Sample records for catalytic arene hydrogenation

  1. Chemoselective hydrogenation of arenes by PVP supported Rh nanoparticles. (United States)

    Ibrahim, Mahmoud; Poreddy, Raju; Philippot, Karine; Riisager, Anders; Garcia-Suarez, Eduardo J


    Polyvinylpyrrolidone-stabilized Rh nanoparticles (RhNPs/PVP) of ca. 2.2 nm in size were prepared by the hydrogenation of the organometallic complex [Rh(η(3)-C3H5)3] in the presence of PVP and evaluated as a catalyst in the hydrogenation of a series of arene substrates as well as levulinic acid and methyl levulinate. The catalyst showed excellent activity and selectivity towards aromatic ring hydrogenation compared to other reported transition metal-based catalysts under mild reaction conditions (room temperature and 1 bar H2). Furthermore, it was shown to be a highly promising catalyst for the hydrogenation of levulinic acid and methyl levulinate in water leading to quantitative formation of the fuel additive γ-valerolactone under moderate reaction conditions compared to previously reported catalytic systems.

  2. Ni-B/TiO2 Amorphous Catalyst Used in Heavy Arenes of Petrochemicals Hydrogenation

    Institute of Scientific and Technical Information of China (English)


    A supported Ni-B/TiO2 amorphous catalyst was prepared by impregnation and reduction. It was characterized by XRD, SAED, DSC, XPS, etc.. The catalytic activity of catalyst was measured through the hydrogenation of heavy arenes in petrochemicals for the first time.

  3. Chemoselective hydrogenation of arenes by PVP supported Rh nanoparticles

    DEFF Research Database (Denmark)

    Ibrahim, Mahmoud; Poreddy, Raju; Philippot, Karine


    Polyvinylpyrrolidone-stabilized Rh nanoparticles (RhNPs/PVP) of ca. 2.2 nm in size were prepared by the hydrogenation of the organometallic complex [Rh(η3-C3H5)3] in the presence of PVP and evaluated as a catalyst in the hydrogenation of a series of arene substrates as well as levulinic acid...

  4. Catalytic combustor for hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Mercea, J.; Grecu, E.; Fodor, T.; Kreibik, S.


    The performance of catalytic combustors for hydrogen using platinum-supported catalysts is described. Catalytic plates of different sizes were constructed using fibrous and ceramic supports. The temperature distribution as well as the reaction efficiency as a function of the fuel input rate was determined, and a comparison between the performances of different plates is discussed.

  5. Relationship Between Structures and Reactivity of Polycyclic Arenes Toward Hydrogenation

    Institute of Scientific and Technical Information of China (English)

    倪中海; 张丽芳; 袁新华; 宗志敏; 魏贤勇


    Hydrogenation reactions of polycyclic arenes (Pas) were car ried out in the presence of Ni and sulfur at 300 ℃ to examine the structuralef fect of Pas on their reactivities toward hydrogenation. Hydrogen was observed to be transferred preferentially to some fixed positions in Pas and different Pas displayed some difference in hydrogenation reactivity. The results can be inte rpreted on the hydrogen-accepting ability of carbon atoms from different positi ons in Pas and the resonance stability of aryl radicals resulting from H-atom a ddition as well as the adsorption strength of Pas on catalyst surface.


    Institute of Scientific and Technical Information of China (English)


    Hydrogen transfer is an important secondary reaction of catalytic cracking reactions, which affects product yield distribution and product quality. It is an exothermic reaction with low activation energy around 43.3 kJ/mol. Catalyst properties and operation parameters in catalytic cracking greatly influence the hydrogen transfer reaction. Satisfactory results are expected through careful selection of proper catalysts and operation conditions.

  7. Hydrogen peroxide catalytic decomposition (United States)

    Parrish, Clyde F. (Inventor)


    Nitric oxide in a gaseous stream is converted to nitrogen dioxide using oxidizing species generated through the use of concentrated hydrogen peroxide fed as a monopropellant into a catalyzed thruster assembly. The hydrogen peroxide is preferably stored at stable concentration levels, i.e., approximately 50%-70% by volume, and may be increased in concentration in a continuous process preceding decomposition in the thruster assembly. The exhaust of the thruster assembly, rich in hydroxyl and/or hydroperoxy radicals, may be fed into a stream containing oxidizable components, such as nitric oxide, to facilitate their oxidation.

  8. Stabilized rhodium(0) nanoparticles: a reusable hydrogenation catalyst for arene derivatives in a biphasic water-liquid system. (United States)

    Schulz, J; Roucoux, A; Patin, H


    A colloidal system based on an aqueous suspension of rhodium(o) nanoparticles proved to be an efficient catalyst for the hydrogenation of arene derivatives under biphasic conditions. The rhodium nanoparticles (2-2.5 nm) were synthesized by the reduction of RhCl3 x 3H2O with sodium borohydride and were stabilized by highly water-soluble N-alkyl-N-(2-hydroxyethyl)ammonium salts (HEA-Cn). These surfactant molecules were characterized by measurements of the surface tension and the aqueous dispersions with rhodium were observed by transmission electron cryomicroscopy. The catalytic system is efficient under ultramild conditions, namely room temperature and 1 atm H2 pressure. The aqueous phase which contains the protected rhodium(0) colloids can be reused without significant loss of activity. The microheterogeneous behavior of this catalytic system was confirmed on a mercury poisoning experiment.

  9. A novel liquid system of catalytic hydrogenation

    Institute of Scientific and Technical Information of China (English)


    On the basis that endothermic aqueous-phase reforming of oxygenated hydrocarbons for H2 production and exothermic liquid phase hydrogenation of organic compounds are carried out under extremely close conditions of temperature and pressure over the same type of catalyst, a novel liquid system of catalytic hydrogenation has been proposed, in which hydrogen produced from aqueous-phase reforming of oxygenated hydrocarbons is in situ used for liquid phase hydrogenation of organic compounds. The usage of active hydrogen generated from aqueous-phase reforming of oxygenated hydrocarbons for liquid catalytic hydrogenation of organic compounds could lead to increasing the selectivity to H2 in the aqueous-phase reforming due to the prompt removal of hydrogen on the active centers of the catalyst. Meanwhile, this novel liquid system of catalytic hydrogenation might be a potential method to improve the selectivity to the desired product in liquid phase catalytic hydrogenation of organic compounds. On the other hand, for this novel liquid system of catalytic hydrogenation, some special facilities for H2 generation, storage and transportation in traditional liquid phase hydrogenation industry process are yet not needed. Thus, it would simplify the working process of liquid phase hydrogenation and increase the energy usage and hydrogen productivity.

  10. Improved Catalytic Activity of Ruthenium–Arene Complexes in the Reduction of NAD+

    NARCIS (Netherlands)

    Soldevila-Barreda, J.J.; Bruijnincx, P.C.A.; Habtemariam, A.; Clarkson, G.J.; Deeth, R.J.; Sadler, Peter J.


    A series of neutral RuII half-sandwich complexes of the type [(η6-arene)Ru(N,N′)Cl] where the arene is para-cymene (p-cym), hexamethylbenzene (hmb), biphenyl (bip), or benzene (bn) and N,N′ is N-(2-aminoethyl)-4-(trifluoromethyl)benzenesulfonamide (TfEn), N-(2-aminoethyl)-4-toluenesulfonamide (TsEn)

  11. Performance characterization of a hydrogen catalytic heater.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry Alan; Kanouff, Michael P.


    This report describes the performance of a high efficiency, compact heater that uses the catalytic oxidation of hydrogen to provide heat to the GM Hydrogen Storage Demonstration System. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to a circulating heat transfer fluid. The fluid then transfers the heat to one or more of the four hydrogen storage modules that make up the Demonstration System to drive off the chemically bound hydrogen. The heater consists of three main parts: (1) the reactor, (2) the gas heat recuperator, and (3) oil and gas flow distribution manifolds. The reactor and recuperator are integrated, compact, finned-plate heat exchangers to maximize heat transfer efficiency and minimize mass and volume. Detailed, three-dimensional, multi-physics computational models were used to design and optimize the system. At full power the heater was able to catalytically combust a 10% hydrogen/air mixture flowing at over 80 cubic feet per minute and transfer 30 kW of heat to a 30 gallon per minute flow of oil over a temperature range from 100 C to 220 C. The total efficiency of the catalytic heater, defined as the heat transferred to the oil divided by the inlet hydrogen chemical energy, was characterized and methods for improvement were investigated.

  12. Advanced Catalytic Hydrogenation Retrofit Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Reinaldo M. Machado


    Industrial hydrogenation is often performed using a slurry catalyst in large stirred-tank reactors. These systems are inherently problematic in a number of areas, including industrial hygiene, process safety, environmental contamination, waste production, process operability and productivity. This program proposed the development of a practical replacement for the slurry catalysts using a novel fixed-bed monolith catalyst reactor, which could be retrofitted onto an existing stirred-tank reactor and would mitigate many of the minitations and problems associated with slurry catalysts. The full retrofit monolith system, consisting of a recirculation pump, gas/liquid ejector and monolith catalyst, is described as a monolith loop reactor or MLR. The MLR technology can reduce waste and increase raw material efficiency, which reduces the overall energy required to produce specialty and fine chemicals.

  13. Hydrogen ion-selective poly(vinyl chloride) membrane electrode based on a calix[4]arene. (United States)

    Kuruoğlu, Demet; Canel, Esin; Memon, Shahabuddin; Yilmaz, Mustafa; Kiliç, Esma


    A hydrogen ion-selective poly(vinyl chloride) membrane electrode was constructed using 5,11,17,23-tetra-tert-butyl-25,26,27,28-tetracyanomethoxycalix[4]arene as a neutral carrier. The electrode showed an apparent Nernstian response in the 2-11.5 pH range with a slope of 54.0 +/- 0.2 mV/pH at 20 +/- degrees C. This electrode showed a rapid response of the emf to changes in the pH, high ion selectivity with respect to lithium, sodium and potassium, and characteristics similar to those reported for the conventional pH glass membrane electrode. It can be used as a potentiometric indicator electrode in hydrofluoric acid solutions. The effects of iodide, thiocyanate, perchlorate and bromide on the characteristics of the electrode were also considered.

  14. Polarographic catalytic wave of hydrogen--Parallel catalytic hydrogen wave of bovine serum albumin in thepresence of oxidants

    Institute of Scientific and Technical Information of China (English)

    GUO; Wei(过玮); LIU; Limin(刘利民); LIN; Hong(林洪); SONG; Junfeng(宋俊峰)


    A polarographic catalytic hydrogen wave of bovine serum albumin (BSA) at about -1.80 V (vs. SCE) in NH4Cl-NH3@H2O buffer is further catalyzed by such oxidants as iodate, persulfate and hydrogen peroxide, producing a kinetic wave. Studies show that the kinetic wave is a parallel catalytic wave of hydrogen, which resulted from that hydrogen ion is electrochemically reduced and chemically regenerated through oxidation of its reduction product, atomic hydrogen, by oxidants mentioned above. It is a new type of poralographic catalytic wave of protein, which is suggested to be named as a parallel catalytic hydrogen wave.

  15. Enantiopure inherently chiral calix[4]arene derivatives containing quinolin-2-yl-methanol moiety:Synthesis and application in the catalytic asymmetric addition of diethylzinc to benzaldehyde

    Institute of Scientific and Technical Information of China (English)


    A series of novel N,O-type chiral ligands derived from enantiopure inherently chiral calix[4]arenes containing quinolin-2-yl-methanol moiety in the cone or partialcone conformation have been synthe-sized and characterized. Moreover,they have been applied to the catalytic asymmetric addition of diethylzinc to benzaldehyde,which represents the first example that the inherently chiral calixarene can be used as the chiral ligands for the catalytic asymmetric synthesis.

  16. Catalytic glycerol steam reforming for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Dan, Monica, E-mail:; Mihet, Maria, E-mail:; Lazar, Mihaela D., E-mail: [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj Napoca (Romania)


    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H{sub 2}. In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al{sub 2}O{sub 3}. The catalyst was prepared by wet impregnation method and characterized through different methods: N{sub 2} adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H{sub 2}, CH{sub 4}, CO, CO{sub 2}. The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H{sub 2}O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%.

  17. Catalytic glycerol steam reforming for hydrogen production (United States)

    Dan, Monica; Mihet, Maria; Lazar, Mihaela D.


    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H2. In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al2O3. The catalyst was prepared by wet impregnation method and characterized through different methods: N2 adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H2, CH4, CO, CO2. The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H2O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%.

  18. Substrate-mediated enhanced activity of Ru nanoparticles in catalytic hydrogenation of benzene

    KAUST Repository

    Liu, Xin


    The impact of carbon substrate-Ru nanoparticle interactions on benzene and hydrogen adsorption that is directly related to the performance in catalytic hydrogenation of benzene has been investigated by first-principles based calculations. The stability of Ru 13 nanoparticles is enhanced by the defective graphene substrate due to the hybridization between the dsp states of the Ru 13 particle with the sp 2 dangling bonds at the defect sites. The local curvature formed at the interface will also raise the Ru atomic diffusion barrier, and prohibit the particle sintering. The strong interfacial interaction results in the shift of averaged d-band center of the deposited Ru nanoparticle, from -1.41 eV for a freestanding Ru 13 particle, to -1.17 eV for the Ru/Graphene composites, and to -1.54 eV on mesocellular foam carbon. Accordingly, the adsorption energies of benzene are increased from -2.53 eV for the Ru/mesocellular foam carbon composites, to -2.62 eV on freestanding Ru 13 particles, to -2.74 eV on Ru/graphene composites. A similar change in hydrogen adsorption is also observed, and all these can be correlated to the shift of the d-band center of the nanoparticle. Thus, Ru nanoparticles graphene composites are expected to exhibit both high stability and superior catalytic performance in hydrogenation of arenes. © 2012 The Royal Society of Chemistry.

  19. Microchannel Reactor System for Catalytic Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Adeniyi Lawal; Woo Lee; Ron Besser; Donald Kientzler; Luke Achenie


    We successfully demonstrated a novel process intensification concept enabled by the development of microchannel reactors, for energy efficient catalytic hydrogenation reactions at moderate temperature, and pressure, and low solvent levels. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for hydrogenation of onitroanisole and a proprietary BMS molecule. In the second phase of the program, as a prelude to full-scale commercialization, we designed and developed a fully-automated skid-mounted multichannel microreactor pilot plant system for multiphase reactions. The system is capable of processing 1 – 10 kg/h of liquid substrate, and an industrially relevant immiscible liquid-liquid was successfully demonstrated on the system. Our microreactor-based pilot plant is one-of-akind. We anticipate that this process intensification concept, if successfully demonstrated, will provide a paradigm-changing basis for replacing existing energy inefficient, cost ineffective, environmentally detrimental slurry semi-batch reactor-based manufacturing practiced in the pharmaceutical and fine chemicals industries.

  20. Heterogeneous catalytic hydrogenation reactions in continuous-flow reactors. (United States)

    Irfan, Muhammad; Glasnov, Toma N; Kappe, C Oliver


    Microreactor technology and continuous flow processing in general are key features in making organic synthesis both more economical and environmentally friendly. Heterogeneous catalytic hydrogenation reactions under continuous flow conditions offer significant benefits compared to batch processes which are related to the unique gas-liquid-solid triphasic reaction conditions present in these transformations. In this review article recent developments in continuous flow heterogeneous catalytic hydrogenation reactions using molecular hydrogen are summarized. Available flow hydrogenation techniques, reactors, commonly used catalysts and examples of synthetic applications with an emphasis on laboratory-scale flow hydrogenation reactions are presented.

  1. Opportunities Offered by Chiral η6-Arene/N-Arylsulfonyl-diamine-RuII Catalysts in the Asymmetric Transfer Hydrogenation of Ketones and Imines

    Directory of Open Access Journals (Sweden)

    Libor Červený


    Full Text Available Methods for the asymmetric transfer hydrogenation (ATH of ketones and imines are still being intensively studied and developed. Of foremost interest is the use of Noyori’s [RuCl(η6-arene(N-TsDPEN] complexes in the presence of a hydrogen donor (i-PrOH, formic acid. These complexes have found numerous practical applications and have been extensively modified. The resulting derivatives have been heterogenized, used in ATH in water or ionic liquids and even some attempts have been made to approach the properties of biocatalysts. Therefore, an appropriate modification of the catalyst that suits the specific requirements for the reaction conditions is very often readily available. The mechanism of the reaction has also been explored to a great extent. Model substrates, acetophenone (a ketone and 6,7-dimethoxy-1-methyl-3,4-dihydroisoquinoline (an imine, are both reduced by this Ru catalytic system with almost perfect selectivity. However, in each case the major product is a different enantiomer (S- for an alcohol, R- for an amine when the S,S-catalyst is used, which demanded an in-depth mechanistic investigation. Full-scale molecular modelling of this system enabled us to visualize the plausible 3D structures of the transition states, allowing the proposition of a viable explanation of previous experimental findings.

  2. Numerical Study of Passive Catalytic Recombiner for Hydrogen Mitigation

    Directory of Open Access Journals (Sweden)

    Pavan K Sharma


    Full Text Available A significant amount of hydrogen is expected to be released within the containment of a water cooled power reactor after a severe accident. To reduce the risk of deflagration/detonation various means for hydrogen control have been adopted all over the world. Passive catalytic recombiner with vertical flat catalytic plate is one of such hydrogen mitigating device. Passive catalytic recombiners are designed for the removal of hydrogen generated in order to limit the impact of possible hydrogen combustion. Inside a passive catalytic recombiner, numerous thin steel sheets coated with catalyst material are vertically arranged at the bottom opening of a sheet metal housing forming parallel flow channels for the surrounding gas atmosphere. Already below conventional flammability limits, hydrogen and oxygen react exothermally on the catalytic surfaces forming harmless steam. Detailed numerical simulations and experiments are required for an in-depth knowledge of such plate type catalytic recombiners. Specific finite volume based in-house CFD code has been developed to model and analyse the working of these recombiner. The code has been used to simulate the recombiner device used in the Gx-test series of Battelle-Model Containment (B-MC experiments. The present paper briefly describes the working principle of such passive catalytic recombiner and salient feature of the CFD model developed at Bhabha Atomic Research Centre (BARC. Finally results of the calculations and comparison with existing data are discussed.

  3. Storage of hydrogen in floating catalytic carbon nanotubes after graphitizing

    Institute of Scientific and Technical Information of China (English)

    朱宏伟; 李雪松; 慈立杰; 徐才录; 毛宗强; 梁吉; 吴德海


    Hydrogen storage under moderate pressure (~10 Mpa) and ambient temperature (~25℃) in multi-walled carbon nanotubes (MWNTs) prepared by the floating catalyst method is investigated. The capacity of hydrogen adsorption is evaluated based on both the nanotubes diameter and morphology. Indirect evidence indicates that hydrogen adsorption not only occurs on tube surface and interiors, but also in tube interlayers. The results show that the floating catalytic carbon nanotubes might be a candidate hydrogen storage material for fuel cell electric vehicles.

  4. Hydrogen-bonded 1D and 2D Assemblies of Tetra- iso-butyl-resorcin[4]arene in the Crystalline State

    Institute of Scientific and Technical Information of China (English)

    LIU Xiang; LIU Yu-Jie; ZHANG Qian-Feng


    X-ray crystal structures of co-crystals involving tetra-iso-butyl-resorcin[4]arene 1 with both acetone and acetonitrile solvents were reported. The component 1(2(CH3)2CO 2 assembles such that the resorcin[4]arene adopts a C2v conformation and the acetone serves as hydrogen bond acceptors, forming a 1D hydrogen-bonded polymer. 2 (C50H68O10) crystallizes in the triclinic, space group P with a = 10.0440(7), b = 13.7498(9), c = 17.6374(12) (A), α = 77.726(2), β = 86.733(2), γ = 88.634(2)°, V = 2376.1(3) (A)3, Dc = 1.159 g/cm3, and Z = 2. The assembly process of component 1(2CH3CN(H2O 3 yields a 2D hydrogen-bonded polymer formed by intermolecular hydrogen bonds between resorcin[4]arene and water molecules. In the case of component 3, the acetonitrile molecule serves as guest inside the bowl of resorcin[4]arene host. 3 (C48H64N2O9) crystallizes in the monoclinic, space group P2/n with a = 13.7570(18), b = 9.0961(12), c = 19.453(3) (A), β = 103.017(3)°, V = 2371.7(5) (A)3, Dc = 1.138 g/cm3, and Z = 2.

  5. Photo-driven redox-neutral decarboxylative carbon-hydrogen trifluoromethylation of (hetero)arenes with trifluoroacetic acid (United States)

    Lin, Jin; Li, Zhi; Kan, Jian; Huang, Shijun; Su, Weiping; Li, Yadong


    Catalytic oxidative C–H bond functionalization reactions that proceed without requiring stoichiometric amounts of external oxidants or pre-functionalized oxidizing reagents could maximize the atom- and step-economy in chemical syntheses. However, such a transformation remains elusive. Here, we report that a photo-driven catalytic process enables decarboxylative C–H trifluoromethylation of (hetero)arenes with trifluoroacetic acid as a trifluoromethyl source in good yields in the presence of an external oxidant in far lower than stoichiometric amounts (for example, 0.2 equivalents of Na2S2O8) using Rh-modified TiO2 nanoparticles as a photocatalyst, in which H2 release is an important driving force for the reaction. Our findings not only provide an approach to accessing valuable decarboxylative C–H trifluoromethylations via activation of abundant but inert trifluoroacetic acid towards oxidative decarboxylation and trifluoromethyl radical formation, but also demonstrate that a photo-driven catalytic process is a promising way to achieve external oxidant-free C–H functionalization reactions. PMID:28165474

  6. Short hydrogen bonds in the catalytic mechanism of serine proteases

    Directory of Open Access Journals (Sweden)



    Full Text Available The survey of crystallographic data from the Protein Data Bank for 37 structures of trypsin and other serine proteases at a resolution of 0.78–1.28 Å revealed the presence of hydrogen bonds in the active site of the enzymes, which are formed between the catalytic histidine and aspartate residues and are on average 2.7 Å long. This is the typical bond length for normal hydrogen bonds. The geometric properties of the hydrogen bonds in the active site indicate that the H atom is not centered between the heteroatoms of the catalytic histidine and aspartate residues in the active site. Taken together, these findings exclude the possibility that short “low-barrier” hydrogen bonds are formed in the ground state structure of the active sites examined in this work. Some time ago, it was suggested by Cleland that the “low-barrier hydrogen bond” hypothesis is operative in the catalytic mechanism of serine proteases, and requires the presence of short hydrogen bonds around 2.4 Å long in the active site, with the H atom centered between the catalytic heteroatoms. The conclusions drawn from this work do not exclude the validity of the “low-barrier hydrogen bond” hypothesis at all, but they merely do not support it in this particular case, with this particular class of enzymes.

  7. A novel liquid organic hydrogen carrier system based on catalytic peptide formation and hydrogenation. (United States)

    Hu, Peng; Fogler, Eran; Diskin-Posner, Yael; Iron, Mark A; Milstein, David


    Hydrogen is an efficient green fuel, but its low energy density when stored under high pressure or cryogenically, and safety issues, presents significant disadvantages; hence finding efficient and safe hydrogen carriers is a major challenge. Of special interest are liquid organic hydrogen carriers (LOHCs), which can be readily loaded and unloaded with considerable amounts of hydrogen. However, disadvantages include high hydrogen pressure requirements, high reaction temperatures for both hydrogenation and dehydrogenation steps, which require different catalysts, and high LOHC cost. Here we present a readily reversible LOHC system based on catalytic peptide formation and hydrogenation, using an inexpensive, safe and abundant organic compound with high potential capacity to store and release hydrogen, applying the same catalyst for loading and unloading hydrogen under relatively mild conditions. Mechanistic insight of the catalytic reaction is provided. We believe that these findings may lead to the development of an inexpensive, safe and clean liquid hydrogen carrier system.

  8. Liquid-phase chemical hydrogen storage: catalytic hydrogen generation under ambient conditions. (United States)

    Jiang, Hai-Long; Singh, Sanjay Kumar; Yan, Jun-Min; Zhang, Xin-Bo; Xu, Qiang


    There is a demand for a sufficient and sustainable energy supply. Hence, the search for applicable hydrogen storage materials is extremely important owing to the diversified merits of hydrogen energy. Lithium and sodium borohydride, ammonia borane, hydrazine, and formic acid have been extensively investigated as promising hydrogen storage materials based on their relatively high hydrogen content. Significant advances, such as hydrogen generation temperatures and reaction kinetics, have been made in the catalytic hydrolysis of aqueous lithium and sodium borohydride and ammonia borane as well as in the catalytic decomposition of hydrous hydrazine and formic acid. In this Minireview we briefly survey the research progresses in catalytic hydrogen generation from these liquid-phase chemical hydrogen storage materials.

  9. Hydrogen production via catalytic processing of renewable feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Nazim Muradov; Franklyn Smith; Ali T-Raissi [Florida Solar Energy Center, University of Central Florida, Cocoa, Florida, (United States)


    Landfill gas (LFG) and biogas can potentially become important feedstocks for renewable hydrogen production. The objectives of this work were: (1) to develop a catalytic process for direct reforming of CH{sub 4}-CO{sub 2} gaseous mixture mimicking LFG, (2) perform thermodynamic analysis of the reforming process using AspenPlus chemical process simulator, (3) determine operational conditions for auto-thermal (or thermo-neutral) reforming of a model CH{sub 4}-CO{sub 2} feedstock, and (4) fabricate and test a bench-scale hydrogen production unit. Experimental data obtained from catalytic reformation of the CH{sub 4}-CO{sub 2} and CH{sub 4}-CO{sub 2}-O{sub 2} gaseous mixtures using Ni-catalyst were in a good agreement with the simulation results. It was demonstrated that catalytic reforming of LFG-mimicking gas produced hydrogen with the purity of 99.9 vol.%. (authors)

  10. Hydrogen production by catalytic partial oxidation of methane


    Enger, Bjørn Christian


    Hydrogen production by catalytic partial oxidation of natural gas was investigated using tools ranging from theoretical calculations to experimental work and sophisticated characterization techniques.Catalytic partial oxidation (CPO) was carried out in a conventional continuous flow experimental apparatus using a xed-bed reactor, and operating at 1 atm and furnace temperatures in the range from ambient to 1073 K. The feed typically consisted of a mixture of methane and air, with a CH4/O2 rati...

  11. Development of catalytic hydrogenation reactors for the fine chemicals industry

    NARCIS (Netherlands)

    Westerterp, K.R.; Gelder, van K.B.; Janssen, H.J.; Oyevaar, M.H.


    A survey is given of the problems to be solved before catalytic hydrogenation reactors can be applied in a multiproduct plant in which selectivity problems are experienced. Some results are reported on work done on the reaction kinetics of two multistep model reactions and on mathematical modelling

  12. Catalytic wet hydrogen peroxide oxidation of a petrochemical wastewater. (United States)

    Pariente, M I; Melero, J A; Martínez, F; Botas, J A; Gallego, A I


    Continuous Catalytic Wet Hydrogen Peroxide Oxidation (CWHPO) for the treatment of a petrochemical industry wastewater has been studied on a pilot plant scale process. The installation, based on a catalytic fixed bed reactor (FBR) coupled with a stirred tank reactor (STR), shows an interesting alternative for the intensification of a continuous CWHPO treatment. Agglomerated SBA-15 silica-supported iron oxide (Fe(2)O(3)/SBA-15) was used as Fenton-like catalyst. Several variables such as the temperature and hydrogen peroxide concentration, as well as the capacity of the pilot plant for the treatment of inlet polluted streams with different dilution degrees were studied. Remarkable results in terms of TOC reduction and increased biodegradability were achieved using 160 degrees C and moderate hydrogen peroxide initial concentration. Additionally, a good stability of the catalyst was evidenced for 8 hours of treatment with low iron leaching (less than 1 mg/L) under the best operating conditions.

  13. Catalytic hydrogen evolution by polyaminoacids using mercury electrode

    Directory of Open Access Journals (Sweden)

    Marko Živanovič


    Full Text Available It was shown that using constant current chronopotentiometricstripping (CPS peptides and proteins at nanomolar concentrations produce protein structure–sensitive peak H at mercury electrodes. This peak is due to the catalytic hydrogen evolution reaction (HER. Polyamino acids can be considered as an intermediate model system between peptides and macromolecular proteins. Here we used polyamino acids (poly(aa such as polylysine (polyLys and polyarginine (polyArg and cyclic voltammetry or CPS in combination with hanging mercury drop electrode to explore how different amino acid residues in proteins contribute to the catalyticHER.

  14. Catalytic Hydrogenation of Acetone to Isopropanol: An Environmentally Benign Approach

    Directory of Open Access Journals (Sweden)

    Ateeq Rahman


    Full Text Available The catalytic hydrogenation of acetone is an important area of catalytic process to produce fine chemicals. Hydrogenation of acetone has important applications for heat pumps, fuel cells or in fulfilling the sizeable demand for the production of 2-propanol. Catalytic vapour phase hydrogenation of acetone has gained attention over the decades with variety of homogeneous catalysts notably Iridium, Rh, Ru complexes and heterogeneous catalysts comprising of Raney Nickel, Raney Sponge, Ni/Al2O3, Ni/SiO2, or Co-Al2O3, Pd, Rh, Ru, Re, or Fe/Al2O3 supported on SiO2 or MgO and even CoMgAl, NiMg Al layered double hydroxide, Cu metal, CuO, Cu2O. Nano catalysts are developed for actone reduction Ni maleate, cobalt oxide prepared in organic solvents. Author present a review on acetone hydrogenation under different conditions with various homogeneous and heterogeneous catalysts studied so far in literature and new strategies to develop economic and environmentally benign approach. ©2010 BCREC UNDIP. All rights reserved(Received: 16th June 2010, Revised: 18th October 2010; Accepted: 25th October 2010[How to Cite:Ateeq Rahman. (2010. Catalytic Hydrogenation of Acetone to Isopropanol: An Environmentally Benign Approach. Bulletin of Chemical Reaction Engineering and Catalysis, 5(2: 113-126. doi:10.9767/bcrec.5.2.798.113-126][DOI: || or local:

  15. Catalytic efficiency of Nb and Nb oxides for hydrogen dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Isobe, Shigehito, E-mail: [Graduate School of Engineering, Hokkaido University, N-13, W-8, Sapporo 060-0813 (Japan); Creative Research Institution, Hokkaido University, N-20, W-10, Sapporo 001-0021 (Japan); Kudoh, Katsuhiro; Hino, Satoshi; Hashimoto, Naoyuki; Ohnuki, Somei [Graduate School of Engineering, Hokkaido University, N-13, W-8, Sapporo 060-0813 (Japan); Hara, Kenji [Catalysis Research Center, Hokkaido University, N-20, W-10, Sapporo 001-0021 (Japan)


    In this letter, catalytic efficiency of Nb, NbO, Nb{sub 2}O{sub 3}, NbO{sub 2}, and Nb{sub 2}O{sub 5} for dissociation and recombination of hydrogen were experimentally investigated. On the surface of Nb and Nb oxides in a gas mixture of H{sub 2} and D{sub 2}, H{sub 2} and D{sub 2} molecules can be dissociated to H and D atoms; then, H{sub 2}, D{sub 2}, and HD molecules can be produced according to the law of probability. With increase of frequency of the dissociation and recombination, HD ratio increases. The ratio of H{sub 2} and HD gas was analyzed by quadrupole mass spectrometry. As a result, NbO showed the highest catalytic activity towards hydrogen dissociation and recombination.


    Directory of Open Access Journals (Sweden)

    Yan Gong


    Full Text Available Levulinic acid (LA, 4-oxo-pentanoic acid, is a new platform chemical with various potential uses. In this paper, catalytic hydrogenation and oxidation of levulinic acid were studied. It was shown from experiments that levulinic acid can be hydrogenated to γ-valerolactone (GVL over transition metal catalysts and oxidative-decarboxylated to 2-butanone (methyl-ethyl-ketone, MEK and methyl-vinyl-ketone (MVK by cupric oxide (CuO, cupric oxide/cerium oxide (CuO/CeO2, cupric oxide/ alumina (CuO/ Al2O3, and silver(I/ peroxydisulfate (Ag(I/S2O82-.

  17. Catalytic Combustion for Ultra-Low NOx Hydrogen Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Etemad, Shahrokh; Baird, Benjamin; Alavandi, Sandeep


    Precision Combustion, Inc., (PCI) in close collaboration with Solar Turbines, Incorporated, has developed and demonstrated a combustion system for hydrogen fueled turbines that reduces NOx to low single digit level while maintaining or improving current levels of efficiency and eliminating emissions of carbon dioxide. Full scale Rich Catalytic Hydrogen (RCH1) injector was developed and successfully tested at Solar Turbines, Incorporated high pressure test facility demonstrating low single digit NOx emissions for hydrogen fuel in the range of 2200F-2750F. This development work was based on initial subscale development for faster turnaround and reduced cost. Subscale testing provided promising results for 42% and 52% H2 with NOx emissions of less than 2 ppm with improved flame stability. In addition, catalytic reactor element testing for substrate oxidation, thermal cyclic injector testing to simulate start-stop operation in a gas turbine environment, and steady state 15 atm. operation testing were performed successfully. The testing demonstrated stable and robust catalytic element component life for gas turbine conditions. The benefit of the catalytic hydrogen combustor technology includes capability of delivering near-zero NOx without costly post-combustion controls and without requirement for added sulfur control. In addition, reduced acoustics increase gas turbine component life. These advantages advances Department of Energy (DOE’s) objectives for achievement of low single digit NOx emissions, improvement in efficiency vs. postcombustion controls, fuel flexibility, a significant net reduction in Integrated Gasification Combined Cycle (IGCC) system net capital and operating costs, and a route to commercialization across the power generation field from micro turbines to industrial and utility turbines.

  18. Catalytic hydrogen peroxide decomposition on La1-xSrxCo03-d perovskite oxides

    NARCIS (Netherlands)

    Dam, Van-Ahn. T.; Olthuis, W.; Bergveld, P.; Berg, van den A.


    Lanthanide perovskite oxides are mentioned as material for hydrogen peroxide sensor because they can catalytically decompose hydrogen peroxide in an aqueous medium. The catalytic properties of these perovskite oxides to hydrogen peroxide are suggested due to their oxygen vacancies influenced by the

  19. Cobaloxime-based photo-catalytic devices for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Fihri, A.; Artero, V.; Razavet, M.; Baffert, C.; Fontecave, M. [CEA Grenoble, DSV, iRTSV, Lab Chim et Biol Metaux, CNRS, UMR 5249, Univ Grenoble 1, F-38054 Grenoble 9 (France); Leibl, W. [CEA, DSV, iBiTecS, Lab Photocatalyse et Biohydrogene, CNRS, URA 2096, Gif Sur Yvette (France)


    In this paper is described the synthesis and activity of a series of novel hetero-dinuclear ruthenium-cobaloxime photo-catalysts able to achieve the photochemical production of hydrogen with the highest turnover numbers so far reported for such devices. First of all, substituting cobalt for rare and expensive platinum, palladium, or rhodium metals in photo-catalysts is a first step toward economically viable hydrogen production. Cobaloximes appear to be good candidates for H{sub 2}-evolving catalysts, and they may provide a good basis for the design of photo-catalysts that function in pure water as both the solvent and the sustainable proton source. Secondly, a molecular connection between the sensitizer and the H{sub 2}-evolving catalyst seems to provide advantages regarding the photo-catalytic activity. Structural modifications of this connection should allow a better tuning of the electron transfer between the light-harvesting unit and the catalytic center and thus an increase of the efficiency of the system. (O.M.)

  20. Catalytic Hydrogenation Reaction of Naringin-Chalcone. Study of the Electrochemical Reaction

    Directory of Open Access Journals (Sweden)

    B. A. López de Mishima


    Full Text Available The electrocatalytic hydrogenation reaction of naringin derivated chalcone is studied. The reaction is carried out with different catalysts in order to compare with the classic catalytic hydrogenation.


    Institute of Scientific and Technical Information of China (English)

    Wangying; WangHongzuo; 等


    The catalytic hydrogenation of palladium chelating resins containing chiral amino acid ligands based on lower crosslinked poly(chloroethyl acrylate) and some effects on the rate of hydrogenation were studied.

  2. One-dimensional Hydrogen-bonded Polymer Based on Tetra-iso-butyl-resorcin[4]arene and 2,6-Diacetylpyridine

    Institute of Scientific and Technical Information of China (English)

    刘书群; 姚文锐; 张千峰


    The co-crystallization of tetra-iso-butyl-resorcin[4]arene 1 and 2,6-diacetyl- pyridine (Ac2py) from MeCN/CH2Cl2 yielded a multi-component complex 1(Ac2py(2H2O(0.5Me-CN 2, in which the upper rim of 1 is extended supramolecularly by way of hydrogen bonds. Complex 2 (C52H66.5N1.5O14) crystallizes in monoclinic, space group P21/m with a = 10.845(9), b = 20.805(17), c = 12.881(11) (A), β = 103.884(19)o, V = 2821(4) (A)3, Dc = 1.102 g/cm3 and Z = 2. The molecular structure shows that the two adjacent double-stranded arrays as well as linear and zigzag chains generated from Ac2py and water bridging to two resorcin[4] arene molecules, respectively, facilitate self-inclusion of one-dimensional hydrogen-bonded polymer.

  3. Electrocatalytic hydrogenation of organic molecules on conductive new catalytic material

    Energy Technology Data Exchange (ETDEWEB)

    Tountian, D. [Louis Pasteur Univ., Strasbourg (France). Laboratoire d' Electrochimie et de Chimie Physique du Corps Solide; Sherbrooke Univ., Sherbrooke, PQ (Canada). Dept. de Chimie, Centre de Recherche en Electrochimie et Electrocatalyse; Brisach-Wittmeyer, A.; Menard, H. [Sherbrooke Univ., Sherbrooke, PQ (Canada). Dept. de Chimie, Centre de Recherche en Electrochimie et Electrocatalyse; Nkeng, P.; Poillerat, G. [Louis Pasteur Univ., Strasbourg (France). Laboratoire d' Electrochimie et de Chimie Physique du Corps Solide


    Electrocatalytic hydrogenation (ECH) of organic molecules is a process where chemisorbed hydrogen is produced by electroreduction of water which reacts with the species in bulk. Greater emphasis is being placed on improving the nature of the building material of the electrodes in order to increase ECH efficiency. The effectiveness of the ECH is known to be linked to the nature of electrode materials used and their adsorption properties. This work presented the effect of conductive support material on ECH. The conductive catalysts were obtained from tin dioxide which is chemically stable. Palladium was the catalytic metal used in this study. The production of chemisorbed hydrogen was shown to depend on the quantity of metallic nanoaggregates in electrical contact with the reticulated vitreous carbon use as electrode. The conductive support, F-doped tin dioxide, was obtained by the sol-gel method. The electrocatalysts were characterized by different methods as resistivity measurements, linear sweep voltammetry, XRD, SEM, TGA/DSC, and FTIR analysis. The effects of temperature and time of calcination were also investigated. The study showed that the F-doped SnO2 electrocatalyst appeared to increase the rate of phenol electrohydrogenation. It was concluded that the improved electrocatalytic activity of Pd/F-doped SnO2 can be attributed to the simultaneous polarization of all the metallic Pd nanoaggregates present on the surface as well as in the pores of the matrix by contact with RVC. This results in a better production of chemisorbed atomic hydrogen with a large number of adlienation points. 9 refs., 3 figs.

  4. High Selective Determination of Anionic Surfactant Using Its Parallel Catalytic Hydrogen Wave

    Institute of Scientific and Technical Information of China (English)

    过玮; 何盈盈; 宋俊峰


    A faradaic response of anionic surfactants (AS), such as linear aikylbenzene sulfonate (LAS), dodecyl benzene sulfonate and dodecyl sulfate, was observed in weak acidic medium. The faradaic response of AS includes (1) a catalytic hydrogen wave of AS in HAc/NaAc buffer that was attributed to the reduction of proton associated with the sulfo-group of AS, and (2) a parallel catalytic hydrogen wave of AS in the presence of hydrogen peroxide, which was due to the catalysis of the catalytic hydrogen wave of AS by hydroxyl radical OH electrogenerated in the reduction of hydrogen peroxide. The parallel catalytic hydrogen wave is about 50 times as sensitive as the catalytic hydrogen wave. Based on the parallel catalytic hydrogen wave, a high selective method for the determination of AS was developed. In 0.1mol/L HAc/NaAc (pH=6.2±0.1)/1.0×10-3mol/L H2O2 supporting electrolyte, the second-order derivative peak current of the parallel catalytic hydrogen wave located at-1.33 V (vs. SCE) was rectilinear to AS concentration in the range of 3.0×10-6-2.5×10-4mol/L, without the interference of other surfactants. The proposed method was evaluated by quantitative analysis of AS in environmental wastewater.

  5. Hydrogen production from methane through catalytic partial oxidation reactions (United States)

    Freni, S.; Calogero, G.; Cavallaro, S.

    This paper reviews recent developments in syn-gas production processes used for partial methane oxidation with and/or without steam. In particular, we examined different process charts (fixed bed, fluidised bed, membrane, etc.), kinds of catalysts (powders, foams, monoliths, etc.) and catalytically active phases (Ni, Pt, Rh, etc.). The explanation of the various suggested technical solutions accounted for the reaction mechanism that may selectively lead to calibrated mixtures of CO and H 2 or to the unwanted formation of products of total oxidation (CO 2 and H 2O) and pyrolysis (coke). Moreover, the new classes of catalysts allow the use of small reactors to treat large amounts of methane (monoliths) or separate hydrogen in situ from the other reaction products (membrane). This leads to higher conversions and selectivity than could have been expected thermodynamically. Although catalysts based on Rh are extremely expensive, they can be used to minimise H 2O formation by maximising H 2 yield.

  6. Novel catalytic and mechanistic studies on wastewater denitrification with hydrogen. (United States)

    Theologides, C P; Olympiou, G G; Savva, P G; Pantelidou, N A; Constantinou, B K; Chatziiona, V K; Valanidou, L Y; Piskopianou, C T; Costa, C N


    The present work reports up-to-date information regarding the reaction mechanism of the catalytic hydrogenation of nitrates in water media. In the present mechanistic study, an attempt is made, for the first time, to elucidate the crucial role of several catalysts and reaction parameters in the mechanism of the NO(3)(-)/H(2) reaction. Steady-state isotopic transient kinetic analysis (SSITKA) experiments coupled with ex situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) were performed on supported Pd-Cu catalysts for the NO(3)(-)/H(2) and NO(3)(-)/H(2)/O(2) reactions. The latter experiments revealed that the formation and surface coverage of various adsorbed active intermediate N-species on the support or Pd/Cu metal surface is significantly favored in the presence of TiO(2) in the support mixture and in the presence of oxygen in the reaction's gaseous feed stream. The differences in the reactivity of these adsorbed N-species, found in the present work, adequately explain the large effect of the chemical composition of the support and the gas feed composition on catalyst behaviour (activity and selectivity). The present study leads to solid mechanistic evidence concerning the presence of a hydrogen spillover process from the metal to the support. Moreover, this study shows that Cu clusters are active sites for the reduction of nitrates to nitrites.

  7. Recent advances in catalytic asymmetric hydrogenation:Renaissance of the monodentate phosphorus ligands

    Institute of Scientific and Technical Information of China (English)

    GUO Hongchao; DING Kuiling; DAI Lixin


    The history for the development of chiral phosphorus ligands in catalytic asymmetric hydrogenation is briefly highlighted. This review focuses on the recent advances in the synthesis of the monodentate phosphorus ligands and their applications in catalytic asymmetric hydrogenation. The examples highlighted in this article clearly demonstrated the importance and advantages of monodentate phosphorus ligands, which had been ignored for 30 a and experienced a renaissance at the very beginning of this millennium, particularly in the area of asymmetric hydrogenation.

  8. Hydrogen production by catalytic gasification of cellulose in supercritical water

    Institute of Scientific and Technical Information of China (English)


    Cellulose,one of the important components of biomass,was gasified in supercritical water to produce hydrogen-rich gas in an autoclave which was operated batch-wise under high-pressure.K2CO3 and Ca(OH)2 were selected as the catalysts (or promoters).The temperature was kept between 450℃ and 500℃ while pressure was maintained at 24-26 MPa.The reaction time was 20 min.Experimental results showed that the two catalysts had good catalytic effect and optimum amounts were observed for each catalyst.When 0.2 g K2CO3 was added,the hydrogen yield could reach 9.456 which was two times of the H2 amount produced without catalyst.When 1.6 g Ca(OH)2 was added,the H2 yield was K2CO3 as catalyst but is still 1.7 times that achieved without catalyst.Comparing with the results obtained using KaCO3 or Ca(OH)2 alone,the use of a combination of K2CO3 and Ca(OH)2 could increase the H2 yield by up to 2.5 times that without catalyst and 25% and 45% more than that obtained using K2CO3 and Ca(OH)2 alone,respectively.It was found that methane was the dominant product at relatively low temperature.When the temperature was increased,the methane reacts with water and is converted to hydrogen and carbon dioxide.

  9. Catalytic Hydrogenation of Organic Compounds without H2 Supply: An Electrochemical System (United States)

    Navarro, Daniela Maria do Amaral Ferraz; Navarro, Marcelo


    An experiment developed for an undergraduate organic chemistry laboratory course that can be used to introduce the catalytic hydrogenation reaction, catalysis electrochemical principles and gas chromatography is presented. The organic compounds hydrogenated by the electrocatalytic hydrogenation (ECH) process were styrene, benzaldehyde and…

  10. Novel Applications of the Methyltrioxorhenium/Hydrogen Peroxide Catalytic System

    Energy Technology Data Exchange (ETDEWEB)

    Stankovic, Sasa [Iowa State Univ., Ames, IA (United States)


    Methylrhenium trioxide (MTO), CH3Re03, was first prepared in 1979. An improved synthetic route to MTO was devised from dirhenium heptoxide and tetramethyltin in the presence of hexafluoro glutaric anhydride was reported by Herrmann in 1992. During the course of research on this dissertation we uncovered other reactions where the presence or absence of pyridine can, in some cases dramatically, affect the reaction outcome. This dissertation consists of four chapters. The first two chapters deal with the ,oxidation of water sensitive olefinic compounds with the hydrogen perox’ide/MTO system. Chapters 111 and IV focus on the oxidation of hydrazones with the same catalytic system. Chapter I has been published in The Journal of Organic Chemistry and Chapter III in Chemical Communications. Chapters II and IV have been submitted for publication in The Journal of Organic Chemistry. Each section is selfcontained with its own equations, tables, figures and references. All of the work in this dissertation was performed by this author.

  11. Catalytic Hydrogenation over Palladium Complex of Molecular Complex of Poly(4-vinylpyridine) with Acetic Acid

    Institute of Scientific and Technical Information of China (English)


    The palladium complex of the molecular complex of poly(4-vinylpyridine) with acetic acid(PVP/HAc-Pd) was prepared. Its catalytic activity for the hydrogenation of nitrobenzene was found much higher than that of the corresponding palladium complex of poly(4-vinylpyridine). In the presence of a strong inorganic alkali, especially potassium hydroxide, the catalytic activity is greatly improved. The suitable hydrogenation condition for PVP/HAc-Pd is to use 0.1 mol/L ethanol solution of potassium hydroxide as the hydrogenation medium and the hydrogenation is carried out at 45 ℃.

  12. New self-assembled material based on Ru nanoparticles and 4-sulfocalix[4]arene as an efficient and recyclable catalyst for reduction of brilliant yellow azo dye in water: a new model catalytic reaction (United States)

    Rambabu, Darsi; Pradeep, Chullikkattil P.; Dhir, Abhimanew


    New self-assembled material ( Ru@SC) with ruthenium nanoparticles (Ru NPs) and 4-sulfocalix[4]arene (SC) is synthesized in water at room temperature. Ru@SC is characterized by thermal gravimetric analysis, FT-IR, powder x-ray diffraction, TEM and SEM analysis. The size of Ru nanoparticles in the self-assembly is approximately 5 nm. The self-assembled material Ru@SC shows an efficient catalytic reduction of toxic `brilliant yellow' (BY) azo dye. The reduced amine products were successfully separated and confirmed by single-crystal XRD, NMR and UV-Vis spectroscopy. Ru@SC showed a better catalytic activity in comparison with commercial catalysts Ru/C (ruthenium on charcoal 5 %) and Pd/C (palladium on charcoal 5 and 10 %). The catalyst also showed a promising recyclability and heterogeneous nature as a catalyst for reduction of `BY' azo dye.

  13. Hydrogen production by catalytic partial oxidation of methane

    Energy Technology Data Exchange (ETDEWEB)

    Enger, Bjoern Christian


    Hydrogen production by catalytic partial oxidation of natural gas was investigated using tools ranging from theoretical calculations to experimental work and sophisticated characterization techniques. Catalytic partial oxidation (CPO) was carried out in a conventional continuous flow experimental apparatus using a fixed-bed reactor, and operating at 1 atm and furnace temperatures in the range from ambient to 1073 K. The feed typically consisted of a mixture of methane and air, with a CH{sub 4}/O{sub 2} ratio of 2, and the average bed residence time was in the range 10-250 ms. Steam methane reforming (SMR) was carried out in the same apparatus at similar temperatures and pressure in a feed consisting of methane, nitrogen and water, with a steam to carbon ratio of 2.0-4.0. Temperature programmed (TP) techniques, including oxidation (TPO), reduction (TPR), reaction (TPCPO) and methane dissociation (TPMD) was used to characterize catalytic properties such as ignition temperatures, the catalyst reducibility and activation energies. Dispersions from catalyst surface area measurements were compared to X-ray diffraction (XRD) techniques and electron microscopy (SEM, TEM,STEM) to obtain information on catalyst particle sizes and dispersion. X-ray photoelectron spectroscopy (XPS) provided information on the specific catalyst surface composition, which was compared to results on the bulk structure obtained by XRD. The effect of modifying cobalt catalysts supported on alumina was investigated by adding small amounts of Ni, Fe, Cr, Re, Mn, W, Mo, V and Ta oxides. The idea behind this work was to investigate whether the cobalt crystals were decorated, covered or encircled by a modifier and to what extent this affected catalyst performance. The choice of modifiers in this study was based on the principle that in any chemical process it may be just as important to identify groups of elements that have negative effects as identifying the best promoters. It was found that the

  14. Catalytic membrane reactors based on macroporous silicon for hydrogen production


    Vega Bru, Didac; Hernández Díaz, David; López, E. (Eduardo); Jiménez, Nuria; Todorov Trifonov, Trifon; Rodríguez Martínez, Ángel; Alcubilla González, Ramón; Llorca Piqué, Jordi


    The typology of using hydrogen as an energy carrier and its implementation in portable fuel cells has motivated a considerable research interest in the development of new efficient hydrogen production technologies. Hydrogen storage and manipulation is however a problematic and hazardous issue. Therefore, the low temperature on-site steam reforming of alcohols for hydrogen supply offers a nice solution to safety and storage issues, while providing several environment advantages […] Peer Rev...

  15. Selective hydrogenation of halogenated arenes using porous manganese oxide (OMS-2) and platinum supported OMS-2 catalysts. (United States)

    McManus, Iain J; Daly, Helen; Manyar, Haresh G; Taylor, S F Rebecca; Thompson, Jillian M; Hardacre, Christopher


    Porous manganese oxide (OMS-2) and platinum supported on OMS-2 catalysts have been shown to facilitate the hydrogenation of the nitro group in chloronitrobenzene to give chloroaniline with no dehalogenation. Complete conversion was obtained within 2 h at 25 °C and, although the rate of reaction increased with increasing temperature up to 100 °C, the selectivity to chloroaniline remained at 99.0%. Use of Pd/OMS-2 or Pt/Al2O3 resulted in significant dechlorination even at 25 °C and 2 bar hydrogen pressure giving a selectivity to chloroaniline of 34.5% and 77.8%, respectively, at complete conversion. This demonstrates the potential of using platinum group metal free catalysts for the selective hydrogenation of halogenated aromatics. Two pathways were observed for the analogous nitrobenzene hydrogenation depending on the catalyst used. The hydrogenation of nitrobenzene was found to follow a direct pathway to aniline and nitrosobenzene over Pd/OMS-2 in contrast to the OMS and Pt/OMS-2 catalysts which resulted in formation of nitrosobenzene, azoxybenzene and azobenzene/hydrazobenzene intermediates before complete conversion to aniline. These results indicate that for Pt/OMS-2 the hydrogenation proceeds predominantly over the support with the metal acting to dissociate hydrogen. In the case of Pd/OMS-2 both the hydrogenation and hydrogen adsorption occur on the metal sites.

  16. Catalytic nanoreactors in continuous flow: hydrogenation inside single-walled carbon nanotubes using supercritical CO2. (United States)

    Chamberlain, Thomas W; Earley, James H; Anderson, Daniel P; Khlobystov, Andrei N; Bourne, Richard A


    One nanometre wide carbon nanoreactors are utilised as the reaction vessel for catalytic chemical reactions on a preparative scale. Sub-nanometre ruthenium catalytic particles which are encapsulated solely within single-walled carbon nanotubes offering a unique reaction environment are shown to be active when embedded in a supercritical CO2 continuous flow reactor. A range of hydrogenation reactions were tested and the catalyst displayed excellent stability over extended reaction times.

  17. Catalytic hydrogenation using complexes of base metals with tridentate ligands

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, Kalyan V.; Zhang, Guoqi; Hanson, Susan K.


    Complexes of cobalt and nickel with tridentate ligand PNHP.sup.R are effective for hydrogenation of unsaturated compounds. Cobalt complex [(PNHP.sup.Cy)Co(CH.sub.2SiMe.sub.3)]BAr.sup.F.sub.4 (PNHP.sup.Cy=bis[2-(dicyclohexylphosphino)ethyl]amine, BAr.sup.F.sub.4=B(3,5-(CF.sub.3).sub.2C.sub.6H.sub.3).sub.4)) was prepared and used with hydrogen for hydrogenation of alkenes, aldehydes, ketones, and imines under mild conditions ( C., 1-4 atm H.sub.2). Nickel complex [(PNHP.sup.Cy)Ni(H)]BPh.sub.4 was used for hydrogenation of styrene and 1-octene under mild conditions. (PNP.sup.Cy)Ni(H) was used for hydrogenating alkenes.

  18. Catalytic hydrogenation using complexes of base metals with tridentate ligands

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Susan K.; Zhang, Guoqi; Vasudevan, Kalyan V.


    Complexes of cobalt and nickel with tridentate ligand PNHP.sup.R are effective for hydrogenation of unsaturated compounds. Cobalt complex [(PNHP.sup.Cy)Co(CH.sub.2SiMe.sub.3)]BAr.sup.F.sub.4 (PNHP.sup.Cy=bis[2-(dicyclohexylphosphino)ethyl]amine, BAr.sup.F.sub.4=B(3,5-(CF.sub.3).sub.2C.sub.6H.sub.3).sub.4)) was prepared and used with hydrogen for hydrogenation of alkenes, aldehydes, ketones, and imines under mild conditions ( C., 1-4 atm H.sub.2). Nickel complex [(PNHP.sup.Cy)Ni(H)]BPh.sub.4 was used for hydrogenation of styrene and 1-octene under mild conditions. (PNP.sup.Cy)Ni(H) was used for hydrogenating alkenes.

  19. Maximizing renewable hydrogen production from biomass in a bio/catalytic refinery

    DEFF Research Database (Denmark)

    Westermann, Peter; Jørgensen, Betina; Lange, L.;


    Biological production of hydrogen from biomass by fermentative or photofermentative microorganisms has been described in numerous research articles and reviews. The major challenge of these techniques is the low yield from fermentative production, and the large reactor volumes necessary...... for photofermentative production. Due to these constraints biological hydrogen production from biomass has so far not been considered a significant source in most scenarios of a future hydrogen-based economy. In this review we briefly summarize the current state of art of biomass-based hydrogen production and suggest...... a combination of a biorefinery for the production of multiple fuels (hydrogen, ethanol, and methane) and chemical catalytic technologies which could lead to a yield of 10-12 mol hydrogen per mol glucose derived from biological waste products. Besides the high hydrogen yield, the advantage of the suggested...

  20. Tunable Molecular MoS2 Edge-Site Mimics for Catalytic Hydrogen Production. (United States)

    Garrett, Benjamin R; Polen, Shane M; Click, Kevin A; He, Mingfu; Huang, Zhongjie; Hadad, Christopher M; Wu, Yiying


    Molybdenum sulfides represent state-of-the-art, non-platinum electrocatalysts for the hydrogen evolution reaction (HER). According to the Sabatier principle, the hydrogen binding strength to the edge active sites should be neither too strong nor too weak. Therefore, it is of interest to develop a molecular motif that mimics the catalytic sites structurally and possesses tunable electronic properties that influence the hydrogen binding strength. Furthermore, molecular mimics will be important for providing mechanistic insight toward the HER with molybdenum sulfide catalysts. In this work, a modular method to tune the catalytic properties of the S-S bond in MoO(S2)2L2 complexes is described. We studied the homogeneous electrocatalytic hydrogen production performance metrics of three catalysts with different bipyridine substitutions. By varying the electron-donating abilities, we present the first demonstration of using the ligand to tune the catalytic properties of the S-S bond in molecular MoS2 edge-site mimics. This work can shed light on the relationship between the structure and electrocatalytic activity of molecular MoS2 catalysts and thus is of broad importance from catalytic hydrogen production to biological enzyme functions.

  1. Influence of catalytic systems on process of model object hydrogenation

    Institute of Scientific and Technical Information of China (English)

    Murzabek Ispolovich Baikenov; Gulzhan Gausilevna Baikenova; Bolat Shaimenovich Sarsembayev; Alma Baimagambetova Tateeva; Almas Tusipkhan; Aisha Zharasovna Matayeva


    On the basis of b-FeOOH, Fe(OA)3, Fe3O4 iron and spherical catalysts NiO/SiO2, Fe2O3/SiO2 derived from slag waste coals of heating electrical stations, the hydrogenation of model polycyclic hydrocarbon at presence of nan-odimensioned catalysts antracene was studied. On the example of conversion of anthracene, it was shown that upon release of hydrogenation of the product yield and degradation of polycyclic hydrocarbons in the hydrogenation, the mentioned catalyst systems appeared to be in the following order:nanoparticles b-FeOOH, Fe(OA)3 and Fe3O4[spherical catalysts NiO/SiO2, Fe2O3/SiO2[commercial cobalt-molybdenum catalyst. The results showed that the catalysts studied are promising catalysts for the hydrogenation of polycyclic hydrocarbons and may be used for direct coal liquefaction.

  2. Low temperature catalytic reforming of heptane to hydrogen and syngas

    Directory of Open Access Journals (Sweden)

    M.E.E. Abashar


    Full Text Available The production of hydrogen and syngas from heptane at a low temperature is studied in a circulating fast fluidized bed membrane reactor (CFFBMR. A thin film of palladium-based membrane is employed to the displacement of the thermodynamic equilibrium for high conversion and yield. A mathematical model is developed to simulate the reformer. A substantial improvement of the CFFBMR is achieved by implementing the thin hydrogen membrane. The results showed that almost complete conversion of heptane and 46.25% increase of exit hydrogen yield over the value without membrane are achieved. Also a wide range of the H2/CO ratio within the recommended industrial range is obtained. The phenomena of high spikes of maximum nature at the beginning of the CFFBMR are observed and explanation offered. The sensitivity analysis results have shown that the increase of the steam to carbon feed ratio can increase the exit hydrogen yield up to 108.29%. It was found that the increase of reaction side pressure at a high steam to carbon feed ratio can increase further the exit hydrogen yield by 49.36% at a shorter reactor length. Moreover, the increase of reaction side pressure has an important impact in a significant decrease of the carbon dioxide and this is a positive sign for clean environment.

  3. Preparation of Hydrogen through Catalytic Steam Reforming of Bio-oil

    Institute of Scientific and Technical Information of China (English)

    吴层; 颜涌捷; 李庭琛; 亓伟


    Hydrogen was prepared via catalytic steam reforming of bio-oil which was obtained from fast pyrolysis of biomass in a fluidized bed reactor. Influential factors including temperature, weight hourly space velocity (WHSV) of bio-oil, mass ratio of steam to bio-oil (S/B) as well as catalyst type on hydrogen selectivity and other desirable gas products were investigated. Based on hydrogen in stoichiometric potential and carbon balance in gaseous phase and feed, hydrogen yield and carbon selectivity were examined. The experimental results show that higher temperature favors the hydrogen selectivity by H2 mole fraction in gaseous products stream and it plays an important role in hydrogen yield and carbon selectivity. Higher hydrogen selectivity and yield, and carbon selectivity were obtained at lower bio-oil WHSV. In catalytic steam reforming system a maximum steam concentration value exists, at which hydrogen selectivity and yield, and carbon selectivity keep constant. Through experiments, preferential operation conditions were obtained as follows: temperature 800~850℃, bio-oil WHSV below 3.0 h-1, and mass ratio of steam to bio-oil 10~12. The performance tests indicate that Ni-based catalysts are optional, especially Ni/a-Al2O3 effective in the steam reforming process.

  4. Asymmetric Catalytic Hydrogenation Using Rhodium Diphosphinites Derived From D-glucose and D-mannitol

    Institute of Scientific and Technical Information of China (English)


    Three diphosphinites were synthesized for preparing rhodium-diphosphinite complexes. The complexes were used for asymmetric catalytic hydrogenation of amino acid precursor a -acetamidocinnamic acid and its methyl ester. With all complexes, D-amino acid is the most abundant product.

  5. Synthesis of Ultraviolet Absorber Benzotriazole by Nanoparticles Ag/SiO2 Catalytic Hydrogenation

    Institute of Scientific and Technical Information of China (English)

    QI Gang; ZHANG Wen-Guo; DAI Yong


    The Ag/SiO2 nanoparticles had been successfully synthesized. The Ag/SiO2 nano- particles can be an excellent catalyst for the synthesis of ultraviolet absorber benzotriazole by catalytic hydrogenation. The synthesis route is very efficient with less pollution and excellent yields. It is also easy to industrialized production.

  6. Hydrogen evolution at catalytically-modified nickel foam in alkaline solution (United States)

    Pierozynski, Boguslaw; Mikolajczyk, Tomasz; Kowalski, Ireneusz M.


    This work reports on hydrogen evolution reaction (HER) studied at catalytically modified nickel foam material. The HER was examined in 0.1 M NaOH solution on as received, as well as for Pd and Ru-activated nickel foam catalyst materials, produced via spontaneous deposition of trace amounts of these elements. Catalytic modification of nickel foam results in significant facilitation of the HER kinetics, as manifested through considerably reduced, a.c. impedance-derived values of charge-transfer resistance parameter and substantially altered Tafel polarization slopes. The presence of catalytic additives is clearly revealed through hydrogen underpotential deposition (H UPD) phenomenon, as well as spectroscopically from SEM (Scanning Electron Microscopy) analysis.

  7. Low temperature catalytic combustion of natural gas - hydrogen - air mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Newson, E.; Roth, F. von; Hottinger, P.; Truong, T.B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)


    The low temperature catalytic combustion of natural gas - air mixtures would allow the development of no-NO{sub x} burners for heating and power applications. Using commercially available catalysts, the room temperature ignition of methane-propane-air mixtures has been shown in laboratory reactors with combustion efficiencies over 95% and maximum temperatures less than 700{sup o}C. After a 500 hour stability test, severe deactivation of both methane and propane oxidation functions was observed. In cooperation with industrial partners, scaleup to 3 kW is being investigated together with startup dynamics and catalyst stability. (author) 3 figs., 3 refs.

  8. Catalytic Metal Free Production of Large Cage Structure Carbon Particles: A Candidate for Hydrogen Storage (United States)

    Kimura, Yuki; Nuth, Joseph A., III; Ferguson, Frank T.


    We will demonstrate that carbon particles consisting of large cages can be produced without catalytic metal. The carbon particles were produced in CO gas as well as by introduction of 5% methane gas into the CO gas. The gas-produced carbon particles were able to absorb approximately 16.2 wt% of hydrogen. This value is 2.5 times higher than the 6.5 wt% goal for the vehicular hydrogen storage proposed by the Department of Energy in the USA. Therefore, we believe that this carbon particle is an excellent candidate for hydrogen storage for fuel cells.

  9. Hydrogen-based tubular catalytic membrane for removing nitrate from groundwater. (United States)

    Chen, Y X; Zhang, Y; Liu, H Y; Sharma, K R; Chen, G H


    A porous tubular ceramic membrane coated with palladium-cupper (Pd-Cu) catalyst on its surface was prepared and evaluated for catalytic reduction of nitrate from groundwater. Nitrate reduction activity and selectivity with the catalytic membrane were compared with Pd-Cu/Al2O3 catalyst particles. The catalytic membrane reactor exhibited a better selectivity by enabling an effective control of hydrogen gas, thus minimizing ammonium production. No leaching of palladium and copper into aqueous phase was observed, thereby indicating a high chemical stability of the metallic ions on the carrier support. This was also evidenced by the X-ray photoelectron spectroscopy (XPS) profiles of fresh and used catalysts, which showed no significant difference in surface compositions. Due to its higher selectivity in nitrate reduction and better flexibility in terms of operating conditions, the tubular catalytic ceramic membrane could be useful in removing nitrate from groundwater.

  10. Molecular catalytic hydrogenation of aromatic hydrocarbons and hydrotreating of coal liquids.

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shiyong; Stock, L.M.


    This report presents the results of research on the development of new catalytic pathways for the hydrogenation of multiring aromatic hydrocarbons and the hydrotreating of coal liquids at The University of Chicago under DOE Contract No. DE-AC22-91PC91056. The work, which is described in three parts, is primarily concerned with the research on the development of new catalytic systems for the hydrogenation of aromatic hydrocarbons and for the improvement of the quality of coal liquids by the addition of dihydrogen. Part A discusses the activation of dihydrogen by very basic molecular reagents to form adducts that can facilitate the reduction of multiring aromatic hydrocarbons. Part B examines the hydrotreating of coal liquids catalyzed by the same base-activated dihydrogen complexes. Part C concerns studies of molecular organometallic catalysts for the hydrogenation of monocyclic aromatic hydrocarbons under mild conditions.

  11. Oxidation of Group 8 transition-Metal Hydrides and Ionic Hydrogenation of Ketones and Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kjell-Tore


    Transition-metal hydrides have received considerable attention during the last decades because of their unusual reactivity and their potential as homogeneous catalysts for hydrogenation and other reactions of organic substrates. An important class of catalytic processes where transition-metal hydrides are involved is the homogeneous hydrogenation of alkenes, alkynes, ketones, aldehydes, arenes and nitro compounds. This thesis studies the oxidation of Group 8 transition-metal hydrides and the ionic hydrogenation of ketones and aldehydes.

  12. Catalytic Hydrogenation of Bio-Oil for Chemicals and Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.


    The scope of work includes optimizing processing conditions and demonstrating catalyst lifetime for catalyst formulations that are readily scaleable to commercial operations. We use a bench-scale, continuous-flow, packed-bed, catalytic, tubular reactor, which can be operated in the range of 100-400 mL/hr., from 50-400 C and up to 20MPa (see Figure 1). With this unit we produce upgraded bio-oil from whole bio-oil or useful bio-oil fractions, specifically pyrolytic lignin. The product oils are fractionated, for example by distillation, for recovery of chemical product streams. Other products from our tests have been used in further testing in petroleum refining technology at UOP and fractionation for product recovery in our own lab. Further scale-up of the technology is envisioned and we will carry out or support process design efforts with industrial partners, such as UOP.

  13. Hydrogen Recombination Rates of Plate-type Passive Auto-catalytic Recombiner

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongtae; Hong, Seong-Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Gun Hong [Kyungwon E-C Co., Seongnam (Korea, Republic of)


    The hydrogen mitigation system may include igniters, passive autocatalytic recombiner (PAR), and venting or dilution system. Recently PAR is commonly used as a main component of HMS in a NPP containment because of its passive nature. PARs are categorized by the shape and material of catalytic surface. Catalytic surface coated by platinum is mostly used for the hydrogen recombiners. The shapes of the catalytic surface can be grouped into plate type, honeycomb type and porous media type. Among them, the plate-type PAR is well tested by many experiments. PAR performance analysis can be approached by a multi-scale method which is composed of micro, meso and macro scales. The criterion of the scaling is the ratio of thickness of boundary layer developed on a catalytic surface to representative length of a computational domain. Mass diffusion in the boundary layer must be resolved in the micro scale analysis. In a lumped parameter (LP) analysis using a system code such as MAAP or MELCOR, the chamber of the PAR is much smaller than a computational node. The hydrogen depletion by a PAR is modeled as a source of mass and energy conservation equations. Te catalytic surface reaction of hydrogen must be modeled by a volume-averaged correlation. In this study, a micro scale analysis method is developed using libraries in OpenFOAM to evaluate a hydrogen depletion rate depending on parameters such as size and number of plates and plate arrangement. The analysis code is validated by simulating REKO-3 experiment. And hydrogen depletion analysis is conducted by changing the plate arrangement as a trial of the performance enhancement of a PAR. In this study, a numerical code for an analysis of a PAR performance in a micro scale has been developed by using OpenFOAM libraries. The physical and numerical models were validated by simulating the REKO-3 experiment. As a try to enhance the performance of the plate-type PAR, it was proposed to apply a staggered two-layer arrangement of the

  14. On the mechanism of catalytic hydrogenation of thiophene on hydrogen tungsten bronze. (United States)

    Xi, Yongjie; Chen, Zhangxian; Gan Wei Kiat, Vincent; Huang, Liang; Cheng, Hansong


    Hydrogenation of unsaturated organosulfur compounds is an essential process through which these species are converted into cleaner and more useful compounds. Hydrogen bronze materials have been demonstrated to be efficient catalysts in hydrogenation of simple unsaturated compounds. Herein, we performed density functional theory calculations to investigate hydrogenation of thiophene on hydrogen tungsten bronze. Various reaction pathways were investigated and the most favourable routes were identified. Our results suggest that the reaction proceeds with moderate barriers, and formation of tetrahydrothiophene is facile both thermochemically and kinetically. The present study provides a useful insight into the design of hydrogenation thiophene and its derivatives and effective hydrodesulfurization catalysts.

  15. Hydrogenation of o-cresol on platinum catalyst: Catalytic experiments and first-principles calculations (United States)

    Li, Yaping; Liu, Zhimin; Xue, Wenhua; Crossley, Steven P.; Jentoft, Friederike C.; Wang, Sanwu


    Catalytic experiments were performed for the hydrogenation of o-cresol in n-dodecane over a platinum catalyst. Batch reactions analyzed with an in-situ ATR IR probe suggest that the hydrogenation results in the formation of the final product, 2-methyl-cyclohexanol, with 2-methyl-cyclohexanone as the intermediate product. Ab initio density-functional theory was employed to investigate the atomic-scale mechanism of o-cresol hydrogenation on the Pt(111) surface. The formation of 2-methyl-cyclohexanone was found to involve two steps. The first step is a hydrogen abstraction, that is, the H atom in the hydroxyl group migrates to the Pt surface. The second step is hydrogenation, that is, the pre-existing H atoms on Pt react with the carbon atoms in the aromatic ring. On the other hand, 2-methyl-cyclohexanonol may be produced through two paths, with activation energies slightly greater than that for the formation of 2-methyl-cyclohexanone. One path involves direct hydrogenation of the aromatic ring. Another path involves three steps, with the partial hydrogenation of the ring as the first step, hydrogen abstraction of the sbnd OH group as the second, and hydrogenation of remaining C atoms and the O atom the last.


