been prepared by chemical reduction method. The as prepared MWCNTs and Pt/MWCNTs have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In combination with a dye adsorbed TiO 2 photoanode and an organic liquid electrolyte, Pt/MWCNT composite showed an enhanced short circuit current density of 16.12 mA/cm 2 leading to a cell efficiency of 6.50% which is comparable to that of Platinum.

  9. Dye sensitized solar cell based on platinum decorated multiwall carbon nanotubes as catalytic layer on the counter electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Ambily [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 India (India); Rao, G. Mohan, E-mail: gmrao@isu.iisc.ernet.in [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 India (India); Munichandraiah, N. [Department of Inorgonic and Physical Chemistry, Indian Institute of Science, Bangalore 560012 India (India)

    2011-11-15

    Graphical abstract: I-V characteristics of the DSSCs with Pt CE and Pt/MWCNT CE measured at 100 mW/cm{sup 2}. It shows relatively better performance with Pt/MWCNT counter electrodes. Highlights: {yields} Synthesis of multiwalled carbon nanotubes by pyrolysis. {yields} Synthesis of Pt/MWCNT composite by chemical reduction. {yields} Fabrication DSSC using Pt/MWCNT as catalytic layer on the counter electrode. {yields} Study of catalytic activity by Electrochemical Impedance Spectroscopy. -- Abstract: In this study we have employed multiwall carbon nanotubes (MWCNT), decorated with platinum as catalytic layer for the reduction of tri-iodide ions in dye sensitized solar cell (DSSC). MWCNTs have been prepared by a simple one step pyrolysis method using ferrocene as the catalyst and xylene as the carbon source. Platinum decorated MWCNTs have been prepared by chemical reduction method. The as prepared MWCNTs and Pt/MWCNTs have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In combination with a dye adsorbed TiO{sub 2} photoanode and an organic liquid electrolyte, Pt/MWCNT composite showed an enhanced short circuit current density of 16.12 mA/cm{sup 2} leading to a cell efficiency of 6.50% which is comparable to that of Platinum.

  10. Preparation of acid-base bifunctional mesoporous KIT-6 (KIT: Korea Advanced Institute of Science and Technology) and its catalytic performance in Knoevenagel reaction

    International Nuclear Information System (INIS)

    Xu, Ling; Wang, Chunhua; Guan, Jingqi

    2014-01-01

    Acid-base bifunctional mesoporous catalysts Al-KIT-6-NH 2 containing different aluminum content have been synthesized through post synthetic grafting method. The materials were characterized by X-ray diffraction (XRD), scanning electron micrographs (SEM), transmission electron micrographs (TEM), Fourier-transform infrared spectroscopy (FTIR), IR spectra of pyridine adsorption, NH 3 -TPD and TG analysis. The characterization results indicated that the pore structure of KIT-6 was well kept after the addition of aluminum and grafting of aminopropyl groups. The acid amount of Al-KIT-6 increased with enhancing aluminum content. Catalytic results showed that weak acid and weak base favor the Knoevenagel reaction, while catalysts with strong acid and weak base exhibited worse catalytic behavior. - Graphical abstract: The postulated steps of mechanism for the acid-base catalyzed process are as follows: (1) the aldehyde gets activated by the surface acidic sites which allow the amine undergoes nucleophilic to attack the carbonyl carbon of benzaldehyde. (2) Water is released in the formation of imine intermediate. (3) The ethyl cyanoacetate reacts with the intermediate. (4) The benzylidene ethyl cyanoacetate is formed and the amine is regenerated. - Highlights: • KIT-6 and Al-KIT-6-NH 2 with different Si/Al ratios has been successfully prepared. • 79.4% Yield was obtained over 46-Al-KIT-6-NH 2 within 20 min in Knoevenagel reaction. • Low Al-content Al-KIT-6-NH 2 shows better catalytic stability than high Al-content catalysts. • There is acid-base synergistic effect in Knoevenagel reaction

  11. Symmetric allosteric mechanism of hexameric Escherichia coli arginine repressor exploits competition between L-arginine ligands and resident arginine residues.

    Directory of Open Access Journals (Sweden)

    Rebecca Strawn

    2010-06-01

    Full Text Available An elegantly simple and probably ancient molecular mechanism of allostery is described for the Escherichia coli arginine repressor ArgR, the master feedback regulator of transcription in L-arginine metabolism. Molecular dynamics simulations with ArgRC, the hexameric domain that binds L-arginine with negative cooperativity, reveal that conserved arginine and aspartate residues in each ligand-binding pocket promote rotational oscillation of apoArgRC trimers by engagement and release of hydrogen-bonded salt bridges. Binding of exogenous L-arginine displaces resident arginine residues and arrests oscillation, shifting the equilibrium quaternary ensemble and promoting motions that maintain the configurational entropy of the system. A single L-arg ligand is necessary and sufficient to arrest oscillation, and enables formation of a cooperative hydrogen-bond network at the subunit interface. The results are used to construct a free-energy reaction coordinate that accounts for the negative cooperativity and distinctive thermodynamic signature of L-arginine binding detected by calorimetry. The symmetry of the hexamer is maintained as each ligand binds, despite the conceptual asymmetry of partially-liganded states. The results thus offer the first opportunity to describe in structural and thermodynamic terms the symmetric relaxed state predicted by the concerted allostery model of Monod, Wyman, and Changeux, revealing that this state is achieved by exploiting the dynamics of the assembly and the distributed nature of its cohesive free energy. The ArgR example reveals that symmetry can be maintained even when binding sites fill sequentially due to negative cooperativity, which was not anticipated by the Monod, Wyman, and Changeux model. The molecular mechanism identified here neither specifies nor requires a pathway for transmission of the allosteric signal through the protein, and it suggests the possibility that binding of free amino acids was an early

  12. Biocatalytic synthesis, antimicrobial properties and toxicity studies of arginine derivative surfactants.

    Science.gov (United States)

    Fait, M Elisa; Garrote, Graciela L; Clapés, Pere; Tanco, Sebastian; Lorenzo, Julia; Morcelle, Susana R

    2015-07-01

    Two novel arginine-based cationic surfactants were synthesized using as biocatalyst papain, an endopeptidase from Carica papaya latex, adsorbed onto polyamide. The classical substrate N (α)-benzoyl-arginine ethyl ester hydrochloride for the determination of cysteine and serine proteases activity was used as the arginine donor, whereas decyl- and dodecylamine were used as nucleophiles for the condensation reaction. Yields higher than 90 and 80 % were achieved for the synthesis of N (α)-benzoyl-arginine decyl amide (Bz-Arg-NHC10) and N (α)-benzoyl-arginine dodecyl amide (Bz-Arg-NHC12), respectively. The purification process was developed in order to make it more sustainable, by using water and ethanol as the main separation solvents in a single cationic exchange chromatographic separation step. Bz-Arg-NHC10 and Bz-Arg-NHC12 proved antimicrobial activity against both Gram-positive and Gram-negative bacteria, revealing their potential use as effective disinfectants as they reduced 99 % the initial bacterial population after only 1 h of contact. The cytotoxic effect towards different cell types of both arginine derivatives was also measured. Bz-Arg-NHCn demonstrated lower haemolytic activity and were less eye-irritating than the commercial cationic surfactant cetrimide. A similar trend could also be observed when cytotoxicity was tested on hepatocytes and fibroblast cell lines: both arginine derivatives were less toxic than cetrimide. All these properties would make the two novel arginine compounds a promising alternative to commercial cationic surfactants, especially for their use as additives in topical formulations.

  13. Dietary L-arginine supplementation affects the skeletal longissimus muscle proteome in finishing pigs.

    Science.gov (United States)

    Ma, Xianyong; Zheng, Chuntian; Hu, Youjun; Wang, Li; Yang, Xuefen; Jiang, Zongyong

    2015-01-01

    Forty-eight Duroc x Landrace x Large White gilts were used to determine the relationship between proteome changes of longissimus muscle and intramuscular fat (IMF) content in arginine-supplemented pigs. Beginning at 60 kg BW, pigs were fed a corn- and soybean meal-based diet supplemented or not with 1% L-arginine until they reached a BW of 100 kg. Supplementation with 1% L-arginine did not affect the growth performance or carcass traits, while it increased IMF content by 32% (P supplementation with 1% dietary L-arginine did not change the proportion of SFA and MUFA in muscle lipids. The proteome changes in longissimus muscle between the control and supplemented pigs showed that L-arginine significantly influenced the abundance of proteins related to energy metabolism, fiber type and structure. The increase in IMF content was positively correlated with the increased abundance of slow twitch troponin I (TNNI1) protein and negatively correlated with myosin heavy chain IIb (MyHC IIb) protein content. It is suggested that the proteome changes in longissimus muscle contributed to the greater IMF content in L-arginine supplemented pigs.

  14. Dietary L-arginine supplementation affects the skeletal longissimus muscle proteome in finishing pigs.

    Directory of Open Access Journals (Sweden)

    Xianyong Ma

    Full Text Available Forty-eight Duroc x Landrace x Large White gilts were used to determine the relationship between proteome changes of longissimus muscle and intramuscular fat (IMF content in arginine-supplemented pigs. Beginning at 60 kg BW, pigs were fed a corn- and soybean meal-based diet supplemented or not with 1% L-arginine until they reached a BW of 100 kg. Supplementation with 1% L-arginine did not affect the growth performance or carcass traits, while it increased IMF content by 32% (P < 0.01, it also decreased the drip loss at 48 h post-mortem and the b* meat color value at 24 h post-mortem; supplementation with 1% dietary L-arginine did not change the proportion of SFA and MUFA in muscle lipids. The proteome changes in longissimus muscle between the control and supplemented pigs showed that L-arginine significantly influenced the abundance of proteins related to energy metabolism, fiber type and structure. The increase in IMF content was positively correlated with the increased abundance of slow twitch troponin I (TNNI1 protein and negatively correlated with myosin heavy chain IIb (MyHC IIb protein content. It is suggested that the proteome changes in longissimus muscle contributed to the greater IMF content in L-arginine supplemented pigs.

  15. Dietary L-Arginine Supplementation Affects the Skeletal Longissimus Muscle Proteome in Finishing Pigs

    Science.gov (United States)

    Ma, Xianyong; Zheng, Chuntian; Hu, Youjun; Wang, Li; Yang, Xuefen; Jiang, Zongyong

    2015-01-01

    Forty-eight Duroc x Landrace x Large White gilts were used to determine the relationship between proteome changes of longissimus muscle and intramuscular fat (IMF) content in arginine-supplemented pigs. Beginning at 60 kg BW, pigs were fed a corn- and soybean meal-based diet supplemented or not with 1% L-arginine until they reached a BW of 100 kg. Supplementation with 1% L-arginine did not affect the growth performance or carcass traits, while it increased IMF content by 32% (P L-arginine did not change the proportion of SFA and MUFA in muscle lipids. The proteome changes in longissimus muscle between the control and supplemented pigs showed that L-arginine significantly influenced the abundance of proteins related to energy metabolism, fiber type and structure. The increase in IMF content was positively correlated with the increased abundance of slow twitch troponin I (TNNI1) protein and negatively correlated with myosin heavy chain IIb (MyHC IIb) protein content. It is suggested that the proteome changes in longissimus muscle contributed to the greater IMF content in L-arginine supplemented pigs. PMID:25635834

  16. IMMUNOSUPPRESSIVE EFFECTS OF ARGININE DEIMINASE FROM STREPTOCOCCUS PYOGENES

    Directory of Open Access Journals (Sweden)

    E. A. Starikova

    2015-01-01

    Full Text Available Many pathogens use metabolic pathway of arginine for successful dissemination. Bacterial arginine deiminase hydrolyzes arginine to form one molecule of ammonia and two molecules of ATP. The activity of the enzyme contributes to the improvement of survival of pathogenic bacteria in conditions of low pH at the site of infection or in phagolysosome, as well as in anaerobic conditions, and also leads to deficiency of arginine. Metabolism of arginine plays an important role in regulating the functions of immune system cells in mammals. Arginine is a substrate of enzymes NOS and arginase. Arginine depletion, potentially contributs to immunosuppression. The review analyzed the literature data on the effect of streptococcal arginine deiminase on the metabolism of arginine eukaryotic cells, and discusses immunosuppressive action of the enzyme.

  17. Prediction of twin-arginine signal peptides

    Directory of Open Access Journals (Sweden)

    Widdick David

    2005-07-01

    Full Text Available Abstract Background Proteins carrying twin-arginine (Tat signal peptides are exported into the periplasmic compartment or extracellular environment independently of the classical Sec-dependent translocation pathway. To complement other methods for classical signal peptide prediction we here present a publicly available method, TatP, for prediction of bacterial Tat signal peptides. Results We have retrieved sequence data for Tat substrates in order to train a computational method for discrimination of Sec and Tat signal peptides. The TatP method is able to positively classify 91% of 35 known Tat signal peptides and 84% of the annotated cleavage sites of these Tat signal peptides were correctly predicted. This method generates far less false positive predictions on various datasets than using simple pattern matching. Moreover, on the same datasets TatP generates less false positive predictions than a complementary rule based prediction method. Conclusion The method developed here is able to discriminate Tat signal peptides from cytoplasmic proteins carrying a similar motif, as well as from Sec signal peptides, with high accuracy. The method allows filtering of input sequences based on Perl syntax regular expressions, whereas hydrophobicity discrimination of Tat- and Sec-signal peptides is carried out by an artificial neural network. A potential cleavage site of the predicted Tat signal peptide is also reported. The TatP prediction server is available as a public web server at http://www.cbs.dtu.dk/services/TatP/.

  18. Fluorometric enzymatic assay of L-arginine

    Science.gov (United States)

    Stasyuk, Nataliya; Gayda, Galina; Yepremyan, Hasmik; Stepien, Agnieszka; Gonchar, Mykhailo

    2017-01-01

    The enzymes of L-arginine (further - Arg) metabolism are promising tools for elaboration of selective methods for quantitative Arg analysis. In our study we propose an enzymatic method for Arg assay based on fluorometric monitoring of ammonia, a final product of Arg splitting by human liver arginase I (further - arginase), isolated from the recombinant yeast strain, and commercial urease. The selective analysis of ammonia (at 415 nm under excitation at 360 nm) is based on reaction with o-phthalaldehyde (OPA) in the presence of sulfite in alkali medium: these conditions permit to avoid the reaction of OPA with any amino acid. A linearity range of the fluorometric arginase-urease-OPA method is from 100 nM to 6 μМ with a limit of detection of 34 nM Arg. The method was used for the quantitative determination of Arg in the pooled sample of blood serum. The obtained results proved to be in a good correlation with the reference enzymatic method and literature data. The proposed arginase-urease-OPA method being sensitive, economical, selective and suitable for both routine and micro-volume formats, can be used in clinical diagnostics for the simultaneous determination of Arg as well as urea and ammonia in serum samples.

  19. Insights into the arginine paradox: evidence against the importance of subcellular location of arginase and eNOS

    Science.gov (United States)

    Elms, Shawn; Chen, Feng; Wang, Yusi; Qian, Jin; Askari, Bardia; Yu, Yanfang; Pandey, Deepesh; Iddings, Jennifer; Caldwell, Ruth B.

    2013-01-01

    Reduced production of nitric oxide (NO) is one of the first indications of endothelial dysfunction and precedes overt cardiovascular disease. Increased expression of Arginase has been proposed as a mechanism to account for diminished NO production. Arginases consume l-arginine, the substrate for endothelial nitric oxide synthase (eNOS), and l-arginine depletion is thought to competitively reduce eNOS-derived NO. However, this simple relationship is complicated by the paradox that l-arginine concentrations in endothelial cells remain sufficiently high to support NO synthesis. One mechanism proposed to explain this is compartmentalization of intracellular l-arginine into distinct, poorly interchangeable pools. In the current study, we investigated this concept by targeting eNOS and Arginase to different intracellular locations within COS-7 cells and also BAEC. We found that supplemental l-arginine and l-citrulline dose-dependently increased NO production in a manner independent of the intracellular location of eNOS. Cytosolic arginase I and mitochondrial arginase II reduced eNOS activity equally regardless of where in the cell eNOS was expressed. Similarly, targeting arginase I to disparate regions of the cell did not differentially modify eNOS activity. Arginase-dependent suppression of eNOS activity was reversed by pharmacological inhibitors and absent in a catalytically inactive mutant. Arginase did not directly interact with eNOS, and the metabolic products of arginase or downstream enzymes did not contribute to eNOS inhibition. Cells expressing arginase had significantly lower levels of intracellular l-arginine and higher levels of ornithine. These results suggest that arginases inhibit eNOS activity by depletion of substrate and that the compartmentalization of l-arginine does not play a major role. PMID:23792682

  20. Arginine and Lysine Transporters Are Essential for Trypanosoma brucei.

    OpenAIRE

    Mathieu, Christoph; Pereira de Macêdo, Juan; Hürlimann, Daniel; Wirdnam, Corina; Haindrich, Alexander; Suter, Marianne; González Salgado, Amaia; Schmidt, Remo; Inbar, Ehud; Mäser, Pascal; Bütikofer, Peter; Zilberstein, Dan; Rentsch, Doris

    2017-01-01

    For Trypanosoma brucei arginine and lysine are essential amino acids and therefore have to be imported from the host. Heterologous expression in Saccharomyces cerevisiae mutants identified cationic amino acid transporters among members of the T. brucei AAAP (amino acid/auxin permease) family. TbAAT5-3 showed high affinity arginine uptake (K m 3.6 ? 0.4 ?M) and high selectivity for L-arginine. L-arginine transport was reduced by a 10-times excess of L-arginine, homo-arginine, canavanine or arg...

  1. Lewis base activation of Lewis acids: catalytic, enantioselective addition of glycolate-derived silyl ketene acetals to aldehydes.

    Science.gov (United States)

    Denmark, Scott E; Chung, Won-Jin

    2008-06-20

    A catalytic system involving silicon tetrachloride and a chiral, Lewis basic bisphosphoramide catalyst is effective for the addition of glycolate-derived silyl ketene acetals to aldehydes. It was found that the sense of diastereoselectivity could be modulated by changing the size of the substituents on the silyl ketene acetals. In general, the trimethylsilyl ketene acetals derived from methyl glycolates with a large protecting group on the alpha-oxygen provide enantiomerically enriched alpha,beta-dihydroxy esters with high syn-diastereoselectivity, whereas the tert-butyldimethylsilyl ketene acetals derived from bulky esters of alpha-methoxyacetic acid provide enantiomerically enriched alpha,beta-dihydroxy esters with high anti-diastereoselecitvity.

  2. Arginine Adjunctive Therapy in Active Tuberculosis

    Directory of Open Access Journals (Sweden)

    Aliasghar Farazi

    2015-01-01

    Full Text Available Background. Dietary supplementation has been used as a mechanism to augment the immune system. Adjunctive therapy with L-arginine has the potential to improve outcomes in active tuberculosis. Methods. In a randomized clinical trial 63 participants with smear-positive pulmonary tuberculosis in Markazi Province of Iran were given arginine or placebo for 4 weeks in addition to conventional chemotherapy. The final treatment success, sputum conversion, weight gain, and clinical symptoms after one and two months were considered as primary outcomes and secondary outcomes were ESR, CRP, and Hg. Data were collected and analyzed with SPSS software (ver. 18. Results. Arginine supplementation reduced constitutional symptoms (P=0.032 in patients with smear-positive TB at the end of the first month of treatment. Arginine treated patients had significantly increased BMI at the end of the first and second months of treatment (P=0.032 and P=0.04 and a reduced CRP at the end of the first month of treatment (P=0.03 versus placebo group. Conclusion. Arginine is useful as an adjunctive therapy in patients with active tuberculosis, in which the effects are more likely mediated by the increased production of nitric oxide and improved constitutional symptoms and weight gain. This trial is registered with Clinical Trials Registry of Iran: IRCT201211179855N2.

  3. Non-Catalytic and MgSO4 - Catalyst based Degradation of Glycerol in Subcritical and Supercritical Water Media

    Directory of Open Access Journals (Sweden)

    Mahfud Mahfud

    2011-02-01

    Full Text Available This research aims to study the glycerol degradation reaction in subcritical and supercritical water media. The degradation of glycerol into other products was performed both with sulphate salt catalysts and without catalyst. The reactant was made from glycerol and water with the mass ratio of 1:10. The experiments were carried out using a batch reactor at a constant pressure of 250 kgf/cm2, with the temperature range of 200-400oC, reaction time of 30 minutes, and catalyst mol ratio in glycerol of 1:10 and 1:8. The products of the non-catalytic glycerol degradation were acetaldehyde, methanol, and ethanol. The use of sulphate salt as catalyst has high selectivity to acetaldehyde and still allows the formation alcohol product in small quantities. The mechanism of ionic reaction and free radical reaction can occur at lower temperature in hydrothermal area or subcritical water. Conversion of glycerol on catalytic reaction showed a higher yield when compared with the reaction performed without catalyst

  4. Catalytic activity and effect of modifiers on Ni-based catalysts for the dry reforming of methane

    Energy Technology Data Exchange (ETDEWEB)

    Barroso-Quiroga, Maria Martha; Castro-Luna, Adolfo Eduardo [Facultad de Ingenieria y Ciencias Economico-Sociales INTEQUI-CONICET-UNSL, Av. 25 de Mayo 384 (5730) Villa Mercedes (S.L.) (Argentina)

    2010-06-15

    Ni catalysts supported on different ceramic oxides (Al{sub 2}O{sub 3}, CeO{sub 2}, La{sub 2}O{sub 3}, ZrO{sub 2}) were prepared by wet impregnation. The catalytic behavior toward hydrogen production through the dry reforming of methane using a fixed-bed reactor was evaluated under certain experimental conditions, and the catalyst supported on ZrO{sub 2} showed the highest stable activity during the period of time studied. The catalyst supported on CeO{sub 2} has a relatively good activity, but shows signs of deactivation after a certain time during the reaction. This catalyst was chosen to be studied after the addition of 0.5 wt% Li and K as activity modifiers. The introduction of the alkaline metals produces a reduction of the catalytic activity but a better stability over the reactant conversion time. The reverse water-gas shift reaction influences the global system of reactions, and as the results indicate, should be considered near equilibrium. (author)

  5. Biodegradable nanocomplex from hyaluronic acid and arginine based poly(ester amide)s as the delivery vehicles for improved photodynamic therapy of multidrug resistant tumor cells: An in vitro study of the performance of chlorin e6 photosensitizer.

    Science.gov (United States)

    Ji, Ying; Zhao, Jihui; Chu, Chih-Chang

    2017-05-01

    Photodynamic therapy (PDT), which enables the localized therapeutic effect by light irradiation, provides an alternative and complementary modality for the treatment of tumor. However, the aggregation of photosensitizers in acidic microenvironment of tumor and the non-targeted distribution of photosensitizers in normal tissues significantly affect the PDT efficiency. In this study, we developed a biodegradable nanocomplex HA-Arg-PEA from hyaluronic acid (HA) and arginine based poly(ester amide)s (Arg-PEA) as the nanocarrier for chlorin e6 (Ce6). HA enhanced the tumor-specific endocytosis mediated by the overexpression of CD44 receptor. Arg-PEA not only provide electrostatic interaction with HA to form self-assembled nanostructure, but also improve the monomerization of Ce6 at physiological pH as well as mildly acidic pH. The biodegradable characteristic of HA-Arg-PEA nanocomplex enabled the intracellular delivery of Ce6, in which its release and generation of singlet oxygen can be accelerated by enzymatic degradation of the carrier. The in vitro PDT efficiency of Ce6-loaded HA-Arg-PEA nanocomplex was examined in CD44 positive MDA-MB-435/MDR multidrug resistant melanoma cells. CD44-mediated uptake of Ce6-loaded HA-Arg-PEA nanocomplex significantly improved Ce6 level in MDA-MB-435/MDR cells within short incubation time, and the PDT efficiency in inhibiting multidrug resistant tumor cells was also enhanced at higher Ce6 concentrations. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1487-1499, 2017. © 2017 Wiley Periodicals, Inc.

  6. Arginine methylation regulates the p53 response

    DEFF Research Database (Denmark)

    Jansson, Martin; Durant, Stephen T; Cho, Er-Chieh

    2008-01-01

    Activation of the p53 tumour suppressor protein in response to DNA damage leads to apoptosis or cell-cycle arrest. Enzymatic modifications are widely believed to affect and regulate p53 activity. We describe here a level of post-translational control that has an important functional consequence...... on the p53 response. We show that the protein arginine methyltransferase (PRMT) 5, as a co-factor in a DNA damage responsive co-activator complex that interacts with p53, is responsible for methylating p53. Arginine methylation is regulated during the p53 response and affects the target gene specificity...... of p53. Furthermore, PRMT5 depletion triggers p53-dependent apoptosis. Thus, methylation on arginine residues is an underlying mechanism of control during the p53 response....

  7. [L-arginine and male infertility].

    Science.gov (United States)

    Scibona, M; Meschini, P; Capparelli, S; Pecori, C; Rossi, P; Menchini Fabris, G F

    1994-12-01

    The clinical efficacy and acceptance of L-arginina HCL was tested in 40 infertile men. All of these men had a normal number of spermatozoa (> 20 million/ml), but a decreased motility; this decreased motility was not due to infection or to immunological disorders. The treatment consisted of 80 ml of 10% L-arginine HCL administered daily per os for 6 months. L-arginine HCL showed to be able to improve the motility of spermatozoa without any side-effects.

  8. Contributions to the theory of catalytic titrations-III Neutralization catalytic titrations.

    Science.gov (United States)

    Gaál, F F; Abramović, B F

    1985-07-01

    Neutralization catalytic titrations of weak monoprotic adds and bases with both volumetric and coulometric addition of the titrant (strong base/acid) have been simulated by taking into account the equilibrium concentration of the catalyst during the titration. The influence of several factors on the shape of the simulated catalytic titration curve has been investigated and is discussed.

  9. Physico-chemical characterisations and catalytic performance of Ni-based catalyst systems for dry reforming of methane

    Energy Technology Data Exchange (ETDEWEB)

    Vlach, K.; Hoang, D.L.; Schneider, M.; Pohl, M.M.; Armbruster, U.; Martin, A. [Rostock Univ. (Germany). Leibniz-Institut fuer Katalyse e.V.

    2012-07-01

    In this study, ternary perovskite type oxides LaNi{sub x}Cu{sub 1-x}O{sub 3} (x = 0, 0.2, 0.5, 0.8, 1) were synthesized using NaOH and diethylenetriaminepentaacetic acid (H{sub 5}DTPA). The catalysts resulting from perovskite precursors exhibit catalytic activities for CO{sub 2} reforming of CH{sub 4} at 700 C that increase with a higher Ni content. Characterization methods showed that the activation led to formation of small metallic Ni/Cu particles. Methane and carbon dioxide conversions varied from 20 to 65% for CH{sub 4} and 3 to 58% for CO{sub 2}. Selectivities from 46 to 93% for CO and from 4 to 64% for H{sub 2} were obtained. (orig.)

  10. Progress in palladium-based catalytic systems for the sustainable synthesis of annulated heterocycles: a focus on indole backbones.

    Science.gov (United States)

    Platon, Mélanie; Amardeil, Régine; Djakovitch, Laurent; Hierso, Jean-Cyrille

    2012-05-21

    A survey highlighting the most recent palladium catalytic systems produced and their performances for progress in direct synthesis of indole backbones by heterocarbocyclization of reactive substrates is provided. The discussion is developed in relation with the principles of sustainable chemistry concerning atom and mass economy. In this respect, the general convergent character of the syntheses is of particular interest (one-pot, domino, cascade or tandem reactions), and the substrates accessibility and reactivity, together with the final waste production, are also important. This critical review clearly indicates that the development of ligand chemistry, mainly phosphines and carbenes, in the last few decades gave a significant impetus to powerful functionalization of indoles at virtually all positions of this ubiquitous backbone (118 references).

  11. The influence of calcination temperature on catalytic activities in a Co based catalyst for CO2 dry reforming

    International Nuclear Information System (INIS)

    Song, Sang-Hoon; Son, Ju-Hee; Budiman, Anatta Wahyu; Choi, Myoung-Jae; Chang, Tae-Sun; Shin, Chae-Ho

    2014-01-01

    The carbon dioxide dry reforming of methane (CDR) reaction could be thermodynamically favored in the range of 800 to 1,000 .deg. C. However, the catalyst in this reaction should be avoided at the calcination temperature over 800 .deg. C since strong metal support interaction (SMSI) in this temperature range can decrease activity due to loss of active sites. Therefore, we focused on optimizing the temperature of pretreatment and a comparison of surface characterization results for CDR. Results related to metal sintering over support, re-dispersion by changing of particle size of metal-support, and strong metal support interaction were observed and confirmed in this work. In our conclusion, optimum calcination temperature for a preparation of catalyst was proposed that 400 .deg. C showed a higher and more stable catalytic activity without changing of support characteristics

  12. Catalytic Oligopeptide Synthesis.

    Science.gov (United States)

    Liu, Zijian; Noda, Hidetoshi; Shibasaki, Masakatsu; Kumagai, Naoya

    2018-02-02

    Waste-free catalytic assembly of α-amino acids is fueled by a multiboron catalyst that features a characteristic B 3 NO 2 heterocycle, providing a versatile catalytic protocol wherein functionalized natural α-amino acid units are accommodated and commonly used protecting groups are tolerated. The facile dehydrative conditions eliminate the use of engineered peptide coupling reagents, exemplifying a greener catalytic alternative for peptide coupling. The catalysis is sufficiently robust to enable pentapeptide synthesis, constructing all four amide bond linkages in a catalytic fashion.

  13. Ferrous ion as a reducing agent in the generation of antibiofilm nitric oxide from a copper-based catalytic system.

    Science.gov (United States)

    Wonoputri, Vita; Gunawan, Cindy; Liu, Sanly; Barraud, Nicolas; Yee, Lachlan H; Lim, May; Amal, Rose

    2018-01-31

    The work found that the electron-donating properties of ferrous ions (Fe 2+ ) can be used for the conversion of nitrite (NO 2 - ) into the biofilm-dispersing signal nitric oxide (NO) by a copper(II) complex (CuDTTCT) catalyst, a potentially applicable biofilm control technology for the water industries. The availability of Fe 2+ varied depending on the characteristics of the aqueous systems (phosphate- and carbonate-containing nitrifying bacteria growth medium, NBGM and phosphate buffered saline, PBS at pH 6 to 8, to simulate conditions typically present in the water industries) and was found to affect the production of NO from nitrite by CuDTTCT (casted into PVC). Greater amounts of NO were generated from the CuDTTCT-nitrite-Fe 2+ systems in PBS compared to those in NBGM, which was associated with the reduced extent of Fe 2+ -to-Fe 3+ autoxidation by the iron-precipitating moieties phosphates and carbonate in the former system. Further, acidic conditions at pH 6.0 were found to favor NO production from the catalytic system in both PBS and NBGM compared to neutral or basic pH (pH 7.0 or 8.0). Lower pH was shown to stabilize Fe 2+ and reduce its autoxidation to Fe 3+ . These findings will be beneficial for the potential implementation of the NO-generating catalytic technology and indeed, a 'non-killing' biofilm dispersal activity of CuDTTCT-nitrite-Fe 2+ was observed on nitrifying bacteria biofilms in PBS at pH 6. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Arginine and Citrulline and the Immune Response in Sepsis

    Science.gov (United States)

    Wijnands, Karolina A.P.; Castermans, Tessy M.R.; Hommen, Merel P.J.; Meesters, Dennis M.; Poeze, Martijn

    2015-01-01

    Arginine, a semi-essential amino acid is an important initiator of the immune response. Arginine serves as a precursor in several metabolic pathways in different organs. In the immune response, arginine metabolism and availability is determined by the nitric oxide synthases and the arginase enzymes, which convert arginine into nitric oxide (NO) and ornithine, respectively. Limitations in arginine availability during inflammatory conditions regulate macrophages and T-lymfocyte activation. Furthermore, over the past years more evidence has been gathered which showed that arginine and citrulline deficiencies may underlie the detrimental outcome of inflammatory conditions, such as sepsis and endotoxemia. Not only does the immune response contribute to the arginine deficiency, also the impaired arginine de novo synthesis in the kidney has a key role in the eventual observed arginine deficiency. The complex interplay between the immune response and the arginine-NO metabolism is further underscored by recent data of our group. In this review we give an overview of physiological arginine and citrulline metabolism and we address the experimental and clinical studies in which the arginine-citrulline NO pathway plays an essential role in the immune response, as initiator and therapeutic target. PMID:25699985

  15. Arginine and Citrulline and the Immune Response in Sepsis

    Directory of Open Access Journals (Sweden)

    Karolina A.P. Wijnands

    2015-02-01

    Full Text Available Arginine, a semi-essential amino acid is an important initiator of the immune response. Arginine serves as a precursor in several metabolic pathways in different organs. In the immune response, arginine metabolism and availability is determined by the nitric oxide synthases and the arginase enzymes, which convert arginine into nitric oxide (NO and ornithine, respectively. Limitations in arginine availability during inflammatory conditions regulate macrophages and T-lymfocyte activation. Furthermore, over the past years more evidence has been gathered which showed that arginine and citrulline deficiencies may underlie the detrimental outcome of inflammatory conditions, such as sepsis and endotoxemia. Not only does the immune response contribute to the arginine deficiency, also the impaired arginine de novo synthesis in the kidney has a key role in the eventual observed arginine deficiency. The complex interplay between the immune response and the arginine-NO metabolism is further underscored by recent data of our group. In this review we give an overview of physiological arginine and citrulline metabolism and we address the experimental and clinical studies in which the arginine-citrulline NO pathway plays an essential role in the immune response, as initiator and therapeutic target.

  16. Effects of L-arginine on intestinal development and endogenous ...

    African Journals Online (AJOL)

    Arginine and its metabolites (citrulline and ornithine) were elevated, additionally, dietary supplementation with 0.8% L-arginine markedly enhanced jejunal villus height, villus area on day 11 and D-xylose absorption rate on day 19. Dietary supplementation with 0.8% L-arginine increased (P<0.05) activities of maltose and ...

  17. Catalytic Oxidation of Phenol over Zeolite Based Cu/Y-5 Catalyst: Part 1: Catalyst Preparation and Characterization

    Directory of Open Access Journals (Sweden)

    K. Maduna Valkaj

    2015-01-01

    Full Text Available The necessity to remove organic pollutants from the industrial wastewater streams has forced the development of new technologies that can produce better results in terms of pollutant removal and process efficiency in combination with low investment and operating costs. One of the new emerging processes with a potential to fulfil these demands is catalytic wet peroxide oxidation, commonly known as the CWPO process. The oxidative effect of the hydrogen peroxide is intensified by the addition of a heterogeneous catalyst that can reduce the operating conditions to atmospheric pressure and temperatures below 383 K. Zeolites, among others, are especially appealing as catalysts for selective oxidation processes due to their unique characteristics such as shape selectivity, thermal and chemical stability, and benign effect on nature and the living world. In this work, catalytic activity, selectivity and stability of Cu/Y-5 zeolite in phenol oxidation with hydrogen peroxide was examined. Catalyst samples were prepared by ion exchange method of the protonic form of commercial zeolite. The catalysts were characterized with powder X-ray diffraction (XRD, scanning electron microscopy (SEM, and AAS elemental analysis, while the adsorption techniques were used for the measurement of the specific surface area. The catalytic tests were carried out in a stainless steel Parr reactor in batch operation mode at the atmospheric pressure and in the temperature range from 323 to 353 K. The catalyst was prepared in powdered form and the mass fraction of the active metal component on the zeolite was 3.46 %. The initial concentration of phenol solution was equal to 0.01 mol dm−3 and the concentration of hydrogen peroxide ranged from 0.01 to 0.10 mol dm−3. The obtained experimental data was tested to a proposed kinetic model for phenol oxidation r = k1 cF cVP and hydrogen peroxide decomposition rHP = k2 cHP. The kinetic parameters were estimated using the Nelder

  18. Differences in DNA condensation and release by lysine and arginine homopeptides govern their DNA delivery efficiencies.

    Science.gov (United States)

    Mann, Anita; Thakur, Garima; Shukla, Vasundhara; Singh, Anand Kamal; Khanduri, Richa; Naik, Rangeetha; Jiang, Yang; Kalra, Namita; Dwarakanath, B S; Langel, Ulo; Ganguli, Munia

    2011-10-03

    Designing of nanocarriers that can efficiently deliver therapeutic DNA payload and allow its smooth intracellular release for transgene expression is still a major constraint. The optimization of DNA nanocarriers requires thorough understanding of the chemical and structural characteristics of the vector-nucleic acid complexes and its correlation with the cellular entry, intracellular state and transfection efficiency. L-lysine and L-arginine based cationic peptides alone or in conjugation with other vectors are known to be putative DNA delivery agents. Here we have used L-lysine and L-arginine homopeptides of three different lengths and probed their DNA condensation and release properties by using a multitude of biophysical techniques including fluorescence spectroscopy, gel electrophoresis and atomic force microscopy. Our results clearly showed that although both lysine and arginine based homopeptides condense DNA via electrostatic interactions, they follow different pattern of DNA condensation and release in vitro. While lysine homopeptides condense DNA to form both monomolecular and multimolecular complexes and show differential release of DNA in vitro depending on the peptide length, arginine homopeptides predominantly form multimolecular complexes and show complete DNA release for all peptide lengths. The cellular uptake of the complexes and their intracellular state (as observed through flow cytometry and fluorescence microscopy) seem to be controlled by the peptide chemistry. The difference in the transfection efficiency of lysine and arginine homopeptides has been rationalized in light of these observations.

  19. Functional and Evolutionary Relationship between Arginine Biosynthesis and Prokaryotic Lysine Biosynthesis through α-Aminoadipate

    Science.gov (United States)

    Miyazaki, Junichi; Kobashi, Nobuyuki; Nishiyama, Makoto; Yamane, Hisakazu

    2001-01-01

    Our previous studies revealed that lysine is synthesized through α-aminoadipate in an extremely thermophilic bacterium, Thermus thermophilus HB27. Sequence analysis of a gene cluster involved in the lysine biosynthesis of this microorganism suggested that the conversion from α-aminoadipate to lysine proceeds in a way similar to that of arginine biosynthesis. In the present study, we cloned an argD homolog of T. thermophilus HB27 which was not included in the previously cloned lysine biosynthetic gene cluster and determined the nucleotide sequence. A knockout of the argD-like gene, now termed lysJ, in T. thermophilus HB27 showed that this gene is essential for lysine biosynthesis in this bacterium. The lysJ gene was cloned into a plasmid and overexpressed in Escherichia coli, and the LysJ protein was purified to homogeneity. When the catalytic activity of LysJ was analyzed in a reverse reaction in the putative pathway, LysJ was found to transfer the ɛ-amino group of N2-acetyllysine, a putative intermediate in lysine biosynthesis, to 2-oxoglutarate. When N2-acetylornithine, a substrate for arginine biosynthesis, was used as the substrate for the reaction, LysJ transferred the δ-amino group of N2-acetylornithine to 2-oxoglutarate 16 times more efficiently than when N2-acetyllysine was the amino donor. All these results suggest that lysine biosynthesis in T. thermophilus HB27 is functionally and evolutionarily related to arginine biosynthesis. PMID:11489859

  20. EQCM Immunoassay for Phosphorylated Acetylcholinesterase as a Biomarker for Organophosphate Exposures Based on Selective Zirconia Adsorption and Enzyme-Catalytic Precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hua; Wang, Jun; Choi, Daiwon; Tang, Zhiwen; Wu, Hong; Lin, Yuehe

    2009-03-01

    A zirconia (ZrO2) adsorption-based immunoassay by electrochemical quartz crystal microbalance (EQCM) has been initially developed, aiming at the detection of phosphorylated acetylcholinesterase (AChE) as a potential biomarker for bio-monitoring exposures to organophosphate (OP) pesticides and chemical warfare agents. Hydroxyl-derivatized monolayer was preferably chosen to modify the crystal serving as the template for directing the electro-deposition of ZrO2 film with uniform nanostructures. The resulting ZrO2 film was utilized to selectively capture phosphorylated AChE from the sample media. Horseradish peroxidase (HRP)-labeled anti-AChE antibodies were further employed to recognize the captured phosphorylated protein. Enzyme-catalytic oxidation of the benzidine substrate resulted in the accumulation of insoluble product on the functionalized crystal. Ultrasensitive EQCM quantification by mass-amplified frequency responses as well as rapid qualification by visual color changes of product could be thus achieved. Moreover, 4-chloro-1-naphthol (CN) was comparably studied as an ideal chromogenic substrate for the enzyme-catalytic precipitation. Experimental results show that the developed EQCM technique can allow for the detection of phosphorylated AChE in human plasma. Such an EQCM immunosensing format opens a new door towards the development of simple, sensitive, and field-applicable biosensor for biologically monitoring low-level OP exposures.

  1. Iminopyridine-Based Cobalt(II and Nickel(II Complexes: Synthesis, Characterization, and Their Catalytic Behaviors for 1,3-Butadiene Polymerization

    Directory of Open Access Journals (Sweden)

    Quanquan Dai

    2016-01-01

    Full Text Available A series of iminopyridine ligated Co(II (1a–7a and Ni(II (1b–7b complexes were synthesized. The structures of complexes 3a, 4a, 5a, 7a, 5b, and 6b were determined by X-ray crystallographic analyses. Complex 3a formed a chloro-bridged dimer, whereas 4a, 5a, and 7a, having a substituent (4a, 5a: CH3; 7a: Br at the 6-position of pyridine, producing the solid structures with a single ligand coordinated to the central metal. The nickel atom in complex 5b features distorted trigonal-bipyramidal geometry with one THF molecule ligating to the metal center. All the complexes activated by ethylaluminum sesquichloride (EASC were evaluated in 1,3-butadiene polymerization. The catalytic activity and selectivity were significantly influenced by the ligand structure and central metal. Comparing with the nickel complexes, the cobalt complexes exhibited higher catalytic activity and cis-1,4-selectivity. For both the cobalt and nickel complexes, the aldimine-based complexes showed higher catalyst activity than their ketimine counterparts.

  2. Low plasma arginine:asymmetric dimethyl arginine ratios predict mortality after intracranial aneurysm rupture

    DEFF Research Database (Denmark)

    Staalsø, Jonatan Myrup; Bergström, Anita; Edsen, Troels

    2013-01-01

    Asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthases, predicts mortality in cardiovascular disease and has been linked to cerebral vasospasm after aneurysmal subarachnoid hemorrhage (SAH). In this prospective study, we assessed whether circulating ADMA, arginine...

  3. Lysine and arginine requirements of Salminus brasiliensis

    Directory of Open Access Journals (Sweden)

    Jony Koji Dairiki

    2013-08-01

    Full Text Available The objective of this work was to determine the dietary lysine (DL and dietary arginine (DA requirements of dourado (Salminus brasiliensis, through dose-response trials using the amino acid profiles of whole carcasses as a reference. Two experiments were carried out in a completely randomized design (n=4. In the first experiment, groups of 12 feed-conditioned dourado juveniles (11.4±0.2 g were stocked in 60 L cages placed in 300 L plastic indoor tanks in a closed circulation system. Fish were fed for 60 days on diets containing 1.0, 1.5, 2.0, 2.5, 3.0, or 3.5 % dietary lysine. In the second experiment, dourado juveniles (27.0±0.8 g were fed for 60 days on semipurified diets containing arginine at 1.0, 1.5, 2.0, 2.5 or 3.0%, in similar conditions to those of the first experiment. Optimal DL requirements, as determined by broken-line analysis method for final weight, weight gain and specific growth rate, were 2.15% DL or 5% lysine in dietary protein, and 1.48% DA or 3.43% arginine in dietary protein. The best feed conversion ratio is attained with 2.5% DL or 5.8% lysine in dietary protein and 1.4% DA or 3.25% arginine in dietary protein.

  4. Estimation of Plasma Arginine Vasopressin Concentration Using ...

    African Journals Online (AJOL)

    The purpose of this study was to estimate plasma arginine vasopressin (PAVP) using thirst perception (TP) and plasma osmolality (POSM) values before and at 60 minutes in control or euhydrate (group A, 0.0 ml/kg body weight of distilled water), hydrated (group B, 7.1ml/kg body weight of distilled water) and dehydrated ...

  5. Proximity hybridization-regulated catalytic DNA hairpin assembly for electrochemical immunoassay based on in situ DNA template-synthesized Pd nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Fuyi [School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116 (China); Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical College, 221004, Xuzhou (China); Yao, Yao; Luo, Jianjun; Zhang, Xing; Zhang, Yu; Yin, Dengyang [Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical College, 221004, Xuzhou (China); Gao, Fenglei, E-mail: jsxzgfl@sina.com [Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical College, 221004, Xuzhou (China); Wang, Po, E-mail: wangpo@jsnu.edu.cn [School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116 (China)

    2017-05-29

    Novel hybridization proximity-regulated catalytic DNA hairpin assembly strategy has been proposed for electrochemical immunoassay based on in situ DNA template-synthesized Pd nanoparticles as signal label. The DNA template-synthesized Pd nanoparticles were characterized with atomic force microscopic and X-ray photoelectron spectroscopy. The highly efficient electrocatalysis by DNA template synthesized Pd nanoparticles for NaBH{sub 4} oxidation produced an intense detection signal. The label-free electrochemical method achieved the detection of carcinoembryonic antigen (CEA) with a linear range from 10{sup −15} to 10{sup −11} g mL{sup −1} and a detection limit of 0.43 × 10{sup −15} g mL{sup −1}. Through introducing a supersandwich reaction to increase the DNA length, the electrochemical signal was further amplified, leading to a detection limit of 0.52 × 10{sup −16} g mL{sup −1}. And it rendered satisfactory analytical performance for the determination of CEA in serum samples. Furthermore, it exhibited good reproducibility and stability; meanwhile, it also showed excellent specificity due to the specific recognition of antigen by antibody. Therefore, the DNA template synthesized Pd nanoparticles based signal amplification approach has great potential in clinical applications and is also suitable for quantification of biomarkers at ultralow level. - Graphical abstract: A novel label-free and enzyme-free electrochemical immunoassay based on proximity hybridization-regulated catalytic DNA hairpin assemblies for recycling of the CEA. - Highlights: • A novel enzyme-free electrochemical immunosensor was developed for detection of CEA. • The signal amplification was based on catalytic DNA hairpin assembly and DNA-template-synthesized Pd nanoparticles. • The biosensor could detect CEA down to 0.52 × 10{sup −16} g mL{sup −1} level with a dynamic range spanning 5 orders of magnitude.

