WorldWideScience

Sample records for catalytic arene hydrogenation

  1. Catalytic combustor for hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Mercea, J.; Grecu, E.; Fodor, T.; Kreibik, S.

    1982-01-01

    The performance of catalytic combustors for hydrogen using platinum-supported catalysts is described. Catalytic plates of different sizes were constructed using fibrous and ceramic supports. The temperature distribution as well as the reaction efficiency as a function of the fuel input rate was determined, and a comparison between the performances of different plates is discussed.

  2. Heteroatom-free arene-cobalt and arene-iron catalysts for hydrogenations.

    Science.gov (United States)

    Gärtner, Dominik; Welther, Alice; Rad, Babak Rezaei; Wolf, Robert; Jacobi von Wangelin, Axel

    2014-04-01

    75 years after the discovery of hydroformylation, cobalt catalysts are now undergoing a renaissance in hydrogenation reactions. We have evaluated arene metalates in which the low-valent metal species is--conceptually different from heteroatom-based ligands--stabilized by π coordination to hydrocarbons. Potassium bis(anthracene)cobaltate 1 and -ferrate 2 can be viewed as synthetic precursors of quasi-"naked" anionic metal species; their aggregation is effectively impeded by (labile) coordination to the various π acceptors present in the hydrogenation reactions of unsaturated molecules (alkenes, arenes, carbonyl compounds). Kinetic studies, NMR spectroscopy, and poisoning studies of alkene hydrogenations support the formation of a homogeneous catalyst derived from 1 which is stabilized by the coordination of alkenes. This catalyst concept complements the use of complexes with heteroatom donor ligands for reductive processes. PMID:24616276

  3. Water-soluble (?6-arene)ruthenium(II)-phosphine complexes and their catalytic activity in the hydrogenation of bicarbonate in aqueous solution

    OpenAIRE

    Horváth, Henrietta; Laurenczy, Gábor; Kathó, Ágnes; Horváth H. Henrietta (1979-) (vegyész); Kathó Ágnes (1954-) (vegyész, kémikus)

    2004-01-01

    The reactions of [(g6-C6H6)RuCl2]2 and [(g6-p-cymene)RuCl2]2 with hydrogen in the presence of the water-soluble phosphinestppts (meta-trisulfonated triphenylphosphine) and pta (1,3,5-triaza-7-phosphaadamantane) afforded as the main species [(g6-C6H6)RuH(tppts)2], [(g6-C6H6)RuH(pta)2], [(g6-p-cymene)RuH(tppts)2] and [(g6-p-cymene)RuH(pta)2]. This latter complexwas also formed in the reaction of [(g6-p-cymene)RuCl2(pta)] and hydrogen with a redistribution of pta. In addition, prolongedhydrogena...

  4. Relationship Between Structures and Reactivity of Polycyclic Arenes Toward Hydrogenation

    Institute of Scientific and Technical Information of China (English)

    倪中海; 张丽芳; 袁新华; 宗志敏; 魏贤勇

    2002-01-01

    Hydrogenation reactions of polycyclic arenes (Pas) were car ried out in the presence of Ni and sulfur at 300 ℃ to examine the structuralef fect of Pas on their reactivities toward hydrogenation. Hydrogen was observed to be transferred preferentially to some fixed positions in Pas and different Pas displayed some difference in hydrogenation reactivity. The results can be inte rpreted on the hydrogen-accepting ability of carbon atoms from different positi ons in Pas and the resonance stability of aryl radicals resulting from H-atom a ddition as well as the adsorption strength of Pas on catalyst surface.

  5. HYDROGEN TRANSFER IN CATALYTIC CRACKING

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Hydrogen transfer is an important secondary reaction of catalytic cracking reactions, which affects product yield distribution and product quality. It is an exothermic reaction with low activation energy around 43.3 kJ/mol. Catalyst properties and operation parameters in catalytic cracking greatly influence the hydrogen transfer reaction. Satisfactory results are expected through careful selection of proper catalysts and operation conditions.

  6. Stabilized rhodium(0) nanoparticles: a reusable hydrogenation catalyst for arene derivatives in a biphasic water-liquid system.

    Science.gov (United States)

    Schulz, J; Roucoux, A; Patin, H

    2000-02-18

    A colloidal system based on an aqueous suspension of rhodium(o) nanoparticles proved to be an efficient catalyst for the hydrogenation of arene derivatives under biphasic conditions. The rhodium nanoparticles (2-2.5 nm) were synthesized by the reduction of RhCl3 x 3H2O with sodium borohydride and were stabilized by highly water-soluble N-alkyl-N-(2-hydroxyethyl)ammonium salts (HEA-Cn). These surfactant molecules were characterized by measurements of the surface tension and the aqueous dispersions with rhodium were observed by transmission electron cryomicroscopy. The catalytic system is efficient under ultramild conditions, namely room temperature and 1 atm H2 pressure. The aqueous phase which contains the protected rhodium(0) colloids can be reused without significant loss of activity. The microheterogeneous behavior of this catalytic system was confirmed on a mercury poisoning experiment.

  7. Catalytic hydrogenation of carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Wayland, B.B.

    1992-12-01

    This project is focused on developing strategies to accomplish the reduction and hydrogenation of carbon monoxide to produce organic oxygenates at mild conditions. Our approaches to this issue are based on the recognition that rhodium macrocycles have unusually favorable thermodynamic values for producing a series of intermediate implicated in the catalytic hydrogenation of CO. Observations of metalloformyl complexes produced by reactions of H{sub 2} and CO, and reductive coupling of CO to form metallo {alpha}-diketone species have suggested a multiplicity of routes to organic oxygenates that utilize these species as intermediates. Thermodynamic and kinetic-mechanistic studies are used in constructing energy profiles for a variety of potential pathways, and these schemes are used in guiding the design of new metallospecies to improve the thermodynamic and kinetic factors for individual steps in the overall process. Variation of the electronic and steric effects associated with the ligand arrays along with the influences of the reaction medium provide the chemical tools for tuning these factors. Emerging knowledge of the factors that contribute to M-H, M-C and M-O bond enthalpies is directing the search for ligand arrays that will expand the range of metal species that have favorable thermodynamic parameters to produce the primary intermediates for CO hydrogenation. Studies of rhodium complexes are being extended to non-macrocyclic ligand complexes that emulate the favorable thermodynamic features associated with rhodium macrocycles, but that also manifest improved reaction kinetics. Multifunctional catalyst systems designed to couple the ability of rhodium complexes to produce formyl and diketone intermediates with a second catalyst that hydrogenates these imtermediates are promising approaches to accomplish CO hydrogenation at mild conditions.

  8. A novel liquid system of catalytic hydrogenation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    On the basis that endothermic aqueous-phase reforming of oxygenated hydrocarbons for H2 production and exothermic liquid phase hydrogenation of organic compounds are carried out under extremely close conditions of temperature and pressure over the same type of catalyst, a novel liquid system of catalytic hydrogenation has been proposed, in which hydrogen produced from aqueous-phase reforming of oxygenated hydrocarbons is in situ used for liquid phase hydrogenation of organic compounds. The usage of active hydrogen generated from aqueous-phase reforming of oxygenated hydrocarbons for liquid catalytic hydrogenation of organic compounds could lead to increasing the selectivity to H2 in the aqueous-phase reforming due to the prompt removal of hydrogen on the active centers of the catalyst. Meanwhile, this novel liquid system of catalytic hydrogenation might be a potential method to improve the selectivity to the desired product in liquid phase catalytic hydrogenation of organic compounds. On the other hand, for this novel liquid system of catalytic hydrogenation, some special facilities for H2 generation, storage and transportation in traditional liquid phase hydrogenation industry process are yet not needed. Thus, it would simplify the working process of liquid phase hydrogenation and increase the energy usage and hydrogen productivity.

  9. Anion–arene adducts: C–H hydrogen bonding, anion– interaction, and carbon bonding motifs

    OpenAIRE

    Hay, Benjamin P.; Bryantsev, Vyacheslav S.

    2008-01-01

    This article summarizes experimental and theoretical evidence for the existence of four distinct binding modes for complexes of anions with charge-neutral arenes. These include C–H hydrogen bonding and three motifs involving the arene– system—the noncovalent anion– interaction, weakly covalent interaction, and strongly covalent interaction.

  10. Highly selective hydrogenation of arenes using nanostructured ruthenium catalysts modified with a carbon–nitrogen matrix

    Science.gov (United States)

    Cui, Xinjiang; Surkus, Annette-Enrica; Junge, Kathrin; Topf, Christoph; Radnik, Jörg; Kreyenschulte, Carsten; Beller, Matthias

    2016-01-01

    Selective hydrogenations of (hetero)arenes represent essential processes in the chemical industry, especially for the production of polymer intermediates and a multitude of fine chemicals. Herein, we describe a new type of well-dispersed Ru nanoparticles supported on a nitrogen-doped carbon material obtained from ruthenium chloride and dicyanamide in a facile and scalable method. These novel catalysts are stable and display both excellent activity and selectivity in the hydrogenation of aromatic ethers, phenols as well as other functionalized substrates to the corresponding alicyclic reaction products. Furthermore, reduction of the aromatic core is preferred over hydrogenolysis of the C–O bond in the case of ether substrates. The selective hydrogenation of biomass-derived arenes, such as lignin building blocks, plays a pivotal role in the exploitation of novel sustainable feedstocks for chemical production and represents a notoriously difficult transformation up to now. PMID:27113087

  11. Performance characterization of a hydrogen catalytic heater.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry Alan; Kanouff, Michael P.

    2010-04-01

    This report describes the performance of a high efficiency, compact heater that uses the catalytic oxidation of hydrogen to provide heat to the GM Hydrogen Storage Demonstration System. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to a circulating heat transfer fluid. The fluid then transfers the heat to one or more of the four hydrogen storage modules that make up the Demonstration System to drive off the chemically bound hydrogen. The heater consists of three main parts: (1) the reactor, (2) the gas heat recuperator, and (3) oil and gas flow distribution manifolds. The reactor and recuperator are integrated, compact, finned-plate heat exchangers to maximize heat transfer efficiency and minimize mass and volume. Detailed, three-dimensional, multi-physics computational models were used to design and optimize the system. At full power the heater was able to catalytically combust a 10% hydrogen/air mixture flowing at over 80 cubic feet per minute and transfer 30 kW of heat to a 30 gallon per minute flow of oil over a temperature range from 100 C to 220 C. The total efficiency of the catalytic heater, defined as the heat transferred to the oil divided by the inlet hydrogen chemical energy, was characterized and methods for improvement were investigated.

  12. Supported organoactinide complexes as heterogeneous catalysts. A kinetic and mechanistic study of facile arene hydrogenation

    International Nuclear Information System (INIS)

    This contribution reports a kinetic and mechanistic study of arene hydrogenation by the supported organoactinide complexes Cp'Th(benzyl)3/DA (1/DA), Th(1,3,5-CH2C6H3Me2)4/DA (2/DA), and Th(η3-allyl)4/DA (3/DA) where Cp' = η5-Me5C5 and DA = dehydroxylated γ-alumina. In slurry reactions (90 degrees C, PH2 = 180 psi), the activity for benzene hydrogenation follows the order 1/DA t value for 3/DA of ∼25,000 h-1 active site-1. This approaches or exceeds most conventional platinum metal catalysts in efficacy for benzene reduction. Partially hydrogenation products cannot be detected at partial conversions, and there is no D2 incorporated in the unconverted benzene. D2 is not delivered to a single benzene face, but rather a 1:3 mixture of all-cis and cis,cis,trans,cis,trans isotopomers is formed. Active site characterizations using D2O poisoning, hydrogenolysis, and CH3Cl dosing indicate that ≤8 ± 1% of the Th surface sites are responsible for the bulk of the benzene hydrogenation. EPR and XPS studies provide no evidence for surface Th oxidation states less than +4. As a function of arene, the relative rates of Th(η3-C3H5)4/DA-catalyzed hydrogenation are benzene > toluene > p-xylene > naphthalene, with the regiochemistry of p-xylene reduction similar to that for benzene. Experiments with 1:1 benzene-p-xylene mixtures reveal that benzene is preferentially hydrogenated with almost complete exclusion of p-xylene (∼97:3), inferring that the benzene binding constant to the active sites is ∼6.7x that of p-xylene. 51 refs., 8 figs., 2 tabs

  13. Advanced Catalytic Hydrogenation Retrofit Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Reinaldo M. Machado

    2002-08-15

    Industrial hydrogenation is often performed using a slurry catalyst in large stirred-tank reactors. These systems are inherently problematic in a number of areas, including industrial hygiene, process safety, environmental contamination, waste production, process operability and productivity. This program proposed the development of a practical replacement for the slurry catalysts using a novel fixed-bed monolith catalyst reactor, which could be retrofitted onto an existing stirred-tank reactor and would mitigate many of the minitations and problems associated with slurry catalysts. The full retrofit monolith system, consisting of a recirculation pump, gas/liquid ejector and monolith catalyst, is described as a monolith loop reactor or MLR. The MLR technology can reduce waste and increase raw material efficiency, which reduces the overall energy required to produce specialty and fine chemicals.

  14. Polarographic catalytic wave of hydrogen--Parallel catalytic hydrogen wave of bovine serum albumin in thepresence of oxidants

    Institute of Scientific and Technical Information of China (English)

    GUO; Wei(过玮); LIU; Limin(刘利民); LIN; Hong(林洪); SONG; Junfeng(宋俊峰)

    2002-01-01

    A polarographic catalytic hydrogen wave of bovine serum albumin (BSA) at about -1.80 V (vs. SCE) in NH4Cl-NH3@H2O buffer is further catalyzed by such oxidants as iodate, persulfate and hydrogen peroxide, producing a kinetic wave. Studies show that the kinetic wave is a parallel catalytic wave of hydrogen, which resulted from that hydrogen ion is electrochemically reduced and chemically regenerated through oxidation of its reduction product, atomic hydrogen, by oxidants mentioned above. It is a new type of poralographic catalytic wave of protein, which is suggested to be named as a parallel catalytic hydrogen wave.

  15. Catalytic glycerol steam reforming for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Dan, Monica, E-mail: monica.dan@itim-cj.ro; Mihet, Maria, E-mail: maria.mihet@itim-cj.ro; Lazar, Mihaela D., E-mail: diana.lazar@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj Napoca (Romania)

    2015-12-23

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H{sub 2}. In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al{sub 2}O{sub 3}. The catalyst was prepared by wet impregnation method and characterized through different methods: N{sub 2} adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H{sub 2}, CH{sub 4}, CO, CO{sub 2}. The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H{sub 2}O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%.

  16. Catalytic glycerol steam reforming for hydrogen production

    Science.gov (United States)

    Dan, Monica; Mihet, Maria; Lazar, Mihaela D.

    2015-12-01

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H2. In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al2O3. The catalyst was prepared by wet impregnation method and characterized through different methods: N2 adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H2, CH4, CO, CO2. The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H2O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%.

  17. Substrate-mediated enhanced activity of Ru nanoparticles in catalytic hydrogenation of benzene

    KAUST Repository

    Liu, Xin

    2012-01-01

    The impact of carbon substrate-Ru nanoparticle interactions on benzene and hydrogen adsorption that is directly related to the performance in catalytic hydrogenation of benzene has been investigated by first-principles based calculations. The stability of Ru 13 nanoparticles is enhanced by the defective graphene substrate due to the hybridization between the dsp states of the Ru 13 particle with the sp 2 dangling bonds at the defect sites. The local curvature formed at the interface will also raise the Ru atomic diffusion barrier, and prohibit the particle sintering. The strong interfacial interaction results in the shift of averaged d-band center of the deposited Ru nanoparticle, from -1.41 eV for a freestanding Ru 13 particle, to -1.17 eV for the Ru/Graphene composites, and to -1.54 eV on mesocellular foam carbon. Accordingly, the adsorption energies of benzene are increased from -2.53 eV for the Ru/mesocellular foam carbon composites, to -2.62 eV on freestanding Ru 13 particles, to -2.74 eV on Ru/graphene composites. A similar change in hydrogen adsorption is also observed, and all these can be correlated to the shift of the d-band center of the nanoparticle. Thus, Ru nanoparticles graphene composites are expected to exhibit both high stability and superior catalytic performance in hydrogenation of arenes. © 2012 The Royal Society of Chemistry.

  18. Microchannel Reactor System for Catalytic Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Adeniyi Lawal; Woo Lee; Ron Besser; Donald Kientzler; Luke Achenie

    2010-12-22

    We successfully demonstrated a novel process intensification concept enabled by the development of microchannel reactors, for energy efficient catalytic hydrogenation reactions at moderate temperature, and pressure, and low solvent levels. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for hydrogenation of onitroanisole and a proprietary BMS molecule. In the second phase of the program, as a prelude to full-scale commercialization, we designed and developed a fully-automated skid-mounted multichannel microreactor pilot plant system for multiphase reactions. The system is capable of processing 1 – 10 kg/h of liquid substrate, and an industrially relevant immiscible liquid-liquid was successfully demonstrated on the system. Our microreactor-based pilot plant is one-of-akind. We anticipate that this process intensification concept, if successfully demonstrated, will provide a paradigm-changing basis for replacing existing energy inefficient, cost ineffective, environmentally detrimental slurry semi-batch reactor-based manufacturing practiced in the pharmaceutical and fine chemicals industries.

  19. Numerical Study of Passive Catalytic Recombiner for Hydrogen Mitigation

    Directory of Open Access Journals (Sweden)

    Pavan K Sharma

    2010-10-01

    Full Text Available A significant amount of hydrogen is expected to be released within the containment of a water cooled power reactor after a severe accident. To reduce the risk of deflagration/detonation various means for hydrogen control have been adopted all over the world. Passive catalytic recombiner with vertical flat catalytic plate is one of such hydrogen mitigating device. Passive catalytic recombiners are designed for the removal of hydrogen generated in order to limit the impact of possible hydrogen combustion. Inside a passive catalytic recombiner, numerous thin steel sheets coated with catalyst material are vertically arranged at the bottom opening of a sheet metal housing forming parallel flow channels for the surrounding gas atmosphere. Already below conventional flammability limits, hydrogen and oxygen react exothermally on the catalytic surfaces forming harmless steam. Detailed numerical simulations and experiments are required for an in-depth knowledge of such plate type catalytic recombiners. Specific finite volume based in-house CFD code has been developed to model and analyse the working of these recombiner. The code has been used to simulate the recombiner device used in the Gx-test series of Battelle-Model Containment (B-MC experiments. The present paper briefly describes the working principle of such passive catalytic recombiner and salient feature of the CFD model developed at Bhabha Atomic Research Centre (BARC. Finally results of the calculations and comparison with existing data are discussed.

  20. Opportunities Offered by Chiral η6-Arene/N-Arylsulfonyl-diamine-RuII Catalysts in the Asymmetric Transfer Hydrogenation of Ketones and Imines

    Directory of Open Access Journals (Sweden)

    Libor Červený

    2011-06-01

    Full Text Available Methods for the asymmetric transfer hydrogenation (ATH of ketones and imines are still being intensively studied and developed. Of foremost interest is the use of Noyori’s [RuCl(η6-arene(N-TsDPEN] complexes in the presence of a hydrogen donor (i-PrOH, formic acid. These complexes have found numerous practical applications and have been extensively modified. The resulting derivatives have been heterogenized, used in ATH in water or ionic liquids and even some attempts have been made to approach the properties of biocatalysts. Therefore, an appropriate modification of the catalyst that suits the specific requirements for the reaction conditions is very often readily available. The mechanism of the reaction has also been explored to a great extent. Model substrates, acetophenone (a ketone and 6,7-dimethoxy-1-methyl-3,4-dihydroisoquinoline (an imine, are both reduced by this Ru catalytic system with almost perfect selectivity. However, in each case the major product is a different enantiomer (S- for an alcohol, R- for an amine when the S,S-catalyst is used, which demanded an in-depth mechanistic investigation. Full-scale molecular modelling of this system enabled us to visualize the plausible 3D structures of the transition states, allowing the proposition of a viable explanation of previous experimental findings.

  1. O-H...π(arene) intermolecular hydrogen bonding in the structure of 1,1,2-triphenylethanol

    OpenAIRE

    Ferguson, George; Gallagher, John F.; Glidewell, Christopher; Zakaria, Choudhury M.

    1994-01-01

    The 1,1,2-triphenylethanol molecule, Ph2(PhCH2)COH (I), forms centrosymmetric dimers in the solid state. The shortest O-..O separation, 5.837 (3)A,, is too long for any O--H..-O hydrogen-bond formation. Instead, there are O--H~..π(arene) interactions between the hydroxyl group of one molecule and a phenyl group of a centrosymmetrically related molecule. The O...C and H-..C distances between the hydroxyl group and the closest phenyl-ring C atom are 3.525 (4) and 2.73 (4...

  2. Short hydrogen bonds in the catalytic mechanism of serine proteases

    Directory of Open Access Journals (Sweden)

    VLADIMIR LESKOVAC

    2008-04-01

    Full Text Available The survey of crystallographic data from the Protein Data Bank for 37 structures of trypsin and other serine proteases at a resolution of 0.78–1.28 Å revealed the presence of hydrogen bonds in the active site of the enzymes, which are formed between the catalytic histidine and aspartate residues and are on average 2.7 Å long. This is the typical bond length for normal hydrogen bonds. The geometric properties of the hydrogen bonds in the active site indicate that the H atom is not centered between the heteroatoms of the catalytic histidine and aspartate residues in the active site. Taken together, these findings exclude the possibility that short “low-barrier” hydrogen bonds are formed in the ground state structure of the active sites examined in this work. Some time ago, it was suggested by Cleland that the “low-barrier hydrogen bond” hypothesis is operative in the catalytic mechanism of serine proteases, and requires the presence of short hydrogen bonds around 2.4 Å long in the active site, with the H atom centered between the catalytic heteroatoms. The conclusions drawn from this work do not exclude the validity of the “low-barrier hydrogen bond” hypothesis at all, but they merely do not support it in this particular case, with this particular class of enzymes.

  3. Hydrogen-bonded 1D and 2D Assemblies of Tetra- iso-butyl-resorcin[4]arene in the Crystalline State

    Institute of Scientific and Technical Information of China (English)

    LIU Xiang; LIU Yu-Jie; ZHANG Qian-Feng

    2005-01-01

    X-ray crystal structures of co-crystals involving tetra-iso-butyl-resorcin[4]arene 1 with both acetone and acetonitrile solvents were reported. The component 1(2(CH3)2CO 2 assembles such that the resorcin[4]arene adopts a C2v conformation and the acetone serves as hydrogen bond acceptors, forming a 1D hydrogen-bonded polymer. 2 (C50H68O10) crystallizes in the triclinic, space group P with a = 10.0440(7), b = 13.7498(9), c = 17.6374(12) (A), α = 77.726(2), β = 86.733(2), γ = 88.634(2)°, V = 2376.1(3) (A)3, Dc = 1.159 g/cm3, and Z = 2. The assembly process of component 1(2CH3CN(H2O 3 yields a 2D hydrogen-bonded polymer formed by intermolecular hydrogen bonds between resorcin[4]arene and water molecules. In the case of component 3, the acetonitrile molecule serves as guest inside the bowl of resorcin[4]arene host. 3 (C48H64N2O9) crystallizes in the monoclinic, space group P2/n with a = 13.7570(18), b = 9.0961(12), c = 19.453(3) (A), β = 103.017(3)°, V = 2371.7(5) (A)3, Dc = 1.138 g/cm3, and Z = 2.

  4. Review of literature on catalytic recombination of hydrogen--oxygen

    International Nuclear Information System (INIS)

    The results are reported of a literature search for information concerning the heterogeneous, gas phase, catalytic hydrogen-oxygen recombination. Laboratory scale experiments to test the performance of specific metal oxide catalysts under conditions simulating the atmosphere within a nuclear reactor containment vessel following a loss-of-coolant blowdown accident are suggested

  5. Catalytic, Interrupted Formal Homo-Nazarov Cyclization with (Hetero)arenes: Access to α-(Hetero)aryl Cyclohexanones.

    Science.gov (United States)

    Williams, Corey W; Shenje, Raynold; France, Stefan

    2016-09-16

    The first examples of a Lewis-acid catalyzed (hetero)arene interrupted, formal homo-Nazarov cyclization have been disclosed. Using SnCl4 as the catalyst, alkenyl cyclopropyl ketones undergo ring-opening cyclization to form six-membered cyclic oxyallyl cations. Subsequent intermolecular Friedel-Crafts-type arylation with various electron-rich arenes and heteroarenes provides functionalized α-(hetero)arylated cyclohexanones, a scaffold present in many natural products and bioactive compounds, in yields up to 88% and diastereomeric ratios up to 12:1. Regiospecific arylation occurs at the α-carbon of the oxyallyl cation due to polarization caused by the ester group. PMID:27529123

  6. Catalytic Hydrogenation Reaction of Naringin-Chalcone. Study of the Electrochemical Reaction

    OpenAIRE

    B. A. López de Mishima; H. T. Mishima; A. N. Giannuzzo; M. A. Nazareno

    2000-01-01

    The electrocatalytic hydrogenation reaction of naringin derivated chalcone is studied. The reaction is carried out with different catalysts in order to compare with the classic catalytic hydrogenation.

  7. Catalytic hydrogen evolution by polyaminoacids using mercury electrode

    Directory of Open Access Journals (Sweden)

    Marko Živanovič

    2010-12-01

    Full Text Available It was shown that using constant current chronopotentiometricstripping (CPS peptides and proteins at nanomolar concentrations produce protein structure–sensitive peak H at mercury electrodes. This peak is due to the catalytic hydrogen evolution reaction (HER. Polyamino acids can be considered as an intermediate model system between peptides and macromolecular proteins. Here we used polyamino acids (poly(aa such as polylysine (polyLys and polyarginine (polyArg and cyclic voltammetry or CPS in combination with hanging mercury drop electrode to explore how different amino acid residues in proteins contribute to the catalyticHER.

  8. Catalytic Hydrogenation of Acetone to Isopropanol: An Environmentally Benign Approach

    Directory of Open Access Journals (Sweden)

    Ateeq Rahman

    2011-01-01

    Full Text Available The catalytic hydrogenation of acetone is an important area of catalytic process to produce fine chemicals. Hydrogenation of acetone has important applications for heat pumps, fuel cells or in fulfilling the sizeable demand for the production of 2-propanol. Catalytic vapour phase hydrogenation of acetone has gained attention over the decades with variety of homogeneous catalysts notably Iridium, Rh, Ru complexes and heterogeneous catalysts comprising of Raney Nickel, Raney Sponge, Ni/Al2O3, Ni/SiO2, or Co-Al2O3, Pd, Rh, Ru, Re, or Fe/Al2O3 supported on SiO2 or MgO and even CoMgAl, NiMg Al layered double hydroxide, Cu metal, CuO, Cu2O. Nano catalysts are developed for actone reduction Ni maleate, cobalt oxide prepared in organic solvents. Author present a review on acetone hydrogenation under different conditions with various homogeneous and heterogeneous catalysts studied so far in literature and new strategies to develop economic and environmentally benign approach. ©2010 BCREC UNDIP. All rights reserved(Received: 16th June 2010, Revised: 18th October 2010; Accepted: 25th October 2010[How to Cite:Ateeq Rahman. (2010. Catalytic Hydrogenation of Acetone to Isopropanol: An Environmentally Benign Approach. Bulletin of Chemical Reaction Engineering and Catalysis, 5(2: 113-126. doi:10.9767/bcrec.5.2.798.113-126][DOI: http://dx.doi.org/10.9767/bcrec.5.2.798.113-126 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/798

  9. Catalytic Combustion for Ultra-Low NOx Hydrogen Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Etemad, Shahrokh; Baird, Benjamin; Alavandi, Sandeep

    2011-06-30

    Precision Combustion, Inc., (PCI) in close collaboration with Solar Turbines, Incorporated, has developed and demonstrated a combustion system for hydrogen fueled turbines that reduces NOx to low single digit level while maintaining or improving current levels of efficiency and eliminating emissions of carbon dioxide. Full scale Rich Catalytic Hydrogen (RCH1) injector was developed and successfully tested at Solar Turbines, Incorporated high pressure test facility demonstrating low single digit NOx emissions for hydrogen fuel in the range of 2200F-2750F. This development work was based on initial subscale development for faster turnaround and reduced cost. Subscale testing provided promising results for 42% and 52% H2 with NOx emissions of less than 2 ppm with improved flame stability. In addition, catalytic reactor element testing for substrate oxidation, thermal cyclic injector testing to simulate start-stop operation in a gas turbine environment, and steady state 15 atm. operation testing were performed successfully. The testing demonstrated stable and robust catalytic element component life for gas turbine conditions. The benefit of the catalytic hydrogen combustor technology includes capability of delivering near-zero NOx without costly post-combustion controls and without requirement for added sulfur control. In addition, reduced acoustics increase gas turbine component life. These advantages advances Department of Energy (DOE’s) objectives for achievement of low single digit NOx emissions, improvement in efficiency vs. postcombustion controls, fuel flexibility, a significant net reduction in Integrated Gasification Combined Cycle (IGCC) system net capital and operating costs, and a route to commercialization across the power generation field from micro turbines to industrial and utility turbines.

  10. Catalytic hydrogenation reactors for the fine chemicals industries. Their design and operation.

    OpenAIRE

    Westerterp, K.R.; Molga, E.J.; Gelder, van, M.

    1997-01-01

    The design and operation of reactors for catalytic, hydrogenation in the fine chemical industries are discussed. The requirements for a good multiproduct catalytic hydrogenation unit as well as the choice of the reactor type are considered. Packed bed bubble column reactors operated without hydrogen recycle are recommended as the best choice to obtain a flexible reactor with good selectivities. The results of an experimental study of the catalytic hydrogenation of 2,4-dinitrotoluene in a mini...

  11. Catalytic hydrogen peroxide decomposition on La1-xSrxCo03-d perovskite oxides

    NARCIS (Netherlands)

    Dam, Van-Ahn. T.; Olthuis, W.; Bergveld, P.; Berg, van den A.

    2005-01-01

    Lanthanide perovskite oxides are mentioned as material for hydrogen peroxide sensor because they can catalytically decompose hydrogen peroxide in an aqueous medium. The catalytic properties of these perovskite oxides to hydrogen peroxide are suggested due to their oxygen vacancies influenced by the

  12. Catalytic hydrogenation of uranyl nitrate - engineering scale studies

    International Nuclear Information System (INIS)

    Uranous nitrate is employed as partitioning agent for the separation of plutonium from uranium in PUREX process, the conventional process for the reprocessing of spent nuclear fuel. It is currently produced from uranyl nitrate solution by the electrochemical route. Since the conversion is only 50%, an innovative method based on catalytic hydrogenation has been developed. Parametric studies have been carried out on 5 L scale using natural uranyl nitrate solution as fed. Based on these studies, number of runs were carried out on engineering scale using contaminated uranyl nitrate solution. More than 100 kg of uranous nitrate has been made. Performance of the reduction process is described in detail. (author)

  13. CATALYTIC HYDROGENATION OF ACRYLATE ASMMETRIC Dd(Ⅱ)—CHELATING RESINS CONTAINING AMINO ACID LIGANDS

    Institute of Scientific and Technical Information of China (English)

    Wangying; WangHongzuo; 等

    1995-01-01

    The catalytic hydrogenation of palladium chelating resins containing chiral amino acid ligands based on lower crosslinked poly(chloroethyl acrylate) and some effects on the rate of hydrogenation were studied.

  14. Catalytic Hydrogenation Reaction of Naringin-Chalcone. Study of the Electrochemical Reaction

    Directory of Open Access Journals (Sweden)

    B. A. López de Mishima

    2000-03-01

    Full Text Available The electrocatalytic hydrogenation reaction of naringin derivated chalcone is studied. The reaction is carried out with different catalysts in order to compare with the classic catalytic hydrogenation.

  15. A Hydrogen Ion-Selective Poly(Vinyl Chloride) Membrane Electrode Based on Calix[4]arene as a Perchlorate Ion-Selective Electrode

    OpenAIRE

    CANEL, Esin; ERDEN, Sevcan; ÖZEL, Ayça DEMİREL; MEMON, Sahahabuddin

    2008-01-01

    A hydrogen ion-selective electrode was prepared using 5,11,17,23-tetra-tert-butyl-25,26,27,28-tetracyanometoxy-calix[4]arene and the possibility of its use as a perchlorate ion-selective electrode was investigated using its characteristic of becoming perchlorate sensitive in acidic regions. The electrode of the optimum characteristic had a composition of 1% ionophore, 66% o-NPOE, and 33% PVC. This electrode exhibited a linear response over the range 1.0 \\times 10-1-1.0 \\times 10-5 M o...

  16. High Selective Determination of Anionic Surfactant Using Its Parallel Catalytic Hydrogen Wave

    Institute of Scientific and Technical Information of China (English)

    过玮; 何盈盈; 宋俊峰

    2003-01-01

    A faradaic response of anionic surfactants (AS), such as linear aikylbenzene sulfonate (LAS), dodecyl benzene sulfonate and dodecyl sulfate, was observed in weak acidic medium. The faradaic response of AS includes (1) a catalytic hydrogen wave of AS in HAc/NaAc buffer that was attributed to the reduction of proton associated with the sulfo-group of AS, and (2) a parallel catalytic hydrogen wave of AS in the presence of hydrogen peroxide, which was due to the catalysis of the catalytic hydrogen wave of AS by hydroxyl radical OH electrogenerated in the reduction of hydrogen peroxide. The parallel catalytic hydrogen wave is about 50 times as sensitive as the catalytic hydrogen wave. Based on the parallel catalytic hydrogen wave, a high selective method for the determination of AS was developed. In 0.1mol/L HAc/NaAc (pH=6.2±0.1)/1.0×10-3mol/L H2O2 supporting electrolyte, the second-order derivative peak current of the parallel catalytic hydrogen wave located at-1.33 V (vs. SCE) was rectilinear to AS concentration in the range of 3.0×10-6-2.5×10-4mol/L, without the interference of other surfactants. The proposed method was evaluated by quantitative analysis of AS in environmental wastewater.

  17. Modelling of the aerosol deposition in a hydrogen catalytic recombiner

    Energy Technology Data Exchange (ETDEWEB)

    Vendel, J.; Studer, E.; Zavaleta, P. [Inst. de Protection et de Surete Nucleaire, Dept. de Prevention et d' Etudes des Accidents, Gif-sur-Yvette Cedex (France); Hadida, Ph. [Quasar Informatique, Paris (France)

    1997-03-01

    Catalytic recombiners are used to remove the hydrogen released in case of a severe accident in a nuclear power plant, so as to reduce the risk of deflagration or detonation. H{sub 2}PAR experiments are carried out to precise the behaviour of recombiners in term of poisoning by aerosols. Firstly, some calculations have been done with the Trio-EF code to assess the structure of convection loops in the experimental tent. We note that when the recombiner is active, it may have a strong influence on the flow inside the tent and may even interact with an other heat source such as a furnace. In the second part, we study the deposition of aerosols on catalytic plates for a given recombiner, when it is active or passive. We list the different mechanisms and quantify them by introducing the deposition velocity. In fact, thermophoresis appears to be the main mechanism, compared to brownian diffusion or difrusiophoresis, which governs aerosols deposition. It favours deposition on <> plates and acts against it for <> plates. (author)

  18. Experimental studies on catalytic hydrogen recombiners for light water reactors

    International Nuclear Information System (INIS)

    In the course of core melt accidents in nuclear power plants a large amount of hydrogen can be produced and form an explosive or even detonative gas mixture with aerial oxygen in the reactor building. In the containment atmosphere of pressurized water reactors hydrogen combines a phlogistically with the oxygen present to form water vapor even at room temperature. In the past, experimental work conducted at various facilities has contributed little or nothing to an understanding of the operating principles of catalytic recombiners. Hence, the purpose of the present study was to conduct detailed investigations on a section of a recombiner essentially in order to deepen the understanding of reaction kinetics and heat transport processes. The results of the experiments presented in this dissertation form a large data base of measurements which provides an insight into the processes taking place in recombiners. The reaction-kinetic interpretation of the measured data confirms and deepens the diffusion theory - proposed in an earlier study. Thus it is now possible to validate detailed numeric models representing the processes in recombiners. Consequently the present study serves to broaden and corroborate competence in this significant area of reactor technology. In addition, the empirical knowledge thus gained may be used for a critical reassessment of previous numeric model calculations. (orig.)

  19. Recent advances in catalytic asymmetric hydrogenation:Renaissance of the monodentate phosphorus ligands

    Institute of Scientific and Technical Information of China (English)

    GUO Hongchao; DING Kuiling; DAI Lixin

    2004-01-01

    The history for the development of chiral phosphorus ligands in catalytic asymmetric hydrogenation is briefly highlighted. This review focuses on the recent advances in the synthesis of the monodentate phosphorus ligands and their applications in catalytic asymmetric hydrogenation. The examples highlighted in this article clearly demonstrated the importance and advantages of monodentate phosphorus ligands, which had been ignored for 30 a and experienced a renaissance at the very beginning of this millennium, particularly in the area of asymmetric hydrogenation.

  20. Hydrogen production by catalytic gasification of cellulose in supercritical water

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Cellulose,one of the important components of biomass,was gasified in supercritical water to produce hydrogen-rich gas in an autoclave which was operated batch-wise under high-pressure.K2CO3 and Ca(OH)2 were selected as the catalysts (or promoters).The temperature was kept between 450℃ and 500℃ while pressure was maintained at 24-26 MPa.The reaction time was 20 min.Experimental results showed that the two catalysts had good catalytic effect and optimum amounts were observed for each catalyst.When 0.2 g K2CO3 was added,the hydrogen yield could reach 9.456 mol.kg-1 which was two times of the H2 amount produced without catalyst.When 1.6 g Ca(OH)2 was added,the H2 yield was K2CO3 as catalyst but is still 1.7 times that achieved without catalyst.Comparing with the results obtained using KaCO3 or Ca(OH)2 alone,the use of a combination of K2CO3 and Ca(OH)2 could increase the H2 yield by up to 2.5 times that without catalyst and 25% and 45% more than that obtained using K2CO3 and Ca(OH)2 alone,respectively.It was found that methane was the dominant product at relatively low temperature.When the temperature was increased,the methane reacts with water and is converted to hydrogen and carbon dioxide.

  1. Alloying effects on hydrogen permeability of V without catalytic Pd overlayer

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Y.; Yukawa, H.; Suzuki, A. [Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Nambu, T. [Department of Materials Science and Engineering, Suzuka National College of Technology, Shiroko-cho, Suzuka, Mie 510-0294 (Japan); Matsumoto, Y. [Department of Mechanical Engineering, Oita National College of Technology, Maki, Oita 870-0152 (Japan); Murata, Y. [Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan)

    2015-10-05

    Highlights: • Air–treated V–based alloy membranes without catalytic Pd overlayer are found to possess excellent hydrogen permeability. • They also exhibit good durability at high temperature. • Alloying effects are discussed in view of the new description of hydrogen permeation based on hydrogen chemical potential. - Abstract: Hydrogen permeability of air–treated V–based alloy membranes without Pd coating have been investigated. The diffusion–limiting hydrogen permeation reaction takes place even without catalytic Pd overlayer on the surface. It is shown that pure V and its alloy membranes without Pd overlayer possess excellent hydrogen permeability and good durability at high temperature. The new description of hydrogen permeation based on hydrogen chemical potential has been applied and the hydrogen flux is analyzed in terms of the mobility of hydrogen atom and the PCT factor, f{sub PCT}.

  2. One-dimensional Hydrogen-bonded Polymer Based on Tetra-iso-butyl-resorcin[4]arene and 2,6-Diacetylpyridine

    Institute of Scientific and Technical Information of China (English)

    刘书群; 姚文锐; 张千峰

    2005-01-01

    The co-crystallization of tetra-iso-butyl-resorcin[4]arene 1 and 2,6-diacetyl- pyridine (Ac2py) from MeCN/CH2Cl2 yielded a multi-component complex 1(Ac2py(2H2O(0.5Me-CN 2, in which the upper rim of 1 is extended supramolecularly by way of hydrogen bonds. Complex 2 (C52H66.5N1.5O14) crystallizes in monoclinic, space group P21/m with a = 10.845(9), b = 20.805(17), c = 12.881(11) (A), β = 103.884(19)o, V = 2821(4) (A)3, Dc = 1.102 g/cm3 and Z = 2. The molecular structure shows that the two adjacent double-stranded arrays as well as linear and zigzag chains generated from Ac2py and water bridging to two resorcin[4] arene molecules, respectively, facilitate self-inclusion of one-dimensional hydrogen-bonded polymer.

  3. Skeletal Isomerization and Inter-molecular Hydrogen Transfer Reactions in Catalytic Cracking

    Institute of Scientific and Technical Information of China (English)

    Gao Yongcan; Zhang Jiushun; Xie Chaogang; Long Jun

    2002-01-01

    Bimolecular hydrogen transfer and skeletal isomerization are the important secondary reac tions among catalytic cracking reactions, which affect product yield distribution and product quality.Catalyst properties and operating parameters have great impact on bimolecular hydrogen transfer and skeletal isomerization reactions. Bimolecular hydrogen transfer activity and skeletal isomerization activity of USY-containing catalysts are higher than that of ZSM-5-containing catalyst. Coke deposition on the active sites of catalyst may suppress bimolecular hydrogen transfer activity and skeletal isomerization activity of catalyst in different degrees. Short reaction time causes a decrease of hydrogen trans fer reaction, but an increase of skeletal isomerization reaction compared to cracking reaction in catalytic cracking process.

  4. Catalytic Hydrogenation of Organic Compounds without H2 Supply: An Electrochemical System

    Science.gov (United States)

    Navarro, Daniela Maria do Amaral Ferraz; Navarro, Marcelo

    2004-01-01

    An experiment developed for an undergraduate organic chemistry laboratory course that can be used to introduce the catalytic hydrogenation reaction, catalysis electrochemical principles and gas chromatography is presented. The organic compounds hydrogenated by the electrocatalytic hydrogenation (ECH) process were styrene, benzaldehyde and…

  5. A detailed study of the diastereoselective catalytic hydrogenation of 6-hydroxytetrahydroisoquinoline-(3R)-carboxylic ester intermediates

    NARCIS (Netherlands)

    Lefort, Laurent; Sereinig, Natascha; Straatman, Harrie; Ager, David J.; Vries, Johannes G. de; Werner, John A.; Scherer, Roger B.; Maloney, Todd D.; Argentine, Mark D.; Sullivan, Kevin A.; Fennell, Jared W.

    2012-01-01

    A key step towards a highly-selective antagonist of ionotropic glutamate receptors entails the diastereoselective arene hydrogenation of an enantiopure tetrahydroisoquinoline. An extensive screen using parallel reactors was conducted and led to the discovery of several Pd/C catalysts giving high yie

  6. Exploring new avenues for Arene-Ruthenium complexes: coordination to [60]fullerene, hydrogen bonding assemblies and liquid-crystalline materials

    OpenAIRE

    Appavoo-Gupta, Divambal; Deschenaux, Robert

    2016-01-01

    The thesis aims at using arene-ruthenium complexes as building blocks for the synthesis of diverse compounds to obtain potential mesomorphic and/or biological properties. The thesis consists of three main projects. The first project deals with supramolecular assemblies. New supramolecular di- and tetranuclear ruthenium arrangements, the latter bearing a cavity, were designed. H-bonding was the key interaction involved in the synthesis of the spacer ligands, which exist as dimers. Different s...

  7. Synthesis and Catalytic Hydrogen Transfer Reaction of Ruthenium(II) Complex

    Energy Technology Data Exchange (ETDEWEB)

    Son, Jung Ik; Kim, Aram; Noh, Hui Bog; Lee, Hyun Ju; Shim, Yoon Bo; Park, Kang Hyun [Pusan National University, Busan (Korea, Republic of)

    2012-01-15

    The ruthenium(II) complex [Ru(bpy){sub 2}-(PhenTPy)] was synthesized, and used for the transfer hydrogenation of ketones and the desired products were obtained in good yield. Based on the presented results, transition-metal complexes can be used as catalysts for a wide range of organic transformations. The relationship between the electro-reduction current density and temperature are being examined in this laboratory. Attempts to improve the catalytic activity and determine the transfer hydrogenation mechanism are currently in progress. The catalytic hydrogenation of a ketone is a basic and critical process for making many types of alcohols used as the final products and precursors in the pharmaceutical, agrochemical, flavor, fragrance, materials, and fine chemicals industries. The catalytic hydrogenation process developed by Noyori is a very attractive process. Formic acid and 2-propanol have been used extensively as hydrogenation sources. The advantage of using 2-propanol as a hydrogen source is that the only side product will be acetone, which can be removed easily during the workup process. Hydrogen transfer (HT) catalysis, which generates alcohols through the reduction of ketones, is an attractive protocol that is used widely. Ruthenium(II) complexes are the most useful catalysts for the hydrogen transfer (HT) of ketones. In this method, a highly active catalytic system employs a transition metal as a catalyst to synthesize alcohols, and is a replacement for the hydrogen-using hydrogenation process. The most active system is based on Ru, Rh and Ir, which includes a nitrogen ligand that facilitates the formation of a catalytically active hydride and phosphorus.

  8. Synthesis and Catalytic Hydrogen Transfer Reaction of Ruthenium(II) Complex

    International Nuclear Information System (INIS)

    The ruthenium(II) complex [Ru(bpy)2-(PhenTPy)] was synthesized, and used for the transfer hydrogenation of ketones and the desired products were obtained in good yield. Based on the presented results, transition-metal complexes can be used as catalysts for a wide range of organic transformations. The relationship between the electro-reduction current density and temperature are being examined in this laboratory. Attempts to improve the catalytic activity and determine the transfer hydrogenation mechanism are currently in progress. The catalytic hydrogenation of a ketone is a basic and critical process for making many types of alcohols used as the final products and precursors in the pharmaceutical, agrochemical, flavor, fragrance, materials, and fine chemicals industries. The catalytic hydrogenation process developed by Noyori is a very attractive process. Formic acid and 2-propanol have been used extensively as hydrogenation sources. The advantage of using 2-propanol as a hydrogen source is that the only side product will be acetone, which can be removed easily during the workup process. Hydrogen transfer (HT) catalysis, which generates alcohols through the reduction of ketones, is an attractive protocol that is used widely. Ruthenium(II) complexes are the most useful catalysts for the hydrogen transfer (HT) of ketones. In this method, a highly active catalytic system employs a transition metal as a catalyst to synthesize alcohols, and is a replacement for the hydrogen-using hydrogenation process. The most active system is based on Ru, Rh and Ir, which includes a nitrogen ligand that facilitates the formation of a catalytically active hydride and phosphorus

  9. Demonstration of the Catalytic Decomposition of Hydrogen Peroxide.

    Science.gov (United States)

    Conklin, Alfred R. Jr.; Kessinger, Angela

    1996-01-01

    Describes a demonstration known as Elephant's Toothpaste in which the decomposition of hydrogen peroxide is catalyzed by iodide. Oxygen is released and soap bubbles are produced. The foam produced is measured, and results show a good relationship between the amount of foam and the concentration of the hydrogen peroxide. (DDR)

  10. Catalytic hydrogenation using complexes of base metals with tridentate ligands

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, Kalyan V.; Zhang, Guoqi; Hanson, Susan K.

    2016-09-06

    Complexes of cobalt and nickel with tridentate ligand PNHP.sup.R are effective for hydrogenation of unsaturated compounds. Cobalt complex [(PNHP.sup.Cy)Co(CH.sub.2SiMe.sub.3)]BAr.sup.F.sub.4 (PNHP.sup.Cy=bis[2-(dicyclohexylphosphino)ethyl]amine, BAr.sup.F.sub.4=B(3,5-(CF.sub.3).sub.2C.sub.6H.sub.3).sub.4)) was prepared and used with hydrogen for hydrogenation of alkenes, aldehydes, ketones, and imines under mild conditions (25-60.degree. C., 1-4 atm H.sub.2). Nickel complex [(PNHP.sup.Cy)Ni(H)]BPh.sub.4 was used for hydrogenation of styrene and 1-octene under mild conditions. (PNP.sup.Cy)Ni(H) was used for hydrogenating alkenes.

  11. Tunable Molecular MoS2 Edge-Site Mimics for Catalytic Hydrogen Production.

    Science.gov (United States)

    Garrett, Benjamin R; Polen, Shane M; Click, Kevin A; He, Mingfu; Huang, Zhongjie; Hadad, Christopher M; Wu, Yiying

    2016-04-18

    Molybdenum sulfides represent state-of-the-art, non-platinum electrocatalysts for the hydrogen evolution reaction (HER). According to the Sabatier principle, the hydrogen binding strength to the edge active sites should be neither too strong nor too weak. Therefore, it is of interest to develop a molecular motif that mimics the catalytic sites structurally and possesses tunable electronic properties that influence the hydrogen binding strength. Furthermore, molecular mimics will be important for providing mechanistic insight toward the HER with molybdenum sulfide catalysts. In this work, a modular method to tune the catalytic properties of the S-S bond in MoO(S2)2L2 complexes is described. We studied the homogeneous electrocatalytic hydrogen production performance metrics of three catalysts with different bipyridine substitutions. By varying the electron-donating abilities, we present the first demonstration of using the ligand to tune the catalytic properties of the S-S bond in molecular MoS2 edge-site mimics. This work can shed light on the relationship between the structure and electrocatalytic activity of molecular MoS2 catalysts and thus is of broad importance from catalytic hydrogen production to biological enzyme functions. PMID:27022836

  12. Preparation of Hydrogen through Catalytic Steam Reforming of Bio-oil

    Institute of Scientific and Technical Information of China (English)

    吴层; 颜涌捷; 李庭琛; 亓伟

    2007-01-01

    Hydrogen was prepared via catalytic steam reforming of bio-oil which was obtained from fast pyrolysis of biomass in a fluidized bed reactor. Influential factors including temperature, weight hourly space velocity (WHSV) of bio-oil, mass ratio of steam to bio-oil (S/B) as well as catalyst type on hydrogen selectivity and other desirable gas products were investigated. Based on hydrogen in stoichiometric potential and carbon balance in gaseous phase and feed, hydrogen yield and carbon selectivity were examined. The experimental results show that higher temperature favors the hydrogen selectivity by H2 mole fraction in gaseous products stream and it plays an important role in hydrogen yield and carbon selectivity. Higher hydrogen selectivity and yield, and carbon selectivity were obtained at lower bio-oil WHSV. In catalytic steam reforming system a maximum steam concentration value exists, at which hydrogen selectivity and yield, and carbon selectivity keep constant. Through experiments, preferential operation conditions were obtained as follows: temperature 800~850℃, bio-oil WHSV below 3.0 h-1, and mass ratio of steam to bio-oil 10~12. The performance tests indicate that Ni-based catalysts are optional, especially Ni/a-Al2O3 effective in the steam reforming process.

  13. Low temperature catalytic combustion of natural gas - hydrogen - air mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Newson, E.; Roth, F. von; Hottinger, P.; Truong, T.B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The low temperature catalytic combustion of natural gas - air mixtures would allow the development of no-NO{sub x} burners for heating and power applications. Using commercially available catalysts, the room temperature ignition of methane-propane-air mixtures has been shown in laboratory reactors with combustion efficiencies over 95% and maximum temperatures less than 700{sup o}C. After a 500 hour stability test, severe deactivation of both methane and propane oxidation functions was observed. In cooperation with industrial partners, scaleup to 3 kW is being investigated together with startup dynamics and catalyst stability. (author) 3 figs., 3 refs.

  14. Catalytic Metal Free Production of Large Cage Structure Carbon Particles: A Candidate for Hydrogen Storage

    Science.gov (United States)

    Kimura, Yuki; Nuth, Joseph A., III; Ferguson, Frank T.

    2005-01-01

    We will demonstrate that carbon particles consisting of large cages can be produced without catalytic metal. The carbon particles were produced in CO gas as well as by introduction of 5% methane gas into the CO gas. The gas-produced carbon particles were able to absorb approximately 16.2 wt% of hydrogen. This value is 2.5 times higher than the 6.5 wt% goal for the vehicular hydrogen storage proposed by the Department of Energy in the USA. Therefore, we believe that this carbon particle is an excellent candidate for hydrogen storage for fuel cells.

  15. Molecular catalytic hydrogenation of aromatic hydrocarbons and hydrotreating of coal liquids.

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shiyong; Stock, L.M.

    1996-05-01

    This report presents the results of research on the development of new catalytic pathways for the hydrogenation of multiring aromatic hydrocarbons and the hydrotreating of coal liquids at The University of Chicago under DOE Contract No. DE-AC22-91PC91056. The work, which is described in three parts, is primarily concerned with the research on the development of new catalytic systems for the hydrogenation of aromatic hydrocarbons and for the improvement of the quality of coal liquids by the addition of dihydrogen. Part A discusses the activation of dihydrogen by very basic molecular reagents to form adducts that can facilitate the reduction of multiring aromatic hydrocarbons. Part B examines the hydrotreating of coal liquids catalyzed by the same base-activated dihydrogen complexes. Part C concerns studies of molecular organometallic catalysts for the hydrogenation of monocyclic aromatic hydrocarbons under mild conditions.

  16. Selective catalytic reduction of nitrogen oxides from industrial gases by hydrogen or methane

    International Nuclear Information System (INIS)

    This work deals with the selective catalytic reduction of nitrogen oxides (NOx), contained in the effluents of industrial plants, by hydrogen or methane. The aim is to replace ammonia, used as reducing agent, in the conventional process. The use of others reducing agents such as hydrogen or methane is interesting for different reasons: practical, economical and ecological. The catalyst has to convert selectively NO into N2, in presence of an excess of oxygen, steam and sulfur dioxide. The developed catalyst is constituted by a support such as perovskites, particularly LaCoO3, on which are dispersed noble metals (palladium, platinum). The interaction between the noble metal and the support, generated during the activation of the catalyst, allows to minimize the water and sulfur dioxide inhibitor phenomena on the catalytic performances, particularly in the reduction of NO by hydrogen. (O.M.)

  17. Catalytic Hydrogenation of Bio-Oil for Chemicals and Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.

    2006-02-14

    The scope of work includes optimizing processing conditions and demonstrating catalyst lifetime for catalyst formulations that are readily scaleable to commercial operations. We use a bench-scale, continuous-flow, packed-bed, catalytic, tubular reactor, which can be operated in the range of 100-400 mL/hr., from 50-400 C and up to 20MPa (see Figure 1). With this unit we produce upgraded bio-oil from whole bio-oil or useful bio-oil fractions, specifically pyrolytic lignin. The product oils are fractionated, for example by distillation, for recovery of chemical product streams. Other products from our tests have been used in further testing in petroleum refining technology at UOP and fractionation for product recovery in our own lab. Further scale-up of the technology is envisioned and we will carry out or support process design efforts with industrial partners, such as UOP.

  18. Hydrogen Recombination Rates of Plate-type Passive Auto-catalytic Recombiner

    International Nuclear Information System (INIS)

    The hydrogen mitigation system may include igniters, passive autocatalytic recombiner (PAR), and venting or dilution system. Recently PAR is commonly used as a main component of HMS in a NPP containment because of its passive nature. PARs are categorized by the shape and material of catalytic surface. Catalytic surface coated by platinum is mostly used for the hydrogen recombiners. The shapes of the catalytic surface can be grouped into plate type, honeycomb type and porous media type. Among them, the plate-type PAR is well tested by many experiments. PAR performance analysis can be approached by a multi-scale method which is composed of micro, meso and macro scales. The criterion of the scaling is the ratio of thickness of boundary layer developed on a catalytic surface to representative length of a computational domain. Mass diffusion in the boundary layer must be resolved in the micro scale analysis. In a lumped parameter (LP) analysis using a system code such as MAAP or MELCOR, the chamber of the PAR is much smaller than a computational node. The hydrogen depletion by a PAR is modeled as a source of mass and energy conservation equations. Te catalytic surface reaction of hydrogen must be modeled by a volume-averaged correlation. In this study, a micro scale analysis method is developed using libraries in OpenFOAM to evaluate a hydrogen depletion rate depending on parameters such as size and number of plates and plate arrangement. The analysis code is validated by simulating REKO-3 experiment. And hydrogen depletion analysis is conducted by changing the plate arrangement as a trial of the performance enhancement of a PAR. In this study, a numerical code for an analysis of a PAR performance in a micro scale has been developed by using OpenFOAM libraries. The physical and numerical models were validated by simulating the REKO-3 experiment. As a try to enhance the performance of the plate-type PAR, it was proposed to apply a staggered two-layer arrangement of the

  19. Hydrogen Recombination Rates of Plate-type Passive Auto-catalytic Recombiner

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongtae; Hong, Seong-Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Gun Hong [Kyungwon E-C Co., Seongnam (Korea, Republic of)

    2014-10-15

    The hydrogen mitigation system may include igniters, passive autocatalytic recombiner (PAR), and venting or dilution system. Recently PAR is commonly used as a main component of HMS in a NPP containment because of its passive nature. PARs are categorized by the shape and material of catalytic surface. Catalytic surface coated by platinum is mostly used for the hydrogen recombiners. The shapes of the catalytic surface can be grouped into plate type, honeycomb type and porous media type. Among them, the plate-type PAR is well tested by many experiments. PAR performance analysis can be approached by a multi-scale method which is composed of micro, meso and macro scales. The criterion of the scaling is the ratio of thickness of boundary layer developed on a catalytic surface to representative length of a computational domain. Mass diffusion in the boundary layer must be resolved in the micro scale analysis. In a lumped parameter (LP) analysis using a system code such as MAAP or MELCOR, the chamber of the PAR is much smaller than a computational node. The hydrogen depletion by a PAR is modeled as a source of mass and energy conservation equations. Te catalytic surface reaction of hydrogen must be modeled by a volume-averaged correlation. In this study, a micro scale analysis method is developed using libraries in OpenFOAM to evaluate a hydrogen depletion rate depending on parameters such as size and number of plates and plate arrangement. The analysis code is validated by simulating REKO-3 experiment. And hydrogen depletion analysis is conducted by changing the plate arrangement as a trial of the performance enhancement of a PAR. In this study, a numerical code for an analysis of a PAR performance in a micro scale has been developed by using OpenFOAM libraries. The physical and numerical models were validated by simulating the REKO-3 experiment. As a try to enhance the performance of the plate-type PAR, it was proposed to apply a staggered two-layer arrangement of the

  20. CATALYTIC BEHAVIOR OF A SILICA-SUPPORTED POLYTITAZANE-PLATINUM COMPLEX FOR THE HYDROGENATION OF PHENOL

    Institute of Scientific and Technical Information of China (English)

    CHEN Chunwei; HUANG Meiyu; JIANG Yingyan

    1996-01-01

    A new kind of inorganic polymer, viz. silica-supported polytitazane (Ti-N), and its platinum complex (Ti-N-Pt) were prepared. Cyclohexanone can be obtained in a maximum yield of about 62.2% in the hydrogenation of phenol over Ti-N-Pt at room temperature under atmospheric pressure. The effects of mole ratio of N/Pt in the complex, concentration of the catalyst and reaction temperature on the catalytic activity and selectivity have been studied. The complex can be reused several times without loss in its catalytic activity.

  1. Biomass to hydrogen via fast pyrolysis and catalytic steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Chornet, E.; Wang, D.; Montane, D. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1995-09-01

    Fast pyrolysis of biomass results in a pyrolytic oil which is a mixture of (a) carbohydrate-derived acids, aldehydes and polyols, (b) lignin-derived substituted phenolics, and (c) extractives-derived terpenoids and fatty acids. The conversion of this pyrolysis oil into H{sub 2} and CO{sub 2} is thermodynamically favored under appropriate steam reforming conditions. Our efforts have focused in understanding the catalysis of steam reforming which will lead to a successful process at reasonable steam/carbon ratios arid process severities. The experimental work, carried out at the laboratory and bench scale levels, has centered on the performance of Ni-based catalysts using model compounds as prototypes of the oxygenates present in the pyrolysis oil. Steam reforming of acetic acid, hydroxyacetaldehyde, furfural and syringol has been proven to proceed rapidly within a reasonable range of severities. Time-on-stream studies are now underway using a fixed bed barometric pressure reactor to ascertain the durability of the catalysts and thus substantiate the scientific and technical feasibility of the catalytic reforming option. Economic analyses are being carried out in parallel to determine the opportunity zones for the combined fast pyrolysis/steam reforming approach. A discussion on the current state of the project is presented.

  2. Oxidation of Group 8 transition-Metal Hydrides and Ionic Hydrogenation of Ketones and Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kjell-Tore

    1996-08-01

    Transition-metal hydrides have received considerable attention during the last decades because of their unusual reactivity and their potential as homogeneous catalysts for hydrogenation and other reactions of organic substrates. An important class of catalytic processes where transition-metal hydrides are involved is the homogeneous hydrogenation of alkenes, alkynes, ketones, aldehydes, arenes and nitro compounds. This thesis studies the oxidation of Group 8 transition-metal hydrides and the ionic hydrogenation of ketones and aldehydes.

  3. Formic Acid Free Flowsheet Development To Eliminate Catalytic Hydrogen Generation In The Defense Waste Processing

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Dan P.; Stone, Michael E.; Newell, J. David; Fellinger, Terri L.; Bricker, Jonathan M.

    2012-09-14

    The Defense Waste Processing Facility (DWPF) processes legacy nuclear waste generated at the Savannah River Site (SRS) during production of plutonium and tritium demanded by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass canisters is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. Testing was initiated to determine whether the elimination of formic acid from the DWPF's chemical processing flowsheet would eliminate catalytic hydrogen generation. Historically, hydrogen is generated in chemical processing of alkaline High Level Waste sludge in DWPF. In current processing, sludge is combined with nitric and formic acid to neutralize the waste, reduce mercury and manganese, destroy nitrite, and modify (thin) the slurry rheology. The noble metal catalyzed formic acid decomposition produces hydrogen and carbon dioxide. Elimination of formic acid by replacement with glycolic acid has the potential to eliminate the production of catalytic hydrogen. Flowsheet testing was performed to develop the nitric-glycolic acid flowsheet as an alternative to the nitric-formic flowsheet currently being processed at the DWPF. This new flowsheet has shown that mercury can be reduced and removed by steam stripping in DWPF with no catalytic hydrogen generation. All processing objectives were also met, including greatly reducing the Slurry Mix Evaporator (SME) product yield stress as compared to the baseline nitric/formic flowsheet. Ten DWPF tests were performed with nonradioactive simulants designed to cover a broad compositional range. No hydrogen was generated in testing without formic acid.

  4. Catalytic Response and Stability of Nickel/Alumina for the Hydrogenation of 5-Hydroxymethylfurfural in Water.

    Science.gov (United States)

    Perret, Noémie; Grigoropoulos, Alexios; Zanella, Marco; Manning, Troy D; Claridge, John B; Rosseinsky, Matthew J

    2016-03-01

    The catalytic response of Ni on Al2O3 obtained from Ni-Al layered double hydroxides was studied for the liquid-phase hydrogenation of hydroxymethyl furfural to tetrahydrofuran-2,5-diyldimethanol (THFDM) in water. The successive calcination and reduction of the precursors caused the removal of interlayer hydroxyl and carbonate groups and the reduction of Ni(2+) to Ni(0). Four reduced mixed oxide catalysts were obtained, consisting of different amount of Ni metal contents (47-68 wt%) on an Al-rich amorphous component. The catalytic activity was linked to Ni content whereas selectivity was mainly affected by reaction temperature. THFDM was formed in a stepwise manner at low temperature (353 K) whereas 3-hydroxymethyl cyclopentanone was generated at higher temperature. Coke formation caused deactivation; however, the catalytic activity can be regenerated using heat treatment. The results establish Ni on Al2O3 as a promising catalyst for the production of THFDM in water. PMID:26870940

  5. Research of Hydrogen Preparation with Catalytic Steam-Carbon Reaction Driven by Photo-Thermochemistry Process

    Directory of Open Access Journals (Sweden)

    Xiaoqing Zhang

    2013-01-01

    Full Text Available An experiment of hydrogen preparation from steam-carbon reaction catalyzed by K2CO3 was carried out at 700°C, which was driven by the solar reaction system simulated with Xenon lamp. It can be found that the rate of reaction with catalyst is 10 times more than that without catalyst. However, for the catalytic reaction, there is no obvious change for the rate of hydrogen generation with catalyst content range from 10% to 20%. Besides, the conversion efficiency of solar energy to chemical energy is more than 13.1% over that by photovoltaic-electrolysis route. An analysis to the mechanism of catalytic steam-carbon reaction with K2CO3 is given, and an explanation to the nonbalanced [H2]/[CO + 2CO2] is presented, which is a phenomenon usually observed in experiment.

  6. A new process for preparing dialdehyde by catalytic oxidation of cyclic olefins with aqueous hydrogen peroxide

    Institute of Scientific and Technical Information of China (English)

    YU, Hong-Kun; PANG, Zhen; HUANG, Zu-En; CAI, Rui-Fang

    2000-01-01

    A novel peroxo-nioboplosphate was synthesized for the first time and used as a catalyst in the oxidation reaction of cyclic olefins with aqueous hydrogen peroxide to prepare dialdehydes. The catalyst was characterized by elemental analysis,thermographic analyses, IR, UV/vis, 31P NMR and XPS ~ as [ π-C5H5N(CH2)i3CH3 ]2 [Nb406 (O2)2 (PO4)2] ·6H20 (PTNP). It showed high selectivity to glutaraldehyde in the catalytic oxidation of cyclopentene with aqueous hydrogen peroxide in ethanol.

  7. Exploiting high pressure advantages in catalytic hydrogenation of carbon dioxide to methanol

    OpenAIRE

    Bansode, Atul Baban

    2014-01-01

    The aim of this thesis was to develop highly efficient CO2 hydrogenation process towards methanol by making use of high pressure approach. A high pressure lab scale plant was developed to conduct CO2 hydrogenation up to 400 bar. High pressure and low temperature were found to be the favourable conditions to excellent catalytic activity. Improved reaction performance towards methanol synthesis and reverse water-gas shift reaction was observed for the Ba and K promoted Cu/Al2O3 catalysts, respe...

  8. Catalytic Transfer Hydrogenation with a Methandiide-Based Carbene Complex: An Experimental and Computational Study.

    Science.gov (United States)

    Weismann, Julia; Gessner, Viktoria H

    2015-11-01

    The transfer hydrogenation (TH) reaction of ketones with catalytic systems based on a methandiide-derived ruthenium carbene complex was investigated and optimised. The complex itself makes use of the noninnocent behaviour of the carbene ligand (M=CR2 →MH-C(H)R2 ), but showed only moderate activity, thus requiring long reaction times to achieve sufficient conversion. DFT studies on the reaction mechanism revealed high reaction barriers for both the dehydrogenation of iPrOH and the hydrogen transfer. A considerable improvement of the catalytic activity could be achieved by employing triphenylphosphine as additive. Mechanistic studies on the role of PPh3 in the catalytic cycle revealed the formation of a cyclometalated complex upon phosphine coordination. This ruthenacycle was revealed to be the active species under the reaction conditions. The use of the isolated complex resulted in high catalytic activities in the TH of aromatic as well as aliphatic ketones. The complex was also found to be active under base-free conditions, suggesting that the cyclometalation is crucial for the enhanced activity. PMID:26403918

  9. State of the art on hydrogen passive auto-catalytic recombiner (european union Parsoar project)

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, F.; Bachellerie, E. [Technicatome, 13 - Aix en Provence (France); Auglaire, M. [Tractebel Energy Engineering, Brussels (Belgium); Boeck, B. de [Association Vincotte Nuclear, Brussels (Belgium); Braillard, O. [CEA Cadarache, 13 - Saint Paul lez Durance (France); Eckardt, B. [Siemens AG, Offenbach am Main (Germany); Ferroni, F. [Electrowatt Engineering Limited, Zurich (Switzerland); Moffett, R. [Atomic Energy Canada Limited, Pinawa (Canada); Van Goethem, G. [European Commission, Brussels (Belgium)

    2001-07-01

    This paper presents an overview of the European Union PARSOAR project, which consists in carrying out a state of the art on hydrogen passive auto-catalytic recombiner (PAR) and a handbook guide for implementing these devices in nuclear power plants. This work is performed in the area ''Operational Safety of Existing Installations'' of the key action ''Nuclear Fission'' of the fifth Euratom Framework Programme (1998-2002). (author)

  10. Ruthenium on rutile catalyst, catalytic system, and method for aqueous phase hydrogenations

    Science.gov (United States)

    Elliot, Douglas C.; Werpy, Todd A.; Wang, Yong; Frye, Jr., John G.

    2001-01-01

    An essentially nickel- and rhenium-free catalyst is described comprising ruthenium on a titania support where the titania is greater than 75% rutile. A catalytic system containing a nickel-free catalyst comprising ruthenium on a titania support where the titania is greater than 75% rutile, and a method using this catalyst in the hydrogenation of an organic compound in the aqueous phase is also described.