    Institute of Scientific and Technical Information of China (English)

    CHEN Chunwei; HUANG Meiyu; JIANG Yingyan


    A new kind of inorganic polymer, viz. silica-supported polytitazane (Ti-N), and its platinum complex (Ti-N-Pt) were prepared. Cyclohexanone can be obtained in a maximum yield of about 62.2% in the hydrogenation of phenol over Ti-N-Pt at room temperature under atmospheric pressure. The effects of mole ratio of N/Pt in the complex, concentration of the catalyst and reaction temperature on the catalytic activity and selectivity have been studied. The complex can be reused several times without loss in its catalytic activity.

  17. Catalytic decomposition of hydrogen peroxide on anthraquinonecyanine and phthalocyanine metal complexes in acid and alkaline electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Pobedinskiy, S.N.; Trofimenko, A.A.; Zharnikova, M.A.


    A study of octaoxyanthraquinonecyanines (OOATsM) and phthalocyanines (FTs) of cobalt, iron, and manganese determined their catalytic activity in the hydrogen peroxide decomposition reaction. Hydrogen peroxide decomposition on OOATsM and FTs of the metals studied follows the kinetic mechanisms of a reaction of the first order regardless of the central ion of the metal. Complexes with a central atom of iron are most active in decomposition of hydrogen peroxide. Catalytic activity of FTsFe exceeds that of FTsCo more than 10-fold. FTs are 10-fold greater than OOATsM in catalytic activity. Change from an acid to an alkali medium did not affect the kinetic mechanisms of the decomposition reaction but the reaction rate on both a carrier and on metal complexes is higher in an alkaline medium than in an acid medium. The affect of an alkaline medium on the hydrogen peroxide decomposition rate is greater for FTS complexes than for anthraquinone-cyanines. 5 references, 2 figures.

  18. Design, fabrication and testing of a catalytic microreactor for hydrogen production (United States)

    Kim, Taegyu; Kwon, Sejin


    A catalytic microreactor for hydrogen production was fabricated by anisotropic wet etching of photosensitive glass, which enables it to be a structure with high tight tolerance and high aspect ratio. As a reactor structure, a microchannel was used for improving heat and mass transfer in the reactor. The primary fuel source is methanol for a mobile device. Endothermic catalytic steam reforming of methanol was chosen for producing gaseous hydrogen. The Cu-based catalyst, Cu/ZnO, was prepared by the co-precipitation method and coated on the surface of the microchannel for methanol steam reforming. An overall microfabrication process was established for a MEMS-based catalytic microreactor. The fabricated reactor has a volume of 1.8 cm3 including the volume of the reaction chamber 0.3 cm3 and produced dry reformate with high hydrogen content, 73%. The hydrogen flow was 4.16 ml min-1, which can generate a power output of 350 mWe for a fuel cell.

  19. Biomass to hydrogen via fast pyrolysis and catalytic steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Chornet, E.; Wang, D.; Montane, D. [National Renewable Energy Lab., Golden, CO (United States)] [and others


    Fast pyrolysis of biomass results in a pyrolytic oil which is a mixture of (a) carbohydrate-derived acids, aldehydes and polyols, (b) lignin-derived substituted phenolics, and (c) extractives-derived terpenoids and fatty acids. The conversion of this pyrolysis oil into H{sub 2} and CO{sub 2} is thermodynamically favored under appropriate steam reforming conditions. Our efforts have focused in understanding the catalysis of steam reforming which will lead to a successful process at reasonable steam/carbon ratios arid process severities. The experimental work, carried out at the laboratory and bench scale levels, has centered on the performance of Ni-based catalysts using model compounds as prototypes of the oxygenates present in the pyrolysis oil. Steam reforming of acetic acid, hydroxyacetaldehyde, furfural and syringol has been proven to proceed rapidly within a reasonable range of severities. Time-on-stream studies are now underway using a fixed bed barometric pressure reactor to ascertain the durability of the catalysts and thus substantiate the scientific and technical feasibility of the catalytic reforming option. Economic analyses are being carried out in parallel to determine the opportunity zones for the combined fast pyrolysis/steam reforming approach. A discussion on the current state of the project is presented.

  20. Formic Acid Free Flowsheet Development To Eliminate Catalytic Hydrogen Generation In The Defense Waste Processing

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Dan P.; Stone, Michael E.; Newell, J. David; Fellinger, Terri L.; Bricker, Jonathan M.


    The Defense Waste Processing Facility (DWPF) processes legacy nuclear waste generated at the Savannah River Site (SRS) during production of plutonium and tritium demanded by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass canisters is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. Testing was initiated to determine whether the elimination of formic acid from the DWPF's chemical processing flowsheet would eliminate catalytic hydrogen generation. Historically, hydrogen is generated in chemical processing of alkaline High Level Waste sludge in DWPF. In current processing, sludge is combined with nitric and formic acid to neutralize the waste, reduce mercury and manganese, destroy nitrite, and modify (thin) the slurry rheology. The noble metal catalyzed formic acid decomposition produces hydrogen and carbon dioxide. Elimination of formic acid by replacement with glycolic acid has the potential to eliminate the production of catalytic hydrogen. Flowsheet testing was performed to develop the nitric-glycolic acid flowsheet as an alternative to the nitric-formic flowsheet currently being processed at the DWPF. This new flowsheet has shown that mercury can be reduced and removed by steam stripping in DWPF with no catalytic hydrogen generation. All processing objectives were also met, including greatly reducing the Slurry Mix Evaporator (SME) product yield stress as compared to the baseline nitric/formic flowsheet. Ten DWPF tests were performed with nonradioactive simulants designed to cover a broad compositional range. No hydrogen was generated in testing without formic acid.

  1. Efficient photothermal catalytic hydrogen production over nonplasmonic Pt metal supported on TiO2 (United States)

    Song, Rui; Luo, Bing; Jing, Dengwei


    Most of the traditional photocatalytic hydrogen productions were conducted under room temperature. In this work, we selected nonplasmonic Pt metal anchored on TiO2 nanoparticles with photothermal activity to explore more efficient hydrogen production technology over the whole solar spectrum. Photothermal experiments were carried out in a carefully designed top irradiated photocatalytic reactor that can withstand high temperature and relatively higher pressure. Four typical organic materials, i.e., methyl alcohol (MeOH), trielthanolamne (TEOA), formic acid (HCOOH) and glucose, were investigated. Formic acid, a typical hydrogen carrier, was found to show the best activity. In addition, the effects of different basic parameters such as sacrificial agent concentration and the temperature on the activity of hydrogen generation were systematically investigated for understanding the qualitative and quantitative effects of the photothermal catalytic reaction process. The hydrogen yields at 90 °C of the photothermal catalytic reaction with Pt/TiO2 are around 8.1 and 4.2 times higher than those of reactions carried out under photo or thermal conditions alone. We can see that the photothermal hydrogen yield is not the simple sum of the photo and thermal effects. This result indicated that the Pt/TiO2 nanoparticles can efficiently couple photo and thermal energy to more effectively drive hydrogen production. As a result, the excellent ability makes it superior to other conventional semiconductor photocatalysts and thermal catalysts. Future works could concentrate on exploring photothermal catalysis as well as the potential synergism between photo and thermal effects to find more efficient hydrogen production technology using the whole solar spectrum.

  2. Simple and rapid hydrogenation of p-nitrophenol with aqueous formic acid in catalytic flow reactors

    Directory of Open Access Journals (Sweden)

    Rahat Javaid


    Full Text Available The inner surface of a metallic tube (i.d. 0.5 mm was coated with a palladium (Pd-based thin metallic layer by flow electroless plating. Simultaneous plating of Pd and silver (Ag from their electroless-plating solution produced a mixed distributed bimetallic layer. Preferential acid leaching of Ag from the Pd–Ag layer produced a porous Pd surface. Hydrogenation of p-nitrophenol was examined in the presence of formic acid simply by passing the reaction solution through the catalytic tubular reactors. p-Aminophenol was the sole product of hydrogenation. No side reaction occurred. Reaction conversion with respect to p-nitrophenol was dependent on the catalyst layer type, the temperature, pH, amount of formic acid, and the residence time. A porous and oxidized Pd (PdO surface gave the best reaction conversion among the catalytic reactors examined. p-Nitrophenol was converted quantitatively to p-aminophenol within 15 s of residence time in the porous PdO reactor at 40 °C. Evolution of carbon dioxide (CO2 was observed during the reaction, although hydrogen (H2 was not found in the gas phase. Dehydrogenation of formic acid did not occur to any practical degree in the absence of p-nitrophenol. Consequently, the nitro group was reduced via hydrogen transfer from formic acid to p-nitrophenol and not by hydrogen generated by dehydrogenation of formic acid.

  3. Research of Hydrogen Preparation with Catalytic Steam-Carbon Reaction Driven by Photo-Thermochemistry Process

    Directory of Open Access Journals (Sweden)

    Xiaoqing Zhang


    Full Text Available An experiment of hydrogen preparation from steam-carbon reaction catalyzed by K2CO3 was carried out at 700°C, which was driven by the solar reaction system simulated with Xenon lamp. It can be found that the rate of reaction with catalyst is 10 times more than that without catalyst. However, for the catalytic reaction, there is no obvious change for the rate of hydrogen generation with catalyst content range from 10% to 20%. Besides, the conversion efficiency of solar energy to chemical energy is more than 13.1% over that by photovoltaic-electrolysis route. An analysis to the mechanism of catalytic steam-carbon reaction with K2CO3 is given, and an explanation to the nonbalanced [H2]/[CO + 2CO2] is presented, which is a phenomenon usually observed in experiment.

  4. A new process for preparing dialdehyde by catalytic oxidation of cyclic olefins with aqueous hydrogen peroxide

    Institute of Scientific and Technical Information of China (English)

    YU, Hong-Kun; PANG, Zhen; HUANG, Zu-En; CAI, Rui-Fang


    A novel peroxo-nioboplosphate was synthesized for the first time and used as a catalyst in the oxidation reaction of cyclic olefins with aqueous hydrogen peroxide to prepare dialdehydes. The catalyst was characterized by elemental analysis,thermographic analyses, IR, UV/vis, 31P NMR and XPS ~ as [ π-C5H5N(CH2)i3CH3 ]2 [Nb406 (O2)2 (PO4)2] ·6H20 (PTNP). It showed high selectivity to glutaraldehyde in the catalytic oxidation of cyclopentene with aqueous hydrogen peroxide in ethanol.

  5. State of the art on hydrogen passive auto-catalytic recombiner (european union Parsoar project)

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, F.; Bachellerie, E. [Technicatome, 13 - Aix en Provence (France); Auglaire, M. [Tractebel Energy Engineering, Brussels (Belgium); Boeck, B. de [Association Vincotte Nuclear, Brussels (Belgium); Braillard, O. [CEA Cadarache, 13 - Saint Paul lez Durance (France); Eckardt, B. [Siemens AG, Offenbach am Main (Germany); Ferroni, F. [Electrowatt Engineering Limited, Zurich (Switzerland); Moffett, R. [Atomic Energy Canada Limited, Pinawa (Canada); Van Goethem, G. [European Commission, Brussels (Belgium)


    This paper presents an overview of the European Union PARSOAR project, which consists in carrying out a state of the art on hydrogen passive auto-catalytic recombiner (PAR) and a handbook guide for implementing these devices in nuclear power plants. This work is performed in the area ''Operational Safety of Existing Installations'' of the key action ''Nuclear Fission'' of the fifth Euratom Framework Programme (1998-2002). (author)

  6. Liquid-Phase Catalytic Transfer Hydrogenation of Furfural over Homogeneous Lewis Acid-Ru/C Catalysts. (United States)

    Panagiotopoulou, Paraskevi; Martin, Nickolas; Vlachos, Dionisios G


    The catalytic performance of homogeneous Lewis acid catalysts and their interaction with Ru/C catalyst are studied in the catalytic transfer hydrogenation of furfural by using 2-propanol as a solvent and hydrogen donor. We find that Lewis acid catalysts hydrogenate the furfural to furfuryl alcohol, which is then etherified with 2-propanol. The catalytic activity is correlated with an empirical scale of Lewis acid strength and exhibits a volcano behavior. Lanthanides are the most active, with DyCl3 giving complete furfural conversion and a 97 % yield of furfuryl alcohol at 180 °C after 3 h. The combination of Lewis acid and Ru/C catalysts results in synergy for the stronger Lewis acid catalysts, with a significant increase in the furfural conversion and methyl furan yield. Optimum results are obtained by using Ru/C combined with VCl3 , AlCl3 , SnCl4 , YbCl3 , and RuCl3 . Our results indicate that the combination of Lewis acid/metal catalysts is a general strategy for performing tandem reactions in the upgrade of furans.

  7. Efficient catalytic phosphate diester cleavage by the synergetic action of two Cu(II) centers in a dinuclear cis-diaqua Cu(II) calix[4]arene enzyme model

    NARCIS (Netherlands)

    Molenveld, Peter; Engbersen, Johan F.J.; Kooijman, Huub; Spek, Anthony L.; Reinhoudt, David N.


    A calix[4]arene derivative 2-[Cu(II)]2 functionalized with two cis-diaqua Cu(II) centers at the distal positions of the upper rim was synthesized and investigated as a model for dinuclear metalloenzymes that catalyze chemical transformations of phosphate esters. The flexible dinuclear calix[4]arene

  8. Catalytic heat exchangers for small-scale production of hydrogen - feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, F. [Catator AB, Lund (Sweden)


    A feasibility study concerning heat-exchanger reactors in small-scale production of hydrogen has been performed on the request of Svenskt Gastekniskt Center AB and SWEP International AB. The basic idea is to implement different catalysts into brazed plate-type heat exchangers. This can be achieved by installing catalytic cylinders in the inlet-and outlet ports of the heat exchangers or through treatment of the plates to render them catalytically active. It is also possible to sandwich catalytically active wire meshes between the plates. Experiments concerning steam reforming of methanol and methane have been performed in a micro-reactor to gather kinetic data for modelling purposes. Performance calculations concerning heat exchanger reactors have then been conducted with Catator's generic simulation code for catalytic reactors (CatalystExplorer). The simulations clearly demonstrate the technical performance of these reactors. Indeed, the production rate of hydrogen is expected to be about 10 nm{sup 3}/h per litre of heat exchanger. The corresponding value for a conventional steam-reforming unit is about 1 nm{sup 3}/h or less per litre of reactor volume. Also, the compactness and the high degree of integration together with the possibilities of mass production will give an attractive cost for such units. Depending on the demands concerning the purity of the hydrogen it is possible to add secondary catalytic steps like water-gas shifters, methanation and selective oxidation, into a one-train unit, i.e. to design an all-inclusive design. Such reactors can be used for the supply of hydrogen to fuel cells. The production cost for hydrogen can be cut by 60 - 70% through the utilisation of heat exchanger reactors instead of conventional electrolysis. This result is primarily a result of the high price for electricity compared to the feed stock prices in steam reforming. It is important to verify the performance calculations and the simulation results through

  9. Liquid-Phase Catalytic Hydrogenation of Furfural in Variable Solvent Media

    Institute of Scientific and Technical Information of China (English)

    夏淑倩; 李阳; 商巧燕; 张成武; 马沛生


    Water is the most abundant compound inherently existing in bio-oils. Thus understanding the role of water within bio-oils upgrading process is essential for future engineering scale-up design. In this study, furfural was chosen as bio-oils model compound, and the catalytic hydrogenation of furfural over commercial 5%, Ru/C catalyst was firstly investigated in a series of gradient variable water/ethanol mixture solvents. Water had a signifi-cant effect on the distribution of product yields. The dominant reaction pathways varied with the water contents in the water/ethanol mixture solvents. Typically, when ethanol was used as the solvent, the main products were ob-tained by the hydrogenation of carbonyl group or furan ring. When pure water was used as the solvent, the rear-rangement reaction of furfural to cyclopentanone should be selectively promoted theoretically. However, serious polymerization and resinification were observed herein in catalytic hydrogenation system of pure water. The cata-lyst surface was modified by the water-insoluble polymers, and consequently, a relative low yield of cyclopenta-none was obtained. A plausible multiple competitive reaction mechanism between polymerization reaction and the hydrogenation of furfural was suggested in this study. Characterizations(TG,FT-IR,SEM)were employed to analyze and explain our experiments.

  10. Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oil

    Energy Technology Data Exchange (ETDEWEB)

    Czernik, S.; Wang, D.; Chornet, E. [National Renewable Energy Lab., Golden, CO (United States). Center for Renewable Chemical Technologies and Materials


    Hydrogen is the prototype of the environmentally cleanest fuel of interest for power generation using fuel cells and for transportation. The thermochemical conversion of biomass to hydrogen can be carried out through two distinct strategies: (a) gasification followed by water-gas shift conversion, and (b) catalytic steam reforming of specific fractions derived from fast pyrolysis and aqueous/steam processes of biomass. This paper presents the latter route that begins with fast pyrolysis of biomass to produce bio-oil. This oil (as a whole or its selected fractions) can be converted to hydrogen via catalytic steam reforming followed by a water-gas shift conversion step. Such a process has been demonstrated at the bench scale using model compounds, poplar oil aqueous fraction, and the whole pyrolysis oil with commercial Ni-based steam reforming catalysts. Hydrogen yields as high as 85% have been obtained. Catalyst initial activity can be recovered through regeneration cycles by steam or CO{sub 2} gasification of carbonaceous deposits.

  11. Wax: A benign hydrogen-storage material that rapidly releases H2-rich gases through microwave-assisted catalytic decomposition. (United States)

    Gonzalez-Cortes, S; Slocombe, D R; Xiao, T; Aldawsari, A; Yao, B; Kuznetsov, V L; Liberti, E; Kirkland, A I; Alkinani, M S; Al-Megren, H A; Thomas, J M; Edwards, P P


    Hydrogen is often described as the fuel of the future, especially for application in hydrogen powered fuel-cell vehicles (HFCV's). However, its widespread implementation in this role has been thwarted by the lack of a lightweight, safe, on-board hydrogen storage material. Here we show that benign, readily-available hydrocarbon wax is capable of rapidly releasing large amounts of hydrogen through microwave-assisted catalytic decomposition. This discovery offers a new material and system for safe and efficient hydrogen storage and could facilitate its application in a HFCV. Importantly, hydrogen storage materials made of wax can be manufactured through completely sustainable processes utilizing biomass or other renewable feedstocks.

  12. Spectroelectrochemical analysis of the mechanism of (photo)electrochemical hydrogen evolution at a catalytic interface (United States)

    Pastor, Ernest; Le Formal, Florian; Mayer, Matthew T.; Tilley, S. David; Francàs, Laia; Mesa, Camilo A.; Grätzel, Michael; Durrant, James R.


    Multi-electron heterogeneous catalysis is a pivotal element in the (photo)electrochemical generation of solar fuels. However, mechanistic studies of these systems are difficult to elucidate by means of electrochemical methods alone. Here we report a spectroelectrochemical analysis of hydrogen evolution on ruthenium oxide employed as an electrocatalyst and as part of a cuprous oxide-based photocathode. We use optical absorbance spectroscopy to quantify the densities of reduced ruthenium oxide species, and correlate these with current densities resulting from proton reduction. This enables us to compare directly the catalytic function of dark and light electrodes. We find that hydrogen evolution is second order in the density of active, doubly reduced species independent of whether these are generated by applied potential or light irradiation. Our observation of a second order rate law allows us to distinguish between the most common reaction paths and propose a mechanism involving the homolytic reductive elimination of hydrogen.

  13. Spectroelectrochemical analysis of the mechanism of (photo)electrochemical hydrogen evolution at a catalytic interface (United States)

    Pastor, Ernest; Le Formal, Florian; Mayer, Matthew T.; Tilley, S. David; Francàs, Laia; Mesa, Camilo A.; Grätzel, Michael; Durrant, James R.


    Multi-electron heterogeneous catalysis is a pivotal element in the (photo)electrochemical generation of solar fuels. However, mechanistic studies of these systems are difficult to elucidate by means of electrochemical methods alone. Here we report a spectroelectrochemical analysis of hydrogen evolution on ruthenium oxide employed as an electrocatalyst and as part of a cuprous oxide-based photocathode. We use optical absorbance spectroscopy to quantify the densities of reduced ruthenium oxide species, and correlate these with current densities resulting from proton reduction. This enables us to compare directly the catalytic function of dark and light electrodes. We find that hydrogen evolution is second order in the density of active, doubly reduced species independent of whether these are generated by applied potential or light irradiation. Our observation of a second order rate law allows us to distinguish between the most common reaction paths and propose a mechanism involving the homolytic reductive elimination of hydrogen. PMID:28233785

  14. Continuous catalytic hydrogenation of polyaromatic hydrocarbon compounds in hydrogen-supercritical carbon dioxide. (United States)

    Yuan, Tao; Fournier, Anick R; Proudlock, Raymond; Marshall, William D


    A continuous hydrogenation device was evaluated for the detoxification of selected tri-, tetra-, or pentacyclic polyaromatic hydrocarbon (PAH) compounds {anthracene, phenanthrene, chrysene, and benzo[a]pyrene (B[a]P)} by hydrogenation. A substrate stream in hexane, 0.05-1.0% (w/v), was mixed with hydrogen-carbon dioxide (H2-CO2, 5-30% v/v) and delivered to a heated reactor column (25 cm x 1 cm) containing palladium supported on gamma alumina (Pd0/gamma-Al2O3) that was terminated with a capillary restrictor. The flow rate from the reactor, approximately 800 mL min(-1) decompressed gas, corresponded to 4 mL min(-1) fluid under the operating conditions of the trials. Reaction products were recovered by passing the reactor effluent through hexane. At 90 degrees C, the anthracene or phenanthrene substrate was hydrogenated only partially to octahydro and dodecahydro species and contained only a minor quantity of totally hydrogenated products. For substrates with increasing numbers of fused aromatic rings, the hydrogenation efficiency was decreased further. However, at an increasing temperature (90-150 degrees C) and increasing mobile phase flow rate (20.68 MPa corresponding to 2100 mL min(-1) decompressed gas), B[a]P and chrysene were hydrogenated, virtuallytotally, to their corresponding perhydro analogues (eicosahydrobenzo[a]pyrenes and octadecahydrochrysenes), respectively. That this approach might be useful for decontaminating soil extracts was supported by companion in vitro trials in which the substrate and products were assayed for mutagenic activity with five bacterial strains that are auxotrophic for histidine (Salmonella typhimurium TA98, TA100, TA1535, and TA1537) or tryptophan (Escherichia coliWP2 uvrA), using the bacterial reverse mutation assay (modified Ames test). Generally, substantial increases in revertant colony counts were not observed with any of the strains following exposure to the hydrogenation products in the absence or presence of the 10 or 30

  15. Surface Structure and Catalytic Performance of Ni-Fe Catalyst for Low-Temperature CO Hydrogenation

    Directory of Open Access Journals (Sweden)

    Fanhui Meng


    Full Text Available Catalysts 16NixFe/Al2O3 (x is 0, 1, 2, 4, 6, 8 were prepared by incipient wetness impregnation method and the catalytic performance for the production of synthetic natural gas (SNG from CO hydrogenation in slurry-bed reactor were studied. The catalysts were characterized by BET, XRD, UV-Vis DRS, H2-TPR, CO-TPD, and XPS, and the results showed that the introduction of iron improved the dispersion of Ni species, weakened the interaction between Ni species and support and decreased the reduction temperature and that catalyst formed Ni-Fe alloy when the content of iron exceeded 2%. Experimental results revealed that the addition of iron to the catalyst can effectively improve the catalytic performance of low-temperature CO methanation. Catalyst 16Ni4Fe/Al2O3 with the iron content of 4% exhibited the best catalytic performance, the conversion of CO and the yield of CH4 reached 97.2% and 84.9%, respectively, and the high catalytic performance of Ni-Fe catalyst was related to the property of formed Ni-Fe alloy. Further increase of iron content led to enhancing the water gas shift reaction.

  16. Marrying gas power and hydrogen energy: A catalytic system for combining methane conversion and hydrogen generation

    NARCIS (Netherlands)

    Beckers, J.; Gaudillère, C.; Farrusseng, D.; Rothenberg, G.


    Ceria-based catalysts are good candidates for integrating methane combustion and hydrogen generation. These new, tuneable catalysts are easily prepared. They are robust inorganic crystalline materials, and perform well at the 400 °C-550 °C range, in some cases even without precious metals. This make

  17. Determination of iron and aluminum based on the catalytic effect on the reaction of xylene cyanol FF with hydrogen peroxide and potassium periodate


    Cai, Longfei; Xu, Chunxiu


    A simple, sensitive and selective method for the simultaneous determination of trace iron and aluminum by catalytic spectrophotometry is presented. This method is based on the catalytic effects of iron and aluminum on the reaction of xylene cyanol FF with hydrogen peroxide and potassium periodate. Both iron and aluminum did not show catalytic effects on the oxidation reaction of xylene cyanol FF in the presence of either hydrogen peroxide or potassium periodate. However, significant catalytic...

  18. Excellent catalytic effects of highly crumpled graphene nanosheets on hydrogenation/dehydrogenation of magnesium hydride (United States)

    Liu, Guang; Wang, Yijing; Xu, Changchang; Qiu, Fangyuan; An, Cuihua; Li, Li; Jiao, Lifang; Yuan, Huatang


    Highly crumpled graphene nanosheets (GNS) with a BET surface area as high as 1159 m2 g-1 was fabricated by a thermal exfoliation method. A systematic investigation was performed on the hydrogen sorption properties of MgH2-5 wt% GNS nanocomposites acquired by ball-milling. It was found that the as-synthesized GNS exhibited a superior catalytic effect on hydrogenation/dehydrogenation of MgH2. Differential Scanning Calorimetry (DSC) and isothermal hydrogenation/dehydrogenation measurements indicated that both hydrogen sorption capacity and dehydrogenation/hydrogenation kinetics of the composites improved with increasing milling time. The composites MgH2-GNS milled for 20 h can absorb 6.6 wt% H2 within 1 min at 300 °C and 6.3 wt% within 40 min at 200 °C, even at 150 °C, it can also absorb 6.0 wt% H2 within 180 min. It was also demonstrated that MgH2-GNS-20 h could release 6.1 wt% H2 at 300 °C within 40 min. In addition, microstructure measurements based on XRD, SEM, TEM as well as Raman spectra revealed that the grain size of thus-prepared MgH2-GNS nanocomposites decreased with increasing milling time, moreover, the graphene layers were broken into smaller graphene nanosheets in a disordered and irregular manner during milling. It was confirmed that these smaller graphene nanosheets on the composite surface, providing more edge sites and hydrogen diffusion channels, prevented the nanograins from sintering and agglomerating, thus, leading to promotion of the hydrogenation/dehydrogenation kinetics of MgH2.Highly crumpled graphene nanosheets (GNS) with a BET surface area as high as 1159 m2 g-1 was fabricated by a thermal exfoliation method. A systematic investigation was performed on the hydrogen sorption properties of MgH2-5 wt% GNS nanocomposites acquired by ball-milling. It was found that the as-synthesized GNS exhibited a superior catalytic effect on hydrogenation/dehydrogenation of MgH2. Differential Scanning Calorimetry (DSC) and isothermal hydrogenation

  19. A Highly Efficient Heterogenized Iridium Complex for the Catalytic Hydrogenation of Carbon Dioxide to Formate. (United States)

    Park, Kwangho; Gunasekar, Gunniya Hariyanandam; Prakash, Natarajan; Jung, Kwang-Deog; Yoon, Sungho


    A heterogenized catalyst on a highly porous covalent triazine framework was synthesized and characterized to have a coordination environment similar to that of its homogeneous counterpart. The catalyst efficiently converted CO2 into formate through hydrogenation with a turnover number of 5000 after 2 h and an initial turnover frequency of up to 5300 h(-1) ; both of these values are the highest reported to date for a heterogeneous catalyst, which makes it attractive toward industrial application. Furthermore, the synthesized catalyst was found to be stable in air and was recycled by simple filtration without significant loss of catalytic activity.

  20. An investigation of turbulent catalytically stabilized channel flow combustion of lean hydrogen - air mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Mantzaras, I.; Benz, P.; Schaeren, R.; Bombach, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)


    The catalytically stabilised thermal combustion (CST) of lean hydrogen-air mixtures was investigated numerically in a turbulent channel flow configuration using a two-dimensional elliptic model with detailed heterogeneous and homogeneous chemical reactions. Comparison between turbulent and laminar cases having the same incoming mean properties shows that turbulence inhibits homogeneous ignition due to increased heat transport away from the near-wall layer. The peak root-mean-square temperature and species fluctuations are always located outside the extent of the homogeneous reaction zone indicating that thermochemical fluctuations have no significant influence on gaseous combustion. (author) 4 figs., 6 refs.

  1. Review of Catalytic Hydrogen Generation in the Defense Waste Processing Facility (DWPF) Chemical Processing Cell

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. C.


    This report was prepared to fulfill the Phase I deliverable for HLW/DWPF/TTR-98-0018, Rev. 2, ''Hydrogen Generation in the DWPF Chemical Processing Cell'', 6/4/2001. The primary objective for the preliminary phase of the hydrogen generation study was to complete a review of past data on hydrogen generation and to prepare a summary of the findings. The understanding was that the focus should be on catalytic hydrogen generation, not on hydrogen generation by radiolysis. The secondary objective was to develop scope for follow-up experimental and analytical work. The majority of this report provides a summary of past hydrogen generation work with radioactive and simulated Savannah River Site (SRS) waste sludges. The report also includes some work done with Hanford waste sludges and simulants. The review extends to idealized systems containing no sludge, such as solutions of sodium formate and formic acid doped with a noble metal catalyst. This includes general information from the literature, as well as the focused study done by the University of Georgia for the SRS. The various studies had a number of points of universal agreement. For example, noble metals, such as Pd, Rh, and Ru, catalyze hydrogen generation from formic acid and formate ions, and more acid leads to more hydrogen generation. There were also some points of disagreement between different sources on a few topics such as the impact of mercury on the noble metal catalysts and the identity of the most active catalyst species. Finally, there were some issues of potential interest to SRS that apparently have not been systematically studied, e.g. the role of nitrite ion in catalyst activation and reactivity. The review includes studies covering the period from about 1924-2002, or from before the discovery of hydrogen generation during simulant sludge processing in 1988 through the Shielded Cells qualification testing for Sludge Batch 2. The review of prior studies is followed by a

  2. Dynamic\tmodelling of catalytic three-phase reactors for hydrogenation and oxidation processes

    Directory of Open Access Journals (Sweden)

    Salmi T.


    Full Text Available The dynamic modelling principles for typical catalytic three-phase reactors, batch autoclaves and fixed (trickle beds were described. The models consist of balance equations for the catalyst particles as well as for the bulk phases of gas and liquid. Rate equations, transport models and mass balances were coupled to generalized heterogeneous models which were solved with respect to time and space with algorithms suitable for stiff differential equations. The aspects of numerical solution strategies were discussed and the procedure was illustrated with three case studies: hydrogenation of aromatics, hydrogenation of aldehydes and oxidation of ferrosulphate. The case studies revealed the importance of mass transfer resistance inside the catalyst pallets as well as the dynamics of the different phases being present in the reactor. Reliable three-phase reactor simulation and scale-up should be based on dynamic heterogeneous models.

  3. Hydrogen Production From Crude Bio-oil and Biomass Char by Electrochemical Catalytic Reforming

    Institute of Scientific and Technical Information of China (English)

    Xing-long Li; Shen Ning; Li-xia Yuan; Quan-xin Li


    We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method.The maximal absolute hydrogen yield reached 110.9 g H2/kg dry biomass.The product gas was a mixed gas containing 72%H2,26%CO2,1.9%CO,and a trace amount of CH4.It was observed that adding biomass char (a by-product of pyrolysis of biomass) could remarkably increase the absolute H2 yield (about 20%-50%).The higher reforming temperature could enhance the steam reforming reaction of organic compounds in crude bio-oil and the reaction of CO and H2O.In addition,the CuZn-Al2O3 catalyst in the water-gas shift bed could also increase the absolute H2 yield via shifting CO to CO2.

  4. Hydrogen Production From Crude Bio-oil and Biomass Char by Electrochemical Catalytic Reforming (United States)

    Li, Xing-long; Ning, Shen; Yuan, Li-xia; Li, Quan-xin


    We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method. The maximal absolute hydrogen yield reached 110.9 g H2/kg dry biomass. The product gas was a mixed gas containing 72%H2, 26%CO2, 1.9%CO, and a trace amount of CH4. It was observed that adding biomass char (a by-product of pyrolysis of biomass) could remarkably increase the absolute H2 yield (about 20%-50%). The higher reforming temperature could enhance the steam reforming reaction of organic compounds in crude bio-oil and the reaction of CO and H2O. In addition, the CuZn-Al2O3 catalyst in the water-gas shift bed could also increase the absolute H2 yield via shifting CO to CO2.

  5. Preparation of new Calix[4]arene-immobilized biopolymers for enhancing catalytic properties of Candida rugosa lipase by sol-gel encapsulation. (United States)

    Ozyilmaz, Elif; Sayin, Serkan


    The article describes preparation of new calixarene biopolymers consisting of the immobilization of convenience calixarene derivative onto cellulose and chitosan biopolymers, and the encapsulation of these calixarene biopolymers with Candida rugosa lipase within a chemical inert sol-gel supported by polycondensation with tetraethoxysilane and octyltriethoxysilane. The catalytic properties of immobilized lipase were evaluated into model reactions employing the hydrolysis of p-nitrophenylpalmitate and the enantioselective hydrolysis of naproxen methyl esters from racemic prodrugs in aqueous buffer solution/isooctane reaction system. The resolution studies using sol-gel support have observed more improvement in the enantioselectivity of naproxen E = 300 with Cel-Calix-E than with encapsulated lipase without calixarene-based materials. Furthermore, the encapsulated lipase (Cel-Calix-E) was still retained about 39 % of their conversion ratios after the fifth reuse in the enantioselective reaction.

  6. Biomass-to-hydrogen via fast pyrolysis and catalytic steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Chornet, E.; Wang, D.; Czernik, S. [National Renewable Energy Lab., Golden, CO (United States)] [and others


    Pyrolysis of lignocellulosic biomass and reforming the pyroligneous oils is being studied as a strategy for producing hydrogen. Novel technologies for the rapid pyrolysis of biomass have been developed in the past decade. They provide compact and efficient systems to transform biomass into vapors that are condensed to oils, with yields as high as 75-80 wt.% of the anhydrous biomass. This {open_quotes}bio-oil{close_quotes} is a mixture of aldehydes, alcohols, acids, oligomers from the constitutive carbohydrates and lignin, and some water derived from the dehydration reactions. Hydrogen can be produced by reforming the bio-oil or its fractions with steam. A process of this nature has the potential to be cost competitive with conventional means of producing hydrogen. The reforming facility can be designed to handle alternate feedstocks, such as natural gas and naphtha, if necessary. Thermodynamic modeling of the major constituents of the bio-oil has shown that reforming is possible within a wide range of temperatures and steam-to-carbon ratios. Existing catalytic data on the reforming of oxygenates have been studied to guide catalyst selection. Tests performed on a microreactor interfaced with a molecular beam mass spectrometer showed that, by proper selection of the process variables: temperature, steam-to-carbon ratio, gas hourly space velocity, and contact time, almost total conversion of carbon in the feed to CO and CO{sub 2} could be obtained. These tests also provided possible reaction mechanisms where thermal cracking competes with catalytic processes. Bench-scale, fixed bed reactor tests demonstrated high hydrogen yields from model compounds and carbohydrate-derived pyrolysis oil fractions. Reforming bio-oil or its fractions required proper dispersion of the liquid to avoid vapor-phase carbonization of the feed in the inlet to the reactor. A special spraying nozzle injector was designed and successfully tested with an aqueous fraction of bio-oil.

  7. Hydrogen production by catalytic processing of renewable methane-rich gases

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, Nazim; Smith, Franklyn; T-Raissi, Ali [Florida Solar Energy Center, University of Central Florida, Cocoa, FL 32922-5703 (United States)


    Biomass-derived methane-rich gases such as landfill gas (LFG), biogas and digester gas are promising renewable resources for near-future production of hydrogen. The technical and economical feasibility of hydrogen production via catalytic reforming of LFG and other methane-rich gases is evaluated in this paper. The thermodynamic equilibrium calculations and experimental measurements of reformation of methane-rich CH{sub 4}-CO{sub 2} mixtures over Ni-based catalyst were conducted. The problems associated with the catalyst deactivation due to carbon lay down and effects of steam and oxygen on the process sustainability were explored. Two technological approaches distinguished by the mode of heat input to the endothermic process (i.e., external vs autothermal) were modeled using AspenPlus trademark chemical process simulator and validated experimentally. A 5 kW{sub th} pilot unit for hydrogen production from LFG-mimicking CH{sub 4}-CO{sub 2} mixture was fabricated and operated. A preliminary techno-economic assessment indicates that the liquid hydrogen production costs are in the range of 3.00-7.00 per kilogram depending upon the plant capacity, the process heat input option and whether or not carbon sequestration is included in the process. (author)

  8. Production of natural antioxidants from vegetable oil deodorizer distillates: effect of catalytic hydrogenation. (United States)

    Pagani, María Ayelén; Baltanás, Miguel A


    Natural tocopherols are one of the main types of antioxidants found in living creatures, but they also have other critical biological functions. The biopotency of natural (+)-alpha-tocopherol (RRR) is 36% higher than that of the synthetic racemic mixture and 300% higher than the SRR stereoisomer. Vegetable oil deodorizer distillates (DD) are an excellent source of natural tocopherols. Catalytic hydrogenation of DD preconcentrates has been suggested as a feasible route for recovery of tocopherols in high yield. However, it is important to know whether the hydrogenation operation, as applied to these tocopherol-rich mixtures, is capable of preserving the chiral (RRR) character, which is critical to its biopotency. Fortified (i.e., (+)-alpha-tocopherol enriched) sunflower oil and methyl stearate, as well as sunflower oil DD, were fully hydrogenated using commercial Ni and Pd catalysts (120-180 degrees C; 20-60 psig). Products were analyzed by chiral HPLC. Results show that the desired chiral configuration (RRR) is fully retained. Thus, the hydrogenation route can be safely considered as a valid alternative for increasing the efficiency of tocopherol recovery processes from DDs while preserving their natural characteristics.

  9. Biomass Catalytic Pyrolysis with Ni Based Catalyst to Produce Hydrogen Rich Gas

    Institute of Scientific and Technical Information of China (English)

    WANG Mingfeng; LIU Min; XU Xiwei; LI Bosong; ZHANG Qiang; JIAN Enchen


    Hydrogen rich gas was produced using rice husk as biomass material on the continuous biomass pyrolysis apparatus which consisted of continuous pyrolysis reactor and secondary catalytic cracking reactor. Ni based catalysts of different Ni/Al mass ratio and calcined temperature were prepared by impregnating method. The catalysts were characterized by X-ray diffraction (XRD),scan electron microscope (SEM) and FT-IR Spectrometer (FT-IR). Ni based catalyst showed good selectivity for H2 production from biomass. Catalysts prepared under different conditions had little influence on the yields of three states products when used at the same cracking temperature. Ni/Al mass ratio played an important role in products selectivity. However, the content of NiO increased further when Ni/Al mass ratio values reached 0.7 : 10, and the yield of H2 slightly increased. Hydrogen yield was greatly impacted by calcined temperature. Catalyst calcined at 550"C performed best. When the catalyst was calcined at high temperature, NiO in the catalyst transformed into NiAl2O4, and the acid site also changed, which caused the deactivation of the catalyst. The hydrogen yield increased with the cracking temperature. The highest stable yield of hydrogen was about 30% without increasing with the cracking temperature.

  10. A resource recycling technique of hydrogen production from the catalytic degradation of organics in wastewater

    Institute of Scientific and Technical Information of China (English)

    LI XiaoNian; ZHANG QunFeng; KONG LingNiao; XIANG YiZhi; JU YaoMing; WU XiaoQiong; FENG Feng; YUAN JunFeng; MA Lei; LU ChunShan


    A resource recycling technique of hydrogen production from the catalytic degradation of organics in wastewater by aqueous phase reforming (APR) has been proposed. It is worthy of noting that this technique may be a potential way for the purification of refractory and highly toxic organics in water for hydrogen production. Hazardous organics (such as phenol, aniline, nitrobenzene, tetrahydrofuran (THF), toluene, N,N-dimethylformamide (DMF) and cyclohexanol) in water could be completely de-graded into H2 and CO2 with high selectivity over Raney Ni, and Sn-modified Raney Ni (Sn-Raney-Ni) or Pd/C catalyst under mild conditions. The experimental results operated in tubular and autoclave reactors, indicated that the degradation degree of organics and H2 selectivity could reach 100% under the optimal reaction conditions. The Sn-Raney-Ni (Sn/Ni=0.06) and Pd/C catalysts show better catalytic performances than the Raney Ni catalyst for the degradation of organics in water into H2 and CO2 by the aqueous phase reforming process.


    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D


    Simulations of the Defense Waste Processing Facility (DWPF) Chemical Processing Cell (CPC) vessels were performed as part of the ongoing investigation into catalytic hydrogen generation. Rhodium, ruthenium, and mercury have been identified as the principal elemental factors affecting the peak hydrogen generation rate in the DWPF Sludge Receipt and Adjustment Tank (SRAT) for a given acid addition. The primary goal of this study is to identify any significant interactions between the three factors. Noble metal concentrations were similar to recent sludge batches. Rh ranged from 0.0026-0.013% and Ru ranged from 0.010-0.050% in the dried sludge solids, while initial Hg ranged from 0.5-2.5 wt%. An experimental matrix was developed to ensure that the existence of statistically significant two-way interactions could be determined without confounding of the main effects with the two-way interaction effects. The nominal matrix design consisted of twelve SRAT cycles. Testing included: a three factor (Rh, Ru, and Hg) study at two levels per factor (eight runs), two duplicate midpoint runs, and two additional replicate runs to assess reproducibility away from the midpoint. Midpoint testing can identify potential quadratic effects from the three factors. A single sludge simulant was used for all tests. Acid addition was kept effectively constant except to compensate for variations in the starting mercury concentration. Six Slurry Mix Evaporator (SME) cycles were performed to supplement the SME hydrogen generation database. Some of the preliminary findings from this study include: (1) Rh was linked to the maximum SRAT hydrogen generation rate in the first two hours after acid addition in preliminary statistical modeling. (2) Ru was linked conclusively to the maximum SRAT hydrogen generation rate in the last four hours of reflux in preliminary statistical modeling. (3) Increasing the ratio of Hg/Rh shifted the noble metal controlling the maximum SRAT hydrogen generation rate from

  12. 97e Intermediate Temperature Catalytic Reforming of Bio-Oil for Distributed Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Marda, J. R.; Dean, A. M.; Czernik, S.; Evans, R. J.; French, R.; Ratcliff, M.


    With the world's energy demands rapidly increasing, it is necessary to look to sources other than fossil fuels, preferably those that minimize greenhouse emissions. One such renewable source of energy is biomass, which has the added advantage of being a near-term source of hydrogen. While there are several potential routes to produce hydrogen from biomass thermally, given the near-term technical barriers to hydrogen storage and delivery, distributed technologies such that hydrogen is produced at or near the point of use are attractive. One such route is to first produce bio-oil via fast pyrolysis of biomass close to its source to create a higher energy-density product, then ship this bio-oil to its point of use where it can be reformed to hydrogen and carbon dioxide. This route is especially well suited for smaller-scale reforming plants located at hydrogen distribution sites such as filling stations. There is also the potential for automated operation of the conversion system. A system has been developed for volatilizing bio-oil with manageable carbon deposits using ultrasonic atomization and by modifying bio-oil properties, such as viscosity, by blending or reacting bio-oil with methanol. Non-catalytic partial oxidation of bio-oil is then used to achieve significant conversion to CO with minimal aromatic hydrocarbon formation by keeping the temperature at 650 C or less and oxygen levels low. The non-catalytic reactions occur primarily in the gas phase. However, some nonvolatile components of bio-oil present as aerosols may react heterogeneously. The product gas is passed over a packed bed of precious metal catalyst where further reforming as well as water gas shift reactions are accomplished completing the conversion to hydrogen. The approach described above requires significantly lower catalyst loadings than conventional catalytic steam reforming due to the significant conversion in the non-catalytic step. The goal is to reform and selectively oxidize the

  13. Co-production of hydrogen and carbon nanotubes on nickel foam via methane catalytic decomposition (United States)

    Ping, Dan; Wang, Chaoxian; Dong, Xinfa; Dong, Yingchao


    The co-production of COx-free hydrogen and carbon nanotubes (CNTs) was achieved on 3-dimensional (3D) macroporous nickel foam (NF) via methane catalytic decomposition (MCD) over nano-Ni catalysts using chemical vapor deposition (CVD) technique. By a simple coating of a NiO-Al2O3 binary mixture sol followed by a drying-calcination-reduction treatment, NF supported composite catalysts (denoted as NiyAlOx/NF) with Al2O3 transition-layer incorporated with well-dispersed nano-Ni catalysts were successfully prepared. The effects of Ni loading, calcination temperature and reaction temperature on the performance for simultaneous production of COx-free hydrogen and CNTs were investigated in detail. Catalysts before and after MCD were characterized by XRD, TPR, SEM, TEM, TG and Raman spectroscopy technology. Results show that increasing Ni loading, lowering calcination temperature and optimizing MCD reaction temperature resulted in high production efficiency of COx-free H2 and carbon, but broader diameter distribution of CNTs. Through detailed parameter optimization, the catalyst with a Ni/Al molar ratio of 0.1, calcination temperature of 550 °C and MCD temperature of 650 °C was favorable to simultaneously produce COx-free hydrogen with a growth rate as high as 10.3% and CNTs with uniform size on NF.

  14. Catalytic on-board hydrogen production from methanol and ammonia for mobile application

    Energy Technology Data Exchange (ETDEWEB)

    Soerijanto, H.


    This PhD thesis deals with the catalytic hydrogen production for mobile application, for example for the use in fuel cells for electric cars. Electric powered buses with fuel cells as driving system are well known, but the secure hydrogen storage in adequate amounts for long distance drive is still a topic of discussion. Methanol is an excellent hydrogen carrier. First of all it has a high H:C ratio and therefore a high energy density. Secondly the operating temperature of steam reforming of methanol is comparatively low (250 C) and there is no risk of coking since methanol has no C-C bond. Thirdly methanol is a liquid, which means that the present gasoline infrastructure can be used. For the further development of catalysts and for the construction of a reformer it is very important to characterize the catalysts very well. For the dimensioning and the control of an on-board production of hydrogen it is essential to draw accurately on the thermodynamic, chemical and kinetic data of the reaction. At the first part of this work the mesoporous Cu/ZrO{sub 2}/CeO{sub 2}-catalysts with various copper contents were characterized and their long-term stability and selectivity were investigated, and the kinetic data were determined. Carbon monoxide is generated by reforming of carbon containing material. This process is undesired since CO poisons the Pt electrode of the fuel cell. The separation of hydrogen by metal membranes is technically feasible and a high purity of hydrogen can be obtained. However, due to their high density this procedure is not favourable because of its energy loss. In this study a concept is presented, which enables an autothermal mode by application of ceramic membrane and simultaneously could help to deal with the CO problem. The search for an absolutely selective catalyst is uncertain. The production of CO can be neither chemically nor thermodynamically excluded, if carbon is present in the hydrogen carrier. Since enrichment or separation are

  15. Metal–Organic Frameworks Stabilize Mono(phosphine)–Metal Complexes for Broad-Scope Catalytic Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sawano, Takahiro; Lin, Zekai; Boures, Dean; An, Bing; Wang, Cheng; Lin, Wenbin (UC); (Xiamen)


    Mono(phosphine)–M (M–PR3; M = Rh and Ir) complexes selectively prepared by postsynthetic metalation of a porous triarylphosphine-based metal–organic framework (MOF) exhibited excellent activity in the hydrosilylation of ketones and alkenes, the hydrogenation of alkenes, and the C–H borylation of arenes. The recyclable and reusable MOF catalysts significantly outperformed their homogeneous counterparts, presumably via stabilizing M–PR3 intermediates by preventing deleterious disproportionation reactions/ligand exchanges in the catalytic cycles.

  16. Direct access to pyrazolo(benzo)thienoquinolines. Highly effective palladium catalysts for the intramolecular C-H heteroarylation of arenes. (United States)

    Churruca, Fátima; Hernández, Susana; Perea, María; SanMartin, Raul; Domínguez, Esther


    A short and atom-efficient strategy to obtain a series of pyrazolo(benzo)thienoquinolines is developed. Alternative catalytic systems for the key intramolecular direct heteroarylation of arenes are presented and include the first example of C-H (hetero)arylation of (hetero)arenes catalyzed by very low catalyst loadings of a palladium source.

  17. Wax: A benign hydrogen-storage material that rapidly releases H2-rich gases through microwave-assisted catalytic decomposition (United States)

    Gonzalez-Cortes, S.; Slocombe, D. R.; Xiao, T.; Aldawsari, A.; Yao, B.; Kuznetsov, V. L.; Liberti, E.; Kirkland, A. I.; Alkinani, M. S.; Al-Megren, H. A.; Thomas, J. M.; Edwards, P. P.


    Hydrogen is often described as the fuel of the future, especially for application in hydrogen powered fuel-cell vehicles (HFCV’s). However, its widespread implementation in this role has been thwarted by the lack of a lightweight, safe, on-board hydrogen storage material. Here we show that benign, readily-available hydrocarbon wax is capable of rapidly releasing large amounts of hydrogen through microwave-assisted catalytic decomposition. This discovery offers a new material and system for safe and efficient hydrogen storage and could facilitate its application in a HFCV. Importantly, hydrogen storage materials made of wax can be manufactured through completely sustainable processes utilizing biomass or other renewable feedstocks. PMID:27759014

  18. Ab initio molecular dynamics simulations for the role of hydrogen in catalytic reactions of furfural on Pd(111) (United States)

    Xue, Wenhua; Dang, Hongli; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu


    In the study of catalytic reactions of biomass, furfural conversion over metal catalysts with the presence of hydrogen has attracted wide attention. We report ab initio molecular dynamics simulations for furfural and hydrogen on the Pd(111) surface at finite temperatures. The simulations demonstrate that the presence of hydrogen is important in promoting furfural conversion. In particular, hydrogen molecules dissociate rapidly on the Pd(111) surface. As a result of such dissociation, atomic hydrogen participates in the reactions with furfural. The simulations also provide detailed information about the possible reactions of hydrogen with furfural. Supported by DOE (DE-SC0004600). This research used the supercomputer resources of the XSEDE, the NERSC Center, and the Tandy Supercomputing Center.

  19. Effect of Catalytic Cylinders on Autothermal Reforming of Methane for Hydrogen Production in a Microchamber Reactor

    Directory of Open Access Journals (Sweden)

    Yunfei Yan


    Full Text Available A new multicylinder microchamber reactor is designed on autothermal reforming of methane for hydrogen production, and its performance and thermal behavior, that is, based on the reaction mechanism, is numerically investigated by varying the cylinder radius, cylinder spacing, and cylinder layout. The results show that larger cylinder radius can promote reforming reaction; the mass fraction of methane decreased from 26% to 21% with cylinder radius from 0.25 mm to 0.75 mm; compact cylinder spacing corresponds to more catalytic surface and the time to steady state is decreased from 40 s to 20 s; alteration of staggered and aligned cylinder layout at constant inlet flow rates does not result in significant difference in reactor performance and it can be neglected. The results provide an indication and optimize performance of reactor; it achieves higher conversion compared with other reforming reactors.

  20. Effect of catalytic cylinders on autothermal reforming of methane for hydrogen production in a microchamber reactor. (United States)

    Yan, Yunfei; Guo, Hongliang; Zhang, Li; Zhu, Junchen; Yang, Zhongqing; Tang, Qiang; Ji, Xin


    A new multicylinder microchamber reactor is designed on autothermal reforming of methane for hydrogen production, and its performance and thermal behavior, that is, based on the reaction mechanism, is numerically investigated by varying the cylinder radius, cylinder spacing, and cylinder layout. The results show that larger cylinder radius can promote reforming reaction; the mass fraction of methane decreased from 26% to 21% with cylinder radius from 0.25 mm to 0.75 mm; compact cylinder spacing corresponds to more catalytic surface and the time to steady state is decreased from 40 s to 20 s; alteration of staggered and aligned cylinder layout at constant inlet flow rates does not result in significant difference in reactor performance and it can be neglected. The results provide an indication and optimize performance of reactor; it achieves higher conversion compared with other reforming reactors.

  1. Aminolysis reaction of calix [ 4 ] arene esters and crystal structures and conformational behaviors of calix[4]arene amides

    Institute of Scientific and Technical Information of China (English)

    WU, Yong; LIU, Hui-Biao; HU, Jun; DUAN, Chun-Ying; XU, Zheng


    We first make use of aminolysis of calix[4]arene esters to synthesize calix[4]arene amides. When the two ethyl esters of the calix[4]arene esters are aminolysized, the 1, 3-amide derivative is formed selectively. The crystal structures of the calix[4]arene with two butyl amide (3b) and four butyl amide moieties (4b) were determined. The intermolecular hydrogen bonds make 4b form two-dimensional net work insolid state.The 1H NMR spectra prove that 3b is of a pinched cone conformation, while 4b and tetraheptylamide-calix[4]arene (6b)take fast interconversion between two C2v isomers in solution and appear an apparent cone conformation at room temperature. As decreasing temperature, the interconversion rate decreases gradually and, finally, the interconversion process is frozen at Tc= - 10℃, which makes both conformations of 4b and 6b the pinched cone structures. The hydrogen bond improves the interconversion barrier, and the large different values of the potential barrier between 6b and 4b (or 6b) may be of forming different hydrogen bonds.

  2. Methane catalytic decomposition over ordered mesoporous carbons: A promising route for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Botas, J.A.; Serrano, D.P. [Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, c/ Tulipan s/n, 28933 Mostoles, Madrid (Spain); IMDEA Energia, c/Tulipan s/n, 28933 Mostoles, Madrid (Spain); Guil-Lopez, R.; Pizarro, P.; Gomez, G. [Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, c/ Tulipan s/n, 28933 Mostoles, Madrid (Spain)


    Methane decomposition offers an interesting route for the CO{sub 2}-free hydrogen production. The use of carbon catalysts, in addition to lowering the reaction temperature, presents a number of advantages, such as low cost, possibility of operating under autocatalytic conditions and feasibility of using the produced carbons in non-energy applications. In this work, a novel class of carbonaceous materials, having an ordered mesoporous structure (CMK-3 and CMK-5), has been checked as catalysts for methane decomposition, the results obtained being compared to those corresponding to a carbon black sample (CB-bp) and two activated carbons, presenting micro- (AC-mic) and mesoporosity (AC-mes), respectively. Ordered mesoporous carbons, and especially CMK-5, possess a remarkable activity and stability for the hydrogen production through that reaction. Under both temperature programmed and isothermal experiments, CMK-5 has shown to be a superior catalyst for methane decomposition than the AC-mic and CB-bp materials. Likewise, the catalytic activity of CMK-5 is superior to that of AC-mes in spite of the presence of mesoporosity and a high surface area in the latter. The remarkable stability of the CMK-5 catalyst is demonstrated by the high amount of carbon deposits that can be formed on this sample. This result has been assigned to the growth of the carbon deposits from methane decomposition towards the outer part of the catalyst particles, avoiding the blockage of the uniform mesopores present in CMK-5. Thus, up to 25 g of carbon deposits have been formed per gram of CMK-5, while the latter still retains a significant catalytic activity. (author)

  3. Highly active metastable ruthenium nanoparticles for hydrogen production through the catalytic hydrolysis of ammonia borane. (United States)

    Abo-Hamed, Enass K; Pennycook, Timothy; Vaynzof, Yana; Toprakcioglu, Chris; Koutsioubas, Alexandros; Scherman, Oren A


    Late transition metal nanoparticles (NPs) with a favorably high surface area to volume ratio have garnered much interest for catalytic applications. Yet, these NPs are prone to aggregation in solution, which has been mitigated through attachment of surface ligands, additives or supports; unfortunately, protective ligands can severely reduce the effective surface area on the NPs available for catalyzing chemical transformations. The preparation of 'metastable' NPs can readily address these challenges. We report herein the first synthesis of monodisperse metastable ruthenium nanoparticles (RuNPs), having sub 5 nm size and an fcc structure, in aqueous media at room temperature, which can be stored for a period of at least 8 months. The RuNPs can subsequently be used for the catalytic, quantitative hydrolysis of ammonia-borane (AB) yielding hydrogen gas with 21.8 turnovers per min at 25 °C. The high surface area available for hydrolysis of AB on the metastable RuNPs translated to an Ea of 27.5 kJ mol(-1) , which is notably lower than previously reported values for RuNP based catalysts.

  4. Hydrogen Generation from Catalytic Steam Reforming of Acetic Acid by Ni/Attapulgite Catalysts

    Directory of Open Access Journals (Sweden)

    Yishuang Wang


    Full Text Available In this research, catalytic steam reforming of acetic acid derived from the aqueous portion of bio-oil for hydrogen production was investigated using different Ni/ATC (Attapulgite Clay catalysts prepared by precipitation, impregnation and mechanical blending methods. The fresh and reduced catalysts were characterized by XRD, N2 adsorption–desorption, TEM and temperature program reduction (H2-TPR. The comprehensive results demonstrated that the interaction between active metallic Ni and ATC carrier was significantly improved in Ni/ATC catalyst prepared by precipitation method, from which the mean of Ni particle size was the smallest (~13 nm, resulting in the highest metal dispersion (7.5%. The catalytic performance of the catalysts was evaluated by the process of steam reforming of acetic acid in a fixed-bed reactor under atmospheric pressure at two different temperatures: 550 °C and 650 °C. The test results showed the Ni/ATC prepared by way of precipitation method (PM-Ni/ATC achieved the highest H2 yield of ~82% and a little lower acetic acid conversion efficiency of ~85% than that of Ni/ATC prepared by way of impregnation method (IM-Ni/ATC (~95%. In addition, the deactivation catalysts after reaction for 4 h were analyzed by XRD, TGA-DTG and TEM, which demonstrated the catalyst deactivation was not caused by the amount of carbon deposition, but owed to the significant agglomeration and sintering of Ni particles in the carrier.

  5. High performing and stable supported nano-alloys for the catalytic hydrogenation of levulinic acid to gamma-valerolactone

    NARCIS (Netherlands)

    Luo, Wenhao; Meenakshisundaram, Sankar; Beale, Andrew M.; He, Qian; Kiely, Christopher J.; Bruijnincx, Pieter C. A.; Weckhuysen, Bert M.


    The catalytic hydrogenation of levulinic acid, a key platform molecule in many biorefinery schemes, into gamma-valerolactone is considered as one of the pivotal reactions to convert lignocellulose-based biomass into renewable fuels and chemicals. Here we report on the development of highly active, s

  6. Catalytic Hydrogenation ofα,β-Epoxyketones to β-Hydroxy-ketones with Two Sulfinyl Analogues of Coenzyme NADH Models

    Institute of Scientific and Technical Information of China (English)

    XIE,Kun; GUI,Yi; LIU,You-Cheng; FU,Yao


    An efficient method for the selective hydrogenation of a series of α,β-epoxyketones to β-hydroxyketones using catalytic amount of two sulfinyl analogues of NAD+ model compounds is reported. The lack of any diastereoselectivily for the formation of β-hydroxyketones with optically pure sulfinyl analogue of NAD+ model supports the radical mechanism proposed previously.

  7. Experimental and Numerical Evaluation of the By-Pass Flow in a Catalytic Plate Reactor for Hydrogen Production

    DEFF Research Database (Denmark)

    Sigurdsson, Haftor Örn; Kær, Søren Knudsen


    Numerical and experimental study is performed to evaluate the reactant by-pass flow in a catalytic plate reactor with a coated wire mesh catalyst for steam reforming of methane for hydrogen generation. By-pass of unconverted methane is evaluated under different wire mesh catalyst width to reactor...

  8. β-Molybdenum nitride: synthesis mechanism and catalytic response in the gas phase hydrogenation of p-chloronitrobenzene

    NARCIS (Netherlands)

    Cárdenas-Lizana, F.; Gómez-Quero, S.; Perret, N.; Kiwi-Minsker, L.; Keane, M.A.


    A temperature programmed treatment of MoO3 in flowing N2 + H2 has been employed to prepare β-phase molybdenum nitride (β-Mo2N) which has been used to promote, for the first time, the catalytic hydrogenation of p-chloronitrobenzene. The reduction/nitridation synthesis steps have been monitored in sit

  9. Catalytic hydrogenation of cyclic carbonates: a practical approach from CO2 and epoxides to methanol and diols. (United States)

    Han, Zhaobin; Rong, Liangce; Wu, Jiang; Zhang, Lei; Wang, Zheng; Ding, Kuiling


    Two birds with one stone: the simultaneous production of two important bulk chemicals, methanol and ethylene glycol, from CO(2) and ethylene oxide has been achieved under mild conditions by the highly efficient homogeneous catalytic hydrogenation of ethylene carbonate in the presence of a (PNP)Ru(II) catalyst.

  10. The role of sulfur trapped in micropores in the catalytic partial oxidation of hydrogen sulfide with oxygen

    NARCIS (Netherlands)

    Steijns, M.; Mars, P.


    The catalytic oxidation of hydrogen sulfide into sulfur with molecular oxygen has been studied in the temperature range 130–200 °C. Active carbon, molecular sieve 13X and liquid sulfur were used as catalysts. Sulfur is adsorbed in the micropores (3 < r < 40 Å) of the catalysts. Experiments with a su


    Institute of Scientific and Technical Information of China (English)

    Wei-xia Tu; Han-fan Liu


    Polymer-stabilized platinum/ruthenium bimetallic colloids (Pt/Ru) were synthesized by polyol reduction with microwave irradiation and characterized by TEM and XPS. The colloidal nanoparticles have small and narrow size distributions. Catalytic performance of the Pt/Ru colloidal catalysts was investigated on the selective hydrogenation of crontonaldehyde (CRAL). A suitable amount of the added metal ions and base can improve the selectivity of CRAL to crotylalcohol (CROL) remarkably. The catalytic activity and the selectivity are dependent on the compositions of bimetallic colloids. Thereinto, PVP-stabilized 9Pt/1Ru colloid with a molar ratio of metals Pt:Ru = 9:1 shows the highest catalytic selectivity 77.3% to CROL at 333 K under 4.0 MPa of hydrogen.

  12. Application of microscopy technology in thermo-catalytic methane decomposition to hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Irene Lock Sow, E-mail:; Lock, S. S. M., E-mail:; Abdullah, Bawadi, E-mail: [Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Sri Iskandar, 31750, Perak (Malaysia)


    Hydrogen production from the direct thermo-catalytic decomposition of methane is a promising alternative for clean fuel production because it produces pure hydrogen without any CO{sub x} emissions. However, thermal decomposition of methane can hardly be of any practical and empirical interest in the industry unless highly efficient and effective catalysts, in terms of both specific activity and operational lifetime have been developed. In this work, bimetallic Ni-Pd on gamma alumina support have been developed for methane cracking process by using co-precipitation and incipient wetness impregnation method. The calcined catalysts were characterized to determine their morphologies and physico-chemical properties by using Brunauer-Emmett-Teller method, Field Emission Scanning Electron Microscopy, Energy-dispersive X-ray spectroscopy and Thermogravimetric Analysis. The results suggested that that the catalyst which is prepared by the co-precipitation method exhibits homogeneous morphology, higher surface area, have uniform nickel and palladium dispersion and higher thermal stability as compared to the catalyst which is prepared by wet impregnation method. This characteristics are significant to avoid deactivation of the catalysts due to sintering and carbon deposition during methane cracking process.

  13. Hydrogenation-controlled phase transition on two-dimensional transition metal dichalcogenides and their unique physical and catalytic properties (United States)

    Qu, Yuanju; Pan, Hui; Kwok, Chi Tat


    Two-dimensional (2D) transition metal dichalcogenides (TMDs) have been widely used from nanodevices to energy harvesting/storage because of their tunable physical and chemical properties. In this work, we systematically investigate the effects of hydrogenation on the structural, electronic, magnetic, and catalytic properties of 33 TMDs based on first-principles calculations. We find that the stable phases of TMD monolayers can transit from 1T to 2H phase or vice versa upon the hydrogenation. We show that the hydrogenation can switch their magnetic and electronic states accompanying with the phase transition. The hydrogenation can tune the magnetic states of TMDs among non-, ferro, para-, and antiferro-magnetism and their electronic states among semiconductor, metal, and half-metal. We further show that, out of 33 TMD monolayers, 2H-TiS2 has impressive catalytic ability comparable to Pt in hydrogen evolution reaction in a wide range of hydrogen coverages. Our findings would shed the light on the multi-functional applications of TMDs.

  14. Field-controlled electron transfer and reaction kinetics of the biological catalytic system of microperoxidase-11 and hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Yongki Choi


    Full Text Available Controlled reaction kinetics of the bio-catalytic system of microperoxidase-11 and hydrogen peroxide has been achieved using an electrostatic technique. The technique allowed independent control of 1 the thermodynamics of the system using electrochemical setup and 2 the quantum mechanical tunneling at the interface between microperoxidase-11 and the working electrode by applying a gating voltage to the electrode. The cathodic currents of electrodes immobilized with microperoxidase-11 showed a dependence on the gating voltage in the presence of hydrogen peroxide, indicating a controllable reduction reaction. The measured kinetic parameters of the bio-catalytic reduction showed nonlinear dependences on the gating voltage as the result of modified interfacial electron tunnel due to the field induced at the microperoxidase-11-electrode interface. Our results indicate that the kinetics of the reduction of hydrogen peroxide can be controlled by a gating voltage and illustrate the operation of a field-effect bio-catalytic transistor, whose current-generating mechanism is the conversion of hydrogen peroxide to water with the current being controlled by the gating voltage.

  15. Synthesis and assembly of self-complementary calix[4]arenes. (United States)

    Shimizu, K D; Rebek, J


    A calix[4]arene was designed to reversibly dimerize and form an egg-shaped enclosure. Adhesive interactions in the assembly were provided by four self-associating ureas, which form a cyclic array containing 16 hydrogen bonds. The synthesis was completed in four steps from the previously described O,O',O",O"'-tetrabenzylcalix[4]arene. Evidence for dimerization of the calixarene tetraurea was provided by H NMR, mass spectrometry, and the observation of encapsulated molecules. The resulting cavity was of sufficient size to capture guests such as ethyl benzene and p-xylene. Images Fig. 1 Fig. 2 Fig. 6 PMID:8618910

  16. Catalytic stepwise nitrate hydrogenation in batch-recycle fixed-bed reactors. (United States)

    Pintar, Albin; Batista, Jurka


    Pd (1.0 wt.%)-Cu (0.3 wt.%) bimetallic and Pd (1.0 wt.%) monometallic catalysts were synthesized by means of incipient-wetness impregnation technique and deposited on alumina spheres (dp=1.7 mm). The prepared catalysts were tested at T=298 K and p(H2)=1.0 bar in the integrated process of catalytic liquid-phase hydrogenation of aqueous nitrate solutions, in which the denitration step was carried out consecutively in separate, single-flow fixed-bed reactor units operating in a batch-recycle mode. In the first reactor packed with a Pd-Cu bimetallic catalyst, nitrate ions were transformed to nitrites at pH 12.5 with a selectivity as high as 93%; the rest was found in the form of ammonium ions. Liquid-phase nitrite hydrogenation to nitrogen in the second reactor unit packed with a Pd monometallic catalyst was conducted at low pH values of 3.7 and 4.5, respectively. Although these values are well below the pHpzc of examined catalyst (6.1), which assured that the nitrite reduction was carried out over a positively charged catalyst surface, up to 15% (23% in the presence of 5.0 g/l NaCl in the solution) of initial nitrite content was converted to undesired ammonium ions. Since a negligible amount of these species (below 0.5mg/l) was produced at identical operating conditions over a powdered Pd/gamma-Al2O3 catalyst, it is believed that the enhanced production of ammonium ions observed in the second fixed-bed reactor is due to the build-up of pH gradients in liquid-filled pores of spherical catalyst particles. Both Pd-Cu bimetallic and Pd monometallic catalysts were chemically resistant in the investigated range of pH values.


    Institute of Scientific and Technical Information of China (English)

    TANG Liming; HUANG Meiyu; JIANG Yingyan


    A silica-supported carboxymethylcellulose platinum complex (abbreviated as SiO2-CMC-Pt) has been prepared and characterized by XPS. Its catalytic properties for hydrogenation of aromatic compounds were studied. The results showed that this catalyst could catalyze the hydrogenation of phenol, anisol, p-cresol, benzene and toluene to cyclohexanol, cyclohexyl methyl ether, p-methyl cyclohexanol, cyclohexane and methylcyclohexane, respectively in 100% yield at 30℃ and 1 atm. In the hydrogenation of phenol,COO/Pt ratio in SiO2-CMC-Pt has much influence on the initial hydrogenation rate and the selectivity for the intermediate product, cyclohexanone. The highest initial rate and the highest yield of cyclohexanone both occur at COO/Pt ratio of 6. The complex is stable during the reaction and can be used repeatedly.