  6. A facile reporter system for the experimental identification of twin-arginine translocation (Tat) signal peptides from all kingdoms of life

    NARCIS (Netherlands)

    Widdick, David A.; Eijlander, Robyn T.; van Dijl, Jan Maarten; Kuipers, Oscar P.; Palmer, Tracy

    2008-01-01

    We have developed a reporter protein system for the experimental verification of twin-arginine signal peptides. This reporter system is based on the Streptomyces coelicolor agarase protein, which is secreted into the growth medium by the twin-arginine translocation (Tat) pathway and whose

  7. Butyroyl-arginine as a potent virus inactivation agent.

    Science.gov (United States)

    Katsuyama, Yukiko; Yamasaki, Hisashi; Tsujimoto, Kazuko; Koyama, A Hajime; Ejima, Daisuke; Arakawa, Tsutomu

    2008-09-01

    Virus inactivation is a critical step in the manufacturing of recombinant therapeutic proteins, in particular antibodies, using mammalian expression systems. We have shown in the previous paper that arginine is effective in inactivation of herpes simplex virus type 1 (HSV-1) and influenza virus at low temperature under mildly acidic pH, i.e., above pH 4.0; above this pH, conformational changes of most antibodies are negligible. We have here extended virus inactivation study of arginine to other enveloped viruses, such as Sendai virus and Newcastle Disease Virus (NDV), and observed that arginine was ineffective against both viruses under the similar conditions, i.e., on ice and above pH 4.0. However, an arginine derivative, butyroyl-arginine, showed a strong virucidal potency against Sendai virus, leading to a 4log reduction in virus yield at pH 4.0, but not against NDV. In addition, although arginine and butyroyl-arginine were equally effective against influenza virus having a cleaved form of hemagglutinin spike proteins, only butyroyl-arginine was significantly effective against the same virus, but having an uncleaved hemagglutinin spike proteins. Furthermore, butyroyl-arginine was more effective than arginine against HSV-1 at pH 4.5; i.e., it has a broader pH spectrum than does arginine.

  8. A glutamate/aspartate switch controls product specificity in a protein arginine methyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Debler, Erik W.; Jain, Kanishk; Warmack, Rebeccah A.; Feng, You; Clarke, Steven G.; Blobel, Günter; Stavropoulos, Pete

    2016-02-08

    Trypanosoma brucei PRMT7 (TbPRMT7) is a protein arginine methyltransferase (PRMT) that strictly monomethylates various substrates, thus classifying it as a type III PRMT. However, the molecular basis of its unique product specificity has remained elusive. Here, we present the structure of TbPRMT7 in complex with its cofactor product S-adenosyl-L-homocysteine (AdoHcy) at 2.8 Å resolution and identify a glutamate residue critical for its monomethylation behavior. TbPRMT7 comprises the conserved methyltransferase and β-barrel domains, an N-terminal extension, and a dimerization arm. The active site at the interface of the N-terminal extension, methyltransferase, and β-barrel domains is stabilized by the dimerization arm of the neighboring protomer, providing a structural basis for dimerization as a prerequisite for catalytic activity. Mutagenesis of active-site residues highlights the importance of Glu181, the second of the two invariant glutamate residues of the double E loop that coordinate the target arginine in substrate peptides/proteins and that increase its nucleophilicity. Strikingly, mutation of Glu181 to aspartate converts TbPRMT7 into a type I PRMT, producing asymmetric dimethylarginine (ADMA). Isothermal titration calorimetry (ITC) using a histone H4 peptide showed that the Glu181Asp mutant has markedly increased affinity for monomethylated peptide with respect to the WT, suggesting that the enlarged active site can favorably accommodate monomethylated peptide and provide sufficient space for ADMA formation. In conclusion, these findings yield valuable insights into the product specificity and the catalytic mechanism of protein arginine methyltransferases and have important implications for the rational (re)design of PRMTs.

  9. Chemical modification of arginine residues in the lactose repressor

    International Nuclear Information System (INIS)

    Whitson, P.A.; Matthews, K.S.

    1987-01-01

    The lactose repressor protein was chemically modified with 2,3-butanedione and phenylglyoxal. Arginine reaction was quantitated by either amino aced analysis or incorporation of 14 C-labeled phenylglyoxal. Inducer binding activity was unaffected by the modification of arginine residues, while both operator and nonspecific DNA binding activities were diminished, although to differing degrees. The correlation of the decrease in DNA binding activities with the modification of ∼ 1-2 equiv of arginine per monomer suggests increased reactivity of a functionally essential residue(s). For both reagents, operator DNA binding activity was protected by the presence of calf thymus DNA, and the extent of reaction with phenylglyoxal was simultaneously diminished. This protection presumably results from steric restriction of reagent access to an arginine(s) that is (are) essential for DNA binding interactions. These experiments suggest that there is (are) an essential reactive arginine(s) critical for repressor binding to DNA

  10. A catalytic and dual recycling amplification ATP sensor based on target-driven allosteric structure switching of aptamer beacons.

    Science.gov (United States)

    Peng, Ying; Li, Daxiu; Yuan, Ruo; Xiang, Yun

    2018-05-15

    Abnormal concentrations of ATP are associated with many diseases and cancers, and quantitative detection of ATP is thus of great importance for disease diagnosis and prognosis. In the present work, we report a new dual recycling amplification sensor integrated with catalytic hairpin assembly (CHA) to achieve high sensitivity for fluorescent detection of ATP. The association of the target ATP with the aptamer beacons causes the allosteric structure switching of the aptamer beacons to expose the toehold regions, which hybridize with and unfold the fluorescently quenched hairpin signal probes (HP1) to recycle the target ATP and to trigger CHA between HP1 and the secondary hairpin probes (HP2) to form HP1/HP2 duplexes. Due to the recycling amplification, the presence of ATP leads to the formation of many HP1/HP2 duplexes, generating dramatically amplified fluorescent signals for sensitive detection of ATP. Under optimal experimental conditions, our sensor linearly responds to ATP in the range from 25 to 600nM with a calculated detection limit of 8.2nM. Furthermore, the sensor shows a high selectivity and can also be used to detect ATP in human serums to realize its application for real samples. With the distinct advantage of significant signal amplification without the involvement of any nanomaterial and enzyme, the developed sensor thus holds great potential for simple and sensitive detection of different small molecules and proteins. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Enzyme catalytic amplification of miRNA-155 detection with graphene quantum dot-based electrochemical biosensor.

    Science.gov (United States)

    Hu, Tianxing; Zhang, Le; Wen, Wei; Zhang, Xiuhua; Wang, Shengfu

    2016-03-15

    A specific and sensitive method was developed for quantitative detection of miRNA by integrating horseradish peroxidase (HRP)-assisted catalytic reaction with a simple electrochemical RNA biosensor. The electrochemical biosensor was constructed by a double-stranded DNA structure. The structure was formed by the hybridization of thiol-tethered oligodeoxynucleotide probes (capture DNA), assembled on the gold electrode surface, with target DNA and aminated indicator probe (NH2-DNA). After the construction of the double-stranded DNA structure, the activated carboxyl groups of graphene quantum dots (GQDs) assembled on NH2-DNA. GQDs were used as a new platform for HRP immobilization through noncovalent assembly. HRP modified biosensor can effectively catalyze the hydrogen peroxide (H2O2)-mediated oxidation of 3,3',5,5'-tetramethylbenzidine (TMB), accompanied by a change from colorless to blue in solution color and an increased electrochemical current signal. Due to GQDs and enzyme catalysis, the proposed biosensor could sensitively detect miRNA-155 from 1 fM to 100 pM with a detection limit of 0.14 fM. High performance of the biosensor is attributed to the large surface-to-volume ratio, excellent compatibility of GQDs. For these advantages, the proposed method holds great potential for analysis of other interesting tumor makers. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Comparison and analysis of zinc and cobalt-based systems as catalytic entities for the hydration of carbon dioxide.

    Directory of Open Access Journals (Sweden)

    Edmond Y Lau

    Full Text Available In nature, the zinc metalloenzyme carbonic anhydrase II (CAII efficiently catalyzes the conversion of carbon dioxide (CO2 to bicarbonate under physiological conditions. Many research efforts have been directed towards the development of small molecule mimetics that can facilitate this process and thus have a beneficial environmental impact, but these efforts have met very limited success. Herein, we undertook quantum mechanical calculations of four mimetics, 1,5,9-triazacyclododedacane, 1,4,7,10-tetraazacyclododedacane, tris(4,5-dimethyl-2-imidazolylphosphine, and tris(2-benzimidazolylmethylamine, in their complexed form either with the Zn(2+ or the Co(2+ ion and studied their reaction coordinate for CO2 hydration. These calculations demonstrated that the ability of the complex to maintain a tetrahedral geometry and bind bicarbonate in a unidentate manner were vital for the hydration reaction to proceed favorably. Furthermore, these calculations show that the catalytic activity of the examined zinc complexes was insensitive to coordination states for zinc, while coordination states above four were found to have an unfavorable effect on product release for the cobalt counterparts.

  13. Comparison and analysis of zinc and cobalt-based systems as catalytic entities for the hydration of carbon dioxide.

    Science.gov (United States)

    Lau, Edmond Y; Wong, Sergio E; Baker, Sarah E; Bearinger, Jane P; Koziol, Lucas; Valdez, Carlos A; Satcher, Joseph H; Aines, Roger D; Lightstone, Felice C

    2013-01-01

    In nature, the zinc metalloenzyme carbonic anhydrase II (CAII) efficiently catalyzes the conversion of carbon dioxide (CO2) to bicarbonate under physiological conditions. Many research efforts have been directed towards the development of small molecule mimetics that can facilitate this process and thus have a beneficial environmental impact, but these efforts have met very limited success. Herein, we undertook quantum mechanical calculations of four mimetics, 1,5,9-triazacyclododedacane, 1,4,7,10-tetraazacyclododedacane, tris(4,5-dimethyl-2-imidazolyl)phosphine, and tris(2-benzimidazolylmethyl)amine, in their complexed form either with the Zn(2+) or the Co(2+) ion and studied their reaction coordinate for CO2 hydration. These calculations demonstrated that the ability of the complex to maintain a tetrahedral geometry and bind bicarbonate in a unidentate manner were vital for the hydration reaction to proceed favorably. Furthermore, these calculations show that the catalytic activity of the examined zinc complexes was insensitive to coordination states for zinc, while coordination states above four were found to have an unfavorable effect on product release for the cobalt counterparts.

  14. Effect of l-arginine, asymmetric dimethylarginine, and symmetric dimethylarginine on ischemic heart disease risk: A Mendelian randomization study.

    Science.gov (United States)

    Au Yeung, Shiu Lun; Lin, Shi Lin; Lam, Hung San Hugh Simon; Schooling, Catherine Mary

    2016-12-01

    l-arginine is a commonly consumed dietary conditional essential amino acid found in food items and supplements, which is closely related to asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA). l-arginine is thought to increase nitric oxide and be cardioprotective, whereas ADMA and SDMA may inhibit nitric oxide synthesis and increase cardiovascular disease risk. Unexpectedly, l-arginine increased mortality in a small trial. To clarify the effects of these potential targets of intervention, we assessed the risk of ischemic heart disease (IHD) by genetically determined l-arginine, ADMA, and SDMA. Single nucleotide polymorphisms (SNPs) contributing to l-arginine, ADMA, and SDMA, at genome-wide significance, were applied to the CARDIoGRAMplusC4D 1000 Genomes-based genome-wide association study IHD case (n=60,801, ~70% myocardial infarction)-control (n=123,504) study. We obtained unconfounded estimates using instrumental variable analysis by combining the Wald estimators for each SNP, taking into account any correlation between SNPs using weighted generalized linear regression. Higher l-arginine was associated with higher risk of IHD (odds ratio [OR] 1.18 per SD increase, 95% CI 1.03-1.36) and of myocardial infarction (OR 1.29, 95% CI 1.10-1.51), based on 2 SNPs from MED23. Symmetric dimethylarginine had an OR of 1.07 per SD (95% CI 0.99-1.17) for IHD based on 5 SNPs from AGXT2. Asymmetric dimethylarginine had and OR of 1.08 per SD (95% CI 0.99-1.19) for IHD based on 4 SNPs from DDAH1. l-arginine could possibly cause IHD. Given that l-arginine occurs in many common dietary items, investigation of its health effect is required. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Transient Kinetics Define a Complete Kinetic Model for Protein Arginine Methyltransferase 1*

    Science.gov (United States)

    Hu, Hao; Luo, Cheng; Zheng, Y. George

    2016-01-01

    Protein arginine methyltransferases (PRMTs) are the enzymes responsible for posttranslational methylation of protein arginine residues in eukaryotic cells, particularly within the histone tails. A detailed mechanistic model of PRMT-catalyzed methylation is currently lacking, but it is essential for understanding the functions of PRMTs in various cellular pathways and for efficient design of PRMT inhibitors as potential treatments for a range of human diseases. In this work, we used stopped-flow fluorescence in combination with global kinetic simulation to dissect the transient kinetics of PRMT1, the predominant type I arginine methyltransferase. Several important mechanistic insights were revealed. The cofactor and the peptide substrate bound to PRMT1 in a random manner and then followed a kinetically preferred pathway to generate the catalytic enzyme-cofactor-substrate ternary complex. Product release proceeded in an ordered fashion, with peptide dissociation followed by release of the byproduct S-adenosylhomocysteine. Importantly, the dissociation rate of the monomethylated intermediate from the ternary complex was much faster than the methyl transfer. Such a result provided direct evidence for distributive arginine dimethylation, which means the monomethylated substrate has to be released to solution and rebind with PRMT1 before it undergoes further methylation. In addition, cofactor binding involved a conformational transition, likely an open-to-closed conversion of the active site pocket. Further, the histone H4 peptide bound to the two active sites of the PRMT1 homodimer with differential affinities, suggesting a negative cooperativity mechanism of substrate binding. These findings provide a new mechanistic understanding of how PRMTs interact with their substrates and transfer methyl groups. PMID:27834681

  16. Catalytic wet air oxidation of bisphenol A solution in a batch-recycle trickle-bed reactor over titanate nanotube-based catalysts.

    Science.gov (United States)

    Kaplan, Renata; Erjavec, Boštjan; Senila, Marin; Pintar, Albin

    2014-10-01

    Catalytic wet air oxidation (CWAO) is classified as an advanced oxidation process, which proved to be highly efficient for the removal of emerging organic pollutant bisphenol A (BPA) from water. In this study, BPA was successfully removed in a batch-recycle trickle-bed reactor over bare titanate nanotube-based catalysts at very short space time of 0.6 min gCAT g(-1). The as-prepared titanate nanotubes, which underwent heat treatment at 600 °C, showed high activity for the removal of aqueous BPA. Liquid-phase recycling (5- or 10-fold recycle) enabled complete BPA conversion already at 200 °C, together with high conversion of total organic carbon (TOC), i.e., 73 and 98 %, respectively. The catalyst was chemically stable in the given range of operating conditions for 189 h on stream.

  17. Structural Basis for EarP-Mediated Arginine Glycosylation of Translation Elongation Factor EF-P

    Directory of Open Access Journals (Sweden)

    Ralph Krafczyk

    2017-09-01

    Full Text Available Glycosylation is a universal strategy to posttranslationally modify proteins. The recently discovered arginine rhamnosylation activates the polyproline-specific bacterial translation elongation factor EF-P. EF-P is rhamnosylated on arginine 32 by the glycosyltransferase EarP. However, the enzymatic mechanism remains elusive. In the present study, we solved the crystal structure of EarP from Pseudomonas putida. The enzyme is composed of two opposing domains with Rossmann folds, thus constituting a B pattern-type glycosyltransferase (GT-B. While dTDP-β-l-rhamnose is located within a highly conserved pocket of the C-domain, EarP recognizes the KOW-like N-domain of EF-P. Based on our data, we propose a structural model for arginine glycosylation by EarP. As EarP is essential for pathogenicity in P. aeruginosa, our study provides the basis for targeted inhibitor design.

  18. Catalytic Wittig and aza-Wittig reactions

    Directory of Open Access Journals (Sweden)

    Zhiqi Lao

    2016-11-01

    Full Text Available This review surveys the literature regarding the development of catalytic versions of the Wittig and aza-Wittig reactions. The first section summarizes how arsenic and tellurium-based catalytic Wittig-type reaction systems were developed first due to the relatively easy reduction of the oxides involved. This is followed by a presentation of the current state of the art regarding phosphine-catalyzed Wittig reactions. The second section covers the field of related catalytic aza-Wittig reactions that are catalyzed by both phosphine oxides and phosphines.

  19. Catalytic Wittig and aza-Wittig reactions.

    Science.gov (United States)

    Lao, Zhiqi; Toy, Patrick H

    2016-01-01

    This review surveys the literature regarding the development of catalytic versions of the Wittig and aza-Wittig reactions. The first section summarizes how arsenic and tellurium-based catalytic Wittig-type reaction systems were developed first due to the relatively easy reduction of the oxides involved. This is followed by a presentation of the current state of the art regarding phosphine-catalyzed Wittig reactions. The second section covers the field of related catalytic aza-Wittig reactions that are catalyzed by both phosphine oxides and phosphines.

  20. Cu-containing Keggin-type polyoxometalates-based organic-inorganic hybrids with double electro-catalytic behaviors

    Science.gov (United States)

    Zhou, Wanli; Zheng, Yanping; Peng, Jun

    2018-02-01

    Four new organic-inorganic hybrids consisting of Keggin-type polyoxometalates: [Cu5(bimpy)5(α-BW12O40)]·4H2O (1), [Cu4(bimpy)4(α-SiW12O40)]·2H2O (2), [Cu4(bimpy)4(α-HPMo12O40)2]·2H2O (3), [Cu2(bimpy)4(H2O)2(α-HPW12O40)2]·8H2O (4) (bimpy = 2,5-bis(1H-imidazol-1-yl)pyridine), have been hydrothermally synthesized. Compounds 1-4 are constructed from Cu/bimpy segments modified different types of Keggin POMs. The 1D double chains of compound 1 are featured by {-Cu/bimpy-POM-Cu/bimpy-}n chains and {-Cu-bimpy-Cu-}n metal-organic chains; compound 2 with 1D "ladder-like" structure stemmed from {-Cu-bimpy-Cu-}n wave-like chains and α-SiW12 clusters; In compound 3, [Cu4(bimpy)4]4+ motifs are linked by α-PMo12 clusters to give rise to a (3,4)-connected two-dimensional architecture with the (83)(86) topology, while compound 4 has a (3,4,5)-connected 3D framework with the (42,6)(42,6,83)(42,65,83) topology. Cyclic voltammetries of compounds 1-4 show discrepant double electro-catalytic properties for reduction of nitrite and oxidation of ascorbic acid owing to variant Keggin-type POMs and Cu/bimpy complexes.

  1. Cobalt-manganese-based spinels as multifunctional materials that unify catalytic water oxidation and oxygen reduction reactions.

    Science.gov (United States)

    Menezes, Prashanth W; Indra, Arindam; Sahraie, Nastaran Ranjbar; Bergmann, Arno; Strasser, Peter; Driess, Matthias

    2015-01-01

    Recently, there has been much interest in the design and development of affordable and highly efficient oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) catalysts that can resolve the pivotal issues that concern solar fuels, fuel cells, and rechargeable metal-air batteries. Here we present the synthesis and application of porous CoMn2 O4 and MnCo2 O4 spinel microspheres as highly efficient multifunctional catalysts that unify the electrochemical OER with oxidant-driven and photocatalytic water oxidation as well as the ORR. The porous materials were prepared by the thermal degradation of the respective carbonate precursors at 400 °C. The as-prepared spinels display excellent performances in electrochemical OER for the cubic MnCo2 O4 phase in comparison to the tetragonal CoMn2 O4 material in an alkaline medium. Moreover, the oxidant-driven and photocatalytic water oxidations were performed and they exhibited a similar trend in activity to that of the electrochemical OER. Remarkably, the situation is reversed in ORR catalysis, that is, the oxygen reduction activity and stability of the tetragonal CoMn2 O4 catalyst outperformed that of cubic MnCo2 O4 and rivals that of benchmark Pt catalysts. The superior catalytic performance and the remarkable stability of the unifying materials are attributed to their unique porous and robust microspherical morphology and the intrinsic structural features of the spinels. Moreover, the facile access to these high-performance materials enables a reliable and cost-effective production on a large scale for industrial applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. On the Structural Context and Identification of Enzyme Catalytic Residues

    Science.gov (United States)

    Chien, Yu-Tung; Huang, Shao-Wei

    2013-01-01

    Enzymes play important roles in most of the biological processes. Although only a small fraction of residues are directly involved in catalytic reactions, these catalytic residues are the most crucial parts in enzymes. The study of the fundamental and unique features of catalytic residues benefits the understanding of enzyme functions and catalytic mechanisms. In this work, we analyze the structural context of catalytic residues based on theoretical and experimental structure flexibility. The results show that catalytic residues have distinct structural features and context. Their neighboring residues, whether sequence or structure neighbors within specific range, are usually structurally more rigid than those of noncatalytic residues. The structural context feature is combined with support vector machine to identify catalytic residues from enzyme structure. The prediction results are better or comparable to those of recent structure-based prediction methods. PMID:23484160

  3. Effects of arginine on multimodal anion exchange chromatography.

    Science.gov (United States)

    Hirano, Atsushi; Arakawa, Tsutomu; Kameda, Tomoshi

    2015-12-01

    The effects of arginine on binding and elution properties of a multimodal anion exchanger, Capto adhere, were examined using bovine serum albumin (BSA) and a monoclonal antibody against interleukin-8 (mAb-IL8). Negatively charged BSA was bound to the positively charged Capto adhere and was readily eluted from the column with a stepwise or gradient elution using 1M NaCl at pH 7.0. For heat-treated BSA, small oligomers and remaining monomers were also eluted using a NaCl gradient, whereas larger oligomers required arginine for effective elution. The positively charged mAb-IL8 was bound to Capto adhere at pH 7.0. Arginine was also more effective for elution of the bound mAb-IL8 than was NaCl. The results imply that arginine interacts with the positively charged Capto adhere. The mechanism underlying the interactions of arginine with Capto adhere was examined by calculating the binding free energy between an arginine molecule and a Capto adhere ligand in water through molecular dynamics simulations. The overall affinity of arginine for Capto adhere is attributed to the hydrophobic and π-π interactions between an arginine side chain and the aromatic moiety of the ligand as well as hydrogen bonding between arginine and the ligand hydroxyl group, which may account for the characteristics of protein elution using arginine. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Numerical simulation of urea based selective non-catalytic reduction deNOx process for industrial applications

    International Nuclear Information System (INIS)

    Baleta, Jakov; Mikulčić, Hrvoje; Vujanović, Milan; Petranović, Zvonimir; Duić, Neven

    2016-01-01

    Highlights: • SNCR is a simple method for the NOx reduction from large industrial facilities. • Capabilities of the developed mathematical framework for SNCR simulation were shown. • Model was used on the geometry of experimental reactor and municipal incinerator. • Results indicate suitability of the developed model for real industrial cases. - Abstract: Industrial processes emit large amounts of diverse pollutants into the atmosphere, among which NOx takes a significant portion. Selective non-catalytic reduction (SNCR) is a relatively simple method for the NOx reduction in large industrial facilities such as power plants, cement plants and waste incinerator plants. It consists of injecting the urea-water solution in the hot flue gas stream and its reaction with the NOx. During this process flue gas enthalpy is used for the urea-water droplet heating and for the evaporation of water content. After water evaporates, thermolysis of urea occurs, during which ammonia, a known NO x reductant, and isocyanic acid are generated. In order to cope with the ever stringent environmental norms, equipment manufacturers need to develop energy efficient products that are at the same time benign to environment. This is becoming increasingly complicated and costly, and one way to reduce production costs together with the maintaining the same competitiveness level is to employ computational fluid dynamics (CFD) as a tool, in a process today commonly known under the term “virtual prototyping”. The aim of this paper is to show capabilities of the developed mathematical framework implemented in the commercial CFD code AVL FIRE®, to simulate physical processes of all relevant phenomena occurring during the SNCR process. First, mathematical models for description of SNCR process are presented and afterwards, models are used on the 3D geometry of an industrial reactor and a real industrial case to predict SNCR efficiency, temperature and velocity field. Influence of the main

  5. Catalytic distillation process

    Science.gov (United States)

    Smith, L.A. Jr.

    1982-06-22

    A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  6. Catalytic Functions of Standards

    NARCIS (Netherlands)

    K. Blind (Knut)

    2009-01-01

    textabstractThe three different areas and the examples have illustrated several catalytic functions of standards for innovation. First, the standardisation process reduces the time to market of inventions, research results and innovative technologies. Second, standards themselves promote the

  7. Synthesis and characterization of two novel organic-inorganic compounds based on tetrahexyl and tetraheptyl ammonium ions and the Preyssler anion and their catalytic activities in the synthesis of 4-aminopyrazolo[3,4-d]- pyrimidines.

    Science.gov (United States)

    Bamoharram, Fatemeh Farrash

    2010-04-08

    Two novel organic-inorganic compounds based on tetrahexylammonium (THA) and tetraheptylammonium (THPA) ions and the Preyssler anion, [NaP5W30O110]14-, were synthesized and formulated as (THA)7.7H6.3 [NaP5W30O110] (A) and (THPA)7.5 H6.5[NaP5W30O110] (B). The synthesized compounds were characterized by IR, UV, and TGA and used for the catalytic synthesis of 4-aminopyrazolo[3,4,-d]pyrimidine derivatives 2a-2d. Our findings showed efficient catalytic activities for A and B.

  8. Catalytic production of biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Theilgaard Madsen, A.

    2011-07-01

    The focus of this thesis is the catalytic production of diesel from biomass, especially emphasising catalytic conversion of waste vegetable oils and fats. In chapter 1 an introduction to biofuels and a review on different catalytic methods for diesel production from biomass is given. Two of these methods have been used industrially for a number of years already, namely the transesterification (and esterification) of oils and fats with methanol to form fatty acid methyl esters (FAME), and the hydrodeoxygenation (HDO) of fats and oils to form straight-chain alkanes. Other possible routes to diesel include upgrading and deoxygenation of pyrolysis oils or aqueous sludge wastes, condensations and reductions of sugars in aqueous phase (aqueous-phase reforming, APR) for monofunctional hydrocarbons, and gasification of any type of biomass followed by Fischer-Tropsch-synthesis for alkane biofuels. These methods have not yet been industrialised, but may be more promising due to the larger abundance of their potential feedstocks, especially waste feedstocks. Chapter 2 deals with formation of FAME from waste fats and oils. A range of acidic catalysts were tested in a model fat mixture of methanol, lauric acid and trioctanoin. Sulphonic acid-functionalised ionic liquids showed extremely fast convertion of lauric acid to methyl laurate, and trioctanoate was converted to methyl octanoate within 24 h. A catalyst based on a sulphonated carbon-matrix made by pyrolysing (or carbonising) carbohydrates, so-called sulphonated pyrolysed sucrose (SPS), was optimised further. No systematic dependency on pyrolysis and sulphonation conditions could be obtained, however, with respect to esterification activity, but high activity was obtained in the model fat mixture. SPS impregnated on opel-cell Al{sub 2}O{sub 3} and microporous SiO{sub 2} (ISPS) was much less active in the esterification than the original SPS powder due to low loading and thereby low number of strongly acidic sites on the

  9. Catalytic distillation structure

    Science.gov (United States)

    Smith, L.A. Jr.

    1984-04-17

    Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

  10. Comparison of Arginine Hydrochloride and Acetazolamide for the Correction of Metabolic Alkalosis in Pediatric Patients.

    Science.gov (United States)

    Heble, Daniel E; Oschman, Alexandra; Sandritter, Tracy L

    Metabolic alkalosis is a common acid-base disturbance occurring in critically ill pediatric patients. Acetazolamide and arginine hydrochloride are pharmacologic agents used at our institution for patients refractory to first-line therapy or those unable to tolerate fluid replacement. The objective of this retrospective review was to determine if a course of arginine hydrochloride or acetazolamide was more effective at correcting metabolic alkalosis within a 24-hour period. Patients included received a course of acetazolamide or arginine hydrochloride for metabolic alkalosis with a repeat metabolic panel 18-30 hours after treatment initiation. Exclusion criteria consisted of previous treatment with either drug within 24 hours or a documented metabolic disorder. Efficacy was determined by proportion of patients achieving resolution of metabolic alkalosis (treatment success: serum CO2 96 mmol/L). Additionally, mean change in serum bicarbonate and chloride concentrations was assessed. Thirty-four patients met inclusion criteria, 19 patients received acetazolamide and 15 patients received arginine hydrochloride. Treatment success was similar in patients receiving acetazolamide and arginine hydrochloride (37% vs. 7%, P = 0.053). Correction of serum bicarbonate was observed in more patients treated with acetazolamide (42% vs. 7%, P = 0.047). Both groups had a similar increase in mean serum chloride concentration (5.7 ± 5.3 vs. 4.4 ± 4.4 mmol/L, P = 0.458). Mean decrease in serum bicarbonate concentration was equivalent between groups (5.6 ± 5.2 vs. 2.8 ± 4.7, mmol/L, P = 0.110). Acetazolamide and arginine hydrochloride appear to be equally effective in correcting metabolic alkalosis in critically ill pediatric patients.

  11. Vapor Phase Catalytic Ammonia Reduction

    Science.gov (United States)

    Flynn, Michael T.; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    This paper discusses the development of a Vapor Phase Catalytic Ammonia Reduction (VPCAR) teststand and the results of an experimental program designed to evaluate the potential of the technology as a water purification process. In the experimental program the technology is evaluated based upon product water purity, water recovery rate, and power consumption. The experimental work demonstrates that the technology produces high purity product water and attains high water recovery rates at a relatively high specific power consumption. The experimental program was conducted in 3 phases. In phase I an Igepon(TM) soap and water mixture was used to evaluate the performance of an innovative Wiped-Film Rotating-Disk evaporator and associated demister. In phase II a phenol-water solution was used to evaluate the performance of the high temperature catalytic oxidation reactor. In phase III a urine analog was used to evaluate the performance of the combined distillation/oxidation functions of the processor.

  12. The role of arginine and arginine-metabolizing enzymes during Giardia – host cell interactions in vitro

    Science.gov (United States)

    2013-01-01

    Background Arginine is a conditionally essential amino acid important in growing individuals and under non-homeostatic conditions/disease. Many pathogens interfere with arginine-utilization in host cells, especially nitric oxide (NO) production, by changing the expression of host enzymes involved in arginine metabolism. Here we used human intestinal epithelial cells (IEC) and three different isolates of the protozoan parasite Giardia intestinalis to investigate the role of arginine and arginine-metabolizing enzymes during intestinal protozoan infections. Results RNA expression analyses of major arginine-metabolizing enzymes revealed the arginine-utilizing pathways in human IECs (differentiated Caco-2 cells) grown in vitro. Most genes were constant or down-regulated (e.g. arginase 1 and 2) upon interaction with Giardia, whereas inducible NO synthase (iNOS) and ornithine decarboxylase (ODC) were up-regulated within 6 h of infection. Giardia was shown to suppress cytokine-induced iNOS expression, thus the parasite has both iNOS inducing and suppressive activities. Giardial arginine consumption suppresses NO production and the NO-degrading parasite protein flavohemoglobin is up-regulated in response to host NO. In addition, the secreted, arginine-consuming giardial enzyme arginine deiminase (GiADI) actively reduces T-cell proliferation in vitro. Interestingly, the effects on NO production and T cell proliferation could be reversed by addition of external arginine or citrulline. Conclusions Giardia affects the host’s arginine metabolism on many different levels. Many of the effects can be reversed by addition of arginine or citrulline, which could be a beneficial supplement in oral rehydration therapy. PMID:24228819

  13. Effect of in ovo injection with L-arginine on productive and ...

    African Journals Online (AJOL)

    This study evaluated the influence of administering different levels of L-arginine into eggs of 0-day-old Japanese quail embryos. On day 0 of incubation, 480 eggs (120 for each treatment group) were injected with 0% arginine (C group), 1% arginine (T1), 2% arginine (T2) or 3% arginine (T3). After hatching, 336 quail chicks ...

  14. The Role of Protein Arginine Methyltransferases in Inflammatory Responses

    Directory of Open Access Journals (Sweden)

    Ji Hye Kim

    2016-01-01

    Full Text Available Protein arginine methyltransferases (PRMTs mediate the methylation of a number of protein substrates of arginine residues and serve critical functions in many cellular responses, including cancer development, progression, and aggressiveness, T-lymphocyte activation, and hepatic gluconeogenesis. There are nine members of the PRMT family, which are divided into 4 types (types I–IV. Although most PRMTs do not require posttranslational modification (PTM to be activated, fine-tuning modifications, such as interactions between cofactor proteins, subcellular compartmentalization, and regulation of RNA, via micro-RNAs, seem to be required. Inflammation is an essential defense reaction of the body to eliminate harmful stimuli, including damaged cells, irritants, or pathogens. However, chronic inflammation can eventually cause several types of diseases, including some cancers, atherosclerosis, rheumatoid arthritis, and periodontitis. Therefore, inflammation responses should be well modulated. In this review, we briefly discuss the role of PRMTs in the control of inflammation. More specifically, we review the roles of four PRMTs (CARM1, PRMT1, PRMT5, and PRMT6 in modulating inflammation responses, particularly in terms of modulating the transcriptional factors or cofactors related to inflammation. Based on the regulatory roles known so far, we propose that PRMTs should be considered one of the target molecule groups that modulate inflammatory responses.

  15. Experimental investigation of the catalytic decomposition and combustion characteristics of a non-toxic ammonium dinitramide (ADN)-based monopropellant thruster

    Science.gov (United States)

    Chen, Jun; Li, Guoxiu; Zhang, Tao; Wang, Meng; Yu, Yusong

    2016-12-01

    Low toxicity ammonium dinitramide (ADN)-based aerospace propulsion systems currently show promise with regard to applications such as controlling satellite attitude. In the present work, the decomposition and combustion processes of an ADN-based monopropellant thruster were systematically studied, using a thermally stable catalyst to promote the decomposition reaction. The performance of the ADN propulsion system was investigated using a ground test system under vacuum, and the physical properties of the ADN-based propellant were also examined. Using this system, the effects of the preheating temperature and feed pressure on the combustion characteristics and thruster performance during steady state operation were observed. The results indicate that the propellant and catalyst employed during this work, as well as the design and manufacture of the thruster, met performance requirements. Moreover, the 1 N ADN thruster generated a specific impulse of 223 s, demonstrating the efficacy of the new catalyst. The thruster operational parameters (specifically, the preheating temperature and feed pressure) were found to have a significant effect on the decomposition and combustion processes within the thruster, and the performance of the thruster was demonstrated to improve at higher feed pressures and elevated preheating temperatures. A lower temperature of 140 °C was determined to activate the catalytic decomposition and combustion processes more effectively compared with the results obtained using other conditions. The data obtained in this study should be beneficial to future systematic and in-depth investigations of the combustion mechanism and characteristics within an ADN thruster.

  16. The influence of calcination temperatures on the acid-based properties and catalytic activity for the 1,3-butadiene synthesis from ethanol/acetaldehyde mixture

    Science.gov (United States)

    Gao, Meixiang; Jiang, Haoxi; Zhang, Minhua

    2018-05-01

    The influences of the calcination temperature on the catalysts' acid-based properties and catalytic activity for the 1,3-butadiene synthesis from ethanol are investigated. The results show that the 2 wt% ZrO2/Nano-SiO2 calcined at 773 K shows the best performance with the selectivity of 93.18% and conversion of 58.52% when reacted at 593 K, a WHSV of 1.8 h-1 and 3.5:1 volume ratio ethanol-to-acetaldehyde in an atmospheric fixed-bed reactor. Prepared catalysts were characterized by N2 adsorption-desorption, XRD, temperature-programmed desorption of NH3 and CO2, FTIR spectroscopy of adsorbed pyridine and CO2. Based on the relationship between the catalyst activity and its properties, the fact can be presumed that the formation and strength of Zrsbnd Osbnd Si bond determines the acid-based properties of the catalyst. In addition, moderate-intensity weak acid-basic sites are more suitable for ethanol conversion to BD with the amount of acid and basic sites as close as possible.

  17. A study on naphtha catalytic reforming reactor simulation and analysis.

    Science.gov (United States)

    Liang, Ke-min; Guo, Hai-yan; Pan, Shi-wei

    2005-06-01

    A naphtha catalytic reforming unit with four reactors in series is analyzed. A physical model is proposed to describe the catalytic reforming radial flow reactor. Kinetics and thermodynamics equations are selected to describe the naphtha catalytic reforming reactions characteristics based on idealizing the complex naphtha mixture by representing the paraffin, naphthene, and aromatic groups by single compounds. The simulation results based above models agree very well with actual operation unit data.

  18. A study on naphtha catalytic reforming reactor simulation and analysis

    OpenAIRE

    Liang, Ke-min; Guo, Hai-yan; Pan, Shi-wei

    2005-01-01

    A naphtha catalytic reforming unit with four reactors in series is analyzed. A physical model is proposed to describe the catalytic reforming radial flow reactor. Kinetics and thermodynamics equations are selected to describe the naphtha catalytic reforming reactions characteristics based on idealizing the complex naphtha mixture by representing the paraffin, naphthene, and aromatic groups by single compounds. The simulation results based above models agree very well with actual operation uni...

  19. Increased L-arginine Production by Site-directed Mutagenesis of N-acetyl-L-glutamate Kinase and proB Gene Deletion in Corynebacterium crenatum.

    Science.gov (United States)

    Zhang, Bin; Wan, Fang; Qiu, Yu Lou; Chen, Xue Lan; Tang, Li; Chen, Jin Cong; Xiong, Yong Hua

    2015-12-01

    In Corynebacterium crenatum, the adjacent D311 and D312 of N-acetyl-L-glutamate kinase (NAGK), as a key rate-limiting enzyme of L-arginine biosynthesis under substrate regulatory control by arginine, were initially replaced with two arginine residues to investigate the L-arginine feedback inhibition for NAGK. NAGK enzyme expression was evaluated using a plasmid-based method. Homologous recombination was employed to eliminate the proB. The IC50 and enzyme activity of NAGK M4, in which the D311R and D312R amino acid substitutions were combined with the previously reported E19R and H26E substitutions, were 3.7-fold and 14.6% higher, respectively, than those of the wild-type NAGK. NAGK M4 was successfully introduced into the C. crenatum MT genome without any genetic markers; the L-arginine yield of C. crenatum MT-M4 was 26.2% higher than that of C. crenatum MT. To further improve upon the L-arginine yield, we constructed the mutant C. crenatum MT-M4 proB. The optimum concentration of L-proline was also investigated in order to determine its contribution to L-arginine yield. After L-proline was added to the medium at 10 mmol/L, the L-arginine yield reached 16.5 g/L after 108 h of shake-flask fermentation, approximately 70.1% higher than the yield attained using C. crenatum MT. Feedback inhibition of L-arginine on NAGK in C. crenatum is clearly alleviated by the M4 mutation of NAGK, and deletion of the proB in C. crenatum from MT to M4 results in a significant increase in arginine production. Copyright © 2015 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  20. Base Catalytic Approach: A Promising Technique for the Activation of Biochar for Equilibrium Sorption Studies of Copper, Cu(II Ions in Single Solute System

    Directory of Open Access Journals (Sweden)

    Sharifah Bee Abdul Hamid

    2014-04-01

    Full Text Available This study examines the feasibility of catalytically pretreated biochar derived from the dried exocarp or fruit peel of mangostene with Group I alkali metal hydroxide (KOH. The pretreated char was activated in the presence of carbon dioxide gas flow at high temperature to upgrade its physiochemical properties for the removal of copper, Cu(II cations in single solute system. The effect of three independent variables, including temperature, agitation time and concentration, on sorption performance were carried out. Reaction kinetics parameters were determined by using linear regression analysis of the pseudo first, pseudo second, Elovich and intra-particle diffusion models. The regression co-efficient, R2 values were best for the pseudo second order kinetic model for all the concentration ranges under investigation. This implied that Cu(II cations were adsorbed mainly by chemical interactions with the surface active sites of the activated biochar. Langmuir, Freundlich and Temkin isotherm models were used to interpret the equilibrium data at different temperature. Thermodynamic studies revealed that the sorption process was spontaneous and endothermic. The surface area of the activated sample was 367.10 m2/g, whereas before base activation, it was only 1.22 m2/g. The results elucidated that the base pretreatment was efficient enough to yield porous carbon with an enlarged surface area, which can successfully eliminate Cu(II cations from waste water.

  1. A catalytically and genetically optimized β-lactamase-matrix based assay for sensitive, specific, and higher throughput analysis of native henipavirus entry characteristics

    Directory of Open Access Journals (Sweden)

    Holbrook Michael R

    2009-07-01

    Full Text Available Abstract Nipah virus (NiV and Hendra virus (HeV are the only paramyxoviruses requiring Biosafety Level 4 (BSL-4 containment. Thus, study of henipavirus entry at less than BSL-4 conditions necessitates the use of cell-cell fusion or pseudotyped reporter virus assays. Yet, these surrogate assays may not fully emulate the biological properties unique to the virus being studied. Thus, we developed a henipaviral entry assay based on a β-lactamase-Nipah Matrix (βla-M fusion protein. We first codon-optimized the bacterial βla and the NiV-M genes to ensure efficient expression in mammalian cells. The βla-M construct was able to bud and form virus-like particles (VLPs that morphologically resembled paramyxoviruses. βla-M efficiently incorporated both NiV and HeV fusion and attachment glycoproteins. Entry of these VLPs was detected by cytosolic delivery of βla-M, resulting in enzymatic and fluorescent conversion of the pre-loaded CCF2-AM substrate. Soluble henipavirus receptors (ephrinB2 or antibodies against the F and/or G proteins blocked VLP entry. Additionally, a Y105W mutation engineered into the catalytic site of βla increased the sensitivity of our βla-M based infection assays by 2-fold. In toto, these methods will provide a more biologically relevant assay for studying henipavirus entry at less than BSL-4 conditions.

  2. A comparison of DNA compaction by arginine and lysine peptides: A physical basis for arginine rich protamines

    OpenAIRE

    DeRouchey, Jason; Hoover, Brandon; Rau, Donald C

    2013-01-01

    Protamines are small, highly positively charged peptides used to package DNA to very high densities in sperm nuclei. Tight DNA packing is considered essential to minimize DNA damage by mutagens and reactive oxidizing species. A striking and general feature of protamines is the almost exclusive use of arginine over lysine for the positive charge to neutralize DNA. We have investigated whether this preference for arginine might arise from a difference in DNA condensation by arginine and lysine ...

  3. [First fixed dose combination perindopril arginine-indapamide-amlodipine: new approach in combination therapy in hypertension].

    Science.gov (United States)

    Widimský, Jiří

    2014-09-01

    Use of fixed combination of antihypertensive drugs clearly improves compliance to the pharmacological therapy, control of hypertension and prognosis. Based on the current guidelines triple antihypertensive therapy with RAS-blocker, calcium channel blocker (CCB) and diuretic represents the standard and best option. The article introduces first and innovative fixed triple combination of perindopril arginine + indapamide + amlodipine (Triplixam®). This type of therapy is suitable for patients already treated with free combinations of three antihypertensive drugs or in those hypertensives with uncontrolled hypertension on two antihypertensive molecules (approx. 60% of all hypertensive population). Fixed combination of perindopril arginine + indapamid + amlodipin is indicated also in severe hypertension (approx. 30% of pts). Large clinical data from various morbidity-mortality studies related to each of these substances are discussed as well as basic pharmacological characteristics. Based on the results from ADVANCE-CCB study combination of perindopril arginine + indapamide + CCB decreases total mortality in hypertension by 28%. Another discussed study-PIANIST confirmed significant antihypertensive effect of Triplixam® on large sample of patients with various stages of hypertension. Triplixam® in addition to that has very good tolerance with low side effects profile, flexibility of the dosages and large body of evidence of positive impact on prognosis of hypertensive patients. Use of Triplixam® may improve control of hypertension in the Czech Republic.Key words: amlodipine - fixed combination - hypertension - indapamide - perindopril arginine - therapy.