  11. State of the art on hydrogen passive auto-catalytic recombiner (european union Parsoar project)

    International Nuclear Information System (INIS)

    This paper presents an overview of the European Union PARSOAR project, which consists in carrying out a state of the art on hydrogen passive auto-catalytic recombiner (PAR) and a handbook guide for implementing these devices in nuclear power plants. This work is performed in the area ''Operational Safety of Existing Installations'' of the key action ''Nuclear Fission'' of the fifth Euratom Framework Programme (1998-2002). (author)

  12. Liquid-Phase Catalytic Transfer Hydrogenation of Furfural over Homogeneous Lewis Acid-Ru/C Catalysts.

    Science.gov (United States)

    Panagiotopoulou, Paraskevi; Martin, Nickolas; Vlachos, Dionisios G

    2015-06-22

    The catalytic performance of homogeneous Lewis acid catalysts and their interaction with Ru/C catalyst are studied in the catalytic transfer hydrogenation of furfural by using 2-propanol as a solvent and hydrogen donor. We find that Lewis acid catalysts hydrogenate the furfural to furfuryl alcohol, which is then etherified with 2-propanol. The catalytic activity is correlated with an empirical scale of Lewis acid strength and exhibits a volcano behavior. Lanthanides are the most active, with DyCl3 giving complete furfural conversion and a 97 % yield of furfuryl alcohol at 180 °C after 3 h. The combination of Lewis acid and Ru/C catalysts results in synergy for the stronger Lewis acid catalysts, with a significant increase in the furfural conversion and methyl furan yield. Optimum results are obtained by using Ru/C combined with VCl3 , AlCl3 , SnCl4 , YbCl3 , and RuCl3 . Our results indicate that the combination of Lewis acid/metal catalysts is a general strategy for performing tandem reactions in the upgrade of furans.

  13. Arene ruthenium chemistry

    OpenAIRE

    Bates, Richard Simon

    1990-01-01

    This thesis describes the synthesis and reactivity studies of new arene-ruthenium(II) and arene-ruthenium(O) complexes. Ultrasound has been investigated as an alternative energy source, with the overall aim of synthesising arene ruthenium clusters. Chapter 1 gives an introduction and summary of the known arene ruthenium chemistry reported to date. Chapter 2 reports the synthesis of (CGH6)Ru(C2H4)2 and (MeC6H4CHMe2)Ru(C2H4)2. Low temperature protonation studies generated (C6H6)Ru(H)(CZH4...

  14. A bimodal catalytic membrane having a hydrogen-permselective silica layer on a bimodal catalytic support: Preparation and application to the steam reforming of methane

    OpenAIRE

    Tsuru, Toshinori; Shintani, Hiroaki; Yoshioka, Tomohisa; Asaeda, Masashi

    2006-01-01

    The steam reforming of methane for hydrogen production was experimentally investigated using catalytic membrane reactors, consisting of a microporous silica top layer, for the selective permeation of hydrogen, and an α-alumina support layer, for catalytic reaction of the steam reforming of methane. An α-alumina support layer with a bimodal structure, which was proposed for the enhanced dispersion of Ni catalysts, was prepared by impregnating γ-Al2O3 inside α-Al2O3 microfiltration membranes (1...

  15. Catalytic heat exchangers for small-scale production of hydrogen - feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, F. [Catator AB, Lund (Sweden)

    2002-02-01

    A feasibility study concerning heat-exchanger reactors in small-scale production of hydrogen has been performed on the request of Svenskt Gastekniskt Center AB and SWEP International AB. The basic idea is to implement different catalysts into brazed plate-type heat exchangers. This can be achieved by installing catalytic cylinders in the inlet-and outlet ports of the heat exchangers or through treatment of the plates to render them catalytically active. It is also possible to sandwich catalytically active wire meshes between the plates. Experiments concerning steam reforming of methanol and methane have been performed in a micro-reactor to gather kinetic data for modelling purposes. Performance calculations concerning heat exchanger reactors have then been conducted with Catator's generic simulation code for catalytic reactors (CatalystExplorer). The simulations clearly demonstrate the technical performance of these reactors. Indeed, the production rate of hydrogen is expected to be about 10 nm{sup 3}/h per litre of heat exchanger. The corresponding value for a conventional steam-reforming unit is about 1 nm{sup 3}/h or less per litre of reactor volume. Also, the compactness and the high degree of integration together with the possibilities of mass production will give an attractive cost for such units. Depending on the demands concerning the purity of the hydrogen it is possible to add secondary catalytic steps like water-gas shifters, methanation and selective oxidation, into a one-train unit, i.e. to design an all-inclusive design. Such reactors can be used for the supply of hydrogen to fuel cells. The production cost for hydrogen can be cut by 60 - 70% through the utilisation of heat exchanger reactors instead of conventional electrolysis. This result is primarily a result of the high price for electricity compared to the feed stock prices in steam reforming. It is important to verify the performance calculations and the simulation results through

  16. Elimination Of Catalytic Hydrogen Generation In Defense Waste Processing Facility Slurries

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. C.

    2013-01-22

    Based on lab-scale simulations of Defense Waste Processing Facility (DWPF) slurry chemistry, the addition of sodium nitrite and sodium hydroxide to waste slurries at concentrations sufficient to take the aqueous phase into the alkaline region (pH > 7) with approximately 500 mg nitrite ion/kg slurry (assuming <25 wt% total solids, or equivalently 2,000 mg nitrite/kg total solids) is sufficient to effectively deactivate the noble metal catalysts at temperatures between room temperature and boiling. This is a potential strategy for eliminating catalytic hydrogen generation from the list of concerns for sludge carried over into the DWPF Slurry Mix Evaporator Condensate Tank (SMECT) or Recycle Collection Tank (RCT). These conclusions are drawn in large part from the various phases of the DWPF catalytic hydrogen generation program conducted between 2005 and 2009. The findings could apply to various situations, including a solids carry-over from either the Sludge Receipt and Adjustment Tank (SRAT) or Slurry Mix Evaporator (SME) into the SMECT with subsequent transfer to the RCT, as well as a spill of formic acid into the sump system and transfer into an RCT that already contains sludge solids. There are other potential mitigating factors for the SMECT and RCT, since these vessels are typically operated at temperatures close to the minimum temperatures that catalytic hydrogen has been observed to occur in either the SRAT or SME (pure slurry case), and these vessels are also likely to be considerably more dilute in both noble metals and formate ion (the two essential components to catalytic hydrogen generation) than the two primary process vessels. Rhodium certainly, and ruthenium likely, are present as metal-ligand complexes that are favored under certain concentrations of the surrounding species. Therefore, in the SMECT or RCT, where a small volume of SRAT or SME material would be significantly diluted, conditions would be less optimal for forming or sustaining the

  17. Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oil

    Energy Technology Data Exchange (ETDEWEB)

    Czernik, S.; Wang, D.; Chornet, E. [National Renewable Energy Lab., Golden, CO (United States). Center for Renewable Chemical Technologies and Materials

    1998-08-01

    Hydrogen is the prototype of the environmentally cleanest fuel of interest for power generation using fuel cells and for transportation. The thermochemical conversion of biomass to hydrogen can be carried out through two distinct strategies: (a) gasification followed by water-gas shift conversion, and (b) catalytic steam reforming of specific fractions derived from fast pyrolysis and aqueous/steam processes of biomass. This paper presents the latter route that begins with fast pyrolysis of biomass to produce bio-oil. This oil (as a whole or its selected fractions) can be converted to hydrogen via catalytic steam reforming followed by a water-gas shift conversion step. Such a process has been demonstrated at the bench scale using model compounds, poplar oil aqueous fraction, and the whole pyrolysis oil with commercial Ni-based steam reforming catalysts. Hydrogen yields as high as 85% have been obtained. Catalyst initial activity can be recovered through regeneration cycles by steam or CO{sub 2} gasification of carbonaceous deposits.

  18. Catalytic process for control of NO.sub.x emissions using hydrogen

    Science.gov (United States)

    Sobolevskiy, Anatoly; Rossin, Joseph A.; Knapke, Michael J.

    2010-05-18

    A selective catalytic reduction process with a palladium catalyst for reducing NOx in a gas, using hydrogen as a reducing agent. A zirconium sulfate (ZrO.sub.2)SO.sub.4 catalyst support material with about 0.01-2.0 wt. % Pd is applied to a catalytic bed positioned in a flow of exhaust gas at about 70-200.degree. C. The support material may be (ZrO.sub.2--SiO.sub.2)SO.sub.4. H.sub.2O and hydrogen may be injected into the exhaust gas upstream of the catalyst to a concentration of about 15-23 vol. % H.sub.2O and a molar ratio for H.sub.2/NO.sub.x in the range of 10-100. A hydrogen-containing fuel may be synthesized in an Integrated Gasification Combined Cycle power plant for combustion in a gas turbine to produce the exhaust gas flow. A portion of the fuel may be diverted for the hydrogen injection.

  19. Liquid-Phase Catalytic Hydrogenation of Furfural in Variable Solvent Media

    Institute of Scientific and Technical Information of China (English)

    夏淑倩; 李阳; 商巧燕; 张成武; 马沛生

    2016-01-01

    Water is the most abundant compound inherently existing in bio-oils. Thus understanding the role of water within bio-oils upgrading process is essential for future engineering scale-up design. In this study, furfural was chosen as bio-oils model compound, and the catalytic hydrogenation of furfural over commercial 5%, Ru/C catalyst was firstly investigated in a series of gradient variable water/ethanol mixture solvents. Water had a signifi-cant effect on the distribution of product yields. The dominant reaction pathways varied with the water contents in the water/ethanol mixture solvents. Typically, when ethanol was used as the solvent, the main products were ob-tained by the hydrogenation of carbonyl group or furan ring. When pure water was used as the solvent, the rear-rangement reaction of furfural to cyclopentanone should be selectively promoted theoretically. However, serious polymerization and resinification were observed herein in catalytic hydrogenation system of pure water. The cata-lyst surface was modified by the water-insoluble polymers, and consequently, a relative low yield of cyclopenta-none was obtained. A plausible multiple competitive reaction mechanism between polymerization reaction and the hydrogenation of furfural was suggested in this study. Characterizations(TG,FT-IR,SEM)were employed to analyze and explain our experiments.

  20. Surface Structure and Catalytic Performance of Ni-Fe Catalyst for Low-Temperature CO Hydrogenation

    Directory of Open Access Journals (Sweden)

    Fanhui Meng

    2014-01-01

    Full Text Available Catalysts 16NixFe/Al2O3 (x is 0, 1, 2, 4, 6, 8 were prepared by incipient wetness impregnation method and the catalytic performance for the production of synthetic natural gas (SNG from CO hydrogenation in slurry-bed reactor were studied. The catalysts were characterized by BET, XRD, UV-Vis DRS, H2-TPR, CO-TPD, and XPS, and the results showed that the introduction of iron improved the dispersion of Ni species, weakened the interaction between Ni species and support and decreased the reduction temperature and that catalyst formed Ni-Fe alloy when the content of iron exceeded 2%. Experimental results revealed that the addition of iron to the catalyst can effectively improve the catalytic performance of low-temperature CO methanation. Catalyst 16Ni4Fe/Al2O3 with the iron content of 4% exhibited the best catalytic performance, the conversion of CO and the yield of CH4 reached 97.2% and 84.9%, respectively, and the high catalytic performance of Ni-Fe catalyst was related to the property of formed Ni-Fe alloy. Further increase of iron content led to enhancing the water gas shift reaction.

  1. PREPARATION AND CATALYTIC BEHAVIOUR OF POLYMER-BOUND METALLOPORPHYRIN IN HYDROGENATION OF OLEFIN

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The meso-tetraarylporphyrin has been anchored to styrene-divinylbenzene copolymers by reaction of meso-tetra(4-hydroxylphenyl) porphyrin with chloromethylated resin under mild condition. A number of polymer transition metal complexes have been prepared with the polymer ligand and metal salts. The polymeric ligand and its complexes have been characterized by electronic spectra, and vibrational spectra. Cyclohexene can be hydrogenated with the polymeric porphyrin palladium complex(P-THPPPd) as catalyst, and its catalytic activity was influenced by the polarity of solvents, the contents of water in ethanol or reaction temperature. However, its catalytic activity was lower for nitro groups, carbonyl groups and olefins with steric hindrance substituents, and showed no activity for aromatic rings under these conditions.

  2. Marrying gas power and hydrogen energy: A catalytic system for combining methane conversion and hydrogen generation

    NARCIS (Netherlands)

    J. Beckers; C. Gaudillère; D. Farrusseng; G. Rothenberg

    2009-01-01

    Ceria-based catalysts are good candidates for integrating methane combustion and hydrogen generation. These new, tuneable catalysts are easily prepared. They are robust inorganic crystalline materials, and perform well at the 400 °C-550 °C range, in some cases even without precious metals. This make

  3. An investigation of turbulent catalytically stabilized channel flow combustion of lean hydrogen - air mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Mantzaras, I.; Benz, P.; Schaeren, R.; Bombach, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The catalytically stabilised thermal combustion (CST) of lean hydrogen-air mixtures was investigated numerically in a turbulent channel flow configuration using a two-dimensional elliptic model with detailed heterogeneous and homogeneous chemical reactions. Comparison between turbulent and laminar cases having the same incoming mean properties shows that turbulence inhibits homogeneous ignition due to increased heat transport away from the near-wall layer. The peak root-mean-square temperature and species fluctuations are always located outside the extent of the homogeneous reaction zone indicating that thermochemical fluctuations have no significant influence on gaseous combustion. (author) 4 figs., 6 refs.

  4. Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions.

    Science.gov (United States)

    Thoi, V Sara; Sun, Yujie; Long, Jeffrey R; Chang, Christopher J

    2013-03-21

    Growing global energy demands and climate change motivate the development of new renewable energy technologies. In this context, water splitting using sustainable energy sources has emerged as an attractive process for carbon-neutral fuel cycles. A key scientific challenge to achieving this overall goal is the invention of new catalysts for the reductive and oxidative conversions of water to hydrogen and oxygen, respectively. This review article will highlight progress in molecular electrochemical approaches for catalytic reduction of protons to hydrogen, focusing on complexes of earth-abundant metals that can function in pure aqueous or mixed aqueous-organic media. The use of water as a reaction medium has dual benefits of maintaining high substrate concentration as well as minimizing the environmental impact from organic additives and by-products. PMID:23034627

  5. Development of a para-orthohydrogen catalytic converter for a solid hydrogen cooler

    Science.gov (United States)

    Nast, T. C.; Hsu, I. C.

    1984-01-01

    Design features of a tested catalytic converter for altering vented cryogenic parahydrogen used as a coolant on spacecraft into a para-ortho equilibrium for channeling to other cooling functions are described. The hydrogen is expected to be stored in either liquid or solid form. A high surface area Ni-on-Si catalyst was selected for tests at an operating pressure of 2 torr at a ratio of 1000 gr catalyst for a gr/sec hydrogen flow. Cylindrical and radial flow geometries were tried and measurements centered on the converter efficiencies at different operating temperatures when the converter was placed in the vent line of the H2 cooler. Efficiencies ranging from 10-100 percent were obtained for varying flow rates. Further testing is necessary to characterize the converter performance under a wider range of operating temperatures and environments.

  6. Hydrogen Production From Crude Bio-oil and Biomass Char by Electrochemical Catalytic Reforming

    Institute of Scientific and Technical Information of China (English)

    Xing-long Li; Shen Ning; Li-xia Yuan; Quan-xin Li

    2011-01-01

    We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method.The maximal absolute hydrogen yield reached 110.9 g H2/kg dry biomass.The product gas was a mixed gas containing 72%H2,26%CO2,1.9%CO,and a trace amount of CH4.It was observed that adding biomass char (a by-product of pyrolysis of biomass) could remarkably increase the absolute H2 yield (about 20%-50%).The higher reforming temperature could enhance the steam reforming reaction of organic compounds in crude bio-oil and the reaction of CO and H2O.In addition,the CuZn-Al2O3 catalyst in the water-gas shift bed could also increase the absolute H2 yield via shifting CO to CO2.

  7. Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions.

    Science.gov (United States)

    Thoi, V Sara; Sun, Yujie; Long, Jeffrey R; Chang, Christopher J

    2013-03-21

    Growing global energy demands and climate change motivate the development of new renewable energy technologies. In this context, water splitting using sustainable energy sources has emerged as an attractive process for carbon-neutral fuel cycles. A key scientific challenge to achieving this overall goal is the invention of new catalysts for the reductive and oxidative conversions of water to hydrogen and oxygen, respectively. This review article will highlight progress in molecular electrochemical approaches for catalytic reduction of protons to hydrogen, focusing on complexes of earth-abundant metals that can function in pure aqueous or mixed aqueous-organic media. The use of water as a reaction medium has dual benefits of maintaining high substrate concentration as well as minimizing the environmental impact from organic additives and by-products.

  8. Dynamic\tmodelling of catalytic three-phase reactors for hydrogenation and oxidation processes

    Directory of Open Access Journals (Sweden)

    Salmi T.

    2000-01-01

    Full Text Available The dynamic modelling principles for typical catalytic three-phase reactors, batch autoclaves and fixed (trickle beds were described. The models consist of balance equations for the catalyst particles as well as for the bulk phases of gas and liquid. Rate equations, transport models and mass balances were coupled to generalized heterogeneous models which were solved with respect to time and space with algorithms suitable for stiff differential equations. The aspects of numerical solution strategies were discussed and the procedure was illustrated with three case studies: hydrogenation of aromatics, hydrogenation of aldehydes and oxidation of ferrosulphate. The case studies revealed the importance of mass transfer resistance inside the catalyst pallets as well as the dynamics of the different phases being present in the reactor. Reliable three-phase reactor simulation and scale-up should be based on dynamic heterogeneous models.

  9. Biomass-to-hydrogen via fast pyrolysis and catalytic steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Chornet, E.; Wang, D.; Czernik, S. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-10-01

    Pyrolysis of lignocellulosic biomass and reforming the pyroligneous oils is being studied as a strategy for producing hydrogen. Novel technologies for the rapid pyrolysis of biomass have been developed in the past decade. They provide compact and efficient systems to transform biomass into vapors that are condensed to oils, with yields as high as 75-80 wt.% of the anhydrous biomass. This {open_quotes}bio-oil{close_quotes} is a mixture of aldehydes, alcohols, acids, oligomers from the constitutive carbohydrates and lignin, and some water derived from the dehydration reactions. Hydrogen can be produced by reforming the bio-oil or its fractions with steam. A process of this nature has the potential to be cost competitive with conventional means of producing hydrogen. The reforming facility can be designed to handle alternate feedstocks, such as natural gas and naphtha, if necessary. Thermodynamic modeling of the major constituents of the bio-oil has shown that reforming is possible within a wide range of temperatures and steam-to-carbon ratios. Existing catalytic data on the reforming of oxygenates have been studied to guide catalyst selection. Tests performed on a microreactor interfaced with a molecular beam mass spectrometer showed that, by proper selection of the process variables: temperature, steam-to-carbon ratio, gas hourly space velocity, and contact time, almost total conversion of carbon in the feed to CO and CO{sub 2} could be obtained. These tests also provided possible reaction mechanisms where thermal cracking competes with catalytic processes. Bench-scale, fixed bed reactor tests demonstrated high hydrogen yields from model compounds and carbohydrate-derived pyrolysis oil fractions. Reforming bio-oil or its fractions required proper dispersion of the liquid to avoid vapor-phase carbonization of the feed in the inlet to the reactor. A special spraying nozzle injector was designed and successfully tested with an aqueous fraction of bio-oil.

  10. Stereo-Specific Hydrogen Exchange Accompanying Catalytic Hydrogenation of Methyl β, β-Dimethylacrylate

    International Nuclear Information System (INIS)

    During platinum or palladium-catalysed hydrogenation in which, in solution, methyl β, β-dimethylacrylate is converted into the corresponding ester of isovaleric acid by the equation CH3CH3>C = CH-COOCH3 H2, cat. sol. --> CH3CH3>C = CH-CH2-COOCH3' an isotopic exchange of hydrogen between the gas and the solvent on the one hand and the substrate on the other is superposed upon the process of saturation of the double bond. This was studied by carrying out, at 20°C, hydrogenations which were interrupted after saturation of half the starting product and by employing D2 or esters deuterated either totally or at specific positions, different positions being used from experiment to experiment. The isotopic composition of the hydrogen at each of the positions of the molecules, both saturated and non-saturated, was determined, after separation of the molecules by chromatography in the gaseous phase, by combined mass spectrometry and nuclear magnetic resonance. A separate study was made of behaviour in respect of exchange of substrate in the non-saturated and saturated state, in the absence of hydrogen or the catalyst or both. Among the factors examined were, in particular, the effects of the solvent and the catalyst - which were very pronounced - on all the phenomena observed. These can be summarized as follows, (a) Molecules of the substrate no longer exchange once they are saturated, (b) With non-saturated molecules, restricted exchange takes place in which only the β-methyls are involved. This exchange is symmetric in the presence of rhodium and palladium, and stereo-specific in the presence of platinum - on an average 2.2 times greater in the cis-group than in the trans-group. This fact in the latter case excludes the hypothesis of double bond migration from the α-β position to the β-γ position as an exchange mechanism; which is confirmed by the absence of exchange at the exposition, (c) All the isotopic varieties from -d0 to -d6 or -d8 are present in the

  11. Production of natural antioxidants from vegetable oil deodorizer distillates: effect of catalytic hydrogenation.

    Science.gov (United States)

    Pagani, María Ayelén; Baltanás, Miguel A

    2010-02-01

    Natural tocopherols are one of the main types of antioxidants found in living creatures, but they also have other critical biological functions. The biopotency of natural (+)-alpha-tocopherol (RRR) is 36% higher than that of the synthetic racemic mixture and 300% higher than the SRR stereoisomer. Vegetable oil deodorizer distillates (DD) are an excellent source of natural tocopherols. Catalytic hydrogenation of DD preconcentrates has been suggested as a feasible route for recovery of tocopherols in high yield. However, it is important to know whether the hydrogenation operation, as applied to these tocopherol-rich mixtures, is capable of preserving the chiral (RRR) character, which is critical to its biopotency. Fortified (i.e., (+)-alpha-tocopherol enriched) sunflower oil and methyl stearate, as well as sunflower oil DD, were fully hydrogenated using commercial Ni and Pd catalysts (120-180 degrees C; 20-60 psig). Products were analyzed by chiral HPLC. Results show that the desired chiral configuration (RRR) is fully retained. Thus, the hydrogenation route can be safely considered as a valid alternative for increasing the efficiency of tocopherol recovery processes from DDs while preserving their natural characteristics.

  12. Biomass to hydrogen-rich syngas via catalytic steam gasification of bio-oil/biochar slurry.

    Science.gov (United States)

    Chen, Guanyi; Yao, Jingang; Liu, Jing; Yan, Beibei; Shan, Rui

    2015-12-01

    The catalytic steam gasification of bio-oil/biochar slurry (bioslurry) for hydrogen-rich syngas production was investigated in a fixed-bed reactor using LaXFeO3 (X=Ce, Mg, K) perovskite-type catalysts. The effects of elemental substitution in LaFeO3, temperature, water to carbon molar ratio (WCMR) and bioslurry weight hourly space velocity (WbHSV) were examined. The results showed that La0.8Ce0.2FeO3 gave the best performance among the prepared catalysts and had better catalytic activity and stability than the commercial 14 wt.% Ni/Al2O3. The deactivation caused by carbon deposition and sintering was significantly depressed in the case of La0.8Ce0.2FeO3 catalyst. Both higher temperature and lower WbHSV contributed to more H2 yield. The optimal WCMR was found to be 2, and excessive introducing of steam reduced hydrogen yield. The La0.8Ce0.2FeO3 catalyst gave a maximum H2 yield of 82.01% with carbon conversion of 65.57% under the optimum operating conditions (temperature=800°C, WCMR=2 and WbHSV=15.36h(-1)). PMID:26378962

  13. A resource recycling technique of hydrogen production from the catalytic degradation of organics in wastewater

    Institute of Scientific and Technical Information of China (English)

    LI XiaoNian; ZHANG QunFeng; KONG LingNiao; XIANG YiZhi; JU YaoMing; WU XiaoQiong; FENG Feng; YUAN JunFeng; MA Lei; LU ChunShan

    2008-01-01

    A resource recycling technique of hydrogen production from the catalytic degradation of organics in wastewater by aqueous phase reforming (APR) has been proposed. It is worthy of noting that this technique may be a potential way for the purification of refractory and highly toxic organics in water for hydrogen production. Hazardous organics (such as phenol, aniline, nitrobenzene, tetrahydrofuran (THF), toluene, N,N-dimethylformamide (DMF) and cyclohexanol) in water could be completely de-graded into H2 and CO2 with high selectivity over Raney Ni, and Sn-modified Raney Ni (Sn-Raney-Ni) or Pd/C catalyst under mild conditions. The experimental results operated in tubular and autoclave reactors, indicated that the degradation degree of organics and H2 selectivity could reach 100% under the optimal reaction conditions. The Sn-Raney-Ni (Sn/Ni=0.06) and Pd/C catalysts show better catalytic performances than the Raney Ni catalyst for the degradation of organics in water into H2 and CO2 by the aqueous phase reforming process.

  14. Simulation of hydrogen mitigation in catalytic recombiner: Part-I: Surface chemistry modelling

    Energy Technology Data Exchange (ETDEWEB)

    Prabhudharwadkar, Deoras M. [Department of Mechanical Engineering, Indian Institute of Technology-Bombay, Powai, Mumbai 400076, Maharashtra (India); Aghalayam, Preeti A. [Department of Chemical Engineering, Indian Institute of Technology-Bombay, Powai, Mumbai 400076 (India); Iyer, Kannan N., E-mail: kiyer@iitb.ac.i [Department of Mechanical Engineering, Indian Institute of Technology-Bombay, Powai, Mumbai 400076, Maharashtra (India)

    2011-05-15

    This paper aims at accurate modelling of a Passive Catalytic Recombiner used for hydrogen mitigation in the nuclear power plant containments. In order to assess the performance of the recombiner through numerical simulations, it is required to accurately predict the catalytic reactions. There are various detailed reaction mechanisms available in the literature for prediction of hydrogen-oxygen reaction over a platinum surface. While a single step reaction rate expression is always sought in order to obtain numerical predictions economically, a detailed reaction mechanism that includes several elementary reactions and intermediate species is likely to produce more accurate predictions. The paper compares the solution from two of competing models, one a single step reaction and the other a multiple reaction model. A new single step rate expression is also derived from the detailed mechanism after simplifying it for the present problem. The paper also considers the diffusion controlled model that assumes rapid reaction rates for which the surface chemistry is not required at all. In order to find the best suited approach to model the surface chemistry, CFD simulations were performed with FLUENT code using available experimental data from the literature. The current study reports comparison up to 4% H{sub 2} mole fraction in dry air with catalyst temperature varying from 300 K to 800 K. It is demonstrated that the new single step model is able to satisfactorily predict the data as well as the detailed chemistry model. The diffusion controlled model is shown to over-predict the data.

  15. Simulation of hydrogen mitigation in catalytic recombiner. Part-II: Formulation of a CFD model

    Energy Technology Data Exchange (ETDEWEB)

    Prabhudharwadkar, Deoras M. [Department of Mechanical Engineering, Indian Institute of Technology-Bombay, Powai, Mumbai 400076 (India); Iyer, Kannan N., E-mail: kiyer@me.iitb.ac.i [Department of Mechanical Engineering, Indian Institute of Technology-Bombay, Powai, Mumbai 400076 (India)

    2011-05-15

    Research highlights: Hydrogen transport in containment with recombiners is a multi-scale problem. A novel methodology worked out to lump the recombiner characteristics. Results obtained using commercial code FLUENT are cast in the form of correlations. Hence, coarse grids can obtain accurate distribution of H{sub 2} in containment. Satisfactory working of the methodology is clearly demonstrated. - Abstract: This paper aims at formulation of a model compatible with CFD code to simulate hydrogen distribution and mitigation using a Passive Catalytic Recombiner in the Nuclear power plant containments. The catalytic recombiner is much smaller in size compared to the containment compartments. In order to fully resolve the recombination processes during the containment simulations, it requires the geometric details of the recombiner to be modelled and a very fine mesh size inside the recombiner channels. This component when integrated with containment mixing calculations would result in a large number of mesh elements which may take large computational times to solve the problem. This paper describes a method to resolve this simulation difficulty. In this exercise, the catalytic recombiner alone was first modelled in detail using the best suited option to describe the reaction rate. A detailed parametric study was conducted, from which correlations for the heat of reaction (hence the rate of reaction) and the heat transfer coefficient were obtained. These correlations were then used to model the recombiner channels as single computational cells providing necessary volumetric sources/sinks to the energy and species transport equations. This avoids full resolution of these channels, thereby allowing larger mesh size in the recombiners. The above mentioned method was successfully validated using both steady state and transient test problems and the results indicate very satisfactory modelling of the component.

  16. Thermo-Catalytic Methane Decomposition for Hydrogen Production: Effect of Palladium Promoter on Ni-based Catalysts

    OpenAIRE

    Irene Lock Sow Mei; S.S.M. Lock; Dai-Viet N. Vo; Bawadi Abdullah

    2016-01-01

    Hydrogen production from the direct thermo-catalytic decomposition of methane is a promising alternative for clean fuel production. However, thermal decomposition of methane can hardly be of any practical and empirical interest in the industry unless highly efficient and effective catalysts, in terms of both catalytic activity and operational lifetime have been developed. In this study, the effect of palladium (Pd) as a promoter onto Ni supported on alumina catalyst has been investigated by u...

  17. Evidence of catalytic production of hot hydrogen in rf generated hydrogen/argon plasmas

    CERN Document Server

    Phillips, J; Akhtar, K; Dhandapani, B; Mills, R; Phillips, Jonathan; Chen, Chun-Ku; Akhtar, Kamran; Dhandapani, Bala; Mills, Randell

    2005-01-01

    In this paper the selective broadening of the atomic hydrogen lines in pure H2 and Ar/H2 mixtures in a large 'GEC' cell (36 cm length_ 14 cm ID) was mapped as a function of position, H2/Ar ratio, time, power, and pressure. Several observations regarding the selective line broadening were particularly notable as they are unanticipated on the basis of earlier models. First, the anomalous broadening of the Balmer lines was found to exist throughout the plasma, and not just in the region between the electrodes. Second, the broadening was consistently a complex function of the operating parameters particularly gas composition (highest in pure H2), position, power, time and pressure. Clearly not anticipated by earlier models were the findings that under some conditions the highest concentration of 'hot' (>10 eV) hydrogen was found at the entry end, and not in the high field region between the electrodes and that in other conditions, the hottest H was at the (exit) pump (also grounded electrode) end. Third, excitati...

  18. Preparation of new Calix[4]arene-immobilized biopolymers for enhancing catalytic properties of Candida rugosa lipase by sol-gel encapsulation.

    Science.gov (United States)

    Ozyilmaz, Elif; Sayin, Serkan

    2013-08-01

    The article describes preparation of new calixarene biopolymers consisting of the immobilization of convenience calixarene derivative onto cellulose and chitosan biopolymers, and the encapsulation of these calixarene biopolymers with Candida rugosa lipase within a chemical inert sol-gel supported by polycondensation with tetraethoxysilane and octyltriethoxysilane. The catalytic properties of immobilized lipase were evaluated into model reactions employing the hydrolysis of p-nitrophenylpalmitate and the enantioselective hydrolysis of naproxen methyl esters from racemic prodrugs in aqueous buffer solution/isooctane reaction system. The resolution studies using sol-gel support have observed more improvement in the enantioselectivity of naproxen E = 300 with Cel-Calix-E than with encapsulated lipase without calixarene-based materials. Furthermore, the encapsulated lipase (Cel-Calix-E) was still retained about 39 % of their conversion ratios after the fifth reuse in the enantioselective reaction.

  19. Size-Dependent Catalytic Activity of Palladium Nanoparticles Fabricated in Porous Organic Polymers for Alkene Hydrogenation at Room Temperature.

    Science.gov (United States)

    Mondal, John; Trinh, Quang Thang; Jana, Avijit; Ng, Wilson Kwok Hung; Borah, Parijat; Hirao, Hajime; Zhao, Yanli

    2016-06-22

    Ultrafine palladium nanoparticles (Pd NPs) with 8 and 3 nm sizes were effectively fabricated in triazine functionalized porous organic polymer (POP) TRIA that was developed by nonaqueous polymerization of 2,4,6-triallyoxy-1,3,5-triazine. The Pd NPs encapsulated POP (Pd-POP) was fully characterized using several techniques. Further studies revealed an excellent capability of Pd-POP for catalytic transfer hydrogenation of alkenes at room temperature with superior catalytic performance and high selectivity of desired products. Highly flammable H2 gas balloon at high pressure and temperature used in conventional hydrogenation reactions was not needed in the present synthetic system. Catalytic activity is strongly dependent on the size of encapsulated Pd NPs in the POP. The Pd-POP catalyst with Pd NPs of 8 nm in diameter exhibited higher catalytic activity for alkene hydrogenation as compared with the Pd-POP catalyst encapsulating 3 nm Pd NPs. Computational studies were undertaken to gain insights into different catalytic activities of these two Pd-POP catalysts. High reusability and stability as well as no Pd leaching of these Pd-POP catalysts make them highly applicable for hydrogenation reactions at room temperature. PMID:27258184

  20. CATALYTIC INTERACTIONS OF RHODIUM, RUTHENIUM, AND MERCURY DURING SIMULATED DWPF CPC PROCESSING WITH HYDROGEN GENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D

    2008-10-09

    Simulations of the Defense Waste Processing Facility (DWPF) Chemical Processing Cell (CPC) vessels were performed as part of the ongoing investigation into catalytic hydrogen generation. Rhodium, ruthenium, and mercury have been identified as the principal elemental factors affecting the peak hydrogen generation rate in the DWPF Sludge Receipt and Adjustment Tank (SRAT) for a given acid addition. The primary goal of this study is to identify any significant interactions between the three factors. Noble metal concentrations were similar to recent sludge batches. Rh ranged from 0.0026-0.013% and Ru ranged from 0.010-0.050% in the dried sludge solids, while initial Hg ranged from 0.5-2.5 wt%. An experimental matrix was developed to ensure that the existence of statistically significant two-way interactions could be determined without confounding of the main effects with the two-way interaction effects. The nominal matrix design consisted of twelve SRAT cycles. Testing included: a three factor (Rh, Ru, and Hg) study at two levels per factor (eight runs), two duplicate midpoint runs, and two additional replicate runs to assess reproducibility away from the midpoint. Midpoint testing can identify potential quadratic effects from the three factors. A single sludge simulant was used for all tests. Acid addition was kept effectively constant except to compensate for variations in the starting mercury concentration. Six Slurry Mix Evaporator (SME) cycles were performed to supplement the SME hydrogen generation database. Some of the preliminary findings from this study include: (1) Rh was linked to the maximum SRAT hydrogen generation rate in the first two hours after acid addition in preliminary statistical modeling. (2) Ru was linked conclusively to the maximum SRAT hydrogen generation rate in the last four hours of reflux in preliminary statistical modeling. (3) Increasing the ratio of Hg/Rh shifted the noble metal controlling the maximum SRAT hydrogen generation rate from

  1. Catalytic hydrogenation of carbon monoxide. Progress report, December 15, 1991--December 14, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Wayland, B.B.

    1992-12-01

    This project is focused on developing strategies to accomplish the reduction and hydrogenation of carbon monoxide to produce organic oxygenates at mild conditions. Our approaches to this issue are based on the recognition that rhodium macrocycles have unusually favorable thermodynamic values for producing a series of intermediate implicated in the catalytic hydrogenation of CO. Observations of metalloformyl complexes produced by reactions of H{sub 2} and CO, and reductive coupling of CO to form metallo {alpha}-diketone species have suggested a multiplicity of routes to organic oxygenates that utilize these species as intermediates. Thermodynamic and kinetic-mechanistic studies are used in constructing energy profiles for a variety of potential pathways, and these schemes are used in guiding the design of new metallospecies to improve the thermodynamic and kinetic factors for individual steps in the overall process. Variation of the electronic and steric effects associated with the ligand arrays along with the influences of the reaction medium provide the chemical tools for tuning these factors. Emerging knowledge of the factors that contribute to M-H, M-C and M-O bond enthalpies is directing the search for ligand arrays that will expand the range of metal species that have favorable thermodynamic parameters to produce the primary intermediates for CO hydrogenation. Studies of rhodium complexes are being extended to non-macrocyclic ligand complexes that emulate the favorable thermodynamic features associated with rhodium macrocycles, but that also manifest improved reaction kinetics. Multifunctional catalyst systems designed to couple the ability of rhodium complexes to produce formyl and diketone intermediates with a second catalyst that hydrogenates these imtermediates are promising approaches to accomplish CO hydrogenation at mild conditions.

  2. Co-production of hydrogen and carbon nanotubes on nickel foam via methane catalytic decomposition

    Science.gov (United States)

    Ping, Dan; Wang, Chaoxian; Dong, Xinfa; Dong, Yingchao

    2016-04-01

    The co-production of COx-free hydrogen and carbon nanotubes (CNTs) was achieved on 3-dimensional (3D) macroporous nickel foam (NF) via methane catalytic decomposition (MCD) over nano-Ni catalysts using chemical vapor deposition (CVD) technique. By a simple coating of a NiO-Al2O3 binary mixture sol followed by a drying-calcination-reduction treatment, NF supported composite catalysts (denoted as NiyAlOx/NF) with Al2O3 transition-layer incorporated with well-dispersed nano-Ni catalysts were successfully prepared. The effects of Ni loading, calcination temperature and reaction temperature on the performance for simultaneous production of COx-free hydrogen and CNTs were investigated in detail. Catalysts before and after MCD were characterized by XRD, TPR, SEM, TEM, TG and Raman spectroscopy technology. Results show that increasing Ni loading, lowering calcination temperature and optimizing MCD reaction temperature resulted in high production efficiency of COx-free H2 and carbon, but broader diameter distribution of CNTs. Through detailed parameter optimization, the catalyst with a Ni/Al molar ratio of 0.1, calcination temperature of 550 °C and MCD temperature of 650 °C was favorable to simultaneously produce COx-free hydrogen with a growth rate as high as 10.3% and CNTs with uniform size on NF.

  3. Catalytic on-board hydrogen production from methanol and ammonia for mobile application

    Energy Technology Data Exchange (ETDEWEB)

    Soerijanto, H.

    2008-08-15

    This PhD thesis deals with the catalytic hydrogen production for mobile application, for example for the use in fuel cells for electric cars. Electric powered buses with fuel cells as driving system are well known, but the secure hydrogen storage in adequate amounts for long distance drive is still a topic of discussion. Methanol is an excellent hydrogen carrier. First of all it has a high H:C ratio and therefore a high energy density. Secondly the operating temperature of steam reforming of methanol is comparatively low (250 C) and there is no risk of coking since methanol has no C-C bond. Thirdly methanol is a liquid, which means that the present gasoline infrastructure can be used. For the further development of catalysts and for the construction of a reformer it is very important to characterize the catalysts very well. For the dimensioning and the control of an on-board production of hydrogen it is essential to draw accurately on the thermodynamic, chemical and kinetic data of the reaction. At the first part of this work the mesoporous Cu/ZrO{sub 2}/CeO{sub 2}-catalysts with various copper contents were characterized and their long-term stability and selectivity were investigated, and the kinetic data were determined. Carbon monoxide is generated by reforming of carbon containing material. This process is undesired since CO poisons the Pt electrode of the fuel cell. The separation of hydrogen by metal membranes is technically feasible and a high purity of hydrogen can be obtained. However, due to their high density this procedure is not favourable because of its energy loss. In this study a concept is presented, which enables an autothermal mode by application of ceramic membrane and simultaneously could help to deal with the CO problem. The search for an absolutely selective catalyst is uncertain. The production of CO can be neither chemically nor thermodynamically excluded, if carbon is present in the hydrogen carrier. Since enrichment or separation are

  4. Studies on Hydrogen Selective Silica Membranes and the Catalytic Reforming of CH4 with CO2 in a Membrane Reactor

    OpenAIRE

    Lee, Doohwan

    2003-01-01

    In this work the synthesis, characterization, and gas transport properties of hydrogen selective silica membranes were studied along with the catalytic reforming of CH4 with CO2 (CH4 + CO z 2 CO + 2 H2) in a hydrogen separation membrane reactor. The silica membranes were prepared by chemical vapor deposition (CVD) of a thin SiO2 layer on porous supports (Vycor glass and alumina) using thermal decomposition of tetraethylorthosilicate (TEOS) in an inert atmosphere. These membranes displayed h...

  5. Catalytic enantioselective OFF ↔ ON activation processes initiated by hydrogen transfer: concepts and challenges.

    Science.gov (United States)

    Quintard, Adrien; Rodriguez, Jean

    2016-08-18

    Hydrogen transfer initiated processes are eco-compatible transformations allowing the reversible OFF ↔ ON activation of otherwise unreactive substrates. The minimization of stoichiometric waste as well as the unique activation modes provided by these transformations make them key players for a greener future for organic synthesis. Long limited to catalytic reactions that form racemic products, considerable progress on the development of strategies for controlling diastereo- and enantioselectivity has been made in the last decade. The aim of this review is to present the different strategies that enable enantioselective transformations of this type and to highlight how they can be used to construct key synthetic building blocks in fewer operations with less waste generation. PMID:27381644

  6. Effect of Catalytic Cylinders on Autothermal Reforming of Methane for Hydrogen Production in a Microchamber Reactor

    Directory of Open Access Journals (Sweden)

    Yunfei Yan

    2014-01-01

    Full Text Available A new multicylinder microchamber reactor is designed on autothermal reforming of methane for hydrogen production, and its performance and thermal behavior, that is, based on the reaction mechanism, is numerically investigated by varying the cylinder radius, cylinder spacing, and cylinder layout. The results show that larger cylinder radius can promote reforming reaction; the mass fraction of methane decreased from 26% to 21% with cylinder radius from 0.25 mm to 0.75 mm; compact cylinder spacing corresponds to more catalytic surface and the time to steady state is decreased from 40 s to 20 s; alteration of staggered and aligned cylinder layout at constant inlet flow rates does not result in significant difference in reactor performance and it can be neglected. The results provide an indication and optimize performance of reactor; it achieves higher conversion compared with other reforming reactors.

  7. Hydrogen Generation from Catalytic Steam Reforming of Acetic Acid by Ni/Attapulgite Catalysts

    Directory of Open Access Journals (Sweden)

    Yishuang Wang

    2016-11-01

    Full Text Available In this research, catalytic steam reforming of acetic acid derived from the aqueous portion of bio-oil for hydrogen production was investigated using different Ni/ATC (Attapulgite Clay catalysts prepared by precipitation, impregnation and mechanical blending methods. The fresh and reduced catalysts were characterized by XRD, N2 adsorption–desorption, TEM and temperature program reduction (H2-TPR. The comprehensive results demonstrated that the interaction between active metallic Ni and ATC carrier was significantly improved in Ni/ATC catalyst prepared by precipitation method, from which the mean of Ni particle size was the smallest (~13 nm, resulting in the highest metal dispersion (7.5%. The catalytic performance of the catalysts was evaluated by the process of steam reforming of acetic acid in a fixed-bed reactor under atmospheric pressure at two different temperatures: 550 °C and 650 °C. The test results showed the Ni/ATC prepared by way of precipitation method (PM-Ni/ATC achieved the highest H2 yield of ~82% and a little lower acetic acid conversion efficiency of ~85% than that of Ni/ATC prepared by way of impregnation method (IM-Ni/ATC (~95%. In addition, the deactivation catalysts after reaction for 4 h were analyzed by XRD, TGA-DTG and TEM, which demonstrated the catalyst deactivation was not caused by the amount of carbon deposition, but owed to the significant agglomeration and sintering of Ni particles in the carrier.

  8. Hazelnut shell to hydrogen-rich gaseous products via catalytic gasification process

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, A. [Selcuk Univ., Dept. of Chemical Engineering, Konya (Turkey)

    2004-01-15

    The gasification of biomass is a thermal treatment, which results in a high production of gaseous products and small quantities of char and ash. Steam reforming of hydrocarbons, partial oxidation of heavy oil residues, selected steam reforming of aromatic compounds, and gasification of coals and solid wastes to yield a mixture of H{sub 2} and CO (syngas), followed by a water-gas shift reaction to produce H{sub 2} and CO{sub 2}, are well-established processes. The samples, both untreated and impregnated with a catalyst, were pyrolyzed and gasified at 770, 925, 975, and 1025 K, and 975, 1075, 1175, and 1225 K temperatures, respectively. K{sub 2}CO{sub 3} was used as a catalyst, 10.0, 20.0, 30.0, and 50.0 wt% of the shell sample, in the catalytic-pyrolysis runs. The ratios of water-to-hazelnut shell were 0.7 and 1.9 in steam gasification runs. The total volume and the yield of gas from both pyrolysis and gasification increase with increasing temperature. The highest hydrogen-rich gas yield was obtained from the catalytic gasification run (water/hazelnut shell = 1.9) at 1225 K. (Author)

  9. Wax: A benign hydrogen-storage material that rapidly releases H2-rich gases through microwave-assisted catalytic decomposition

    Science.gov (United States)

    Gonzalez-Cortes, S.; Slocombe, D. R.; Xiao, T.; Aldawsari, A.; Yao, B.; Kuznetsov, V. L.; Liberti, E.; Kirkland, A. I.; Alkinani, M. S.; Al-Megren, H. A.; Thomas, J. M.; Edwards, P. P.

    2016-01-01

    Hydrogen is often described as the fuel of the future, especially for application in hydrogen powered fuel-cell vehicles (HFCV’s). However, its widespread implementation in this role has been thwarted by the lack of a lightweight, safe, on-board hydrogen storage material. Here we show that benign, readily-available hydrocarbon wax is capable of rapidly releasing large amounts of hydrogen through microwave-assisted catalytic decomposition. This discovery offers a new material and system for safe and efficient hydrogen storage and could facilitate its application in a HFCV. Importantly, hydrogen storage materials made of wax can be manufactured through completely sustainable processes utilizing biomass or other renewable feedstocks. PMID:27759014

  10. Ab initio molecular dynamics simulations for the role of hydrogen in catalytic reactions of furfural on Pd(111)

    Science.gov (United States)

    Xue, Wenhua; Dang, Hongli; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu

    2014-03-01

    In the study of catalytic reactions of biomass, furfural conversion over metal catalysts with the presence of hydrogen has attracted wide attention. We report ab initio molecular dynamics simulations for furfural and hydrogen on the Pd(111) surface at finite temperatures. The simulations demonstrate that the presence of hydrogen is important in promoting furfural conversion. In particular, hydrogen molecules dissociate rapidly on the Pd(111) surface. As a result of such dissociation, atomic hydrogen participates in the reactions with furfural. The simulations also provide detailed information about the possible reactions of hydrogen with furfural. Supported by DOE (DE-SC0004600). This research used the supercomputer resources of the XSEDE, the NERSC Center, and the Tandy Supercomputing Center.

  11. Detection of hydrogen peroxide in Photosystem II (PSII using catalytic amperometric biosensor

    Directory of Open Access Journals (Sweden)

    Ankush ePrasad

    2015-10-01

    Full Text Available Hydrogen peroxide (H2O2 is known to be generated in Photosystem II (PSII via enzymatic and non-enzymatic pathways. Hydrogen peroxide (H2O2 is known to be generated in Photosystem II (PSII via enzymatic and non-enzymatic pathways. Detection of H2O2 by different spectroscopic techniques has been explored, however its sensitive detection has always been a challenge in photosynthetic research. During the recent past, fluorescence probes such as Amplex Red has been used but is known to either lack specificity or limitation with respect to the minimum detection limit of H2O2. We have employed an electrochemical biosensor for real time monitoring of H2O2 generation at the level of sub-cellular organelles. The electrochemical biosensor comprises of counter electrode and working electrodes. The counter electrode is a platinum plate, while the working electrode is a mediator based catalytic amperometric biosensor device developed by the coating of a carbon electrode with osmium-horseradish peroxidase which acts as H2O2 detection sensor. In the current study, generation and kinetic behaviour of H2O2 in PSII membranes have been studied under light illumination. Electrochemical detection of H2O2 using the catalytic amperometric biosensor device is claimed to serve as a promising technique for detection of H2O2 in photosynthetic cells and subcellular structures including PSII or thylakoid membranes. It can also provide a precise information on qualitative determination of H2O2 and thus can be widely used in photosynthetic research.

  12. High performing and stable supported nano-alloys for the catalytic hydrogenation of levulinic acid to gamma-valerolactone

    NARCIS (Netherlands)

    Luo, Wenhao; Meenakshisundaram, Sankar; Beale, Andrew M.; He, Qian; Kiely, Christopher J.; Bruijnincx, Pieter C. A.; Weckhuysen, Bert M.

    2015-01-01

    The catalytic hydrogenation of levulinic acid, a key platform molecule in many biorefinery schemes, into gamma-valerolactone is considered as one of the pivotal reactions to convert lignocellulose-based biomass into renewable fuels and chemicals. Here we report on the development of highly active, s

  13. Experimental and Numerical Evaluation of the By-Pass Flow in a Catalytic Plate Reactor for Hydrogen Production

    DEFF Research Database (Denmark)

    Sigurdsson, Haftor Örn; Kær, Søren Knudsen

    2011-01-01

    Numerical and experimental study is performed to evaluate the reactant by-pass flow in a catalytic plate reactor with a coated wire mesh catalyst for steam reforming of methane for hydrogen generation. By-pass of unconverted methane is evaluated under different wire mesh catalyst width to reactor...

  14. SYNTHESIS OF POLYMER-STABILIZED PLATINUM/RUTHENIUM BIMETALLIC COLLOIDS AND THEIR CATALYTIC PROPERTIES FOR SELECTIVE HYDROGENATION OF CROTONALDEHYDE

    Institute of Scientific and Technical Information of China (English)

    Wei-xia Tu; Han-fan Liu

    2005-01-01

    Polymer-stabilized platinum/ruthenium bimetallic colloids (Pt/Ru) were synthesized by polyol reduction with microwave irradiation and characterized by TEM and XPS. The colloidal nanoparticles have small and narrow size distributions. Catalytic performance of the Pt/Ru colloidal catalysts was investigated on the selective hydrogenation of crontonaldehyde (CRAL). A suitable amount of the added metal ions and base can improve the selectivity of CRAL to crotylalcohol (CROL) remarkably. The catalytic activity and the selectivity are dependent on the compositions of bimetallic colloids. Thereinto, PVP-stabilized 9Pt/1Ru colloid with a molar ratio of metals Pt:Ru = 9:1 shows the highest catalytic selectivity 77.3% to CROL at 333 K under 4.0 MPa of hydrogen.

  15. Hydrogen production in a zigzag and straight catalytic wall coated micro channel reactor by CFD modeling

    Energy Technology Data Exchange (ETDEWEB)

    Fazeli, Ali; Behnam, Mohsen [Gas Research Division, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-137, Tehran (Iran)

    2010-09-15

    Hydrogen production from steam reforming of methanol for fuel cell application was modeled in a wall coated micro channel reactor by CFD approach. Heat of steam reforming (SR) was supplied from catalytic total oxidation (TOX) of methanol on Cu/ZnO/Al{sub 2}O{sub 3} catalyst and Heat conducts from TOX to SR zone through Steel divider wall between two channels. Heat integration was compared in zigzag and straight geometry of microreactor by CFD modeling. The model is two dimensional, steady state and containing five zones: TOX fluid, TOX catalyst layer, steel wall of the channel, SR catalyst layer and SR fluid. Set of partial differential equations (PDEs) including x and y momentum balance, continuity, partial mass balances and energy balance was solved by finite volume method. Stiff reaction rates were considered for methanol total oxidation (TOX), methanol steam reforming (SR), water gas shift (WGS) and methanol decomposition (MD) reactions. The results show that zigzag geometry is better than straight one because heat and mass transfer in zigzag reactor are more than straight. Conversion of methanol in zigzag geometry is greater than straight one. In the outlet of zigzag micro channels, carbon monoxide selectivity is less and hydrogen mole fraction is more than straight one. (author)

  16. Application of microscopy technology in thermo-catalytic methane decomposition to hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Irene Lock Sow, E-mail: irene.sowmei@gmail.com; Lock, S. S. M., E-mail: serenelock168@gmail.com; Abdullah, Bawadi, E-mail: bawadi-abdullah@petronas.com.my [Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Sri Iskandar, 31750, Perak (Malaysia)

    2015-07-22

    Hydrogen production from the direct thermo-catalytic decomposition of methane is a promising alternative for clean fuel production because it produces pure hydrogen without any CO{sub x} emissions. However, thermal decomposition of methane can hardly be of any practical and empirical interest in the industry unless highly efficient and effective catalysts, in terms of both specific activity and operational lifetime have been developed. In this work, bimetallic Ni-Pd on gamma alumina support have been developed for methane cracking process by using co-precipitation and incipient wetness impregnation method. The calcined catalysts were characterized to determine their morphologies and physico-chemical properties by using Brunauer-Emmett-Teller method, Field Emission Scanning Electron Microscopy, Energy-dispersive X-ray spectroscopy and Thermogravimetric Analysis. The results suggested that that the catalyst which is prepared by the co-precipitation method exhibits homogeneous morphology, higher surface area, have uniform nickel and palladium dispersion and higher thermal stability as compared to the catalyst which is prepared by wet impregnation method. This characteristics are significant to avoid deactivation of the catalysts due to sintering and carbon deposition during methane cracking process.

  17. An FTIR study on the catalytic effect of water molecules on the reaction of CO successive hydrogenation at 3 K

    International Nuclear Information System (INIS)

    Graphical abstract: This work highlights a selective catalytic action of water molecules on the reaction of CO hydrogenation at 3 K. Research highlights: → [CO/H2O] and [H/H2] are coinjected at 3 K. → H2 molecules condense rapidly at 3 K and screen the reaction mostly at the 1st step. → The observed catalytic effects on CO hydrogenation increase with water concentration. - Abstract: The reaction of successive CO hydrogenation has been performed at 3 K by coinjecting CO molecules and H atoms. The concentration of CO has been progressively reduced and replaced by water molecules to create two different environments where CO and H2O are successively the dominant species in the binary (CO/H2O) mixture. The catalytic effect of water molecules on CO hydrogenation appears clearly since the early times of the experiment and evolves with the formation of the CO/H2/H2O mixed-matrix. The process of CO hydrogenation, initially frozen at the first step of the reaction, is brought to completion through water influence. Water molecules guide the reaction toward the formation of CH3OH and promote different reaction steps depending on water concentration. Water molecules increase the probability of reactive to encounter H atoms either physically, by introducing structural changes in the matrix, or chemically, by raising the number of chemical pathways.

  18. Hydrogenation-controlled phase transition on two-dimensional transition metal dichalcogenides and their unique physical and catalytic properties

    Science.gov (United States)

    Qu, Yuanju; Pan, Hui; Kwok, Chi Tat

    2016-09-01

    Two-dimensional (2D) transition metal dichalcogenides (TMDs) have been widely used from nanodevices to energy harvesting/storage because of their tunable physical and chemical properties. In this work, we systematically investigate the effects of hydrogenation on the structural, electronic, magnetic, and catalytic properties of 33 TMDs based on first-principles calculations. We find that the stable phases of TMD monolayers can transit from 1T to 2H phase or vice versa upon the hydrogenation. We show that the hydrogenation can switch their magnetic and electronic states accompanying with the phase transition. The hydrogenation can tune the magnetic states of TMDs among non-, ferro, para-, and antiferro-magnetism and their electronic states among semiconductor, metal, and half-metal. We further show that, out of 33 TMD monolayers, 2H-TiS2 has impressive catalytic ability comparable to Pt in hydrogen evolution reaction in a wide range of hydrogen coverages. Our findings would shed the light on the multi-functional applications of TMDs.

  19. Hydrogenation-controlled phase transition on two-dimensional transition metal dichalcogenides and their unique physical and catalytic properties

    Science.gov (United States)

    Qu, Yuanju; Pan, Hui; Kwok, Chi Tat

    2016-01-01

    Two-dimensional (2D) transition metal dichalcogenides (TMDs) have been widely used from nanodevices to energy harvesting/storage because of their tunable physical and chemical properties. In this work, we systematically investigate the effects of hydrogenation on the structural, electronic, magnetic, and catalytic properties of 33 TMDs based on first-principles calculations. We find that the stable phases of TMD monolayers can transit from 1T to 2H phase or vice versa upon the hydrogenation. We show that the hydrogenation can switch their magnetic and electronic states accompanying with the phase transition. The hydrogenation can tune the magnetic states of TMDs among non-, ferro, para-, and antiferro-magnetism and their electronic states among semiconductor, metal, and half-metal. We further show that, out of 33 TMD monolayers, 2H-TiS2 has impressive catalytic ability comparable to Pt in hydrogen evolution reaction in a wide range of hydrogen coverages. Our findings would shed the light on the multi-functional applications of TMDs. PMID:27686869

  20. Field-controlled electron transfer and reaction kinetics of the biological catalytic system of microperoxidase-11 and hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Yongki Choi

    2011-12-01

    Full Text Available Controlled reaction kinetics of the bio-catalytic system of microperoxidase-11 and hydrogen peroxide has been achieved using an electrostatic technique. The technique allowed independent control of 1 the thermodynamics of the system using electrochemical setup and 2 the quantum mechanical tunneling at the interface between microperoxidase-11 and the working electrode by applying a gating voltage to the electrode. The cathodic currents of electrodes immobilized with microperoxidase-11 showed a dependence on the gating voltage in the presence of hydrogen peroxide, indicating a controllable reduction reaction. The measured kinetic parameters of the bio-catalytic reduction showed nonlinear dependences on the gating voltage as the result of modified interfacial electron tunnel due to the field induced at the microperoxidase-11-electrode interface. Our results indicate that the kinetics of the reduction of hydrogen peroxide can be controlled by a gating voltage and illustrate the operation of a field-effect bio-catalytic transistor, whose current-generating mechanism is the conversion of hydrogen peroxide to water with the current being controlled by the gating voltage.

  1. Selective Catalytic Synthesis Using the Combination of Carbon Dioxide and Hydrogen: Catalytic Chess at the Interface of Energy and Chemistry.

    Science.gov (United States)

    Klankermayer, Jürgen; Wesselbaum, Sebastian; Beydoun, Kassem; Leitner, Walter

    2016-06-20

    The present Review highlights the challenges and opportunities when using the combination CO2 /H2 as a C1 synthon in catalytic reactions and processes. The transformations are classified according to the reduction level and the bond-forming processes, covering the value chain from high volume basic chemicals to complex molecules, including biologically active substances. Whereas some of these concepts can facilitate the transition of the energy system by harvesting renewable energy into chemical products, others provide options to reduce the environmental impact of chemical production already in today's petrochemical-based industry. Interdisciplinary fundamental research from chemists and chemical engineers can make important contributions to sustainable development at the interface of the energetic and chemical value chain. The present Review invites the reader to enjoy this exciting area of "catalytic chess" and maybe even to start playing some games in her or his laboratory. PMID:27237963

  2. Arene ruthenium complexes as anticancer agents

    OpenAIRE

    Süss-Fink, Georg

    2012-01-01

    Neutral or cationic arene ruthenium complexes providing both hydrophilic as well as hydrophobic properties due to the robustness of the ruthenium–arene unit hold a high potential for the development of metal-based anticancer drugs. Mononuclear arene ruthenium complexes containing P- or N-donor ligands or N,N-, N,O- or O,O-chelating ligands, dinuclear arene ruthenium systems with adjustable organic linkers, trinuclear arene ruthenium clusters containing an oxo cap, tetranuclear arene ruthenium...

  3. Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol over Nitrogen-Doped Carbon-Supported Iron Catalysts.

    Science.gov (United States)

    Li, Jiang; Liu, Jun-Ling; Zhou, Hong-Jun; Fu, Yao

    2016-06-01

    Iron-based heterogeneous catalysts, which were generally prepared by pyrolysis of iron complexes on supports at elevated temperature, were found to be capable of catalyzing the transfer hydrogenation of furfural (FF) to furfuryl alcohol (FFA). The effects of metal precursor, nitrogen precursor, pyrolysis temperature, and support on catalytic performance were examined thoroughly, and a comprehensive study of the reaction parameters was also performed. The highest selectivity of FFA reached 83.0 % with a FF conversion of 91.6 % under the optimal reaction condition. Catalyst characterization suggested that iron cations coordinated by pyridinic nitrogen functionalities were responsible for the enhanced catalytic activity. The iron catalyst could be recycled without significant loss of catalytic activity for five runs, and the destruction of the nitrogen-iron species, the presence of crystallized Fe2 O3 phase, and the pore structure change were the main reasons for catalyst deactivation. PMID:27144965

  4. SYNTHESIS AND CHARACTERIZATION OF A SILICA-SUPPORTED CARBOXYMETHYLCELLULOSE PLATINUM COMPLEX AND ITS CATALYTIC BEHAVIORS FOR HYDROGENATION OF AROMATICS

    Institute of Scientific and Technical Information of China (English)

    TANG Liming; HUANG Meiyu; JIANG Yingyan

    1996-01-01

    A silica-supported carboxymethylcellulose platinum complex (abbreviated as SiO2-CMC-Pt) has been prepared and characterized by XPS. Its catalytic properties for hydrogenation of aromatic compounds were studied. The results showed that this catalyst could catalyze the hydrogenation of phenol, anisol, p-cresol, benzene and toluene to cyclohexanol, cyclohexyl methyl ether, p-methyl cyclohexanol, cyclohexane and methylcyclohexane, respectively in 100% yield at 30℃ and 1 atm. In the hydrogenation of phenol,COO/Pt ratio in SiO2-CMC-Pt has much influence on the initial hydrogenation rate and the selectivity for the intermediate product, cyclohexanone. The highest initial rate and the highest yield of cyclohexanone both occur at COO/Pt ratio of 6. The complex is stable during the reaction and can be used repeatedly.

  5. Data acquisition and quantitative analysis of stable hydrogen isotope in liquid and gas in the liquid phase catalytic exchange process

    International Nuclear Information System (INIS)

    A pilot plant for the Liquid Phase Catalytic Exchange process was built and has been operating to test the hydrophobic catalyst developed to remove the tritium generated at the CANDU nuclear power plants. The methods of quantitative analysis of hydrogen stable isotope were compared. Infrared spectroscopy was used for the liquid samples, and gas chromatography with hydrogen carrier gas showed the best result for gas samples. Also, a data acquisition system was developed to record the operation parameters. This record was very useful to investigate the causes of the system trip

  6. Hydrogen production from catalytic reforming of the aqueous fraction of pyrolysis bio-oil with modified Ni-Al catalysts

    OpenAIRE

    D. Yao; Wu, C.; Yang, H; Hu, Q.; Nahil, MA; H Chen; Williams, PT

    2014-01-01

    Hydrogen production from renewable resources has received extensive attention recently for a sustainable and renewable future. In this study, hydrogen was produced from catalytic steam reforming of the aqueous fraction of crude bio-oil, which was obtained from pyrolysis of biomass. Five Ni-Al catalysts modified with Ca, Ce, Mg, Mn and Zn were investigated using a fixed-bed reactor. Optimized process conditions were obtained with a steam reforming temperature of 800 °C and a steam to carbon ra...

  7. Supported catalysts based on layered double hydroxides for catalytic oxidation and hydrogenation: general functionality and promising application prospects.

    Science.gov (United States)

    Feng, Junting; He, Yufei; Liu, Yanan; Du, Yiyun; Li, Dianqing

    2015-08-01

    Oxidation and hydrogenation catalysis plays a crucial role in the current chemical industry for the production of key chemicals and intermediates. Because of their easy separation and recyclability, supported catalysts are widely used in these two processes. Layered double hydroxides (LDHs) with the advantages of unique structure, composition diversity, high stability, ease of preparation and low cost have shown great potential in the design and synthesis of novel supported catalysts. This review summarizes the recent progress in supported catalysts by using LDHs as supports/precursors for catalytic oxidation and hydrogenation. Particularly, partial hydrogenation of acetylene, hydrogenation of dimethyl terephthalate, methanation, epoxidation of olefins, elimination of NOx and SOx emissions, and selective oxidation of biomass have been chosen as representative reactions in the petrochemical, fine chemicals, environmental protection and clean energy fields to highlight the potential application and the general functionality of LDH-based catalysts in catalytic oxidation and hydrogenation. Finally, we concisely discuss some of the scientific challenges and opportunities of supported catalysts based on LDH materials. PMID:25962432

  8. Field-controlled electron transfer and reaction kinetics of the biological catalytic system of microperoxidase-11 and hydrogen peroxide

    OpenAIRE

    Yongki Choi; Siu-Tung Yau

    2011-01-01

    Controlled reaction kinetics of the bio-catalytic system of microperoxidase-11 and hydrogen peroxide has been achieved using an electrostatic technique. The technique allowed independent control of 1) the thermodynamics of the system using electrochemical setup and 2) the quantum mechanical tunneling at the interface between microperoxidase-11 and the working electrode by applying a gating voltage to the electrode. The cathodic currents of electrodes immobilized with microperoxidase-11 showed...

  9. 7-Amino-5-methyl-2-phenyl-6-(phenyl­diazenyl)pyrazolo[1,5-a]pyrimidine crystallizes with Z′ = 2: pseudosymmetry and the formation of complex sheets built from N—H⋯N and C—H⋯π(arene) hydrogen bonds

    OpenAIRE

    Portilla, Jaime; Estupiñan, Diego; Cobo, Justo; Glidewell, Christopher

    2010-01-01

    The title compound, C19H16N6, crystallizes with Z′ = 2 in the space group P21/n. The two mol­ecules in the selected asym­metric unit are approximate mirror images of one another; most corresponding pairs of atoms are related by an approximate half-cell translation along [100]. Each mol­ecule contains an intra­molecular N—H⋯N hydrogen bond and the mol­ecules are linked into complex sheets by a combination of two inter­molecular N—H⋯N and four C—H⋯π(arene) hydrogen bonds. Comparisons are made w...

  10. Development of catalytic systems for selective hydrogenation and hydrogenolysis based on statistical planning methods coupled with kinetic studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhorov, Yu.M.; Morozova, E.V.; Panchenkov, G.M.

    1979-01-01

    An efficient catalyst design methodology is described, which was used in developing an active and stable mixed oxide catalytic composition for selective hydrogenation of m-bonds under conditions excluding hydrogenolysis of C-C bonds. Catalysts of optimum composition, i.e., 40-50Vertical Bar3< CuO/25-30Vertical Bar3< NiO/20-35Vertical Bar3< SiO/sub 2/, and structure (20-30 A. average pore radius) can be prepared by coprecipitation of copper and nickel salts with silica gel powder in a sodium silicate solution at 90/sup 0/C. By using these catalysts, crotonaldehyde (CA) was hydrogenated to n-butanol in one stage with over 99Vertical Bar3< yields at 180/sup 0/C. The same catalyst was efficient in selective hydrogenation of acetylene (contained in relatively high concentrations in pyrolysis gases) to ethylene at 130/sup 0/C, hydrogenation of piperylene (a by-product in isoprene manufacture) to n-pentenes at 160/sup 0/C, with almost 100Vertical Bar3< selectivity, and in hydrogenolysis of C-S and C-N bonds at 290/sup 0/-370/sup 0/C. Catalytic hydrorefining of a gasoline fraction (105/sup 0/-180/sup 0/C bp) at 350/sup 0/C and 40 atm, reduced its sulfur content from 0.03Vertical Bar3< to 0.00001Vertical Bar3<, and completely removed nitrogen.