  18. Negative ion gas-phase chemistry of arenes. (United States)

    Danikiewicz, Witold; Zimnicka, Magdalena


    Reactions of aromatic and heteroaromatic compounds involving anions are of great importance in organic synthesis. Some of these reactions have been studied in the gas phase and are occasionally mentioned in reviews devoted to gas-phase negative ion chemistry, but no reviews exist that collect all existing information about these reactions. This work is intended to fill this gap. In the first part of this review, methods for generating arene anions in the gas phase and studying their physicochemical properties and fragmentation reactions are presented. The main topics in this part are as follows: processes in which gas-phase arene anions are formed, measurements and calculations of the proton affinities of arene anions, proton exchange reactions, and fragmentation processes of substituted arene anions, especially phenide ions. The second part is devoted to gas-phase reactions of arene anions. The most important of these are reactions with electrophiles such as carbonyl compounds and α,β-unsaturated carbonyl and related compounds (Michael acceptors). Other reactions including oxidation of arene anions and halogenophilic reactions are also presented. In the last part of the review, reactions of electrophilic arenes with nucleophiles are discussed. The best known of these is the aromatic nucleophilic substitution (SN Ar) reaction; however, other processes that lead to the substitution of a hydrogen atom in the aromatic ring are also very important. Aromatic substrates in these reactions are usually but not always nitroarenes bearing other substituents in the ring. The first step in these reactions is the formation of an anionic σ-adduct, which, depending on the substituents in the aromatic ring and the structure of the attacking nucleophile, is either an intermediate or a transition state in the reaction path. In the present review, we attempted to collect the results of both experimental and computational studies of the aforementioned reactions conducted since the

  19. Spatially Directional Resorcin[4]arene Cavitand Glycoconjugates for Organic Catalysis. (United States)

    Husain, Ali A; Maknenko, Arthur M; Bisht, Kirpal S


    The synthesis of novel spatially directional multivalent resorcin[4]arene cavitand glycoconjugates (RCGs) and their ability to catalyze organic reactions is reported. The β-d-glucopyranoside moieties on the upper rim of the "bowl"-shaped resorcin[4]arene cavitand core are capable of multiple hydrogen-bond interactions resulting in a pseudo-cavity, which has been investigated for organic transformations in aqueous media. The RCGs have been demonstrated to catalyze thiazole formation, thiocyanation, copper(I)-catalyzed azide alkyne cycloaddition (CuAAC), and Mannich reactions; they impart stereoselectivity in the three-component Mannich reaction. Thermodynamic values obtained from (1) H diffusion-ordered spectroscopy (DOSY) experiments suggest that the upper saccharide cavity of the RCG and not the resorcin[4]arene cavity is the site of the complexation event.

  20. Superior catalytic effect of nickel ferrite nanoparticles in improving hydrogen storage properties of MgH2


    Wan, Qi; Ping LI; Shan, Jiawei; Zhai, Fuqiang; Li, Ziliang; Qu, Xuanhui


    The catalysis of NiFe2O4 nanoparticles on the hydrogen storage performances of magnesium hydride synthesized by high-energy ball milling was studied for the first time. The H-2 storage performances and catalytic mechanism were studied by pressurecompositiontemperature (PCT), differential scanning calorimetry (DSC), X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The nonisothermal d...

  1. Catalytic Ammonia Decomposition over High-Performance Ru/Graphene Nanocomposites for Efficient COx-Free Hydrogen Production

    Directory of Open Access Journals (Sweden)

    Gang Li


    Full Text Available Highly-dispersed Ru nanoparticles were grown on graphene nanosheets by simultaneously reducing graphene oxide and Ru ions using ethylene glycol (EG, and the resultant Ru/graphene nanocomposites were applied as a catalyst to ammonia decomposition for COx-free hydrogen production. Tuning the microstructures of Ru/graphene nanocomposites was easily accomplished in terms of Ru particle size, morphology, and loading by adjusting the preparation conditions. This was the key to excellent catalytic activity, because ammonia decomposition over Ru catalysts is structure-sensitive. Our results demonstrated that Ru/graphene prepared using water as a co-solvent greatly enhanced the catalytic performance for ammonia decomposition, due to the significantly improved nano architectures of the composites. The long-term stability of Ru/graphene catalysts was evaluated for COx-free hydrogen production from ammonia at high temperatures, and the structural evolution of the catalysts was investigated during the catalytic reactions. Although there were no obvious changes in the catalytic activities at 450 °C over a duration of 80 h, an aggregation of the Ru nanoparticles was still observed in the nanocomposites, which was ascribed mainly to a sintering effect. However, the performance of the Ru/graphene catalyst was decreased gradually at 500 °C within 20 h, which was ascribed mainly to both the effect of the methanation of the graphene nanosheet under a H2 atmosphere and to enhanced sintering under high temperatures.

  2. Enhanced wet hydrogen peroxide catalytic oxidation performances based on CuS nanocrystals/reduced graphene oxide composites (United States)

    Qian, Jing; Wang, Kun; Guan, Qingmeng; Li, Henan; Xu, Hui; Liu, Qian; Liu, Wei; Qiu, Baijing


    CuS nanocrystals/reduced graphene oxide (CuS NCs/rGO) composites were prepared by a facile one-pot solvothermal reaction. In this solvothermal system, thioacetamide was found to perform the dual roles of sulphide source and reducing agent, resulting in the formation of CuS NCs and simultaneous reduction of graphene oxide (GO) sheets to rGO sheets. In addition, CuS NCs/rGO composites were further used as heterogeneous catalysts in the wet hydrogen peroxide catalytic oxidation process, with methylene blue as a model organic dye. The introduction of rGO to CuS NCs could effectively enhance the catalytic activity of CuS NCs, and the resultant CuS NCs/rGO composites with a starting GO amount of 5 wt% showed the highest catalytic activity. Furthermore, the CuS NCs/rGO composites showed high catalytic activity over a broad pH operation range from 3.0 to 11.0 under ambient conditions, and still retained 90% of the original catalytic activity after reuse in five cycles.

  3. Development of catalytic systems for selective hydrogenation and hydrogenolysis based on statistical planning methods coupled with kinetic studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhorov, Yu.M.; Morozova, E.V.; Panchenkov, G.M.


    An efficient catalyst design methodology is described, which was used in developing an active and stable mixed oxide catalytic composition for selective hydrogenation of m-bonds under conditions excluding hydrogenolysis of C-C bonds. Catalysts of optimum composition, i.e., 40-50Vertical Bar3< CuO/25-30Vertical Bar3< NiO/20-35Vertical Bar3< SiO/sub 2/, and structure (20-30 A. average pore radius) can be prepared by coprecipitation of copper and nickel salts with silica gel powder in a sodium silicate solution at 90/sup 0/C. By using these catalysts, crotonaldehyde (CA) was hydrogenated to n-butanol in one stage with over 99Vertical Bar3< yields at 180/sup 0/C. The same catalyst was efficient in selective hydrogenation of acetylene (contained in relatively high concentrations in pyrolysis gases) to ethylene at 130/sup 0/C, hydrogenation of piperylene (a by-product in isoprene manufacture) to n-pentenes at 160/sup 0/C, with almost 100Vertical Bar3< selectivity, and in hydrogenolysis of C-S and C-N bonds at 290/sup 0/-370/sup 0/C. Catalytic hydrorefining of a gasoline fraction (105/sup 0/-180/sup 0/C bp) at 350/sup 0/C and 40 atm, reduced its sulfur content from 0.03Vertical Bar3< to 0.00001Vertical Bar3<, and completely removed nitrogen.

  4. Energy Efficient Catalytic Activation of Hydrogen peroxide for Green Chemical Processes: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Terrence J.; Horwitz, Colin


    A new, highly energy efficient approach for using catalytic oxidation chemistry in multiple fields of technology has been pursued. The new catalysts, called TAML® activators, catalyze the reactions of hydrogen peroxide and other oxidants for the exceptionally rapid decontamination of noninfectious simulants (B. atrophaeus) of anthrax spores, for the energy efficient decontamination of thiophosphate pesticides, for the facile, low temperature removal of color and organochlorines from pulp and paper mill effluent, for the bleaching of dyes from textile mill effluents, and for the removal of recalcitrant dibenzothiophene compounds from diesel and gasoline fuels. Highlights include the following: 1) A 7-log kill of Bacillus atrophaeus spores has been achieved unambiguously in water under ambient conditions within 15 minutes. 2) The rapid total degradation under ambient conditions of four thiophosphate pesticides and phosphonate degradation intermediates has been achieved on treatment with TAML/peroxide, opening up potential applications of the decontamination system for phosphonate structured chemical warfare agents, for inexpensive, easy to perform degradation of stored and aged pesticide stocks (especially in Africa and Asia), for remediation of polluted sites and water bodies, and for the destruction of chemical warfare agent stockpiles. 3) A mill trial conducted in a Pennsylvanian bleached kraft pulp mill has established that TAML catalyst injected into an alkaline peroxide bleach tower can significantly lower color from the effluent stream promising a new, more cost effective, energy-saving approach for color remediation adding further evidence of the value and diverse engineering capacity of the approach to other field trials conducted on effluent streams as they exit the bleach plant. 4) Dibenzothiophenes (DBTs), including 4,6-dimethyldibenzothiophene, the most recalcitrant sulfur compounds in diesel and gasoline, can be completely removed from model gasoline

  5. A review of recent advances on the effects of microstructural refinement and nano-catalytic additives on the hydrogen storage properties of metal and complex hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Varin, R. A.; Zbroniec, L. [University of Waterloo, Department of Mechanical and Mechatronics Engineering, Waterloo, Ontario (Canada); Polanski, M.; Bystrzycki, J. [Faculty of Advanced Technology and Chemistry, Military University of Technology, Warsaw (Poland)


    The recent advances on the effects of microstructural refinement and various nano-catalytic additives on the hydrogen storage properties of metal and complex hydrides obtained in the last few years in the allied laboratories at the University of Waterloo (Canada) and Military University of Technology (Warsaw, Poland) are critically reviewed in this paper. The research results indicate that microstructural refinement (particle and grain size) induced by ball milling influences quite modestly the hydrogen storage properties of simple metal and complex metal hydrides. On the other hand, the addition of nanometric elemental metals acting as potent catalysts and/or metal halide catalytic precursors brings about profound improvements in the hydrogen absorption/desorption kinetics for simple metal and complex metal hydrides alike. In general, catalytic precursors react with the hydride matrix forming a metal salt and free nanometric or amorphous elemental metals/intermetallics which, in turn, act catalytically. However, these catalysts change only kinetic properties i.e. the hydrogen absorption/desorption rate but they do not change thermodynamics (e.g., enthalpy change of hydrogen sorption reactions). It is shown that a complex metal hydride, LiAlH{sub 4}, after high energy ball milling with a nanometric Ni metal catalyst and/or MnCl{sub 2} catalytic precursor, is able to desorb relatively large quantities of hydrogen at room temperature, 40 and 80 {sup o}C. This kind of behavior is very encouraging for the future development of solid state hydrogen systems. (authors)

  6. A Review of Recent Advances on the Effects of Microstructural Refinement and Nano-Catalytic Additives on the Hydrogen Storage Properties of Metal and Complex Hydrides

    Directory of Open Access Journals (Sweden)

    Jerzy Bystrzycki


    Full Text Available The recent advances on the effects of microstructural refinement and various nano-catalytic additives on the hydrogen storage properties of metal and complex hydrides obtained in the last few years in the allied laboratories at the University of Waterloo (Canada and Military University of Technology (Warsaw, Poland are critically reviewed in this paper. The research results indicate that microstructural refinement (particle and grain size induced by ball milling influences quite modestly the hydrogen storage properties of simple metal and complex metal hydrides. On the other hand, the addition of nanometric elemental metals acting as potent catalysts and/or metal halide catalytic precursors brings about profound improvements in the hydrogen absorption/desorption kinetics for simple metal and complex metal hydrides alike. In general, catalytic precursors react with the hydride matrix forming a metal salt and free nanometric or amorphous elemental metals/intermetallics which, in turn, act catalytically. However, these catalysts change only kinetic properties i.e. the hydrogen absorption/desorption rate but they do not change thermodynamics (e.g., enthalpy change of hydrogen sorption reactions. It is shown that a complex metal hydride, LiAlH4, after high energy ball milling with a nanometric Ni metal catalyst and/or MnCl2 catalytic precursor, is able to desorb relatively large quantities of hydrogen at RT, 40 and 80 °C. This kind of behavior is very encouraging for the future development of solid state hydrogen systems.

  7. Experimental research on catalysts and their catalytic mechanism for hydrogen production by gasification of peanut shell in supercritical water

    Institute of Scientific and Technical Information of China (English)

    PEI Aixia; GUO Liejin; JIN Hui


    Peanut shell,mixed with sodium carboxymethylcellulose,was gasified at a temperature of 450℃ and a pressure range from 24 to 27 MPa with the presence of different catalysts,including K2CO3,ZnCl2 and Raney-Ni.The experimental results show that different catalysts have greatly different effects on the reaction.Gasification efficiency (GE),hydrogen gasification efficiency (GHE),carbon gasification efficiency (GCE),yield of hydrogen production (YH2) and potential yield of hydrogen production (YPH2) are applied to describe the catalytic efficiency.From the result of gaseous components,ZnCl2 has the highest hydrogen selectivity,K2CO3 is lower,and Raney-Ni is the lowest,but Raney-Ni is the most favorable to gasify biomass among the three catalysts,and its GE,GHE,GcE reach 126.84%,185.71%,94.24%,respectively.As expected,hydrogen selectivity increased and CH4 reduced rapidly when the mixture of ZnCl2 and Raney-Ni is used under the same condition.The optimization mixture appeared when 0.2 g of ZnCl2 was added to 1 g of Raney-Ni,43.56 g·kg-1 of hydrogen production was obtained.In addition,the catalytic mechanisms of different catalysts were analyzed,and the possible reaction pathway was brought forward,which helped to explain the experiment phenomena and results correctly.

  8. Production of hydrogen, liquid fuels, and chemicals from catalytic processing of bio-oils (United States)

    Huber, George W; Vispute, Tushar P; Routray, Kamalakanta


    Disclosed herein is a method of generating hydrogen from a bio-oil, comprising hydrogenating a water-soluble fraction of the bio-oil with hydrogen in the presence of a hydrogenation catalyst, and reforming the water-soluble fraction by aqueous-phase reforming in the presence of a reforming catalyst, wherein hydrogen is generated by the reforming, and the amount of hydrogen generated is greater than that consumed by the hydrogenating. The method can further comprise hydrocracking or hydrotreating a lignin fraction of the bio-oil with hydrogen in the presence of a hydrocracking catalyst wherein the lignin fraction of bio-oil is obtained as a water-insoluble fraction from aqueous extraction of bio-oil. The hydrogen used in the hydrogenating and in the hydrocracking or hydrotreating can be generated by reforming the water-soluble fraction of bio-oil.

  9. Effect of Co crystallinity on Co/CNT catalytic activity in CO/CO{sub 2} hydrogenation and CO disproportionation

    Energy Technology Data Exchange (ETDEWEB)

    Chernyak, Sergei A., E-mail: [Lomonosov Moscow State University, Department of Chemistry, Leninskiye Gory 1-3, Moscow 119991 (Russian Federation); Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Department of Physical Chemistry, Leninsky Avenue 31, Moscow 119991 (Russian Federation); Suslova, Evgeniya V.; Egorov, Alexander V.; Maslakov, Konstantin I. [Lomonosov Moscow State University, Department of Chemistry, Leninskiye Gory 1-3, Moscow 119991 (Russian Federation); Savilov, Serguei V.; Lunin, Valery V. [Lomonosov Moscow State University, Department of Chemistry, Leninskiye Gory 1-3, Moscow 119991 (Russian Federation); Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Department of Physical Chemistry, Leninsky Avenue 31, Moscow 119991 (Russian Federation)


    Highlights: • Amorphous and crystalline Co supported on CNTs were obtained by tuning of CNT surface. • CO and CO{sub 2} hydrogenation does not occur on amorphous Co particles. • Thermal activation of amorphous Co led to crystallization of metal. • Amorphous Co promotes CO disproportionation. • Carbon shells around the amorphous metal particles after the CO hydrogenation. - Abstract: Carbon nanotubes (CNTs) with different degree of surface oxidation were used as supports for 5 wt.% Co catalysts. CNTs and Co/CNT catalysts were analyzed by XPS, nitrogen adsorption, TEM and electron diffraction to reveal their structure. High oxidation degree of CNT surface (8.6 at.% of O) and low Co loading led to predominantly amorphous Co species. This resulted in the absence of catalytic activity in both CO and CO{sub 2} hydrogenation in opposite to the catalyst supported on less oxidized CNTs (5.4 at.% of O) where Co species were found to be crystalline. Thermal treatment of inactive catalyst in H{sub 2} and He led to the formation of Co crystal phase which was active in catalysis. Co particle size in catalyst supported on strongly oxidized CNTs was unchanged during CO hydrogenation in opposite to Co supported on less oxidized CNTs. Carbon shell formation on the surface of amorphous Co particles during CO hydrogenation was revealed, which testified CO disproportionation. Qualitative mechanism of CO hydrogenation on small Co particles was proposed.

  10. Arene-ruthenium(II) complexes with hydrophilic P-donor ligands: versatile catalysts in aqueous media. (United States)

    Crochet, Pascale; Cadierno, Victorio


    In the last few years there has been increasing interest in the use of water as a reaction medium for catalysis, and therefore in designing water-soluble transition-metal catalysts. Half-sandwich (η(6)-arene)-ruthenium(ii) complexes are a versatile and well-known family of ruthenium compounds that exhibit a rich catalytic and coordination chemistry. This Perspective article focuses on the catalytic applications in aqueous media of (η(6)-arene)-ruthenium(ii) complexes containing water-soluble phosphines, and related hydrophilic P-donor ligands.

  11. Catalytic Hydrolysis of Ammonia Borane by Cobalt Nickel Nanoparticles Supported on Reduced Graphene Oxide for Hydrogen Generation

    Directory of Open Access Journals (Sweden)

    Yuwen Yang


    Full Text Available Well dispersed magnetically recyclable bimetallic CoNi nanoparticles (NPs supported on the reduced graphene oxide (RGO were synthesized by one-step in situ coreduction of aqueous solution of cobalt(II chloride, nickel (II chloride, and graphite oxide (GO with ammonia borane (AB as the reducing agent under ambient condition. The CoNi/RGO NPs exhibits excellent catalytic activity with a total turnover frequency (TOF value of 19.54 mol H2 mol catalyst−1 min−1 and a low activation energy value of 39.89 kJ mol−1 at room temperature. Additionally, the RGO supported CoNi NPs exhibit much higher catalytic activity than the monometallic and RGO-free CoNi counterparts. Moreover, the as-prepared catalysts exert satisfying durable stability and magnetically recyclability for the hydrolytic dehydrogenation of AB, which make the practical reusing application of the catalysts more convenient. The usage of the low-cost, easy-getting catalyst to realize the production of hydrogen under mild condition gives more confidence for the application of ammonia borane as a hydrogen storage material. Hence, this general method indicates that AB can be used as both a potential hydrogen storage material and an efficient reducing agent, and can be easily extended to facile preparation of other RGO-based metallic systems.

  12. Selective catalytic methanation of CO in hydrogen-rich gases over Ni/ZrO2 catalyst

    Institute of Scientific and Technical Information of China (English)

    Qihai Liu; Xinfa Dong; Xinman Mo; Weiming Lin


    Ni/ZrO2 catalysts were prepared by the incipient-wetness impregnation method and were investigated in activity and selectivity for the selective catalytic methanation of CO in hydrogen-rich gases with more than 20 vol%CO2.The result showed that Ni loadings significantly influenced the performance of Ni/ZrO2 catalyst.The 1.6 wt%Ni loading catalyst exhibited the highest catalytic activity among all the catalysts in the selective methanation of CO in hydrogen-rich gas.The outlet concentration of CO was less than 20 ppm with the hydrogen consumption below a gas-hourly-space velocity as high as 10000 h-1 and a temperature range of 260℃ to 280℃.The X-ray diffraction(XRD)and temperature programmed reduction (TPR)measurements showed that NiO was dispersed thoroughly on the surface of ZrO2 support if Ni loading was under 1.6 wt%.When N-10ading was increased to 3 wt%or above.the free bulk NiO species began to assemble,which was not favorable to increase the selectivity of the catalyst.

  13. Cellular graphene aerogel combines ultralow weight and high mechanical strength: A highly efficient reactor for catalytic hydrogenation. (United States)

    Zhang, Bingxing; Zhang, Jianling; Sang, Xinxin; Liu, Chengcheng; Luo, Tian; Peng, Li; Han, Buxing; Tan, Xiuniang; Ma, Xue; Wang, Dong; Zhao, Ning


    The construction of three-dimensional graphene aerogels (GAs) is of great importance owing to their outstanding properties for various applications. Up to now, the combination of ultralow weight and super mechanical strength for GA remains a great challenge. Here we demonstrate the fabrication of cellular GAs by a facile, easily controlled and versatile route, i.e. the chemical reduction of graphene oxide assemblies at oil-water interface under a mild condition (70 °C). The GA is ultralight (with density <3 mg cm(-3)) yet mechanically resilient because the walls of the cell closely pack in a highly ordered manner to maximize mechanical strength. The GA has been utilized as an appealing reactor for catalytic hydrogenation, which exhibited great advantages such as large oil absorption capability, exceptional catalytic activity, ease of product separation and high stability.

  14. New nanosized catalytic membrane reactors for hydrogenation with stored hydrogen: Prerequisites and the experimental basis for their creation (United States)

    Soldatov, A. P.; Tsodikov, M. V.; Parenago, O. P.; Teplyakov, V. V.


    The prerequisites and prospects for creating a new generation of nanosized membrane reactors are considered. For the first time, hydrogenation reactions take place in ceramic membrane pores with hydrogen adsorbed beforehand in mono- and multilayered oriented carbon nanotubes with graphene walls (OCNTGs) formed on the internal pore surface. It is shown for Trumem microfiltration membranes with D avg ˜130 nm that oxidation reactions of CO on a Cu0.03Ti0.97O2 ± δ catalyst and the oxidative conversion of methane into synthesis gas and light hydrocarbons on La + Ce/MgO are considerably enhanced when they occur in membranes. Regularities of hydrogen adsorption, storage, and desorption in nanosized membrane reactors are investigated through OCNTG formation in Trumem ultrafiltration membrane pores with D avg = 50 and 90 nm and their saturation with hydrogen at a pressure of 10-13 MPa. It is shown that the amount of adsorbed hydrogen reaches 14.0% of OCNTG mass. Using thermogravimetric analysis in combination with mass-spectrometric analysis, hydrogen adsorption in OCNTG is first determined and its desorption is found to proceed at atmospheric pressure at a temperature of ˜175°C. It is shown that adsorbed hydrogen affects the transport properties of the membranes, reducing their efficiency with respect to liquids by 4-26 times. This is indirect confirmation of its high activity, due apparently the dissociative mechanism of adsorption.

  15. Catalytic activity of mono and bimetallic Zn/Cu/MWCNTs catalysts for the thermocatalyzed conversion of methane to hydrogen (United States)

    Erdelyi, B.; Oriňak, A.; Oriňaková, R.; Lorinčík, J.; Jerigová, M.; Velič, D.; Mičušík, M.; Omastová, M.; Smith, R. M.; Girman, V.


    Mono and bimetallic multiwalled carbon nanotubes (MWCNTs) fortified with Cu and Zn metal particles were studied to improve the efficiency of the thermocatalytic conversion of methane to hydrogen. The surface of the catalyst and the dispersion of the metal particles were studied by scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS) and with energy-dispersive X-ray spectroscopy (EDS). It was confirmed that the metal particles were successfully dispersed on the MWCNT surface and XPS analysis showed that the Zn was oxidised to ZnO at high temperatures. The conversion of methane to hydrogen during the catalytic pyrolysis was studied by pyrolysis gas chromatography using different amounts of catalyst. The best yields of hydrogen were obtained using pyrolysis conditions of 900 °C and 1.2 mg of Zn/Cu/MWCNT catalyst for 1.5 mL of methane.The initial conversion of methane to hydrogen obtained with Zn/Cu/MWCNTs was 49%, which represent a good conversion rate of methane to hydrogen for a non-noble metal catalyst.

  16. Thermo-Catalytic Methane Decomposition for Hydrogen Production: Effect of Palladium Promoter on Ni-based Catalysts

    Directory of Open Access Journals (Sweden)

    Irene Lock Sow Mei


    Full Text Available Hydrogen production from the direct thermo-catalytic decomposition of methane is a promising alternative for clean fuel production. However, thermal decomposition of methane can hardly be of any practical and empirical interest in the industry unless highly efficient and effective catalysts, in terms of both catalytic activity and operational lifetime have been developed. In this study, the effect of palladium (Pd as a promoter onto Ni supported on alumina catalyst has been investigated by using co-precipitation technique. The introduction of Pd promotes better catalytic activity, operational lifetime and thermal stability of the catalyst. As expected, highest methane conversion was achieved at reaction temperature of 800 °C while the bimetallic catalyst (1 wt.% Ni -1wt.% Pd/Al2O3 gave the highest methane conversion of 70% over 15 min of time-on-stream (TOS. Interestingly, the introduction of Pd as promoter onto Ni-based catalyst also has a positive effect on the operational lifetime and thermal stability of the catalyst as the methane conversion has improved significantly over 240 min of TOS. Copyright © 2016 BCREC GROUP. All rights reserved Received: 21st January 2016; Revised: 6th February 2016; Accepted: 6th March 2016 How to Cite: Mei, I.L.S., Lock, S.S.M., Vo, D.V.N., Abdullah, B. (2016. Thermo-Catalytic Methane Decomposition for Hydrogen Production: Effect of Palladium Promoter on Ni-based Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (2: 191-199 (doi:10.9767/bcrec.11.2.550.191-199 Permalink/DOI:

  17. The catalytic reactions in the Cu-Li-Mg-H high capacity hydrogen storage system. (United States)

    Braga, M H; El-Azab, A


    A family of hydrides, including the high capacity MgH2 and LiH, is reported. The disadvantages these hydrides normally display (high absorption/desorption temperatures and poor kinetics) are mitigated by Cu-hydride catalysis. This paper reports on the synthesis of novel CuLi0.08Mg1.42H4 and CuLi0.08Mg1.92H5 hydrides, which are structurally and thermodynamically characterized for the first time. The CuLi0.08Mg1.42H4 hydride structure in nanotubes is able to hold molecular H2, increasing the gravimetric and volumetric capacity of this compound. The catalytic effect these compounds show on hydride formation and decomposition of CuMg2 and Cu2Mg/MgH2, Li and LiH, Mg and MgH2 is analyzed. The Gibbs energy, decomposition temperature, and gravimetric capacity of the reactions occurring within the Cu-Li-Mg-H system are presented for the first time. First principles and phonon calculations are compared with experiments, including neutron spectroscopy. It is demonstrated that the most advantageous sample contains CuLi0.08Mg1.92 and (Li) ∼ Li2Mg3; it desorbs/absorbs hydrogen according to the reaction, 2CuLi0.08Mg1.42H4 + 2Li + 4MgH2 ↔ 2CuLi0.08Mg1.92 + Li2Mg3 + 8H2 at 114 °C (5.0 wt%) - 1 atm, falling within the proton exchange membrane fuel cell applications window. Finally the reaction 2CuLi0.08Mg1.42H4 + MgH2 ↔ 2CuLi0.08Mg1.92 + 5H2 at 15 °C (4.4 wt%) - 1 atm is found to be the main reaction of the samples containing CuLi0.08Mg1.92 that were analyzed in this study.

  18. Host-Guest Complexes of Carboxylated Pillar[n]arenes With Drugs. (United States)

    Wheate, Nial J; Dickson, Kristie-Ann; Kim, Ryung Rae; Nematollahi, Alireza; Macquart, René B; Kayser, Veysel; Yu, Guocan; Church, W Bret; Marsh, Deborah J


    Pillar[n]arenes are a new family of nanocapsules that have shown application in a number of areas, but because of their poor water solubility their biomedical applications are limited. Recently, a method of synthesizing water-soluble pillar[n]arenes was developed. In this study, carboxylated pillar[n]arenes (WP[n], n = 6 or 7) have been examined for their ability to form host-guest complexes with compounds relevant to drug delivery and biodiagnostic applications. Both pillar[n]arenes form host-guest complexes with memantine, chlorhexidine hydrochloride, and proflavine by (1)H nuclear magnetic resonance and modeling. Binding is stabilized by hydrophobic effects within the cavities, and hydrogen bonding and electrostatic interactions at the portals. Encapsulation within WP[6] results in the complete and efficient quenching of proflavine fluorescence, giving rise to "on" and "off" states that have potential in biodiagnostics. The toxicity of the pillar[n]arenes was examined using in vitro growth assays with the OVCAR-3 and HEK293 cell lines. The pillar[n]arenes are relatively nontoxic to cells except at high doses and after prolonged continuous exposure. Overall, the results show that there could be a potentially large range of medical applications for carboxylated pillar[n]arene nanocapsules.

  19. Forced twin-chair conformation in 7-benzoyl- and 7-phenylacetyl-r-2,c-4,t-6,t-8-tetraphenyl-3-thia-7-azabicyclo[3.3.1]nonanes with 1,3-diaxial phenyl groups in the piperidine ring: single- and double-layered supramolecular sheets built from C-H...O and C-H...pi(arene) hydrogen bonds. (United States)

    Sakthivel, Chinniah; Jeyaraman, Ramasubbu


    The crystal structures of 7-benzoyl-r-2,c-4,t-6,t-8-tetraphenyl-3-thia-7-azabicyclo[3.3.1]nonane, C(38)H(33)NOS, (I), and r-2,c-4,t-6,t-8-tetraphenyl-7-phenylacetyl-3-thia-7-azabicyclo[3.3.1]nonane [systematic name: 2-phenyl-1-(r-2,c-4,t-6,t-8-tetraphenyl-3-thia-7-azabicyclo[3.3.1]nonan-7-yl)ethanone], C(39)H(35)NOS, (II), both reveal a forced twin-chair conformation with the 1,3-diaxial phenyl groups in the piperidine ring, and flattening at the N-atom end of the piperidine ring of the bicyclic system. In the crystal structure of (I), molecules are linked into sheets by a combination of two weak C-H...O and one C-H...pi(arene) hydrogen bond, while in the crystal structure of (II), the molecules extend into double-layered sheets assisted by three C-H...pi(arene) hydrogen bonds.

  20. A compact process for the treatment of olive mill wastewater by combining wet hydrogen peroxide catalytic oxidation and biological techniques. (United States)

    Azabou, Samia; Najjar, Wahiba; Bouaziz, Mohamed; Ghorbel, Abdelhamid; Sayadi, Sami


    A system based on combined actions of catalytic wet oxidation and microbial technologies for the treatment of highly polluted OMW containing polyphenols was studied. The wet hydrogen peroxide catalytic oxidation (WHPCO) process has been investigated in the semi-batch mode at atmospheric pressure, using aluminium-iron-pillared inter layer clay ((Al-Fe)PILC), under two different catalytic processes: ((Al-Fe)PILC/H(2)O(2)/ultraviolet radiations) at 25°C and ((Al-Fe)PILC/H(2)O(2)) at 50°C. The results show that raw OMW was resistant to the photocatalytic process. However ((Al-Fe)PILC/H(2)O(2)), system operating at 50°C reduced considerably the COD, colour and total phenolic contents, and thus decreased the inhibition of the marine photobacteria Vibrio fischeri luminescence by 70%. This study also examined the feasibility of coupling WHPCO and anaerobic digestion treatment. Biomethanisation experiments performed with raw OMW or pre-treated OMW proved that pre-treatments with ((Al-Fe)PILC/H(2)O(2)) system, for more than 2 h, resulted in higher methane production. Both untreated OMW as well as 2-h pre-treated OMW revealed as toxic to anaerobic bacteria.

  1. Effect of Pt promotion on Ni/Al2O3 for the selective catalytic reduction of NO with hydrogen (United States)

    Mihet, Maria; Lazar, Mihaela D.; Borodi, G.; Almasan, V.


    Ni/Al2O3 (10 wt.% Ni) and Ni-Pt/Al2O3 (10 wt.% Ni, 0.5 wt.% Pt) were comparatively tested in the hydrogen selective catalytic reduction process (H2-SCR), at reaction temperatures below 350°C. Catalytic activity tests consisted in temperature programmed reactions (TPRea) under plug flow conditions from 50 to 350°C, with a temperature rate of 5°C/min, using a feed stream with a reactant ratio NO:H2 = 1:1.3 and a GHSV of 4500 h-1. Promotion with Pt increases the catalytic performances of the Ni based catalyst, in respect to NO conversion, N2 selectivity and N2 yield. The reaction temperatures for NO conversion above 95% decrease significantly due to Pt addition, from 250°C for Ni/Al2O3 to 125°C for Ni-Pt/Al2O3. Characterization of catalysts was performed by: X ray powder diffraction (XRD) for the estimation of Ni crystallite size, temperature programmed reduction (TPR) for the catalyst reducibility, temperature programmed desorption of hydrogen (H2-TPD) for the investigation of active sites and metal dispersion on the support, N2 adsorption-desorption isotherms at -196°C for the determination of total specific surface area and pore size distribution, and H/D isotopic exchange on the catalyst surface. At the request of the Proceedings Editor, and all authors of the paper, an updated version of this article was published on 14 January 2014. Data presented in Table 1 of the original paper contained errors which have been corrected in the updated and re-published article. The Corrigendum attached to the corrected article PDF file explains the errors in more detail.

  2. Investigation of products of low-temperature catalytic hydrogenization of Donbas coals

    Energy Technology Data Exchange (ETDEWEB)

    Osipov, A.M.; Osipov, K.D.; Chernyshova, M.I.; Petrik, G.K.


    The relationship of the composition and properties of primary products of low-temperature hydrogenation is presented in relation to the nature of the coal, of catalysts, and of the conditions of hydrogenation. Temperature, the nature of the catalysts and of the type of coal used were directly related to the content of methane, ethane, propane, and CO/sub 2/, and of hydrogen sulphide in the case of brown gaseous coals, as well as the dissolving of hydrogenates and asphaltene content. The structural composition of components dissolved in methylene chloride was determined by proton magnetic resonance. Results of the experiments indicated that lead chloride was the most promising catalyst for low-temperature hydrogenation.

  3. Microwave-assisted facile and rapid Friedel-Crafts benzoylation of arenes catalysed by bismuth trifluoromethanesulfonate

    DEFF Research Database (Denmark)

    Tran, Phoung Hoang; Hansen, Poul Erik; Pham, Thuy Than;


    The catalytic activity of metal triflates was investigated in Friedel–Crafts benzoylation under microwave irradiation. Friedel–Crafts benzoylation with benzoyl chloride of a variety of arenes containing electron-rich and electron-poor rings using bismuth triflate under microwave irradiation is de...

  4. Pyrolysis of de-oiled seed cake of Jatropha Curcas and catalytic steam reforming of pyrolytic bio-oil to hydrogen. (United States)

    Renny, Andrew; Santhosh, Viswanathan; Somkuwar, Nitin; Gokak, D T; Sharma, Pankaj; Bhargava, Sanjay


    The aim of this work was to study the pyrolysis of de-oiled seed cake of Jatropha Curcas and catalytic steam reforming of pyrolytic bio-oil to hydrogen. As per literature, presence of heavy nitrogenous and oxygenated compounds leads to catalyst deactivation. Here, an attempt has been made to tune pyrolytic reactions to optimize the N and O content of the pyrolytic bio-oil. Bio-oil conversion and hydrogen yield decreased as reaction progressed, which attributes to temporary loss of catalytic activity by blockage of catalyst pores by carbon deposition. Further, retention of steam reforming activity after repetitive steam activation suggests long-term catalyst usage.

  5. Catalytic Hydrogenation of Methanol-Containing Eflfuent from Epoxidation of Propylene

    Institute of Scientific and Technical Information of China (English)

    Cheng Ke


    This paper describes the hydrogenation of impurities in the methanol-containing eflfuent from the propylene epoxidation process with hydrogen peroxide. The effects of reaction temperature, pressure, weight hourly space velocity (WHSV) and H2/methanol ratio on the concentration of various impurities in methanol solvent were investigated. It was found out that the aldehyde, hydrogen peroxide and nitro compounds in the methanol solvent could be completely hydroge-nated over the Ni catalyst under proper reaction conditions. 90%of acetone and up to 50%of acetals (ketals) existing in the methanol solvent could be hydrogenated. No signiifcant change was observed for the rest of the impurities that were present in the methanol solvent (i. e., 1-methoxy-2-propanol, 2-methoxy-1-propanol and 1,2-propanediol). The H2O2 decomposition reaction was enhanced using Ni catalyst, through the formation of NioOH, but no oxygen was found in the off-gas of hy-drogenation reaction since NioH could react on NioOH formed via dissociative adsorption of hydrogen peroxide, or on NioO formed via adsorption of oxygen.

  6. Efficient catalytic interconversion between NADH and NAD+ accompanied by generation and consumption of hydrogen with a water-soluble iridium complex at ambient pressure and temperature. (United States)

    Maenaka, Yuta; Suenobu, Tomoyoshi; Fukuzumi, Shunichi


    Regioselective hydrogenation of the oxidized form of β-nicotinamide adenine dinucleotide (NAD(+)) to the reduced form (NADH) with hydrogen (H(2)) has successfully been achieved in the presence of a catalytic amount of a [C,N] cyclometalated organoiridium complex [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))benzoic acid-κC(3))(H(2)O)](2) SO(4) [1](2)·SO(4) under an atmospheric pressure of H(2) at room temperature in weakly basic water. The structure of the corresponding benzoate complex Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))-benzoate-κC(3))(H(2)O) 2 has been revealed by X-ray single-crystal structure analysis. The corresponding iridium hydride complex formed under an atmospheric pressure of H(2) undergoes the 1,4-selective hydrogenation of NAD(+) to form 1,4-NADH. On the other hand, in weakly acidic water the complex 1 was found to catalyze the hydrogen evolution from NADH to produce NAD(+) without photoirradiation at room temperature. NAD(+) exhibited an inhibitory behavior in both catalytic hydrogenation of NAD(+) with H(2) and H(2) evolution from NADH due to the binding of NAD(+) to the catalyst. The overall catalytic mechanism of interconversion between NADH and NAD(+) accompanied by generation and consumption of H(2) was revealed on the basis of the kinetic analysis and detection of the catalytic intermediates.

  7. Activating basal-plane catalytic activity of two-dimensional MoS2 monolayer with remote hydrogen plasma

    KAUST Repository

    Cheng, Chia-Chin


    Two-dimensional layered transition metal dichalcogenide (TMD) materials such as Molybdenum disufide (MoS2) have been recognized as one of the low-cost and efficient electrocatalysts for hydrogen evolution reaction (HER). The crystal edges that account for a small percentage of the surface area, rather than the basal planes, of MoS2 monolayer have been confirmed as their active catalytic sites. As a result, extensive efforts have been developing in activating the basal planes of MoS2 for enhancing their HER activity. Here, we report a simple and efficient approach-using a remote hydrogen-plasma process-to creating S-vacancies on the basal plane of monolayer crystalline MoS2; this process can generate high density of S-vacancies while mainly maintaining the morphology and structure of MoS2 monolayer. The density of S-vacancies (defects) on MoS2 monolayers resulted from the remote hydrogen-plasma process can be tuned and play a critical role in HER, as evidenced in the results of our spectroscopic and electrical measurements. The H2-plasma treated MoS2 also provides an excellent platform for systematic and fundamental study of defect-property relationships in TMDs, which provides insights for future applications including electrical, optical and magnetic devices. © 2016 Elsevier Ltd.

  8. Effects of acido-basic support properties on the catalytic hydrogenation of acetylene on gold nano-particles (United States)

    Manda, Abdullah Ahmed

    Metallic gold nanoparticles supported on gamma-Al2O 3 and magnesia-alumina mixed oxide, with different magnesia content have been prepared by sol-gel method and characterized by different techniques (inductive coupled plasma-mass spectroscopy (ICP-MS), XRD, BET surface area analysis, transmission electron microscopy (TEM), CO2 and NH 3 temperature programmed desorption (TPD), H2 temperature programmed reduction (TPR) and FTIR of adsorbed CO2). Such systems were found to produce catalysts with controllable acidity, varying from catalyst possessing large density of acidic and low density of basic sites, others with acidic and basic sites of equal strength and density, and others with large basic and low acid sites densities, respectively. The catalytic assessment of the generated acidity was carried out using 2-propanol decomposition as a test reaction. The results obtained indicate that the presence of magnesia and reduced gold nanopartilces has imparted the catalysts, 1%Au/4%Mg-Al 2O3 and 1%Au/8%Mg-Al2O3, with significant base-catalytic properties. Acetylene hydrogenation and formation of coke deposits were investigated on a gold catalyst supported on gamma-Al2O3 and gold supported on alumina-magnisia mixed oxide with different gold content; 1%Au/gamma-Al 2O3, 1%Au/15%Mg-Al2O3, 2%Au/15%Mg-Al 2O3 and 4%Au/15%Mg-Al2O3. The effect of the H2/C2H2 ratio was studied over a range of values. The catalytic activity and selectivity towards ethylene and other products were investigated at different reaction temperatures. Acetylene hydrogenation was investigated in the presence and absence of ethylene in stream. It is investigated that the adsorption of the triple bond is preferred over the double bond and during selective catalytic (SCR) of C2H2 the two hydrocarbons do not compete for the same adsorption sites. The deactivation of catalysts was studied by temperature programmed oxidation (TPO). Higher content of coke over 1%Au/Al2O3 catalyst was investigated in contrast to

  9. Identification of intrinsic catalytic activity for electrochemical reduction of water molecules to generate hydrogen

    KAUST Repository

    Shinagawa, Tatsuya


    Insufficient hydronium ion activities at near-neutral pH and under unbuffered conditions induce diffusion-limited currents for hydrogen evolution, followed by a reaction with water molecules to generate hydrogen at elevated potentials. The observed constant current behaviors at near neutral pH reflect the intrinsic electrocatalytic reactivity of the metal electrodes for water reduction. This journal is © the Owner Societies.

  10. Progress in Catalytic Membrane Reactors for High Purity Hydrogen Production%膜催化反应器及其制氢技术的研究进展

    Institute of Scientific and Technical Information of China (English)

    闫云飞; 张力; 李丽仙; 唐强


    As a kind of ideal fuel for fuel cell, hydrogen must be satisfied with the enough high purity. To produce high purity hydrogen at a low cost and large scale method has become a key research focus in the industrialization of fuel-cell technology. The membrane catalytic technology with catalysis and separation dual functions has been developed in recent years, which is a good method to produce high purity hydrogen. Based on the latest developments in the membrane catalytic reaction fields, the advantages, composition and type of membrane catalytic reactor are summarized. The preparation techniques, advantages and classification of inorganic membrane materials are described. Especially, the progress and application for high purity hydrogen production are reviewed in three kinds of catalytic membrane reactors, including oxygen-permeable membrane reactor, hydrogen-permeation membrane reactor and double-membranes reactor. The existing problems of catalytic membrane and membrane catalytic reactor in the industrialization process of hydrogen production using the membrane catalytic technology are also discussed. Additionally, the prospects of membrane catalytic reactors for hydrogen production is proposed.%燃料电池对其理想燃料氢气的纯度要求极高,如何低成本、大规模制取高纯氢气己成为燃料电池技术实现工业化的一个关键问题和研究热点.近年发展起来的兼具催化与分离双重功能的膜催化反应技术是实现制取高纯氢气的一个有效途径.本文结合膜催化反应领域的最新进展,综述了膜催化反应器的优点、组成、类型;介绍了无机膜材料的优点、分类及制备技术;详细综述了透氧膜催化反应器、透氢膜催化反应器及双膜催化反应器在制氢过程中的研究进展和应用,指出了膜催化反应制氢技术在工业化发展过程中存在的问题及应用前景.

  11. Synergic catalytic effect of Ti hydride and Nb nanoparticles for improving hydrogenation and dehydrogenation kinetics of Mg-based nanocomposite

    Directory of Open Access Journals (Sweden)

    Xiujuan Ma


    Full Text Available The Mg-9.3 wt% (TiH1.971-TiH−0.7 wt% Nb nanocomposite has been synthesized by hydrogen plasma-metal reaction (HPMR approach to enhance the hydrogen sorption kinetics of Mg at moderate temperatures by providing nanosizing effect of increasing H “diffusion channels” and adding transition metallic catalysts. The Mg nanoparticles (NPs were in hexagonal shape range from 50 to 350 nm and the average size of the NPs was 177 nm. The small spherical TiH1.971, TiH and Nb NPs of about 25 nm uniformly decorated on the surface of the big Mg NPs. The Mg-TiH1.971-TiH-Nb nanocomposite could quickly absorb 5.6 wt% H2 within 5 min at 573 K and 4.5 wt% H2 within 5 min at 523 K, whereas the pure Mg prepared by HPMR could only absorb 4 and 1.5 wt% H2 at the same temperatures. TiH1.971, TiH and Nb NPs transformed into TiH2 and NbH during hydrogenation and recovered after dehydrogenation process. The apparent activation energies of the nanocomposite for hydrogenation and dehydrogenation were 45.0 and 50.7 kJ mol−1, which are much smaller than those of pure Mg NPs, 123.8 and 127.7 kJ mol−1. The improved sorption kinetics of the Mg-based nanocomposite at moderate temperatures and the small activation energy can be interpreted by the nanostructure of Mg and the synergic catalytic effects of Ti hydrides and Nb NPs.

  12. Size Control of Iron Oxide Nanoparticles Using Reverse Microemulsion Method: Morphology, Reduction, and Catalytic Activity in CO Hydrogenation

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Housaindokht


    Full Text Available Iron oxide nanoparticles were prepared by microemulsion method and evaluated in Fischer-Tropsch synthesis. The precipitation process was performed in a single-phase microemulsion operating region. Different HLB values of surfactant were prepared by mixing of sodium dodecyl sulfate (SDS and Triton X-100. Transmission electron microscopy (TEM, surface area, pore volume, average pore diameter, pore size distribution, and XRD patterns were used to analyze size distribution, shape, and structure of precipitated hematite nanoparticles. Furthermore, temperature programmed reduction (TPR and catalytic activity in CO hydrogenation were implemented to assess the performance of the samples. It was found that methane and CO2 selectivity and also the syngas conversion increased as the HLB value of surfactant decreased. In addition, the selectivity to heavy hydrocarbons and chain growth probability (α decreased by decreasing the catalyst crystal size.

  13. Hydrogen production by catalytic decomposition of methane using a Fe-based catalyst in a fluidized bed reactor

    Institute of Scientific and Technical Information of China (English)

    D.Torres; Llobet; J.L.Pinilla; M.J.Lázaro; I.Suelves; R.Moliner


    Catalytic decomposition of methane using a Fe-based catalyst for hydrogen production has been studied in this work.A Fe/Al2O3 catalyst previously developed by our research group has been tested in a fluidized bed reactor (FBR).A parametric study of the effects of some process variables,including reaction temperature and space velocity,is undertaken.The operating conditions strongly affect the catalyst performance.Methane conversion was increased by increasing the temperature and lowering the space velocity.Using temperatures between 700 and 900 ℃ and space velocities between 3 and 6 LN/(gcat·h),a methane conversion in the range of 25%-40% for the gas exiting the reactor could be obtained during a 6 h run.In addition,carbon was deposited in the form of nanofilaments (chain like nanofibers and multiwall nanotubes) with similar properties to those obtained in a fixed bed reactor.

  14. Synthesis and Catalytic Performance of Ni/SiO2 for Hydrogenation of 2-Methylfuran to 2-Methyltetrahydrofuran

    Directory of Open Access Journals (Sweden)

    Fu Ding


    Full Text Available A series of Ni/SiO2 catalysts with different Ni content were prepared by sol-gel method for application in the synthesis of 2-methyltetrahydrofuran (2-MTHF by hydrogenation of 2-methylfuran (2-MF. The catalyst structure was investigated by X-ray diffraction (XRD, transmission electron microscopy (TEM, X-ray photoelectron spectroscopy (XPS, and temperature programmed reduction (TPR. It is found that structures and catalytic performance of the catalysts were highly affected by the Ni content. The catalyst with a 25% Ni content had an appropriate size of the Ni species and larger BET surface area and produced a higher 2-MF conversion with enhanced selectivity in 2-MTHF.

  15. Effect of hydrogen combustion reaction on the dehydrogenation of ethane in a fixed-bed catalytic membrane reactor

    Institute of Scientific and Technical Information of China (English)

    Masoud Hasany; Mohammad Malakootikhah; Vahid Rahmanian; Soheila Yaghmaei


    A two-dimensional non-isothermal mathematical model has been developed for the ethane dehydrogenation reaction in a fixed-bed catalytic membrane reactor. Since ethane dehydrogenation is an equilibrium reaction, removal of produced hydrogen by the membrane shifts the thermodynamic equilibrium to ethylene production. For further displacement of the dehydrogenation reaction, oxidative dehydrogenation method has been used. Since ethane dehydrogenation is an endothermic reaction, the energy produced by the oxidative dehydrogena-tion method is consumed by the dehydrogenation reaction. The results show that the oxidative dehydrogenation method generated a substantial improvement in the reactor performance in terms of high conversions and significant energy saving. It was also established that the sweep gas velocity in the shell side of the reactor is one of the most important factors in the effectiveness of the reactor.

  16. Preparation and Characterization of A New Dinuclear Ruthenium Complex with BDPX Ligand and Its Catalytic Hydrogenation Reactions for Cinnamaldehyde

    Institute of Scientific and Technical Information of China (English)

    TANG,Yuan-You(唐元友); LI,Rui-Xiang(李瑞祥); LI,Xian-Jun(李贤均); WONG,Ning-Bew(黄宁表); TIN,Kim-Chung(田金忠); ZHANG,Zhe-Ying(张哲英); MAK,Thomas C.W.(麦松威)


    A new anionic dinuclear ruthenium complex bearing 1,2-bis(diphenylphosphinomethyl)benzene (BDPX)[NH2Et2][{RuCl (BDPX)}2(μ-Cl)3] (1) was synthesized and its structure was determined by an X-ray crystallographic analysis. This result indicated that complex 1 consisted of an anion dinuclear BDPX-Ru and a cationic diethylammonium. The crystal belonged to monoclinic system, C2/c space group with a=3.3552(7) nm, b= 1.8448(4)nm, c=2.4265(5) nm, β= 101.89(3)° and Z=8. The catalytic hydrogenation activities and selectivities of complex 1 for cinnamaldehyde were investigated.

  17. Catalytic activity of Pd-doped Cu nanoparticles for hydrogenation as a single-atom-alloy catalyst. (United States)

    Cao, Xinrui; Fu, Qiang; Luo, Yi


    The single atom alloy of extended surfaces is known to provide remarkably enhanced catalytic performance toward heterogeneous hydrogenation. Here we demonstrate from first principles calculations that this approach can be extended to nanostructures, such as bimetallic nanoparticles. The catalytic properties of the single-Pd-doped Cu55 nanoparticles have been systemically examined for H2 dissociation as well as H atom adsorption and diffusion, following the concept of single atom alloy. It is found that doping a single Pd atom at the edge site of the Cu55 shell can considerably reduce the activation energy of H2 dissociation, while the single Pd atom doped at the top site or in the inner layers is much less effective. The H atom adsorption on Cu55 is slightly stronger than that on the Cu(111) surface; however, a larger nanoparticle that contains 147 atoms could effectively recover the weak binding of the H atoms. We have also investigated the H atom diffusion on the 55-atom nanoparticle and found that spillover of the produced H atoms could be a feasible process due to the low diffusion barriers. Our results have demonstrated that facile H2 dissociation and weak H atom adsorption could be combined at the nanoscale. Moreover, the effects of doping one more Pd atom on the H2 dissociation and H atom adsorption have also been investigated. We have found that both the doping Pd atoms in the most stable configuration could independently exhibit their catalytic activity, behaving as two single-atom-alloy catalysts.

  18. Wet hydrogen peroxide catalytic oxidation of phenol with FeAC (iron-embedded activated carbon) catalysts. (United States)

    Liou, Rey-May; Chen, Shih-Hsiung; Huang, Cheng-Hsien; Hung, Mu-Ya; Chang, Jing-Song; Lai, Cheng-Lee


    This investigation aims at exploring the catalytic oxidation activity of iron-embedded activated carbon (FeAC) and the application for the degradation of phenol in the wet hydrogen peroxide catalytic oxidation (WHPCO). FeAC catalysts were prepared by pre-impregnating iron in coconut shell with various iron loadings in the range of 27.5 to 46.5% before they were activated. The FeAC catalysts were characterised by measuring their surface area, pore distribution, functional groups on the surface, and X-ray diffraction patterns. The effects of iron loading strongly inhibited the pore development of the catalyst but benefited the oxidation activity in WHPCO. It was found that the complete conversion of phenol was observed with all FeAC catalysts in oxidation. High level of chemical oxygen demand (COD) abatement can be achieved within the first 30 minutes of oxidation. The iron embedded in the activated carbon showed good performance in the degradation and mineralisation of phenol during the oxidation due to the active sites as iron oxides formed on the surface of the activated carbon. It was found that the embedding irons were presented in gamma-Fe(2)O(3), alpha-Fe(2)O(3), and alpha-FeCOOH forms on the activated carbon. The aging tests on FeAC catalysts showed less activity loss, and less iron leaching was found after four oxidation runs.

  19. Modeling and Simulation of the Hydrogenation of α-Methylstyrene on Catalytically Active Metal Foams as Tubular Reactor Packing

    Directory of Open Access Journals (Sweden)

    Farzad Lali


    Full Text Available This work presents a one-dimensional reactor model for a tubular reactor packed with a catalytically active foam packing with a pore density of 30 PPI in cocurrent upward flow in the example of hydrogenation reaction of α-methylstyrene to cumene. This model includes material, enthalpy, and momentum balances as well as continuity equations. The model was solved within the parameter space applied for experimental studies under assumption of a bubbly flow. The method of orthogonal collocation on finite elements was applied. For isothermal and polytropic processes and steady state conditions, axial profiles for concentration, temperature, fluid velocities, pressure, and liquid holdup were computed and the conversions for various gas and liquid flow rates were validated with experimental results. The obtained results were also compared in terms of space time yield and catalytic activity with experimental results and stirred tank and also with random packed bed reactor. The comparison shows that the application of solid foams as reactor packing is advantageous compared to the monolithic honeycombs and random packed beds.

  20. Improvement of hydrogen isotope exchange reactions on Li4SiO4 ceramic pebble by catalytic metals

    Institute of Scientific and Technical Information of China (English)

    Cheng Jian Xiao; Chun Mei Kang; Xiao Jun Chen; Xiao Ling Gao; Yang Ming Luo; Sheng Hu; Xiao Lin Wang


    Li4SiO4 ceramic pebble is considered as a candidate tritium breeding material of Chinese Helium Cooled Solid Breeder Test Blanket Module (CH HCSB TBM) for the International Thermonuclear Experimental Reactor (ITER).In this paper,Li4SiO4 ceramic pebbles deposited with catalytic metals,including Pt,Pd,Ru and Ir,were prepared by wet impregnation method.The metal particles on Li4SiO4 pebble exhibit a good promotion of hydrogen isotope exchange reactions in H2-DzO gas system,with conversion equilibrium temperature reduction of 200-300 ℃.The out-of-pile tritium release experiments were performed using 1.0 wt% Pt/Li4SiO4 and Li4SiO4 pebbles irradiated in a thermal neutron reactor.The thermal desorption spectroscopy shows that Pt was effective to increase the tritium release rate at lower temperatures,and the ratio of tritium molecule (HT) to tritiated water (HTO) of 1.0 wt% Pt/Li4SiO4 was much more than that of Li4SiO4,which released mainly as HTO.Thus,catalytic metals deposited on Li4SiO4 pebble may help to accelerate the recovery of bred tritium particularly in low temperature region,and increase the tritium molecule form released from the tritium breeding materials.

  1. Molybdatophosphoric acid as an efficient catalyst for the catalytic and chemoselective oxidation of sulfides to sulfoxides using urea hydrogen peroxide as a commercially available oxidant

    Directory of Open Access Journals (Sweden)



    Full Text Available An efficient procedure for the chemoselective oxidation of alkyl (aryl sulfides to the corresponding sulfoxides using urea hydrogen peroxide (UHP in the presence of a catalytic amount of molybdatophosphoric acid at room temperature is described. The advantages of described method are: generality, high yield and chemoselectivity, short reaction time, low cost and compliment with green chemistry protocols.

  2. Facile synthesis of polypyrrole functionalized nickel foam with catalytic activity comparable to Pt for the poly-generation of hydrogen and electricity (United States)

    Tang, Tiantian; Li, Kan; Shen, Zhemin; Sun, Tonghua; Wang, Yalin; Jia, Jinping


    Polypyrrole functionalized nickel foam is facilely prepared through the potentiostatic electrodeposition. The PPy-functionalized Ni foam functions as a hydrogen-evolution cathode in a rotating disk photocatalytic fuel cell, in which hydrogen energy and electric power are generated by consuming organic wastes. The PPy-functionalized Ni foam cathode exhibits stable catalytic activities after thirteen continuous runs. Compared with net or plate structure, the Ni foam with a unique three-dimensional reticulate structure is conducive to the electrodeposition of PPy. Compared with Pt-group electrode, PPy-coated Ni foam shows a satisfactory catalytic performance for the H2 evolution. The combination of PPy and Ni forms a synergistic effect for the rapid trapping and removal of proton from solution and the catalytic reduction of proton to hydrogen. The PPy-functionalized Ni foam could be applied in photocatalytic and photoelectrochemical generation of H2. In all, we report a low cost, high efficient and earth abundant PPy-functionalized Ni foam with a satisfactory catalytic activities comparable to Pt for the practical application of poly-generation of hydrogen and electricity.

  3. Catalytic reduction of nitrate and nitrite ions by hydrogen : investigation of the reaction mechanism over Pd and Pd-Cu catalysts

    NARCIS (Netherlands)

    Ilinitch, OM; Nosova, LV; Gorodetskii, VV; Ivanov, VP; Trukhan, SN; Gribov, EN; Bogdanov, SV; Cuperus, FP


    The catalytic behavior of mono- and bimetallic catalysts with Pd and/or Cu supported over gamma-Al2O3 in the reduction of aqueous nitrate and nitrite ions by hydrogen was investigated. The composition of the supported metal catalysts was analysed using secondary ion mass spectroscopy (SIMS) and X-ra

  4. Thermo catalytic decomposition of methane over Pd/AC and Pd/CB catalysts for hydrogen production and carbon nanofibers formation

    Directory of Open Access Journals (Sweden)

    K. Srilatha


    Full Text Available Hydrogen production studies have been carried using Thermo Catalytic Decomposition (TCD Unit. Thermo catalytic decomposition of methane is an attractive route for COx free production of hydrogen required in fuel cells. Although metal based catalysts produce hydrogen at low temperatures, carbon formed during methane decomposition reaction rapidly deactivates the catalyst. The present work compares the results of 10 wt% Pd supported on commercially available activated carbon and carbon black catalysts (samples coded as Pd10/AC and Pd10/CB respectively for methane decomposition reaction. Hydrogen has been produced by thermo catalytic decomposition of methane at 1123K and Volume Hourly Space Velocity (VHSV of 1.62 L/h g on the activity of both the catalysts has been studied. XRD of the above catalysts revealed, moderately crystalline peaks of Pd which may be responsible for the increase in catalytic life and formation of carbon fibers. Also during life studies (850°C and 54 sccm of methane it has been observed that the activity of carbon black is sustainable for a longer time compared to that of activated carbon.

  5. Catalytic enantioselective addition of hydrogen cyanide to benzaldehyde and p-methoxybenzaldehyde using cyclo-His-(αMe)Phe as catalyst

    NARCIS (Netherlands)

    Hulst, Ron; Broxterman, Quirinus B.; Kamphuis, Johan; Formaggio, Fernando; Crisma, Marco; Toniolo, Claudio; Kellogg, Richard M.


    Two cyclo-dipeptides based on His and the unnatural (αMe)Phe have been examined as catalysts in the enantioselective addition of hydrogen cyanide to benzaldehyde and p-methoxy-benzaldehyde. The synthesis, catalytic activity and NMR study towards the mechanism of this reaction are presented.

  6. Catalytic enantioselective addition of hydrogen cyanide to benzaldehyde and p-methoxybenzaldehyde using cyclo-His-(alpha-Me)Phe as catalyst

    NARCIS (Netherlands)

    Hulst, R; Broxterman, QB; Kamphuis, J; Formaggio, F; Crisma, M; Toniolo, C; Kellogg, RM


    Two cyclo-dipeptides based on His and the unnatural (alpha Me)Phe have been examined as catalysts in the enantioselective addition of hydrogen cyanide to benzaldehyde and p-methoxy-benzaldehyde. The synthesis, catalytic activity and NMR study towards the mechanism of this reaction are presented. (C)

  7. Catalytic Ring Hydrogenation of Benzoic Acid with Supported Transition Metal Catalysts in scCO2

    Directory of Open Access Journals (Sweden)

    Fengyu Zhao


    Full Text Available The ring hydrogenation of benzoic acid to cyclohexanecarboxylic acid overcharcoal-supported transition metal catalysts in supercritical CO2 medium has been studiedin the present work. The cyclohexanecarboxylic acid can be produced efficiently insupercritical CO2 at the low reaction temperature of 323 K. The presence of CO2 increasesthe reaction rate and several parameters have been discussed.

  8. Catalytic Ring Hydrogenation of Benzoic Acid with Supported Transition Metal Catalysts in scCO2



    The ring hydrogenation of benzoic acid to cyclohexanecarboxylic acid over charcoal-supported transition metal catalysts in supercritical CO2 medium has been studied in the present work. The cyclohexanecarboxylic acid can be produced efficiently in supercritical CO2 at the low reaction temperature of 323 K. The presence of CO2 increases the reaction rate and several parameters have been discussed.

  9. Catalytic activity of in situ synthesized MoWNi sulfides in hydrogenation of aromatic hydrocarbons (United States)

    Topolyuk, Yu. A.; Maksimov, A. L.; Kolyagin, Yu. G.


    MoWNi-sulfide catalysts were obtained in situ by thermal decomposition of metal-polymer precursors based on the copolymers of polymaleic anhydride in a hydrocarbon raw material. The activity of the synthesized catalysts in hydrogenation of bicyclic aromatic hydrocarbons was studied, and the composition and structure of active phase nanoparticles were determined.

  10. The remarkable effect of oxygen on the N2 selectivity of water catalytic denitrification by hydrogen. (United States)

    Constantinou, Costas L; Costa, Costas N; Efstathiou, Angelos M


    The selective catalytic reduction of nitrates (NO3-) in pure water toward N2 formation by the use of gaseous H2 and in the presence of O2 (air) at 1 atm total pressure and 25 degrees C has been investigated over Pd-Cu supported on various mixed metal oxides, x wt % MO(x(/gamma-Al2O3 (MO(x) = CeO2, SrO, Mn2O3, Cr2O3, Y2O3, and TiO2). It is demonstrated for the firsttime that a remarkable improvement in N2 reaction selectivity (by 80 percentage units) can be achieved when oxygen is present in the reducing feed gas stream. In particular, significantly lower reaction selectivities toward NH4+ and NO2- can be obtained, whereas the rate of NO3- conversion is not significantly affected. Moreover, it was shown thatthe same effect is obtained over the Pd-Cu-supported catalysts irrespective to the chemical composition of support and the initial concentration of nitrates in water used. The Pd-Cu clusters supported on 4.8 wt%TiO2/gamma-Al2O3 resulted in a solid with the best catalytic behavior compared with the rest of supports examined, both in the presence and in the absence of oxygen in the reducing feed gas stream. DRIFTS studies performed following catalytic reduction by H2 of NO3- in water revealed that the presence of TiO2 in the Pd-Cu/TiO2-Al2O3 system enhanced the reactivity of adsorbed bidentate nitrate species toward H2. Nitrosyl species adsorbed on the alumina and titania support surfaces are considered as active intermediate species of the selective catalytic reduction of NO3- by H2 in water. Pd-Cu/TiO2-Al2O3 appears to be the most selective catalyst ever reported in the literature for the reduction of nitrates present in pure water into N2 by a reducing gas mixture of H2/air.

  11. Sub-10 nm Platinum Nanocrystals with Size and Shape Control: Catalytic Study for Ethylene and Pyrrole Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Tsung, Chia-Kuang; Kuhn, John N.; Huang, Wenyu; Aliaga, Cesar; Hung, Ling-I; Somorjai, Gabor A.; Yang, Peidong


    Platinum nanocubes and nanopolyhedra with tunable size from 5 to 9 nm were synthesized by controlling the reducing rate of metal precursor ions in a one-pot polyol synthesis. A two-stage process is proposed for the simultaneous control of size and shape. In the first stage, the oxidation state of the metal ion precursors determined the nucleation rate and consequently the number of nuclei. The reaction temperature controlled the shape in the second stage by regulation of the growth kinetics. These well-defined nanocrystals were loaded into MCF-17 mesoporous silica for examination of catalytic properties. Pt loadings and dispersions of the supported catalysts were determined by elemental analysis (ICP-MS) and H2 chemisorption isotherms, respectively. Ethylene hydrogenation rates over the Pt nanocrystals were independent of both size and shape and comparable to Pt single crystals. For pyrrole hydrogenation, the nanocubes enhanced ring-opening ability and thus showed a higher selectivity to n-butylamine as compared to nanopolyhedra.

  12. Experimental studies on catalytic hydrogen recombiners for light water reactors; Experimentelle Untersuchungen zu katalytischen Wasserstoffkombinatoren fuer Leichtwasserreaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Drinovac, P.


    In the course of core melt accidents in nuclear power plants a large amount of hydrogen can be produced and form an explosive or even detonative gas mixture with aerial oxygen in the reactor building. In the containment atmosphere of pressurized water reactors hydrogen combines a phlogistically with the oxygen present to form water vapor even at room temperature. In the past, experimental work conducted at various facilities has contributed little or nothing to an understanding of the operating principles of catalytic recombiners. Hence, the purpose of the present study was to conduct detailed investigations on a section of a recombiner essentially in order to deepen the understanding of reaction kinetics and heat transport processes. The results of the experiments presented in this dissertation form a large data base of measurements which provides an insight into the processes taking place in recombiners. The reaction-kinetic interpretation of the measured data confirms and deepens the diffusion theory - proposed in an earlier study. Thus it is now possible to validate detailed numeric models representing the processes in recombiners. Consequently the present study serves to broaden and corroborate competence in this significant area of reactor technology. In addition, the empirical knowledge thus gained may be used for a critical reassessment of previous numeric model calculations. (orig.)

  13. Catalytic decomposition of methane to COx-free hydrogen and carbon nanotubes over Co–W/MgO catalysts

    Directory of Open Access Journals (Sweden)

    Ahmed E. Awadallah


    Full Text Available Bimetallic catalysts containing a series of Co/W at 40/10, 30/20, 20/30 and 10/40 wt% supported on MgO with a total metal content of 50 wt% were prepared and used for the catalytic decomposition of methane to COx-free hydrogen and multi-walled carbon nanotubes (MWCNTs. The solid fresh and exhausted catalysts were characterized structurally and chemically through XRD, TPR, BET, TGA, TEM and Raman spectroscopy. The 40%Co–10%W/MgO catalyst exhibited the highest activity for the production of both hydrogen and MWCNTs. The formation of a large amount of non-interacted Co3O4 species is considered as the main reason for the catalyst superiority in its activity. On the contrary, catalysts formulations of 20%Co–30%W and 10%Co–40%W demonstrated the formation of a large amount of hardly reducible CoWO4 and MgWO4 particles causing lower activity of these catalysts toward methane decomposition as evidenced through the XRD and TPR results.

  14. Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: the hydrogen to carbon effective ratio

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Huiyan; Cheng, Yu-Ting; Vispute, Tushar; Xiao, R; Huber, George W.


    Catalytic conversion of ten biomass-derived feedstocks, i.e.glucose, sorbitol, glycerol, tetrahydrofuran, methanol and different hydrogenated bio-oil fractions, with different hydrogen to carbon effective (H/C{sub eff}) ratios was conducted in a gas-phase flow fixed-bed reactor with a ZSM-5 catalyst. The aromatic + olefin yield increases and the coke yield decreases with increasing H/C{sub eff} ratio of the feed. There is an inflection point at a H/C{sub eff} ratio = 1.2, where the aromatic + olefin yield does not increase as rapidly as it does prior to this point. The ratio of olefins to aromatics also increases with increasing H/C{sub eff} ratio. CO and CO₂ yields go through a maximum with increasing H/C{sub eff} ratio. The deactivation rate of the catalyst decreases significantly with increasing H/C{sub eff} ratio. Coke was formed from both homogeneous and heterogeneous reactions. Thermogravimetric analysis (TGA) for the ten feedstocks showed that the formation of coke from homogeneous reactions decreases with increasing H/C{sub eff} ratio. Feedstocks with a H/C{sub eff} ratio less than 0.15 produce large amounts of undesired coke (more than 12 wt%) from homogeneous decomposition reactions. This paper shows that the conversion of biomass-derived feedstocks into aromatics and olefins using zeolite catalysts can be explained by the H/C{sub eff} ratio of the feed.

  15. Dendrimer Templated Synthesis of One Nanometer Rh and Pt Particles Supported on Mesoporous Silica: Catalytic Activity for Ethylene and Pyrrole Hydrogenation.

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wenyu; Kuhn, John N.; Tsung, Chia-Kuang; Zhang, Yawen; Habas, Susan E.; Yang, Peidong; Somorjai, Gabor A.


    Monodisperse rhodium (Rh) and platinum (Pt) nanoparticles as small as {approx}1 nm were synthesized within a fourth generation polyaminoamide (PAMAM) dendrimer, a hyperbranched polymer, in aqueous solution and immobilized by depositing onto a high-surface-area SBA-15 mesoporous support. X-ray photoelectron spectroscopy indicated that the as-synthesized Rh and Pt nanoparticles were mostly oxidized. Catalytic activity of the SBA-15 supported Rh and Pt nanoparticles was studied with ethylene hydrogenation at 273 and 293 K in 10 torr of ethylene and 100 torr of H{sub 2} after reduction (76 torr of H{sub 2} mixed with 690 torr of He) at different temperatures. Catalysts were active without removing the dendrimer capping but reached their highest activity after hydrogen reduction at a moderate temperature (423 K). When treated at a higher temperature (473, 573, and 673 K) in hydrogen, catalytic activity decreased. By using the same treatment that led to maximum ethylene hydrogenation activity, catalytic activity was also evaluated for pyrrole hydrogenation.

  16. Catalytic enantioselective amination of alcohols by the use of borrowing hydrogen methodology: cooperative catalysis by iridium and a chiral phosphoric acid. (United States)

    Zhang, Yao; Lim, Ching-Si; Sim, Derek Sui Boon; Pan, Hui-Jie; Zhao, Yu


    The catalytic asymmetric reduction of ketimines has been explored extensively for the synthesis of chiral amines, with reductants ranging from Hantzsch esters, silanes, and formic acid to H2 gas. Alternatively, the amination of alcohols by the use of borrowing hydrogen methodology has proven a highly atom economical and green method for the production of amines without an external reductant, as the alcohol substrate serves as the H2 donor. A catalytic enantioselective variant of this process for the synthesis of chiral amines, however, was not known. We have examined various transition-metal complexes supported by chiral ligands known for asymmetric hydrogenation reactions, in combination with chiral Brønsted acids, which proved essential for the formation of the imine intermediate and the transfer-hydrogenation step. Our studies led to an asymmetric amination of alcohols to provide access to a wide range of chiral amines with good to excellent enantioselectivity.