  4. Platinum from automotive catalytic converters: environmental health evaluation based on recent data on exposure and effects; Platin aus Automobilabgaskatalysatoren: Umweltmedizinische Bewertung auf Basis neuer Expositions- und Wirkungsdaten

    Energy Technology Data Exchange (ETDEWEB)

    Rosner, G. [Consulting-Buero Toxikologie - Umwelt, Merzhausen/Freiburg (Germany); Artelt, S. [Bayern Innovativ Gesellschaft fuer Innovation und Wissenstransfer mbH, Nuernberg (Germany); Mangelsdorf, I. [Fraunhofer-Institut fuer Toxikologie und Aerosolforschung (ITA), Hannover (Germany); Merget, R. [Berufsgenossenschaftliches Forschungsinstitut fuer Arbeitsmedizin (BGFA), Bochum (Germany)

    1998-12-01

    We estimated ambient air concentrations of platinum by applying dispersion models as well as recent emission factors that have been derived from engine test bench experiments with three-way, monolith-type catalytic converters. Predicted concentrations in various exposure scenarios range from 4 pg/m{sup 3} (street canyon, typical conditions) up to 112 pg/m{sup 3} (express-motorway, severe conditions). These values agree well with the few measurements of platinum ambient air concentrations. Platinum is emitted from catalytic converters in very small amounts (ng/km range) and is mainly in the oxidation state 0 (elemental platinum). The nanocrystalline platinum particles are attached to {mu}m-sized aluminum oxide particles. Whether free ultrafine platinum particles may be emitted and result in biological effects has not been studied sufficiently. Hence, risk assessment can only be based on the respiratory sensitizing effects of halogenated platinum salts, although this can be considered a very sensitive endpoint. The presence of such compounds in the soluble fraction ({<=}1%) of the total platinum emissions as well as their secondary formation from platinum particles cannot principally be excluded. Our risk assessment is based on recent occupational studies in a catalytic converter production plant, from which a conservative, no effect level (NOEL) of 1.5 ng/cm{sup 3} can be derived for soluble platinum. In a (reasonable) worst case approach we assume that halogenated platinum salts comprise 1% (0.1%) of the total platinum emissions. Applying an unsafety factor of 10 to account for inter-individual variability, a guidance value of 150 (15) ng/m{sup 3} is derived for catalyst-borne platinum. The exposure to platinum in ambient air as measured or predicted is at least two orders of magnitude below this `critical` range. (orig.) [Deutsch] In einer differenzierten Aktualisierung frueherer Expositionsabschaetzungen werden anhand von Ausbreitungsmodellen und aktuellen

  5. Catalytic production of Jatropha biodiesel and hydrogen with magnetic carbonaceous acid and base synthesized from Jatropha hulls

    International Nuclear Information System (INIS)

    Zhang, Fan; Tian, Xiao-Fei; Fang, Zhen; Shah, Mazloom; Wang, Yi-Tong; Jiang, Wen; Yao, Min

    2017-01-01

    Graphical abstract: Jatropha seeds were extracted oil for biodiesel production and the hulls were carbonized to load active sites as magnetic carbonaceous solid acid and base catalysts. Crude Jatropha oil was esterified to decrease its acid value to 1.3 from 17.2 mg KOH/g by the solid acid, and subsequently transesterified to biodiesel (96.7% yield) catalyzed by the solid base. After 3 cycles and magnetically separated, the deactivated base was catalyzed the hydrothermal gasification of biodiesel by-product (crude glycerol) with gasification rate of 81% and 82% H 2 purity. - Highlights: • High acid value (AV) crude oil was extracted from Jatropha seeds with waste hulls produced. • Carbonizing the hulls and loading active sites produced magnetic carbonaceous acid and base. • The acid reduced AV of crude oil to 1.3 from 17.2 mg KOH/g and separated for 3 cycles. • The base achieved 97.5% biodiesel yield and magnetically separated for recycles. • After 3 cycles, the deactivated base catalyzed the hydrothermal gasification of glycerol. - Abstract: Magnetic carbonaceous solid acid (C-SO 3 H@Fe/JHC) and base (Na 2 SiO 3 @Ni/JRC) catalysts were synthesized by loading active groups on the carbonaceous supporters derived from Jatropha-hull hydrolysate and hydrolysis residue. Characterization of their morphology, magnetic saturation, functional groups and total acid/base contents were performed by various techniques. Additional acidic functional groups that formed with Jatropha-hull hydrolysate contributed to the high acidity of C-SO 3 H@Fe/JHC catalyst for the pretreatment (esterification) of crude Jatropha oil with high acid values (AV). The AV of esterified Jatropha oil dropped down from 17.2 to 1.3 mg KOH/g, achieving a high biodiesel yield of 96.7% after subsequent transesterification reaction with Na 2 SiO 3 @Ni/JRC base that was cycled at least 3 times with little loss of catalysis activity. Both solid acid and base catalysts were easily recovered by magnetic

  6. Catalytic Conversion of Biomass Pyrolysis Vapours over Sodium-Based Catalyst; A Study on teh State of Sodium on the Catalyst

    NARCIS (Netherlands)

    Nguyen, T.S.; Lefferts, Leonardus; Gupta, K.B. Sai Sankar; Seshan, Kulathuiyer

    2015-01-01

    In situ upgrading of biomass pyrolysis vapours over Na2CO3/γ-Al2O3 catalysts was studied in a laboratory-scale fixed-bed reactor at 500 °C. Catalytic oil exhibits a significant improvement over its non-catalytic counterpart, such as lower oxygen content (12.3 wt % compared to 42.1 wt %), higher

  7. Effects of 7 days of arginine-alpha-ketoglutarate supplementation on blood flow, plasma L-arginine, nitric oxide metabolites, and asymmetric dimethyl arginine after resistance exercise.

    Science.gov (United States)

    Willoughby, Darryn S; Boucher, Tony; Reid, Jeremy; Skelton, Garson; Clark, Mandy

    2011-08-01

    Arginine-alpha-ketoglutarate (AAKG) supplements are alleged to increase nitric oxide production, thereby resulting in vasodilation during resistance exercise. This study sought to determine the effects of AAKG supplementation on hemodynamics and brachial-artery blood flow and the circulating levels of L-arginine, nitric oxide metabolites (NOx; nitrate/nitrite), asymmetric dimethyl arginine (ADMA), and L-arginine:ADMA ratio after resistance exercise. Twenty-four physically active men underwent 7 days of AAKG supplementation with 12 g/day of either NO(2) Platinum or placebo (PLC). Before and after supplementation, a resistance-exercise session involving the elbow flexors was performed involving 3 sets of 15 repetitions with 70-75% of 1-repetition maximum. Data were collected immediately before, immediately after (PST), and 30 min after (30PST) each exercise session. Data were analyzed with factorial ANOVA (p L-arginine was increased in the NO(2) group (p = .001). NOx was shown to increase in both groups at PST (p = .001) and at 30PST (p = .001) but was not different between groups. ADMA was not affected between tests (p = .26) or time points (p = .31); however, the L-arginine:ADMA ratio was increased in the NO(2) group (p = .03). NO(2) Platinum increased plasma L-arginine levels; however, the effects observed in hemodynamics, brachial-artery blood flow, and NOx can only be attributed to the resistance exercise.

  8. The effects on plasma L-arginine levels of combined oral L-citrulline and L-arginine supplementation in healthy males.

    Science.gov (United States)

    Suzuki, Takashi; Morita, Masahiko; Hayashi, Toshio; Kamimura, Ayako

    2017-02-01

    We investigated the effects of combining 1 g of l-citrulline and 1 g of l-arginine as oral supplementation on plasma l-arginine levels in healthy males. Oral l-citrulline plus l-arginine supplementation more efficiently increased plasma l-arginine levels than 2 g of l-citrulline or l-arginine, suggesting that oral l-citrulline and l-arginine increase plasma l-arginine levels more effectively in humans when combined.

  9. Characterization of the Trans Watson-Crick GU Base Pair Located in the Catalytic Core of the Antigenomic HDV Ribozyme

    Science.gov (United States)

    Lévesque, Dominique; Reymond, Cédric; Perreault, Jean-Pierre

    2012-01-01

    The HDV ribozyme’s folding pathway is, by far, the most complex folding pathway elucidated to date for a small ribozyme. It includes 6 different steps that have been shown to occur before the chemical cleavage. It is likely that other steps remain to be discovered. One of the most critical of these unknown steps is the formation of the trans Watson-Crick GU base pair within loop III. The U23 and G28 nucleotides that form this base pair are perfectly conserved in all natural variants of the HDV ribozyme, and therefore are considered as being part of the signature of HDV-like ribozymes. Both the formation and the transformation of this base pair have been studied mainly by crystal structure and by molecular dynamic simulations. In order to obtain physical support for the formation of this base pair in solution, a set of experiments, including direct mutagenesis, the site-specific substitution of chemical groups, kinetic studies, chemical probing and magnesium-induced cleavage, were performed with the specific goal of characterizing this trans Watson-Crick GU base pair in an antigenomic HDV ribozyme. Both U23 and G28 can be substituted for nucleotides that likely preserve some of the H-bond interactions present before and after the cleavage step. The formation of the more stable trans Watson-Crick base pair is shown to be a post-cleavage event, while a possibly weaker trans Watson-Crick/Hoogsteen interaction seems to form before the cleavage step. The formation of this unusually stable post-cleavage base pair may act as a driving force on the chemical cleavage by favouring the formation of a more stable ground state of the product-ribozyme complex. To our knowledge, this represents the first demonstration of a potential stabilising role of a post-cleavage conformational switch event in a ribozyme-catalyzed reaction. PMID:22768274

  10. Characterization of the trans Watson-Crick GU base pair located in the catalytic core of the antigenomic HDV ribozyme.

    Directory of Open Access Journals (Sweden)

    Dominique Lévesque

    Full Text Available The HDV ribozyme's folding pathway is, by far, the most complex folding pathway elucidated to date for a small ribozyme. It includes 6 different steps that have been shown to occur before the chemical cleavage. It is likely that other steps remain to be discovered. One of the most critical of these unknown steps is the formation of the trans Watson-Crick GU base pair within loop III. The U(23 and G(28 nucleotides that form this base pair are perfectly conserved in all natural variants of the HDV ribozyme, and therefore are considered as being part of the signature of HDV-like ribozymes. Both the formation and the transformation of this base pair have been studied mainly by crystal structure and by molecular dynamic simulations. In order to obtain physical support for the formation of this base pair in solution, a set of experiments, including direct mutagenesis, the site-specific substitution of chemical groups, kinetic studies, chemical probing and magnesium-induced cleavage, were performed with the specific goal of characterizing this trans Watson-Crick GU base pair in an antigenomic HDV ribozyme. Both U(23 and G(28 can be substituted for nucleotides that likely preserve some of the H-bond interactions present before and after the cleavage step. The formation of the more stable trans Watson-Crick base pair is shown to be a post-cleavage event, while a possibly weaker trans Watson-Crick/Hoogsteen interaction seems to form before the cleavage step. The formation of this unusually stable post-cleavage base pair may act as a driving force on the chemical cleavage by favouring the formation of a more stable ground state of the product-ribozyme complex. To our knowledge, this represents the first demonstration of a potential stabilising role of a post-cleavage conformational switch event in a ribozyme-catalyzed reaction.

  11. Effect of arginine deficiency on arginine-dependent post-translational protein modifications in mice

    NARCIS (Netherlands)

    Kwikkers, Karin L.; Ruijter, Jan M.; Labruyère, Wil T.; McMahon, Kathryn K.; Lamers, Wouter H.

    2005-01-01

    Transgenic mice that overexpress arginase-I in their small-intestinal enterocytes suffer from a pronounced, but selective decrease in circulating arginine levels during the suckling period, resulting in impaired growth and development of hair, muscle and immune system. In the present study, we

  12. Weissella halotolerans W22 combines arginine deiminase and ornithine decarboxylation pathways and converts arginine to putrescine

    NARCIS (Netherlands)

    Pereira, C. I.; San Romao, M. V.; Lolkema, J. S.; Barreto Crespo, M. T.; Baretto Crespo, M.

    2009-01-01

    Aims: To demonstrate that the meat food strain Weissella halotolerans combines an ornithine decarboxylation pathway and an arginine deiminase (ADI) pathway and is able to produce putrescine, a biogenic amine. Evidence is shown that these two pathways produce a proton motive force (PMF). Methods and

  13. Arginine and Lysine Transporters Are Essential for Trypanosoma brucei.

    Science.gov (United States)

    Mathieu, Christoph; Macêdo, Juan P; Hürlimann, Daniel; Wirdnam, Corina; Haindrich, Alexander C; Suter Grotemeyer, Marianne; González-Salgado, Amaia; Schmidt, Remo S; Inbar, Ehud; Mäser, Pascal; Bütikofer, Peter; Zilberstein, Dan; Rentsch, Doris

    2017-01-01

    For Trypanosoma brucei arginine and lysine are essential amino acids and therefore have to be imported from the host. Heterologous expression in Saccharomyces cerevisiae mutants identified cationic amino acid transporters among members of the T. brucei AAAP (amino acid/auxin permease) family. TbAAT5-3 showed high affinity arginine uptake (Km 3.6 ± 0.4 μM) and high selectivity for L-arginine. L-arginine transport was reduced by a 10-times excess of L-arginine, homo-arginine, canavanine or arginine-β-naphthylamide, while lysine was inhibitory only at 100-times excess, and histidine or ornithine did not reduce arginine uptake rates significantly. TbAAT16-1 is a high affinity (Km 4.3 ± 0.5 μM) and highly selective L-lysine transporter and of the compounds tested, only L-lysine and thialysine were competing for L-lysine uptake. TbAAT5-3 and TbAAT16-1 are expressed in both procyclic and bloodstream form T. brucei and cMyc-tagged proteins indicate localization at the plasma membrane. RNAi-mediated down-regulation of TbAAT5 and TbAAT16 in bloodstream form trypanosomes resulted in growth arrest, demonstrating that TbAAT5-mediated arginine and TbAAT16-mediated lysine transport are essential for T. brucei. Growth of induced RNAi lines could partially be rescued by supplementing a surplus of arginine or lysine, respectively, while addition of both amino acids was less efficient. Single and double RNAi lines indicate that additional low affinity uptake systems for arginine and lysine are present in T. brucei.

  14. Leishmania metacaspase: an arginine-specific peptidase.

    Science.gov (United States)

    Martin, Ricardo; Gonzalez, Iveth; Fasel, Nicolas

    2014-01-01

    The purpose of this chapter is to give insights into metacaspase of Leishmania protozoan parasites as arginine-specific cysteine peptidase. The physiological role of metacaspase in Leishmania is still a matter of debate, whereas its peptidase enzymatic activity has been well characterized. Among the different possible expression systems, metacaspase-deficient yeast cells (Δyca1) have been instrumental in studying the activity of Leishmania major metacaspase (LmjMCA). Here, we describe techniques for purification of LmjMCA and its activity measurement, providing a platform for further identification of LmjMCA substrates.

  15. Steam reformer with catalytic combustor

    Science.gov (United States)

    Voecks, Gerald E. (Inventor)

    1990-01-01

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  16. Cerium-based metal organic frameworks with UiO-66 architecture: synthesis, properties and redox catalytic activity.

    Science.gov (United States)

    Lammert, Martin; Wharmby, Michael T; Smolders, Simon; Bueken, Bart; Lieb, Alexandra; Lomachenko, Kirill A; Vos, Dirk De; Stock, Norbert

    2015-08-14

    A series of nine Ce(iv)-based metal organic frameworks with the UiO-66 structure containing linker molecules of different sizes and functionalities were obtained under mild synthesis conditions and short reaction times. Thermal and chemical stabilities were determined and a Ce-UiO-66-BDC/TEMPO system was successfully employed for the aerobic oxidation of benzyl alcohol.

  17. A Ligand Structure-Activity Study of DNA-Based Catalytic Asymmetric Hydration and Diels-Alder Reactions

    NARCIS (Netherlands)

    Rosati, F.; Roelfes, J.G.

    A structure-activity relationship study of the first generation ligands for the DNA-based asymmetric hydration of enones and Diels-Alder reaction in water is reported. The design of the ligand was optimized resulting in a maximum ee of 83% in the hydration reaction and 75% in the Diels-Alder

  18. Synthesis, characterization, crystal structure determination, thermal study and catalytic activity of a new oxidovanadium Schiff base complex

    Czech Academy of Sciences Publication Activity Database

    Grivani, G.; Ghavami, A.; Kučeráková, Monika; Dušek, Michal; Khalaji, A.D.

    2014-01-01

    Roč. 1076, Nov (2014), s. 326-332 ISSN 0022-2860 R&D Projects: GA ČR(CZ) GA14-03276S Institutional support: RVO:68378271 Keywords : oxidovanadium(IV) * Schiff base * crystal structure * V 2 O 5 nano-particle * oxidation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.602, year: 2014

  19. Radiolytic Synthesis of Pt-Ru Catalysts Based on Functional Polymer-Grafted MWNT and Their Catalytic Efficiency for CO and MeOH

    Directory of Open Access Journals (Sweden)

    Dae-Soo Yang

    2011-01-01

    Full Text Available Pt-Ru catalysts based on functional polymer-grafted MWNT (Pt-Ru@FP-MWNT were prepared by radiolytic deposition of Pt-Ru nanoparticles on functional polymer-grafted multiwalled carbon nanotube (FP-MWNT. Three different types of functional polymers, poly(acrylic acid (PAAc, poly(methacrylic acid (PMAc, and poly(vinylphenyl boronic acid (PVPBAc, were grafted on the MWNT surface by radiation-induced graft polymerization (RIGP. Then, Pt-Ru nanoparticles were deposited onto the FP-MWNT supports by the reduction of metal ions using γ-irradiation to obtain Pt-Ru@FP-MWNT catalysts. The Pt-Ru@FP-MWNT catalysts were then characterized by XRD, XPS, TEM ,and elemental analysis. The catalytic efficiency of Pt-Ru@FP-MWNT catalyst was examined for CO stripping and MeOH oxidation for use in a direct methanol fuel cell (DMFC. The Pt-Ru@PVPBAc-MWNT catalyst shows enhanced activity for electro-oxidation of CO and MeOH oxidation over that of the commercial E-TEK catalyst.

  20. Integration of Methane Steam Reforming and Water Gas Shift Reaction in a Pd/Au/Pd-Based Catalytic Membrane Reactor for Process Intensification.

    Science.gov (United States)

    Castro-Dominguez, Bernardo; Mardilovich, Ivan P; Ma, Liang-Chih; Ma, Rui; Dixon, Anthony G; Kazantzis, Nikolaos K; Ma, Yi Hua

    2016-09-19

    Palladium-based catalytic membrane reactors (CMRs) effectively remove H₂ to induce higher conversions in methane steam reforming (MSR) and water-gas-shift reactions (WGS). Within such a context, this work evaluates the technical performance of a novel CMR, which utilizes two catalysts in series, rather than one. In the process system under consideration, the first catalyst, confined within the shell side of the reactor, reforms methane with water yielding H₂, CO and CO₂. After reforming is completed, a second catalyst, positioned in series, reacts with CO and water through the WGS reaction yielding pure H₂O, CO₂ and H₂. A tubular composite asymmetric Pd/Au/Pd membrane is situated throughout the reactor to continuously remove the produced H₂ and induce higher methane and CO conversions while yielding ultrapure H₂ and compressed CO₂ ready for dehydration. Experimental results involving (i) a conventional packed bed reactor packed (PBR) for MSR, (ii) a PBR with five layers of two catalysts in series and (iii) a CMR with two layers of two catalysts in series are comparatively assessed and thoroughly characterized. Furthermore, a comprehensive 2D computational fluid dynamics (CFD) model was developed to explore further the features of the proposed configuration. The reaction was studied at different process intensification-relevant conditions, such as space velocities, temperatures, pressures and initial feed gas composition. Finally, it is demonstrated that the above CMR module, which was operated for 600 h, displays quite high H₂ permeance and purity, high CH₄ conversion levels and reduced CO yields.

  1. A DFT-Based Computational-Experimental Methodology for Synthetic Chemistry: Example of Application to the Catalytic Opening of Epoxides by Titanocene.

    Science.gov (United States)

    Jaraíz, Martín; Enríquez, Lourdes; Pinacho, Ruth; Rubio, José E; Lesarri, Alberto; López-Pérez, José L

    2017-04-07

    A novel DFT-based Reaction Kinetics (DFT-RK) simulation approach, employed in combination with real-time data from reaction monitoring instrumentation (like UV-vis, FTIR, Raman, and 2D NMR benchtop spectrometers), is shown to provide a detailed methodology for the analysis and design of complex synthetic chemistry schemes. As an example, it is applied to the opening of epoxides by titanocene in THF, a catalytic system with abundant experimental data available. Through a DFT-RK analysis of real-time IR data, we have developed a comprehensive mechanistic model that opens new perspectives to understand previous experiments. Although derived specifically from the opening of epoxides, the prediction capabilities of the model, built on elementary reactions, together with its practical side (reaction kinetics simulations of real experimental conditions) make it a useful simulation tool for the design of new experiments, as well as for the conception and development of improved versions of the reagents. From the perspective of the methodology employed, because both the computational (DFT-RK) and the experimental (spectroscopic data) components can follow the time evolution of several species simultaneously, it is expected to provide a helpful tool for the study of complex systems in synthetic chemistry.

  2. High efficiency chemical energy conversion system based on a methane catalytic decomposition reaction and two fuel cells: Part I. Process modeling and validation

    Science.gov (United States)

    Liu, Qinghua; Tian, Ye; Li, Hongjiao; Jia, Lijun; Xia, Chun; Thompson, Levi T.; Li, Yongdan

    A highly efficient integrated energy conversion system is built based on a methane catalytic decomposition reactor (MCDR) together with a direct carbon fuel cell (DCFC) and an internal reforming solid oxide fuel cell (IRSOFC). In the MCDR, methane is decomposed to pure carbon and hydrogen. Carbon is used as the fuel of DCFC to generate power and produce pure carbon dioxide. The hydrogen and unconverted methane are used as the fuel in the IRSOFC. A gas turbine cycle is also used to produce more power output from the thermal energy generated in the IRSOFC. The output performance and efficiency of both the DCFC and IRSOFC are investigated and compared by development of exact models of them. It is found that this system has a unique loading flexibility due to the good high-loading property of DCFC and the good low loading property of IRSOFC. The effects of temperature, pressure, current densities, and methane conversion on the performance of the fuel cells and the system are discussed. The CO 2 emission reduction is effective, up to 80%, can be reduced with the proposed system.

  3. Structural and catalytic effects of an invariant purine substitution in the hammerhead ribozyme: implications for the mechanism of acid-base catalysis.

    Science.gov (United States)

    Schultz, Eric P; Vasquez, Ernesto E; Scott, William G

    2014-09-01

    The hammerhead ribozyme catalyzes RNA cleavage via acid-base catalysis. Whether it does so by general acid-base catalysis, in which the RNA itself donates and abstracts protons in the transition state, as is typically assumed, or by specific acid-base catalysis, in which the RNA plays a structural role and proton transfer is mediated by active-site water molecules, is unknown. Previous biochemical and crystallographic experiments implicate an invariant purine in the active site, G12, as the general base. However, G12 may play a structural role consistent with specific base catalysis. To better understand the role of G12 in the mechanism of hammerhead catalysis, a 2.2 Å resolution crystal structure of a hammerhead ribozyme from Schistosoma mansoni with a purine substituted for G12 in the active site of the ribozyme was obtained. Comparison of this structure (PDB entry 3zd4), in which A12 is substituted for G, with three previously determined structures that now serve as important experimental controls, allows the identification of structural perturbations that are owing to the purine substitution itself. Kinetic measurements for G12 purine-substituted schistosomal hammerheads confirm a previously observed dependence of rate on the pK(a) of the substituted purine; in both cases inosine, which is similar to G in pK(a) and hydrogen-bonding properties, is unexpectedly inactive. Structural comparisons indicate that this may primarily be owing to the lack of the exocyclic 2-amino group in the G12A and G12I substitutions and its structural effect upon both the nucleotide base and phosphate of A9. The latter involves the perturbation of a previously identified and well characterized metal ion-binding site known to be catalytically important in both minimal and full-length hammerhead ribozyme sequences. The results permit it to be suggested that G12 plays an important role in stabilizing the active-site structure. This result, although not inconsistent with the potential

  4. Structural and catalytic effects of an invariant purine substitution in the hammerhead ribozyme: implications for the mechanism of acid–base catalysis

    Science.gov (United States)

    Schultz, Eric P.; Vasquez, Ernesto E.; Scott, William G.

    2014-01-01

    The hammerhead ribozyme catalyzes RNA cleavage via acid–base catalysis. Whether it does so by general acid–base catalysis, in which the RNA itself donates and abstracts protons in the transition state, as is typically assumed, or by specific acid–base catalysis, in which the RNA plays a structural role and proton transfer is mediated by active-site water molecules, is unknown. Previous biochemical and crystallographic experiments implicate an invariant purine in the active site, G12, as the general base. However, G12 may play a structural role consistent with specific base catalysis. To better understand the role of G12 in the mechanism of hammerhead catalysis, a 2.2 Å resolution crystal structure of a hammerhead ribozyme from Schistosoma mansoni with a purine substituted for G12 in the active site of the ribozyme was obtained. Comparison of this structure (PDB entry 3zd4), in which A12 is substituted for G, with three previously determined structures that now serve as important experimental controls, allows the identification of structural perturbations that are owing to the purine substitution itself. Kinetic measurements for G12 purine-substituted schistosomal hammerheads confirm a previously observed dependence of rate on the pK a of the substituted purine; in both cases inosine, which is similar to G in pK a and hydrogen-bonding properties, is unexpectedly inactive. Structural comparisons indicate that this may primarily be owing to the lack of the exocyclic 2-amino group in the G12A and G12I substitutions and its structural effect upon both the nucleotide base and phosphate of A9. The latter involves the perturbation of a previously identified and well characterized metal ion-binding site known to be catalytically important in both minimal and full-length hammerhead ribozyme sequences. The results permit it to be suggested that G12 plays an important role in stabilizing the active-site structure. This result, although not inconsistent with the

  5. Structural Basis for EarP-Mediated Arginine Glycosylation of Translation Elongation Factor EF-P.

    Science.gov (United States)

    Krafczyk, Ralph; Macošek, Jakub; Jagtap, Pravin Kumar Ankush; Gast, Daniel; Wunder, Swetlana; Mitra, Prithiba; Jha, Amit Kumar; Rohr, Jürgen; Hoffmann-Röder, Anja; Jung, Kirsten; Hennig, Janosch; Lassak, Jürgen

    2017-09-26

    Glycosylation is a universal strategy to posttranslationally modify proteins. The recently discovered arginine rhamnosylation activates the polyproline-specific bacterial translation elongation factor EF-P. EF-P is rhamnosylated on arginine 32 by the glycosyltransferase EarP. However, the enzymatic mechanism remains elusive. In the present study, we solved the crystal structure of EarP from Pseudomonas putida The enzyme is composed of two opposing domains with Rossmann folds, thus constituting a B pattern-type glycosyltransferase (GT-B). While dTDP-β-l-rhamnose is located within a highly conserved pocket of the C-domain, EarP recognizes the KOW-like N-domain of EF-P. Based on our data, we propose a structural model for arginine glycosylation by EarP. As EarP is essential for pathogenicity in P. aeruginosa , our study provides the basis for targeted inhibitor design. IMPORTANCE The structural and biochemical characterization of the EF-P-specific rhamnosyltransferase EarP not only provides the first molecular insights into arginine glycosylation but also lays the basis for targeted-inhibitor design against Pseudomonas aeruginosa infection. Copyright © 2017 Krafczyk et al.

  6. Effects of glucose and oxygen on arginine metabolism by coagulase-negative staphylococci.

    Science.gov (United States)

    Sánchez Mainar, María; Matheuse, Fréderick; De Vuyst, Luc; Leroy, Frédéric

    2017-08-01

    Coagulase-negative staphylococci (CNS) are not only part of the desirable microbiota of fermented meat products but also commonly inhabit skin and flesh wounds. Their proliferation depends on the versatility to use energy sources and the adaptation to fluctuating environmental parameters. In this study, the conversion of the amino acid arginine by two strains with arginine deiminase (ADI) activity (Staphylococcus carnosus 833 and S. pasteuri αs3-13) and a strain with nitric oxide synthase (NOS) activity (S. haemolyticus G110) was modelled as a function of glucose and oxygen availability. Both factors moderately inhibited the ADI-based conversion kinetics, never leading to full repression. However, for NOS-driven conversion of arginine by S. haemolyticus G110, oxygen was an absolute requirement. When changing from microaerobic conditions to aerobiosis, a switch from homolactic fermentation to a combined formation of lactic acid, acetic acid, and acetoin was found in all cases, after which lactic acid and acetic acid were used as substrates. The kinetic model proposed provided a suitable description of the data of glucose and arginine co-metabolism as a function of oxygen levels and may serve as a tool to further analyse the behaviour of staphylococci in different ecosystems or when applying specific food processing conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Functional and neurochemical profile of place learning after L-nitro-arginine in the rat

    DEFF Research Database (Denmark)

    Mogensen, Jesper; Wörtwein, Gitta; Hasman, Andreas

    1995-01-01

    Neurobiology, nitrogenoxid (NO), place learning, rotte, L-Nitro-Arginin, funktionel genopretning......Neurobiology, nitrogenoxid (NO), place learning, rotte, L-Nitro-Arginin, funktionel genopretning...

  8. L-arginine induces relaxation of rat aorta possibly through non-endothelial nitric oxide formation.

    OpenAIRE

    Moritoki, H.; Ueda, H.; Yamamoto, T.; Hisayama, T.; Takeuchi, S.

    1991-01-01

    1. The relaxation of rings of rat thoracic aorta induced by L-arginine and its derivatives was investigated. 2. L-Arginine (0.3-100 microM), but not D-arginine, induced relaxation of the arteries, which was detectable after 2 h and maximal after 4-6 h on its repeated application; it was endothelium-independent. 3. L-Arginine methyl ester, N alpha-benzoyl L-arginine and L-homo-arginine had essentially similar effects to those of L-arginine. 4. NG-nitro L-arginine methyl ester (L-NAME, 3 microM...

  9. Sugar-based micro/mesoporous hypercross-linked polymers with in situ embedded silver nanoparticles for catalytic reduction

    OpenAIRE

    Qing Yin; Qi Chen; Li-Can Lu; Bao-Hang Han

    2017-01-01

    Porous hypercross-linked polymers based on perbenzylated monosugars (SugPOP-1–3) have been synthesized by Friedel–Crafts reaction using formaldehyde dimethyl acetal as an external cross-linker. Three perbenzylated monosugars with similar chemical structure were used as monomers in order to tune the porosity. These obtained polymers exhibit microporous and mesoporous features. The highest Brunauer–Emmett–Teller specific surface area for the resulting polymers was found to be 1220 m2 g−1, and t...

  10. Synthesis, characterization, and tyrosinase biomimetic catalytic activity of copper(II) complexes with schiff base ligands derived from α-diketones with 2-methyl-3-amino-(3 H)-quinazolin-4-one

    Science.gov (United States)

    Ramadan, Abd El-Motaleb M.; Ibrahim, Mohamed M.; Shaban, Shaban Y.

    2011-12-01

    A template condensation of α-diketones (biacetyl, benzile and 2,3-pentanedione) with 2-methyl-3-amino-(3 H)-quinazolin-4-one (AMQ) in the presence of CuX 2 (X = Cl -, Br -, NO3- or ClO4-) resulted in the formation of tetradentate Schiff base copper(II) complexes of the type [CuLX]X and [CuL]X 2. Structural characterization of the complex species was achieved by several physicochemical methods, namely elemental analysis, electronic spectra, IR, ESR, molar conductivity, thermal analysis (TAG & DTG), and magnetic moment measurements. The stereochemistry, the nature of the metal chelates, and the catalytic reactivity are markedly dependent upon the type of counter anions and the ligand substituent within the carbonyl moiety. A square planar monomeric structure is proposed for the perchlorate, nitrate, and bromide complexes, in which the counter anions are loosely bonded to copper(II) ion. For the chloride complexes, the molar conductivities and the spectral data indicated that they have square-pyramidal environments around copper(II) center. The reported copper(II) complexes exhibit promising tyrosinase catalytic activity towards the hydroxylation of phenol followed by the aerobic oxidation of the resulting catechol. A linear correlation almost exists between the catalytic reactivity and the Lewis-acidity of the central copper(II) ion created by the donating properties of the parent ligand. The steric considerations could be accounted to clarify the difference in the catalytic activity of these functional models.

  11. Catalytic activity of acid and base with different concentration on sol-gel kinetics of silica by ultrasonic method.

    Science.gov (United States)

    Das, R K; Das, M

    2015-09-01

    The effects of both acid (acetic acid) and base (ammonia) catalysts in varying on the sol-gel synthesis of SiO2 nanoparticles using tetra ethyl ortho silicate (TEOS) as a precursor was determined by ultrasonic method. The ultrasonic velocity was received by pulsar receiver. The ultrasonic velocity in the sol and the parameter ΔT (time difference between the original pulse and first back wall echo of the sol) was varied with time of gelation. The graphs of ln[ln1/ΔT] vs ln(t), indicate two region - nonlinear region and a linear region. The time corresponds to the point at which the non-linear region change to linear region is considered as gel time for the respective solutions. Gelation time is found to be dependent on the concentration and types of catalyst and is found from the graphs based on Avrami equation. The rate of condensation is found to be faster for base catalyst. The gelation process was also characterized by viscosity measurement. Normal sol-gel process was also carried out along with the ultrasonic one to compare the effectiveness of ultrasonic. The silica gel was calcined and the powdered sample was characterized with scanning electron microscopy, energy dispersive spectra, X-ray diffractogram, and FTIR spectroscopy. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Nutritional consequences of interspecies differences in arginine and lysine metabolism.

    Science.gov (United States)

    Ball, Ronald O; Urschel, Kristine L; Pencharz, Paul B

    2007-06-01

    Differences in lysine and arginine requirements among various species such as omnivores (humans, pigs, rats, dogs), carnivores (cats), herbivores (rabbits, horses), ruminants (cattle), poultry, and fish, are covered in detail in this article. Although lysine is classified as an indispensable amino acid across species, the classification of arginine as either an indispensable or dispensable amino acid is more ambiguous because of differences among species in rates of de novo arginine synthesis. Because lysine is most often the limiting amino acid in the diet, its requirement has been extensively studied. By use of the ideal protein concept, the requirements of the other indispensable amino acids can be extrapolated from the lysine requirement. The successful use of this concept in pigs is compared with potential application of the ideal protein concept in humans. The current dietary arginine requirement varies widely among species, with ruminants, rabbits, and rats having relatively low requirements and carnivores, fish, and poultry having high requirements. Interspecies differences in metabolic arginine utilization and reasons for different rates of de novo arginine synthesis are reviewed in detail, as these are the primary determinants of the dietary arginine requirement. There is presently no dietary requirement for humans of any age, although this needs to be reassessed, particularly in neonates. A thorough understanding of the factors contributing to the lysine and arginine requirements in different species will be useful in our understanding of human amino acid requirements.

  13. L-Arginine Attenuates Diabetic Nephropathy In Streptozotocin ...

    African Journals Online (AJOL)

    ... renal activities of glutathione peroxidase(GPx),superoxide dismutase(SOD), LDH, aldose reductase(AR),sorbitol dehydrogenase(SDH), levels of renal glutathione(GSH) and NOx in the diabetic group treated with L-arginine. It can be concluded that L-arginine supplementation may become a promising solution to reduce ...

  14. The do's and don'ts of arginine supplementation

    African Journals Online (AJOL)

    properties, there has been increased effort in defining possible clinical uses for arginine.3. Furthermore, the ... endogenous daily production of 15–20 g occurs via the citrulline intestinal-renal axis.2. A large proportion .... sepsis, the endogenous synthesis of arginine from the amino acid citrulline, is reduced to one third of the ...

  15. Arginine, citrulline and nitric oxide metabolism in sepsis

    Science.gov (United States)

    Arginine has vasodilatory effects, via its conversion by nitric oxide (NO) synthase into NO, and immunomodulatory actions that play important roles in sepsis. Protein breakdown affects arginine availability, and the release of asymmetric dimethylarginine, an inhibitor of NO synthase, may therefore a...

  16. An automated flow for directed evolution based on detection of promiscuous scaffolds using spatial and electrostatic properties of catalytic residues.

    Directory of Open Access Journals (Sweden)

    Sandeep Chakraborty

    Full Text Available The aspiration to mimic and accelerate natural evolution has fueled interest in directed evolution experiments, which endow or enhance functionality in enzymes. Barring a few de novo approaches, most methods take a template protein having the desired activity, known active site residues and structure, and proceed to select a target protein which has a pre-existing scaffold congruent to the template motif. Previously, we have established a computational method (CLASP based on spatial and electrostatic properties to detect active sites, and a method to quantify promiscuity in proteins. We exploit the prospect of promiscuous active sites to serve as the starting point for directed evolution and present a method to select a target protein which possesses a significant partial match with the template scaffold (DECAAF. A library of partial motifs, constructed from the active site residues of the template protein, is used to rank a set of target proteins based on maximal significant matches with the partial motifs, and cull out the best candidate from the reduced set as the target protein. Considering the scenario where this 'incubator' protein lacks activity, we identify mutations in the target protein that will mirror the template motif by superimposing the target and template protein based on the partial match. Using this superimposition technique, we analyzed the less than expected gain of activity achieved by an attempt to induce β-lactamase activity in a penicillin binding protein (PBP (PBP-A from T. elongatus, and attributed this to steric hindrance from neighboring residues. We also propose mutations in PBP-5 from E. coli, which does not have similar steric constraints. The flow details have been worked out in an example which aims to select a substitute protein for human neutrophil elastase, preferably related to grapevines, in a chimeric anti-microbial enzyme which bolsters the innate immune defense system of grapevines.

  17. Microwave heating of arginine yields highly fluorescent nanoparticles

    International Nuclear Information System (INIS)

    Philippidis, Aggelos; Stefanakis, Dimitrios; Anglos, Demetrios; Ghanotakis, Demetrios

    2013-01-01

    Brightly fluorescent nanoparticles were produced via a single-step, single-precursor procedure based on microwave heating of an aqueous solution of the amino acid arginine. Key structural and optical properties of the resulting Arg nanoparticles, Arg-dots, are reported and discussed with emphasis on the pH dependence of their fluorescence emission. The surface of the Arg-dots was functionalised through coupling to folic acid, opening up ways for connecting fluorescent nanoparticles to cancer cells. The generality and versatility of the microwave heating procedure was further demonstrated by the synthesis of different types of carbon nanoparticles, such as CE-dots, that were produced by use of citric acid and ethanolamine as precursors and compared to the Arg-dots.

  18. A chiral mixed metal-organic framework based on a Ni(saldpen) metalloligand: synthesis, characterization and catalytic performances.

    Science.gov (United States)

    Ren, Yanwei; Cheng, Xiaofei; Yang, Shaorong; Qi, Chaorong; Jiang, Huanfeng; Mao, Qiuping

    2013-07-21

    A three-dimensional (3D) chiral mixed metal-organic framework [Cd4Cl(Ni-L)3(Ni-HL)(H2O)6(DMF)]·4DMF (CMOF 1) based on a new enantiopure dicarboxyl-functionalized Ni(saldpen) metalloligand Ni-H2L and a novel tetranuclear cadmium cluster [Cd4Cl(CO2)7(CO2H)] has been synthesized and characterized by elemental analyses, IR and UV-vis spectra, thermogravimetric analysis, nitrogen and carbon dioxide adsorption, powder and single-crystal X-ray diffractions. Each tetranuclear-cadmium cluster in 1 is linked by eight Ni-L ligands, and each Ni-L ligand is linked by two tetranuclear-cadmium clusters to generate a 3D framework with 1D open channels (∼1.1 × 0.9 nm(2)) along the b-axis. Based on its good stability, permanent porosity, Lewis acid sites and moderate uptake for CO2, 1 can be used as a self-supported heterogeneous catalyst for the synthesis of optically active propylene carbonate by asymmetric cycloaddition of CO2 with racemic propylene oxide under relatively mild conditions.

  19. Small Molecule Inhibitors of Protein Arginine Methyltransferases

    Science.gov (United States)

    Hu, Hao; Qian, Kun; Ho, Meng-Chiao; Zheng, Y. George

    2016-01-01

    Introduction Arginine methylation is an abundant posttranslational modification occurring in mammalian cells and catalyzed by protein arginine methyltransferases (PRMTs). Misregulation and aberrant expression of PRMTs are associated with various disease states, notably cancer. PRMTs are prominent therapeutic targets in drug discovery. Areas covered The authors provide an updated review of the research on the development of chemical modulators for PRMTs. Great efforts are seen in screening and designing potent and selective PRMT inhibitors, and a number of micromolar and submicromolar inhibitors have been obtained for key PRMT enzymes such as PRMT1, CARM1, and PRMT5. The authors provide a focus on their chemical structures, mechanism of action, and pharmacological activities. Pros and cons of each type of inhibitors are also discussed. Expert opinion Several key challenging issues exist in PRMT inhibitor discovery. Structural mechanisms of many PRMT inhibitors remain unclear. There lacks consistency in potency data due to divergence of assay methods and conditions. Physiologically relevant cellular assays are warranted. Substantial engagements are needed to investigate pharmacodynamics and pharmacokinetics of the new PRMT inhibitors in pertinent disease models. Discovery and evaluation of potent, isoform-selective, cell-permeable and in vivo-active PRMT modulators will continue to be an active arena of research in years ahead. PMID:26789238

  20. Structures of Bacterial Biosynthetic Arginine Decarboxylases

    Energy Technology Data Exchange (ETDEWEB)

    F Forouhar; S Lew; J Seetharaman; R Xiao; T Acton; G Montelione; L Tong

    2011-12-31

    Biosynthetic arginine decarboxylase (ADC; also known as SpeA) plays an important role in the biosynthesis of polyamines from arginine in bacteria and plants. SpeA is a pyridoxal-5'-phosphate (PLP)-dependent enzyme and shares weak sequence homology with several other PLP-dependent decarboxylases. Here, the crystal structure of PLP-bound SpeA from Campylobacter jejuni is reported at 3.0 {angstrom} resolution and that of Escherichia coli SpeA in complex with a sulfate ion is reported at 3.1 {angstrom} resolution. The structure of the SpeA monomer contains two large domains, an N-terminal TIM-barrel domain followed by a {beta}-sandwich domain, as well as two smaller helical domains. The TIM-barrel and {beta}-sandwich domains share structural homology with several other PLP-dependent decarboxylases, even though the sequence conservation among these enzymes is less than 25%. A similar tetramer is observed for both C. jejuni and E. coli SpeA, composed of two dimers of tightly associated monomers. The active site of SpeA is located at the interface of this dimer and is formed by residues from the TIM-barrel domain of one monomer and a highly conserved loop in the {beta}-sandwich domain of the other monomer. The PLP cofactor is recognized by hydrogen-bonding, {pi}-stacking and van der Waals interactions.

  1. Arginine specific aminopeptidase from Lactobacillus brevis

    Directory of Open Access Journals (Sweden)

    Arya Nandan

    2010-12-01

    Full Text Available The proteolytic system of lactic acid bacteria contribute to the development of flavor during the ripening of cheese through the generation of short peptides and free amino acids, which directly or indirectly act as flavor precursors. Newly isolated lactic acid bacteria (LAB as well as those procured from culture collection centers were screened for the production of various substrate specific aminopeptidases. Among all the strains screened, L. brevis (NRRL B-1836 was found to produce quantifiable amount of intracellular arginine specific aminopeptidase (EC 3.4.11.6. The productivity of arginine aminopeptidase in 5 L fermentor was 36 IU/L/h. The Luedeking and Piret model was tested for intracellular production of aminopeptidase and the data seemed to fit well, as the correlation coefficient was 0.9964 for MRS. The αAP and βAP was 0.4865 and 0.0046, respectively in MRS medium indicating that the yield was predominantly depended on growth. The culture produced lactic acid and also tolerated pH 2.0-3.0 and 0.3-0.5% bile salts, the most important probiotic features.

  2. Purification of free arginine from chickpea (Cicer arietinum) seeds.

    Science.gov (United States)

    Cortés-Giraldo, Isabel; Megías, Cristina; Alaiz, Manuel; Girón-Calle, Julio; Vioque, Javier

    2016-02-01

    Chickpea is a grain legume widely consumed in the Mediterranean region and other parts of the world. Chickpea seeds are rich in proteins but they also contain a substantial amount of free amino acids, especially arginine. Hence chickpea may represent a useful source of free amino acids for nutritional or pharmaceutical purposes. Arginine is receiving great attention in recent years because it is the substrate for the synthesis of nitric oxide, an important signaling molecule involved in numerous physiological and pathological processes in mammals. In this work we describe a simple procedure for the purification of arginine from chickpea seeds, using nanofiltration technology and an ion-exchange resin, Amberlite IR-120. Arginine was finally purified by precipitation or crystallization, yielding preparations with purities of 91% and 100%, respectively. Chickpea may represent an affordable green source of arginine, and a useful alternative to production by fermentation or protein hydrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Highly catalytic carbon nanotube counter electrode on plastic for dye solar cells utilizing cobalt-based redox mediator

    International Nuclear Information System (INIS)

    Aitola, Kerttu; Halme, Janne; Feldt, Sandra; Lohse, Peter; Borghei, Maryam; Kaskela, Antti; Nasibulin, Albert G.; Kauppinen, Esko I.; Lund, Peter D.; Boschloo, Gerrit; Hagfeldt, Anders

    2013-01-01

    A flexible, slightly transparent and metal-free random network of single-walled carbon nanotubes (SWCNTs) on plain polyethylene terephthalate (PET) plastic substrate outperformed platinum on conductive glass and on plastic as the counter electrode (CE) of a dye solar cell employing a Co(II/III)tris(2,2′-bipyridyl) complex redox mediator in 3-methoxypropionitrile solvent. The CE charge-transfer resistance of the SWCNT film was 0.60 Ω cm 2 , 4.0 Ω cm 2 for sputtered platinum on indium tin oxide-PET substrate and 1.7 Ω cm 2 for thermally deposited Pt on fluorine-doped tin oxide glass, respectively. The solar cell efficiencies were in the same range, thus proving that an entirely carbon-based SWCNT film on plastic is as good CE candidate for the Co electrolyte

  4. Catalytic enantioselective olefin metathesis in natural product synthesis. Chiral metal-based complexes that deliver high enantioselectivity and more.

    Science.gov (United States)

    Hoveyda, Amir H; Malcolmson, Steven J; Meek, Simon J; Zhugralin, Adil R

    2010-01-01

    Chiral olefin metathesis catalysts enable chemists to access enantiomerically enriched small molecules with high efficiency; synthesis schemes involving such complexes can be substantially more concise than those that would involve enantiomerically pure substrates and achiral Mo alkylidenes or Ru-based carbenes. The scope of research towards design and development of chiral catalysts is not limited to discovery of complexes that are merely the chiral versions of the related achiral variants. A chiral olefin metathesis catalyst, in addition to furnishing products of high enantiomeric purity, can offer levels of efficiency, product selectivity and/or olefin stereoselectivity that are unavailable through the achiral variants. Such positive attributes of chiral catalysts (whether utilized in racemic or enantiomerically enriched form) should be considered as general, applicable to other classes of transformations.

  5. Catalytic Enantioselective Olefin Metathesis in Natural Product Synthesis. Chiral Metal-Based Complexes that Deliver High Enantioselectivity and More

    Science.gov (United States)

    Malcolmson, Steven J.; Meek, Simon J.; Zhugralin, Adil R.

    2012-01-01

    Chiral olefin metathesis catalysts enable chemists to access enantiomerically enriched small molecules with high efficiency; synthesis schemes involving such complexes can be substantially more concise than those that would involve enantiomerically pure substrates and achiral Mo alkylidenes or Ru-based carbenes. The scope of research towards design and development of chiral catalysts is not limited to discovery of complexes that are merely the chiral versions of the related achiral variants. A chiral olefin metathesis catalyst, in addition to furnishing products of high enantiomeric purity, can offer levels of efficiency, product selectivity and/or olefin stereoselectivity that are unavailable through the achiral variants. Such positive attributes of chiral catalysts (whether utilized in racemic or enantiomerically enriched form) should be considered as general, applicable to other classes of transformations. PMID:19967680

  6. Dietary supplementation with L-arginine between days 14 and 25 of gestation enhances embryonic development and survival in gilts.