  11. Pt nanoparticles modified by rare earth oxides: Electronic effect and influence to catalytic hydrogenation of 3-phenoxybenzaldehyde

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • The rare earths modified Pt/Al2O3 were prepared by colloidal deposition method. • Modification of Pt by the rare earth enhanced catalytic hydrogenation activity. • The activity improvement is due to electron interaction between Pt and rare earth. • The hydrogenation mechanism of rare earth modified Pt catalyst was proposed. - Abstract: The rare earth elements (La, Ce, Nd, Sm, Pr, and Gd) modified Pt/Al2O3 catalysts were prepared by the colloidal deposition and chemical reduction methods, respectively. Pt nanoparticles with average size 3 ± 0.5 nm were uniformly dispersed on the surface of Al2O3 for the samples prepared by the colloidal deposition method, which exhibited higher activities in the hydrogenation of 3-phenoxybenzadehyde than the corresponding samples prepared by chemical reduction method. Moreover, except Gd, the catalysts modified by rare earth elements showed better catalytic performance than unmodified Pt/Al2O3. For Pt–Ce/Al2O3 catalyst, when the weight percent of Pt and Ce was 0.5 and 0.25, respectively, the hydrogenation conversion of 3-phenoxybenzaldehyde was 97.3% after 6 h reaction. This activity improvement is due to the electronic interaction between Pt and rare earth elements, which was investigated by X-ray photoelectron spectroscopy

  12. Energy Efficient Catalytic Activation of Hydrogen peroxide for Green Chemical Processes: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Terrence J.; Horwitz, Colin

    2004-11-12

    A new, highly energy efficient approach for using catalytic oxidation chemistry in multiple fields of technology has been pursued. The new catalysts, called TAML® activators, catalyze the reactions of hydrogen peroxide and other oxidants for the exceptionally rapid decontamination of noninfectious simulants (B. atrophaeus) of anthrax spores, for the energy efficient decontamination of thiophosphate pesticides, for the facile, low temperature removal of color and organochlorines from pulp and paper mill effluent, for the bleaching of dyes from textile mill effluents, and for the removal of recalcitrant dibenzothiophene compounds from diesel and gasoline fuels. Highlights include the following: 1) A 7-log kill of Bacillus atrophaeus spores has been achieved unambiguously in water under ambient conditions within 15 minutes. 2) The rapid total degradation under ambient conditions of four thiophosphate pesticides and phosphonate degradation intermediates has been achieved on treatment with TAML/peroxide, opening up potential applications of the decontamination system for phosphonate structured chemical warfare agents, for inexpensive, easy to perform degradation of stored and aged pesticide stocks (especially in Africa and Asia), for remediation of polluted sites and water bodies, and for the destruction of chemical warfare agent stockpiles. 3) A mill trial conducted in a Pennsylvanian bleached kraft pulp mill has established that TAML catalyst injected into an alkaline peroxide bleach tower can significantly lower color from the effluent stream promising a new, more cost effective, energy-saving approach for color remediation adding further evidence of the value and diverse engineering capacity of the approach to other field trials conducted on effluent streams as they exit the bleach plant. 4) Dibenzothiophenes (DBTs), including 4,6-dimethyldibenzothiophene, the most recalcitrant sulfur compounds in diesel and gasoline, can be completely removed from model gasoline

  13. Catalytic hydrolysis of ammonia borane for hydrogen generation using cobalt nanocluster catalyst supported on polydopamine functionalized multiwalled carbon nanotube

    International Nuclear Information System (INIS)

    Hydrogen was generated from ammonia borane complex by hydrolysis using cobalt nanocluster catalyst supported on polydopamine functionalized MWCNTs (multi-walled carbon nanotubes). The impregnation-chemical reduction method was used for the preparation of the supported catalyst. The nanocluster catalyst support was formed by in-situ oxidative polymerization of dopamine on the MWCNTs in alkaline solution at room temperature. The structural and physical–chemical properties of the nanocluster catalyst were characterized by FT-IR (Fourier transform infrared spectroscopy), EDX (energy-dispersive X-ray spectroscopy), SEM (scanning electron microscope), XRD (X-ray diffraction) and TEM (transmission electron microscopy). The nanocluster catalyst showed good catalytic activity for the hydrogen generation from aqueous ammonia borane complex. A reusability test to determine the practical usage of the catalyst was also investigated. The result revealed that the catalyst maintained an appreciable catalytic performance and stability in terms of its reusability after three cycle of reuse for the hydrolysis reaction. Also, the activation energy for the hydrolysis of ammonia borane complex was estimated to be 50.41 kJmol−1, which is lower than the values of some of the reported catalyst. The catalyst can be considered as a promising candidate in developing highly efficient portable hydrogen generation systems such as PEMFC (proton exchange membrane fuel cells). - Highlights: • Co/Pdop-o-MWCNT (Pdop functionalized MWCNT supported cobalt nanocluster) catalyst was synthesized for hydrogen generation. • It is an active catalyst for hydrogen generation via hydrolysis of ammonia borane. • It showed good stability in terms of reusability for the hydrogen generation

  14. Negative ion gas-phase chemistry of arenes.

    Science.gov (United States)

    Danikiewicz, Witold; Zimnicka, Magdalena

    2016-01-01

    Reactions of aromatic and heteroaromatic compounds involving anions are of great importance in organic synthesis. Some of these reactions have been studied in the gas phase and are occasionally mentioned in reviews devoted to gas-phase negative ion chemistry, but no reviews exist that collect all existing information about these reactions. This work is intended to fill this gap. In the first part of this review, methods for generating arene anions in the gas phase and studying their physicochemical properties and fragmentation reactions are presented. The main topics in this part are as follows: processes in which gas-phase arene anions are formed, measurements and calculations of the proton affinities of arene anions, proton exchange reactions, and fragmentation processes of substituted arene anions, especially phenide ions. The second part is devoted to gas-phase reactions of arene anions. The most important of these are reactions with electrophiles such as carbonyl compounds and α,β-unsaturated carbonyl and related compounds (Michael acceptors). Other reactions including oxidation of arene anions and halogenophilic reactions are also presented. In the last part of the review, reactions of electrophilic arenes with nucleophiles are discussed. The best known of these is the aromatic nucleophilic substitution (SN Ar) reaction; however, other processes that lead to the substitution of a hydrogen atom in the aromatic ring are also very important. Aromatic substrates in these reactions are usually but not always nitroarenes bearing other substituents in the ring. The first step in these reactions is the formation of an anionic σ-adduct, which, depending on the substituents in the aromatic ring and the structure of the attacking nucleophile, is either an intermediate or a transition state in the reaction path. In the present review, we attempted to collect the results of both experimental and computational studies of the aforementioned reactions conducted since the

  15. Production of hydrogen, liquid fuels, and chemicals from catalytic processing of bio-oils

    Science.gov (United States)

    Huber, George W; Vispute, Tushar P; Routray, Kamalakanta

    2014-06-03

    Disclosed herein is a method of generating hydrogen from a bio-oil, comprising hydrogenating a water-soluble fraction of the bio-oil with hydrogen in the presence of a hydrogenation catalyst, and reforming the water-soluble fraction by aqueous-phase reforming in the presence of a reforming catalyst, wherein hydrogen is generated by the reforming, and the amount of hydrogen generated is greater than that consumed by the hydrogenating. The method can further comprise hydrocracking or hydrotreating a lignin fraction of the bio-oil with hydrogen in the presence of a hydrocracking catalyst wherein the lignin fraction of bio-oil is obtained as a water-insoluble fraction from aqueous extraction of bio-oil. The hydrogen used in the hydrogenating and in the hydrocracking or hydrotreating can be generated by reforming the water-soluble fraction of bio-oil.

  16. DESIGN NOTE: A compact catalytic converter for the production of para-hydrogen

    Science.gov (United States)

    Juarez, A. M.; Cubric, D.; King, G. C.

    2002-05-01

    The design and operation of a compact converter to produce a constant flow of para-hydrogen from normal hydrogen is described. The converter features a paramagnetic compound (nickel sulfate) that catalyses the conversion of ortho- to para-hydrogen at temperatures of 14-21 K. The converter has been tested by measuring rotationally resolved photoelectron spectra in the para-hydrogen produced. The percentage of the para-hydrogen species in the converted gas was determined to be >97%.

  17. Spatially Directional Resorcin[4]arene Cavitand Glycoconjugates for Organic Catalysis.

    Science.gov (United States)

    Husain, Ali A; Maknenko, Arthur M; Bisht, Kirpal S

    2016-04-25

    The synthesis of novel spatially directional multivalent resorcin[4]arene cavitand glycoconjugates (RCGs) and their ability to catalyze organic reactions is reported. The β-d-glucopyranoside moieties on the upper rim of the "bowl"-shaped resorcin[4]arene cavitand core are capable of multiple hydrogen-bond interactions resulting in a pseudo-cavity, which has been investigated for organic transformations in aqueous media. The RCGs have been demonstrated to catalyze thiazole formation, thiocyanation, copper(I)-catalyzed azide alkyne cycloaddition (CuAAC), and Mannich reactions; they impart stereoselectivity in the three-component Mannich reaction. Thermodynamic values obtained from (1) H diffusion-ordered spectroscopy (DOSY) experiments suggest that the upper saccharide cavity of the RCG and not the resorcin[4]arene cavity is the site of the complexation event.

  18. Hydrogen production from simulated hot coke oven gas by catalytic reforming over Ni/Mg(A1)O catalysts

    Institute of Scientific and Technical Information of China (English)

    Hongwei Cheng; Baohua Yue; Xueguang Wang; Xionggang Lu; Weizhong Ding

    2009-01-01

    Hydrogen production by catalytic reforming of simulated hot coke oven gas (HCOG) with toluene as a model tar compound was investigated in a fixed bed reactor over Ni/Mg(Al)O catalysts. The catalysts were prepared by a homogeneous precipitation method using urea hydrolysis and characterized by ICP,BET, XRD, TPR, TEM and TG. XRD showed that the hydrotalcite type precursor after calcination formed (Ni,Mg)Al2O4 spinel and Ni-Mg-O solid solution structure. TPR results suggested that the increase in Ni/Mg molar ratio gave rise to the decrease in the reduction temperature of Ni2+ to Ni0 on Ni/Mg(Al)O catalysts. The reaction results indicated that toluene and CH4 could completely be converted to H2 and CO in the catalytic reforming of the simulated HCOG under atmospheric pressure and the amount of H2 in the reaction effluent gas was about 4 times more than that in original HCOG. The catalysts with lower Ni/Mg molar ratio showed better catalytic activity and resistance to ceking, which may become promising catalysts in the catalytic reforming of HCOG.

  19. Cellular graphene aerogel combines ultralow weight and high mechanical strength: A highly efficient reactor for catalytic hydrogenation.

    Science.gov (United States)

    Zhang, Bingxing; Zhang, Jianling; Sang, Xinxin; Liu, Chengcheng; Luo, Tian; Peng, Li; Han, Buxing; Tan, Xiuniang; Ma, Xue; Wang, Dong; Zhao, Ning

    2016-05-12

    The construction of three-dimensional graphene aerogels (GAs) is of great importance owing to their outstanding properties for various applications. Up to now, the combination of ultralow weight and super mechanical strength for GA remains a great challenge. Here we demonstrate the fabrication of cellular GAs by a facile, easily controlled and versatile route, i.e. the chemical reduction of graphene oxide assemblies at oil-water interface under a mild condition (70 °C). The GA is ultralight (with density <3 mg cm(-3)) yet mechanically resilient because the walls of the cell closely pack in a highly ordered manner to maximize mechanical strength. The GA has been utilized as an appealing reactor for catalytic hydrogenation, which exhibited great advantages such as large oil absorption capability, exceptional catalytic activity, ease of product separation and high stability.

  20. Cellular graphene aerogel combines ultralow weight and high mechanical strength: A highly efficient reactor for catalytic hydrogenation

    Science.gov (United States)

    Zhang, Bingxing; Zhang, Jianling; Sang, Xinxin; Liu, Chengcheng; Luo, Tian; Peng, Li; Han, Buxing; Tan, Xiuniang; Ma, Xue; Wang, Dong; Zhao, Ning

    2016-05-01

    The construction of three-dimensional graphene aerogels (GAs) is of great importance owing to their outstanding properties for various applications. Up to now, the combination of ultralow weight and super mechanical strength for GA remains a great challenge. Here we demonstrate the fabrication of cellular GAs by a facile, easily controlled and versatile route, i.e. the chemical reduction of graphene oxide assemblies at oil-water interface under a mild condition (70 °C). The GA is ultralight (with density resilient because the walls of the cell closely pack in a highly ordered manner to maximize mechanical strength. The GA has been utilized as an appealing reactor for catalytic hydrogenation, which exhibited great advantages such as large oil absorption capability, exceptional catalytic activity, ease of product separation and high stability.

  1. Cellular graphene aerogel combines ultralow weight and high mechanical strength: A highly efficient reactor for catalytic hydrogenation.

    Science.gov (United States)

    Zhang, Bingxing; Zhang, Jianling; Sang, Xinxin; Liu, Chengcheng; Luo, Tian; Peng, Li; Han, Buxing; Tan, Xiuniang; Ma, Xue; Wang, Dong; Zhao, Ning

    2016-01-01

    The construction of three-dimensional graphene aerogels (GAs) is of great importance owing to their outstanding properties for various applications. Up to now, the combination of ultralow weight and super mechanical strength for GA remains a great challenge. Here we demonstrate the fabrication of cellular GAs by a facile, easily controlled and versatile route, i.e. the chemical reduction of graphene oxide assemblies at oil-water interface under a mild condition (70 °C). The GA is ultralight (with density <3 mg cm(-3)) yet mechanically resilient because the walls of the cell closely pack in a highly ordered manner to maximize mechanical strength. The GA has been utilized as an appealing reactor for catalytic hydrogenation, which exhibited great advantages such as large oil absorption capability, exceptional catalytic activity, ease of product separation and high stability. PMID:27174450

  2. Catalytic Hydrolysis of Ammonia Borane by Cobalt Nickel Nanoparticles Supported on Reduced Graphene Oxide for Hydrogen Generation

    Directory of Open Access Journals (Sweden)

    Yuwen Yang

    2014-01-01

    Full Text Available Well dispersed magnetically recyclable bimetallic CoNi nanoparticles (NPs supported on the reduced graphene oxide (RGO were synthesized by one-step in situ coreduction of aqueous solution of cobalt(II chloride, nickel (II chloride, and graphite oxide (GO with ammonia borane (AB as the reducing agent under ambient condition. The CoNi/RGO NPs exhibits excellent catalytic activity with a total turnover frequency (TOF value of 19.54 mol H2 mol catalyst−1 min−1 and a low activation energy value of 39.89 kJ mol−1 at room temperature. Additionally, the RGO supported CoNi NPs exhibit much higher catalytic activity than the monometallic and RGO-free CoNi counterparts. Moreover, the as-prepared catalysts exert satisfying durable stability and magnetically recyclability for the hydrolytic dehydrogenation of AB, which make the practical reusing application of the catalysts more convenient. The usage of the low-cost, easy-getting catalyst to realize the production of hydrogen under mild condition gives more confidence for the application of ammonia borane as a hydrogen storage material. Hence, this general method indicates that AB can be used as both a potential hydrogen storage material and an efficient reducing agent, and can be easily extended to facile preparation of other RGO-based metallic systems.

  3. Thermo-Catalytic Methane Decomposition for Hydrogen Production: Effect of Palladium Promoter on Ni-based Catalysts

    Directory of Open Access Journals (Sweden)

    Irene Lock Sow Mei

    2016-08-01

    Full Text Available Hydrogen production from the direct thermo-catalytic decomposition of methane is a promising alternative for clean fuel production. However, thermal decomposition of methane can hardly be of any practical and empirical interest in the industry unless highly efficient and effective catalysts, in terms of both catalytic activity and operational lifetime have been developed. In this study, the effect of palladium (Pd as a promoter onto Ni supported on alumina catalyst has been investigated by using co-precipitation technique. The introduction of Pd promotes better catalytic activity, operational lifetime and thermal stability of the catalyst. As expected, highest methane conversion was achieved at reaction temperature of 800 °C while the bimetallic catalyst (1 wt.% Ni -1wt.% Pd/Al2O3 gave the highest methane conversion of 70% over 15 min of time-on-stream (TOS. Interestingly, the introduction of Pd as promoter onto Ni-based catalyst also has a positive effect on the operational lifetime and thermal stability of the catalyst as the methane conversion has improved significantly over 240 min of TOS. Copyright © 2016 BCREC GROUP. All rights reserved Received: 21st January 2016; Revised: 6th February 2016; Accepted: 6th March 2016 How to Cite: Mei, I.L.S., Lock, S.S.M., Vo, D.V.N., Abdullah, B. (2016. Thermo-Catalytic Methane Decomposition for Hydrogen Production: Effect of Palladium Promoter on Ni-based Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (2: 191-199 (doi:10.9767/bcrec.11.2.550.191-199 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.2.550.191-199

  4. Hydrogenation of arenes and N-heteroaromatic compounds over ruthenium nanoparticles on poly(4-vinylpyridine): a versatile catalyst operating by a substrate-dependent dual site mechanism.

    Science.gov (United States)

    Fang, Minfeng; Machalaba, Nataliya; Sánchez-Delgado, Roberto A

    2011-10-28

    A nanostructured catalyst composed of Ru nanoparticles immobilized on poly(4-vinylpyridine) (PVPy) has been synthesized by NaBH(4) reduction of RuCl(3)·3H(2)O in the presence of the polymer in methanol at room temperature. TEM measurements show well-dispersed Ru nanoparticles with an average diameter of 3.1 nm. Both powder XRD patterns and XPS data indicate that the Ru particles are predominantly in the zerovalent state. The new catalyst is efficient for the hydrogenation of a wide variety of aromatic hydrocarbons and N-heteroaromatic compounds representative of components of petroleum-derived fuels. The experimental data indicate the existence of two distinct active sites in the nanostructure that lead to two parallel hydrogenation pathways, one for simple aromatics involving conventional homolytic hydrogen splitting on Ru and a second one for N-heteroaromatics taking place via a novel heterolytic hydrogen activation on the catalyst surface, assisted by the basic pyridine groups of the support. PMID:21850360

  5. Arene-ruthenium(II) complexes with hydrophilic P-donor ligands: versatile catalysts in aqueous media.

    Science.gov (United States)

    Crochet, Pascale; Cadierno, Victorio

    2014-09-01

    In the last few years there has been increasing interest in the use of water as a reaction medium for catalysis, and therefore in designing water-soluble transition-metal catalysts. Half-sandwich (η(6)-arene)-ruthenium(ii) complexes are a versatile and well-known family of ruthenium compounds that exhibit a rich catalytic and coordination chemistry. This Perspective article focuses on the catalytic applications in aqueous media of (η(6)-arene)-ruthenium(ii) complexes containing water-soluble phosphines, and related hydrophilic P-donor ligands.

  6. Passive auto-catalytic recombiners operation in the presence of hydrogen and carbon monoxide: Experimental study and model development

    Energy Technology Data Exchange (ETDEWEB)

    Klauck, Michael, E-mail: klauck@lrst.rwth-aachen.de [RWTH Aachen University, Institute for Reactor Safety and Reactor Technology, 52072 Aachen (Germany); Reinecke, Ernst-Arndt, E-mail: e.reinecke@fz-juelich.de [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research – Nuclear Waste Management and Reactor Safety (IEK-6), 52425 Jülich (Germany); Kelm, Stephan, E-mail: s.kelm@fz-juelich.de [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research – Nuclear Waste Management and Reactor Safety (IEK-6), 52425 Jülich (Germany); Meynet, Nicolas, E-mail: nicolas.meynet@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES/SAG/BPhAG, BP 17 92262 Fontenay aux Roses (France); Bentaïb, Ahmed, E-mail: ahmed.bentaib@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES/SAG/BPhAG, BP 17 92262 Fontenay aux Roses (France); Allelein, Hans-Josef, E-mail: allelein@lrst.rwth-aachen.de [RWTH Aachen University, Institute for Reactor Safety and Reactor Technology, 52072 Aachen (Germany); Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research – Nuclear Waste Management and Reactor Safety (IEK-6), 52425 Jülich (Germany)

    2014-01-15

    Highlights: • We studied the hydrogen conversion in the presence of carbon monoxide (CO). • CO recombines at a lower efficiency than hydrogen. • Under the given conditions, hydrogen conversion is not affected by CO. • We used three different numerical codes to simulate the experimental findings. • All codes are reproducing the experimental data well. -- Abstract: In a LWR severe accident, carbon monoxide (CO) may be generated inside the containment due to molten corium concrete interaction (MCCI). As a component of the accident atmosphere, CO will interact with passive auto-catalytic recombiners (PARs) which are installed inside LWR containments for hydrogen (H{sub 2}) removal. Depending on the boundary conditions, CO may either react with oxygen to carbon dioxide (CO{sub 2}) or act as catalyst poison, reducing the catalyst activity and hence the hydrogen conversion efficiency. A new experimental test programme performed in co-operation between JÜLICH and RWTH investigates these aspects aiming at providing data for model development for advanced severe accident analyses. In the first test series presented here, the parallel catalytic reaction of H{sub 2} and CO on the catalyst surface has been studied, i.e. the hydrogen recombination reaction was started before CO was injected. In total, 33 steady state measurements have been performed. The test series was jointly evaluated by JÜLICH, RWTH and IRSN. The test results show that under the given conditions the conversion of CO into CO{sub 2} has no negative impact on the parallel hydrogen conversion. The efficiency of the CO recombination in terms of molar rates is significantly smaller (by a factor of ∼2) than the corresponding H{sub 2} conversion efficiency. Due to the exothermal reaction, the parallel CO conversion may also have an impact on the possible ignition of the flammable gases at hot PAR surfaces. The authors have used three different numerical codes for the simulation of the parallel CO

  7. Hydrogen generation from catalytic hydrolysis of sodium borohydride solution using Cobalt-Copper-Boride (Co-Cu-B) catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Xin-Long; Yuan, Xianxia; Jia, Chao; Ma, Zi-Feng [Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2010-10-15

    Co-Cu-B, as a catalyst toward hydrolysis of sodium borohydride solution, has been prepared through chemical reduction of metal salts, CoCl{sub 2}.6H{sub 2}O and CuCl{sub 2}, by an alkaline solution composed of 7.5wt% NaBH{sub 4} and 7.5wt% NaOH. The effects of Co/Cu molar ratio, calcination temperature, NaOH and NaBH{sub 4} concentration and reaction temperature on catalytic activity of Co-Cu-B for hydrogen generation from alkaline NaBH{sub 4} solution have been studied. X-ray diffraction (XRD), scanning electron microscope (SEM) and Nitrogen adsorption-desorption isotherm have been employed to understand the results. The Co-Cu-B catalyst with a Co/Cu molar ratio of 3:1 and calcinated at 400 C showed the best catalytic activity at ambient temperature. The activation energy of this catalytic reaction is calculated to be 49.6 kJ mol{sup -1}. (author)

  8. A compact process for the treatment of olive mill wastewater by combining wet hydrogen peroxide catalytic oxidation and biological techniques

    Energy Technology Data Exchange (ETDEWEB)

    Azabou, Samia [Laboratoire des BioProcedes, Centre de Biotechnologie de Sfax, BP 1177, 3018 Sfax (Tunisia); Najjar, Wahiba [Laboratoire de Chimie des Materiaux et Catalyse, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunis (Tunisia); Bouaziz, Mohamed [Laboratoire des BioProcedes, Centre de Biotechnologie de Sfax, BP 1177, 3018 Sfax (Tunisia); Ghorbel, Abdelhamid [Laboratoire de Chimie des Materiaux et Catalyse, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunis (Tunisia); Sayadi, Sami, E-mail: sami.sayadi@cbs.rnrt.tn [Laboratoire des BioProcedes, Centre de Biotechnologie de Sfax, BP 1177, 3018 Sfax (Tunisia)

    2010-11-15

    A system based on combined actions of catalytic wet oxidation and microbial technologies for the treatment of highly polluted OMW containing polyphenols was studied. The wet hydrogen peroxide catalytic oxidation (WHPCO) process has been investigated in the semi-batch mode at atmospheric pressure, using aluminium-iron-pillared inter layer clay ((Al-Fe)PILC), under two different catalytic processes: ((Al-Fe)PILC/H{sub 2}O{sub 2}/ultraviolet radiations) at 25 deg. C and ((Al-Fe)PILC/H{sub 2}O{sub 2}) at 50 deg. C. The results show that raw OMW was resistant to the photocatalytic process. However ((Al-Fe)PILC/H{sub 2}O{sub 2}), system operating at 50 deg. C reduced considerably the COD, colour and total phenolic contents, and thus decreased the inhibition of the marine photobacteria Vibrio fischeri luminescence by 70%. This study also examined the feasibility of coupling WHPCO and anaerobic digestion treatment. Biomethanisation experiments performed with raw OMW or pre-treated OMW proved that pre-treatments with ((Al-Fe)PILC/H{sub 2}O{sub 2}) system, for more than 2 h, resulted in higher methane production. Both untreated OMW as well as 2-h pre-treated OMW revealed as toxic to anaerobic bacteria.

  9. A General Catalytic Enantioselective Transfer Hydrogenation Reaction of β,β-Disubstituted Nitroalkenes Promoted by a Simple Organocatalyst.

    Science.gov (United States)

    Bernardi, Luca; Fochi, Mariafrancesca

    2016-01-01

    Given its synthetic relevance, the catalytic enantioselective reduction of β,β-disubstituted nitroalkenes has received a great deal of attention. Several bio-, metal-, and organo-catalytic methods have been developed, which however are usually applicable to single classes of nitroalkene substrates. In this paper, we present an account of our previous work on this transformation, which implemented with new disclosures and mechanistic insights results in a very general protocol for nitroalkene reductions. The proposed methodology is characterized by (i) a remarkably broad scope encompassing various nitroalkene classes; (ii) Hantzsch esters as convenient (on a preparative scale) hydrogen surrogates; (iii) a simple and commercially available thiourea as catalyst; (iv) user-friendly procedures. Overall, the proposed protocol gives a practical dimension to the catalytic enantioselective reduction of β,β-disubstituted nitroalkenes, offering a useful and general platform for the preparation of nitroalkanes bearing a stereogenic center at the β-position in a highly enantioenriched form. A transition state model derived from control kinetic experiments combined with literature data is proposed and discussed. This model accounts and justifies the observed experimental results. PMID:27483233

  10. A compact process for the treatment of olive mill wastewater by combining wet hydrogen peroxide catalytic oxidation and biological techniques

    International Nuclear Information System (INIS)

    A system based on combined actions of catalytic wet oxidation and microbial technologies for the treatment of highly polluted OMW containing polyphenols was studied. The wet hydrogen peroxide catalytic oxidation (WHPCO) process has been investigated in the semi-batch mode at atmospheric pressure, using aluminium-iron-pillared inter layer clay ((Al-Fe)PILC), under two different catalytic processes: ((Al-Fe)PILC/H2O2/ultraviolet radiations) at 25 deg. C and ((Al-Fe)PILC/H2O2) at 50 deg. C. The results show that raw OMW was resistant to the photocatalytic process. However ((Al-Fe)PILC/H2O2), system operating at 50 deg. C reduced considerably the COD, colour and total phenolic contents, and thus decreased the inhibition of the marine photobacteria Vibrio fischeri luminescence by 70%. This study also examined the feasibility of coupling WHPCO and anaerobic digestion treatment. Biomethanisation experiments performed with raw OMW or pre-treated OMW proved that pre-treatments with ((Al-Fe)PILC/H2O2) system, for more than 2 h, resulted in higher methane production. Both untreated OMW as well as 2-h pre-treated OMW revealed as toxic to anaerobic bacteria.

  11. Mapping the Hydrogen Bond Networks in the Catalytic Subunit of Protein Kinase A Using H/D Fractionation Factors.

    Science.gov (United States)

    Li, Geoffrey C; Srivastava, Atul K; Kim, Jonggul; Taylor, Susan S; Veglia, Gianluigi

    2015-07-01

    Protein kinase A is a prototypical phosphoryl transferase, sharing its catalytic core (PKA-C) with the entire kinase family. PKA-C substrate recognition, active site organization, and product release depend on the enzyme's conformational transitions from the open to the closed state, which regulate its allosteric cooperativity. Here, we used equilibrium nuclear magnetic resonance hydrogen/deuterium (H/D) fractionation factors (φ) to probe the changes in the strength of hydrogen bonds within the kinase upon binding the nucleotide and a pseudosubstrate peptide (PKI5-24). We found that the φ values decrease upon binding both ligands, suggesting that the overall hydrogen bond networks in both the small and large lobes of PKA-C become stronger. However, we observed several important exceptions, with residues displaying higher φ values upon ligand binding. Notably, the changes in φ values are not localized near the ligand binding pockets; rather, they are radiated throughout the entire enzyme. We conclude that, upon ligand and pseudosubstrate binding, the hydrogen bond networks undergo extensive reorganization, revealing that the open-to-closed transitions require global rearrangements of the internal forces that stabilize the enzyme's fold. PMID:26030372

  12. Catalytic oxidative desulfurization of diesel utilizing hydrogen peroxide and functionalized-activated carbon in a biphasic diesel-acetonitrile system

    Energy Technology Data Exchange (ETDEWEB)

    Haw, Kok-Giap; Bakar, Wan Azelee Wan Abu; Ali, Rusmidah; Chong, Jiunn-Fat [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Kadir, Abdul Aziz Abdul [Department of Petroleum Engineering, Faculty of Chemical and Natural Resources Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)

    2010-09-15

    This paper presents the development of granular functionalized-activated carbon as catalysts in the catalytic oxidative desulfurization (Cat-ODS) of commercial Malaysian diesel using hydrogen peroxide as oxidant. Granular functionalized-activated carbon was prepared from oil palm shell using phosphoric acid activation method and carbonized at 500 C and 700 C for 1 h. The activated carbons were characterized using various analytical techniques to study the chemistry underlying the preparation and calcination treatment. Nitrogen adsorption/desorption isotherms exhibited the characteristic of microporous structure with some contribution of mesopore property. The Fourier Transform Infrared Spectroscopy results showed that higher activation temperature leads to fewer surface functional groups due to thermal decomposition. Micrograph from Field Emission Scanning Electron Microscope showed that activation at 700 C creates orderly and well developed pores. Furthermore, X-ray Diffraction patterns revealed that pyrolysis has converted crystalline cellulose structure of oil palm shell to amorphous carbon structure. The influence of the reaction temperature, the oxidation duration, the solvent, and the oxidant/sulfur molar ratio were examined. The rates of the catalytic oxidative desulfurization reaction were found to increase with the temperature, and H{sub 2}O{sub 2}/S molar ratio. Under the best operating condition for the catalytic oxidative desulfurization: temperature 50 C, atmospheric pressure, 0.5 g activated carbon, 3 mol ratio of hydrogen peroxide to sulfur, 2 mol ratio of acetic acid to sulfur, 3 oxidation cycles with 1 h for each cycle using acetonitrile as extraction solvent, the sulfur content in diesel was reduced from 2189 ppm to 190 ppm with 91.3% of total sulfur removed. (author)

  13. Catalytic Lignin Valorization Process for the Production of Aromatic Chemicals and Hydrogen

    NARCIS (Netherlands)

    Zakzeski, J.; Jongerius, A.L.; Bruijnincx, P.C.A.; Weckhuysen, B.M.

    2012-01-01

    With dwindling reserves of fossil feedstock as a resource for chemicals production, the fraction of chemicals and energy supplied by alternative, renewable resources, such as lignin, can be expected to increase in the foreseeable future. Here, we demonstrate a catalytic process to valorize lignin (e

  14. Maximizing renewable hydrogen production from biomass in a bio/catalytic refinery

    DEFF Research Database (Denmark)

    Westermann, Peter; Jørgensen, Betina; Lange, L.;

    2007-01-01

    concept is the high versatility with respect to input of different types of biological wastes, which are abundant and cheap residues from agricultural production. Also the concept leaves the opportunity to optimize the microbiological and catalytic processes to meet specific needs for fuel flexibility....

  15. Pyrolysis of de-oiled seed cake of Jatropha Curcas and catalytic steam reforming of pyrolytic bio-oil to hydrogen.

    Science.gov (United States)

    Renny, Andrew; Santhosh, Viswanathan; Somkuwar, Nitin; Gokak, D T; Sharma, Pankaj; Bhargava, Sanjay

    2016-11-01

    The aim of this work was to study the pyrolysis of de-oiled seed cake of Jatropha Curcas and catalytic steam reforming of pyrolytic bio-oil to hydrogen. As per literature, presence of heavy nitrogenous and oxygenated compounds leads to catalyst deactivation. Here, an attempt has been made to tune pyrolytic reactions to optimize the N and O content of the pyrolytic bio-oil. Bio-oil conversion and hydrogen yield decreased as reaction progressed, which attributes to temporary loss of catalytic activity by blockage of catalyst pores by carbon deposition. Further, retention of steam reforming activity after repetitive steam activation suggests long-term catalyst usage. PMID:27566523

  16. Pyrolysis of de-oiled seed cake of Jatropha Curcas and catalytic steam reforming of pyrolytic bio-oil to hydrogen.

    Science.gov (United States)

    Renny, Andrew; Santhosh, Viswanathan; Somkuwar, Nitin; Gokak, D T; Sharma, Pankaj; Bhargava, Sanjay

    2016-11-01

    The aim of this work was to study the pyrolysis of de-oiled seed cake of Jatropha Curcas and catalytic steam reforming of pyrolytic bio-oil to hydrogen. As per literature, presence of heavy nitrogenous and oxygenated compounds leads to catalyst deactivation. Here, an attempt has been made to tune pyrolytic reactions to optimize the N and O content of the pyrolytic bio-oil. Bio-oil conversion and hydrogen yield decreased as reaction progressed, which attributes to temporary loss of catalytic activity by blockage of catalyst pores by carbon deposition. Further, retention of steam reforming activity after repetitive steam activation suggests long-term catalyst usage.

  17. Chemistry and catalysis of coal liquefaction: catalytic and thermal upgrading of coal liquid and hydrogenation of CO to produce fuels. Quarterly progress report, January-March 1980

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, W.H.

    1980-08-01

    Analysis of a group of coal liquids produced by catalytic hydrogenation of Utah coals with ZnCl/sub 2/ catalyst was begun. Carbon-13 nuclear magnetic resonance and liquid chromatography techniques will be used to correlate chemical properties with hydrogenation reactivity. Equipment previously used for downflow measurements of heat and momentum transfer in a gas-coal suspension was modified for upflow measurements. The catalytic hydrodeoxygenation of methyl benzoate has been studied to elucidate the reactions of ester during upgrading of coal-derived liquids. The kinetics of hydrogenation of phenanthrene have also been determined. The catalytic cracking mechanism of octahydroanthracene is reported in detail. Studies of the hydrodesulfurization of thiophene indicate that some thiophene is strongly adsorbed as a hydrogen-deficient polymer on cobalt-molybdate catalyst. Part of the polymer can be desorbed as thiophene by hydrogenation. Poisoning of the catalyst inhibits the hydrosulfurization activity to a greater degree than the hydrogenation activity. Iron-manganese catalysts for carbon monoxide hydrogenation is studied to determine the role of iron carbide formation on selectivity. Pure iron catalyst forms a Hagg iron carbide phase under reaction conditions.

  18. Catalytic Hydrogenation of Methanol-Containing Eflfuent from Epoxidation of Propylene

    Institute of Scientific and Technical Information of China (English)

    Cheng Ke

    2015-01-01

    This paper describes the hydrogenation of impurities in the methanol-containing eflfuent from the propylene epoxidation process with hydrogen peroxide. The effects of reaction temperature, pressure, weight hourly space velocity (WHSV) and H2/methanol ratio on the concentration of various impurities in methanol solvent were investigated. It was found out that the aldehyde, hydrogen peroxide and nitro compounds in the methanol solvent could be completely hydroge-nated over the Ni catalyst under proper reaction conditions. 90%of acetone and up to 50%of acetals (ketals) existing in the methanol solvent could be hydrogenated. No signiifcant change was observed for the rest of the impurities that were present in the methanol solvent (i. e., 1-methoxy-2-propanol, 2-methoxy-1-propanol and 1,2-propanediol). The H2O2 decomposition reaction was enhanced using Ni catalyst, through the formation of NioOH, but no oxygen was found in the off-gas of hy-drogenation reaction since NioH could react on NioOH formed via dissociative adsorption of hydrogen peroxide, or on NioO formed via adsorption of oxygen.

  19. Effects of acido-basic support properties on the catalytic hydrogenation of acetylene on gold nano-particles

    Science.gov (United States)

    Manda, Abdullah Ahmed

    Metallic gold nanoparticles supported on gamma-Al2O 3 and magnesia-alumina mixed oxide, with different magnesia content have been prepared by sol-gel method and characterized by different techniques (inductive coupled plasma-mass spectroscopy (ICP-MS), XRD, BET surface area analysis, transmission electron microscopy (TEM), CO2 and NH 3 temperature programmed desorption (TPD), H2 temperature programmed reduction (TPR) and FTIR of adsorbed CO2). Such systems were found to produce catalysts with controllable acidity, varying from catalyst possessing large density of acidic and low density of basic sites, others with acidic and basic sites of equal strength and density, and others with large basic and low acid sites densities, respectively. The catalytic assessment of the generated acidity was carried out using 2-propanol decomposition as a test reaction. The results obtained indicate that the presence of magnesia and reduced gold nanopartilces has imparted the catalysts, 1%Au/4%Mg-Al 2O3 and 1%Au/8%Mg-Al2O3, with significant base-catalytic properties. Acetylene hydrogenation and formation of coke deposits were investigated on a gold catalyst supported on gamma-Al2O3 and gold supported on alumina-magnisia mixed oxide with different gold content; 1%Au/gamma-Al 2O3, 1%Au/15%Mg-Al2O3, 2%Au/15%Mg-Al 2O3 and 4%Au/15%Mg-Al2O3. The effect of the H2/C2H2 ratio was studied over a range of values. The catalytic activity and selectivity towards ethylene and other products were investigated at different reaction temperatures. Acetylene hydrogenation was investigated in the presence and absence of ethylene in stream. It is investigated that the adsorption of the triple bond is preferred over the double bond and during selective catalytic (SCR) of C2H2 the two hydrocarbons do not compete for the same adsorption sites. The deactivation of catalysts was studied by temperature programmed oxidation (TPO). Higher content of coke over 1%Au/Al2O3 catalyst was investigated in contrast to

  20. Identification of intrinsic catalytic activity for electrochemical reduction of water molecules to generate hydrogen

    KAUST Repository

    Shinagawa, Tatsuya

    2015-01-01

    Insufficient hydronium ion activities at near-neutral pH and under unbuffered conditions induce diffusion-limited currents for hydrogen evolution, followed by a reaction with water molecules to generate hydrogen at elevated potentials. The observed constant current behaviors at near neutral pH reflect the intrinsic electrocatalytic reactivity of the metal electrodes for water reduction. This journal is © the Owner Societies.

  1. Progress in Catalytic Membrane Reactors for High Purity Hydrogen Production%膜催化反应器及其制氢技术的研究进展

    Institute of Scientific and Technical Information of China (English)

    闫云飞; 张力; 李丽仙; 唐强

    2011-01-01

    As a kind of ideal fuel for fuel cell, hydrogen must be satisfied with the enough high purity. To produce high purity hydrogen at a low cost and large scale method has become a key research focus in the industrialization of fuel-cell technology. The membrane catalytic technology with catalysis and separation dual functions has been developed in recent years, which is a good method to produce high purity hydrogen. Based on the latest developments in the membrane catalytic reaction fields, the advantages, composition and type of membrane catalytic reactor are summarized. The preparation techniques, advantages and classification of inorganic membrane materials are described. Especially, the progress and application for high purity hydrogen production are reviewed in three kinds of catalytic membrane reactors, including oxygen-permeable membrane reactor, hydrogen-permeation membrane reactor and double-membranes reactor. The existing problems of catalytic membrane and membrane catalytic reactor in the industrialization process of hydrogen production using the membrane catalytic technology are also discussed. Additionally, the prospects of membrane catalytic reactors for hydrogen production is proposed.%燃料电池对其理想燃料氢气的纯度要求极高,如何低成本、大规模制取高纯氢气己成为燃料电池技术实现工业化的一个关键问题和研究热点.近年发展起来的兼具催化与分离双重功能的膜催化反应技术是实现制取高纯氢气的一个有效途径.本文结合膜催化反应领域的最新进展,综述了膜催化反应器的优点、组成、类型;介绍了无机膜材料的优点、分类及制备技术;详细综述了透氧膜催化反应器、透氢膜催化反应器及双膜催化反应器在制氢过程中的研究进展和应用,指出了膜催化反应制氢技术在工业化发展过程中存在的问题及应用前景.

  2. H2CAP - Hydrogen assisted catalytic biomass pyrolysis for green fuels

    DEFF Research Database (Denmark)

    Arndal, Trine Marie Hartmann; Høj, Martin; Jensen, Peter Arendt;

    2014-01-01

    Pyrolysis of biomass produces a high yield of condensable oil at moderate temperature and low pressure.This bio-oil has adverse properties such as high oxygen and water contents, high acidity and immiscibility with fossil hydrocarbons. Catalytic hydrodeoxygenation (HDO) is a promising technology...... that can be used to upgrade the crude bio-oil to fuel-grade oil. The development of the HDO process is challenged by rapid catalyst deactivation, instability of the pyrolysis oil, poorly investigated reaction conditions and a high complexity and variability of the input oil composition. However, continuous...... catalytic hydropyrolysis coupled with downstream HDO of the pyrolysis vapors before condensation shows promise (Figure 1). A bench scale experimental setup will be constructed for the continuous conversion of solid biomass (100g /h) to low oxygen, fuel-grade bio-oil. The aim is to provide a proof...

  3. A thermal hydraulic analysis model for catalytic hydrogen recombiners in the containment vessel of a BWR

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Tadashi; Fujimoto, Kiyoshi [Power and Industrial Systems Rand D Division, Hitachi LTD., HItachi Ibaraki (Japan); Yamanari, Shouzou; Yoshinari, Yasuo

    1999-07-01

    Passive catalytic recombiners have been developed as a safety system to lower flammable gases concentrations in a nuclear power plant accident. Passive catalytic recombiners are of very simple construction and free of active components, which hold the promise of better plant economy, maintainability and reliability. In evaluation of the performance of the recombiners, the clarification of the diffusion and mixing behaviors of flammable gases in the primary containment vessel (PCV) is desirable. The diffusion/mixing behaviors of flammable gases are affected by natural circulation flow induced by the exothermic reaction of the recombiner, forced flow due to the PCV spray and interference by the obstacles in the PCV (such as pipings and components). As an analytical tool to deal with thermal hydraulic behaviors for passive catalytic recombiners, the authors have studied applicability of a three-dimensional analysis code. From the viewpoint of analytical capabilities, the authors selected the STAR-CD code. This paper describes the applicability of the code, including verification analysis and preliminary evaluation for a BWR plant. (author)

  4. Microwave-assisted facile and rapid Friedel-Crafts benzoylation of arenes catalysed by bismuth trifluoromethanesulfonate

    DEFF Research Database (Denmark)

    Tran, Phoung Hoang; Hansen, Poul Erik; Pham, Thuy Than;

    2014-01-01

    The catalytic activity of metal triflates was investigated in Friedel–Crafts benzoylation under microwave irradiation. Friedel–Crafts benzoylation with benzoyl chloride of a variety of arenes containing electron-rich and electron-poor rings using bismuth triflate under microwave irradiation is...

  5. Size Control of Iron Oxide Nanoparticles Using Reverse Microemulsion Method: Morphology, Reduction, and Catalytic Activity in CO Hydrogenation

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Housaindokht

    2013-01-01

    Full Text Available Iron oxide nanoparticles were prepared by microemulsion method and evaluated in Fischer-Tropsch synthesis. The precipitation process was performed in a single-phase microemulsion operating region. Different HLB values of surfactant were prepared by mixing of sodium dodecyl sulfate (SDS and Triton X-100. Transmission electron microscopy (TEM, surface area, pore volume, average pore diameter, pore size distribution, and XRD patterns were used to analyze size distribution, shape, and structure of precipitated hematite nanoparticles. Furthermore, temperature programmed reduction (TPR and catalytic activity in CO hydrogenation were implemented to assess the performance of the samples. It was found that methane and CO2 selectivity and also the syngas conversion increased as the HLB value of surfactant decreased. In addition, the selectivity to heavy hydrocarbons and chain growth probability (α decreased by decreasing the catalyst crystal size.

  6. Synthesis and Catalytic Performance of Ni/SiO2 for Hydrogenation of 2-Methylfuran to 2-Methyltetrahydrofuran

    Directory of Open Access Journals (Sweden)

    Fu Ding

    2015-01-01

    Full Text Available A series of Ni/SiO2 catalysts with different Ni content were prepared by sol-gel method for application in the synthesis of 2-methyltetrahydrofuran (2-MTHF by hydrogenation of 2-methylfuran (2-MF. The catalyst structure was investigated by X-ray diffraction (XRD, transmission electron microscopy (TEM, X-ray photoelectron spectroscopy (XPS, and temperature programmed reduction (TPR. It is found that structures and catalytic performance of the catalysts were highly affected by the Ni content. The catalyst with a 25% Ni content had an appropriate size of the Ni species and larger BET surface area and produced a higher 2-MF conversion with enhanced selectivity in 2-MTHF.

  7. Preparation and Characterization of A New Dinuclear Ruthenium Complex with BDPX Ligand and Its Catalytic Hydrogenation Reactions for Cinnamaldehyde

    Institute of Scientific and Technical Information of China (English)

    TANG,Yuan-You(唐元友); LI,Rui-Xiang(李瑞祥); LI,Xian-Jun(李贤均); WONG,Ning-Bew(黄宁表); TIN,Kim-Chung(田金忠); ZHANG,Zhe-Ying(张哲英); MAK,Thomas C.W.(麦松威)

    2004-01-01

    A new anionic dinuclear ruthenium complex bearing 1,2-bis(diphenylphosphinomethyl)benzene (BDPX)[NH2Et2][{RuCl (BDPX)}2(μ-Cl)3] (1) was synthesized and its structure was determined by an X-ray crystallographic analysis. This result indicated that complex 1 consisted of an anion dinuclear BDPX-Ru and a cationic diethylammonium. The crystal belonged to monoclinic system, C2/c space group with a=3.3552(7) nm, b= 1.8448(4)nm, c=2.4265(5) nm, β= 101.89(3)° and Z=8. The catalytic hydrogenation activities and selectivities of complex 1 for cinnamaldehyde were investigated.

  8. Hydrogen production by catalytic decomposition of methane using a Fe-based catalyst in a fluidized bed reactor

    Institute of Scientific and Technical Information of China (English)

    D.Torres; S.de Llobet; J.L.Pinilla; M.J.Lázaro; I.Suelves; R.Moliner

    2012-01-01

    Catalytic decomposition of methane using a Fe-based catalyst for hydrogen production has been studied in this work.A Fe/Al2O3 catalyst previously developed by our research group has been tested in a fluidized bed reactor (FBR).A parametric study of the effects of some process variables,including reaction temperature and space velocity,is undertaken.The operating conditions strongly affect the catalyst performance.Methane conversion was increased by increasing the temperature and lowering the space velocity.Using temperatures between 700 and 900 ℃ and space velocities between 3 and 6 LN/(gcat·h),a methane conversion in the range of 25%-40% for the gas exiting the reactor could be obtained during a 6 h run.In addition,carbon was deposited in the form of nanofilaments (chain like nanofibers and multiwall nanotubes) with similar properties to those obtained in a fixed bed reactor.

  9. Effects of hydrophobic carrier and packing on the mass transfer capabilities in hydrogen-water liquid phase catalytic exchange bed

    International Nuclear Information System (INIS)

    Hydrogen-water liquid phase catalytic exchange bed was packed with 'sandwich' layers of the catalyst and the packing, and the effects of catalyst carrier, inert packing and their filled ratio on the overall mass transfer coefficient (Kya) were investigated experimentally. The results show that C-PTFE is suitable for hydrophobic catalyst. Kya of the bed with catalyst-stainless steel mini-spiral packing is better than that with stainless steel θ-packing, and the active Al2O3 is not suitable for the exchange bed. Moreover, if the stainless steel mini-spiral packing is etched in aqua regia, the operating flexibility and overall mass transfer capability of exchange bed are improved notably. The preferable packing ratio (catalyst/packing) is 1:4. (authors)

  10. Effect of hydrogen combustion reaction on the dehydrogenation of ethane in a fixed-bed catalytic membrane reactor

    Institute of Scientific and Technical Information of China (English)

    Masoud Hasany; Mohammad Malakootikhah; Vahid Rahmanian; Soheila Yaghmaei

    2015-01-01

    A two-dimensional non-isothermal mathematical model has been developed for the ethane dehydrogenation reaction in a fixed-bed catalytic membrane reactor. Since ethane dehydrogenation is an equilibrium reaction, removal of produced hydrogen by the membrane shifts the thermodynamic equilibrium to ethylene production. For further displacement of the dehydrogenation reaction, oxidative dehydrogenation method has been used. Since ethane dehydrogenation is an endothermic reaction, the energy produced by the oxidative dehydrogena-tion method is consumed by the dehydrogenation reaction. The results show that the oxidative dehydrogenation method generated a substantial improvement in the reactor performance in terms of high conversions and significant energy saving. It was also established that the sweep gas velocity in the shell side of the reactor is one of the most important factors in the effectiveness of the reactor.

  11. Process concept for hydrogen production by catalytic conversion of defined kerosene fractions; Verfahrenskonzept zur Wasserstofferzeugung durch katalytische Umwandlung definierter Kerosinfraktionen

    Energy Technology Data Exchange (ETDEWEB)

    Frick, Viktoria

    2011-06-15

    The innovative process concept presented in this thesis for on-board hydrogen generation from kerosene for power generation aboard aircrafts by fuel cell systems exhibits significant advantages on reaction and process level compared to the hydrogen production via reforming. It includes the separation of a defined low-sulphur fraction from kerosene via rectification or crystallization which is subsequently converted catalytically to hydrogen. To investigate thermal management and process integration of the overall system four possible process concepts have been identified and their overall efficiency has been compared to a reference concept by process simulation. The key process parameters for fractionation were derived from experimental investigations. The processes with dehydrogenation resulted in the highest hydrogen yield and an overall electrical efficiency of 43 % could be achieved in combination with crystallization, which is a significant increase against the reference concept. Taking aircraft specific boundary conditions into account this process concept has been derived as the lead concept. Moreover, it avoids the unsolved until now problems connected to undesirable production of NO{sub x} and CO. [German] Das im Rahmen dieser Arbeit erarbeitete innovative Prozesskonzept zur on-board Wasserstofferzeugung aus Kerosin fuer den Betrieb von Brennstoffzellensystemen zur Energieversorgung im Flugzeug weist erhebliche reaktions- und verfahrenstechnische Vorteile gegenueber der Wasserstofferzeugung mittels Reformierung auf. Es beinhaltet die Abtrennung, einer definierten schwefelarmen Fraktion des Kerosins mittels Rektifikation oder Kristallisation. Diese wird in einem nachfolgenden Schritt katalytisch zu Wasserstoff umgewandelt. Zur Untersuchung der Waermeintegration und Prozessfuehrung im Gesamtsystem wurden vier moegliche Verfahrenskonzepte identifiziert und deren Systemwirkungsgrade mittels Prozesssimulation mit einem Referenzkonzept verglichen. Die

  12. Modeling and Simulation of the Hydrogenation of α-Methylstyrene on Catalytically Active Metal Foams as Tubular Reactor Packing

    Directory of Open Access Journals (Sweden)

    Farzad Lali

    2016-01-01

    Full Text Available This work presents a one-dimensional reactor model for a tubular reactor packed with a catalytically active foam packing with a pore density of 30 PPI in cocurrent upward flow in the example of hydrogenation reaction of α-methylstyrene to cumene. This model includes material, enthalpy, and momentum balances as well as continuity equations. The model was solved within the parameter space applied for experimental studies under assumption of a bubbly flow. The method of orthogonal collocation on finite elements was applied. For isothermal and polytropic processes and steady state conditions, axial profiles for concentration, temperature, fluid velocities, pressure, and liquid holdup were computed and the conversions for various gas and liquid flow rates were validated with experimental results. The obtained results were also compared in terms of space time yield and catalytic activity with experimental results and stirred tank and also with random packed bed reactor. The comparison shows that the application of solid foams as reactor packing is advantageous compared to the monolithic honeycombs and random packed beds.

  13. Improvement of hydrogen isotope exchange reactions on Li4SiO4 ceramic pebble by catalytic metals

    Institute of Scientific and Technical Information of China (English)

    Cheng Jian Xiao; Chun Mei Kang; Xiao Jun Chen; Xiao Ling Gao; Yang Ming Luo; Sheng Hu; Xiao Lin Wang

    2012-01-01

    Li4SiO4 ceramic pebble is considered as a candidate tritium breeding material of Chinese Helium Cooled Solid Breeder Test Blanket Module (CH HCSB TBM) for the International Thermonuclear Experimental Reactor (ITER).In this paper,Li4SiO4 ceramic pebbles deposited with catalytic metals,including Pt,Pd,Ru and Ir,were prepared by wet impregnation method.The metal particles on Li4SiO4 pebble exhibit a good promotion of hydrogen isotope exchange reactions in H2-DzO gas system,with conversion equilibrium temperature reduction of 200-300 ℃.The out-of-pile tritium release experiments were performed using 1.0 wt% Pt/Li4SiO4 and Li4SiO4 pebbles irradiated in a thermal neutron reactor.The thermal desorption spectroscopy shows that Pt was effective to increase the tritium release rate at lower temperatures,and the ratio of tritium molecule (HT) to tritiated water (HTO) of 1.0 wt% Pt/Li4SiO4 was much more than that of Li4SiO4,which released mainly as HTO.Thus,catalytic metals deposited on Li4SiO4 pebble may help to accelerate the recovery of bred tritium particularly in low temperature region,and increase the tritium molecule form released from the tritium breeding materials.

  14. Removal of chromate and phosphate anion from aqueous solutions using calix[4]aren receptors containing proton switchable units

    Energy Technology Data Exchange (ETDEWEB)

    Ertul, Seref; Bayrakci, Mevluet [University of Selcuk, Faculty of Science, Department of Chemistry, 42031 Campus, Konya (Turkey); Yilmaz, Mustafa, E-mail: myilmaz42@yahoo.com [University of Selcuk, Faculty of Science, Department of Chemistry, 42031 Campus, Konya (Turkey)

    2010-09-15

    In the present study four new calix[4]arene amide ionophores (4-7) have been prepared by aminolysis of calix[4]arene diester (3) and investigated their extraction ability toward phosphate and dichromate anions at different pH. The {sup 1}H NMR data showed that the synthesized compounds exist in the cone conformation. Liquid-liquid extraction experiments have been performed to evaluate the dichromate and phosphate anions extraction efficiency of both calix[4]arene bearing amide-pyridinium units (4-7) and the calix[4]arene derivative bearing aminomethyl pyridinium units (8, 9). It was observed that, compounds 4-7 exhibited lower affinity toward phosphate ions than the calix[4]arene derivative bearing amine pyridinium units (8, 9). The extraction of phosphate and dichromate anions by these compounds indicates that the partially protonated pyridyl or amino groups play the major role for the formation of hydrogen bonds and electrostatic interactions.

  15. Selective Catalytic Hydrogenations of Nitriles, Ketones, and Aldehydes by Well-Defined Manganese Pincer Complexes.

    Science.gov (United States)

    Elangovan, Saravanakumar; Topf, Christoph; Fischer, Steffen; Jiao, Haijun; Spannenberg, Anke; Baumann, Wolfgang; Ludwig, Ralf; Junge, Kathrin; Beller, Matthias

    2016-07-20

    Hydrogenations constitute fundamental processes in organic chemistry and allow for atom-efficient and clean functional group transformations. In fact, the selective reduction of nitriles, ketones, and aldehydes with molecular hydrogen permits access to a green synthesis of valuable amines and alcohols. Despite more than a century of developments in homogeneous and heterogeneous catalysis, efforts toward the creation of new useful and broadly applicable catalyst systems are ongoing. Recently, Earth-abundant metals have attracted significant interest in this area. In the present study, we describe for the first time specific molecular-defined manganese complexes that allow for the hydrogenation of various polar functional groups. Under optimal conditions, we achieve good functional group tolerance, and industrially important substrates, e.g., for the flavor and fragrance industry, are selectively reduced. PMID:27219853

  16. Facile synthesis of polypyrrole functionalized nickel foam with catalytic activity comparable to Pt for the poly-generation of hydrogen and electricity

    Science.gov (United States)

    Tang, Tiantian; Li, Kan; Shen, Zhemin; Sun, Tonghua; Wang, Yalin; Jia, Jinping

    2016-01-01

    Polypyrrole functionalized nickel foam is facilely prepared through the potentiostatic electrodeposition. The PPy-functionalized Ni foam functions as a hydrogen-evolution cathode in a rotating disk photocatalytic fuel cell, in which hydrogen energy and electric power are generated by consuming organic wastes. The PPy-functionalized Ni foam cathode exhibits stable catalytic activities after thirteen continuous runs. Compared with net or plate structure, the Ni foam with a unique three-dimensional reticulate structure is conducive to the electrodeposition of PPy. Compared with Pt-group electrode, PPy-coated Ni foam shows a satisfactory catalytic performance for the H2 evolution. The combination of PPy and Ni forms a synergistic effect for the rapid trapping and removal of proton from solution and the catalytic reduction of proton to hydrogen. The PPy-functionalized Ni foam could be applied in photocatalytic and photoelectrochemical generation of H2. In all, we report a low cost, high efficient and earth abundant PPy-functionalized Ni foam with a satisfactory catalytic activities comparable to Pt for the practical application of poly-generation of hydrogen and electricity.

  17. Catalytic reduction of nitrate and nitrite ions by hydrogen : investigation of the reaction mechanism over Pd and Pd-Cu catalysts

    NARCIS (Netherlands)

    Ilinitch, OM; Nosova, LV; Gorodetskii, VV; Ivanov, VP; Trukhan, SN; Gribov, EN; Bogdanov, SV; Cuperus, FP

    2000-01-01

    The catalytic behavior of mono- and bimetallic catalysts with Pd and/or Cu supported over gamma-Al2O3 in the reduction of aqueous nitrate and nitrite ions by hydrogen was investigated. The composition of the supported metal catalysts was analysed using secondary ion mass spectroscopy (SIMS) and X-ra

  18. Molybdatophosphoric acid as an efficient catalyst for the catalytic and chemoselective oxidation of sulfides to sulfoxides using urea hydrogen peroxide as a commercially available oxidant

    Directory of Open Access Journals (Sweden)

    ALIREZA HASANINEJAD

    2010-03-01

    Full Text Available An efficient procedure for the chemoselective oxidation of alkyl (aryl sulfides to the corresponding sulfoxides using urea hydrogen peroxide (UHP in the presence of a catalytic amount of molybdatophosphoric acid at room temperature is described. The advantages of described method are: generality, high yield and chemoselectivity, short reaction time, low cost and compliment with green chemistry protocols.

  19. Catalytic enantioselective addition of hydrogen cyanide to benzaldehyde and p-methoxybenzaldehyde using cyclo-His-(αMe)Phe as catalyst

    NARCIS (Netherlands)

    Hulst, Ron; Broxterman, Quirinus B.; Kamphuis, Johan; Formaggio, Fernando; Crisma, Marco; Toniolo, Claudio; Kellogg, Richard M.

    1997-01-01

    Two cyclo-dipeptides based on His and the unnatural (αMe)Phe have been examined as catalysts in the enantioselective addition of hydrogen cyanide to benzaldehyde and p-methoxy-benzaldehyde. The synthesis, catalytic activity and NMR study towards the mechanism of this reaction are presented.

  20. Catalytic enantioselective addition of hydrogen cyanide to benzaldehyde and p-methoxybenzaldehyde using cyclo-His-(alpha-Me)Phe as catalyst

    NARCIS (Netherlands)

    Hulst, R; Broxterman, QB; Kamphuis, J; Formaggio, F; Crisma, M; Toniolo, C; Kellogg, RM

    1997-01-01

    Two cyclo-dipeptides based on His and the unnatural (alpha Me)Phe have been examined as catalysts in the enantioselective addition of hydrogen cyanide to benzaldehyde and p-methoxy-benzaldehyde. The synthesis, catalytic activity and NMR study towards the mechanism of this reaction are presented. (C)

  1. New Ruthenium Complexes Based on Tetradentate Bipyridine Ligands for Catalytic Hydrogenation of Esters.

    Science.gov (United States)

    Wang, Fangyuan; Tan, Xuefeng; Lv, Hui; Zhang, Xumu

    2016-08-01

    New bipyridinemethanamine-containing tetradentate ligands and their corresponding ruthenium complexes have been synthesized. The synthesized complexes performed well in the hydrogenation of a variety of esters with high efficiency (TON up to 9700) giving alcohols in good yields. PMID:27385062

  2. Catalytic decomposition of methane to COx-free hydrogen and carbon nanotubes over Co–W/MgO catalysts

    Directory of Open Access Journals (Sweden)

    Ahmed E. Awadallah

    2015-09-01

    Full Text Available Bimetallic catalysts containing a series of Co/W at 40/10, 30/20, 20/30 and 10/40 wt% supported on MgO with a total metal content of 50 wt% were prepared and used for the catalytic decomposition of methane to COx-free hydrogen and multi-walled carbon nanotubes (MWCNTs. The solid fresh and exhausted catalysts were characterized structurally and chemically through XRD, TPR, BET, TGA, TEM and Raman spectroscopy. The 40%Co–10%W/MgO catalyst exhibited the highest activity for the production of both hydrogen and MWCNTs. The formation of a large amount of non-interacted Co3O4 species is considered as the main reason for the catalyst superiority in its activity. On the contrary, catalysts formulations of 20%Co–30%W and 10%Co–40%W demonstrated the formation of a large amount of hardly reducible CoWO4 and MgWO4 particles causing lower activity of these catalysts toward methane decomposition as evidenced through the XRD and TPR results.

  3. Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: the hydrogen to carbon effective ratio

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Huiyan; Cheng, Yu-Ting; Vispute, Tushar; Xiao, R; Huber, George W.

    2011-01-01

    Catalytic conversion of ten biomass-derived feedstocks, i.e.glucose, sorbitol, glycerol, tetrahydrofuran, methanol and different hydrogenated bio-oil fractions, with different hydrogen to carbon effective (H/C{sub eff}) ratios was conducted in a gas-phase flow fixed-bed reactor with a ZSM-5 catalyst. The aromatic + olefin yield increases and the coke yield decreases with increasing H/C{sub eff} ratio of the feed. There is an inflection point at a H/C{sub eff} ratio = 1.2, where the aromatic + olefin yield does not increase as rapidly as it does prior to this point. The ratio of olefins to aromatics also increases with increasing H/C{sub eff} ratio. CO and CO₂ yields go through a maximum with increasing H/C{sub eff} ratio. The deactivation rate of the catalyst decreases significantly with increasing H/C{sub eff} ratio. Coke was formed from both homogeneous and heterogeneous reactions. Thermogravimetric analysis (TGA) for the ten feedstocks showed that the formation of coke from homogeneous reactions decreases with increasing H/C{sub eff} ratio. Feedstocks with a H/C{sub eff} ratio less than 0.15 produce large amounts of undesired coke (more than 12 wt%) from homogeneous decomposition reactions. This paper shows that the conversion of biomass-derived feedstocks into aromatics and olefins using zeolite catalysts can be explained by the H/C{sub eff} ratio of the feed.

  4. Experimental studies on catalytic hydrogen recombiners for light water reactors; Experimentelle Untersuchungen zu katalytischen Wasserstoffkombinatoren fuer Leichtwasserreaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Drinovac, P.

    2006-06-19

    In the course of core melt accidents in nuclear power plants a large amount of hydrogen can be produced and form an explosive or even detonative gas mixture with aerial oxygen in the reactor building. In the containment atmosphere of pressurized water reactors hydrogen combines a phlogistically with the oxygen present to form water vapor even at room temperature. In the past, experimental work conducted at various facilities has contributed little or nothing to an understanding of the operating principles of catalytic recombiners. Hence, the purpose of the present study was to conduct detailed investigations on a section of a recombiner essentially in order to deepen the understanding of reaction kinetics and heat transport processes. The results of the experiments presented in this dissertation form a large data base of measurements which provides an insight into the processes taking place in recombiners. The reaction-kinetic interpretation of the measured data confirms and deepens the diffusion theory - proposed in an earlier study. Thus it is now possible to validate detailed numeric models representing the processes in recombiners. Consequently the present study serves to broaden and corroborate competence in this significant area of reactor technology. In addition, the empirical knowledge thus gained may be used for a critical reassessment of previous numeric model calculations. (orig.)

  5. Sub-10 nm Platinum Nanocrystals with Size and Shape Control: Catalytic Study for Ethylene and Pyrrole Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Tsung, Chia-Kuang; Kuhn, John N.; Huang, Wenyu; Aliaga, Cesar; Hung, Ling-I; Somorjai, Gabor A.; Yang, Peidong

    2009-03-02

    Platinum nanocubes and nanopolyhedra with tunable size from 5 to 9 nm were synthesized by controlling the reducing rate of metal precursor ions in a one-pot polyol synthesis. A two-stage process is proposed for the simultaneous control of size and shape. In the first stage, the oxidation state of the metal ion precursors determined the nucleation rate and consequently the number of nuclei. The reaction temperature controlled the shape in the second stage by regulation of the growth kinetics. These well-defined nanocrystals were loaded into MCF-17 mesoporous silica for examination of catalytic properties. Pt loadings and dispersions of the supported catalysts were determined by elemental analysis (ICP-MS) and H2 chemisorption isotherms, respectively. Ethylene hydrogenation rates over the Pt nanocrystals were independent of both size and shape and comparable to Pt single crystals. For pyrrole hydrogenation, the nanocubes enhanced ring-opening ability and thus showed a higher selectivity to n-butylamine as compared to nanopolyhedra.

  6. Dendrimer Templated Synthesis of One Nanometer Rh and Pt Particles Supported on Mesoporous Silica: Catalytic Activity for Ethylene and Pyrrole Hydrogenation.

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wenyu; Kuhn, John N.; Tsung, Chia-Kuang; Zhang, Yawen; Habas, Susan E.; Yang, Peidong; Somorjai, Gabor A.

    2008-05-09

    Monodisperse rhodium (Rh) and platinum (Pt) nanoparticles as small as {approx}1 nm were synthesized within a fourth generation polyaminoamide (PAMAM) dendrimer, a hyperbranched polymer, in aqueous solution and immobilized by depositing onto a high-surface-area SBA-15 mesoporous support. X-ray photoelectron spectroscopy indicated that the as-synthesized Rh and Pt nanoparticles were mostly oxidized. Catalytic activity of the SBA-15 supported Rh and Pt nanoparticles was studied with ethylene hydrogenation at 273 and 293 K in 10 torr of ethylene and 100 torr of H{sub 2} after reduction (76 torr of H{sub 2} mixed with 690 torr of He) at different temperatures. Catalysts were active without removing the dendrimer capping but reached their highest activity after hydrogen reduction at a moderate temperature (423 K). When treated at a higher temperature (473, 573, and 673 K) in hydrogen, catalytic activity decreased. By using the same treatment that led to maximum ethylene hydrogenation activity, catalytic activity was also evaluated for pyrrole hydrogenation.

  7. Numerical study of methanol–steam reforming and methanol–air catalytic combustion in annulus reactors for hydrogen production

    International Nuclear Information System (INIS)

    Highlights: ► Performance of mini-scale integrated annulus reactors for hydrogen production. ► Flow rates fed to combustor and reformer control the reactor performance. ► Optimum performance is found from balance of flow rates to combustor and reformer. ► Better performance can be found when shell side is designed as combustor. -- Abstract: This study presents the numerical simulation on the performance of mini-scale reactors for hydrogen production coupled with liquid methanol/water vaporizer, methanol/steam reformer, and methanol/air catalytic combustor. These reactors are designed similar to tube-and-shell heat exchangers. The combustor for heat supply is arranged as the tube or shell side. Based on the obtained results, the methanol/air flow rate through the combustor (in terms of gas hourly space velocity of combustor, GHSV-C) and the methanol/water feed rate to the reformer (in terms of gas hourly space velocity of reformer, GHSV-R) control the reactor performance. With higher GHSV-C and lower GHSV-R, higher methanol conversion can be achieved because of higher reaction temperature. However, hydrogen yield is reduced and the carbon monoxide concentration is increased due to the reversed water gas shift reaction. Optimum reactor performance is found using the balance between GHSV-C and GHSV-R. Because of more effective heat transfer characteristics in the vaporizer, it is found that the reactor with combustor arranged as the shell side has better performance compared with the reactor design having the combustor as the tube side under the same operating conditions.

  8. Effect of Catalytic Cylinders on Autothermal Reforming of Methane for Hydrogen Production in a Microchamber Reactor

    OpenAIRE

    Yunfei Yan; Hongliang Guo; Li Zhang; Junchen Zhu; Zhongqing Yang; Qiang Tang; Xin Ji

    2014-01-01

    A new multicylinder microchamber reactor is designed on autothermal reforming of methane for hydrogen production, and its performance and thermal behavior, that is, based on the reaction mechanism, is numerically investigated by varying the cylinder radius, cylinder spacing, and cylinder layout. The results show that larger cylinder radius can promote reforming reaction; the mass fraction of methane decreased from 26% to 21% with cylinder radius from 0.25 mm to 0.75 mm; compact cylinder spaci...

  9. Development of New Chiral Bicyclic Ligands : Applications in Catalytic Asymmetric Transfer Hydrogenation, Epoxidations, and Epoxide Rearrangements

    OpenAIRE

    Gayet, Arnaud

    2005-01-01

    This thesis describes the synthesis and application of new chiral bicyclic ligands and their application in asymmetric catalysis. The studies involved: [i] The development of novel chiral bicyclic amino sulfur ligands and their use in transfer hydrogenation. [ii] The development of the kinetic resolution of racemic epoxide through the use of chiral lithium amides. [iii] The synthesis and application of chiral bicyclic amine in the organocatalysed epoxidation of alkenes. [iv] Development and a...

  10. Biomedical and Forensic Applications of Combined Catalytic Hydrogenation-Stable Isotope Ratio Analysis

    Directory of Open Access Journals (Sweden)

    Mark A. Sephton

    2007-01-01

    Full Text Available Studies of biological molecules such as fatty acids and the steroid hormones have the potential to benefit enormously from stable carbon isotope ratio measurements of individual molecules. In their natural form, however, the body’s molecules interact too readily with laboratory equipment designed to separate them for accurate measurements to be made.Some methods overcome this problem by adding carbon to the target molecule, but this can irreversibly overprint the carbon source ‘signal’. Hydropyrolysis is a newly-applied catalytic technique that delicately strips molecules of their functional groups but retains their carbon skeletons and stereochemistries intact, allowing precise determination of the carbon source. By solving analytical problems, the new technique is increasing the ability of scientists to pinpoint molecular indicators of disease, elucidate metabolic pathways and recognise administered substances in forensic investigations.