  17. Surface features and catalytic performance of platinum/alumina catalysts in slurry-phase hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez-Ortiz, M.A.; Gonzalez-Marcos, M.P.; Arnaiz-Aguilar, S.; Gonzalez-Marcos, J.A.; Gonzalez-Velasco, J.R. (Univ. del Pais Vasco/Euskal Hirrika Unibertsitatea, Bilbao (Spain). Dept. de Ingenierlla Quimica)


    Several platinum catalysts supported on three commercial [gamma]-aluminas were prepared by impregnation and anionic exchange using aqueous solutions of H[sub 2]PtCl[sub 6]. A number of methods were used to characterize the precursors as well as the final catalysts, including TGA, TPR, and hydrogen chemisorption at 298 K. TPR measurements showed two reduction peaks for the catalysts: the first one corresponding to reduction of the metal precursor to platinum and the second one associated to formation of a surface complex, Pt-Al[sub 2]O[sub 3[minus]x], With partial reduction of the support. The activity of the different catalysts was tested in the slurry-phase hydrogenation of benzene. The results obtained in the activity measurements have been correlated to the characteristics of the catalysts.

  18. High Intrinsic Catalytic Activity of Two-Dimensional Boron Monolayers for Hydrogen Evolution Reaction

    CERN Document Server

    Shi, Li; Ouyang, Yixin; Wang, Jinlan


    Two-dimensional (2D) boron monolayers have been successfully synthesized on silver substrate very recently. Their potential application is thus of great significance. In this work, we explore the possibility of boron monolayers (BMs) as electrocatalysts for hydrogen evolution reaction (HER) by first-principle method. Our calculations show that the BMs are active catalysts for HER with nearly zero free energy of hydrogen adsorption, metallic conductivity and plenty of active sites in the basal plane. The effect of the substrate on the HER activity is further assessed. It is found that the substrate has a positive effect on the HER performance caused by the competitive effect of mismatch strain and charge transfer. The indepth understanding of the structure dependent HER activity is also provided.

  19. Hydricity of an Fe-H Species and Catalytic CO2 Hydrogenation. (United States)

    Fong, Henry; Peters, Jonas C


    Despite renewed interest in carbon dioxide (CO2) reduction chemistry, examples of homogeneous iron catalysts that hydrogenate CO2 are limited compared to their noble-metal counterparts. Knowledge of the thermodynamic properties of iron hydride complexes, including M-H hydricities (ΔGH(-)), could aid in the development of new iron-based catalysts. Here we present the experimentally determined hydricity of an iron hydride complex: (SiP(iPr)3)Fe(H2)(H), ΔGH(-) = 54.3 ± 0.9 kcal/mol [SiP(iPr)3 = [Si(o-C6H4PiPr2)3](-)]. We also explore the CO2 hydrogenation chemistry of a series of triphosphinoiron complexes, each with a distinct apical unit on the ligand chelate (Si(-), C(-), PhB(-), N, B). The silyliron (SiP(R)3)Fe (R = iPr and Ph) and boratoiron (PhBP(iPr)3)Fe (PhBP(iPr)3 = [PhB(CH2PiPr2)3](-)) systems, as well as the recently reported (CP(iPr)3)Fe (CP(iPr)3 = [C(o-C6H4PiPr2)3](-)), are also catalysts for CO2 hydrogenation in methanol and in the presence of triethylamine, generating methylformate and triethylammonium formate at up to 200 TON using (SiP(Ph)3)FeCl as the precatalyst. Under stoichiometric conditions, the iron hydride complexes of this series react with CO2 to give formate complexes. Finally, the proposed mechanism of the (SiP(iPr)3)-Fe system proceeds through a monohydride intermediate (SiP(iPr)3)Fe(H2)(H), in contrast to that of the known and highly active tetraphosphinoiron, (tetraphos)Fe (tetraphos = P(o-C6H4PPh2)3), CO2 hydrogenation catalyst.

  20. Low-Energy Catalytic Electrolysis for Simultaneous Hydrogen Evolution and Lignin Depolymerization. (United States)

    Du, Xu; Liu, Wei; Zhang, Zhe; Mulyadi, Arie; Brittain, Alex; Gong, Jian; Deng, Yulin


    Here, a new proton-exchange-membrane electrolysis is presented, in which lignin was used as the hydrogen source at the anode for hydrogen production. Either polyoxometalate (POM) or FeCl3 was used as the catalyst and charge-transfer agent at the anode. Over 90 % Faraday efficiency was achieved. In a thermal-insulation reactor, the heat energy could be maintained at a very low level for continuous operation. Compared to the best alkaline-water electrolysis reported in literature, the electrical-energy consumption could be 40 % lower with lignin electrolysis. At the anode, the Kraft lignin (KL) was oxidized to aromatic chemicals by POM or FeCl3 , and reduced POM or Fe ions were regenerated during the electrolysis. Structure analysis of the residual KL indicated a reduction of the amount of hydroxyl groups and the cleavage of ether bonds. The results suggest that POM- or FeCl3 -mediated electrolysis can significantly reduce the electrolysis energy consumption in hydrogen production and, simultaneously, depolymerize lignin to low-molecular-weight value-added aromatic chemicals.

  1. H2CAP - Hydrogen assisted catalytic biomass pyrolysis for green fuels

    DEFF Research Database (Denmark)

    Arndal, Trine Marie Hartmann; Høj, Martin; Jensen, Peter Arendt


    that can be used to upgrade the crude bio-oil to fuel-grade oil. The development of the HDO process is challenged by rapid catalyst deactivation, instability of the pyrolysis oil, poorly investigated reaction conditions and a high complexity and variability of the input oil composition. However, continuous...... catalytic hydropyrolysis coupled with downstream HDO of the pyrolysis vapors before condensation shows promise (Figure 1). A bench scale experimental setup will be constructed for the continuous conversion of solid biomass (100g /h) to low oxygen, fuel-grade bio-oil. The aim is to provide a proof......-of-concept for the proposed process(Figure 1), to understand the reaction mechanisms of HDO, to develop highly active and durable catalysts for hydropyrolysis and HDO and to optimize the operating conditions; all in order to develop a sustainable production of green transportation fuels from biomass.To support the process...

  2. Biomedical and Forensic Applications of Combined Catalytic Hydrogenation-Stable Isotope Ratio Analysis

    Directory of Open Access Journals (Sweden)

    Mark A. Sephton


    Full Text Available Studies of biological molecules such as fatty acids and the steroid hormones have the potential to benefit enormously from stable carbon isotope ratio measurements of individual molecules. In their natural form, however, the body’s molecules interact too readily with laboratory equipment designed to separate them for accurate measurements to be made.Some methods overcome this problem by adding carbon to the target molecule, but this can irreversibly overprint the carbon source ‘signal’. Hydropyrolysis is a newly-applied catalytic technique that delicately strips molecules of their functional groups but retains their carbon skeletons and stereochemistries intact, allowing precise determination of the carbon source. By solving analytical problems, the new technique is increasing the ability of scientists to pinpoint molecular indicators of disease, elucidate metabolic pathways and recognise administered substances in forensic investigations.


    Directory of Open Access Journals (Sweden)

    Carlos Enrique Jeronimo


    Full Text Available The cheese-producing industry has in its production cycle to generate a product very rich in protein and lactose, called cheese whey. The waste currently has some food applications, but that does not add value to the real nutritional content and economical product that leverages. In order, therefore, a greater appreciation of cheese whey, studies were conducted for the recovery of proteins and the catalytic conversion of lactose into a polyol of high economic value, called lactitol. The results showed high removal efficiency of proteins in the order of 93% and the conversion of commercial lactose around 90% in 150 minutes of reaction. The applicability of whey, however, requires further testing to remove the chloride ions present in serum.

  4. Lice Aren't So Nice (United States)

    ... dientes Video: Getting an X-ray Lice Aren't So Nice KidsHealth > For Kids > Lice Aren't So Nice Print A A A What's in ... are yellow, tan, or brown, the lice haven't hatched yet. If the eggs are white or ...

  5. Catalytic performance of Fe modified K/Mo2C catalyst for CO hydrogenation

    Institute of Scientific and Technical Information of China (English)

    Minglin Xiang; Dudu Wu; Juan Zou; Debao Li; Yuhan Sun; Xichun She


    Fe modified and un-modified K/Mo2C were prepared and investigated as catalysts for CO hydrogenation reaction.Compared with K/Mo2C catalyst,the addition of Fe increased the production of alcohols,especially the C2+OH.Meanwhile,considerable amounts of C5+ hydrocarbons and C=2-C=4 were formed,whereas methane selectivity greatly decreased.Also,the activity and selectivity of the catalyst were readily affected by the reaction pressure and temperature employed.According to the XPS results,Mo4+ might be responsible for the production of alcohols,whereas the low valence state of Mo species such as Moo and/or Mo2+ might be account for the high activity and selectivity toward hydrocarbons.

  6. Catalytic Glycerol Hydrodeoxygenation under Inert Atmosphere: Ethanol as a Hydrogen Donor

    Directory of Open Access Journals (Sweden)

    Efterpi S. Vasiliadou


    Full Text Available Glycerol hydrodeoxygenation to 1,2-propanediol (1,2-PDO is a reaction of high interest. However, the need for hydrogen supply is a main drawback of the process. According to the concept investigated here, 1,2-propanediol is efficiently formed using bio-glycerol feedstock with H2 formed in situ via ethanol aqueous phase reforming. Ethanol is thought to be a promising H2 source, as it is alcohol that can be used instead of methanol for transesterification of oils and fats. The H2 generated is consumed in the tandem reaction of glycerol hydrodeoxygenation. The reaction cycle proceeds in liquid phase at 220–250 °C and 1.5–3.5 MPa initial N2 pressure for a 2 and 4-h reaction time. Pt-, Ni- and Cu-based catalysts have been synthesized, characterized and evaluated in the reaction. Among the materials tested, Pt/Fe2O3-Al2O3 exhibited the most promising performance in terms of 1,2-propanediol productivity, while reusability tests showed a stable behavior. Structural integrity and no formation of carbonaceous deposits were verified via Temperature Programmed Desorption of hydrogen (TPD-H2 and thermogravimetric analysis of the fresh and used Pt/FeAl catalyst. A study on the effect of various operating conditions (reaction time, temperature and pressure indicated that in order to maximize 1,2-propanediol productivity and yield, milder reaction conditions should be applied. The highest 1,2-propanediol yield, 53% (1.1 g1,2-PDO gcat−1·h−1, was achieved at a lower reaction temperature of 220 °C.

  7. Catalytically activated palladium@platinum nanowires for accelerated hydrogen gas detection. (United States)

    Li, Xiaowei; Liu, Yu; Hemminger, John C; Penner, Reginald M


    Platinum (Pt)-modified palladium (Pd) nanowires (or Pd@Pt nanowires) are prepared with controlled Pt coverage. These Pd@Pt nanowires are used as resistive gas sensors for the detection of hydrogen gas in air, and the influence of the Pt surface layer is assessed. Pd nanowires with dimensions of 40 nm (h) × 100 nm (w) × 50 μm (l) are first prepared using lithographically patterned nanowire electrodeposition. A thin Pt surface layer is electrodeposited conformally onto a Pd nanowire at coverages, θPt, of 0.10 monolayer (ML), 1.0 ML, and 10 ML. X-ray photoelectron spectroscopy coupled with scanning electron microscopy and electrochemical measurements is consistent with a layer-by-layer deposition mode for Pt on the Pd nanowire surface. The resistance of a single Pd@Pt nanowire is measured during the exposure of these nanowires to pulses of hydrogen gas in air at concentrations ranging from 0.05 to 5.0 vol %. Both Pd nanowires and Pd@Pt nanowires show a prompt and reversible increase in resistance upon exposure to H2 in air, caused by the conversion of Pd to more resistive PdHx. Relative to a pure Pd nanowire, the addition of 1.0 ML of Pt to the Pd surface alters the H2 detection properties of Pd@Pt nanowires in two ways. First, the amplitude of the relative resistance change, ΔR/R0, measured at each H2 concentration is reduced at low temperatures (T = 294 and 303 K) and is unaffected at higher temperatures (T = 316, 344, and 376 K). Second, response and recovery rates are both faster at all temperatures in this range and for all H2 concentrations. For higher θPt = 10 ML, sensitivity to H2 is dramatically reduced. For lower θPt = 0.1 ML, no significant influence on sensitivity or the speed of response/recovery is observed.

  8. Photo-catalytic hydrogen production over Fe{sub 2}O{sub 3} based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Boudjemaa, A. [Technical and Scientific Research Centre of Physico-chemistry Analysis (CRAPC), BP 248, RP 16004, Algiers (Algeria); Laboratory of Chemistry of Natural Gas, Faculty of Chemistry (USTHB) BP 32, 16111 Algiers (Algeria); Trari, M. [Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry (USTHB) BP 32, 16111 Algiers (Algeria)


    The hydrogen photo-evolution was successfully achieved in aqueous (Fe{sub 1-x}Cr{sub x}){sub 2}O{sub 3} suspensions (0 {<=} x {<=} 1). The solid solution has been prepared by incipient wetness impregnation and characterized by X-ray diffraction, BET, transport properties and photo-electrochemistry. The oxides crystallize in the corundum structure, they exhibit n-type conductivity with activation energy of {proportional_to}0.1 eV and the conduction occurs via adiabatic polaron hops. The characterization of the band edges has been studied by the Mott Schottky plots. The onset potential of the photo-current is {proportional_to}0.2 V cathodic with respect to the flat band potential, implying a small existence of surface states within the gap region. The absorption of visible light promotes electrons into (Fe{sub 1-x}Cr{sub x}){sub 2}O{sub 3}-CB with a potential ({proportional_to}-0.5 V{sub SCE}) sufficient to reduce water into hydrogen. As expected, the quantum yield increases with decreasing the electro affinity through the substitution of iron by the more electropositive chromium which increases the band bending at the interface and favours the charge separation. The generated photo-voltage was sufficient to promote simultaneously H{sub 2}O reduction and SO{sub 3}{sup 2-} oxidation in the energetically downhill reaction (H{sub 2}O + SO{sub 3}{sup 2-} {yields} H{sub 2} + SO{sub 4}{sup 2-}, {delta}G = -17.68 kJ mol{sup -1}). The best activity occurs over Fe{sub 1.2}Cr{sub 0.8}O{sub 3} in SO{sub 3}{sup 2-} (0.1 M) solution with H{sub 2} liberation rate of 21.7 {mu}mol g{sup -1} min{sup -1} and a quantum yield 0.06% under polychromatic light. Over time, a pronounced deceleration occurs, due to the competitive reduction of the end product S{sub 2}O{sub 6}{sup 2-}. (author)

  9. Rh nanoparticles supported on ultrathin carbon nanosheets for high-performance oxygen reduction reaction and catalytic hydrogenation. (United States)

    Lin, Chong; Wu, Guanghao; Li, Huiqin; Geng, Yanmin; Xie, Gang; Yang, Jianhui; Liu, Bin; Jin, Jian


    We reported a facile and scalable salt-templated approach to produce monodisperse Rh nanoparticles (NPs) on ultrathin carbon nanosheets with the assistance of calcination under inert gas. More importantly, in spite of the essentially poor ORR activity of Rh/C, the acquired Rh/C hybrid nanosheets display a comparable ORR activity to the optimal commercial Pt/C catalyst, which may be due to the extra-small size of Rh NPs and the 2D defect-rich amorphous carbon nanosheets that can facilitate the charge transfer and reactive surface exposure. Moreover, Rh/C nanosheets present the optimal current density and best durability with the minimum decline during the entire test, so that ∼93% activity after 20 000 s is achieved, indicating a good lifetime for ORR. In contrast, commercial Pt/C and commercial Rh/C exhibited worse durability, so that ∼74% and ∼85% activities after 20 000 s are maintained. What's more, in the model system of reduction of 4-nitrophenol (4-NP), the kinetic constant k for Rh/C nanosheets is 3.1 × 10(-3), which is 4.5 times than that of the commercial Rh/C catalyst, revealing that our Rh/C hybrid nanosheets can be potentially applied in industrial catalytic hydrogenation. This work opens a novel and facile way for the rest of the precious metal NPs to be supported on ultrathin carbon nanosheets for heterogeneous catalysis.

  10. Phase- and morphology-controlled synthesis of cobalt sulfide nanocrystals and comparison of their catalytic activities for hydrogen evolution (United States)

    Pan, Yuan; Liu, Yunqi; Liu, Chenguang


    Colalt sulfide nanocrystals (NCs), including dandelion-like Co9S8 and sphere-like Co3S4, have been synthesized via a thermal decomposition approach using cobalt acetylacetonate as the cobalt source, 1-dodecanethiol as the sulfur source and oleic acid or oleylamine as the high boiling organic solvent. It is found that the molar ratio of the Co:S precursor and the species of solvent play an important role in the control of phase and morphology of cobalt sulfide nanostructures. The phase structure and morphology of the as-synthesized nickel sulfide NCs are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscope (SEM), energy dispersive spectrum (EDS) mapping, X-ray photoelectron spectroscopy (XPS) and N2 adsorption-desorption. Then we further compare the electrocatalytic activity and stability of as-synthesized cobalt sulfide NCs for hydrogen evolution reaction (HER). The results show that sphere-like Co3S4 exhibits better electrocatalytic activity than the dandelion-like Co9S8 NCs for HER, which can be attributed to the difference of phase structure and morphology. The sphere-like Co3S4 NCs have large surface area and high electrical conductivity, both are beneficial to enhance the catalytic activity. This study indicates that the crystalline phase structure and morphology of cobalt sulfide NCs are important for designing HER electrocatalysts with high efficiency and good stability.

  11. Influence of rare-earth metal doping on the catalytic performance of CuO-CeO2 for the preferential oxidation of CO in excess hydrogen

    Institute of Scientific and Technical Information of China (English)

    Zhigang Liu; Renxian Zhou; Xiaoming Zheng


    Doping of different rare-earth metals(Pr,Nd,Y and La)had an evident influence on the catalytic performance of CuO-CeO2 for the preferential oxidation(PROX)Of CO in excess hydrogen.As for Pr,the doping enhanced the catalytic activity of CuO-CeO2 for PROX.For example,the CO conversion over the above catalyst for PROX was higher than 99%at 120℃.Especially.the doping of Pr widened the temperature window by 20℃ over CuO-CeO2 with 99%CO conversion.For Nd,Y and La,the doping depressed the catalytic activity of CuO-CeO2 for PROX.However,the doping of transition metals markedly improved the selectivity of CuO-CeO2 for PROX.

  12. Synthesis, Characterization, and Catalytic Hydrogenation Activity of New N-Acyl-Benzotriazole Rh(I and Ru(III Complexes in [bmim][BF4

    Directory of Open Access Journals (Sweden)

    Hakan Ünver


    Full Text Available The hydrogenation activity of new N-acyl-benzotriazole Rh(I and Ru(III complexes in ionic liquid media is reported in this study. Both complexes were completely soluble in 1-butyl-3-methylimidazolium tetrafluoroborate, [bmim][BF4], and they were able to catalyze the hydrogenation of styrene and 1-octene. While ethylbenzene conversion in styrene hydrogenation reached 84% when the Ru complex was used, 100% conversion was obtained with the Rh complex at 393 K in 6 h. Additionally, total conversion in 1-octene hydrogenation reached 100% with the Rh complex in [bmim][BF4] media. The hydrogenation of styrene and 1-octene in dimethyl sulfoxide (DMSO and toluene was also studied to compare the solvent effect on catalytic system. The effect of some catalytic parameters such as temperature, H2 (g pressure, and catalyst amount on the conversion was examined, and it was found that the conversion increased parallel to the increasing temperature and H2 pressure. The recyclability of catalysts was also investigated, and it was revealed that the Rh complex in particular maintained the activity for at least 10 cycles.

  13. Preparation and Catalytic Activity of a Novel Nanocrystalline ZrO2 @C Composite for Hydrogen Storage in NaAlH4. (United States)

    Zhang, Xin; Wu, Ruyan; Wang, Zeyi; Gao, Mingxia; Pan, Hongge; Liu, Yongfeng


    Sodium alanate (NaAlH4 ) has attracted intense interest as a prototypical high-density hydrogen-storage material. However, poor reversibility and slow kinetics limit its practical applications. Herein, a nanocrystalline ZrO2 @C catalyst was synthesized by using Uio-66(Zr) as a precursor and furfuryl alcohol (FA) as a carbon source. The as-synthesized ZrO2 @C exhibits good catalytic activity for the dehydrogenation and hydrogenation of NaAlH4 . The NaAlH4 -7 wt % ZrO2 @C sample released hydrogen starting from 126 °C and reabsorbed it starting from 54 °C, and these temperatures are lower by 71 and 36 °C, respectively, relative to pristine NaAlH4 . At 160 °C, approximately 5.0 wt % of hydrogen was released from the NaAlH4 -7 wt % ZrO2 @C sample within 250 min, and the dehydrogenation product reabsorbed approximately 4.9 wt % within 35 min at 140 °C and 100 bar of hydrogen. The catalytic function of the Zr-based active species is believed to contribute to the significantly reduced operating temperatures and enhanced kinetics.

  14. Superior catalytic activity derived from a two-dimensional Ti3C2 precursor towards the hydrogen storage reaction of magnesium hydride. (United States)

    Liu, Yongfeng; Du, Hufei; Zhang, Xin; Yang, Yaxiong; Gao, Mingxia; Pan, Hongge


    The superior catalytic effects derived from a 2D Ti3C2 (MXene), synthesized by the exfoliation of Ti3AlC2 powders, towards the hydrogen storage reaction of MgH2 were demonstrated. The 5 wt% Ti3C2-containing MgH2 releases 6.2 wt% H2 within 1 min at 300 °C and absorbs 6.1 wt% H2 within 30 s at 150 °C, exhibiting excellent dehydrogenation/hydrogenation kinetics.

  15. Ir/Sn dual-reagent catalysis towards highly selective alkylation of arenes and heteroarenes with benzyl alcohols

    Indian Academy of Sciences (India)

    Sujit Roy; Susmita Podder; Joyanta Choudhury


    A catalytic combination of [Ir(COD)Cl]2-SnCl4 efficiently promotes the reactions of arenes and heteroarenes with 1°/2°/3° benzyl alcohols as the alkylating agents to afford the corresponding diarylmethane and triarylmethane derivatives in high yields. The scope and limitation of the reaction with respect to catalyst and substrates variation has been studied in detail.

  16. A Novel Magnetically Recoverable Ni-CeO2-x/Pd Nanocatalyst with Superior Catalytic Performance for Hydrogenation of Styrene and 4-Nitrophenol. (United States)

    Jiang, Yi-Fan; Yuan, Cheng-Zong; Xie, Xiao; Zhou, Xiao; Jiang, Nan; Wang, Xin; Imran, Muhammad; Xu, An-Wu


    Metal/support nanocatalysts consisting of various metals and metal oxides not only retain the basic properties of each component, but also exhibit higher catalytic activity due to their synergistic effects. Herein, we report the creation of a highly efficient, long-lasting and magnetic recyclable catalyst, composed of magnetic nickel (Ni) nanoparticles (NPs), active Pd NPs and oxygen deficient CeO2-x support. These hybrid nanostructures composed of oxygen deficient CeO2-x and active metal nanoparticles could effectively facilitate diffusion of reactant molecules and active site exposure that can dramatically accelerate the reaction rate. Impressively, the rate constant k and k/m of 4-nitrophenol reduction over 61 wt%Ni-CeO2-x/0.1 wt%Pd catalyst are respectively 0.0479 s-1 and 2.1×104 min-1 g-1, and the reaction conversion shows negligible decline even after 20 cycles. Meanwhile, the optimal 61 wt%Ni-CeO2-x/3 wt%Pd catalyst manifests remarkable catalytic activity towards styrene hydrogenation with a high TOF of 6827 molstyrene molPd-1 h-1 and a selective conversion of 100% to ethylbenzene even after eight cycles. The strong metal-support interaction (SMSI) between Ni NPs, Pd NPs and oxygen deficient CeO2-x support is beneficial for superior catalytic efficiency and stability toward hydrogenation of styrene and 4-nitrophenol. Moreover, Ni species could boost the catalytic activity of Pd due to their synergistic effect and strengthen the interaction between reactant and catalyst, which seems responsible for the great enhancement of catalytic activity. Our findings provide a new perspective to develop other high-performance and magnetically recoverable nanocatalysts, which would be widely applied to a variety of catalytic reactions.

  17. Modification of Coal Char-loaded TiO2 by Sulfonation and Alkylsilylation to Enhance Catalytic Activity in Styrene Oxidation with Hydrogen Peroxide as Oxidant

    Directory of Open Access Journals (Sweden)

    Mukhamad Nurhadi


    Full Text Available The modified coal char from low-rank coal by sulfonation, titanium impregnation and followed by alkyl silylation possesses high catalytic activity in styrene oxidation. The surface of coal char was undergone several steps as such: modification using concentrated sulfuric acid in the sulfonation process, impregnation of 500 mmol titanium(IV isopropoxide and followed by alkyl silylation of n-octadecyltriclorosilane (OTS. The catalysts were characterized by X-ray diffraction (XRD, IR spectroscopy, nitrogen adsorption, and hydrophobicity. The catalytic activity of the catalysts has been examined in the liquid phase styrene oxidation by using aqueous hydrogen peroxide as oxidant. The catalytic study showed the alkyl silylation could enhance the catalytic activity of Ti-SO3H/CC-600(2.0. High catalytic activity and reusability of the o-Ti-SO3H/CC-600(2.0 were related to the modification of local environment of titanium active sites and the enhancement the hydrophobicity of catalyst particle by alkyl silylation. Copyright © 2017 BCREC GROUP. All rights reserved Received: 24th May 2016; Revised: 11st October 2016; Accepted: 18th October 2016 How to Cite: Nurhadi, M. (2017. Modification of Coal Char-loaded TiO2 by Sulfonation and Alkylsilylation to Enhance Catalytic Activity in Styrene Oxidation with Hydrogen Peroxide as Oxidant. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (1: 55-61 (doi:10.9767/bcrec.12.1.501.55-61 Permalink/DOI:

  18. Synthesis of palladium nanoparticles over graphite oxide and carbon nanotubes by reduction in ethylene glycol and their catalytic performance on the chemoselective hydrogenation of para-chloronitrobenzene



    Pd nanoparticles have been synthesized over carbon nanotubes (CNT) and graphite oxide (GO) by reduction with ethylene glycol and by conventional impregnation method. The catalysts were tested on the chemoselective hydrogenation of p-chloronitrobenzene and the effect of the synthesis method and surface chemistry on their catalytic performance was evaluated. The catalysts were characterized by N2 adsorption/desorption isotherms at 77 K, TEM, powder X-ray diffraction, thermogravimetry, infrared ...

  19. Catalytic Hydrogenation of the Sweet Principles of Stevia rebaudiana, Rebaudioside B, Rebaudioside C, and Rebaudioside D and Sensory Evaluation of Their Reduced Derivatives


    Mary Campbell; Indra Prakash; Venkata Sai Prakash Chaturvedula


    Catalytic hydrogenation of rebaudioside B, rebaudioside C, and rebaudioside D; the three ent-kaurane diterpene glycosides isolated from Stevia rebaudiana was carried out using Pd(OH)2. Reduction of steviol glycosides was performed using straightforward synthetic chemistry with the catalyst Pd(OH)2 and structures of the corresponding dihydro derivatives were characterized on the basis of 1D and 2D nuclear magnetic resonance (NMR) spectral data indicating that all are novel compounds being repo...

  20. Green diesel production via catalytic hydrogenation/decarboxylation of triglycerides and fatty acids of vegetable oil and brown grease (United States)

    Sari, Elvan

    than activated carbon itself for both decarboxylation of oleic acid and hydrogenation of alkenes. In an additional effort to reduce Pd amount in the catalyst, Pd2Co/C catalysts with various Pd content were prepared and the catalytic activity study showed that 0.5 wt% Pd2Co/C catalyst performs even better than a 5 wt% Pd/C catalyst. Pd and Co alloys were very well dispersed and formed fine clusters, which led to a higher active metal surface area and hence favored the decarboxylation of oleic acid. This study showed that an alloy of Pd on carbon with a significantly low Pd content is much more active and selective to diesel hydrocarbons production from an unsaturated fatty acid in super-critical water and may be regarded as a prospective feasible decarboxylation catalyst for the removal of oxygen from vegetable oil/animal fat without the need of additional hydrogen.

  1. Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur from Coal-Derived Fuel Gases

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Todd H.; Berry, David A.; Lyons, K. David; Beer, Stephen K.; Monahan, Michael J.


    The development of low cost, highly efficient, desulfurization technology with integrated sulfur recovery remains a principle barrier issue for Vision 21 integrated gasification combined cycle (IGCC) power generation plants. In this plan, the U. S. Department of Energy will construct ultra-clean, modular, co-production IGCC power plants each with chemical products tailored to meet the demands of specific regional markets. The catalysts employed in these co-production modules, for example water-gas-shift and Fischer-Tropsch catalysts, are readily poisoned by hydrogen sulfide (H{sub 2}S), a sulfur contaminant, present in the coal-derived fuel gases. To prevent poisoning of these catalysts, the removal of H{sub 2}S down to the parts-per-billion level is necessary. Historically, research into the purification of coal-derived fuel gases has focused on dry technologies that offer the prospect of higher combined cycle efficiencies as well as improved thermal integration with co-production modules. Primarily, these concepts rely on a highly selective process separation step to remove low concentrations of H{sub 2}S present in the fuel gases and produce a concentrated stream of sulfur bearing effluent. This effluent must then undergo further processing to be converted to its final form, usually elemental sulfur. Ultimately, desulfurization of coal-derived fuel gases may cost as much as 15% of the total fixed capital investment (Chen et al., 1992). It is, therefore, desirable to develop new technology that can accomplish H{sub 2}S separation and direct conversion to elemental sulfur more efficiently and with a lower initial fixed capital investment.

  2. Cyanogel-derived N-doped C nanosheets immobilizing Pd-P nanoparticles: One-pot synthesis and enhanced hydrogenation catalytic performance (United States)

    Zhang, Hao; Yan, Xiaohong; Huang, Yundi; Zhang, Mengru; Tang, Yawen; Sun, Dongmei; Xu, Lin; Wei, Shaohua


    For Pd-based nanocatalysts, stabilization of Pd nanoparticles on carbon support could not only effectively avoid particle aggregation and maintain catalytic stability during catalytic processes, but also facilitate enhancing the catalytic activity due to the synergy between Pd nanoparticles and carbon support. Furthermore, the incorporation of non-metal of phosphorus (P) into Pd could effectively modulate the electronic structure of Pd and thus help to boost the catalytic properties. However, one-pot synthesis of such nanohybrids remains a great challenge due to the distinct physiochemical properties of Pd, P and C components. Herein, we demonstrate a one-pot and scalable synthesis of highly dispersed PdP alloy nanoparticle-immobilized on N-doped graphitic carbon nanosheets (abbreviated as Pd-P@N-C nanosheets) by using inorganic-organic hybrid cyanogel as a reaction precursor. In virtue of both compositional and structural advantages, the as-synthesized Pd-P@N-C nanosheets manifest a superior catalytic activity and stability toward the hydrogenation of 4-nitrophenol (4-NP). We believe that the present work will provide a feasible and versatile strategy for the development of efficient catalysts for environmental remediation and can also be extendable to other carbon-based nanohybrids with desirable functionalities.

  3. pH dependent catalytic activities of platinum nanoparticles with respect to the decomposition of hydrogen peroxide and scavenging of superoxide and singlet oxygen (United States)

    Liu, Yi; Wu, Haohao; Li, Meng; Yin, Jun-Jie; Nie, Zhihong


    Recently, platinum (Pt) nanoparticles (NPs) have received increasing attention in the field of catalysis and medicine due to their excellent catalytic activity. To rationally design Pt NPs for these applications, it is crucial to understand the mechanisms underlying their catalytic and biological activities. This article describes a systematic study on the Pt NP-catalyzed decomposition of hydrogen peroxide (H2O2) and scavenging of superoxide (O2&z.rad;-) and singlet oxygen (1O2) over a physiologically relevant pH range of 1.12-10.96. We demonstrated that the catalytic activities of Pt NPs can be modulated by the pH value of the environment. Our results suggest that Pt NPs possess peroxidase-like activity of decomposing H2O2 into &z.rad;OH under acidic conditions, but catalase-like activity of producing H2O and O2 under neutral and alkaline conditions. In addition, Pt NPs exhibit significant superoxide dismutase-like activity of scavenging O2&z.rad;- under neutral conditions, but not under acidic conditions. The 1O2 scavenging ability of Pt NPs increases with the increase in the pH of the environment. The study will provide useful guidance for designing Pt NPs with desired catalytic and biological properties.Recently, platinum (Pt) nanoparticles (NPs) have received increasing attention in the field of catalysis and medicine due to their excellent catalytic activity. To rationally design Pt NPs for these applications, it is crucial to understand the mechanisms underlying their catalytic and biological activities. This article describes a systematic study on the Pt NP-catalyzed decomposition of hydrogen peroxide (H2O2) and scavenging of superoxide (O2&z.rad;-) and singlet oxygen (1O2) over a physiologically relevant pH range of 1.12-10.96. We demonstrated that the catalytic activities of Pt NPs can be modulated by the pH value of the environment. Our results suggest that Pt NPs possess peroxidase-like activity of decomposing H2O2 into &z.rad;OH under acidic conditions

  4. Hydrogen production by steam reforming of bio-alcohols. The use of conventional and membrane-assisted catalytic reactors

    Energy Technology Data Exchange (ETDEWEB)

    Seelam, P. K.


    The energy consumption around the globe is on the rise due to the exponential population growth and urbanization. There is a need for alternative and non-conventional energy sources, which are CO{sub 2}-neutral, and a need to produce less or no environmental pollutants and to have high energy efficiency. One of the alternative approaches is hydrogen economy with the fuel cell (FC) technology which is forecasted to lead to a sustainable society. Hydrogen (H{sub 2}) is recognized as a potential fuel and clean energy carrier being at the same time a carbon-free element. Moreover, H{sub 2} is utilized in many processes in chemical, food, metallurgical, and pharmaceutical industry and it is also a valuable chemical in many reactions (e.g. refineries). Non-renewable resources have been the major feedstock for H{sub 2} production for many years. At present, {approx}50% of H{sub 2} is produced via catalytic steam reforming of natural gas followed by various down-stream purification steps to produce {approx}99.99% H{sub 2}, the process being highly energy intensive. Henceforth, bio-fuels like biomass derived alcohols (e.g. bio-ethanol and bio-glycerol), can be viable raw materials for the H{sub 2} production. In a membrane based reactor, the reaction and selective separation of H{sub 2} occur simultaneously in one unit, thus improving the overall reactor efficiency. The main motivation of this work is to produce H{sub 2} more efficiently and in an environmentally friendly way from bio-alcohols with a high H{sub 2} selectivity, purity and yield. In this thesis, the work was divided into two research areas, the first being the catalytic studies using metal decorated carbon nanotube (CNT) based catalysts in steam reforming of ethanol (SRE) at low temperatures (<450 deg C). The second part was the study of steam reforming (SR) and the water-gas-shift (WGS) reactions in a membrane reactor (MR) using dense and composite Pd-based membranes to produce high purity H{sub 2}. CNTs

  5. Catalytic activity of iron hexacyanoosmate(II) towards hydrogen peroxide and nicotinamide adenine dinucleotide and its use in amperometric biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Kotzian, Petr; Janku, Tereza [Department of Analytical Chemistry, University of Pardubice, Nam. Cs. Legii 565, CZ-532 10 Pardubice (Czech Republic); Kalcher, Kurt [Institute of Chemistry - Analytical Chemistry, Karl-Franzens University, Universitaetsplatz 1, A-8010 Graz (Austria); Vytras, Karel [Department of Analytical Chemistry, University of Pardubice, Nam. Cs. Legii 565, CZ-532 10 Pardubice (Czech Republic)], E-mail:


    Hydrogen peroxide and nicotinamide adenine dinucleotide (NADH) may be determined amperometrically using screen-printed electrodes chemically modified with iron(III) hexacyanoosmate(II) (Osmium purple) in flow injection analysis (FIA). The determination is based on the exploitation of catalytic currents resulting from the oxidation/reduction of the modifier. The performance of the sensor was characterized and optimized by controlling several operational parameters (applied potential, pH and flow rate of the phosphate buffer). Comparison has been made with analogous complexes of ruthenium (Ruthenium purple) and iron (Prussian blue). Taking into account the sensitivity and stability of corresponding sensors, the best results were obtained with the use of Osmium purple. The sensor exhibited a linear increase of the amperometric signal with the concentration of hydrogen peroxide in the range of 0.1-100 mg L{sup -1} with a detection limit (evaluated as 3{sigma}) of 0.024 mg L{sup -1} with a R.S.D. 1.5% for 10 mg L{sup -1} H{sub 2}O{sub 2} under optimized flow rate of 0.4 mL min{sup -1} in 0.1 M phosphate buffer carrier (pH 6) and a working potential of +0.15 V versus Ag/AgCl. Afterwards, a biological recognition element - either glucose oxidase or ethanol dehydrogenase - was incorporated to achieve a sensor facilitating the determination of glucose or ethanol, respectively. The glucose sensor gave linearity between current and concentration in the range from 1 to 250 mg L{sup -1} with a R.S.D. 2.4% for 100 mg L{sup -1} glucose, detection limit 0.02 mg L{sup -1} (3{sigma}) and retained its original activity after 3 weeks when stored at 6 deg. C. Optimal parameters in the determination of ethanol were selected as: applied potential +0.45 V versus Ag/AgCl, flow rate 0.2 mL min{sup -1} in 0.1 M phosphate buffer carrier (pH 7). Different structural designs of the ethanol sensor were tested and linearity obtained was up to 1000 mg L{sup -1} with a maximum R.S.D. of 5

  6. Molecular hydrogen and catalytic combustion in the production of hyperpolarized 83Kr and 129Xe MRI contrast agents (United States)

    Rogers, Nicola J.; Hill-Casey, Fraser; Stupic, Karl F.; Six, Joseph S.; Lesbats, Clémentine; Rigby, Sean P.; Fraissard, Jacques; Pavlovskaya, Galina E.; Meersmann, Thomas


    Hyperpolarized (hp) 83Kr is a promising MRI contrast agent for the diagnosis of pulmonary diseases affecting the surface of the respiratory zone. However, the distinct physical properties of 83Kr that enable unique MRI contrast also complicate the production of hp 83Kr. This work presents a previously unexplored approach in the generation of hp 83Kr that can likewise be used for the production of hp 129Xe. Molecular nitrogen, typically used as buffer gas in spin-exchange optical pumping (SEOP), was replaced by molecular hydrogen without penalty for the achievable hyperpolarization. In this particular study, the highest obtained nuclear spin polarizations were P = 29% for 83Kr and P = 63% for 129Xe. The results were reproduced over many SEOP cycles despite the laser-induced on-resonance formation of rubidium hydride (RbH). Following SEOP, the H2 was reactively removed via catalytic combustion without measurable losses in hyperpolarized spin state of either 83Kr or 129Xe. Highly spin-polarized 83Kr can now be purified for the first time, to our knowledge, to provide high signal intensity for the advancement of in vivo hp 83Kr MRI. More generally, a chemical reaction appears as a viable alternative to the cryogenic separation process, the primary purification method of hp 129Xe for the past 2 1/2 decades. The inherent simplicity of the combustion process will facilitate hp 129Xe production and should allow for on-demand continuous flow of purified and highly spin-polarized 129Xe.

  7. A conserved hydrogen-bond network in the catalytic centre of animal glutaminyl cyclases is critical for catalysis. (United States)

    Huang, Kai-Fa; Wang, Yu-Ruei; Chang, En-Cheng; Chou, Tsung-Lin; Wang, Andrew H-J


    QCs (glutaminyl cyclases; glutaminyl-peptide cyclotransferases, EC catalyse N-terminal pyroglutamate formation in numerous bioactive peptides and proteins. The enzymes were reported to be involved in several pathological conditions such as amyloidotic disease, osteoporosis, rheumatoid arthritis and melanoma. The crystal structure of human QC revealed an unusual H-bond (hydrogen-bond) network in the active site, formed by several highly conserved residues (Ser(160), Glu(201), Asp(248), Asp(305) and His(319)), within which Glu(201) and Asp(248) were found to bind to substrate. In the present study we combined steady-state enzyme kinetic and X-ray structural analyses of 11 single-mutation human QCs to investigate the roles of the H-bond network in catalysis. Our results showed that disrupting one or both of the central H-bonds, i.e., Glu(201)...Asp(305) and Asp(248)...Asp(305), reduced the steady-state catalysis dramatically. The roles of these two COOH...COOH bonds on catalysis could be partly replaced by COOH...water bonds, but not by COOH...CONH(2) bonds, reminiscent of the low-barrier Asp...Asp H-bond in the active site of pepsin-like aspartic peptidases. Mutations on Asp(305), a residue located at the centre of the H-bond network, raised the K(m) value of the enzyme by 4.4-19-fold, but decreased the k(cat) value by 79-2842-fold, indicating that Asp(305) primarily plays a catalytic role. In addition, results from mutational studies on Ser(160) and His(319) suggest that these two residues might help to stabilize the conformations of Asp(248) and Asp(305) respectively. These data allow us to propose an essential proton transfer between Glu(201), Asp(305) and Asp(248) during the catalysis by animal QCs.

  8. Hydrogen production from catalytic decomposition of methane; Produccion de hidrogeno a partir de la descomposicion termica catalitica del biogas de digestion anaerobia

    Energy Technology Data Exchange (ETDEWEB)

    Belsue Echevarria, M.; Etxebeste Juarez, O.; Perez Gil, S.


    The need of substitution of part of the energy obtained from fossil fuels instead of energy from renewable sources, together with the minimal emissions of CO{sub ''} and CO that are expected with these technologies, make renewable sources a very attractive predecessor for the production of hydrogen. In this situation, a usable source for hydrogen production is the biogas achieved by means of technologies like the anaerobic digestion of different kinds of biomass (MSW, sewage sludge, stc.). In this article we suggest the Thermal Catalytic Decomposition of the methane contained in this biogas, after separation of pollutants like CO{sub ''}, H{sub 2}S. steam. This technology will give hydrogen, usable in fuel cells, and nanoestructured carbon as products. (Author) 7 refs.

  9. Cobalt-chitosan: Magnetic and biodegradable heterogeneous catalyst for selective aerobic oxidation of alkyl arenes and alcohols

    Indian Academy of Sciences (India)

    Ahmad Shaabani; Mahmoud Borjian Boroujeni; Mona Hamidzad Sangachin


    A novel and biodegradable cobalt-chitosan as a magnetic heterogeneous catalyst was synthesized and characterized by XPS, FT-IR, EDX and TEM. Catalytic performance of cobalt- chitosan was tested by aerobic oxidation of alkyl arenes and alcohols. The results show that the catalyst exhibits excellent conversion for selective aerobic oxidation of various alkyl arenes, primary and secondary alcohols with air as the only oxidant. The catalyst can be easily separated by magnetic devices and reused for 5 runs without appreciable loss of activity.

  10. Solution structures of nanoassemblies based on pyrogallol[4]arenes. (United States)

    Kumari, Harshita; Deakyne, Carol A; Atwood, Jerry L


    Nanoassemblies of hydrogen-bonded and metal-seamed pyrogallol[4]arenes have been shown to possess novel solution-phase geometries. Further, we have demonstrated that both guest encapsulation and structural rearrangements may be studied by solution-phase techniques such as small-angle neutron scattering (SANS) and diffusion NMR. Application of these techniques to pyrogallol[4]arene-based nanoassemblies has allowed (1) differentiation among spherical, ellipsoidal, toroidal, and tubular structures in solution, (2) determination of factors that control the preferred geometrical shape and size of the nanoassemblies, and (3) detection of small variations in metric dimensions distinguishing similarly and differently shaped nanoassemblies in a given solution. Indeed, we have shown that the solution-phase structure of such nanoassemblies is often quite different from what one would predict based on solid-state studies, a result in disagreement with the frequently made assumption that these assemblies have similar structures in the two phases. We instead have predicted solid-state architectures from solution-phase structures by combining the solution-phase analysis with solid-state magnetic and elemental analyses. Specifically, the iron-seamed C-methylpyrogallol[4]arene nanoassembly was found to be tubular in solution and predicted to be tubular in the solid state, but it was found to undergo a rearrangement from a tubular to spherical geometry in solution as a function of base concentration. The absence of metal within a tubular framework affects its stability in both solution and the solid state; however, this instability is not necessarily characteristic of hydrogen-bonded capsular entities. Even metal seaming of the capsules does not guarantee similar solid-state and solution-phase architectures. The rugby ball-shaped gallium-seamed C-butylpyrogallol[4]arene hexamer becomes toroidal on dissolution, as does the spherically shaped gallium/zinc-seamed C-butylpyrogallol[4

  11. A comparative parametric study of a catalytic plate methane reformer coated with segmented and continuous layers of combustion catalyst for hydrogen production (United States)

    Mundhwa, Mayur; Parmar, Rajesh D.; Thurgood, Christopher P.


    A parametric comparison study is carried out between segmented and conventional continuous layer configurations of the coated combustion-catalyst to investigate their influence on the performance of methane steam reforming (MSR) for hydrogen production in a catalytic plate reactor (CPR). MSR is simulated on one side of a thin plate over a continuous layer of nickel-alumina catalyst by implementing an experimentally validated surface microkinetic model. Required thermal energy for the MSR reaction is supplied by simulating catalytic methane combustion (CMC) on the opposite side of the plate over segmented and continuous layer of a platinum-alumina catalyst by implementing power law rate model. The simulation results of both coating configurations of the combustion-catalyst are compared using the following parameters: (1) co-flow and counter-flow modes between CMC and MSR, (2) gas hourly space velocity and (3) reforming-catalyst thickness. The study explains why CPR designed with the segmented combustion-catalyst and co-flow mode shows superior performance not only in terms of high hydrogen production but also in terms of minimizing the maximum reactor plate temperature and thermal hot-spots. The study shows that the segmented coating requires 7% to 8% less combustion-side feed flow and 70% less combustion-catalyst to produce the required flow of hydrogen (29.80 mol/h) on the reforming-side to feed a 1 kW fuel-cell compared to the conventional continuous coating of the combustion-catalyst.

  12. Extraction Capability of Calix[4]/arene-R14 Extraction Chromatography

    Institute of Scientific and Technical Information of China (English)


    <正>In order to partition effectively 137Cs from high-level radioactive sample by extraction chromato- graphy, a kind of macroporous silica-based polymeric materials, Calix[4]arene-R14/SiO2-P were used. A

  13. Catalytic hydrogenation of aromatic nitro compounds by functionalized ionic liquids-stabilized nickel nanoparticles in aqueous phase:The influence of anions

    Institute of Scientific and Technical Information of China (English)


    Two kinds of nickel nanoparticles (NPs) well-dispersed in aqueous phase have been conveniently prepared by reducing nickel(II) salt with hydrazine in the presence of amino group (-NH2) functionalized ionic liquids:1-(3-aminopropyl)-2,3-dimethylimidazolium bromide ([AMMIM][Br]) and 1-(3-aminopropyl)-2,3-dimethylimidazolium acetate ([AMMIM][AcO]).The Ni(0) particles are composed of smaller ones which assemble in a blackberry-like shape.The Ni nanoparticles stabilized with [AMMIM][AcO] are much larger than those stabilized with [AMMIM][Br],and the former unexpectedly give much higher activity in the selective hydrogenation of citral and nitrobenzene (NB) in aqueous phase.The Ni(0) nanocatalysts dispersed in aqueous phase are stable enough to be reused at least five times without significant loss of catalytic activity and selectivity during the catalytic recycles.

  14. Characterization of Ni and W co-loaded SBA-15 catalyst and its hydrogen production catalytic ability on ethanol steam reforming reaction (United States)

    Kim, Dongjin; Kwak, Byeong Sub; Min, Bong-Ki; Kang, Misook


    This study evaluated the application of advanced bimetallic catalytic species of Ni and W to effectively produce hydrogen gases from ethanol steam reforming. The highest reactivity was achieved using the Ni0.95W0.05/SBA-15 catalyst. The maximum H2 production and ethanol conversion of 90% and 85%, respectively, were obtained for 0.4 g catalyst at 600 °C after 10 h with a EtOH:H2O ratio of 1:3 and a gas hourly space velocity of 6000 h-1. This highlights a synergy between the Ni and W loading on SBA-15 during ethanol steam reforming that occurs through the inhibition of Ni particle agglomeration and consequent decrease in catalytic deactivation. Additionally, the supplied W ingredients promoted CO2 selectivity, which was generated from the CO-water gas shift reaction.

  15. Negative catalytic effect of water on the reactivity of hydrogen abstraction from the C-H bond of dimethyl ether by deuterium atoms through tunneling at low temperatures (United States)

    Oba, Yasuhiro; Watanabe, Naoki; Kouchi, Akira


    We report an experimental study on the catalytic effect of solid water on the reactivity of hydrogen abstraction (H-abstraction) from dimethyl ether (DME) in the low-temperature solid DME-H2O complex. When DME reacted with deuterium atoms on a surface at 15-25 K, it was efficiently deuterated via successive tunneling H-abstraction and deuterium (D)-addition reactions. The 'effective' rate constant for DME-H2O + D was found to be about 20 times smaller than that of pure DME + D. This provides the first evidence that the presence of solid water has a negative catalytic effect on tunneling H-abstraction reactions.

  16. Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling. (United States)

    Hanada, Nobuko; Ichikawa, Takayuki; Fujii, Hironobu


    We examined the catalytic effect of nanoparticle 3d-transition metals on hydrogen desorption (HD) properties of MgH(2) prepared by mechanical ball milling method. All the MgH(2) composites prepared by adding a small amount of nanoparticle Fe(nano), Co(nano), Ni(nano), and Cu(nano) metals and by ball milling for 2 h showed much better HD properties than the pure ball-milled MgH(2) itself. In particular, the 2 mol % Ni(nano)-doped MgH(2) composite prepared by soft milling for a short milling time of 15 min under a slow milling revolution speed of 200 rpm shows the most superior hydrogen storage properties: A large amount of hydrogen ( approximately 6.5 wt %) is desorbed in the temperature range from 150 to 250 degrees C at a heating rate of 5 degrees C/min under He gas flow with no partial pressure of hydrogen. The EDX micrographs corresponding to Mg and Ni elemental profiles indicated that nanoparticle Ni metals as catalyst homogeneously dispersed on the surface of MgH(2). In addition, it was confirmed that the product revealed good reversible hydriding/dehydriding cycles even at 150 degrees C. The hydrogen desorption kinetics of catalyzed and noncatalyzed MgH(2) could be understood by a modified first-order reaction model, in which the surface condition was taken into account.

  17. Determination of Selenium by Catalytic Kinetic Spectrophotometry in Hydrogen Peroxide-PAN System%Guangzhou Chemical Industry

    Institute of Scientific and Technical Information of China (English)



    在盐酸介质中, Se(IV)对1-(2-吡啶偶氮)-2-萘酚(PAN)褪色反应有灵敏的催化作用,建立了测定Se (IV)的动力学新方法。线性范围在0~0.9μg/50 mL时符合比耳定律,检出限为2.2×10-10 g·mL-1。催化反应为动力学零级反应,表现活化能为111.28 kJ/mol,反应速率常数为7.15×10-4 s-1。考察了20多种共存离子的影响,表明本方法具有较好选择性。方法用于茶叶样品中痕量硒的测定,相对标准偏差小于3.9%,回收率在96.2%~105.5%之间。%A new kinetic spectrophotometric method for determination of trace Se(IV) was proposed. Se(IV) can sensitively catalyze the discoloration reaction of 1- (2-pyridylazo) -2-naphthol by hydrogen peroxide in HCl medium. The line arrange for determination of Se( IV) was 0~0. 9 μg/50 mL with the detection limit of 2. 2 ×10-10 g·mL-1 . The resalts from the studies suggested that the catalytic reaction was zero-order and the apparent activationenergy of this reaction was 111. 28 kJ·mol-1,and the apparent rate constant was 7. 15×10-4 s-1. The interferences of foreign ions werealso studied. The procedure was used to determine Se( IV) in tea samples, with the relative standard deviation of below 3. 9% and the average recovery of 96. 2% ~105. 5%.

  18. Catalytic Hydrogenation of the Sweet Principles of Stevia rebaudiana, Rebaudioside B, Rebaudioside C, and Rebaudioside D and Sensory Evaluation of Their Reduced Derivatives

    Directory of Open Access Journals (Sweden)

    Mary Campbell


    Full Text Available Catalytic hydrogenation of rebaudioside B, rebaudioside C, and rebaudioside D; the three ent-kaurane diterpene glycosides isolated from Stevia rebaudiana was carried out using Pd(OH2. Reduction of steviol glycosides was performed using straightforward synthetic chemistry with the catalyst Pd(OH2 and structures of the corresponding dihydro derivatives were characterized on the basis of 1D and 2D nuclear magnetic resonance (NMR spectral data indicating that all are novel compounds being reported for the first time. Also, the taste properties of all reduced compounds were evaluated against their corresponding original steviol glycosides and sucrose.

  19. Catalytic hydrogenation of the sweet principles of Stevia rebaudiana, Rebaudioside B, Rebaudioside C, and Rebaudioside D and sensory evaluation of their reduced derivatives. (United States)

    Prakash, Indra; Campbell, Mary; Chaturvedula, Venkata Sai Prakash


    Catalytic hydrogenation of rebaudioside B, rebaudioside C, and rebaudioside D; the three ent-kaurane diterpene glycosides isolated from Stevia rebaudiana was carried out using Pd(OH)(2). Reduction of steviol glycosides was performed using straightforward synthetic chemistry with the catalyst Pd(OH)(2) and structures of the corresponding dihydro derivatives were characterized on the basis of 1D and 2D nuclear magnetic resonance (NMR) spectral data indicating that all are novel compounds being reported for the first time. Also, the taste properties of all reduced compounds were evaluated against their corresponding original steviol glycosides and sucrose.

  20. Catalytic Hydrogenation of the Sweet Principles of Stevia rebaudiana, Rebaudioside B, Rebaudioside C, and Rebaudioside D and Sensory Evaluation of Their Reduced Derivatives (United States)

    Prakash, Indra; Campbell, Mary; Chaturvedula, Venkata Sai Prakash


    Catalytic hydrogenation of rebaudioside B, rebaudioside C, and rebaudioside D; the three ent-kaurane diterpene glycosides isolated from Stevia rebaudiana was carried out using Pd(OH)2. Reduction of steviol glycosides was performed using straightforward synthetic chemistry with the catalyst Pd(OH)2 and structures of the corresponding dihydro derivatives were characterized on the basis of 1D and 2D nuclear magnetic resonance (NMR) spectral data indicating that all are novel compounds being reported for the first time. Also, the taste properties of all reduced compounds were evaluated against their corresponding original steviol glycosides and sucrose. PMID:23203115

  1. Electrochemical synthesis of Ag nanoparticles supported on glassy carbon electrode by means of p-isopropyl calix[6]arene matrix and its application for electrocatalytic reduction of H{sub 2}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Raoof, Jahan Bakhsh, E-mail: [Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, Mazandaran University, 3rd Kilometer of Air Force Road, 47416-95447 Babolsar (Iran, Islamic Republic of); Ojani, Reza; Hasheminejad, Ehteram [Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, Mazandaran University, 3rd Kilometer of Air Force Road, 47416-95447 Babolsar (Iran, Islamic Republic of); Rashid-Nadimi, Sahar [Department of Renewable Energy, Faculty of Advanced Science and Technology, University of Isfahan, 81746-73441 Isfahan (Iran, Islamic Republic of)


    The silver nanoparticles were prepared on the glassy carbon (GC) electrode, modified with p-iso propyl calix[6]arene, by preconcentration of silver ions in open circuit potential and followed by electrochemical reduction of silver ions. The stepwise fabrication process of Ag nanoparticles was characterized by scanning electron microscopy and electrochemical impedance spectroscopy. The prepared Ag nanoparticles were deposited with an average size of 70 nm and a homogeneous distribution on the surface of electrode. The observed results indicated that the presence of calixarene layer on the electrode surface can control the particle size and prevent the agglomeratione and electrochemical deposition is a promising technique for preparation of nanoparticles due to its easy-to-use procedure and low cost of implementation. Cyclic voltammetry experiments showed that Ag nanoparticles had a good catalytic ability for the reduction of hydrogen peroxide (H{sub 2}O{sub 2}). The effects of p-isopropyl calix[6]arene concentration, applied potential for reduction of Ag{sup +}, number of calixarene layers and pH value on the electrocatalytic ability of Ag nanoparticles were investigated. The present modified electrode exhibited a linear range from 5.0 Multiplication-Sign 10{sup -5} to 6.5 Multiplication-Sign 10{sup -3} M and a detection limit 2.7 Multiplication-Sign 10{sup -5} M of H{sub 2}O{sub 2} (S/N = 3) using amperometric method.

  2. Mono- and Bimetallic Ruthenium—Arene Catalysts for Olefin Metathesis: A Survey (United States)

    Borguet, Yannick; Sauvage, Xavier; Demonceau, Albert; Delaude, Lionel

    In this chapter, we summarize the main achievements of our group toward the development of easily accessible, highly efficient ruthenium—arene catalyst precursors for olefin metathesis. Major advances in this field are presented chronologically, with an emphasis on catalyst design and mechanistic details. The first part of this survey focuses on monometallic complexes with the general formula RuCl2(p-cymene)(L), where L is a phosphine or N-heterocyclic carbene ancillary ligand. In the second part, we disclose recent developments in the synthesis and catalytic applications of homobimetallic ruthenium—arene complexes of generic formula (p-cymene)Ru(μ-Cl)3RuCl(η2-C2H4)(L) and their derivatives resulting from the substitution of the labile ethylene moiety with vinylidene, allenylidene, or indenylidene units

  3. Selective heterogeneous catalytic hydrogenation of ketone (C═O) to alcohol (OH) by magnetite nanoparticles following Langmuir-Hinshelwood kinetic approach. (United States)

    Shah, Muhammad Tariq; Balouch, Aamna; Rajar, Kausar; Sirajuddin; Brohi, Imdad Ali; Umar, Akrajas Ali


    Magnetite nanoparticles were successfully synthesized and effectively employed as heterogeneous catalyst for hydrogenation of ketone moiety to alcohol moiety by NaBH4 under the microwave radiation process. The improvement was achieved in percent recovery of isopropyl alcohol by varying and optimizing reaction time, power of microwave radiations and amount of catalyst. The catalytic study revealed that acetone would be converted into isopropyl alcohol (IPA) with 99.5% yield in short period of reaction time, using 10 μg of magnetite NPs (Fe3O4). It was observed that the catalytic hydrogenation reaction, followed second-order of reaction and the Langmuir-Hinshelwood kinetic mechanism, which elucidated that both reactants get adsorb onto the surface of silica coated magnetite nanocatalyst to react. Consequently, the rate-determining step was the surface reaction of acetone and sodium borohydride. The current study revealed an environment friendly conversion of acetone to IPA on the basis of its fast, efficient, and highly economical method of utilization of microwave irradiation process and easy catalyst recovery.

  4. Research Progress in Catalytic Hydrogenation of CO2 to Ethanol%CO2催化加氢制乙醇研究进展

    Institute of Scientific and Technical Information of China (English)

    王慧敏; 杨绪壮; 张兵兵; 苏海全


    燃料乙醇是可再生的清洁燃料,具有替代汽油的应用前景.以CO2气体为碳源并通过催化加氢制燃料乙醇具有环境保护和节约能源的现实意义.主要介绍了CO2催化加氢的反应机理以及催化剂活性组分、前驱物、助剂及载体对催化活性、产物选择性的影响,同时介绍了反应条件对催化过程的影响.%Fuel ethanol is often regarded as a potential renewable clean alternative fuel to gasoline. It has practical significance of environmental protection and energy conservation to synthesize fuel ethanol by the hydrogenation of CO2. The reaction mechanism of catalytic hydrogenation of CO2 to ethanol as well as the effects of active sites,precursors,promoters and supports on the catalytic activity and product selectivity are reviewed. Moreover,the effects of reaction conditions on the catalysis are also introduced.

  5. Agro-industrial waste-mediated synthesis and characterization of gold and silver nanoparticles and their catalytic activity for 4-nitroaniline hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Dauthal, Preeti; Mukhopadhyay, Mausumi [S.V. National Institute of Technology, Surat (India)


    The biosynthesis of gold (Au-NPs) and silver nanoparticles (Ag-NPs) using agro-industrial waste Citrus aurantifolia peel extract as a bio-reducing agent is reported. Catalytic activity of nanoparticles (NPs) was evaluated for hydrogenation of anthropogenic pollutant 4-nitroaniline (4-NA). Both synthesized NPs were nearly spherical and distributed in size range of 6-46 and 10-32 nm for Au-NPs and Ag-NPs, respectively. XRD analysis revealed face centered cubic (fcc) structure of both NPs. ζ potential value obtained from colloidal solution of Au-NPs and Ag-NPs was −28.0 and −26.1mV, respectively, indicating the stability of the NPs in colloidal solution. FTIR spectra supported the role of citric and ascorbic acids of peel extract for biosynthesis and stabilization of NPs. The biosynthesized NPs exhibited excellent catalytic activity for hydrogenation of 4-NA in the presence of NaBH{sub 4}.


    Directory of Open Access Journals (Sweden)

    Nur Afni Evalia


    Full Text Available Aren is a type of palm that has a highly potential economic value. Lareh Sago Sub-district is the largest producer in the District of Lima Puluh Kota; however, it is only processed to produce wine and molded sugar. This study aimed to formulate a strategy for the sugar palm sugar agro-industrial development in Lareh Sagohalaban. The research method was a case study in the form of quantitative descriptive, and the data were processed using IFE/EFE, SWOT and AHP. The values obtained from IFE and EFE matrixes were 2.646 and 2.298 respectively. From the SWOT analysis, alternative strategies were obtained, namely, SO Strategy: Strengthening the R & D to develop market-based sugar processing for commercial scale and diversification of palm downstream products; WO Strategy: Improving upstream subsystem to develop nursery based on palm local seed varieties and providing institutional assistance; ST Strategy: Determining agro-technopark for palm industrialization, providing assistance in the form of appropriate packaging technology accordance with the standards, and WT Strategy: increasing commitment and cooperation among stakeholders in strengthening palm agro-industry, increasing marketing and promotion for the expansion and sanction policy for any company selling Aren in the form of wine. From the result of AHP analysis, the determinant factors in developing the business include Technology (0.439, the Government as the actor (0.577, and product diversification as the strategy (0.388.Keyword: Aren (palm, cluster- agro technopark, IFE/EFE matrixes, SWOT analysis, AHPABSTRAKAren (Arenga pinnata Merr adalah jenis palma yang memiliki potensi nilai ekonomi yang tinggi. Kecamatan Lareh sago halaban merupakan penghasil Aren terbesar di Kabupaten Lima Puluh Kota, namun dalam pengolahannya masih mengolah menjadi gula cetak dan lebih banyak dalam bentuk tuak. Penelitian ini bertujuan merumuskan strategi pengembangan agroindustri gula semut aren di Kecamatan

  7. Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction Year 6 - Activity 1.14 - Development of a National Center for Hydrogen Technology

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, Michael; Henderson, Ann


    The GreatPoint Energy (GPE) concept for producing synthetic natural gas and hydrogen from coal involves the catalytic gasification of coal and carbon. GPE’s technology “refines” coal by employing a novel catalyst to “crack” the carbon bonds and transform the coal into cleanburning methane (natural gas) and hydrogen. The GPE mild “catalytic” gasifier design and operating conditions result in reactor components that are less expensive and produce pipeline-grade methane and relatively high purity hydrogen. The system operates extremely efficiently on very low cost carbon sources such as lignites, subbituminous coals, tar sands, petcoke, and petroleum residual oil. In addition, GPE’s catalytic coal gasification process eliminates troublesome ash removal and slagging problems, reduces maintenance requirements, and increases thermal efficiency, significantly reducing the size of the air separation plant (a system that alone accounts for 20% of the capital cost of most gasification systems) in the catalytic gasification process. Energy & Environmental Research Center (EERC) pilot-scale gasification facilities were used to demonstrate how coal and catalyst are fed into a fluid-bed reactor with pressurized steam and a small amount of oxygen to “fluidize” the mixture and ensure constant contact between the catalyst and the carbon particles. In this environment, the catalyst facilitates multiple chemical reactions between the carbon and the steam on the surface of the coal. These reactions generate a mixture of predominantly methane, hydrogen, and carbon dioxide. Product gases from the process are sent to a gas-cleaning system where CO{sub 2} and other contaminants are removed. In a full-scale system, catalyst would be recovered from the bottom of the gasifier and recycled back into the fluid-bed reactor. The by-products (such as sulfur, nitrogen, and CO{sub 2}) would be captured and could be sold to the chemicals and petroleum industries, resulting in

  8. Liquid Phase Hydrogenation of Benzalacetophenone:Effect of Solvent,Catalyst Support,Catalytic Metal and Reaction Conditions%Liquid Phase Hydrogenation of Benzalacetophenone: Effect of Solvent, Catalyst Support, Catalytic Metal and Reaction Conditions

    Institute of Scientific and Technical Information of China (English)

    Achim STOLLE; Christine SCHMOGER; Bernd ONDRUSCHKA; Werner BONRATH; Thomas F. KELLER; Klaus D. JANDT


    Innovative catalysts based on a “porous glass” support material were developed and investigated for the reduction of benzalacetophenone.The easy preparation conditions and possibility to use different metals (e.g.Pd,Pt,Rh) for impregnation gave a broad variety of these catalysts.Hydrogenation experiments with these supported catalysts were carried out under different hydrogen pressures and temperatures.Porous glass catalysts with Pd as the active component gave chemoselective hydrogenation of benzalacetophenone,while Pt- and Rh-catalysts tended to further reduce the carbonyl group,especially at elevated hydrogen pressures and temperatures.Kinetic analysis of the reactions revealed these had zero order kinetics,which was independent of the type of porous glass support and solvent used.

  9. Self-assembled arene-ruthenium-based rectangles for the selective sensing of multi-carboxylate anions. (United States)

    Vajpayee, Vaishali; Song, Young Ho; Lee, Min Hyung; Kim, Hyunuk; Wang, Ming; Stang, Peter J; Chi, Ki-Whan


    Novel arene-ruthenium [2+2] metalla-rectangles 4 and 5 have been synthesized by self-assembly using dipyridyl amide ligand 3 and arene-ruthenium acceptors (arene: benzoquinone (1), naphthacenedione (2)) and characterized by NMR spectroscopy and ESI-MS. The solid-state structure of 5 was determined by X-ray diffraction and shows encapsulated diethyl ether molecule in the rectangular cavity of 5. The luminescent 5 was further used for anion sensing with the amidic linkage serving as a hydrogen-bond donor site for anions and the ruthenium moiety serving as a signaling unit. A UV/Vis titration study demonstrated that although 5 interacts very weakly with common monoanions as well as with flexible dicarboxylate anions such as malonate and succinate, it displays significant binding affinity (K>10(3) in MeOH) for rigid multi-carboxylate anions such as oxalate, citrate, and tartrate, exhibiting a 1:1 stoichiometry. It has been suggested that 1:1 bidentate hydrogen bonding assisted by appropriate geometrical complementarity is mainly responsible for the increased affinity of 5 towards such anions. A fluorescence titration study revealed a large fluorescence enhancement of 5 upon binding to multi-carboxylate anions, which can be attributed to the blocking of the photoinduced electron-transfer process from the arene-Ru moiety to the amidic donor in 5 as a result of hydrogen bonding between the donor and the anion.

  10. Hydrogen and methoxy coadsorption in the computation of the catalytic conversion of methanol on the ceria (111) surface (United States)

    Beste, Ariana; Overbury, Steven H.


    Methanol decomposition to formaldehyde catalyzed by the ceria (111) surface was investigated using the DFT + U method. Our results rationalize experimental temperature programmed desorption experiments on the fully oxidized surface. Particular attention was paid to the effect of coadsorption of methoxy and hydrogen on various aspects of the conversion process. This issue had been raised by the experimental observation of water desorption at low temperature removing hydrogen from the system. Within this context, we also investigated hydrogen diffusion on the ceria surface. The hydrogen/methoxy interaction on ceria was shown to be ionic regardless of separation distance. The barrier for dehydrogenation of methoxy using the ionic model system, where hydrogen is coadsorbed, is above 1 eV. This barrier becomes negligible if an incorrect neutral model without coadsorbed hydrogen is employed. While water formation from isolated surface hydrogen is unlikely at low temperature, the presence of coadsorbed methoxy reduces the reaction energy for water formation considerably. For the dehydrated surface, we observed that the preference of the electron to locate at the methoxy oxygen instead of the cerium atom results in a surface that does not contain Ce3 + ions, despite the existence of a vacancy.

  11. Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts

    Directory of Open Access Journals (Sweden)

    Rodiansono Rodiansono


    Full Text Available A bulk structure of inexpensive intermetallic nickel-tin (Ni-Sn alloys catalysts demonstrated highly selective in the hydrogenation of levulinic acid in water into g-valerolactone. The intermetallic Ni-Sn catalysts were synthesized via a very simple thermochemical method from non-organometallic precursor at low temperature followed by hydrogen treatment at 673 K for 90 min. The molar ratio of nickel salt and tin salt was varied to obtain the corresponding Ni/Sn ratio of 4.0, 3.0, 2.0, 1.5, and 0.75. The formation of Ni-Sn alloy species was mainly depended on the composition and temperature of H2 treatment. Intermetallics Ni-Sn that contain Ni3Sn, Ni3Sn2, and Ni3Sn4 alloy phases are known to be effective heterogeneous catalysts for levulinic acid hydrogenation giving very excellence g-valerolactone yield of >99% at 433 K, initial H2 pressure of 4.0 MPa within 6 h. The effective hydrogenation was obtained in H2O without the formation of by-product. Intermetallic Ni-Sn(1.5 that contains Ni3Sn2 alloy species demonstrated very stable and reusable catalyst without any significant loss of its selectivity. © 2015 BCREC UNDIP. All rights reserved. Received: 26th February 2015; Revised: 16th April 2015; Accepted: 22nd April 2015  How to Cite: Rodiansono, R., Astuti, M.D., Ghofur, A., Sembiring, K.C. (2015. Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 192-200. (doi:10.9767/bcrec.10.2.8284.192-200Permalink/DOI:  

  12. Role of the chemically non-innocent ligand in the catalytic formation of hydrogen and carbon dioxide from methanol and water with the metal as the spectator. (United States)

    Li, Haixia; Hall, Michael B


    The catalytic mechanism for the production of H2 and CO2 from CH3OH and H2O by [K(dme)2][Ru(H) (trop2dad)] (K(dme)2.1_exp) was investigated by density functional theory (DFT) calculations. Since the reaction occurs under mild conditions and at reasonable rates, it could be considered an ideal way to use methanol to store hydrogen. The predicted mechanism begins with the dehydrogenation of methanol to formaldehyde through a new ligand-ligand bifunctional mechanism, where two hydrogen atoms of CH3OH eliminate to the ligand's N and C atoms, a mechanism that is more favorable than the previously known mechanisms, β-H elimination, or the metal-ligand bifunctional. The key initiator of this first step is formed by migration of the hydride in 1 from the ruthenium to the meta-carbon atom, which generates 1″ with a frustrated Lewis pair in the ring between N and C. Hydroxide, formed when 1″ cleaves H2O, reacts rapidly with CH2O to give H2C(OH)O(-), which subsequently donates a hydride to 6 to generate HCOOH and 5. HCOOH then protonates 5 to give formate and a neutral complex, 4, with a fully hydrogenated ligand. The hydride of formate transfers to 6, releasing CO2. The fully hydrogenated complex, 4, is first deprotonated by OH(-) to form 5, which then releases hydrogen to regenerate the catalyst, 1″. In this mechanism, which explains the experimental observations, the whole reaction occurs on the chemically non-innocent ligand with the ruthenium atom appearing as a spectator.