    Science.gov (United States)

    Li, Xilong; Bazer, Fuller W; Johnson, Gregory A; Burghardt, Robert C; Frank, James W; Dai, Zhaolai; Wang, Junjun; Wu, Zhenlong; Shinzato, Izuru; Wu, Guoyao

    2014-02-01

    Embryonic loss is a major problem in mammals, but there are few effective ways to prevent it. Using a porcine model, we determined effects of dietary L-arginine supplementation between days 14 and 25 of gestation on embryonic growth and survival. Gilts were checked daily for estrus with boars in the morning and bred at onset of the second estrus and 12 h later (the time of breeding = day 0 of gestation). Between days 14 and 25 of gestation, 15 gilts/treatment were housed individually and fed twice daily 1 kg of a corn- and soybean meal-based diet supplemented with 0.0, 0.4, or 0.8 % L-arginine. All diets were made isonitrogenous by addition of L-alanine. On day 25 of gestation, gilts were hysterectomized to obtain conceptuses. Compared with controls, dietary supplementation with 0.4 or 0.8 % L-arginine increased (P ≤ 0.05) arginine concentrations in maternal plasma, total volume of amniotic fluid; total amounts of arginine in allantoic and amniotic fluids; total amounts of fructose and most amino acids in amniotic fluid; placental growth; and the number of viable fetuses per litter by 2. The numbers of total fetuses, fetal weight, corpora lutea, volume of allantoic fluid, maternal circulating levels of progesterone and estrogen, or total amounts of hormones in allantoic fluid did not differ among the three treatment groups. Reproductive performance of gilts did not differ between the 0.4 and 0.8 % L-arginine groups. Thus, dietary supplementation with 0.4 or 0.8 % L-arginine between days 14 and 25 of gestation enhances embryonic/fetal survival in swine.

  7. Do the accelerating actions of tianeptine and l-arginine on cortical spreading depression interact? An electrophysiological analysis in young and adult rats.

    Science.gov (United States)

    Maia, Luciana Maria Silva de Seixas; Amancio-Dos-Santos, Angela; Germano, Paula Catirina Pereira da Silva; Falcão, Anna Carolina Santos Marinho; Duda-de-Oliveira, Desirré; Guedes, Rubem Carlos Araújo

    2017-05-22

    In the rat, we previously demonstrated that serotonin-enhancing drugs impair cortical spreading depression (CSD) and that l-arginine (arginine) treatment enhances CSD. Here, we investigated the interaction between topical application of the serotonin uptake enhancer tianeptine and systemic arginine administration on CSD. From postnatal day 7-28, female Wistar rats (n=40) received by gavage 300mg/Kg/day arginine (n=20) or water (n=20). Half of the arginine- or water-treated rats underwent CSD recording at 30-40days of age (young), while the other half was recorded at 90-120days (adult). Following baseline recording (four episodes of CSD), we applied tianeptine solution (10mg/ml) to a rectangular portion of the intact dura mater for 10-min and then elicited CSD. This procedure was repeated three times. Compared to baseline values, CSD velocities and amplitudes following tianeptine application increased, and CSD duration decreased significantly (p<0.05) in both young and adult rats, regardless of treatment group. CSD acceleration caused by systemic treatment with arginine is in agreement with previous findings. Topical cortical application of tianeptine replicated the effect of systemic application, suggesting a cortically based mechanism for tianeptine's action. However, the absence of interaction between arginine and tianeptine treatments suggests that they probably act through separate mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Catalytic Upgrading of 5-Hydroxymethylfurfural to Drop-in Biofuels by Solid Base and Bifunctional Metal-Acid Catalysts.

    Science.gov (United States)

    Bohre, Ashish; Saha, Basudeb; Abu-Omar, Mahdi M

    2015-12-07

    Design and synthesis of effective heterogeneous catalysts for the conversion of biomass intermediates into long chain hydrocarbon precursors and their subsequent deoxygenation to hydrocarbons is a viable strategy for upgrading lignocellulose into distillate range drop-in biofuels. Herein, we report a two-step process for upgrading 5-hydroxymethylfurfural (HMF) to C9 and C11 fuels with high yield and selectivity. The first step involves aldol condensation of HMF and acetone with a water tolerant solid base catalyst, zirconium carbonate (Zr(CO3 )x ), which gave 92 % C9 -aldol product with high selectivity at nearly 100 % HMF conversion. The as-synthesised Zr(CO3 )x was analysed by several analytical methods for elucidating its structural properties. Recyclability studies of Zr(CO3 )x revealed a negligible loss of its activity after five consecutive cycles over 120 h of operation. Isolated aldol product from the first step was hydrodeoxygenated with a bifunctional Pd/Zeolite-β catalyst in ethanol, which showed quantitative conversion of the aldol product to n-nonane and 1-ethoxynonane with 40 and 56 % selectivity, respectively. 1-Ethoxynonane, a low oxygenate diesel range fuel, which we report for the first time in this paper, is believed to form through etherification of the hydroxymethyl group of the aldol product with ethanol followed by opening of the furan ring and hydrodeoxygenation of the ether intermediate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Converting the Yeast Arginine Can1 Permease to a Lysine Permease*

    Science.gov (United States)

    Ghaddar, Kassem; Krammer, Eva-Maria; Mihajlovic, Natalija; Brohée, Sylvain; André, Bruno; Prévost, Martine

    2014-01-01

    Amino acid uptake in yeast cells is mediated by about 16 plasma membrane permeases, most of which belong to the amino acid-polyamine-organocation (APC) transporter family. These proteins display various substrate specificity ranges. For instance, the general amino acid permease Gap1 transports all amino acids, whereas Can1 and Lyp1 catalyze specific uptake of arginine and lysine, respectively. Although Can1 and Lyp1 have different narrow substrate specificities, they are close homologs. Here we investigated the molecular rules determining the substrate specificity of the H+-driven arginine-specific permease Can1. Using a Can1-Lyp1 sequence alignment as a guideline and a three-dimensional Can1 structural model based on the crystal structure of the bacterial APC family arginine/agmatine antiporter, we introduced amino acid substitutions liable to alter Can1 substrate specificity. We show that the single substitution T456S results in a Can1 variant transporting lysine in addition to arginine and that the combined substitutions T456S and S176N convert Can1 to a Lyp1-like permease. Replacement of a highly conserved glutamate in the Can1 binding site leads to variants (E184Q and E184A) incapable of any amino acid transport, pointing to a potential role for this glutamate in H+ coupling. Measurements of the kinetic parameters of arginine and lysine uptake by the wild-type and mutant Can1 permeases, together with docking calculations for each amino acid in their binding site, suggest a model in which residues at positions 176 and 456 confer substrate selectivity at the ligand-binding stage and/or in the course of conformational changes required for transport. PMID:24448798

  10. Dietary L-arginine supplementation enhances intestinal development and expression of vascular endothelial growth factor in weanling piglets.

    Science.gov (United States)

    Yao, Kang; Guan, Shu; Li, Tiejun; Huang, Ruilin; Wu, Guoyao; Ruan, Zheng; Yin, Yulong

    2011-03-01

    Oral administration of L-arginine has been reported to prevent gut disease in human infants. However, little is known about the effects of dietary arginine supplementation on intestinal development of weaned piglets. In the present study, twenty 21-d-old castrated piglets with 5·3 (SEM 0·13) kg body weight (BW) were weaned from sows, individually housed and randomly assigned to one of the two maize- and soyabean meal-based diets supplemented with 0 or 1% L-arginine. After consuming the diets for 7 d, six pigs were randomly selected from each group to obtain various tissues. Compared with control pigs, dietary supplementation with 1% L-arginine did not affect feed intake but enhanced (Psupplemented piglets was 21, 28 and 25% greater (Psupplementation increased (Psupplementation with 1% L-arginine increased (Psupplementation enhances intestinal growth, development and expression of VEGF in early-weaned pigs fed a maize- and soyabean meal-based diet. The findings may have important implications for neonatal pigs under stressful or diseased conditions.

  11. Syntheses, structures, molecular and cationic recognitions and catalytic properties of two lanthanide coordination polymers based on a flexible tricarboxylate

    International Nuclear Information System (INIS)

    Zhu, Yu; Wang, Yan-Mei; Xu, Ji; Liu, Pan; Weththasinha, H.A.B.M.D.; Wu, Yun-Long; Lu, Xiao-Qing; Xie, Ji-Min

    2014-01-01

    Two lanthanide coordination polymers, namely, ([La(TTTA)(H 2 O) 2 ]·2H 2 O) n (La-TTTA) and [Nd(TTTA)(H 2 O) 2 ]·2H 2 O) n (Nd-TTTA) have been hydrothermally synthesized through the reaction of lanthanide ions (La 3+ and Nd 3+ ) with the flexible tripodal ligand 2,2′,2″-[1,3,5-triazine-2,4,6-triyltris(thio)]tris-acetic acid (H 3 TTTA). La-TTTA and Nd-TTTA are isostructural and both show three dimensional structures. La-TTTA and Nd-TTTA show good recognition of amine molecules via quenching the luminescent intensities in amines emulsions. They can also recognize Fe 3+ , Cu 2+ , Mg 2+ , Cr 3+ and Co 2+ ions with the quenching the peak around 361 nm when the compounds immersed in ionic solutions. The two compounds act as efficient Lewis acid catalysts for the cyanosilylation of benzaldehyde and derivatives in high yields shortly due to the strong Lewis acidity and the possible open sites of the lanthanide ions. - Graphical abstract: We have synthesized two isostructural 3D compounds based on H 3 TTTA. They are chemical sensor of amine solvents and cations. They have higher yields and TOFs to catalyze cyanosilylation reactions. - Highlights: • The compounds show recognition of amine molecules via quenching luminescent intensities. • The compounds recognize Fe 3+ , Cu 2+ , Mg 2+ , Cr 3+ and Co 2+ ions via quenching the peak around 361 nm. • They act as efficient Lewis acid catalysts for the cyanosilylation reactions in high yields

  12. Model-based analysis of CO2 revalorization for di-methyl ether synthesis driven by solar catalytic reforming

    International Nuclear Information System (INIS)

    Luu, Minh Tri; Milani, Dia; Sharma, Manish; Zeaiter, Joseph; Abbas, Ali

    2016-01-01

    Highlights: • Solar energy applied for synthesis of di-methyl ether via dry methane reforming. • Concentrated solar energy at receiver reaction zone for syngas generation. • H 2 /CO molar ratio of ‘1’ is maintained via two alternative processing routes. • Assessed three days of operation under different insolation levels. • Improvements of 18.7%, 32.2% and 20% for methane, energy and CO 2 emission intensities. - Abstract: The application of solar energy is investigated for the synthesis of di-methyl ether (DME) in a solar irradiated dry methane reformer (DMR). Solar radiations are concentrated onto a receiver and distributed to the reaction zone to provide necessary energy for syngas (CO and H 2 ) generation. In order to maintain a H 2 /CO molar ratio of ‘1’, as required in DME synthesis, the produced syngas is processed via two alternative routes: solar reformer coupled in parallel with a non-solar reformer (SoR-NSoR) and solar reformer integrated with a water-gas shift reactor (SoR-WGS). It is found that steam methane reforming (SMR) is the most suitable methodology when coupled with a solar reformer due to high H 2 content in the SMR syngas. Further performance analysis is conducted by simulating three days of operation under different insolation levels (high, medium and low irradiations). The simulation results showed that the SoR-WGS configuration produces the highest improvements of 18.7%, 32.2% and 20% in terms of methane, energy and CO 2 emission intensity respectively. This enhanced process performance originates from the exothermic nature of the WGS process which helps in controlling the overall syngas composition, whereas the SoR-NSoR requires fossil based thermal energy to drive the NSoR process to similar control targets. This promising improvement of all metrics in SoR-WGS may stimulate in-depth techno-economic feasibility of this unique solar integration for DME and other synthetic fuels production.

  13. Arginine Vasotocin, the Social Neuropeptide of Amphibians and Reptiles

    Directory of Open Access Journals (Sweden)

    Walter Wilczynski

    2017-08-01

    Full Text Available Arginine vasotocin (AVT is the non-mammalian homolog of arginine vasopressin (AVP and, like vasopressin, serves as an important modulator of social behavior in addition to its peripheral functions related to osmoregulation, reproductive physiology, and stress hormone release. In amphibians and reptiles, the neuroanatomical organization of brain AVT cells and fibers broadly resembles that seen in mammals and other taxa. Both parvocellular and magnocellular AVT-containing neurons are present in multiple populations located mainly in the basal forebrain from the accumbens–amygdala area to the preoptic area and hypothalamus, from which originate widespread fiber connections spanning the brain with a particularly heavy innervation of areas associated with social behavior and decision-making. As for mammalian AVP, AVT is present in greater amounts in males in many brain areas, and its presence varies seasonally, with hormonal state, and in males with differing social status. AVT’s social influence is also conserved across herpetological taxa, with significant effects on social signaling and aggression, and, based on the very small number of studies investigating more complex social behaviors in amphibians and reptiles, AVT may also modulate parental care and social bonding when it is present in these vertebrates. Within this conserved pattern, however, both AVT anatomy and social behavior effects vary significantly across species. Accounting for this diversity represents a challenge to understanding the mechanisms by which AVT exerts its behavioral effects, as well are a potential tool for discerning the structure-function relationships underlying AVT’s many effects on behavior.

  14. Arginine Vasotocin, the Social Neuropeptide of Amphibians and Reptiles

    Science.gov (United States)

    Wilczynski, Walter; Quispe, Maricel; Muñoz, Matías I.; Penna, Mario

    2017-01-01

    Arginine vasotocin (AVT) is the non-mammalian homolog of arginine vasopressin (AVP) and, like vasopressin, serves as an important modulator of social behavior in addition to its peripheral functions related to osmoregulation, reproductive physiology, and stress hormone release. In amphibians and reptiles, the neuroanatomical organization of brain AVT cells and fibers broadly resembles that seen in mammals and other taxa. Both parvocellular and magnocellular AVT-containing neurons are present in multiple populations located mainly in the basal forebrain from the accumbens–amygdala area to the preoptic area and hypothalamus, from which originate widespread fiber connections spanning the brain with a particularly heavy innervation of areas associated with social behavior and decision-making. As for mammalian AVP, AVT is present in greater amounts in males in many brain areas, and its presence varies seasonally, with hormonal state, and in males with differing social status. AVT’s social influence is also conserved across herpetological taxa, with significant effects on social signaling and aggression, and, based on the very small number of studies investigating more complex social behaviors in amphibians and reptiles, AVT may also modulate parental care and social bonding when it is present in these vertebrates. Within this conserved pattern, however, both AVT anatomy and social behavior effects vary significantly across species. Accounting for this diversity represents a challenge to understanding the mechanisms by which AVT exerts its behavioral effects, as well are a potential tool for discerning the structure-function relationships underlying AVT’s many effects on behavior. PMID:28824546

  15. Integration of Methane Steam Reforming and Water Gas Shift Reaction in a Pd/Au/Pd-Based Catalytic Membrane Reactor for Process Intensification

    Directory of Open Access Journals (Sweden)

    Bernardo Castro-Dominguez

    2016-09-01

    Full Text Available Palladium-based catalytic membrane reactors (CMRs effectively remove H2 to induce higher conversions in methane steam reforming (MSR and water-gas-shift reactions (WGS. Within such a context, this work evaluates the technical performance of a novel CMR, which utilizes two catalysts in series, rather than one. In the process system under consideration, the first catalyst, confined within the shell side of the reactor, reforms methane with water yielding H2, CO and CO2. After reforming is completed, a second catalyst, positioned in series, reacts with CO and water through the WGS reaction yielding pure H2O, CO2 and H2. A tubular composite asymmetric Pd/Au/Pd membrane is situated throughout the reactor to continuously remove the produced H2 and induce higher methane and CO conversions while yielding ultrapure H2 and compressed CO2 ready for dehydration. Experimental results involving (i a conventional packed bed reactor packed (PBR for MSR, (ii a PBR with five layers of two catalysts in series and (iii a CMR with two layers of two catalysts in series are comparatively assessed and thoroughly characterized. Furthermore, a comprehensive 2D computational fluid dynamics (CFD model was developed to explore further the features of the proposed configuration. The reaction was studied at different process intensification-relevant conditions, such as space velocities, temperatures, pressures and initial feed gas composition. Finally, it is demonstrated that the above CMR module, which was operated for 600 h, displays quite high H2 permeance and purity, high CH4 conversion levels and reduced CO yields.

  16. L-arginine supplementation and experimental airway hyperreactivity.

    Science.gov (United States)

    Antosova, M; Strapkova, A

    2013-01-01

    The interest in L-arginine metabolism was triggered primarily by the discovery of nitric oxide (NO) synthesis in mammals and its remarkable biological roles. The real role of L-arginine in the airway hyperreactivity (AHR) has not been established yet. Therefore, we studied whether supplementation of L-arginine can influence the experimental AHR evoked by two different triggers - allergen and exogenous irritant (toluene vapours). Male TRIK strain guinea pigs were used in the study. We used two patterns of pretreatment with L-arginine in vivo, short- and long-term, in a dose of 300 mg/kg administered i.p., after which we studied reactivity of airway smooth muscles in vitro. Pretreatment with L-arginine for 3 days decreased the airway smooth muscle reactivity induced by toluene vapour, whereas pretreatment for 17 days was without any additional effect on smooth muscle reactivity. The short-term pretreatment in ovalbumin-induced hyperreactivity caused an increase in airway smooth muscle reactivity to lower concentrations of both bronchoconstrictors. On the other side, this pretreatment significantly decreased smooth muscle reactivity to high concentrations of both bronchoconstrictors. Supplementation of L-arginine resulted in a modification of the airway smooth muscle response. The effect of supplementation was different depending on the AHR trigger, airway region and pretreatment duration. The results also underscore the importance of an optimal L-arginine level for the control of bronchial tone.

  17. Asymmetric Dimethyl Arginine in Hypothyroid Patients

    International Nuclear Information System (INIS)

    Abdel-Messeih, P.L.

    2012-01-01

    Thyroid diseases may lead to endothelial dysfunction, however, the mechanism underlying the endothelial dysfunction in thyroid disease is still not clear. Asymmetric dimethyl arginine (ADMA), a novel inhibitor of endothelial nitric oxide synthetase (eNOS), was reported to inhibit nitric oxide (NO) synthesis from L-arginine. The present study was carried out to investigate ADMA levels together with effects of dislipidemia in sub-clinical and overt hypothyroid females. There were significant increase in the levels of total cholesterol, low density lipoprotein-cholesterol (LDL-c), high density lipoprotein-cholesterol (HDL-c), thyroid stimulating hormone (TSH) and ADMA in hypothyroid females as compared to controls while the levels of NO and free T 4 were significantly decreased than controls. Sub-clinical hypothyroid females had significant high TSH, LDL-c and non-significantly high ADMA levels and total cholesterol as compared to controls while they had significant decrease in NO, HDL-c and non-significant decrease in free T 4 as compared to controls. There were significant negative correlations between NO and both ADMA (r 2 = 0.84) and free T 4 (r 2 = 0.95) in overt hypothyroid group while significant positive correlation (r 2 = 0.85) was detected between TSH and HDL-c in the same group. These results are highly suggestive that the decrease of nitric oxide secondary to accumulation of ADMA represent an important pathogenic factor together with dyslipidemia in endothelial dysfunction and increased cardiovascular risk especially in hypothyroid females

  18. Reduced caloric intake during endotoxemia reduces arginine availability and metabolism.

    Science.gov (United States)

    Poeze, Martijn; Bruins, Maaike J; Luiking, Yvette C; Deutz, Nicolaas E

    2010-04-01

    Inadequate caloric intake increases the risk of sepsis-induced complications. Metabolic changes during sepsis indicate that the availability of the amino acid l-arginine decreases. Availability of arginine may further decrease during reduced caloric intake, which thereby limits the adaptive response of arginine-nitric oxide metabolism during sepsis. We tested the hypothesis that reduced caloric intake during endotoxemia, as an experimental model for sepsis, further reduces arginine availability. In a randomized trial, a 7-d reduced caloric intake feed regimen (RE; n = 9) was compared with a normal control feed regimen (CE; n = 9), before 24 h of endotoxemia, as a model for sepsis. Whole-body arginine-nitric oxide metabolism and protein metabolism were measured by using a stable-isotope infusion of [(15)N(2)]arginine, [(13)C-(2)H(2)]citrulline, [(2)H(5)]phenylalanine, and [(2)H(2)]tyrosine. Plasma pyruvate and lactate concentrations were determined by fully automated HPLC. Pre-endotoxin arginine appearance was significantly lower in the RE group than in the CE group (P = 0.002). During endotoxemia, arginine appearance increased in the CE animals but not in the RE animals (P = 0.04). In addition, nitric oxide production was significantly lower in the RE animals (P endotoxemia in the RE group than in the CE group (P endotoxemia but increased significantly during endotoxemia in the RE group (P = 0.04). A well-nourished condition before prolonged endotoxemia results in a better ability to adapt to endotoxin-induced metabolic deterioration of arginine-nitric oxide metabolism than does reduced caloric intake before endotoxemia.

  19. Removal of ethylene from air stream by adsorption and plasma-catalytic oxidation using silver-based bimetallic catalysts supported on zeolite.

    Science.gov (United States)

    Trinh, Quang Hung; Lee, Sang Baek; Mok, Young Sun

    2015-03-21

    Dynamic adsorption of ethylene on 13X zeolite-supported Ag and Ag-M(x)O(y) (M: Co, Cu, Mn, and Fe), and plasma-catalytic oxidation of the adsorbed ethylene were investigated. The experimental results showed that the incorporation of Ag into zeolite afforded a marked enhancement in the adsorptivity for ethylene. The addition of transition metal oxides was found to have a positive influence on the ethylene adsorption, except Fe(x)O(y). The presence of the additional metal oxides, however, appeared to somewhat interrupt the diffusion of ozone into the zeolite micro-pores, leading to a decrease in the plasma-catalytic oxidation efficiency of the ethylene adsorbed there. Among the second additional metal oxides, Fe(x)O(y) was able to reduce the emission of ozone during the plasma-catalytic oxidation stage while keeping a high effectiveness for the oxidative removal of the adsorbed ethylene. The periodical treatment consisting of adsorption followed by plasma-catalytic oxidation may be a promising energy-efficient ethylene abatement method. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Molybdenum-based additives to mixed-metal oxides for use in hot gas cleanup sorbents for the catalytic decomposition of ammonia in coal gases

    Science.gov (United States)

    Ayala, Raul E.

    1993-01-01

    This invention relates to additives to mixed-metal oxides that act simultaneously as sorbents and catalysts in cleanup systems for hot coal gases. Such additives of this type, generally, act as a sorbent to remove sulfur from the coal gases while substantially simultaneously, catalytically decomposing appreciable amounts of ammonia from the coal gases.

  1. Effects of L-arginine pretreatment on nitric oxide metabolism and hepatosplanchnic perfusion during porcine endotoxemia

    NARCIS (Netherlands)

    Poeze, Martijn; Bruins, Maaike J.; Kessels, Fons; Luiking, Yvette C.; Lamers, Wouter H.; Deutz, Nicolaas Ep

    2011-01-01

    Background: Sepsis is accompanied by an increased need for and a decreased supply of arginine, reflecting a condition of arginine deficiency. Objective: The objective was to evaluate the effects of L-arginine pretreatment on arginine-nitric oxide (NO) production and hepatosplanchnic perfusion during

  2. Nickel-based xerogel catalysts: Synthesis via fast sol-gel method and application in catalytic hydrogenation of p-nitrophenol to p-aminophenol

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jin; Wang, Qiang; Fan, Dongliang; Ma, Lirong; Jiang, Deli; Xie, Jimin, E-mail: xiejm391@sohu.com; Zhu, Jianjun, E-mail: zhjj029@sina.com

    2016-09-30

    out to investigate the reducibility of nickel species and the interaction between nickel species and alumina. The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated over the prepared nickel-based xerogel catalysts. The conversion of p-nitrophenol was monitored by UV spectrophotometry and high performance liquid chromatography (HPLC). The results show that the catalysts are highly selective for the conversion of p-nitrophenol to p-aminophenol and the order of catalytic activities of the catalysts is Ni < Ni-Al{sub 2}O{sub 3} < Ni-Ca-Al{sub 2}O{sub 3}. The catalysts were recycled and were used to evaluate the reutilization.

  3. Simultaneous quantification of arginine, alanine, methionine and cysteine amino acids in supplements using a novel bioelectro-nanosensor based on CdSe quantum dot/modified carbon nanotube hollow fiber pencil graphite electrode via Taguchi method.

    Science.gov (United States)

    Hooshmand, Sara; Es'haghi, Zarrin

    2017-11-30

    A number of four amino acids have been simultaneously determined at CdSe quantum dot-modified/multi-walled carbon nanotube hollow fiber pencil graphite electrode in different bodybuilding supplements. CdSe quantum dots were synthesized and applied to construct a modified carbon nanotube hollow fiber pencil graphite electrode. FT-IR, TEM, XRD and EDAX methods were applied for characterization of the synthesized CdSe QDs. The electro-oxidation of arginine (Arg), alanine (Ala), methionine (Met) and cysteine (Cys) at the surface of the modified electrode was studied. Then the Taguchi's method was applied using MINITAB 17 software to find out the optimum conditions for the amino acids determination. Under the optimized conditions, the differential pulse (DP) voltammetric peak currents of Arg, Ala, Met and Cys increased linearly with their concentrations in the ranges of 0.287-33670μM and detection limits of 0.081, 0.158, 0.094 and 0.116μM were obtained for them, respectively. Satisfactory results were achieved for calibration and validation sets. The prepared modified electrode represents a very good resolution between the voltammetric peaks of the four amino acids which makes it suitable for the detection of each in presence of others in real samples. Copyright © 2017. Published by Elsevier B.V.

  4. A comparison of DNA compaction by arginine and lysine peptides: a physical basis for arginine rich protamines.

    Science.gov (United States)

    DeRouchey, Jason; Hoover, Brandon; Rau, Donald C

    2013-04-30

    Protamines are small, highly positively charged peptides used to package DNA at very high densities in sperm nuclei. Tight DNA packing is considered essential for the minimization of DNA damage by mutagens and reactive oxidizing species. A striking and general feature of protamines is the almost exclusive use of arginine over lysine for the positive charge to neutralize DNA. We have investigated whether this preference for arginine might arise from a difference in DNA condensation by arginine and lysine peptides. The forces underlying DNA compaction by arginine, lysine, and ornithine peptides are measured using the osmotic stress technique coupled with X-ray scattering. The equilibrium spacings between DNA helices condensed by lysine and ornithine peptides are significantly larger than the interhelical distances with comparable arginine peptides. The DNA surface-to-surface separation, for example, is some 50% larger with polylysine than with polyarginine. DNA packing by lysine rich peptides in sperm nuclei would allow much greater accessibility to small molecules that could damage DNA. The larger spacing with lysine peptides is caused by both a weaker attraction and a stronger short-range repulsion relative to that of the arginine peptides. A previously proposed model for binding of polyarginine and protamine to DNA provides a convenient framework for understanding the differences between the ability of lysine and arginine peptides to assemble DNA.

  5. Porous media for catalytic renewable energy conversion

    Science.gov (United States)

    Hotz, Nico

    2012-05-01

    A novel flow-based method is presented to place catalytic nanoparticles into a reactor by sol-gelation of a porous ceramic consisting of copper-based nanoparticles, silica sand, ceramic binder, and a gelation agent. This method allows for the placement of a liquid precursor containing the catalyst into the final reactor geometry without the need of impregnating or coating of a substrate with the catalytic material. The so generated foam-like porous ceramic shows properties highly appropriate for use as catalytic reactor material, e.g., reasonable pressure drop due to its porosity, high thermal and catalytic stability, and excellent catalytic behavior. The catalytic activity of micro-reactors containing this foam-like ceramic is tested in terms of their ability to convert alcoholic biofuel (e.g. methanol) to a hydrogen-rich gas mixture with low concentrations of carbon monoxide (up to 75% hydrogen content and less than 0.2% CO, for the case of methanol). This gas mixture is subsequently used in a low-temperature fuel cell, converting the hydrogen directly to electricity. A low concentration of CO is crucial to avoid poisoning of the fuel cell catalyst. Since conventional Polymer Electrolyte Membrane (PEM) fuel cells require CO concentrations far below 100 ppm and since most methods to reduce the mole fraction of CO (such as Preferential Oxidation or PROX) have CO conversions of up to 99%, the alcohol fuel reformer has to achieve initial CO mole fractions significantly below 1%. The catalyst and the porous ceramic reactor of the present study can successfully fulfill this requirement.

  6. Synthesis, spectroscopic characterization and catalytic oxidation ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 123; Issue 3. Synthesis, spectroscopic characterization and catalytic oxidation properties of ONO/ONS donor Schiff base ruthenium(III) complexes containing PPh3/AsPh3. Priyarega M Muthu Tamizh R Karvembu R Prabhakaran K Natarajan. Volume 123 Issue 3 May ...

  7. Catalytic Converters Maintain Air Quality in Mines

    Science.gov (United States)

    2014-01-01

    At Langley Research Center, engineers developed a tin-oxide based washcoat to prevent oxygen buildup in carbon dioxide lasers used to detect wind shears. Airflow Catalyst Systems Inc. of Rochester, New York, licensed the technology and then adapted the washcoat for use as a catalytic converter to treat the exhaust from diesel mining equipment.

  8. Assay of L-Arginine in rat blood by enzymatic method

    Directory of Open Access Journals (Sweden)

    Галина Зуфарівна Гайда

    2015-11-01

    Full Text Available The study of enzymatic-chemical method of L-Arginine (Arg assay on the real samples of rat blood was done. The developed method is based on the usage of recombinant arginase I and 2,3-butandion monooxim. Urea, the final product of the reaction, is detected by fluorometry. The new method was shown to be suitable for Arg assay in biological liquids of mammalians

  9. Biochemical Characterization of An Arginine-Specific Alkaline Trypsin from Bacillus licheniformis.

    Science.gov (United States)

    Gong, Jin-Song; Li, Wei; Zhang, Dan-Dan; Xie, Min-Feng; Yang, Biao; Zhang, Rong-Xian; Li, Heng; Lu, Zhen-Ming; Xu, Zheng-Hong; Shi, Jin-Song

    2015-12-17

    In the present study, we isolated a trypsin-producing strain DMN6 from the leather waste and identified it as Bacillus licheniformis through a two-step screening strategy. The trypsin activity was increased up to 140 from 20 U/mL through culture optimization. The enzyme was purified to electrophoretic homogeneity with a molecular mass of 44 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the specific activity of purified enzyme is 350 U/mg with Nα-Benzoyl-L-arginine ethylester as the substrate. The optimum temperature and pH for the trypsin are 65 °C and pH 9.0, respectively. Also, the enzyme can be significantly activated by Ba(2+). This enzyme is relatively stable in alkaline environment and displays excellent activity at low temperatures. It could retain over 95% of enzyme activity after 180 min of incubation at 45 °C. The distinguished activity under low temperature and prominent stability enhance its catalytic potential. In the current work, the open reading frame was obtained with a length of 1371 nucleotides that encoded a protein of 456 amino acids. These data would warrant the B. licheniformis trypsin as a promising candidate for catalytic application in collagen preparation and leather bating through further protein engineering.

  10. Biochemical Characterization of An Arginine-Specific Alkaline Trypsin from Bacillus licheniformis

    Directory of Open Access Journals (Sweden)

    Jin-Song Gong

    2015-12-01

    Full Text Available In the present study, we isolated a trypsin-producing strain DMN6 from the leather waste and identified it as Bacillus licheniformis through a two-step screening strategy. The trypsin activity was increased up to 140 from 20 U/mL through culture optimization. The enzyme was purified to electrophoretic homogeneity with a molecular mass of 44 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the specific activity of purified enzyme is 350 U/mg with Nα-Benzoyl-l-arginine ethylester as the substrate. The optimum temperature and pH for the trypsin are 65 °C and pH 9.0, respectively. Also, the enzyme can be significantly activated by Ba2+. This enzyme is relatively stable in alkaline environment and displays excellent activity at low temperatures. It could retain over 95% of enzyme activity after 180 min of incubation at 45 °C. The distinguished activity under low temperature and prominent stability enhance its catalytic potential. In the current work, the open reading frame was obtained with a length of 1371 nucleotides that encoded a protein of 456 amino acids. These data would warrant the B. licheniformis trypsin as a promising candidate for catalytic application in collagen preparation and leather bating through further protein engineering.

  11. L-Arginine Pathway in COPD Patients with Acute Exacerbation

    DEFF Research Database (Denmark)

    Ruzsics, Istvan; Nagy, Lajos; Keki, Sandor

    2016-01-01

    (ADMA, SDMA) is related to hypoxia. In COPD, a rise in ADMA results in a shift of L-arginine breakdown, contributing to airway obstruction. We aimed to compare serum levels of ADMA, SDMA and L-arginine in patients with and without AECOPD. METHODS: L-arginine metabolites quantified by high......-performance liquid chromatography in venous blood samples and partial capillary oxygen pressure were prospectively investigated in 32 patients with COPD, 12 with AECOPD and 30 healthy subjects. RESULTS: Both ADMA and SDMA were significantly higher in AECOPD compared to stable COPD (p = 0.004 and p ....001, respectively). Oxygen content in capillaries correlated with serum ADMA concentration. However, the concentration of L-arginine was not different between AECOPD and stable COPD. Both ADMA and SDMA separated AECOPD with high sensitivity and specificity (AUC: 0.81, p = 0.001; AUC: 0.91, p

  12. Nonsolvent application of ionic liquids: organo-catalysis by 1-alkyl-3-methylimidazolium cation based room-temperature ionic liquids for chemoselective N-tert-butyloxycarbonylation of amines and the influence of the C-2 hydrogen on catalytic efficiency.

    Science.gov (United States)

    Sarkar, Anirban; Roy, Sudipta Raha; Parikh, Naisargee; Chakraborti, Asit K

    2011-09-02

    1-Alkyl-3-methylimidazolium cation based ionic liquids efficiently catalyze N-tert-butyloxycarbonylation of amines with excellent chemoselectivity. The catalytic role of the ionic liquid is envisaged as "electrophilic activation" of di-tert-butyl dicarbonate (Boc(2)O) through bifurcated hydrogen bond formation with the C-2 hydrogen of the 1-alkyl-3-methylimidazolium cation and has been supported by a downfield shift of the imidazolium C-2 hydrogen of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([bmim][NTf(2)]) from δ 8.39 to 8.66 in the presence of Boc(2)O in the (1)H NMR and a drastic reduction of the catalytic efficiency with 1-butyl-2,3-dimethylimidazolium ionic liquids that are devoid of the C-2 hydrogen. The differential time required for reaction with aromatic and aliphatic amines has offered means for selective N-t-Boc formation during inter and intramolecular competitions. Preferential N-t-Boc formation with secondary aliphatic amine has been achieved in the presence of primary aliphatic amine. Comparison of the catalytic efficiency for N-t-Boc formation with a common substrate revealed that [bmim][NTf(2)] is superior to the reported Lewis acid catalysts.

  13. Hybrid membrane with TiO2 based bio-catalytic nanoparticle suspension system for the degradation of bisphenol-A.

    Science.gov (United States)

    Hou, Jingwei; Dong, Guangxi; Luu, Belinda; Sengpiel, Robert G; Ye, Yun; Wessling, Matthias; Chen, Vicki

    2014-10-01

    The removal of micropollutant in wastewater treatment has become a key environmental challenge for many industrialized countries. One approach is to use enzymes such as laccase for the degradation of micropollutants such as bisphenol-A. In this work, laccase was covalently immobilized on APTES modified TiO2 nanoparticles, and the effects of particle modification on the bio-catalytic performance were examined and optimized. These bio-catalytic particles were then suspended in a hybrid membrane reactor for BPA removal with good BPA degradation efficiency observed. Substantial improvement in laccase stability was achieved in the hybrid system compared with free laccase under simulated harsh industrial wastewater treatment conditions (such as a wide range of pH and presence of inhibitors). Kinetic study provided insight of the effect of immobilization on the bio-degradation reaction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Reference Intervals for Plasma l-Arginine and the l-Arginine:Asymmetric Dimethylarginine Ratio in the Framingham Offspring Cohort123

    OpenAIRE

    Lüneburg, Nicole; Xanthakis, Vanessa; Schwedhelm, Edzard; Sullivan, Lisa M.; Maas, Renke; Anderssohn, Maike; Riederer, Ulrich; Glazer, Nicole L.; Vasan, Ramachandran S.; Böger, Rainer H.

    2011-01-01

    l-Arginine, as a precursor of NO synthesis, has attracted much scientific attention in recent years. Experimental mouse models suggest that l-arginine supplementation can retard, halt, or even reverse atherogenesis. In human studies, supplementation with l-arginine improved endothelium-dependent vasodilation. However, l-arginine levels are best interpreted in the context of levels of asymmetric dimethylarginine (ADMA), a competitive inhibitor of NO synthase. Thus, reference limits for circula...

  15. Catalytic activity of some oxime-based Pd(II-complexes in Suzuki coupling of aryl and heteroaryl bromides in water

    Directory of Open Access Journals (Sweden)

    Kamal M. Dawood

    2017-05-01

    Full Text Available The catalytic activity of four Pd(II-complexes of benzoazole-oximes was extensively studied in Suzuki–Miyaura C–C cross coupling reactions in water, as an eco-friendly green solvent, under both thermal heating as well as microwave irradiation conditions. The cross-coupling reactions included different activated and deactivated aryl- or heteroaryl-bromides with several arylboronic acids. The protected oxime-complexes were found to be more efficient than the free ones.

  16. The performance of manganese-based catalysts with Ce0.65Zr0.35O2 as support for catalytic oxidation of toluene

    Science.gov (United States)

    Hou, Zhongyan; Feng, Jie; Lin, Tao; Zhang, Hailong; Zhou, Xiaoying; Chen, Yaoqiang

    2018-03-01

    Mesoporous Ce0.65Zr0.35O2 composites are synthesized by co-precipitation method and a series of novel MnOx/Ce0.65Zr0.35O2 monolithic catalysts with different content of manganese oxides are prepared for toluene catalytic oxidation. The results show that the catalytic activity of Ce0.65Zr0.35O2 is promoted by introduction of manganese and influenced remarkably by the amount of MnOx. In particular, the catalyst with 15 wt.% MnOx loading performs best activity in view of the lowest complete conversion temperature of 250 °C at a GHSV of 12000 h-1. According to the characterizations of N2 adsorption-desorption, XRD, SEM-EDX, H2-TPR, O2-TPD and XPS analyses, the superior catalytic activity could be attributed to the well-dispersed MnOx species, good low-temperature redox property, more Mn4+ species and more available surface and lattice oxygen species. Additionally, the optimized catalyst shows high stability during the thermal aging experiment and long-term testing experiment, and it also shows a good activity under the condition of high gas hourly space velocity, which presents a well application prospect.

  17. Prospective studies on diet and coronary heart disease : the role of fatty acids, B-vitamins and arginine

    NARCIS (Netherlands)

    Oomen, C.M.

    2001-01-01

    In this thesis, the results of prospective studies on fatty acids, B-vitamins and arginine and the occurrence of coronary heart disease have been described. The results presented are mainly based on the Zutphen Elderly Study. In this study of 939 men aged 64-84 years, detailed information

  18. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  19. Effects of L-arginine supplementation on blood flow, oxidative stress status and exercise responses in young adults with uncomplicated type I diabetes.

    Science.gov (United States)

    Fayh, Ana Paula Trussardi; Krause, Mauricio; Rodrigues-Krause, Josianne; Ribeiro, Jerri Luiz; Ribeiro, Jorge Pinto; Friedman, Rogério; Moreira, José Cláudio Fonseca; Reischak-Oliveira, Alvaro

    2013-04-01

    Vascular disease is the principal cause of death and disability in patients with diabetes, and endothelial dysfunction seems to be the major cause in its pathogenesis. Since L-arginine levels are diminished in conditions such as type 1 and type 2 diabetes, in this work we aimed to verify the effects of L-arginine supplementation (7 g/day) over the endothelial function and oxidative stress markers in young male adults with uncomplicated type 1 diabetes. We also investigated the influences of L-arginine administration on vascular/oxidative stress responses to an acute bout of exercise. Ten young adult male subjects with uncomplicated type 1 diabetes and twenty matched controls volunteered for this study. We analysed the influence of L-arginine supplementation (7 g/day during 1 week) over lower limb blood flow (using a venous occlusion plethysmography technique), oxidative stress marker (TBARS, Carbonyls), anti-oxidant parameters (uric acid and TRAP) and total tNOx in rest conditions and after a single bout of submaximal exercise (VO₂ at 10 % below the second ventilatory threshold). Data described as mean ± standard error (SE). Alpha level was P L-Arginine supplementation completely recovered basal blood flow to normal levels in type 1 diabetics' subjects (2.66 ± 0.3 to 4.74 ± 0.86 ml 100 ml⁻¹ min⁻¹) but did not interfere in any parameter of redox state or exercise. Our findings highlight the importance of L-arginine for the improvement of vascular function in subjects with diabetes, indicating that L-arginine supplementation could be an essential tool for the treatment for the disease complications, at least in non-complicated diabetes. However, based on our data, it is not possible to draw conclusions regarding the mechanisms by which L-arginine therapy is inducing improvements on cardiovascular function, but this important issue requires further investigations.

  20. Arginine side chain interactions and the role of arginine as a gating charge carrier in voltage sensitive ion channels

    Science.gov (United States)

    Armstrong, Craig T.; Mason, Philip E.; Anderson, J. L. Ross; Dempsey, Christopher E.

    2016-02-01

    Gating charges in voltage-sensing domains (VSD) of voltage-sensitive ion channels and enzymes are carried on arginine side chains rather than lysine. This arginine preference may result from the unique hydration properties of the side chain guanidinium group which facilitates its movement through a hydrophobic plug that seals the center of the VSD, as suggested by molecular dynamics simulations. To test for side chain interactions implicit in this model we inspected interactions of the side chains of arginine and lysine with each of the 19 non-glycine amino acids in proteins in the protein data bank. The arginine guanidinium interacts with non-polar aromatic and aliphatic side chains above and below the guanidinium plane while hydrogen bonding with polar side chains is restricted to in-plane positions. In contrast, non-polar side chains interact largely with the aliphatic part of the lysine side chain. The hydration properties of arginine and lysine are strongly reflected in their respective interactions with non-polar and polar side chains as observed in protein structures and in molecular dynamics simulations, and likely underlie the preference for arginine as a mobile charge carrier in VSD.

  1. EPR, Endor and DFT Studies on X-Irradiated Single Crystals of L-Lysine HCl 2 H 2O and L-Arginine HCl H2O

    Science.gov (United States)

    Zhou, Yiying; Nelson, William H.

    2011-03-01

    When proteins and DNA interact, arginine and lysine are the two amino acids most often in close contact with the DNA. In order to understand the radiation damage to DNA in vivo, which is always associated with protein, it is important to learn the radiation chemistry of arginine and lysine independently, and then complexed to DNA. This work studied X-irradiated single crystals of L- lysine . HCl . 2 H2 O and L- arginine . HCl . H2 O with EPR, ENDOR techniques and DFT calculations. In both crystal types irradiated at 66K, the carboxyl anion radical and the decarboxylation radical were identified. Specifically, the calculations performed on the cluster models for the carboxyl anion radicals reproduced the proton transfers to the carboxyl group from the neighboring molecules through the hydrogen bonds. Moreover, computations supported the identification of one radical type within irradiated arginine as the guanidyl radical anion with an electron trapped by the guanidyl group. Based on the radicals detected in the crystal irradiated at 66K and at 298K, and the annealing experiments from the irradiation at 66K, the mechanisms of the irradiation damage on lysine and arginine were proposed, and the possible effects of irradiated arginine and lysine to the DNA within chromatin were analyzed.

  2. Dietary supplementation with 0.8% L-arginine between days 0 and 25 of gestation reduces litter size in gilts.

    Science.gov (United States)

    Li, Xilong; Bazer, Fuller W; Johnson, Gregory A; Burghardt, Robert C; Erikson, David W; Frank, James W; Spencer, Thomas E; Shinzato, Izuru; Wu, Guoyao

    2010-06-01

    In this study, we determined the effects of L-arginine supplementation during early pregnancy on embryonic/fetal survival and growth in gilts. Gilts were housed individually in pens and fed twice daily 1 kg of a corn- and soybean meal-based diet supplemented with 0.0, 0.4, or 0.8% L-arginine (wt:wt) between d 0 and 25 of gestation (10 gilts/treatment). The diets were made isonitrogenous by addition of appropriate amounts of L-alanine. At d 25 of gestation, gilts were fed L-alanine or L-arginine and hysterectomized 30 min later to obtain uteri and conceptuses (embryos and associated fetal membranes and fluids). Dietary supplementation with 0.4 or 0.8% L-arginine enhanced (P supplementation with 0.8% L-arginine decreased (P supplementation with 0.8% L-arginine between d 0 and 25 of gestation, while increasing placental vascularity, adversely affects the reproductive performance of gilts.

  3. Arginine dependence of tumor cells: targeting a chink in cancer's armor.

    Science.gov (United States)

    Patil, M D; Bhaumik, J; Babykutty, S; Banerjee, U C; Fukumura, D

    2016-09-22

    Arginine, one among the 20 most common natural amino acids, has a pivotal role in cellular physiology as it is being involved in numerous cellular metabolic and signaling pathways. Dependence on arginine is diverse for both tumor and normal cells. Because of decreased expression of argininosuccinate synthetase and/or ornithine transcarbamoylase, several types of tumor are auxotrophic for arginine. Deprivation of arginine exploits a significant vulnerability of these tumor cells and leads to their rapid demise. Hence, enzyme-mediated arginine depletion is a potential strategy for the selective destruction of tumor cells. Arginase, arginine deiminase and arginine decarboxylase are potential enzymes that may be used for arginine deprivation therapy. These arginine catabolizing enzymes not only reduce tumor growth but also make them susceptible to concomitantly administered anti-cancer therapeutics. Most of these enzymes are currently under clinical investigations and if successful will potentially be advanced as anti-cancer modalities.

  4. Modulating short tryptophan- and arginine-rich peptides activity by substitution with histidine.

    Science.gov (United States)

    Bacalum, Mihaela; Janosi, Lorant; Zorila, Florina; Tepes, Ana-Maria; Ionescu, Cristina; Bogdan, Elena; Hadade, Niculina; Craciun, Liviu; Grosu, Ion; Turcu, Ioan; Radu, Mihai

    2017-07-01

    High antimicrobial efficacy of short tryptophan-and arginine-rich peptides makes them good candidates in the fight against pathogens. Substitution of tryptophan and arginine by histidine could be used to modulate the peptides efficacy by optimizing their structures. The peptide (RRWWRWWRR), reported to showed good antimicrobial efficacy, was used as template, seven new analogs being designed substituting tryptophan or arginine with histidine. The peptides' efficacy was tested against E. coli, B. subtilis and S. aureus. The cytotoxicity and hemolytic effect were evaluated and the therapeutic index was inferred for each peptide. Atomic force microscopy and molecular simulation were used to analyze the effects of peptides on bacterial membrane. The substitution of tryptophan by histidine proved to strongly modulate the antimicrobial activity, mainly by changing the peptide-to-membrane binding energy. The substitution of arginine has low effect on the antimicrobial efficacy. The presence of histidine residue reduced the cytotoxic and hemolytic activity of the peptides in some cases maintaining the same efficacy against bacteria. The peptides' antimicrobial activity was correlated to the 3D-hydrophobic moment and to a simple structure-based packing parameter. The results show that some of these peptides have the potential to become good candidates to fight against bacteria. The substitution by histidine proved to fine tune the therapeutic index allowing the optimization of the peptide structure mainly by changing its binding energy and 3D-hydrophobic moment. The short tryptophan reach peptides therapeutic index can be maximized using the histidine substitution to optimize their structure. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Sustaining Intravitreal Residence With L-Arginine Peptide-Conjugated Nanocarriers.