  11. CFD simulation of hydrogen mixing and mitigation by means of passive auto-catalytic recombiners

    Energy Technology Data Exchange (ETDEWEB)

    Kelm, S.; Reinecke, E-A.; Jahn, W., E-mail: s.kelm@fz-juelich.de [Forschungszentrum Juelich GmbH, Juelich (Germany); Allelein, H-J. [RWTH Aachen Univ.. Aachen (Germany)

    2011-07-01

    Modeling of passive auto-catalytic recombiners (PARs) operation in containment geometries involves a large variety of scales; thus, a CFD calculation resolving all these scales would be much too expensive. Therefore, the mechanistic PAR model REKO-DIREKT, developed at Forschungszentrum Juelich, has been coupled with the commercial CFD code ANSYS CFX in order to simulate PAR operation as well as the induced flow and transport phenomena. Based on a short introduction of REKO-DIREKT, its interface to CFX and the explicit coupling scheme is discussed. The paper is finalized by a first demonstration of simulation capabilities on the basis of the ThAI PAR-4 experiment (Becker Technologies GmbH, Eschborn, Germany). (author)

  12. Production of activated carbon and its catalytic application for oxidation of hydrogen sulphide

    Science.gov (United States)

    Azargohar, Ramin

    Hydrogen sulphide is an environmentally hazardous gas which is present in many gas streams associated with oil and gas industry. Oxidation of H 2S to sulphur in air produces no bulky or waste material and requires no further purification. Activated carbon is known as a catalyst for this reaction. In this research, a coal-based precursor (luscar char) and a biomass-based precursor (biochar) were used for production of activated carbons by two common methods of activation: physical and chemical activation in which steam and potassium hydroxide (KOH), respectively, were used. Experiments were designed by the statistical central composite design method. Two models were developed for the BET surface area and reaction yield of each activation process. These models showed the effects of operating conditions, such as activation temperature, mass ratio of activating agent to precursor, activation time, and nitrogen flowrate on the BET surface area and reaction yield for each activation method for each precursor. The optimum operating conditions were calculated using these models to produce activated carbons with relatively large BET surface area (> 500 m2/g) and high reaction yield (> 50 wt %). The BET surface area and reaction yield for activated carbons produced at optimum operating conditions showed maximum 7 and 7.4% difference, respectively, comparing to the values predicted by models. The activated carbons produced at optimum operating conditions were used as the base catalysts for the direct oxidation of 1 mol % hydrogen sulphide in nitrogen to sulphur at the temperature range of 160-205°C and pressure of 700 kPa. Originally activated carbons showed a good potential for oxidation of hydrogen sulphide by their selectivity for sulphur product and low amount of sulphur dioxide production. To improve the performance of steam-activated carbons, the catalysts were modified by acid-treatment followed by thermal desorption. This method increased the break-through times for

  13. Catalytic asymmetric synthesis of a tertiary benzylic carbon center via phenol-directed alkene hydrogenation.

    Science.gov (United States)

    Caille, Seb; Crockett, Rich; Ranganathan, Krishnakumar; Wang, Xiang; Woo, Jacqueline C S; Walker, Shawn D

    2011-07-01

    An expeditious synthetic approach to chiral phenol 1, a key building block in the preparation of a series of drug candidates, is reported. The strategy includes a cost-effective and readily scalable route to cyclopentanone 3 from isobutyronitrile (10). The sterically hindered and enolizable ketone 3 was subsequently employed in a challenging Grignard addition mediated by LaCl(3)·2LiCl. A novel preparation of the lanthanide reagent required for this transformation is described. To complete the process, a highly enantioselective hydrogenation step afforded the target (1). The importance of the phenol group to the success of this asymmetric transformation is discussed. PMID:21630712

  14. Preparation and catalytic performance of monolayer-dispersed Pd/Ni bimetallic catalysts for hydrogenation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Pd/Ni bimetallic catalysts were prepared by replacement reactions,characterized by X-ray diffraction,CO chemisorption and H2 temperature-programmed desorption,and evaluated for hydrogenation of cyclohexene,styrene and acetone.The results show that Pd atoms are monolayer-dispersed on the Ni surface in these Pd/Ni catalysts.Consequently,Pd/Ni catalysts are much more active than Pd/Ni and Pd/γ-Al2O3 with the same Pd loading prepared by the conventional impregnation method.

  15. Catalytic hydro desulphurization study of heavy petroleum residue through in situ generated hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Shakirullah, Mohammad; Ahmad, Imtiaz; Ishaq, Mohammad; Ahmad, Waqas [Institute of Chemical Sciences, N.W.F.P., University of Peshawar, 25120 Peshawar (Pakistan)

    2010-05-15

    Hydrodesulphurization of heavy residue was carried out using various catalysts in the presence of co-reactants as the internal sources of hydrogen. Reactions were carried out in a micro autoclave at 320 C and 10 kg f/cm{sup 2} pressure inert atmosphere of N{sub 2} for 3 h reaction time. Tetralin, propane, methanol, ethylene glycol and formic acid were separately used as co-reactants as hydrogen donors. Among the solvents studied, methanol gave the highest hydrodesulphurization yield (52%). The reaction was then carried out in the presence of various catalysts to view the influence of each individual catalyst on the desulphurization yield under the same conditions of pressure and temperature. The catalysts used were Mo-Montmorillonite, Co-Montmorillonite, nickel oxide (NiO), cadmium oxide (CdO), Zn-ZSM5, kaolin and montmorillonite clays. The results show that all the catalysts exhibited desulphurization activity. In case of Mo-Montmorillonite and Co-Montmorillonite charges, the desulfurization yields of 63% and 46% were obtained, respectively. NiO, CdO, Zn-ZSM5, kaolin and montmorillonite clays gave desulphurization yields of 54%, 50%, 56%, 20% and 36%, respectively. The desulphurization activities of Mo-Montmorillonite and Co-Montmorillonite were compared with other catalysts used. The results show that Mo-Montmorillonite gave the highest hydrodesulphurization yield. FTIR studies also confirmed the hydrodesulphurization efficiency of the Mo-Montmorillonite. (author)

  16. Ammonia Decomposition for Hydrogen Production in Catalytic Microchannels with Slip/Jump Effects

    Directory of Open Access Journals (Sweden)

    Azad Qazi Zade

    2015-01-01

    Full Text Available The rarefaction effects on the catalytic decomposition of NH3 in ruthenium–coated planar microchannels is numerically simulated in the Knudsen number range 0.015-0.03. A colocated finite–volume method is used to solve the governing equations. A concentration jump model derived from the kinetic theory of gases is employed to account for the concentration discontinuity at the reactive walls. A detailed surface reaction mechanism for ammonia decomposition on ruthenium along with a multi-component species diffusion model are used to study the effects of concentration jump coupled with velocity slip and temperature jump on the walls. The velocity-slip, temperature-jump and concentration-jump boundary conditions have miscellaneous effects on flow, temperature and species concentration fields. The results suggest that the velocity-slip boundary condition only slightly influences the species distribution at the edge of the Knudsen layer as well as inside the channel, while the temperature-jump boundary condition affects the heat and mass transfer characteristics the most. The concentration-jump effect, on the other hand, can counter balance the temperature-jump effects in some cases.

  17. Hydrogen Production by Thermo-catalytic Decomposition of Natural Gas: Carbonaceous Catalysts

    International Nuclear Information System (INIS)

    TCD of CH4 using different kinds of carbon catalyst, activated carbons (AC) and carbon blacks (CB) have been studied. AC showed an acceptable initial reaction rate but they become rapidly deactivated, while CB with high surface area provided more stable and sustainable hydrogen production. Regeneration of the carbonaceous catalysts after deactivation, using CO2 as activating agent has been studied. A commercial active carbon has been selected for the regeneration tests. The optimum operation conditions for the catalysts regeneration have been studied, attending to the burn off of the catalysts during the regeneration, which is important for the self-consistence of the process, and the recovering in the surface area, which is one of the most important factors affecting the activity of these catalysts. (authors)

  18. Catalytic performance of Fe modified K/Mo2C catalyst for CO hydrogenation

    Institute of Scientific and Technical Information of China (English)

    Minglin Xiang; Dudu Wu; Juan Zou; Debao Li; Yuhan Sun; Xichun She

    2011-01-01

    Fe modified and un-modified K/Mo2C were prepared and investigated as catalysts for CO hydrogenation reaction.Compared with K/Mo2C catalyst,the addition of Fe increased the production of alcohols,especially the C2+OH.Meanwhile,considerable amounts of C5+ hydrocarbons and C=2-C=4 were formed,whereas methane selectivity greatly decreased.Also,the activity and selectivity of the catalyst were readily affected by the reaction pressure and temperature employed.According to the XPS results,Mo4+ might be responsible for the production of alcohols,whereas the low valence state of Mo species such as Moo and/or Mo2+ might be account for the high activity and selectivity toward hydrocarbons.

  19. General Tritium Labelling of Gentamicin C by catalytic hydrogen exchange Reaction with Tritiated Water

    International Nuclear Information System (INIS)

    Gentamicin C was labelled with tritium by means of a PtO2 catalyzed hydrogen exchange reaction. Under the conditions of the exchange (100 mg of gentamicin, basic form, 0,3 ml H2O-3H, and 50 mg of prereduced PtO2) the radiochemical yield was 0,24, 0,38 and 0,48 % at 120 degree celsius, for 8, 16 and 24 hours respectively. Chemical yield for purified gentamicin was about 60 %. Purification was accomplished with a cellulose column eluted with the lower phase of chloroform-methanol 17 % ammonium hydroxide (2:1:1, v/v) . Chemical purity, determined by HPLC, was 96,5 % and radiochemical one was 95. Main exchange degradation products show biological activity. (Author) 12 refs

  20. Catalytic Glycerol Hydrodeoxygenation under Inert Atmosphere: Ethanol as a Hydrogen Donor

    Directory of Open Access Journals (Sweden)

    Efterpi S. Vasiliadou

    2014-12-01

    Full Text Available Glycerol hydrodeoxygenation to 1,2-propanediol (1,2-PDO is a reaction of high interest. However, the need for hydrogen supply is a main drawback of the process. According to the concept investigated here, 1,2-propanediol is efficiently formed using bio-glycerol feedstock with H2 formed in situ via ethanol aqueous phase reforming. Ethanol is thought to be a promising H2 source, as it is alcohol that can be used instead of methanol for transesterification of oils and fats. The H2 generated is consumed in the tandem reaction of glycerol hydrodeoxygenation. The reaction cycle proceeds in liquid phase at 220–250 °C and 1.5–3.5 MPa initial N2 pressure for a 2 and 4-h reaction time. Pt-, Ni- and Cu-based catalysts have been synthesized, characterized and evaluated in the reaction. Among the materials tested, Pt/Fe2O3-Al2O3 exhibited the most promising performance in terms of 1,2-propanediol productivity, while reusability tests showed a stable behavior. Structural integrity and no formation of carbonaceous deposits were verified via Temperature Programmed Desorption of hydrogen (TPD-H2 and thermogravimetric analysis of the fresh and used Pt/FeAl catalyst. A study on the effect of various operating conditions (reaction time, temperature and pressure indicated that in order to maximize 1,2-propanediol productivity and yield, milder reaction conditions should be applied. The highest 1,2-propanediol yield, 53% (1.1 g1,2-PDO gcat−1·h−1, was achieved at a lower reaction temperature of 220 °C.

  1. Influence of rare-earth metal doping on the catalytic performance of CuO-CeO2 for the preferential oxidation of CO in excess hydrogen

    Institute of Scientific and Technical Information of China (English)

    Zhigang Liu; Renxian Zhou; Xiaoming Zheng

    2008-01-01

    Doping of different rare-earth metals(Pr,Nd,Y and La)had an evident influence on the catalytic performance of CuO-CeO2 for the preferential oxidation(PROX)Of CO in excess hydrogen.As for Pr,the doping enhanced the catalytic activity of CuO-CeO2 for PROX.For example,the CO conversion over the above catalyst for PROX was higher than 99%at 120℃.Especially.the doping of Pr widened the temperature window by 20℃ over CuO-CeO2 with 99%CO conversion.For Nd,Y and La,the doping depressed the catalytic activity of CuO-CeO2 for PROX.However,the doping of transition metals markedly improved the selectivity of CuO-CeO2 for PROX.

  2. Promoting effect of Ir on the catalytic property of Ru/ZnO catalysts for selective hydrogenation of crotonaldehyde

    International Nuclear Information System (INIS)

    A series of ZnO supported Ru–Ir bimetal catalysts were prepared and tested for vapor-phase selective hydrogenation of crotonaldehyde. The addition of Ir could effectively promote the catalytic performance, especially the catalyst stability. A Ru–0.5Ir/ZnO catalyst showed the highest activity (a conversion of 63.3%) and selectivity to crotyl alcohol (94.4%) after 30 h reaction. The enhanced stability was attributed to the modified electronic property of Ru by the formation of RuIr alloy as the X-ray photoelectron spectroscopy results showed charge transfer from Ru to Ir, as well as the weakened surface acidity in the Ru–Ir/ZnO catalyst as evidenced by NH3 temperature-programmed desorption technique. Besides, the deactivation of the catalysts was due to the strong chemisorption of CO on the metal surface via decarbonylation reaction and deposition of organic compounds on the catalyst surface, which was characterized by CO poisoning experiment, CO temperature-programmed desorption and temperature-programmed oxidation methods.

  3. Kinetic spectrophotometric determination of Bi(III based on its catalytic effect on the oxidation of phenylfluorone by hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    SOFIJA M. RANČIĆ

    2009-08-01

    Full Text Available A new reaction was suggested and a new kinetic method was elaborated for determination of Bi(III in solution, based on its catalytic effect on the oxidation of phenyl-fluorone (PF by hydrogen peroxide in ammonia buffer. By application of spectrophotometric technique, a limit of quantification (LQ of 128 ng cm-3 was reached, and the limit of detection (LD of 37 ng cm-3 was obtained, where LQ was defined as the ratio signal:noise = 10:1 and LD was defined as signal 3:1 against the blank. The RSD value was found to be in the range 2.8–4.8 % for the investigated concentration range of Bi(III. The influence of some ions upon the reaction rate was tested. The method was confirmed by determining Bi(III in a stomach ulcer drug (“Bicit HP”, Hemofarm A.D.. The obtained results were compared to those obtained by AAS and good agreement of results was obtained.

  4. Photo-catalytic hydrogen production over Fe{sub 2}O{sub 3} based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Boudjemaa, A. [Technical and Scientific Research Centre of Physico-chemistry Analysis (CRAPC), BP 248, RP 16004, Algiers (Algeria); Laboratory of Chemistry of Natural Gas, Faculty of Chemistry (USTHB) BP 32, 16111 Algiers (Algeria); Trari, M. [Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry (USTHB) BP 32, 16111 Algiers (Algeria)

    2010-08-15

    The hydrogen photo-evolution was successfully achieved in aqueous (Fe{sub 1-x}Cr{sub x}){sub 2}O{sub 3} suspensions (0 {<=} x {<=} 1). The solid solution has been prepared by incipient wetness impregnation and characterized by X-ray diffraction, BET, transport properties and photo-electrochemistry. The oxides crystallize in the corundum structure, they exhibit n-type conductivity with activation energy of {proportional_to}0.1 eV and the conduction occurs via adiabatic polaron hops. The characterization of the band edges has been studied by the Mott Schottky plots. The onset potential of the photo-current is {proportional_to}0.2 V cathodic with respect to the flat band potential, implying a small existence of surface states within the gap region. The absorption of visible light promotes electrons into (Fe{sub 1-x}Cr{sub x}){sub 2}O{sub 3}-CB with a potential ({proportional_to}-0.5 V{sub SCE}) sufficient to reduce water into hydrogen. As expected, the quantum yield increases with decreasing the electro affinity through the substitution of iron by the more electropositive chromium which increases the band bending at the interface and favours the charge separation. The generated photo-voltage was sufficient to promote simultaneously H{sub 2}O reduction and SO{sub 3}{sup 2-} oxidation in the energetically downhill reaction (H{sub 2}O + SO{sub 3}{sup 2-} {yields} H{sub 2} + SO{sub 4}{sup 2-}, {delta}G = -17.68 kJ mol{sup -1}). The best activity occurs over Fe{sub 1.2}Cr{sub 0.8}O{sub 3} in SO{sub 3}{sup 2-} (0.1 M) solution with H{sub 2} liberation rate of 21.7 {mu}mol g{sup -1} min{sup -1} and a quantum yield 0.06% under polychromatic light. Over time, a pronounced deceleration occurs, due to the competitive reduction of the end product S{sub 2}O{sub 6}{sup 2-}. (author)

  5. Catalytic hydrogen production over RhPd/CeO2 catalysts and CO purification over Au/TiO2 catalysts

    OpenAIRE

    Jiménez Divins, Núria

    2015-01-01

    La consulta íntegra de la tesi, inclosos els articles no comunicats públicament per drets d'autor, es pot realitzar prèvia petició a l'Arxiu UPC This Thesis focuses on the study of the catalytic production of hydrogen from a biofuel, namely the bioethanol. It also studies the subsequent purification of pre-cleaned reformate streams. The end use of the hydrogen produced is to feed fuel cells to power portable and mobile applications. In this Thesis, two types of catalysts have been develope...

  6. Catalytic Hydrogenation of the Sweet Principles of Stevia rebaudiana, Rebaudioside B, Rebaudioside C, and Rebaudioside D and Sensory Evaluation of Their Reduced Derivatives

    OpenAIRE

    Mary Campbell; Indra Prakash; Venkata Sai Prakash Chaturvedula

    2012-01-01

    Catalytic hydrogenation of rebaudioside B, rebaudioside C, and rebaudioside D; the three ent-kaurane diterpene glycosides isolated from Stevia rebaudiana was carried out using Pd(OH)2. Reduction of steviol glycosides was performed using straightforward synthetic chemistry with the catalyst Pd(OH)2 and structures of the corresponding dihydro derivatives were characterized on the basis of 1D and 2D nuclear magnetic resonance (NMR) spectral data indicating that all are novel compounds being repo...

  7. Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur from Coal-Derived Fuel Gases

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Todd H.; Berry, David A.; Lyons, K. David; Beer, Stephen K.; Monahan, Michael J.

    2001-11-06

    The development of low cost, highly efficient, desulfurization technology with integrated sulfur recovery remains a principle barrier issue for Vision 21 integrated gasification combined cycle (IGCC) power generation plants. In this plan, the U. S. Department of Energy will construct ultra-clean, modular, co-production IGCC power plants each with chemical products tailored to meet the demands of specific regional markets. The catalysts employed in these co-production modules, for example water-gas-shift and Fischer-Tropsch catalysts, are readily poisoned by hydrogen sulfide (H{sub 2}S), a sulfur contaminant, present in the coal-derived fuel gases. To prevent poisoning of these catalysts, the removal of H{sub 2}S down to the parts-per-billion level is necessary. Historically, research into the purification of coal-derived fuel gases has focused on dry technologies that offer the prospect of higher combined cycle efficiencies as well as improved thermal integration with co-production modules. Primarily, these concepts rely on a highly selective process separation step to remove low concentrations of H{sub 2}S present in the fuel gases and produce a concentrated stream of sulfur bearing effluent. This effluent must then undergo further processing to be converted to its final form, usually elemental sulfur. Ultimately, desulfurization of coal-derived fuel gases may cost as much as 15% of the total fixed capital investment (Chen et al., 1992). It is, therefore, desirable to develop new technology that can accomplish H{sub 2}S separation and direct conversion to elemental sulfur more efficiently and with a lower initial fixed capital investment.

  8. Zeolite-confined ruthenium(0) nanoclusters catalyst: record catalytic activity, reusability, and lifetime in hydrogen generation from the hydrolysis of sodium borohydride.

    Science.gov (United States)

    Zahmakiran, Mehmet; Ozkar, Saim

    2009-03-01

    Sodium borohydride, NaBH4, has been considered the most attractive hydrogen-storage material for portable fuel cell applications, as it provides a safe and practical means of producing hydrogen. In a recent communication (Zahmakiran, M.; Ozkar, S. Langmuir 2008, 24, 7065), we have reported a record total turnover number (TTON) of 103 200 mol H2/mol Ru and turnover frequency (TOF) up to 33 000 mol H2/mol Ru x h obtained by using intrazeolite ruthenium(0) nanoclusters in the hydrolysis of sodium borohydride. Here we report full details of the kinetic studies on the intrazeolite ruthenium(0) nanoclusters catalyzed hydrolysis of sodium borohydride in both aqueous and basic solutions. Expectedly, the intrazeolite ruthenium(0) nanoclusters show unprecedented catalytic lifetime, TTON = 27 200 mol H2/mol Ru, and TOF up to 4000 mol H2/mol Ru x h in the hydrolysis of sodium borohydride in basic solution (5% wt NaOH) as well. More importantly, the intrazeolite ruthenium(0) nanoclusters are isolable, bottleable, redispersible, and yet catalytically active. They retain 76% or 61% of their initial catalytic activity at the fifth run with a complete release of hydrogen in aqueous and basic medium, respectively. The intrazeolite ruthenium(0) nanoclusters were isolated as black powder and characterized by using a combination of advanced analytical techniques including XRD, HRTEM, TEM-EDX, SEM, XPS, ICP-OES, and N2 adsorption. PMID:19437749

  9. Green diesel production via catalytic hydrogenation/decarboxylation of triglycerides and fatty acids of vegetable oil and brown grease

    Science.gov (United States)

    Sari, Elvan

    than activated carbon itself for both decarboxylation of oleic acid and hydrogenation of alkenes. In an additional effort to reduce Pd amount in the catalyst, Pd2Co/C catalysts with various Pd content were prepared and the catalytic activity study showed that 0.5 wt% Pd2Co/C catalyst performs even better than a 5 wt% Pd/C catalyst. Pd and Co alloys were very well dispersed and formed fine clusters, which led to a higher active metal surface area and hence favored the decarboxylation of oleic acid. This study showed that an alloy of Pd on carbon with a significantly low Pd content is much more active and selective to diesel hydrocarbons production from an unsaturated fatty acid in super-critical water and may be regarded as a prospective feasible decarboxylation catalyst for the removal of oxygen from vegetable oil/animal fat without the need of additional hydrogen.

  10. Upper rim {alpha}-hydroxy-or {alpha}-amino phosphonic acid derivatives of calix (4) ARENES

    Energy Technology Data Exchange (ETDEWEB)

    Markovsky, L.N.; Kalchenko, V.I.; Solovyov, A.V.; Finocchiaro, P.; Failla, S.; Atamas, L.I.; Consiglio, G.; Tsymbal, I.F. [Institute of Organic Chemistry National Academy of Sciences of Ukraine (Ukraine)

    1998-10-01

    The synthesis and some stereochemical peculiarities of calix (4) arenes bearing at the upper rim of macrocycle alpha-hydroxy or alpha-amino phosphonic acid dialkyl ester fragments are described. The formation of the dimeric associates induced by intermolecular hydrogen bonds CH-OH...O=P has been also studied. (Author) 24 refs.

  11. Non-catalytic transfer hydrogenation in supercritical CO2 for coal liquefaction

    Science.gov (United States)

    Elhussien, Hussien

    This thesis presents the results of the investigation on developing and evaluating a low temperature (products of coal dissolution were non-polar and polar while the supercritical CO2, which enhanced the rates of hydrogenation and dissolution of the non-polar molecules and removal from the reaction site, was non-polar. The polar modifier (PM) for CO2 was added to the freed to aid in the dissolution and removal of the polar components. The addition of a phase transfer agent (PTA) allowed a seamless transport of the ions and by-product between the aqueous and organic phases. DDAB, used as the PTA, is an effective phase transfer catalyst and showed enhancement to the coal dissolution process. COAL + DH- +H 2O → COAL.H2 + DHO-- This process has a great feature due to the fact that the chemicals were obtained without requir-ing to first convert coal to CO and H2 units as in indirect coal liquefaction. The experiments were conducted in a unique reactor set up that can be connected through two lines. one line to feed the reactor with supercritical CO 2 and the other connected to gas chromatograph. The use of the supercritical CO2 enhanced the solvent option due to the chemical extraction, in addition to the low environmental impact and energy cost. In this thesis the experiment were conducted at five different temperatures from atmos-pheric to 140°C, 3000 - 6000 psi with five component of feed mixture, namely water, HTA, PTA, coal, and PM in semi batch vessels reactor system with a volume of 100 mL. The results show that the chemicals were obtained without requiring to first convert coal to CO and H2 units as in indirect coal liquefaction. The results show that the conversion was found to be 91.8% at opti-mum feed mixtures values of 3, 1.0 and 5.4 for water: PM, HTA: coal, water: coal respectively. With the oil price increase and growing in energy demand, the coal liquefaction remain affordable and available energy alternative.

  12. 催化点火气氢气氧推力器试验研究%Experimental Investigation on Catalytic Hydrogen and Oxygen Thruster

    Institute of Scientific and Technical Information of China (English)

    林震; 王长辉; 刘宇

    2012-01-01

    为探索催化点火气氢气氧推力器的点火规律和相关性能,设计并搭建了1N催化点火气氢气氧推力器试验系统,进行了冷热试试验。试验成功实现了不同工况下的多次催化点火。结果表明:供给氧氢混合比控制在100时,推力器预燃室产生的点火温度为700℃,能够满足燃烧室点火要求;催化剂面积体积比对催化氢氧点火具有决定性影响,采用面积体积比大的催化载体可以实现常温(8℃)下的催化点火;另外,试验中氢氧燃烧产生的高温和试验结束后推力器内残留的液态水也对催化组件提出了一定的耐温性和防水性要求。%In order to study the catalytic ignition law of catalytic hydrogen and oxygen thruster, a 1N catalytic thruster and relative experimental system were constructed. A series of tests were conducted. Several catalytic ignition in different working condition was realized. It indicates that when the oxygen and hydrogen mixture ratio is 100, the measured temperature of pre- combustion is 700℃ , which is the most applicable ignition temperature. Catalytic ignition in normal temperature can be real- ized using palladium-carbon as catalyzer which shows the domination of surface-volume ratio for catalytic ignition. In addition, it indicates that the ability of fireproof and waterproof is also the key characteristics of the catalyzer parts for catalytic hydrogen and oxwen thruster.

  13. Hydrogen production by steam reforming of bio-alcohols. The use of conventional and membrane-assisted catalytic reactors

    Energy Technology Data Exchange (ETDEWEB)

    Seelam, P. K.

    2013-11-01

    The energy consumption around the globe is on the rise due to the exponential population growth and urbanization. There is a need for alternative and non-conventional energy sources, which are CO{sub 2}-neutral, and a need to produce less or no environmental pollutants and to have high energy efficiency. One of the alternative approaches is hydrogen economy with the fuel cell (FC) technology which is forecasted to lead to a sustainable society. Hydrogen (H{sub 2}) is recognized as a potential fuel and clean energy carrier being at the same time a carbon-free element. Moreover, H{sub 2} is utilized in many processes in chemical, food, metallurgical, and pharmaceutical industry and it is also a valuable chemical in many reactions (e.g. refineries). Non-renewable resources have been the major feedstock for H{sub 2} production for many years. At present, {approx}50% of H{sub 2} is produced via catalytic steam reforming of natural gas followed by various down-stream purification steps to produce {approx}99.99% H{sub 2}, the process being highly energy intensive. Henceforth, bio-fuels like biomass derived alcohols (e.g. bio-ethanol and bio-glycerol), can be viable raw materials for the H{sub 2} production. In a membrane based reactor, the reaction and selective separation of H{sub 2} occur simultaneously in one unit, thus improving the overall reactor efficiency. The main motivation of this work is to produce H{sub 2} more efficiently and in an environmentally friendly way from bio-alcohols with a high H{sub 2} selectivity, purity and yield. In this thesis, the work was divided into two research areas, the first being the catalytic studies using metal decorated carbon nanotube (CNT) based catalysts in steam reforming of ethanol (SRE) at low temperatures (<450 deg C). The second part was the study of steam reforming (SR) and the water-gas-shift (WGS) reactions in a membrane reactor (MR) using dense and composite Pd-based membranes to produce high purity H{sub 2}. CNTs

  14. Catalytic activity of iron hexacyanoosmate(II) towards hydrogen peroxide and nicotinamide adenine dinucleotide and its use in amperometric biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Kotzian, Petr; Janku, Tereza [Department of Analytical Chemistry, University of Pardubice, Nam. Cs. Legii 565, CZ-532 10 Pardubice (Czech Republic); Kalcher, Kurt [Institute of Chemistry - Analytical Chemistry, Karl-Franzens University, Universitaetsplatz 1, A-8010 Graz (Austria); Vytras, Karel [Department of Analytical Chemistry, University of Pardubice, Nam. Cs. Legii 565, CZ-532 10 Pardubice (Czech Republic)], E-mail: karel.vytras@upce.cz

    2007-09-19

    Hydrogen peroxide and nicotinamide adenine dinucleotide (NADH) may be determined amperometrically using screen-printed electrodes chemically modified with iron(III) hexacyanoosmate(II) (Osmium purple) in flow injection analysis (FIA). The determination is based on the exploitation of catalytic currents resulting from the oxidation/reduction of the modifier. The performance of the sensor was characterized and optimized by controlling several operational parameters (applied potential, pH and flow rate of the phosphate buffer). Comparison has been made with analogous complexes of ruthenium (Ruthenium purple) and iron (Prussian blue). Taking into account the sensitivity and stability of corresponding sensors, the best results were obtained with the use of Osmium purple. The sensor exhibited a linear increase of the amperometric signal with the concentration of hydrogen peroxide in the range of 0.1-100 mg L{sup -1} with a detection limit (evaluated as 3{sigma}) of 0.024 mg L{sup -1} with a R.S.D. 1.5% for 10 mg L{sup -1} H{sub 2}O{sub 2} under optimized flow rate of 0.4 mL min{sup -1} in 0.1 M phosphate buffer carrier (pH 6) and a working potential of +0.15 V versus Ag/AgCl. Afterwards, a biological recognition element - either glucose oxidase or ethanol dehydrogenase - was incorporated to achieve a sensor facilitating the determination of glucose or ethanol, respectively. The glucose sensor gave linearity between current and concentration in the range from 1 to 250 mg L{sup -1} with a R.S.D. 2.4% for 100 mg L{sup -1} glucose, detection limit 0.02 mg L{sup -1} (3{sigma}) and retained its original activity after 3 weeks when stored at 6 deg. C. Optimal parameters in the determination of ethanol were selected as: applied potential +0.45 V versus Ag/AgCl, flow rate 0.2 mL min{sup -1} in 0.1 M phosphate buffer carrier (pH 7). Different structural designs of the ethanol sensor were tested and linearity obtained was up to 1000 mg L{sup -1} with a maximum R.S.D. of 5

  15. Ir/Sn dual-reagent catalysis towards highly selective alkylation of arenes and heteroarenes with benzyl alcohols

    Indian Academy of Sciences (India)

    Sujit Roy; Susmita Podder; Joyanta Choudhury

    2008-09-01

    A catalytic combination of [Ir(COD)Cl]2-SnCl4 efficiently promotes the reactions of arenes and heteroarenes with 1°/2°/3° benzyl alcohols as the alkylating agents to afford the corresponding diarylmethane and triarylmethane derivatives in high yields. The scope and limitation of the reaction with respect to catalyst and substrates variation has been studied in detail.

  16. Molecular hydrogen and catalytic combustion in the production of hyperpolarized 83Kr and 129Xe MRI contrast agents

    Science.gov (United States)

    Rogers, Nicola J.; Hill-Casey, Fraser; Stupic, Karl F.; Six, Joseph S.; Lesbats, Clémentine; Rigby, Sean P.; Fraissard, Jacques; Pavlovskaya, Galina E.; Meersmann, Thomas

    2016-03-01

    Hyperpolarized (hp) 83Kr is a promising MRI contrast agent for the diagnosis of pulmonary diseases affecting the surface of the respiratory zone. However, the distinct physical properties of 83Kr that enable unique MRI contrast also complicate the production of hp 83Kr. This work presents a previously unexplored approach in the generation of hp 83Kr that can likewise be used for the production of hp 129Xe. Molecular nitrogen, typically used as buffer gas in spin-exchange optical pumping (SEOP), was replaced by molecular hydrogen without penalty for the achievable hyperpolarization. In this particular study, the highest obtained nuclear spin polarizations were P = 29% for 83Kr and P = 63% for 129Xe. The results were reproduced over many SEOP cycles despite the laser-induced on-resonance formation of rubidium hydride (RbH). Following SEOP, the H2 was reactively removed via catalytic combustion without measurable losses in hyperpolarized spin state of either 83Kr or 129Xe. Highly spin-polarized 83Kr can now be purified for the first time, to our knowledge, to provide high signal intensity for the advancement of in vivo hp 83Kr MRI. More generally, a chemical reaction appears as a viable alternative to the cryogenic separation process, the primary purification method of hp 129Xe for the past 2 1/2 decades. The inherent simplicity of the combustion process will facilitate hp 129Xe production and should allow for on-demand continuous flow of purified and highly spin-polarized 129Xe.

  17. Hydrogen production from catalytic decomposition of methane; Produccion de hidrogeno a partir de la descomposicion termica catalitica del biogas de digestion anaerobia

    Energy Technology Data Exchange (ETDEWEB)

    Belsue Echevarria, M.; Etxebeste Juarez, O.; Perez Gil, S.

    2002-07-01

    The need of substitution of part of the energy obtained from fossil fuels instead of energy from renewable sources, together with the minimal emissions of CO{sub ''} and CO that are expected with these technologies, make renewable sources a very attractive predecessor for the production of hydrogen. In this situation, a usable source for hydrogen production is the biogas achieved by means of technologies like the anaerobic digestion of different kinds of biomass (MSW, sewage sludge, stc.). In this article we suggest the Thermal Catalytic Decomposition of the methane contained in this biogas, after separation of pollutants like CO{sub ''}, H{sub 2}S. steam. This technology will give hydrogen, usable in fuel cells, and nanoestructured carbon as products. (Author) 7 refs.

  18. Catalytic De/hydrogenation in Mg by co-doped Ni and VO{sub x} on active carbon: extremely fast kinetics at low temperatures and high hydrogen capacity

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Yi; Cheng, Lina [ARC Centre of Excellence for Functional Nanomaterials, University of Queensland, Brisbane (Australia); School of Mechanical and Mining Engineering, University of Queensland, Brisbane (Australia); Pan, Nan [Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei (China); Zou, Jin [School of Mechanical and Mining Engineering, University of Queensland, Brisbane (Australia); Lu, Gaoqing (Max) [ARC Centre of Excellence for Functional Nanomaterials, University of Queensland, Brisbane (Australia); Yao, Xiangdong [ARC Centre of Excellence for Functional Nanomaterials, University of Queensland, Brisbane (Australia); Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Brisbane (Australia)

    2011-05-15

    A multi-component catalyst Ni-VO{sub x}/AC (VO{sub x} is comprised of V{sub 2}O{sub 5} and VO{sub 2}, x = 2.18) was synthesized by a wet impregnation method. The synthesized Ni-VO{sub x}/AC shows a superior catalytic effect on de/hydrogenation of Mg. The MgH{sub 2}+Ni-VO{sub x}/AC composites can absorb 6.2 wt.-% hydrogen within only 1 min at 150 C under a hydrogen pressure of 2 MPa and desorb 6.5 wt.-% hydrogen within 10 min at 300 C under an initial hydrogen pressure of 1 KPa, which overcomes a critical barrier for practical use of Mg as a hydrogen storage material. A significant decrease of activation energy (E{sub a}) indicates that Ni-VO{sub x}/AC catalyst is highly efficient for Mg de/hydrogenation, which may be ascribed to the synergistic effect of bimetals (metal oxides) and nanocarbon. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. X-ray guided 1H NMR analysis of pinched cone calix[4]arenes

    Science.gov (United States)

    Rashatasakhon, Paitoon; Jaiyu, Arisa; Rojanathanes, Rojrit; Muangsin, Nongnuj; Chaichit, Narongsak; Sukwattanasinitt, Mongkol

    2010-01-01

    The analysis of structural parameters of azobenzene- and stilbene-bridged calix[4]arene obtained from AM1 calculation are in good agreement with those obtained from X-ray crystallography. The bridge longer than 9.0 Å such as p,p- trans-azobenzene and p,p- trans-stilbene cannot be constructed over the narrow rim of calix[4]arene through two ethylene oxide linkers. The m,m-stilbene bridge is the most promising photo switch because its shorter cis stereoisomer (5.85 Å) allows calix[4]arene to assume the perfect cone conformation, whilst its longer trans stereoisomer (8.00 Å) forces calix[4]arene to adapt a pinched cone conformation. The pinched cone conformation has longer distances between the neighbouring phenoxyl groups causing the weaker intramolecular hydrogen bonding and the upfield shifts of the phenolic proton signals to below 7.00 ppm. This upfield shift is useful for quick identification of pinched cone conformation of new calix[4]arene compounds.

  20. Influence of different preparation conditions on catalytic activity of ag /gama-al/sub 2/o/sub 3/ for hydrogenation of coal slime pyrolysis

    International Nuclear Information System (INIS)

    This paper, introducing variable conditional factors with Ag/AL/sub 2/O/sub 3/ as catalyst, selects five variables to investigate the influences of experimental conditions on Ag/Al2O/sub 3/ catalytic activity and define the optimal process conditions. These variables include Ag loading amount, calcinations temperature, calcinations time, reduction temperature, reduction time. X ray diffraction (XRD), hydrogen temperature-programmed reduction (TPR), X ray photoelectron spectrum (XPS) and scanning electron microscopy (SEM) were utilized to characterize the catalytic activity of Ag/-Al/sub 2/O/sub 3/, active center structure and state and those of carrier were emphatically studied, In the meantime the effects of active center and carrier on catalytic activity are studied. The results showed that: (1) In the range of 600 degree C-900 degree C, the catalytic activity of Ag/-Al/sub 2/O/sub 3/ with different loading showed little difference when changing loading amount, in the range of 900 degree C-1100 degree C, when the loading was 5%, the catalytic activity was very high; From the XRD and SEM characterizations, when the loading was 5%, it showed strong intensity diffraction peak of Ag crystal, crystal Ag is the most important activity center to promote hydrogen yield. (2) the catalytic activity of Ag/-Al/sub 2/O/sub 3/ at 450 degree C was considerably higher than that at 400 degree C and 500 degree C. By BET, XRD and SEM characterization, it can be seen, the diffraction peaks intensity of Ag crystal at 450 degree C is higher and sharper than that at 400 degree C and 500 degree C and with the increase of calcinations temperature, the specific surface area of catalysts also increased. (3) In the range of 600 degree C - 1000 degree C, the effects of calcinations time can be negligible, while, with temperature higher than 1000 degree C, 4-hour-calcinations-time catalyst exhibits a more noticeable catalytic activity than 3-hour and 5-hour catalyst do; From the XRD

  1. Precipitation and calcination synthesis methods forming nano-sized platinum catalytic particles for methanol and hydrogen oxidation

    Science.gov (United States)

    Naidoo, S.; Naidoo, Q.; Musil, E.; Linkov, V.; Vaivars, G.

    2013-03-01

    Under varying experimental conditions of calcination and precipitation reactions, different particle sizes and levels of platinum on carbon supported (Pt/C) catalysts were obtained. Rapid precipitation following a chemical reaction ensured formation of nano-sized catalytic particles using super-saturated concentrations under controlled conditions was a significant contribution in understanding the synthesis process and how it relates to an increased number of catalytic reaction sites ultimately providing superior electrochemical (EC) activity. These conditions influenced nucleation and growth rates of the catalytic particles. The super-saturation concentrations of the reactants in the reaction vessel played a direct role in producing the desired morphology of the crystallites.

  2. Cobalt-chitosan: Magnetic and biodegradable heterogeneous catalyst for selective aerobic oxidation of alkyl arenes and alcohols

    Indian Academy of Sciences (India)

    Ahmad Shaabani; Mahmoud Borjian Boroujeni; Mona Hamidzad Sangachin

    2015-11-01

    A novel and biodegradable cobalt-chitosan as a magnetic heterogeneous catalyst was synthesized and characterized by XPS, FT-IR, EDX and TEM. Catalytic performance of cobalt- chitosan was tested by aerobic oxidation of alkyl arenes and alcohols. The results show that the catalyst exhibits excellent conversion for selective aerobic oxidation of various alkyl arenes, primary and secondary alcohols with air as the only oxidant. The catalyst can be easily separated by magnetic devices and reused for 5 runs without appreciable loss of activity.

  3. Catalytic dehydrogenation of isobutane in the presence of hydrogen over Cs-modified Ni{sub 2}P supported on active carbon

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yanli [Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science and Technology, College of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Sang, Huanxin [Tianjin Academy of Environmental Sciences, Tianjin 300191 (China); Wang, Kang [Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science and Technology, College of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Wang, Xitao, E-mail: wangxt@tju.edu.cn [Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science and Technology, College of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2014-10-15

    Graphical abstract: - Highlights: • Ni{sub 2}P catalyst is tested in dehydrogenation of isobutane for the first time. • The effects of Cs promoter on catalytic performance of Ni2P/AC were investigated. • Cs-Ni2P/AC exhibits high activity and selectivity for isobutane dehydrogenation. - Abstract: In this article, an environmentally friendly non-noble-metal class of Cs-Ni{sub 2}P/active carbon (AC) catalyst was prepared and demonstrated to exhibit enhanced catalytic performance in isobutane dehydrogenation. The results of activity tests reveal that Ni/AC catalyst was highly active for isobutane cracking, which led to the formation of abundant methane and coke. After the introduction of phosphorus through impregnation with ammonium di-hydrogen phosphate and H{sub 2}-temperature programmed reduction, undesired cracking reactions were effectively inhibited, and the selectivity to isobutene and stability of catalyst increased remarkably. The characterization results indicate that, after the addition of phosphorous, the improvement of dehydrogenation selectivity is ascribed to the partial positive charges carried on Ni surface in Ni{sub 2}P particles, which decreases the strength of Ni-C bond between Ni and carbonium-ion intermediates and the possibility of excessive dehydrogenation. In addition, Cs-modified Ni{sub 2}P/AC catalysts display much higher catalytic performance as compared to Ni{sub 2}P/AC catalyst. Cs-Ni{sub 2}P-6.5 catalyst has the highest catalytic performance, and the selectivity to isobutene higher than 93% can be obtained even after 4 h reaction. The enhancement in catalytic performance of the Cs-modified catalysts is mainly attributed to the function of Cs to improve the dispersion of Ni{sub 2}P particles, transfer electron from Cs to Ni, and decrease acid site number and strength.

  4. Application of solid-phase heterogeneous catalytic hydrogenation for preparation of ethanolamine labelled by tritium and ethanolamides of aroachidonic, eicosanepentaenic, docosahexaenic acids labelled by tritium partially

    International Nuclear Information System (INIS)

    Ethanolamine labelled with tritium with 35-40 Ci/mmol molar radioactivity is produced from glycolic acid nitrile by means of solid-phase heterogeneous catalytic hydrogenation on 5% Rh/C. Preparational quantities of labelled ethanolamine are produced with 10-20% yield with the use of 5% of pd?C and 70% of glycolic acid aqueous nitrile, the molar activity of the preparation required is 4-6 Ci/mmol. Ethanolamides of arachidonic, eicosapentaenoic, docosahexaenoic acids are synthesized from the labelled ethanolamine. The compound produced are tested by chromatographic and fermentative methods

  5. Catalytic Hydrogenation of the Sweet Principles of Stevia rebaudiana, Rebaudioside B, Rebaudioside C, and Rebaudioside D and Sensory Evaluation of Their Reduced Derivatives

    Directory of Open Access Journals (Sweden)

    Mary Campbell

    2012-11-01

    Full Text Available Catalytic hydrogenation of rebaudioside B, rebaudioside C, and rebaudioside D; the three ent-kaurane diterpene glycosides isolated from Stevia rebaudiana was carried out using Pd(OH2. Reduction of steviol glycosides was performed using straightforward synthetic chemistry with the catalyst Pd(OH2 and structures of the corresponding dihydro derivatives were characterized on the basis of 1D and 2D nuclear magnetic resonance (NMR spectral data indicating that all are novel compounds being reported for the first time. Also, the taste properties of all reduced compounds were evaluated against their corresponding original steviol glycosides and sucrose.

  6. Photo-stability of a-Si solar cells fabricated by “Liquid-Si printing method” and treated with catalytic generated atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Murayama, Hiroko, E-mail: murayama.hiroko5@jp.panasonic.com [Device Solutions Center, Panasonic Corporation, 3-1-1 Yagumo-naka-machi, Moriguchi City, Osaka 570-8501 (Japan); Ohyama, Tatsushi; Yoshida, Isao; Terakawa, Akira [Device Solutions Center, Panasonic Corporation, 3-1-1 Yagumo-naka-machi, Moriguchi City, Osaka 570-8501 (Japan); Masuda, Takashi [Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa 923-1292 (Japan); JST-ERATO Shimoda Nano-Liquid Process Project, 1-1 Asahidai, Nomi City, Ishikawa 923-1292 (Japan); Ohdaira, Keisuke [Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa 923-1292 (Japan); Shimoda, Tatsuya [Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa 923-1292 (Japan); JST-ERATO Shimoda Nano-Liquid Process Project, 1-1 Asahidai, Nomi City, Ishikawa 923-1292 (Japan)

    2015-01-30

    The film properties and solar cell performances of hydrogenated amorphous silicon (a-Si:H) fabricated by a newly developed non-vacuum process “Liquid-Si printing method” were systematically investigated by comparing to the conventional plasma-chemical vapor deposition method. The as-printed a-Si:H films showed relatively high Urbach-tail characteristic energy (E{sub ch}), high [Si–H{sub 2}]/[Si–H], and low photoconductivity (~ 10{sup −7} S/cm). However, the [Si–H{sub 2}]/[Si–H] decreased, and the photoconductivity was improved to the device grade level (~ 10{sup −5} S/cm) after appropriate catalytic-generated atomic hydrogen treatment. It was also found that the light-induced degradation of the photoconductivity and solar cell efficiency of the printed samples were less than half of the conventional a-Si:H case.

  7. Photo-stability of a-Si solar cells fabricated by “Liquid-Si printing method” and treated with catalytic generated atomic hydrogen

    International Nuclear Information System (INIS)

    The film properties and solar cell performances of hydrogenated amorphous silicon (a-Si:H) fabricated by a newly developed non-vacuum process “Liquid-Si printing method” were systematically investigated by comparing to the conventional plasma-chemical vapor deposition method. The as-printed a-Si:H films showed relatively high Urbach-tail characteristic energy (Ech), high [Si–H2]/[Si–H], and low photoconductivity (~ 10−7 S/cm). However, the [Si–H2]/[Si–H] decreased, and the photoconductivity was improved to the device grade level (~ 10−5 S/cm) after appropriate catalytic-generated atomic hydrogen treatment. It was also found that the light-induced degradation of the photoconductivity and solar cell efficiency of the printed samples were less than half of the conventional a-Si:H case

  8. High Surface Area Tungsten Carbides: Synthesis, Characterization and Catalytic Activity towards the Hydrogen Evolution Reaction in Phosphoric Acid at Elevated Temperatures

    DEFF Research Database (Denmark)

    Tomás García, Antonio Luis; Li, Qingfeng; Jensen, Jens Oluf;

    2014-01-01

    Tungsten carbide powders were synthesized as a potential electrocatalyst for the hydrogen evolution reaction in phosphoric acid at elevated temperatures. With ammonium metatungstate as the precursor, two synthetic routes with and without carbon templates were investigated. Through the intermediate...... nitride route and with carbon black as template, the obtained tungsten carbide samples had higher BET area. In 100% H3PO4 at temperatures up to 185°C, the carbide powders showed superior activity towards the hydrogen evolution reaction. A deviation was found in the correlation between the BET area...... and catalytic activity; this was attributed to the presence of excess amorphous carbon in the carbide powder. TEM imaging and TGA-DTA results revealed a better correlation of the activity with the carbide particle size....

  9. Magnetic Co@g-C3N4 Core-Shells on rGO Sheets for Momentum Transfer with Catalytic Activity toward Continuous-Flow Hydrogen Generation.

    Science.gov (United States)

    Duan, Shasha; Han, Guosheng; Su, Yongheng; Zhang, Xiaoyu; Liu, Yanyan; Wu, Xianli; Li, Baojun

    2016-06-28

    Magnetic core-shell structures provide abundant opportunities for the construction of multifunctional composites. In this article, magnetic core-shells were fabricated with Co nanoparticles (NPs) as cores and g-C3N4 as shells. In the fabrication process, the Co@g-C3N4 core-shells were anchored onto the rGO nanosheets to form a Co@g-C3N4-rGO composite (CNG-I). For hydrogen generation from the hydrolysis of NaBH4 or NH3BH3, the Co NP cores act as catalytic active sites. The g-C3N4 shells protect Co NPs cores from aggregating or growing. The connection between Co NPs and rGO was strengthened by the g-C3N4 shells to prevent them from leaching or flowing away. The g-C3N4 shells also work as a cocatalyst for hydrogen generation. The magnetism of Co NPs and the shape of rGO nanosheets achieve effective momentum transfer in the external magnetic field. In the batch reactor, a higher catalytic activity was obtained for CNG-I in self-stirring mode than in magneton stirring mode. In the continuous-flow process, stable hydrogen generation was carried out with CNG-I being fixed and propelled by the external magnetic field. The separation film is unnecessary because of magnetic momentum transfer. This idea of the composite design and magnetic momentum transfer will be useful for the development of both hydrogen generation and multifunctional composite materials. PMID:27276187

  10. Research Progress in Catalytic Hydrogenation of CO2 to Ethanol%CO2催化加氢制乙醇研究进展

    Institute of Scientific and Technical Information of China (English)

    王慧敏; 杨绪壮; 张兵兵; 苏海全

    2012-01-01

    燃料乙醇是可再生的清洁燃料,具有替代汽油的应用前景.以CO2气体为碳源并通过催化加氢制燃料乙醇具有环境保护和节约能源的现实意义.主要介绍了CO2催化加氢的反应机理以及催化剂活性组分、前驱物、助剂及载体对催化活性、产物选择性的影响,同时介绍了反应条件对催化过程的影响.%Fuel ethanol is often regarded as a potential renewable clean alternative fuel to gasoline. It has practical significance of environmental protection and energy conservation to synthesize fuel ethanol by the hydrogenation of CO2. The reaction mechanism of catalytic hydrogenation of CO2 to ethanol as well as the effects of active sites,precursors,promoters and supports on the catalytic activity and product selectivity are reviewed. Moreover,the effects of reaction conditions on the catalysis are also introduced.

  11. Immobilization of the [FeFe]-hydrogenase CrHydA1 on a gold electrode: design of a catalytic surface for the production of molecular hydrogen.

    Science.gov (United States)

    Krassen, Henning; Stripp, Sven; von Abendroth, Gregory; Ataka, Kenichi; Happe, Thomas; Heberle, Joachim

    2009-06-01

    Hydrogenase-modified electrodes are a promising catalytic surface for the electrolysis of water with an overpotential close to zero. The [FeFe]-hydrogenase CrHydA1 from the photosynthetic green alga Chlamydomonas reinhardtii is the smallest [FeFe]-hydrogenase known and exhibits an extraordinary high hydrogen evolution activity. For the first time, we immobilized CrHydA1 on a gold surface which was modified by different carboxy-terminated self-assembled monolayers. The immobilization was in situ monitored by surface-enhanced infrared spectroscopy. In the presence of the electron mediator methyl viologen the electron transfer from the electrode to the hydrogenase was detected by cyclic voltammetry. The hydrogen evolution potential (-290 mV vs NHE, pH 6.8) of this protein modified electrode is close to the value for bare platinum (-270 mV vs NHE). The surface coverage by CrHydA1 was determined to 2.25 ng mm(-2) by surface plasmon resonance, which is consistent with the formation of a protein monolayer. Hydrogen evolution was quantified by gas chromatography and the specific hydrogen evolution activity of surface-bound CrHydA1 was calculated to 1.3 micromol H(2)min(-1)mg(-1) (or 85 mol H(2)min(-1)mol(-1)). In conclusion, a viable hydrogen-evolving surface was developed that may be employed in combination with immobilized photosystems to provide a platform for hydrogen production from water and solar energy with enzymes as catalysts. PMID:19480942

  12. Electrochemical synthesis of Ag nanoparticles supported on glassy carbon electrode by means of p-isopropyl calix[6]arene matrix and its application for electrocatalytic reduction of H2O2

    International Nuclear Information System (INIS)

    The silver nanoparticles were prepared on the glassy carbon (GC) electrode, modified with p-iso propyl calix[6]arene, by preconcentration of silver ions in open circuit potential and followed by electrochemical reduction of silver ions. The stepwise fabrication process of Ag nanoparticles was characterized by scanning electron microscopy and electrochemical impedance spectroscopy. The prepared Ag nanoparticles were deposited with an average size of 70 nm and a homogeneous distribution on the surface of electrode. The observed results indicated that the presence of calixarene layer on the electrode surface can control the particle size and prevent the agglomeratione and electrochemical deposition is a promising technique for preparation of nanoparticles due to its easy-to-use procedure and low cost of implementation. Cyclic voltammetry experiments showed that Ag nanoparticles had a good catalytic ability for the reduction of hydrogen peroxide (H2O2). The effects of p-isopropyl calix[6]arene concentration, applied potential for reduction of Ag+, number of calixarene layers and pH value on the electrocatalytic ability of Ag nanoparticles were investigated. The present modified electrode exhibited a linear range from 5.0 × 10-5 to 6.5 × 10-3 M and a detection limit 2.7 × 10-5 M of H2O2 (S/N = 3) using amperometric method.

  13. Extraction Capability of Calix[4]/arene-R14 Extraction Chromatography

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>In order to partition effectively 137Cs from high-level radioactive sample by extraction chromato- graphy, a kind of macroporous silica-based polymeric materials, Calix[4]arene-R14/SiO2-P were used. A

  14. Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction Year 6 - Activity 1.14 - Development of a National Center for Hydrogen Technology

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, Michael; Henderson, Ann

    2012-04-01

    The GreatPoint Energy (GPE) concept for producing synthetic natural gas and hydrogen from coal involves the catalytic gasification of coal and carbon. GPE’s technology “refines” coal by employing a novel catalyst to “crack” the carbon bonds and transform the coal into cleanburning methane (natural gas) and hydrogen. The GPE mild “catalytic” gasifier design and operating conditions result in reactor components that are less expensive and produce pipeline-grade methane and relatively high purity hydrogen. The system operates extremely efficiently on very low cost carbon sources such as lignites, subbituminous coals, tar sands, petcoke, and petroleum residual oil. In addition, GPE’s catalytic coal gasification process eliminates troublesome ash removal and slagging problems, reduces maintenance requirements, and increases thermal efficiency, significantly reducing the size of the air separation plant (a system that alone accounts for 20% of the capital cost of most gasification systems) in the catalytic gasification process. Energy & Environmental Research Center (EERC) pilot-scale gasification facilities were used to demonstrate how coal and catalyst are fed into a fluid-bed reactor with pressurized steam and a small amount of oxygen to “fluidize” the mixture and ensure constant contact between the catalyst and the carbon particles. In this environment, the catalyst facilitates multiple chemical reactions between the carbon and the steam on the surface of the coal. These reactions generate a mixture of predominantly methane, hydrogen, and carbon dioxide. Product gases from the process are sent to a gas-cleaning system where CO{sub 2} and other contaminants are removed. In a full-scale system, catalyst would be recovered from the bottom of the gasifier and recycled back into the fluid-bed reactor. The by-products (such as sulfur, nitrogen, and CO{sub 2}) would be captured and could be sold to the chemicals and petroleum industries, resulting in

  15. Liquid Phase Hydrogenation of Benzalacetophenone:Effect of Solvent,Catalyst Support,Catalytic Metal and Reaction Conditions%Liquid Phase Hydrogenation of Benzalacetophenone: Effect of Solvent, Catalyst Support, Catalytic Metal and Reaction Conditions

    Institute of Scientific and Technical Information of China (English)

    Achim STOLLE; Christine SCHMOGER; Bernd ONDRUSCHKA; Werner BONRATH; Thomas F. KELLER; Klaus D. JANDT

    2011-01-01

    Innovative catalysts based on a “porous glass” support material were developed and investigated for the reduction of benzalacetophenone.The easy preparation conditions and possibility to use different metals (e.g.Pd,Pt,Rh) for impregnation gave a broad variety of these catalysts.Hydrogenation experiments with these supported catalysts were carried out under different hydrogen pressures and temperatures.Porous glass catalysts with Pd as the active component gave chemoselective hydrogenation of benzalacetophenone,while Pt- and Rh-catalysts tended to further reduce the carbonyl group,especially at elevated hydrogen pressures and temperatures.Kinetic analysis of the reactions revealed these had zero order kinetics,which was independent of the type of porous glass support and solvent used.

  16. ONO-pincer ruthenium complex-bound norvaline for efficient catalytic oxidation of methoxybenzenes with hydrogen peroxide.

    Science.gov (United States)

    Yoshida, Ryota; Isozaki, Katsuhiro; Yokoi, Tomoya; Yasuda, Nobuhiro; Sadakane, Koichiro; Iwamoto, Takahiro; Takaya, Hikaru; Nakamura, Masaharu

    2016-08-21

    The enhanced catalytic activity of ruthenium complex-bound norvaline Boc-l-[Ru]Nva-OMe 1, in which the ONO-pincer ruthenium complex Ru(pydc)(terpy) 2 is tethered to the α-side chain of norvaline, has been demonstrated for the oxidation of methoxybenzenes to p-benzoquinones with a wide scope of substrates and unique chemoselectivity. PMID:27314504

  17. 对苯二甲酸催化加氢的Ru-Sn-B/丝光沸石催化性能%Catalytic performance of Ru-Sn-B/mordenite for terephthalic acid catalytic hydrogenation

    Institute of Scientific and Technical Information of China (English)

    赵葛新; 靳海波; 何广湘; 郭志武; 杨索和

    2012-01-01

    采用分步浸渍和化学还原的方法制备以丝光沸石分子筛为载体的Ru-Sn-B催化剂,研究了在负载型催化剂Ru-Sn-B/丝光沸石上对苯二甲酸催化加氢制备1,4-环己烷二甲醇的加氢催化性能,并利用XRD和BET等分析手段对Ru-Sn-B/丝光沸石催化剂进行表征.结果 表明,RuB和Sn在丝光沸石上具有较好的分散性,Ru-Sn-B/丝光沸石催化剂具有较高的催化活性和选择性;催化加氢过程中采用两段升温升压的方法,对苯二甲酸转化率约100%,产物1,4-环己烷二甲醇的收率为73.5%,反式与顺式之比为2.42.%Ru-Sn-B/mordenite catalysts were prepared by sequential impregnation and chemical reduction methods and using mordenite zeolite as the carrier. The catalytic performance of Ru-Sn-B/mordenite catalysts for terephthalic acid hydrogenation to 1,4-cyclohexanedimethanol was investigated. The as-prepared catalysts were characterized by XRD, BET, EDS and ICP. The results showed that RuB and Sn had better dispersion on the mordenite, and Ru-Sn-B/mordenite catalyst possessed high catalytic activity and selectivity. The catalytic hydrogenation process used two stage enhancement method of temperature and pressure. Terephthalic acid conversion rate of about 100% ,the yield of the product 1,4-cyclohexanedimethanol of 73.5% ,and the ratio of trans and cis of the product of 2.42 were attained,respectively.

  18. Adsorption-parallel catalytic waves of cinnamic acid in hydrogen peroxide-tetra-n-butylammonium bromide-acetate system

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The mechanism of the adsorption-parallel catalytic wave of cinnamic acid (C6H5-CH == CH-COOH) in acetate buffer (pH = 4.0)-H2O2-tetra-n-butylammonium bromide (Bu4N.Br) solution was studied by the linear-sweep polarography, cyclic voltammetry and digital simulation approach. Experimental results indicate that the reduction mechanism of cinnamic acid is ECdimE'process, in which the C == C double bond of cinnamic acid first undergoes 1e, 1H+ reduction to produce an intermediate free radical C6H5-C.H-CH2-COOH(E'), then the further reduction of the free radical in 1e,1H+ addition (E') occurs simultaneously with a dimerization reaction between two free radicals (Cdim). Bu4N.Br enhances the polarographic current of cinnamic acid and shifts the peak potential to positive direction. The enhancement action of Bu4N.Br is due to the adsorption of cinnamic acid induced by Bu4N+ species. In addition, H2O2 causes the parallel catalytic wave of cinnamic acid. The mechanism of the catalytic wave is EC'process because H2O2 oxidizes the free radical of cinnamic acid to regenerate the original C == C bond(C'), preventing both the further reduction and the dimerization of the free radicals. The apparent rate constant kf of the oxidation reaction is 1.35×102 mol.L-1.s-1. A new class of catalytic waves for organic compounds, the adsorption-parallel catalytic waves upon the dual enhancement action of both the surfactant and oxidant, has been presented.

  19. Catalytic Asymmetric Reduction of a 3,4-Dihydroisoquinoline for the Large-Scale Production of Almorexant: Hydrogenation or Transfer Hydrogenation?

    OpenAIRE

    Verzijl, Gerard K.M.; Vries, André H.M. de; Vries, Johannes G. de; Kapitan, Peter; Dax, Thomas; Helms, Matthias; Nazir, Zarghun; Skranc, Wolfgang; Imboden, Christoph; Stichler, Juergen; Ward, Richard A.; Abele, Stefan; Lefort, Laurent

    2013-01-01

    Several methods are presented for the enantioselective synthesis of the tetrahydroisoquinoline core of almorexant (ACT-078573A), a dual orexin receptor antagonist. Initial clinical supplies were secured by the Noyori Ru-catalyzed asymmetric transfer hydrogenation (Ru-Noyori ATH) of the dihydroisoquinoline precursor. Both the yield and enantioselectivity eroded upon scale-up. A broad screening exercise identified TaniaPhos as ligand for the iridium-catalyzed asymmetric hydrogenation with a ded...

  20. Hydrogen and methoxy coadsorption in the computation of the catalytic conversion of methanol on the ceria (111) surface

    Science.gov (United States)

    Beste, Ariana; Overbury, Steven H.

    2016-06-01

    Methanol decomposition to formaldehyde catalyzed by the ceria (111) surface was investigated using the DFT + U method. Our results rationalize experimental temperature programmed desorption experiments on the fully oxidized surface. Particular attention was paid to the effect of coadsorption of methoxy and hydrogen on various aspects of the conversion process. This issue had been raised by the experimental observation of water desorption at low temperature removing hydrogen from the system. Within this context, we also investigated hydrogen diffusion on the ceria surface. The hydrogen/methoxy interaction on ceria was shown to be ionic regardless of separation distance. The barrier for dehydrogenation of methoxy using the ionic model system, where hydrogen is coadsorbed, is above 1 eV. This barrier becomes negligible if an incorrect neutral model without coadsorbed hydrogen is employed. While water formation from isolated surface hydrogen is unlikely at low temperature, the presence of coadsorbed methoxy reduces the reaction energy for water formation considerably. For the dehydrated surface, we observed that the preference of the electron to locate at the methoxy oxygen instead of the cerium atom results in a surface that does not contain Ce3 + ions, despite the existence of a vacancy.

  1. Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts

    Directory of Open Access Journals (Sweden)

    Rodiansono Rodiansono

    2015-07-01

    Full Text Available A bulk structure of inexpensive intermetallic nickel-tin (Ni-Sn alloys catalysts demonstrated highly selective in the hydrogenation of levulinic acid in water into g-valerolactone. The intermetallic Ni-Sn catalysts were synthesized via a very simple thermochemical method from non-organometallic precursor at low temperature followed by hydrogen treatment at 673 K for 90 min. The molar ratio of nickel salt and tin salt was varied to obtain the corresponding Ni/Sn ratio of 4.0, 3.0, 2.0, 1.5, and 0.75. The formation of Ni-Sn alloy species was mainly depended on the composition and temperature of H2 treatment. Intermetallics Ni-Sn that contain Ni3Sn, Ni3Sn2, and Ni3Sn4 alloy phases are known to be effective heterogeneous catalysts for levulinic acid hydrogenation giving very excellence g-valerolactone yield of >99% at 433 K, initial H2 pressure of 4.0 MPa within 6 h. The effective hydrogenation was obtained in H2O without the formation of by-product. Intermetallic Ni-Sn(1.5 that contains Ni3Sn2 alloy species demonstrated very stable and reusable catalyst without any significant loss of its selectivity. © 2015 BCREC UNDIP. All rights reserved. Received: 26th February 2015; Revised: 16th April 2015; Accepted: 22nd April 2015  How to Cite: Rodiansono, R., Astuti, M.D., Ghofur, A., Sembiring, K.C. (2015. Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 192-200. (doi:10.9767/bcrec.10.2.8284.192-200Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.8284.192-200  

  2. Hydrogenation of nitriles on a well-characterized nickel surface: From surface science studies to liquid phase catalytic activity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gardin, D.E.

    1993-12-01

    Nitrile hydrogenation is the most commonly used method for preparing diverse amines. This thesis is aimed at the mechanism and factors affecting the performance of Ni-based catalysts in nitrile hydrogenations. Surface science techniques are used to study bonding of nitriles and amines to a Ni(111) surface and to identify surface intermediates. Liquid-phase hydrogenations of cyclohexene and 1-hexene on a Pt foil were carried out successfully. Finally, knowledge about the surface structure, surface chemical bond, dynamics of surface atoms (diffusion, growth), and reactivity of metal surfaces from solid-gas interface studies, is discussed.

  3. Effects of hydrogen bonds in association with flavin and substrate in flavoenzyme d-amino acid oxidase. The catalytic and structural roles of Gly313 and Thr317.

    Science.gov (United States)

    Setoyama, Chiaki; Nishina, Yasuzo; Tamaoki, Haruhiko; Mizutani, Hisashi; Miyahara, Ikuko; Hirotsu, Ken; Shiga, Kiyoshi; Miura, Retsu

    2002-01-01

    According to the three-dimensional structure of a porcine kidney D-amino acid oxidase-substrate (D-leucine) complex model, the G313 backbone carbonyl recognizes the substrate amino group by hydrogen bonding and the side-chain hydroxyl of T317 forms a hydrogen bond with C(2)=O of the flavin moiety of FAD [Miura et al. (1997) J. Biochem. 122, 825-833]. We have designed and expressed the G313A and T317A mutants and compared their enzymatic and spectroscopic properties with those of the wild type. The G313A mutant shows decreased activities to various D-amino acids, but the pattern of substrate specificity is different from that of the wild type. The results imply that the hydrogen bond between the G313 backbone carbonyl and the substrate amino group plays important roles in substrate recognition and in defining the substrate specificity of D-amino acid oxidase. The T317A mutant shows a decreased affinity for FAD. The steady-state kinetic measurements indicate diminished activities of T317A to substrate D-amino acids. The transient kinetic parameters measured by stopped-flow spectroscopy revealed that T317 plays key roles in stabilizing the purple intermediate, a requisite intermediate in the oxidative half-reaction, and in enhancing the release of the product from the active site, thereby optimizing the overall catalytic process of D-amino acid oxidase. PMID:11754736

  4. An efficient route for catalytic activity promotion via hybrid electro-depositional modification on commercial nickel foam for hydrogen evolution reaction in alkaline water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Guanshui; He, Yongwei; Wang, Mei; Zhu, Fuchun; Tang, Bin [Research Institute of Surface Engineering, Taiyuan University of Technology, Yingze West Road 79, Taiyuan 030024 (China); Wang, Xiaoguang, E-mail: wangxiaog1982@163.com [Research Institute of Surface Engineering, Taiyuan University of Technology, Yingze West Road 79, Taiyuan 030024 (China); International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga (Portugal)

    2014-09-15

    Highlights: • Mono-Cu surface modification depress the HER activity of Ni-foam. • Hybrid Ni-foam/Cu0.01/Co0.05 exhibits superior HER performance. • Layer-by-layer structure may contribute to a synergistic promoting effect. - Abstract: In this paper, the single- and hybrid-layered Cu, Ni and Co thin films were electrochemically deposited onto the three-dimensional nickel foam as composite cathode catalyst for hydrogen evolution reaction in alkaline water electrolysis. The morphology, structure and chemical composition of the electrodeposited composite catalysts were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). Electrochemical measurement depicted that, for the case of the monometallic layered samples, the general activity for hydrogen evolution reaction followed the sequence: Ni-foam/Ni > Ni-foam/Co > bare Ni-foam > Ni-foam/Cu. It is noteworthy that, the hybrid-layered Ni-foam/Cu0.01/Co0.05 exhibited the highest catalytic activity towards hydrogen evolution reaction with the current density as high as 2.82 times that of the bare Ni-foam. Moreover, both excellent electrochemical and physical stabilities can also be acquired on the Ni-foam/Cu0.01/Co0.05, making this hybrid-layered composite structure as a promising HER electro-catalyst.

  5. Aqueous-phase catalytic hydrogenation of furfural to cyclopentanol over Cu-Mg-Al hydrotalcites derived catalysts:Model reaction for upgrading of bio-oil

    Institute of Scientific and Technical Information of China (English)

    Minghao; Zhou; Zuo; Zeng; Hongyan; Zhu; Guomin; Xiao; Rui; Xiao

    2014-01-01

    A series of Cu-Mg-Al hydrotalcites derived oxides with a(Cu+Mg)/Al mole ratio of 3 and varied Cu/Mg mole ratio(from 0.07 to 0.30) were prepared by co-precipitation and calcination methods, then they were introduced to the hydrogenation of furfural in aqueous-phase. Effects of Cu/Mg mole ratio, reaction temperature, initial hydrogen pressure, reaction time and catalyst amount on the conversion rate of furfural as well as the selectivity toward desired product cyclopentanol were systematically investigated. The conversion of furfural over calcined hydrotalcite catalyst with a Cu/Mg mole ratio of 0.2 was up to 98.5% when the reaction was carried out under 140 ?C and the initial hydrogen pressure of 4 MPa for 10 h, while the selectivity toward cyclopentanol was up to 94.8%. The catalysts were characterized by XRD and SEM. XRD diffraction of all the samples showed characteristic pattern of hydrotalcite with varied peak intensity as a result of different Cu content. The catalytic activity was improved gradually with the increase of Cu component in the hydrotalcite.

  6. On the role of metal particle size and surface coverage for photo-catalytic hydrogen production; a case study of the Au/CdS system

    KAUST Repository

    Majeed, I.