  13. Hydrogenation of nitriles on a well-characterized nickel surface: From surface science studies to liquid phase catalytic activity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gardin, D.E.


    Nitrile hydrogenation is the most commonly used method for preparing diverse amines. This thesis is aimed at the mechanism and factors affecting the performance of Ni-based catalysts in nitrile hydrogenations. Surface science techniques are used to study bonding of nitriles and amines to a Ni(111) surface and to identify surface intermediates. Liquid-phase hydrogenations of cyclohexene and 1-hexene on a Pt foil were carried out successfully. Finally, knowledge about the surface structure, surface chemical bond, dynamics of surface atoms (diffusion, growth), and reactivity of metal surfaces from solid-gas interface studies, is discussed.

  14. Adsorption-parallel catalytic waves of cinnamic acid in hydrogen peroxide-tetra-n-butylammonium bromide-acetate system

    Institute of Scientific and Technical Information of China (English)


    The mechanism of the adsorption-parallel catalytic wave of cinnamic acid (C6H5-CH == CH-COOH) in acetate buffer (pH = 4.0)-H2O2-tetra-n-butylammonium bromide (Bu4N.Br) solution was studied by the linear-sweep polarography, cyclic voltammetry and digital simulation approach. Experimental results indicate that the reduction mechanism of cinnamic acid is ECdimE'process, in which the C == C double bond of cinnamic acid first undergoes 1e, 1H+ reduction to produce an intermediate free radical C6H5-C.H-CH2-COOH(E'), then the further reduction of the free radical in 1e,1H+ addition (E') occurs simultaneously with a dimerization reaction between two free radicals (Cdim). Bu4N.Br enhances the polarographic current of cinnamic acid and shifts the peak potential to positive direction. The enhancement action of Bu4N.Br is due to the adsorption of cinnamic acid induced by Bu4N+ species. In addition, H2O2 causes the parallel catalytic wave of cinnamic acid. The mechanism of the catalytic wave is EC'process because H2O2 oxidizes the free radical of cinnamic acid to regenerate the original C == C bond(C'), preventing both the further reduction and the dimerization of the free radicals. The apparent rate constant kf of the oxidation reaction is 1.35×102 mol.L-1.s-1. A new class of catalytic waves for organic compounds, the adsorption-parallel catalytic waves upon the dual enhancement action of both the surfactant and oxidant, has been presented.

  15. Aqueous-phase catalytic hydrogenation of furfural to cyclopentanol over Cu-Mg-Al hydrotalcites derived catalysts:Model reaction for upgrading of bio-oil

    Institute of Scientific and Technical Information of China (English)

    Minghao; Zhou; Zuo; Zeng; Hongyan; Zhu; Guomin; Xiao; Rui; Xiao


    A series of Cu-Mg-Al hydrotalcites derived oxides with a(Cu+Mg)/Al mole ratio of 3 and varied Cu/Mg mole ratio(from 0.07 to 0.30) were prepared by co-precipitation and calcination methods, then they were introduced to the hydrogenation of furfural in aqueous-phase. Effects of Cu/Mg mole ratio, reaction temperature, initial hydrogen pressure, reaction time and catalyst amount on the conversion rate of furfural as well as the selectivity toward desired product cyclopentanol were systematically investigated. The conversion of furfural over calcined hydrotalcite catalyst with a Cu/Mg mole ratio of 0.2 was up to 98.5% when the reaction was carried out under 140 ?C and the initial hydrogen pressure of 4 MPa for 10 h, while the selectivity toward cyclopentanol was up to 94.8%. The catalysts were characterized by XRD and SEM. XRD diffraction of all the samples showed characteristic pattern of hydrotalcite with varied peak intensity as a result of different Cu content. The catalytic activity was improved gradually with the increase of Cu component in the hydrotalcite.

  16. On the role of metal particle size and surface coverage for photo-catalytic hydrogen production; a case study of the Au/CdS system

    KAUST Repository

    Majeed, I.


    Photo-catalytic hydrogen production has been studied on Au supported CdS catalysts under visible light irradiation in order to understand the effect of Au particle size as well as the reaction medium properties. Au nanoparticles of size about 2-5 nm were deposited over hexagonal CdS particles using a new simple method involving reduction of Au3+ ions with iodide ions. Within the investigated range of Au (between 1 and 5 wt. %) fresh particles with mean size of 4 nm and XPS Au4f/Cd3d surface ratio of 0.07 showed the highest performance (ca. 1 molecule of H2 / Auatom s−1) under visible light irradiation (>420 nm and a flux of 35 mW/cm2). The highest hydrogen production rate was obtained from water (92%)-ethanol (8%) in an electrolyte medium (Na2S-Na2SO3). TEM studies of fresh and used catalysts showed that Au particle size increases (almost 5 fold) with increasing photo-irradiation time due to photo-agglomeration effect yet no sign of deactivation was observed. A mechanism for hydrogen production from ethanol-water electrolyte mixture is presented and discussed.

  17. An efficient route for catalytic activity promotion via hybrid electro-depositional modification on commercial nickel foam for hydrogen evolution reaction in alkaline water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Guanshui; He, Yongwei; Wang, Mei; Zhu, Fuchun; Tang, Bin [Research Institute of Surface Engineering, Taiyuan University of Technology, Yingze West Road 79, Taiyuan 030024 (China); Wang, Xiaoguang, E-mail: [Research Institute of Surface Engineering, Taiyuan University of Technology, Yingze West Road 79, Taiyuan 030024 (China); International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga (Portugal)


    Highlights: • Mono-Cu surface modification depress the HER activity of Ni-foam. • Hybrid Ni-foam/Cu0.01/Co0.05 exhibits superior HER performance. • Layer-by-layer structure may contribute to a synergistic promoting effect. - Abstract: In this paper, the single- and hybrid-layered Cu, Ni and Co thin films were electrochemically deposited onto the three-dimensional nickel foam as composite cathode catalyst for hydrogen evolution reaction in alkaline water electrolysis. The morphology, structure and chemical composition of the electrodeposited composite catalysts were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). Electrochemical measurement depicted that, for the case of the monometallic layered samples, the general activity for hydrogen evolution reaction followed the sequence: Ni-foam/Ni > Ni-foam/Co > bare Ni-foam > Ni-foam/Cu. It is noteworthy that, the hybrid-layered Ni-foam/Cu0.01/Co0.05 exhibited the highest catalytic activity towards hydrogen evolution reaction with the current density as high as 2.82 times that of the bare Ni-foam. Moreover, both excellent electrochemical and physical stabilities can also be acquired on the Ni-foam/Cu0.01/Co0.05, making this hybrid-layered composite structure as a promising HER electro-catalyst.

  18. Adsorption-parallel catalytic waves of cinnamic acid in hydrogen peroxide-tetra-n-butylammonium bromide-acetate system

    Institute of Scientific and Technical Information of China (English)

    亢晓峰; 过玮; 赵川; 宋俊峰


    The mechanism of the adsorption-parallel catalytic wave of cinnamic acid (C6H5—CH = CH—COOH) in acetate buffer (pH = 4.0)-H2O2-tetra-n-butylammonium bromide (Bu4N · Br) solution was studied by the linear-sweep polarography, cyclic voltammetry and digital simulation approach. Experimental results indicate that the reduction mechanism of cinnamic acid is ECdimE’ process, in which the C = C double bond of cinnamic acid first undergoes 1 e, 1H+ reduction to produce an intermediate free radical C6H5—CH—CH2—COOH(E), then the further reduction of the free radical in 1e,1H+ addition (E’) occurs simultaneously with a dimerization reaction between two free radicals (Cdim). Bu4N · Br enhances the polarographic current of cinnamic acid and shifts the peak potential to positive direction. The enhancement action of Bu4N · Br is due to the adsorption of cinnamic acid induced by Bu4N+ species. In addition, H2O2 causes the parallel catalytic wave of cinnamic acid. The mechanism of the catalytic wave is EC’ proce

  19. The mechanism of the catalytic oxidation of hydrogen sulfide *1: III. An electron spin resonance study of the sulfur catalyzed oxidation of hydrogen sulfide

    NARCIS (Netherlands)

    Steijns, M.; Koopman, P.; Nieuwenhuijse, B.; Mars, P.


    ESR experiments on the oxidation of hydrogen sulfide were performed in the temperature range 20–150 °C. Alumina, active carbon and molecular sieve zeolite 13X were investigated as catalysts. For zeolite 13X it was demonstrated that the reaction is autocatalytic and that sulfur radicals are the activ

  20. Bis-tert-Alcohol-Functionalized Crown-6-Calix[4]arene: An Organic Promoter for Nucleophilic Fluorination. (United States)

    Jadhav, Vinod H; Choi, Wonsil; Lee, Sung-Sik; Lee, Sungyul; Kim, Dong Wook


    A bis-tert-alcohol-functionalized crown-6-calix[4]arene (BACCA) was designed and prepared as a multifunctional organic promoter for nucleophilic fluorinations with CsF. By formation of a CsF/BACCA complex, BACCA could release a significantly active and selective fluoride source for SN2 fluorination reactions. The origin of the promoting effects of BACCA was studied by quantum chemical methods. The role of BACCA was revealed to be separation of the metal fluoride to a large distance (>8 Å), thereby producing an essentially "free" F(-). The synergistic actions of the crown-6-calix[4]arene subunit (whose O atoms coordinate the counter-cation Cs(+)) and the terminal tert-alcohol OH groups (forming controlled hydrogen bonds with F(-)) of BACCA led to tremendous efficiency in SN2 fluorination of base-sensitive substrates.

  1. Synthesis and anion recognition of neutral receptors based on multiamide calix[4]arene

    Institute of Scientific and Technical Information of China (English)

    LIU; Shunying; WANG; Fajun; WEI; Lanhua; XIAO; Wang; MENG


    Two multiamide calix[4]arenes (5, 6) were synthesized and characterized by IR, 1H NMR, MS and elemental analysis. The binding properties of receptors with some anions (p-O2NPhOPO2-3, p-O2NPhO-, H2PO-4, Ac-, Cl-, Br- and I-) were studied by UV-Vis spectra. The results indicate that the tetraamide calix[4]arenes (5, 6) have a good selectivity to the anions containing aromatic ring (p-O2NPhOPO32 , p-O2NPhO-). The 1 : 1 complexes between host and guest were formed through multiple hydrogen bonding and π-π interactions. The hosts 5 and 6also show a definite binding ability for the anions (H2 PO-4, Ac-, Cl-) that have no ultraviolet absorption, which provides a simple method of spectrum detection for these anions.

  2. Effect of Copper Nanoparticles Dispersion on Catalytic Performance of Cu/SiO2 Catalyst for Hydrogenation of Dimethyl Oxalate to Ethylene Glycol

    Directory of Open Access Journals (Sweden)

    Yajing Zhang


    Full Text Available Cu/SiO2 catalysts, for the synthesis of ethylene glycol (EG from hydrogenation of dimethyl oxalate (DMO, were prepared by ammonia-evaporation and sol-gel methods, respectively. The structure, size of copper nanoparticles, copper dispersion, and the surface chemical states were investigated by X-ray diffraction (XRD, transmission electron microscopy (TEM, temperature-programmed reduction (TPR, and X-ray photoelectron spectroscopy (XPS and N2 adsorption. It is found the structures and catalytic performances of the catalysts were highly affected by the preparation method. The catalyst prepared by sol-gel method had smaller average size of copper nanoparticles (about 3-4 nm, better copper dispersion, higher Cu+/C0 ratio and larger BET surface area, and higher DMO conversion and EG selectivity under the optimized reaction conditions.

  3. Preparation, structural characterization and catalytic properties of Co/CeO2 catalysts for the steam reforming of ethanol and hydrogen production (United States)

    Lovón, Adriana S. P.; Lovón-Quintana, Juan J.; Almerindo, Gizelle I.; Valença, Gustavo P.; Bernardi, Maria I. B.; Araújo, Vinícius D.; Rodrigues, Thenner S.; Robles-Dutenhefner, Patrícia A.; Fajardo, Humberto V.


    In this paper, Co/CeO2 catalysts, with different cobalt contents were prepared by the polymeric precursor method and were evaluated for the steam reforming of ethanol. The catalysts were characterized by N2 physisorption (BET method), X-ray diffraction (XRD), UV-visible diffuse reflectance, temperature programmed reduction analysis (TPR) and field emission scanning electron microscopy (FEG-SEM). It was observed that the catalytic behavior could be influenced by the experimental conditions and the nature of the catalyst employed. Physical-chemical characterizations revealed that the cobalt content of the catalyst influences the metal-support interaction which results in distinct catalyst performances. The catalyst with the highest cobalt content showed the best performance among the catalysts tested, exhibiting complete ethanol conversion, hydrogen selectivity close to 66% and good stability at a reaction temperature of 600 °C.

  4. Transition metal (Co, Ni) nanoparticles wrapped with carbon and their superior catalytic activities for the reversible hydrogen storage of magnesium hydride. (United States)

    Huang, Xu; Xiao, Xuezhang; Zhang, Wei; Fan, Xiulin; Zhang, Liuting; Cheng, Changjun; Li, Shouquan; Ge, Hongwei; Wang, Qidong; Chen, Lixin


    Magnesium hydride (MgH2) exhibits long-term stability and has recently been developed as a safe alternative to store hydrogen in the solid state, due to its high capacity of 7.6 wt% H2 and low cost compared to other metal hydrides. However, the high activation energy and poor kinetics of MgH2 lead to inadequate hydrogen storage properties, resulting in low energy efficiency. Nano-catalysis is deemed to be the most effective strategy in improving the kinetics performance of hydrogen storage materials. In this work, robust and efficient architectures of carbon-wrapped transition metal (Co/C, Ni/C) nanoparticles (8-16 nm) were prepared and used as catalysts in the MgH2 system via ball milling to improve its de/rehydrogenation kinetics. Between the two kinds of nano-catalysts, the Ni/C nanoparticles exhibit a better catalytic efficiency. MgH2 doped with 6% Ni/C (MgH2-6%Ni/C) exhibits a peak dehydrogenation temperature of 275.7 °C, which is 142.7, 54.2 and 32.5 °C lower than that of commercial MgH2, milled MgH2 and MgH2 doped with 6% Co/C (MgH2-6%Co/C), respectively. MgH2 doped with 6% Ni/C can release about 6.1 wt% H2 at 250 °C. More importantly, the dehydrogenated MgH2-6%Ni/C is even able to uptake 5.0 wt% H2 at 100 °C within 20 s. Moreover, a cycling test of MgH2 doped with 8% Ni/C demonstrates its excellent hydrogen absorption/desorption stability with respect to both capacity (up to 6.5 wt%) and kinetics (within 8 min at 275 °C for dehydrogenation and within 10 s at 200 °C for rehydrogenation). Mechanistic research reveals that the in situ formed Mg2Ni and Mg2NiH4 nanoparticles can be regarded as advanced catalytically active species in the MgH2-Ni/C system. Meanwhile, the carbon attached around the surface of transition metal nanoparticles can successfully inhibit the aggregation of the catalysts and achieve the steadily, prompting de/rehydrogenation during the subsequent cycling process. The intrinsic catalytic effects and the uniform distributions of Mg2Ni

  5. Sewage-sludge-derived carbonaceous materials for catalytic wet hydrogen peroxide oxidation of m-cresol in batch and continuous reactors. (United States)

    Yu, Yang; Wei, Huangzhao; Yu, Li; Wang, Wei; Zhao, Ying; Gu, Bin; Sun, Chenglin


    In this study, four sewage-sludge-derived carbonaceous materials (SWs) were evaluated for their catalytic wet hydrogen peroxide oxidation (CWPO) performance of m-cresol in batch reactor and continuous reactor, respectively. The SWs were produced by carbonization (SW); carbonization with the addition of CaO (CaO-SW); HNO3 pretreatment (HNO3-SW) and steam activation (Activated-SW). The properties of SW catalysts were assessed by thermogravimetric analysis, Brunauer-Emmett-Teller, Fourier Transform Infrared Spectroscopy, X-ray Fluorescence, Scanning electron microscopy, energy dispersive X-ray analysis and zeta potential. The results showed that SW treated by HNO3 (HNO3-SW) had a high conversion of m-cresol in batch reactor and continuous reactor, respectively. Under the conditions of batch reaction (Cm-cresol = 100 mg L(-1), CH2O2 = 15.7 mmol L(-1), initial pH=7.0, 0.5 g L(-1) catalyst, 80°C, 180 min adsorption and 210 min oxidation), the conversion of m-cresol reached 100% and total organic carbon removal was 67.1%. It had a high catalytic activity and stability on the treatment of m-cresol in CWPO for more than 1100 h. Furthermore, a possible reaction mechanism for the oxidation of m-cresol to 2-methyl-p-benzoquinone by CWPO was proposed.

  6. Synthesis and Catalytic Performance of Graphene Modified CuO-ZnO-Al2O3 for CO2 Hydrogenation to Methanol

    Directory of Open Access Journals (Sweden)

    Zheng-juan Liu


    Full Text Available CuO-ZnO-Al2O3 and graphene nanosheet (GNS were synthesized by coprecipitation route and reduction of exfoliated graphite oxides method, respectively. GNS modified CuO-ZnO-Al2O3 nanocomposites were synthesized by high energy ball milling method. The structure, morphology, and character of the synthesized materials were studied by BET, XRD, TEM, and H2-TPR. It was found that by high energy ball milling method the CuO-ZnO-Al2O3 nanoparticles were uniformly dispersed on GNS surfaces. The catalytic performance for the methanol synthesis from CO2 hydrogenation was also tested. It was shown experimentally that appropriate incorporation of GNS into the CuO-ZnO-Al2O3 could significantly increase the catalyst activity for methanol synthesis. The 10 wt.% GNS modified CuO-ZnO-Al2O3 catalyst gave a methanol space time yield (STY of 92.5% higher than that on the CuO-ZnO-Al2O3 catalyst without GNS. The improved catalytic performance was attributed to the excellent promotion of GNS to dispersion of CuO and ZnO particles.

  7. Nickel-based xerogel catalysts: Synthesis via fast sol-gel method and application in catalytic hydrogenation of p-nitrophenol to p-aminophenol (United States)

    Feng, Jin; Wang, Qiang; Fan, Dongliang; Ma, Lirong; Jiang, Deli; Xie, Jimin; Zhu, Jianjun


    In order to investigate the roles of three-dimensional network structure and calcium on Ni catalysts, the Ni, Ni-Al2O3, Ni-Ca-Al2O3 xerogel catalysts were successfully synthesized via the fast sol-gel process and chemical reduction method. The crystal structure of three different catalysts was observed with X-ray powder diffraction (XRD). Transmission electron microscopy (TEM), scanning electron microscopy (SEM) and nitrogen adsorption-desorption were employed to investigate the role of network structure of xerogel catalysts and the size distribution of Ni nanoparticles. The catalyst composition was determined by inductively coupled plasma-optical emission spectrometry (ICP-OES) measurement and energy-dispersive X-ray spectroscopy (EDS). Temperature-programmed reduction (TPR) experiments were carried out to investigate the reducibility of nickel species and the interaction between nickel species and alumina. The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated over the prepared nickel-based xerogel catalysts. The conversion of p-nitrophenol was monitored by UV spectrophotometry and high performance liquid chromatography (HPLC). The results show that the catalysts are highly selective for the conversion of p-nitrophenol to p-aminophenol and the order of catalytic activities of the catalysts is Ni < Ni-Al2O3 < Ni-Ca-Al2O3. The catalysts were recycled and were used to evaluate the reutilization.

  8. Enhancement of reaction rates for catalytic benzaldehyde hydrogenation and sorbitol dehydration in water solvent by addition of carbon dioxide

    Indian Academy of Sciences (India)

    Masayuki Shirai; Osamu Sato; Norihito Hiyoshi; Aritomo Yamaguchi


    The effect of pressured carbon dioxide on heterogeneous hydrogenation of benzaldehyde and homogeneous dehydration of sorbitol in water solvent was studied. Initial hydrogenation rates of benzaldehyde over a charcoal-supported palladium catalyst in water at 313 K were enhanced by the addition of carbon dioxide. The initial rate increased with an increase in carbon dioxide pressure and became a maximum at 5 MPa. Dehydration of sorbitol proceeded in water phase at 500 K and initial dehydration rates were enhanced by addition of 30 MPa of carbon dioxide.

  9. Olefin Metathesis With Ruthenium-Arene Catalysts Bearing N-Heterocyclic Carbene Ligands (United States)

    Delaude, Lionel; Demonceau, Albert

    In this chapter, we summarize the main results of our investigations on the ring-opening metathesis polymerization (ROMP) of cyclooctene catalyzed by various ruthenium (Ru)-arene complexes bearing imidazolin-2-ylidene, imidazolidin- 2-ylidene, or triazolin-5-ylidene ligands. Three major findings emerged from this study. First, we underscored the intervention of a photochemical activation step due to visible light illumination. Second, we established that the presence of an endocyclic double bond in the carbene ligand central heterocycle was not crucial to achieve high catalytic efficiencies. Third, we demonstrated that ortho-metallation of the N-heterocyclic carbene (NHC) ligand by the Ru center led to inactive catalysts.

  10. New tricks by very old dogs: predicting the catalytic hydrogenation of HMF derivatives using Slater-type orbitals

    NARCIS (Netherlands)

    Ras, E.-J.; Louwerse, M.J.; Rothenberg, G.


    We report new experimental results on the hydrogenation of 5-ethoxymethylfurfural, an important intermediate in the conversion of sugars to industrial chemicals, using eight different M/Al2O3 catalysts (M = Au, Cu, Ni, Ir, Pd, Pt, Rh, and Ru) under various conditions. These data are then compared wi

  11. Autothermal catalytic pyrolysis of methane as a new route to hydrogen production with reduced CO{sub 2} emissions

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, Nazim; Smith, Franklyn; Huang, Cunping; T-Raissi, Ali [Florida Solar Energy Center, University of Central Florida, Cocoa, FL 32922 (United States)


    Hydrogen production plants are among major sources of CO{sub 2} emissions into the atmosphere. The objective of this paper is to explore new routes to hydrogen production from natural gas (or methane) with drastically reduced CO{sub 2} emissions. One approach analyzed in this paper is based on thermocatalytic decomposition (or pyrolysis) of methane into hydrogen gas and elemental carbon over carbon-based catalysts. Several heat input options to the endothermic process are discussed in the paper. The authors conduct thermodynamic analysis of methane decomposition in the presence of small amounts of oxygen in an autothermal (or thermo-neutral) regime using AspenPlus(TM) chemical process simulator. Methane conversion, products yield, effluent gas composition, process enthalpy flows as a function of temperature, pressure and O{sub 2}/CH{sub 4} ratio has been determined. CO{sub 2} emissions (per m{sup 3} of H{sub 2} produced) from the process could potentially be a factor of 3-5 less than from conventional hydrogen production processes. Oxygen-assisted decomposition of methane over activated carbon (AC) and AC-supported iron catalysts over wide range of temperatures and O{sub 2}/CH{sub 4} ratios was experimentally verified. Problems associated with the catalyst deactivation and the effect of iron doping on the catalyst stability are discussed. (author)

  12. Ni(0-CMC-Na Nickel Colloids in Sodium Carboxymethyl-Cellulose: Catalytic Evaluation in Hydrogenation Reactions

    Directory of Open Access Journals (Sweden)

    Abdallah Karim


    Full Text Available A recyclable catalyst, Ni(0-CMC-Na, composed of nickel colloids dispersed in a water soluble bioorganic polymer, sodium carboxymethylcellulose (CMC-Na, was synthesized by a simple procedure from readily available reagents. The catalyst thus obtained is stable and highly active in alkene hydrogenations.

  13. Catalytic hydrotreating process (United States)

    Karr, Jr., Clarence; McCaskill, Kenneth B.


    Carbonaceous liquids boiling above about C such as tars, petroleum residuals, shale oils and coal-derived liquids are catalytically hydrotreated by introducing the carbonaceous liquid into a reaction zone at a temperature in the range of to C and a pressure in the range of 300 to 4000 psig for effecting contact between the carbonaceous liquid and a catalytic transition metal sulfide in the reaction zone as a layer on a hydrogen permeable transition metal substrate and then introducing hydrogen into the reaction zone by diffusing the hydrogen through the substrate to effect the hydrogenation of the carbonaceous liquid in the presence of the catalytic sulfide layer.

  14. Facile synthesis of near-monodisperse Ag@Ni core-shell nanoparticles and their application for catalytic generation of hydrogen. (United States)

    Guo, Huizhang; Chen, Yuanzhi; Chen, Xiaozhen; Wen, Ruitao; Yue, Guang-Hui; Peng, Dong-Liang


    Magnetically recyclable Ag-Ni core-shell nanoparticles have been fabricated via a simple one-pot synthetic route using oleylamine both as solvent and reducing agent and triphenylphosphine as a surfactant. As characterized by transmission electron microscopy (TEM), the as-synthesized Ag-Ni core-shell nanoparticles exhibit a very narrow size distribution with a typical size of 14.9 ± 1.2 nm and a tunable shell thickness. UV-vis absorption spectroscopy study shows that the formation of a Ni shell on Ag core can damp the surface plasmon resonance (SPR) of the Ag core and lead to a red-shifted SPR absorption peak. Magnetic measurement indicates that all the as-synthesized Ag-Ni core-shell nanoparticles are superparamagnetic at room temperature, and their blocking temperatures can be controlled by modulating the shell thickness. The as-synthesized Ag-Ni core-shell nanoparticles exhibit excellent catalytic properties for the generation of H(2) from dehydrogenation of sodium borohydride in aqueous solutions. The hydrogen generation rate of Ag-Ni core-shell nanoparticles is found to be much higher than that of Ag and Ni nanoparticles of a similar size, and the calculated activation energy for hydrogen generation is lower than that of many bimetallic catalysts. The strategy employed here can also be extended to other noble-magnetic metal systems.

  15. Synthesis of calix[4]arene-grafted magnetite nanoparticles and Evaluation of their arsenate as well as dichromate removal efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Sayin, Serkan; Ozcan, Fatih; Yilmaz, Mustafa; Cengeloglu, Yunus [Department of Chemistry, Selcuk University, Konya (Turkey); Tor, Ali [Department of Environmental Engineering, Selcuk University, Konya (Turkey); Memon, Shahabuddin [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro (Pakistan)


    In this study, 5,17-bis-[(4-benzylpiperidine)methyl]-25,26,27,28-tetrahydroxy-calix[4]arene (3) has been prepared by the treatment of calix[4]arene with a secondary amine (4-benzylpiperidine) and formaldehyde by means of Mannich reaction. The prepared Mannich base (3) has been grafted onto [3-(2,3-epoxypropoxy)-propyl]-trimethoxysilane-modified Fe{sub 3}O{sub 4} magnetite nanoparticles (EPPTMS-MN) in order to obtain 5,17-bis-[(4-benzylpiperidine)methyl]-25,26,27,28-tetrahydroxy calix[4]arene-grafted EPPTMS-MN (BP-calix[4]arene-grafted Fe{sub 3}O{sub 4}). All new compounds were characterized by a combination of FTIR and {sup 1}H-NMR analyses. The morphology of the magnetic nanoparticles was examined by transmission electron microscopy. Moreover, the studies regarding the removal of arsenate and dichromate ions from the aqueous solutions were also carried out by using 5,17-bis-[(4-benzylpiperidine)methyl]-25,26,27,28-tetrahydroxy-calix[4]arene in liquid-liquid extraction and BP-calix[4]arene-grafted Fe{sub 3}O{sub 4} (4) in solid-liquid extraction experiments. The extraction results indicated that 3 is protonated at proton-switchable binding sites in acidic conditions. Hence, facilitating binding of arsenate and dichromate is resulted from both electrostatic interactions and hydrogen bonding. To understand the selectivity of 3, the retention of dichromate anions in the presence of Cl{sup -}, NO{sub 3}{sup -}, and SO{sub 4}{sup 2-} anions at pH 1.5 was also examined. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  16. Haptotropic Migration of Metal Templates on Arene Surfaces

    Institute of Scientific and Technical Information of China (English)

    K.H.Dtz; H.C.Jahr; J.Bennewitz; J.Dubarle-offner


    1 Results The chromium-templated benzannulation of arylcarbenes by alkynes provides a direct regio- and diastereoselective access to densely functionalized chromium arenes[1]. The chromium fragment undergoes a haptotropic migration along the π-face of the fused arenes which can be controlled by thermodynamics,by the substitution pattern of the arene and by the metal coligand sphere(See Scheme 1).The controlled regioselective labeling of benzene rings can be exploited in diastereoselective C-C bond forma...


    Institute of Scientific and Technical Information of China (English)

    毛建新; 蒋晓原; 陆维敏; 郑小明


    Carbon tetrachloride is an ozone-depleting chemical, while chloroform is not. Therefore it is important for the catalytic hydrodechlorination of CCl4 to CHCl3. In this paper, kinetics on the catalytic hydrogenation of carbon tetrachloride to chloroform in liquid phase was studied. A reaction mechanism was proposed. Hydrogen molecular was activated on the surface of catalyst, the activated hydrogen atom then reacted with CCl4 in the solution and produced CHCl3. A definite kinetic equation could be deduced from the reaction mechanism. The reaction rate constant is concerned with the intial concentration of CCl4 in the solution, pressure, reaction temperature and the concentration of active center. All these factors were investigated over Pt-Pd/C catalyst and fit in with the kinetic equation. The activation energy of the reaction is 86?KJ/mol according to the experimental results.

  18. Final Technical Report "Catalytic Hydrogenation of Carbon Monoxide and Olefin Oxidation" Grant number : DE-FG02-86ER13615

    Energy Technology Data Exchange (ETDEWEB)

    Wayland, B.B.


    Title: Catalytic Hydrogenation of Carbon Monoxide and Olefin Oxidation Grant No. DE-FG02-86ER13615 PI: Wayland, B. B. ( Abstract Development of new mechanistic strategies and catalyst materials for activation of CO, H2, CH4, C2H4, O2, and related substrates relevant to the conversion of carbon monoxide, alkanes, and alkenes to organic oxygenates are central objectives encompassed by this program. Design and synthesis of metal complexes that manifest reactivity patterns associated with potential pathways for the hydrogenation of carbon monoxide through metallo-formyl (M-CHO), dimetal ketone (M-C(O)-M), and dimetal dionyl (M-C(O)-C(O)-M) species is one major focus. Hydrocarbon oxidation using molecular oxygen is a central goal for methane activation and functionalization as well as regioselective oxidation of olefins. Discovery of new reactivity patterns and control of selectivity are pursued through designing new metal complexes and adjusting reaction conditions. Variation of reaction media promotes distinct reaction pathways that control both reaction rates and selectivities. Dimetalloradical diporphyrin complexes preorganize transition states for substrate reactions that involve two metal centers and manifest large rate increases over mono-metalloradical reactions of hydrogen, methane, and other small molecule substrates. Another broad goal and recurring theme of this program is to contribute to the thermodynamic database for a wide scope of organo-metal transformations in a range of reaction media. One of the most complete descriptions of equilibrium thermodynamics for organometallic reactions in water and methanol is emerging from the study of rhodium porphyrin substrate reactions in aqueous and alcoholic media. Water soluble group nine metalloporphyrins manifest remarkably versatile substrate reactivity in aqueous and alcoholic media which includes producing rhodium formyl (Rh-CHO) and hydroxy methyl (Rh-CH2OH) species. Exploratory

  19. Catalytic hydrogen/oxygen reaction assisted the proton exchange membrane fuel cell (PEMFC) startup at subzero temperature (United States)

    Sun, Shucheng; Yu, Hongmei; Hou, Junbo; Shao, Zhigang; Yi, Baolian; Ming, Pingwen; Hou, Zhongjun

    Fuel cells for automobile application need to operate in a wide temperature range including freezing temperature. However, the rapid startup of a proton exchange membrane fuel cell (PEMFC) at subfreezing temperature, e.g., -20 °C, is very difficult. A cold-start procedure was developed, which made hydrogen and oxygen react to heat the fuel cell considering that the FC flow channel was the characteristic of microchannel reactor. The effect of hydrogen and oxygen reaction on fuel cell performance at ambient temperature was also investigated. The electrochemical characterizations such as I- V plot and cyclic voltammetry (CV) were performed. The heat generated rate for either the single cell or the stack was calculated. The results showed that the heat generated rate was proportional to the gas flow rate when H 2 concentration and the active area were constant. The fuel cell temperature rose rapidly and steadily by controlling gas flow rate.

  20. Preparation of Dendritic Carbosilane-supported Palladium Catalyst and Its Catalytic Activity in Hydrogenation of Organic Compounds

    Institute of Scientific and Technical Information of China (English)


    The preparation of palladium complex from PdCl2·2H2O and earbosilane dendrimers with peripheral aminopropyl groups was described. The compound obtained was characterized by IR, 1H NMR, X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma atomic emission spectrometric (ICP-AES) spectroscopy respectively. The metal complex was employed as catalyst in hydrogenation of organic compounds. The high activity of the complex was probably due to the formation of the eoordinatively unsaturated palladium.

  1. Hydrogenation of unactivated enamines to tertiary amines: rhodium complexes of fluorinated phosphines give marked improvements in catalytic activity

    Directory of Open Access Journals (Sweden)

    Sergey Tin


    Full Text Available In the hydrogenation of sluggish unactivated enamine substrates, Rh complexes of electron-deficient phosphines are demonstrated to be far more reactive catalysts than those derived from triphenylphosphine. These operate at low catalyst loadings (down to 0.01 mol % and are able to reduce tetrasubstituted enamines. The use of the sustainable and environmentally benign solvent (R-limonene for the reaction is also reported with the amine isolated by acid extraction.

  2. Synthesis of (p-Formylphenyl)azo Calix[4]arenes

    Institute of Scientific and Technical Information of China (English)

    BAI,Zhu(柏祝); YU,Lei(俞磊); LU,Guo-Yuan(陆国元); GUO,Xun(郭勋)


    Five novel azo calix[4]arenes were reported.The p-aminobenzaldehyde was diazotized with sodium nitrite in aqueous hydrochloride solution.Mono-,bis-,tris- and tetrakis(p-formylphenyl)azo calix[4]arenes (including proximal and distal isomers) were obtained respectively by diazo-coupling in different molar ratio to calix[4]arene (1) under pH=7.5-8.5 at 0-5℃.All (p-formylphenyl)azo calix[4]arenes were characterized by 1H NMR,13C NMR,IR,MS (ESIMS) spectroscopies and elemental analysis.


    Directory of Open Access Journals (Sweden)

    Mody Lempang


    Full Text Available Fermentation is a natural process that happen in fresh-sweet sap of aren trees (Arenga pinnata Merr., because many kinds of microorganism stay and life in this substance e.g. bakteria (Acetobacter acetic and yeast (Saccharomyces tuac. Species of yeast from genus of Saccharomyses, e.g. Saccharomyses serivisae is wellknown as microorganism that can ferment sugar (glucose into alchohol and CO2. This natural process as well happen in aren sap, so that this substance potencially using as a swollen agent of bread or cake dough. This research objective is to recognize the effectiveness of aren sap as a swollen agent of bread dough. Fermentation duration of bread dough was one hour by using swollen agent of fresh, 10 hours old and 20 hours old of aren sap. Daily yield of sap tapped from aren trees in Maros district, South Sulawesi province was 7 litre (4-5 litre collected in the morning and 2-3 litre colected in the afternoon. Aren sap containt some of nutritions e.g. carbohydrate, protein, fat, vitamin C and mineral. Sweet taste of aren sap caused by it’s charbohydrate content of 11.18%. The effectiveness of aren sap as a swollen agent of bread dough is lower than instant (commercial yeast. The older of aren sap the lower of it’s effectiveness as a swollen agent of dough and kuality of bread yield.    Keywords : Sap, Arenga pinnata, swollen agent, bread dough

  4. Ultrathin Co(Ni)-doped MoS2 nanosheets as catalytic promoters enabling efficient solar hydrogen production

    Institute of Scientific and Technical Information of China (English)

    Xiaoyan Ma; Jinquan Li; Changhua An; Juan Feng; Yuhua Chi; Junxue Liu; Jun Zhang


    The design of efficient artificial photosynthetic systems that harvest solar energy to drive the hydrogen evolution reaction via water reduction is of great importance from both the theoretical and practical viewpoints.Integrating appropriate co-catalyst promoters with strong light absorbing materials represents an ideal strategy to enhance the conversion efficiency of solar energy in hydrogen production.Herein,we report,for the first time,the synthesis of a class of unique hybrid structures consisting of ultrathin Co(Ni)-doped MoS2 nanosheets (co-catalyst promoter) intimately grown on semiconductor CdS nanorods (light absorber).The as-synthesized one-dimensional CdS@doped-MoS2 heterostructures exhibited very high photocatalytic activity (with a quantum yield of 17.3%) and stability towards H2 evolution from the photoreduction of water.Theoretical calculations revealed that Ni doping can increase the number of uncoordinated atoms at the edge sites of MoS2 nanosheets to promote electron transfer across the CdS/MoS2 interfaces as well as hydrogen reduction,leading to an efficient H2 evolution reaction.

  5. Catalytically Enhanced Hydrogen Sorption in Mg-MgH2 by Coupling Vanadium-Based Catalyst and Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Atikah Kadri


    Full Text Available Mg (MgH2-based composites, using carbon nanotubes (CNTs and pre-synthesized vanadium-based complex (VCat as the catalysts, were prepared by high-energy ball milling technique. The synergistic effect of coupling CNTs and VCat in MgH2 was observed for an ultra-fast absorption rate of 6.50 wt. % of hydrogen per minute and 6.50 wt. % of hydrogen release in 10 min at 200 °C and 300 °C, respectively. The temperature programmed desorption (TPD results reveal that coupling VCat and CNTs reduces both peak and onset temperatures by more than 60 °C and 114 °C, respectively. In addition, the presence of both VCat and CNTs reduces the enthalpy and entropy of desorption of about 7 kJ/mol H2 and 11 J/mol H2·K, respectively, as compared to those of the commercial MgH2, which ascribe to the decrease of desorption temperature. From the study of the effect of CNTs milling time, it is shown that partially destroyed CNTs (shorter milling time are better to enhance the hydrogen sorption performance.

  6. Pd/Graphene catalytic hydrogenation of benzoquinone to hydroquinone%钯/石墨烯催化苯醌加氢制备氢醌

    Institute of Scientific and Technical Information of China (English)

    杨敬贺; 郁清涛; 毛立群


    采用微波辅助加热还原法合成了钯/石墨烯(Pd/G)、钯/活性炭(Pd/AC)、钯/石墨(Pd/Graphite)和钯/二氧化硅(Pd/SiO2),并使用透射电子显微镜观测了钯的形貌及在载体上的分散性。将负载型钯催化剂用于苯醌加氢反应,结果显示,Pd/G催化剂的活性最高,苯醌的转化率达到99%,氢醌的选择性为100%,并且循环7次后催化剂仍保持着较高的转化率和选择性。结构表征表明,石墨烯担载的钯纳米粒子的粒径约为5 nm ,无明显团聚。实验进一步考察了反应溶剂(甲醇、乙醇、丙酮、正丙醇、异丙醇、正丁醇)对 Pd/G催化苯醌加氢反应的影响,结果表明该反应对溶剂较为敏感,其中甲醇和丙酮较适宜作为反应溶剂。当以甲醇作为溶剂时,苯醌的转化率为98%,氢醌选择性为99%;以丙酮为溶剂时,苯醌转化率为98%,氢醌选择性为90%。研究工作表明,作为载体,石墨烯对钯催化剂的催化效果起着稳定和增强作用。%In the present study ,we exploited G as a support for palladium nanoparticles by mi‐crowave assisted reduction of palladium acetate with graphene under hydrogen atmosphere .In the same method ,we also employed graphite ,active carbon and silica as carrier for synthesis palladium graphite (Pd/Graphite) ,palladium active carbon (Pd/AC) and palladium silica (Pd/SiO2 ) .The hydrogenation of benzoquinone reaction has been selected as model reaction for e‐valuating G -based palladium catalysts (Pd/G) ,and the morphology and dispersion of palla‐dium on the carrier were observed by TEM .We utilized the supported palladium catalysts for benzoquinone hydrogenation reaction .The results imply that the Pd/G catalyst shows the high‐est activity .T he conversion of benzoquinone reached 99% and the selectivity to hydroquinone was 100% .In addtion ,the catalytic performance of Pd/G catalyst remained

  7. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris


    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  8. Options for nitriles removal from C{sub 4}-C{sub 5} cuts. 3. Catalytic hydrogenation using the swing reactive removal process

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Corredores, M.M.; Hernandez, Z.; Guerra, J.; Alvarez, R.; Medina, J. [PDVSA Intevep, Refinacion y Petroquimica, Aptdo. 76343, Caracas 1070A (Venezuela)


    C{sub 4} and C{sub 5} cuts from FCC units can be useful in the preparation of oxygenates such as MTBE, ETBE, and TAME. However, these feedstocks typically contain nitriles and diolefins which poison the etherification catalyst. Albeit, in USA, strong concerns on oxygenate uses have given rise to prohibition within certain states, those concerns have not derived into such drastic decisions in Europe. Still, removing nitriles from reactive feedstocks or converting them into value-added products might be of interest. PDVSA Intevep has developed several methods for removing nitriles present in those feedstocks, which include one based on adsorption [M.M. Ramirez-Corredores, Z. Hernandez, J. Guerra, J. Medina, R. Alvarez. Submitted to Adsorption.], and two based on catalytic conversion. In the first part of this work [M.M. Ramirez-Corredores, Z. Hernandez, J. Guerra, J. Medina, R. Alvarez. Submitted to Adsorption.], both the adsorbent and the adsorption process were described. The details of the catalytic system for the simultaneous hydrogenation of nitriles and diolefins were given in the second part [M.M. Ramirez-Corredores, T. Romero, D. Djaouadi, Z. Hernandez, J. Guerra. Submitted to Ind. Eng. Chem. Res.]. The main features of the catalyst include its nitrile adsorption capabilities, the specific oxidation state of the metal active phase, and the strong early deactivation. In this work, we discuss the convenience of converting the nitriles and diolefins by using a swing mode of reaction between two (or more) reacting zones in order to overcome the drawbacks of the observed deactivation.

  9. Catalytic hydrothermal gasification of algae for hydrogen production: composition of reaction products and potential for nutrient recycling. (United States)

    Onwudili, Jude A; Lea-Langton, Amanda R; Ross, Andrew B; Williams, Paul T


    Chlorella vulgaris, Spirulina platensis and Saccharina latissima were processed under supercritical water gasification conditions at 500 °C, 36 MPa in an Inconel batch reactor for 30 min in the presence/absence of NaOH and/or Ni-Al(2)O(3). Hydrogen gas yields were more than two times higher in the presence of NaOH than in its absence and tar yields were reduced by up to 71%. Saccharina, a carbohydrate-rich macro-alga, gave the highest hydrogen gas yields of 15.1 mol/kg. The tars from all three algae contained aromatic compounds, including phenols, alkyl benzenes and polycyclic aromatic hydrocarbons as well as heterocyclic nitrogen compounds. Tars from Chlorella and Spirulina contained high yields of pyridines, pyrroles, indoles and pyrimidines. Up to 97% TOC removal were achieved in the process waters from the gasification of the algae. Analyses for specific nutrients in the process waters indicated that the process waters from Saccharina could potentially be used for microalgae cultivation.

  10. Energy efficient production of hydrogen and syngas from biomass: development of low-temperature catalytic process for cellulose gasification. (United States)

    Asadullah, Mohammad; Ito, Shin-ichi; Kunimori, Kimio; Yamada, Muneyoshi; Tomishige, Keiichi


    The Rh/CeO2/M (M = SiO2, Al2O3, and ZrO2) type catalysts with various compositions have been prepared and investigated in the gasification of cellulose, a model compound of biomass, in a fluidized bed reactor at 500-700 degrees C. The conventional nickel and dolomite catalysts have also been investigated. Among the catalysts, Rh/CeO2/SiO2 with 35% CeO2 has been found to be the best catalyst with respect to the carbon conversion to gas and product distribution. The steam addition contributed to the complete conversion of cellulose to gas even at 600 degrees C. Lower steam supply gave the syngas and higher steam supply gave the hydrogen as the major product. Hydrogen and syngas from cellulose or cellulosic biomass gasification are environmentally super clean gaseous fuels for power generation. Moreover, the syngas derived liquid fuels such as methanol, dimethyl ether, and synthetic diesels are also super clean transportation fuels. However, the use of cellulose or cellulosic biomass for energy source through the gasification is challenging because of the formation of tar and char during the gasification process. It is interesting that no tar or char was finally formed in the effluent gas at as low as 500-600 degrees C using Rh/CeO2/SiO2(35) catalyst in this process.

  11. Valorization of Waste Lipids through Hydrothermal Catalytic Conversion to Liquid Hydrocarbon Fuels with in Situ Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongwook; Vardon, Derek R.; Murali, Dheeptha; Sharma, Brajendra K.; Strathmann, Timothy J.


    We demonstrate hydrothermal (300 degrees C, 10 MPa) catalytic conversion of real waste lipids (e.g., waste vegetable oil, sewer trap grease) to liquid hydrocarbon fuels without net need for external chemical inputs (e.g., H2 gas, methanol). A supported bimetallic catalyst (Pt-Re/C; 5 wt % of each metal) previously shown to catalyze both aqueous phase reforming of glycerol (a triacylglyceride lipid hydrolysis coproduct) to H2 gas and conversion of oleic and stearic acid, model unsaturated and saturated fatty acids, to linear alkanes was applied to process real waste lipid feedstocks in water. For reactions conducted with an initially inert headspace gas (N2), waste vegetable oil (WVO) was fully converted into linear hydrocarbons (C15-C17) and other hydrolyzed byproducts within 4.5 h, and H2 gas production was observed. Addition of H2 to the initial reactor headspace accelerated conversion, but net H2 production was still observed, in agreement with results obtained for aqueous mixtures containing model fatty acids and glycerol. Conversion to liquid hydrocarbons with net H2 production was also observed for a range of other waste lipid feedstocks (animal fat residuals, sewer trap grease, dry distiller's grain oil, coffee oil residual). These findings demonstrate potential for valorization of waste lipids through conversion to hydrocarbons that are more compatible with current petroleum-based liquid fuels than the biodiesel and biogas products of conventional waste lipid processing technologies.

  12. Ultrasound promoted catalytic liquid-phase dehydrogenation of isopropanol for Isopropanol-Acetone-Hydrogen chemical heat pump. (United States)

    Xu, Min; Xin, Fang; Li, Xunfeng; Huai, Xiulan; Liu, Hui


    The apparent kinetic of the ultrasound assisted liquid-phase dehydrogenation of isopropanol over Raney nickel catalyst was determined in the temperature range of 346-353 K. Comparison of the effects of ultrasound and mechanical agitation on the isopropanol dehydrogenation was investigated. The ultrasound assisted dehydrogenation rate was significantly improved when relatively high power density was used. Moreover, the Isopropanol-Acetone-Hydrogen chemical heat pump (IAH-CHP) with ultrasound irradiation, in which the endothermic reaction is exposure to ultrasound, was proposed. A mathematical model was established to evaluate its energy performance in term of the coefficient of performance (COP) and the exergy efficiency, into which the apparent kinetic obtained in this work was incorporated. The operating performances between IAH-CHP with ultrasound and mechanical agitation were compared. The results indicated that the superiority of the IAH-CHP system with ultrasound was present even if more than 50% of the power of the ultrasound equipment was lost.

  13. Simulation Studies of the Hydrogen Production from Methanol Partial Oxidation Steam Reforming by a Tubular Packed-bed Catalytic Reactor

    Institute of Scientific and Technical Information of China (English)


    Hydrogen production by partial oxidation steam reforming of methanol over a Cu/ZnO/Al2 O3 cata lyst has been paid more and more attention. The chemical equilibria involved in the methanol partial oxidation steam reforming reaction network such as methanol partial oxidation, methanol steam reforming, decomposition of methanol and water-gas shift reaction have been examined over the ranges of temperature 473-1073 K under normal pressure. Based on the detailed kinetics of these reactions over a Cu/ZnO/Al2O3 catalyst, and from the basic concept of the effectiveness factor, the intraparticle diffusion limitations were taken into account. The effec tiveness factors for each reaction along the bed length were calculated. Then important results were offered for the simulation of this reaction process.

  14. Simulation Studies of the Hydrogen Production from Methanol Partial Oxidation Steam Reforming by a Tubular Packed-bed Catalytic Reactor*

    Institute of Scientific and Technical Information of China (English)

    蒋元力; 林美淑; 金东显


    Hydrogen production by partial oxidation steam reforming of methanol over a Cu/ZnO/Al2O3 cata-lyst has been paid more and more attention. The chemical equilibria involved in the methanol pvxtial oxidation steam reforming reaction network such as methanol partial oxidation, methanol steam reforming, decomposition of methanol and water-gas shift reaction have been examined over the ranges of temperature 473---1073 K under normal pressure. Based on the detailed kinetics of these reactions over a Cu/ZnO/Al2O3 catalyst, and from the basic concept of the effectiveness factor, the intraparticle diffusion limitations were taken into account. The effectiveness factors for each reaction along the bed length were calculated. Then important results were offered for the simulation of this reaction process.

  15. Ultrathin Coating of Confined Pt Nanocatalysts by Atomic Layer Deposition for Enhanced Catalytic Performance in Hydrogenation Reactions. (United States)

    Wang, Meihua; Gao, Zhe; Zhang, Bin; Yang, Huimin; Qiao, Yan; Chen, Shuai; Ge, Huibin; Zhang, Jiankang; Qin, Yong


    Metal-support interfaces play a prominent role in heterogeneous catalysis. However, tailoring the metal-support interfaces to realize full utilization remains a major challenge. In this work, we propose a graceful strategy to maximize the metal-oxide interfaces by coating confined nanoparticles with an ultrathin oxide layer. This is achieved by sequential deposition of ultrathin Al2 O3 coats, Pt, and a thick Al2 O3 layer on carbon nanocoils templates by atomic layer deposition (ALD), followed by removal of the templates. Compared with the Pt catalysts confined in Al2 O3 nanotubes without the ultrathin coats, the ultrathin coated samples have larger Pt-Al2 O3 interfaces. The maximized interfaces significantly improve the activity and the protecting Al2 O3 nanotubes retain the stability for hydrogenation reactions of 4-nitrophenol. We believe that applying ALD ultrathin coats on confined catalysts is a promising way to achieve enhanced performance for other catalysts.

  16. Calix[4]arene methylenebisphosphonic acids as inhibitors of fibrin polymerization.

    NARCIS (Netherlands)

    Lugovskoy, E.V.; Gritsenko, P.; Koshel, T.A.; Koliesnik, I.O.; Cherenok, S.O.; Kalchenko, O.I.; Kalchenko, V.I.; Komisarenko, S.V.


    Calix[4]arenes bearing two or four methylenebisphosphonic acid groups at the macrocyclic upper rim have been studied with respect to their effects on fibrin polymerization. The most potent inhibitor proved to be calix[4]arene tetrakis-methylene-bis-phosphonic acid (C-192), in which case the maximum

  17. What Indiana's Education Schools Aren't Teaching About Reading (United States)

    National Council on Teacher Quality, 2009


    In May 2006 the National Council on Teacher Quality (NCTQ) released a groundbreaking study, "What Education Schools Aren't Teaching About Reading - and "What Elementary Teachers Aren't Learning." The primary findings were disheartening: in a representative sampling of education schools in 35 states, only 15 percent of schools…

  18. Hydrogen Effect on Coke Removal and Catalytic Performance in Pre-Carburization and Methane Dehydro-Aromatization Reaction on Mo/HZSM-5

    Institute of Scientific and Technical Information of China (English)

    Hongtao Ma; Ryoichi Kojima; Satoshi Kikuchi; Masaru Ichikawa


    In this study,the effects of pre-carburization of catalyst,hydrogen addition to methane feed and the space velocity of methane on the catalytic performance in methane to benzene (MTB) reaction were discussed in detail over Mo/HZSM-5 catalyst at 1023 K and 0.3 MPa. Compared with the non-precarburized catalyst,the Mo catalyst pre-carburized under the flow of CH4+4H2 at 973 K was found to have the higher activity and better stability. Further 6% H2 addition to the methane feed suppressed the aromatic type of coke formation effectively,and improved the stability of catalyst markedly,moreover gave a much longer reaction life of catalyst (53 h at 1023 K and 5400 ml/(g·h)) and much more formation amounts of benzene and hydrogen. With increase of methane space velocity,both the naphthalene formation selectivity and the coke formation selectivity were decreased by the shortened contact time;the benzene formation selectivity and total formation amount before the complete deactivation of catalyst were increased ly,while the total naphthalene and coke formation amounts did not change much.At high methane space velocity (≥5400 ml/(g·h)),a new middle temperature coke derived from the high temperature aromatic coke was formed on the catalyst; all the coke formed could be burnt off at lower temperature in oxygen,compared with those obtained at low space velocity. Considering the benzene formation amount and catalyst stability together,5400 ml/(g·h) was proved to be the most efficient methane space velocity for benzene production.

  19. Hydrogen production with short contact time. Catalytic partial oxidation of hydrocarbons and oxygenated compounds: Recent advances in pilot- and bench-scale testing and process design

    Energy Technology Data Exchange (ETDEWEB)

    Guarinoni, A.; Ponzo, R.; Basini, L. [ENI Refining and Marketing Div., San Donato Milanese (Italy)


    ENI R and D has been active for fifteen years in the development of Short Contact Time - Catalytic Partial Oxidation (SCT-CPO) technologies for producing Hydrogen/Synthesis Gas. From the beginning the experimental work addressed either at defining the fundamental principles or the technical and economical potential of the technology. Good experimental responses, technical solutions' simplicity and flexibility, favourable techno-economical evaluations promoted the progressive widening of the field of the investigations. From Natural Gas (NG) the range of ''processable'' Hydrocarbons extended to Liquefied Petroleum Gas (LPG) and Gasoils, including those characterised by high levels of unsaturated and sulphurated molecules and, lately, to other compounds with biological origin. The extensive work led to the definition of different technological solutions, grouped as follows: Technology 1: Air Blown SCT-CPO of Gaseous Hydrocarbons and/or Light Compounds with biological origin Technology 2: Enriched Air/Oxygen Blown SCT-CPO of Gaseous Hydrocarbons and/or Light Compounds with biological origin Technology 3: Enriched Air/Oxygen Blown SCT-CPO of Liquid Hydrocarbons and/or Compounds with biological origin Recently, the licence rights on a non-exclusive basis for the commercialisation of SCT-CPO based processes for H{sub 2}/Synthesis gas production from light hydrocarbons with production capacity lower than 5,000 Nm{sup 3}/h of H{sub 2} or 7,500 Nm3/h of syngas have been assigned to two external companies. In parallel, development of medium- and large-scale plant solutions is progressing within the ENI group framework. These last activities are addressed to the utilisation of SCT-CPO for matching the variable Hydrogen demand in several contexts of oil refining operation. This paper will report on the current status of SCT-CPO with a focus on experimental results obtained, either at pilot- and bench- scale level. (orig.)

  20. Hydrogen production via catalytic steam reforming of fast pyrolysis bio-oil in a two-stage fixed bed reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C.; Huang, Q.; Sui, M.; Yan, Y.; Wang, F. [Research Center for Biomass Energy, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China)


    Hydrogen production was prepared via catalytic steam reforming of fast pyrolysis bio-oil in a two-stage fixed bed reactor system. Low-cost catalyst dolomite was chosen for the primary steam reforming of bio-oil in consideration of the unavoidable deactivation caused by direct contact of metal catalyst and bio-oil itself. Nickel-based catalyst Ni/MgO was used in the second stage to increase the purity and the yield of desirable gas product further. Influential parameters such as temperature, steam to carbon ratio (S/C, S/CH{sub 4}), and material space velocity (W{sub B}HSV, GHSV) both for the first and the second reaction stages on gas product yield, carbon selectivity of gas product, CH{sub 4} conversion as well as purity of desirable gas product were investigated. High temperature (> 850 C) and high S/C (> 12) are necessary for efficient conversion of bio-oil to desirable gas product in the first steam reforming stage. Low W{sub B}HSV favors the increase of any gas product yield at any selected temperature and the overall conversion of bio-oil to gas product increases accordingly. Nickel-based catalyst Ni/MgO is effective in purification stage and 100% conversion of CH{sub 4} can be obtained under the conditions of S/CH{sub 4} no less than 2 and temperature no less than 800 C. Low GHSV favors the CH{sub 4} conversion and the maximum CH{sub 4} conversion 100%, desirable gas product purity 100%, and potential hydrogen yield 81.1% can be obtained at 800 C provided that GHSV is no more than 3600 h{sup -} {sup 1}. Carbon deposition behaviors in one-stage reactor prove that the steam reforming of crude bio-oil in a two-stage fixed bed reaction system is necessary and significant. (author)

  1. New Neutral Receptors for Fluoride Based on Calix[4]arene Bearing Thiourea and Amide

    Institute of Scientific and Technical Information of China (English)

    刘顺英; 徐括喜; 何永炳; 秦海娟; 孟令芝


    Two-armed neutral anion receptors (4,5), calix[4]arenes beating thiourea and amide binding sites, were prepared and examined their anion-binding ability by the UV-vis spectra. The results of non-linear curve fitting and Job plot indicate that 4 or 5 forms 1:1 stoichiometry complex with fluoride by hydrogen bonding interactions. Receptors 4 and 5 have an excellent selectivity for fluoride but have no binding ability with acetate, dihydrogen phosphate and the halogen anions (Cl-,Br-,I-).

  2. Synthesis of three-dimensional reduced graphene oxide layer supported cobalt nanocrystals and their high catalytic activity in F-T CO2 hydrogenation. (United States)

    He, Fei; Niu, Na; Qu, Fengyu; Wei, Shuquan; Chen, Yujin; Gai, Shili; Gao, Peng; Wang, Yan; Yang, Piaoping


    The reduced graphene oxide (rGO) supported cobalt nanocrystals have been synthesized through an in situ crystal growth method using Co(acac)2 under solvothermal conditions by using DMF as the solvent. By carefully controlling the reaction temperature, the phase transition of the cobalt nanocrystals from the cubic phase to the hexagonal phase has been achieved. Moreover, the microscopic structure and morphology as well as the reduction process of the composite have been investigated in detail. It is found that oxygen-containing functional groups on the graphene oxide (GO) can greatly influence the formation process of the Co nanocrystals by binding the Co(2+) cations dissociated from the Co(acac)2 in the initial reaction solution at 220 °C, leading to the 3D reticular structure of the composite. Furthermore, this is the first attempt to use a Co/rGO composite as the catalyst in the F-T CO2 hydrogenation process. The catalysis testing results reveal that the as-synthesized 3D structured composite exhibits ideal catalytic activity and good stability, which may greatly extend the scope of applications for this kind of graphene-based metal hybrid material.

  3. Effects of potassium on Ni-K/Al2O3 catalysts in the synthesis of carbon nanofibers by catalytic hydrogenation of CO2. (United States)

    Chen, Ching S; Lin, Jarrn H; You, Jiann H; Yang, Kuo H


    Commercially available Ni/Al(2)O(3) samples containing various concentrations of potassium were used to achieve carbon deposition from CO(2) via catalytic hydrogenation. Experimental results show that K additives can induce the formation of carbon nanofibers or carbon deposition on Ni/Al(2)O(3) during the reverse water-gas shift reaction. This work proposes that the formation rate of carbon deposition depends closely on ensemble control, suggesting that the ensemble size necessary to form carbon may be approximately 0.5 potassium atoms. The results of CO(2) temperature-programmed desorption provide strong evidence that the new adsorption sites for CO(2) created on Ni-K/Al(2)O(3) closely depend upon the synthesis of carbon nanofibers. It is found that some potassium-related active phases obtained by calcination and reduction pretreatments can participate in the carbon deposition reaction. The formation pathway for carbon deposition suggests that the main source of carbon deposition is CO(2) and that the pathway is independent of the reaction products CO and CH(4) in the reverse water-gas shift reaction.

  4. Production of bio-hydrogenated diesel by catalytic hydrotreating of palm oil over NiMoS2/γ-Al2O3 catalyst. (United States)

    Srifa, Atthapon; Faungnawakij, Kajornsak; Itthibenchapong, Vorranutch; Viriya-Empikul, Nawin; Charinpanitkul, Tawatchai; Assabumrungrat, Suttichai


    Catalytic hydrotreating of palm oil (refined palm olein type) to produce bio-hydrogenated diesel (BHD) was carried out in a continuous-flow fixed-bed reactor over NiMoS2/γ-Al2O3 catalyst. Effects of dominant hydrotreating parameters: temperature: 270-420°C; H2 pressure: 15-80 bar; LHSV: 0.25-5.0 h(-1); and H2/oil ratio: 250-2000 N(cm(3)/cm(3)) on the conversion, product yield, and a contribution of hydrodeoxygenation (HDO) and decarbonylation/decarboxylation (DCO/DCO2) were investigated to find the optimal hydrotreating conditions. All calculations including product yield and the contribution of HDO and DCO/DCO2 were extremely estimated based on mole balance corresponding to the fatty acid composition in feed to fully understand deoxygenation behaviors at different conditions. These analyses demonstrated that HDO, DCO, and DCO2 reactions competitively occurred at each condition, and had different optimal and limiting conditions. The differences in the hydrotreating reactions, liquid product compositions, and gas product composition were also discussed.

  5. Influence of preparation method on supported Cu-Ni alloys and their catalytic properties in high pressure CO hydrogenation

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Eriksen, Winnie L.; Duchstein, Linus Daniel Leonhard


    to impregnation, the coprecipitation and deposition-coprecipitation methods are more efficient for preparation of small and homogeneous Cu-Ni alloy nanoparticles. In order to examine the stability of Cu-Ni alloys in high pressure synthesis gas conversion, they have been tested for high pressure CO hydrogenation......Silica supported Cu-Ni (20 wt% Cu + Ni on silica, molar ratio of Cu/Ni = 2) alloys are prepared via impregnation, coprecipitation, and deposition- coprecipitation methods. The approach to co-precipitate the SiO2 from Na2SiO3 together with metal precursors is found to be an efficient way to prepare...... high surface area silica supported catalysts (BET surface area up to 322 m2 g-1, and metal area calculated from X-ray diffraction particle size up to 29 m2 g-1). The formation of bimetallic Cu-Ni alloy nanoparticles has been studied during reduction using in situ X-ray diffraction. Compared...

  6. Thermo gravimetric analysis of supramolecular complexes of p-tert-butylcalix[6]arene and ammonium cations: crystal structure of diethylammonium complex

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarotto, Marcio [Departamento de Quimica Organica, UFRGS, Av. Bento Goncalves 9500, CEP 91501 970, C.P. 15003, Porto Alegre, Rio Grande do Sul (Brazil)]. E-mail:; Nachtigall, Francine Furtado [Departamento de Quimica Organica, UFRGS, Av. Bento Goncalves 9500, CEP 91501 970, C.P. 15003, Porto Alegre, Rio Grande do Sul (Brazil); Schnitzler, Egon [Departamento de Quimica, Universidade Estadual de Ponta Grossa, Campus de Uvaranas, Av. General Carlos Cavalcanti 4748, CEP 84030 900 Ponta Grossa, Parana, Brazil. (Brazil); Castellano, Eduardo Ernesto [Departamento de Fisica, Universidade de Sao Paulo, Sao Carlos, Av. Trabalhador Saocarlense 400, Centro, CEP 13566-590, Sao Carlos, SP (Brazil)


    Thermo gravimetric analysis of ammonium-p-tert-butylcalix[6]arene salts were carried out to determine the stoichiometry of the inclusion compounds and the temperature of leaving of the ammonium cation, as amine, from the solid phase by a reverse proton transfer reaction to calixarene. The chain length of the amine molecules and their relative basicity order are the main factors which determine the decomplexation temperatures for the ammonium salts of piperidinium, diethylammonium, ethylenediammonium, morpholinium, s-butylammonium, butylammonium, hexylammonium and triethylammonium salts of p-tert-butylcalix[6]arene anion. The solid state structure of bis-diethylammonium-p-tert-butylcalix[6]arene dianion is reported. The calix moiety adopts a 1,2,3 alternate conformation, with one ammonium as exo-calix and other as endo-calix, with an intricate array of hydrogen bonds between phenol, phenolate and ammonium cations.

  7. Selective catalytic reduction of nitrogen oxides from industrial gases by hydrogen or methane; Reduction catalytique selective des oxydes d'azote (NO{sub x}) provenant d'effluents gazeux industriels par l'hydrogene ou le methane

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann Pirez, M


    This work deals with the selective catalytic reduction of nitrogen oxides (NO{sub x}), contained in the effluents of industrial plants, by hydrogen or methane. The aim is to replace ammonia, used as reducing agent, in the conventional process. The use of others reducing agents such as hydrogen or methane is interesting for different reasons: practical, economical and ecological. The catalyst has to convert selectively NO into N{sub 2}, in presence of an excess of oxygen, steam and sulfur dioxide. The developed catalyst is constituted by a support such as perovskites, particularly LaCoO{sub 3}, on which are dispersed noble metals (palladium, platinum). The interaction between the noble metal and the support, generated during the activation of the catalyst, allows to minimize the water and sulfur dioxide inhibitor phenomena on the catalytic performances, particularly in the reduction of NO by hydrogen. (O.M.)

  8. Molecular catalytic coal liquid conversion. Quarterly progress report, [April--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Stock, L.M.; Cheng, C.; Ettinger, M.


    This phase of the project essentially consists of preparing organometallic reagents which are known or have been reported to act as homogeneous hydrogenation catalysts of aromatic hydrocarbons and studying their properties as homogeneous hydrogenation catalysts under various conditions with the ultimate objective of using these compounds to catalyze the conversion of coal liquids. With regards to this task, we have prepared two rhodium (I) catalysts. These are the dimer of dichloropentamethylcyclopentadienylrhodium, [RhCl{sub 2}(C{sub 5}Me{sub 5})], and the dimer of chloro(1,5-hexadiene) rhodium. The dimer of dichloropentamethylcyclopentadienylrhodium was prepared by stirring rhodium (III) chloride hydrate with hexamethyldewarbenzene at 65{degrees}C. It was reported to hydrogenate arenes and various substituted arenas such as aryl ethers, esters and ketones at 50{degrees} and 50 atm of dihydrogen. The dimer of chloro (1,5-hexadiene) rhodium was prepared by reacting rhodium (III) chloride hydrate with 1,5-hexadiene at 50{degrees}C for six days in water. Our second task is to investigate the chemistry of base-catalyzed hydrogenation of organic compounds with the ultimate objective of applying the chemistry behind this novel concept to the catalytic conversion of coal liquids. It is not generally known that bases such as the hydroxide ion are capable of activating dihydrogen to form ``solvated hydride`` or hydride-like species which can effect hydrogenation reactions under the appropriate conditions. Research during the first half of this century has amply demonstrated the feasibility of this concept. More recently, Klingler, Krause and Rathke studied the role of this kind of chemistry in the water-gas shift reaction. So far, only Walling and Bollyky have been the only investigators to have applied dihydrogen activation by bases to the hydrogenation of organic compounds.

  9. Synthesis of Schiff Base Calix[4]arene Crowns

    Institute of Scientific and Technical Information of China (English)


    This letter reports the synthesis of Schiff base calix[4]arene crowns containing m-xylylene phenol subunit, in which calix[4]arene Schiff base crowns 2a, 2b and 2c were formed by 1:1 condensation of calix[4]arene diamine 1 with dialdehydes (2, 6-diformyl-4-chlorophenol 3a, 2, 6-diformyl-4-methylphenol 3b, 2, 6-diformyl-4-tert-butylphenol 3c) under high dilute condition in refluxing anhydrous ethanol in 65-70% yield.

  10. Functioned Calix[4]arenes as Artificial Enzymes Catalyze Aldol Condensation

    Institute of Scientific and Technical Information of China (English)


    Aldolase models derived from calix[4]arene were designed and synthesized. The aldol condensation of p-nitrobenzaldehyde with acetone was catalyzed by the synthetic enzymes proceeded under mild conditions to offer chiefly aldol-type product in good yield.

  11. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Final technical report, Volume 2 - hydrogenative and hydrothermal pretreatments and spectroscopic characterization using pyrolysis-GC-MS, CPMAS {sup 13}C NMR and FT-IR

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan Song; Hatcher, P.G.; Saini, A.K.; Wenzel, K.A.


    It has been indicated by DOE COLIRN panel that low-temperature catalytic pretreatment is a promising approach to the development of an improved liquefaction process. This work is a fundamental study on effects of pretreatments on coal structure and reactivity in liquefaction. The main objectives of this project are to study the coal structural changes induced by low-temperature catalytic and thermal pretreatments by using spectroscopic techniques; and to clarify the pretreatment-induced changes in reactivity or convertibility of coals. As the second volume of the final report, here we summarize our work on spectroscopic characterization of four raw coals including two subbituminous coals and two bituminous coals, tetrahydrofuran (THF)-extracted but unreacted coals, the coals (THF-insoluble parts) that have been thermally pretreated. in the absence of any solvents and in the presence of either a hydrogen-donor solvent or a non-donor solvent, and the coals (THF-insoluble parts) that have been catalytically pretreated in the presence of a dispersed Mo sulfide catalyst in the absence of any solvents and in the presence of either a hydrogen-donor solvent or a non-donor solvent.

  12. Influence of reduction energy match among CuO species in CuO-CeO2 catalysts on the catalytic performance for CO preferential oxidation in excess hydrogen

    Institute of Scientific and Technical Information of China (English)

    Zhigang Liu; Yunlong Xie; Wensheng Li; Renxian Zhou; Xiaoming Zheng


    In the present study,we have investigated the reducibility of CuO species on CuO-CeO2 catalysts and the influence of CuO species on the catalytic performance for CO preferential oxidation(CO PROX)in excess hydrogen.It is revealed that the smaller the difference of reduction temperature(denoted as △T)for two adjacent CuO species is,the higher the catalytic activity of CuO-CeO2 for the PROX in excess hydrogen may be obtained.It means that if the reduction energy of CuO-CU2+pairs matched better,the reduction-oxidation recycle of CuO-Cu2+pairs would go on more easily,then the transferring energy of CuO-Cu2+pairs would be lesser.Therefore,the CuO-CeO2 catalysts will be largely improved in their catalytic performance if the different CuO species on the catalysts have matched the reduction energy,which would allows them to cooperate effectively.