    Science.gov (United States)

    Li, Hao; Liu, Wenzhong; Sorenson, Christine M; Sheibani, Nader; Albert, Daniel M; Senanayake, Thulani; Vinogradov, Serguei; Henkin, Jack; Zhang, Hao F

    2017-10-01

    Intravitreal injection of antiangiogenic agents is becoming a standard treatment for neovascular retinal diseases. Sustained release of therapeutics by injecting colloidal carriers is a promising approach to reduce the injection frequency, which reduces treatment burdens and the risk of complications on patients. Such sustained release often requires carriers to have micrometer-scale dimension that, however, can potentially promote glaucoma and inflammation. Small, polycationic particles can be immobilized in vitreous through multiple cooperative ionic interactions with hyaluronic acid of the vitreous interior, but such particles are generally toxic. Here, we synthesized and examined a biocompatible dextran-based nanocarrier (L-arginine with minimal toxicity, aiming to provide sustained release of therapeutic drugs in vitreous. We synthesized the nanocarriers with condensed cholesteryl dextran (CDEX) as core material. Cationic peptides containing 1 to 4 arginine groups, along with fluorescence tags, were conjugated to the CDEX surface. We monitored the carrier diffusion rate ex vivo and half-lives in vivo in rodent vitreous using fluorescence imaging. We evaluated the toxicity by histological examinations at the second, third, eighth, and thirty-sixth week. The diffusion rate of nanocarriers was inversely related to zeta potential values in freshly isolated vitreous humor. We observed increased half-lives in vivo with increasing zeta potential (up to 240 days). Histological examinations confirmed no adverse effects on ocular morphology and organization. We demonstrated the potential of L-arginine peptide-conjugated nanocarriers toward safe and sustained therapeutic release system for posterior eye diseases.

  6. Combination of arginine deprivation with TRAIL treatment as a targeted-therapy for mesothelioma.

    Science.gov (United States)

    Wangpaichitr, Medhi; Wu, Chunjing; Bigford, Gregory; Theodoropoulos, George; You, Min; Li, Ying Ying; Verona-Santos, Javier; Feun, Lynn G; Nguyen, Dao M; Savaraj, Niramol

    2014-12-01

    In the present study we present data to show that certain tumor cells including malignant pleural mesothelioma (MPM) cells do not express argininosuccinate synthetase (ASS), and thus are unable to synthesize arginine from citrulline. Exposure of these ASS-negative cells to the arginine degrading enzyme, arginine deiminase (ADI-PEG20), for 72 h results in significant increases in cleaved caspase-3. Importantly, this apoptotic signal is further strengthened by the addition of TNF-related apoptosis-inducing ligand (TRAIL). Using flow cytometry, we showed that the combination treatment (ADI-PEG20 at 50 ng/ml and TRAIL at 10 ng/ml) for 24 h resulted in profound cell death with 67% of cells positive for caspase-3 activity, while ADI-PEG20 alone or TRAIL alone resulted in only 10-15% cell death. This positive amplification loop is mediated through the cleavage of proapototic protein "BID". Our work represents a new strategy for treating patients with malignant pleural mesothelioma using targeted molecular therapeutics based on selected tumor markers, thus avoiding the use of potentially cytotoxic chemotherapy. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  7. L-Arginine Supplementation and Metabolism in Asthma

    Directory of Open Access Journals (Sweden)

    Angela Linderholm

    2011-01-01

    Full Text Available L-Arginine, the amino acid substrate for nitric oxide synthase, has been tested as a therapeutic intervention in a variety of chronic diseases and is commonly used as a nutritional supplement. In this study, we hypothesized that a subset of moderate to severe persistent asthma patients would benefit from supplementation with L-arginine by transiently increasing nitric oxide levels, resulting in bronchodilation and a reduction in inflammation. The pilot study consisted of a 3 month randomized, double-blind, placebo-controlled trial of L-arginine (0.05 g/kg twice daily in patients with moderate to severe asthma. We measured spirometry, exhaled breath nitric oxide, serum arginine metabolites, questionnaire scores, daily medication use and PEFR with the primary endpoint being the number of minor exacerbations at three months. Interim analysis of the 20 subjects showed no difference in the number of exacerbations, exhaled nitric oxide levels or lung function between groups, though participants in the L-arginine group had higher serum L-arginine at day 60 (2.0 ± 0.6 × 10−3 vs. 1.1 ± 0.2 × 10−3 µmol/L, p < 0.05, ornithine at day 30 (2.4 ± 0.9 vs. 1.2 ± 0.3 µmol/L serum, p < 0.05 and ADMA at day 30 (6.0 ± 1.5 × 10−1 vs. 2.6 ± 0.6 × 10−1 µmol/L serum, p < 0.05 on average compared to the placebo group. The study was terminated prematurely. Supplementing asthma subjects with L-arginine increases plasma levels; whether subgroups might benefit from such supplementation requires further study.

  8. Catalytic Antibodies: Concept and Promise

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 11. Catalytic Antibodies: Concept and Promise. Desirazu N Rao Bharath Wootla. General Article Volume 12 Issue ... Keywords. Catalytic antibodies; abzymes; hybridome technology; Diels– Alder reaction; Michaelis– Menten kinetics; Factor VIII.

  9. A new oxidovanadium(IV) Schiff base complex containing asymmetric tetradentate ONN′O′ Schiff base ligand: synthesis, characterization, crystal structure determination, thermal study and catalytic activity

    Czech Academy of Sciences Publication Activity Database

    Grivani, G.; Ghavami, A.; Eigner, Václav; Dušek, Michal; Khalaji, A.D.

    2015-01-01

    Roč. 26, č. 6 (2015), s. 779-784 ISSN 1001-8417 R&D Projects: GA ČR(CZ) GA14-03276S Institutional support: RVO:68378271 Keywords : oxidovanadium(IV) * Schiff base * crystal structure * nanoparticle * epoxidation Subject RIV: CC - Organic Chemistry Impact factor: 1.947, year: 2015

  10. Synthesis, characterization, crystal structure, catalytic activity in oxidative bromination, and thermal study of a new oxidovanadium Schiff base complex containing O, N-bidentate Schiff base ligand

    Czech Academy of Sciences Publication Activity Database

    Grivani, G.; Tahmasebi, V.; Khalaji, A.D.; Eigner, Václav; Dušek, Michal

    2014-01-01

    Roč. 67, č. 22 (2014), s. 3664-3677 ISSN 0095-8972 Institutional support: RVO:68378271 Keywords : oxidovanadium(IV) * Schiff base * single crystal * oxidative bromination Subject RIV: CA - Inorganic Chemistry Impact factor: 2.012, year: 2014

  11. Catalytic interface erosion

    International Nuclear Information System (INIS)

    Meng, H.; Cohen, E.G.D.

    1995-01-01

    We study interface erosion processes: catalytic erosions. We present two cases. (1) The erosion of a completely occupied lattice by one single moving particle starting from somewhere inside the lattice, considering deterministic as well as probabilistic erosion rules. In the latter case, the eroded regions appear to have interfaces with continuously tunable fractal dimensions. (2) The kinetic roughening of an initially flat surface, where ballistic or diffusion-limited particles, which remain intact themselves, erode the surface coming from the outside, using the same erosion rules as in (1). Many features resembling realistic interfaces, for example, islands and inlets, are generated. The dependence of the surface width on the system size is due to both the erosion mechanism and the way particles move before reaching the surface

  12. Catalytic detritiation of water

    International Nuclear Information System (INIS)

    Rogers, M.L.; Lamberger, P.H.; Ellis, R.E.; Mills, T.K.

    1977-01-01

    A pilot-scale system has been used at Mound Laboratory to investigate the catalytic detritiation of water. A hydrophobic, precious metal catalyst is used to promote the exchange of tritium between liquid water and gaseous hydrogen at 60 0 C. Two columns are used, each 7.5 m long by 2.5 cm ID and packed with catalyst. Water flow is 5-10 cm 3 /min and countercurrent hydrogen flow is 9,000-12,000 cm 3 /min. The equipment, except for the columns, is housed in an inert atmosphere glovebox and is computer controlled. The hydrogen is obtained by electrolysis of a portion of the water stream. Enriched gaseous tritium is withdrawn for further enrichment. A description of the system is included along with an outline of its operation. Recent experimental data are discussed

  13. Hydrodehalogenation of alkyl iodides with base-mediated hydrogenation and catalytic transfer hydrogenation: application to the asymmetric synthesis of N-protected α-methylamines.

    Science.gov (United States)

    Mandal, Pijus K; Birtwistle, J Sanderson; McMurray, John S

    2014-09-05

    We report a very mild synthesis of N-protected α-methylamines from the corresponding amino acids. Carboxyl groups of amino acids are reduced to iodomethyl groups via hydroxymethyl intermediates. Reductive deiodination to methyl groups is achieved by hydrogenation or catalytic transfer hydrogenation under alkaline conditions. Basic hydrodehalogenation is selective for the iodomethyl group over hydrogenolysis-labile protecting groups, such as benzyloxycarbonyl, benzyl ester, benzyl ether, and 9-fluorenyloxymethyl, thus allowing the conversion of virtually any protected amino acid into the corresponding N-protected α-methylamine.

  14. Catalytic Combustion of Gasified Waste

    Energy Technology Data Exchange (ETDEWEB)

    Kusar, Henrik

    2003-09-01

    This thesis concerns catalytic combustion for gas turbine application using a low heating-value (LHV) gas, derived from gasified waste. The main research in catalytic combustion focuses on methane as fuel, but an increasing interest is directed towards catalytic combustion of LHV fuels. This thesis shows that it is possible to catalytically combust a LHV gas and to oxidize fuel-bound nitrogen (NH{sub 3}) directly into N{sub 2} without forming NO{sub x} The first part of the thesis gives a background to the system. It defines waste, shortly describes gasification and more thoroughly catalytic combustion. The second part of the present thesis, paper I, concerns the development and testing of potential catalysts for catalytic combustion of LHV gases. The objective of this work was to investigate the possibility to use a stable metal oxide instead of noble metals as ignition catalyst and at the same time reduce the formation of NO{sub x} In paper II pilot-scale tests were carried out to prove the potential of catalytic combustion using real gasified waste and to compare with the results obtained in laboratory scale using a synthetic gas simulating gasified waste. In paper III, selective catalytic oxidation for decreasing the NO{sub x} formation from fuel-bound nitrogen was examined using two different approaches: fuel-lean and fuel-rich conditions. Finally, the last part of the thesis deals with deactivation of catalysts. The various deactivation processes which may affect high-temperature catalytic combustion are reviewed in paper IV. In paper V the poisoning effect of low amounts of sulfur was studied; various metal oxides as well as supported palladium and platinum catalysts were used as catalysts for combustion of a synthetic gas. In conclusion, with the results obtained in this thesis it would be possible to compose a working catalytic system for gas turbine application using a LHV gas.

  15. Determination of l-arginine and NG, NG - and NG, NG' -dimethyl-L-arginine in plasma by liquid chromatography as AccQ-Fluor fluorescent derivatives.

    Science.gov (United States)

    Heresztyn, Tamila; Worthley, Matthew I; Horowitz, John D

    2004-06-15

    A new HPLC assay for the detection of L-arginine, NG, NG-dimethyl-L-arginine (ADMA) and NG, NG' -dimethyl-L-arginine (SDMA) in plasma using the derivatisation reagent AccQ-Fluor (6-aminoquinolyl-N-hydroxysuccinimidyl carbamate) is described. The fluorescent derivatives produced are extremely stable enabling routine processing of large numbers of samples. Arginine and its metabolites are extracted from plasma on strong cation exchange (SCX) cartridges with NG-monomethyl-L-arginine (NMMA) as internal standard, derivatised and separated on a C18 column with acetonitrile in 0.1M sodium acetate buffer pH 6. Separation of the stereoisomers ADMA and SDMA was excellent and improvements to the solid phase extraction (SPE) procedure enabled good recovery (>80%) of arginine, ADMA and SDMA. The utility of the method is exemplified by comparison of plasma concentrations of ADMA, SDMA and arginine in healthy volunteers and diabetic/ischaemic patients.

  16. Effects of arginine vasopressin on musical working memory.

    Science.gov (United States)

    Granot, Roni Y; Uzefovsky, Florina; Bogopolsky, Helena; Ebstein, Richard P

    2013-01-01

    Previous genetic studies showed an association between variations in the gene coding for the 1a receptor of the neuro-hormone arginine vasopressin (AVP) and musical working memory (WM). The current study set out to test the influence of intranasal administration (INA) of AVP on musical as compared to verbal WM using a double blind crossover (AVP-placebo) design. Two groups of 25 males were exposed to 20 IU of AVP in one session, and 20 IU of saline water (placebo) in a second session, 1 week apart. In each session subjects completed the tonal subtest from Gordon's "Musical Aptitude Profile," the interval subtest from the "Montreal Battery for Evaluation of Amusias (MBEA)," and the forward and backward digit span tests. Scores in the digit span tests were not influenced by AVP. In contrast, in the music tests there was an AVP effect. In the MBEA test, scores for the group receiving placebo in the first session (PV) were higher than for the group receiving vasopressin in the first session (VP) (p music test these scores were significantly correlated with memory scores. Together the results reflect a complex interaction between AVP, musical memory, arousal, and contextual effects such as session, and base levels of memory. The results are interpreted in light of music's universal use as a means to modulate arousal on the one hand, and AVP's influence on mood, arousal, and social interactions on the other.

  17. Arginine kinase in Phytomonas, a trypanosomatid parasite of plants.

    Science.gov (United States)

    Canepa, Gaspar E; Carrillo, Carolina; Miranda, Mariana R; Sayé, Melisa; Pereira, Claudio A

    2011-09-01

    Phytomonas are trypanosomatid plant parasites closely related to parasites that cause several human diseases. Little is known about the biology of these organisms including aspects of their metabolism. Arginine kinase (E.C. 2.7.3.3) is a phosphotransferase which catalyzes the interconversion between the phosphagen phosphoarginine and ATP. This enzyme is present in some invertebrates and is a homolog of another widely distributed phosphosphagen kinase, creatine kinase. In this work, a single canonical arginine kinase isoform was detected in Phytomonas Jma by enzymatic activity assays, PCR, and Western Blot. This arginine kinase is very similar to the canonical isoforms found in T. cruzi and T. brucei, presenting about 70% of amino acid sequence identity and a very similar molecular weight (40kDa). The Phytomonas phosphagen system seems to be very similar to T. cruzi, which has only one isoform, or T. brucei (three isoforms); establishing a difference with other trypanosomatids, such as Leishmania, which completely lacks phosphagen kinases, probably by the presence of the arginine-consuming enzyme, arginase. Finally, phylogenetic analysis suggests that Kinetoplastids' arginine kinase was acquired, during evolution, from the arthropod vectors by horizontal gene transfer. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Arginine and citrulline supplementation in sports and exercise: ergogenic nutrients?

    Science.gov (United States)

    Sureda, Antoni; Pons, Antoni

    2012-01-01

    Dietary L-citrulline malate supplements may increase levels of nitric oxide (NO) metabolites, although this response has not been related to an improvement in athletic performance. NO plays an important role in many functions in the body regulating vasodilatation, blood flow, mitochondrial respiration and platelet function. L-Arginine is the main precursor of NO via nitric oxide synthase (NOS) activity. Additionally, L-citrulline has been indicated to be a second NO donor in the NOS-dependent pathway, since it can be converted to L-arginine. The importance of L-citrulline as an ergogenic support derives from the fact that L-citrulline is not subject to pre-systemic elimination and, consequently, could be a more efficient way to elevate extracellular levels of L-arginine by itself. L-Citrulline malate can develop beneficial effects on the elimination of NH(3) in the course of recovery from exhaustive muscular exercise and also as an effective precursor of L-arginine and creatine. Dietary supplementation with L-citrulline alone does not improve exercise performance. The ergogenic response of L-citrulline or L-arginine supplements depends on the training status of the subjects. Studies involving untrained or moderately healthy subjects showed that NO donors could improve tolerance to aerobic and anaerobic exercise. However, when highly-trained subjects were supplemented, no positive effect on performance was indicated. Copyright © 2012 S. Karger AG, Basel.

  19. Guanidinium Group Remains Protonated in a Strongly Basic Arginine Solution.

    Science.gov (United States)

    Xu, Bo; Jacobs, Michael I; Kostko, Oleg; Ahmed, Musahid

    2017-06-20

    Knowledge of the acid dissociation constant of an amino acid has very important ramifications in the biochemistry of proteins and lipid bilayers in aqueous environments because charge and proton transfer depend on its value. The acid dissociation constant for the guanidinium group in arginine has historically been posited as 12.5, but there is substantial variation in published values over the years. Recent experiments suggest that the dissociation constant for arginine is much higher than 12.5, which explains why the arginine guanidinium group retains its positive charge under all physiological conditions. In this work, we use X-ray photoelectron spectroscopy to study unsupported, aqueous arginine nanoparticles. By varying the pH of the constituent solution, we provide evidence that the guanidinium group is protonated even in a very basic solution. By analyzing the energy shifts in the C and N X-ray photoelectron spectra, we establish a molecular level picture of how charge and proton transport in aqueous solutions of arginine occur. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Reducing the Flexibility of Type II Dehydroquinase for Inhibition: A Fragment-Based Approach and Molecular Dynamics Study.

    Science.gov (United States)

    Peón, Antonio; Robles, Adrián; Blanco, Beatriz; Convertino, Marino; Thompson, Paul; Hawkins, Alastair R; Caflisch, Amedeo; González-Bello, Concepción

    2017-09-21

    A multidisciplinary approach was used to identify and optimize a quinazolinedione-based ligand that would decrease the flexibility of the substrate-covering loop (catalytic loop) of the type II dehydroquinase from Helicobacter pylori. This enzyme, which is essential for the survival of this bacterium, is involved in the biosynthesis of aromatic amino acids. A computer-aided fragment-based protocol (ALTA) was first used to identify the aromatic fragments able to block the interface pocket that separates two neighboring enzyme subunits and is located at the active site entrance. Chemical modification of its non-aromatic moiety through an olefin cross-metathesis and Seebach's self-reproduction of chirality synthetic principle allowed the development of a quinazolinedione derivative that disables the catalytic loop plasticity, which is essential for the enzyme's catalytic cycle. Molecular dynamics simulations revealed that the ligand would force the catalytic loop into an inappropriate arrangement for catalysis by strong interactions with the catalytic tyrosine and by expelling the essential arginine out of the active site. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Pd(II and Zn(II Based Complexes with Schiff Base Ligands: Synthesis, Characterization, Luminescence, and Antibacterial and Catalytic Activities

    Directory of Open Access Journals (Sweden)

    Zhi-Qiang Feng

    2013-01-01

    Full Text Available Two new metal complexes involving Schiff base ligands, namely, [Pd(L12] (1 and [Zn(L22] (2, [HL1: 2,4-dibromo-6-((E-(mesityliminomethylphenol and HL2: 2-((E-(2,6-diisopropylphenyliminomethyl-4,6-dibromophenol], have been solvothermally synthesized and characterized by elemental analysis, IR-spectroscopy, thermogravimetric analysis, powder X-ray diffraction, and single-crystal X-ray diffraction. Both 1 and 2 are mononuclear cyclometalated complexes with square planar and tetrahedral coordination geometry, respectively. 1 and 2 display photoluminescence in the solid state at 298 K (fluorescence lifetimes τ = 5.521 μs at 508 nm for 1; τ = 3.697 μs at 506 nm for 2. These Schiff base ligands and their metal complexes have been screened for antibacterial activity against several bacteria strains, and the results are compared with the activity of penicillin. Moreover, the Suzuki reaction of 4-bromoanisole with phenylboronic acid by 1 has also been studied.

  2. Effect of dietary taurine and arginine supplementation on bone mineral density in growing female rats.

    Science.gov (United States)

    Choi, Mi-Ja; Chang, Kyung Ja

    2013-01-01

    The purpose of this study was to determine the effect of arginine or -taurine alone and taurine plus arginine on bone mineral density (BMD) and markers of bone formation and bone resorption in growing female rats. Forty female SD rats (75 ± 5 g) were randomly divided into four groups (control, taurine, arginine, taurine + arginine group) and treatment lasted for 9 weeks. All rats were fed on a diet and deionized water. BMD and bone mineral content (BMC) were measured using PIXImus (GE Lunar Co, Wisconsin, USA) in spine and femur. The serum and urine concentrations of calcium and phosphorus were determined. Bone formation was measured by serum osteocalcin and alkaline phosphatase concentrations, and the bone resorption rate was measured by deoxypyridinoline cross-links. Femur BMD was significantly increased in the group with taurine supplementation and femur BMC/weight was significantly increased in the group with arginine + taurine supplementation. Rats fed an arginine or taurine supplemental diet increased femur BMD or femur BMC, but a taurine + arginine-supplemented diet does not have a better effect than arginine or taurine alone in the spine BMD. The femur BMC, expressed per body weight, was higher in arginine + taurine group than in the taurine or arginine group. The results of this study suggest that taurine + arginine supplementation may be beneficial on femur BMC in growing female rats. Additional work is needed to clarify the interactive effects between the taurine and arginine to determine whether dietary intakes of arginine and taurine affect bone quality in growing rats.

  3. Citrulline Supplementation Improves Organ Perfusion and Arginine Availability under Conditions with Enhanced Arginase Activity.

    Science.gov (United States)

    Wijnands, Karolina A P; Meesters, Dennis M; van Barneveld, Kevin W Y; Visschers, Ruben G J; Briedé, Jacob J; Vandendriessche, Benjamin; van Eijk, Hans M H; Bessems, Babs A F M; van den Hoven, Nadine; von Wintersdorff, Christian J H; Brouckaert, Peter; Bouvy, Nicole D; Lamers, Wouter H; Cauwels, Anje; Poeze, Martijn

    2015-06-29

    Enhanced arginase-induced arginine consumption is believed to play a key role in the pathogenesis of sickle cell disease-induced end organ failure. Enhancement of arginine availability with L-arginine supplementation exhibited less consistent results; however, L-citrulline, the precursor of L-arginine, may be a promising alternative. In this study, we determined the effects of L-citrulline compared to L-arginine supplementation on arginine-nitric oxide (NO) metabolism, arginine availability and microcirculation in a murine model with acutely-enhanced arginase activity. The effects were measured in six groups of mice (n = 8 each) injected intraperitoneally with sterile saline or arginase (1000 IE/mouse) with or without being separately injected with L-citrulline or L-arginine 1 h prior to assessment of the microcirculation with side stream dark-field (SDF)-imaging or in vivo NO-production with electron spin resonance (ESR) spectroscopy. Arginase injection caused a decrease in plasma and tissue arginine concentrations. L-arginine and L-citrulline supplementation both enhanced plasma and tissue arginine concentrations in arginase-injected mice. However, only the citrulline supplementation increased NO production and improved microcirculatory flow in arginase-injected mice. In conclusion, the present study provides for the first time in vivo experimental evidence that L-citrulline, and not L-arginine supplementation, improves the end organ microcirculation during conditions with acute arginase-induced arginine deficiency by increasing the NO concentration in tissues.

  4. Processing and structural characterization of porous reforming catalytic films

    International Nuclear Information System (INIS)

    Hou Xianghui; Williams, Jey; Choy, Kwang-Leong

    2006-01-01

    Nickel-based catalysts are often used to reform methanol into hydrogen. The preparation and installation of these catalysts are costly and laborious. As an alternative, directly applying catalytic films onto the separator components can improve the manufacturing efficiency. This paper reports the successful deposition of adherent porous NiO-Al 2 O 3 -based catalytic films with well-controlled stoichiometry, using a single-step Aerosol Assisted Chemical Vapour Deposition (AACVD) method. The microstructure, composition and crystalline phase of the as-deposited catalytic films are characterized using a combination of X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared (FTIR) Spectrometer. The results have demonstrated the capability of AACVD to produce porous NiO-Al 2 O 3 -based catalytic films

  5. Mammalian protein arginine methyltransferase 7 (PRMT7) specifically targets RXR sites in lysine- and arginine-rich regions.

    Science.gov (United States)

    Feng, You; Maity, Ranjan; Whitelegge, Julian P; Hadjikyriacou, Andrea; Li, Ziwei; Zurita-Lopez, Cecilia; Al-Hadid, Qais; Clark, Amander T; Bedford, Mark T; Masson, Jean-Yves; Clarke, Steven G

    2013-12-27

    The mammalian protein arginine methyltransferase 7 (PRMT7) has been implicated in roles of transcriptional regulation, DNA damage repair, RNA splicing, cell differentiation, and metastasis. However, the type of reaction that it catalyzes and its substrate specificity remain controversial. In this study, we purified a recombinant mouse PRMT7 expressed in insect cells that demonstrates a robust methyltransferase activity. Using a variety of substrates, we demonstrate that the enzyme only catalyzes the formation of ω-monomethylarginine residues, and we confirm its activity as the prototype type III protein arginine methyltransferase. This enzyme is active on all recombinant human core histones, but histone H2B is a highly preferred substrate. Analysis of the specific methylation sites within intact histone H2B and within H2B and H4 peptides revealed novel post-translational modification sites and a unique specificity of PRMT7 for methylating arginine residues in lysine- and arginine-rich regions. We demonstrate that a prominent substrate recognition motif consists of a pair of arginine residues separated by one residue (RXR motif). These findings will significantly accelerate substrate profile analysis, biological function study, and inhibitor discovery for PRMT7.

  6. Mammalian Protein Arginine Methyltransferase 7 (PRMT7) Specifically Targets RXR Sites in Lysine- and Arginine-rich Regions*

    Science.gov (United States)

    Feng, You; Maity, Ranjan; Whitelegge, Julian P.; Hadjikyriacou, Andrea; Li, Ziwei; Zurita-Lopez, Cecilia; Al-Hadid, Qais; Clark, Amander T.; Bedford, Mark T.; Masson, Jean-Yves; Clarke, Steven G.

    2013-01-01

    The mammalian protein arginine methyltransferase 7 (PRMT7) has been implicated in roles of transcriptional regulation, DNA damage repair, RNA splicing, cell differentiation, and metastasis. However, the type of reaction that it catalyzes and its substrate specificity remain controversial. In this study, we purified a recombinant mouse PRMT7 expressed in insect cells that demonstrates a robust methyltransferase activity. Using a variety of substrates, we demonstrate that the enzyme only catalyzes the formation of ω-monomethylarginine residues, and we confirm its activity as the prototype type III protein arginine methyltransferase. This enzyme is active on all recombinant human core histones, but histone H2B is a highly preferred substrate. Analysis of the specific methylation sites within intact histone H2B and within H2B and H4 peptides revealed novel post-translational modification sites and a unique specificity of PRMT7 for methylating arginine residues in lysine- and arginine-rich regions. We demonstrate that a prominent substrate recognition motif consists of a pair of arginine residues separated by one residue (RXR motif). These findings will significantly accelerate substrate profile analysis, biological function study, and inhibitor discovery for PRMT7. PMID:24247247

  7. Comparative functional properties of engineered cationic antimicrobial peptides consisting exclusively of tryptophan and either lysine or arginine.

    Science.gov (United States)

    Deslouches, Berthony; Hasek, Mary L; Craigo, Jodi K; Steckbeck, Jonathan D; Montelaro, Ronald C

    2016-06-01

    We previously reported a series of de novo engineered cationic antibiotic peptides (eCAPs) consisting exclusively of arginine and tryptophan (WR) that display potent activity against diverse multidrug-resistant (MDR) bacterial strains. In this study, we sought to examine the influence of arginine compared to lysine on antibacterial properties by direct comparison of the WR peptides (8-18 residues) with a parallel series of engineered peptides containing only lysine and tryptophan. WR and WK series were compared for antibacterial activity by bacterial killing and growth inhibition assays and for mechanism of peptide-bacteria interactions by surface plasmon resonance and flow cytometry. Mammalian cytotoxicity was also assessed by flow cytometry, haemolytic and tetrazolium-based assays. The shortest arginine-containing peptides (8 and 10 mers) displayed a statistically significant increase in activity compared to the analogous lysine-containing peptides. The WR and WK peptides achieved maximum antibacterial activity at the 12-mer peptide (WK12 or WR12). Further examination of antibacterial mechanisms of the optimally active 12-mer peptides using surface plasmon resonance and flow cytometry demonstrates stronger interactions with Pseudomonasaeruginosa, greater membrane permeabilizing activity, and lower inhibitory effects of divalent cations on activity and membrane permeabilization properties of WR12 compared to WK12 (P arginine, compared to lysine, can indeed yield enhanced antibacterial activity to minimize the required length to achieve functional antimicrobial peptides.

  8. Modular pathway engineering of Corynebacterium glutamicum for production of the glutamate-derived compounds ornithine, proline, putrescine, citrulline, and arginine.

    Science.gov (United States)

    Jensen, Jaide V K; Eberhardt, Dorit; Wendisch, Volker F

    2015-11-20

    The glutamate-derived bioproducts ornithine, citrulline, proline, putrescine, and arginine have applications in the food and feed, cosmetic, pharmaceutical, and chemical industries. Corynebacterium glutamicum is not only an excellent producer of glutamate but also of glutamate-derived products. Here, engineering targets beneficial for ornithine production were identified and the advantage of rationally constructing a platform strain for the production of the amino acids citrulline, proline, and arginine, and the diamine putrescine was demonstrated. Feedback alleviation of N-acetylglutamate kinase, tuning of the promoter of glutamate dehydrogenase gene gdh, lowering expression of phosphoglucoisomerase gene pgi, along with the introduction of a second copy of the arginine biosynthesis operon argCJB(A49V,M54V)D into the chromosome resulted in a C. glutamicum strain producing ornithine with a yield of 0.52 g ornithine per g glucose, an increase of 71% as compared to the parental ΔargFRG strain. Strains capable of producing 0.41 g citrulline per g glucose, 0.29 g proline per g glucose, 0.30 g arginine per g glucose, and 0.17 g putrescine per g glucose were derived from the ornithine-producing platform strain by plasmid-based overexpression of appropriate pathway modules with one to three genes. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. [Effect of L-arginine supplementation on secretion of human growth hormone and insulin-like growth factor in adults].

    Science.gov (United States)

    Fayh, Ana Paula Trussardi; Friedman, Rogério; Sapata, Katiuce Borges; Oliveira, Alvaro Reischak de

    2007-06-01

    Based on presumptions that the infusion of amino acids can augment the release of human growth hormone (hGH) and that this metabolism is related with secretion of insulin-like growth factor I (IGF-I), the purpose of this study was to verify the effect of L-arginine supplementation on GH and IGF-I in adults. Seventeen male individuals participated on the study and were randomized to receive L-arginine (n= 10) or placebo (n= 7), seven grams per day for seven days. Before and after the supplementation period, the volunteers realized blood collection in fasting to verify both GH and IGF-I levels, as well as urine collection to verify urea excretion. At the end of the experimental period, it was verified that the group that received L-arginine augmented the urea in urine excretion (to 2684.1 +/- 475.2 mg/dl from 2967.2 +/- 409.7 mg/dl, p= 0.002), therefore it did not alter significantly the release of hormones evaluated. The group which received placebo did not alter significantly any evaluated parameters. The L-arginine supplementation during seven days was ineffective to augment both GH and IGF-I release in individual male adults.

  10. Contents of corticotropin-releasing hormone and arginine vasopressin immunoreativity in the spleen and thymus during a chronic inflammatory stress

    DEFF Research Database (Denmark)

    Chowdrey, H.S.; Lightman, S.L.; Harbuz, M.S.

    1994-01-01

    Corticotropin-releasing hormone, spleen, thymus, immune system, stress, arthritis, arginine vasopressin......Corticotropin-releasing hormone, spleen, thymus, immune system, stress, arthritis, arginine vasopressin...

  11. Catalytic cracking with deasphalted oil

    Energy Technology Data Exchange (ETDEWEB)

    Beaton, W.I.; Taylor, J.L.; Peck, L.B.; Mosby, J.F.

    1990-07-10

    This patent describes a catalytic cracking process. It comprises: hydrotreating resid; thereafter deasphalting the hydrotreated resid to produce substantially deasphalted oil; catalytically cracking the hydrotreated oil in a catalytic cracking unit in the presence of a cracking catalyst to produce upgraded oil leaving coked catalyst; and regenerating the coked catalyst in the presence of a combustion-supporting gas comprising excess molecular oxygen in an amount greater than the stoichiometric amount required for substantially completely combusting the coke on the catalyst to carbon dioxide.

  12. Hormonal response to L-arginine supplementation in physically active individuals

    Directory of Open Access Journals (Sweden)

    Davi Vieira Teixeira da Silva

    2014-03-01

    Full Text Available Background: Nutritional supplements based on the amino acid L-arginine have been hypothesized to improve exercise performance by increasing levels of insulin and growth hormone (GH. Changes of these parameters in response to L-arginine supplementation may clarify the mechanisms underlying its putative physiological effects on physical performance. Objective: The aim of the study was to evaluate the effect of L-arginine supplementation on serum insulin, GH, Growth Factor Insulin-like (IGF-1, and cortisol in response to exercise. Exercise performance was also evaluated. Design: Fifteen trained runners were divided into groups supplemented with 6 g of L-arginine (ARG or placebo (PLA. Blood samples were collected before supplementation (T0, immediately after the first exercise session (T1, after the second exercise session (T2, and after 20 min of rest (T3. The exercise consisted of two bouts of 5 km time-trial running test. Results: There was a significant increase in serum GH (T0: 3.28±0.95 vs. 3.21±0.5 ng/mL; T1: 4.35±0.23 vs. 4.17±0.13 ng/mL; T2: 4.22±0.25 vs. 4.17±0.09 ng/mL; T3: 4.14±0.29 vs. 4.13±0.18 ng/mL and cortisol (T0: 198.71±53.77 vs. 207.57±69.51 nmol/L; T1: 458.16±116.12 vs. 433.26±101.77 nmol/L; T2: 454.61±125.21 vs. 431.88±74.82 nmol/L; T3: 311.14±102.91 vs. 362.26±110.42 nmol/L after T1, T2, and T3, with no significant difference between the ARG and PLA groups, respectively. There was also no significant difference observed in the variables of IGF-1, insulin, and total running time between the ARG and PLA groups. Conclusions: The supplementation of L-arginine did not appear to stimulate the production of insulin, GH, and IGF-1 and, thus, provided no benefit in hormonal response or exercise performance in trained runners.

  13. Method to produce catalytically active nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat

    2017-12-19

    A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.

  14. Method to produce catalytically active nanocomposite coatings

    Science.gov (United States)

    Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat

    2016-02-09

    A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.

  15. Arginine restores cholinergic relaxation of hypercholesterolemic rabbit thoracic aorta.

    Science.gov (United States)

    Cooke, J P; Andon, N A; Girerd, X J; Hirsch, A T; Creager, M A

    1991-03-01

    Reduced synthesis of endothelium-derived relaxing factor (EDRF) may explain impaired endothelium-dependent vasodilation in hypercholesterolemia. Accordingly, we designed studies to determine if endothelium-dependent relaxation in hypercholesterolemic rabbits may be restored by supplying L-arginine, the precursor of EDRF. Normal or hypercholesterolemic rabbits received intravenous L-arginine (10 mg/kg/min) or vehicle for 70 minutes. Subsequently, animals were killed, thoracic aortas were harvested, and vascular rings were studied in vitro. Rings were contracted by norepinephrine and relaxed by acetylcholine chloride or sodium nitroprusside. Vasorelaxation was quantified by determining the maximal response (expressed as percent relaxation of the contraction) and the ED50 (dose of drug inducing 50% relaxation; expressed as -log M). In vessels from hypercholesterolemic animals receiving vehicle, there was a fivefold rightward shift in sensitivity to acetylcholine compared with normal animals (p = 0.05, n = 5 in each group). In vessels from hypercholesterolemic animals, L-arginine augmented the maximal response to acetylcholine (83 +/- 16% versus 60 +/- 15%, p = 0.04 versus vehicle) and increased the sensitivity to acetylcholine (ED50 value: 6.7 +/- 0.2 versus 6.2 +/- 0.2, p less than 0.05 versus vehicle). Arginine did not affect maximal and EC50 responses to acetylcholine in vessels from normal animals. Arginine did not potentiate endothelium-independent responses in either group. We conclude that the endothelium-dependent relaxation is normalized in hypercholesterolemic rabbit thoracic aorta by in vivo exposure to L-arginine, the precursor for EDRF.

  16. Plasma glucagon responses to L-arginine in various diseases

    International Nuclear Information System (INIS)

    Morita, Nobuto; Hayakawa, Hiroyuki; Kawai, Kohzo; Noto, Yutaka; Ohno, Taro

    1978-01-01

    To clarify the mechanism of abnormal glucose metabolism in the secondary diabetes, we examined the dynamics of plasma glucagon levels in various diseases which may accompany glucose intolerance. Plasma glucagon responses to L-arginine were observed in 20 liver cirrhotics, 8 patients with chronic renal failure, 6 patients with chronic pancreatitis, 4 patients, with hyperthyroidism, 22 diabetics and 9 normal controls. Plasma glucagon levels were determined by the radioimmunoassay method of Unger using 125 I-glucagon and antiserum 30K which is specific for pancreatic glucagon. In the cirrhotics, the plasma glucagon responses to L-arginine were significantly higher than in normal controls. The patients whose BSP retention at 45 minutes were above 30% showed higher plasma glucagon responses than in the patients whose BSP retention at 45 minutes were below 30%, suggesting that the more severely the liver was damaged, the more the plasma glucagon levels were elevated. In the patients with chronic renal failure, the plasma glucagon responses to L-arginine were also significantly higher than in normal controls. These abnormal levels were not improved by a hemodialysis, although serum creatinine levels were fairly decreased. In the patients with chronic pancreatitis, the plasma glucagon responses to L-arginine were the same as those in normal controls. In the patients with hyperthyroidism the plasma glucagon responses to L-arginine seemed to be lower than normal controls. In the diabetics, the plasma glucagon responses to L-arginine were almost the same as in normal controls. However their glucagon levels seemed to be relatively high, considering the fact that diabetics had high blood glucose levels. (auth.)

  17. Whole-body synthesis of L-homoarginine in pigs and rats supplemented with L-arginine.

    Science.gov (United States)

    Hou, Yongqing; Hu, Shengdi; Jia, Sichao; Nawaratna, Gayan; Che, Dongsheng; Wang, Fenglai; Bazer, Fuller W; Wu, Guoyao

    2016-04-01

    Recent studies suggest an important role for L-homoarginine in cardiovascular, hepatic and neurological functions, as well as the regulation of glucose metabolism. However, little is known about whole-body L-homoarginine synthesis or its response to dietary L-arginine intake in animals. Four series of experiments were conducted to determine L-homoarginine synthesis and catabolism in pigs and rats. In Experiment 1, male and female pigs were fed a corn- and soybean meal-based diet supplemented with 0.0-2.42 % L-arginine-HCl. In Experiment 2, male and female rats were fed a casein-based diet, while receiving drinking water containing supplemental L-arginine-HCl to provide 0.0-3.6 g L-arginine/kg body-weight/day. In both experiments, urine collected from the animals for 24 h was analyzed for L-homoarginine and related metabolites. In Experiment 3, pigs and rats received a single oral dose of 1 or 10 mg L-homoarginine/kg body-weight, respectively, and their urine was collected for 24 h for analyses of L-homoarginine and related substances. In Experiment 4, slices of pig and rat tissues (including liver, brain, kidney, heart, and skeletal-muscle) were incubated for 1 h in Krebs-bicarbonate buffer containing 5 or 50 µM L-homoarginine. Our results indicated that: (a) animal tissues did not degrade L-homoarginine in the presence of physiological concentrations of other amino-acids; (b) 95-96 % of orally administered L-homoarginine was recovered in urine; (c) L-homoarginine was quantitatively a minor product of L-arginineg catabolism in the body; and (d) dietary L-arginine supplementation dose-dependently increased whole-body L-homoarginine synthesis. These novel findings provide a new framework for future studies of L-homoarginine metabolism and physiology in animals and humans.

  18. Expression, purification, crystallization and preliminary crystallographic study of isolated modules of the mouse coactivator-associated arginine methyltransferase 1

    Energy Technology Data Exchange (ETDEWEB)

    Troffer-Charlier, Nathalie; Cura, Vincent; Hassenboehler, Pierre; Moras, Dino; Cavarelli, Jean, E-mail: cava@igbmc.u-strasbg.fr [IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Département de Biologie et Génomique Structurales, 1 Rue Laurent Fries, Illkirch, F-67404 (France); INSERM, U596, Illkirch, F-67400 (France); CNRS, UMR7104, Illkirch, F-67400 (France); Université Louis Pasteur, Faculté des Sciences de la Vie, Strasbourg, F-67000 (France)

    2007-04-01

    Isolated modules of mouse coactivator-associated arginine methyltransferase 1 encompassing the protein arginine N-methyltransferase catalytic domain have been overexpressed, purified and crystallized. X-ray diffraction data have been collected and have enabled determination of the structures by multiple isomorphous replacement using anomalous scattering. Coactivator-associated arginine methyltransferase 1 (CARM1) plays a crucial role in gene expression as a coactivator of several nuclear hormone receptors and also of non-nuclear receptor systems. Its recruitment by the transcriptional machinery induces protein methylation, leading to chromatin remodelling and gene activation. CARM1{sub 28–507} and two structural states of CARM1{sub 140–480} were expressed, purified and crystallized. Crystals of CARM1{sub 28–507} belong to space group P6{sub 2}22, with unit-cell parameters a = b = 136.0, c = 125.3 Å; they diffract to beyond 2.5 Å resolution using synchrotron radiation and contain one monomer in the asymmetric unit. The structure of CARM1{sub 28–507} was solved by multiple isomorphous replacement and anomalous scattering methods. Crystals of apo CARM1{sub 140–480} belong to space group I222, with unit-cell parameters a = 74.6, b = 99.0, c = 207.4 Å; they diffract to beyond 2.7 Å resolution and contain two monomers in the asymmetric unit. Crystals of CARM1{sub 140–480} in complex with S-adenosyl-l-homocysteine belong to space P2{sub 1}2{sub 1}2, with unit-cell parameters a = 74.6, b = 98.65, c = 206.08 Å; they diffract to beyond 2.6 Å resolution and contain four monomers in the asymmetric unit. The structures of apo and holo CARM1{sub 140–480} were solved by molecular-replacement techniques from the structure of CARM1{sub 28–507}.

  19. Catalytic Membrane Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, T.J.; Brinker, C.J.; Gardner, T.J.; Hughes, R.C.; Sault, A.G.

    1998-12-01

    The proposed "catalytic membrane sensor" (CMS) was developed to generate a device which would selectively identify a specific reagent in a complex mixture of gases. This was to be accomplished by modifying an existing Hz sensor with a series of thin films. Through selectively sieving the desired component from a complex mixture and identifying it by decomposing it into Hz (and other by-products), a Hz sensor could then be used to detect the presence of the select component. The proposed "sandwich-type" modifications involved the deposition of a catalyst layered between two size selective sol-gel layers on a Pd/Ni resistive Hz sensor. The role of the catalyst was to convert organic materials to Hz and organic by-products. The role of the membraneo was to impart both chemical specificity by molecukir sieving of the analyte and converted product streams, as well as controlling access to the underlying Pd/Ni sensor. Ultimately, an array of these CMS elements encompassing different catalysts and membranes were to be developed which would enable improved selectivity and specificity from a compiex mixture of organic gases via pattern recognition methodologies. We have successfully generated a CMS device by a series of spin-coat deposited methods; however, it was determined that the high temperature required to activate the catalyst, destroys the sensor.

  20. Catalytic cracking of lignites

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, M.; Nowak, S.; Naegler, T.; Zimmermann, J. [Hochschule Merseburg (Germany); Welscher, J.; Schwieger, W. [Erlangen-Nuernberg Univ. (Germany); Hahn, T. [Halle-Wittenberg Univ., Halle (Germany)

    2013-11-01

    A most important factor for the chemical industry is the availability of cheap raw materials. As the oil price of crude oil is rising alternative feedstocks like coal are coming into focus. This work, the catalytic cracking of lignite is part of the alliance ibi (innovative Braunkohlenintegration) to use lignite as a raw material to produce chemicals. With this new one step process without an input of external hydrogen, mostly propylene, butenes and aromatics and char are formed. The product yield depends on manifold process parameters. The use of acid catalysts (zeolites like MFI) shows the highest amount of the desired products. Hydrogen rich lignites with a molar H/C ratio of > 1 are to be favoured. Due to primary cracking and secondary reactions the ratio between catalyst and lignite, temperature and residence time are the most important parameter to control the product distribution. Experiments at 500 C in a discontinuous rotary kiln reactor show yields up to 32 wt-% of hydrocarbons per lignite (maf - moisture and ash free) and 43 wt-% char, which can be gasified. Particularly, the yields of propylene and butenes as main products can be enhanced four times to about 8 wt-% by the use of catalysts while the tar yield decreases. In order to develop this innovative process catalyst systems fixed on beads were developed for an easy separation and regeneration of the used catalyst from the formed char. (orig.)

  1. Relation of arginine-lysine antagonism to herpes simplex growth in tissue culture.

    Science.gov (United States)

    Griffith, R S; DeLong, D C; Nelson, J D

    1981-01-01

    In the studies conducted, arginine deficiency suppressed herpes simplex virus replication in tissue culture. Lysine, an analog of arginine, as an antimetabolite, antagonized the viral growth-promoting action of arginine. The in vitro data may be the basis for the observation that patients prone to herpetic lesions and other related viral infections, particularly during periods of stress, should abstain from arginine excess and may also require supplemental lysine in their diet.