    2015-09-25

    Photo-catalytic hydrogen production has been studied on Au supported CdS catalysts under visible light irradiation in order to understand the effect of Au particle size as well as the reaction medium properties. Au nanoparticles of size about 2-5 nm were deposited over hexagonal CdS particles using a new simple method involving reduction of Au3+ ions with iodide ions. Within the investigated range of Au (between 1 and 5 wt. %) fresh particles with mean size of 4 nm and XPS Au4f/Cd3d surface ratio of 0.07 showed the highest performance (ca. 1 molecule of H2 / Auatom s−1) under visible light irradiation (>420 nm and a flux of 35 mW/cm2). The highest hydrogen production rate was obtained from water (92%)-ethanol (8%) in an electrolyte medium (Na2S-Na2SO3). TEM studies of fresh and used catalysts showed that Au particle size increases (almost 5 fold) with increasing photo-irradiation time due to photo-agglomeration effect yet no sign of deactivation was observed. A mechanism for hydrogen production from ethanol-water electrolyte mixture is presented and discussed.

  7. Mono- and Bimetallic Ruthenium—Arene Catalysts for Olefin Metathesis: A Survey

    Science.gov (United States)

    Borguet, Yannick; Sauvage, Xavier; Demonceau, Albert; Delaude, Lionel

    In this chapter, we summarize the main achievements of our group toward the development of easily accessible, highly efficient ruthenium—arene catalyst precursors for olefin metathesis. Major advances in this field are presented chronologically, with an emphasis on catalyst design and mechanistic details. The first part of this survey focuses on monometallic complexes with the general formula RuCl2(p-cymene)(L), where L is a phosphine or N-heterocyclic carbene ancillary ligand. In the second part, we disclose recent developments in the synthesis and catalytic applications of homobimetallic ruthenium—arene complexes of generic formula (p-cymene)Ru(μ-Cl)3RuCl(η2-C2H4)(L) and their derivatives resulting from the substitution of the labile ethylene moiety with vinylidene, allenylidene, or indenylidene units

  8. A New Efficient Synthesis of p-Nitrocalix[4]arene

    Institute of Scientific and Technical Information of China (English)

    Yong LI; Jia Song WANG; Qi WANG; De Shan LI

    2004-01-01

    A new efficient synthesis of p-nitrocalix[4]arene from calix[4]arene by using nitrogen dioxide is described. The compound is an useful intermediates for the introduction of other functional groups to obtain N containing substituted calix[4]arene.The reaction mechanism is briefly discussed.

  9. Adsorption-parallel catalytic waves of cinnamic acid in hydrogen peroxide-tetra-n-butylammonium bromide-acetate system

    Institute of Scientific and Technical Information of China (English)

    亢晓峰; 过玮; 赵川; 宋俊峰

    2000-01-01

    The mechanism of the adsorption-parallel catalytic wave of cinnamic acid (C6H5—CH = CH—COOH) in acetate buffer (pH = 4.0)-H2O2-tetra-n-butylammonium bromide (Bu4N · Br) solution was studied by the linear-sweep polarography, cyclic voltammetry and digital simulation approach. Experimental results indicate that the reduction mechanism of cinnamic acid is ECdimE’ process, in which the C = C double bond of cinnamic acid first undergoes 1 e, 1H+ reduction to produce an intermediate free radical C6H5—CH—CH2—COOH(E), then the further reduction of the free radical in 1e,1H+ addition (E’) occurs simultaneously with a dimerization reaction between two free radicals (Cdim). Bu4N · Br enhances the polarographic current of cinnamic acid and shifts the peak potential to positive direction. The enhancement action of Bu4N · Br is due to the adsorption of cinnamic acid induced by Bu4N+ species. In addition, H2O2 causes the parallel catalytic wave of cinnamic acid. The mechanism of the catalytic wave is EC’ proce

  10. (Eta6-arene) ruthenium(II) complexes and metallo-papain hybrid as Lewis acid catalysts of Diels-Alder reaction in water.

    OpenAIRE

    Talbi, Barisa; Haquette, Pierre; Martel, Annie; Montigny, Frédéric de; Fosse, Céline; Cordier, Stéphane; Roisnel, Thierry; Jaouen, Gérard; Salmain, Michèle

    2010-01-01

    International audience Covalent embedding of a (eta(6)-arene) ruthenium(II) complex into the protein papain gives rise to a metalloenzyme displaying a catalytic efficiency for a Lewis acid-mediated catalysed Diels-Alder reaction enhanced by two orders of magnitude in water.

  11. Study on the Dynamics of Catalytic Hydrogenation of Adiponitrile%己二腈催化加氢的动力学研究

    Institute of Scientific and Technical Information of China (English)

    陈聚良; 张华森; 刘国际

    2012-01-01

    对间歇高压釜中进行的雷尼镍催化己二腈加氢的反应动力学进行了研究.通过考察反应过程己二腈、氨基己腈以及己二胺的浓度随时间变化的规律,可计算得到各步反应的反应级数、指前因子和活化能等动力学参数.结果表明,在消除内、外扩散影响的情况下,328 ~358 K的温度范围,2~3.5 MPa 的压力范围内,己二腈加氢成为氨基已腈的过程对己二腈呈一级反应,对氢气呈1.4级反应;氨基己腈继续加氢制备己二胺的过程对氨基己腈为零级反应,对氢气为1.3级反应.在此基础上建立了己二腈催化加氢制备己二胺的各步反应的动力学方程,并对动力学方程进行了验证.%The kinetics for hydrogenation of adiponitrile were studied with Raney nickel as catalyst in a a high-pressure batch reactor. Under the condition of no inside and outside diffusion, the concentration of adiponitrile , aminocaproic nitrile and hexamethylenediamine versus time over the Raney - Ni catalyst were measured. The kinetic parameters of catalytic hydrogenation of adiponitrile to hexamethylenediamine such as reaction order, pre - exponential factor and activated energy in each step were obtained. The results show that, when the temperature kept at 328 -358K and pressure kept at 2 ~3. 5MPa, the order of adiponitrile hydrogenation to adiponitrile was 1, while to hydrogen pressure was 1.4. The intermediate aminocaproic nitrile was hydrogena-ted to hexamethylene diamine, the reaction order to aminocaproic nitrile was 0, to hydrogen pressure was 1.3. Based on these results, the kinetic equations of adiponitrile hydrogenation to hexamethylenediamine in each step were proposed. They are in consistence with the experimental data.

  12. Effect of Copper Nanoparticles Dispersion on Catalytic Performance of Cu/SiO2 Catalyst for Hydrogenation of Dimethyl Oxalate to Ethylene Glycol

    Directory of Open Access Journals (Sweden)

    Yajing Zhang

    2013-01-01

    Full Text Available Cu/SiO2 catalysts, for the synthesis of ethylene glycol (EG from hydrogenation of dimethyl oxalate (DMO, were prepared by ammonia-evaporation and sol-gel methods, respectively. The structure, size of copper nanoparticles, copper dispersion, and the surface chemical states were investigated by X-ray diffraction (XRD, transmission electron microscopy (TEM, temperature-programmed reduction (TPR, and X-ray photoelectron spectroscopy (XPS and N2 adsorption. It is found the structures and catalytic performances of the catalysts were highly affected by the preparation method. The catalyst prepared by sol-gel method had smaller average size of copper nanoparticles (about 3-4 nm, better copper dispersion, higher Cu+/C0 ratio and larger BET surface area, and higher DMO conversion and EG selectivity under the optimized reaction conditions.

  13. Preparation, structural characterization and catalytic properties of Co/CeO2 catalysts for the steam reforming of ethanol and hydrogen production

    Science.gov (United States)

    Lovón, Adriana S. P.; Lovón-Quintana, Juan J.; Almerindo, Gizelle I.; Valença, Gustavo P.; Bernardi, Maria I. B.; Araújo, Vinícius D.; Rodrigues, Thenner S.; Robles-Dutenhefner, Patrícia A.; Fajardo, Humberto V.

    2012-10-01

    In this paper, Co/CeO2 catalysts, with different cobalt contents were prepared by the polymeric precursor method and were evaluated for the steam reforming of ethanol. The catalysts were characterized by N2 physisorption (BET method), X-ray diffraction (XRD), UV-visible diffuse reflectance, temperature programmed reduction analysis (TPR) and field emission scanning electron microscopy (FEG-SEM). It was observed that the catalytic behavior could be influenced by the experimental conditions and the nature of the catalyst employed. Physical-chemical characterizations revealed that the cobalt content of the catalyst influences the metal-support interaction which results in distinct catalyst performances. The catalyst with the highest cobalt content showed the best performance among the catalysts tested, exhibiting complete ethanol conversion, hydrogen selectivity close to 66% and good stability at a reaction temperature of 600 °C.

  14. Effect of Copper Nanoparticles Dispersion on Catalytic Performance of Cu/SiO2 Catalyst for Hydrogenation of Dimethyl Oxalate to Ethylene Glycol

    International Nuclear Information System (INIS)

    Cu/SiO2 catalysts, for the synthesis of ethylene glycol (EG) from hydrogenation of dimethyl oxalate (DMO), were prepared by ammonia-evaporation and sol-gel methods, respectively. The structure, size of copper nanoparticles, copper dispersion, and the surface chemical states were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), temperature-programmed reduction (TPR), and X-ray photoelectron spectroscopy (XPS) and N2 adsorption. It is found the structures and catalytic performances of the catalysts were highly affected by the preparation method. The catalyst prepared by sol-gel method had smaller average size of copper nanoparticles (about 3-4 nm), better copper dispersion, higher Cu+/C0 ratio and larger BET surface area, and higher DMO conversion and EG selectivity under the optimized reaction conditions.

  15. Sewage-sludge-derived carbonaceous materials for catalytic wet hydrogen peroxide oxidation of m-cresol in batch and continuous reactors.

    Science.gov (United States)

    Yu, Yang; Wei, Huangzhao; Yu, Li; Wang, Wei; Zhao, Ying; Gu, Bin; Sun, Chenglin

    2016-01-01

    In this study, four sewage-sludge-derived carbonaceous materials (SWs) were evaluated for their catalytic wet hydrogen peroxide oxidation (CWPO) performance of m-cresol in batch reactor and continuous reactor, respectively. The SWs were produced by carbonization (SW); carbonization with the addition of CaO (CaO-SW); HNO3 pretreatment (HNO3-SW) and steam activation (Activated-SW). The properties of SW catalysts were assessed by thermogravimetric analysis, Brunauer-Emmett-Teller, Fourier Transform Infrared Spectroscopy, X-ray Fluorescence, Scanning electron microscopy, energy dispersive X-ray analysis and zeta potential. The results showed that SW treated by HNO3 (HNO3-SW) had a high conversion of m-cresol in batch reactor and continuous reactor, respectively. Under the conditions of batch reaction (Cm-cresol = 100 mg L(-1), CH2O2 = 15.7 mmol L(-1), initial pH=7.0, 0.5 g L(-1) catalyst, 80°C, 180 min adsorption and 210 min oxidation), the conversion of m-cresol reached 100% and total organic carbon removal was 67.1%. It had a high catalytic activity and stability on the treatment of m-cresol in CWPO for more than 1100 h. Furthermore, a possible reaction mechanism for the oxidation of m-cresol to 2-methyl-p-benzoquinone by CWPO was proposed. PMID:26109374

  16. Nickel-based xerogel catalysts: Synthesis via fast sol-gel method and application in catalytic hydrogenation of p-nitrophenol to p-aminophenol

    Science.gov (United States)

    Feng, Jin; Wang, Qiang; Fan, Dongliang; Ma, Lirong; Jiang, Deli; Xie, Jimin; Zhu, Jianjun

    2016-09-01

    In order to investigate the roles of three-dimensional network structure and calcium on Ni catalysts, the Ni, Ni-Al2O3, Ni-Ca-Al2O3 xerogel catalysts were successfully synthesized via the fast sol-gel process and chemical reduction method. The crystal structure of three different catalysts was observed with X-ray powder diffraction (XRD). Transmission electron microscopy (TEM), scanning electron microscopy (SEM) and nitrogen adsorption-desorption were employed to investigate the role of network structure of xerogel catalysts and the size distribution of Ni nanoparticles. The catalyst composition was determined by inductively coupled plasma-optical emission spectrometry (ICP-OES) measurement and energy-dispersive X-ray spectroscopy (EDS). Temperature-programmed reduction (TPR) experiments were carried out to investigate the reducibility of nickel species and the interaction between nickel species and alumina. The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated over the prepared nickel-based xerogel catalysts. The conversion of p-nitrophenol was monitored by UV spectrophotometry and high performance liquid chromatography (HPLC). The results show that the catalysts are highly selective for the conversion of p-nitrophenol to p-aminophenol and the order of catalytic activities of the catalysts is Ni < Ni-Al2O3 < Ni-Ca-Al2O3. The catalysts were recycled and were used to evaluate the reutilization.

  17. Synthesis and Catalytic Performance of Graphene Modified CuO-ZnO-Al2O3 for CO2 Hydrogenation to Methanol

    Directory of Open Access Journals (Sweden)

    Zheng-juan Liu

    2014-01-01

    Full Text Available CuO-ZnO-Al2O3 and graphene nanosheet (GNS were synthesized by coprecipitation route and reduction of exfoliated graphite oxides method, respectively. GNS modified CuO-ZnO-Al2O3 nanocomposites were synthesized by high energy ball milling method. The structure, morphology, and character of the synthesized materials were studied by BET, XRD, TEM, and H2-TPR. It was found that by high energy ball milling method the CuO-ZnO-Al2O3 nanoparticles were uniformly dispersed on GNS surfaces. The catalytic performance for the methanol synthesis from CO2 hydrogenation was also tested. It was shown experimentally that appropriate incorporation of GNS into the CuO-ZnO-Al2O3 could significantly increase the catalyst activity for methanol synthesis. The 10 wt.% GNS modified CuO-ZnO-Al2O3 catalyst gave a methanol space time yield (STY of 92.5% higher than that on the CuO-ZnO-Al2O3 catalyst without GNS. The improved catalytic performance was attributed to the excellent promotion of GNS to dispersion of CuO and ZnO particles.

  18. Preparation, Characterization, and Enhanced Photo catalytic Hydrogen Evolution Activity of Y2Cu2O5-Based Compounds under Simulated Sunlight Irradiation

    International Nuclear Information System (INIS)

    Y2Cu2O5 photo catalyst was successfully prepared via solid state reaction and further combined with TiO2 by a sol-gel method and a solid phase method, respectively. For comparison, Pt Y2Cu2O5particles were loaded to prepare Pt- via a hydrogen reduction method. All the samples were characterized by thermogravimetry and differential thermal analysis (TG/DTA), X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), and scanning electron microscopy (SEM) techniques. Photo catalytic H2 evolution activities of the as-obtained samples were evaluated from aqueous oxalic acid solution under simulated sunlight irradiation. The effects of photo catalyst concentration, TiO2 content, and composite method on the H2 evolution activities of the as-obtained photo catalysts were investigated. The results show that, when the concentration of photo catalyst is 0.8 gL-1, the TiO2 Y2Cu2O5 composite photo catalyst prepared by a sol-gel method exhibits the optimized photo catalytic activity, and the H2 production rate is 4.35 m mol with 30 wt.% content of TiO2

  19. Catalytic Asymmetric Reduction of a 3,4-Dihydroisoquinoline for the Large-Scale Production of Almorexant : Hydrogenation or Transfer Hydrogenation?

    NARCIS (Netherlands)

    Verzijl, Gerard K.M.; Vries, André H.M. de; Vries, Johannes G. de; Kapitan, Peter; Dax, Thomas; Helms, Matthias; Nazir, Zarghun; Skranc, Wolfgang; Imboden, Christoph; Stichler, Juergen; Ward, Richard A.; Abele, Stefan; Lefort, Laurent

    2013-01-01

    Several methods are presented for the enantioselective synthesis of the tetrahydroisoquinoline core of almorexant (ACT-078573A), a dual orexin receptor antagonist. Initial clinical supplies were secured by the Noyori Ru-catalyzed asymmetric transfer hydrogenation (Ru-Noyori ATH) of the dihydroisoqui

  20. STRATEGI PENGEMBANGAN AGROINDUSTRI GULA SEMUT AREN

    Directory of Open Access Journals (Sweden)

    Nur Afni Evalia

    2015-03-01

    Full Text Available Aren is a type of palm that has a highly potential economic value. Lareh Sago Sub-district is the largest producer in the District of Lima Puluh Kota; however, it is only processed to produce wine and molded sugar. This study aimed to formulate a strategy for the sugar palm sugar agro-industrial development in Lareh Sagohalaban. The research method was a case study in the form of quantitative descriptive, and the data were processed using IFE/EFE, SWOT and AHP. The values obtained from IFE and EFE matrixes were 2.646 and 2.298 respectively. From the SWOT analysis, alternative strategies were obtained, namely, SO Strategy: Strengthening the R & D to develop market-based sugar processing for commercial scale and diversification of palm downstream products; WO Strategy: Improving upstream subsystem to develop nursery based on palm local seed varieties and providing institutional assistance; ST Strategy: Determining agro-technopark for palm industrialization, providing assistance in the form of appropriate packaging technology accordance with the standards, and WT Strategy: increasing commitment and cooperation among stakeholders in strengthening palm agro-industry, increasing marketing and promotion for the expansion and sanction policy for any company selling Aren in the form of wine. From the result of AHP analysis, the determinant factors in developing the business include Technology (0.439, the Government as the actor (0.577, and product diversification as the strategy (0.388.Keyword: Aren (palm, cluster- agro technopark, IFE/EFE matrixes, SWOT analysis, AHPABSTRAKAren (Arenga pinnata Merr adalah jenis palma yang memiliki potensi nilai ekonomi yang tinggi. Kecamatan Lareh sago halaban merupakan penghasil Aren terbesar di Kabupaten Lima Puluh Kota, namun dalam pengolahannya masih mengolah menjadi gula cetak dan lebih banyak dalam bentuk tuak. Penelitian ini bertujuan merumuskan strategi pengembangan agroindustri gula semut aren di Kecamatan

  1. Self-assembled arene-ruthenium-based rectangles for the selective sensing of multi-carboxylate anions.

    Science.gov (United States)

    Vajpayee, Vaishali; Song, Young Ho; Lee, Min Hyung; Kim, Hyunuk; Wang, Ming; Stang, Peter J; Chi, Ki-Whan

    2011-07-01

    Novel arene-ruthenium [2+2] metalla-rectangles 4 and 5 have been synthesized by self-assembly using dipyridyl amide ligand 3 and arene-ruthenium acceptors (arene: benzoquinone (1), naphthacenedione (2)) and characterized by NMR spectroscopy and ESI-MS. The solid-state structure of 5 was determined by X-ray diffraction and shows encapsulated diethyl ether molecule in the rectangular cavity of 5. The luminescent 5 was further used for anion sensing with the amidic linkage serving as a hydrogen-bond donor site for anions and the ruthenium moiety serving as a signaling unit. A UV/Vis titration study demonstrated that although 5 interacts very weakly with common monoanions as well as with flexible dicarboxylate anions such as malonate and succinate, it displays significant binding affinity (K>10(3) in MeOH) for rigid multi-carboxylate anions such as oxalate, citrate, and tartrate, exhibiting a 1:1 stoichiometry. It has been suggested that 1:1 bidentate hydrogen bonding assisted by appropriate geometrical complementarity is mainly responsible for the increased affinity of 5 towards such anions. A fluorescence titration study revealed a large fluorescence enhancement of 5 upon binding to multi-carboxylate anions, which can be attributed to the blocking of the photoinduced electron-transfer process from the arene-Ru moiety to the amidic donor in 5 as a result of hydrogen bonding between the donor and the anion.

  2. Enhancement of reaction rates for catalytic benzaldehyde hydrogenation and sorbitol dehydration in water solvent by addition of carbon dioxide

    Indian Academy of Sciences (India)

    Masayuki Shirai; Osamu Sato; Norihito Hiyoshi; Aritomo Yamaguchi

    2014-03-01

    The effect of pressured carbon dioxide on heterogeneous hydrogenation of benzaldehyde and homogeneous dehydration of sorbitol in water solvent was studied. Initial hydrogenation rates of benzaldehyde over a charcoal-supported palladium catalyst in water at 313 K were enhanced by the addition of carbon dioxide. The initial rate increased with an increase in carbon dioxide pressure and became a maximum at 5 MPa. Dehydration of sorbitol proceeded in water phase at 500 K and initial dehydration rates were enhanced by addition of 30 MPa of carbon dioxide.

  3. Influence of preparation method on supported Cu-Ni alloys and their catalytic properties in high pressure CO hydrogenation

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Eriksen, Winnie L.; Duchstein, Linus Daniel Leonhard;

    2014-01-01

    to impregnation, the coprecipitation and deposition-coprecipitation methods are more efficient for preparation of small and homogeneous Cu-Ni alloy nanoparticles. In order to examine the stability of Cu-Ni alloys in high pressure synthesis gas conversion, they have been tested for high pressure CO hydrogenation...

  4. Catalytic activity of hydrophobic Pt/C/PTFE catalysts of different PTFE content for hydrogen-water liquid exchange reaction

    International Nuclear Information System (INIS)

    10%Pt/C catalysts were prepared by liquid reduction method. PTFE and Pt/ C catalysts were adhered to porous metal and hydrophobic Pt/C/PTFE catalysts were prepared. The structure and size of Pt crystal particles of Pt/C catalysts were analyzed by XRD, and their mean size was 3.1 nm. The dispersion state of Pt/C and PTFE was analyzed by SEM, and they had good dispersion mostly, but PTFE membrane could be observed on local parts of Pt/C/PTFE surface. Because of low hydrophobicity, Pt/C/ PTFE catalysts have low activity when the mass ratio of PTFE and Pt/C is 0.5: 1, and their catalytic activity increases markedly when the ratio is 1:1. When the ratio increases again, more Pt active sites would be covered by PTFE and interior diffusion effect would increase, which result in the decrease of catalytic activity of Pt/C/PTFE. By PTFE pretreatment of porous metal carrier, the activity of Pt/C/PTFE catalysts decreases when the mass ratio of PTFE and Pt/C is 0.5:1, and their activity decreases when the mass ratio is 1:1. (authors)

  5. Gas cleaning and hydrogen sulfide removal for COREX coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer.

    Science.gov (United States)

    Sun, Tonghua; Shen, Yafei; Jia, Jinping

    2014-02-18

    This paper proposes a novel self-developed JTS-01 desulfurizer and JZC-80 alkaline adsorbent for H2S removal and gas cleaning of the COREX coal gas in small-scale and commercial desulfurizing devices. JTS-01 desulfurizer was loaded with metal oxide (i.e., ferric oxides) catalysts on the surface of activated carbons (AC), and the catalyst capacity was improved dramatically by means of ultrasonically assisted impregnation. Consequently, the sulfur saturation capacity and sulfur capacity breakthrough increased by 30.3% and 27.9%, respectively. The whole desulfurizing process combined selective adsorption with catalytic oxidation. Moreover, JZC-80 adsorbent can effectively remove impurities such as HCl, HF, HCN, and ash in the COREX coal gas, stabilizing the system pressure drop. The JTS-01 desulfurizer and JZC-80 adsorbent have been successfully applied for the COREX coal gas cleaning in the commercial plant at Baosteel, Shanghai. The sulfur capacity of JTS-01 desulfurizer can reach more than 50% in industrial applications. Compared with the conventional dry desulfurization process, the modified AC desulfurizers have more merit, especially in terms of the JTS-01 desulfurizer with higher sulfur capacity and low pressure drop. Thus, this sorption enhanced catalytic desulfurization has promising prospects for H2S removal and other gas cleaning. PMID:24456468

  6. Gas cleaning and hydrogen sulfide removal for COREX coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer.

    Science.gov (United States)

    Sun, Tonghua; Shen, Yafei; Jia, Jinping

    2014-02-18

    This paper proposes a novel self-developed JTS-01 desulfurizer and JZC-80 alkaline adsorbent for H2S removal and gas cleaning of the COREX coal gas in small-scale and commercial desulfurizing devices. JTS-01 desulfurizer was loaded with metal oxide (i.e., ferric oxides) catalysts on the surface of activated carbons (AC), and the catalyst capacity was improved dramatically by means of ultrasonically assisted impregnation. Consequently, the sulfur saturation capacity and sulfur capacity breakthrough increased by 30.3% and 27.9%, respectively. The whole desulfurizing process combined selective adsorption with catalytic oxidation. Moreover, JZC-80 adsorbent can effectively remove impurities such as HCl, HF, HCN, and ash in the COREX coal gas, stabilizing the system pressure drop. The JTS-01 desulfurizer and JZC-80 adsorbent have been successfully applied for the COREX coal gas cleaning in the commercial plant at Baosteel, Shanghai. The sulfur capacity of JTS-01 desulfurizer can reach more than 50% in industrial applications. Compared with the conventional dry desulfurization process, the modified AC desulfurizers have more merit, especially in terms of the JTS-01 desulfurizer with higher sulfur capacity and low pressure drop. Thus, this sorption enhanced catalytic desulfurization has promising prospects for H2S removal and other gas cleaning.

  7. Preparation and Characterization of Polymer-Stabilized Ruthenium-Platinum and Ruthenium-Palladium Bimetallic Colloids and Their Catalytic Properties for Hydrogenation of o-Chloronitrobenzene.

    Science.gov (United States)

    Liu; Yu; Liu; Zheng

    1999-06-15

    Colloidal dispersions of poly(N-vinyl-2-pyrrolidone) (PVP)-stabilized ruthenium-platinum and ruthenium-palladium bimetallic colloids were prepared by NaBH4 reduction of the corresponding mixed-metal salts at room temperature and characterized by TEM, XPS, and XRD. The resulting bimetallic colloids were used as catalysts for the selective hydrogenation of o-chloronitrobenzene (o-CNB) in methanol at 303 K under 0.1 MPa of hydrogen. It was observed that the catalytic performance of PVP-stabilized ruthenium-platinum colloids (PVP-Ru/Pt) and ruthenium-palladium colloids (PVP-Ru/Pd) was dependent on their compositions and could be remarkably affected by some added metal cations. In the presence of cobalt ion, nearly 100% selectivity to o-chloroaniline (o-CAN) was achieved over PVP-Ru/Pt colloids at 100% conversion of o-CNB, with an activity two orders of magnitude higher than that of monometallic PVP-Ru colloid. Copyright 1999 Academic Press. PMID:10339363

  8. Facile synthesis of near-monodisperse Ag-Ni core-shell nanoparticles and their application for catalytic generation of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Guo Huizhang; Chen Yuanzhi; Chen Xiaozhen; Wen Ruitao; Yue Guanghui; Peng Dongliang, E-mail: yuanzhi@xmu.edu.cn, E-mail: dlpeng@xmu.edu.cn [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China)

    2011-05-13

    Magnetically recyclable Ag-Ni core-shell nanoparticles have been fabricated via a simple one-pot synthetic route using oleylamine both as solvent and reducing agent and triphenylphosphine as a surfactant. As characterized by transmission electron microscopy (TEM), the as-synthesized Ag-Ni core-shell nanoparticles exhibit a very narrow size distribution with a typical size of 14.9 {+-} 1.2 nm and a tunable shell thickness. UV-vis absorption spectroscopy study shows that the formation of a Ni shell on Ag core can damp the surface plasmon resonance (SPR) of the Ag core and lead to a red-shifted SPR absorption peak. Magnetic measurement indicates that all the as-synthesized Ag-Ni core-shell nanoparticles are superparamagnetic at room temperature, and their blocking temperatures can be controlled by modulating the shell thickness. The as-synthesized Ag-Ni core-shell nanoparticles exhibit excellent catalytic properties for the generation of H{sub 2} from dehydrogenation of sodium borohydride in aqueous solutions. The hydrogen generation rate of Ag-Ni core-shell nanoparticles is found to be much higher than that of Ag and Ni nanoparticles of a similar size, and the calculated activation energy for hydrogen generation is lower than that of many bimetallic catalysts. The strategy employed here can also be extended to other noble-magnetic metal systems.

  9. EPR spectroscopy of catalytic systems based on nickel complexes of 1,4-diaza-1,3-butadiene (alpha-diimine) ligands in hydrogenation and polymerization reactions

    International Nuclear Information System (INIS)

    The catalytic systems based on .-diimine complexes of Ni(0) and Ni(II) of the general formulas NiBr2(DAD-R) (R = -C3H7 or -CH3) and Ni(DAD-CH3)2 (DAD(-C3H7) = 1,4-bis(2,6-diiso-propylphenyl)-2,3-(dimethyl-1,4-diazabuta-1,3-diene, DAD(-CH3) = 1,4-bis 2,6-dimethylphenyl)-2,3-dimethyl-1,4-diazabuta-1,3-diene), with Lewis acids (AlEt3, AlEt2Cl, AlEtCl2, B(F5C6)3, BF3 centre dot OEt2) in hydrogenation and polymerization reactions were investigated by the EPR spectroscopy method. The Ni(I) complexes of a (DAD-R)NiX2AlXy(C2H5)3-y composition (instead of the aluminum atom may be a boron atom) were identified where R = -CH3 or -C3H7, X = Br, X = Cl or -C2H5. The .-diimines radical-anions are included in the derivatives of aluminum or boron. It is found that there occur oxidation reactions between Ni(DAD-CH3)2 and aluminum organic compounds or boron derivatives, resulting in the formation of paramagnetic complexes. It is shown that there is no direct relationship between activity in polymerization or hydrogenation reactions and concentration of paramagnetic particles.

  10. Study on hydrogen production by catalytic reforming of bio-oil-methanol mixture%生物油-甲醇催化转化制氢

    Institute of Scientific and Technical Information of China (English)

    韩红睿; 张瑞芹; 徐兴敏; 张长森; 刘永刚

    2011-01-01

    Using bio-oil-tnethanol as the raw material, the nickel-based reforming catalyst for hydrogen production prepared in the laboratory was investigated in the fixed micro-reactor. The catalysts before and after reaction were characterized by XRD,BET and SEM. The condensates collected after gasification were analyzed by GC-MS. The results showed that NiCeMg/olivine catalyst exhibited good catalytic activity and good properties of resistance to carbon deposition. The hydrogen yield of 38. 52% and carbon conversion of 68. 29% were attained under the the optimum reaction condition.%以生物油-甲醇为原料,在微型固定反应装置上考察实验室合成镍基催化剂重整制氢的催化效率.对反应前后的催化剂进行XRD、BET和SEM表征分析,并对冷凝液做GC - MS分析.研究发现,实验室自制的NiCeMg/olivine催化剂具有较好的催化活性和一定的抗积炭性能.在选择的最佳反应条件下,氢气产率和碳转化率分别为38.52%和68.29%.

  11. 四氯化碳液相催化加氢反应动力学的研究%KINETIC STUDIES ON THE CATALYTIC HYDROGENATION OF CARBON TETRACHLORIDE TO CHLOROFORM IN LIQUID PHASE

    Institute of Scientific and Technical Information of China (English)

    毛建新; 蒋晓原; 陆维敏; 郑小明

    2001-01-01

    Carbon tetrachloride is an ozone-depleting chemical, while chloroform is not. Therefore it is important for the catalytic hydrodechlorination of CCl4 to CHCl3. In this paper, kinetics on the catalytic hydrogenation of carbon tetrachloride to chloroform in liquid phase was studied. A reaction mechanism was proposed. Hydrogen molecular was activated on the surface of catalyst, the activated hydrogen atom then reacted with CCl4 in the solution and produced CHCl3. A definite kinetic equation could be deduced from the reaction mechanism. The reaction rate constant is concerned with the intial concentration of CCl4 in the solution, pressure, reaction temperature and the concentration of active center. All these factors were investigated over Pt-Pd/C catalyst and fit in with the kinetic equation. The activation energy of the reaction is 86?KJ/mol according to the experimental results.

  12. Molybdenum(VI) network polymers based on anion-π interaction and hydrogen bonding: Synthesis, crystal structures and oxidation catalytic application

    Science.gov (United States)

    Li, Jia; Wang, Ge; Shi, Zhan; Yang, Mu; Luck, Rudy L.

    2009-11-01

    A crystallographic investigation of anion-π interactions and hydrogen bonds on the preferred structural motifs of molybdenum(VI) complexes has been carried out. Two molybdenum(VI) network polymers MoO 2F 4·(Hinca) 2 ( 1) and MoO 2F 3(H 2O)·(Hinpa) ( 2), where inca = isonicotinamide and inpa = isonipecotamide, have been synthesized, crystallographically characterized and successfully applied to alcohol oxidation reaction. Complex 1 crystallizes in the monoclinic space C2/ c: a = 16.832(3) Å, b = 8.8189(15) Å, c = 12.568(2) Å, β = 118.929(3)°, V = 1560.1(5) Å 3, Z = 4. Complex 2 crystallizes in the triclinic space P-1: a = 5.459(2) Å, b = 9.189(4) Å, c = 12.204(5) Å, α = 71.341(6)°, β = 81.712(7)°, γ = 77.705(7)°, V = 564.8(4) Å 3, Z = 2. Complex 1 consists of hydrogen bonding and anion-π interactions, both of which are considered as important factors for controlling the geometric features and packing characteristics of the crystal structure. The geometry of the sandwich complex of [MoO 2F 4] 2- with two pyridine rings indicates that the anion-π interaction is an additive and provides a base for the design and synthesis of new complexes. For complex 2, the anions and the protonated inpa ligands form a 2D supramolecular network by four different types of hydrogen contacts (N-H⋯F, N-H⋯O, O-H⋯F and O-H⋯O). The catalytic ability of complexes 1 and 2 has also been evaluated by applying them to the oxidation of benzyl alcohol with TBHP as oxidant.

  13. HYDROGEN GENERATION FROM SOLID SODIUM BOROHYDRIDE WITH FERRIC CATALYTS%基于铁盐催化的固态硼氢化钠制氢研究

    Institute of Scientific and Technical Information of China (English)

    方朝君; 闫常峰; 郭常青

    2012-01-01

    Sodium borohydride' s properties such as environmental friendly, reliability, efficiency etc. , make it a good source of hydrogen. Its hydrolysis reaction with the assistance of catalysts to liberate hydrogen gas is easily controllable. Tests were conducted to evaluate effects of ferric sulfate concentration, initial reaction temperature and solution feeding flow rate on hydrogen generation using non-noble ferric sulfate as catalyst. Ferric sulfate' s catalytic activity is evidently higher than ferric nitrate and ferric chloride. Maximum H2 flow was obtained under the condition of ferric sulfate in 1. 5mol/L. The conversion increases slowly with the increasing of reaction temperature in the range of 20-48℃. And the conversion could finally reach over 90% .%以非贵金属铁盐为催化剂,考察不同浓度的Fe2(SO4)3溶液、初始反应温度和不同进液速率下的固态NaBH4水解产氢性能.实验表明:相同浓度下,Fe2(SO4)3的催化产氢性能高于Fe(NO3)2和FeCl3.在Fe2(SO4)3溶液浓度为1.5mol/L时产氢速率出现最大值,提高Fe2(SO4)3浓度,可提高平均产氢速率;在20 ~48℃范围内,随反应温度的升高,产氢转化率略有上升,最终均能达到90%以上.

  14. Hydrogenation of unactivated enamines to tertiary amines: rhodium complexes of fluorinated phosphines give marked improvements in catalytic activity

    Directory of Open Access Journals (Sweden)

    Sergey Tin

    2015-05-01

    Full Text Available In the hydrogenation of sluggish unactivated enamine substrates, Rh complexes of electron-deficient phosphines are demonstrated to be far more reactive catalysts than those derived from triphenylphosphine. These operate at low catalyst loadings (down to 0.01 mol % and are able to reduce tetrasubstituted enamines. The use of the sustainable and environmentally benign solvent (R-limonene for the reaction is also reported with the amine isolated by acid extraction.

  15. Preparation of Dendritic Carbosilane-supported Palladium Catalyst and Its Catalytic Activity in Hydrogenation of Organic Compounds

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The preparation of palladium complex from PdCl2·2H2O and earbosilane dendrimers with peripheral aminopropyl groups was described. The compound obtained was characterized by IR, 1H NMR, X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma atomic emission spectrometric (ICP-AES) spectroscopy respectively. The metal complex was employed as catalyst in hydrogenation of organic compounds. The high activity of the complex was probably due to the formation of the eoordinatively unsaturated palladium.

  16. Noncovalent Complexation of Monoamine Neurotransmitters and Related Ammonium Ions by Tetramethoxy Tetraglucosylcalix[4]arene

    Science.gov (United States)

    Torvinen, Mika; Kalenius, Elina; Sansone, Francesco; Casnati, Alessandro; Jänis, Janne

    2012-02-01

    The noncovalent complexation of monoamine neurotransmitters and related ammonium and quaternary ammonium ions by a conformationally flexible tetramethoxy glucosylcalix[4]arene was studied by electrospray ionization Fourier transform ion cyclotron resonance (ESI-FTICR) mass spectrometry. The glucosylcalixarene exhibited highest binding affinity towards serotonin, norepinephrine, epinephrine, and dopamine. Structural properties of the guests, such as the number, location, and type of hydrogen bonding groups, length of the alkyl spacer between the ammonium head-group and the aromatic ring structure, and the degree of nitrogen substitution affected the complexation. Competition experiments and guest-exchange reactions indicated that the hydroxyl groups of guests participate in intermolecular hydrogen bonding with the glucocalixarene.

  17. Ultrathin Co(Ni)-doped MoS2 nanosheets as catalytic promoters enabling efficient solar hydrogen production

    Institute of Scientific and Technical Information of China (English)

    Xiaoyan Ma; Jinquan Li; Changhua An; Juan Feng; Yuhua Chi; Junxue Liu; Jun Zhang

    2016-01-01

    The design of efficient artificial photosynthetic systems that harvest solar energy to drive the hydrogen evolution reaction via water reduction is of great importance from both the theoretical and practical viewpoints.Integrating appropriate co-catalyst promoters with strong light absorbing materials represents an ideal strategy to enhance the conversion efficiency of solar energy in hydrogen production.Herein,we report,for the first time,the synthesis of a class of unique hybrid structures consisting of ultrathin Co(Ni)-doped MoS2 nanosheets (co-catalyst promoter) intimately grown on semiconductor CdS nanorods (light absorber).The as-synthesized one-dimensional CdS@doped-MoS2 heterostructures exhibited very high photocatalytic activity (with a quantum yield of 17.3%) and stability towards H2 evolution from the photoreduction of water.Theoretical calculations revealed that Ni doping can increase the number of uncoordinated atoms at the edge sites of MoS2 nanosheets to promote electron transfer across the CdS/MoS2 interfaces as well as hydrogen reduction,leading to an efficient H2 evolution reaction.

  18. Olefin Metathesis With Ruthenium-Arene Catalysts Bearing N-Heterocyclic Carbene Ligands

    Science.gov (United States)

    Delaude, Lionel; Demonceau, Albert

    In this chapter, we summarize the main results of our investigations on the ring-opening metathesis polymerization (ROMP) of cyclooctene catalyzed by various ruthenium (Ru)-arene complexes bearing imidazolin-2-ylidene, imidazolidin- 2-ylidene, or triazolin-5-ylidene ligands. Three major findings emerged from this study. First, we underscored the intervention of a photochemical activation step due to visible light illumination. Second, we established that the presence of an endocyclic double bond in the carbene ligand central heterocycle was not crucial to achieve high catalytic efficiencies. Third, we demonstrated that ortho-metallation of the N-heterocyclic carbene (NHC) ligand by the Ru center led to inactive catalysts.

  19. Highly Selective Synthesis of Catalytically Active Monodisperse Rhodium Nanocubes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Grass, M.E.; Kuhn, J.N.; Tao, F.; Habas, S.E.; Huang, W.; Yang, P.; Somorjai, G.A.

    2009-02-21

    Synthesis of monodisperse and shape-controlled colloidal inorganic nanocrystals (NCs) is of increasing scientific interest and technological significance. Recently, shape control of Pt, Pd, Ag, Au, and Rh NCs has been obtained by tuning growth kinetics in various solution-phase approaches, including modified polyol methods, seeded growth by polyol reduction, thermolysis of organometallics, and micelle techniques. Control of reduction kinetics of the noble metal precursors and regulation of the relative growth rates of low-index planes (i.e. {l_brace}100{r_brace} and {l_brace}111{r_brace}) via selective adsorption of selected chemical species are two keys for achieving shape modification of noble metal NCs. One application for noble metal NCs of well-defined shape is in understanding how NC faceting (determines which crystallographic planes are exposed) affects catalytic performance. Rh NCs are used in many catalytic reactions, including hydrogenation, hydroformylation, hydrocarbonylation, and combustion reactions. Shape manipulation of Rh NCs may be important in understanding how faceting on the nanoscale affects catalytic properties, but such control is challenging and there are fewer reports on the shape control of Rh NCs compared to other noble metals. Xia and coworkers obtained Rh multipods exhibiting interesting surface plasmonic properties by a polyol approach. The Somorjai and Tilley groups synthesized crystalline Rh multipods, cubes, horns and cuboctahedra, via polyol seeded growth. Son and colleagues prepared catalytically active monodisperse oleylamine-capped tetrahedral Rh NCs for the hydrogenation of arenes via an organometallic route. More recently, the Somorjai group synthesized sizetunable monodisperse Rh NCs using a one-step polyol technique. In this Communication, we report the highly selective synthesis of catalytically active, monodisperse Rh nanocubes of < 10 nm by a seedless polyol method. In this approach, Br{sup -} ions from trimethyl

  20. Bis-tert-Alcohol-Functionalized Crown-6-Calix[4]arene: An Organic Promoter for Nucleophilic Fluorination.

    Science.gov (United States)

    Jadhav, Vinod H; Choi, Wonsil; Lee, Sung-Sik; Lee, Sungyul; Kim, Dong Wook

    2016-03-18

    A bis-tert-alcohol-functionalized crown-6-calix[4]arene (BACCA) was designed and prepared as a multifunctional organic promoter for nucleophilic fluorinations with CsF. By formation of a CsF/BACCA complex, BACCA could release a significantly active and selective fluoride source for SN2 fluorination reactions. The origin of the promoting effects of BACCA was studied by quantum chemical methods. The role of BACCA was revealed to be separation of the metal fluoride to a large distance (>8 Å), thereby producing an essentially "free" F(-). The synergistic actions of the crown-6-calix[4]arene subunit (whose O atoms coordinate the counter-cation Cs(+)) and the terminal tert-alcohol OH groups (forming controlled hydrogen bonds with F(-)) of BACCA led to tremendous efficiency in SN2 fluorination of base-sensitive substrates.

  1. Pd/Graphene catalytic hydrogenation of benzoquinone to hydroquinone%钯/石墨烯催化苯醌加氢制备氢醌

    Institute of Scientific and Technical Information of China (English)

    杨敬贺; 郁清涛; 毛立群

    2015-01-01

    采用微波辅助加热还原法合成了钯/石墨烯(Pd/G)、钯/活性炭(Pd/AC)、钯/石墨(Pd/Graphite)和钯/二氧化硅(Pd/SiO2),并使用透射电子显微镜观测了钯的形貌及在载体上的分散性。将负载型钯催化剂用于苯醌加氢反应,结果显示,Pd/G催化剂的活性最高,苯醌的转化率达到99%,氢醌的选择性为100%,并且循环7次后催化剂仍保持着较高的转化率和选择性。结构表征表明,石墨烯担载的钯纳米粒子的粒径约为5 nm ,无明显团聚。实验进一步考察了反应溶剂(甲醇、乙醇、丙酮、正丙醇、异丙醇、正丁醇)对 Pd/G催化苯醌加氢反应的影响,结果表明该反应对溶剂较为敏感,其中甲醇和丙酮较适宜作为反应溶剂。当以甲醇作为溶剂时,苯醌的转化率为98%,氢醌选择性为99%;以丙酮为溶剂时,苯醌转化率为98%,氢醌选择性为90%。研究工作表明,作为载体,石墨烯对钯催化剂的催化效果起着稳定和增强作用。%In the present study ,we exploited G as a support for palladium nanoparticles by mi‐crowave assisted reduction of palladium acetate with graphene under hydrogen atmosphere .In the same method ,we also employed graphite ,active carbon and silica as carrier for synthesis palladium graphite (Pd/Graphite) ,palladium active carbon (Pd/AC) and palladium silica (Pd/SiO2 ) .The hydrogenation of benzoquinone reaction has been selected as model reaction for e‐valuating G -based palladium catalysts (Pd/G) ,and the morphology and dispersion of palla‐dium on the carrier were observed by TEM .We utilized the supported palladium catalysts for benzoquinone hydrogenation reaction .The results imply that the Pd/G catalyst shows the high‐est activity .T he conversion of benzoquinone reached 99% and the selectivity to hydroquinone was 100% .In addtion ,the catalytic performance of Pd/G catalyst remained

  2. Ruthenium(0) nanoclusters stabilized by a Nanozeolite framework: isolable, reusable, and green catalyst for the hydrogenation of neat aromatics under mild conditions with the unprecedented catalytic activity and lifetime.

    Science.gov (United States)

    Zahmakiran, Mehmet; Tonbul, Yalçin; Ozkar, Saim

    2010-05-12

    The hydrogenation of aromatics is a ubiquitous chemical transformation used in both the petrochemical and specialty industry and is important for the generation of clean diesel fuels. Reported herein is the discovery of a superior heterogeneous catalyst, superior in terms of catalytic activity, selectivity, and lifetime in the hydrogenation of aromatics in the solvent-free system under mild conditions (at 25 degrees C and 42 +/- 1 psig initial H(2) pressure). Ruthenium(0) nanoclusters stabilized by a nanozeolite framework as a new catalytic material is reproducibly prepared from the borohydride reduction of a colloidal solution of ruthenium(III)-exchanged nanozeolites at room temperature and characterized by using ICP-OES, XRD, XPS, DLS, TEM, HRTEM, TEM/EDX, mid-IR, far-IR, and Raman spectroscopy. The resultant ruthenium(0) nanoclusters hydrogenate neat benzene to cyclohexane with 100% conversion under mild conditions (at 25 degrees C and 42 +/- 1 psig initial H(2) pressure) with record catalytic activity (initial TOF = 5430 h(-1)) and lifetime (TTO = 177 200). They provide exceptional catalytic activity not only in the hydrogenation of neat benzene but also in the solvent-free hydrogenation of methyl substituted aromatics such as toluene, o-xylene, and mesitylene under otherwise identical conditions. Moreover, they are an isolable, bottleable, and reusable catalyst in the hydrogenation of neat aromatics. When the isolated ruthenium(0) nanoclusters are reused, they retain 92% of their initial catalytic activity even for the third run in the hydrogenation of neat benzene under the same conditions as those of the first run. The work reported here also includes (i) far-infrared spectroscopic investigation of nanozeolite, ruthenium(III)-exchanged-nanozeolite, and ruthenium(0) nanoclusters stabilized by a nanozeolite framework, indicating that the host framework remains intact after the formation of a nanozeolite framework stabilized ruthenium(0) nanoclusters; (ii) the

  3. Green diesel production via catalytic hydrogenation/decarboxylation of triglycerides and fatty acids of vegetable oil and brown grease

    Science.gov (United States)

    Sari, Elvan

    Increase in the petroleum prices, projected increases in the world's energy demand and environmental awareness have shifted the research interest to the alternative fuel technologies. In particular, green diesel, vegetable oil/animal fat/waste oil and grease derived hydrocarbons in diesel boiling range, has become an attractive alternative to biodiesel---a mixture of fatty acid methyl esters, particularly due to its superior fuel properties that are similar to petroleum diesel. Hence, green diesel can be used as a drop-in fuel in the current diesel engines. The current technology for production of green diesel-hydrodeoxygenation of triglycerides and fatty acids over conventional hydrotreating catalysts suffers from fast catalyst deactivation in the absence of hydrogen combined with high temperatures and high fatty acid content in the feedstock. Additionally, excess hydrogen requirement for hydrodeoxygenation technique leads to high production costs. This thesis proposes a new technology-selective decarboxylation of brown grease, which is a mixture of fats and oils collected from waste water trap and rich in fatty acids, over a supported noble metal catalyst that overcomes the green diesel production challenges. In contrast to other feedstocks used for liquid biofuel production, brown grease is inexpensive and non-food competing feedstock, therefore the process finds solution to waste management issues, reduces the renewable fuel production cost and does not add to the global food shortage problems. Special catalyst formulations were developed to have a high activity and stability in the absence of hydrogen in the fatty acid decarboxylation process. The study shows how catalyst innovations can lead to a new technology that overcomes the process challenges. First, the effect of reaction parameters on the activity and the selectivity of brown grease decarboxylation with minimum hydrogen consumption over an activated carbon supported palladium catalyst were

  4. Hydrogen

    OpenAIRE

    John O’M. Bockris

    2011-01-01

    The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the...

  5. Valorization of Waste Lipids through Hydrothermal Catalytic Conversion to Liquid Hydrocarbon Fuels with in Situ Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongwook; Vardon, Derek R.; Murali, Dheeptha; Sharma, Brajendra K.; Strathmann, Timothy J.

    2016-03-07

    We demonstrate hydrothermal (300 degrees C, 10 MPa) catalytic conversion of real waste lipids (e.g., waste vegetable oil, sewer trap grease) to liquid hydrocarbon fuels without net need for external chemical inputs (e.g., H2 gas, methanol). A supported bimetallic catalyst (Pt-Re/C; 5 wt % of each metal) previously shown to catalyze both aqueous phase reforming of glycerol (a triacylglyceride lipid hydrolysis coproduct) to H2 gas and conversion of oleic and stearic acid, model unsaturated and saturated fatty acids, to linear alkanes was applied to process real waste lipid feedstocks in water. For reactions conducted with an initially inert headspace gas (N2), waste vegetable oil (WVO) was fully converted into linear hydrocarbons (C15-C17) and other hydrolyzed byproducts within 4.5 h, and H2 gas production was observed. Addition of H2 to the initial reactor headspace accelerated conversion, but net H2 production was still observed, in agreement with results obtained for aqueous mixtures containing model fatty acids and glycerol. Conversion to liquid hydrocarbons with net H2 production was also observed for a range of other waste lipid feedstocks (animal fat residuals, sewer trap grease, dry distiller's grain oil, coffee oil residual). These findings demonstrate potential for valorization of waste lipids through conversion to hydrocarbons that are more compatible with current petroleum-based liquid fuels than the biodiesel and biogas products of conventional waste lipid processing technologies.

  6. Engineered materials as potential geocatalysts in deep geological nuclear waste repositories: A case study of the stainless steel catalytic effect on nitrate reduction by hydrogen

    International Nuclear Information System (INIS)

    Highlights: • We demonstrate that stainless steels (316L and Hastelloy) can catalyse nitrate reduction in the presence of hydrogen. • Hydrogen is the sole electron donor. • The reaction proceeds via nitrate sorption at the steel surface up to pH = 9 following Langmuir–Hinshelwood mechanism. • The reaction is inhibited by the presence of phosphate anions which compete with nitrate for the steel sorption sites. - Abstract: The reduction of NO3- in natural waters is commonly promoted by biological activity. In the context of deep geological nuclear waste repositories with potentially high H2 pressure, abiotic redox reactions may be envisaged. Here, the catalytic effect of “inert” metallic surfaces, in part used for nuclear waste canisters, on NO3- reduction under H2 pressure is evaluated. The study is focused on stainless steels by testing the 316L and Hastelloy C276 steels. A parametric kinetic study (0 < P(H2) < 10 bar, 0.1 < [NO3-] < 10 mM, 90 < T° < 150 °C, 4 < pHin situ < 9) reveals that NO3- reduction, in the presence of stainless steel 316L and Hastelloy C276, proceeds via a pH-independent reaction requiring H2 as an electron donor. No corrosion of these steels is observed indicating a true catalytic process. The reaction is inhibited in the presence of PO43-. Activation energies assuming a first-order reaction in the 90–150 °C temperature range are found to be 46 kJ/mol for stainless steel 316L and 186 kJ/mol for Hastelloy C276, making the reaction efficient at lower temperature and on a human time scale. Nitrate sorption at the metallic surface being thought to be the limiting step, sorption and competitive sorption isotherms of several oxyanions were performed at 90 °C on 316L. Nitrate and PO43- are more strongly sorbed than SO42-, likely as inner sphere complexes, and in a large pH range, from acidic to pH 9. The Langmuir–Hinshelwood formalism best fits the kinetic data. The nature of the surface complex, and the competition for

  7. Ultrathin Coating of Confined Pt Nanocatalysts by Atomic Layer Deposition for Enhanced Catalytic Performance in Hydrogenation Reactions.

    Science.gov (United States)

    Wang, Meihua; Gao, Zhe; Zhang, Bin; Yang, Huimin; Qiao, Yan; Chen, Shuai; Ge, Huibin; Zhang, Jiankang; Qin, Yong

    2016-06-13

    Metal-support interfaces play a prominent role in heterogeneous catalysis. However, tailoring the metal-support interfaces to realize full utilization remains a major challenge. In this work, we propose a graceful strategy to maximize the metal-oxide interfaces by coating confined nanoparticles with an ultrathin oxide layer. This is achieved by sequential deposition of ultrathin Al2 O3 coats, Pt, and a thick Al2 O3 layer on carbon nanocoils templates by atomic layer deposition (ALD), followed by removal of the templates. Compared with the Pt catalysts confined in Al2 O3 nanotubes without the ultrathin coats, the ultrathin coated samples have larger Pt-Al2 O3 interfaces. The maximized interfaces significantly improve the activity and the protecting Al2 O3 nanotubes retain the stability for hydrogenation reactions of 4-nitrophenol. We believe that applying ALD ultrathin coats on confined catalysts is a promising way to achieve enhanced performance for other catalysts. PMID:27061428

  8. Simulation Studies of the Hydrogen Production from Methanol Partial Oxidation Steam Reforming by a Tubular Packed-bed Catalytic Reactor*

    Institute of Scientific and Technical Information of China (English)

    蒋元力; 林美淑; 金东显

    2001-01-01

    Hydrogen production by partial oxidation steam reforming of methanol over a Cu/ZnO/Al2O3 cata-lyst has been paid more and more attention. The chemical equilibria involved in the methanol pvxtial oxidation steam reforming reaction network such as methanol partial oxidation, methanol steam reforming, decomposition of methanol and water-gas shift reaction have been examined over the ranges of temperature 473---1073 K under normal pressure. Based on the detailed kinetics of these reactions over a Cu/ZnO/Al2O3 catalyst, and from the basic concept of the effectiveness factor, the intraparticle diffusion limitations were taken into account. The effectiveness factors for each reaction along the bed length were calculated. Then important results were offered for the simulation of this reaction process.

  9. Simulation Studies of the Hydrogen Production from Methanol Partial Oxidation Steam Reforming by a Tubular Packed-bed Catalytic Reactor

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Hydrogen production by partial oxidation steam reforming of methanol over a Cu/ZnO/Al2 O3 cata lyst has been paid more and more attention. The chemical equilibria involved in the methanol partial oxidation steam reforming reaction network such as methanol partial oxidation, methanol steam reforming, decomposition of methanol and water-gas shift reaction have been examined over the ranges of temperature 473-1073 K under normal pressure. Based on the detailed kinetics of these reactions over a Cu/ZnO/Al2O3 catalyst, and from the basic concept of the effectiveness factor, the intraparticle diffusion limitations were taken into account. The effec tiveness factors for each reaction along the bed length were calculated. Then important results were offered for the simulation of this reaction process.

  10. Ultrasound promoted catalytic liquid-phase dehydrogenation of isopropanol for Isopropanol-Acetone-Hydrogen chemical heat pump.

    Science.gov (United States)

    Xu, Min; Xin, Fang; Li, Xunfeng; Huai, Xiulan; Liu, Hui

    2015-03-01

    The apparent kinetic of the ultrasound assisted liquid-phase dehydrogenation of isopropanol over Raney nickel catalyst was determined in the temperature range of 346-353 K. Comparison of the effects of ultrasound and mechanical agitation on the isopropanol dehydrogenation was investigated. The ultrasound assisted dehydrogenation rate was significantly improved when relatively high power density was used. Moreover, the Isopropanol-Acetone-Hydrogen chemical heat pump (IAH-CHP) with ultrasound irradiation, in which the endothermic reaction is exposure to ultrasound, was proposed. A mathematical model was established to evaluate its energy performance in term of the coefficient of performance (COP) and the exergy efficiency, into which the apparent kinetic obtained in this work was incorporated. The operating performances between IAH-CHP with ultrasound and mechanical agitation were compared. The results indicated that the superiority of the IAH-CHP system with ultrasound was present even if more than 50% of the power of the ultrasound equipment was lost.

  11. Ultrathin Coating of Confined Pt Nanocatalysts by Atomic Layer Deposition for Enhanced Catalytic Performance in Hydrogenation Reactions.

    Science.gov (United States)

    Wang, Meihua; Gao, Zhe; Zhang, Bin; Yang, Huimin; Qiao, Yan; Chen, Shuai; Ge, Huibin; Zhang, Jiankang; Qin, Yong

    2016-06-13

    Metal-support interfaces play a prominent role in heterogeneous catalysis. However, tailoring the metal-support interfaces to realize full utilization remains a major challenge. In this work, we propose a graceful strategy to maximize the metal-oxide interfaces by coating confined nanoparticles with an ultrathin oxide layer. This is achieved by sequential deposition of ultrathin Al2 O3 coats, Pt, and a thick Al2 O3 layer on carbon nanocoils templates by atomic layer deposition (ALD), followed by removal of the templates. Compared with the Pt catalysts confined in Al2 O3 nanotubes without the ultrathin coats, the ultrathin coated samples have larger Pt-Al2 O3 interfaces. The maximized interfaces significantly improve the activity and the protecting Al2 O3 nanotubes retain the stability for hydrogenation reactions of 4-nitrophenol. We believe that applying ALD ultrathin coats on confined catalysts is a promising way to achieve enhanced performance for other catalysts.

  12. Scanning electrochemical microscopy: surface interrogation of adsorbed hydrogen and the open circuit catalytic decomposition of formic acid at platinum.

    Science.gov (United States)

    Rodríguez-López, Joaquín; Bard, Allen J

    2010-04-14

    The surface interrogation mode of scanning electrochemical microscopy (SECM) is extended to the in situ quantification of adsorbed hydrogen, H(ads), at polycrystalline platinum. The methodology consists of the production, at an interrogator electrode, of an oxidized species that is able to react with H(ads) on the Pt surface and report the amounts of this adsorbate through the SECM feedback response. The technique is validated by comparison to the electrochemical underpotential deposition (UPD) of hydrogen on Pt. We include an evaluation of electrochemical mediators for their use as oxidizing reporters for adsorbed species at platinum; a notable finding is the ability of tetramethyl-p-phenylenediamine (TMPD) to oxidize (interrogate) H(ads) on Pt at low pH (0.5 M H(2)SO(4) or 1 M HClO(4)) and with minimal background effects. As a case study, the decomposition of formic acid (HCOOH) in acidic media at open circuit on Pt was investigated. Our results suggest that formic acid decomposes at the surface of unbiased Pt through a dehydrogenation route to yield H(ads) at the Pt surface. The amount of H(ads) depended on the open circuit potential (OCP) of the Pt electrode at the time of interrogation; at a fixed concentration of HCOOH, a more negative OCP yielded larger amounts of H(ads) until reaching a coulomb limiting coverage close to 1 UPD monolayer of H(ads). The introduction of oxygen into the cell shifted the OCP to more positive potentials and reduced the quantified H(ads); furthermore, the system was shown to be chemically reversible, as several interrogations could be run consecutively and reproducibly regardless of the path taken to reach a given OCP. PMID:20225806

  13. Hydrogen Effect on Coke Removal and Catalytic Performance in Pre-Carburization and Methane Dehydro-Aromatization Reaction on Mo/HZSM-5

    Institute of Scientific and Technical Information of China (English)

    Hongtao Ma; Ryoichi Kojima; Satoshi Kikuchi; Masaru Ichikawa

    2005-01-01

    In this study,the effects of pre-carburization of catalyst,hydrogen addition to methane feed and the space velocity of methane on the catalytic performance in methane to benzene (MTB) reaction were discussed in detail over Mo/HZSM-5 catalyst at 1023 K and 0.3 MPa. Compared with the non-precarburized catalyst,the Mo catalyst pre-carburized under the flow of CH4+4H2 at 973 K was found to have the higher activity and better stability. Further 6% H2 addition to the methane feed suppressed the aromatic type of coke formation effectively,and improved the stability of catalyst markedly,moreover gave a much longer reaction life of catalyst (53 h at 1023 K and 5400 ml/(g·h)) and much more formation amounts of benzene and hydrogen. With increase of methane space velocity,both the naphthalene formation selectivity and the coke formation selectivity were decreased by the shortened contact time;the benzene formation selectivity and total formation amount before the complete deactivation of catalyst were increased ly,while the total naphthalene and coke formation amounts did not change much.At high methane space velocity (≥5400 ml/(g·h)),a new middle temperature coke derived from the high temperature aromatic coke was formed on the catalyst; all the coke formed could be burnt off at lower temperature in oxygen,compared with those obtained at low space velocity. Considering the benzene formation amount and catalyst stability together,5400 ml/(g·h) was proved to be the most efficient methane space velocity for benzene production.

  14. Haptotropic Migration of Metal Templates on Arene Surfaces

    Institute of Scientific and Technical Information of China (English)

    K.H.Dtz; H.C.Jahr; J.Bennewitz; J.Dubarle-offner

    2007-01-01

    1 Results The chromium-templated benzannulation of arylcarbenes by alkynes provides a direct regio- and diastereoselective access to densely functionalized chromium arenes[1]. The chromium fragment undergoes a haptotropic migration along the π-face of the fused arenes which can be controlled by thermodynamics,by the substitution pattern of the arene and by the metal coligand sphere(See Scheme 1).The controlled regioselective labeling of benzene rings can be exploited in diastereoselective C-C bond forma...

  15. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  16. Synthesis of (p-Formylphenyl)azo Calix[4]arenes

    Institute of Scientific and Technical Information of China (English)

    BAI,Zhu(柏祝); YU,Lei(俞磊); LU,Guo-Yuan(陆国元); GUO,Xun(郭勋)

    2004-01-01

    Five novel azo calix[4]arenes were reported.The p-aminobenzaldehyde was diazotized with sodium nitrite in aqueous hydrochloride solution.Mono-,bis-,tris- and tetrakis(p-formylphenyl)azo calix[4]arenes (including proximal and distal isomers) were obtained respectively by diazo-coupling in different molar ratio to calix[4]arene (1) under pH=7.5-8.5 at 0-5℃.All (p-formylphenyl)azo calix[4]arenes were characterized by 1H NMR,13C NMR,IR,MS (ESIMS) spectroscopies and elemental analysis.

  17. EFEKTIVITAS NIRA AREN SEBAGAI BAHAN PENGEMBANG ADONAN ROTI

    Directory of Open Access Journals (Sweden)

    Mody Lempang

    2013-12-01

    Full Text Available Fermentation is a natural process that happen in fresh-sweet sap of aren trees (Arenga pinnata Merr., because many kinds of microorganism stay and life in this substance e.g. bakteria (Acetobacter acetic and yeast (Saccharomyces tuac. Species of yeast from genus of Saccharomyses, e.g. Saccharomyses serivisae is wellknown as microorganism that can ferment sugar (glucose into alchohol and CO2. This natural process as well happen in aren sap, so that this substance potencially using as a swollen agent of bread or cake dough. This research objective is to recognize the effectiveness of aren sap as a swollen agent of bread dough. Fermentation duration of bread dough was one hour by using swollen agent of fresh, 10 hours old and 20 hours old of aren sap. Daily yield of sap tapped from aren trees in Maros district, South Sulawesi province was 7 litre (4-5 litre collected in the morning and 2-3 litre colected in the afternoon. Aren sap containt some of nutritions e.g. carbohydrate, protein, fat, vitamin C and mineral. Sweet taste of aren sap caused by it’s charbohydrate content of 11.18%. The effectiveness of aren sap as a swollen agent of bread dough is lower than instant (commercial yeast. The older of aren sap the lower of it’s effectiveness as a swollen agent of dough and kuality of bread yield.    Keywords : Sap, Arenga pinnata, swollen agent, bread dough

  18. Three-dimensional FeSe2 microflowers assembled by nanosheets: Synthesis, optical properties, and catalytic activity for the hydrogen evolution reaction

    Science.gov (United States)

    Chang, Xiaoying; Jian, Jikang; Cai, Gemei; Wu, Rong; Li, Jin

    2016-03-01

    Three-dimensional FeSe2 microflowers were synthesized for the first time by a facile solvothermal method, using FeCl2·4H2O and selenium powder as raw materials, along with ethanolamine as solvent. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The results show that the FeSe2 microflowers consist of nanosheets with a thickness of about 50 - 80 nm. The Raman spectrum shows the characteristic peaks of Se-Se vibration modes. The optical band gap of the sample was determined to be 1.48 eV by UV-visible absorption spectroscopy. The photoluminescence properties of the FeSe2 microflowers and their catalytic activity for the hydrogen evolution reaction were also assessed. Finally, a possible growth mechanism of the FeSe2 microflowers is proposed. [Figure not available: see fulltext.

  19. Production of bio-hydrogenated diesel by catalytic hydrotreating of palm oil over NiMoS2/γ-Al2O3 catalyst.

    Science.gov (United States)

    Srifa, Atthapon; Faungnawakij, Kajornsak; Itthibenchapong, Vorranutch; Viriya-Empikul, Nawin; Charinpanitkul, Tawatchai; Assabumrungrat, Suttichai

    2014-04-01

    Catalytic hydrotreating of palm oil (refined palm olein type) to produce bio-hydrogenated diesel (BHD) was carried out in a continuous-flow fixed-bed reactor over NiMoS2/γ-Al2O3 catalyst. Effects of dominant hydrotreating parameters: temperature: 270-420°C; H2 pressure: 15-80 bar; LHSV: 0.25-5.0 h(-1); and H2/oil ratio: 250-2000 N(cm(3)/cm(3)) on the conversion, product yield, and a contribution of hydrodeoxygenation (HDO) and decarbonylation/decarboxylation (DCO/DCO2) were investigated to find the optimal hydrotreating conditions. All calculations including product yield and the contribution of HDO and DCO/DCO2 were extremely estimated based on mole balance corresponding to the fatty acid composition in feed to fully understand deoxygenation behaviors at different conditions. These analyses demonstrated that HDO, DCO, and DCO2 reactions competitively occurred at each condition, and had different optimal and limiting conditions. The differences in the hydrotreating reactions, liquid product compositions, and gas product composition were also discussed. PMID:24583218

  20. Effects of potassium on Ni-K/Al2O3 catalysts in the synthesis of carbon nanofibers by catalytic hydrogenation of CO2.

    Science.gov (United States)

    Chen, Ching S; Lin, Jarrn H; You, Jiann H; Yang, Kuo H

    2010-03-25

    Commercially available Ni/Al(2)O(3) samples containing various concentrations of potassium were used to achieve carbon deposition from CO(2) via catalytic hydrogenation. Experimental results show that K additives can induce the formation of carbon nanofibers or carbon deposition on Ni/Al(2)O(3) during the reverse water-gas shift reaction. This work proposes that the formation rate of carbon deposition depends closely on ensemble control, suggesting that the ensemble size necessary to form carbon may be approximately 0.5 potassium atoms. The results of CO(2) temperature-programmed desorption provide strong evidence that the new adsorption sites for CO(2) created on Ni-K/Al(2)O(3) closely depend upon the synthesis of carbon nanofibers. It is found that some potassium-related active phases obtained by calcination and reduction pretreatments can participate in the carbon deposition reaction. The formation pathway for carbon deposition suggests that the main source of carbon deposition is CO(2) and that the pathway is independent of the reaction products CO and CH(4) in the reverse water-gas shift reaction. PMID:19655780

  1. Catalytic effect of nano-sized ScH{sub 2} on the hydrogen storage of mechanically milled MgH{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xuanli, E-mail: Xuanli.Luo@nottingham.ac.uk; Grant, David M., E-mail: David.Grant@nottingham.ac.uk; Walker, Gavin S., E-mail: Gavin.Walker@nottingham.ac.uk

    2015-02-15

    Highlights: • The ScH{sub 2} nanoparticles improved the MgH{sub 2} dehydrogenation kinetics. • Low activation energy of the dehydrogenation reaction (62 ± 5 kJ mol{sup −1}). • Optimal ScH{sub 2} catalyst content was ca. 12 mol.% to achieve lowest activation energy. • High cycling stability at relatively high temperature up to 450 °C. • The ScH{sub 2} nano-structure remained throughout cycling. - Abstract: The hydrogen storage properties of ball milled xMgH{sub 2}/(1 − x)ScH{sub 2} (x = 0.65-1) samples including capacity, kinetics, thermodynamics and cycling stability, were investigated. The effect of ScH{sub 2} catalyst content and ball milling duration on the kinetics of MgH{sub 2} dehydrogenation were studied. It was found that the optimal content of the catalyst ScH{sub 2} was ca. 12 mol.%, which gave an activation energy (E{sub a}) value of 62 ± 5 kJ mol{sup −1} and a hydrogen storage capacity of 5.8 ± 0.1 wt.% for the sample. There was no loss in kinetics in the ScH{sub 2} catalysed MgH{sub 2} system even after cycling at relatively high temperatures up to 450 °C, and the nano-sized ScH{sub 2} (ca. 70 nm) formed during ball milling remained after (de)hydrogenation cycling. Typical MgH{sub 2} dehydrogenation enthalpy (76 ± 1 kJ mol{sup −1} (H{sub 2})) and entropy (138 ± 2 J mol{sup −1} K{sup −1} (H{sub 2})) values observed by the 0.65MgH{sub 2}/0.35ScH{sub 2} sample demonstrated the effect of ScH{sub 2} was purely a catalytic improvement of the kinetics.