  13. Fifty years of oxacalix[3]arenes: A review

    Directory of Open Access Journals (Sweden)

    Kevin Cottet


    Full Text Available Hexahomotrioxacalix[3]arenes, commonly called oxacalix[3]arenes, were first reported in 1962. Since then, their chemistry has been expanded to include numerous derivatives and complexes. This review describes the syntheses of the parent compounds, their derivatives, and their complexation behaviour towards cations. Extraction data are presented, as are crystal structures of the macrocycles and their complexes with guest species. Applications in fields as diverse as ion selective electrode modifiers, fluorescence sensors, fullerene separations and biomimetic chemistry are described.

  14. Annelation of furan rings to arenes (United States)

    Omelchuk, O. A.; Tikhomirov, A. S.; Shchekotikhin, A. E.


    Benzo[b]furans have been used in various fields of chemistry and technology due to their unique physical, chemical and biological properties. It is primarily a wide range of biological activities of natural and synthetic benzo[b]furan derivatives and their polyfused analogues (naphthofurans, anthrafurans, etc.) that attracts a significant scientific interest in the context of using these heterocycles as privileged scaffolds in drug design. This survey covers those methods for the annelation of a furan ring to arenes that have been developed mostly during the last decade. We also analyze trends in synthetic methods of benzo[b]furans. Some synthetic schemes are highly efficient in the synthesis of polyfunctionalized furan derivatives. The bibliography includes 110 references.

  15. Crystal structures of two thiacalix[4]arene derivatives anchoring four thiadiazole groups

    Indian Academy of Sciences (India)

    Bang-Tun Zhao; Zhen Zhou; Zhen-Ning Yan


    The crystal structures of two thiacalixarene derivatives anchoring thiadiazole functional groups at lower rim, C60H72O4S12N8 (1), C64H80O4S12N8 (2), have been determined by single crystal X-ray diffraction. The thiacalix[4]arene framework in both 1 and 2 adopts the 1,3-alternate conformation. Compound 1 forms a 1-D chain by weak hydrogen bonding (C-H$\\cdots$N) interactions between two thiadiazole groups in two different molecules. The chains are further connected to form a 2-D network through sulfur-sulfur (S$\\cdots$S) interactions. The lattice water molecules which exist as dimers by forming hydrogen bonds (O-H$\\cdots$O) promote a 3-D supramolecular structure through weak hydrogen bonding (O-H$\\cdots$S) interactions between the lattice water dimers and the 2-D networks. On the other hand, compound 2, based on dimer which is formed by weak hydrogen bonding (C-H$\\cdots$S) interactions, is extended to a 1-D chain through sulfur-sulfur (S$\\cdots$S) interactions. The dimers of lattice methanol molecules linked by hydrogen bonds (O-H$\\cdots$O) act as bridges to link the 1-D chains into a 2-D network through weak hydrogen bonding (C-H$\\cdots$N) interactions.

  16. Nickel-based xerogel catalysts: Synthesis via fast sol-gel method and application in catalytic hydrogenation of p-nitrophenol to p-aminophenol

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jin; Wang, Qiang; Fan, Dongliang; Ma, Lirong; Jiang, Deli; Xie, Jimin, E-mail:; Zhu, Jianjun, E-mail:


    out to investigate the reducibility of nickel species and the interaction between nickel species and alumina. The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated over the prepared nickel-based xerogel catalysts. The conversion of p-nitrophenol was monitored by UV spectrophotometry and high performance liquid chromatography (HPLC). The results show that the catalysts are highly selective for the conversion of p-nitrophenol to p-aminophenol and the order of catalytic activities of the catalysts is Ni < Ni-Al{sub 2}O{sub 3} < Ni-Ca-Al{sub 2}O{sub 3}. The catalysts were recycled and were used to evaluate the reutilization.

  17. 负载型Pd/SBA-15催化剂催化性能研究%Research on catalytic hydrogenation performance of Pd/SBA-15 supported catalyst

    Institute of Scientific and Technical Information of China (English)



    The hydrogenation of 2-nitrochlorobenzene is carried out by Pd/SBA-15 supported catalyst. The effect of temperature and amount of catalysts on catalytic activity and life-span are investigated. The results show that Pd/SBA-15 supported catalyst has excellent catalytic performance and is expected to be applied in industry.%将负载型催化剂Pd/SBA-15用于催化邻氯硝基苯加氢.考察了反应温度、催化剂用量对Pd/SBA-15催化性能的影响,并考察了催化剂的使用寿命.实验结果表明,Pd/SBA-15催化剂表现出很好的催化性能,有望应用于工业生产.

  18. Catalytic Hydrogenation of CO2 to Methanol: Study of Synergistic Effect on Adsorption Properties of CO2 and H2 in CuO/ZnO/ZrO2 System

    Directory of Open Access Journals (Sweden)

    Chunjie Huang


    Full Text Available A series of CuO/ZnO/ZrO2 (CZZ catalysts with different CuO/ZnO weight ratios have been synthesized by citrate method and tested in the catalytic hydrogenation of CO2 to methanol. Experimental results showed that the catalyst with the lowest CuO/ZnO weight ratio of 2/7 exhibited the best catalytic performance with a CO2 conversion of 32.9%, 45.8% methanol selectivity, and a process delivery of 193.9 gMeOH·kgcat−1·h−1. A synergetic effect is found by systematic temperature-programmed-desorption (TPD studies. Comparing with single and di-component systems, the interaction via different components in a CZZ system provides additional active sites to adsorb more H2 and CO2 in the low temperature range, resulting in higher weight time yield (WTY of methanol.

  19. Hydrogénations catalytiques. De la recherche de base à l'application industrielle Catalytic Hydrogenation from Basic Research to Industrial Applications

    Directory of Open Access Journals (Sweden)

    Boitiaux J. P.


    additifs ou impuretés des charges et de donner des idées claires sur la façon de modifier les supports ou les sites métalliques. Les conséquences ont été tirées de ces études et des applications industrielles ont démontré clairement l'intérêt de ces travaux. Néanmoins certains problèmes sont encore à résoudre qu'il serait nécessaire de considérer d'un point de vue encore plus fondamental en prenant en considération le mécanisme de la réaction d'hydrogénation. Early research on catalytic hydrogenation showed the specificity of different metals for different types of hydrogenation (acetylenes, olefins, aromatics, aldehydes, nitriles, etc. . This observation somewhat vaguely included the concept of the importance of the metal/substrate pair. A contradiction with the insensitive character to the structure of such reactions then appeared. Recent research on palladium catalysts of various dispersions has clearly demonstrated the influence of particle size on the hydrogenation rate of C4 acetylenes and diolefins. Such a behavior has now been confirmed by further research on platinum and rhodium. The phenomenon is due to excessive adsorption of reactants on small particles. These particles are electrodeficient and very strongly adsorb electrodonor compounds such as unsaturated hydrocarbons. The explanation has been confirmed by the additive effect caused by piperidine. Its coadsorption on the catalyst destabilizes the metal/substrate bond and increases the activity. A complete kinetic analysis has refined this interpretation by demonstrating the constancy of intrinsic activity and the relation between sensitivity to metal dispersion and a complexing of the metallic site of the type encountered on homogeneous catalysts. This fundamental research has very important consequences on the development of industrial catalysts. For each process and hence for each hydrogenation, the optimum dispersion of the metal has to be determined to obtain the highest possible

  20. The Olefin Metathesis Reactions Combined with Organo-Iron Arene Activation Towards Dendrimers, and Polymers (United States)

    Astruc, Didier; Martinez, Victor

    The subjects treated in the two lectures of the North Atlantic Treaty Organization (NATO) summer course are (1) the combination of arene activation and perfunctionalization using organo-iron chemistry with olefin metathesis incuding metathesis of dendritic polyolefin molecules; (2) the synthesis of metallodendritic benzylidene complexes that catalyse ring-opening metathesis polymerization (ROMP) under ambient conditions and the formation of dendritic stars; (3) the use of stoichiometric and catalytic electron-transfer processes with standard reservoirs of electrons (reductants) or electron holes (oxidants) iron complexes to achieve noteworthy metathesis reactions or synthesize compounds that are useful in metathesis. Only the two first topics are treated in this chapter, and interested readers can find references concerning the third aspect called in the introduction and subsequently cited in the reference list.

  1. Co/ZnO and Ni/ZnO catalysts for hydrogen production by bioethanol steam reforming. Influence of ZnO support morphology on the catalytic properties of Co and Ni active phases

    Energy Technology Data Exchange (ETDEWEB)

    Da Costa-Serra, J.F.; Chica, A. [Instituto de Tecnolgia Quimica (UPV-CSIC), Universidad Politecnica de Valencia, Consejo Superior de Investigaciones Cientificas, Avenida de los naranjos s/n, 46022 Valencia (Spain); Guil-Lopez, R. [Instituto de Catalisis y Petroleoquimica, CSIC, Marie Curie 2, Cantoblanco, 28049 Madrid (Spain)


    Renewable hydrogen production from steam reforming of bioethanol is an interesting approach to produce sustainable hydrogen. However, simultaneous competitive reactions can occur, decreasing the hydrogen production yield. To overcome this problem, modifications in the steam reforming catalysts are being studied. Ni and Co active phases supported over modified ZnO have been widely studied in hydrogen production from steam reforming of bioethanol. However, the influence of the morphology and particle size of ZnO supports on the catalytic behaviour of the supported Ni and Co has not been reported. In the present work, we show how the morphology, shape, and size of ZnO support particles can control the impregnation process of the metal active centres, which manages the properties of active metallic particles. It has been found that nanorod particles of ZnO, obtained by calcination of Zn acetate, favour the metal-support interactions, decreasing the metallic particle sizes and avoiding metal (Co or Ni) sinterization during the calcination of metal precursors. Small metallic particle sizes lead to high values of active metal exposure surface, increasing the bioethanol conversion and hydrogen production. (author)

  2. Tetranuclear iron(III) complexes of an octadentate pyridine-carboxylate ligand and their catalytic activity in alkane oxidation by hydrogen peroxide. (United States)

    Gutkina, Elena A; Trukhan, Vladimir M; Pierpont, Cortlandt G; Mkoyan, Shaen; Strelets, Vladimir V; Nordlander, Ebbe; Shteinman, Albert A


    oxidation catalysts. Catalytic reactions carried out with alkane substrate molecules and hydrogen peroxide predominantly gave alcohols. High stereospecificity in the oxidation of cis-1,2-dimethylcyclohexane supports the metal-based molecular mechanism of O-insertion into C-H bonds postulated for non-heme iron enzymes such as methane monooxygenase.

  3. Synphos modified Pt nanoclusters, their heterogenization by silica sol-gel entrapment, and catalytic activity in hydrogenolysis of bicyclo[2.2.2]oct-7-enes and hydrogenation of ethyl pyruvate

    Energy Technology Data Exchange (ETDEWEB)

    Neatu, F; Parvulescu, V I [Faculty of Chemistry, Department of Chemical Technology and Catalysis, University of Bucharest, B-dul Regina Elisabeta 4-12, Bucharest 030018 (Romania); Kraynov, A [Jacobs University Bremen, Campus Ring 8, D-28759 Bremen (Germany); Kranjc, K; Kocevar, M [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Askerceva 5, SI-1000 Ljubljana (Slovenia); Ratovelomanana-Vidal, V [Laboratoire de Synthese Selective Organique et Produits Naturels, Ecole Nationale Superieure de Chimie de Paris, UMR 7573 CNRS, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Richards, R [Department of Chemistry and Geochemistry, Colorado School of Mines, 1500 Illiniois, Golden, CO 80401 (United States)], E-mail:, E-mail:, E-mail:


    Platinum (Pt) colloids modified by the chiral ligand synphos were prepared with the goal of obtaining a catalytic nanomaterial and were subsequently embedded in silica to form a heterogeneous catalyst. The systems were characterized by {sup 31}P-NMR, x-ray diffraction, molecular modeling and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTs) measurements. These colloids, both as 'quasi-homogeneous catalysts' (or soluble heterogeneous catalysts) and embedded in silica (heterogeneous catalysts) were employed in the selective hydrogenolysis of highly sterically constrained bicyclo[2.2.2]oct-7-enes and hydrogenation of ethyl pyruvate.

  4. Chemistry - Toward efficient hydrogen production at surfaces

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Christensen, Claus H.


    Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy.......Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy....

  5. Binding of DNA by a dinitro-diester calix[4]arene: denaturation and condensation of DNA. (United States)

    Ostos, F J; Lebron, J A; Moyá, M L; Deasy, M; López-Cornejo, P


    A study of a dinitro-diester calix[4]arene (5,17-(3-nitrobenzylideneamino)-11,23-di-tert-butyl-25,27-diethoxycarbonyl methyleneoxy-26,28-dihydroxycalix[4]arene) interaction with calf-thymus DNA was carried out using several techniques. The measurements were done at various molar ratios X=[calixarene]/[DNA]. Results show diverse changes in the DNA conformation depending on the X value. Thus, at low macrocycle concentrations, the calixarene binds to the polynucleotide. This interaction, mainly in groove mode, weakens the hydrogen bonds between base pairs of the helix inducing denaturation of the double strands, as well as condensation of the macromolecule, from an extended coil state to a globular state. An opposite effect is observed at X molar ratios higher than 0.07. The de-condensation of DNA happens, that is, the transition from a compact state to a more extended conformation, probably due to the stacking of calixarene molecules in the solution. Results also show the importance of making a proper choice of the system under consideration.

  6. Experimental research of lignite caking property improvement modification by catalytic moderate nonGliquefaction hydrogenation%褐煤非液化中度催化加氢增黏改性的试验研究

    Institute of Scientific and Technical Information of China (English)

    朱建虎; 刘生玉; 姚素玲


    以元宝山褐煤为研究对象,选用硫酸亚铁作为催化剂,对褐煤进行了非液化中度加氢和催化加氢以及与塑料共混催化加氢增黏改性的试验研究,分析和测定了加氢煤的官能团、热解反应性和黏结性.结果表明,褐煤在反应温度为350℃和10 MPa 的氢压下加氢和催化加氢反应8h后,煤的结构发生了显著变化,煤中脂肪结构显著增多,热解反应性明显提高,煤的黏结性得到显著提高和改善,催化加氢煤的黏结指数从0提高到18�97.在350℃褐煤在催化加氢过程中,聚丙烯的添加弱化了对煤的加氢增黏效果.反应温度为400℃时,催化加氢对煤黏结性的提高影响很小,适宜的加氢反应温度能够使褐煤加氢获得较高的黏结性.%Using ferrous sulfate as catalyst,the catalytic moderate nonGliquefaction hydroG genation and addition plastic on hydrogenation processing experiments have been conducted to improve the plastic properties of Yuanbaoshan lignite�The functional groups,pyrolysis reactivity and the indexes of caking property of hydrogenation coal have been measured�The results indicaG ted that under reaction temperature 350℃ and hydrogen pressure 10 MPa for 8 hours,lignite cola structure change obviously�The content of aliphatic hydrocarbon in coal structure and pyrolysis reactivity have been improved significantly�The caking index of hydrogenation coal increasing from 0 to 18�97� The polypropylene addition in catalytic hydrogenation at 350℃has negative effects on lignite plastic property improvement�The caking property of lignite by hydrogenation at 400℃ has not been obviously improved�Appropriate hydrogenation reaction temperature playG scritical role in the caking property improvement.

  7. Head-to-head linked double calix[4]arenes: convenient synthesis and complexation properties

    NARCIS (Netherlands)

    Struck, Oliver; Chrisstoffels, Lysander A.J.; Lugtenberg, Ronny J.W.; Verboom, Willem; Hummel, van Gerrit J.; Harkema, Sybolt; Reinhoudt, David N.


    Combination of calix[4]arenes functionalized at the upper rim at the 5- and 17-positions with amino and formyl groups, respectively, gives a new series of "head-to-head" linked double calix[4]arenes in nearly quantitative yield. The X-ray structure of a modified double calix[4]arene is reported. The

  8. Preconversion catalytic deoxygenation of phenolic functional groups. Quarterly technical progress report, April 1, 1992--June 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kubiak, C.P.


    Aryl carbon-oxygen bond cleavage is a chemical transformation of importance in coal liquefaction and the upgrading of coal liquids as well as in the synthesis of natural products. There have been numerous attempts to discover general methods for the cleavage of aryl carbon-oxygen bonds. All the stoichiometric organic methods for phenol deoxygenation have limited applications and involve expensive reagents. Catalytic method, for the hydrodeoxygenation (HDO) of phenols involve supported transition metal oxides, such as Mo/{gamma}-Al{sub 2}O{sub 3}, Ni-MO/{gamma}-Al{sub 2}O{sub 3}, Co-Mo/{gamma}-Al{sub 2}O{sub 3}, and Fe{sub 2}O{sub 3}/SiO{sub 2}. Typical phenol hydrodeoxygenation conditions involve hydrogen pressures in excess of 100 atm and temperatures in excess of 200{degrees}C. Under these conditions arene ring hydrogenation is generally found to compete with phenol deoxygenation; and the coproduct water is found to impair the activity of the catalysts. This proposed research offers the possibility of effecting the selective catalytic deoxygenation of phenolic functional groups using CO. The deoxygenation of phenols by carbon monoxide mediated by Ir(triphos)OAr has provided us with a catalytic Phenol deoxygenation pathway, through the elimination of CO{sub 2} and formation of a benzyne intermediate. Although the [Pt(triphos)(O-Ph-Me)]PF{sub 6} system is not expected to be as efficient a catalyst as some of the other transition metals systems we are currently exploring, it will provide more information about the deoxygenation mechanism in these triphos complexes. This is due to the presence of the structurally sensitive {sup 3l}P--{sup 195}Pt coupling constant and comparisons to the extensively studied Pt(dppe)(O-Ph){sub 2} systems.

  9. Mechanistic investigation of CO2 hydrogenation by Ru(II) and Ir(III) aqua complexes under acidic conditions: two catalytic systems differing in the nature of the rate determining step. (United States)

    Ogo, Seiji; Kabe, Ryota; Hayashi, Hideki; Harada, Ryosuke; Fukuzumi, Shunichi


    Ruthenium aqua complexes [(eta(6)-C(6)Me(6))Ru(II)(L)(OH(2))](2+) {L = bpy (1) and 4,4'-OMe-bpy (2), bpy = 2,2'-bipyridine, 4,4'-OMe-bpy = 4,4'-dimethoxy-2,2'-bipyridine} and iridium aqua complexes [Cp*Ir(III)(L)(OH(2))](2+) {Cp* = eta(5)-C(5)Me(5), L = bpy (5) and 4,4'-OMe-bpy (6)} act as catalysts for hydrogenation of CO(2) into HCOOH at pH 3.0 in H(2)O. The active hydride catalysts cannot be observed in the hydrogenation of CO(2) with the ruthenium complexes, whereas the active hydride catalysts, [Cp*Ir(III)(L)(H)](+) {L = bpy (7) and 4,4'-OMe-bpy (8)}, have successfully been isolated after the hydrogenation of CO(2) with the iridium complexes. The key to the success of the isolation of the active hydride catalysts is the change in the rate-determining step in the catalytic hydrogenation of CO(2) from the formation of the active hydride catalysts, [(eta(6)-C(6)Me(6))Ru(II)(L)(H)](+), to the reactions of [Cp*Ir(III)(L)(H)](+) with CO(2), as indicated by the kinetic studies.

  10. Enantioselective Fluorescent Sensor Based on Calix[4]arene and S-Binol for the Recognition of N-Boc-glutamate

    Institute of Scientific and Technical Information of China (English)

    HU Chenguang; HUANG Xiaohuan; CHEN Zhihong; HE Yongbing


    A new chiral macrocyclic receptor 4 based on calix[4]arene and S-binol units was synthesized. The binding properties for anions were examined by fluorescence and 、1H NMR spectra. The results of non-linear curve fitting indicated that the receptor 4 formed a 1 : 1 stoichiometry complex with N-Boc-L- or D-glutamate by multiple hy-drogen bonding interactions, exhibiting a good enantioselective fluorescent recognition for the enantiomers of N-Boc-glutamate. The enantioselectivity: Kass(L)/Kass(D)=4.65. The different fluorescent response indicates that the receptor 4 could be used as a fluorescent chemosensor for N-Boc-glutamate.

  11. An Efficient Ag+ Ionophore Based on Thiacalix[4]arene

    Institute of Scientific and Technical Information of China (English)

    LI Xiong; GONG Shu-Ling; YANG Wei-Ping; CHEN Yuan-Yin


    A novel Ag+ ionophore, p-tert-butyi-tetrakis(hydrazinocarbonylmethoxy)thiacalix[4]arene in 1,3-alternate conformation (thiacalix[4]arene tetrahydrazide, 1) was synthesized. Its binding properties towards alkali and transition metal cations were studied by noncompetitive liquid-liquid extraction of alkali metal (Li+, Na+, K+ and Cs+)and transition metal (Co2+, Ni2+, Cu2+, Zn2+, Ag+) picrates. It was found that the thiacalix[4]arene tetrahydrazide exhibited high extractability towards Ag+, lower percent extraction towards Cu2+, and little or no extraction ability towards the others. The selectivity towards Ag+ was further evaluated by competitive Ag+ extraction experiments in the mixture of the above-mentioned nine cations, the concentration of which was monitored with ICP-OES. 1HNMR titration experiments and ESI-MS proved the stoichiometry of 1 to Ag+ was 1 : 1, and the 'N-Ag+' interaction with the assistance of thiacalixarene skeleton was primarily involved in the complexation.

  12. Kinetics of catalytic hydrogenation of p-phenylenediamine in liquid phase on Raney Ni catalyst%骨架镍催化对苯二胺液相加氢动力学

    Institute of Scientific and Technical Information of China (English)

    杨薇; 武丽梅; 郭志锋; 忻娜; 蔡建国


    The reaction kinetics of the catalytic hydrogenation of p-phenylenediamine(PDA) on Raney Ni catalyst was studied in a high-pressure batch reactor. Under the condition of no inside and outside diffusion and water as the solvent,the concentration of PDA over Raney Ni catalyst was measured and the relation curves of the concentration logarithm of PDA and time were attained. Hie kinetic parameters of catalytic hydrogenation of PDA to 1,4-diaminocyclohexane(DACH) such as reaction order,rate constant,activation energy and exponential factor were obtained,and according to the experimental data,the influence of reaction temperature and hydrogen pressure were reflected respectively. The kinetics equation of the catalytic reaction was established as follows:-dcp-phenylenediamine/dt=kcp-phenylenediaminePh2 0.12. The apparent hydrogenation activation energy of 41.294 kJ·Mol-1 ,the exponential factor of 1.028 9 ×lO6 and reaction rate constantof 1.0289×10 exp-41 294/RT were obtained under reaction temperature of ( 333 - 363) K.%用骨架镍作催化剂,在排除内外扩散影响条件下,研究了以水为溶剂对苯二胺加氢反应的动力学.通过测定实验过程中对苯二胺浓度,得出浓度对数随时间变化的曲线,获取该反应中对氢气和对苯二胺的反应级数、速率常数、活化能和指前因子等动力学参数,并反映了氢气压力和反应温度等因素对反应的影响.催化剂加氢动力学方程为- dc对苯二胺/dt=kc对苯二胺P0.12H2 .反应温度(333~363)K时的加氢反应活化能为41.294 kJ·mol-1,指前因子为1.028 9×106,反应速率常数为1.028 9×106exp-41 294/RT.

  13. Catalytic transfer hydrogenation for stabilization of bio-oil oxygenates: reduction of p-cresol and furfural over bimetallic Ni-Cu catalysts using isopropanol (United States)

    Transfer hydrogenation and hydrodeoxygenation of model bio-oil compounds (p-cresol and furfural) and bio-oils derived from biomass via traditional pyrolysis and tail-gas reactive pyrolysis (TGRP) were conducted. Mild batch reaction conditions were employed, using isopropanol as a hydrogen donor over...

  14. Hydrogen production from co-gasification of coal and biomass in supercritical water by continuous flow thermal-catalytic reaction system

    Institute of Scientific and Technical Information of China (English)

    YAN Qiuhui; GUO Liejin; LIANG Xing; ZHANG Ximin


    Hydrogen is a clean energy carrier.Converting abundant coal sources and green biomass energy into hydrogen effectively and without any pollution promotes environmental protection.The co-gasification performance of coal and a model compound of biomass,carboxymethylcellulose (CMC)in supercritical water (SCW),were investigated experimentally.The influences of temperature,pressure and concentration on hydrogen production from co-gasification of coal and CMC in SCW under the given conditions (20-25 MPa,650℃,15-30 s) are discussed in detail.The experimental results show that H2,CO2 and CH4 are the main gas products,and the molar fraction of hydrogen reaches in excess of 60%.The higher pressure and higher CMC content facilitate hydrogen production;production is decreased remarkably given a longer residence time.

  15. Unsteady catalytic processes and sorption-catalytic technologies

    Energy Technology Data Exchange (ETDEWEB)

    Zagoruiko, A N [G.K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)


    Catalytic processes that occur under conditions of the targeted unsteady state of the catalyst are considered. The highest efficiency of catalytic processes was found to be ensured by a controlled combination of thermal non-stationarity and unsteady composition of the catalyst surface. The processes based on this principle are analysed, in particular, catalytic selective reduction of nitrogen oxides, deep oxidation of volatile organic impurities, production of sulfur by the Claus process and by hydrogen sulfide decomposition, oxidation of sulfur dioxide, methane steam reforming and anaerobic combustion, selective oxidation of hydrocarbons, etc.

  16. Calix[4]arene-Based Enantioselective Fluorescent Sensors for the Recognition of N-Acetyl-aspartate

    Institute of Scientific and Technical Information of China (English)

    QING Guang-Yan; CHEN Zhi-Hong; WANG Feng; YANG Xi; MENG Ling-Zhi; HE Yong-Bing


    Two-armed chiral anion receptors (1 and 2), calix[4]arenes bearing dansyl fluorophore and (1R,2R)- or(1S,2S)-1,2-diphenylethylenediamine binding sites, were prepared and examined for their chiral amino acid anion binding abilities by the fluorescence spectra in dimethylsulfoxide (DMSO). The results of non-linear curve fitting indicate that 1 or 2 forms a 1 : 1 stoichiometry complex with N-acetyl-L-or D-aspartate by multiple hydrogen bonding interactions, exhibiting good enantioselective fluorescent recognition for the enantiomers of N-acetyl-as-partate, [receptor 1: Kass(D)/Kass(L)=6.74; receptor 2: Kass(L)/Kass(D)=6.48]. The clear fluorescent response difference indicates that receptors 1 and 2 could be used as a fluorescent chemosensor for N-Acetyl-aspartate.

  17. Guest exchange in dimeric capsules formed by tetra-urea calix[4]arenes. (United States)

    Vatsouro, Ivan; Alt, Ellen; Vysotsky, Myroslav; Böhmer, Volker


    Ten tetra-urea calix[4]arene derivatives with different ether residues (methyl, pentyl, benzyl, all combinations of methyl and pentyl, 1,3-dibenzyl-2,4-dipentyl), including also the tetrahydroxy compound and the 1,3-dipentyl ether, were synthesised. Their urea groups were substituted with a lipophilic residue to ensure sufficient solubility in cyclohexane. Thus, kinetics for the exchange of the included guest (benzene) against the solvent (cyclohexane) could be followed by 1H NMR spectroscopy. The apparent first order rate constants decrease with increasing size of the ether residues from methyl to benzyl by more than three orders of magnitude. This can be understood by a decreasing flexibility/mobility of the calixarene skeleton. In line with this explanation is the rather slow exchange for the tetrahydroxy compound, where the cone conformation is stabilised by a cyclic array of intramolecular OH...OH hydrogen bonds.

  18. Preparation of Pt/K2La2Ti3O10 and its photo-catalytic activity for hydrogen evolution from methanol water solution

    Institute of Scientific and Technical Information of China (English)

    CUI; Wenquan


    ):A new series of layered perovskites exhibiting ion exchange,Inorg.Chem.,1987,26:4299-4301.[12]Takata,T.,Shinohara,K.,Tanaka,A.,Hara,M.,Kondo,J.N.,Domen,K.,A highly active photocatalyst for overall water splitting with a hydrated layered perovskite structure,J.Photochem.Photobiol.A:Chem.,1997,106(1-3):45-49.[13]Cui,W.Q.,Feng,L.R.,Xu,C.H.,Lü,S.J.,Qiu,F.L.,Hydrogen production by photocatalytic decomposition of methanol gas on Pt/TiO2 nano-film,Catal.Comm.,2004(5):533-536.[14]Herrmann,J.M.,Disdier,J.,Pichat,P.,Photoassisted platinum deposition on TiO2 powder using various platinum complexes,J.Phys.Chem.,1986,90:6028-6034.[15]Cui,W.Q.,Feng,L.R.,Xu,C.H.,Lü,S.J.,Qiu,F.L.,Studies on the photo-catalytic decomposition of methanol vapor on Pt-loaded nano-TiO2 particles,Acta Chim.Sinica (in Chinese),2005,63(3):203-209.[16]Ikeda,S.,Hara,M.,Kondo,J.N.,Domen,K.,Preparation of K2La2Ti3O10 by polymerized complex method and photocatalytic decomposition of water,Chem.Mater.,1998,10(1):72-77.[17]Yang,X.Y.,Per,Z.F.,Bai,R.Q.,Studies on dispersion of Pt by HOT,Petrochemical Technology,1978,7(4):352.[18]Fox,M.A.,Dulay,M.Y.,Heterogeneous photocatalysis,Chem.Rev.,1993,93(1):341-357.[19]Kudo,A.,Sakata,T.,Luminescent properties of nondoped and rare earth metal ion-doped K2La2Ti3O10 with layered perovskite structures:Importance of the hole trap process,J.Phys.Chem.,1995,99:15963-15967.

  19. The catalytic hydrogenation of 2,4-dinitrotoluene in a continuous stirred three-phase slurry reactor with an evaporting solvent

    NARCIS (Netherlands)

    Westerterp, K.R.; Janssen, H.J.; Kwast, van der H.J.


    An experimental study of the catalytic hydorgenation of 2,4-dinitrotoluene (DNT) in a mini-installation with a continuously operated stirred three-phase slurry reactor and an evaporating solvent is discussed. Some characteristic properties of the reactor system and the influence of the operating par

  20. 钯金属催化氯代硝基苯加氢的研究进展%Study Progress of the Catalytic Hydrogenation of Chloronitrobenzene with Modified Palladium Catalysts

    Institute of Scientific and Technical Information of China (English)

    徐文龙; 杨晓瑞; 梁金花; 陈安猛; 朱建良


    In the catalytic hydrogenation process of chloronitrobenzene to chloroaniline with the palladium catalyst, these advantages were showed that higher catalytic activity, catalyst recyclable and environmental friendly. However, this kind of catalyst could lead to a dechlorohydrogenation in the catalytic process and produce by-products which infect the quality of outcome. Searching for the method to restrain the side reaction has been the hot point problems. Several methods modifying palladium catalysts are investigated and compared in this review. It is focused on the introduction of the preparation of palladium nano-particles, the selection of suitable supports and the preparation of water-soluble palladium catalysts. The conversion of reactant and the selectivity of desired products in the catalytic hydrogenation of chloronitrobenzene would be increased by the modification of palladium catalysts. Presently, the preparation of supported palladium catalyst is the preferred method for restraining the side reactions in industry, in which the supported polymer-palladium complexes is the best.%以钯金属催化剂催化氯代硝基苯加氢制备氯代苯胺的工艺具有催化活性高、催化剂可回收套用、绿色环保等优点,然而该类催化剂在催化过程中经常发生脱氯氢解生成副产物,影响产品品质,因此寻找合适的方法抑制脱氯副反应成为了目前该类反应研究的热点问题。本文阐述了钯金属催化剂的多种改性方法,重点介绍了钯金属纳米颗粒的制备,合适载体的选择,以及水溶性钯金属催化剂的制备等改性途径,通过钯金属催化剂的改性可以提高其催化氯代硝基苯加氢反应中反应物的转化率与目标产物的选择性。目前钯金属负载型催化剂已经成为工业抑制脱氯副反应的主要方法,其中高分子聚合-钯络合催化剂效果最优。

  1. A novel sodium iodide and ammonium molybdate co-catalytic system for the efficient synthesis of 2-benzimidazoles using hydrogen peroxide under ultrasound irradiation. (United States)

    Bai, Guo-Yi; Lan, Xing-Wang; Chen, Guo-Feng; Liu, Xiao-Fang; Li, Tian-Yu; Shi, Ling-Juan


    The reaction of aldehydes and o-phenylenediamine for the preparation of 2-benzimidazoles has been studied using hydrogen peroxide as an oxidant under ultrasound irradiation at room temperature in this paper. The combination of substoichiometric sodium iodide and ammonium molybdate as co-catalysts, together with using small amounts of hydrogen peroxide, makes this transformation very efficient and attractive under ultrasound. Thus, a mild, green and efficient method is established to carry out this reaction in high yield.

  2. Valge villa / Karen Jagodin ; kommenteerinud Krista Aren, Emil Urbel

    Index Scriptorium Estoniae

    Jagodin, Karen, 1982-


    Villa (623 m² + kelder) Merirahu elamurajoonis Tallinnas. Arhitektid: Emil Urbel, Andrus Mark (AB Emil Urbel OÜ). Sisearhitektid: Krista Aren, Mati Veermets. Inseneriosad: AS Meistri Projekt. Haljastaja: Piret Kukk. Projekt: 2005-2008, valmis: 2009. Villa madalamat osa katab murtud pinnaga graniit, kõrgemat valge krohv

  3. Nonaqueous catalytic fluorometric trace determination of vanadium based on the pyronine B-hydrogen peroxide reaction and flow injection after cloud point extraction. (United States)

    Paleologos, E K; Koupparis, M A; Karayannis, M I; Veltsistas, P G


    The catalytic effect of vanadium on the pyronine B-H2O2 system is examined. Enhancement of the catalytic reaction rate along with the efficiency and selectivity against vanadium is achieved in a formic acid environment in the presence of a nonionic surfactant (Triton X-114). Elimination of drastic interference caused by inorganic acids and aqueous matrix along with a 50-fold preconcentration of vanadium are facilitated through cloud point extraction of its neutral complex with 8-quinolinol in an acidic solution. Subsequent flow injection analysis (FIA) with fluorometric detection renders the proposed method ideal for selective and cost-effective determination of as little as 0.020 microng L(-1) vanadium in environmental, biological, and food substrates. The preconcentration step can be applied simultaneously to multiple samples, allowing for massive preparation prior to analysis, compensating, thus, for the time-consuming procedure.

  4. Evaluation of Factors Affecting Cesium Extraction Performance by Calix[4]Arene Derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Rumppe, J.L.; Delmau, L.


    Novel aza-crown derivatives of dioctyloxy-calix[4]arene crown-6 were examined for their cesium extraction performance at different pH levels. These studies are of interest in addressing high-level waste tank remediation and the removal of 137Cs, a major contributor to heat and radiation generation. Preliminary studies were done to assess the performance of these calixarene compounds under varying conditions. Results showed an increase of cesium extraction with pH as well as expected trends in diluent effects and anion selectivity. Poor extraction performance of some aza-crown derivatives raised questions regarding the possibility of intramolecular hydrogen-bonding. A novel methylated derivative was used to address these questions. Additional experiments were conducted to determine the extraction effect on pH. Results indicate an increase in cesium extraction with pH, as shown in preliminary studies. Mono-aza derivatives were shown to exhibit better cesium extraction performance than their di-aza counterparts. The methylated derivative showed poorer extraction performance than the non-methylated derivative, indicating that completely removing the possibility of intramolecular hydrogen-bonding has negative effects on extraction performance. This suggests that the hydrogen-bonding facilitates anion co-extraction, which would lead to better overall extraction. Mono-aza derivatives were shown to cause unexpected changes in pH. This could possibly be attributed to protonation of the calix crown.

  5. Preparation and catalytic effect of porous Co3O4 on the hydrogen storage properties of a Li-B-N-H system

    Directory of Open Access Journals (Sweden)

    You Li


    Full Text Available A porous Co3O4 with a particle size of 1–3 µm was successfully prepared by heating Co-based metal organic frameworks MOF-74(Co up to 500 °C in air atmospheric conditions. The as-prepared porous Co3O4 significantly reduced the dehydrogenation temperatures of the LiBH4-2LiNH2 system and improved the purity of the released hydrogen. The LiBH4-2LiNH2-0.05/3Co3O4 sample started to release hydrogen at 140 °C and released hydrogen levels of approximately 9.7 wt% at 225 °C. The end temperature for hydrogen release was lowered by 125 °C relative to that of the pristine sample. Structural analyses revealed that the as-prepared porous Co3O4 is in-situ reduced to metallic Co, which functions as an active catalyst, reducing the kinetic barriers and lowering the dehydrogenation temperatures of the LiBH4-2LiNH2 system. More importantly, the porous Co3O4-containing sample exhibited partially improved reversibility for hydrogen storage in the LiBH4-2LiNH2 system.

  6. Heats of transfer in the diffusion layer before the surface and the surface temperature for a catalytic hydrogen oxidation (H2 + (1/2)O2 --> H2O) reaction. (United States)

    Zhu, Lianjie; Koper, Ger J M; Bedeaux, Dick


    The surface temperature and surface mole fractions are calculated for a catalytic hydrogen oxidation reaction over a Pt/Al2O3 catalyst pellet. The thermodynamics of irreversible processes was used in order to ensure the correct introduction of coupled heat and mass transfer. Two pathways, one using the 4 x 4 resistivity matrix and the other using a simplified effective conductivity matrix, were proven to yield equivalent results. By using expressions for the thermal diffusion coefficients, heats of transfer, and the Maxwell-Stefan diffusion coefficients given in the literature, available experimental data could be reproduced. The Dufour effect was found to be negligible for the prediction of the surface temperature. Neglecting the Soret effect would increase the predicted value of the surface temperature significantly-more than 30 K out of an average of about 400 K. It is found that the reaction rate can be used to predict the surface temperature.

  7. Preparation and mechanism of Fe-K/AC for catalytic oxidation of hydrogen sulfide%Fe-K/AC催化氧化脱硫剂制备及反应机理研究

    Institute of Scientific and Technical Information of China (English)

    方惠斌; 赵建涛; 王胜; 黄戒介; 房倚天


    Modified activated carbon Fe-K/AC (activated carbon supported iron and potassium) was used as an oxidation catalyst for low concentration hydrogen sulfide (H2S) removed. The orthogonal design method was introduced in the research of Fe-K/AC preparation to determine the optimum condition and to measure the impact of different factors. Then, catalytic activity and mechanism on Fe-K/AC catalyst for oxidation of hydrogen sulfide was investigated. The optimum preparation condition of Fe-K/AC with high sulfur capacity and selectivity is that the iron and potassium content is 0. 5% and 5. 0% , respectively; and the calcination temperature and the Fe2VFe3+ atomic ratio is 600°C and 0. 5, respectively. The order of their influences is potassium content > iron content > calcination temperature > Fe2+/Fe3+ atomic ratio. Results from structural parameters and surface morphology of sorbents reveal that iron metal oxide loaded on the surface of activated carbon has the selective catalytic oxidation activity of hydrogen sulfide to element sulfur. Alkali metal oxide, which changes basic surface groups, has a synergistic effect on the catalytic oxidation of hydrogen sulfide. However,the catalytic activity decreases due to excessive metal oxides loadings that may block the accessibility of micropores and reduce the surface area.%采用正交实验法制备了负载铁、钾的活性炭(Fe-K/AC)热煤气催化氧化脱硫剂,考察了活性组分铁、钾含量、二价铁和三价铁比例、煅烧温度对催化氧化脱硫反应活性的影响.由正交实验极差分析可知,各因素影响程度依次为:钾含量>铁含量>煅烧温度> Fe2+/Fe3+,最优制备条件为,铁含量0.5%、钾含量5.0%、煅烧温度600℃、Fe2+/Fe3+比0.5.通过对脱硫剂的孔隙结构和表面形貌分析可知,活性炭表面负载的铁金属氧化物具有催化氧化硫化氢生成单质硫的活性,碱金属氧化物具有协同作用,可以改变表面酸碱性,促进硫化

  8. Effect of hydrogen peroxide on Dagang vacuum residue oxidation depolymerization assisted with photo-catalytic%过氧化氢对光催化氧化解聚大港减压渣油的影响

    Institute of Scientific and Technical Information of China (English)

    解恒参; 宗志敏; 陈恒宝; 魏贤勇


    应用过氧化氢在光催化辅助下对大港减压渣油进行氧化,并进行气相色谱-质谱( GC/MS)和傅里叶红外光谱( FTIR)分析.结果表明:过氧化氢在大港重质减压残渣的光催化氧化过程中起到重要促进作用,能使重油原样中约占70%的正构烷烃逐渐转化成极性较强、有利于分离的含氧化合物(含量达92.94%);含氧化合物主要包括36.05%的有机羧酸、14.56%的有机酯以及9.05 %的其他链式含氧化合物(醚、酮和酚类产物等) ,杂环类化合物达到21.57 %,其中五元环醚化合物(呋喃类)占到19.12%;长链烃能被解聚而减小碳链单元数量;过氧化氢、催化剂、重油减渣的用量和溶剂种类等因素对过氧化氢的氧化作用都有影响.%The Dagang vacuum residue ( DVR) was oxidized by hydrogen peroxide assisted with photo-catalytic. And the oxida-tion efficiency was analyzed through gas chromatography-mass spectrometry ( GC-MS) and Fourier transform infrared spectrosco-py ( FTIR ) . The results indicate that hydrogen peroxide plays an important role of promoting the photo-catalytic oxidation process. And about 70% of the alkane in DVR is gradually converted into some strong polar and easily separated oxygenated compounds, and its relative content reaches 92. 94% in DVR. The compounds mainly include 36. 05% organic carboxylic acids, 14. 56% organic esters, and 9. 05% other chain oxygenated compounds ( ether, ketone, and phenol products etc. ) . The heterocyclic compounds reaches 21. 57%, of which five-membered cyclic ether compounds ( furan) accounts for 19. 12%. And the long chain hydrocarbons can be depolymerized through reduced carbon chain unit number. And the amounts of hydrogen peroxide, catalyst and heavy oil, as well as the different solvents have all influences on hydrogen peroxide oxidation.

  9. The (Calix[4]arene)chloromolybdate(IV) anion [MoCl(Calix)](-): a convenient entry into molybdenum Calix[4]arene chemistry. (United States)

    Radius, Udo; Attner, J


    The complex (HNEt(3))[MoCl(NCMe)(Calix)] (1), prepared from the reaction of [MoCl(4)(NCMe)(2)] with p-tert-butylcalix[4]arene, H(4)Calix, in the presence of triethylamine, has been used as a source of the d(2)-[Mo(NCMe)(Calix)] fragment. Complex 1 is readily oxidized with PhICl(2) to afford the molybdenum(VI) dichloro complex [MoCl(2)(Calix)] (2). Both complexes are a convenient entry point into molybdenum(VI) and molybdenum(IV) calixarene chemistry. The reaction of 1 with trimethylphosphine and pyridine in the presence of catalytic amounts [Ag(OTf)] led to the formation of neutral d(2) complexes [Mo(PMe(3))(NCMe)(Calix)] (3) and [Mo(NC(5)H(5))(NCMe)(Calix)] (4). The role of the silver salt in the reaction mixture is presumably the oxidation of the chloromolybdate anion of 1 to give a reactive molybdenum(V) species. The same reactions can also be initiated with ferrocenium cations such as [Cp(2)Fe](BF(4)). Without the presence of coordinating ligands, the dimeric complex [[Mo(NCMe)(Calix)](2)] (5) was isolated. The reaction of 1 with Ph(2)CN(2) led to the formation of a metallahydrazone complex [Mo(N(2)CPh(2))(NCMe)(Calix)] (6), in which the diphenyldiazomethane has been formally reduced by two electrons. Molybdenum(VI) complexes were also obtained from reaction of 1 with azobenzene and sodium azide in the presence of catalytic amounts of silver salt. The reaction with azobenzene led under cleavage of the nitrogen nitrogen bond to an imido complex [Mo(NPh)(NCMe)(Calix)] (7), whereas the reaction with sodium azide afforded the mononuclear molybdenum(VI) nitrido complex (HNEt(3))[MoN(Calix)] (8).

  10. High Surface Area Tungsten Carbides: Synthesis, Characterization and Catalytic Activity towards the Hydrogen Evolution Reaction in Phosphoric Acid at Elevated Temperatures

    DEFF Research Database (Denmark)

    Tomás García, Antonio Luis; Li, Qingfeng; Jensen, Jens Oluf


    Tungsten carbide powders were synthesized as a potential electrocatalyst for the hydrogen evolution reaction in phosphoric acid at elevated temperatures. With ammonium metatungstate as the precursor, two synthetic routes with and without carbon templates were investigated. Through the intermediate...... nitride route and with carbon black as template, the obtained tungsten carbide samples had higher BET area. In 100% H3PO4 at temperatures up to 185°C, the carbide powders showed superior activity towards the hydrogen evolution reaction. A deviation was found in the correlation between the BET area...

  11. Hybrid catalytic-DBD plasma reactor for the production of hydrogen and preferential CO oxidation (CO-PROX) at reduced temperatures. (United States)

    Rico, Víctor J; Hueso, José L; Cotrino, José; Gallardo, Victoria; Sarmiento, Belén; Brey, Javier J; González-Elipe, Agustín R


    Dielectric Barrier Discharges (DBD) operated at atmospheric pressure and working at reduced temperatures (T < 115 degrees C) and a copper-manganese oxide catalyst are combined for the direct decomposition and the steam reforming of methanol (SRM) for hydrogen production and for the preferential oxidation of CO (CO-PROX).

  12. Ruthenium(II) Complexes Containing Lutidine-Derived Pincer CNC Ligands: Synthesis, Structure, and Catalytic Hydrogenation of C-N bonds. (United States)

    Hernández-Juárez, Martín; López-Serrano, Joaquín; Lara, Patricia; Morales-Cerón, Judith P; Vaquero, Mónica; Álvarez, Eleuterio; Salazar, Verónica; Suárez, Andrés


    A series of Ru complexes containing lutidine-derived pincer CNC ligands have been prepared by transmetalation with the corresponding silver-carbene derivatives. Characterization of these derivatives shows both mer and fac coordination of the CNC ligands depending on the wingtips of the N-heterocyclic carbene fragments. In the presence of tBuOK, the Ru-CNC complexes are active in the hydrogenation of a series of imines. In addition, these complexes catalyze the reversible hydrogenation of phenantridine. Detailed NMR spectroscopic studies have shown the capability of the CNC ligand to be deprotonated and get involved in ligand-assisted activation of dihydrogen. More interestingly, upon deprotonation, the Ru-CNC complex 5 e(BF4 ) is able to add aldimines to the metal-ligand framework to yield an amido complex. Finally, investigation of the mechanism of the hydrogenation of imines has been carried out by means of DFT calculations. The calculated mechanism involves outer-sphere stepwise hydrogen transfer to the C-N bond assisted either by the pincer ligand or a second coordinated H2 molecule.

  13. Supported organometallic catalysts for hydrogenation and Olefin Polymerization (United States)

    Marks, Tobin J.; Ahn, Hongsang


    Novel heterogeneous catalysts for the which hydrogenation of olefins and arenes with high conversion rates under ambient conditions and the polymerization of olefins have been developed. The catalysts are synthesized from Ziegler-type precatalysts by supporting them on sulfate-modified zirconia.

  14. Insights into the Intramolecular Properties of η6-Arene-Ru-Based Anticancer Complexes Using Quantum Calculations

    Directory of Open Access Journals (Sweden)

    Adebayo A. Adeniyi


    Full Text Available The factors that determine the stability and the effects of noncovalent interaction on the η6-arene ruthenium anticancer complexes are determined using DFT method. The intramolecular and intra-atomic properties were computed for two models of these half-sandwich ruthenium anticancer complexes and their respective hydrated forms. The results showed that the stability of these complexes depends largely on the network of hydrogen bonds (HB, strong nature of charge transfer, polarizability, and electrostatic energies that exist within the complexes. The hydrogen bonds strength was found to be related to the reported anticancer activities and the activation of the complexes by hydration. The metal–ligand bonds were found to be closed shell systems that are characterised by high positive Laplacian values of electron density. Two of the complexes are found to be predominantly characterised by LMCT while the other two are predominately characterised by MLCT.

  15. Kinetic and thermodynamic parameters of hydrogen release during the heterogeneous catalytic dehydrogenation of cis- and trans-isomers of perhydro-m-terphenyl (United States)

    Kalenchuk, A. N.; Bogorodskii, S. E.; Bogdan, V. I.


    Comparative studies on the temperature dependence of the dehydrogenation of cis- and trans-isomers of perhydro- m-terphenyl are performed in a flow catalytic reactor. Rate constants and equilibrium constants of all elementary acts of this reaction are calculated on basis of experimental data using the KINET 0.8 program for the mathematical modeling of the kinetics of complex reactions. The resulting data indicate that perhydro- m-terphenyl cis- and trans-isomers structural differences have no appreciable effect on dehydrogenation.

  16. Synthesis and Catalytic Performance of Graphene Modified CuO-ZnO-Al2O3 for CO2 Hydrogenation to Methanol



    CuO-ZnO-Al2O3 and graphene nanosheet (GNS) were synthesized by coprecipitation route and reduction of exfoliated graphite oxides method, respectively. GNS modified CuO-ZnO-Al2O3 nanocomposites were synthesized by high energy ball milling method. The structure, morphology, and character of the synthesized materials were studied by BET, XRD, TEM, and H2-TPR. It was found that by high energy ball milling method the CuO-ZnO-Al2O3 nanoparticles were uniformly dispersed on GNS surfaces. The catalyt...

  17. Probing the Intact Cluster Catalysis Concept by Tetrahedral Clusters With Framework Chirality

    Institute of Scientific and Technical Information of China (English)

    G. Süss-Fink; L. Vieille-Petit


    @@ 1Results and Discussion In order to bring evidence for or against the hypothesis of catalytic hydrogenation by intact trinuclear arene ruthenium clusters containing an oxo cap, the substrate being hydrogenated inside the hydrophobic pocket spanned by the three arene ligands ("supramolecular cluster catalysis")[1], we synthesized cationic Ru3O clusters (See Fig. 1) with three different arene ligands (intrinsically chiral tetrahedra).

  18. Characteristics of La-modified Ni-Al2O3 and Ni-SiO2 catalysts for COx-free hydrogen production by catalytic decomposition of methane

    Institute of Scientific and Technical Information of China (English)

    Chatla; Anjaneyulu; Velisoju; Vijay; Kumar; Suresh; K.Bhargava; Akula; Venugopal


    Hydrotalcite precursors of La modified Ni-Al2O3 and Ni-SiO2 catalysts prepared by co-precipitation method and the catalytic activities were examined for the production of COx-free H2 by CH4 decomposition. Physico-chemical characteristics of fresh, reduced and used catalysts were evaluated by XRD, TPR and O2 pulse chemisorptions, TEM and BET-SA techniques. XRD studies showed phases due to hydrotalcite-like precursors in oven dried form produced dispersed NiO species upon calcination in static air above 450 C. Raman spectra of deactivated samples revealed the presence of both ordered and disordered forms of carbon. Ni-La-Al2O3catalyst with a mole ratio of Ni : La : Al = 2 : 0.1 : 0.9 exhibited tremendously high longevity with a hydrogen production rate of 1300 molH2 mol 1 Ni. A direct relationship between Ni metal surface area and hydrogen yields was established.

  19. The effect of additives on the reactivity of palladium surfaces for the chemisorption and hydrogenation of carbon monoxide: A surface science and catalytic study. [LaMO/sub 3/(M = Cr, Mn, Fe, Co, Rh)

    Energy Technology Data Exchange (ETDEWEB)

    Rucker, T.G.


    This research studied the role of surface additives on the catalytic activity and chemisorptive properties of Pd single crystals and foils. Effects of Na, K, Si, P, S, and Cl on the bonding of CO and H and on the cyclotrimerization of acetylene on the (111), (100) and (110) faces of Pd were investigated in addition to role of TiO/sub 2/ and SiO/sub 2/ overlayers deposited on Pd foils in the CO hydrogenation reaction. On Pd, only in the presence of oxide overlayers, are methane or methanol formed from CO and H/sub 2/. The maximum rate of methane formation is attained on Pd foil where 30% of the surface is covered with titania. Methanol formation can be achieved only if the TiO/sub x//Pd surface is pretreated in 50 psi of oxygen at 550/sup 0/C prior to the reaction. The additives (Na, K, Si, P, S, Cl) affect the bonding of CO and hydrogen and the cyclotrimerization of acetylene to benzene by structural and electronic interactions. In general, the electron donating additives increase the desorption temperature of CO and increase the rate of acetylene cyclotrimerization and the electron withdrawing additives decrease the desorption temperature of CO and decrease the rate of benzene formation from acetylene.

  20. Building robust architectures of carbon-wrapped transition metal nanoparticles for high catalytic enhancement of the 2LiBH4-MgH2 system for hydrogen storage cycling performance (United States)

    Huang, Xu; Xiao, Xuezhang; Shao, Jie; Zhai, Bing; Fan, Xiulin; Cheng, Changjun; Li, Shouquan; Ge, Hongwei; Wang, Qidong; Chen, Lixin


    Nanoscale catalyst doping is regarded as one of the most effective strategies to improve the kinetics performance of hydrogen storage materials, but the agglomeration of nanoparticles is usually unavoidable during the repeated de/rehydrogenation processes. Herein, hierarchically structured catalysts (Fe/C, Co/C and Ni/C) were designed and fabricated to overcome the agglomeration issue of nanocatalysts applied to the 2LiBH4-MgH2 system for the first time. Uniform transition metal (TM) nanoparticles (~10 nm) wrapped by few layers of carbon are synthesized by pyrolysis of the corresponding metal-organic frameworks (MOFs), and introduced into the 2LiBH4-MgH2 reactive hydride composites (RHCs) by ball milling. The particular features of the carbon-wrapped architecture effectively avoid the agglomeration of the TM nanoparticles during hydrogen storage cycling, and high catalysis is maintained during the subsequent de/rehydrogenation processes. After de/rehydrogenation cycling, FeB, CoB and MgNi3B2 can be formed as the catalytically active components with a particle size of 5-15 nm, which show a homogeneous distribution in the hydride matrix. Among the three catalysts, in situ-formed MgNi3B2 shows the best catalytic efficiency. The incubation period of the Fe/C, Co/C and Ni/C-doped 2LiBH4-MgH2 system between the two dehydrogenation steps was reduced to about 8 h, 4 h and 2 h, respectively, which is about 8 h, 12 h and 14 h shorter than that of the undoped 2LiBH4-MgH2 sample. In addition, the two-step dehydrogenation peak temperatures of the Ni/C-doped 2LiBH4-MgH2 system drop to 323.4 °C and 410.6 °C, meanwhile, the apparent activation energies of dehydrogenated MgH2 and LiBH4 decrease by 58 kJ mol-1 and 71 kJ mol-1, respectively. In particular, the cycling hydrogen desorption of the Ni/C-doped 2LiBH4-MgH2 sample exhibits very good stability compared with the undoped sample. The present approach, which ideally addresses the agglomeration of nanoparticles with efficient

  1. Protein-calixarene interactions: complexation of Bovine Serum Albumin by sulfonatocalix[n]arenes. (United States)

    Memmi, L; Lazar, A; Brioude, A; Ball, V; Coleman, A W


    The complexation of Bovine Serum Albumin with sulfonatocalix[n]arenes has been demonstrated by means of electrospray mass spectrometry, dynamic light scattering and atomic force microscopy; with sulfonatocalix[4]arene one strong and two weaker binding sites are detected; the effects on the structure of thin films formed by surface deposition of BSA show that the sulfonatocalix[n]arenes act to reticulate the films and produce essentially planar systems.

  2. Synthesis and characterization of carbazolide-based iridium PNP pincer complexes. Mechanistic and computational investigation of alkene hydrogenation: evidence for an Ir(III)/Ir(V)/Ir(III) catalytic cycle. (United States)

    Cheng, Chen; Kim, Bong Gon; Guironnet, Damien; Brookhart, Maurice; Guan, Changjian; Wang, David Y; Krogh-Jespersen, Karsten; Goldman, Alan S


    New carbazolide-based iridium pincer complexes ((carb)PNP)Ir(C2H4), 3a, and ((carb)PNP)Ir(H)2, 3b, have been prepared and characterized. The dihydride, 3b, reacts with ethylene to yield the cis-dihydride ethylene complex cis-((carb)PNP)Ir(C2H4)(H)2. Under ethylene this complex reacts slowly at 70 °C to yield ethane and the ethylene complex, 3a. Kinetic analysis establishes that the reaction rate is dependent on ethylene concentration and labeling studies show reversible migratory insertion to form an ethyl hydride complex prior to formation of 3a. Exposure of cis-((carb)PNP)Ir(C2H4)(H)2 to hydrogen results in very rapid formation of ethane and dihydride, 3b. DFT analysis suggests that ethane elimination from the ethyl hydride complex is assisted by ethylene through formation of ((carb)PNP)Ir(H)(Et)(C2H4) and by H2 through formation of ((carb)PNP)Ir(H)(Et)(H2). Elimination of ethane from Ir(III) complex ((carb)PNP)Ir(H)(Et)(H2) is calculated to proceed through an Ir(V) complex ((carb)PNP)Ir(H)3(Et) which reductively eliminates ethane with a very low barrier to return to the Ir(III) dihydride, 3b. Under catalytic hydrogenation conditions (C2H4/H2), cis-((carb)PNP)Ir(C2H4)(H)2 is the catalyst resting state, and the catalysis proceeds via an Ir(III)/Ir(V)/Ir(III) cycle. This is in sharp contrast to isoelectronic (PCP)Ir systems in which hydrogenation proceeds through an Ir(III)/Ir(I)/Ir(III) cycle. The basis for this remarkable difference is discussed.

  3. Study on Liquid Phase Chemo-Selective Catalytic Hydrogenation of Furfural to Furfuryl Alcohol%糠醛液相化学选择性加氢制糠醇的研究

    Institute of Scientific and Technical Information of China (English)

    孙绍晖; 马春松; 孙培勤; 陈俊武


    Using Cu-Zn/γAl2 O3 as catalyst, the catalytic hydrogenation of furfural to furfuryl alcohol was de-scribed at different temperatures, time, furfural concentration and solvent system. The different hydrogenation effects were compared at furfural conversion and furfuryl alcohol selectivity. Through experiments, the optimum conditions were determined for hydrogenation of furfural as a reaction temperature of 160 ℃, reaction time 3h, the amount of catalyst is furfural 7wt%, furfural concentration of 5wt% ~25wt%. When the solvent was toluene, the furfural con-version and furfuryl alcohol selectivity were respectively up to99% and 98%.%本文主要介绍了间歇式反应釜中糠醛在Cu-Zn/γAl2 O3催化剂条件下在不同温度、时间、糠醛浓度和溶剂体系中的催化加氢制糠醇,从糠醛转化率和糠醇选择性两方面对加氢效果进行比较。通过实验,我们得到了糠醛加氢制糠醇的最佳工艺条件为反应温度为160℃、反应时间为3 h、催化剂用量为糠醛的7wt%、糠醛浓度为5wt%~25wt%、溶剂为甲苯时,糠醛的转化率和糠醇的选择性最好,分别为99%和98%。

  4. Single step synthesis of gold-amino acid composite, with the evidence of the catalytic hydrogen atom transfer (HAT) reaction, for the electrochemical recognition of Serotonin (United States)

    Choudhary, Meenakshi; Siwal, Samarjeet; Nandi, Debkumar; Mallick, Kaushik


    A composite architecture of amino acid and gold nanoparticles has been synthesized using a generic route of 'in-situ polymerization and composite formation (IPCF)' [1,2]. The formation mechanism of the composite has been supported by a model hydrogen atom (H•≡H++e-) transfer (HAT) type of reaction which belongs to the proton coupled electron transfer (PCET) mechanism. The 'gold-amino acid composite' was used as a catalyst for the electrochemical recognition of Serotonin.

  5. Comparison of the Effects of Fluidized-Bed and Fixed-Bed Reactors in Microwave-Assisted Catalytic Decomposition of TCE by Hydrogen

    Directory of Open Access Journals (Sweden)

    Lili Ren


    Full Text Available Trichloroethylene (TCE decomposition by hydrogen with microwave heating under different reaction systems was investigated. The activities of a series of catalysts for microwave-assisted TCE hydrodechlorination were tested through the fixed-bed and the fluidized-bed reactor systems. This study found that the different reaction system is suitable for different catalyst type. And there is an interactive relationship between the catalyst type and the reaction bed type.

  6. Homogeneous catalytic hydrogenation of bio-oil and related model aldehydes with RuCl{sub 2}(PPh{sub 3}){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Huang, F.; Li, W.; Lu, Q.; Zhu, X. [Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei (China)


    A homogeneous RuCl{sub 2}(PPh{sub 3}){sub 3} catalyst was prepared for the hydrogenation of bio-oil to improve its stability and fuel quality. Experiments were first performed on three model aldehydes of acetaldehyde, furfural and vanillin selected to represent the linear aldehydes, oxygen heterocyclic aldehydes and aromatic aldehydes in bio-oil. The results demonstrated the high hydrogenation capability of this homogeneous catalyst under mild conditions (55-90 C, 1.3-3.3 MPa). The highest conversion of the three model aldehydes was over 90 %. Furfural and acetaldehyde were singly converted to furfuryl alcohol and ethanol after hydrogenation, while vanillin was mainly converted to vanillin alcohol, together with a small amount of 2-methoxy-4-methylphenol and 2-methoxyphenol. Further experiments were conducted on a bio-oil fraction extracted by ethyl acetate and on the whole bio-oil at 70 C and 3.3 MPa. Most of the aldehydes were transformed to the corresponding alcohols, and some ketones and compounds with C-C double bond were converted to more stable compounds. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Preparation of Fe-Mn/K/Al2O3 Fischer-Tropsch Catalyst and Its Catalytic Kinetics for the Hydrogenation of Carbon Monoxide

    Institute of Scientific and Technical Information of China (English)

    F.Fazlollahi; M.Sarkari; H.Gharebaghi; H.Atashi; M.M.Zarei; A.A.Mirzaei; W.C.Hecker


    A K promoted iron-manganese catalyst was prepared by sol-gel method,and subsequently was tested for hydrogenation of carbon monoxide to light olefins.The kinetic experiments on a well-characterized Fe-Mn/K/Al2O3 catalyst were performed in a fixed-bed micro-reactor in a temperature range of 280-380 ℃,pressure range of 0.1-1.2 MPa,H2/CO feed molar ratio range of 1-2.1 and a space velocity range of 2000-7200 h-1.Considering the mechanism of the process and Langmuir-Hinshelwood-Hogan-Watson (LHHW) approach,unassisted CO dissociation and H-assisted CO dissociation mechanisms were defined.The best models were obtained using non-linear regression analysis and Levenberg-Marquardt algorithm.Consequently,4 models were considered as the preferred models based on the carbide mechanism.Finally,a model was proposed as a best model that assumed the following kinetically relevant steps in the iron-Fischer-Tropsch (FT) synthesis:(1) CO dissociation occurred without hydrogen interaction and was not a rate-limiting step; (2) the first hydrogen addition to surface carbon was the rate-determining steps.The activation energy and adsorption enthalpy were calculated 40.0 and-30.2 kJ· mol-1,respectively.

  8. Comparative Study of Tributyltin Adsorption onto Mesoporous Silica Functionalized with Calix[4]arene, p-tert-Butylcalix[4]arene and p-Sulfonatocalix[4]arene

    Directory of Open Access Journals (Sweden)

    Sana Alahmadi


    Full Text Available The adsorption of tributyltin (TBT, onto three mesoporous silica adsorbents functionalized with calix[4]arene, p-tert-butylcalix[4]arene and p-sulfonatocalix[4]arene (MCM-TDI-C4, MCM-TDI-PC4 and MCM-TDI-C4S, respectively has been compared. Batch adsorption experiments were carried out and the effect of contact time, initial TBT concentration, pH and temperature were studied. The Koble–Corrigan isotherm was the most suitable for data fitting. Based on a Langmuir isotherm model, the maximum adsorption capacities were 12.1212, 16.4204 and 7.5757 mg/g for MCM-TDI-C4, MCM-TDI-PC4 and MCM-TDI-C4S, respectively. The larger uptake and stronger affinity of MCM-TDI-PC4 than MCM-TDI-C4 and MCM-TDI-C4S probably results from van der Waals interactions and the pore size distribution of MCM-TDI-PC4. Gibbs free energies for the three adsorption processes of TBT presented a negative value, reflecting that TBT/surface interactions are thermodynamic favorable and spontaneous. The interaction processes were accompanied by an increase of entropy value for MCM-TDI-C4 and MCM-TDI-C4S (43.7192 and 120.7609 J/mol K, respectively and a decrease for MCM-TDI-PC4 (−37.4704 J/mol K. It is obviously observed that MCM-TDI-PC4 spontaneously adsorbs TBT driven mainly by enthalpy change, while MCM-TDI-C4 and MCM-TDI-C4S do so driven mainly by entropy changes.

  9. Influences of Different Preparation Conditions on Catalytic Activity of Ag2O-Co3O4/γ-Al2O3 for Hydrogenation of Coal Pyrolysis

    Directory of Open Access Journals (Sweden)

    Lei Zhang


    Full Text Available A series of catalysts of Ag2O-Co3O4/γ-Al2O3 was prepared by equivalent volume impregnation method. The effects of the metal loading, calcination time, and calcination temperatures of Ag and Co, respectively, on the catalytic activity were investigated. The optimum preparing condition of Ag2O-Co3O4/γ-Al2O3 was decided, and then the influence of different preparation conditions on catalytic activity of Ag2O-Co3O4/γ-Al2O3 was analyzed. The results showed the following: (1 at the same preparation condition, when silver loading was 8%, the Ag2O-Co3O4/γ-Al2O3 showed higher catalyst activity, (2 the catalyst activity had obviously improved when the cobalt loading was 8%, while it was weaker at loadings 5% and 10%, (3 the catalyst activity was influenced by different calcination temperatures of silver, but the influences were not marked, (4 the catalyst activity can be influenced by calcination time of silver, (5 different calcination times of cobalt can also influence the catalyst activity of Ag2O-Co3O4/γ-Al2O3, and (6 the best preparation conditions of the Ag2O-Co3O4/γ-Al2O3 were silver loading of 8%, calcination temperature of silver of 450°C, and calcinations time of silver of 4 h, while at the same time the cobalt loading was 8%, the calcination temperature of cobalt was 450°C, and calcination time of cobalt was 4 h.

  10. Alkali-metalated forms of thiacalix[4]arenes. (United States)

    Zeller, Jürgen; Radius, Udo


    The alkali metal salts [TCALi4] (1), [TCANa4] (2), and [TCALK4] (3) of fully deprotonated p-tert-butyltetrathiacalix[4]arene (H(4)TCA) are readily available from the reactions of thiacalix[4]arene and n-BuLi, NaH, or KH as deprotonating reagents. Crystals of the sodium salts 2 and the potassium salt 3 suitable for X-ray diffraction were obtained in the form of the pyridine solvates [(TCA)2Na8.8py] (2.8py) and [(TCA)2K(8).8py] (3.8py). These molecules are dimers in the solid state but are structurally not related. In addition, the reaction of H(4)TCA and lithium hydroxide afforded the structurally characterized complex [(TCA)Li5(OH).4THF] (4). The molecular structure of 4 as well as the structures of 2.8py and 3.8py reveal a close relationship to the corresponding alkali metal salts of the calix[4]arenes.

  11. Calix[4]arene-Based New Neutral Sensors for Fluoride

    Institute of Scientific and Technical Information of China (English)

    LIU,Shun-Ying; MENG,Ling-Zhi; LIU,Xin; HE,Yong-Bing


    @@ The development of new receptors which can recognize neutral and charged species has attracted considerable interest in the recent past.[1] Anions such as fluoride, chloride, phosphate and carboxylate play crucial roles in a range of biological phenomena and are implicated in many disease states.[2] Investigations on molecular and/or ionic recognition by calixarenes and their derivatives as synthetic receptors have attracted increasing attention in supramolecular chemistry because of their modifiable structure.[3] However, calix[4]arenes-based neutral receptors containing thiourea and amide groups are still rare. In this paper, we report fluoride selective optical chemosensors 4 and 5, based on calix[4]arene thiourea and amide derivatives, which only show a remarkable absorption change in the presence of fluoride ions, while have no any change upon addition of other anions (Cl- Br-, I-, AcO- and H2PO4-). The association constants are 947 and 2883 mol·L-1, respectively. The synthesis of calix[4]arene derivatives 4 and 5 is outlined in the following Scheme 1.

  12. Enhanced methane and hydrogen yields from catalytic supercritical water gasification of pine wood sawdust via pre-processing in subcritical water


    Onwudili, JA; Williams, PT


    A two-stage batch hydrothermal process has been investigated with the aim of enhancing the yields of hydrogen and methane from sawdust. Samples of the sawdust were rapidly treated in subcritical water and with added Na2CO3 (alkaline compound) and Nb2O3 (solid acid) at 280 °C, 8 MPa. Each pre-processing route resulted in a solid recovered product (SRP), an aqueous residue and a small amount of gas composed mainly of CO2. In the second stage, the SRP and the liquid residues were gasified in sup...