  2. Nd(III) and Dy(III) coordination compounds based on 1H-tetrazolate-5-acetic acid ligands: Synthesis, crystal structures and catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Li Qiaoyun; Chen Dianyu; He Minghua [Jiangsu Laboratory of Advanced Functional Materials, Department of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu (China); Yang Gaowen, E-mail: ygwsx@126.com [Jiangsu Laboratory of Advanced Functional Materials, Department of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu (China); Shen Lei; Zhai Chun; Shen Wei; Gu Kun; Zhao Jingjing [Jiangsu Laboratory of Advanced Functional Materials, Department of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu (China)

    2012-06-15

    Reactions of 1H-tetrazolate-5-acetic acid(H{sub 2}tza) with Nd(NO{sub 3}){sub 3}{center_dot}6H{sub 2}O or Dy(NO{sub 3}){sub 3}{center_dot}6H{sub 2}O with the presence of KOH under solvothermal conditions, produced two new coordination compounds, [M{sub 2}(tza){sub 3}(H{sub 2}O){sub 6}]{center_dot}2H{sub 2}O [M=Nd(1), Dy(2)]. Both compounds were structurally characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. Compounds 1 and 2 reveal 1D structures via bridging tza as linker. Furthermore, the compounds 1 and 2 showed a specific and good catalytic behavior for the polymerization of styrene, and the polymerization showed controlled characteristics. - Graphical Abstract: Two new coordination compounds, [M{sub 2}(tza){sub 3}(H{sub 2}O){sub 6}]{center_dot}2H{sub 2}O [M=Nd(1), Dy(2)] have been synthesis. 1 and 2 reveal 1D structures via bridging tza as linker, and showed a specific and good catalytic behavior for the polymerization of styrene. Highlights: Black-Right-Pointing-Pointer we have reported two novel compounds formed by H{sub 2}tza and Nd(III) or Dy(III). Black-Right-Pointing-Pointer Compounds 1 and 2 were found to have catalysis property for the photo-polymerization of styrene. Black-Right-Pointing-Pointer The high molecular weight polymers with narrow molecular weight distributions were obtained.

  3. Catalytic pyrolysis of lignocellulosic biomass

    NARCIS (Netherlands)

    Seshan, Kulathuiyer; Sa, Jacinto

    2014-01-01

    This chapter reports on the latest developments of biomass catalytic pyrolysis for the production of fuels. The primary focus is on the role of catalysts in the process, namely, their influence in the liquefaction of lignocellulosic biomass.

  4. Northwestern University Facility for Clean Catalytic Process Research

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Tobin Jay [Northwestern University

    2013-05-08

    Northwestern University with DOE support created a Facility for Clean Catalytic Process Research. This facility is designed to further strengthen our already strong catalysis research capabilities and thus to address these National challenges. Thus, state-of-the art instrumentation and experimentation facility was commissioned to add far greater breadth, depth, and throughput to our ability to invent, test, and understand catalysts and catalytic processes, hence to improve them via knowledge-based design and evaluation approaches.

  5. Intravenous glutamine supplementation enhances renal de novo arginine synthesis in humans: a stable isotope study

    NARCIS (Netherlands)

    Buijs, Nikki; Brinkmann, Saskia J. H.; Oosterink, J. Efraim; Luttikhold, Joanna; Schierbeek, Henk; Wisselink, Willem; Beishuizen, Albertus; van Goudoever, Johannes B.; Houdijk, Alexander P. J.; van Leeuwen, Paul A. M.; Vermeulen, Mechteld A. R.

    2014-01-01

    Arginine plays a role in many different pathways in multiple cell types. Consequently, a shortage of arginine, caused by pathologic conditions such as cancer or injury, has the potential to disturb many cellular and organ functions. Glutamine is the ultimate source for de novo synthesis of arginine

  6. L-arginine increases nitric oxide and attenuates pressor and heart ...

    African Journals Online (AJOL)

    L-Arginine supplementation increased plasma L-Arginine concentration ([R]) in both groups of subjects (p<0.001 in each group) and serum nitric oxide metabolites concentration ([NOx]) (p<0.01 in each group). Change (Δ) [R] correlated positively with Δ [NOx] in both groups (+ 0.7 in each group). L-Arginine supplementation ...

  7. An Association between l-Arginine/Asymmetric Dimethyl Arginine Balance, Obesity, and the Age of Asthma Onset Phenotype

    Science.gov (United States)

    Comhair, Suzy A. A.; Hazen, Stanley L.; Powers, Robert W.; Khatri, Sumita S.; Bleecker, Eugene R.; Busse, William W.; Calhoun, William J.; Castro, Mario; Fitzpatrick, Anne M.; Gaston, Benjamin; Israel, Elliot; Jarjour, Nizar N.; Moore, Wendy C.; Peters, Stephen P.; Teague, W. Gerald; Chung, Kian Fan; Erzurum, Serpil C.; Wenzel, Sally E.

    2013-01-01

    Rationale: Increasing body mass index (BMI) has been associated with less fractional exhaled nitric oxide (FeNO). This may be explained by an increase in the concentration of asymmetric dimethyl arginine (ADMA) relative to l-arginine, which can lead to greater nitric oxide synthase uncoupling. Objectives: To compare this mechanism across age of asthma onset groups and determine its association with asthma morbidity and lung function. Methods: Cross-sectional study of participants from the Severe Asthma Research Program, across early- (12 yr) onset asthma phenotypes. Measurements and Main Results: Subjects with late-onset asthma had a higher median plasma ADMA level (0.48 μM, [interquartile range (IQR), 0.35–0.7] compared with early onset, 0.37 μM [IQR, 0.29–0.59], P = 0.01) and lower median plasma l-arginine (late onset, 52.3 [IQR, 43–61] compared with early onset, 51 μM [IQR 39–66]; P = 0.02). The log of plasma l-arginine/ADMA was inversely correlated with BMI in the late- (r = −0.4, P = 0.0006) in contrast to the early-onset phenotype (r = −0.2, P = 0.07). Although FeNO was inversely associated with BMI in the late-onset phenotype (P = 0.02), the relationship was lost after adjusting for l-arginine/ADMA. Also in this phenotype, a reduced l-arginine/ADMA was associated with less IgE, increased respiratory symptoms, lower lung volumes, and worse asthma quality of life. Conclusions: In late-onset asthma phenotype, plasma ratios of l-arginine to ADMA may explain the inverse relationship of BMI to FeNO. In addition, these lower l-arginine/ADMA ratios are associated with reduced lung function and increased respiratory symptom frequency, suggesting a role in the pathobiology of the late-onset phenotype. PMID:23204252

  8. Effect of iron, taurine and arginine on rat hepatic fibrosis

    International Nuclear Information System (INIS)

    Song Liangwen; Wang Dewen; Cui Xuemei

    1997-01-01

    Objective: The promotion role of iron on pathogenesis of hepatic fibrosis and the protective role of taurine and L-arginine against hepatic fibrosis were studied. Method: The model of rat radiation hepatic fibrosis was used. Experimental rats were divided into 0 Gy, 30 Gy, 30 Gy + iron, 30 Gy + taurine and 30 Gy + L-arginine groups. Serum iron, liver tissue hydroxyproline (Hyp) and malondialdehyde (MDA) were measured one and three months respectively after irradiation of hepatic tissue, production and distribution characteristics of hepatic tissue type I and III collagen were observed with a polarizing microscope. Results: Administration of iron agent could significantly increase hepatic tissue MDA content and serum iron concentration, one month after irradiation, hepatic tissue Hyp in 30 Gy + iron group began to increase, and collagen in hepatic tissue obviously increased. Taurine and L-arginine could reduce serum iron concentration and decrease production of hepatic fissure Hyp. Conclusion: Exogenous iron agent could promote early development of radiation hepatic fibrosis; taurine and arginine could diminish pathologic alteration of hepatic fibrosis to a certain extent

  9. Arginine-dependent acid resistance in Salmonella enterica serovar Typhimurium

    NARCIS (Netherlands)

    Kieboom, J.; Abee, T.

    2006-01-01

    Salmonella enterica serovar Typhimurium does not survive a pH 2.5 acid challenge under conditions similar to those used for Escherichia coli (J. W. Foster, Nat. Rev. Microbiol. 2:898-907, 2004). Here, we provide evidence that S. enterica serovar Typhimurium can display arginine-dependent acid

  10. Arginine and Citrulline for the Treatment of MELAS Syndrome

    Directory of Open Access Journals (Sweden)

    Ayman W. El-Hattab MD, FACMG

    2017-03-01

    Full Text Available Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS syndrome is a maternally inherited mitochondrial disease with a broad spectrum of manifestations. In addition to impaired energy production, nitric oxide (NO deficiency occurs in MELAS syndrome and leads to impaired blood perfusion in microvasculature that can contribute to several complications including stroke-like episodes, myopathy, and lactic acidosis. The supplementation of NO precursors, L-arginine and L-citrulline, increases NO production and hence can potentially have therapeutic utility in MELAS syndrome. L-citrulline raises NO production to a greater extent than L-arginine; therefore, L-citrulline may have a better therapeutic effect. The clinical effect of L-citrulline has not yet been studied and clinical studies on L-arginine, which are limited, only evaluated the stroke-like episodes’ aspects of the disease. Controlled studies are still needed to assess the clinical effects of L-arginine and L-citrulline on different aspects of MELAS syndrome.

  11. l-Arginine is a Radioprotector for Hematopoietic Progenitor Cells

    Science.gov (United States)

    Pearce, Linda L.; Zheng, Xichen; Martinez-Bosch, Sandra; Kerr, Patrick P.; Khlangwiset, Pornsri; Epperly, Michael W.; Fink, Mitchell P.; Greenberger, Joel S.; Peterson, Jim

    2012-01-01

    l-Arginine is shown to protect hematopoietic progenitor (32D cl 3) cells from death due to exposure to γ radiation (137Cs). Some of the other intermediates in the urea cycle, namely ornithine and citrulline, plus urea itself, were not found to have any significant impact on cell survival after irradiation. Intriguingly, supplementation of irradiated cells with l-arginine results in decreased production of peroxynitrite, suggesting that suppression of superoxide generation by nitric oxide synthase in one or more microenvironments is an important factor in the observed radioprotection. The absence of any radioprotective effect of l-arginine in cells at 3% oxygen also confirms the involvement of one or more oxygen-derived species. Knockdown experiments with nitric oxide synthase (NOS) siRNAs in cells and NOS knockout animals confirm that the observed radioprotection is associated with nNOS (NOS-1). l-Arginine also ameliorates the transient inhibition of the electron-transport chain complex I that occurs within 30 min of completing the dose (10 Gy) and that appears to be a functional marker for postirradiation mitochondrial oxidant production. PMID:22175298

  12. Twin-arginine-dependent translocation of folded proteins

    Science.gov (United States)

    Fröbel, Julia; Rose, Patrick; Müller, Matthias

    2012-01-01

    Twin-arginine translocation (Tat) denotes a protein transport pathway in bacteria, archaea and plant chloroplasts, which is specific for precursor proteins harbouring a characteristic twin-arginine pair in their signal sequences. Many Tat substrates receive cofactors and fold prior to translocation. For a subset of them, proofreading chaperones coordinate maturation and membrane-targeting. Tat translocases comprise two kinds of membrane proteins, a hexahelical TatC-type protein and one or two members of the single-spanning TatA protein family, called TatA and TatB. TatC- and TatA-type proteins form homo- and hetero-oligomeric complexes. The subunits of TatABC translocases are predominantly recovered from two separate complexes, a TatBC complex that might contain some TatA, and a homomeric TatA complex. TatB and TatC coordinately recognize twin-arginine signal peptides and accommodate them in membrane-embedded binding pockets. Advanced binding of the signal sequence to the Tat translocase requires the proton-motive force (PMF) across the membranes and might involve a first recruitment of TatA. When targeted in this manner, folded twin-arginine precursors induce homo-oligomerization of TatB and TatA. Ultimately, this leads to the formation of a transmembrane protein conduit that possibly consists of a pore-like TatA structure. The translocation step again is dependent on the PMF. PMID:22411976

  13. Crystal structure of arginine methyltransferase 6 from Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Chongyuan Wang

    Full Text Available Arginine methylation plays vital roles in the cellular functions of the protozoan Trypanosoma brucei. The T. brucei arginine methyltransferase 6 (TbPRMT6 is a type I arginine methyltransferase homologous to human PRMT6. In this study, we report the crystal structures of apo-TbPRMT6 and its complex with the reaction product S-adenosyl-homocysteine (SAH. The structure of apo-TbPRMT6 displays several features that are different from those of type I PRMTs that were structurally characterized previously, including four stretches of insertion, the absence of strand β15, and a distinct dimerization arm. The comparison of the apo-TbPRMT6 and SAH-TbPRMT6 structures revealed the fine rearrangements in the active site upon SAH binding. The isothermal titration calorimetry results demonstrated that SAH binding greatly increases the affinity of TbPRMT6 to a substrate peptide derived from bovine histone H4. The western blotting and mass spectrometry results revealed that TbPRMT6 methylates bovine histone H4 tail at arginine 3 but cannot methylate several T. brucei histone tails. In summary, our results highlight the structural differences between TbPRMT6 and other type I PRMTs and reveal that the active site rearrangement upon SAH binding is important for the substrate binding of TbPRMT6.

  14. Analysis of an Alanine/Arginine Mixture by Using TLC/FTIR Technique

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2014-01-01

    Full Text Available We applied TLC/FTIR coupled with mapping technique to analyze an alanine/arginine mixture. Narrow band TLC plates prepared by using AgI as a stationary phase were used to separate alanine and arginine. The distribution of alanine and arginine spots was manifested by a 3D chromatogram. Alanine and arginine can be successfully separated by the narrow band TLC plate. In addition, the FTIR spectra of the separated alanine and arginine spots on the narrow band TLC plate are roughly the same as the corresponding reference IR spectra.

  15. Effect of methylation on the side-chain pKa value of arginine.

    Science.gov (United States)

    Evich, Marina; Stroeva, Ekaterina; Zheng, Yujun George; Germann, Markus W

    2016-02-01

    Arginine methylation is important in biological systems. Recent studies link the deregulation of protein arginine methyltransferases with certain cancers. To assess the impact of methylation on interaction with other biomolecules, the pKa values of methylated arginine variants were determined using NMR data. The pKa values of monomethylated, symmetrically dimethylated, and asymmetrically dimethylated arginine are similar to the unmodified arginine (14.2 ± 0.4). Although the pKa value has not been significantly affected by methylation, consequences of methylation include changes in charge distribution and steric effects, suggesting alternative mechanisms for recognition. © 2015 The Protein Society.

  16. Effects of Arginine Vasopressin on musical short-term memory

    Directory of Open Access Journals (Sweden)

    Roni Y. Granot

    2013-10-01

    Full Text Available Previous genetic studies showed an association between variations in the gene coding for the 1a receptor of the neuro-hormone arginine vasopressin (AVP and musical working memory (WM. The current study set out to test the influence of intranasal administration (INA of AVP on musical as compared to verbal WM using a double blind crossover (AVP – placebo design. Two groups of 25 males were exposed to 20 IU of AVP in one session, and 20 IU of saline water (placebo in a second session, one week apart. In each session subjects completed the tonal subtest from Gordon's Musical Aptitude Profile, the interval subtest from the Montreal Battery for Evaluation of Amusias (MBEA, and the forward and backward digit span tests. Scores in the digit span tests were not influenced by AVP. In contrast, in the music tests there was an AVP effect. In the MBEA test, scores for the group receiving placebo in the first session (PV were higher than for the group receiving vasopressin in the first session (VP (p < .05 with no main Session effect nor Group * Session interaction. In the Gordon test there was a main Session effect (p < .05 with scores higher in the second as compared to the first session, a marginal main Group effect (p = .093 and a marginal Group X Session interaction (p = 0.88. In addition we found that the group that received AVP in the first session scored higher on scales indicative of happiness, and alertness on the Positive and Negative Affect Scale, (PANAS. Only in this group and only in the music test these scores were significantly correlated with memory scores. Together the results reflect a complex interaction between AVP, musical memory, arousal, and contextual effects such as session, and base levels of memory. The results are interpreted in light of music's universal use as a means to modulate arousal on the one hand, and AVP's influence on mood, arousal, and social interactions on the other.

  17. Modulation of Epstein–Barr Virus Nuclear Antigen 2-dependent transcription by protein arginine methyltransferase 5

    International Nuclear Information System (INIS)

    Liu, Cheng-Der; Cheng, Chi-Ping; Fang, Jia-Shih; Chen, Ling-Chih; Zhao, Bo; Kieff, Elliott; Peng, Chih-Wen

    2013-01-01

    Highlights: ► Catalytic active PRMT5 substantially binds to the EBNA2 RG domain. ► PRMT5 augments the EBNA2-dependent transcription. ► PRMT5 triggers the symmetric dimethylation of the EBNA2 RG domain. ► PRMT5 enhances the promoter occupancy of EBNA2 on its target promoters. -- Abstract: Epstein–Barr Virus Nuclear Antigen (EBNA) 2 features an Arginine–Glycine repeat (RG) domain at amino acid positions 335–360, which is a known target for protein arginine methyltransferaser 5 (PRMT5). In this study, we performed protein affinity pull-down assays to demonstrate that endogenous PRMT5 derived from lymphoblastoid cells specifically associated with the protein bait GST-E2 RG. Transfection of a plasmid expressing PRMT5 induced a 2.5- to 3-fold increase in EBNA2-dependent transcription of both the LMP1 promoter in AKATA cells, which contain the EBV genome endogenously, and a Cp-Luc reporter plasmid in BJAB cells, which are EBV negative. Furthermore, we showed that there was a 2-fold enrichment of EBNA2 occupancy in target promoters in the presence of exogenous PRMT5. Taken together, we show that PRMT5 triggers the symmetric dimethylation of EBNA2 RG domain to coordinate with EBNA2-mediated transcription. This modulation suggests that PRMT5 may play a role in latent EBV infection

  18. Modulation of Epstein–Barr Virus Nuclear Antigen 2-dependent transcription by protein arginine methyltransferase 5

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cheng-Der; Cheng, Chi-Ping; Fang, Jia-Shih; Chen, Ling-Chih [Department of Life Sciences, Tzu-Chi University, 701 Chung-Yang Rd. Sec 3, Hualien 97004, Taiwan (China); Zhao, Bo; Kieff, Elliott [Department of Medicine and Microbiology and Molecular Genetics, Channing Laboratory, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Ave., Boston 02115, MA (United States); Peng, Chih-Wen, E-mail: pengcw@mail.tcu.edu.tw [Department of Life Sciences, Tzu-Chi University, 701 Chung-Yang Rd. Sec 3, Hualien 97004, Taiwan (China)

    2013-01-18

    Highlights: ► Catalytic active PRMT5 substantially binds to the EBNA2 RG domain. ► PRMT5 augments the EBNA2-dependent transcription. ► PRMT5 triggers the symmetric dimethylation of the EBNA2 RG domain. ► PRMT5 enhances the promoter occupancy of EBNA2 on its target promoters. -- Abstract: Epstein–Barr Virus Nuclear Antigen (EBNA) 2 features an Arginine–Glycine repeat (RG) domain at amino acid positions 335–360, which is a known target for protein arginine methyltransferaser 5 (PRMT5). In this study, we performed protein affinity pull-down assays to demonstrate that endogenous PRMT5 derived from lymphoblastoid cells specifically associated with the protein bait GST-E2 RG. Transfection of a plasmid expressing PRMT5 induced a 2.5- to 3-fold increase in EBNA2-dependent transcription of both the LMP1 promoter in AKATA cells, which contain the EBV genome endogenously, and a Cp-Luc reporter plasmid in BJAB cells, which are EBV negative. Furthermore, we showed that there was a 2-fold enrichment of EBNA2 occupancy in target promoters in the presence of exogenous PRMT5. Taken together, we show that PRMT5 triggers the symmetric dimethylation of EBNA2 RG domain to coordinate with EBNA2-mediated transcription. This modulation suggests that PRMT5 may play a role in latent EBV infection.

  19. Kinetic Parameters of Non-Isothermal Thermogravimetric Non-Catalytic and Catalytic Pyrolysis of Empty Fruit Bunch with Alumina by Kissinger and Ozawa Methods

    Science.gov (United States)

    Rahayu Mohamed, Alina; Li, Nurfahani; Sohaimi, Khairunissa Syairah Ahmad; Izzati Iberahim, Nur; Munirah Rohaizad, Nor; Hamzah, Rosniza

    2018-03-01

    The non-isothermal thermogravimetric non-catalytic and catalytic empty fruit bunch (EFB) pyrolysis with alumina were performed at different heating rates of 10, 15, 20, 25, 30 and 40 K/min under nitrogen atmosphere at a flow rate of 100 ml/min under dynamic conditions from 301 K to 1273 K. The activation energy were calculated based on Kissinger and Ozawa methods. Both reactions followed first order reactions. By Kissinger method, the activation energy and Ln A values for non-catalytic and catalytic EFB pyrolysis with alumina were 188.69 kJ mol-1 and 201.67 kJ/mol respectively. By Ozawa method, the activation energy values for non-catalytic and catalytic EFB pyrolysis with alumina were 189.13 kJ/mol and 201.44 kJ/mol respectively. The presence of catalyst increased the activation energy values for EFB pyrolysis as calculated by Kissinger and Ozawa methods.

  20. Perovskite-type catalytic materials for environmental applications.

    Science.gov (United States)

    Labhasetwar, Nitin; Saravanan, Govindachetty; Kumar Megarajan, Suresh; Manwar, Nilesh; Khobragade, Rohini; Doggali, Pradeep; Grasset, Fabien

    2015-06-01

    Perovskites are mixed-metal oxides that are attracting much scientific and application interest owing to their low price, adaptability, and thermal stability, which often depend on bulk and surface characteristics. These materials have been extensively explored for their catalytic, electrical, magnetic, and optical properties. They are promising candidates for the photocatalytic splitting of water and have also been extensively studied for environmental catalysis applications. Oxygen and cation non-stoichiometry can be tailored in a large number of perovskite compositions to achieve the desired catalytic activity, including multifunctional catalytic properties. Despite the extensive uses, the commercial success for this class of perovskite-based catalytic materials has not been achieved for vehicle exhaust emission control or for many other environmental applications. With recent advances in synthesis techniques, including the preparation of supported perovskites, and increasing understanding of promoted substitute perovskite-type materials, there is a growing interest in applied studies of perovskite-type catalytic materials. We have studied a number of perovskites based on Co, Mn, Ru, and Fe and their substituted compositions for their catalytic activity in terms of diesel soot oxidation, three-way catalysis, N 2 O decomposition, low-temperature CO oxidation, oxidation of volatile organic compounds, etc. The enhanced catalytic activity of these materials is attributed mainly to their altered redox properties, the promotional effect of co-ions, and the increased exposure of catalytically active transition metals in certain preparations. The recent lowering of sulfur content in fuel and concerns over the cost and availability of precious metals are responsible for renewed interest in perovskite-type catalysts for environmental applications.

  1. Oral supplementation with a combination of L-citrulline and L-arginine rapidly increases plasma L-arginine concentration and enhances NO bioavailability.

    Science.gov (United States)

    Morita, Masahiko; Hayashi, Toshio; Ochiai, Masayuki; Maeda, Morihiko; Yamaguchi, Tomoe; Ina, Koichiro; Kuzuya, Masafumi

    2014-11-07

    Chronic supplementation with L-citrulline plus L-arginine has been shown to exhibit anti-atherosclerotic effects. However, the short-term action of this combination on the nitric oxide (NO)-cGMP pathway remains to be elucidated. The objective of the present study was to investigate the acute effects of a combination of oral L-citrulline and L-arginine on plasma L-arginine and NO levels, as well as on blood circulation. Rats or New Zealand white rabbits were treated orally with L-citrulline, or L-arginine, or a combination of each at half dosage. Following supplementation, plasma levels of L-arginine, NOx, cGMP and changes in blood circulation were determined sequentially. L-Citrulline plus L-arginine supplementation caused a more rapid increase in plasma L-arginine levels and marked enhancement of NO bioavailability, including plasma cGMP concentrations, than with dosage with the single amino acids. Blood flow in the central ear artery in rabbits was also significantly increased by L-citrulline plus L-arginine administration as compared with the control. Our data show for the first time that a combination of oral L-citrulline and L-arginine effectively and rapidly augments NO-dependent responses at the acute stage. This approach may have clinical utility for the regulation of cardiovascular function in humans. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Synthesis and Characterization of Graphene and Graphene Oxide Based Palladium Nanocomposites and Their Catalytic Applications in Carbon-Carbon Cross-Coupling Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Minjae [Kunsan National Univ., Gunsan (Korea, Republic of); Kim, Bohyun; Lee, Yuna; Kim, Beomtae; Park, Joon B. [Chonbuk National Univ., Jeonju (Korea, Republic of)

    2014-07-15

    We have developed an efficient method to generate highly active Pd and PdO nanoparticles (NPs) dispersed on graphene and graphene oxide (GO) by an impregnation method combined with thermal treatments in H{sub 2} and O{sub 2} gas flows, respectively. The Pd NPs supported on graphene (Pd/G) and the PdO NPs supported on GO (PdO/GO) demonstrated excellent carbon-carbon cross-coupling reactions under a solvent-free, environmentally-friendly condition. The morphological and chemical structures of PdO/GO and Pd/G were fully characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). We found that the remarkable reactivity of the Pd/G and PdO/GO catalysts toward the cross-coupling reaction is attributed to the high degree of dispersion of the Pd and PdO NPs while the oxidative states of Pd and the oxygen functionalities of graphene oxide are not critical for their catalytic performance.

  3. Synthesis and Characterization of Graphene and Graphene Oxide Based Palladium Nanocomposites and Their Catalytic Applications in Carbon-Carbon Cross-Coupling Reactions

    International Nuclear Information System (INIS)

    Lee, Minjae; Kim, Bohyun; Lee, Yuna; Kim, Beomtae; Park, Joon B.

    2014-01-01

    We have developed an efficient method to generate highly active Pd and PdO nanoparticles (NPs) dispersed on graphene and graphene oxide (GO) by an impregnation method combined with thermal treatments in H 2 and O 2 gas flows, respectively. The Pd NPs supported on graphene (Pd/G) and the PdO NPs supported on GO (PdO/GO) demonstrated excellent carbon-carbon cross-coupling reactions under a solvent-free, environmentally-friendly condition. The morphological and chemical structures of PdO/GO and Pd/G were fully characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). We found that the remarkable reactivity of the Pd/G and PdO/GO catalysts toward the cross-coupling reaction is attributed to the high degree of dispersion of the Pd and PdO NPs while the oxidative states of Pd and the oxygen functionalities of graphene oxide are not critical for their catalytic performance

  4. Shape and catalytic mechanism of RuO{sub 2} particles at CO oxidation reaction conditions. First-principles based multi-scale modeling

    Energy Technology Data Exchange (ETDEWEB)

    Reuter, Karsten [TU Muenchen (Germany). Lehrstuhl fuer Theoretische Chemie

    2016-11-01

    For model catalyst studies on low-index single-crystal surfaces close agreement between detailed measurements and quantitative microkinetic modeling can increasingly be achieved. However, for 'real' catalyst particles, such structure-morphology-activity relationships are only scarcely established. This is prototypically reflected by the situation for RuO{sub 2}, as a most active catalyst for CO oxidation. Here, existing first-principles kinetic modeling is restricted to just one facet, namely the RuO{sub 2}(110) surface, which is not able to fully account for activity data obtained from polycrystalline RuO{sub 2} powder catalysts. The overarching objective of this project was correspondingly to close this gap and demonstrate that similarly close agreement as for individual single-crystal model catalysts can also be achieved for catalyst particles. Specifically, we addressed experiments where an intact RuO{sub 2} bulk structure is conserved, and establish the atomic-scale structure and reactivity of other RuO{sub 2} low-index facets under the gas-phase conditions characteristic for catalytic CO oxidation.

  5. Catalytic hydrogen recombination for nuclear containments

    International Nuclear Information System (INIS)

    Koroll, G.W.; Lau, D.W.P.; Dewit, W.A.; Graham, W.R.C.

    1994-01-01

    Catalytic recombiners appear to be a credible option for hydrogen mitigation in nuclear containments. The passive operation, versatility and ease of back fitting are appealing for existing stations and new designs. Recently, a generation of wet-proofed catalyst materials have been developed at AECL which are highly specific to H 2 -O 2 , are active at ambient temperatures and are being evaluated for containment applications. Two types of catalytic recombiners were evaluated for hydrogen removal in containments based on the AECL catalyst. The first is a catalytic combustor for application in existing air streams such as provided by fans or ventilation systems. The second is an autocatalytic recombiner which uses the enthalpy of reaction to produce natural convective flow over the catalyst elements. Intermediate-scale results obtained in 6 m 3 and 10 m 3 spherical and cylindrical vessels are given to demonstrate self-starting limits, operating limits, removal capacity, scaling parameters, flow resistance, mixing behaviour in the vicinity of an operating recombiner and sensitivity to poisoning, fouling and radiation. (author). 13 refs., 10 figs

  6. Enzymatic production of l-citrulline by hydrolysis of the guanidinium group of l-arginine with recombinant arginine deiminase.

    Science.gov (United States)

    Song, Wei; Sun, Xia; Chen, Xiulai; Liu, Dongxu; Liu, Liming

    2015-08-20

    In this study, a simple, efficient enzymatic production process for the environmentally friendly synthesis of l-citrulline from l-arginine was developed using arginine deiminase (ADI) from Lactococcus lactis. Following overexpression of L. lactis ADI in Escherichia. coli BL21 (DE3) and experimental evolution using error-prone PCR, mutant FMME106 was obtained with a Km for l-arginine of 3.5mM and a specific activity of 195.7U/mg. This mutant exhibited a maximal conversion of 92.6% and achieved a final l-citrulline concentration of 176.9g/L under optimal conditions (190g/L l-arginine, 15g/L whole-cell biocatalyst treated with 2% isopropanol for 30min, 50°C, pH 7.2, 8h). The average l-citrulline synthesis rate of 22.1g/L/h is considerably higher than that reported for other similar biocatalytic approaches, therefore the process developed in the present work has great potential for large-scale production of l-citrulline. Copyright © 2015. Published by Elsevier B.V.

  7. Enthalpy-driven interactions with sulfated glycosaminoglycans promote cell membrane penetration of arginine peptides.

    Science.gov (United States)

    Takechi-Haraya, Yuki; Nadai, Ryo; Kimura, Hitoshi; Nishitsuji, Kazuchika; Uchimura, Kenji; Sakai-Kato, Kumiko; Kawakami, Kohsaku; Shigenaga, Akira; Kawakami, Toru; Otaka, Akira; Hojo, Hironobu; Sakashita, Naomi; Saito, Hiroyuki

    2016-06-01

    The first step of cell membrane penetration of arginine peptides is thought to occur via electrostatic interactions between positive charges of arginine residues and negative charges of sulfated glycosaminoglycans (GAGs) on the cell surface. However, the molecular interaction of arginine peptides with GAG still remains unclear. Here, we compared the interactions of several arginine peptides of Tat, R8, and Rev and their analogues with heparin in relation to the cell membrane penetration efficiency. The high-affinity binding of arginine peptides to heparin was shown to be driven by large favorable enthalpy contributions, possibly reflecting multidentate hydrogen bondings of arginine residues with sulfate groups of heparin. Interestingly, the lysine peptides in which all arginine residues are substituted with lysine residues exhibited negligible binding enthalpy despite of their considerable binding to heparin. In CHO-K1 cells, arginine peptides exhibited a great cell-penetrating ability whereas their corresponding lysine peptides did not penetrate into cells. The degree of cell penetration of arginine peptides markedly decreased by the chlorate treatment of cells which prevents the sulfation of GAG chains. Significantly, the cell penetration efficiency of arginine peptides was found to be correlated with the favorable enthalpy of binding to heparin. These results suggest that the enthalpy-driven strong interaction with sulfated GAGs such as heparan sulfate plays a critical role in the efficient cell membrane penetration of arginine peptides. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Role of arginine and its methylated derivatives in cancer biology and treatment

    Directory of Open Access Journals (Sweden)

    Tyihák Erno

    2001-12-01

    Full Text Available Abstract Both L-arginine supplementation and deprivation influence cell proliferation. The effect of high doses on tumours is determined by the optical configuration: L-arginine is stimulatory, D-arginine inhibitory. Arginine-rich hexapeptides inhibited tumour growth. Deprivation of L-arginine from cell cultures enhanced apoptosis. The pro-apoptotic action of NO synthase inhibitors, like NG-monomethyl-L-arginine, is manifested through inhibition of the arginase pathway. NG-hydroxymethyl-L-arginines caused apoptosis in cell cultures and inhibited the growth of various transplantable mouse tumours. These diverse biological activities become manifest through formaldehyde (HCHO because guanidine group of L-arginine in free and bound form can react rapidly with endogenous HCHO, forming NG-hydroxymethylated derivatives. L-arginine is a HCHO capturer, carrier and donor molecule in biological systems. The role of formaldehyde generated during metabolism of NG-methylated and hydroxymethylated arginines in cell proliferation and death can be shown. The supposedly anti-apoptotic homozygous Arg 72-p53 genotype may increase susceptibility of some cancers. The diverse biological effects of L-arginine and its methylated derivatives call for further careful studies on their possible application in chemoprevention and cancer therapy.

  9. Adaptation to a long term (4 weeks) arginine- and precursor (glutamate, proline and aspartate)-free diet

    Science.gov (United States)

    It is not known whether arginine homeostasis is negatively affected by a "long-term" dietary restriction of arginine and its major precursors in healthy adults. To assess the effects of a 4-week arginine- and precursor-free dietary intake on the regulatory mechanisms of arginine homeostasis in healt...

  10. Contributions of the substrate-binding arginine residues to maleate-induced closure of the active site of Escherichia coli aspartate aminotransferase.

    Science.gov (United States)

    Matharu, A; Hayashi, H; Kagamiyama, H; Maras, B; John, R A

    2001-03-01

    Crystallography shows that aspartate aminotransferase binds dicarboxylate substrate analogues by bonds to Arg292 and Arg386, respectively [Jager, J, Moser, M. Sauder, U. & Jansonius, J. N. (1994) J. Mol. Biol., 239, 285-305]. The contribution of each interaction to the conformational change that the enzyme undergoes when it binds ligands via these residues, is assessed by probing mutant forms of the enzyme lacking either or both arginines. The probes used are NaH(3)BCN which reduces the cofactor imine, the reactive substrate analogue, cysteine sulfinate and proteolysis by trypsin. The unreactive substrate analogue, maleate, is used to induce closure. Each single mutant reacted only 2.5-fold more slowly with NaH(3)BCN than the wild-type indicating that charge repulsion by the arginines contributes little to maintaining the open conformation. Maleate lowered the rate of reduction of the wild-type enzyme more than 300-fold but had little effect on the reaction of the mutant enzymes indicating that the ability of this dicarboxylate analogue to bridge the arginines precisely makes the major contribution to closure. The R292L mutant reacted 20 times more rapidly with cysteine sulfinate than R386L but 5 x 10(4) times more slowly than the wild-type enzyme, consistent with the proposal that enzyme's catalytic abilities are not developed unless closure is induced by bridging of the arginines. Proteolysis of the mutants with trypsin showed that, in the wild-type enzyme, the bonds most susceptible to trypsin are those contributed by Arg292 and Arg386. Proteolysis of the next most susceptible bond, at Arg25 in the double mutant, was protected by maleate demonstrating the presence of an additional site on the enzyme for binding dicarboxylates.

  11. Arginine consumption by the intestinal parasite Giardia intestinalis reduces proliferation of intestinal epithelial cells.

    Science.gov (United States)

    Stadelmann, Britta; Merino, María C; Persson, Lo; Svärd, Staffan G

    2012-01-01

    In the field of infectious diseases the multifaceted amino acid arginine has reached special attention as substrate for the hosts production of the antimicrobial agent nitric oxide (NO). A variety of infectious organisms interfere with this part of the host immune response by reducing the availability of arginine. This prompted us to further investigate additional roles of arginine during pathogen infections. As a model we used the intestinal parasite Giardia intestinalis that actively consumes arginine as main energy source and secretes an arginine-consuming enzyme, arginine deiminase (ADI). Reduced intestinal epithelial cell (IEC) proliferation is a common theme during bacterial and viral intestinal infections, but it has never been connected to arginine-consumption. Our specific question was thereby, whether the arginine-consumption by Giardia leads to reduced IEC proliferation, in addition to NO reduction. In vitro cultivation of human IEC lines in arginine-free or arginine/citrulline-complemented medium, as well as in interaction with different G. intestinalis isolates, were used to study effects on host cell replication by MTT assay. IEC proliferation was further analyzed by DNA content analysis, polyamine measurements and expressional analysis of cell cycle regulatory genes. IEC proliferation was reduced upon arginine-withdrawal and also in an arginine-dependent manner upon interaction with G. intestinalis or addition of Giardia ADI. We show that arginine-withdrawal by intestinal pathogens leads to a halt in the cell cycle in IECs through reduced polyamine levels and upregulated cell cycle inhibitory genes. This is of importance with regards to intestinal tissue homeostasis that is affected through reduced cell proliferation. Thus, the slower epithelial cell turnover helps the pathogen to maintain a more stable niche for colonization. This study also shows why supplementation therapy of diarrhea patients with arginine/citrulline is helpful and that

  12. Catalytic bioreactors and methods of using same

    Science.gov (United States)

    Worden, Robert Mark; Liu, Yangmu Chloe

    2017-07-25

    Various embodiments provide a bioreactor for producing a bioproduct comprising one or more catalytically active zones located in a housing and adapted to keep two incompatible gaseous reactants separated when in a gas phase, wherein each of the one or more catalytically active zones may comprise a catalytic component retainer and a catalytic component retained within and/or thereon. Each of the catalytically active zones may additionally or alternatively comprise a liquid medium located on either side of the catalytic component retainer. Catalytic component may include a microbial cell culture located within and/or on the catalytic component retainer, a suspended catalytic component suspended in the liquid medium, or a combination thereof. Methods of using various embodiments of the bioreactor to produce a bioproduct, such as isobutanol, are also provided.

  13. Iridium complexes containing mesoionic C donors: selective C(sp3)-H versus C(sp2)-H bond activation, reactivity towards acids and bases, and catalytic oxidation of silanes and water.

    Science.gov (United States)

    Petronilho, Ana; Woods, James A; Mueller-Bunz, Helge; Bernhard, Stefan; Albrecht, Martin

    2014-11-24

    Metalation of a C2-methylated pyridylimidazolium salt with [IrCp*Cl2]2 affords either an ylidic complex, resulting from C(sp(3))-H bond activation of the C2-bound CH3 group if the metalation is performed in the presence of a base, such as AgO2 or Na2CO3, or a mesoionic complex via cyclometalation and thermally induced heterocyclic C(sp(2))-H bond activation, if the reaction is performed in the absence of a base. Similar cyclometalation and complex formation via C(sp(2))-H bond activation is observed when the heterocyclic ligand precursor consists of the analogous pyridyltriazolium salt, that is, when the metal bonding at the C2 position is blocked by a nitrogen rather than a methyl substituent. Despite the strongly mesoionic character of both the imidazolylidene and the triazolylidene, the former reacts rapidly with D(+) and undergoes isotope exchange at the heterocyclic C5 position, whereas the triazolylidene ligand is stable and only undergoes H/D exchange under basic conditions, where the imidazolylidene is essentially unreactive. The high stability of the Ir-C bond in aqueous solution over a broad pH range was exploited in catalytic water oxidation and silane oxidation. The catalytic hydrosilylation of ketones proceeds with turnover frequencies as high as 6,000 h(-1) with both the imidazolylidene and the triazolylidene system, whereas water oxidation is enhanced by the stronger donor properties of the imidazol-4-ylidene ligands and is more than three times faster than with the triazolylidene analogue. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Immobilization of glucose oxidase onto a novel platform based on modified TiO2 and graphene oxide, direct electrochemistry, catalytic and photocatalytic activity

    International Nuclear Information System (INIS)

    Haghighi, Nasibeh; Hallaj, Rahman; Salimi, Abdollah

    2017-01-01

    In this work a new organic–inorganic nanocomposite has been introduced for enzyme immobilization. The composite consisting of graphene oxide (GO) and titanium oxide nanoparticles (TiO 2 ) modified with 2, 2′-dithioxo-3, 3′-bis (3-(triethoxysilyl) propyl)-2H, 2′H-[5, 5′-bithiazolylidene]-4, 4′(3H, 3′H)-dione as Organic-Inorganic Supporting Ligand (OISL). The OISL was covalently attached to TiO 2 nanoparticles and employed for obtaining a suitable solid surface to enzyme attachment. The glucose oxidase (GOD) was irreversibly loaded on the GC/GO/TiO 2 -OISL using consecutive cyclic voltammetry. The enzyme immobilization and the enzymatic activity were determined by electrochemical methods. The cyclic voltammogram displayed a pair of well-defined and nearly symmetric redox peaks with a formal potential of − 0.465 V and an apparent electron transfer rate constant of 1.74 s −1 . The GO/TiO 2 -OISL can catalyze the electroreduction and electrooxidation of hydrogen peroxide. The GC/GO/TiO 2 -OISL/GOD electrode was used in the hydrogen peroxide determination. The fabricated nanobiocomposite shows dramatic photoelectrocatalytic activity which evaluated by studying the electrocatalytic activity of the fabricated electrode toward hydrogen peroxide in darkness and in the presences of light. - Highlights: • In this work a novel platform used to successful immobilization of glucose oxidase. Due to its large functional group this modified nanoparticles load enzyme (GOD) and remain enzyme whit out denaturation for a long time. • The loaded enzyme shows direct electron transfer and excellent charge transfer kinetic. Also the fabricated nano-bio-composite has good catalytic activity toward hydrogen peroxide during electrooxidation and electro reduction process. • The nano-bio-composite shows excellent photocatalytic activity.

  15. Efficacy in reducing dentine hypersensitivity of a regimen using a toothpaste containing 8% arginine and calcium carbonate, a mouthwash containing 0.8% arginine, pyrophosphate and PVM/MA copolymer and a toothbrush compared to potassium and negative control regimens: an eight-week randomized clinical trial.

    Science.gov (United States)

    Elias Boneta, Augusto R; Ramirez, Karol; Naboa, Joselyn; Mateo, Luis R; Stewart, Bernal; Panagokos, Foti; De Vizio, William

    2013-03-01

    Evaluate the efficacy of three regimens integrating toothpaste, toothbrush and mouthwash in reducing dentine hypersensitivity. Eight-week single-centre, three-cell, double-blind, randomized study was conducted in the Dominican Republic. Subjects entered one of the three regimens: (1) toothpaste containing 8% arginine and 1450 ppm mono-fluorophosphate, in a calcium carbonate base, a soft-bristle toothbrush followed by a mouthwash containing 0.8% arginine, PVM/MA copolymer, pyrophosphates, and 0.05% sodium fluoride; (2) toothpaste containing 5% potassium nitrate and 1450 ppm sodium fluoride, a soft-bristle toothbrush, followed by a mouthwash containing 0.51% potassium chloride and 230 ppm sodium fluoride; and (3) toothpaste containing 1450 ppm mono-fluorophosphate, a soft-bristle toothbrush followed by a fluoride/arginine free mouthwash. Tactile and Air-Blast dentine hypersensitivity measurements were performed at baseline, two, four, and eight weeks. For treatment group comparisons, ANCOVA and post hoc Tukey's pair-wise (α=0.05) were used. Kaplan-Meier survival analysis was performed to evaluate Time to Treatment Improvement. 120 subjects were enrolled, 118 completed the study. The Tactile hypersensitivity mean scores showed statistically significant improvement at two, four and eight (p ≤ 0.001) weeks in the arginine regime; the potassium regime did not show significant (p ≥ 0.05) improvement. Air-Blast Hypersensitivity scores had a statistically significant decrease at two (p=0.006), four (p=0.006) and eight (p=0.002) weeks in arginine and potassium regimes (p ≤ 0.05). The most effective treatment proved to be arginine (p ≤ 0.05) compared to the potassium regime. Arginine regimen provided the greatest reduction in Tactile and Air-Blast dentine hypersensitivity compared to potassium and negative control regimens; and provides faster dentine hypersensitivity relief than potassium regimen. Copyright © 2013. Published by Elsevier Ltd.

  16. Catalytic Decoupling of Quantum Information

    DEFF Research Database (Denmark)

    Majenz, Christian; Berta, Mario; Dupuis, Frédéric

    2017-01-01

    The decoupling technique is a fundamental tool in quantum information theory with applications ranging from quantum thermodynamics to quantum many body physics to the study of black hole radiation. In this work we introduce the notion of catalytic decoupling, that is, decoupling in the presence...... of an uncorrelated ancilla system. This removes a restriction on the standard notion of decoupling, which becomes important for structureless resources, and yields a tight characterization in terms of the max-mutual information. Catalytic decoupling naturally unifies various tasks like the erasure of correlations...

  17. Catalytic activity of Au nanoparticles

    DEFF Research Database (Denmark)

    Larsen, Britt Hvolbæk; Janssens, Ton V.W.; Clausen, Bjerne

    2007-01-01

    Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change with par......Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change...

  18. Exercise training reverses the negative effects of chronic L-arginine supplementation on insulin sensitivity.

    Science.gov (United States)

    Salgueiro, Rafael Barrera; Gerlinger-Romero, Frederico; Guimarães-Ferreira, Lucas; de Castro Barbosa, Thais; Nunes, Maria Tereza

    2017-12-15

    L-Arginine has emerged as an important supplement for athletes and non-athletes in order to improve performance. Arginine has been extensively used as substrate for nitric oxide synthesis, leading to increased vasodilatation and hormonal secretion. However, the chronic consumption of arginine has been shown to impair insulin sensitivity. In the present study, we aimed to evaluate whether chronic arginine supplementation associated with exercise training would have a beneficial impact on insulin sensitivity. We, therefore, treated Wistar rats for 4weeks with arginine, associated or not with exercise training (treadmill). We assessed the somatotropic activation, by evaluating growth hormone (GH) gene expression and protein content in the pituitary, as well is GH concentration in the serum. Additionally, we evaluate whole-body insulin sensitivity, by performing an insulin tolerance test. Skeletal muscle morpho-physiological parameters were also assessed. Insulin sensitivity was impaired in the arginine-treated rats. However, exercise training reversed the negative effects of arginine. Arginine and exercise training increased somatotropic axis function, muscle mass and body weight gain. The combination arginine and exercise training further decreased total fat mass. Our results confirm that chronic arginine supplementation leads to insulin resistance, which can be reversed in the association with exercise training. We provide further evidence that exercise training is an important tool to improve whole-body metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Arginine decarboxylase as the source of putrescine for tobacco alkaloids

    Science.gov (United States)

    Tiburcio, A. F.; Galston, A. W.