  2. Arene Ruthenium Cages: Boxes Full of Surprises

    OpenAIRE

    Therrien, Bruno

    2010-01-01

    Self-assembly of polypyridyl ligands with dinuclear arene ruthenium building blocks bridged by chlorido, oxalato or benzoquinonato ligands has allowed the construction of a wide range of cationic metalla complexes possessing different architectures and functionalities: (i) metalla-rectangles showing host-guest possibilities and allowing intramolecular template-controlled photochemical [2 + 2] dimerisation reactions; (ii) metalla-prisms allowing encapsulation of molecules and giving rise to po...

  3. Pyrogallo4arenes: a synthetic investigation

    OpenAIRE

    Griffin, Pauline

    2007-01-01

    The first part of this work involved the study of the acid condensation of pyrogallol with acataldehyde. The product formed, pyrogallol[4]arene, is present as a mixture of two isomers, the rccc cone and the rctt flattened partial cone conformations, which could be separated using an extractiodreprecipitation procedure. A series of studies was undertaken to determine if these two isomers could be interconverted. We found that both the rctt flattened partial cone and rccc cone isomers could not...

  4. Selective catalytic reduction of nitrogen oxides from industrial gases by hydrogen or methane; Reduction catalytique selective des oxydes d'azote (NO{sub x}) provenant d'effluents gazeux industriels par l'hydrogene ou le methane

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann Pirez, M

    2004-12-15

    This work deals with the selective catalytic reduction of nitrogen oxides (NO{sub x}), contained in the effluents of industrial plants, by hydrogen or methane. The aim is to replace ammonia, used as reducing agent, in the conventional process. The use of others reducing agents such as hydrogen or methane is interesting for different reasons: practical, economical and ecological. The catalyst has to convert selectively NO into N{sub 2}, in presence of an excess of oxygen, steam and sulfur dioxide. The developed catalyst is constituted by a support such as perovskites, particularly LaCoO{sub 3}, on which are dispersed noble metals (palladium, platinum). The interaction between the noble metal and the support, generated during the activation of the catalyst, allows to minimize the water and sulfur dioxide inhibitor phenomena on the catalytic performances, particularly in the reduction of NO by hydrogen. (O.M.)

  5. Catalytic Conversion of Biofuels

    DEFF Research Database (Denmark)

    Jørgensen, Betina

    This thesis describes the catalytic conversion of bioethanol into higher value chemicals. The motivation has been the unavoidable coming depletion of the fossil resources. The thesis is focused on two ways of utilising ethanol; the steam reforming of ethanol to form hydrogen and the partial oxida...

  6. New Neutral Receptors for Fluoride Based on Calix[4]arene Bearing Thiourea and Amide

    Institute of Scientific and Technical Information of China (English)

    刘顺英; 徐括喜; 何永炳; 秦海娟; 孟令芝

    2005-01-01

    Two-armed neutral anion receptors (4,5), calix[4]arenes beating thiourea and amide binding sites, were prepared and examined their anion-binding ability by the UV-vis spectra. The results of non-linear curve fitting and Job plot indicate that 4 or 5 forms 1:1 stoichiometry complex with fluoride by hydrogen bonding interactions. Receptors 4 and 5 have an excellent selectivity for fluoride but have no binding ability with acetate, dihydrogen phosphate and the halogen anions (Cl-,Br-,I-).

  7. Progresses in Catalytic Steam Reforming of Bio-oil for Hydrogen Production%生物油水蒸气催化重整制氢研究进展

    Institute of Scientific and Technical Information of China (English)

    张文涛; 陈明强; 刘少敏; 杨忠连

    2014-01-01

    氢气作为一种环境友好的清洁能源,人们对它的关注度越来越高。生物油水蒸气催化重整制氢是未来制氢的一种可行性方案。本文综述了近年来生物油水蒸气重整制氢的研究进展。主要从重整制氢反应机理、热力学分析、催化重整催化剂、代表性的重整反应器方面进行讨论,指出催化重整中的主要问题是碳沉积导致催化剂失活。研制高活性、高稳定性、高选择性的催化剂是生物油催化重整制氢的关键。%Hydrogen is regarded as an environmentally friendly clean energy and has been paid more and more attention. Catalytic steam reforming of bio-oil is a feasible solution for future hydrogen production. The recent progress of catalytic steam reforming of bio-oil for hydrogen production was reviewed in this paper. Some respects such as reaction mechanism, thermodynamic analysis, catalysts, and typical reactors of catalytic steam reforming of bio-oil were discussed. The deactivation of catalyst caused by carbon deposition is pointed out as the main problem during the reforming process. Therefore, the key factor of catalytic reforming of bio-oil is to develop high activity, high stability, and high selectivity catalysts.

  8. Non-catalytic plasma-arc reforming of natural gas with carbon dioxide as the oxidizing agent for the production of synthesis gas or hydrogen - HTR2008-58023

    International Nuclear Information System (INIS)

    The world's energy consumption is increasing constantly due to the growing population of the world. The increasing energy consumption has a negative effect on the fossil fuel reserves of the world. Hydrogen has the potential to provide energy for all our needs by making use of fossil fuel such as natural gas and nuclear-based electricity. Hydrogen can be produced by reforming methane with carbon dioxide as the oxidizing agent. Hydrogen can be produced in a Plasma-arc reforming unit making use of the heat energy generated by a 500 MWt Pebble Bed Modular Reactor (PBMR). The reaction in the unit takes place stoichiometrically in the absence of a catalyst. Steam can be added to the feed stream together with the Carbon Dioxide, which make it possible to control the H2/CO ratio in the synthesis gas between 1/1 and 3/1. This ratio of H2/CO in the synthesis gas is suitable to be used as feed gas to almost any chemical and petrochemical process. To increase the hydrogen production further, the Water-Gas Shift Reaction can be applied. A techno-economic analysis was performed on the non-catalytic plasma-arc reforming process. The capital cost of the plant is estimated at $463 million for the production of 1 132 million Nm3/year of hydrogen. The production cost of hydrogen is in the order of $12.81 per GJ depending on the natural gas cost and the price of electricity. (authors)

  9. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Final technical report, Volume 2 - hydrogenative and hydrothermal pretreatments and spectroscopic characterization using pyrolysis-GC-MS, CPMAS {sup 13}C NMR and FT-IR

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan Song; Hatcher, P.G.; Saini, A.K.; Wenzel, K.A.

    1998-01-01

    It has been indicated by DOE COLIRN panel that low-temperature catalytic pretreatment is a promising approach to the development of an improved liquefaction process. This work is a fundamental study on effects of pretreatments on coal structure and reactivity in liquefaction. The main objectives of this project are to study the coal structural changes induced by low-temperature catalytic and thermal pretreatments by using spectroscopic techniques; and to clarify the pretreatment-induced changes in reactivity or convertibility of coals. As the second volume of the final report, here we summarize our work on spectroscopic characterization of four raw coals including two subbituminous coals and two bituminous coals, tetrahydrofuran (THF)-extracted but unreacted coals, the coals (THF-insoluble parts) that have been thermally pretreated. in the absence of any solvents and in the presence of either a hydrogen-donor solvent or a non-donor solvent, and the coals (THF-insoluble parts) that have been catalytically pretreated in the presence of a dispersed Mo sulfide catalyst in the absence of any solvents and in the presence of either a hydrogen-donor solvent or a non-donor solvent.

  10. STRATEGI PENGEMBANGAN AGROINDUSTRI GULA SEMUT AREN

    OpenAIRE

    Nur Afni Evalia

    2015-01-01

    Aren is a type of palm that has a highly potential economic value. Lareh Sago Sub-district is the largest producer in the District of Lima Puluh Kota; however, it is only processed to produce wine and molded sugar. This study aimed to formulate a strategy for the sugar palm sugar agro-industrial development in Lareh Sagohalaban. The research method was a case study in the form of quantitative descriptive, and the data were processed using IFE/EFE, SWOT and AHP. The values obtained from IFE an...

  11. 负载型Pd/SBA-15催化剂催化性能研究%Research on catalytic hydrogenation performance of Pd/SBA-15 supported catalyst

    Institute of Scientific and Technical Information of China (English)

    刘大伟

    2012-01-01

    The hydrogenation of 2-nitrochlorobenzene is carried out by Pd/SBA-15 supported catalyst. The effect of temperature and amount of catalysts on catalytic activity and life-span are investigated. The results show that Pd/SBA-15 supported catalyst has excellent catalytic performance and is expected to be applied in industry.%将负载型催化剂Pd/SBA-15用于催化邻氯硝基苯加氢.考察了反应温度、催化剂用量对Pd/SBA-15催化性能的影响,并考察了催化剂的使用寿命.实验结果表明,Pd/SBA-15催化剂表现出很好的催化性能,有望应用于工业生产.

  12. Selective arene and polyarene hydrogenation catalysed by ruthenium nanoparticles.

    OpenAIRE

    Bresó Femenia, Emma

    2015-01-01

    Aquesta tesis doctoral es centra en la síntesis i caracterització de nanopartícules de ruteni estabilitzades per diferents lligands i en la seva posterior aplicació en reaccions d’hidrogenació de compostos aromàtics. En el capítol 3, es descriu la síntesis de nanopartícules de ruteni i rodi estabilitzades pels lligands trifenilfosfina i 1,4-bis(difenilfosfina) les quals són utilitzades com a catalitzadors en la hidrogenació d’una gran varietat de cetones aromàtiques. S’ha obtingut bones selec...

  13. Hydrogénations catalytiques. De la recherche de base à l'application industrielle Catalytic Hydrogenation from Basic Research to Industrial Applications

    Directory of Open Access Journals (Sweden)

    Boitiaux J. P.

    2006-11-01

    additifs ou impuretés des charges et de donner des idées claires sur la façon de modifier les supports ou les sites métalliques. Les conséquences ont été tirées de ces études et des applications industrielles ont démontré clairement l'intérêt de ces travaux. Néanmoins certains problèmes sont encore à résoudre qu'il serait nécessaire de considérer d'un point de vue encore plus fondamental en prenant en considération le mécanisme de la réaction d'hydrogénation. Early research on catalytic hydrogenation showed the specificity of different metals for different types of hydrogenation (acetylenes, olefins, aromatics, aldehydes, nitriles, etc. . This observation somewhat vaguely included the concept of the importance of the metal/substrate pair. A contradiction with the insensitive character to the structure of such reactions then appeared. Recent research on palladium catalysts of various dispersions has clearly demonstrated the influence of particle size on the hydrogenation rate of C4 acetylenes and diolefins. Such a behavior has now been confirmed by further research on platinum and rhodium. The phenomenon is due to excessive adsorption of reactants on small particles. These particles are electrodeficient and very strongly adsorb electrodonor compounds such as unsaturated hydrocarbons. The explanation has been confirmed by the additive effect caused by piperidine. Its coadsorption on the catalyst destabilizes the metal/substrate bond and increases the activity. A complete kinetic analysis has refined this interpretation by demonstrating the constancy of intrinsic activity and the relation between sensitivity to metal dispersion and a complexing of the metallic site of the type encountered on homogeneous catalysts. This fundamental research has very important consequences on the development of industrial catalysts. For each process and hence for each hydrogenation, the optimum dispersion of the metal has to be determined to obtain the highest possible

  14. Synthesis of Schiff Base Calix[4]arene Crowns

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This letter reports the synthesis of Schiff base calix[4]arene crowns containing m-xylylene phenol subunit, in which calix[4]arene Schiff base crowns 2a, 2b and 2c were formed by 1:1 condensation of calix[4]arene diamine 1 with dialdehydes (2, 6-diformyl-4-chlorophenol 3a, 2, 6-diformyl-4-methylphenol 3b, 2, 6-diformyl-4-tert-butylphenol 3c) under high dilute condition in refluxing anhydrous ethanol in 65-70% yield.

  15. Co/ZnO and Ni/ZnO catalysts for hydrogen production by bioethanol steam reforming. Influence of ZnO support morphology on the catalytic properties of Co and Ni active phases

    Energy Technology Data Exchange (ETDEWEB)

    Da Costa-Serra, J.F.; Chica, A. [Instituto de Tecnolgia Quimica (UPV-CSIC), Universidad Politecnica de Valencia, Consejo Superior de Investigaciones Cientificas, Avenida de los naranjos s/n, 46022 Valencia (Spain); Guil-Lopez, R. [Instituto de Catalisis y Petroleoquimica, CSIC, Marie Curie 2, Cantoblanco, 28049 Madrid (Spain)

    2010-07-15

    Renewable hydrogen production from steam reforming of bioethanol is an interesting approach to produce sustainable hydrogen. However, simultaneous competitive reactions can occur, decreasing the hydrogen production yield. To overcome this problem, modifications in the steam reforming catalysts are being studied. Ni and Co active phases supported over modified ZnO have been widely studied in hydrogen production from steam reforming of bioethanol. However, the influence of the morphology and particle size of ZnO supports on the catalytic behaviour of the supported Ni and Co has not been reported. In the present work, we show how the morphology, shape, and size of ZnO support particles can control the impregnation process of the metal active centres, which manages the properties of active metallic particles. It has been found that nanorod particles of ZnO, obtained by calcination of Zn acetate, favour the metal-support interactions, decreasing the metallic particle sizes and avoiding metal (Co or Ni) sinterization during the calcination of metal precursors. Small metallic particle sizes lead to high values of active metal exposure surface, increasing the bioethanol conversion and hydrogen production. (author)

  16. Research progress of fuel cell cold startup based on hydrogen catalytic combustion%基于氢气低温催化燃烧的燃料电池低温启动研究进展

    Institute of Scientific and Technical Information of China (English)

    袁庆; 郑俊生; 马建新

    2013-01-01

      相比于传统动力系统,基于燃料电池的动力系统具有很多优点,但在实际运用中仍有许多亟需解决的问题,其中包括燃料电池系统的低温启动问题。本文对比了各种燃料电池低温启动方案的工作机理及其优缺点,归纳并分析了氢气催化燃烧所用催化剂和催化燃烧反应过程以及燃料电池低温启动过程等方面的相关研究成果,研究了影响催化燃烧的主要因素,得出以下结论:基于氢气低温催化燃烧的燃料电池低温启动策略具有较高的可行性;在不同反应模型的情况下,氢气都可以在微尺度管道内实现稳定的燃烧;表面催化反应对空间气相反应有抑制作用;空间气相与表面催化的耦合反应能得到最高的温度;氢气/空气预混合气体入口流速、导热壁及导热壁材料、管径和当量比均对催化燃烧有着重要的影响。%When contrasting with traditional power system,fuel cell has a lot of advantages. But it still has many practical problems,such as low-temperature cold startup. Different strategies of fuel cell cold startup were discussed. Some related researches on hydrogen catalytic combustion and fuel cell cold startup were summarized and analyzed and the factors affecting the catalytic combustion were investigated. Hydrogen low-temperature catalytic combustion provided one way to achieve effective and reliable startup of fuel cell. Hydrogen could achieve stable combustion in a micro-tube for different reaction models. Surface catalytic combustion restrained gas phase combustion. The highest temperature could be obtained when surface catalytic combustion and gas phase combustion occurred at the same time. Inlet velocity,conductive wall and its material,tube diameter as well as equivalent ratio of hydrogen/air mixture had significant influence on catalytic combustion of hydrogen.

  17. Functioned Calix[4]arenes as Artificial Enzymes Catalyze Aldol Condensation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Aldolase models derived from calix[4]arene were designed and synthesized. The aldol condensation of p-nitrobenzaldehyde with acetone was catalyzed by the synthetic enzymes proceeded under mild conditions to offer chiefly aldol-type product in good yield.

  18. Synthesis of a New Type Tetraamides Bridged Calix[4]arene

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Two new tetraamides bridged calix[4]arenes were synthesized by the condensation reaction of 1,3-bis-chlorocarbonylmethyl p-tert-butylcalix[4]arene with 1,2-bis (2,-amino- 2,-methylpropanamido)benzene or 1,2-bis (2,-amino-2,- methylpropanamido) -4,5- dichloro benzene, respectively. The new compounds were characterized by 1H-NMR, MS-FAB, and elemental analysis; macrocyclic polyamine.

  19. Fifty years of oxacalix[3]arenes: A review

    Directory of Open Access Journals (Sweden)

    Kevin Cottet

    2012-02-01

    Full Text Available Hexahomotrioxacalix[3]arenes, commonly called oxacalix[3]arenes, were first reported in 1962. Since then, their chemistry has been expanded to include numerous derivatives and complexes. This review describes the syntheses of the parent compounds, their derivatives, and their complexation behaviour towards cations. Extraction data are presented, as are crystal structures of the macrocycles and their complexes with guest species. Applications in fields as diverse as ion selective electrode modifiers, fluorescence sensors, fullerene separations and biomimetic chemistry are described.

  20. Calix[4]arenes in the 1,3-alternate conformation

    OpenAIRE

    Dordea, Crenguta

    2006-01-01

    Calix[4]arenes fixed in the 1,3-alternate conformation offer an interesting platform for the attachment of further functionalities which has been less frequently used than the cone conformer. Several synthetic strategies were developed to attach four amino functions to the narrow rim, to the wide rim and to both rims of the calix[4]arene fixed in the 1,3-alternate conformation. Using different precursor groups (nitrile/phthalimide or nitro/phthalimide) which can be independently converted int...

  1. Chiral Supramolecular Chemistry of Basket Resorc[4]arenes

    OpenAIRE

    Calcaterra, Andrea

    2013-01-01

    Chiral Basket Resorc[4]arenes are well known chiral solvating agents that can induce enantiodiscrimination towards aminoacids, peptides and nucleosides. We synthesized both enantiomer of some basket resorc[4]arenes capable of forming stable diasteromeric host-guest complexes with some nucleosides like cytidine and cytarabine. The reactivity and the structures of the complexes were investigated in gas-phase (ESI-IRMPD, ESI-FT-ICR) and in solution (DOSY, ROESY). Different "in" and "out" struct...

  2. A catalytic cracking process

    Energy Technology Data Exchange (ETDEWEB)

    Degnan, T.F.; Helton, T.E.

    1995-07-20

    Heavy oils are subjected to catalytic cracking in the absence of added hydrogen using a catalyst containing a zeolite having the structure of ZSM-12 and a large-pore crystalline zeolite having a Constraint Index less than about 1. The process is able to effect a bulk conversion of the oil at the same time yielding a higher octane gasoline and increased light olefin content. (author)

  3. New arene ruthenium complexes with planar chirality

    OpenAIRE

    Therrien, Bruno; Süss-Fink, Georg

    2009-01-01

    1,2,4-Trimethyl-cyclohexadiene reacts with RuCl3 • nH2O in refluxing ethanol to afford quantitatively [RuCl2(1,2,4-C6H3Me3)]2 (1), the coordination of 1,2,4-trimethylbenzene to the ruthenium atom introducing planar chirality at the η6-arene ligand. The dinuclear complex 1 reacts with two equivalents of triphenylphosphine (PPh3) to give quantitatively, as a racemic mixture of enantiomers, [RuCl2(1,2,4-C6H3Me3)(PPh3)] (2), the structure of which has been determined by a single-crystal X-ray str...

  4. Annelation of furan rings to arenes

    Science.gov (United States)

    Omelchuk, O. A.; Tikhomirov, A. S.; Shchekotikhin, A. E.

    2016-08-01

    Benzo[b]furans have been used in various fields of chemistry and technology due to their unique physical, chemical and biological properties. It is primarily a wide range of biological activities of natural and synthetic benzo[b]furan derivatives and their polyfused analogues (naphthofurans, anthrafurans, etc.) that attracts a significant scientific interest in the context of using these heterocycles as privileged scaffolds in drug design. This survey covers those methods for the annelation of a furan ring to arenes that have been developed mostly during the last decade. We also analyze trends in synthetic methods of benzo[b]furans. Some synthetic schemes are highly efficient in the synthesis of polyfunctionalized furan derivatives. The bibliography includes 110 references.

  5. The Olefin Metathesis Reactions Combined with Organo-Iron Arene Activation Towards Dendrimers, and Polymers

    Science.gov (United States)

    Astruc, Didier; Martinez, Victor

    The subjects treated in the two lectures of the North Atlantic Treaty Organization (NATO) summer course are (1) the combination of arene activation and perfunctionalization using organo-iron chemistry with olefin metathesis incuding metathesis of dendritic polyolefin molecules; (2) the synthesis of metallodendritic benzylidene complexes that catalyse ring-opening metathesis polymerization (ROMP) under ambient conditions and the formation of dendritic stars; (3) the use of stoichiometric and catalytic electron-transfer processes with standard reservoirs of electrons (reductants) or electron holes (oxidants) iron complexes to achieve noteworthy metathesis reactions or synthesize compounds that are useful in metathesis. Only the two first topics are treated in this chapter, and interested readers can find references concerning the third aspect called in the introduction and subsequently cited in the reference list.

  6. Crystal structures of two thiacalix[4]arene derivatives anchoring four thiadiazole groups

    Indian Academy of Sciences (India)

    Bang-Tun Zhao; Zhen Zhou; Zhen-Ning Yan

    2009-11-01

    The crystal structures of two thiacalixarene derivatives anchoring thiadiazole functional groups at lower rim, C60H72O4S12N8 (1), C64H80O4S12N8 (2), have been determined by single crystal X-ray diffraction. The thiacalix[4]arene framework in both 1 and 2 adopts the 1,3-alternate conformation. Compound 1 forms a 1-D chain by weak hydrogen bonding (C-H$\\cdots$N) interactions between two thiadiazole groups in two different molecules. The chains are further connected to form a 2-D network through sulfur-sulfur (S$\\cdots$S) interactions. The lattice water molecules which exist as dimers by forming hydrogen bonds (O-H$\\cdots$O) promote a 3-D supramolecular structure through weak hydrogen bonding (O-H$\\cdots$S) interactions between the lattice water dimers and the 2-D networks. On the other hand, compound 2, based on dimer which is formed by weak hydrogen bonding (C-H$\\cdots$S) interactions, is extended to a 1-D chain through sulfur-sulfur (S$\\cdots$S) interactions. The dimers of lattice methanol molecules linked by hydrogen bonds (O-H$\\cdots$O) act as bridges to link the 1-D chains into a 2-D network through weak hydrogen bonding (C-H$\\cdots$N) interactions.

  7. Chemistry - Toward efficient hydrogen production at surfaces

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Christensen, Claus H.

    2006-01-01

    Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy.......Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy....

  8. Preconversion catalytic deoxygenation of phenolic functional groups. Quarterly technical progress report, April 1, 1992--June 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kubiak, C.P.

    1992-11-01

    Aryl carbon-oxygen bond cleavage is a chemical transformation of importance in coal liquefaction and the upgrading of coal liquids as well as in the synthesis of natural products. There have been numerous attempts to discover general methods for the cleavage of aryl carbon-oxygen bonds. All the stoichiometric organic methods for phenol deoxygenation have limited applications and involve expensive reagents. Catalytic method, for the hydrodeoxygenation (HDO) of phenols involve supported transition metal oxides, such as Mo/{gamma}-Al{sub 2}O{sub 3}, Ni-MO/{gamma}-Al{sub 2}O{sub 3}, Co-Mo/{gamma}-Al{sub 2}O{sub 3}, and Fe{sub 2}O{sub 3}/SiO{sub 2}. Typical phenol hydrodeoxygenation conditions involve hydrogen pressures in excess of 100 atm and temperatures in excess of 200{degrees}C. Under these conditions arene ring hydrogenation is generally found to compete with phenol deoxygenation; and the coproduct water is found to impair the activity of the catalysts. This proposed research offers the possibility of effecting the selective catalytic deoxygenation of phenolic functional groups using CO. The deoxygenation of phenols by carbon monoxide mediated by Ir(triphos)OAr has provided us with a catalytic Phenol deoxygenation pathway, through the elimination of CO{sub 2} and formation of a benzyne intermediate. Although the [Pt(triphos)(O-Ph-Me)]PF{sub 6} system is not expected to be as efficient a catalyst as some of the other transition metals systems we are currently exploring, it will provide more information about the deoxygenation mechanism in these triphos complexes. This is due to the presence of the structurally sensitive {sup 3l}P--{sup 195}Pt coupling constant and comparisons to the extensively studied Pt(dppe)(O-Ph){sub 2} systems.

  9. Unsteady catalytic processes and sorption-catalytic technologies

    International Nuclear Information System (INIS)

    Catalytic processes that occur under conditions of the targeted unsteady state of the catalyst are considered. The highest efficiency of catalytic processes was found to be ensured by a controlled combination of thermal non-stationarity and unsteady composition of the catalyst surface. The processes based on this principle are analysed, in particular, catalytic selective reduction of nitrogen oxides, deep oxidation of volatile organic impurities, production of sulfur by the Claus process and by hydrogen sulfide decomposition, oxidation of sulfur dioxide, methane steam reforming and anaerobic combustion, selective oxidation of hydrocarbons, etc.

  10. Unsteady catalytic processes and sorption-catalytic technologies

    Energy Technology Data Exchange (ETDEWEB)

    Zagoruiko, A N [G.K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2007-07-31

    Catalytic processes that occur under conditions of the targeted unsteady state of the catalyst are considered. The highest efficiency of catalytic processes was found to be ensured by a controlled combination of thermal non-stationarity and unsteady composition of the catalyst surface. The processes based on this principle are analysed, in particular, catalytic selective reduction of nitrogen oxides, deep oxidation of volatile organic impurities, production of sulfur by the Claus process and by hydrogen sulfide decomposition, oxidation of sulfur dioxide, methane steam reforming and anaerobic combustion, selective oxidation of hydrocarbons, etc.

  11. From Pillar[n]arene Scaffolds for the Preparation of Nanomaterials to Pillar[5]arene-containing Rotaxanes.

    Science.gov (United States)

    Nierengarten, Iwona; Deschenaux, Robert; Nierengarten, Jean-François

    2016-01-01

    Pillar[n]arenes are a new class of macrocycles that are efficiently prepared from readily available building blocks. In this particular field, our research teams became interested in the use of a pillar[5]arene core as a compact scaffold for the synthesis of nanomaterials with a controlled distribution of functional groups on both rims of the macrocyclic framework. Such compounds have found applications in biology as multivalent ligands for specific lectines or as polycationic compounds for gene delivery. Liquid-crystalline derivatives have been prepared by grafting mesogenic subunits on the pillar[5]arene core. On the other hand, we also became interested in the preparation of pillar[5]arene-containing [2]rotaxanes. In particular, we have shown that pillar[5] arene-based [2]rotaxanes can be obtained from the reaction of amine stoppers with pseudo-rotaxanes resulting from the association of a pillar[5]arene derivative with a diacyl chloride reagent. Finally, amphiphilic [2]rotaxanes have been prepared and incorporated in thin ordered films at the air-water interface. PMID:26931219

  12. Catalytic transfer hydrogenation for stabilization of bio-oil oxygenates: reduction of p-cresol and furfural over bimetallic Ni-Cu catalysts using isopropanol

    Science.gov (United States)

    Transfer hydrogenation and hydrodeoxygenation of model bio-oil compounds (p-cresol and furfural) and bio-oils derived from biomass via traditional pyrolysis and tail-gas reactive pyrolysis (TGRP) were conducted. Mild batch reaction conditions were employed, using isopropanol as a hydrogen donor over...

  13. Hydrogen production from co-gasification of coal and biomass in supercritical water by continuous flow thermal-catalytic reaction system

    Institute of Scientific and Technical Information of China (English)

    YAN Qiuhui; GUO Liejin; LIANG Xing; ZHANG Ximin

    2007-01-01

    Hydrogen is a clean energy carrier.Converting abundant coal sources and green biomass energy into hydrogen effectively and without any pollution promotes environmental protection.The co-gasification performance of coal and a model compound of biomass,carboxymethylcellulose (CMC)in supercritical water (SCW),were investigated experimentally.The influences of temperature,pressure and concentration on hydrogen production from co-gasification of coal and CMC in SCW under the given conditions (20-25 MPa,650℃,15-30 s) are discussed in detail.The experimental results show that H2,CO2 and CH4 are the main gas products,and the molar fraction of hydrogen reaches in excess of 60%.The higher pressure and higher CMC content facilitate hydrogen production;production is decreased remarkably given a longer residence time.

  14. Preparation of Pt/K2La2Ti3O10 and its photo-catalytic activity for hydrogen evolution from methanol water solution

    Institute of Scientific and Technical Information of China (English)

    CUI; Wenquan

    2006-01-01

    ):A new series of layered perovskites exhibiting ion exchange,Inorg.Chem.,1987,26:4299-4301.[12]Takata,T.,Shinohara,K.,Tanaka,A.,Hara,M.,Kondo,J.N.,Domen,K.,A highly active photocatalyst for overall water splitting with a hydrated layered perovskite structure,J.Photochem.Photobiol.A:Chem.,1997,106(1-3):45-49.[13]Cui,W.Q.,Feng,L.R.,Xu,C.H.,Lü,S.J.,Qiu,F.L.,Hydrogen production by photocatalytic decomposition of methanol gas on Pt/TiO2 nano-film,Catal.Comm.,2004(5):533-536.[14]Herrmann,J.M.,Disdier,J.,Pichat,P.,Photoassisted platinum deposition on TiO2 powder using various platinum complexes,J.Phys.Chem.,1986,90:6028-6034.[15]Cui,W.Q.,Feng,L.R.,Xu,C.H.,Lü,S.J.,Qiu,F.L.,Studies on the photo-catalytic decomposition of methanol vapor on Pt-loaded nano-TiO2 particles,Acta Chim.Sinica (in Chinese),2005,63(3):203-209.[16]Ikeda,S.,Hara,M.,Kondo,J.N.,Domen,K.,Preparation of K2La2Ti3O10 by polymerized complex method and photocatalytic decomposition of water,Chem.Mater.,1998,10(1):72-77.[17]Yang,X.Y.,Per,Z.F.,Bai,R.Q.,Studies on dispersion of Pt by HOT,Petrochemical Technology,1978,7(4):352.[18]Fox,M.A.,Dulay,M.Y.,Heterogeneous photocatalysis,Chem.Rev.,1993,93(1):341-357.[19]Kudo,A.,Sakata,T.,Luminescent properties of nondoped and rare earth metal ion-doped K2La2Ti3O10 with layered perovskite structures:Importance of the hole trap process,J.Phys.Chem.,1995,99:15963-15967.

  15. Study: Ex-NFL Players Aren't At Greater Risk for Suicide

    Science.gov (United States)

    ... NFL Players Aren't at Greater Risk for Suicide Rate was lower than would be expected among ... football players aren't at greater risk of suicide than the general U.S. population, federal health officials ...

  16. Simulation of thermally coupled catalytic distillation flowsheets for C3 alkyne selective hydrogenation%C3选择性加氢热耦合催化精馏流程模拟

    Institute of Scientific and Technical Information of China (English)

    王易卓; 罗祎青; 钱行; 袁希钢

    2016-01-01

    In order to reduce effectively the refrigeration cost for the process of selective hydrogenation of C3 alkyne into alkene, three novel thermally coupled catalytic distillation flowsheets are proposed. In the proposed flowsheets, the reactor for catalytic hydrogenation of C3 components is settled in the lower part of the deethanizer in the original process and the three columns are thermally coupled in different ways. The proposed flowsheets are rigorously simulated and evaluated. The results show that, compared with original process, the proposed processes raise the convert ratio of hydrogenation, and at the same time, significant energy saving can be achieved by the thermal couplings, leading to a decrease in the total annual cost by 4.107%, 6.420%and 10.337%respectively for the three proposed flowsheets.%针对C3选择性加氢过程中冷剂费用过高问题提出将选择性加氢催化反应器设置在脱乙烷精馏塔的提馏段,并通过原流程的3个精馏塔的不同热耦合方式所构成的3种热耦合催化精馏结构;对三热耦合催化精馏结构分别进行严格模拟和评价,表明通过分离和加氢反应的结合增加了加氢反应的转化率,并通过热耦合降低了分离能耗,年度总费用降低显著。模拟结果表明,3种方案的年度总费用节约效果分别为4.107%、6.420%和10.337%。

  17. Formation and characterization of water-soluble hydrido-ruthenium(II) complexes of 1,3,5-triaza-7-phosphaadamantane and their catalytic activity in hydrogenation of CO2 and HCO3- in aqueous solution.

    Science.gov (United States)

    Laurenczy, G; Joó, F; Nádasdi, L

    2000-10-30

    The water-soluble tertiary phosphine complex of ruthenium(II), [RuCl2(PTA)4], (PTA = 1,3,5-triaza-7-phosphaadamantane) was used as catalyst precursor for hydrogenation of CO2 and bicarbonate in aqueous solution, in the absence of amine or other additives, under mild conditions. Reaction of [RuCl2(PTA)4] and H2 (60 bar) gives the hydrides [RuH2(PTA)4] (at pH = 12.0) and [RuH(PTA)4X] (X = Cl- or H2O) (at pH = 2.0). In presence of excess PTA, formation of the unparalleled cationic pentakis-phosphino species, [HRu(PTA)5]+, was unambiguously established by 1H and 31P NMR measurements. The same hydrides were observed when [Ru(H2O)6][tos]2 (tos = toluene-4-sulfonate) reacted with PTA under H2 pressure. The rate of CO2 hydrogenation strongly depends on the pH. The highest initial reaction rate (TOF = 807.3 h(-1)) was determined for a 10% HCO3-/90% CO2 mixture (pH = 5.86), whereas the reduction was very slow both at low and high pH (CO2 and Na2CO3 solutions, respectively). 1H and 31P NMR studies together with the kinetic measurements suggested that HCO3- was the real substrate and [RuH(PTA)4X] the catalytically active hydride species in this reaction. Hydrogenation of HCO3- showed an induction period which could be ascribed to the slow formation of the catalytically active hydride species. PMID:11233205

  18. The catalytic hydrogenation of 2,4-dinitrotoluene in a continuous stirred three-phase slurry reactor with an evaporting solvent

    NARCIS (Netherlands)

    Westerterp, K.R.; Janssen, H.J.; Kwast, van der H.J.

    1992-01-01

    An experimental study of the catalytic hydorgenation of 2,4-dinitrotoluene (DNT) in a mini-installation with a continuously operated stirred three-phase slurry reactor and an evaporating solvent is discussed. Some characteristic properties of the reactor system and the influence of the operating par

  19. Study Progress of the Catalytic Hydrogenation of Chloronitrobenzene with Modified Palladium Catalysts%钯金属催化氯代硝基苯加氢的研究进展

    Institute of Scientific and Technical Information of China (English)

    徐文龙; 杨晓瑞; 梁金花; 陈安猛; 朱建良

    2015-01-01

    以钯金属催化剂催化氯代硝基苯加氢制备氯代苯胺的工艺具有催化活性高、催化剂可回收套用、绿色环保等优点,然而该类催化剂在催化过程中经常发生脱氯氢解生成副产物,影响产品品质,因此寻找合适的方法抑制脱氯副反应成为了目前该类反应研究的热点问题。本文阐述了钯金属催化剂的多种改性方法,重点介绍了钯金属纳米颗粒的制备,合适载体的选择,以及水溶性钯金属催化剂的制备等改性途径,通过钯金属催化剂的改性可以提高其催化氯代硝基苯加氢反应中反应物的转化率与目标产物的选择性。目前钯金属负载型催化剂已经成为工业抑制脱氯副反应的主要方法,其中高分子聚合-钯络合催化剂效果最优。%In the catalytic hydrogenation process of chloronitrobenzene to chloroaniline with the palladium catalyst, these advantages were showed that higher catalytic activity, catalyst recyclable and environmental friendly. However, this kind of catalyst could lead to a dechlorohydrogenation in the catalytic process and produce by-products which infect the quality of outcome. Searching for the method to restrain the side reaction has been the hot point problems. Several methods modifying palladium catalysts are investigated and compared in this review. It is focused on the introduction of the preparation of palladium nano-particles, the selection of suitable supports and the preparation of water-soluble palladium catalysts. The conversion of reactant and the selectivity of desired products in the catalytic hydrogenation of chloronitrobenzene would be increased by the modification of palladium catalysts. Presently, the preparation of supported palladium catalyst is the preferred method for restraining the side reactions in industry, in which the supported polymer-palladium complexes is the best.

  20. A Comparative Study of AlCl3 and FeCl2-Modified TiCl4/MgCl2/THF Catalytic System in the Presence of Hydrogen for Ethylene Polymerization

    Directory of Open Access Journals (Sweden)

    Thanyathorn Niyomthai

    2016-01-01

    Full Text Available Ethylene homopolymerization over TiCl4/MgCl2/THF catalysts modified with different metal halide additives (AlCl3 and FeCl2 with and without hydrogen was investigated based on catalytic activity and polymer properties. Lewis acid modification can improve activity because it can remove the remaining THF in the final catalyst, which can poison the catalyst active sites via the ring-opening of THF that was confirmed by XRD measurements. Moreover, the activity enhancement was due to the formation of acidic sites by modifying the catalysts with Lewis acids. Thus, FeCl2 doped catalyst (Fe-THF exhibited the highest activity followed by AlCl3 doped catalyst (Al-THF and undoped catalyst (None-THF. In H2/C2H4 molar ratio of 0.08, Fe-THF showed a better hydrogen response than Al-THF due to more titanium cluster distribution. Fe-THF is considered to have more clustered Ti species than Al-THF. As a consequence, it led us to obtain more possible chances to precede chain transfer reaction by hydrogen. The molecular weight, melting temperature, and crystallinity of obtained polymers were investigated by GPC and DSC measurement, respectively.

  1. Nonaqueous catalytic fluorometric trace determination of vanadium based on the pyronine B-hydrogen peroxide reaction and flow injection after cloud point extraction.

    Science.gov (United States)

    Paleologos, E K; Koupparis, M A; Karayannis, M I; Veltsistas, P G

    2001-09-15

    The catalytic effect of vanadium on the pyronine B-H2O2 system is examined. Enhancement of the catalytic reaction rate along with the efficiency and selectivity against vanadium is achieved in a formic acid environment in the presence of a nonionic surfactant (Triton X-114). Elimination of drastic interference caused by inorganic acids and aqueous matrix along with a 50-fold preconcentration of vanadium are facilitated through cloud point extraction of its neutral complex with 8-quinolinol in an acidic solution. Subsequent flow injection analysis (FIA) with fluorometric detection renders the proposed method ideal for selective and cost-effective determination of as little as 0.020 microng L(-1) vanadium in environmental, biological, and food substrates. The preconcentration step can be applied simultaneously to multiple samples, allowing for massive preparation prior to analysis, compensating, thus, for the time-consuming procedure.

  2. Understanding catalytic biomass conversion through data mining

    NARCIS (Netherlands)

    E.J. Ras; B. McKay; G. Rothenberg

    2010-01-01

    Catalytic conversion of biomass is a key challenge that we chemists face in the twenty-first century. Worldwide, research is conducted into obtaining bulk chemicals, polymers and fuels. Our project centres on glucose valorisation via furfural derivatives using catalytic hydrogenation. We present her

  3. Theoretical investigation on the molecular inclusion process of prilocaine into p-sulfonic acid calix[6]arene

    Science.gov (United States)

    de Sousa, Sara M. R.; Fernandes, Sergio A.; De Almeida, Wagner B.; Guimarães, Luciana; Abranches, Paula A. S.; Varejão, Eduardo V. V.; Nascimento, Clebio S., Jr.

    2016-02-01

    The present letter reports, for the first time, results from a theoretical analysis of the inclusion process involving the prilocaine into the p-sulfonic acid calix[6]arene. Structure and stabilization energies were calculated, in both gas and aqueous phases, using a sequential methodology based on semiempirical and Density Functional Theory (DFT) calculations. From the results, a qualitative structure property relationship could be established with some main structural features being relevant for inclusion complex stabilization: (i) the hydrogen bonds established between guest and host molecules, (ii) the dispersion effect and (iii) the inclusion mode of guest molecule into the host cavity.

  4. Study on Catalytic Combustion of Premixed Hydrogen and Oxygen in the Micro-scale%微尺度下氢氧预混合气催化燃烧的研究

    Institute of Scientific and Technical Information of China (English)

    潘剑锋; 范宝伟; 吴庆瑞; 李晓春; 唐爱坤; 薛宏

    2011-01-01

    Catalytic combustion of hydrogen and oxygen mixture inside a sub-millimeter micro combustor is numerically investigated by using the commercial computational fluid dynamics (CFD) code which based detailed gas phase and surface catalytic chemical reaction mechanisms. Combustion characteristics for different reaction models and the influence of wall materials and inlet velocity on catalytic combustion reaction are discussed on the basis of experimental verification. The computational results show that the surface catalytic combustion restrains the gas phase combustion by reducing the mass fraction of OH at adjacent position. Combustion efficiency can reach maximum value when coupling the surface catalytic combustion and the gas phase combustion. Inlet velocity will take more influence onto the temperature of ouelet exhaust than the temperature of outerwall, and the too higher velocity will lead to the reducing of combustion efficiency. Wall materials also have important influence on catalytic combustion of hydrogen and oxygen, there are large temperature gradient and temperature value in the outer wall of combustor when materials with small heat conductivity are used. The high temperature combustion zone moves to the entrance side because of the increase of the heat exchange form the combustor wall to the mixed gas near the entrance when materials with large heat conductivity are used.%基于空间气相和表面催化的详细化学反应机理,应用计算流体动力学软件对亚毫米燃烧器内的氧氧预混合燃烧进行模拟,在对催化燃烧模型进行试验验证的基础上,讨论不同反应模型的燃烧特性以及壁面材料和进口流速等对催化燃烧反应的影响.模拟结果显示,表面催化反应会使壁面相邻位置空间气体内的OH质量分数降低,对该催化壁面临近区域的气相反应有所抑制;壁面催化反应与空间气相反应耦合进行时,燃烧效率可达到最大值;进口速度对出口排气

  5. An asymmetric trihydrido-bridged arene ruthenium complex

    OpenAIRE

    Vieille-Petit, Ludovic; Therrien, Bruno; Süss-Fink, Georg

    2009-01-01

    Reaction of [Ru(η6-indane)(H2O)3]2+ and [Ru(η6-C6Me6)(H2O)3]2+ with NaBH4 in water gives a mixture of three triple hydrido-bridged arene ruthenium cations [(η6-arene)Ru(μ-H)3Ru(η6-arene′)]+ (arene=indane and hexamethylbenzene; arene′=indane and hexamethylbenzene). After treatment with NaBF4, the three complexes are separated by column chromatography and the asymmetrical [(η6-indane)Ru(μ-H)3Ru(η6-C6Me6)][BF4] (cation 1a) can be isolated in moderate yield. 1a decomposes in solution to give the ...

  6. An Efficient Ag+ Ionophore Based on Thiacalix[4]arene

    Institute of Scientific and Technical Information of China (English)

    LI Xiong; GONG Shu-Ling; YANG Wei-Ping; CHEN Yuan-Yin

    2008-01-01

    A novel Ag+ ionophore, p-tert-butyi-tetrakis(hydrazinocarbonylmethoxy)thiacalix[4]arene in 1,3-alternate conformation (thiacalix[4]arene tetrahydrazide, 1) was synthesized. Its binding properties towards alkali and transition metal cations were studied by noncompetitive liquid-liquid extraction of alkali metal (Li+, Na+, K+ and Cs+)and transition metal (Co2+, Ni2+, Cu2+, Zn2+, Ag+) picrates. It was found that the thiacalix[4]arene tetrahydrazide exhibited high extractability towards Ag+, lower percent extraction towards Cu2+, and little or no extraction ability towards the others. The selectivity towards Ag+ was further evaluated by competitive Ag+ extraction experiments in the mixture of the above-mentioned nine cations, the concentration of which was monitored with ICP-OES. 1HNMR titration experiments and ESI-MS proved the stoichiometry of 1 to Ag+ was 1 : 1, and the 'N-Ag+' interaction with the assistance of thiacalixarene skeleton was primarily involved in the complexation.

  7. Molecular Recognition of Natural Products by Resorc[4]arene Receptors.

    Science.gov (United States)

    D'Acquarica, Ilaria; Ghirga, Francesca; Quaglio, Deborah; Cerreto, Antonella; Ingallina, Cinzia; Tafi, Andrea; Botta, Bruno

    2016-01-01

    This review is aimed at providing an overview of the up-to-now published literature on resorc[4]arene macrocycles exploited as artificial receptors for the molecular recognition of some classes of natural products. A concise illustration of the main synthetic strategies developed to afford the resorc[4]arene scaffold is followed by a report on the principles of the gas-phase investigation of recognition phenomena by mass spectrometry (MS). Emphasis is placed on gas-phase studies of diastereoisomeric complexes generated inside a Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer by resorc[4]arene receptors towards a series of natural products, namely amino acids, amphetamine, ethanolamine neurotransmitters, dipeptides, vinca alkaloids and nucleosides. The literature outcomes discussed here, taken largely from our own revisited work, have been completed by references to other studies, in order to draw a broader picture of this rapidly evolving field of research. PMID:26654589

  8. Preparation and mechanism of Fe-K/AC for catalytic oxidation of hydrogen sulfide%Fe-K/AC催化氧化脱硫剂制备及反应机理研究

    Institute of Scientific and Technical Information of China (English)

    方惠斌; 赵建涛; 王胜; 黄戒介; 房倚天

    2012-01-01

    Modified activated carbon Fe-K/AC (activated carbon supported iron and potassium) was used as an oxidation catalyst for low concentration hydrogen sulfide (H2S) removed. The orthogonal design method was introduced in the research of Fe-K/AC preparation to determine the optimum condition and to measure the impact of different factors. Then, catalytic activity and mechanism on Fe-K/AC catalyst for oxidation of hydrogen sulfide was investigated. The optimum preparation condition of Fe-K/AC with high sulfur capacity and selectivity is that the iron and potassium content is 0. 5% and 5. 0% , respectively; and the calcination temperature and the Fe2VFe3+ atomic ratio is 600°C and 0. 5, respectively. The order of their influences is potassium content > iron content > calcination temperature > Fe2+/Fe3+ atomic ratio. Results from structural parameters and surface morphology of sorbents reveal that iron metal oxide loaded on the surface of activated carbon has the selective catalytic oxidation activity of hydrogen sulfide to element sulfur. Alkali metal oxide, which changes basic surface groups, has a synergistic effect on the catalytic oxidation of hydrogen sulfide. However,the catalytic activity decreases due to excessive metal oxides loadings that may block the accessibility of micropores and reduce the surface area.%采用正交实验法制备了负载铁、钾的活性炭(Fe-K/AC)热煤气催化氧化脱硫剂,考察了活性组分铁、钾含量、二价铁和三价铁比例、煅烧温度对催化氧化脱硫反应活性的影响.由正交实验极差分析可知,各因素影响程度依次为:钾含量>铁含量>煅烧温度> Fe2+/Fe3+,最优制备条件为,铁含量0.5%、钾含量5.0%、煅烧温度600℃、Fe2+/Fe3+比0.5.通过对脱硫剂的孔隙结构和表面形貌分析可知,活性炭表面负载的铁金属氧化物具有催化氧化硫化氢生成单质硫的活性,碱金属氧化物具有协同作用,可以改变表面酸碱性,促进硫化

  9. Effect of hydrogen peroxide on Dagang vacuum residue oxidation depolymerization assisted with photo-catalytic%过氧化氢对光催化氧化解聚大港减压渣油的影响

    Institute of Scientific and Technical Information of China (English)

    解恒参; 宗志敏; 陈恒宝; 魏贤勇

    2015-01-01

    应用过氧化氢在光催化辅助下对大港减压渣油进行氧化,并进行气相色谱-质谱( GC/MS)和傅里叶红外光谱( FTIR)分析.结果表明:过氧化氢在大港重质减压残渣的光催化氧化过程中起到重要促进作用,能使重油原样中约占70%的正构烷烃逐渐转化成极性较强、有利于分离的含氧化合物(含量达92.94%);含氧化合物主要包括36.05%的有机羧酸、14.56%的有机酯以及9.05 %的其他链式含氧化合物(醚、酮和酚类产物等) ,杂环类化合物达到21.57 %,其中五元环醚化合物(呋喃类)占到19.12%;长链烃能被解聚而减小碳链单元数量;过氧化氢、催化剂、重油减渣的用量和溶剂种类等因素对过氧化氢的氧化作用都有影响.%The Dagang vacuum residue ( DVR) was oxidized by hydrogen peroxide assisted with photo-catalytic. And the oxida-tion efficiency was analyzed through gas chromatography-mass spectrometry ( GC-MS) and Fourier transform infrared spectrosco-py ( FTIR ) . The results indicate that hydrogen peroxide plays an important role of promoting the photo-catalytic oxidation process. And about 70% of the alkane in DVR is gradually converted into some strong polar and easily separated oxygenated compounds, and its relative content reaches 92. 94% in DVR. The compounds mainly include 36. 05% organic carboxylic acids, 14. 56% organic esters, and 9. 05% other chain oxygenated compounds ( ether, ketone, and phenol products etc. ) . The heterocyclic compounds reaches 21. 57%, of which five-membered cyclic ether compounds ( furan) accounts for 19. 12%. And the long chain hydrocarbons can be depolymerized through reduced carbon chain unit number. And the amounts of hydrogen peroxide, catalyst and heavy oil, as well as the different solvents have all influences on hydrogen peroxide oxidation.

  10. Kinetic and thermodynamic parameters of hydrogen release during the heterogeneous catalytic dehydrogenation of cis- and trans-isomers of perhydro-m-terphenyl

    Science.gov (United States)

    Kalenchuk, A. N.; Bogorodskii, S. E.; Bogdan, V. I.

    2016-10-01

    Comparative studies on the temperature dependence of the dehydrogenation of cis- and trans-isomers of perhydro- m-terphenyl are performed in a flow catalytic reactor. Rate constants and equilibrium constants of all elementary acts of this reaction are calculated on basis of experimental data using the KINET 0.8 program for the mathematical modeling of the kinetics of complex reactions. The resulting data indicate that perhydro- m-terphenyl cis- and trans-isomers structural differences have no appreciable effect on dehydrogenation.

  11. The effect of additives on the reactivity of palladium surfaces for the chemisorption and hydrogenation of carbon monoxide: A surface science and catalytic study. [LaMO/sub 3/(M = Cr, Mn, Fe, Co, Rh)

    Energy Technology Data Exchange (ETDEWEB)

    Rucker, T.G.

    1987-06-01

    This research studied the role of surface additives on the catalytic activity and chemisorptive properties of Pd single crystals and foils. Effects of Na, K, Si, P, S, and Cl on the bonding of CO and H and on the cyclotrimerization of acetylene on the (111), (100) and (110) faces of Pd were investigated in addition to role of TiO/sub 2/ and SiO/sub 2/ overlayers deposited on Pd foils in the CO hydrogenation reaction. On Pd, only in the presence of oxide overlayers, are methane or methanol formed from CO and H/sub 2/. The maximum rate of methane formation is attained on Pd foil where 30% of the surface is covered with titania. Methanol formation can be achieved only if the TiO/sub x//Pd surface is pretreated in 50 psi of oxygen at 550/sup 0/C prior to the reaction. The additives (Na, K, Si, P, S, Cl) affect the bonding of CO and hydrogen and the cyclotrimerization of acetylene to benzene by structural and electronic interactions. In general, the electron donating additives increase the desorption temperature of CO and increase the rate of acetylene cyclotrimerization and the electron withdrawing additives decrease the desorption temperature of CO and decrease the rate of benzene formation from acetylene.

  12. Building robust architectures of carbon-wrapped transition metal nanoparticles for high catalytic enhancement of the 2LiBH4-MgH2 system for hydrogen storage cycling performance

    Science.gov (United States)

    Huang, Xu; Xiao, Xuezhang; Shao, Jie; Zhai, Bing; Fan, Xiulin; Cheng, Changjun; Li, Shouquan; Ge, Hongwei; Wang, Qidong; Chen, Lixin

    2016-08-01

    Nanoscale catalyst doping is regarded as one of the most effective strategies to improve the kinetics performance of hydrogen storage materials, but the agglomeration of nanoparticles is usually unavoidable during the repeated de/rehydrogenation processes. Herein, hierarchically structured catalysts (Fe/C, Co/C and Ni/C) were designed and fabricated to overcome the agglomeration issue of nanocatalysts applied to the 2LiBH4-MgH2 system for the first time. Uniform transition metal (TM) nanoparticles (~10 nm) wrapped by few layers of carbon are synthesized by pyrolysis of the corresponding metal-organic frameworks (MOFs), and introduced into the 2LiBH4-MgH2 reactive hydride composites (RHCs) by ball milling. The particular features of the carbon-wrapped architecture effectively avoid the agglomeration of the TM nanoparticles during hydrogen storage cycling, and high catalysis is maintained during the subsequent de/rehydrogenation processes. After de/rehydrogenation cycling, FeB, CoB and MgNi3B2 can be formed as the catalytically active components with a particle size of 5-15 nm, which show a homogeneous distribution in the hydride matrix. Among the three catalysts, in situ-formed MgNi3B2 shows the best catalytic efficiency. The incubation period of the Fe/C, Co/C and Ni/C-doped 2LiBH4-MgH2 system between the two dehydrogenation steps was reduced to about 8 h, 4 h and 2 h, respectively, which is about 8 h, 12 h and 14 h shorter than that of the undoped 2LiBH4-MgH2 sample. In addition, the two-step dehydrogenation peak temperatures of the Ni/C-doped 2LiBH4-MgH2 system drop to 323.4 °C and 410.6 °C, meanwhile, the apparent activation energies of dehydrogenated MgH2 and LiBH4 decrease by 58 kJ mol-1 and 71 kJ mol-1, respectively. In particular, the cycling hydrogen desorption of the Ni/C-doped 2LiBH4-MgH2 sample exhibits very good stability compared with the undoped sample. The present approach, which ideally addresses the agglomeration of nanoparticles with efficient

  13. Characteristics of La-modified Ni-Al2O3 and Ni-SiO2 catalysts for COx-free hydrogen production by catalytic decomposition of methane

    Institute of Scientific and Technical Information of China (English)

    Chatla; Anjaneyulu; Velisoju; Vijay; Kumar; Suresh; K.Bhargava; Akula; Venugopal

    2013-01-01

    Hydrotalcite precursors of La modified Ni-Al2O3 and Ni-SiO2 catalysts prepared by co-precipitation method and the catalytic activities were examined for the production of COx-free H2 by CH4 decomposition. Physico-chemical characteristics of fresh, reduced and used catalysts were evaluated by XRD, TPR and O2 pulse chemisorptions, TEM and BET-SA techniques. XRD studies showed phases due to hydrotalcite-like precursors in oven dried form produced dispersed NiO species upon calcination in static air above 450 C. Raman spectra of deactivated samples revealed the presence of both ordered and disordered forms of carbon. Ni-La-Al2O3catalyst with a mole ratio of Ni : La : Al = 2 : 0.1 : 0.9 exhibited tremendously high longevity with a hydrogen production rate of 1300 molH2 mol 1 Ni. A direct relationship between Ni metal surface area and hydrogen yields was established.

  14. Valge villa / Karen Jagodin ; kommenteerinud Krista Aren, Emil Urbel

    Index Scriptorium Estoniae

    Jagodin, Karen, 1982-

    2009-01-01

    Villa (623 m² + kelder) Merirahu elamurajoonis Tallinnas. Arhitektid: Emil Urbel, Andrus Mark (AB Emil Urbel OÜ). Sisearhitektid: Krista Aren, Mati Veermets. Inseneriosad: AS Meistri Projekt. Haljastaja: Piret Kukk. Projekt: 2005-2008, valmis: 2009. Villa madalamat osa katab murtud pinnaga graniit, kõrgemat valge krohv

  15. Catalytic transfer hydrogenation of azobenzene by low-valent nickel complexes: a route to 1,2-disubstituted benzimidazoles and 2,4,5-trisubstituted imidazolines.

    Science.gov (United States)

    Zurita, Daniel A; Flores-Alamo, Marcos; García, Juventino J

    2016-06-21

    The one-pot synthesis of 1,2-disubstituted benzimidazoles by the transfer hydrogenation of azobenzene, using benzylamine as a hydrogen donor, sequential rearrangement of hydrazobenzene to semidine and further condensation with N-benzylideneamine is reported, catalyzed by 2 mol% of [Ni(COD)2] : dippe. The N2 substitution on benzimidazole can be controlled by the selection of different azobenzenes and C2 substitution will only depend on the chosen benzylamine. The current methodology avoids the addition of external oxidants, which are needed in the classical benzimidazole synthesis. In addition, the byproduct, N-benzylideneamine, obtained from dehydrogenation of benzylamine produced 2,4,5-trisubstituted imidazolines by cyclization and C-H functionalization, and this route was optimized with the use of 2 mol% of [Ni(COD)2] : 2PPh3. PMID:27254530

  16. Study on Liquid Phase Chemo-Selective Catalytic Hydrogenation of Furfural to Furfuryl Alcohol%糠醛液相化学选择性加氢制糠醇的研究

    Institute of Scientific and Technical Information of China (English)

    孙绍晖; 马春松; 孙培勤; 陈俊武

    2015-01-01

    Using Cu-Zn/γAl2 O3 as catalyst, the catalytic hydrogenation of furfural to furfuryl alcohol was de-scribed at different temperatures, time, furfural concentration and solvent system. The different hydrogenation effects were compared at furfural conversion and furfuryl alcohol selectivity. Through experiments, the optimum conditions were determined for hydrogenation of furfural as a reaction temperature of 160 ℃, reaction time 3h, the amount of catalyst is furfural 7wt%, furfural concentration of 5wt% ~25wt%. When the solvent was toluene, the furfural con-version and furfuryl alcohol selectivity were respectively up to99% and 98%.%本文主要介绍了间歇式反应釜中糠醛在Cu-Zn/γAl2 O3催化剂条件下在不同温度、时间、糠醛浓度和溶剂体系中的催化加氢制糠醇,从糠醛转化率和糠醇选择性两方面对加氢效果进行比较。通过实验,我们得到了糠醛加氢制糠醇的最佳工艺条件为反应温度为160℃、反应时间为3 h、催化剂用量为糠醛的7wt%、糠醛浓度为5wt%~25wt%、溶剂为甲苯时,糠醛的转化率和糠醇的选择性最好,分别为99%和98%。

  17. Comparison of the Effects of Fluidized-Bed and Fixed-Bed Reactors in Microwave-Assisted Catalytic Decomposition of TCE by Hydrogen

    OpenAIRE

    Lili Ren; Jin Zhang

    2012-01-01

    Trichloroethylene (TCE) decomposition by hydrogen with microwave heating under different reaction systems was investigated. The activities of a series of catalysts for microwave-assisted TCE hydrodechlorination were tested through the fixed-bed and the fluidized-bed reactor systems. This study found that the different reaction system is suitable for different catalyst type. And there is an interactive relationship between the catalyst type and the reaction bed type.

  18. Comparison of the Effects of Fluidized-Bed and Fixed-Bed Reactors in Microwave-Assisted Catalytic Decomposition of TCE by Hydrogen

    Directory of Open Access Journals (Sweden)

    Lili Ren

    2012-01-01

    Full Text Available Trichloroethylene (TCE decomposition by hydrogen with microwave heating under different reaction systems was investigated. The activities of a series of catalysts for microwave-assisted TCE hydrodechlorination were tested through the fixed-bed and the fluidized-bed reactor systems. This study found that the different reaction system is suitable for different catalyst type. And there is an interactive relationship between the catalyst type and the reaction bed type.

  19. Homogeneous catalytic hydrogenation of bio-oil and related model aldehydes with RuCl{sub 2}(PPh{sub 3}){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Huang, F.; Li, W.; Lu, Q.; Zhu, X. [Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei (China)

    2010-12-15

    A homogeneous RuCl{sub 2}(PPh{sub 3}){sub 3} catalyst was prepared for the hydrogenation of bio-oil to improve its stability and fuel quality. Experiments were first performed on three model aldehydes of acetaldehyde, furfural and vanillin selected to represent the linear aldehydes, oxygen heterocyclic aldehydes and aromatic aldehydes in bio-oil. The results demonstrated the high hydrogenation capability of this homogeneous catalyst under mild conditions (55-90 C, 1.3-3.3 MPa). The highest conversion of the three model aldehydes was over 90 %. Furfural and acetaldehyde were singly converted to furfuryl alcohol and ethanol after hydrogenation, while vanillin was mainly converted to vanillin alcohol, together with a small amount of 2-methoxy-4-methylphenol and 2-methoxyphenol. Further experiments were conducted on a bio-oil fraction extracted by ethyl acetate and on the whole bio-oil at 70 C and 3.3 MPa. Most of the aldehydes were transformed to the corresponding alcohols, and some ketones and compounds with C-C double bond were converted to more stable compounds. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Preparation of Fe-Mn/K/Al2O3 Fischer-Tropsch Catalyst and Its Catalytic Kinetics for the Hydrogenation of Carbon Monoxide

    Institute of Scientific and Technical Information of China (English)

    F.Fazlollahi; M.Sarkari; H.Gharebaghi; H.Atashi; M.M.Zarei; A.A.Mirzaei; W.C.Hecker

    2013-01-01

    A K promoted iron-manganese catalyst was prepared by sol-gel method,and subsequently was tested for hydrogenation of carbon monoxide to light olefins.The kinetic experiments on a well-characterized Fe-Mn/K/Al2O3 catalyst were performed in a fixed-bed micro-reactor in a temperature range of 280-380 ℃,pressure range of 0.1-1.2 MPa,H2/CO feed molar ratio range of 1-2.1 and a space velocity range of 2000-7200 h-1.Considering the mechanism of the process and Langmuir-Hinshelwood-Hogan-Watson (LHHW) approach,unassisted CO dissociation and H-assisted CO dissociation mechanisms were defined.The best models were obtained using non-linear regression analysis and Levenberg-Marquardt algorithm.Consequently,4 models were considered as the preferred models based on the carbide mechanism.Finally,a model was proposed as a best model that assumed the following kinetically relevant steps in the iron-Fischer-Tropsch (FT) synthesis:(1) CO dissociation occurred without hydrogen interaction and was not a rate-limiting step; (2) the first hydrogen addition to surface carbon was the rate-determining steps.The activation energy and adsorption enthalpy were calculated 40.0 and-30.2 kJ· mol-1,respectively.

  1. Probing the Intact Cluster Catalysis Concept by Tetrahedral Clusters With Framework Chirality

    Institute of Scientific and Technical Information of China (English)

    G. Süss-Fink; L. Vieille-Petit

    2005-01-01

    @@ 1Results and Discussion In order to bring evidence for or against the hypothesis of catalytic hydrogenation by intact trinuclear arene ruthenium clusters containing an oxo cap, the substrate being hydrogenated inside the hydrophobic pocket spanned by the three arene ligands ("supramolecular cluster catalysis")[1], we synthesized cationic Ru3O clusters (See Fig. 1) with three different arene ligands (intrinsically chiral tetrahedra).

  2. Influences of Different Preparation Conditions on Catalytic Activity of Ag2O-Co3O4/γ-Al2O3 for Hydrogenation of Coal Pyrolysis

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2014-01-01

    Full Text Available A series of catalysts of Ag2O-Co3O4/γ-Al2O3 was prepared by equivalent volume impregnation method. The effects of the metal loading, calcination time, and calcination temperatures of Ag and Co, respectively, on the catalytic activity were investigated. The optimum preparing condition of Ag2O-Co3O4/γ-Al2O3 was decided, and then the influence of different preparation conditions on catalytic activity of Ag2O-Co3O4/γ-Al2O3 was analyzed. The results showed the following: (1 at the same preparation condition, when silver loading was 8%, the Ag2O-Co3O4/γ-Al2O3 showed higher catalyst activity, (2 the catalyst activity had obviously improved when the cobalt loading was 8%, while it was weaker at loadings 5% and 10%, (3 the catalyst activity was influenced by different calcination temperatures of silver, but the influences were not marked, (4 the catalyst activity can be influenced by calcination time of silver, (5 different calcination times of cobalt can also influence the catalyst activity of Ag2O-Co3O4/γ-Al2O3, and (6 the best preparation conditions of the Ag2O-Co3O4/γ-Al2O3 were silver loading of 8%, calcination temperature of silver of 450°C, and calcinations time of silver of 4 h, while at the same time the cobalt loading was 8%, the calcination temperature of cobalt was 450°C, and calcination time of cobalt was 4 h.

  3. Deciphering Noncovalent Interactions Accompanying 7,7,8,8-Tetracyanoquinodimethane Encapsulation within Biphene[n]arenes: Nucleus-Independent Chemical Shifts Approach.

    Science.gov (United States)

    Lande, Dipali N; Rao, Soniya S; Gejji, Shridhar P

    2016-07-18

    Binding of novel biphene[n]arene hosts to antiaromatic 7,7,8,8-tetracyanoquinodimethane (TCNQ) are investigated by DFT. Biphene[4]arene favors the inclusion complex through noncovalent interactions, such as hydrogen bonding, π-π stacking, C-H⋅⋅⋅π, and C-H⋅⋅⋅H-C dihydrogen bonding. Donor-acceptor complexation renders aromatic character to the guest through charge transfer. The formation of TCNQ anionic radicals through supramolecular π stacking significantly influences its chemical and photophysical behavior. Electron density reorganization consequent to encapsulation of TCNQ reflects in the shift of characteristic vibrations in the IR spectra. The accompanying aromaticities arising from the induced ring currents are analyzed by employing nucleus-independent chemical shifts based profiles. PMID:27028656

  4. Supported organometallic catalysts for hydrogenation and Olefin Polymerization

    Science.gov (United States)

    Marks, Tobin J.; Ahn, Hongsang

    2001-01-01

    Novel heterogeneous catalysts for the which hydrogenation of olefins and arenes with high conversion rates under ambient conditions and the polymerization of olefins have been developed. The catalysts are synthesized from Ziegler-type precatalysts by supporting them on sulfate-modified zirconia.

  5. 四氯化硅催化氢化合成三氯氢硅机理研究%First Principles Study on the Reaction Mechanism of Catalytic Hydrogenation Process of Silicon Tetrachloride

    Institute of Scientific and Technical Information of China (English)

    岳晓宁; 龙雨谦; 黄韬; 蒋炜; 陈建钧; 梁斌

    2013-01-01

    针对四氯化硅催化氢化过程采用第一性原理机理对其进行模拟研究,结果表明:没有催化剂时,SiCl4与H2反应能垒为464.45 kJ/mol,反应能量为74.94 kJ/mol,与热力学计算结果71.85 kJ/mol一致.负载在HZSM-5分子筛上的氯化钡可催化四氯化硅氢化反应,其最具催化活性表面为(111)面;H2在BaCl2(111)面上表现排斥性;SiCl4表现为吸附性,可在BaCl2(111)表面稳定吸附并生成·SiCl3自由基,过程吸附能为448.33 kJ/mol;在催化剂BaCl2存在条件下,SiCl4与H2反应为自由基反应,反应步骤能垒为400.23 kJ/mol;氢化过程能垒降为184.97kJ/mol;催化氢化反应过程所需能量为64.20 kJ/mol.催化氢化过程反应条件相对无催化剂过程更为温和.%The treatment of silicon tetrachloride is the key problem for the development of polysilicon industries.Catalytic hydrogenation process is a promising alternative technology for current industrial process.However,the reaction mechanism of this process is not clear yet.In this research,hydrogenation process of silicon tetrachloride with and without catalyst was studied to determine the reaction mechanism with the first principle calculation.The calculation demonstrates that the thermo-hydrogenation without catalyst is a molecular reaction.The reaction energy of thermo-hydrogenation reaction of SiCl4 is 74.94 kJ/mol and the energy barrier is 464.45 kJ/mol,which is agreement with the results of thermo dynamic calculation.Employing barium chlorideloaded on the HZSM-5 zeolite,as catalyst,the hydrogenation process transfers into radical reactions.The best active crystal plane of BaCl2 is surface (111).Hydrogen molecular is repulsed by surface (111),meanwhile SiCl4 molecular can be adsorbed steadily to generate silicon trichloridefree radical · SiCl3,and adsorbed chloride.Then,the free radical · SiCl3 reacts with H2 to produce trichlorosilane and free hydrogen atom.The latter combines with the adsorbed chloride atom to yield

  6. Insights into the Intramolecular Properties of η6-Arene-Ru-Based Anticancer Complexes Using Quantum Calculations

    Directory of Open Access Journals (Sweden)

    Adebayo A. Adeniyi

    2013-01-01

    Full Text Available The factors that determine the stability and the effects of noncovalent interaction on the η6-arene ruthenium anticancer complexes are determined using DFT method. The intramolecular and intra-atomic properties were computed for two models of these half-sandwich ruthenium anticancer complexes and their respective hydrated forms. The results showed that the stability of these complexes depends largely on the network of hydrogen bonds (HB, strong nature of charge transfer, polarizability, and electrostatic energies that exist within the complexes. The hydrogen bonds strength was found to be related to the reported anticancer activities and the activation of the complexes by hydration. The metal–ligand bonds were found to be closed shell systems that are characterised by high positive Laplacian values of electron density. Two of the complexes are found to be predominantly characterised by LMCT while the other two are predominately characterised by MLCT.

  7. Catalytic Activity of Nanosized CuO-ZnO Supported on Titanium Chips in Hydrogenation of Carbon Dioxide to Methyl Alcohol.