  13. Binding properties of oxacalix[4]arenes derivatives toward metal cations; Interactions entre cations metalliques et derives des oxacalix[4]arenes

    Energy Technology Data Exchange (ETDEWEB)

    Mellah, B


    The objective of this work was to establish the binding properties of oxacalix[4]arene derivatives with different numbers of the oxa bridges, functional groups (ketones, pyridine, ester, amide and methoxy) and conformations. Their interactions with alkali and alkaline-earth, heavy and transition metal cations have been evaluated according to different approaches: (i) extraction of corresponding picrates from an aqueous phase into dichloromethane; (ii) determination of the thermodynamic parameters of complexation in methanol and/or acetonitrile by UV-spectrophotometry and micro-calorimetry; (iii) determination of the stoichiometry of the complexes by ESI-MS; (iv) {sup 1}H-NMR titrations allowing to localize the metal ions in the ligand cavity. In a first part dealing on homo-oxacalix[4]arenes, selectivities for Na{sup +}, K{sup +}, Ca{sup 2+}, Pb{sup 2+} and Mn{sup 2+} of ketones derivatives was shown. The presence of oxa bridge in these derivatives increases their efficiency while decreasing their selectivity with respect to related calixarenes. The pyridine derivative prefers transition and heavy metal cations, in agreement with the presence of the soft nitrogen atoms. In the second part, di-oxacalix[4]arene ester and secondary amide derivatives were shown to be less effective than tertiary amide counterparts but to present high selectivities for Li{sup +}, Ba{sup 2+}, Zn{sup 2+} and Hg{sup 2+}. A third part devoted to the octa-homo-tetra-oxacalix[4]arene tetra-methoxy shows that the 1:1 metal complexes formed are generally more stable than those of calixarenes, suggesting the participation of the oxygen atoms of the bridge in the complexation. Selectivity for Cs{sup +}, Ba{sup 2+}, Cu{sup 2+} and Hg{sup 2+} were noted. (author)

  14. Calix[4]arene Based Single-Molecule Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Karotsis, Georgios; Teat, Simon J.; Wernsdorfer, Wolfgang; Piligkos, Stergios; Dalgarno, Scott J.; Brechin, Euan K.


    Single-molecule magnets (SMMs) have been the subject of much interest in recent years because their molecular nature and inherent physical properties allow the crossover between classical and quantum physics to be observed. The macroscopic observation of quantum phenomena - tunneling between different spin states, quantum interference between tunnel paths - not only allows scientists to study quantum mechanical laws in great detail, but also provides model systems with which to investigate the possible implementation of spin-based solid state qubits and molecular spintronics. The isolation of small, simple SMMs is therefore an exciting prospect. To date almost all SMMs have been made via the self-assembly of 3d metal ions in the presence of bridging/chelating organic ligands. However, very recently an exciting new class of SMMs, based on 3d metal clusters (or single lanthanide ions) housed within polyoxometalates, has appeared. These types of molecule, in which the SMM is completely encapsulated within (or shrouded by) a 'protective' organic or inorganic sheath have much potential for design and manipulation: for example, for the removal of unwanted dipolar interactions, the introduction of redox activity, or to simply aid functionalization for surface grafting. Calix[4]arenes are cyclic (typically bowl-shaped) polyphenols that have been used extensively in the formation of versatile self-assembled supramolecular structures. Although many have been reported, p-{sup t}But-calix[4]arene and calix[4]arene (TBC4 and C4 respectively, Figure 1A) are frequently encountered due to (a) synthetic accessibility, and (b) vast potential for alteration at either the upper or lower rim of the macrocyclic framework. Within the field of supramolecular chemistry, TBC4 is well known for interesting polymorphic behavior and phase transformations within anti-parallel bi-layer arrays, while C4 often forms self-included trimers. The polyphenolic nature of calix[n]arenes (where

  15. Reductive removal of nitrate by electrochemistry/catalytic hydrogenation coupling process: kinetics and mechanism%电化学/催化加氢工艺去除硝酸盐的动力学及机理

    Institute of Scientific and Technical Information of China (English)

    张志强; 徐勇鹏; 时文歆; 张瑞君; 鲍现; 崔福义


    为解决地下水硝酸盐(NO3--N)污染问题,采用电化学/催化加氢耦合工艺对其进行去除,重点考察该工艺对NO3--N的降解动力学及反应机理.结果表明,电化学/催化加氢耦合工艺在厌氧条件下能够在短时间内将NO3--N完全去除,去除速率(以N计)可达72.6 mg.L-1.h-1 ,反应符合二级反应动力学规律,常数k=0.005 5 cm2.mA-1.min-1 . 水中NO3--N一部分由电化学反硝化降解去除,另一部分由催化加氢还原去除,两种反应通过电解水产H2反应耦联成为一个整体,宏观上符合电化学反硝化机理.%The kinetics and mechanism in the electrochemistry/catalytic hydrogenation ( E/C ) coupling process, which was employed to remove nitrate ( NO3--N ) from groundwater, was investigated in this paper. The results demonstrated that the NO3--N could be rapidly removed by E/C under anoxic conditions, and the degradation efficiency of NO3--N followed the increasing current density(ID) with observed second order reaction rate and the constant( k ) value of 0. 005 5 cm2·mA-1·min-1 . The NO3--N reductive by E/C with two kinds of reactions, electrochemistry denitrification and catalytic reduction, both of which aggregated by the reaction of brine electrolysis.

  16. 微反应器内硝基苯气-液-固三相催化加氢反应%Gas-Liquid-Solid Three-Phase Catalytic Hydrogenation of Nitrobenzene in a Microreactor

    Institute of Scientific and Technical Information of China (English)

    胡婧婧; 赵玉潮; 李淑莲; 杨梅; 陈光文


    The influences of coating method, support and loading amount of Pd on the three-phase catalytic hydrogenation of nitrobenzene in a microchannel reactor were investigated. The results showed that the activity of catalyst prepared by coating-impregnation method was better than that of the catalyst prepared by sol-gel method, and the nitrobenzene conversion and the aniline selectivity reached 89.2% and 93.8%, respectively. The catalyst with the stronger acidity and larger specific surface area favored a higher catalytic activity. The catalyst with active component Pd 2.00 mg was better. The reaction performance in single channel was better than that in multi-channel.%考察了催化剂壁载方式、涂层载体和Pd负载量对微通道内的硝基苯气-液-固三相催化加氢反应的影响以及其并行放大效应.结果表明,与溶胶-凝胶法相比,浸渍法制备的催化剂涂层性能较好,其转化率、选择性分别达到89.2%和93.8%;采用强酸性、大比表面积的载体有利于反应性能的提高;活性组分Pd负载量为2.00 mg,催化剂活性较好;单通道微反应器内硝基苯加氢反应过程的转化率和选择性均高于多通道微反应器.

  17. A simple and rapid creatinine sensing via DLS selectivity, using calix[4]arene thiol functionalized gold nanoparticles. (United States)

    Sutariya, Pinkesh G; Pandya, Alok; Lodha, Anand; Menon, Shobhana K


    A new, simple, ultra-sensitive and selective approach has been reported for the "on spot" colorimetric detection of creatinine based on calix[4]arene functionalized gold nanoparticles (AuNPs) with excellent discrimination in the presence of other biomolecules. The lower detection limit of the method is 2.16nM. The gold nanoparticles and p-tert-butylcalix[4]arene were synthesized by microwave assisted method. Specifically, in our study, we used dynamic light scattering (DLS) which is a powerful method for the determination of small changes in particle size, improved selectivity and sensitivity of the creatinine detection system over colorimetric method. The nanoassembly is characterized by Transmission electron microscopy (TEM), DLS, UV-vis and ESI-MS spectroscopy, which demonstrates the binding affinity due its ability of hydrogen bonding and electrostatic interaction between -NH group of creatinine and pSDSC4. It exhibits fast response time (creatinine and has long shelf-life (>5 weeks). The developed pSDSC4-AuNPs based creatinine biosensor will be established as simple, reliable and accurate tool for the determination of creatinine in human urine samples.

  18. Catalytic Activity of Nanosized CuO-ZnO Supported on Titanium Chips in Hydrogenation of Carbon Dioxide to Methyl Alcohol. (United States)

    Ahn, Ho-Geun; Lee, Hwan-Gyu; Chung, Min-Chul; Park, Kwon-Pil; Kim, Ki-Joong; Kang, Byeong-Mo; Jeong, Woon-Jo; Jung, Sang-Chul; Lee, Do-Jin


    In this study, titanium chips (TC) generated from industrial facilities was utilized as TiO2 support for hydrogenation of carbon dioxide (CO2) to methyl alcohol (CH3OH) over Cu-based catalysts. Nano-sized CuO and ZnO catalysts were deposited on TiO2 support using a co-precipitation (CP) method (CuO-ZnO/TiO2), where the thermal treatment of TC and the particle size of TiC2 are optimized on CO2 conversion under different reaction temperature and contact time. Direct hydrogenation of CO2 to CH3OH over CuO-ZnO/TiO2 catalysts was achieved and the maximum selectivity (22%) and yield (18.2%) of CH3OH were obtained in the range of reaction temperature 210-240 degrees C under the 30 bar. The selectivity was readily increased by increasing the flow rate, which does not affect much to the CO2 conversion and CH3OH yield.

  19. 硝基甲苯催化加氢制备甲基苯胺新工艺%A New Process for Preparation of Methylaniline by Catalytic Hydrogenation of Methylnitrobenzene

    Institute of Scientific and Technical Information of China (English)



    The hydrogenation reaction of Methylnitrobenzene catalyzed by nanocatalyst to prepare Methylaniline using Methylaniline as the solvent was studied. Reaction pressure,reaction temperature,stirring speed,Methylaniline dosage, Methylnitrobenzene dosage and catalyst dosage on the catalytic hydrogenation were investigated. The conditions of hydrogenation reaction were determined. The experimental results showed that the conversion of Methylnitrobenzene could reach ≥88.5% ,the selectivity of Methylaniline could reach 100% under the reaction conditions of reaction:Methylnitrobenzene/Methylnitrobenzene weight ratio of 4∶10, nanocatalyst /Methylnitrobenzene weight ratio of 10%, temperature 100~120℃, hydrogen pressure 1.2~1.4 MPa , stirring rate 1500 r/ min . The catalyst could be reused. The process is safe and environmentally friendly with low cost and low energy consumption.%研究了以甲基苯胺为溶剂,采用纳米催化剂,催化加氢硝基甲苯制备甲基苯胺的绿色工艺。考查了反应压力、反应温度、搅拌转速、甲基苯胺用量、硝基甲苯用量、催化剂用量等反应条件对加氢反应的影响,确定了最佳工艺条件。结果表明,硝基甲苯与甲基苯胺加入量比为4∶10(质量比),催化剂加入量为硝基甲苯加入量的10%,在反应温度100~120℃,H2压力1.2~1.4 MPa,搅拌速率1500r/min的反应条件下,硝基甲苯的转化率达到88.5%以上,甲基苯胺的选择性可达100%。反应过程中催化剂可重复使用。整个工艺过程安全环保,成本低,能耗低,收益高。

  20. Colorimetric detection of the flux of hydrogen peroxide released from living cells based on the high peroxidase-like catalytic performance of porous PtPd nanorods. (United States)

    Ge, Shenguang; Liu, Weiyan; Liu, Haiyun; Liu, Fang; Yu, Jinghua; Yan, Mei; Huang, Jiadong


    One-dimensional PtPd porous nanorods (PtPd PNRs) were successfully synthesized through a bromide-induced galvanic replacement reaction between Pd nanowires and K2PtCl6. The PtPd PNRs were porous and alloy-structured with Pt/Pd atomic ratio up to 1:1 which were demonstrated by spectroscopic methods. We had also proved that the nanorods could function as peroxidase mimetic for the detection of H2O2, with the detection limit of 8.6 nM and the linear range from 20 nM to 50 mM. The result demonstrated that PtPd PNRs exhibited much higher affinity to H2O2 over other peroxidase mimetics due to synergistically integrating highly catalytic activity of two metals. On the basis of the peroxidase-like activity, the PtPd PNRs were used as a signal transducer to develop a novel and simple colorimetric method for the study of the flux of H2O2 released from living cell. By using 3,3,5,5-tetramethylbenzidine as substrate, the H2O2 concentration could be distinguished by naked-eye observation without any instrumentation or complicated design. The method developed a new platform for a reliable collection of information on cellular reactive oxygen species release. And the nanomaterial could be used as a power tool for a wide range of potential applications in biotechnology and medicine.

  1. Final Technical Report for DOE Grant, number DE-FG02-05ER15701; Probing Surface Chemistry Under Catalytic Conditions: Olefin Hydrogenation,Cyclization and Functionalization.

    Energy Technology Data Exchange (ETDEWEB)

    Neurock, Matthew


    The specific goal of this work was to understanding the catalytic reactions pathways for the synthesis of vinyl acetate over Pd, Au and PdAu alloys. A combination of both experimental methods (X-ray and Auger spectroscopies, low-energy ion scattering (LEIS), low-energy electron diffraction (LEED) and theory (Density Functional Theory (DFT) calculations and Monte Carlo methods under various different reactions) were used to track the surface chemistry and the influence of alloying. The surface intermediates involved in the various reactions were characterized using reflection-absorption infrared spectroscopy and LEED to identify the nature of the surface species and temperature-programmed desorption (TPD) to follow the decomposition pathways and measure heats of adsorption. These results along with those from density functional theoretical calculations were used determine the kinetics for elementary steps. The results from this work showed that the reaction proceeds via the Samanos mechanism over Pd surfaces whereby the ethylene directly couples with acetate to form an acetoxyethyl intermediate that subsequently undergoes a beta-hydride elimination to form the vinyl acetate monomer. The presence of Au was found to modify the adsorption energies and surface coverages of important surface intermediates including acetate, ethylidyne and ethylene which ultimately influences the critical C-H activation and coupling steps. By controlling the surface alloy composition or structure one can begin to control the steps that control the rate and even the mechanism.

  2. 原位液相催化氮烷基化反应%In-situ Liquid-Phase Catalytic Hydrogenation for N-Alkylation

    Institute of Scientific and Technical Information of China (English)

    罗智伟; 顾辉子; 周莉; 严新焕


    A clean and efficient method has been developed for N-alkylation of amines catalyzed by Ni-Sn/Al_2O_3 with alcohol as the alkylation agent and solvent as well as hydrogen-donor. For all the reactions, the temperature was 180 ℃, the pressure was 1.5 MPa, and the flow rate was 1.0 mL/min. The structure of the catalyst was confirmed by X-ray diffraction(XRD) and transmission electron microscopy(TEM). The yields of N-alkylation amines were measured by gas chromatography(GC) while their structures were confirmed by gas chromatography-mass spectrometry(GC-MS). The results show that this catalyst has a great conjoint effect for all the reactions in in-situ hydrogenation for N-alkylation, including dehydrogenation of alcohol and hydrogenation of imine intermediates. The total yields of all the N-alkylation products were quite high, and some even greater than 99%. The catalyst had a long life of more than 480 h.%考察了180 ℃下不同的胺与各类醇在Ni-Sn/Al_2O_3催化作用下的氮烷基化反应. 研究表明,烷基化反应具有普遍的适用性,多数胺与甲醇、乙醇、正丁醇反应,具有较高的氮烷基化总产率. 一些胺与醇反应产率可达99%以上. 该催化剂还具有很高的稳定性,可保持活性达480 h以上. 对反应前后的催化剂进行了XRD和TEM表征,结合表征结果对催化剂前期活性增加及后期活性下降给出了初步分析.

  3. Influence of the π-coordinated arene on the anticancer activity of ruthenium(II) carbohydrate organometallic complexes

    NARCIS (Netherlands)

    Hanif, Muhammad; Meier, Samuel M; Nazarov, Alexey A; Risse, Julie; Legin, Anton; Casini, Angela; Jakupec, Michael A; Keppler, Bernhard K; Hartinger, Christian G


    The synthesis and in vitro cytotoxicity of a series of Ru(II)(arene) complexes with carbohydrate-derived phosphite ligands and various arene co-ligands is described. The arene ligand has a strong influence on the in vitro anticancer activity of this series of compounds, which correlates fairly well

  4. Fabrication of a form- and size-variable microcellular-polymer-stabilized metal nanocomposite using supercritical foaming and impregnation for catalytic hydrogenation (United States)

    Liao, Weisheng; Wu, Ben-Zen; Nian, Hungchi; Chen, Hsiang-Yu; Yu, Jya-Jyun; Chiu, KongHwa


    This article presents the fabrication of size-controllable and shape-flexible microcellular high-density polyethylene-stabilized palladium nanoparticles (Pd/m-HDPE) using supercritical foaming, followed by supercritical impregnation. These nanomaterials are investigated for use as heterogeneous hydrogenation catalysts of biphenyls in supercritical carbon dioxide with no significant surface and inner mass transfer resistance. The morphology of the Pd/m-HDPE is examined using scanning electron microscopy images of the pores inside Pd/m-HDPE catalysts and transmission electron microscopy images of the Pd particles confined in an HDPE structure. This nanocomposite simplifies industrial design and operation. These Pd/m-HDPE catalysts can be recycled easily and reused without complex recovery and cleaning procedures.

  5. Effects of ethanol on the in situ synthesized Cu/SiC》2 catalyst: Texture, structure, and the catalytic performance in hydrogenation dimethyl oxalate to ethylene glycol

    Institute of Scientific and Technical Information of China (English)

    Shu Rong Wang; Ling Jun Zhu; Ying Ying Zhu; Xiao Lan Ge; Xin Bao Li


    The Cu/SiO2 catalysts were in situ synthesized by the hydrolysis of tetraethyl orthosilicate (TEOS) in one phase solution using ethanol as co-solvent or TEOS/H2O two phases solution, followed by the precipitation of copper on SiO2 by ammonia evaporation. In the hydrogenation of dimethyl oxalate, the catalyst prepared by one phase hydrolysis exhibited higher activity and ethylene glycol (EG) selectivity at lower temperature than that of two phases due to its larger BET surface area and multimodal pore distribution. At 488-503 K, the catalyst prepared in one phase solution with water/ethanol (W/E) volume ratio of 3:1 exhibited 90-95% EG selectivity, while catalyst prepared by two phase hydrolysis reached 90% EG selectivity only at 498-503 K.

  6. General Tritium Labelling of Gentamicin C by catalytic hydrogen exchange Reaction with Tritiated Water; Marcado general con tritio de la Gentamicina C por intercambio catalitico con agua triatiada

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, C.; Diaz, D.; Paz, D.


    Gentamicin C was labelled with tritium by means of a PtO2 catalyzed hydrogen exchange reaction. Under the conditions of the exchange (100 mg of gentamicin, basic form, 0,3 ml H2O-3H, and 50 mg of prereduced PtO2) the radiochemical yield was 0,24, 0,38 and 0,48 % at 120 degree celsius, for 8, 16 and 24 hours respectively. Chemical yield for purified gentamicin was about 60 %. Purification was accomplished with a cellulose column eluted with the lower phase of chloroform-methanol 17 % ammonium hydroxide (2:1:1, v/v) . Chemical purity, determined by HPLC, was 96,5 % and radiochemical one was 95. Main exchange degradation products show biological activity. (Author) 12 refs.

  7. Synthesis and reactivity of iron complexes with a new pyrazine-based pincer ligand, and application in catalytic low-pressure hydrogenation of carbon dioxide. (United States)

    Rivada-Wheelaghan, Orestes; Dauth, Alexander; Leitus, Gregory; Diskin-Posner, Yael; Milstein, David


    A novel pincer ligand based on the pyrazine backbone (PNzP) has been synthesized, (2,6-bis(di(tert-butyl)phosphinomethyl)pyrazine), tBu-PNzP. It reacts with FeBr2 to yield [Fe(Br)2(tBu-PNzP)], 1. Treatment of 1 with NaBH4 in MeCN/MeOH gives the hydride complex [Fe(H)(MeCN)2(tBu-PNzP)][X] (X = Br, BH4), 2·X. Counterion exchange and exposure to CO atmosphere yields the complex cis-[Fe(H)(CO)(MeCN)(tBu-PNzP)][BPh4] 4·BPh4, which upon addition of Bu4NCl forms [Fe(H)(Cl)(CO)(tBu-PNzP)] 5. Complex 5, under basic conditions, catalyzes the hydrogenation of CO2 to formate salts at low H2 pressure. Treatment of complex 5 with a base leads to aggregates, presumably of dearomatized species B, stabilized by bridging to another metal center by coordination of the nitrogen at the backbone of the pyrazine pincer ligand. Upon dissolution of compound B in EtOH the crystallographically characterized complex 7 is formed, comprised of six iron units forming a 6-membered ring. The dearomatized species can activate CO2 and H2 by metal-ligand cooperation (MLC), leading to complex 8, trans-[Fe(PNzPtBu-COO)(H)(CO)], and complex 9, trans-[Fe(H)2(CO)(tBu-PNzP)], respectively. Our results point at a very likely mechanism for CO2 hydrogenation involving MLC.

  8. Photodissociation dynamics of the iodine-arene charge-transfer complex

    NARCIS (Netherlands)

    Lenderink, Egbert; Duppen, Koos; Everdij, Frank P.X.; Mavri, Janez; Torre, Renato; Wiersma, Douwe A.


    The photodissociation reaction of the molecular iodine:arene charge-transfer (CT) complex into an iodine atom and an iodine atom-arene fragment has been investigated using femtosecond pump-probe, resonance Raman, and molecular dynamics simulations. In the condensed phase the reaction proceeds on a t

  9. Synthesis of deep-cavity fluorous calix[4]arenes as molecular recognition scaffolds

    Directory of Open Access Journals (Sweden)


    Full Text Available Several lower-rim perfluoroalkylated (fluorous calix[4]arenes have been synthesized by O-alkylation of the parent calix[4]arene. The compounds are formed in the cone conformation. They are soluble in several fluorous solvents and show promise for use in sensing, selective extractions and other applications.

  10. An Inherent Chiral Calix[4]arene Bearing Chiral Groups without Forming Sub-ring

    Institute of Scientific and Technical Information of China (English)

    Xian Xian LIU; Yan Song ZHENG; Wan Ling MO


    The NMR spectra revealed that the calixarene frame of 1, 3-disubstituted calix[4]arenes bearing optically active groups is asymmetric, even without the formation of a sub-ring. This inherent chirality arises from the interaction of the two chiral groups, which hinder the substituents' free rotation. Thus, these chiral calix[4]arenes display good chiral recognition ability.

  11. Studies on the Synthesis and Property of A New Podand-armed Calix[4]arene Derivative

    Institute of Scientific and Technical Information of China (English)


    A new ligand 25, 26, 27, 28-tetrakis[2-(o-methoxyphenoxy)ethoxy]calix[4]arene 3 was synthesized by direct base-strength-driven O-alkylation of calix[4]arene 1.3 has been used as ionophore for cesium selective PVC membrane electrode.The extraction for cesium and sodium with 3 have been also studied.

  12. Effect of hydrogen on passivation quality of SiN{sub x}/Si-rich SiN{sub x} stacked layers deposited by catalytic chemical vapor deposition on c-Si wafers

    Energy Technology Data Exchange (ETDEWEB)

    Thi, Trinh Cham, E-mail:; Koyama, Koichi; Ohdaira, Keisuke; Matsumura, Hideki


    We investigate the role of hydrogen content and fixed charges of catalytic chemical vapor deposited (Cat-CVD) SiN{sub x}/Si-rich SiN{sub x} stacked layers on the quality of crystalline silicon (c-Si) surface passivation. Calculated density of fixed charges is on the order of 10{sup 12} cm{sup −2}, which is high enough for effective field effect passivation. Hydrogen content in the films is also found to contribute significantly to improvement in passivation quality of the stacked layers. Furthermore, Si-rich SiN{sub x} films deposited with H{sub 2} dilution show better passivation quality of SiN{sub x}/Si-rich SiN{sub x} stacked layers than those prepared without H{sub 2} dilution. Effective minority carrier lifetime (τ{sub eff}) in c-Si passivated by SiN{sub x}/Si-rich SiN{sub x} stacked layers is as high as 5.1 ms when H{sub 2} is added during Si-rich SiN{sub x} deposition, which is much higher than the case of using Si-rich SiN{sub x} films prepared without H{sub 2} dilution showing τ{sub eff} of 3.3 ms. - Highlights: • Passivation mechanism of Si-rich SiN{sub x}/SiN{sub x} stacked layers is investigated. • H atoms play important role in passivation quality of the stacked layer. • Addition of H{sub 2} gas during Si-rich SiN{sub x} film deposition greatly enhances effective minority carrier lifetime (τ{sub eff}). • For a Si-rich SiN{sub x} film with refractive index of 2.92, τ{sub eff} improves from 3.3 to 5.1 ms by H{sub 2} addition.

  13. A Au/Cu2O-TiO2 system for photo-catalytic hydrogen production. A pn-junction effect or a simple case of in situ reduction?

    KAUST Repository

    Sinatra, Lutfan


    Photo-catalytic H2 production from water has been studied over Au-Cu2O nanoparticle deposited on TiO2 (anatase) in order to probe into both the plasmon resonance effect (Au nanoparticles) and the pn-junction at the Cu2O-TiO2 interface. The Au-Cu2O composite is in the form of ∼10 nm Au nanoparticles grown on ∼475 nm Cu2O octahedral nanocrystals with (111) facets by partial galvanic replacement. X-ray Photoelectron Spectroscopy (XPS) Cu2p and Auger L3M4,5M4,5 lines indicate that the surface of Cu2O is mainly composed of Cu+. The rate for H2 production (from 95 water/5 ethylene glycol; vol.%) over 2 wt.% (Au/Cu2O)-TiO2 is found to be ∼10 times faster than that on 2 wt.% Au-TiO2 alone. Raman spectroscopy before and after reaction showed the disappearance of Cu+ lines (2Eu) at 220 cm-1. These observations coupled with the induction time observed for the reaction rate suggest that in situ reduction from Cu+ to Cu0 occurs upon photo-excitation. The reduction requires the presence of TiO2 (electron transfer). The prolonged activity of the reaction (with no signs of deactivation) despite the reduction to Cu0 indicates that the latter takes part in the reaction by providing additional sites for the reaction, most likely as recombination centers for hydrogen atoms to form molecular hydrogen. This phenomenon provides an additional route for enhancing the efficiency and lifetime of Cu2O-TiO2 photocatalytic systems, beyond the usually ascribed pn-junction effect.

  14. EPR Spectroscopy of catalytic systems based on nickel complexes of 1,4-diaza-1,3-butadiene (α-diimine) ligands in hydrogenation and polymerization reactions (United States)

    Titova, Yu. Yu.; Belykh, L. B.; Schmidt, F. K.


    EPR spectroscopy is used to study catalytic hydration and polymerization reaction systems based on α-diimine complexes of Ni(0) and Ni(II) with the general formula NiBr2(DAD-R) (R = -C3H7 or -CH3) or Ni(DAD-CH3)2 (DAD(-C3H7) = 1,4-bis(2,6-diiso-propylphenyl)-2,3-(dimethyl-1,4-diazabuta-1,3-diene, DAD(-CH3) = 1,4-bis(2,6-dimethylphenyl)-2,3-dimethyl-1,4-diazabuta-1,3-diene)), in combination with Lewis acids (AlEt3, AlEt2Cl, AlEtCl2, B(F5C6)3, BF3.OEt2). Ni(I) complexes of the form (DAD-R)NiX2AlX'y(C2H5)3-y composition (an aluminum atom can be replaced by a boron atom) were identified, where R = -CH3 or -C3H7, X = Br, and X' = Cl or -C2H5 and α-diimine anion radicals are included in derivatives of aluminum or boron. Oxidation reactions of the Ni(DAD-CH3)2 complex with aluminum alkyl halides and boron derivatives with formation of paramagnetic nickel complexes are observed. It is found that there is no direct relationship between the polymerization activity of ethylene or hydration of the alkenes and the concentration of paramagnetic particles.

  15. Rational Design of Cesium-Selective Ionophores and Chemosensors: Dihydrocalix[4]arene Crown-6 Ethers

    Energy Technology Data Exchange (ETDEWEB)

    Sachleben, Richard A.; Bryan, Jeffrey C.; Brown, Gilbert M.; Engle, Nancy L.; Haverlock, Tamara J.; Hay, Benjamin P.; Urvoas, Agathe; Moyer, Bruce A.


    Molecular mechanics calculations performed on calix[4]arene crown-6 ethers predict that the 1,3-dihydro derivatives will exhibit greater complementarity for potassium and cesium ions than the parent 1,3-dialkoxy calix crowns. The X-ray crystal structures of 1,3-alt bis-octyloxycalix[4]arene benzocrown-6 ether, dihydrocalix[4]arene benzocrown-6 ether, and the cesium nitrate complex of dihydrocalix[4]arene benzocrown-6 ether were determined. The cesium complex structure corresponds closely to the structure predicted by molecular mechanics. The dihydrocalix[4]arene crown-6 ethers exhibit enhanced cesium selectivity in the extraction of alkali metal salts and provide a platform for a highly sensitive and selective cesium chemosensor.

  16. Synthesis and Structure of Novel Double Flexible Spacer BridgedBiscalix [4] arenes

    Institute of Scientific and Technical Information of China (English)

    ZENG, Xian-Shun; WENG, Lin-Hong; CHEN,Lang-Xing; JU, Hong-Fang; LENG, Xue-Bing; HE, Xi-Wen


    25,25′ ,27,27′-Bis ( 1,3-dioxypropane ) -bis (5,11,17,23-tetratert-butylcalix[4]arene-26,28-diol) (4) and 25,25′,27,27′-bis( 1, 4-dioxybutane)-bis (5, 11, 17, 23-tetra-tert-butylcalix[4]arene-26,28-diol) (5) were synthesized by the reaction of p-tert-butylcalix[4]arene (1) with preorganized 25,27-bis(3-bromoproxyl)calix[4]arene-26,27-diol (2) and 25,27-bis(3-bromobutoxyl)calix[4]arene-26,27-diol (3) in the presence of K2CO3 and KI. Compounds 4 and 5 were characterized with X-ray analysis and the selectivity of 4 and 5 to ward K + over other alkali metal ions, alkaline metal ions as well as NH4 + were investigated with an ion-selective electrode.

  17. [bmim]FeCl4离子液体催化氧化硫化氢的研究%Catalytic oxidation of hydrogen sulfide via [bmim]FeCl4 ionic liquid

    Institute of Scientific and Technical Information of China (English)

    王建宏; 朱玲


    The performances of [bmim]FeCl4 (1-butyl-3-methylimidazolium tetrachloroferrate) ionic liquid for catalytic oxidation of hydrogen sulfide were investigated. The results showed that [bmim]FeCl4 had good regeneration ability, but its measuring sulfur capacity was lower than the theoretical value and decreased with the increase of temperature, which was attributed to the strong acidity of [bmim]FeCl4 and its dual function as both medium and catalyst. Weakening the acidity of [bmim]FeCl4 could be a key to increasing sulfur capacity.%研究了[bmim]FeCl4离子液体催化氧化硫化氢的性能.结果表明,[bmim]FeCl4离子液体催化氧化硫化氢时具有良好的再生性能,不过其氧化硫化氢时的实际硫容不仅小于理论硫容而且随温度的升高逐渐降低,这可能与[bmim]FeCl4离子液体的强酸性以及其作为介质和催化剂的双重功能密切相关,减弱[bmim]FeCl4离子液体的酸性可能是增加硫容的关键.

  18. Micromachined Catalytic Combustible Hydrogen Gas Sensor Based on Nano-structured SnO2%纳米氧化锡修饰的微催化燃烧式氢气传感器的研制

    Institute of Scientific and Technical Information of China (English)

    刘西锋; 董汉鹏; 夏善红


    /V. The response and recovery times to 4% H2 were 0.65 s and 2.32 s, respectively. Finally, the sensor signal was very stable during a 200 d long term operation (accuracy > 95%). It was noteworthy that the nano-structured SnO2 as catalyst film in a catalytic combustible gas sensor could considerably improve the performance of the gas sensor. It can be used in realizing portable sensing devices such as hydrogen analyzers and hydrogen leak monitors.

  19. Research progress of adsorption/activation and catalytic hydrogenation of CO2%CO2吸附活化及催化加氢制低碳烯烃的研究进展

    Institute of Scientific and Technical Information of China (English)

    李静; 邓廷云; 杨林; 曹建新


    随着工业化的发展,CO2的排放与日俱增,给环境带来了不可忽视的严重后果.同时,石油资源日渐匮乏,使得以石油为原料制低碳烯烃的工业面临严峻的挑战.利用CO2制低碳烯烃是缓解环境与资源双重压力的有效途径之一.本文综述了CO2催化加氢制低碳烯烃的热力学分析,CO2在过渡金属单晶和氧化物表面的吸附活化机理以及CO2催化加氢制低碳烯烃催化剂的研究进展.分析比较了包括单金属催化剂、双金属催化剂和复合催化剂在内的CO2制低碳烯烃催化剂的优缺点.提出了催化反应过程中存在催化剂难以兼顾选择性和转化率的技术难题,并指出了今后的主要研究方向是加强催化反应机理和催化剂制备、改性技术的研究.%Growing emission of CO2 has brought serious consequences to the environment. At the same time, fossil energy is depleting, which challenges oil-based low carbon olefins industry. Using CO2 to produce carbon olefins is one of effective ways to alleviate the dual pressure of environment and resource. Thermodynamic analysis of CO2 hydrogenation to light olefins, adsorption/activation mechanism of CO2 on single crystal and oxides of transition metal and research progress of catalyst for hydrogenation of carbon dioxide to light alkenes are reviewed. The advantages and disadvantages of catalysts for CO2 hydrogenation, including single metal catalysts, bimetallic catalysts and the composite catalyst are analyzed. The problem of catalyst is how to balance selectivity and conversion rate. The future research directions of catalyst are mechanism of catalytic reaction, and catalyst preparation and modification.

  20. Molecular Design of Calixarene 5. Syntheses and Cation Selectivities of Novel Schiff' s Base p-tert-Butylcalix[4]arenes

    Institute of Scientific and Technical Information of China (English)

    刘育; 赵邦屯; 王浩; 陈企发; 张衡益


    Five novel Schiff's bases p-tert-butylcalix[4]arenes have ben synthesized in high yields by the reaction of 1,3-distally disubstituted p-tert-butyicalix[4]arene amine(1) with the corresponding aromatic aldehydes,and their cation binding abilities and selectivities with alkali and heavy metal ions have been evaluated by solvent extraction of aqueous metal picrates to show the highet Ag+ extractability for Schiff' s base p-tertbutylcalix[4]arene (6) and the best Na+/Li+ and Ag+/Tl+selectivities for Schiff's base p-tert-butylcalix[4]arene (4 and 2) over any other caltx[4]arene derivatives, respectively.

  1. Calix[4]arene methylenebisphosphonic acids as inhibitors of fibrin polymerization. (United States)

    Lugovskoy, Eduard V; Gritsenko, Pavel G; Koshel, Tatyana A; Koliesnik, Ievgen O; Cherenok, Serhey O; Kalchenko, Olga I; Kalchenko, Vitaliy I; Komisarenko, Serhey V


    Calix[4]arenes bearing two or four methylenebisphosphonic acid groups at the macrocyclic upper rim have been studied with respect to their effects on fibrin polymerization. The most potent inhibitor proved to be calix[4]arene tetrakis-methylene-bis-phosphonic acid (C-192), in which case the maximum rate of fibrin polymerization in the fibrinogen + thrombin reaction decreased by 50% at concentrations of 0.52 × 10(-6) M (IC(50)). At this concentration, the molar ratio of the compound to fibrinogen was 1.7 : 1. For the case of desAABB fibrin polymerization, the IC(50) was 1.26 × 10(-6) M at a molar ratio of C-192 to fibrin monomer of 4 : 1. Dipropoxycalix[4]arene bis-methylene-bis-phosphonic acid (C-98) inhibited fibrin desAABB polymerization with an IC(50) = 1.31 × 10(-4) M. We hypothesized that C-192 blocks fibrin formation by combining with polymerization site 'A' (Aα17-19), which ordinarily initiates protofibril formation in a 'knob-hole' manner. This suggestion was confirmed by an HPLC assay, which showed a host-guest inclusion complex of C-192 with the synthetic peptide Gly-Pro-Arg-Pro, an analogue of site 'A'. Further confirmation that the inhibitor was acting at the initial step of the reaction was obtained by electron microscopy, with no evidence of protofibril formation being evident. Calixarene C-192 also doubled both the prothrombin time and the activated partial thromboplastin time in normal human blood plasma at concentrations of 7.13 × 10(-5) M and 1.10 × 10(-5) M, respectively. These experiments demonstrate that C-192 is a specific inhibitor of fibrin polymerization and blood coagulation and can be used for the design of a new class of antithrombotic agents.

  2. Local and 2-Local derivations on noncommutative Arens algebras

    CERN Document Server

    Ayupov, Sh A; Nurjanov, B O; Alauatdinov, A K


    The paper is devoted to so-called local and 2-local derivations on the noncommutative Arens algebra $L^\\omega(M, \\tau)$ associated with a von Neumann algebra $M$ and a faithful normal semi-finite trace $\\tau.$ We prove that every 2-local derivation on $L^\\omega(M, \\tau)$ is a spatial derivation, and if $M$ is a finite von Neumann algebra, then each local derivation on $L^\\omega(M, \\tau)$ is also a spatial derivation and every 2-local derivation on $M$ is in fact an inner derivation.

  3. Medicinal organometallic chemistry: designing metal arene complexes as anticancer agents. (United States)

    Peacock, Anna F A; Sadler, Peter J


    The field of medicinal inorganic chemistry is rapidly advancing. In particular organometallic complexes have much potential as therapeutic and diagnostic agents. The carbon-bound and other ligands allow the thermodynamic and kinetic reactivity of the metal ion to be controlled and also provide a scaffold for functionalization. The establishment of structure-activity relationships and elucidation of the speciation of complexes under conditions relevant to drug testing and formulation are crucial for the further development of promising medicinal applications of organometallic complexes. Specific examples involving the design of ruthenium and osmium arene complexes as anticancer agents are discussed.

  4. Solution superstructures: truncated cubeoctahedron structures of pyrogallol[4]arene nanoassemblies. (United States)

    Kumari, Harshita; Kline, Steven R; Fowler, Drew A; Mossine, Andrew V; Deakyne, Carol A; Atwood, Jerry L


    Giant nanocapsules: the solution-phase structures of PgC1Ho and PgC3Ho have been investigated using in situ neutron scattering measurements. The SANS results show the presence of spherical nanoassemblies of radius 18.2 Å, which are larger than the previously reported metal-seamed PgC3 hexamers (radius = 10 Å). The spherical architectures conform to a truncated cubeoctahedron geometry, indicating formation of the first metal-containing pyrogallol[4]arene-based dodecameric nanoassemblies in solution.

  5. CO2催化氢化催化剂及其反应机理综述%Review on Catalysts and Its Mechanisms for Catalytic Hydrogenation of Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    张自丽; 赵毅


    研究二氧化碳资源化利用技术将对电厂CO2减排工作具有重要意义.综述了基于催化氢化思想的CO2转化催化剂及其反应机理,其主要涉及铜、镍、锌等过渡金属和钌、铱、钯等贵金属.现有催化氢化CO2转化技术研究主要集中于研究与开发高活性催化剂,分析与推测反应机理,提高产物产率及选择性,优化反应体系结构与条件等方面.高活性催化剂如双金属合金,过渡金属催化体系将是未来CO2催化氢化领域主要的研究方向之一.各催化剂催化氢化CO2反应机理较为复杂,值得深入研究.随着经济、环保、节能等新型CO2催化氢化技术的开发及研究的深入,电厂CO2减排及资源化工业应用也将成为可能.%Researches about carbon dioxide utilization technologies will have great significances for the emission reduction of carbon dioxide from power plants.Based on the theory about catalytic hydrogenation,the mechanisms of the catalysts such as transition metals,namely copper,nickel and zinc,and noble metals including ruthenium,iridium and palladium for carbon dioxide conversion were reviewed.Current researches about the catalytic hydrogenation of CO2 mainly focus on the studying and development of highly active catalysts,the analysis and conjecture of reaction mechanism,the improvement of productivity and selectivity,and the optimization of reaction system structure and condition,etc..The highly active catalysts,for example thermometal alloy,and the transition metal catalyst system will be one of the primary issues in the field of CO2 hydrogenation in the future.The reaction mechanism which is complicated with diverse catalysts in carbon dioxide conversion,is worth being researched deeply.As the development of new technics with the characteristics of economy,green and energy saving and the deep researches,it may be possible for the emission reduction and resource industry utilization of CO2 from power plants.

  6. Synthesis of o-phenylenediamine from catalytic hydrogenation of o-nitroaniline over Pd/C catalyst%Pd/C催化剂催化邻硝基苯胺加氢制备邻苯二胺

    Institute of Scientific and Technical Information of China (English)



    Aromatic haloamines are important organic intermediates which are widely used for the produc-tion of fine chemicals such as dyes,herbicides,pesticides,drugs,flavor and rubber. The selective hydro-genation process of haloaromatic nitro-compounds to the corresponding aniline catalyzed by supported noble metal catalysts in liquid phase has attracted more attention due to its advantages of benign environ-ment,stable product quality and advanced technics. o-Phenylenediamine was synthesized by catalytic hydrogenation of o-nitroaniline over Pd/C catalyst. The effects of reaction temperature,reaction pressure, reaction time and different solvents on the product yield were investigated. The results showed that o-phenylenediamine average yield of 97% was obtained under the optimum synthesis condition as follows:reaction temperature 100 ℃,reaction pressure 0. 8 MPa,reaction time 100 min and methanol as the solvents. Compared with traditional ferrous powder or Na2 S chemical reduction methods,the catalytic hydrogenation of o-nitroaniline over Pd/C catalyst in methanol solution has more advantages with respect to reducing waste water and production cost.%卤代芳胺是重要的有机中间体,广泛应用于合成染料、农药、医药、香料及橡胶助剂等。卤代芳香硝基化合物通过液相催化加氢制备卤代芳胺的技术以其环境友好、产品质量稳定和工艺先进而受到重视。用负载型贵金属催化剂催化芳香硝基化合物选择加氢制备相应的芳胺有广泛的应用价值。采用邻硝基苯胺为原料,Pd/C为催化剂,低压催化加氢还原合成邻苯二胺,考察不同溶剂、反应压力、反应温度和反应时间对产物收率的影响。结果表明,在甲醇为溶剂、反应温度100℃、反应压力0.8 MPa和反应时间100 min条件下,邻苯二胺平均收率为97%。与传统硫化碱还原或铁粉化学法还原工艺相比,以甲醇为溶剂,Pd/C催化剂催化加氢法在减少

  7. Aqueous Biphasic Systems for the Synthesis of Formates by Catalytic CO2 Hydrogenation: Integrated Reaction and Catalyst Separation for CO2 -Scrubbing Solutions. (United States)

    Scott, Martin; Blas Molinos, Beatriz; Westhues, Christian; Franciò, Giancarlo; Leitner, Walter


    Aqueous biphasic systems were investigated for the production of formate-amine adducts by metal-catalyzed CO2 hydrogenation, including typical scrubbing solutions as feedstocks. Different hydrophobic organic solvents and ionic liquids could be employed as the stationary phase for cis-[Ru(dppm)2 Cl2 ] (dppm=bis-diphenylphosphinomethane) as prototypical catalyst without any modification or tagging of the complex. The amines were found to partition between the two phases depending on their structure, whereas the formate-amine adducts were nearly quantitatively extracted into the aqueous phase, providing a favorable phase behavior for the envisaged integrated reaction/separation sequence. The solvent pair of methyl isobutyl carbinol (MIBC) and water led to the most practical and productive system and repeated use of the catalyst phase was demonstrated. The highest single batch activity with a TOFav of approximately 35 000 h(-1) and an initial TOF of approximately 180 000 h(-1) was achieved in the presence of NEt3 . Owing to higher stability, the highest productivities were obtained with methyl diethanolamine (Aminosol CST 115) and monoethanolamine (MEA), which are used in commercial scale CO2 -scrubbing processes. Saturated aqueous solutions (CO2 overpressure 5-10 bar) of MEA could be converted into the corresponding formate adducts with average turnover frequencies up to 14×10(3)  h(-1) with an overall yield of 70 % based on the amine, corresponding to a total turnover number of 150 000 over eleven recycling experiments. This opens the possibility for integrated approaches to carbon capture and utilization.


    Institute of Scientific and Technical Information of China (English)

    Wei-xia Tu; Bao-lin He; Han-fan Liu; Xue-lan Luo; Xun Liang


    Catalytic properties of polymer-stabilized colloidal metal nanoparticles synthesized by microwave irradiation were studied in the selective hydrogenation of unsaturated aldehydes, o-chloronitrobenzene and the hydrogenation of alkenes. The results show that nanosized metal particles synthesized by microwave irradiation have similar catalytic performance in selective hydrogenation of unsaturated aldehydes, better selectivity to o-chloroaniline in hydrogenation of o-chloronitrobenzene and higher catalytic activities in hydrogenation of alkenes, compared with metal clusters prepared by conventional heating. The same apparent activation energy (Ea = 29 kJ mol-1) for hydrogenation of 1-heptene catalyzed with platinum nanoparticles prepared by both heating modes implied that the reaction followed the same mechanism.

  9. Mirror-image organometallic osmium arene iminopyridine halido complexes exhibit similar potent anticancer activity. (United States)

    Fu, Ying; Soni, Rina; Romero, María J; Pizarro, Ana M; Salassa, Luca; Clarkson, Guy J; Hearn, Jessica M; Habtemariam, Abraha; Wills, Martin; Sadler, Peter J


    Four chiral Os(II) arene anticancer complexes have been isolated by fractional crystallization. The two iodido complexes, (S(Os),S(C))-[Os(η(6)-p-cym)(ImpyMe)I]PF6 (complex 2, (S)-ImpyMe: N-(2-pyridylmethylene)-(S)-1-phenylethylamine) and (R(Os),R(C))-[Os(η(6)-p-cym)(ImpyMe)I]PF6 (complex 4, (R)-ImpyMe: N-(2-pyridylmethylene)-(R)-1-phenylethylamine), showed higher anticancer activity (lower IC50 values) towards A2780 human ovarian cancer cells than cisplatin and were more active than the two chlorido derivatives, (S(Os),S(C))-[Os(η(6)-p-cym)(ImpyMe)Cl]PF6, 1, and (R(Os),R(C))-[Os(η(6)-p-cym)(ImpyMe)Cl]PF6, 3. The two iodido complexes were evaluated in the National Cancer Institute 60-cell-line screen, by using the COMPARE algorithm. This showed that the two potent iodido complexes, 2 (NSC: D-758116/1) and 4 (NSC: D-758118/1), share surprisingly similar cancer cell selectivity patterns with the anti-microtubule drug, vinblastine sulfate. However, no direct effect on tubulin polymerization was found for 2 and 4, an observation that appears to indicate a novel mechanism of action. In addition, complexes 2 and 4 demonstrated potential as transfer-hydrogenation catalysts for imine reduction.

  10. Biomass transition metal hydrogen-evolution electrocatalysts and electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Fu; Iyer, Shweta; Iyer, Shilpa; Sasaki, Kotaro; Muckerman, James T.; Fujita, Etsuko


    A catalytic composition from earth-abundant transition metal salts and biomass is disclosed. A calcined catalytic composition formed from soybean powder and ammonium molybdate is specifically exemplified herein. Methods for making the catalytic composition are disclosed as are electrodes for hydrogen evolution reactions comprising the catalytic composition.

  11. Reactivity of organic compounds in catalytic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Minachev, Kh.M.; Bragin, O.V.


    A comprehensive review of 1976 Soviet research on catalysis delivered to the 1977 annual session of the USSR Academy of Science Council on Catalysis (Baku 6/16-20/77) covers hydrocarbon reactions, including hydrogenation and hydrogenolysis, dehydrogenation, olefin dimerization and disproportionation, and cyclization and dehydrocyclization (e.g., piperylene cyclization and ethylene cyclotrimerization); catalytic and physicochemical properties of zeolites, including cracking, dehydrogenation, and hydroisomerization catalytic syntheses and conversion of heterocyclic and functional hydrocarbon derivatives, including partial and total oxidation (e.g., of o-xylene to phthalic anhydride); syntheses of thiophenes from alkanes and hydrogen sulfide over certain dehydrogenation catalysts; catalytic syntheses involving carbon oxides ( e.g., the development of a new heterogeneous catalyst for hydroformylation of olefins), and of Co-MgO zeolitic catalysts for synthesis of aliphatic hydrocarbons from carbon dioxide and hydrogen, and fabrication of high-viscosity lubricating oils over bifunctional aluminosilicate catalysts.

  12. Spontaneous reduction and C-H borylation of arenes mediated by uranium(III) disproportionation. (United States)

    Arnold, Polly L; Mansell, Stephen M; Maron, Laurent; McKay, David


    Transition-metal-arene complexes such as bis(benzene)chromium Cr(η(6)-C(6)H(6))(2) are historically important to d-orbital bonding theory and have modern importance in organic synthesis, catalysis and organic spintronics. In investigations of f-block chemistry, however, arenes are invariably used as solvents rather than ligands. Here, we show that simple uranium complexes UX(3) (X = aryloxide, amide) spontaneously disproportionate, transferring an electron and X-ligand, allowing the resulting UX(2) to bind and reduce arenes, forming inverse sandwich molecules [X(2)U(µ-η(6):η(6)-arene)UX(2)] and a UX(4) by-product. Calculations and kinetic studies suggest a 'cooperative small-molecule activation' mechanism involving spontaneous arene reduction as an X-ligand is transferred. These mild reaction conditions allow functionalized arenes such as arylsilanes to be incorporated. The bulky UX(3) are also inert to reagents such as boranes that would react with the traditional harsh reaction conditions, allowing the development of a new in situ arene C-H bond functionalization methodology converting C-H to C-B bonds.

  13. Spontaneous reduction and C-H borylation of arenes mediated by uranium(III) disproportionation (United States)

    Arnold, Polly L.; Mansell, Stephen M.; Maron, Laurent; McKay, David


    Transition-metal-arene complexes such as bis(benzene)chromium Cr(η6-C6H6)2 are historically important to d-orbital bonding theory and have modern importance in organic synthesis, catalysis and organic spintronics. In investigations of f-block chemistry, however, arenes are invariably used as solvents rather than ligands. Here, we show that simple uranium complexes UX3 (X = aryloxide, amide) spontaneously disproportionate, transferring an electron and X-ligand, allowing the resulting UX2 to bind and reduce arenes, forming inverse sandwich molecules [X2U(µ-η6:η6-arene)UX2] and a UX4 by-product. Calculations and kinetic studies suggest a ‘cooperative small-molecule activation’ mechanism involving spontaneous arene reduction as an X-ligand is transferred. These mild reaction conditions allow functionalized arenes such as arylsilanes to be incorporated. The bulky UX3 are also inert to reagents such as boranes that would react with the traditional harsh reaction conditions, allowing the development of a new in situ arene C-H bond functionalization methodology converting C-H to C-B bonds.

  14. Los peligros volcánicos del Arenal

    Directory of Open Access Journals (Sweden)

    Sjöbohm Castillo, Linda Marie


    Full Text Available Este estudio fue realizado con el fin de establecer los riesgos asociados al volcán Arenal y la realización y utilización de los mapas de peligros volcánicos en la planificación de las áreas circundantes. Contiene información histórica de la actividad del volcán. Presenta los objetivos fundamentales de la producción de los mapas. Identifica los tipos de peligros que presenta el volcán en la actualidad y finalmente, informa sobre la construcción de los mapas de peligros volcánicos, tanto el de corto plazo como el de largo plazo This study was developed with the purpose of establishing the risks related to the Arenal Volcano and the development and use of volcanic danger maps in the planning of the areas around. It includes historic information about the volcano activity. It presents the main objective of doing the maps. It identifies the types of dangers the volcano presents in these days. Finally, it informs about the development of volcanic dangers maps, at short and long term

  15. Method of fabricating a catalytic structure (United States)

    Rollins, Harry W.; Petkovic, Lucia M.; Ginosar, Daniel M.


    A precursor to a catalytic structure comprising zinc oxide and copper oxide. The zinc oxide has a sheet-like morphology or a spherical morphology and the copper oxide comprises particles of copper oxide. The copper oxide is reduced to copper, producing the catalytic structure. The catalytic structure is fabricated by a hydrothermal process. A reaction mixture comprising a zinc salt, a copper salt, a hydroxyl ion source, and a structure-directing agent is formed. The reaction mixture is heated under confined volume conditions to produce the precursor. The copper oxide in the precursor is reduced to copper. A method of hydrogenating a carbon oxide using the catalytic structure is also disclosed, as is a system that includes the catalytic structure.

  16. Immobilization of [60]fullerene on silicon surfaces through a calix[8]arene layer

    Energy Technology Data Exchange (ETDEWEB)

    Busolo, Filippo; Silvestrini, Simone; Maggini, Michele [Department of Chemical Sciences, ITM-CNR University of Padova, Via F. Marzolo 1, 35131 Padova (Italy); Armelao, Lidia [Department of Chemical Sciences, IENI-CNR and INSTM, University of Padova, Via F. Marzolo 1, 35131 Padova (Italy)


    In this work, we report the functionalization of flat Si(100) surfaces with a calix[8]arene derivative through a thermal hydrosilylation process, followed by docking with [60]fullerene. Chemical grafting of calix[8]arene on silicon substrates was evaluated by X-ray photoelectron spectroscopy, whereas host-guest immobilization of fullerene was demonstrated by atomic force microscopy and sessile drop water contact angle measurements. Surface topographical variations, modelled on the basis of calix[8]arene and [60]fullerene geometrical parameters, are consistent with the observed morphological features relative to surface functionalization and to non-covalent immobilization of [60]fullerene.

  17. Odd-numbered oxacalix[n]arenes (n = 5, 7): synthesis and solid-state structures. (United States)

    Van Rossom, Wim; Robeyns, Koen; Ovaere, Magriet; Van Meervelt, Luc; Dehaen, Wim; Maes, Wouter


    The critical synthetic access to odd-numbered calix[n]arenes has evidently resulted in less attention for these macrocycles, although specific molecular recognition phenomena have been observed for some of them. A straightforward fragment coupling approach has been designed, applying kinetically controlled nucleophilic aromatic substitution reaction conditions, affording odd-numbered oxacalix[n]arenes (n = 5, 7) selectively in high yields. The solid-state conformational behavior and the oxacalix[n]arene cavity size were explored by single-crystal X-ray diffraction studies.

  18. Formation of upper rim acylated calix[4]arenes using a sacrifici al zinc anode


    Louati, Alain; Vataj, Rame; Gabelica, Valérie; Lejeune, Manuel; MATT, DOMINIQUE


    A straightforward electrosynthetic method is described, which allows upper rim acylation of non-p-halogenated calix[4]-arenes. For example, a solution of tetrapropoxycalix[4]arene 4 was electrolysed in the presence of ZnBr2, in an undivided cell fitted with a sacrificial zinc anode using pure acetonitrile as solvent, yielding an organozinc species, which was then treated with acetyl chloride in the presence of a palladium catalyst to afford 5,11-diacety1-25,26,27,28-tetrapropoxycalix[4]arene ...

  19. Si-H bond activation at {(NHC)₂Ni⁰} leading to hydrido silyl and bis(silyl) complexes: a versatile tool for catalytic Si-H/D exchange, acceptorless dehydrogenative coupling of hydrosilanes, and hydrogenation of disilanes to hydrosilanes. (United States)

    Schmidt, David; Zell, Thomas; Schaub, Thomas; Radius, Udo


    The unique reactivity of the nickel(0) complex [Ni2(iPr2Im)4(COD)] (1) (iPr2Im = 1,3-di-isopropyl-imidazolin-2-ylidene) towards hydrosilanes in stoichiometric and catalytic reactions is reported. A series of nickel hydrido silyl complexes cis-[Ni(iPr2Im)2(H)(SiH(n-1)R(4-n))] (n = 1, 2) and nickel bis(silyl) complexes cis-[Ni(iPr2Im)2(SiH(n-1)R(4-n))2] (n = 1, 2, 3) were synthesized by stoichiometric reactions of 1 with hydrosilanes H(n)SiR(4-n), and fully characterized by X-ray diffraction and spectroscopic methods. These hydrido silyl complexes are examples where the full oxidative addition step is hindered. They have, as a result of the remaining Si-H interactions, remarkably short Si-H distances and feature a unique dynamic behavior in solution. Cis-[Ni(iPr2Im)2(H)(SiMePh2)] (cis-5) shows in solution at room temperature a dynamic site exchange of the NHC ligands, H-D exchange with C6D6 to give the deuteride complex cis-[Ni(iPr2Im)2(D)(SiMePh2)] (cis-5-D), and at elevated temperatures an irreversible isomerization to trans-[Ni(iPr2Im)2(D)(SiMePh2)] (trans-5-D). Reactions with sterically less demanding silanes give cis-configured bis(silyl) complexes accompanied by the release of dihydrogen. These complexes display, similarly to the hydrido silyl complexes, interestingly short Si-Si distances. Complex 1 reacts with 4 eq. HSi(OEt)3, in contrast to all the other silanes used in this study, to give the trans-configured bis(silyl) complex trans-[Ni(iPr2Im)2Ni(Si(OEt)3)2] (trans-12). The addition of two equivalents of Ph2SiH2 to 1 results, at elevated temperatures, in the formation of the dinuclear complex [{(iPr2Im)Ni-μ(2)-(HSiPh2)}2] (6). This diamagnetic, formal Ni(I) complex exhibits a long Ni-Ni bond in the solid state, as established by X-ray diffraction. The capability of the electron rich {Ni(iPr2Im)2} complex fragment to activate Si-H bonds was applied catalytically in the deuteration of Et3Si-H to Et3Si-D employing C6D6 as a convenient deuterium source

  20. Catalytic cracking of lignites

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, M.; Nowak, S.; Naegler, T.; Zimmermann, J. [Hochschule Merseburg (Germany); Welscher, J.; Schwieger, W. [Erlangen-Nuernberg Univ. (Germany); Hahn, T. [Halle-Wittenberg Univ., Halle (Germany)


    A most important factor for the chemical industry is the availability of cheap raw materials. As the oil price of crude oil is rising alternative feedstocks like coal are coming into focus. This work, the catalytic cracking of lignite is part of the alliance ibi (innovative Braunkohlenintegration) to use lignite as a raw material to produce chemicals. With this new one step process without an input of external hydrogen, mostly propylene, butenes and aromatics and char are formed. The product yield depends on manifold process parameters. The use of acid catalysts (zeolites like MFI) shows the highest amount of the desired products. Hydrogen rich lignites with a molar H/C ratio of > 1 are to be favoured. Due to primary cracking and secondary reactions the ratio between catalyst and lignite, temperature and residence time are the most important parameter to control the product distribution. Experiments at 500 C in a discontinuous rotary kiln reactor show yields up to 32 wt-% of hydrocarbons per lignite (maf - moisture and ash free) and 43 wt-% char, which can be gasified. Particularly, the yields of propylene and butenes as main products can be enhanced four times to about 8 wt-% by the use of catalysts while the tar yield decreases. In order to develop this innovative process catalyst systems fixed on beads were developed for an easy separation and regeneration of the used catalyst from the formed char. (orig.)

  1. Functionalized O6-Corona[6]arenes: Synthesis, Structure, and Fullerene Complexation Property. (United States)

    Ren, Wen-Sheng; Zhao, Liang; Wang, Mei-Xiang


    The synthesis, structure, and fullerene complexation property of novel and functionalized On-corona[n]arenes were reported. Based on the fragment coupling strategy, ester-containing On-corona[n]arenes (n = 6, 8) were obtained readily starting from 1,4-hydroquinone and diethyl 2,5-difluoroterephthalate. Reduction of esters with LiAlH4 produced almost quantitatively hydroxymethylated On-corona[n]arenes, which underwent etherification with MeI to afford methoxymethyl-substituted On-corona[n]arenes (n = 6, 8) in good yields. The macrocycles adopt unique corona-type conformation with a large cylindroid cavity. They are strong macrocyclic host molecules to form 1:1 complexes with fullerenes C60 and C70 in toluene with an associate constant up to (1.59 ± 0.04) × 10(5) M(-1).

  2. Studies on Properties of p—Nitrophenylazo Calix[4]arene Derivatives

    Institute of Scientific and Technical Information of China (English)

    金传明; 归敏芝; 陆国元; 郭勋; 张宏; 游效曾


    The p-nitrophenylazo calix[4] arene derivatives la-ld with nonlinear optical(NLO)properties were prepared by the diazo-coupling reaction of calix[4]arene with p-nitrophenyl diazonium.The diazotization reaction of p-nltroaniline was caried out with isoamyl nitrite as a source of nitrous acid in EtONa/EtOH under refluxing conditon.X-Ray crystallographic analysis and 1H NMR sptectra reveal that they exist as cone conformation in crystal state or in soution.HRS measurements at 1064 nm in THF indicate that p-nitrophenylazo calix[4]arenes have higher hyperpolarizability βz values than the corresponding reference compound 4-(4-nitrophenylazo)-2,6-dimethyl-phenol,without red shift of the charge transfer band.The tetrakis p-nitropheylazo calix[4]arene(2)with longer alkyl chains can form monolayer aht the air/water interface.

  3. Optical, electrical and sensing properties of β-ketoimine calix[4]arene thin films

    Energy Technology Data Exchange (ETDEWEB)

    Echabaane, M., E-mail: [Laboratoire des Interfaces et Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Avenue de l' environnement, 5000 Monastir (Tunisia); Rouis, A. [Laboratoire des Interfaces et Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Avenue de l' environnement, 5000 Monastir (Tunisia); Bonnamour, I. [Institut de Chimie and Biochimie Moléculaires and Supramoléculaires (ICBMS), UMR CNRS 5246, 43 Boulevard du 11 Novembre 1918, Université Claude Bernard Lyon 1, 69100 Villeurbanne (France); Ben Ouada, H. [Laboratoire des Interfaces et Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Avenue de l' environnement, 5000 Monastir (Tunisia)


    Optical, electrical and ion sensing properties of β-ketoimine calix[4]arene thin films have been investigated. These calix[4]arene derivative films exhibit absorption spectra with a resolved electronic structure in the UV–vis and the energy gap was found to be 3.65 eV. Electrical properties of ITO/β-ketoimine calix[4]arene/Al devices have been investigated by I–V characteristics and impedance spectroscopy measurements. The conduction is governed by space-charge-limited current (SCLC) mechanism. The impedance spectroscopy study showed a hopping transport process, a typical behavior of disordered materials. The device was modeled by a single parallel resistor and capacitor network in series with a resistance. The β-ketoimine calix[4]arene was used for the conception of the novel optical chemical sensor and the detection of Cu{sup 2+} ions was monitored by UV–visible spectroscopy. The linear dynamic range for the determination of Cu{sup 2+} has been 10{sup −5}–10{sup −3.7} M with a detection limit of 10{sup −5} M. The characteristics of this optode such as regeneration, repeatability, reproducibility, short-term stability, life time and ion selectivity have been discussed. - Highlights: • We examine optical properties of β-ketoimine calix[4]arene ligand. • We investigate the electric properties of ITO/β-ketoimine calix[4]arene/Al device. • We study the sensing properties of optode films for the detection of copper (II)

  4. Microwave Assisted Efficient Synthesis and Crystal Structures of O-Hexadecalkylated Pyrogallol[4]arenes

    Institute of Scientific and Technical Information of China (English)

    CHEN Jiao; CHEN Weifeng; YAN Chaoguo


    Under microwave irradiation alkylation reactions of sixteen phenolic hydroxyl groups in tetrap-hydroxyphenylpyrogallol[4]arene with alkylating reagents such as n-butyl iodide,benzyl chloride,and ethyl a-chloroacetate were finished quickly in one step to give the fully O-alkylated products.The X-ray single crystal diffraction showed that the three peralkylated pyrogallol[4]arenes existed in rcttcis-trans-transconfiguration.

  5. Synthesis and Characterization of Mesoporous Silica Functionalized with Calix[4]arene Derivatives


    Sana M. Alahmadi; Mohamad, Sharifah; Maah, Mohd Jamil


    This work reports a new method to covalently attach calix[4]arene derivatives onto MCM-41, using a diisocyanate as a linker. The modified mesoporous silicates were characterized by fourier transform infrared spectroscopy (FTIR), thermal analysis (TGA) and elemental analysis. The FTIR spectra and TGA analysis verified that the calix[4]arene derivates are covalently attached to the mesoporous silica. The preservation of the MCM-41 channel system was checked by X-ray diffraction and nitrogen ads...

  6. Photoinduced C-C Cross-Coupling of Aryl Chlorides and Inert Arenes

    Directory of Open Access Journals (Sweden)

    Lele Wang


    Full Text Available Here we report a facile, efficient, and catalyst-free method to realize C-C cross-coupling of aryl chlorides and inert arenes under UV light irradiation. The aryl radical upon homolytic cleavage of C-Cl bond initiated the nucleophilic substitution reaction with inert arenes to give biaryl products. This mild reaction mode can also be applied to other synthetic reactions, such as the construction of C-N bonds and trifluoromethylated compounds.

  7. Calix-arene silver nanoparticles interactions with surfactants are charge, size and critical micellar concentration dependent. (United States)

    Tauran, Yannick; Brioude, Arnaud; Shahgaldian, Patrick; Cumbo, Alessandro; Kim, Beomjoon; Perret, Florent; Coleman, Anthony W; Montasser, Imed


    The interactions of silver nanoparticles capped by various calix[n]arenes bearing sulphonate groups at the para and/or phenolic faces with cationic, neutral and anionic surfactants have been studied. Changes in the plasmonic absorption show that only the calix[4]arene derivatives sulphonated at the para-position interact and then only with cationic surfactants. The interactions follow the CMC values of the surfactants either as simple molecules or mixed micelles.


    Directory of Open Access Journals (Sweden)

    V. O. Chernyshenko


    Full Text Available The aim of the research was to study a potential antithrombotic sodium salt of calix[4]arene-methylene-bis-phosphonic acid (С-145 — on activation and aggregation of platelets in vivo, as well as on proliferation and apoptosis of endothelial cells in the cell culture. Effects of calix[4]arene С-145 estimated in vitro after addition to the platelet rich plasma, and in vivo after intravenous injection into rabbit bloodstream in equivalent amounts (46 μM. Aggregation of platelets was induced by adenosine diphosphate and detected using aggregometer Solar AP2110. Platelet shape and cytoplasmic granularity were monitored on COULTER EPICS XL Flow Cytometer. The level of tissuetype plasminogen activator — tPA — was estimated using enzyme-linked immunosorbent assay ELISA. Effects of calix[4]arene C-145 on culture of endotelial cells cells was studied using 3-(4,5-Dimethylthiazol-2-yl-2,5-Diphenyltetrazolium Bromide — MTT-test. The population of proliferative pool of cells (G2/M+S was determined using flow cytometry. Aggregometry and flow cytometry showed that calix[4]arene C-145 did not activate platelets nor affect their aggregation in vitro. However intravenous injection of calix[4]arene C-145 into the bloodstream of healthy rabbits leads to strong inhibition of platelet aggregation and changes of shape and granularity of most of the platelets after 2 hours of administration. Any additional appearance of endothelial cells activation marker tPA in vivo and any inhibition of calix[4]arene C-145 on proliferation of endothelial cells in cell culture did not observe. So calix[4]arene C-145 had strong anti-platelet effect in vivo that was not a result of their direct action on platelets or endothelial cells in vitro. This allowed to assume the possibility of calix[4]arene C-145 use as an effective antithrombotic agent.

  9. Synthesis and Characterization of Mesoporous Silica Functionalized with Calix[4]arene Derivatives

    Directory of Open Access Journals (Sweden)

    Sana M. Alahmadi


    Full Text Available This work reports a new method to covalently attach calix[4]arene derivatives onto MCM-41, using a diisocyanate as a linker. The modified mesoporous silicates were characterized by fourier transform infrared spectroscopy (FTIR, thermal analysis (TGA and elemental analysis. The FTIR spectra and TGA analysis verified that the calix[4]arene derivates are covalently attached to the mesoporous silica. The preservation of the MCM-41 channel system was checked by X-ray diffraction and nitrogen adsorption analysis.

  10. Synthesis and characterization of mesoporous silica functionalized with calix[4]arene derivatives. (United States)

    Alahmadi, Sana M; Mohamad, Sharifah; Maah, Mohd Jamil


    This work reports a new method to covalently attach calix[4]arene derivatives onto MCM-41, using a diisocyanate as a linker. The modified mesoporous silicates were characterized by fourier transform infrared spectroscopy (FTIR), thermal analysis (TGA) and elemental analysis. The FTIR spectra and TGA analysis verified that the calix[4]arene derivates are covalently attached to the mesoporous silica. The preservation of the MCM-41 channel system was checked by X-ray diffraction and nitrogen adsorption analysis.

  11. Homodiselenacalix[4]arenes: Molecules with Unique Channelled Crystal Structures. (United States)

    Thomas, Joice; Dobrzańska, Liliana; Van Meervelt, Luc; Quevedo, Mario Alfredo; Woźniak, Krzysztof; Stachowicz, Marcin; Smet, Mario; Maes, Wouter; Dehaen, Wim


    A synthetic route towards homodiselenacalix[4]arene macrocycles is presented, based on the dynamic covalent chemistry of diselenides. The calixarene inner rim is decorated with either alkoxy or tert-butyl ester groups. Single-crystal X-ray analysis of two THF solvates with methoxy and ethoxy substituents reveals the high similarity of their molecular structures and alterations on the supramolecular level. In both crystal structures, solvent channels are present and differ in both shape and capacity. Furthermore, the methoxy-substituted macrocycle undergoes a single-crystal-to-single-crystal transformation during which the molecular structure changes its conformation from 1,3-alternate (loaded with THF/water) to 1,2-alternate (apohost form). Molecular modelling techniques were applied to explore the conformational and energetic behaviour of the macrocycles.

  12. Modulating the Anticancer Activity of Ruthenium(II)-Arene Complexes. (United States)

    Clavel, Catherine M; Păunescu, Emilia; Nowak-Sliwinska, Patrycja; Griffioen, Arjan W; Scopelliti, Rosario; Dyson, Paul J


    Following the identification of [Ru(η(6)-p-cymene)Cl2(1H,1H,2H,2H-perfluorodecyl-3-(pyridin-3-yl)propanoate)], a ruthenium(II)-arene complex with a perfluoroalkyl-modified ligand that displays remarkable in vitro cancer cell selectivity, a series of structurally related compounds were designed. In the new derivatives, the p-cymene ring and/or the chloride ligands are substituted by other ligands to modulate the steric bulk or aquation kinetics. The new compounds were evaluated in both in vitro (cytotoxicity and migration assays) and in vivo (chicken chorioallantoic membrane) models and were found to exhibit potent antivascular effects.

  13. Integrated catalytic and electrocatalytic conversion of substituted phenols and diaryl ethers

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yang; Chia, Shao H.; Sanyal, Udishnu; Gutierrez, Oliver Y.; Lercher, Johannes A.


    Electrocatalytic hydrogenation and catalytic thermal hydrogenation of substituted phenols and diaryl ethers were studied on carbon-supported Rh. For electrocatalytic and catalytic thermal hydrogen addition reactions, the dominant reaction pathway is hydrogenation to cyclic alcohols and cycloalkyl ethers. The presence of substituting methyl or methoxy groups led to lower rates compared to unsubstituted phenol or diphenyl ether. Methoxy or benzyloxy groups, however, undergo C-O bond cleavage via hydrogenolysis and hydrolysis (minor pathway).