    1986-01-01

    The putrescine which forms a part of nicotine and other pyrrolidine alkaloids is generally assumed to arise through the action of ornithine decarboxylase (ODC). However, we have previously noted that changes in the activity of arginine decarboxylase (ADC), an alternate source of putrescine, parallel changes in tissue alkaloids, while changes in ODC activity do not. This led us to undertake experiments to permit discrimination between ADC and ODC as enzymatic sources of putrescine destined for alkaloids. Two kinds of evidence presented here support a major role for ADC in the generation of putrescine going into alkaloids: (a) A specific 'suicide inhibitor' of ADC effectively inhibits the biosynthesis of nicotine and nornicotine in tobacco callus, while the analogous inhibitor of ODC is less effective, and (b) the flow of 14C from uniformly labelled arginine into nicotine is much more efficient than that from ornithine.

  20. Model studies on protein glycation: influence of cysteine on the reactivity of arginine and lysine residues toward glyoxal.

    Science.gov (United States)

    Schwarzenbolz, Uwe; Mende, Susann; Henle, Thomas

    2008-04-01

    Mixtures of N alpha-hippurylarginin, N alpha-hippuryllysine, and glyoxal were incubated in the absence and presence of N alpha-acetylcysteine in order to assess the individual reactivity of these nucleophilic amino acid residues. The incubations were performed under atmospheric and high hydrostatic pressure (400 MPa), and, at the same time, beta-casein was reacted with glyoxal. The results showed that arginine is the main partner for glyoxal in the absence of cysteine, whereas a lysine derivatization was not apparent. In the presence of cysteine, however, arginine was almost completely protected from the reaction, whereas a noticeable formation of lysine derivatives, mainly carboxymethyllysine, was observed. Based on these findings, a reaction mechanism is proposed to explain the influence of cysteine on the reaction.

  1. l-Arginine Supplementation Alleviates Postprandial Endothelial Dysfunction When Baseline Fasting Plasma Arginine Concentration Is Low: A Randomized Controlled Trial in Healthy Overweight Adults with Cardiometabolic Risk Factors.

    Science.gov (United States)

    Deveaux, Ambre; Pham, Isabelle; West, Sheila G; André, Etienne; Lantoine-Adam, Frédérique; Bunouf, Pierre; Sadi, Samira; Hermier, Dominique; Mathé, Véronique; Fouillet, Hélène; Huneau, Jean-François; Benamouzig, Robert; Mariotti, François

    2016-07-01

    Vascular endothelial dysfunction, the hallmark of early atherosclerosis, is induced transiently by a high-fat meal. High doses of free l-arginine supplements reduce fasting endothelial dysfunction. We sought to determine the effects of a low dose of a sustained-release (SR) l-arginine supplement on postprandial endothelial function in healthy overweight adults with cardiometabolic risk factors and to investigate whether this effect may vary by baseline arginine status. In a randomized, double-blind, 2-period crossover, placebo-controlled trial (4-wk treatment, 4-wk washout), we compared the effects of 1.5 g SR-l-arginine 3 times/d (4.5 g/d) with placebo in 33 healthy overweight adults [body mass index (BMI, in kg/m(2)): 25 to >30] with the hypertriglyceridemic waist (HTW) phenotype [plasma triglycerides > 150 mg/dL; waist circumference > 94 cm (men) or > 80 cm (women)]. The main outcome variable tested was postprandial endothelial function after a high-fat meal (900 kcal), as evaluated by use of flow-mediated dilation (FMD) and Framingham reactive hyperemia index (fRHI), after each treatment. By use of subgroup analysis, we determined whether the effect was related to the baseline plasma arginine concentration. In the total population, the effects of SR-arginine supplementation on postprandial endothelial function were mixed and largely varied with baseline fasting arginine concentration (P-interaction supplementation attenuated the postprandial decrease in both FMD (29% decrease with SR-arginine compared with 50% decrease with placebo) and fRHI (5% increase with SR-arginine compared with 49% decrease with placebo), resulting in significantly higher mean ± SEM values with SR-arginine (FMD: 4.0% ± 0.40%; fRHI: 0.41 ± 0.069) than placebo (FMD: 2.9% ± 0.31%; fRHI: 0.21 ± 0.060) at the end of the postprandial period (P Supplementation with low-dose SR-arginine alleviates postprandial endothelial dysfunction in healthy HTW adults when the baseline plasma arginine

  2. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    ... improvements in reactor performance. In this article, application of recent (and not so recent) developments in engineering reactors for catalytic reactions is discussed. Some examples where performance enhancement was realized by catalyst design, appropriate choice of reactor, better injection and dispersion strategies ...

  3. Catalytic properties of niobium compounds

    International Nuclear Information System (INIS)

    Tanabe, K.; Iizuka, T.

    1983-04-01

    The catalytic activity and selectivity of niobium compounds including oxides, salts, organometallic compounds and others are outlined. The application of these compounds as catalysts to diversified reactions is reported. The nature and action of niobium catalysts are characteristic and sometimes anomalous, suggesting the necessity of basic research and the potential use as catalysts for important processes in the chemical industry. (Author) [pt

  4. Catalytic carboxyester hydrolysis by diaminodiphenols

    Indian Academy of Sciences (India)

    Administrator

    Two diaminodiphenols, 1 and 2, have been examined as catalysts for the hydrolysis of 4- nitrophenyl acetate (NA) and 4-nitrophenylphosphate (NP) in aqueous-acetonitrile (25% acetonitrile v/v) media at 35ºC, I = 1·0 mol dm–3. The compound 1 enhances the hydrolysis rate of NA more than 105 times. Its catalytic efficiency ...

  5. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    on selectivity can make substantial impact on process viability and economics. Extensive studies have been conducted to establish sound basis for design and engineering of reactors for practising such catalytic reactions and for realizing improvements in reactor performance. In this article, application of recent (and not so ...

  6. Plasma-catalytic reforming of liquid hydrocarbons

    International Nuclear Information System (INIS)

    Nedybaliuk, O.A.; Chernyak, V.Ya; Kolgan, V.V.; Iukhymenko, V.V.; Solomenko, O.V.; Fedirchyk, I.I.; Martysh, E.V.; Demchina, V.P.; Klochok, N.V.; Dragnev, S.V.

    2015-01-01

    The series of experiments studying the plasma-catalytic reforming of liquid hydrocarbons was carried out. The dynamic plasma-liquid system based on a low-power rotating gliding arc with solid electrodes was used for the investigation of liquid hydrocarbons reforming process. Conversion was done via partial oxidation. A part of oxidant flow was activated by the discharge. Synthesis-gas composition was analysed by means of mass-spectrometry and gas-chromatography. A standard boiler, which operates on natural gas and LPG, was used for the burning of synthesis-gas

  7. Atomic Distribution in Catalytic Amorphous Metals

    Directory of Open Access Journals (Sweden)

    Sanghita Mridha

    2015-01-01

    Full Text Available The atomic distribution in catalytically active metallic glass alloys, Pd43Cu27Ni10P20 and Pt57.5Cu14.7Ni5.3P22.5, was investigated using three-dimensional atom probe microscopy. Atom probe analysis showed uniform distribution of constituent elements for both the starting amorphous alloys, with no phase separation. Both the crystallized alloys showed eutectic microstructure with a very sharp interface (~0.5 nm as determined from atom probe. The atomic distribution in the devitrified state is explained based on the “fragile liquid” behavior for these noble-metal glassy alloys.

  8. PRMT1-mediated arginine methylation controls ATXN2L localization

    Energy Technology Data Exchange (ETDEWEB)

    Kaehler, Christian; Guenther, Anika; Uhlich, Anja; Krobitsch, Sylvia, E-mail: krobitsc@molgen.mpg.de

    2015-05-15

    Arginine methylation is a posttranslational modification that is of importance in diverse cellular processes. Recent proteomic mass spectrometry studies reported arginine methylation of ataxin-2-like (ATXN2L), the paralog of ataxin-2, a protein that is implicated in the neurodegenerative disorder spinocerebellar ataxia type 2. Here, we investigated the methylation state of ATXN2L and its significance for ATXN2L localization. We first confirmed that ATXN2L is asymmetrically dimethylated in vivo, and observed that the nuclear localization of ATXN2L is altered under methylation inhibition. We further discovered that ATXN2L associates with the protein arginine-N-methyltransferase 1 (PRMT1). Finally, we showed that neither mutation of the arginine–glycine-rich motifs of ATXN2L nor methylation inhibition alters ATXN2L localization to stress granules, suggesting that methylation of ATXN2L is probably not mandatory. - Highlights: • ATXN2L is asymmetrically dimethylated in vivo. • ATXN2L interacts with PRMT1 under normal and stress conditions. • PRMT1-mediated dimethylation of ATXN2L controls its nuclear localization. • ATXN2L localization to stress granules appears independent of its methylation state.

  9. Dietary L-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs.

    Science.gov (United States)

    Tan, Bie; Yin, Yulong; Liu, Zhiqiang; Li, Xinguo; Xu, Haijun; Kong, Xiangfeng; Huang, Ruilin; Tang, Wenjie; Shinzato, Izuru; Smith, Stephen B; Wu, Guoyao

    2009-05-01

    Obesity in humans is a major public health crisis worldwide. In addition, livestock species exhibit excessive subcutaneous fat at market weight. However, there are currently few means of reducing adiposity in mammals. This study was conducted with a swine model to test the hypothesis that dietary L-arginine supplementation may increase muscle gain and decrease fat deposition. Twenty-four 110-day-old barrows were assigned randomly into two treatments, representing supplementation with 1.0% L-arginine or 2.05% L-alanine (isonitrogenous control) to a corn- and soybean meal-based diet. Growth performance was measured based on weight gain and food intake. After a 60-day period of supplementation, carcass and muscle composition were measured. Serum triglyceride concentration was 20% lower (P gain by 6.5% and carcass skeletal-muscle content by 5.5%, while decreasing (P muscle protein, glycogen, and fat contents by 4.8, 42, and 70%, respectively, as well as muscle pH at 45 min post-mortem by 0.32, while reducing muscle lactate content by 37%. These results support our hypothesis that dietary arginine supplementation beneficially promotes muscle gain and reduces body fat accretion in growing-finishing pigs. The findings have a positive impact on development of novel therapeutics to treat human obesity and enhance swine lean-tissue growth.

  10. Refolding Technology for scFv Using a New Detergent, N-Lauroyl-L-glutamate and Arginine

    Directory of Open Access Journals (Sweden)

    Tsutomu Arakawa

    2012-08-01

    Full Text Available Monoclonal antibodies to the soluble antigens or cell surface markers hold great promise as effective human therapeutics. One of the major disadvantages is its large size, which prevents efficient penetration into the target tissues. Smaller version of antibodies, which has only antigen binding sites, is extensively investigated. It becomes increasingly apparent, however, that these smaller fragments of antibodies are rather difficult to produce, as the normally efficient mammalian secretion system does not work well for these fragments. Thus, refolding of insoluble proteins produced in Escherichia coli is a method of choice, although such refolding is mainly based on trial-and-error experiment. Here we describe a novel refolding system using a new amino acid-based detergent, N-lauroyl-L-glutamate, and arginine. This detergent appears to readily dissociate from proteins below critical micelle concentration (CMC, while remaining effective in protein solubilization above CMC. Arginine suppresses protein aggregation when the detergent concentration was reduced below CMC. The interaction of the detergent and arginine with proteins, which play an important role in protein refolding, will be discussed in great length.

  11. Residue-specific pK(a) determination of lysine and arginine side chains by indirect N-15 and C-13 NMR spectroscopy : Application to apo calmodulin

    NARCIS (Netherlands)

    Andre, Ingemar; Linse, Sara; Mulder, Frans A. A.

    2007-01-01

    Electrostatic interactions in proteins can be probed experimentally through determination of residue-specific acidity constants, We describe here triple-resonance NMR techniques for direct determination of lysine and arginine side-chain protonation states in proteins. The experiments are based on

  12. Catalytic Stereoinversion of L-Alanine to Deuterated D-Alanine.

    Science.gov (United States)

    Moozeh, Kimia; So, Soon Mog; Chin, Jik

    2015-08-03

    A combination of an achiral pyridoxal analogue and a chiral base has been developed for catalytic deuteration of L-alanine with inversion of stereochemistry to give deuterated D-alanine under mild conditions (neutral pD and 25 °C) without the use of any protecting groups. This system can also be used for catalytic deuteration of D-alanine with retention of stereochemistry to give deuterated D-alanine. Thus a racemic mixture of alanine can be catalytically deuterated to give an enantiomeric excess of deuterated D-alanine. While catalytic deracemization of alanine is forbidden by the second law of thermodynamics, this system can be used for catalytic deracemization of alanine with deuteration. Such green and biomimetic approach to catalytic stereocontrol provides insights into efficient amino acid transformations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Catalytically enhanced combustion process

    International Nuclear Information System (INIS)

    Rodriguez, C.

    1992-01-01

    This patent describes a fuel having improved combustion efficiency. It comprises a petroleum based liquid hydrocarbon; and a combustion catalyst comprising from about 18 to about 21 weight percent naphthalene, from about 75 to about 80 weight percent toluene, and from about 2.8 to about 3.2 weight percent benzyl alcohol

  14. Stress, sex, and addiction: potential roles of corticotropin-releasing factor, oxytocin, and arginine-vasopressin.

    Science.gov (United States)

    Bisagno, Verónica; Cadet, Jean Lud

    2014-09-01

    Stress sensitivity and sex are predictive factors for the development of neuropsychiatric disorders. Life stresses are not only risk factors for the development of addiction but also are triggers for relapse to drug use. Therefore, it is imperative to elucidate the molecular mechanisms underlying the interactions between stress and drug abuse, as an understanding of this may help in the development of novel and more effective therapeutic approaches to block the clinical manifestations of drug addiction. The development and clinical course of addiction-related disorders do appear to involve neuroadaptations within neurocircuitries that modulate stress responses and are influenced by several neuropeptides. These include corticotropin-releasing factor, the prototypic member of this class, as well as oxytocin and arginine-vasopressin that play important roles in affiliative behaviors. Interestingly, these peptides function to balance emotional behavior, with sexual dimorphism in the oxytocin/arginine-vasopressin systems, a fact that might play an important role in the differential responses of women and men to stressful stimuli and the specific sex-based prevalence of certain addictive disorders. Thus, this review aims to summarize (i) the contribution of sex differences to the function of dopamine systems, and (ii) the behavioral, neurochemical, and anatomical changes in brain stress systems.

  15. Mimicking of Arginine by Functionalized N(ω)-Carbamoylated Arginine As a New Broadly Applicable Approach to Labeled Bioactive Peptides: High Affinity Angiotensin, Neuropeptide Y, Neuropeptide FF, and Neurotensin Receptor Ligands As Examples.

    Science.gov (United States)

    Keller, Max; Kuhn, Kilian K; Einsiedel, Jürgen; Hübner, Harald; Biselli, Sabrina; Mollereau, Catherine; Wifling, David; Svobodová, Jaroslava; Bernhardt, Günther; Cabrele, Chiara; Vanderheyden, Patrick M L; Gmeiner, Peter; Buschauer, Armin

    2016-03-10

    Derivatization of biologically active peptides by conjugation with fluorophores or radionuclide-bearing moieties is an effective and commonly used approach to prepare molecular tools and diagnostic agents. Whereas lysine, cysteine, and N-terminal amino acids have been mostly used for peptide conjugation, we describe a new, widely applicable approach to peptide conjugation based on the nonclassical bioisosteric replacement of the guanidine group in arginine by a functionalized carbamoylguanidine moiety. Four arginine-containing peptide receptor ligands (angiotensin II, neurotensin(8-13), an analogue of the C-terminal pentapeptide of neuropeptide Y, and a neuropeptide FF analogue) were subject of this proof-of-concept study. The N(ω)-carbamoylated arginines, bearing spacers with a terminal amino group, were incorporated into the peptides by standard Fmoc solid phase peptide synthesis. The synthesized chemically stable peptide derivatives showed high receptor affinities with Ki values in the low nanomolar range, even when bulky fluorophores had been attached. Two new tritiated tracers for angiotensin and neurotensin receptors are described.

  16. Oral L-Arginine Stimulates GLP-1 Secretion to Improve Glucose Tolerance in Male Mice

    DEFF Research Database (Denmark)

    Clemmensen, Christoffer; Smajilovic, Sanela; Smith, Eric P

    2013-01-01

    -induced obesity, may provide an alternative therapeutic approach. Importantly, recent evidence suggests the amino acid l-arginine, a well-known insulin secretagogue, can also stimulate release of GLP-1 from isolated rat intestine. Here we tested the hypothesis that oral l-arginine acts as a GLP-1 secretagogue...... in vivo, to augment postprandial insulin secretion and improve glucose tolerance. To test this, we administered l-arginine or vehicle by oral gavage, immediately prior to an oral glucose tolerance test in lean and diet-induced obese mice. In both lean and obese mice oral l-arginine increased plasma GLP-1...... and insulin and substantially improved glucose clearance. To directly assess the contribution of GLP-1 receptor (GLP-1R)-signaling to these improvements, l-arginine was given to Glp1r knockout mice and their wild-type littermates. In this experiment oral l-arginine significantly augmented insulin secretion...

  17. Does an ‘L-arginine doped orthophosphoric acid’ crystal exist?

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, Bikshandarkoil R., E-mail: srini@unigoa.ac.in

    2014-04-15

    The reactive nature of aqueous orthophosphoric acid (H{sub 3}PO{sub 4}) towards L-arginine (L-Arg), to form a phosphate salt namely L-arginine phosphate monohydrate (LAP), rules out the doping of any L-arginine into H{sub 3}PO{sub 4}. Hence, the reported claim of growth of ‘L-arginine doped orthophosphoric acid’ crystals by Saradha et al. J. Lumin (2013) is untenable. -- Highlights: • Orthophosphoric acid (H{sub 3}PO{sub 4}) is a tetrahedral molecule. • Aqueous H{sub 3}PO{sub 4} reacts with L-arginine to form mono- or bis-dihydrogenphosphate salt. • L-arginine doped orthophosphoric acid crystal does not exist.

  18. Catalytically and noncatalytically treated automobile exhaust: biological effects in rats

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, G.P. (Univ. of Cincinnati); Lewkowski, J.P.; Hastings, L.; Malanchuk, M.

    1977-12-01

    Chronic exposure to catalytically treated or noncatalytically treated automobile exhaust significantly depressed the spontaneous locomotor activity (SLA) of rats. Exposure to H/sub 2/SO/sub 4/ alone or CO at comparable levels did not alter the SLA. Exposure to noncatalytically treated exhaust resulted in significant reductions in growth rate and food and water intake. However, these effects were not evident in the exposure to catalytically treated exhaust or in the control H/sub 2/SO/sub 4/ and CO exposures. Blood acid-base analyses indicated that exposure to either catalytically treated exhaust or H/sub 2/SO/sub 4/ elicits a metabolic alkalosis, while exposure to CO alone results in a metabolic acidosis. All acid-base parameters were within the normal range several weeks after the termination of exposure.

  19. A novel L-arginine salt nonlinear optical crystal: L-arginine p-nitrobenzoate monohydrate (LANB)

    Science.gov (United States)

    Wang, L.; Zhang, G. H.; Liu, X. T.; Wang, L. N.; Wang, X. Q.; Zhu, L. Y.; Xu, D.

    2014-01-01

    A novel L-arginine salt nonlinear optical single crystal, L-arginine p-nitrobenzoate monohydrate (LANB) has been grown by slow cooling method from aqueous solution. Its solubility at different temperatures in water was measured. The grown crystal was characterized by the elemental analyses, X-ray single crystal and powder diffractions, Fourier transform infrared and Raman spectra. The structure analysis revealed that LANB belongs to the monoclinic crystallographic system, space group P21, with unit cell parameters: a = 8.566(3), b = 5.817(2), c = 17.131(7) Å, β = 101.223(5)°, Z = 2 and V = 837.2(6) Å3. The proton and carbon configurations of L-arginine were confirmed through 1H NMR and 13C NMR spectra analyses. The linear and nonlinear optical properties of LANB crystal were studied by the use of transmission spectrum and second harmonic generation (SHG). The thermal properties were investigated by using thermo gravimetric (TG) and differential thermal analysis (DTA).

  20. Effects of L-arginine pretreatment on nitric oxide metabolism and hepatosplanchnic perfusion during porcine endotoxemia.

    Science.gov (United States)

    Poeze, Martijn; Bruins, Maaike J; Kessels, Fons; Luiking, Yvette C; Lamers, Wouter H; Deutz, Nicolaas E P

    2011-06-01

    Sepsis is accompanied by an increased need for and a decreased supply of arginine, reflecting a condition of arginine deficiency. The objective was to evaluate the effects of l-arginine pretreatment on arginine-nitric oxide (NO) production and hepatosplanchnic perfusion during subsequent endotoxemia. In a randomized controlled trial, pigs (20-25 kg) received 3 μg . kg(-1) . min(-1) lipopolysaccharide (LPS; 5 endotoxin units/ng) intravenously and saline resuscitation. l-Arginine (n = 8; 5.3 μmol . kg(-1) . min(-1)) or saline (n = 8) was infused starting 12 h before LPS infusion and continued for 24 h after the endotoxin infusion ended. Whole-body appearance rates, portal-drained viscera (PDV), and liver fluxes of arginine, citrulline, NO, and arginine de novo synthesis were measured by using stable-isotope infusion of [(15)N(2)]arginine and [(13)C-(2)H(2)]citrulline. Hepatosplanchnic perfusion was assessed by using a primed continuous infusion of para-aminohippuric acid and jejunal intramucosal partial pressure of carbon dioxide and was related to systemic hemodynamics. Arginine supplementation before LPS increased whole-body NO production in the PDV but not in the liver. Furthermore, it increased blood flow in the portal vein but not in the aorta and hepatic artery. During endotoxin infusion, arginine pretreatment was associated with an increased whole-body arginine appearance and NO production in the gut. Additional effects included a preserved mean arterial pressure, the prevention of an increase in pulmonary arterial pressure, an attenuated metabolic acidosis, and an attenuated increase in the intramucosal partial pressure of carbon dioxide. Arginine treatment starting before endotoxemia appears to be beneficial because it improves hepatosplanchnic perfusion and oxygenation during prolonged endotoxemia, probably through an enhancement in NO synthesis, without causing deleterious systemic side effects.

  1. Remission of diabetes mellitus in cats cannot be predicted by the arginine stimulation test

    OpenAIRE

    Tschuor, F

    2011-01-01

    Background: Responsiveness of β-cells to arginine persists the longest during diabetes progression, making the intravenous arginine stimulation test (IVAST) a useful tool to assess residual insulin and glucagon secretion. Hypothesis: Diabetic cats with and without remission will have different arginine-induced insulin or glucagon response. Animals: 17 cats with diabetes, 7 healthy cats. Methods: Response to IVAST was assessed by calculating insulin and glucagon area under the c...

  2. Oral L-arginine supplementation impacts several reproductive parameters during the postpartum period in mares.

    Science.gov (United States)

    Kelley, Dale E; Warren, Lori K; Mortensen, Christopher J

    2013-05-01

    L-arginine is an amino acid which can alter pituitary function and increase blood flow to the reproductive tract. The objective was to determine the effect of supplementing 100g of L-arginine on plasma arginine concentrations, follicular dynamics and ovarian and uterine artery blood flow during the estrus that occurs subsequent to foaling. In Experiment 1, mares were fed 100g L-arginine for 1 day during the last 3 weeks of pregnancy and plasma samples taken for every hour for the first 4h and every other hour until 12h.L-arginine supplementation elevated plasma arginine concentrations from 1 to 8h post feeding; arginine peaked at 6h (arginine: 515±33μmol/L; control: 80±33μmol/L). In Experiment 2, mares received either 100g L-arginine or control diets beginning 21 d before the expected foaling date and continued for 30 d postpartum. The reproductive tract was evaluated by transrectal Doppler ultrasonography from Day 1 postpartum through Day 30. There were no differences in ovarian follicular dynamics, ovarian or uterine resistance indices between groups. Vascular perfusion of the F1 follicular wall was greater in L-arginine supplemented mares (37.3±2.6%) than controls (25.4±2.7%; PL-arginine supplemented mares had a smaller uterine body and horns and accumulated less uterine fluid than controls (PL-arginine supplementation as a breeding management tool during the postpartum period to increase reproductive success. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. l-Arginine Availability Modulates Local Nitric Oxide Production and Parasite Killing in Experimental Trypanosomiasis

    OpenAIRE

    Gobert, Alain P.; Daulouede, Sylvie; Lepoivre, Michel; Boucher, Jean Luc; Bouteille, Bernard; Buguet, Alain; Cespuglio, Raymond; Veyret, Bernard; Vincendeau, Philippe

    2000-01-01

    Nitric oxide (NO) is an important effector molecule of the immune system in eliminating numerous pathogens. Peritoneal macrophages from Trypanosoma brucei brucei-infected mice express type II NO synthase (NOS-II), produce NO, and kill parasites in the presence of l-arginine in vitro. Nevertheless, parasites proliferate in the vicinity of these macrophages in vivo. The present study shows that l-arginine availability modulates NO production. Trypanosomes use l-arginine for polyamine synthesis,...

  4. Arginine Improves pH Homeostasis via Metabolism and Microbiome Modulation.

    Science.gov (United States)

    Agnello, M; Cen, L; Tran, N C; Shi, W; McLean, J S; He, X

    2017-07-01

    Dental caries can be described as a dysbiosis of the oral microbial community, in which acidogenic, aciduric, and acid-adapted bacterial species promote a pathogenic environment, leading to demineralization. Alkali generation by oral microbes, specifically via arginine catabolic pathways, is an essential factor in maintaining plaque pH homeostasis. There is evidence that the use of arginine in dentifrices helps protect against caries. The aim of the current study was to investigate the mechanistic and ecological effect of arginine treatment on the oral microbiome and its regulation of pH dynamics, using an in vitro multispecies oral biofilm model that was previously shown to be highly reflective of the in vivo oral microbiome. Pooled saliva from 6 healthy subjects was used to generate overnight biofilms, reflecting early stages of biofilm maturation. First, we investigated the uptake of arginine by the cells of the biofilm as well as the metabolites generated. We next explored the effect of arginine on pH dynamics by pretreating biofilms with 75 mM arginine, followed by the addition of sucrose (15 mM) after 0, 6, 20, or 48 h. pH was measured at each time point and biofilms were collected for 16S sequencing and targeted arginine quantification, and supernatants were prepared for metabolomic analysis. Treatment with only sucrose led to a sustained pH drop from 7 to 4.5, while biofilms treated with sucrose after 6, 20, or 48 h of preincubation with arginine exhibited a recovery to higher pH. Arginine was detected within the cells of the biofilms, indicating active uptake, and arginine catabolites citrulline, ornithine, and putrescine were detected in supernatants, indicating active metabolism. Sequencing analysis revealed a shift in the microbial community structure in arginine-treated biofilms as well as increased species diversity. Overall, we show that arginine improved pH homeostasis through a remodeling of the oral microbial community.

  5. Bioinformatic evaluation of L-arginine catabolic pathways in 24 cyanobacteria and transcriptional analysis of genes encoding enzymes of L-arginine catabolism in the cyanobacterium Synechocystis sp. PCC 6803

    Directory of Open Access Journals (Sweden)

    Pistorius Elfriede K

    2007-11-01

    Full Text Available Abstract Background So far very limited knowledge exists on L-arginine catabolism in cyanobacteria, although six major L-arginine-degrading pathways have been described for prokaryotes. Thus, we have performed a bioinformatic analysis of possible L-arginine-degrading pathways in cyanobacteria. Further, we chose Synechocystis sp. PCC 6803 for a more detailed bioinformatic analysis and for validation of the bioinformatic predictions on L-arginine catabolism with a transcript analysis. Results We have evaluated 24 cyanobacterial genomes of freshwater or marine strains for the presence of putative L-arginine-degrading enzymes. We identified an L-arginine decarboxylase pathway in all 24 strains. In addition, cyanobacteria have one or two further pathways representing either an arginase pathway or L-arginine deiminase pathway or an L-arginine oxidase/dehydrogenase pathway. An L-arginine amidinotransferase pathway as a major L-arginine-degrading pathway is not likely but can not be entirely excluded. A rather unusual finding was that the cyanobacterial L-arginine deiminases are substantially larger than the enzymes in non-photosynthetic bacteria and that they are membrane-bound. A more detailed bioinformatic analysis of Synechocystis sp. PCC 6803 revealed that three different L-arginine-degrading pathways may in principle be functional in this cyanobacterium. These are (i an L-arginine decarboxylase pathway, (ii an L-arginine deiminase pathway, and (iii an L-arginine oxidase/dehydrogenase pathway. A transcript analysis of cells grown either with nitrate or L-arginine as sole N-source and with an illumination of 50 μmol photons m-2 s-1 showed that the transcripts for the first enzyme(s of all three pathways were present, but that the transcript levels for the L-arginine deiminase and the L-arginine oxidase/dehydrogenase were substantially higher than that of the three isoenzymes of L-arginine decarboxylase. Conclusion The evaluation of 24

  6. Catalytic Conversion of Carbohydrates

    DEFF Research Database (Denmark)

    Osmundsen, Christian Mårup

    with the production of commodity chemicals from the most abundantly available renewable source of carbon, carbohydrates. The production of alkyl lactates by the Lewis acid catalyzed conversion of hexoses is an interesting alternative to current fermentation based processes. A range of stannosilicates were....... The synthesis of these by the cycloaddition of ethylene to furanic compounds, followed by dehydrative aromatization, was demonstrated in good yields, using a strong Brønsted acidic catalyst, WOx/ZrO2. As both ethylene and furanics can be derived from carbohydrates by known processes, this constitutes...

  7. Cross-linking mechanisms of arginine and lysine with α,β-dicarbonyl compounds in aqueous solution.

    Science.gov (United States)

    Nasiri, Rasoul; Field, Martin J; Zahedi, Mansour; Moosavi-Movahedi, Ali Akbar

    2011-11-24

    Cross-linking in proteins by α,β-dicarbonyl compounds is one of the most damaging consequences of reactive carbonyl species in vivo and in foodstuffs. In this article we investigate computationally the cross-linking of glyoxal and methylglyoxal with lysine and arginine residues using density functional theory and the wB97XD dispersion-corrected functional. Five pathways, A-E, have been characterized. In pathways A and B, the reaction proceeds via formation of the Schiff base, aldimine, followed by addition of arginine. In contrast, in pathways C-E, direct addition of arginine to the dicarbonyl compounds occurs first, leading to a dihydroxyimidazolidine intermediate, which then reacts with lysine after dehydration and proton transfer reactions. The results reveal that pathways A, C, and E are competitive whereas reactions via pathways B and D are much less favorable. Inclusion of up to five explicit water molecules in the proton transfer and dehydration steps is found to lower the energy barriers in the feasible pathways by about 5-20 kcal/mol. Comparison of the mechanisms of methylglyoxal-derived imidazolium cross-linking (MODIC) and glyoxal-derived imidazolium cross-linking (GODIC) shows that the activation barriers are lower for GODIC than MODIC, in agreement with experimental observations.

  8. l-Arginine modulates neonatal lymphocyte proliferation through an interleukin-2 independent pathway

    Science.gov (United States)

    Yu, Hong-Ren; Kuo, Ho-Chang; Huang, Li-Tung; Chen, Chih-Cheng; Tain, You-Lin; Sheen, Jiunn-Ming; Tiao, Mao-Meng; Huang, Hsin-Chun; Yang, Kuender D; Ou, Chia-Yo; Hsu, Te-Yao

    2014-01-01

    In cases of arginine depletion, lymphocyte proliferation, cytokine production and CD3ζ chain expression are all diminished. In addition to myeloid suppressor cells, polymorphonuclear cells (PMN) also exert T-cell immune suppressive effects through arginase-induced l-arginine depletion, especially during pregnancy. In this study, we investigated how arginase/l-arginine modulates neonatal lymphocyte proliferation. Results showed that the neonatal plasma l-arginine level was lower than in adults (48·1 ± 11·3 versus 86·5 ± 14·6 μm; P = 0·003). Neonatal PMN had a greater abundance of arginase I protein than adult PMN. Both transcriptional regulation and post-transcriptional regulation were responsible for the higher arginase I expression of neonatal PMN. Exogenous l-arginine enhanced neonate lymphocyte proliferation but not that of adult cells. The RNA-binding protein HuR was important but was not the only modulation factor in l-arginine-regulated neonatal T-cell proliferation. l-Arginine-mediated neonatal lymphocyte proliferation could not be blocked by interleukin-2 receptor blocking antibodies. These results suggest that the altered arginase/l-arginine cascade may be one of the mechanisms that contribute to altered neonatal immune responses. Exogenous l-arginine could enhance neonate lymphocyte proliferation through an interleukin-2-independent pathway. PMID:24697328

  9. Mass spectrometry–based relative quantification of proteins in precatalytic and catalytically active spliceosomes by metabolic labeling (SILAC), chemical labeling (iTRAQ), and label-free spectral count

    Science.gov (United States)

    Schmidt, Carla; Grønborg, Mads; Deckert, Jochen; Bessonov, Sergey; Conrad, Thomas; Lührmann, Reinhard; Urlaub, Henning

    2014-01-01

    The spliceosome undergoes major changes in protein and RNA composition during pre-mRNA splicing. Knowing the proteins—and their respective quantities—at each spliceosomal assembly stage is critical for understanding the molecular mechanisms and regulation of splicing. Here, we applied three independent mass spectrometry (MS)–based approaches for quantification of these proteins: (1) metabolic labeling by SILAC, (2) chemical labeling by iTRAQ, and (3) label-free spectral count for quantification of the protein composition of the human spliceosomal precatalytic B and catalytic C complexes. In total we were able to quantify 157 proteins by at least two of the three approaches. Our quantification shows that only a very small subset of spliceosomal proteins (the U5 and U2 Sm proteins, a subset of U5 snRNP-specific proteins, and the U2 snRNP-specific proteins U2A′ and U2B′′) remains unaltered upon transition from the B to the C complex. The MS-based quantification approaches classify the majority of proteins as dynamically associated specifically with the B or the C complex. In terms of experimental procedure and the methodical aspect of this work, we show that metabolically labeled spliceosomes are functionally active in terms of their assembly and splicing kinetics and can be utilized for quantitative studies. Moreover, we obtain consistent quantification results from all three methods, including the relatively straightforward and inexpensive label-free spectral count technique. PMID:24448447

  10. Supplementation with l-arginine stabilizes plasma arginine and nitric oxide metabolites, suppresses elevated liver enzymes and peroxidation in sickle cell anaemia.

    Science.gov (United States)

    Jaja, S I; Ogungbemi, S O; Kehinde, M O; Anigbogu, C N

    2016-06-01

    The effect of l-arginine on liver function in SCD has received little or no attention. The effect of a chronic, oral, low-dose supplementation with l-arginine (1gm/day for 6 weeks) on some liver enzymes, lipid peroxidation and nitric oxide metabolites was studied in 20 normal (non-sickle cell anaemia; NSCA) subjects and 20 sickle cell anaemia (SCA) subjects. Ten milliliters of blood was withdrawn from an ante-cubital vein for the estimation of plasma arginine concentration ([R]), alanine aminotransaminase (ALT), aspartate aminotransaminase (AST) and alkaline phosphatase (ALP), plasma total bilirubin concentration [TB], malondialdehyde concentration [MDA] and nitric oxide metabolites concentration [NOx]. Before supplementation, ALT, AST, ALP (pSupplementation caused greater percent increases in [R], and [NOX] in SCA than in NSCA subjects (pl-Arginine caused greater percent reductions in ALT and AST in SCA subjects but greater percent reduction in ALP in NSCA subjects (psupplementation with l-arginine improved liver function, oxidative stress, plasma arginine concentration and nitric oxide metabolites levels in NSCA and SCA subjects. Responses in SCA subjects to l-arginine were more sensitive than in NSCA subjects. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. L-Arginine oxidase from Pseudomonas sp. TPU 7192: Characterization, gene cloning, heterologous expression, and application to L-arginine determination.

    Science.gov (United States)

    Matsui, Daisuke; Terai, Anna; Asano, Yasuhisa

    2016-01-01

    L-Arginine oxidase (AROD, EC 1.4.3.-) was discovered in newly discovered Pseudomonas sp. TPU 7192 and its characteristics were described. The molecular mass (MS) of the enzyme was estimated to be 528 kDa, which was accounted for by eight identical subunits with MS of 66 kDa each. AROD was identified as a flavin adenine dinucleotide (FAD)-dependent enzyme with 1 mol of FAD being contained in each subunit. It catalyzed the oxidative deamination of L-arginine and converted L-arginine to 2-ketoarginine, which was non-enzymatically converted into 4-guanidinobutyric acid when the hydrogen peroxide (H2O2) formed by L-arginine oxidation was not removed. In contrast, 2-ketoarginine was present when H2O2was decomposed. AROD was specific to L-arginine with a Km value of 149 μM. It exhibited maximal activity at 55 °C and pH 5.5. AROD was stable in the pH range 5.5-7.5 and >95% of its original activity was below 60 °C at pH 7.0. Since these enzymatic properties are considered suitable for the determination of L-arginine, the gene was cloned and expressed in a heterologous expression system. We herein successfully developed a new simple enzymatic method for the determination of L-arginine using Pseudomonas AROD. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Inorganic membranes and catalytic reactors

    OpenAIRE

    Rangel, Maria do Carmo

    1997-01-01

    Membrane reactors are reviewed with emphasis in their applications in catalysis field. The basic principles of these systems are presented as well as a historical development. The several kinds of catalytic membranes and their preparations are discussed including the problems, needs and challenges to be solved in order to use these reactors in commercial processes. Some applications of inorganic membrane reactors are also shown. It was concluded that these systems have a great potential for i...

  13. The orthologue of the "acatalytic" mammalian ART4 in chicken is an arginine-specific mono-ADP-ribosyltransferase

    Directory of Open Access Journals (Sweden)

    Berndt Angela

    2008-10-01

    Full Text Available Abstract Background Human ART4, carrier of the GPI-(glycosyl-phosphatidylinositol anchored Dombrock blood group antigens, is an apparently inactive member of the mammalian mono-ADP-ribosyltransferase (ART family named after the enzymatic transfer of a single ADP-ribose moiety from NAD+ to arginine residues of extracellular target proteins. All known mammalian ART4 orthologues are predicted to lack ART activity because of one or more changes in essential active site residues that make up the R-S-EXE motif. So far, no other function has been detected. Results Here we report the identification and characterisation of ART4 in chicken, which to our knowledge is the first true non-mammalian orthologue of a mammalian ART family member. The chicken ART4 gene has the same physical structure as its mammalian counterparts (three coding exons separated by two introns in phase 0 and phase 1, respectively and maps to a region of conserved linkage synteny on chromosome 1. Its mRNA encodes a 289 amino acid protein with predicted N-terminal signal peptide and C-terminal GPI-anchor sequences and 47% sequence identity to human ART4. However, in striking contrast to its mammalian orthologues, the chicken protein contains an intact R-S-EXE motif. Upon ectopic expression in C-33A cells, recombinant chicken ART4 localized at the cell surface as a GPI-anchored, highly glycosylated protein, which displayed arginine-specific ART activity (apparent Km of the recombinant protein for etheno-NAD+ 1.0 ± 0.18 μM. Conclusion The avian orthologue of the "acatalytic" mammalian ART4 is a mono-ADP-ribosyltransferase with enzymatic activity comparable to that of other, catalytically active and GPI-anchored members of the mammalian ART family.

  14. Oral L-arginine supplementation in patients with mild arterial hypertension and its effect on plasma level of asymmetric dimethylarginine, L-citruline, L-arginine and antioxidant status.

    Science.gov (United States)

    Jabecka, A; Ast, J; Bogdaski, P; Drozdowski, M; Pawlak-Lemaska, K; Cielewicz, A R; Pupek-Musialik, D

    2012-11-01

    Potential role of L-arginine supplementation as a new effective strategy of improving endothelial function in patients with hypertension is recently under consideration. To evaluate influence of 28-day oral supplementation of L-arginine on plasma level of asymmetric dimethylarginine (ADMA), L-citrulline, L-arginine and total antioxidant status (TAS), in patients with mild arterial hypertension. 54 participants (24 women and 30 men) were studied. Ambulatory blood pressure monitoring (ABPM) was used for allotting patients to either healthy control group (19 subjects) or hypertensive treatment group (35 patients). Patients were later randomized to either L-arginine (2 g tid or 4 g tid) or placebo. During 28 days of study on 5 consecutive visits TAS, plasma level of ADMA, L-citrulline, and L-arginine were measured. In patients with mild hypertension treated with L-arginine significant increase in TAS and plasma level of arginine and citrulline was observed. Additionally plasma ADMA concentrations after 28 days of L-arginine supplementation significantly exceeded initial concentrations. L-arginine supplementation increases plasma arginine, citrulline and TAS in patients with mild arterial hypertension. It confirms the thesis that augmented concentrations of L-arginine stimulate NO biosynthesis which leads to reduction of oxidative stress. Increase of ADMA plasma level after L-arginine supplementation confirms correlation between ADMA and L-arginine.

  15. Catalytic Conversion of Biofuels

    DEFF Research Database (Denmark)

    Jørgensen, Betina

    catalysts, and two different experimental methods, namely, a batch system and a continuous flow system. In the batch reaction the process was carried out in the liquid phase using a gold catalyst and atmospheric air as the oxidant. Experiments were conducted at moderate pressures and temperatures (90-200 °C......, 30-45 bar) with an aqueous solution of ethanol. It was possible to produce acetic acid in yields above 90 %. Two different support materials were investigated (MgAl2O4 and TiO2) and there did not seem to be any significant effect in changing the support. The kinetics of the reaction was also...... the major product. In the continuous flow system, the oxidation reaction was carried out as a gas phase reaction using a vanadium based catalyst. For this series of experiments, a 50 wt% aqueous ethanol was oxidized with a diluted gas stream of O2 in helium, the reaction temperature and pressure were kept...

  16. Evolution of prokaryotic subtilases: genome-wide analysis reveals novel subfamilies with different catalytic residues

    NARCIS (Netherlands)

    Siezen, R.J.; Renckens, B.A.M.; Boekhorst, J.

    2007-01-01

    Subtilisin-like serine proteases (subtilases) are a very diverse family of serine proteases with low sequence homology, often limited to regions surrounding the three catalytic residues. Starting with different Hidden Markov Models (HMM), based on sequence alignments around the catalytic residues of

  17. High-Capacity Sodium Peroxide Based NaO2 Batteries with Low Charge Overpotential via a Nanostructured Catalytic Cathode

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Lu; Zhang, Dongzhou [Partnership; Lei, Yu [Department; Yuan, Yifei; Wu, Tianpin; Lu, Jun; Amine, Khalil

    2018-01-05

    The superoxide based Na-O-2 battery has circumvented the issue of large charge overpotential in Li-O-2 batteries; however, the one-electron process leads to limited capacity. Herein, a sodium peroxide based low-overpotential (similar to 0.5 V) Na-O-2 battery with a capacity as high as 7.5 mAh/cm(2) is developed with Pd nanoparticles as catalysts on the cathode.

  18. Carbonates-based noble metal-free lean NOx trap catalysts MOx-K2CO3/K2Ti8O17 (M = Ce, Fe, Cu, Co) with superior catalytic performance

    Science.gov (United States)

    Zhang, Yuxia; You, Rui; Liu, Dongsheng; Liu, Cheng; Li, Xingang; Tian, Ye; Jiang, Zheng; Zhang, Shuo; Huang, Yuying; Zha, Yuqing; Meng, Ming

    2015-12-01

    A series of base metal-based lean NOx trap (LNT) catalysts MOx-K2CO3/K2Ti8O17 (M = Ce, Fe, Cu, Co) were synthesized by successive impregnations and employed for the storage and reduction of NOx in the emissions of lean-burn engines at 350 °C. The XRD and XANES/EXAFS results reveal that the active phases in the corresponding catalysts exist as CeO2, Fe2O3, CuO and Co3O4, respectively. Among all the catalysts, CoOx-K2CO3/K2Ti8O17 exhibits the best performance, which cannot only trap the NOx quickly and completely at lean condition, giving the highest storage capacity (3.32 mmol/g) reported so far, but also reduce the NOx at rich condition, showing a NOx reduction percentage as high as 99.0%. Meanwhile, this catalyst displays an ultralow NOx to N2O selectivity (0.3%) during NOx reduction. The excellent performance of CoOx-K2CO3/K2Ti8O17 results from its largest amount of surface active oxygen species as revealed by XPS, O2-TPD and NO-TPD. HRTEM, FT-IR and CO2-TPD results illustrate that several kinds of K species such as sbnd OK groups, K2O, surface carbonates and bulk or bulk-like carbonates coexist in the catalysts. Based upon the in situ DRIFTS results, the participation of K2CO3 in NOx storage is confirmed, and the predominant NOx storage species is revealed as bidentate nitrites formed via multiple kinetic pathways. The low cost and high catalytic performance of the CoOx-based LNT catalyst make it most promising for the substitution of noble metal-based LNT catalysts.

  19. 8-year retrospective analysis of intravenous arginine therapy for acute metabolic strokes in pediatric mitochondrial disease.