    Science.gov (United States)

    Ahn, Ho-Geun; Lee, Hwan-Gyu; Chung, Min-Chul; Park, Kwon-Pil; Kim, Ki-Joong; Kang, Byeong-Mo; Jeong, Woon-Jo; Jung, Sang-Chul; Lee, Do-Jin

    2016-02-01

    In this study, titanium chips (TC) generated from industrial facilities was utilized as TiO2 support for hydrogenation of carbon dioxide (CO2) to methyl alcohol (CH3OH) over Cu-based catalysts. Nano-sized CuO and ZnO catalysts were deposited on TiO2 support using a co-precipitation (CP) method (CuO-ZnO/TiO2), where the thermal treatment of TC and the particle size of TiC2 are optimized on CO2 conversion under different reaction temperature and contact time. Direct hydrogenation of CO2 to CH3OH over CuO-ZnO/TiO2 catalysts was achieved and the maximum selectivity (22%) and yield (18.2%) of CH3OH were obtained in the range of reaction temperature 210-240 degrees C under the 30 bar. The selectivity was readily increased by increasing the flow rate, which does not affect much to the CO2 conversion and CH3OH yield. PMID:27433722

  8. Low-Temperature Catalytic Performance of Ni-Cu/Al2O3 Catalysts for Gasoline Reforming to Produce Hydrogen Applied in Spark Ignition Engines

    Directory of Open Access Journals (Sweden)

    Le Anh Tuan

    2016-03-01

    Full Text Available The performance of Ni-Cu/Al2O3 catalysts for steam reforming (SR of gasoline to produce a hydrogen-rich gas mixture applied in a spark ignition (SI engine was investigated at relatively low temperature. The structural and morphological features and catalysis activity were observed by X-ray diffractometry (XRD, scanning electron microscopy (SEM, and temperature programmed reduction (TPR. The results showed that the addition of copper improved the dispersion of nickel and therefore facilitated the reduction of Ni at low temperature. The highest hydrogen selectivity of 70.6% is observed over the Ni-Cu/Al2O3 catalysts at a steam/carbon ratio of 0.9. With Cu promotion, a gasoline conversion of 42.6% can be achieved at 550 °C, while with both Mo and Ce promotion, the gasoline conversions were 31.7% and 28.3%, respectively, higher than with the conventional Ni catalyst. On the other hand, initial durability testing showed that the conversion of gasoline over Ni-Cu/Al2O3 catalysts slightly decreased after 30 h reaction time.

  9. Design, construction and implementation of a packed reactor system to study the production of hydrogen by the catalytic reaction of reforming of oxygenated hydrocarbons

    International Nuclear Information System (INIS)

    The Laboratorio de Quimica Inorganica of the Universidad de Costa Rica has evaluated the performance of several types of catalysts and supports in steam reforming reactions, using different conditions for synthesis of the same. The construction of a reaction system at laboratory scale is described to improve the conditions of the reforming process compared to previous projects. Catalysts synthesized and characterized are used but providing better disposal through a packed bed reactor. The system has had the necessary instrumentation for proper measurement of the temperature at the entrance and inside the reactor, proper feeding of reactants, flow measurement and sampling and measurement system. The conceptual design of the reactions system presented has taken into account the income of reactants through a peristaltic pump, preheating or vaporization of reagents, income and measurement of carrier gas sampling, take of sampling, flow measurement product, reactor packed and cooler product. The order of each stage is defined and positioning in the entire system. The design of a preheater and a tubular reactor is detailed, taking into account the dimensions and construction materials of each of the pieces. The design is presented in a series of diagrams and then the result of the construction is illustrated by photographs, all work done also has been described. The implementation of the system has described by the coupling of all parties and the respective tests. A basic experimental plan is presented to evaluate the performance of the reaction system, using glycerin as a reactant, demonstrating ability to react and take effective data. Four experiments are performed: vacuum reactor, packed reactor with two types of filling and reactor with an exposed surface cobalt oxide (II) reduced, the gases produced in the reaction are analyzed by gas chromatography. The results are discussed and analyzed, focusing on the overall selectivity of hydrogen relative to methane, and the

  10. Preparation of amorphous Ni-B/graphene composites for catalytic hydrogenation of pinene%非晶态镍硼/石墨烯复合材料的制备及其蒎烯催化加氢活性

    Institute of Scientific and Technical Information of China (English)

    张家华; 蒋丽红; 伍水生; 王红琴; 王亚明

    2016-01-01

    Graphite oxide was prepared from flake graphite by Hummers method and dispersed by ultrasonic treatment. The amorphous Ni-B/rGO composite catalysts were prepared by one-step chemical reduction with NaBH4 as reducing agent, and tested in the catalytic hydrogenation of pinene as the probing reaction. It shows that the as-prepared catalysts exhibit high catalytic activity and relatively high enantioselectivity of 96.5% for cis-pinane, which is better than the traditional Raney nickel and even noble metal catalysts. The catalyst possessed good stability, evidenced by that after 8-times testing cycles, both the conversion of pinene and the enantioselectivity tocis-pinane remained at a good level. The structure and properties of amorphous Ni-B/rGO composite catalysts were measured by XRD, XPS, TEM techniques, and the relationship between the catalytic performance and the structure was explored. The higher activity of the Ni-B/rGO amorphous catalyst could be attributed to the highly uniform dispersion of the Ni-B active species with unique electronic structure, and the interaction between Ni-B active species and the rGO in the composite catalysts.%以鳞片石墨为原料,采用Hummers法制得氧化石墨,经超声分散后制得稳定的氧化石墨烯(GO)分散液。以化学还原法一步制得非晶态Ni-B/rGO复合催化剂,并以蒎烯加氢为探针反应考察了催化剂的性能。结果表明,该催化剂对蒎烯加氢反应具有较高的催化活性,对生成顺式蒎烷具有较高对映选择性,达到96.5%以上,性能优于大多数传统的镍系催化剂甚至贵金属催化剂。该催化剂亦具有较好的稳定性,重复使用8次后,其转化率及对映选择性依然保持在较高水平。采用 XRD、XPS、TEM 等技术手段,研究了复合催化剂材料的结构与性质,初步探讨了非晶态Ni-B/rGO催化剂的构效关系。

  11. Final Technical Report for DOE Grant, number DE-FG02-05ER15701; Probing Surface Chemistry Under Catalytic Conditions: Olefin Hydrogenation,Cyclization and Functionalization.

    Energy Technology Data Exchange (ETDEWEB)

    Neurock, Matthew

    2011-05-26

    The specific goal of this work was to understanding the catalytic reactions pathways for the synthesis of vinyl acetate over Pd, Au and PdAu alloys. A combination of both experimental methods (X-ray and Auger spectroscopies, low-energy ion scattering (LEIS), low-energy electron diffraction (LEED) and theory (Density Functional Theory (DFT) calculations and Monte Carlo methods under various different reactions) were used to track the surface chemistry and the influence of alloying. The surface intermediates involved in the various reactions were characterized using reflection-absorption infrared spectroscopy and LEED to identify the nature of the surface species and temperature-programmed desorption (TPD) to follow the decomposition pathways and measure heats of adsorption. These results along with those from density functional theoretical calculations were used determine the kinetics for elementary steps. The results from this work showed that the reaction proceeds via the Samanos mechanism over Pd surfaces whereby the ethylene directly couples with acetate to form an acetoxyethyl intermediate that subsequently undergoes a beta-hydride elimination to form the vinyl acetate monomer. The presence of Au was found to modify the adsorption energies and surface coverages of important surface intermediates including acetate, ethylidyne and ethylene which ultimately influences the critical C-H activation and coupling steps. By controlling the surface alloy composition or structure one can begin to control the steps that control the rate and even the mechanism.

  12. Colorimetric detection of the flux of hydrogen peroxide released from living cells based on the high peroxidase-like catalytic performance of porous PtPd nanorods.

    Science.gov (United States)

    Ge, Shenguang; Liu, Weiyan; Liu, Haiyun; Liu, Fang; Yu, Jinghua; Yan, Mei; Huang, Jiadong

    2015-09-15

    One-dimensional PtPd porous nanorods (PtPd PNRs) were successfully synthesized through a bromide-induced galvanic replacement reaction between Pd nanowires and K2PtCl6. The PtPd PNRs were porous and alloy-structured with Pt/Pd atomic ratio up to 1:1 which were demonstrated by spectroscopic methods. We had also proved that the nanorods could function as peroxidase mimetic for the detection of H2O2, with the detection limit of 8.6 nM and the linear range from 20 nM to 50 mM. The result demonstrated that PtPd PNRs exhibited much higher affinity to H2O2 over other peroxidase mimetics due to synergistically integrating highly catalytic activity of two metals. On the basis of the peroxidase-like activity, the PtPd PNRs were used as a signal transducer to develop a novel and simple colorimetric method for the study of the flux of H2O2 released from living cell. By using 3,3,5,5-tetramethylbenzidine as substrate, the H2O2 concentration could be distinguished by naked-eye observation without any instrumentation or complicated design. The method developed a new platform for a reliable collection of information on cellular reactive oxygen species release. And the nanomaterial could be used as a power tool for a wide range of potential applications in biotechnology and medicine.

  13. Development and commercial application of FRIPP pre-hydrogenation technology for catalytic reforming%FRIPP催化重整预加氢技术开发及工业应用

    Institute of Scientific and Technical Information of China (English)

    宋永一; 刘继华; 曾榕辉; 关明华

    2012-01-01

    SINOPEC Fushun Research Institute of Petroleum and Petrochemicals has successfully developed the technology for catalytic reforming pre-hydrogenation suitable for processing feedstocks of straight-run naphtha or straight-run naphtha blended with coker naphtha and associated supporting FH-40 series high-performance light gas oil hydrofining catalysts. Commercial operation results show that FH-40 series catalysts have a wide adaptability to different feedstocks, higher hydrodesulphurization and hydrodenitrogenation activities and good stability. They are proved to be the ideal catalysts for processing light gas oil. In addition, FRIPP has also developed the supporting " bird' s nest" guard catalyst, FDAS-1 de-arsenic catalyst and FHRS-l/FHRS-2 silicon trap catalyst, and proposed a number of preventive measures and solutions for abnormal pressure drop rise in the reaction system of catalytic reforming pre-hydrogenation unit. Good application results have been achieved and long-term reliable unit operation can be guaranteed.%中国石油化工股份有限公司抚顺石油化工研究院(FRIPP)成功开发了适合加工直馏石脑油、直馏石脑油掺炼焦化汽油等原料的催化重整预加氢技术及与其配套使用的FH-40系列轻质馏分油加氢精制催化剂.工业应用结果表明,FH-40系列催化剂对原料适应性强,加氢脱硫和加氢脱氮活性高,均可达到低于0.5μg/g,稳定性好,是加工轻质馏分油的理想催化剂.除此之外,FRIPP还开发了配套使用的“鸟巢”保护剂、脱砷率大于99%的FDAS-1脱砷剂和容硅能力提高4倍的FHRS-1/FHRS-2捕硅剂,并就催化重整预加氢单元反应系统压力降异常升高问题提出了一系列预防措施和解决方案,取得了较好的应用效果,可以保证工业装置长周期稳定运行.

  14. Synthesis and Crystal Structure of a Novel Calix [8] arene Ester Derivative

    Institute of Scientific and Technical Information of China (English)

    DaQiangYUAN; RuJiWANG; 等

    2002-01-01

    The synthesis and crystal structure of a novel calix[8] arene ester are reported herein. The calix [8] arene ester derivative has been characterized by IR,NMR and X-ray crystal analysis. The X-ray structure analysis revealed that the 8 phenolic hydroxy groups of the calix [8] arene have been substituted by 4 diethyl dibromomalonate molecules with each two adjacent hydroxy oxygen atoms attached to a bridge diethyl malonate.

  15. Molecular recognition study of Carbamazepine, antiseizure drug, by p-t-butyl calix(8)arene

    Science.gov (United States)

    Meenakshi, C.; Jayabal, P.; Ramakrishnan, V.

    2014-03-01

    The formation of inclusion complex of Carbamazepine, a antiseizure drug molecule, with the supra molecule, p-t-butyl calix(8)arene was studied. p-t-Butyl calix(8)arene was the host molecule and Carbamazepine was the guest molecule. Optical absorption spectral studies were carried out to study the molecular recognition properties of p-t-butyl calix(8)arene with Carbamazepine. The stochiometry of the host-guest complex and the binding constant were determined.

  16. Nanoscaled carborane ruthenium(II)-arene complex inducing lung cancer cells apoptosis

    OpenAIRE

    Yan Hong; Ye Hongde; Wu Chunhui; Zhang Gen; Wang Xuemei

    2011-01-01

    Abstract Background The new ruthenium(II)-arene complex, which bearing a carborane unit, ruthenium and ferrocenyl functional groups, has a novel versatile synthetic chemistry and unique properties of the respective material at the nanoscale level. The ruthenium(II)-arene complex shows significant cytotoxicity to cancer cells and tumor-inhibiting properties. However, ruthenium(II)-arene complex of mechanism of anticancer activity are scarcely explored. Therefore, it is necessary to explore rut...

  17. Fabrication of a form- and size-variable microcellular-polymer-stabilized metal nanocomposite using supercritical foaming and impregnation for catalytic hydrogenation

    Science.gov (United States)

    Liao, Weisheng; Wu, Ben-Zen; Nian, Hungchi; Chen, Hsiang-Yu; Yu, Jya-Jyun; Chiu, KongHwa

    2012-05-01

    This article presents the fabrication of size-controllable and shape-flexible microcellular high-density polyethylene-stabilized palladium nanoparticles (Pd/m-HDPE) using supercritical foaming, followed by supercritical impregnation. These nanomaterials are investigated for use as heterogeneous hydrogenation catalysts of biphenyls in supercritical carbon dioxide with no significant surface and inner mass transfer resistance. The morphology of the Pd/m-HDPE is examined using scanning electron microscopy images of the pores inside Pd/m-HDPE catalysts and transmission electron microscopy images of the Pd particles confined in an HDPE structure. This nanocomposite simplifies industrial design and operation. These Pd/m-HDPE catalysts can be recycled easily and reused without complex recovery and cleaning procedures.

  18. Effects of ethanol on the in situ synthesized Cu/SiC》2 catalyst: Texture, structure, and the catalytic performance in hydrogenation dimethyl oxalate to ethylene glycol

    Institute of Scientific and Technical Information of China (English)

    Shu Rong Wang; Ling Jun Zhu; Ying Ying Zhu; Xiao Lan Ge; Xin Bao Li

    2011-01-01

    The Cu/SiO2 catalysts were in situ synthesized by the hydrolysis of tetraethyl orthosilicate (TEOS) in one phase solution using ethanol as co-solvent or TEOS/H2O two phases solution, followed by the precipitation of copper on SiO2 by ammonia evaporation. In the hydrogenation of dimethyl oxalate, the catalyst prepared by one phase hydrolysis exhibited higher activity and ethylene glycol (EG) selectivity at lower temperature than that of two phases due to its larger BET surface area and multimodal pore distribution. At 488-503 K, the catalyst prepared in one phase solution with water/ethanol (W/E) volume ratio of 3:1 exhibited 90-95% EG selectivity, while catalyst prepared by two phase hydrolysis reached 90% EG selectivity only at 498-503 K.

  19. A Au/Cu2O-TiO2 system for photo-catalytic hydrogen production. A pn-junction effect or a simple case of in situ reduction?

    KAUST Repository

    Sinatra, Lutfan

    2015-02-01

    Photo-catalytic H2 production from water has been studied over Au-Cu2O nanoparticle deposited on TiO2 (anatase) in order to probe into both the plasmon resonance effect (Au nanoparticles) and the pn-junction at the Cu2O-TiO2 interface. The Au-Cu2O composite is in the form of ∼10 nm Au nanoparticles grown on ∼475 nm Cu2O octahedral nanocrystals with (111) facets by partial galvanic replacement. X-ray Photoelectron Spectroscopy (XPS) Cu2p and Auger L3M4,5M4,5 lines indicate that the surface of Cu2O is mainly composed of Cu+. The rate for H2 production (from 95 water/5 ethylene glycol; vol.%) over 2 wt.% (Au/Cu2O)-TiO2 is found to be ∼10 times faster than that on 2 wt.% Au-TiO2 alone. Raman spectroscopy before and after reaction showed the disappearance of Cu+ lines (2Eu) at 220 cm-1. These observations coupled with the induction time observed for the reaction rate suggest that in situ reduction from Cu+ to Cu0 occurs upon photo-excitation. The reduction requires the presence of TiO2 (electron transfer). The prolonged activity of the reaction (with no signs of deactivation) despite the reduction to Cu0 indicates that the latter takes part in the reaction by providing additional sites for the reaction, most likely as recombination centers for hydrogen atoms to form molecular hydrogen. This phenomenon provides an additional route for enhancing the efficiency and lifetime of Cu2O-TiO2 photocatalytic systems, beyond the usually ascribed pn-junction effect.

  20. Self-assembled monolayers of calix[4]arene derivatives on gold

    NARCIS (Netherlands)

    Huisman, Bart-Hendrik; Thoden van Velzen, Eggo U.; Veggel, van Frank C.J.M.; Engbersen, Johan F.J.; Reinhoudt, David N.

    1995-01-01

    Dialkylsulfide substituted calix[4]arenes were synthesized and adsorbed onto gold substrates. Infrared spectroscopy, thickness, and wettability studies revealed that well-ordered monolayers were formed.

  1. Catalytic Fast Pyrolysis: A Review

    Directory of Open Access Journals (Sweden)

    Theodore Dickerson

    2013-01-01

    Full Text Available Catalytic pyrolysis is a promising thermochemical conversion route for lignocellulosic biomass that produces chemicals and fuels compatible with current, petrochemical infrastructure. Catalytic modifications to pyrolysis bio-oils are geared towards the elimination and substitution of oxygen and oxygen-containing functionalities in addition to increasing the hydrogen to carbon ratio of the final products. Recent progress has focused on both hydrodeoxygenation and hydrogenation of bio-oil using a variety of metal catalysts and the production of aromatics from bio-oil using cracking zeolites. Research is currently focused on developing multi-functional catalysts used in situ that benefit from the advantages of both hydrodeoxygenation and zeolite cracking. Development of robust, highly selective catalysts will help achieve the goal of producing drop-in fuels and petrochemical commodities from wood and other lignocellulosic biomass streams. The current paper will examine these developments by means of a review of existing literature.

  2. Direct coal liquefaction using iron-titanium hydride as a hydrogen distribution and catalytic material. Yearly report No. 1, September 1, 1984-August 31, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.E. Jr.

    1985-09-29

    During this year the experimental apparatus was completed after substantial delays by the manufacturer and eight direct coal liquefaction experiments were accomplished. These experiments have produced conversion and selectivity data on samples of Utah coal slurried in tetralin and catalyzed using iron-titanium hydride. Hydrogen loading of the alloy, catalyst particle size, catalyst concentration, coal particle size, operating temperatures for alloy addition and liquefaction without the catalysts present, have all been studied during these experiments. Conversions as high as 61% DAF in 30 min have been recorded at 500/sup 0/F and 500 psia. Product selectivities favor the oil fraction during the initial phase of the reaction, but as the reaction proceeds the heavier fractions are observed to increase at the expense of the oil fraction. We are currently working on a kinetic model in an effort to predict these results. Additionally, proton NMR, fractional distillation, and chromatographic analyses are currently being performed on the recovered product. We have completed the study of Utah coal and are moving on to samples of Kentucky and Alabama coals after a minor modification of the experimental apparatus is completed. Equipment manufacture, delivery, and installation delays, totaling over 6 months, greatly reduced the time available for research, making a 6 month no cost extension necessary. The extended time will permit completion of the proposed research tasks. 10 figs., 8 tabs.

  3. Calix[4]arene-Based New Neutral Sensors for Fluoride

    Institute of Scientific and Technical Information of China (English)

    LIU,Shun-Ying; MENG,Ling-Zhi; LIU,Xin; HE,Yong-Bing

    2004-01-01

    @@ The development of new receptors which can recognize neutral and charged species has attracted considerable interest in the recent past.[1] Anions such as fluoride, chloride, phosphate and carboxylate play crucial roles in a range of biological phenomena and are implicated in many disease states.[2] Investigations on molecular and/or ionic recognition by calixarenes and their derivatives as synthetic receptors have attracted increasing attention in supramolecular chemistry because of their modifiable structure.[3] However, calix[4]arenes-based neutral receptors containing thiourea and amide groups are still rare. In this paper, we report fluoride selective optical chemosensors 4 and 5, based on calix[4]arene thiourea and amide derivatives, which only show a remarkable absorption change in the presence of fluoride ions, while have no any change upon addition of other anions (Cl- Br-, I-, AcO- and H2PO4-). The association constants are 947 and 2883 mol·L-1, respectively. The synthesis of calix[4]arene derivatives 4 and 5 is outlined in the following Scheme 1.

  4. Research progress of adsorption/activation and catalytic hydrogenation of CO2%CO2吸附活化及催化加氢制低碳烯烃的研究进展

    Institute of Scientific and Technical Information of China (English)

    李静; 邓廷云; 杨林; 曹建新

    2013-01-01

    随着工业化的发展,CO2的排放与日俱增,给环境带来了不可忽视的严重后果.同时,石油资源日渐匮乏,使得以石油为原料制低碳烯烃的工业面临严峻的挑战.利用CO2制低碳烯烃是缓解环境与资源双重压力的有效途径之一.本文综述了CO2催化加氢制低碳烯烃的热力学分析,CO2在过渡金属单晶和氧化物表面的吸附活化机理以及CO2催化加氢制低碳烯烃催化剂的研究进展.分析比较了包括单金属催化剂、双金属催化剂和复合催化剂在内的CO2制低碳烯烃催化剂的优缺点.提出了催化反应过程中存在催化剂难以兼顾选择性和转化率的技术难题,并指出了今后的主要研究方向是加强催化反应机理和催化剂制备、改性技术的研究.%Growing emission of CO2 has brought serious consequences to the environment. At the same time, fossil energy is depleting, which challenges oil-based low carbon olefins industry. Using CO2 to produce carbon olefins is one of effective ways to alleviate the dual pressure of environment and resource. Thermodynamic analysis of CO2 hydrogenation to light olefins, adsorption/activation mechanism of CO2 on single crystal and oxides of transition metal and research progress of catalyst for hydrogenation of carbon dioxide to light alkenes are reviewed. The advantages and disadvantages of catalysts for CO2 hydrogenation, including single metal catalysts, bimetallic catalysts and the composite catalyst are analyzed. The problem of catalyst is how to balance selectivity and conversion rate. The future research directions of catalyst are mechanism of catalytic reaction, and catalyst preparation and modification.

  5. CO2催化氢化催化剂及其反应机理综述%Review on Catalysts and Its Mechanisms for Catalytic Hydrogenation of Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    张自丽; 赵毅

    2013-01-01

    研究二氧化碳资源化利用技术将对电厂CO2减排工作具有重要意义.综述了基于催化氢化思想的CO2转化催化剂及其反应机理,其主要涉及铜、镍、锌等过渡金属和钌、铱、钯等贵金属.现有催化氢化CO2转化技术研究主要集中于研究与开发高活性催化剂,分析与推测反应机理,提高产物产率及选择性,优化反应体系结构与条件等方面.高活性催化剂如双金属合金,过渡金属催化体系将是未来CO2催化氢化领域主要的研究方向之一.各催化剂催化氢化CO2反应机理较为复杂,值得深入研究.随着经济、环保、节能等新型CO2催化氢化技术的开发及研究的深入,电厂CO2减排及资源化工业应用也将成为可能.%Researches about carbon dioxide utilization technologies will have great significances for the emission reduction of carbon dioxide from power plants.Based on the theory about catalytic hydrogenation,the mechanisms of the catalysts such as transition metals,namely copper,nickel and zinc,and noble metals including ruthenium,iridium and palladium for carbon dioxide conversion were reviewed.Current researches about the catalytic hydrogenation of CO2 mainly focus on the studying and development of highly active catalysts,the analysis and conjecture of reaction mechanism,the improvement of productivity and selectivity,and the optimization of reaction system structure and condition,etc..The highly active catalysts,for example thermometal alloy,and the transition metal catalyst system will be one of the primary issues in the field of CO2 hydrogenation in the future.The reaction mechanism which is complicated with diverse catalysts in carbon dioxide conversion,is worth being researched deeply.As the development of new technics with the characteristics of economy,green and energy saving and the deep researches,it may be possible for the emission reduction and resource industry utilization of CO2 from power plants.

  6. Co助剂对Ni-B非晶态催化剂微观结构和加氢性能的影响%Influence of Co on Microstructure and Catalytic Performance of Ni-B Catalyst for Dinitrotoluene Hydrogenation

    Institute of Scientific and Technical Information of China (English)

    闫少伟; 范辉; 梁川; 于智慧; 李忠

    2012-01-01

    通过化学还原法制备了一系列Ni-B非晶态合金催化剂,研究了n(KBH4)/n(Ni)和Co含量对Ni-B非晶态合金催化剂微观结构及其催化二硝基甲苯(DNT)合成甲苯二胺(TDA)性能的影响.通过XRD和H2-TPD技术对催化剂微观结构表征表明,随着n(KBH4) /n( Ni)的增大,NiB2含量增多,催化剂的加氢性能先增大后减小;当n(KBH4)/n(Ni)=4时,Ni B非晶态合金的催化加氢性能最优.Co助剂的引入增大了Ni-B非晶态合金的无序程度,降低了Ni活性中心对H2的吸附强度,使得H2物种更容易在催化剂表面流动并参加反应,进一步增大了Ni-B催化DNT 加氢合成TDA的活性和选择性.当Co的摩尔分数为6%时,Ni-Co-B非晶态合金催化剂的性能最优,DNT转化率为96.8%,TDA的选择性达100%.%A series of amorphous Ni-La-B catalyst was prepared by KBH4 reduction for liquid phase hydrogenation of dinitrotoluene(DNT) to diaminotoluene(TDA). The effect of n(KBH4)/ n(Ni) and Co content on microstructure and catalytic performance of Ni-B amorphous alloy catalyst was investigated. The characterizations of XRD and H2-TPD show that the content of NiB2 increased and the hydrogenation performance of Ni-B first increased and then decreased with increasing n(KBH4)/w(Ni). When n(KBH4 )/n(Ni) = 4, the performance of Ni-B was the best. The addition of Co enhanced the extent of long-range disorder, weakened the strength of Ni-H bond and further enhanced the performance of Ni-B. When Co addition was 0. 6%(molar concentration) , Ni-Co-B catalyst exhibited the best catalytic performance for dinitrotoluene hydrogenation, the conversion of the DNT and the selectivity of TDA were 96. 8% and 100, respectively.

  7. Reactivity of organic compounds in catalytic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Minachev, Kh.M.; Bragin, O.V.

    1978-01-01

    A comprehensive review of 1976 Soviet research on catalysis delivered to the 1977 annual session of the USSR Academy of Science Council on Catalysis (Baku 6/16-20/77) covers hydrocarbon reactions, including hydrogenation and hydrogenolysis, dehydrogenation, olefin dimerization and disproportionation, and cyclization and dehydrocyclization (e.g., piperylene cyclization and ethylene cyclotrimerization); catalytic and physicochemical properties of zeolites, including cracking, dehydrogenation, and hydroisomerization catalytic syntheses and conversion of heterocyclic and functional hydrocarbon derivatives, including partial and total oxidation (e.g., of o-xylene to phthalic anhydride); syntheses of thiophenes from alkanes and hydrogen sulfide over certain dehydrogenation catalysts; catalytic syntheses involving carbon oxides ( e.g., the development of a new heterogeneous catalyst for hydroformylation of olefins), and of Co-MgO zeolitic catalysts for synthesis of aliphatic hydrocarbons from carbon dioxide and hydrogen, and fabrication of high-viscosity lubricating oils over bifunctional aluminosilicate catalysts.

  8. CATALYTIC PROPERTIES OF POLYMER-STABILIZED COLLOIDAL METAL NANOPARTICLES SYNTHESIZED BY MICROWAVE IRRADIATION

    Institute of Scientific and Technical Information of China (English)

    Wei-xia Tu; Bao-lin He; Han-fan Liu; Xue-lan Luo; Xun Liang

    2005-01-01

    Catalytic properties of polymer-stabilized colloidal metal nanoparticles synthesized by microwave irradiation were studied in the selective hydrogenation of unsaturated aldehydes, o-chloronitrobenzene and the hydrogenation of alkenes. The results show that nanosized metal particles synthesized by microwave irradiation have similar catalytic performance in selective hydrogenation of unsaturated aldehydes, better selectivity to o-chloroaniline in hydrogenation of o-chloronitrobenzene and higher catalytic activities in hydrogenation of alkenes, compared with metal clusters prepared by conventional heating. The same apparent activation energy (Ea = 29 kJ mol-1) for hydrogenation of 1-heptene catalyzed with platinum nanoparticles prepared by both heating modes implied that the reaction followed the same mechanism.

  9. Binding properties of oxacalix[4]arenes derivatives toward metal cations; Interactions entre cations metalliques et derives des oxacalix[4]arenes

    Energy Technology Data Exchange (ETDEWEB)

    Mellah, B

    2006-11-15

    The objective of this work was to establish the binding properties of oxacalix[4]arene derivatives with different numbers of the oxa bridges, functional groups (ketones, pyridine, ester, amide and methoxy) and conformations. Their interactions with alkali and alkaline-earth, heavy and transition metal cations have been evaluated according to different approaches: (i) extraction of corresponding picrates from an aqueous phase into dichloromethane; (ii) determination of the thermodynamic parameters of complexation in methanol and/or acetonitrile by UV-spectrophotometry and micro-calorimetry; (iii) determination of the stoichiometry of the complexes by ESI-MS; (iv) {sup 1}H-NMR titrations allowing to localize the metal ions in the ligand cavity. In a first part dealing on homo-oxacalix[4]arenes, selectivities for Na{sup +}, K{sup +}, Ca{sup 2+}, Pb{sup 2+} and Mn{sup 2+} of ketones derivatives was shown. The presence of oxa bridge in these derivatives increases their efficiency while decreasing their selectivity with respect to related calixarenes. The pyridine derivative prefers transition and heavy metal cations, in agreement with the presence of the soft nitrogen atoms. In the second part, di-oxacalix[4]arene ester and secondary amide derivatives were shown to be less effective than tertiary amide counterparts but to present high selectivities for Li{sup +}, Ba{sup 2+}, Zn{sup 2+} and Hg{sup 2+}. A third part devoted to the octa-homo-tetra-oxacalix[4]arene tetra-methoxy shows that the 1:1 metal complexes formed are generally more stable than those of calixarenes, suggesting the participation of the oxygen atoms of the bridge in the complexation. Selectivity for Cs{sup +}, Ba{sup 2+}, Cu{sup 2+} and Hg{sup 2+} were noted. (author)

  10. Inventarisasi dan Pemanfaatan Aren (Arenga pinnata Merr) oleh Masyarakat Sekitar Hutan (Studi Kasus Desa Sihombu, Kecamatan Tarabintang,

    OpenAIRE

    Damanik, Rionaldo

    2014-01-01

    Aren (A. pinnata) are included in the arecaceae (areca nut) and are included in the inclosed seed plants (angiospermae). Aren is a forest plant that has many benefits but is not yet used by forest communities widely. The purpose of this study is to elevate the potential, distribution and utilization of aren. This research was using compartment sampling with compartment strip technique. The result showed that optimal growth of aren in elevate 550-560 mdpl and the utilization ...

  11. Calix[4]arene Based Single-Molecule Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Karotsis, Georgios; Teat, Simon J.; Wernsdorfer, Wolfgang; Piligkos, Stergios; Dalgarno, Scott J.; Brechin, Euan K.

    2009-06-04

    Single-molecule magnets (SMMs) have been the subject of much interest in recent years because their molecular nature and inherent physical properties allow the crossover between classical and quantum physics to be observed. The macroscopic observation of quantum phenomena - tunneling between different spin states, quantum interference between tunnel paths - not only allows scientists to study quantum mechanical laws in great detail, but also provides model systems with which to investigate the possible implementation of spin-based solid state qubits and molecular spintronics. The isolation of small, simple SMMs is therefore an exciting prospect. To date almost all SMMs have been made via the self-assembly of 3d metal ions in the presence of bridging/chelating organic ligands. However, very recently an exciting new class of SMMs, based on 3d metal clusters (or single lanthanide ions) housed within polyoxometalates, has appeared. These types of molecule, in which the SMM is completely encapsulated within (or shrouded by) a 'protective' organic or inorganic sheath have much potential for design and manipulation: for example, for the removal of unwanted dipolar interactions, the introduction of redox activity, or to simply aid functionalization for surface grafting. Calix[4]arenes are cyclic (typically bowl-shaped) polyphenols that have been used extensively in the formation of versatile self-assembled supramolecular structures. Although many have been reported, p-{sup t}But-calix[4]arene and calix[4]arene (TBC4 and C4 respectively, Figure 1A) are frequently encountered due to (a) synthetic accessibility, and (b) vast potential for alteration at either the upper or lower rim of the macrocyclic framework. Within the field of supramolecular chemistry, TBC4 is well known for interesting polymorphic behavior and phase transformations within anti-parallel bi-layer arrays, while C4 often forms self-included trimers. The polyphenolic nature of calix[n]arenes (where

  12. Bifunctional catalytic electrode

    Science.gov (United States)

    Cisar, Alan (Inventor); Murphy, Oliver J. (Inventor); Clarke, Eric (Inventor)

    2005-01-01

    The present invention relates to an oxygen electrode for a unitized regenerative hydrogen-oxygen fuel cell and the unitized regenerative fuel cell having the oxygen electrode. The oxygen electrode contains components electrocatalytically active for the evolution of oxygen from water and the reduction of oxygen to water, and has a structure that supports the flow of both water and gases between the catalytically active surface and a flow field or electrode chamber for bulk flow of the fluids. The electrode has an electrocatalyst layer and a diffusion backing layer interspersed with hydrophilic and hydrophobic regions. The diffusion backing layer consists of a metal core having gas diffusion structures bonded to the metal core.

  13. Influence of the π-coordinated arene on the anticancer activity of ruthenium(II) carbohydrate organometallic complexes

    NARCIS (Netherlands)

    Hanif, Muhammad; Meier, Samuel M; Nazarov, Alexey A; Risse, Julie; Legin, Anton; Casini, Angela; Jakupec, Michael A; Keppler, Bernhard K; Hartinger, Christian G

    2013-01-01

    The synthesis and in vitro cytotoxicity of a series of Ru(II)(arene) complexes with carbohydrate-derived phosphite ligands and various arene co-ligands is described. The arene ligand has a strong influence on the in vitro anticancer activity of this series of compounds, which correlates fairly well

  14. Studies on the Synthesis and Property of A New Podand-armed Calix[4]arene Derivative

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new ligand 25, 26, 27, 28-tetrakis[2-(o-methoxyphenoxy)ethoxy]calix[4]arene 3 was synthesized by direct base-strength-driven O-alkylation of calix[4]arene 1.3 has been used as ionophore for cesium selective PVC membrane electrode.The extraction for cesium and sodium with 3 have been also studied.

  15. Versatile coordination of cyclopentadienyl-arene ligands and its role in titanium-catalyzed ethylene trimerization

    NARCIS (Netherlands)

    Otten, Edwin; Batinas, Aurora A.; Meetsma, Auke; Hessen, Bart

    2009-01-01

    Cationic titanium(IV) complexes with ansa-(eta(5)-cyclopentadienyl,eta(6)-arene) ligands were synthesized and characterized by X-ray crystallography. The strength of the metal-arene interaction in these systems was studied by variable-temperature NMR spectroscopy. Complexes with a C, bridge between

  16. Arylative Desulfonation of Diarylmethyl Phenyl Sulfone with Arenes Catalyzed by Scandium Triflate.

    Science.gov (United States)

    Nambo, Masakazu; Ariki, Zachary T; Canseco-Gonzalez, Daniel; Beattie, D Dawson; Crudden, Cathleen M

    2016-05-20

    A scandium-triflate-catalyzed arylative desulfonation of diarylmethyl phenyl sulfones with arenes and heteroarenes was established. A variety of both sulfone and arene substrates were reacted to afford symmetric and nonsymmetric triarylmethanes in good yields. Further transformations of the resulting triarylmethanes and application to the concise synthesis of a bactericidal agent analogue were also demonstrated. PMID:27124389

  17. Synthesis of deep-cavity fluorous calix[4]arenes as molecular recognition scaffolds

    Directory of Open Access Journals (Sweden)

    2008-10-01

    Full Text Available Several lower-rim perfluoroalkylated (fluorous calix[4]arenes have been synthesized by O-alkylation of the parent calix[4]arene. The compounds are formed in the cone conformation. They are soluble in several fluorous solvents and show promise for use in sensing, selective extractions and other applications.

  18. Buchner and Beyond: Arene Cyclopropanation as Applied to Natural Product Total Synthesis

    OpenAIRE

    Reisman, Sarah E.; Nani, Roger R.; Levin, Sergiy

    2011-01-01

    Buchner and Curtius first reported the cyclopropanation of arenes in 1885. Since the initial discovery, the Buchner reaction has been the subject of significant research by both physical and synthetic organic chemists. Described herein is a brief overview of the Buchner reaction and related arene cyclopropanation processes, with an emphasis on their application to natural product total synthesis.

  19. Cellular delivery of pyrenyl-arene ruthenium complexes by a water-soluble arene ruthenium metalla-cage.

    Science.gov (United States)

    Furrer, Mona Anca; Schmitt, Frédéric; Wiederkehr, Michaël; Juillerat-Jeanneret, Lucienne; Therrien, Bruno

    2012-06-28

    Three pyrenyl-arene ruthenium complexes (M(1)-M(3)) of the general formula [Ru(η(6)-arene-pyrenyl)Cl(2)(pta)] (pta = 1,3,5-triaza-7-phosphaadamantane) have been synthesised and characterised. Prior to the coordination to ruthenium, pyrene was connected to the arene ligand via an alkane chain containing different functional groups: ester (L(1)), ether (L(2)) and amide (L(3)), respectively. Furthermore, the pyrenyl moieties of the M(n) complexes were encapsulated within the hydrophobic cavity of the water soluble metalla-cage, [Ru(6)(η(6)-p-cymene)(6)(tpt)(2)(donq)(3)](6+) (tpt = 2,4,6-tri-(pyridin-4-yl)-1,3,5-triazine; donq = 5,8-dioxydo-1,4-naphthoquinonato), while the arene ruthenium end was pointing out of the cage, thus giving rise to the corresponding host-guest systems [M(n)⊂Ru(6)(η(6)-p-cymene)(6)(tpt)(2)(donq)(3)](6+) ([M(n)⊂cage](6+)). The antitumor activity of the pyrenyl-arene ruthenium complexes (M(n)) and the corresponding host-guest systems [M(n)⊂cage][CF(3)SO(3)](6) were evaluated in vitro in different types of human cancer cell lines (A549, A2780, A2780cisR, Me300 and HeLa). Complex M(2), which contains an ether group within the alkane chain, demonstrated at least a 10 times higher cytotoxicity than the reference compound [Ru(η(6)-p-cymene)Cl(2)(pta)] (RAPTA-C). All host-guest systems [M(n)⊂cage](6+) showed good anticancer activity with IC(50) values ranging from 2 to 8 μM after 72 h exposure. The fluorescence of the pyrenyl moiety allowed the monitoring of the cellular uptake and revealed an increase of uptake by a factor two of the M(2) complex when encapsulated in the metalla-cage [Ru(6)(η(6)-p-cymene)(6)(tpt)(2)(donq)(3)](6+). PMID:22506276

  20. Amino acids separation with the tetracarboxylic derived of the para-ter-butylcalix[4]arene by means of solid-liquid extraction assisted with lanthanides

    International Nuclear Information System (INIS)

    The tetracarboxylic derived of the para-ter-butylcalix[4]arene (B4ACEbL4) does not exist commercially for what was synthesized and characterized at laboratory level. The separation of the L-tyrosine amino acid was studied by means of a solid-liquid extraction system with the B4ACEbL4 as solid phase, in function of ph (2.5-7.5) and contact time (5 and 15 hours) to temperature of 15-17 grades C. Resulted that the ph and the contact time were decisive in the extraction percentage of water tyrosine. The lowest percentage was 49% to ph 4 and the highest percentage was 61% to ph 7.5 with 15 hours of contact. In a contact time of 5 hours the extraction was inferior to 32% (ph 4) and of 47% to ph 6.5. The europium effect (Eu (III)) was studied to ph acid in the tyrosine separation and was found that the tyrosine extraction is not increased neither decomposes in europium presence, this is simultaneously extracted by the calixarene but it does not enter in competition for the calixarene with the amino acid. The separate solid phases: calixarene-tyrosine was analyzed by Far infrared radiation (Fir), Mid-Infrared (Mir) spectroscopy and luminescence to check the tyrosine presence in the separate solids as well as the nature of the connection calixarene-tyrosine. In this way was possible to check the tyrosine presence and to propose the formed molecular species tyrosine-calixarene, those which interact mainly by means of hydrogen connections and Van der Waals forces. The liquid phases before and after the extraction were analyzed by UV-Vis spectrophotometry and luminescence. The Neutron activation analysis was used to determine the europium content in the solid and liquid phases of extractions in europium presence. The tyrosine degradation also shows dependence with the ph, obtaining 88% degradation to the 24 hours to ph 7.5, while to ph 3 is degraded the 54% of tyrosine present in the sample. The europium presence does not affect the tyrosine extraction but if its photo

  1. Synthesis and Structure of Novel Double Flexible Spacer BridgedBiscalix [4] arenes

    Institute of Scientific and Technical Information of China (English)

    ZENG, Xian-Shun; WENG, Lin-Hong; CHEN,Lang-Xing; JU, Hong-Fang; LENG, Xue-Bing; HE, Xi-Wen

    2001-01-01

    25,25′ ,27,27′-Bis ( 1,3-dioxypropane ) -bis (5,11,17,23-tetratert-butylcalix[4]arene-26,28-diol) (4) and 25,25′,27,27′-bis( 1, 4-dioxybutane)-bis (5, 11, 17, 23-tetra-tert-butylcalix[4]arene-26,28-diol) (5) were synthesized by the reaction of p-tert-butylcalix[4]arene (1) with preorganized 25,27-bis(3-bromoproxyl)calix[4]arene-26,27-diol (2) and 25,27-bis(3-bromobutoxyl)calix[4]arene-26,27-diol (3) in the presence of K2CO3 and KI. Compounds 4 and 5 were characterized with X-ray analysis and the selectivity of 4 and 5 to ward K + over other alkali metal ions, alkaline metal ions as well as NH4 + were investigated with an ion-selective electrode.

  2. Rational Design of Cesium-Selective Ionophores and Chemosensors: Dihydrocalix[4]arene Crown-6 Ethers

    Energy Technology Data Exchange (ETDEWEB)

    Sachleben, Richard A.; Bryan, Jeffrey C.; Brown, Gilbert M.; Engle, Nancy L.; Haverlock, Tamara J.; Hay, Benjamin P.; Urvoas, Agathe; Moyer, Bruce A.

    2003-12-15

    Molecular mechanics calculations performed on calix[4]arene crown-6 ethers predict that the 1,3-dihydro derivatives will exhibit greater complementarity for potassium and cesium ions than the parent 1,3-dialkoxy calix crowns. The X-ray crystal structures of 1,3-alt bis-octyloxycalix[4]arene benzocrown-6 ether, dihydrocalix[4]arene benzocrown-6 ether, and the cesium nitrate complex of dihydrocalix[4]arene benzocrown-6 ether were determined. The cesium complex structure corresponds closely to the structure predicted by molecular mechanics. The dihydrocalix[4]arene crown-6 ethers exhibit enhanced cesium selectivity in the extraction of alkali metal salts and provide a platform for a highly sensitive and selective cesium chemosensor.

  3. Research Progress in Production of Fuel Ethanol via Catalytic Hydrogenation of Methyl Acetate%醋酸甲酯催化加氢制备燃料乙醇的研究进展

    Institute of Scientific and Technical Information of China (English)

    管鑫; 曹祖宾; 韩冬云; 杨天宇; 宫建远

    2015-01-01

    As an essential factor in worldwide development, resources and energy are faced with a situation that they are strained and on the verge of exhaustion. In particular, petroleum supply, which supports the global financial development, is up against severe challenges. As a kind of new, recoverable substitution, fuel ethanol can be utilized as liquid fuel directly, or it can be used by mixing with gasoline so that the dependence on unrecoverable petroleum can be reduced. In the thesis, research progress in catalytic hydrogenation of methyl acetate to ethanol was summarized, moreover relevant processes and the selection of catalysts were discussed and analyzed.%作为世界各国发展中的必须因素,宝贵的能源面临着一度紧张和濒临枯竭的局面,特别是用以支撑全球经济发展的石油资源的供给正面临严峻挑战。燃料乙醇作为一种新型可再生燃料替代品,可直接用作液体燃料或者同燃料汽油混合使用,以减少对不可再生的石油资源的依赖。针对醋酸甲酯催化加氢的研究进展进行了综述,并且针对乙醇生产工艺及催化剂的选择问题作了讨论和分析。

  4. 二氧化碳和甲醇氢等离子体催化反应合成碳酸二甲酯%Hydrogen plasma catalytic synthesis of dimethyl carbonate from carbon dioxide and methanol

    Institute of Scientific and Technical Information of China (English)

    崔艳宏; 王超; 王安杰; 王伟

    2016-01-01

    The Al2O3 supported Cu catalysts were prepared by incipient wet impregnation method and used for studying the catalytic reaction behavior of CO2 and methanol in the quartz tube reactor under low temperature hydrogen plasma. Results show that the Cu crystal surface dispersed evenly on the surface of Cu/Al2O3 could adsorb and dissociate the CO2, and the electrons were transfered to CO2 molecules and generated the activated state of CO2- species. The reaction products contained dimethyl ether, acetaldehyde, acetone, methanol, ethanol, 1,1-dimethoxy ethanol, dimethyl carbonate (DMC) and acetic acid, and the yield of DMC (pDMC/pMeOH,0)was 9.2%.%采用等体积浸渍法制备了Al2O3负载Cu催化剂,用于低温氢等离子体法研究CO2和甲醇在石英管反应器中的催化反应性能。结果表明,Cu/Al2O3表面均匀分散Cu的晶体表面可以解离吸附CO2,将电子传递到CO2分子中,生成了活化态CO2–物种。 CO2和甲醇在Cu/Al2O3表面上反应的产物有二甲醚、乙醛、丙酮、甲醇、乙醇、1,1-二甲氧基乙醇、碳酸二甲酯(DMC)、乙酸等物质,其生成DMC的转化率达9.2%。

  5. Catalytic cracking of lignites

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, M.; Nowak, S.; Naegler, T.; Zimmermann, J. [Hochschule Merseburg (Germany); Welscher, J.; Schwieger, W. [Erlangen-Nuernberg Univ. (Germany); Hahn, T. [Halle-Wittenberg Univ., Halle (Germany)

    2013-11-01

    A most important factor for the chemical industry is the availability of cheap raw materials. As the oil price of crude oil is rising alternative feedstocks like coal are coming into focus. This work, the catalytic cracking of lignite is part of the alliance ibi (innovative Braunkohlenintegration) to use lignite as a raw material to produce chemicals. With this new one step process without an input of external hydrogen, mostly propylene, butenes and aromatics and char are formed. The product yield depends on manifold process parameters. The use of acid catalysts (zeolites like MFI) shows the highest amount of the desired products. Hydrogen rich lignites with a molar H/C ratio of > 1 are to be favoured. Due to primary cracking and secondary reactions the ratio between catalyst and lignite, temperature and residence time are the most important parameter to control the product distribution. Experiments at 500 C in a discontinuous rotary kiln reactor show yields up to 32 wt-% of hydrocarbons per lignite (maf - moisture and ash free) and 43 wt-% char, which can be gasified. Particularly, the yields of propylene and butenes as main products can be enhanced four times to about 8 wt-% by the use of catalysts while the tar yield decreases. In order to develop this innovative process catalyst systems fixed on beads were developed for an easy separation and regeneration of the used catalyst from the formed char. (orig.)

  6. PLODNOST HRVATSKE ŠARENE KOZE I PORODNA MASA JARADI

    OpenAIRE

    Beran, Mirna; Mioč, Boro; Barać, Zdravko; Vnučec, Ivan; Prpić, Zvonimir; Pavić, Vesna; Kasap, A.

    2011-01-01

    Hrvatska šarena koza je autohtona pasmina koja je nastala i uzgaja se na području hrvatskoga krša. Uglavnom je namijenjena za proizvodnju mesa, ponajviše visokokvalitetnih jarećih trupova. S obzirom da je reprodukcija osnova proizvodnje mesa, cilj ovog istraživanja bio je utvrditi određene reprodukcijske odlike hrvatske šarene koze (plodnost koza, veličinu legla, porodnu masu jaradi, omjer spolova) kao preduvjete učinkovitosti pasmine u proizvodnji mesa. Predmetno istraživanje obuhvaćalo je u...

  7. Heterogeneous hydrogenation catalysts

    International Nuclear Information System (INIS)

    The main types of heterogeneous catalysts used for hydrogenation, the methods for their preparation, and the structure and chemistry of their surfaces are considered, as well as the catalytic activity and the mechanism of action in the hydrogenation of unsaturated and aromatic compounds, of CO, and of carbonyl compounds and in the hydrorefining of fuels. Chief attention is paid to supported Ni catalysts, to the methods for their preparation and physicochemical studies, and to the development of novel catalytic systems through modification. A novel type of catalyst for hydrogenation, viz. metal carbides, is described. Some aspects of the mechanochemical treatment of hydrogenation catalysts, including in situ methods, are discussed. Sulfide catalysts for hydrotreating are also discussed in detail. The bibliography includes 340 references.

  8. Nanoscaled carborane ruthenium(II-arene complex inducing lung cancer cells apoptosis

    Directory of Open Access Journals (Sweden)

    Yan Hong

    2011-02-01

    Full Text Available Abstract Background The new ruthenium(II-arene complex, which bearing a carborane unit, ruthenium and ferrocenyl functional groups, has a novel versatile synthetic chemistry and unique properties of the respective material at the nanoscale level. The ruthenium(II-arene complex shows significant cytotoxicity to cancer cells and tumor-inhibiting properties. However, ruthenium(II-arene complex of mechanism of anticancer activity are scarcely explored. Therefore, it is necessary to explore ruthenium(II-arene complex mechanism of anticancer activity for application in this area. Results In this study, the ruthenium(II-arene complex could significantly induce apoptosis in human lung cancer HCC827 cell line. At the concentration range of 5 μM-100 μM, ruthenium(II-arene complex had obvious cell cytotoxicity effect on HCC827 cells with IC50 values ranging 19.6 ± 5.3 μM. Additionally, our observations demonstrate that the ruthenium(II-arene complex can readily induce apoptosis in HCC827 cells, as evidenced by Annexin-V-FITC, nuclear fragmentation as well as DNA fragmentation. Treatment of HCC827 cells with the ruthenium(II-arene complex resulted in dose-dependent cell apoptosis as indicated by high cleaved Caspase-8,9 ratio. Besides ruthenium(II-arene complex caused a rapid induction of cleaved Caspase-3 activity and stimulated proteolytic cleavage of poly-(ADP-ribose polymerase (PARP in vitro and in vivo. Conclusion In this study, the ruthenium(II-arene complex could significantly induce apoptosis in human lung cancer HCC827 cell line. Treatment of HCC827 cells with the ruthenium(II-arene complex resulted in dose-dependent cell apoptosis as indicated by high cleaved Caspase-8,9 ratio. Besides ruthenium(II-arene complex caused a rapid induction of cleaved Caspase-3 activity and stimulated proteolytic cleavage of poly-(ADP-ribose polymerase (PARP in vitro and in vivo. Our results suggest that ruthenium(II-arene complex could be a candidate for further

  9. Catalytic activities of platinum nanotubes: a density functional study

    Science.gov (United States)

    Mukherjee, Prajna; Gupta, Bikash C.; Jena, Puru

    2015-10-01

    In this work we investigate the catalytic properties of platinum nanotubes using density functional theory based calculations. In particular, we study the dissociation of hydrogen and oxygen molecules as well as oxidation of CO molecules. The results indicate that platinum nanotubes have good catalytic properties and can be effectively used in converting CO molecule to CO2.

  10. Spontaneous reduction and C-H borylation of arenes mediated by uranium(III) disproportionation.

    Science.gov (United States)

    Arnold, Polly L; Mansell, Stephen M; Maron, Laurent; McKay, David

    2012-07-15

    Transition-metal-arene complexes such as bis(benzene)chromium Cr(η(6)-C(6)H(6))(2) are historically important to d-orbital bonding theory and have modern importance in organic synthesis, catalysis and organic spintronics. In investigations of f-block chemistry, however, arenes are invariably used as solvents rather than ligands. Here, we show that simple uranium complexes UX(3) (X = aryloxide, amide) spontaneously disproportionate, transferring an electron and X-ligand, allowing the resulting UX(2) to bind and reduce arenes, forming inverse sandwich molecules [X(2)U(µ-η(6):η(6)-arene)UX(2)] and a UX(4) by-product. Calculations and kinetic studies suggest a 'cooperative small-molecule activation' mechanism involving spontaneous arene reduction as an X-ligand is transferred. These mild reaction conditions allow functionalized arenes such as arylsilanes to be incorporated. The bulky UX(3) are also inert to reagents such as boranes that would react with the traditional harsh reaction conditions, allowing the development of a new in situ arene C-H bond functionalization methodology converting C-H to C-B bonds.

  11. Los peligros volcánicos del Arenal

    Directory of Open Access Journals (Sweden)

    Sjöbohm Castillo, Linda Marie

    2007-06-01

    Full Text Available Este estudio fue realizado con el fin de establecer los riesgos asociados al volcán Arenal y la realización y utilización de los mapas de peligros volcánicos en la planificación de las áreas circundantes. Contiene información histórica de la actividad del volcán. Presenta los objetivos fundamentales de la producción de los mapas. Identifica los tipos de peligros que presenta el volcán en la actualidad y finalmente, informa sobre la construcción de los mapas de peligros volcánicos, tanto el de corto plazo como el de largo plazo This study was developed with the purpose of establishing the risks related to the Arenal Volcano and the development and use of volcanic danger maps in the planning of the areas around. It includes historic information about the volcano activity. It presents the main objective of doing the maps. It identifies the types of dangers the volcano presents in these days. Finally, it informs about the development of volcanic dangers maps, at short and long term

  12. Odd-numbered oxacalix[n]arenes (n = 5, 7): synthesis and solid-state structures.

    Science.gov (United States)

    Van Rossom, Wim; Robeyns, Koen; Ovaere, Magriet; Van Meervelt, Luc; Dehaen, Wim; Maes, Wouter

    2011-01-01

    The critical synthetic access to odd-numbered calix[n]arenes has evidently resulted in less attention for these macrocycles, although specific molecular recognition phenomena have been observed for some of them. A straightforward fragment coupling approach has been designed, applying kinetically controlled nucleophilic aromatic substitution reaction conditions, affording odd-numbered oxacalix[n]arenes (n = 5, 7) selectively in high yields. The solid-state conformational behavior and the oxacalix[n]arene cavity size were explored by single-crystal X-ray diffraction studies.

  13. Formation of upper rim acylated calix[4]arenes using a sacrifici al zinc anode

    OpenAIRE

    Louati, Alain; Vataj, Rame; Gabelica, Valérie; Lejeune, Manuel; MATT, DOMINIQUE

    2005-01-01

    A straightforward electrosynthetic method is described, which allows upper rim acylation of non-p-halogenated calix[4]-arenes. For example, a solution of tetrapropoxycalix[4]arene 4 was electrolysed in the presence of ZnBr2, in an undivided cell fitted with a sacrificial zinc anode using pure acetonitrile as solvent, yielding an organozinc species, which was then treated with acetyl chloride in the presence of a palladium catalyst to afford 5,11-diacety1-25,26,27,28-tetrapropoxycalix[4]arene ...

  14. Self-inclusion of a New Calix[4]arene Derivative via Associated Acetonitrile: X-ray Diffraction and Density Functional Theory Studies

    Institute of Scientific and Technical Information of China (English)

    杨高升; 缪韧; 李一志; 金晨; 洪瑾; 郭子建; 朱龙根

    2005-01-01

    A new calix[4]arene derivative, 11,23-bis(hydroxyiminomethyl)-25,27-dihydroxy-26,28-di-n-propoxycalix[4]-arene (B), was synthesized and a compound, with composition of Bo2CH3CN, was fully characterized. 1H NMR showed that B in the B*2CH3CN adopts a cone conformation. X-ray diffraction analysis confirmed the conformation found in solution. In the crystal network, self-inclusion phenomenon is present in a dimeric unit of B*2CH3CN via embedding each other. The noncovalent interaction energies were calculated at B3LYP/6-311G(d) level and corrected by basis set superposition error (BSSE). In half a dimeric unit, one CH3CN is stabilized via hydrogen bonding formed between nitrogen atom of the acetonitrile and one hydroxyimino group, with bonding energy of -5.02 kJ·mol-1, and the other one stabilized by hydrogen bonding formed between nitrogen atom of the acetonitrile and the other hydroxyimino group, with bonding energy of - 14.23 kJ·mol-1, and by inclusion to hydrophobiccavity of the other half of the dimeric unit via C-H…π interaction, with bonding energy of -3.77 kJ·mol-1 doubling of which is a driving force for embedding two B*2CH3CN together.

  15. Catalytic synthesis of cyclohexanone ethylene ketal by polyaniline doped with sodium hydrogen sulfate%硫酸氢钠掺杂聚苯胺催化合成环己酮缩乙二醇

    Institute of Scientific and Technical Information of China (English)

    滕俊江; 乔艳辉; 张庆

    2012-01-01

    以聚苯胺PAn和硫酸氢钠为原料,制备了硫酸氢钠掺杂率为20%(质量分数)的催化剂PAn- NaHSO4,并用于催化合成环己酮缩乙二醇,探讨了PAn- NaHS04的催化活性,系统考察了醇酮摩尔比、催化剂用量、反应时间和带水剂用量对环己酮缩乙二醇收率的影响,并且用正交试验对反应条件进行了优化.在环己酮用量为0.1 mol,n(乙二醇)∶n(环己酮)=1.6∶1,催化剂用量占反应物总质量的1.2%,带水剂环己烷用量为9mL,反应时间为2.5h的条件下,产品收率可达96.79%,产品经红外光谱、气-质联用定性分析确定为环己酮缩乙二醇,经气相色谱检测纯度大于99.0%,催化剂重复使用5次后,产品收率仍大于90.0%.%Cyclohexanone ethylene ketal was synthesized from cyclohexanone and ethylene glycol as starting materials using polyaniline ( PAn) doped with 20% ( mass fraction) of sodium hydrogen sulfate ( PAn -NaHSO4) as catalysl. Catalytic activity of PAn - NaHSO4 was investigated. Effect of factors such as mole ratio of ethylene glycol to cyclohexanone, dosage of the catalyst, reaction time, dosage of water stripping agent on product yield were examined systematically and optimum reaction conditions were identified by orthogonal designed experiment. Under optimal conditions; based on amount of cyclohexanone 0. 1 mol, mole ratio n(ethylene glycol): re (cyclohexanone) = 1. 6: 1 ,mass fraction of PAn - NaHSO4 1. 2% of the total reactants, water stripping agent cyclohexane 9 mL and reaction time 2. 5 h,yield of the product achieves 96. 79%. The product was identified as cyclohexanone ethylene ketal by IR and GC - MS. Purity of product achieves 99. 0%. After reusing the catalyst for 5 times,yield of the product is still higher than 90. 0%.

  16. C12A7-Mg催化剂水蒸汽重整生物油、石脑油和CH4制氢%Hydrogen Production by Catalytic Steam Reforming of Bio-oil, Naphtha and CH4 over C12A7-Mg Catalyst

    Institute of Scientific and Technical Information of China (English)

    潘越; 王兆祥; 阚涛; 朱锡峰; 李全新

    2006-01-01

    Hydrogen production by catalytic steam reforming of the bio-oil, naphtha, and CH4 was investigated over a novel metal-doped catalyst of (Ca24Al28O64)4+.4O-/Mg (C12A7-Mg). The catalytic steam reforming was investigated from 250 to 850 ℃ in the fixed-bed continuous flow reactor. For the reforming of bio-oil, the yield of hydrogen of 80% was obtained at 750 ℃, and the maximum carbon conversion is nearly close to 95% under the optimum steam reforming condition. For the reforming of naphtha and CH4, the hydrogen yield and carbon conversion are lower than that of bio-oil at the same temperature. The characteristics of catalyst were also investigated by XPS. The catalyst deactivation was mainly caused by the deposition of carbon in the catalytic steam reforming process.%利用自制的C12A7-Mg催化剂,研究了催化水蒸汽重整生物油、石脑油和CH4制备氢气的性能,以及催化剂寿命,并用X射线光电子能谱对催化剂进行了表征.温度测试范围为250~850℃.对于催化水蒸汽重整生物油反应,在750℃时,氢气产率最大达到80%,碳的转化率接近95%.在相同的反应温度下,催化水蒸汽重整石脑油和CH4的氢气产率和碳的转化率要低于重整生物油反应.催化剂的失活主要是由于重整过程中的积碳.

  17. Simple, Chemoselective Hydrogenation with Thermodynamic Stereocontrol

    OpenAIRE

    Iwasaki, Kotaro; Wan, Kanny K.; Oppedisano, Alberto; Crossley, Steven W. M.; Shenvi, Ryan A.

    2014-01-01

    Few methods permit the hydrogenation of alkenes to a thermodynamically favored configuration when steric effects dictate the alternative trajectory of hydrogen delivery. Dissolving metal reduction achieves this control, but with extremely low functional group tolerance. Here we demonstrate a catalytic hydrogenation of alkenes that affords the thermodynamic alkane products with remarkably broad functional group compatibility and rapid reaction rates at standard temperature and pressure.

  18. Gas Concentration Mapping of Arenal Volcano Using AVEMS

    Science.gov (United States)

    Diaz, J. Andres; Arkin, C. Richard; Griffin, Timothy P.; Conejo, Elian; Heinrich, Kristel; Soto, Carlomagno

    2005-01-01

    The Airborne Volcanic Emissions Mass Spectrometer (AVEMS) System developed by NASA-Kennedy Space Center and deployed in collaboration with the National Center for Advanced Technology (CENAT) and the University of Costa Rica was used for mapping the volcanic plume of Arenal Volcano, the most active volcano in Costa Rica. The measurements were conducted as part of the second CARTA (Costa Rica Airborne Research and Technology Application) mission conducted in March 2005. The CARTA 2005 mission, involving multiple sensors and agencies, consisted of three different planes collecting data over all of Costa Rica. The WB-57F from NASA collected ground data with a digital camera, an analog photogrametric camera (RC-30), a multispectral scanner (MASTER) and a hyperspectral sensor (HYMAP). The second aircraft, a King Air 200 from DoE, mounted with a LIDAR based instrument, targeted topography mapping and forest density measurements. A smaller third aircraft, a Navajo from Costa Rica, integrated with the AVEMS instrument and designed for real-time measurements of air pollutants from both natural and anthropogenic sources, was flown over the volcanoes. The improved AVEMS system is designed for deployment via aircraft, car or hand-transport. The 85 pound system employs a 200 Da quadrupole mass analyzer, has a volume of 92,000 cubic cm, requires 350 W of power at steady state, can operate up to an altitude of 41,000 feet above sea level (-65 C; 50 torr). The system uses on-board gas bottles on-site calibration and is capable of monitoring and quantifying up to 16 gases simultaneously. The in-situ gas data in this work, consisting of helium, carbon dioxide, sulfur dioxide and acetone, was acquired in conjunction of GPS data which was plotted with the ground imagery, topography and remote sensing data collected by the other instruments, allowing the 3 dimensional visualization of the volcanic plume at Arenal Volcano. The modeling of possible scenarios of Arenal s activity and its

  19. Bimetallic ruthenium–tin chemistry: Synthesis and molecular structure of arene ruthenium complexes containing trichlorostannyl ligands

    OpenAIRE

    Therrien, Bruno; Thai, Trieu-Tien; Freudenreich, Julien; Süss-Fink, Georg; Shapovalov, Sergey S.; Pasynskii, Alexandr A.; Plasseraud, Laurent

    2012-01-01

    A series of neutral, anionic and cationic arene ruthenium complexes containing the trichlorostannyl ligand have been synthesised from SnCl2 and the corresponding arene ruthenium dichloride dimers [(η6-arene)Ru(μ2-Cl)Cl]2 (arene = C6H6, PriC6H4Me). While the reaction with triphenylphosphine and stannous chloride only gives the neutral mono(trichlorostannyl) complexes [(η6-C6H6)Ru(PPh3)(SnCl3)Cl] (1) and [(η6-PriC6H4Me)Ru(PPh3)(SnCl3)Cl] (2), the neutral di(trichlorostannyl) complex [(η6-PriC6H...

  20. Manganese-Mediated C-H Alkylation of Unbiased Arenes Using Alkylboronic Acids.

    Science.gov (United States)

    Castro, Susana; Fernández, Juan J; Fañanás, Francisco J; Vicente, Rubén; Rodríguez, Félix

    2016-06-27

    The alkylation of arenes is an essential synthetic step of interest not only from the academic point of view but also in the bulk chemical industry. Despite its limitations, the Friedel-Crafts reaction is still the method of choice for most of the arene alkylation processes. Thus, the development of new strategies to synthesize alkyl arenes is a highly desirable goal, and herein, we present an alternative method to those conventional reactions. Particularly, a simple protocol for the direct C-H alkylation of unbiased arenes with alkylboronic acids in the presence of Mn(OAc)3 ⋅2H2 O is reported. Primary or secondary unactivated alkylboronic acids served as alkylating agents for the direct functionalization of representative polyaromatic hydrocarbons (PAHs) or benzene. The results are consistent with a free-radical mechanism. PMID:27124250

  1. Functionalized O6-Corona[6]arenes: Synthesis, Structure, and Fullerene Complexation Property.

    Science.gov (United States)

    Ren, Wen-Sheng; Zhao, Liang; Wang, Mei-Xiang

    2016-07-01

    The synthesis, structure, and fullerene complexation property of novel and functionalized On-corona[n]arenes were reported. Based on the fragment coupling strategy, ester-containing On-corona[n]arenes (n = 6, 8) were obtained readily starting from 1,4-hydroquinone and diethyl 2,5-difluoroterephthalate. Reduction of esters with LiAlH4 produced almost quantitatively hydroxymethylated On-corona[n]arenes, which underwent etherification with MeI to afford methoxymethyl-substituted On-corona[n]arenes (n = 6, 8) in good yields. The macrocycles adopt unique corona-type conformation with a large cylindroid cavity. They are strong macrocyclic host molecules to form 1:1 complexes with fullerenes C60 and C70 in toluene with an associate constant up to (1.59 ± 0.04) × 10(5) M(-1). PMID:27324274

  2. Functionalized O6-Corona[6]arenes: Synthesis, Structure, and Fullerene Complexation Property.

    Science.gov (United States)

    Ren, Wen-Sheng; Zhao, Liang; Wang, Mei-Xiang

    2016-07-01

    The synthesis, structure, and fullerene complexation property of novel and functionalized On-corona[n]arenes were reported. Based on the fragment coupling strategy, ester-containing On-corona[n]arenes (n = 6, 8) were obtained readily starting from 1,4-hydroquinone and diethyl 2,5-difluoroterephthalate. Reduction of esters with LiAlH4 produced almost quantitatively hydroxymethylated On-corona[n]arenes, which underwent etherification with MeI to afford methoxymethyl-substituted On-corona[n]arenes (n = 6, 8) in good yields. The macrocycles adopt unique corona-type conformation with a large cylindroid cavity. They are strong macrocyclic host molecules to form 1:1 complexes with fullerenes C60 and C70 in toluene with an associate constant up to (1.59 ± 0.04) × 10(5) M(-1).

  3. Synthesis and Characterization of Mesoporous Silica Functionalized with Calix[4]arene Derivatives

    Directory of Open Access Journals (Sweden)

    Sana M. Alahmadi

    2012-10-01

    Full Text Available This work reports a new method to covalently attach calix[4]arene derivatives onto MCM-41, using a diisocyanate as a linker. The modified mesoporous silicates were characterized by fourier transform infrared spectroscopy (FTIR, thermal analysis (TGA and elemental analysis. The FTIR spectra and TGA analysis verified that the calix[4]arene derivates are covalently attached to the mesoporous silica. The preservation of the MCM-41 channel system was checked by X-ray diffraction and nitrogen adsorption analysis.

  4. Synthesis and Characterization of Mesoporous Silica Functionalized with Calix[4]arene Derivatives

    OpenAIRE

    Sana M. Alahmadi; Mohamad, Sharifah; Maah, Mohd Jamil

    2012-01-01

    This work reports a new method to covalently attach calix[4]arene derivatives onto MCM-41, using a diisocyanate as a linker. The modified mesoporous silicates were characterized by fourier transform infrared spectroscopy (FTIR), thermal analysis (TGA) and elemental analysis. The FTIR spectra and TGA analysis verified that the calix[4]arene derivates are covalently attached to the mesoporous silica. The preservation of the MCM-41 channel system was checked by X-ray diffraction and nitrogen ads...