  14. Activation of C-H bonds of arenes: selectivity and reactivity in bis(pyridyl) platinum(II) complexes. (United States)

    Zhang, Fenbao; Kirby, Christopher W; Hairsine, Douglas W; Jennings, Michael C; Puddephatt, Richard J


    The reaction of [PtMe2(NN)] and B(C6F5)3/H2O in CF3CH2OH with arenes Ar-H gives [PtAr{HOB(C6F5)3}(LL)] if the bis(pyridyl) ligand NN forms a six-membered, but not five-membered, chelate ring; methyl-substituted arenes give selectivity for metalation of meta > para > ortho, but methoxy-substituted arenes give ortho > meta, para.

  15. NMR Evidence for a Planar Arene Intermediate in the Electron-Transfer Induced Eta 6 to Eta 4 Hapticity Change of a Rhodium Arene Complex (United States)


    complex. Elschenbroich and co-workers2 8 observed large differences in coupling constants for the protons of the bent benzene ring in the ESR spectrum...characterization by Elschenbroich , et al., of the bent arene 19-electron complex [(n4-C6H6 )Cr(C 6H6 )3- 28, it rust be considered that bent arene structures...Koelle, U.; Fuss, B.; Rajasekharan, M.V.; Ramakrishna, B.L. Ammeter, J.H.; Boehm, M.C. J. Amer. Chem. Soc., 1984, 206, 4152. 28. Elschenbroich , Ch

  16. Discriminatory antibacterial effects of calix[n]arene capped silver nanoparticles with regard to gram positive and gram negative bacteria. (United States)

    Boudebbouze, Samira; Coleman, Anthony W; Tauran, Yannick; Mkaouar, Hela; Perret, Florent; Garnier, Alexandrine; Brioude, Arnaud; Kim, Beomjoon; Maguin, Emmanuelle; Rhimi, Moez


    Silver nanoparticles capped with nine different sulphonated calix[n]arenes were tested for their anti-bacterial effects against B. subtilis and E. coli at an apparent concentration of 100 nM in calix[n]arene. The results show the para-sulphonato-calix[n]arenes are active against Gram positive bacteria and the derivatives having sulphonate groups at both para and alkyl terminal positions are active against Gram negative bacteria. The calix[6]arene derivative with only O-alkyl sulphonate groups shows bactericidal activity.

  17. Catalytic synthesis of cyclohexanone ethylene ketal by polyaniline doped with sodium hydrogen sulfate%硫酸氢钠掺杂聚苯胺催化合成环己酮缩乙二醇

    Institute of Scientific and Technical Information of China (English)

    滕俊江; 乔艳辉; 张庆


    以聚苯胺PAn和硫酸氢钠为原料,制备了硫酸氢钠掺杂率为20%(质量分数)的催化剂PAn- NaHSO4,并用于催化合成环己酮缩乙二醇,探讨了PAn- NaHS04的催化活性,系统考察了醇酮摩尔比、催化剂用量、反应时间和带水剂用量对环己酮缩乙二醇收率的影响,并且用正交试验对反应条件进行了优化.在环己酮用量为0.1 mol,n(乙二醇)∶n(环己酮)=1.6∶1,催化剂用量占反应物总质量的1.2%,带水剂环己烷用量为9mL,反应时间为2.5h的条件下,产品收率可达96.79%,产品经红外光谱、气-质联用定性分析确定为环己酮缩乙二醇,经气相色谱检测纯度大于99.0%,催化剂重复使用5次后,产品收率仍大于90.0%.%Cyclohexanone ethylene ketal was synthesized from cyclohexanone and ethylene glycol as starting materials using polyaniline ( PAn) doped with 20% ( mass fraction) of sodium hydrogen sulfate ( PAn -NaHSO4) as catalysl. Catalytic activity of PAn - NaHSO4 was investigated. Effect of factors such as mole ratio of ethylene glycol to cyclohexanone, dosage of the catalyst, reaction time, dosage of water stripping agent on product yield were examined systematically and optimum reaction conditions were identified by orthogonal designed experiment. Under optimal conditions; based on amount of cyclohexanone 0. 1 mol, mole ratio n(ethylene glycol): re (cyclohexanone) = 1. 6: 1 ,mass fraction of PAn - NaHSO4 1. 2% of the total reactants, water stripping agent cyclohexane 9 mL and reaction time 2. 5 h,yield of the product achieves 96. 79%. The product was identified as cyclohexanone ethylene ketal by IR and GC - MS. Purity of product achieves 99. 0%. After reusing the catalyst for 5 times,yield of the product is still higher than 90. 0%.

  18. 不同载体对负载型Cu-Fe催化剂CO加氢反应性能的影响%Effects of different supports on the catalytic performance of supported Cu-Fe catalyst for CO hydrogenation

    Institute of Scientific and Technical Information of China (English)

    郭强胜; 毛东森; 俞俊; 韩璐蓬


    以不同的氧化物为载体,采用共浸渍法制备了一系列负载型的Cu-Fe催化剂Cu -Fe/MOx(MOx=ZnO、ZrO2、TiO2、SiO2、MgO、Al2O3),并采用X射线衍射(XRD)、N2吸附(N2-adsorption)、程序升温还原(H2-TPR)和一氧化碳程序升温脱附(CO-TPD)技术对催化剂进行了表征.在温度为250℃、压力为3 MPa和原料气空速为6 000 mL/(g·h)的反应条件下,在连续流动微型固定床反应装置上考察了其催化CO加氢合成低碳醇的反应性能.结果表明,与其他氧化物为载体的催化剂相比,Cu-Fe/SiO2催化剂表面CuO的分散度较高,在较低的温度下容易被还原,具有较强的CO吸附能力,从而同时具有较高的活性和低碳醇选择性.%A series of supported Cu-Fe catalysts with different oxides (ZnO,ZrO2,TiO2,SiO2,MgO,A12O3) as support were prepared by co-impregnation method,and were characterized by XRD,N2-adsorption,H2-TPR and CO-TPD. Their catalytic performances for the synthesis of higher alcohols through CO hydrogenation were investigated in a continuous flow fixed bed micro-reactor at 250℃ under 3 MPa with the space velocity of 6 000 mL/(g·h). The results indicated that SiO2 supported Cu-Fe catalyst (Cu-Fe/SiO2) possessed high CuO dispersion which could be easily reduced at low temperatures,and had strong capability for CO adsorption,therefore,exhibited both higher CO conversion and higher selectivity to higher alcohols.

  19. Site-Specific Description of the Enhanced Recognition Between Electrogenerated Nitrobenzene Anions and Dihomooxacalix[4]arene Bidentate Ureas. (United States)

    Martínez-González, Eduardo; Armendáriz-Vidales, Georgina; Ascenso, José R; Marcos, Paula M; Frontana, Carlos


    Electron transfer controlled hydrogen bonding was studied for a series of nitrobenzene derivative radical anions, working as large guest anions, and substituted ureas, including dihomooxacalix[4]arene bidentate urea derivatives, in order to estimate binding constants (Kb) for the hydrogen-bonding process. Results showed enhanced Kb values for the interaction with phenyl-substituted bidentate urea, which is significantly larger than for the remaining compounds, e.g., in the case of 4-methoxynitrobenzene a 28-fold larger Kb value was obtained for the urea bearing a phenyl (Kb ∼ 6888) vs tert-butyl (Kb ∼ 247) moieties. The respective nucleophilic and electrophilic characters of the participant anion radical and urea hosts were parametrized with global and local electrodonating (ω(-)) and electroaccepting (ω(+)) powers, derived from DFT calculations. ω(-) data were useful for describing trends in structure–activity relationships when comparing nitrobenzene radical anions. However, ω(+) for the host urea structures lead to unreliable explanations of the experimental data. For the latter case, local descriptors ωk(+)(r) were estimated for the atoms within the urea region in the hosts [∑kωk(+)(r)]. By compiling all the theoretical and experimental data, a Kb-predictive contour plot was built considering ω(-) for the studied anion radicals and ∑kωk(+)(r) which affords good estimations.

  20. Active and Recyclable Catalytic Synthesis of Indoles by Reductive Cyclization of 2-(2-Nitroaryl)acetonitriles in the Presence of Co-Rh Heterobimetallic Nanoparticles with Atmospheric Hydrogen under Mild Conditions. (United States)

    Choi, Isaac; Chung, Hyunho; Park, Jang Won; Chung, Young Keun


    A cobalt-rhodium heterobimetallic nanoparticle-catalyzed reductive cyclization of 2-(2-nitroaryl)acetonitriles to indoles has been achieved. The tandem reaction proceeds without any additives under the mild conditions (1 atm H2 and 25 °C). This procedure could be scaled up to the gram scale. The catalytic system is significantly stable under these reaction conditions and could be reused more than ten times without loss of catalytic activity.

  1. Krista Aren & Raul Vaiksoo : Krista Aren : "Ühtegi tööd pole võimalik teha natuke" / Gitte Hint

    Index Scriptorium Estoniae

    Hint, Gitte


    Disainieriala lõpetanud Krista Aren kodu sisekujundamisest, klientidest, ehitajatest. Krista Arenist (sünd. 1961), tema töödest. Raul Vaiksoost (sünd. 1955), tema töödest. 1989. a. asutas R. Vaiksoo arhitektuuribüroo R. Projekt, kus töötab peaarhitektina. Ill.: foto K. Arenist ja R. Vaiksoost

  2. Autothermal hydrogen storage and delivery systems (United States)

    Pez, Guido Peter; Cooper, Alan Charles; Scott, Aaron Raymond


    Processes are provided for the storage and release of hydrogen by means of dehydrogenation of hydrogen carrier compositions where at least part of the heat of dehydrogenation is provided by a hydrogen-reversible selective oxidation of the carrier. Autothermal generation of hydrogen is achieved wherein sufficient heat is provided to sustain the at least partial endothermic dehydrogenation of the carrier at reaction temperature. The at least partially dehydrogenated and at least partially selectively oxidized liquid carrier is regenerated in a catalytic hydrogenation process where apart from an incidental employment of process heat, gaseous hydrogen is the primary source of reversibly contained hydrogen and the necessary reaction energy.

  3. Novel developments in hydrogen storage, hydrogen activation and ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Doroodian, Amir


    This dissertation is divided into three chapters. Recently, metal-free hydrogen activation using phosphorous compounds has been reported in science magazine. We have investigated the interaction between hydrogen and phosphorous compounds in presence of strong Lewis acids (chapter one). A new generation of metal-free hydrogen activation, using amines and strong Lewis acids with sterically demanding nature, was already developed in our group. Shortage of high storage capacity using large substitution to improve sterical effect led us to explore the amine borane derivatives, which are explained in chapter two. Due to the high storage capacity of hydrogen in aminoborane derivatives, we have explored these materials to extend hydrogen release. These compounds store hydrogen as proton and hydride on adjacent atoms or ions. These investigations resulted in developing hydrogen storage based on ionic liquids containing methyl guanidinium cation. Then we have continued to develop ionic liquids based on methyl guanidinium cation with different anions, such as tetrafluoro borate (chapter three). We have replaced these anions with transition metal anions to investigate hydrogen bonding and catalytic activity of ionic liquids. This chapter illustrates the world of ionic liquid as a green solvent for organic, inorganic and catalytic reactions and combines the concept of catalysts and solvents based on ionic liquids. The catalytic activity is investigated particularly with respect to the interaction with CO{sub 2}. (orig.)


    Directory of Open Access Journals (Sweden)



    Full Text Available Aren (Arenga pinnata Merr. is a multipurpose tree that can be utilized for palm sugar, alcoholic drinks, beverages and construction wood. The use of aren sawdust has not been studied intensively. This study examines the utilization of aren sawdust as cultivation media for edible mushrooms. Aren sawdust was mixed with rice bran, CaCO3, gypsum, fertilizers and distilled water before sterilization in 30 minutes pressurized autoclave at 1210C and 1.5atm. The mixed media was inoculated with pure cultures containing four mushrooms species (Pleurotus flabellatus, P. ostreatus, P. sajor-caju and Lentinula edodes and incubated for five weeks to allow mycelium growth producing fruit bodies. The fruit bodies were harvested everyday within four months and examined for its gained mushroom-weight and biological conversion efficiency/BE. The core part of aren trunk was cut into smaller pieces of 10 cm (width by 5 cm (thickness, by 120 cm (length. Each core sample was bored from the surface inward, creating holes with a particular distance apart. Each hole was inoculated with pure cultures containing 6 mushroom species (four species above, P. cystidiosus and Auricularia polytricha. The inoculated samples were slanted on bamboo support, and placed in a bamboo hut. Harvesting was carried out everyday after the fruiting body became mature and examined for its gained mushroom weight. Results show that the use of sawdust supplemented with nutritious material is more likely to improve the mushroom yield than that of aren sawn-timber core. In this case, the BE values with aren-sawdust media were 21.97-89.45% (P. flabellatus, 15.36-105.36% (P. ostreatus, 63.88-76.86% (P. sajor-caju, and up to 62.88% (L. edodes. Meanwhile, the yields (gained mushroom weight with aren sawn-timber media were 210g (P. ostreatus, 368g (P. flabellatus, 331g (P. sajor-caju and 48g (A. polytricha; however, P. cystidiosus and L. edodes inoculated on aren stem core failed to grow.

  5. Cobalt bis(dicarbollides)(1-) covalently attached to the calyx[4]arene platform: the first combination of organic bowl-shaped matrices and inorganic metallaborane cluster anions

    NARCIS (Netherlands)

    Grüner, Bohumír; Mikulasek, Libor; Baca, Jirí; Cisarova, Ivana; Böhmer, Volker; Danila, Crenguta; Reinoso-Garcia, Marta M.; Verboom, Willem; Reinhoudt, David N.; Casnati, Alessandro; Ungaro, Rocco


    Various calix[4]arene and resorc[4]arene ionic compounds substituted by cobalt bis(dicarbollide) anions (1) have been prepared for the first time. From tBu-calix[4]arene (A) the complete series of mono-, di-, tri- and tetrasubstituted derivatives bearing one to four cluster anions on the lower rim (

  6. Evaluation of Complexation Behavior of Calix[4]arene Derivative

    Directory of Open Access Journals (Sweden)

    Mansoor Ahmed Qazi


    Full Text Available In this article we have explored the solvatochromic behavior including solvent selection, time study and complexation ability of 5,11,17,23-Tetrakis(N-piperidinomethyl-25,26,27,28-tetrahydroxycalix[4]arene (3. The complexation behavior of 3 toward the selected transition metals has been explored through FT-IR, UV-visible and fluorescence spectroscopic techniques. It has been found that the ligand 3 has remarkable complexation ability for all selected transition metal (Cd2+, Cu2+, Ni2+, Co2+, Pb2+, Hg2+ ions used in the experiment with exceptionally high affinity for Hg2+ ions. Besides this, by applying method of continuous variation, i.e. Job’s method; the stoichiometric ratio for the complexation between 3 and Hg2+ ion in acetonitrile has been determined, which indicates that 3 forms a 1:1 metal:ligand complex. The strong complexation behavior of 3 for Hg2+ ions was also confirmed by FT-IR and fluorescence spectroscopy. Consequently, it has been deduced that 3 is a versatile compound and can be used in diverse fields such as analytical/environmental chemistry and sensor technology.

  7. Theoretical study on hydrogenation catalysts containing a metal hydride as additional hydrogen supply

    NARCIS (Netherlands)

    Snijder, E.D.; Versteeg, G.F.; Swaaij, W.P.M. van


    A hypothetical hydrogenation catalyst consisting of porous, catalytically active particles embedded with metal hydride powder was evaluated. The metal hydride provides temporarily additional hydrogen if the mass transfer rate of the hydrogen to the internal of the particle is not sufficient. A numer

  8. A1/A2-Diamino-Substituted Pillar[5]arene-Based Acid-Base-Responsive Host-Guest System. (United States)

    Hu, Wei-Bo; Hu, Wen-Jing; Zhao, Xiao-Li; Liu, Yahu A; Li, Jiu-Sheng; Jiang, Biao; Wen, Ke


    An acid-base-responsive supramolecular host-guest system based on a planarly chiral A1/A2-diamino-substituted pillar[5]arene (1)/imidazolium ion recognition motif was created. The pillar[4]arene[1]diaminobenzene 1 can bring an electron-deficient imidazolium cation into its cylindrically shaped cavity under neutral or basic conditions and release it under acidic conditions.

  9. Non-covalent synthesis of calix[4]arene-capped porphyrins in polar solvents via ionic interactions

    NARCIS (Netherlands)

    Fiammengo, Roberto; Timmerman, Peter; Huskens, Jurriaan; Versluis, Kees; Heck, Albert J.R.; Reinhoudt, David N.


    Non-covalent synthesis of calix[4]arene capped porphyrins can be achieved in polar solvents (up to 45% molar fraction of water) via ionic interaction. Thus tetracationic meso-tetrakis(N-alkylpyridinium-3-yl) porphyrins 1a–d and tetra anionic 25,26,27,28-tetrakis(2-ethoxyethoxy)-calix[4]arene tetrasu

  10. Porous media for catalytic renewable energy conversion (United States)

    Hotz, Nico


    A novel flow-based method is presented to place catalytic nanoparticles into a reactor by sol-gelation of a porous ceramic consisting of copper-based nanoparticles, silica sand, ceramic binder, and a gelation agent. This method allows for the placement of a liquid precursor containing the catalyst into the final reactor geometry without the need of impregnating or coating of a substrate with the catalytic material. The so generated foam-like porous ceramic shows properties highly appropriate for use as catalytic reactor material, e.g., reasonable pressure drop due to its porosity, high thermal and catalytic stability, and excellent catalytic behavior. The catalytic activity of micro-reactors containing this foam-like ceramic is tested in terms of their ability to convert alcoholic biofuel (e.g. methanol) to a hydrogen-rich gas mixture with low concentrations of carbon monoxide (up to 75% hydrogen content and less than 0.2% CO, for the case of methanol). This gas mixture is subsequently used in a low-temperature fuel cell, converting the hydrogen directly to electricity. A low concentration of CO is crucial to avoid poisoning of the fuel cell catalyst. Since conventional Polymer Electrolyte Membrane (PEM) fuel cells require CO concentrations far below 100 ppm and since most methods to reduce the mole fraction of CO (such as Preferential Oxidation or PROX) have CO conversions of up to 99%, the alcohol fuel reformer has to achieve initial CO mole fractions significantly below 1%. The catalyst and the porous ceramic reactor of the present study can successfully fulfill this requirement.


    Institute of Scientific and Technical Information of China (English)

    赵晓波; 陈宏博; 张淑芬


    @@ INTRODUCTION 4,4′-Diaminostilbene-2,2′-disulfonic acid(DAS) is an important intermediate which is widely used in synthesis of fluorescent whitening agents, direct dyes and reactive dyes[1,2].So far, the conventional procedure using Fe as catalyst for the production of DAS in China is greatly limited, due to industrial waste water, high labor intensity and low production capability. The electrochemical reduction method has been reported[3] overseas, but it is not suitable for China considering its large equipment investment, lower yield and great power consumption. Compared with the methods mentioned above, the catalytic hydrogenation method has attracted a great deal of attention in view of its simple and easy operation, high production capacity and high production efficiency[4-6].The relatively cheap Raney nickel is not used here since it shows a low safety performance in preparing DAS at a high reaction temperature and high pressure. In this paper, highly reactive and recyclable palladium-carbon is chosen as the catalyst. DAS of high purity and high yield is prepared under mild conditions. The catalytic hydrogenation method is a prospective method in producing DAS.

  12. Practical catalytic method for synthesis of sterically hindered anilines. (United States)

    Mailig, Melrose; Rucker, Richard P; Lalic, Gojko


    A practical catalytic method for the synthesis of sterically hindered anilines is described. The amination of aryl and heteroaryl boronic esters is accomplished using a catalyst prepared in situ from commercially available and air-stable copper(i) triflate and diphosphine ligand. For the first time, the method can be applied to the synthesis of both secondary and tertiary anilines in the presence of a wide range of functional groups. Esters, aldehydes, alcohols, aryl halides, ketones, nitriles, and nitro arenes are all compatible with the reaction conditions. Finally, even the most sterically hindered anilines can be successfully prepared under mild reaction conditions. Overall, the new method addresses significant practical limitations of a transformation previously developed in our lab, and provides a valuable complement to the existing methods for the synthesis of anilines.

  13. Catalytic gasification of oil-shales

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.; Avakyan, T. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation); Strizhakova, Yu. [Samara State Univ. (Russian Federation)


    Nowadays, the problem of complex usage of solid fossil fuels as raw materials for obtaining of motor fuels and chemical products is becoming increasingly important. A one of possible solutions of the problem is their gasification with further processing of gaseous and liquid products. In this work we have investigated the process of thermal and catalytic gasification of Baltic and Kashpir oil-shales. We have shown that, as compared with non-catalytic process, using of nickel catalyst in the reaction increases the yield of gas, as well as hydrogen content in it, and decreases the amount of liquid products. (orig.)

  14. Clicked and long spaced galactosyl- and lactosylcalix[4]arenes: new multivalent galectin-3 ligands

    Directory of Open Access Journals (Sweden)

    Silvia Bernardi


    Full Text Available Four novel calix[4]arene-based glycoclusters were synthesized by conjugating the saccharide units to the macrocyclic scaffold using the CuAAC reaction and using long and hydrophilic ethylene glycol spacers. Initially, two galactosylcalix[4]arenes were prepared starting from saccharide units and calixarene cores which differ in the relative dispositions of the alkyne and azido groups. Once the most convenient synthetic pathway was selected, two further lactosylcalix[4]arenes were obtained, one in the cone, the other one in the 1,3-alternate structure. Preliminary studies of the interactions of these novel glycocalixarenes with galectin-3 were carried out by using a lectin-functionalized chip and surface plasmon resonance. These studies indicate a higher affinity of lactosyl- over galactosylcalixarenes. Furthermore, we confirmed that in case of this specific lectin binding the presentation of lactose units on a cone calixarene is highly preferred with respect to its isomeric form in the 1,3-alternate structure.

  15. Preparation of phenols by phthaloyl peroxide-mediated oxidation of arenes. (United States)

    Yuan, Changxia; Eliasen, Anders M; Camelio, Andrew M; Siegel, Dionicio


    This protocol describes an approach to installing hydroxyls into arenes through the direct replacement of C-H bonds with C-O bonds. This direct oxidation avoids the need to prefunctionalize the substrate, use precious metals, introduce directing groups, or use strong Brønsted or Lewis acids. Phthaloyl peroxide, the sole reagent used for this transformation, can be prepared readily from the commodity chemicals phthaloyl chloride and sodium percarbonate. Phthaloyl peroxide oxidizes a diverse range of arenes, and the reactions that involve its use are characterized by high functional group compatibility, which enables the hydroxylation of simple arenes, advanced synthetic intermediates, natural products and other drug-like molecules forming the corresponding phenolic compounds. Notably, the reaction is operationally straightforward and has no special requirements for the exclusion of oxygen and water. The synthesis of phthaloyl peroxide takes 4  h and the subsequent hydroxylation of mesitylene takes 21  h.

  16. Highly selective fluorescent chemosensor for Na+ based on pyrene-modified calix[4]arene derivative

    Institute of Scientific and Technical Information of China (English)

    WANG KeRang; GUO DongSheng; JIANG BangPing; LIU Yu


    A novel calix[4]arene derivative with pyrene fluorophores at the upper rim and tetraester ionophores at the lower rim was synthesized in six steps, and its structure was proved by NMR and ESi-MS spectro-scopies. Furthermore, the chemosensing behavior of the host compound for alkali and alkaline earth metal ions was investigated by fluorescence spectroscopy. The obtained results show that the calix-arene host can selectively bind sodium ion with the complexation stability constant of 2190 mol-1.L. The complexation with sodium ion can pronouncedly induce the excimer emission to decrease and the monomer emission to increase, whereas the addition of the other alkali and alkaline earth metal ions does not cause appreciable changes in the fluorescence spectrum of the host compound. The present calix[4]arene derivative displays potential application as fluorescent chemosensor for sodium ion.

  17. Molecular recognition study of ethosuximide by the supramolecular probe, p-t-butyl calix(8)arene

    Energy Technology Data Exchange (ETDEWEB)

    Meenakshi, C., E-mail: [Department of Chemistry, Shri Meenakshi Government College for Women (Autonomous), Madurai 625002 (India); Sangeetha, P.; Ramakrishnan, V. [Department of Laser Studies, School of Physics, Madurai Kamaraj University, Madurai 625021 (India)


    The supramolecule, p-t-Butyl calix(8)arene, forms inclusion complex with the antiseizure drug molecule, ethosuximide. This feature is explained on the basis of optical absorption spectroscopy. Here p-t-Butyl calix(8)arene is the host molecule and ethosuximide is the guest molecule. The stoichiometry of the host–guest complex and the binding constant has been determined using Benesi–Hildebrand plot. Based on the result obtained the structure of the inclusion complex has been proposed. -- Highlights: ► Third generation supramolecule, t-butyl calix (8) arene, is used as a host molecule. ► Anti seizure drug molecule is used as a guest molecule. ► Inclusion complex is formed between the host and guest molecule.

  18. High water contents in basaltic melt inclusions from Arenal volcano, Costa Rica (United States)

    Wade, J. A.; Plank, T.; Hauri, E. H.; Melson, W. G.; Soto, G. J.


    Despite the importance of water to arc magma genesis, fractionation and eruption, few quantitative constraints exist on the water content of Arenal magmas. Early estimates, by electron microprobe sum deficit, suggested up to 4 wt% H2O in olivine-hosted basaltic andesite melt inclusions (MI) from pre-historic ET-6 tephra (Melson, 1982), and up to 7 wt% H2O in plagioclase and orthopyroxene-hosted dacitic MI from 1968 lapilli (Anderson, 1979). These high water contents are consistent with abundant hornblende phenocrysts in Arenal volcanics, but inconsistent with geochemical tracers such as 10Be and Ba/La that suggest a low flux of recycled material (and presumably water) from the subduction zone. In order to test these ideas, and provide the first direct measurements of water in mafic Arenal magmas, we have studied olivine-hosted MI from the prehistoric (900 yBP; Soto et al., 1998) ET3 tephra layer. MI range from andesitic (> 58% SiO2) to basaltic compositions ( 4 wt%) found here for Arenal basaltic MI support the semi-quantitative data from earlier studies, but are somewhat unexpected given predictions from slab tracers. Arenal water contents (4%) approach those of the 1995 eruption of Cerro Negro in Nicaragua (4-5 wt% in basaltic MI; Roggensack et al., 1997), despite the fact that the latter has Ba/La of > 100, while Arenal has Ba/La Boletin de Volcanologia; Roggensack et al. (1997) Science; Soto et al. (1998) OSIVAM; Williams-Jones et al. (2001) Journal of Volc. and Geoth. Res.

  19. Photoelectrochemical hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, R.E.; Miller, E.; Misra, A. [Univ. of Hawaii, Honolulu, HI (United States)


    The large-scale production of hydrogen utilizing energy provided by a renewable source to split water is one of the most ambitious long-term goals of the U.S. Department of Energy`s Hydrogen Program. One promising option to meet this goal is direct photoelectrolysis in which light absorbed by semiconductor-based photoelectrodes produces electrical power internally to split water into hydrogen and oxygen. Under this program, direct solar-to-chemical conversion efficiencies as high as 7.8 % have been demonstrated using low-cost, amorphous-silicon-based photoelectrodes. Detailed loss analysis models indicate that solar-to-chemical conversion greater than 10% can be achieved with amorphous-silicon-based structures optimized for hydrogen production. In this report, the authors describe the continuing progress in the development of thin-film catalytic/protective coatings, results of outdoor testing, and efforts to develop high efficiency, stable prototype systems.

  20. Supramolecular complexation of biological phosphates with an acyclic triazolium-linked anthracenyl-1,3-diconjugate of calix[4]arene: synthesis, characterization, spectroscopy, microscopy, and computational studies. (United States)

    Sreenivasu Mummidivarapu, V V; Kumar Hinge, Vijaya; Samanta, Kushal; Yarramala, Deepthi S; Pulla Rao, Chebrolu


    A triazolium-anthracenyl calix[4]arene conjugate (L) was synthesized by methylating the precursor triazole derivative and then characterized. The potential of the cationic L to differentiate nucleoside triphosphates (NTPs) from their mono- and diphosphates was demonstrated. Due to its unique combination of arms with the calix-platform, a fluorescence enhancement was observed for L with all the NTPs, whereas there is no report with such enhancement being exhibited in case of all the NTPs. This has been supported by the aggregation of L observed from microscopy. Selectivity of L towards NTPs over other phosphates was a result of specific weak interactions, namely, ion-ion, hydrogen bonding and π⋅⋅⋅π, present in the 1:2 complex of L and NTPs (based on ESI MS), which were absent in their congener-phosphates as delineated by NMR and computational studies. Thus, L stands as a unique receptor for NTPs.

  1. La mirada social en la prensa: Concepción Arenal

    Directory of Open Access Journals (Sweden)

    Simón Palmer, María del Carmen


    Full Text Available In La Voz de la Caridad Concepción Arenal set out her views on a series of social problems that remain current even today, although though they have not received as much attention as those relating to women, prisoners, or poverty.Concepción Arenal dejó en La Voz de la Caridad, sus opiniones sobre una serie de problemas sociales que, aún hoy, siguen de plena actualidad aunque no han merecido tanta atención como los referentes a la mujer, los presos o la pobreza.

  2. Synthesis and Characterization of Two New p-tert-Butylcalix[4]-arene Schiff Bases


    Saeed Taghvaee Ganjali; Karim Akbari Dilmaghani; Behrouz Shaabani; Abdol Ali Alemi


    Synthesis and characterization of two new Schiff bases of p-tertbuthylcalix[4]arene (H2L1 and HL2) is described. The synthesis of H2L1 and HL2 has been achieved by the condensation of salicylaldehyde with the amine group of upper rim monoamine p-tert-butylcalix[4]arene in ethanol. These compounds have been characterized on the basis of elemental analysis and spectral data. Solvatochromicity and fluorescence properties were observed and measured for H2L1 and HL2. Solvatochromicity of these lig...

  3. Synthesis and Characterization of Two New p-tert-Butylcalix[4]-arene Schiff Bases

    Directory of Open Access Journals (Sweden)

    Saeed Taghvaee Ganjali


    Full Text Available Synthesis and characterization of two new Schiff bases of p-tertbuthylcalix[4]arene (H2L1 and HL2 is described. The synthesis of H2L1 and HL2 has been achieved by the condensation of salicylaldehyde with the amine group of upper rim monoamine p-tert-butylcalix[4]arene in ethanol. These compounds have been characterized on the basis of elemental analysis and spectral data. Solvatochromicity and fluorescence properties were observed and measured for H2L1 and HL2. Solvatochromicity of these ligands indicates their potential for NLO applications.

  4. Synthesis and Chiral Recognition of a New Type of Chiral Calix[4]arene Derivatives

    Institute of Scientific and Technical Information of China (English)

    HE,Yong-Bing; LI,Jian-Feng; XIAO,Yuan-Jing; WEI,Lan-Hua; WU,Xiao-Jun; MENG,Ling-Zhi


    Two new chiral calix[4] arenes bearing chiral pendants, which were from by-product of the antibiotic industry, were synthesized and characterized by 1H NMR, MS-FAB and elemental analysis. Studies of 1H NMR of the two calix [4] arene derivatives indicate that they exist in cone conformation in solution. Results of chiral recognition of the two chiral ligands 2a and 2b towards the tartaric acid derivative 3 show that ligand 2a exhibited good chiral recognition abilities compared to ligand 2b.

  5. Removal of uranyl ions by p-hexasulfonated calyx[6]arene acid (United States)

    Popescu (Hoştuc), Ioana-Carmen; Petru, Filip; Humelnicu, Ionel; Mateescu, Marina; Militaru, Ecaterina; Humelnicu, Doina


    Radioactive pollution is a significant threat for the people’s health. Therefore highly effective radioactive decontamination methods are required. Ion exchange, biotechnologies and phytoremediation in constructed wetlands have been used as radioactive decontamination technologies for uranium contaminated soil and water remediation. Recently, beside those classical methods the calix[n]arenic derivatives’ utilization as radioactive decontaminators has jogged attention. The present work aims to present the preliminary research results of uranyl ion sorption studies on the p-hexasulfonated calyx[6]arenic acid. The effect of temperature, contact time, sorbent amount and uranyl concentration variation on sorption efficiency was investigated. Isotherm models revealed that the sorption process fit better Langmuir isotherm.


    Directory of Open Access Journals (Sweden)

    Rosidah R Radam


    Full Text Available Gula aren salah satu pemanis yang telah diproduksi oleh bangsa Indonesia sejak lama. Gula aren sebagai alternatif bahan pemanis makanan dan merupakan mata pencaharian sampingan bagi kebanyakan masyarakat di Desa Banua Hanyar. Tujuan penelitian ini untuk mengetahui produktivitas dan kontribusi terhadap pendapatan masyarakat. Objek penelitian ini adalah pembuat gula aren. Data yang dikumpulkan terdiri dari  karakteristik responden, proses pembuatan gula aren, perhitungan produktivitas dan kontribusinya terhadap pendapatan masyarakat. Produktivitas gula aren (Arenga pinnata Merr berkisar antara 0,465 Kg/hari hingga 1,137 kg/hari. Kontribusi dari pengolahan gula aren sebesar 60,48% dari pendapatan masyarakat. Tingkat kesejahteraan masyarakat termasuk dalam golongan termiskin dengan pendapatan tahunan per kapita Rp.962 919,- atau setara dengan 148 kg beras. Disarankan perlu pembentukan kelompok tani dengan tujuan keseragaman dalam harga pasar gula aren. Peningkatan kualitas dengan peningkatan bentuk cetakan, kemasan dan aneka  rasa. Sehingga produk gula aren dapat dijual di pasar modern. Palm sugar is a sweetener that has been produced by the nation of Indonesia since long ago.  Palm sugar as an alternative sweetener foodstuffs as well as an second job for most people in the Banua Hanyar village.  The purpose of this research to know the productivity and contribution to community income. The object of this research is the maker of palm sugar. Data collected as data characteristics, the process of making palm sugar, calculation of productivity and its contribution to household income. Productivity sugar palm (Arenga pinnata Merr ranged from 0.465 Kg / day up to 1,137 kg / day. Contributions from processing palm sugar by 60.48% of household income. The level of welfare including in the poorest of the poor with annual income  per capita of IDR 962 919, - or the equivalent of 148 kg of rice.  Need formation of farmer groups with the goal of

  7. Mechanized silica nanoparticles based on pillar[5]arenes for on-command cargo release. (United States)

    Sun, Yu-Long; Yang, Ying-Wei; Chen, Dai-Xiong; Wang, Guan; Zhou, Yue; Wang, Chun-Yu; Stoddart, J Fraser


    Mechanized silica nanoparticles, equipped with pillar[5]arene-[2]pseudorotaxane nanovalves, operate in biological media to trap cargos within their nanopores, but release them when the pH is lowered or a competitive binding agent is added. Although cargo size plays an important role in cargo loading, cargo charge-type does not appear to have any significant influence on the amount of cargo loading or its release. These findings open up the possibility of using pillar[n]arene and its derivatives for the formation of robust and dynamic nanosystems that are capable of performing useful functions.

  8. Removal of uranyl ions by p-hexasulfonated calyx[6]arene acid

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, Ioana-Carmen [R and D National Institute for Metals and Radioactive Resources–ICPMRR, B-dul Carol I No.70, Sector 2, Bucharest 020917 (Romania); Petru, Filip [“C.D. Nenitescu” Institute of Organic Chemistry, Splaiul Independentei 202B, Sector 6, Bucharest 71141 (Romania); Humelnicu, Ionel [“Al.I. Cuza” University of Iasi, The Faculty of Chemistry, Bd. Carol-I No. 11, Iasi 700506 (Romania); Mateescu, Marina [National R and D Institute for Chemistry and Petrochemistry, Splaiul Independenţei No. 202, Bucharest 060021 (Romania); Militaru, Ecaterina [R and D National Institute for Metals and Radioactive Resources–ICPMRR, B-dul Carol I No.70, Sector 2, Bucharest 020917 (Romania); Humelnicu, Doina, E-mail: [“Al.I. Cuza” University of Iasi, The Faculty of Chemistry, Bd. Carol-I No. 11, Iasi 700506 (Romania)


    Radioactive pollution is a significant threat for the people’s health. Therefore highly effective radioactive decontamination methods are required. Ion exchange, biotechnologies and phytoremediation in constructed wetlands have been used as radioactive decontamination technologies for uranium contaminated soil and water remediation. Recently, beside those classical methods the calix[n]arenic derivatives’ utilization as radioactive decontaminators has jogged attention. The present work aims to present the preliminary research results of uranyl ion sorption studies on the p-hexasulfonated calyx[6]arenic acid. The effect of temperature, contact time, sorbent amount and uranyl concentration variation on sorption efficiency was investigated. Isotherm models revealed that the sorption process fit better Langmuir isotherm.


    Directory of Open Access Journals (Sweden)

    T. Lupascu


    Full Text Available The process of the hydrogen sulfide removal from the underground water of the Hancesti town has been investigated. By oxygen bubbling through the water containing hydrogen sulfide, from the Hancesti well tube, sulfur is deposited in the porous structure of studied catalysts, which decreases their catalytic activity. Concomitantly, the process of adsorption / oxidation of hydrogen sulfide to sulfate take place. The kinetic research of the hydrogen sulfide removal from the Hancesti underground water, after its treatment by hydrogen peroxide, proves greater efficiency than in the case of modified carbonic adsorbents. As a result of used treatment, hydrogen sulfide is completely oxidized to sulfates

  10. Antioxidant and DPPH (1,1-diphenyl-2-picrylhydrazyl Free Radical Scavenging Activities of Boniger Acid and Calix[4]arene Derivative

    Directory of Open Access Journals (Sweden)

    E. ERDEM


    Full Text Available Diazonium derivative of calix[4]arene has been synthesized using three different synthetic steps. Initially p-tert-butylcalix[4]arene was synthesized with the condensation reaction of p-tert-butylphenol and formaldehyde in basic conditions. Calix[4]arene was obtained after the debutylation reaction of p-tert-butylcalix[4]arene with AlCl3. Calix[4]arene reacted with diazonium salt of Böniger acid to yield the 5,17-[(Bis(azo-bis(5-hydroxy-2,7-naphthalenedisulfonicacid]-25,26,27,28-tetrahydroxy calix[4]arene which has eight free phenolic hydroxyl group. Reaction steps were shown in Fig.1.2,7-naphthalenedisulfonicacid]-25,26,27,28-tetrahydroxy calix[4]arene The antioxidant activity of the Böniger acid and calix[4]aren derivative were determined using β-karotene-linoleic acid system. Moreover, the free radical scavenging activity values were tested with DPPH free radical. The two compounds showed strong antioxidant activity. Total antioxidant activity of Böniger acid and calix[4]aren derivative was determined using β–carotenelinoleic acid model system and was found the antioxidant activity of 84.00% and 85.60 % respectively. The free radical scavenging activities were determined as 83.05% and 84.69 %. Results show that, two compounds has the antioxidant activity. The calix[4]aren derivaties has more higher activity then Boniger acid because of calix[4]aren derivative has much hydroxl groups.

  11. Theoretical studies of the proton transfer behaviors in molecular complexes analogous to catalytic triad of serine protease:Toward understanding the existence and significance of the low-barrier hydrogen-bond in enzymatic catalysis

    Institute of Scientific and Technical Information of China (English)


    A representative acetate-(5-methylimidazole)-methanol system has been employed as a model of catalytic triad in serine protease to validate the formation processes of lowbarrier H-bonds(LBHB) at the B3LYP/6-311++G level of theory,and variable H-bonding characters from conventional ones to LBHBs have been represented along with the proceedings of proton transfer.Solvent effect is an important factor in modulation of the existence of an LBHB,where an LBHB(or a conventional H-bond) in the gas phase can be changed into a non-LBHB(an LBHB) upon solvation.The origin of the additional stabili-zation energy arising from the LBHB may be attributed to the H-bonding energy difference before and after proton transfer because the shared proton can freely move between the proton donor and proton acceptor.Most importantly,the order of magnitude of the stabilization energy depends on the studied systems.Furthermore,the nonexistence of LBHBs in the catalytic triad of serine proteases has been verified in a more sophisticated model treated using the ONIOM method.As a result,only the single proton transfer mechanism in the catalytic triad has been confirmed and the origin of the powerful catalytic efficiency of serine proteases should be attributed to other factors rather than the LBHB.

  12. Studies of morphological optical and electrical properties of the MEH-PPV/azo-calix[4]arene composite layers

    Energy Technology Data Exchange (ETDEWEB)

    Rouis, A., E-mail: [Laboratoire des Interfaces et Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Avenue de l’environnement, 5000 Monastir (Tunisia); Davenas, J. [Polymer Materials Engineering Laboratory IMP, UMR CNRS 5223, Université Claude Bernard Lyon 1, 15 boulevard Latarjet, 69622 Villeurbanne (France); Bonnamour, I. [Institut de Chimie & Biochimie Moléculaires & Supramoléculaires (ICBMS), UMR CNRS 5246, 43 Boulevard du 11 Novembre 1918, Université Claude Bernard Lyon 1, 69100 Villeurbanne (France); Ben Ouada, H. [Laboratoire des Interfaces et Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Avenue de l’environnement, 5000 Monastir (Tunisia)


    Thin films of poly[2-methoxy-5-(20-ethylhexyloxy)-1,4 phenylenevinylene] (MEH-PPV), 5,17-bis(4-nitrophenylazo)-26,28-dihydroxy-25,27-di(ethoxycarbonylmethoxy) -calix[4]arene (azo-calix[4]arene) and MEH-PPV doped azo-calix[4]arene, with 30 wt% and 70 wt% doping ratios, were prepared from chloroform solution by spin coating technique on quartz and ITO substrates. Morphological and optical properties of the samples were investigated by scanning electron microscopy (SEM) and UV–visible spectrophotometry techniques, respectively. Further, the charge carrier transport properties and conduction mechanism of the composite MEH-PPV:azo-calix[4]arene thin films based junction were studied by using current–voltage (I–V) characteristics and dielectric spectroscopy technique. I–V characteristic of ITO/MEH-PPV:azo-calix[4]arene/Al devices showed that the space charge limited conduction (SCLC) dominates in the high voltage region. Moreover, frequency dependence of ac conductivity obeys Jonscher's universal power law. Finally, dielectric constant (ε′), dielectric loss (ε″) and loss tangent (tan δ) were investigated as function of amount of azo-calix[4]arene in the MEH-PPV polymer matrix.

  13. Recent advances in the activation of carbon dioxide and the synthesis of dimethyl ether by the catalytic hydrogenation of carbon dioxide%二氧化碳的活化及其催化加氢制二甲醚的研究进展

    Institute of Scientific and Technical Information of China (English)

    秦祖赠; 刘瑞雯; 纪红兵; 蒋月秀


    CO2是一种稳定的物质,其化学惰性限制了 CO2转化技术的发展。本文介绍了化学催化、生物活化、光电活化及等离子体活化等 CO2活化方式,从 CO2催化加氢合成二甲醚的工艺研究、催化剂开发、催化加氢机理和本征动力学研究等方面综述了 CO2催化加氢合成二甲醚的研究进展,认为化学催化法是目前应用最广泛的一种CO2活化方式。对于一步法催化CO2加氢合成二甲醚的工艺,其难点是制备高效CO2活化催化剂。开发高效的CO2活化及转化催化剂及对CO2合成二甲醚的反应过程进行机理探究,是推广CO2转化技术的关键。%CO2 is a kind of stable substance,and its chemical inertness limits the development of CO2 conversion technologies. This paper describes the activation methods of CO2,including chemical catalysis,biological activation,photoelectric activation and plasma activation. The recent advances are reviewed by introducing the study on dimethyl ether ( DME ) synthesis from the catalytic hydrogenation of CO2,the development of catalysts,the mechanism of catalytic hydrogenation process and intrinsic kinetics. It is pointed out in the paper that the method of chemical catalysis is the most widely used method of CO2 activation. To develop effective activation catalysts of CO2 is the difficulty in the one-step process of DME synthesis by the catalytic hydrogenation of CO2. The development of effective activation and conversion catalysts of CO2 and the mechanism exploration of DME synthesis reaction are the keys to the promotion of CO2 conversion technologies.

  14. Les procédés ASVAHL thermiques et catalytiques sous pression d'hydrogène pour la conversion des bruts lourds et des résidus de bruts classiques Thermal and Catalytic Asvahl Processes under Hydrogen Pressure for Converting Heavy Crudes and Conventional Residues

    Directory of Open Access Journals (Sweden)

    Peries J. P.


    Full Text Available Cet article décrit les performances comparées des procédés ASVAHL thermiques (TERVAHL T, TERVAHL H, TERVAHL HC et catalytiques (HYVAHL F, HYVAHL C dans deux cas de traitement: - brut désessencié Boscan (base des études objectif Transport; - résidu sous vide Safaniya (base des études Raffinage de résidu. A travers ces résultats, l'importance de la quantité d'hydrogène fixée est mise en évidence. Elle joue sur la conversion obtenue et sur la qualité des résidus. L'introduction de catalyseur soluble ou en suspension catalytique TERVAHL HC (hydroviscoréduction catalytique ou l'utilisation d'un catalyseur supporté (hydrotraiternent HYVAHL favorisent l'activation de l'hydrogène. C'est la combinaison des réactions de craquage, de polycondensation et d'hydrogénation, et les conditions opératoires (températures, temps de séjour et pression qui définiront les limites de la conversion pour une stabilité donnée des résidus. This article describes the comparative performances of thermal ASVAHL processes (TERVAHL T, TERVAHL H, TERVAHL HQ and catalytic ASVAHL processes (HYVAHL F, HYVAHL C for two types of processing: (1 degasolined Boscan crude (basis of studies for transportation feasibility, and (2 Safaniya vacuum residue (basis of studies for residue refining. The results reveal the importance of the amount of fixed hydrogen, which affects the conversion obtained and the quality of the residues. The introduction of a TERVAHL HC soluble catalyst or one in catalytic suspension (catalytic hydrovisbreaking or the use of a supported catalyst (HYVAHL hydrotreatment enhances the activation of hydrogen. The combination of cracking, polycondensation and hydrogen reactions together with the operating conditions (temperatures, residence time and pressure are what will define the conversion limits for a given stability of residues.

  15. Carbon Dioxide-Free Hydrogen Production with Integrated Hydrogen Separation and Storage. (United States)

    Dürr, Stefan; Müller, Michael; Jorschick, Holger; Helmin, Marta; Bösmann, Andreas; Palkovits, Regina; Wasserscheid, Peter


    An integration of CO2 -free hydrogen generation through methane decomposition coupled with hydrogen/methane separation and chemical hydrogen storage through liquid organic hydrogen carrier (LOHC) systems is demonstrated. A potential, very interesting application is the upgrading of stranded gas, for example, gas from a remote gas field or associated gas from off-shore oil drilling. Stranded gas can be effectively converted in a catalytic process by methane decomposition into solid carbon and a hydrogen/methane mixture that can be directly fed to a hydrogenation unit to load a LOHC with hydrogen. This allows for a straight-forward separation of hydrogen from CH4 and conversion of hydrogen to a hydrogen-rich LOHC material. Both, the hydrogen-rich LOHC material and the generated carbon on metal can easily be transported to destinations of further industrial use by established transport systems, like ships or trucks.

  16. Spectrofluorimetric determination of benzoimidazolic pesticides: Effect of p-sulfonatocalix[6]arene and cyclodextrins

    Energy Technology Data Exchange (ETDEWEB)

    Pacioni, Natalia L.; Sueldo Occello, Valeria N. [Instituto de Investigaciones en Fisico Quimica de Cordoba (INFIQC), Departamento de Quimica Organica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina); Lazzarotto, Marcio [Departamento de Quimica Organica, Instituto de Quimica, Universidade Federal do Rio Grande do Sul-UFRGS, 15003 Porto Alegre, R.S. (Brazil); Veglia, Alicia V. [Instituto de Investigaciones en Fisico Quimica de Cordoba (INFIQC), Departamento de Quimica Organica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina)], E-mail:


    The effect of the addition of a macrocyclic host (H) such as p-sulfonatocalix[6]arene (C6S), native and modified cyclodextrins (CDs), on the fluorescence of benzoimidazolic fungicides (P), like Benomyl (BY) and Carbendazim (CZ), has been studied. The fluorescence of BY in water at pH 1.000 and 25.0 deg. C was increased in the presence of C6S, {alpha}CD and hydroxypropyl-{beta}-CD (HPCD). The association constants determined by fluorescence enhancement showed weak interactions (K{sub A} {approx} 10{sup 1} to 10{sup 2} M{sup -1}) between the fungicide with both CDs, whereas they were stronger with C6S (K{sub A} {approx} 10{sup 5} M{sup -1}). Molecular recognition of BY for C6S was mainly attributed to electrostatic interactions, and for CDs to the hydrophobic effect and hydrogen bond formation. On the other hand, the fluorescent behaviour of CZ in the presence of C6S at pH 6.994 was interpreted as the formation of two complexes with 1:1 (P:H) and 1:2 (P:H{sub 2}) stoichiometry, the latter being less fluorescent than the free analyte. Relative fluorescence quantum yield ratios between the complexed and free BY ({phi}{sup P:H}/{phi}{sup P}) were 2.00 {+-} 0.05, 1.40 {+-} 0.03 and 2.8 {+-} 0.4 for C6S, {alpha}CD and HPCD, respectively. The analytical parameters improved in the presence of C6S and CDs. The best limit of detection (L{sub D}, ng mL{sup -1}) was 17.4 {+-} 0.8 with HPCD. The proposed method with C6S and HPCD was successfully applied to fortified samples of tap water and orange flesh extract with good recoveries (91-106%) and R.S.D. ({<=}2%) by triplicate analysis. The method is rapid, direct and simple and needs no previous degradation or derivatization reaction.

  17. Why Aren't Philosophers and Educators Speaking to Each Other? Some Reasons for Hope. (United States)

    Ellett, Frederick S., Jr.


    Responds to Arcilla's article, "Why Aren't Philosophers and Educators Speaking to One Another?" noting complexities that complicate the answer and suggesting that they are indeed communicating if one accepts a broader definition of philosophers and educators. The essay asserts that little educational research and theory has had much influence on…

  18. A Pyrenyl-Appended Triazole-Based Calix arene as a Fluorescent Sensor for Iodide Ion

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Seung; Park, Sun Young; Kim, Sang Hoon [Korea University, Seoul (Korea, Republic of); Thuery, Pierre [CEA, IRAMIS, SCM, LCCEf, Yvette (France); Matthews, Susan E. [University of East Anglia, Norwich (United Kingdom); Souane, Rachid; Vicens, Jacques [IPHC-UdS-ECPM-CNRS, Cedex (France)


    The synthesis and evaluation of a novel calix arene-based fluorescent chemosensor 1 for the detection of I. is described. The fluorescent changes observed upon addition of various anions show that 1 is selective for I. over other anions. Addition of I. results in ratiometric measurements with 1 : 1 complex ratio.

  19. Review of "Incomplete: How Middle Class Schools Aren't Making the Grade". Think Tank Review (United States)

    Baker, Bruce D.


    "Incomplete: How Middle Class Schools Aren't Making the Grade" is a new report from Third Way, a Washington, D.C.-based policy think tank. The report aims to convince parents, taxpayers and policymakers that they should be as concerned about middle-class schools not making the grade as they are about the failures of the nation's large, poor, urban…

  20. Thermal decomposition mechanism of p-tert-butyl-calix[n]arenes

    Energy Technology Data Exchange (ETDEWEB)

    Chennakesavulu, K., E-mail: [National Metallurgical Laboratory Madras Centre, CSIR Madras Complex, Taramani, Chennai 600 113 (India); Department of Chemistry, Sathyabama University, Jeppiaar Nagar, Chennai 600 119 (India); Sreedevi, P.; Raviathul Basaria, M. [National Metallurgical Laboratory Madras Centre, CSIR Madras Complex, Taramani, Chennai 600 113 (India); Ramanjaneya Reddy, G. [Department of Inorganic Chemistry, Guindy Campus, University of Madras, Chennai 600 025 (India); Sasipraba, T. [International Research Centre, Sathyabama University, Jeppiaar Nagar, Chennai 600 119 (India); Bhaskar Raju, G.; Prabhakar, S. [National Metallurgical Laboratory Madras Centre, CSIR Madras Complex, Taramani, Chennai 600 113 (India)


    Highlights: • Systematic thermal decomposition, structural elucidation of intermediates at various quenched temperatures. • At solid state the phenolic free radical was quenched and was evidenced by recording stable EPR. • Since the lower decomposition energy these p-tert-butyl-calix[n]arenes can be used as a antioxidants for thermal stabilization of polyolefins. • Solid state NMR CP-MAS studies show the breakage of calixarene at bridged methylene. • Kinetic triplets of p-tert-butyl-calixarenes were determined by model free methods. - Abstract: Thermal decomposition of p-tert-butyl-calix[n]arene was studied using thermo gravimetry (TG) and differential thermo gram (DTG) methods. Non-isothermal TG was done under static air atmosphere with 1, 2.5, 5.0 and 10.0 K/min. Model-free methods such as Friedman and Flynn Wall Ozawa (FWO) were used to evaluate the kinetic parameters such as activation energy and exponential factors. The probable thermal decomposition mechanism was proposed by analyzing the quenched intermediate p-tert-butyl-calix[n]arene samples with FTIR, mass, {sup 1}H NMR, {sup 13}C NMR cross polarization magic angle spectrometry (CP-MAS), EPR spectroscopy and elemental analysis. The thermal stability of the polyolefins was checked with p-tert-butyl-calix[n]arene as an antioxidant additive.

  1. Synthesis of phosphorylated calix[4]arene derivatives for the design of solid phases immobilizing uranyl cations

    Energy Technology Data Exchange (ETDEWEB)

    Maroun, E.B.; Hagege, A.; Asfari, Z. [Laboratoire de Chimie Analytique et Minerale, UMR 7178 ULP/CNRS/IN2P3 LC4, ECPM, Strasbourg Cedex (France); Basset, CH.; Quemeneur, E.; Vidaud, C. [CEA IBEB, SBTN, Centre de Marcoule, Bagnols-sur-Ceze (France)


    With the aim of developing supports for uranyl cations immobilisation, new 1, 3-alternate calix[4]arenes bearing both phosphonic acid functions as chelating sites and N-succinimide-4-oxa-butyrate as the anchoring arm were synthesised in good yields. The coupling of such calixarenes to a gel was performed and a successful immobilisation of uranyl cations was obtained. (authors)

  2. Calix[4]arene supported clusters: a dimer of [Mn(III)Mn(II)] dimers

    DEFF Research Database (Denmark)

    Taylor, Stephanie M; McIntosh, Ruaraidh D; Beavers, Christine M;


    Phosphinate ligands allow for the transformation of a calix[4]arene supported [Mn(III)(2)Mn(II)(2)] tetramer cluster motif into an unusual [Mn(III)Mn(II)](2) dimer of dimers; the clusters self-assemble in the crystal to form bi-layer arrays reminiscent of the typical packing of calixarene solvates....

  3. Research on Synthesis of New Azo Calix[4]arene and its Dyeing Properties

    Directory of Open Access Journals (Sweden)

    Tang Jun


    Full Text Available With the raw materials of calix[4]arene, benzocaine, tricaine and procaine hydrochloride, three new azo calix[4]arene derivatives—6a, 6b and 6c are synthesized by diazotization–coupling reaction of an aromatic amine, with its yield of 83%, 81% and 83% respectively. The structural characterization is in a way of IR, 1H NMR and elemental analysis. This paper investigates the spectral properties of azo calix[4]arene derivatives under different solution pH conditions through the UV–visible spectroscopy, and researches the dyeing properties through the dyeing curve, color yield test and fastness test. The results show that, with the increase of pH value, the azo calix[4]arene derivatives—6a, 6b and 6c form azo–hydrazone tautomeric isomers with the maximum absorption peak redshift; the dyeing effect of the compound is good, of which the dye–uptake rate of the compound 6a is as high as 78%; the surface depth of color yield is 2.798, and the dry and wet rubbing fastness and the soaping fastness are respectively 4, which is a better disperse dye.

  4. One-pot synthesis of arene-fused 2-acylcyclohexenones from propargylic carboxylates

    Institute of Scientific and Technical Information of China (English)


    From readily available propargylic carboxylates, two sequential transformations―gold-catalyzed tandem reactions and Sc(OTf)3-catalyzed cyclization―in a one-pot process led to the formation of 2-acylcyclohexenones with an electron-rich arene ring fused at the 4,5-positions.

  5. Theoretical indications on the relationship between pyrogallol[4]arenes dynamics of assembling and geometry

    Directory of Open Access Journals (Sweden)

    Robert A. Cazar


    Full Text Available Pyrogallol[4]arenes are macrocycles with high potential as building blocks for nanocapsules. We theoretically studied the dimeric precursors of 2,8,14,20-tetramethylpyrogallol[4]arene and 2,8,10,14-tetraphenylpyrogallol[4] arene to understand the dynamics of assembly of these compounds, and calculated the potential energy curves along the torsion angle of the (R-pyrogallolCH–(R-pyrogallol dimeric bond at the B3LYP/6-311G(d,p level of theory. We found that the energy barriers for free rotation around the selected bond are 0.00133 Hartrees for the alkyl-substituted dimer and 0.77879 Hartrees for the aryl-substituted dimer. These values imply that the free rotation around the selected bond exists for the first dimer but not for the second one. Because the orientation of the substituent and the pyrogallol ring around this bond are likely to determine the geometry of the final structure, we propose that the alkyl-substituted compound will most likely adopt a crown-shaped geometry whereas the aryl-substituted compound will adopt a chair-shaped geometry. These predictions concur with experimental evidence, which shows that the geometry of pyrogallol[4]arenes depends on the substituents attached to them.

  6. Transition metal cations extraction by ester and ketone derivatives of chromogenic azocalix[4]arenes. (United States)

    Ak, Metin; Taban, Deniz; Deligöz, Hasalettin


    The molecule of azocalix[n]arene is a macrocyclic used effectively in the complexation of the heavy metal pollutants (like silver and mercury). In this work, our main aim is to prepare new chromogenic azocalix[n]arene molecules to elaborate an extractant with high extractant selectivity for metal ions able to detect this type of pollutant. The solvent extraction properties of four acetyls, four methyl ketones and four benzoyls derivatives from azocalix[4]arenes which were prepared by linking 4-ethyl, 4-n-butyl, 4-acetamid anilin and 2-aminothiazol to calix[4]arene through a diazo-coupling reaction, the alkaline earth (Sr2+) and the transition (Ag+, Hg2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Cr3+) metal cations have been determined by extraction studies with metal picrates. Both ketones are better extractants than esters, and show a strong preference for Ag+, while Cu2+ and Cr3+ are the most extracted cation with the esters. Both acetyl and benzoyl esters are good carriers for Ag+ and Hg2+.

  7. Palladium-catalyzed regioselective decarboxylative alkylation of arenes and heteroarenes with aliphatic carboxylic acids. (United States)

    Premi, Chanchal; Dixit, Ankit; Jain, Nidhi


    An unprecedented Pd(OAc)2-catalyzed decarboxylative alkylation of unactivated arenes, with aliphatic carboxylic acids as inexpensive alkyl sources, is reported. The alkylation, controlled by the directing group, is regioselective, shows high functional group tolerance, and provides mild access to alkylated indolines, 2-phenylpyridines, and azobenzenes under solvent-free conditions in moderate to high yields.

  8. Ruthenium(II) arene complexes with oligocationic triarylphosphine ligands: synthesis, DNA interactions and in vitro properties

    NARCIS (Netherlands)

    Snelders, D.J.M.; Casini, A.; Edafe, F.; van Koten, G.; Klein Gebbink, R.J.M.; Dyson, P.J.


    The synthesis, DNA binding properties and cytotoxicity of a series of Ru(II)-arene complexes containing oligocationic ammonium-functionalized triarylphosphines, of the type Ru(p-cymene)Cl2(L) (L ¼ oligocationic phosphine), are reported. The complexes are highly charged (the overall charge states bei

  9. Oxatub[4]arene: a molecular "transformer" capable of hosting a wide range of organic cations. (United States)

    Jia, Fei; Wang, Hao-Yi; Li, Dong-Hao; Yang, Liu-Pan; Jiang, Wei


    The molecular "transformer", oxatub[4]arene, was found to be able to host a wide range of organic cations. The strong binding ability is believed to originate from its four interconvertible and deep-cavity conformers. The binding behavior of such adaptable receptors may provide implications for molecular recognition in nature.

  10. New Calix[4]arene dibenzocrown ethers for selective sensing of cesium ion in aqueous environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Seung; Kim, Jong Kuk [Konyang University, Nonsan (Korea, Republic of); Choi, Wang Kyu; Lee, Kune Woo; Oh, Won Jin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)


    1,3-dialkoxycalix[4]arene dibenzocrown ethers (6-9) were successfully synthesized in the fixed 1,3-alternate conformation with over 90% yields by the reaction of corresponding 1,3dialkoxycalix[4]arenes 2-5 with dibenzodimesylate 13 in acetonitrile as a solvent in the presence of cesium carbonate as a base. In view of cyclization yield, the use of dimesylate is found to be better than that of dibenzoditosylate. With an unusual AB pattern in {sup 1}H NMR spectrum for compound 9, it is suggested that conformational structure of 1,3-diallyloxycalix[4]arene dibenzocrown ether be less flexible than that of usual 1,3-alternate calixcrown ether, probably due to steric effects of two ally1 group. Complexation of the corresponding calix[4]arene 6-9 toward alkali metal ions using single flux method through bulk liquid membrane system was found to give a high cesium selectivity. 28 refs., 1 tab., 1 fig.

  11. η6-Arene complexes of ruthenium and osmium with pendant donor functionalities

    KAUST Repository

    Reiner, Thomas


    Conversion of 4′-(2,5-dihydrophenyl)butanol or N-trifluoroacetyl-2,5- dihydrobenzylamine with MCl3·n H2O (M = Ru, Os) affords the corresponding dimeric η6-arene complexes in good to excellent yields. Under similar reaction conditions, the amine functionalized arene precursor 2,5-dihydrobenzylamine yields the corresponding Ru(II) complex. For osmium, HCl induced oxidation leads to formation of [OsCl6] 2- salts. However, under optimized reaction conditions, conversion of the precursor 2,5-dihydrobenzylamine chloride results in clean formation of η6-arene Os(II) complex. X-ray structures of [(η6- benzyl ammonium)(dmso)RuCl2] and (2,5-dihydrobenzyl ammonium) 4[OsCl6]2confirm the spectroscopic data. High stability towards air and acid as well as enhanced solubility in water is observed for all η6-arene complexes. © 2010 Elsevier B.V. All rights reserved.

  12. Hydrogen Peroxide as a Sustainable Energy Carrier: Electrocatalytic Production of Hydrogen Peroxide and the Fuel Cell


    Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D.


    This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O2-reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal-oxygen intermediates involved in the ...

  13. Porous protein crystals as catalytic vessels for organometallic complexes. (United States)

    Tabe, Hiroyasu; Abe, Satoshi; Hikage, Tatsuo; Kitagawa, Susumu; Ueno, Takafumi


    Porous protein crystals, which are protein assemblies in the solid state, have been engineered to form catalytic vessels by the incorporation of organometallic complexes. Ruthenium complexes in cross-linked porous hen egg white lysozyme (HEWL) crystals catalyzed the enantioselective hydrogen-transfer reduction of acetophenone derivatives. The crystals accelerated the catalytic reaction and gave different enantiomers based on the crystal form (tetragonal or orthorhombic). This method represents a new approach for the construction of bioinorganic catalysts from protein crystals.

  14. Catalytic synthesis of silicon carbide preceramic polymers: Polycarbosilanes. Final technical report, March 1, 1991--August 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Berry, D.H.


    This effort has focused on the development of new systems for the catalytic formation of organosilicon monomers and polymers. Several new classes of ruthenium phosphine complexes containing one, two, or three silicon ligands have been prepared, and which exhibit unique catalytic reactivity for (1) the dehydrogenative coupling of tertiary alkyl silanes to polycarbonsilanes, (2) dehydrogenative coupling of secondary and primary alkyl and aryl silanes to polysilanes, and (3) the dehydrogenative heterocoupling of silanes with substituted arenes to yield aryl silanes. In addition, germanium analogs of the ruthenium silyl complexes have been found to be effective catalysts for the unprecedented demethanative coupling of alkyl germanes to high molecular weight polygermanes. For each of these new reactions, key mechanistic features of the catalytic processes have been elucidated, and the complexes have been extensively studied in terms of relevant stoichiometric reactivity and structural features.

  15. Session 4: Enhanced sulfur resistance and catalytic properties of Pd-Pt supported on TiO{sub 2} - modified Al{sub 2}O{sub 3} in the hydrogenation of biphenyl and HDS of dibenzothiophene

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, S.; Montesinos, A.; Viveros, T.; Los Reyes, J.A. de [Universidad Autonoma Metropolitana-Iztapalapa (Mexico)


    In the hydrotreatment (HDT) of petroleum cuts to produce diesel, the selection of active and highly selective catalysts for hydrogenation (HYD) of aromatics is a fundamental issue in the second stage of multi-staged processes. It is well know that precious metals (Pd-Pt mainly) are suitable for this reaction. However, sulfur compounds at low concentration may poison these catalysts. Thus, this work focuses on the evaluation in the hydrogenation of an aromatic compound of Pd-Pt catalysts supported on TiO{sub 2}-modified Al{sub 2}O{sub 3} by using two reactions in presence of sulfur, the hydrogenation (HYD) of biphenyl (BP) and the hydrodesulfurization (HDS) of dibenzothiophene (DBT). The obtained experimental results are given and explained. (O.M.)

  16. Study on stability of CuO/γ-Al_2O_3 catalyst in catalytic wet hydrogen peroxide oxidation%双氧水催化氧化中Cu/γ-Al_2O_3催化剂的稳定性研究

    Institute of Scientific and Technical Information of China (English)

    罗平; 范益群


    CuO/γ-Al2O3 catalysts for the H2O2 wet oxidation of phenol are prepared by impregnating process.The stability and deactivation of heterogeneous Cu/γ-Al2O3 catalysts were studied at room temperature and atmospheric pressure in the catalytic wet hydrogen peroxide oxidation(CWPO).Results showed that both the catalyst preparation conditions and the catalytic oxidation reaction conditions would affect the dissolution of the Cu2+ active component.The catalyst deactivation was related with the loss of active components and the catalyst surface coverage by the oxidation intermediates.The catalyst can be regenerated by calcination at high-temperature.%针对废水湿式双氧水催化氧化,采用浸渍法制备Cu催化剂,研究非均相Cu催化剂在常温常压湿式双氧水催化氧化中的稳定性与失活问题。研究表明,催化剂制备条件及催化氧化反应条件对催化剂中Cu2+溶出均有影响。研究同时表明,催化剂失活与活性组分流失和活性组分被有机中间产物覆盖有关,高温焙烧可对催化剂再生。

  17. Modeling the active site of [FeFe]-hydrogenase: Electro-catalytic hydrogen evolution from acetic acid catalysed by [Fe2(-L)(CO)6] and [Fe2(-L)(CO)5(PPh3)] (L=pyrazine-2, 3-dithiolate, quinoxaline-2, 3-dithiolate and pyrido[2,3-b] pyrazine-2, 3-dithiolate)

    Indian Academy of Sciences (India)

    Gummadi Durgaprasad; Samar K Das


    Compounds [Fe2{-pydt}(CO)6] (pydt = pyrazine-2,3-dithiolate) (1), [Fe2{-qdt}(CO)6] (qdt = quinoxaline-2,3-dithiolate) (2), [Fe2{-ppdt}CO)6] (ppdt = pyrido[2,3-b]pyrazine-2,3-dithiolate) (3), [Fe2{-pydt}(CO)5PPh3] (4), [Fe2{-qdt}(CO)5PPh3] (5) and [Fe2{-ppdt}(CO)5PPh3] (6) have been synthesized in order to model the active sites of `[FeFe]-hydrogenase’. Compounds 1–6 have been characterized by routine spectral studies and unambiguously by single crystal X-ray crystallography. Supramolecular chemistry of compounds 1–6 have been described in terms of intermolecular interactions, observed in their respective crystal structures. Electro-catalytic hydrogen evaluation studies (from acetic acid) have been performed using compounds 1–6 as electro-catalysts. The mechanistic aspects of relevant electro–catalytic proton reductions have been discussed in detail.

  18. Dioxygen activation at a mononuclear Cu(I) center embedded in the calix[6]arene-tren core. (United States)

    Izzet, Guillaume; Zeitouny, Joceline; Akdas-Killig, Huriye; Frapart, Yves; Ménage, Stéphane; Douziech, Bénédicte; Jabin, Ivan; Le Mest, Yves; Reinaud, Olivia


    The reaction of a cuprous center coordinated to a calix[6]arene-based aza-cryptand with dioxygen has been studied. In this system, Cu(I) is bound to a tren unit that caps the calixarene core at the level of the small rim. As a result, although protected from the reaction medium by the macrocycle, the metal center presents a labile site accessible to small guest ligands. Indeed, in the presence of O2, it reacts in a very fast and irreversible redox process, leading, ultimately, to Cu(II) species. In the coordinating solvent MeCN, a one electron exchange occurs, yielding the corresponding [CalixtrenCu-MeCN](2+) complex with concomitant release of superoxide in the reaction medium. In a noncoordinating solvent such as CH2Cl2, the dioxygen reaction leads to oxygen insertions into the ligand itself. Both reactions are proposed to proceed through the formation of a superoxide-Cu(II) intermediate that is unstable in the Calixtren environment due to second sphere effects. The transiently formed superoxide ligand either undergoes fast substitution for a guest ligand (in MeCN) or intramolecular redox evolutions toward oxygenation of Calixtren. Interestingly, the latter process was shown to occur twice on the same ligand, thus demonstrating a possible catalytic activation of O2 at a single cuprous center. Altogether, this study illustrates the oxidizing power of a [CuO2](+) adduct and substantiates a mechanism by which copper mono-oxygenases such as DbetaH and PHM activate O2 at the Cu(M) center to produce such an intermediate capable of C-H breaking before the electron input provided by the noncoupled Cu(H) center.

  19. Catalytic activity of carbons for methane decomposition reaction

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, Nazim; Smith, Franklyn; T-Raissi, Ali [Florida Solar Energy Center, University of Central Florida, 1679 Clearlake Road, Cocoa, FL 32922 (United States)


    Catalytic decomposition of methane is an environmentally attractive approach to CO{sub 2}-free production of hydrogen. The objective of this work is to evaluate catalytic activity of a wide range of carbon materials for methane decomposition reaction and determine major factors governing their activity. It was demonstrated that the catalytic activity of carbon materials for methane decomposition is mostly determined by their structural and surface properties. Kinetics of methane decomposition reaction over disordered (amorphous) carbons such as carbon black and activated carbon were determined. The mechanism of carbon-catalyzed methane decomposition reaction and the nature of active sites on the carbon surface are discussed in this paper.

  20. Catalytic conversion of light alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, J.E.


    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).