    Science.gov (United States)

    Ganetzky, Rebecca D; Falk, Marni J

    2018-03-01

    Intravenous (IV) arginine has been reported to ameliorate acute metabolic stroke symptoms in adult patients with Mitochondrial Encephalopathy with Lactic Acidosis and Stroke-like Episodes (MELAS) syndrome, where its therapeutic benefit is postulated to result from arginine acting as a nitric oxide donor to reverse vasospasm. Further, reduced plasma arginine may occur in mitochondrial disease since the biosynthesis of arginine's precursor, citrulline, requires ATP. Metabolic strokes occur across a wide array of primary mitochondrial diseases having diverse molecular etiologies that are likely to share similar pathophysiologic mechanisms. Therefore, IV arginine has been increasingly used for the acute clinical treatment of metabolic stroke across a broad mitochondrial disease population. We performed retrospective analysis of a large cohort of subjects who were under 18 years of age at IRB #08-6177 study enrollment and had molecularly-confirmed primary mitochondrial disease (n = 71, excluding the common MELAS m.3243A>G mutation). 9 unrelated subjects in this cohort received acute arginine IV treatment for one or more stroke-like episodes (n = 17 total episodes) between 2009 and 2016 at the Children's Hospital of Philadelphia. Retrospectively reviewed data included subject genotype, clinical symptoms, age, arginine dosing, neuroimaging (if performed), prophylactic therapies, and adverse events. Genetic etiologies of subjects who presented with acute metabolic strokes included 4 mitochondrial DNA (mtDNA) pathogenic point mutations, 1 mtDNA deletion, and 4 nuclear gene disorders. Subject age ranged from 19 months to 23 years at the time of any metabolic stroke episode (median, 8 years). 3 subjects had recurrent stroke episodes. 70% of subjects were on prophylactic arginine or citrulline therapy at the time of a stroke-like episode. IV arginine was initiated on initial presentation in 65% of cases. IV arginine was given for 1-7 days (median, 1 day). A

  20. Hydrophilic Pt nanoflowers: synthesis, crystallographic analysis and catalytic performance.

    Science.gov (United States)

    Mourdikoudis, Stefanos; Altantzis, Thomas; Liz-Marzán, Luis M; Bals, Sara; Pastoriza-Santos, Isabel; Pérez-Juste, Jorge

    2016-05-21

    Water-soluble Pt nanoflowers (NFs) were prepared by diethylene glycol-mediated reduction of Pt acetylacetonate (Pt(acac) 2 ) in the presence of polyethylenimine. Advanced electron microscopy analysis showed that the NFs consist of multiple branches with a truncated cubic morphology and different crystallographic orientations. We demonstrate that the nature of the solvent strongly influences the resulting morphology. The catalytic performance of the Pt NFs in 4-nitrophenol reduction was found to be superior to that of other nanoparticle-based catalysts. Additionally, the Pt NFs display good catalytic reusability with no loss of activity after five consecutive cycles.

  1. Porous protein crystals as catalytic vessels for organometallic complexes.

    Science.gov (United States)

    Tabe, Hiroyasu; Abe, Satoshi; Hikage, Tatsuo; Kitagawa, Susumu; Ueno, Takafumi

    2014-05-01

    Porous protein crystals, which are protein assemblies in the solid state, have been engineered to form catalytic vessels by the incorporation of organometallic complexes. Ruthenium complexes in cross-linked porous hen egg white lysozyme (HEWL) crystals catalyzed the enantioselective hydrogen-transfer reduction of acetophenone derivatives. The crystals accelerated the catalytic reaction and gave different enantiomers based on the crystal form (tetragonal or orthorhombic). This method represents a new approach for the construction of bioinorganic catalysts from protein crystals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Imaging Catalytic Surfaces by Multiplexed Capillary Electrophoresis With Absorption Detection

    Energy Technology Data Exchange (ETDEWEB)

    Christodoulou, Michael [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    A new technique for in situ imaging and screening heterogeneous catalysts by using multiplexed capillary electrophoresis with absorption detection was developed. By bundling the inlets of a large number of capillaries, an imaging probe can be created that can be used to sample products formed directly from a catalytic surface with high spatial resolution. In this work, they used surfaces made of platinum, iron or gold wires as model catalytic surfaces for imaging. Various shapes were recorded including squares and triangles. Model catalytic surfaces consisting of both iron and platinum wires in the shape of a cross were also imaged successfully. Each of the two wires produced a different electrochemical product that was separated by capillary electrophoresis. Based on the collected data they were able to distinguish the products from each wire in the reconstructed image.

  3. Chemically-Modified Cellulose Paper as a Microstructured Catalytic Reactor

    Directory of Open Access Journals (Sweden)

    Hirotaka Koga

    2015-01-01

    Full Text Available We discuss the successful use of chemically-modified cellulose paper as a microstructured catalytic reactor for the production of useful chemicals. The chemical modification of cellulose paper was achieved using a silane-coupling technique. Amine-modified paper was directly used as a base catalyst for the Knoevenagel condensation reaction. Methacrylate-modified paper was used for the immobilization of lipase and then in nonaqueous transesterification processes. These catalytic paper materials offer high reaction efficiencies and have excellent practical properties. We suggest that the paper-specific interconnected microstructure with pulp fiber networks provides fast mixing of the reactants and efficient transport of the reactants to the catalytically-active sites. This concept is expected to be a promising route to green and sustainable chemistry.

  4. Flow in axisymmetric expansion in a catalytic converter

    DEFF Research Database (Denmark)

    Gotfredsen, Erik; Meyer, Knud Erik

    The flow in an axisymmetric expansion (circular diffusor) is used in many different engineering applications, such as heat exchangers, catalytic converters and filters. These applications require a relatively uniform flow at the inlet. To minimise the pressure loss, an ideal solution would...... for a specific local flow rate and a non-uniform inflow to the catalyst will severely reduce the efficiency of the process. Since each ship will have a unique design the flow system, it is desirable to be able to design the system using Computational Fluid Dynamics (CFD). However, CFD fails to predict flow......-scaled model of the catalytic converter is constructed, see figure 1. The experiments are performed at laboratory conditions, with lower pressure, temperature and velocity than the full-scale catalytic converter. The Reynolds number based on the velocity in the inlet pipe and the diameter of the converter...

  5. PENGARUH BERBAGAI KECAMBAH KACANG-KACANGAN LOKAL SEBAGAI BAHAN DASAR MEAT ANALOG TERHADAP SIFAT FISIK (TEKSTUR, KESUKAAN DAN RASIO ARGININ/LISIN

    Directory of Open Access Journals (Sweden)

    Bayu Kanetro

    2013-06-01

    Full Text Available The aims of this research were to determine the best of local legume sprout as raw material of meat analog, based on its texture, sensory (preference properties, and the ratio of arginine/lysine, compared to meat analog from soybean. Meat analogs were made of protein of local legumes sprout, which were velvet beans, cowpeas, and winged beans that had been germinated for 48, 36 and 24 hr respectively. The protein of velvet beans, cowpeas, and winged beans sprout for meat analog production were extracted at pH 9 and precipitated at pH 4, 5, and 5 respectively. Hence their products were analyzed the texture, the sensory properties (the hedonic scales of color, texture, odor, taste, and overall, and the ratio of arginine/lysine. The characteristics of meat analog from the legumes sprout were compared to meat analog from soybean for determination of the best legume sprout as raw material of meat analog. The result of this research showed the properties of meat analog from winged bean and cowpeas sprouts were better than velvet beans sprout. The meat analog from soybean was still better than meat analog from the local legumes sprout, especially its texture. The arginine content, that was known as  hypocholesterolemic and hypoglycemic component,  of meat analog from cowpeas sprout was lower than meat analog from soybean, but its ratio of arginie/lysine was not signifi cantly different. While the ratio of arginine/lysine of meat analog from the other legumes sprout were lower than meat analog from soybean. Therefore the meat analog from cowpeas sprout was chosen as the best product and was potential as functional food especially for reducing blood cholesterol. Keywords: Meat analog, sprout, local legumes, arginine/lysine ratio   ABSTRAK Tujuan penelitian ini adalah untuk menentukan jenis kecambah kacang-kacangan lokal terbaik sebagai bahan baku kedelai berdasarkan tekstur, sifat sensoris, dan rasio arginin/lisin dibandingkan meat analog dari biji

  6. Exercise-induced Protein Arginine Methyltransferase Expression in Skeletal Muscle.

    Science.gov (United States)

    Vanlieshout, Tiffany L; Stouth, Derek W; Tajik, Tania; Ljubicic, Vladimir

    2018-03-01

    This study aimed to determine protein arginine methyltransferase 1 (PRMT1), -4 (also known as coactivator-associated arginine methyltransferase 1 [CARM1]), and -5 expression and function during acute, exercise-induced skeletal muscle remodeling in vivo. C57BL/6 mice were assigned to one of three experimental groups: sedentary, acute bout of exercise, or acute exercise followed by 3 h of recovery. Mice in the exercise groups performed a single bout of treadmill running at 15 m·min for 90 min. Hindlimb muscles were collected, and quantitative real-time polymerase chain reaction and Western blotting were used to examine exercise-induced gene expression. The PRMT gene expression and global enzyme activity were muscle-specific, generally being higher (P < 0.05) in slow, oxidative muscle, as compared with faster, more glycolytic tissue. Despite the significant activation of canonical exercise-induced signaling involving AMP-activated protein kinase and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), PRMT expression and activity at the whole muscle level were unchanged. However, subcellular analyses revealed a significant exercise-evoked myonuclear translocation of PRMT1 before the nuclear accumulation of PGC-1α. Acute physical activity also augmented (P < 0.05) the targeted methyltransferase activities of the PRMT in the myonuclear compartment, suggesting that PRMT-mediated histone arginine methylation is part of the early signals that drive muscle plasticity. Finally, basal PGC-1α asymmetric dimethylarginine status, as well as constitutive interactions between PGC-1α and PRMT1 or CARM1 may contribute to the exercise-induced muscle remodeling process. The present study provides the first evidence that PRMT activity is selectively augmented during the initial activation of exercise-induced skeletal muscle remodeling in vivo. These data support the emergence of PRMTs as important players in the regulation of skeletal muscle plasticity.

  7. Effects of arginine and phytogenic additive supplementation on performance and health of brown-egg layers

    Directory of Open Access Journals (Sweden)

    Vitor Barbosa Fascina

    Full Text Available ABSTRACT This study was performed to evaluate the effects of the association of different digestible arginine and phytogenic additive dietary levels on performance and health status of brown-egg layers. In this study, a total of 504 33-week-old Hisex Brown layers were distributed into a completely randomized experimental design to a 4 × 3 factorial arrangement (dietary digestible arginine levels: 880, 968, 1056, or 1144 mg/kg of feed × phytogenic additive levels: 0, 100, and 200 mg/kg of feed with six replicate cages of seven birds per cage. The phytogenic additive was composed of extracts of Baccharis dracunculifolia (40%, Astragalus membranaceus lipopolysaccharides (20%, cinnamon, and grape seed (20%. Feed intake was reduced when diets containing 1056 mg of arginine were supplemented with 100 or 200 mg phytogenic additive per kg. Feed conversion ratio was improved when diets were supplemented with 100 mg of phytogenic additive or with 1056 mg of arginine per kg of feed. Egg mass was increased when diets were supplemented with 1056 mg arginine per kg of feed. Arginine supplementation quadratically increased albumen percentage and reduced yolk percentage. Higher arginine and phytogenic additive levels reduced heterophyl:lymphocyte ratio and blood uric acid, total cholesterol, very-low density lipoprotein, and triglyceride levels. Dietary supplementation of 100 mg of phytogenic additive associated with high arginine levels increased nitric oxide production by peritoneal macrophages and 1056 mg of arginine increased antibodies titers against Newcastle disease virus. Blood and intestinal malonaldehyde levels were reduced when 200 mg of the phytogenic additive was added. Dietary supplementation of 968 mg of arginine or 100 mg of a phytogenic additive (40% Baccharis dracunculifolia, 20% Astragalus membranaceus, 20% cinnamon, and 20% grape seed extracts per kilogram of diet improves the feed conversion ratio and associated inclusion of 1144 mg of

  8. L-arginine prevents hypoxia-induced vasoconstriction in dual-perfused human placental cotyledons.

    Science.gov (United States)

    Bednov, Andrey; Espinoza, Jimmy; Betancourt, Ancizar; Vedernikov, Yuri; Belfort, Michael; Yallampalli, Chandrasekhar

    2015-11-01

    Chronic hypoxia in the uteroplacental unit is associated with increased resistance to blood flow in the fetal-placental circulation. These changes can lead to adverse cardiovascular events in adulthood. This study investigates whether L-arginine (substrate for nitric oxide synthase (NOS) or endothelin-A receptor antagonist BQ123 administration reverses hypoxia-induced changes in perfusion pressure in the fetal compartment in dual-perfused placental cotyledons. Human placental cotyledons (n = 15) from term deliveries (n = 15) were perfused with Krebs solution from maternal and fetal sides. Normal and reduced oxygen tension conditions were sequentially created in the perfused maternal compartment. Fetal perfusion pressure was continuously monitored. 1 mM L-arginine, D-arginine (an enantiomer of L-arginine and not a substrate for NOS), and BQ123 or normal saline were administered to the fetal compartment; L-arginine was also administered to the maternal compartment prior to maternal side hypoxia. Changes in perfusion pressure were compared between groups. Maternal hypoxia increased (19 ± 6%) perfusion pressure and this was blunted by L-arginine injection (3 ± 5%; p = 0.006) into the fetal compartment. L-arginine in the maternal compartment had no significant effect (22 ± 4% with L-arginine vs.14 ± 3% at control) on perfusion pressure. Similarly, D-arginine (23 ± 11% vs.19 ± 8% at control) or BQ123 (12 ± 3% vs.13 ± 3% at control) in the fetal compartment did not blunt the hypoxia-induced increase in perfusion pressure. Fetal vasoconstriction induced by maternal hypoxia is blunted by NO synthase substrate L-arginine, but not by D-arginine, in the fetal compartment, suggesting the involvement of NO synthesis in regulating the hypoxia-induced fetal vasoconstriction. Endothelin A receptor-related mechanisms does not appear to play a role in the maternal hypoxia-induced fetal vasoconstriction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Biodiesel by catalytic reactive distillation powered by metal oxides

    NARCIS (Netherlands)

    Kiss, A.A.; Dimian, A.C.; Rothenberg, G.

    2008-01-01

    The properties and use of biodiesel as a renewable fuel as well as the problems associated with its current production processes are outlined. A novel sustainable esterification process based on catalytic reactive distillation is proposed. The pros and cons of manufacturing biodiesel via fatty acid

  10. Spectrophotometric determination of nitrite by its catalytic effect on ...

    African Journals Online (AJOL)

    A novel simple, sensitive and rapid kinetic-spectrophotometric method for the determination of trace amounts of nitrite is proposed. The method is based on its catalytic effect on the oxidation of congo red (CR) by potassium bromate in acidic solution. The oxidation reaction is monitored spectrophotometrically by measuring ...

  11. Automatic prediction of catalytic residues by modeling residue structural neighborhood

    Directory of Open Access Journals (Sweden)

    Passerini Andrea

    2010-03-01

    Full Text Available Abstract Background Prediction of catalytic residues is a major step in characterizing the function of enzymes. In its simpler formulation, the problem can be cast into a binary classification task at the residue level, by predicting whether the residue is directly involved in the catalytic process. The task is quite hard also when structural information is available, due to the rather wide range of roles a functional residue can play and to the large imbalance between the number of catalytic and non-catalytic residues. Results We developed an effective representation of structural information by modeling spherical regions around candidate residues, and extracting statistics on the properties of their content such as physico-chemical properties, atomic density, flexibility, presence of water molecules. We trained an SVM classifier combining our features with sequence-based information and previously developed 3D features, and compared its performance with the most recent state-of-the-art approaches on different benchmark datasets. We further analyzed the discriminant power of the information provided by the presence of heterogens in the residue neighborhood. Conclusions Our structure-based method achieves consistent improvements on all tested datasets over both sequence-based and structure-based state-of-the-art approaches. Structural neighborhood information is shown to be responsible for such results, and predicting the presence of nearby heterogens seems to be a promising direction for further improvements.

  12. Assessing the reliability of calculated catalytic ammonia synthesis rates

    DEFF Research Database (Denmark)

    Medford, Andrew James; Wellendorff, Jess; Vojvodic, Aleksandra

    2014-01-01

    We introduce a general method for estimating the uncertainty in calculated materials properties based on density functional theory calculations. We illustrate the approach for a calculation of the catalytic rate of ammonia synthesis over a range of transition-metal catalysts. The correlation...

  13. Catalytic synthesis of alcoholic fuels for transportation from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao

    This work has investigated the catalytic conversion of syngas into methanol and higher alcohols. Based on input from computational catalyst screening, an experimental investigation of promising catalyst candidates for methanol synthesis from syngas has been carried out. Cu-Ni alloys of different ...

  14. RUTHENIUM(III) DETERMINATION BY KINETIC-CATALYTIC ...

    African Journals Online (AJOL)

    +, H+, ClO2- and catalyst. The pertinent mechanism, consistent with the experimental results is proposed. Based on the high sensitivity and selectivity of the reaction to the presence of Ru(III), using its catalytic efficiency on the oxidation of Nile ...

  15. Carbogenic molecular sieves for reaction and separation by design: A novel approach to shape selective super base, super acid and catalytic membranes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Foley, Henry C.

    2002-03-18

    This report details the findings of three years of research plus one year of a no-cost extension. Primary results are the work with supported nanoporous carbon membranes for separation and reaction as well as with cesium-nanoporous carbon catalysts. The work resulted in 17 plus 2 papers (2 are in progress) and partial or full support for five Ph.D. students. Two patents were filed based on this research.

  16. Carbon nanofibers: a versatile catalytic support

    Directory of Open Access Journals (Sweden)

    Nelize Maria de Almeida Coelho

    2008-09-01

    Full Text Available The aim of this article is present an overview of the promising results obtained while using carbon nanofibers based composites as catalyst support for different practical applications: hydrazine decomposition, styrene synthesis, direct oxidation of H2S into elementary sulfur and as fuel-cell electrodes. We have also discussed some prospects of the use of these new materials in total combustion of methane and in ammonia decomposition. The macroscopic carbon nanofibers based composites were prepared by the CVD method (Carbon Vapor Deposition employing a gaseous mixture of hydrogen and ethane. The results showed a high catalytic activity and selectivity in comparison to the traditional catalysts employed in these reactions. The fact was attributed, mainly, to the morphology and the high external surface of the catalyst support.

  17. Characterization and biocompatibility studies of new degradable poly(urea)urethanes prepared with arginine, glycine or aspartic acid as chain extenders.

    Science.gov (United States)

    Chan-Chan, L H; Tkaczyk, C; Vargas-Coronado, R F; Cervantes-Uc, J M; Tabrizian, M; Cauich-Rodriguez, J V

    2013-07-01

    Polyurethanes are very often used in the cardiovascular field due to their tunable physicochemical properties and acceptable hemocompatibility although they suffer from poor endothelialization. With this in mind, we proposed the synthesis of a family of degradable segmented poly(urea)urethanes (SPUUs) using amino acids (L-arginine, glycine and L-aspartic acid) as chain extenders. These polymers degraded slowly in PBS (pH 7.4) after 24 weeks via a gradual decrease in molecular weight. In contrast, accelerated degradation showed higher mass loss under acidic, alkaline and oxidative media. MTT tests on polyurethanes with L-arginine as chain extenders showed no adverse effect on the metabolism of human umbilical vein endothelial cells (HUVECs) indicating the leachables did not provoke any toxic responses. In addition, SPUUs containing L-arginine promoted higher levels of HUVECs adhesion, spreading and viability after 7 days compared to the commonly used Tecoflex(®) polyurethane. The biodegradability and HUVEC proliferation on L-arginine-based SPUUs suggests that they can be used in the design of vascular grafts for tissue engineering.

  18. Bioinformatic evaluation of L-arginine catabolic pathways in 24 cyanobacteria and transcriptional analysis of genes encoding enzymes of L-arginine catabolism in the cyanobacterium Synechocystis sp. PCC 6803

    OpenAIRE

    Schriek, Sarah; R?ckert, Christian; Staiger, Dorothee; Pistorius, Elfriede K; Michel, Klaus-Peter

    2007-01-01

    Abstract Background So far very limited knowledge exists on L-arginine catabolism in cyanobacteria, although six major L-arginine-degrading pathways have been described for prokaryotes. Thus, we have performed a bioinformatic analysis of possible L-arginine-degrading pathways in cyanobacteria. Further, we chose Synechocystis sp. PCC 6803 for a more detailed bioinformatic analysis and for validation of the bioinformatic predictions on L-arginine catabolism with a transcript analysis. Results W...

  19. Homoarginine Levels are Regulated by L-Arginine:Glycine Amidinotransferase and Affect Stroke Outcome: Results from Human and Murine Studies

    NARCIS (Netherlands)

    Choe, C.-U.; Atzler, D.; Wild, P.S.; Carter, A.M.; B\\"oger, R.H.; Ojeda, F.; Simova, O.; Stockebrand, M.; Lackner, K.; Nabuurs, C.; Marescau, B.; Streichert, T.; M\\"uller, C.; L\\"uneburg, N.; Deyn, P.P. de; Benndorf, R.A.; Baldus, S.; Gerloff, C.; Blankenberg, S.; Heerschap, A.; Grant, P.J.; Magnus, T.; Zeller, T.; Isbrandt, D.; Schwedhelm, E.

    2013-01-01

    Endogenous arginine homologues, including homoarginine, have been identified as novel biomarkers for cardiovascular disease and outcomes. Our studies of human cohorts and a confirmatory murine model associated the arginine homologue homoarginine and its metabolism in stroke pathology and

  20. The Influence of Base Metal (M Oxidation State in Au-M-O/TiO2 Systems on Their Catalytic Activity in Carbon Monoxide Oxidation

    Directory of Open Access Journals (Sweden)

    Katarzyna Samson

    2011-12-01

    Full Text Available Base metal promoted gold/titania catalysts were synthesized, characterized and tested in CO oxidation reaction. Catalysts containing dopant metals in higher oxidation states exhibited higher activity than catalysts containing dopants in reduced states. The activity of fresh catalysts promoted by Cu, Fe and Ni was similar to the unpromoted one, but treatment in reducing and oxidizing atmospheres revealed the supremacy of the copper promoted catalyst. The sequential deposition method proved to be better than the co-deposition—precipitation method. An attempt to explain these differences using XPS, FTIR and H2 TPR was performed.

  1. Interactions between L-arginine/L-arginine derivatives and lysozyme and implications to their inhibition effects on protein aggregation.

    Science.gov (United States)

    Gao, Ming-Tao; Dong, Xiao-Yan; Sun, Yan

    2013-01-01

    L-arginine (Arg), L-homoarginine (HArg), L-arginine ethylester (ArgEE), and L-arginine methylester (ArgME) were found effective in inhibiting protein aggregation, but the molecular mechanisms are not clear. Herein, stopped-flow fluorescence spectroscopy, isothermal titration calorimetry, and mass spectroscopy were used to investigate the folding kinetics of lysozyme and the interactions of the additives with lysozyme. It was found that the interactions of ArgME and ArgEE with lysozyme were similar to that of guanidine hydrochloride and were much stronger than those of Arg and HArg. The binding forces were all mainly hydrogen bonding and cation-π interaction from the guanidinium group, but their differences in molecular states led to the significantly different binding strengths. The additives formed molecular clusters in an increasing order of ArgEE, ArgME, HArg, and Arg. Arg and HArg mainly formed annular clusters with head-to-tail bonding, while ArgME and ArgEE formed linear clusters with guanidinium groups stacking. The interactions between the additives and lysozyme were positively related to the monomer contents. That is, the monomers were the primary species that participated in the direct interactions due to their intact guanidinium groups and small sizes, while the clusters performed as barriers to crowd out the protein-protein interactions for aggregation. Thus, it is concluded that the effects of Arg and its derivatives on protein aggregation stemmed from the direct interactions by the monomers and the crowding effects by the clusters. Interplay of the two effects led to the differences in their inhibition effects on protein aggregation. © 2013 American Institute of Chemical Engineers.

  2. Synthesis, characterization and behaviour of trans-bis (argininate) copper (II) to gamma radiation

    International Nuclear Information System (INIS)

    Pereira, A.B.

    1984-01-01

    The synthesis, the characterization and the behaviour to gamma radiation of trans-bis (argininate) copper (II) are presented. The synthesis is made from copper sulfate, sodium hydroxide and hydrochloride of L (+) arginine, in aqueous medium, and the characterization by infrared spectroscopy, visible and ultraviolet spectroscopy and elementary analysis. (C.G.C.)

  3. Enteral L-Arginine and Glutamine Supplementation for Prevention of NEC in Preterm Neonates

    Directory of Open Access Journals (Sweden)

    M. S. El-Shimi

    2015-01-01

    Full Text Available Objective. Evaluating the efficacy and safety of arginine and glutamine supplementation in decreasing the incidence of NEC among preterm neonates. Methods. Prospective case-control study done on 75 preterm neonates ≤34 weeks, divided equally into L-arginine group receiving enteral L-arginine, glutamine group receiving enteral glutamine, and control group. Serum L-arginine and glutamine levels were measured at time of enrollment (sample 1, after 14 days of enrollment (sample 2, and at time of diagnosis of NEC (sample 3. Results. The incidence of NEC was 9.3%. There was no difference in the frequency of NEC between L-arginine and control groups (P>0.05. NEC was not detected in glutamine group; L-arginine concentrations were significantly lower in arginine group than control group in both samples while glutamine concentrations were comparable in glutamine and control groups in both samples. No significant difference was found between groups as regards number of septic episodes, duration to reach full oral intake, or duration of hospital stay. Conclusion. Enteral L-arginine supplementation did not seem to reduce the incidence of NEC. Enteral glutamine may have a preventive role against NEC if supplied early to preterm neonates. However, larger studies are needed to confirm these findings. This work is registered in ClinicalTrials.gov (ClinicalTrials.gov Identifier: NCT01263041.

  4. Arginine supplementation in four patients with X-linked creatine transporter defect

    NARCIS (Netherlands)

    Fons, C.; Sempere, A.; Arias, A.; Lopez-Sala, A.; Poo, P.; Pineda, M.; Mas, A.; Vilaseca, M.A.; Salomons, G.S.; Ribes, A.; Artuch, R.; Campistol, J.

    2008-01-01

    Background: Treatment with oral creatine monohydrate has not shown efficacy in patients with creatine transporter deficiency (CRTR-D). Another therapeutic option proposed is L-arginine, the substrate for the enzyme L-arginine:glycine amidinotransferase (AGAT). We evaluate clinical characteristics

  5. Abnormal Mitochondrial L-Arginine Transport Contributes to the Pathogenesis of Heart Failure and Rexoygenation Injury

    Science.gov (United States)

    Byrne, Melissa; Joshi, Mandar; Horlock, Duncan; Lam, Nicholas T.; Gregorevic, Paul; McGee, Sean L.; Kaye, David M.

    2014-01-01

    Background Impaired mitochondrial function is fundamental feature of heart failure (HF) and myocardial ischemia. In addition to the effects of heightened oxidative stress, altered nitric oxide (NO) metabolism, generated by a mitochondrial NO synthase, has also been proposed to impact upon mitochondrial function. However, the mechanism responsible for arginine transport into mitochondria and the effect of HF on such a process is unknown. We therefore aimed to characterize mitochondrial L-arginine transport and to investigate the hypothesis that impaired mitochondrial L-arginine transport plays a key role in the pathogenesis of heart failure and myocardial injury. Methods and Results In mitochondria isolated from failing hearts (sheep rapid pacing model and mouse Mst1 transgenic model) we demonstrated a marked reduction in L-arginine uptake (pL-arginine transporter, CAT-1 (pL-arginine transport in modulating cardiac stress responses was examined in cardiomyocytes with mitochondrial specific overexpression of CAT-1 (mtCAT1) exposed to hypoxia-reoxygenation stress. mtCAT1 cardiomyocytes had significantly improved mitochondrial membrane potential, respiration and ATP turnover together with significantly decreased reactive oxygen species production and cell death following mitochondrial stress. Conclusion These data provide new insights into the role of L-arginine transport in mitochondrial biology and cardiovascular disease. Augmentation of mitochondrial L-arginine availability may be a novel therapeutic strategy for myocardial disorders involving mitochondrial stress such as heart failure and reperfusion injury. PMID:25111602

  6. The do's and don'ts of arginine supplementation | Chetty | South ...

    African Journals Online (AJOL)

    In the last three decades the nutritional and pharmacologic effects of arginine have been the subject of intense investigation. Taking into consideration the many benefits that have been demonstrated from arginine supplementation, the question remains: “Can we afford not to supplement with this immuno-nutrient”.

  7. Amperometric glucose sensor based on enhanced catalytic reduction of oxygen using glucose oxidase adsorbed onto core-shell Fe3O4-silica-Au magnetic nanoparticles

    International Nuclear Information System (INIS)

    Wang Aijun; Li Yongfang; Li Zhonghua; Feng Jiuju; Sun Yanli; Chen Jianrong

    2012-01-01

    Monodisperse Fe 3 O 4 magnetic nanoparticles (NPs) were prepared under facile solvothermal conditions and successively functionalized with silica and Au to form core/shell Fe 3 O 4 -silica-Au NPs. Furthermore, the samples were used as matrix to construct a glucose sensor based on glucose oxidase (GOD). The immobilized GOD retained its bioactivity with high protein load of 3.92 × 10 −9 mol·cm −2 , and exhibited a surface-controlled quasi-reversible redox reaction, with a fast heterogeneous electron transfer rate of 7.98 ± 0.6 s −1 . The glucose biosensor showed a broad linear range up to 3.97 mM with high sensitivity of 62.45 μA·mM −1 cm −2 and fast response (less than 5 s). - Graphical abstract: Core-shell structured Fe 3 O 4 -silica-Au nanoparticles were prepared and used as matrix to construct an amperometric glucose sensor based on glucose oxidase, which showed broad linear range, high sensitivity, and fast response. Highlights: ► Synthesis of monodispersed Fe 3 O 4 nanoparticles. ► Fabrication of core/shell Fe 3 O 4 -silica-Au nanoparticles. ► Construction of a novel glucose sensor with wide linear range, high sensitivity and fast response.

  8. Recent Advances on Electro-Oxidation of Ethanol on Pt- and Pd-Based Catalysts: From Reaction Mechanisms to Catalytic Materials

    Directory of Open Access Journals (Sweden)

    Ye Wang

    2015-09-01

    Full Text Available The ethanol oxidation reaction (EOR has drawn increasing interest in electrocatalysis and fuel cells by considering that ethanol as a biomass fuel has advantages of low toxicity, renewability, and a high theoretical energy density compared to methanol. Since EOR is a complex multiple-electron process involving various intermediates and products, the mechanistic investigation as well as the rational design of electrocatalysts are challenging yet essential for the desired complete oxidation to CO2. This mini review is aimed at presenting an overview of the advances in the study of reaction mechanisms and electrocatalytic materials for EOR over the past two decades with a focus on Pt- and Pd-based catalysts. We start with discussion on the mechanistic understanding of EOR on Pt and Pd surfaces using selected publications as examples. Consensuses from the mechanistic studies are that sufficient active surface sites to facilitate the cleavage of the C–C bond and the adsorption of water or its residue are critical for obtaining a higher electro-oxidation activity. We then show how this understanding has been applied to achieve improved performance on various Pt- and Pd-based catalysts through optimizing electronic and bifunctional effects, as well as by tuning their surface composition and structure. Finally we point out the remaining key problems in the development of anode electrocatalysts for EOR.

  9. Mutations in the catalytic loop HRD motif alter the activity and function of Drosophila Src64.

    Directory of Open Access Journals (Sweden)

    Taylor C Strong

    Full Text Available The catalytic loop HRD motif is found in most protein kinases and these amino acids are predicted to perform functions in catalysis, transition to, and stabilization of the active conformation of the kinase domain. We have identified mutations in a Drosophila src gene, src64, that alter the three HRD amino acids. We have analyzed the mutants for both biochemical activity and biological function during development. Mutation of the aspartate to asparagine eliminates biological function in cytoskeletal processes and severely reduces fertility, supporting the amino acid's critical role in enzymatic activity. The arginine to cysteine mutation has little to no effect on kinase activity or cytoskeletal reorganization, suggesting that the HRD arginine may not be critical for coordinating phosphotyrosine in the active conformation. The histidine to leucine mutant retains some kinase activity and biological function, suggesting that this amino acid may have a biochemical function in the active kinase that is independent of its side chain hydrogen bonding interactions in the active site. We also describe the phenotypic effects of other mutations in the SH2 and tyrosine kinase domains of src64, and we compare them to the phenotypic effects of the src64 null allele.

  10. The ArcD1 and ArcD2 arginine/ornithine exchangers encoded in the arginine deiminase (ADI) pathway gene cluster of Lactococcus lactis

    NARCIS (Netherlands)

    Noens, Elke E E; Kaczmarek, Michał B; Żygo, Monika; Lolkema, Juke S

    2015-01-01

    The arginine deiminase pathway (ADI) gene cluster in Lactococcus lactis contains two copies of a gene encoding an L-arginine/L-ornithine exchanger, the arcD1 and arcD2 genes. The physiological function of ArcD1 and ArcD2 was studied by deleting the two genes. Deletion of arcD1 resulted in loss of

  11. Arginine-responsive terbium luminescent hybrid sensors triggered by two crown ether carboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Lasheng [Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Tang, Ke; Ding, Xiaoping [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Wang, Qianming, E-mail: qmwang@scnu.edu.cn [Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Zhou, Zhan; Xiao, Rui [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China)

    2013-12-01

    Crown ether carboxylic acids constitute main building blocks for the synthesis of terbium containing covalent cross-linked luminescent materials. Both the complexes and the hybrid nanomaterials could exhibit remarkable green emissions in pure water. More importantly, they were found to have a profound effect on the luminescence responses to arginine compared with glutamic acid, histidine, tryptophan, threonine, tyrosine and phenylalanine in aqueous environment. The present study provided the possibility of using a host–guest mechanism as a way of signal transduction based on lanthanide supramolecular hybrid materials. - Highlights: • Crown ether carboxylic acids were found to sensitize terbium ions among a group of ethers. • The complexes and silica hybrid materials were both prepared and characterized. • They could exhibit remarkable green emissions in pure water.

  12. Global proteomic analysis in trypanosomes reveals unique proteins and conserved cellular processes impacted by arginine methylation.

    Science.gov (United States)

    Lott, Kaylen; Li, Jun; Fisk, John C; Wang, Hao; Aletta, John M; Qu, Jun; Read, Laurie K

    2013-10-08

    Arginine methylation is a common posttranslational modification with reported functions in transcription, RNA processing and translation, and DNA repair. Trypanosomes encode five protein arginine methyltransferases, suggesting that arginine methylation exerts widespread impacts on the biology of these organisms. Here, we performed a global proteomic analysis of Trypanosoma brucei to identify arginine methylated proteins and their sites of modification. Using an approach entailing two-dimensional chromatographic separation and alternating electron transfer dissociation and collision induced dissociation, we identified 1332 methylarginines in 676 proteins. The resulting data set represents the largest compilation of arginine methylated proteins in any organism to date. Functional classification revealed numerous arginine methylated proteins involved in flagellar function, RNA metabolism, DNA replication and repair, and intracellular protein trafficking. Thus, arginine methylation has the potential to impact aspects of T. brucei gene expression, cell biology, and pathogenesis. Interestingly, pathways with known methylated proteins in higher eukaryotes were identified in this study, but often different components of the pathway were methylated in trypanosomes. Methylarginines were often identified in glycine rich contexts, although exceptions to this rule were detected. Collectively, these data inform on a multitude of aspects of trypanosome biology and serve as a guide for the identification of homologous arginine methylated proteins in higher eukaryotes. T. brucei is a protozoan parasite that causes lethal African sleeping sickness in humans and nagana in livestock, thereby imposing a significant medical and economic burden on sub-Saharan Africa. The parasite encounters very different environments as it cycles between mammalian and insect hosts, and must exert cellular responses to these varying milieus. One mechanism by which all cells respond to changing

  13. Effects of a chronic l-arginine supplementation on the arginase pathway in aged rats.

    Science.gov (United States)

    Moretto, Johnny; Guglielmetti, Anne-Sophie; Tournier-Nappey, Maude; Martin, Hélène; Prigent-Tessier, Anne; Marie, Christine; Demougeot, Céline

    2017-04-01

    While ageing is frequently associated with l-arginine deficiency, clinical and experimental studies provided controversial data on the interest of a chronic l-arginine supplementation with beneficial, no or even deleterious effects. It was hypothesized that these discrepancies might relate to a deviation of l-arginine metabolism towards production of l-ornithine rather than nitric oxide as a result of age-induced increase in arginase activity. This study investigated the effect of ageing on arginase activity/expression in target tissues and determined whether l-arginine supplementation modulated the effect of ageing on arginase activity. Arginase activity and expression were measured in the heart, vessel, brain, lung, kidney and liver in young rats (3-months old) and aged Wistar rats (22-24-months-old) with or without l-arginine supplementation (2.25% in drinking water for 6weeks). Plasma levels of l-arginine and l-ornithine were quantified in order to calculate the plasma l-arginine/l-ornithine ratio, considered as a reflection of arginase activity. Cardiovascular parameters (blood pressure, heart rate) and aortic vascular reactivity were also studied. Ageing dramatically reduced plasma l-arginine and l-arginine/l-ornithine ratio, decreased liver and kidney arginase activities but did not change activities in other tissues. l-Arginine supplementation normalized plasma l-arginine and l-arginine/l-ornithine ratio, improved endothelial function and decreased systolic blood pressure. These effects were associated with decreased arginase activity in aorta along with no change in the other tissues except in the lung in which activity was increased. A strong mismatch was therefore observed between arginase activity and expression in analyzed tissues. The present study reveals that ageing selectively changes arginase activity in clearance tissues, but does not support a role of the arginase pathway in the potential deleterious effect of the l-arginine supplementation in

  14. Kinetic studies of the impact of thiocyanate moiety on the catalytic properties of Cu(II) and Fe(III) complexes of a new Mannich base

    Science.gov (United States)

    Ayeni, Ayowole O.; Watkins, Gareth M.

    2018-04-01

    Four new metal complexes of a novel Mannich base 5-methyl-2-((4-(pyridin-2-yl)piperazin-1-yl)methyl)phenol (HL) have been prepared. The compounds were characterized by an array of analytical and spectroscopic methods including Nuclear Magnetic Resonance, Infra-red and UV-Visible spectroscopy. Compounds 1-4 behaved as effective catalysts towards the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) to its corresponding quinone in the presence of molecular oxygen in DMF solution while compound 4 proved to be the best catalyst with a turnover rate of 17.93 ± 1.10 h-1 as other complexes showed lower rates of oxidation. Also with the exception of dinuclear iron complex (4); thiocyanate containing Cu(II) complex exhibited lower catecholase activity compared to the Cu(II) complex without it.

  15. Bipyridine- and phenanthroline-based metal-organic frameworks for highly efficient and tandem catalytic organic transformations via directed C-H activation

    Energy Technology Data Exchange (ETDEWEB)

    Manna, Kuntal [Univ. of Chicago, Chicago, IL (United States); Zhang, Teng [Univ. of Chicago, Chicago, IL (United States); Greene, Francis X. [Univ. of Chicago, Chicago, IL (United States); Lin, Wenbin [Univ. of Chicago, Chicago, IL (United States)

    2015-02-16

    We report here the synthesis of a series of robust and porous bipyridyl- and phenanthryl-based metal–organic frameworks (MOFs) of UiO topology (BPV-MOF, mBPV-MOF, and mPT-MOF) and their postsynthetic metalation to afford highly active single-site solid catalysts. While BPV-MOF was constructed from only bipyridyl-functionalized dicarboxylate linker, both mBPV- and mPT-MOF were built with a mixture of bipyridyl- or phenanthryl-functionalized and unfunctionalized dicarboxylate linkers. The postsynthetic metalation of these MOFs with [Ir(COD)(OMe)]2 provided Ir-functionalized MOFs (BPV-MOF-Ir, mBPV-MOF-Ir, and mPT-MOF-Ir), which are highly active catalysts for tandem hydrosilylation of aryl ketones and aldehydes followed by dehydrogenative ortho-silylation of benzylicsilyl ethers as well as C–H borylation of arenes using B₂pin₂. Both mBPV-MOF-Ir and mPT-MOF-Ir catalysts displayed superior activities compared to BPV-MOF-Ir due to the presence of larger open channels in the mixed-linker MOFs. Impressively, mBPV-MOF-Ir exhibited high TONs of up to 17000 for C–H borylation reactions and was recycled more than 15 times. The mPT-MOF-Ir system is also active in catalyzing tandem dehydrosilylation/dehydrogenative cyclization of N-methylbenzyl amines to azasilolanes in the absence of a hydrogen acceptor. Importantly, MOF-Ir catalysts are significantly more active (up to 95 times) and stable than their homogeneous counterparts for all three reactions, strongly supporting the beneficial effects of active site isolation within MOFs. This work illustrates the ability to increase MOF open channel sizes by using the mixed linker approach and shows the enormous potential of developing highly active and robust single-site solid catalysts based on MOFs containing nitrogen-donor ligands for important organic transformations.

  16. Synthesis and reactivity of iron complexes with a new pyrazine-based pincer ligand, and application in catalytic low-pressure hydrogenation of carbon dioxide.

    Science.gov (United States)

    Rivada-Wheelaghan, Orestes; Dauth, Alexander; Leitus, Gregory; Diskin-Posner, Yael; Milstein, David

    2015-05-04

    A novel pincer ligand based on the pyrazine backbone (PNzP) has been synthesized, (2,6-bis(di(tert-butyl)phosphinomethyl)pyrazine), tBu-PNzP. It reacts with FeBr2 to yield [Fe(Br)2(tBu-PNzP)], 1. Treatment of 1 with NaBH4 in MeCN/MeOH gives the hydride complex [Fe(H)(MeCN)2(tBu-PNzP)][X] (X = Br, BH4), 2·X. Counterion exchange and exposure to CO atmosphere yields the complex cis-[Fe(H)(CO)(MeCN)(tBu-PNzP)][BPh4] 4·BPh4, which upon addition of Bu4NCl forms [Fe(H)(Cl)(CO)(tBu-PNzP)] 5. Complex 5, under basic conditions, catalyzes the hydrogenation of CO2 to formate salts at low H2 pressure. Treatment of complex 5 with a base leads to aggregates, presumably of dearomatized species B, stabilized by bridging to another metal center by coordination of the nitrogen at the backbone of the pyrazine pincer ligand. Upon dissolution of compound B in EtOH the crystallographically characterized complex 7 is formed, comprised of six iron units forming a 6-membered ring. The dearomatized species can activate CO2 and H2 by metal-ligand cooperation (MLC), leading to complex 8, trans-[Fe(PNzPtBu-COO)(H)(CO)], and complex 9, trans-[Fe(H)2(CO)(tBu-PNzP)], respectively. Our results point at a very likely mechanism for CO2 hydrogenation involving MLC.

  17. PRmePRed: A protein arginine methylation prediction tool.

    Directory of Open Access Journals (Sweden)

    Pawan Kumar

    Full Text Available Protein methylation is an important Post-Translational Modification (PTMs of proteins. Arginine methylation carries out and regulates several important biological functions, including gene regulation and signal transduction. Experimental identification of arginine methylation site is a daunting task as it is costly as well as time and labour intensive. Hence reliable prediction tools play an important task in rapid screening and identification of possible methylation sites in proteomes. Our preliminary assessment using the available prediction methods on collected data yielded unimpressive results. This motivated us to perform a comprehensive data analysis and appraisal of features relevant in the context of biological significance, that led to the development of a prediction tool PRmePRed with better performance. The PRmePRed perform reasonably well with an accuracy of 84.10%, 82.38% sensitivity, 83.77% specificity, and Matthew's correlation coefficient of 66.20% in 10-fold cross-validation. PRmePRed is freely available at http://bioinfo.icgeb.res.in/PRmePRed/.

  18. Agmatine: multifunctional arginine metabolite and magic bullet in clinical neuroscience?

    Science.gov (United States)

    Laube, Gregor; Bernstein, Hans-Gert

    2017-07-26

    Agmatine, the decarboxylation product of arginine, was largely neglected as an important player in mammalian metabolism until the mid-1990s, when it was re-discovered as an endogenous ligand of imidazoline and α 2 -adrenergic receptors. Since then, a wide variety of agmatine-mediated effects have been observed, and consequently agmatine has moved from a wallflower existence into the limelight of clinical neuroscience research. Despite this quantum jump in scientific interest, the understanding of the anabolism and catabolism of this amine is still vague. The purification and biochemical characterization of natural mammalian arginine decarboxylase and agmatinase still are open issues. Nevertheless, the agmatinergic system is currently one of the most promising candidates in order to pharmacologically interfere with some major diseases of the central nervous system, which are summarized in the present review. Particularly with respect to major depression, agmatine, its derivatives, and metabolizing enzymes show great promise for the development of an improved treatment of this common disease. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  19. Arginine phosphorylation marks proteins for degradation by a Clp protease.

    Science.gov (United States)

    Trentini, Débora Broch; Suskiewicz, Marcin Józef; Heuck, Alexander; Kurzbauer, Robert; Deszcz, Luiza; Mechtler, Karl; Clausen, Tim

    2016-11-03

    Protein turnover is a tightly controlled process that is crucial for the removal of aberrant polypeptides and for cellular signalling. Whereas ubiquitin marks eukaryotic proteins for proteasomal degradation, a general tagging system for the equivalent bacterial Clp proteases is not known. Here we describe the targeting mechanism of the ClpC-ClpP proteolytic complex from Bacillus subtilis. Quantitative affinity proteomics using a ClpP-trapping mutant show that proteins phosphorylated on arginine residues are selectively targeted to ClpC-ClpP. In vitro reconstitution experiments demonstrate that arginine phosphorylation by the McsB kinase is required and sufficient for the degradation of substrate proteins. The docking site for phosphoarginine is located in the amino-terminal domain of the ClpC ATPase, as resolved at high resolution in a co-crystal structure. Together, our data demonstrate that phosphoarginine functions as a bona fide degradation tag for the ClpC-ClpP protease. This system, which is widely distributed across Gram-positive bacteria, is functionally analogous to the eukaryotic ubiquitin-proteasome system.

  20. Mapping arginine methylation in the human body and cardiac disease.

    Science.gov (United States)

    Onwuli, Donatus O; Rigau-Roca, Laura; Cawthorne, Chris; Beltran-Alvarez, Pedro

    2017-01-01

    Arginine methylation (ArgMe) is one of the most ubiquitous PTMs, and hundreds of proteins undergo ArgMe in, for example, brain. However, the scope of ArgMe in many tissues, including the heart, is currently underexplored. Here, we aimed to (i) identify proteins undergoing ArgMe in human organs, and (ii) expose the relevance of ArgMe in cardiac disease. The publicly available proteomic data is used to search for ArgMe in 13 human tissues. To induce H9c2 cardiac-like cell hypertrophy glucose is used. The results show that ArgMe is mainly tissue-specific; nevertheless, the authors suggest an embryonic origin of core ArgMe events. In the heart, 103 mostly novel ArgMe sites in 58 nonhistone proteins are found. The authors provide compelling evidence that cardiac protein ArgMe is relevant to cardiomyocyte ontology, and important for proper cardiac function. This is highlighted by the fact that genetic mutations affecting methylated arginine positions are often associated with cardiac disease, including hypertrophic cardiomyopathy. The pilot experimental data suggesting significant changes in ArgMe profiles of H9c2 cells upon induction of cell hypertrophy using glucose is provided. The work calls for in-depth investigation of ArgMe in normal and diseased tissues using methods including clinical proteomics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.