  5. Optical, electrical and sensing properties of β-ketoimine calix[4]arene thin films

    Energy Technology Data Exchange (ETDEWEB)

    Echabaane, M., E-mail: mosaab.echabaane@yahoo.fr [Laboratoire des Interfaces et Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Avenue de l' environnement, 5000 Monastir (Tunisia); Rouis, A. [Laboratoire des Interfaces et Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Avenue de l' environnement, 5000 Monastir (Tunisia); Bonnamour, I. [Institut de Chimie and Biochimie Moléculaires and Supramoléculaires (ICBMS), UMR CNRS 5246, 43 Boulevard du 11 Novembre 1918, Université Claude Bernard Lyon 1, 69100 Villeurbanne (France); Ben Ouada, H. [Laboratoire des Interfaces et Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Avenue de l' environnement, 5000 Monastir (Tunisia)

    2013-09-16

    Optical, electrical and ion sensing properties of β-ketoimine calix[4]arene thin films have been investigated. These calix[4]arene derivative films exhibit absorption spectra with a resolved electronic structure in the UV–vis and the energy gap was found to be 3.65 eV. Electrical properties of ITO/β-ketoimine calix[4]arene/Al devices have been investigated by I–V characteristics and impedance spectroscopy measurements. The conduction is governed by space-charge-limited current (SCLC) mechanism. The impedance spectroscopy study showed a hopping transport process, a typical behavior of disordered materials. The device was modeled by a single parallel resistor and capacitor network in series with a resistance. The β-ketoimine calix[4]arene was used for the conception of the novel optical chemical sensor and the detection of Cu{sup 2+} ions was monitored by UV–visible spectroscopy. The linear dynamic range for the determination of Cu{sup 2+} has been 10{sup −5}–10{sup −3.7} M with a detection limit of 10{sup −5} M. The characteristics of this optode such as regeneration, repeatability, reproducibility, short-term stability, life time and ion selectivity have been discussed. - Highlights: • We examine optical properties of β-ketoimine calix[4]arene ligand. • We investigate the electric properties of ITO/β-ketoimine calix[4]arene/Al device. • We study the sensing properties of optode films for the detection of copper (II)

  6. Photoinduced C-C Cross-Coupling of Aryl Chlorides and Inert Arenes

    Directory of Open Access Journals (Sweden)

    Lele Wang

    2016-01-01

    Full Text Available Here we report a facile, efficient, and catalyst-free method to realize C-C cross-coupling of aryl chlorides and inert arenes under UV light irradiation. The aryl radical upon homolytic cleavage of C-Cl bond initiated the nucleophilic substitution reaction with inert arenes to give biaryl products. This mild reaction mode can also be applied to other synthetic reactions, such as the construction of C-N bonds and trifluoromethylated compounds.

  7. Catalytic gasification of oil-shales

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.; Avakyan, T. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation); Strizhakova, Yu. [Samara State Univ. (Russian Federation)

    2012-07-01

    Nowadays, the problem of complex usage of solid fossil fuels as raw materials for obtaining of motor fuels and chemical products is becoming increasingly important. A one of possible solutions of the problem is their gasification with further processing of gaseous and liquid products. In this work we have investigated the process of thermal and catalytic gasification of Baltic and Kashpir oil-shales. We have shown that, as compared with non-catalytic process, using of nickel catalyst in the reaction increases the yield of gas, as well as hydrogen content in it, and decreases the amount of liquid products. (orig.)

  8. Novel developments in hydrogen storage, hydrogen activation and ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Doroodian, Amir

    2010-12-03

    This dissertation is divided into three chapters. Recently, metal-free hydrogen activation using phosphorous compounds has been reported in science magazine. We have investigated the interaction between hydrogen and phosphorous compounds in presence of strong Lewis acids (chapter one). A new generation of metal-free hydrogen activation, using amines and strong Lewis acids with sterically demanding nature, was already developed in our group. Shortage of high storage capacity using large substitution to improve sterical effect led us to explore the amine borane derivatives, which are explained in chapter two. Due to the high storage capacity of hydrogen in aminoborane derivatives, we have explored these materials to extend hydrogen release. These compounds store hydrogen as proton and hydride on adjacent atoms or ions. These investigations resulted in developing hydrogen storage based on ionic liquids containing methyl guanidinium cation. Then we have continued to develop ionic liquids based on methyl guanidinium cation with different anions, such as tetrafluoro borate (chapter three). We have replaced these anions with transition metal anions to investigate hydrogen bonding and catalytic activity of ionic liquids. This chapter illustrates the world of ionic liquid as a green solvent for organic, inorganic and catalytic reactions and combines the concept of catalysts and solvents based on ionic liquids. The catalytic activity is investigated particularly with respect to the interaction with CO{sub 2}. (orig.)

  9. Autothermal hydrogen storage and delivery systems

    Science.gov (United States)

    Pez, Guido Peter; Cooper, Alan Charles; Scott, Aaron Raymond

    2011-08-23

    Processes are provided for the storage and release of hydrogen by means of dehydrogenation of hydrogen carrier compositions where at least part of the heat of dehydrogenation is provided by a hydrogen-reversible selective oxidation of the carrier. Autothermal generation of hydrogen is achieved wherein sufficient heat is provided to sustain the at least partial endothermic dehydrogenation of the carrier at reaction temperature. The at least partially dehydrogenated and at least partially selectively oxidized liquid carrier is regenerated in a catalytic hydrogenation process where apart from an incidental employment of process heat, gaseous hydrogen is the primary source of reversibly contained hydrogen and the necessary reaction energy.

  10. PREPARATION OF 4,4′-DIAMINOSTILBENE-2,2′-DISULFONIC ACID BY CATALYTIC HYDROGENATION%催化加氢法制备4,4′-二氨基二苯乙烯-2,2′-二磺酸

    Institute of Scientific and Technical Information of China (English)

    赵晓波; 陈宏博; 张淑芬

    2003-01-01

    @@ INTRODUCTION 4,4′-Diaminostilbene-2,2′-disulfonic acid(DAS) is an important intermediate which is widely used in synthesis of fluorescent whitening agents, direct dyes and reactive dyes[1,2].So far, the conventional procedure using Fe as catalyst for the production of DAS in China is greatly limited, due to industrial waste water, high labor intensity and low production capability. The electrochemical reduction method has been reported[3] overseas, but it is not suitable for China considering its large equipment investment, lower yield and great power consumption. Compared with the methods mentioned above, the catalytic hydrogenation method has attracted a great deal of attention in view of its simple and easy operation, high production capacity and high production efficiency[4-6].The relatively cheap Raney nickel is not used here since it shows a low safety performance in preparing DAS at a high reaction temperature and high pressure. In this paper, highly reactive and recyclable palladium-carbon is chosen as the catalyst. DAS of high purity and high yield is prepared under mild conditions. The catalytic hydrogenation method is a prospective method in producing DAS.

  11. Investigation of the inclusion behavior between p-sulfoniccalix[8]arene and norfloxacin by fluorescence spectroscopy

    International Nuclear Information System (INIS)

    The host-guest complexation between p-sulfoniccalix[8]arene (SC8A) and norfloxacin (NFLX) in aqueous solution was investigated by fluorescence spectroscopy. Strong fluorescence intensity of the NFLX aqueous solution alone and obvious fluorescence quenching of NFLX solution in the presence of SC8A were observed. The fluorescence lifetimes of NFLX and SC8A-NFLX inclusion complex were determined and the effect of temperature on SC8A-NFLX inclusion complex was studied. The static quenching of the inclusion was obtained, that is the SC8A can form a nonfluorescent ground-state inclusion complex with NFLX. As the results show, the combined ratio (n) was 1:1 and association constant K was 1.17x105 L/mol. Based on the experimental results, the mechanism of the inclusion complex was explored. The space matching, electrostatic force and hydrogen bond play important effects in the inclusion process. Subsequently, the addition of bovine serum albumin (BSA) solution led to the recovery of fluorescence intensity. It is indicated that BSA can liberate the NFLX into the solution by destructing the SC8A-NFLX inclusion complex. Hence SC8A may be used for controlled-release drug delivery in the pharmaceutical industry. - Highlights: → Fluorescence lifetimes of NFLX and SC8A-NFLX inclusion complex were determined. → Mechanism of the SC8A-NFLX inclusion complex was explored. → It is proved that SC8A can form a nonfluorescent ground-state inclusion complex with NFLX.

  12. New hydrogen technologies

    International Nuclear Information System (INIS)

    This report presents an overview of the overall hydrogen system. There are separate sections for production, distribution, transport, storage; and applications of hydrogen. The most important methods for hydrogen production are steam reformation of natural gas and electrolysis of water. Of the renewable energy options, production of hydrogen by electrolysis using electricity from wind turbines or by gasification of biomass were found to be the most economic for Finland. Direct use of this electricity or the production of liquid fuels from biomass will be competing alternatives. When hydrogen is produced in the solar belt or where there is cheap hydropower it must be transported over long distances. The overall energy consumed for the transport is from 25 to 40 % of the initial available energy. Hydrogen storage can be divided into stationary and mobile types. The most economic, stationary, large scale hydrogen storage for both long and short periods is underground storage. When suitable sites are not available, then pressure vessels are the best for short period and liquid H2 for long period. Vehicle storage of hydrogen is by either metal hydrides or liquid H2. Hydrogen is a very versatile energy carrier. It can be used to produce heat directly in catalytic burners without flame, to produce electricity in fuel cells with high efficiency for use in vehicles or for peak power shaving, as a fuel component with conventional fuels to reduce emissions, as a way to store energy and as a chemical reagent in reactions

  13. Krista Aren & Raul Vaiksoo : Krista Aren : "Ühtegi tööd pole võimalik teha natuke" / Gitte Hint

    Index Scriptorium Estoniae

    Hint, Gitte

    2004-01-01

    Disainieriala lõpetanud Krista Aren kodu sisekujundamisest, klientidest, ehitajatest. Krista Arenist (sünd. 1961), tema töödest. Raul Vaiksoost (sünd. 1955), tema töödest. 1989. a. asutas R. Vaiksoo arhitektuuribüroo R. Projekt, kus töötab peaarhitektina. Ill.: foto K. Arenist ja R. Vaiksoost

  14. Theoretical studies of the proton transfer behaviors in molecular complexes analogous to catalytic triad of serine protease: Toward understanding the existence and significance of the low-barrier hydrogen-bond in enzymatic catalysis

    Institute of Scientific and Technical Information of China (English)

    LI Ping; WANG WeiHua; BI SiWei; SONG Rui; BU YuXiang

    2009-01-01

    A representative acetate-(5-methylimidazole)-methanol system has been employed as a model of cata-lytic triad in serine protease to validate the formation processes of low-barrier H-bonds (LBHB) at the B3LYP/6-311++G** level of theory, and variable H-bonding characters from conventional ones to LBHBs have been represented along with the proceedings of proton transfer. Solvent effect is an important factor in modulation of the existence of an LBHB, where an LBHB (or a conventional H-bond) in the gas phase can be changed into a non-LBHB (an LBHB) upon solvation. The origin of the additional stabili-zation energy arising from the LBHB may be attributed to the H-bonding energy difference before and after proton transfer because the shared proton can freely move between the proton donor and proton acceptor. Most importantly, the order of magnitude of the stabilization energy depends on the studied systems. Furthermore, the nonexistence of LBHBs in the catalytic triad of serine proteases has been verified in a more sophisticated model treated using the ONIOM method. As a result, only the single proton transfer mechanism in the catalytic triad has been confirmed and the origin of the powerful catalytic efficiency of serine proteases should be attributed to other factors rather than the LBHB.

  15. Theoretical studies of the proton transfer behaviors in molecular complexes analogous to catalytic triad of serine protease:Toward understanding the existence and significance of the low-barrier hydrogen-bond in enzymatic catalysis

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A representative acetate-(5-methylimidazole)-methanol system has been employed as a model of catalytic triad in serine protease to validate the formation processes of lowbarrier H-bonds(LBHB) at the B3LYP/6-311++G level of theory,and variable H-bonding characters from conventional ones to LBHBs have been represented along with the proceedings of proton transfer.Solvent effect is an important factor in modulation of the existence of an LBHB,where an LBHB(or a conventional H-bond) in the gas phase can be changed into a non-LBHB(an LBHB) upon solvation.The origin of the additional stabili-zation energy arising from the LBHB may be attributed to the H-bonding energy difference before and after proton transfer because the shared proton can freely move between the proton donor and proton acceptor.Most importantly,the order of magnitude of the stabilization energy depends on the studied systems.Furthermore,the nonexistence of LBHBs in the catalytic triad of serine proteases has been verified in a more sophisticated model treated using the ONIOM method.As a result,only the single proton transfer mechanism in the catalytic triad has been confirmed and the origin of the powerful catalytic efficiency of serine proteases should be attributed to other factors rather than the LBHB.

  16. Catalytic Hydrolysis of Borohydride for Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    WANG Lianbang; ZHAN Xingyue; YANG Zhenzhen; MA Chun'an

    2011-01-01

    Borohydrides present interesting options for the electrochemical power generation acting either as hydrogen source or anodic fuel for direct borohydride fuel cells(DBFC).In this work,Mg-Ni composite synthesized by mechanically alloying method,used as the catalyst for the hydrolysis of borohydride,has been investigated.Co-doping treatment has been carried out for the purpose of improving the hydrolysis rate further.The as-prepared and Co-doped Mg-Ni composites with low cost showed high catalytic activity to the hydrolysis of borohydride for hydrogen generation.After Co-doping,the hydrogen generation rate was around 280 ml·g-1·min-1.Borohydride would be a promising hydrogen source for fuel cells.

  17. Vacuum-insulated catalytic converter

    Energy Technology Data Exchange (ETDEWEB)

    Benson, David K. (Golden, CO)

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  18. UTILIZATION OF AREN (Arenga pinnata Merr. SAWMILLING WASTE FOR EDIBLE MUSHROOM CULTIVATION MEDIA

    Directory of Open Access Journals (Sweden)

    Djarwanto

    2016-04-01

    Full Text Available Aren (Arenga pinnata Merr. is a multipurpose tree that can be utilized for palm sugar, alcoholic drinks, beverages and construction wood. The use of aren sawdust has not been studied intensively. This study examines the utilization of aren sawdust as cultivation media for edible mushrooms. Aren sawdust was mixed with rice bran, CaCO3, gypsum, fertilizers and distilled water before sterilization in 30 minutes pressurized autoclave at 1210C and 1.5atm. The mixed media was inoculated with pure cultures containing four mushrooms species (Pleurotus flabellatus, P. ostreatus, P. sajor-caju and Lentinula edodes and incubated for five weeks to allow mycelium growth producing fruit bodies. The fruit bodies were harvested everyday within four months and examined for its gained mushroom-weight and biological conversion efficiency/BE. The core part of aren trunk was cut into smaller pieces of 10 cm (width by 5 cm (thickness, by 120 cm (length. Each core sample was bored from the surface inward, creating holes with a particular distance apart. Each hole was inoculated with pure cultures containing 6 mushroom species (four species above, P. cystidiosus and Auricularia polytricha. The inoculated samples were slanted on bamboo support, and placed in a bamboo hut. Harvesting was carried out everyday after the fruiting body became mature and examined for its gained mushroom weight. Results show that the use of sawdust supplemented with nutritious material is more likely to improve the mushroom yield than that of aren sawn-timber core. In this case, the BE values with aren-sawdust media were 21.97-89.45% (P. flabellatus, 15.36-105.36% (P. ostreatus, 63.88-76.86% (P. sajor-caju, and up to 62.88% (L. edodes. Meanwhile, the yields (gained mushroom weight with aren sawn-timber media were 210g (P. ostreatus, 368g (P. flabellatus, 331g (P. sajor-caju and 48g (A. polytricha; however, P. cystidiosus and L. edodes inoculated on aren stem core failed to grow.

  19. Photoelectrochemical hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, R.E.; Miller, E.; Misra, A. [Univ. of Hawaii, Honolulu, HI (United States)

    1996-10-01

    The large-scale production of hydrogen utilizing energy provided by a renewable source to split water is one of the most ambitious long-term goals of the U.S. Department of Energy`s Hydrogen Program. One promising option to meet this goal is direct photoelectrolysis in which light absorbed by semiconductor-based photoelectrodes produces electrical power internally to split water into hydrogen and oxygen. Under this program, direct solar-to-chemical conversion efficiencies as high as 7.8 % have been demonstrated using low-cost, amorphous-silicon-based photoelectrodes. Detailed loss analysis models indicate that solar-to-chemical conversion greater than 10% can be achieved with amorphous-silicon-based structures optimized for hydrogen production. In this report, the authors describe the continuing progress in the development of thin-film catalytic/protective coatings, results of outdoor testing, and efforts to develop high efficiency, stable prototype systems.

  20. Graphene-based materials in catalytic wet peroxide oxidation

    OpenAIRE

    Gomes, Helder; Ribeiro, Rui; Pastrana-Martínez, Luisa; Figueiredo, José; Faria, Joaquim; Silva, Adrián

    2014-01-01

    In catalytic wet peroxide oxidation (CWPO),an advanced oxidation process, hydrogen peroxide (H2O2) is decomposed catalytically giving rise to hydroxyl radicals (HO•).These radicals, exhibiting high oxidizing potential, serve as effective and non selective species for the degradation of several organic pollutants in liquid phase. Since the report of Lücking et al. [1], carbon materials have been explored as catalysts for CWPO[2]. Recent reports address process intensification issues, br...

  1. Recent advances in the activation of carbon dioxide and the synthesis of dimethyl ether by the catalytic hydrogenation of carbon dioxide%二氧化碳的活化及其催化加氢制二甲醚的研究进展

    Institute of Scientific and Technical Information of China (English)

    秦祖赠; 刘瑞雯; 纪红兵; 蒋月秀

    2015-01-01

    CO2是一种稳定的物质,其化学惰性限制了 CO2转化技术的发展。本文介绍了化学催化、生物活化、光电活化及等离子体活化等 CO2活化方式,从 CO2催化加氢合成二甲醚的工艺研究、催化剂开发、催化加氢机理和本征动力学研究等方面综述了 CO2催化加氢合成二甲醚的研究进展,认为化学催化法是目前应用最广泛的一种CO2活化方式。对于一步法催化CO2加氢合成二甲醚的工艺,其难点是制备高效CO2活化催化剂。开发高效的CO2活化及转化催化剂及对CO2合成二甲醚的反应过程进行机理探究,是推广CO2转化技术的关键。%CO2 is a kind of stable substance,and its chemical inertness limits the development of CO2 conversion technologies. This paper describes the activation methods of CO2,including chemical catalysis,biological activation,photoelectric activation and plasma activation. The recent advances are reviewed by introducing the study on dimethyl ether ( DME ) synthesis from the catalytic hydrogenation of CO2,the development of catalysts,the mechanism of catalytic hydrogenation process and intrinsic kinetics. It is pointed out in the paper that the method of chemical catalysis is the most widely used method of CO2 activation. To develop effective activation catalysts of CO2 is the difficulty in the one-step process of DME synthesis by the catalytic hydrogenation of CO2. The development of effective activation and conversion catalysts of CO2 and the mechanism exploration of DME synthesis reaction are the keys to the promotion of CO2 conversion technologies.

  2. Les procédés ASVAHL thermiques et catalytiques sous pression d'hydrogène pour la conversion des bruts lourds et des résidus de bruts classiques Thermal and Catalytic Asvahl Processes under Hydrogen Pressure for Converting Heavy Crudes and Conventional Residues

    Directory of Open Access Journals (Sweden)

    Peries J. P.

    2006-11-01

    Full Text Available Cet article décrit les performances comparées des procédés ASVAHL thermiques (TERVAHL T, TERVAHL H, TERVAHL HC et catalytiques (HYVAHL F, HYVAHL C dans deux cas de traitement: - brut désessencié Boscan (base des études objectif Transport; - résidu sous vide Safaniya (base des études Raffinage de résidu. A travers ces résultats, l'importance de la quantité d'hydrogène fixée est mise en évidence. Elle joue sur la conversion obtenue et sur la qualité des résidus. L'introduction de catalyseur soluble ou en suspension catalytique TERVAHL HC (hydroviscoréduction catalytique ou l'utilisation d'un catalyseur supporté (hydrotraiternent HYVAHL favorisent l'activation de l'hydrogène. C'est la combinaison des réactions de craquage, de polycondensation et d'hydrogénation, et les conditions opératoires (températures, temps de séjour et pression qui définiront les limites de la conversion pour une stabilité donnée des résidus. This article describes the comparative performances of thermal ASVAHL processes (TERVAHL T, TERVAHL H, TERVAHL HQ and catalytic ASVAHL processes (HYVAHL F, HYVAHL C for two types of processing: (1 degasolined Boscan crude (basis of studies for transportation feasibility, and (2 Safaniya vacuum residue (basis of studies for residue refining. The results reveal the importance of the amount of fixed hydrogen, which affects the conversion obtained and the quality of the residues. The introduction of a TERVAHL HC soluble catalyst or one in catalytic suspension (catalytic hydrovisbreaking or the use of a supported catalyst (HYVAHL hydrotreatment enhances the activation of hydrogen. The combination of cracking, polycondensation and hydrogen reactions together with the operating conditions (temperatures, residence time and pressure are what will define the conversion limits for a given stability of residues.

  3. STUDY OF HYDROGEN SULFIDE REMOVAL FROM GROUNDWATER

    Directory of Open Access Journals (Sweden)

    T. Lupascu

    2013-06-01

    Full Text Available The process of the hydrogen sulfide removal from the underground water of the Hancesti town has been investigated. By oxygen bubbling through the water containing hydrogen sulfide, from the Hancesti well tube, sulfur is deposited in the porous structure of studied catalysts, which decreases their catalytic activity. Concomitantly, the process of adsorption / oxidation of hydrogen sulfide to sulfate take place. The kinetic research of the hydrogen sulfide removal from the Hancesti underground water, after its treatment by hydrogen peroxide, proves greater efficiency than in the case of modified carbonic adsorbents. As a result of used treatment, hydrogen sulfide is completely oxidized to sulfates

  4. Quantitative study of catalytic activity and catalytic deactivation of Fe–Co/Al2O3 catalysts for multi-walled carbon nanotube synthesis by the CCVD process

    OpenAIRE

    Pirard, Sophie; Heyen, Georges; Pirard, Jean-Paul

    2010-01-01

    The catalytic deactivation during multi-walled carbon nanotube (MWNT) synthesis by the CCVD process and the influence of hydrogen on it were quantified. Initial specific reaction rate, relative specific productivity and catalytic deactivation were studied. Carbon source was ethylene, and a bimetallic iron–cobalt catalyst supported on alumina was used. The catalytic deactivation was modeled by a decreasing hyperbolic law, reflecting the progressive accumulation of amorphous carbon on active si...

  5. Catalytic distillation structure

    Science.gov (United States)

    Smith, Jr., Lawrence A.

    1984-01-01

    Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

  6. The effect of p-tert-butylcalix[4]arene on radiation degradation of polypropylene

    International Nuclear Information System (INIS)

    Polypropylene(PP) containing cyclic phenolic antioxidant, p-tert-butylcalix[4] arene as additive was irradiated with γ-ray in air or in vacuum at ambient temperature. The mechanical properties, variation of IR spectra and decomposition temperature by thermal analysis were measured for the irradiated PP sheets. Compared with BHT, p-tert-butylcalix[4]arene showed radiation stabilization towards PP during and after irradiation, especially at a high dose. By means of ESR spectra and other spectra of formation of the stable calix[4]arene radical was confirmed. No decomposition species of the calixarene was observed with the dose≤1000 kGy and the dose rate of 6.5 x 103 kGy/h indicating the higher radiation-resistance of the calixarene structure

  7. Highly selective fluorescent chemosensor for Na+ based on pyrene-modified calix[4]arene derivative

    Institute of Scientific and Technical Information of China (English)

    WANG KeRang; GUO DongSheng; JIANG BangPing; LIU Yu

    2009-01-01

    A novel calix[4]arene derivative with pyrene fluorophores at the upper rim and tetraester ionophores at the lower rim was synthesized in six steps, and its structure was proved by NMR and ESi-MS spectro-scopies. Furthermore, the chemosensing behavior of the host compound for alkali and alkaline earth metal ions was investigated by fluorescence spectroscopy. The obtained results show that the calix-arene host can selectively bind sodium ion with the complexation stability constant of 2190 mol-1.L. The complexation with sodium ion can pronouncedly induce the excimer emission to decrease and the monomer emission to increase, whereas the addition of the other alkali and alkaline earth metal ions does not cause appreciable changes in the fluorescence spectrum of the host compound. The present calix[4]arene derivative displays potential application as fluorescent chemosensor for sodium ion.

  8. Molecular recognition study of ethosuximide by the supramolecular probe, p-t-butyl calix(8)arene

    Energy Technology Data Exchange (ETDEWEB)

    Meenakshi, C., E-mail: geethu.laxi@gmail.com [Department of Chemistry, Shri Meenakshi Government College for Women (Autonomous), Madurai 625002 (India); Sangeetha, P.; Ramakrishnan, V. [Department of Laser Studies, School of Physics, Madurai Kamaraj University, Madurai 625021 (India)

    2013-06-15

    The supramolecule, p-t-Butyl calix(8)arene, forms inclusion complex with the antiseizure drug molecule, ethosuximide. This feature is explained on the basis of optical absorption spectroscopy. Here p-t-Butyl calix(8)arene is the host molecule and ethosuximide is the guest molecule. The stoichiometry of the host–guest complex and the binding constant has been determined using Benesi–Hildebrand plot. Based on the result obtained the structure of the inclusion complex has been proposed. -- Highlights: ► Third generation supramolecule, t-butyl calix (8) arene, is used as a host molecule. ► Anti seizure drug molecule is used as a guest molecule. ► Inclusion complex is formed between the host and guest molecule.

  9. Molecular recognition study of ethosuximide by the supramolecular probe, p-t-butyl calix(8)arene

    International Nuclear Information System (INIS)

    The supramolecule, p-t-Butyl calix(8)arene, forms inclusion complex with the antiseizure drug molecule, ethosuximide. This feature is explained on the basis of optical absorption spectroscopy. Here p-t-Butyl calix(8)arene is the host molecule and ethosuximide is the guest molecule. The stoichiometry of the host–guest complex and the binding constant has been determined using Benesi–Hildebrand plot. Based on the result obtained the structure of the inclusion complex has been proposed. -- Highlights: ► Third generation supramolecule, t-butyl calix (8) arene, is used as a host molecule. ► Anti seizure drug molecule is used as a guest molecule. ► Inclusion complex is formed between the host and guest molecule

  10. Highly selective fluorescent chemosensor for Na~+ based on pyrene-modified calix[4]arene derivative

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A novel calix[4]arene derivative with pyrene fluorophores at the upper rim and tetraester ionophores at the lower rim was synthesized in six steps,and its structure was proved by NMR and ESI-MS spectro-scopies. Furthermore,the chemosensing behavior of the host compound for alkali and alkaline earth metal ions was investigated by fluorescence spectroscopy. The obtained results show that the calix-arene host can selectively bind sodium ion with the complexation stability constant of 2190 mol-1.L. The complexation with sodium ion can pronouncedly induce the excimer emission to decrease and the monomer emission to increase,whereas the addition of the other alkali and alkaline earth metal ions does not cause appreciable changes in the fluorescence spectrum of the host compound. The present calix[4]arene derivative displays potential application as fluorescent chemosensor for sodium ion.

  11. CO2 hydrogenation to methanol

    OpenAIRE

    Frilund, Christian

    2016-01-01

    The literature survey discusses the recent developments in heterogeneous catalytic hydrogenation of CO2 to methanol. Special focus was given to new coated catalysts and reactors. Methanol is an important chemical that is currently produced from synthesis gas. Methanol can also be produced from CO2, but the reaction is less thermodynamically favoured. The main reaction is the exothermic CO2 hydrogenation, and there is a competing fast reaction, the reverse water-gas shift, which converts CO2 t...

  12. Catalytic reforming feed characterisation technique

    Energy Technology Data Exchange (ETDEWEB)

    Larraz Mora, R.; Arvelo Alvarez, R. [Univ. of La Laguna, Chemical Engineering Dept., La Laguna (Spain)

    2002-09-01

    The catalytic reforming of naphtha is one of the major refinery processes, designed to increase the octane number of naphtha or to produce aromatics. The naphtha used as catalytic reformer feedstock usually contains a mixture of paraffins, naphthenes, and aromatics in the carbon number range C{sub 6} to C{sub 10}. The detailed chemical composition of the feed is necessary to predict the aromatics and hydrogen production as well as the operation severity. The analysis of feed naphtha is usually reported in terms of its ASTM distillation curve and API or specific gravity. Since reforming reactions are described in terms of lumped chemical species (paraffins, naphthenes and aromatics), a feed characterisation technique should be useful in order to predict reforming operating conditions and detect feed quality changes. Unfortunately online analyzer applications as cromatography or recently introduced naphtha NMR [1] are scarce in most of refineries. This work proposes an algorithmic characterisation method focusing on its main steps description. The method could help on the subjects previously described, finally a calculation example is shown. (orig.)

  13. Catalytic conversion of light alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  14. Methods of using structures including catalytic materials disposed within porous zeolite materials to synthesize hydrocarbons

    Science.gov (United States)

    Rollins, Harry W.; Petkovic, Lucia M.; Ginosar, Daniel M.

    2011-02-01

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  15. Removal of uranyl ions by p-hexasulfonated calyx[6]arene acid

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, Ioana-Carmen [R and D National Institute for Metals and Radioactive Resources–ICPMRR, B-dul Carol I No.70, Sector 2, Bucharest 020917 (Romania); Petru, Filip [“C.D. Nenitescu” Institute of Organic Chemistry, Splaiul Independentei 202B, Sector 6, Bucharest 71141 (Romania); Humelnicu, Ionel [“Al.I. Cuza” University of Iasi, The Faculty of Chemistry, Bd. Carol-I No. 11, Iasi 700506 (Romania); Mateescu, Marina [National R and D Institute for Chemistry and Petrochemistry, Splaiul Independenţei No. 202, Bucharest 060021 (Romania); Militaru, Ecaterina [R and D National Institute for Metals and Radioactive Resources–ICPMRR, B-dul Carol I No.70, Sector 2, Bucharest 020917 (Romania); Humelnicu, Doina, E-mail: doinah@uaic.ro [“Al.I. Cuza” University of Iasi, The Faculty of Chemistry, Bd. Carol-I No. 11, Iasi 700506 (Romania)

    2014-10-15

    Radioactive pollution is a significant threat for the people’s health. Therefore highly effective radioactive decontamination methods are required. Ion exchange, biotechnologies and phytoremediation in constructed wetlands have been used as radioactive decontamination technologies for uranium contaminated soil and water remediation. Recently, beside those classical methods the calix[n]arenic derivatives’ utilization as radioactive decontaminators has jogged attention. The present work aims to present the preliminary research results of uranyl ion sorption studies on the p-hexasulfonated calyx[6]arenic acid. The effect of temperature, contact time, sorbent amount and uranyl concentration variation on sorption efficiency was investigated. Isotherm models revealed that the sorption process fit better Langmuir isotherm.

  16. Removal of uranyl ions by p-hexasulfonated calyx[6]arene acid

    Science.gov (United States)

    Popescu (Hoştuc), Ioana-Carmen; Petru, Filip; Humelnicu, Ionel; Mateescu, Marina; Militaru, Ecaterina; Humelnicu, Doina

    2014-10-01

    Radioactive pollution is a significant threat for the people’s health. Therefore highly effective radioactive decontamination methods are required. Ion exchange, biotechnologies and phytoremediation in constructed wetlands have been used as radioactive decontamination technologies for uranium contaminated soil and water remediation. Recently, beside those classical methods the calix[n]arenic derivatives’ utilization as radioactive decontaminators has jogged attention. The present work aims to present the preliminary research results of uranyl ion sorption studies on the p-hexasulfonated calyx[6]arenic acid. The effect of temperature, contact time, sorbent amount and uranyl concentration variation on sorption efficiency was investigated. Isotherm models revealed that the sorption process fit better Langmuir isotherm.

  17. The study of p-tert-butylcalix[n]arene on {gamma}-radiation stabilization of polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Feng Wen; Yuan Lihua; Zheng Shiyou; Huang Guanglin [Sichuan Univ., Chengdu (China); Qiao Jinliang [Beijing Research Institute of Chemical Industry, Beijing (China)

    2000-03-01

    The {gamma}-radiation effect of polyropylene was investigated in the presence of three kinds of p-tert-butylcalix[n]arene (n=4,6,8) in air or in vacuum at ambient temperature. The influence of radiation dose and store time upon the mechanical properties of the irradiated PP sheets were measured. The results showed that the radiation stabilization was reduced with the increase of the ring size of calixarenes. Based on the mass spectra and the analysis of post-irradiated product, the mechanism of radiation degradation of p-tert-butylcalix[4]arene has been proposed. (author)

  18. Synthesis and Chiral Recognition of a New Type of Chiral Calix[4]arene Derivatives

    Institute of Scientific and Technical Information of China (English)

    HE,Yong-Bing; LI,Jian-Feng; XIAO,Yuan-Jing; WEI,Lan-Hua; WU,Xiao-Jun; MENG,Ling-Zhi

    2003-01-01

    Two new chiral calix[4] arenes bearing chiral pendants, which were from by-product of the antibiotic industry, were synthesized and characterized by 1H NMR, MS-FAB and elemental analysis. Studies of 1H NMR of the two calix [4] arene derivatives indicate that they exist in cone conformation in solution. Results of chiral recognition of the two chiral ligands 2a and 2b towards the tartaric acid derivative 3 show that ligand 2a exhibited good chiral recognition abilities compared to ligand 2b.

  19. Synthesis and Characterization of Two New p-tert-Butylcalix[4]-arene Schiff Bases

    Directory of Open Access Journals (Sweden)

    Saeed Taghvaee Ganjali

    2001-03-01

    Full Text Available Synthesis and characterization of two new Schiff bases of p-tertbuthylcalix[4]arene (H2L1 and HL2 is described. The synthesis of H2L1 and HL2 has been achieved by the condensation of salicylaldehyde with the amine group of upper rim monoamine p-tert-butylcalix[4]arene in ethanol. These compounds have been characterized on the basis of elemental analysis and spectral data. Solvatochromicity and fluorescence properties were observed and measured for H2L1 and HL2. Solvatochromicity of these ligands indicates their potential for NLO applications.

  20. Double Heteroatom Functionalization of Arenes Using Benzyne Three‐Component Coupling†

    Science.gov (United States)

    García‐López, José‐Antonio; Çetin, Meliha

    2015-01-01

    Abstract Arynes participate in three‐component coupling reactions with N, S, P, and Se functionalities to yield 1,2‐heteroatom‐difunctionalized arenes. Using 2‐iodophenyl arylsulfonates as benzyne precursors, we could effectively add magnesiated S‐, Se‐, and N‐nucleophilic components to the strained triple bond. In the same pot, addition of electrophilic N, S, or P reagents and a copper(I) catalyst trapped the intermediate aryl Grignard to produce a variety of 1,2‐difunctionalized arenes. PMID:25580700

  1. Encapsulation of chromen-4-one Schiff's bases by C-Hexylpyrogallol[4]arene and its structure

    Science.gov (United States)

    Chandrasekaran, Sowrirajan; Enoch, Israel V. M. V.

    2015-12-01

    In this paper, we report the encapsulation of Chromen-4-one Schiff's base derivatives with the host molecule C-Hexylpyrogallol[4]arene. The stoichiometry, binding constant, and the mode of association of the guest molecules with C-Hexylpyrogallol[4]arene are investigated by ultraviolet-visible absorption, steady-state and time-resolved fluorescence, and two dimensional Rotating-frame nuclear Overhauser spectroscopic techniques. The stoichiometry of the host-guest complexes is 1:2. The binding constants of the complexes are of the order of 104. The structures of the host-guest complexes are proposed.

  2. Permanent Encapsulation or Host–Guest Behavior of Aromatic Molecules in Hexanuclear Arene Ruthenium Prisms

    OpenAIRE

    Freudenreich, Julien; Barry, Nicolas P. E.; Süss-Fink, Georg; Therrien, Bruno

    2012-01-01

    Cationic arene ruthenium metallaprisms of the general formula [Ru6(p-cymene)6(tpt)2(OO∩OO)3]6+ {tpt = 2,4,6-tris(4-pyridyl)-1,3,5-triazine; OO∩OO = 9,10-dioxo-9,10-dihydroanthracene-1,4-diolato [1]6+, 6,11-dioxo-6,11-dihydronaphthacene-5,12-diolato [2]6+} have been obtained from the corresponding dinuclear arene ruthenium complexes [Ru2(p-cymene)2(OO∩OO)Cl2] by reaction with tpt and silver trifluoromethanesulfonate. Aromatic molecules (phenanthrene, pyrene, triphenylene, coronene) present dur...

  3. The synthesis and bioevaluation of the dicyclic arene-homospermidine conjugates

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Four novel dicyclic arene-homospermidine conjugates (6a-d) were synthesized and evaluated for cytotoxicity in L1210, α-difluoromethylornithine (DFMO) treated L1210, melanoma B 16, spermidine (SPD) treated B 16, and Hela cells. In the DFMO-treated L1210 experiments, 6a-d were more sensitive to DFMO than naphthalene-homospermidine (6e), suggesting that 6a-d can utilize the polyamine transporter (PAT) to enter the cells as well as 6e. The diminished cytotoxicity in the SPD/B 16 experiments also supported this conclusion. In summary, the homospermidine is an efficacious vector to ferry dicyclic arenes into cells via PAT.

  4. Modeling the active site of [FeFe]-hydrogenase: Electro-catalytic hydrogen evolution from acetic acid catalysed by [Fe2(-L)(CO)6] and [Fe2(-L)(CO)5(PPh3)] (L=pyrazine-2, 3-dithiolate, quinoxaline-2, 3-dithiolate and pyrido[2,3-b] pyrazine-2, 3-dithiolate)

    Indian Academy of Sciences (India)

    Gummadi Durgaprasad; Samar K Das

    2015-02-01

    Compounds [Fe2{-pydt}(CO)6] (pydt = pyrazine-2,3-dithiolate) (1), [Fe2{-qdt}(CO)6] (qdt = quinoxaline-2,3-dithiolate) (2), [Fe2{-ppdt}CO)6] (ppdt = pyrido[2,3-b]pyrazine-2,3-dithiolate) (3), [Fe2{-pydt}(CO)5PPh3] (4), [Fe2{-qdt}(CO)5PPh3] (5) and [Fe2{-ppdt}(CO)5PPh3] (6) have been synthesized in order to model the active sites of `[FeFe]-hydrogenase’. Compounds 1–6 have been characterized by routine spectral studies and unambiguously by single crystal X-ray crystallography. Supramolecular chemistry of compounds 1–6 have been described in terms of intermolecular interactions, observed in their respective crystal structures. Electro-catalytic hydrogen evaluation studies (from acetic acid) have been performed using compounds 1–6 as electro-catalysts. The mechanistic aspects of relevant electro–catalytic proton reductions have been discussed in detail.

  5. Session 4: Enhanced sulfur resistance and catalytic properties of Pd-Pt supported on TiO{sub 2} - modified Al{sub 2}O{sub 3} in the hydrogenation of biphenyl and HDS of dibenzothiophene

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, S.; Montesinos, A.; Viveros, T.; Los Reyes, J.A. de [Universidad Autonoma Metropolitana-Iztapalapa (Mexico)

    2004-07-01

    In the hydrotreatment (HDT) of petroleum cuts to produce diesel, the selection of active and highly selective catalysts for hydrogenation (HYD) of aromatics is a fundamental issue in the second stage of multi-staged processes. It is well know that precious metals (Pd-Pt mainly) are suitable for this reaction. However, sulfur compounds at low concentration may poison these catalysts. Thus, this work focuses on the evaluation in the hydrogenation of an aromatic compound of Pd-Pt catalysts supported on TiO{sub 2}-modified Al{sub 2}O{sub 3} by using two reactions in presence of sulfur, the hydrogenation (HYD) of biphenyl (BP) and the hydrodesulfurization (HDS) of dibenzothiophene (DBT). The obtained experimental results are given and explained. (O.M.)

  6. Computations between metallocalix(4)arene host and a series of four oil-based fuel pollutant guests

    International Nuclear Information System (INIS)

    Calculations using PM3 and mechanics methods on metallocalix(4)arene hosts (1-10) and substituted dibenzothiophene guests (A-D), which are generally known as oil-based fuel pollutants, show that host-guest formation is energetically favored. Calculations have been carried out for both 1/1 and 1/4 ratios of host/guest. There is no direct bonding between the metal center of the host and the sulfur of the guest in the host-guest complex. Sterically hundered dibenzothiophene guests show similar energies to the unhindered analogs. For calix(4)arenas (5-10) in partial cone conformations and having hydrogen rather than p-tert-butyl groups on the wide rim, host-guest formation occurs within the narrow rim rather than the wide rim. Host-guest association appears to occur via Pie-Pie interactions between host and guest phenyl groups rather than via metal-sulfur bonding. The study has importance especially in oil refining to obtain environmentally safe fuel oils and help supramolecular chemists in designing and synthesizing more sophisticated host molecules for the removal of sulfur from crude oil / refinery oil. (author)

  7. The role of palladium in a hydrogen economy

    OpenAIRE

    Adams, Brian D.; Aicheng Chen

    2011-01-01

    We are facing accelerated global warming due to the accumulation of greenhouse gases. A hydrogen-based economy is one potential approach toward maintaining our standard of living while lowering carbon dioxide emissions. Palladium is a unique material with a strong affinity to hydrogen owing to both its catalytic and hydrogen absorbing properties. Palladium has the potential to play a major role in virtually every aspect of the envisioned hydrogen economy, including hydrogen purification, stor...

  8. Studies of morphological optical and electrical properties of the MEH-PPV/azo-calix[4]arene composite layers

    International Nuclear Information System (INIS)

    Thin films of poly[2-methoxy-5-(20-ethylhexyloxy)-1,4 phenylenevinylene] (MEH-PPV), 5,17-bis(4-nitrophenylazo)-26,28-dihydroxy-25,27-di(ethoxycarbonylmethoxy) -calix[4]arene (azo-calix[4]arene) and MEH-PPV doped azo-calix[4]arene, with 30 wt% and 70 wt% doping ratios, were prepared from chloroform solution by spin coating technique on quartz and ITO substrates. Morphological and optical properties of the samples were investigated by scanning electron microscopy (SEM) and UV–visible spectrophotometry techniques, respectively. Further, the charge carrier transport properties and conduction mechanism of the composite MEH-PPV:azo-calix[4]arene thin films based junction were studied by using current–voltage (I–V) characteristics and dielectric spectroscopy technique. I–V characteristic of ITO/MEH-PPV:azo-calix[4]arene/Al devices showed that the space charge limited conduction (SCLC) dominates in the high voltage region. Moreover, frequency dependence of ac conductivity obeys Jonscher's universal power law. Finally, dielectric constant (ε′), dielectric loss (ε″) and loss tangent (tan δ) were investigated as function of amount of azo-calix[4]arene in the MEH-PPV polymer matrix

  9. Studies of morphological optical and electrical properties of the MEH-PPV/azo-calix[4]arene composite layers

    Science.gov (United States)

    Rouis, A.; Davenas, J.; Bonnamour, I.; Ben Ouada, H.

    2015-10-01

    Thin films of poly[2-methoxy-5-(20-ethylhexyloxy)-1,4 phenylenevinylene] (MEH-PPV), 5,17-bis(4-nitrophenylazo)-26,28-dihydroxy-25,27-di(ethoxycarbonylmethoxy)-calix[4]arene (azo-calix[4]arene) and MEH-PPV doped azo-calix[4]arene, with 30 wt% and 70 wt% doping ratios, were prepared from chloroform solution by spin coating technique on quartz and ITO substrates. Morphological and optical properties of the samples were investigated by scanning electron microscopy (SEM) and UV-visible spectrophotometry techniques, respectively. Further, the charge carrier transport properties and conduction mechanism of the composite MEH-PPV:azo-calix[4]arene thin films based junction were studied by using current-voltage (I-V) characteristics and dielectric spectroscopy technique. I-V characteristic of ITO/MEH-PPV:azo-calix[4]arene/Al devices showed that the space charge limited conduction (SCLC) dominates in the high voltage region. Moreover, frequency dependence of ac conductivity obeys Jonscher's universal power law. Finally, dielectric constant (ε‧), dielectric loss (ε″) and loss tangent (tan δ) were investigated as function of amount of azo-calix[4]arene in the MEH-PPV polymer matrix.

  10. Studies of morphological optical and electrical properties of the MEH-PPV/azo-calix[4]arene composite layers

    Energy Technology Data Exchange (ETDEWEB)

    Rouis, A., E-mail: rouisahlem2@yahoo.fr [Laboratoire des Interfaces et Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Avenue de l’environnement, 5000 Monastir (Tunisia); Davenas, J. [Polymer Materials Engineering Laboratory IMP, UMR CNRS 5223, Université Claude Bernard Lyon 1, 15 boulevard Latarjet, 69622 Villeurbanne (France); Bonnamour, I. [Institut de Chimie & Biochimie Moléculaires & Supramoléculaires (ICBMS), UMR CNRS 5246, 43 Boulevard du 11 Novembre 1918, Université Claude Bernard Lyon 1, 69100 Villeurbanne (France); Ben Ouada, H. [Laboratoire des Interfaces et Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Avenue de l’environnement, 5000 Monastir (Tunisia)

    2015-10-01

    Thin films of poly[2-methoxy-5-(20-ethylhexyloxy)-1,4 phenylenevinylene] (MEH-PPV), 5,17-bis(4-nitrophenylazo)-26,28-dihydroxy-25,27-di(ethoxycarbonylmethoxy) -calix[4]arene (azo-calix[4]arene) and MEH-PPV doped azo-calix[4]arene, with 30 wt% and 70 wt% doping ratios, were prepared from chloroform solution by spin coating technique on quartz and ITO substrates. Morphological and optical properties of the samples were investigated by scanning electron microscopy (SEM) and UV–visible spectrophotometry techniques, respectively. Further, the charge carrier transport properties and conduction mechanism of the composite MEH-PPV:azo-calix[4]arene thin films based junction were studied by using current–voltage (I–V) characteristics and dielectric spectroscopy technique. I–V characteristic of ITO/MEH-PPV:azo-calix[4]arene/Al devices showed that the space charge limited conduction (SCLC) dominates in the high voltage region. Moreover, frequency dependence of ac conductivity obeys Jonscher's universal power law. Finally, dielectric constant (ε′), dielectric loss (ε″) and loss tangent (tan δ) were investigated as function of amount of azo-calix[4]arene in the MEH-PPV polymer matrix.

  11. Catalytic distillation process

    Science.gov (United States)

    Smith, Jr., Lawrence A.

    1982-01-01

    A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  12. Catalytic Functions of Standards

    NARCIS (Netherlands)

    K. Blind (Knut)

    2009-01-01

    textabstractThe three different areas and the examples have illustrated several catalytic functions of standards for innovation. First, the standardisation process reduces the time to market of inventions, research results and innovative technologies. Second, standards themselves promote the diffusi

  13. Spectrofluorimetric determination of benzoimidazolic pesticides: Effect of p-sulfonatocalix[6]arene and cyclodextrins

    Energy Technology Data Exchange (ETDEWEB)

    Pacioni, Natalia L.; Sueldo Occello, Valeria N. [Instituto de Investigaciones en Fisico Quimica de Cordoba (INFIQC), Departamento de Quimica Organica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina); Lazzarotto, Marcio [Departamento de Quimica Organica, Instituto de Quimica, Universidade Federal do Rio Grande do Sul-UFRGS, 15003 Porto Alegre, R.S. (Brazil); Veglia, Alicia V. [Instituto de Investigaciones en Fisico Quimica de Cordoba (INFIQC), Departamento de Quimica Organica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina)], E-mail: aveglia@fcq.unc.edu.ar

    2008-08-22

    The effect of the addition of a macrocyclic host (H) such as p-sulfonatocalix[6]arene (C6S), native and modified cyclodextrins (CDs), on the fluorescence of benzoimidazolic fungicides (P), like Benomyl (BY) and Carbendazim (CZ), has been studied. The fluorescence of BY in water at pH 1.000 and 25.0 deg. C was increased in the presence of C6S, {alpha}CD and hydroxypropyl-{beta}-CD (HPCD). The association constants determined by fluorescence enhancement showed weak interactions (K{sub A} {approx} 10{sup 1} to 10{sup 2} M{sup -1}) between the fungicide with both CDs, whereas they were stronger with C6S (K{sub A} {approx} 10{sup 5} M{sup -1}). Molecular recognition of BY for C6S was mainly attributed to electrostatic interactions, and for CDs to the hydrophobic effect and hydrogen bond formation. On the other hand, the fluorescent behaviour of CZ in the presence of C6S at pH 6.994 was interpreted as the formation of two complexes with 1:1 (P:H) and 1:2 (P:H{sub 2}) stoichiometry, the latter being less fluorescent than the free analyte. Relative fluorescence quantum yield ratios between the complexed and free BY ({phi}{sup P:H}/{phi}{sup P}) were 2.00 {+-} 0.05, 1.40 {+-} 0.03 and 2.8 {+-} 0.4 for C6S, {alpha}CD and HPCD, respectively. The analytical parameters improved in the presence of C6S and CDs. The best limit of detection (L{sub D}, ng mL{sup -1}) was 17.4 {+-} 0.8 with HPCD. The proposed method with C6S and HPCD was successfully applied to fortified samples of tap water and orange flesh extract with good recoveries (91-106%) and R.S.D. ({<=}2%) by triplicate analysis. The method is rapid, direct and simple and needs no previous degradation or derivatization reaction.

  14. Selective single crystal complexation of L- or D-leucine by p-sulfonatocalix[6]arene.

    Science.gov (United States)

    Atwood, Jerry L; Dalgarno, Scott J; Hardie, Michaele J; Raston, Colin L

    2005-01-21

    p-Sulfonatocalix[6]arene, organised in the 'double cone' conformation, has multi-guest capability binding either L- or D-leucine in a single crystal in a bi-layer type arrangement from a racemic mixture of the amino acid. PMID:15645029

  15. Structural Effects on the Langmuir Monolayers of Calix[4]arene Induced by Lower Rim Aromatic Substitution

    Institute of Scientific and Technical Information of China (English)

    HE Wei-Jiang; QIU Lin; LI Jun-Bai; ZHANG Yu; GUO Zi-Jian; ZHU Long-Gen

    2006-01-01

    The Langmuir monolayer properties of lower rim aromatically substituted calix[4]arenes, 5,11,17,23-tetra-tertbutyl-25,27-bis(2-naphth-1'-ylacetylaminoethoxy)-26,28-dihydroxylcalix[4]arene (BNAEC), 5,11,17,23-tetra-tertbutyl-25,27-bis(2-benzoylamino ethoxy)-26,28-dihydroxylcalix[4]arene (BBAEC) and 5,11,17,23-tetra-tert-butyl-25,27-bis(2-cinnamoylaminoethoxy)-26,28-dihydroxylcalix[4]arene (BCAEC), have been studied. Film balance measurements and Brewster angle microscopy (BAM) observation demonstrate that all the compounds can form Langmuir monolayers with different molecular limiting areas. BNAEC or BBAEC monolayer is able to form condensed domains during compression, while BCAEC monolayer can never form condensed domain. BNAEC monolayer is more readily to form condensed domain than BBAEC monolayer. Moreover, BNAEC monolayer can form the total condensed phase during compression even when T=28 ℃, while BBAEC monolayer can not when T> 10 ℃. The results imply that different lower rim aromatic substitutions affect essentially the intermolecular interaction and molecular packing in the monolayer at air/water interface.

  16. Interconnective host-guest complexation of ß-cyclodextrin-calix[4]arene couples

    NARCIS (Netherlands)

    Bugler, Jürgen; Sommerdijk, Nico A.J.M.; Visser, Antonie J.W.G.; Hoek, van Arie; Nolte, Roeland J.M.; Engbersen, Johan F.J.; Reinhoudt, David N.

    1999-01-01

    The two ß-cyclodextrin-calix[4]arene couples 1 and 2 were prepared as sensing molecules for the detection of organic analytes in water. Compounds 1 and 2 are amphiphilic in nature and form aggregates in aqueous solution. Compound 1 forms vesicles both in the absence and in the presence of guest spec

  17. η6-Arene complexes of ruthenium and osmium with pendant donor functionalities

    KAUST Repository

    Reiner, Thomas

    2010-11-01

    Conversion of 4′-(2,5-dihydrophenyl)butanol or N-trifluoroacetyl-2,5- dihydrobenzylamine with MCl3·n H2O (M = Ru, Os) affords the corresponding dimeric η6-arene complexes in good to excellent yields. Under similar reaction conditions, the amine functionalized arene precursor 2,5-dihydrobenzylamine yields the corresponding Ru(II) complex. For osmium, HCl induced oxidation leads to formation of [OsCl6] 2- salts. However, under optimized reaction conditions, conversion of the precursor 2,5-dihydrobenzylamine chloride results in clean formation of η6-arene Os(II) complex. X-ray structures of [(η6- benzyl ammonium)(dmso)RuCl2] and (2,5-dihydrobenzyl ammonium) 4[OsCl6]2confirm the spectroscopic data. High stability towards air and acid as well as enhanced solubility in water is observed for all η6-arene complexes. © 2010 Elsevier B.V. All rights reserved.

  18. Why Aren't Philosophers and Educators Speaking to Each Other? Some Reasons for Hope.

    Science.gov (United States)

    Ellett, Frederick S., Jr.

    2002-01-01

    Responds to Arcilla's article, "Why Aren't Philosophers and Educators Speaking to One Another?" noting complexities that complicate the answer and suggesting that they are indeed communicating if one accepts a broader definition of philosophers and educators. The essay asserts that little educational research and theory has had much influence on…

  19. Thiacalix(4)arene derivatives as radium ionophores: a study on the requirements for Ra2+ extraction

    NARCIS (Netherlands)

    Leeuwen, van Fijs W.B.; Beijleveld, Hans; Velders, Aldrik H.; Huskens, Jurriaan; Verboom, Willem; Reinhoudt, David N.

    2005-01-01

    The synthesis and NOE-based structural characterization is described of thiacalix[4]arene tricarboxylic acid ( 7), thiacalix[4]crown-5 and -6 monocarboxylic acids ( 2 and 5), and the bis(N-methylsulfonyl)thiacalix[4]crowns-5 and -6 ( 4a,b). The 226Ra2+ selectivity coefficients, log(KRaex/KMex), of t

  20. Oxatub[4]arene: a molecular "transformer" capable of hosting a wide range of organic cations.

    Science.gov (United States)

    Jia, Fei; Wang, Hao-Yi; Li, Dong-Hao; Yang, Liu-Pan; Jiang, Wei

    2016-04-14

    The molecular "transformer", oxatub[4]arene, was found to be able to host a wide range of organic cations. The strong binding ability is believed to originate from its four interconvertible and deep-cavity conformers. The binding behavior of such adaptable receptors may provide implications for molecular recognition in nature. PMID:26955919

  1. Benzylation of arenes and heteroarenes catalyzed by HfCl4/HfO2

    Institute of Scientific and Technical Information of China (English)

    Cheng Yi Zhang; Xin Qin Gao; Jiang Hua Zhang; Xiao Jun Peng

    2009-01-01

    A highly efficient benzylation of arenes and heteroarenes catalyzed by HfC14/HfO2 has been developed. Broad scope of benzylation reagents have been used in this process with high yields under mild condition. Additionally, the HfO2 can be re-used after the reaction.

  2. Ruthenium(II) arene complexes with oligocationic triarylphosphine ligands: synthesis, DNA interactions and in vitro properties

    NARCIS (Netherlands)

    Snelders, D.J.M.; Casini, A.; Edafe, F.; van Koten, G.; Klein Gebbink, R.J.M.; Dyson, P.J.

    2011-01-01

    The synthesis, DNA binding properties and cytotoxicity of a series of Ru(II)-arene complexes containing oligocationic ammonium-functionalized triarylphosphines, of the type Ru(p-cymene)Cl2(L) (L ¼ oligocationic phosphine), are reported. The complexes are highly charged (the overall charge states bei

  3. One-pot synthesis of arene-fused 2-acylcyclohexenones from propargylic carboxylates

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    From readily available propargylic carboxylates, two sequential transformations―gold-catalyzed tandem reactions and Sc(OTf)3-catalyzed cyclization―in a one-pot process led to the formation of 2-acylcyclohexenones with an electron-rich arene ring fused at the 4,5-positions.

  4. One-pot synthesis of arene-fused 2-acylcyclohexenones from propargylic carboxylates

    Institute of Scientific and Technical Information of China (English)

    CAO SanSan; ZHANG LiMing

    2009-01-01

    From readily available propargylic carboxylates,two sequential transformations-gold-catalyzed tandem reactions and ScOTf3-catalyzed cyclization-in a one-pot process led to the formation of 2-acylcyclohexenones with an electron-rich arene ring fused at the 4,5-positions.

  5. Calix[4]arene supported clusters: a dimer of [Mn(III)Mn(II)] dimers

    DEFF Research Database (Denmark)

    Taylor, Stephanie M; McIntosh, Ruaraidh D; Beavers, Christine M;

    2011-01-01

    Phosphinate ligands allow for the transformation of a calix[4]arene supported [Mn(III)(2)Mn(II)(2)] tetramer cluster motif into an unusual [Mn(III)Mn(II)](2) dimer of dimers; the clusters self-assemble in the crystal to form bi-layer arrays reminiscent of the typical packing of calixarene solvates....

  6. Silver selective electrodes based on thioether functionalized calix[4]arenes as ionophores

    NARCIS (Netherlands)

    Malinowska, Elz˙bieta; Brzozka, Zbigniew; Kasiura, Krzysztof; Egberink, Richard J.M.; Reinhoudt, David N.

    1994-01-01

    Silver selective electrodes based on thioether functionalized calix[4]arenes 1 and 2 as ionophores were investigated. For both ionophores the selectivity coefficients (log kAg,M) were lower than −2.2 for Hg(II) and lower than −4.6 for other cations tested. The best results were obtained with membran

  7. Lead selective electrodes based on thioamide functionalized calix[4]arenes as ionophores

    NARCIS (Netherlands)

    Malinowska, Elz˙bieta; Brzozka, Zbigniew; Kasiura, Krzysztof; Egberink, Richard J.M.; Reinhoudt, David N.

    1994-01-01

    Lead selective electrodes based on a di- and tetrathioamide functionalized calix [4] arene as ionophores were investigated. The Pb(II)-response functions exhibited almost theoretical Nernstian slopes in the activity range 10¿6¿10¿2M of lead ions. For both ionophores a preference for lead over other

  8. Theoretical indications on the relationship between pyrogallol[4]arenes dynamics of assembling and geometry

    Directory of Open Access Journals (Sweden)

    Robert A. Cazar

    2014-05-01

    Full Text Available Pyrogallol[4]arenes are macrocycles with high potential as building blocks for nanocapsules. We theoretically studied the dimeric precursors of 2,8,14,20-tetramethylpyrogallol[4]arene and 2,8,10,14-tetraphenylpyrogallol[4] arene to understand the dynamics of assembly of these compounds, and calculated the potential energy curves along the torsion angle of the (R-pyrogallolCH–(R-pyrogallol dimeric bond at the B3LYP/6-311G(d,p level of theory. We found that the energy barriers for free rotation around the selected bond are 0.00133 Hartrees for the alkyl-substituted dimer and 0.77879 Hartrees for the aryl-substituted dimer. These values imply that the free rotation around the selected bond exists for the first dimer but not for the second one. Because the orientation of the substituent and the pyrogallol ring around this bond are likely to determine the geometry of the final structure, we propose that the alkyl-substituted compound will most likely adopt a crown-shaped geometry whereas the aryl-substituted compound will adopt a chair-shaped geometry. These predictions concur with experimental evidence, which shows that the geometry of pyrogallol[4]arenes depends on the substituents attached to them.

  9. Transition metal cations extraction by ester and ketone derivatives of chromogenic azocalix[4]arenes.

    Science.gov (United States)

    Ak, Metin; Taban, Deniz; Deligöz, Hasalettin

    2008-06-15

    The molecule of azocalix[n]arene is a macrocyclic used effectively in the complexation of the heavy metal pollutants (like silver and mercury). In this work, our main aim is to prepare new chromogenic azocalix[n]arene molecules to elaborate an extractant with high extractant selectivity for metal ions able to detect this type of pollutant. The solvent extraction properties of four acetyls, four methyl ketones and four benzoyls derivatives from azocalix[4]arenes which were prepared by linking 4-ethyl, 4-n-butyl, 4-acetamid anilin and 2-aminothiazol to calix[4]arene through a diazo-coupling reaction, the alkaline earth (Sr2+) and the transition (Ag+, Hg2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Cr3+) metal cations have been determined by extraction studies with metal picrates. Both ketones are better extractants than esters, and show a strong preference for Ag+, while Cu2+ and Cr3+ are the most extracted cation with the esters. Both acetyl and benzoyl esters are good carriers for Ag+ and Hg2+.

  10. Palladium-Catalyzed Desilylative Acyloxylation of Silicon-Carbon Bonds on (Trimethylsilyl)arenes: Synthesis of Phenol Derivatives from Trimethylsilylarenes.

    Science.gov (United States)

    Gondo, Keisuke; Oyamada, Juzo; Kitamura, Tsugio

    2015-10-01

    A strategy for desilylative acetoxylation of (trimethylsilyl)arenes has been developed in which (trimethylsilyl)arenes are converted into acetoxyarenes. The direct acetoxylation is performed in the presence of 5 mol % of Pd(OAc)2 and PhI(OCOCF3)2 (1.5 equiv) in AcOH at 80 °C for 17 h. The acetoxyarenes are obtained in good to high yields (67-98%). The synthetic utility is demonstrated with a one-pot transformation of (trimethylsilyl)arenes to phenols by successive acetoxylation and hydrolysis. Furthermore, desilylative acyloxylation of 2-(trimethylsilyl)naphthalene using several carboxylic acids has been conducted. PMID:26401835

  11. A catalytic recombiner performance analysis considering fluid dynamics in a containment

    Energy Technology Data Exchange (ETDEWEB)

    Tahara, Mika; Oikawa, Hirohide [Toshiba Corporation, Plant and System Planning Department, Yokohama, Kanagawa (Japan); Arai, Kenji [Toshiba Corporation, Nuclear System Analysis Technology R and D Department, Kawasaki, Kanagawa (Japan)

    2000-10-01

    A severe accident in a light water reactor has the potential to generate hydrogen resulting from metal-water reaction and radiolysis of water. To prevent hydrogen combustion, a flammability gas control system is installed in a reactor containment. Recently passive catalytic recombiners have been developed for the flammability gas control. The catalytic recombiner has advantages over the current heated type recombiner for low costs, easy maintenance, robustness during an accident, and flexible layout. However the hydrogen depletion rate of the catalytic recombiner is affected by the local thermal hydraulic conditions during an accident. To evaluate hydrogen depletion by the catalytic recombiner considering the thermal hydraulic conditions in the containment, a 3-dimensional fluid dynamics analysis is useful. Then a catalytic recombiner model has been developed in which the flammable gas depletion rate is estimated accounting for the flammable gas transfer rate to the catalyst active point from bulk gas. And this model has been incorporated into a 3-dimensional fluid dynamic model, which has been developed using a CFD code STAR-CD. In this paper the 3-dimensional catalytic recombiner model was applied to a catalytic recombiner consisting of plate type catalyst. Confirmation of this model was conducted by using the test result of KALI-H2. The analysis model reasonably predicts the local thermal hydraulic conditions in the containment and the catalytic recombiner performance. (author)

  12. Catalytic ignition of light hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    K. L. Hohn; C.-C. Huang; C. Cao

    2009-01-01

    Catalytic ignition refers to phenomenon where sufficient energy is released from a catalytic reaction to maintain further reaction without additional extemai heating. This phenomenon is important in the development of catalytic combustion and catalytic partial oxidation processes, both of which have received extensive attention in recent years. In addition, catalytic ignition studies provide experimental data which can be used to test theoretical hydrocarbon oxidation models. For these reasons, catalytic ignition has been frequently studied. This review summarizes the experimental methods used to study catalytic ignition of light hydrocarbons and describes the experimental and theoretical results obtained related to catalytic ignition. The role of catalyst metal, fuel and fuel concentration, and catalyst state in catalytic ignition are examined, and some conclusions are drawn on the mechanism of catalytic ignition.

  13. Non-traditional Process of Hydrogen Containing Fuel Mixtures Production for Internal-combustion Engines

    OpenAIRE

    Gennady G. Kuvshinov; Maksim V. Popov; Evgeny A. Soloviev; Armen I. Arzumanyan; Georgy A. Peshkov

    2012-01-01

    The article justifies the perspectives of development of the environmentally sound technology of hydrogen containing fuel mixtures for internal-combustion engines based on the catalytic process of low-temperature decomposition of hydrocarbons into hydrogen and nanofibrous carbon.

  14. Numerical Simulation of Hydrogen Assisted Lean Methane Catalytic Oxidation in a Micro-Channel%微细通道内氢气辅助甲烷催化氧化的数值模拟

    Institute of Scientific and Technical Information of China (English)

    冉景煜; 吴晟; 赵柳洁

    2011-01-01

    对微圆管内低浓度氢气、甲烷混合气在铂表面的催化氧化进行了数值模拟,重点研究了添加氢气对甲烷反应的影响机理.结果表明,氧气占据空位活性中心抑制了甲烷的吸附,导致较高的催化着火温度;氢气的掺入可以降低甲烷氧化反应的起始温度和着火温度;在铂催化剂表面,甲烷的催化氧化发生在氢气的燃烧过程中,氢气在燃烧过程中消耗氧气,为甲烷的反应提供必需的空位活性中心(Pt(s));甲烷的着火主要受其自身的激发,甲烷着火以前,壁面活性中心几乎全被氧占据,而甲烷着火以后,O(s)和Pt(s)同为主要壁面组分.%The catalytic oxidation of fuel-lean CH4-H2 mixtures over Pt was investigated numerically in a micro-channel , focusing on the impact of the adition of H2 on CH4 reaction in principle. The results show that the surface sites Pt (s) are covered by O2, inhibiting the adsorption of CH4 and resulting in a high ignition temperature. The added H2 can decrease the initial reaction temperature and ignition temperature of CH4. The catalytic oxidation of CH4 on Pt occurs during the combustion of H2. The reaction of H2 and O2 provides CH4 with necessary uncovered surface sites (Pt (s)). The ignition of CH4 is mainly promoted by itself. Before CH4 ignition, the catalytic surface is mainly covered by O2, while after ignition, the main surface species are O (s) and Pt (s).

  15. Application of transition metal ferrites AFe2O4 (A= Co, Ni, Cu) for the catalytic decomposition of sulphuric acid involved in sulphur-iodine thermochemical cycle for nuclear hydrogen production

    International Nuclear Information System (INIS)

    Spinel ferrites with general formula AFe2O4 (A= Co, Ni, Cu) were prepared by glycine-nitrate gel combustion method and characterized using powder XRD, FTIR, SEM and Mossbauer spectroscopy. The redox properties of the samples were studied by recording multiple TPR/O cycles. The copper ferrite sample was found to be the most easily reducible sample with Tmax for reduction occurring at the lowest temperature among all samples. The catalytic activity of all the samples were evaluated for sulphuric acid decomposition reaction in the temperature range of 650 deg C-825 deg C. Copper ferrite was found to be the most active catalyst for the reaction with ∼ 78% conversion at 800 deg C. (author)

  16. Florida Hydrogen Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Block, David L

    2013-06-30

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety

  17. Mechanical alloying of a hydrogenation catalyst used for the remediation of contaminated compounds

    Science.gov (United States)

    Quinn, Jacqueline W. (Inventor); Clausen, Christian A. (Inventor); Geiger, Cherie L. (Inventor); Aitken, Brian S. (Inventor)

    2012-01-01

    A hydrogenation catalyst including a base material coated with a catalytic metal is made using mechanical milling techniques. The hydrogenation catalysts are used as an excellent catalyst for the dehalogenation of contaminated compounds and the remediation of other industrial compounds. Preferably, the hydrogenation catalyst is a bimetallic particle including zero-valent metal particles coated with a catalytic material. The mechanical milling technique is simpler and cheaper than previously used methods for producing hydrogenation catalysts.

  18. Catalytic coherence transformations

    Science.gov (United States)

    Bu, Kaifeng; Singh, Uttam; Wu, Junde

    2016-04-01

    Catalytic coherence transformations allow the otherwise impossible state transformations using only incoherent operations with the aid of an auxiliary system with finite coherence that is not being consumed in any way. Here we find the necessary and sufficient conditions for the deterministic and stochastic catalytic coherence transformations between a pair of pure quantum states. In particular, we show that the simultaneous decrease of a family of Rényi entropies of the diagonal parts of the states under consideration is a necessary and sufficient condition for the deterministic catalytic coherence transformations. Similarly, for stochastic catalytic coherence transformations we find the necessary and sufficient conditions for achieving a higher optimal probability of conversion. We thus completely characterize the coherence transformations among pure quantum states under incoherent operations. We give numerous examples to elaborate our results. We also explore the possibility of the same system acting as a catalyst for itself and find that indeed self-catalysis is possible. Further, for the cases where no catalytic coherence transformation is possible we provide entanglement-assisted coherence transformations and find the necessary and sufficient conditions for such transformations.

  19. Synthesis and Characterization of New Polyimide Containing Calix[4]arenes in the Polymer Backbone with Transport Ability

    Institute of Scientific and Technical Information of China (English)

    LI Lei; XIAN Chun-ying; ZHENG Li-min

    2008-01-01

    New polyimide containing cvalix[4]arene moieties on the polymer backbone was successfully synthesized in N-methyl-2-pyrrolidone(NMP) by polycondensations of 3,3', 4, 4'- oxydiphthalic anhydride (ODPA) with the diaminocalix[4]arene monomer using 3,3'-dimethyl-4, 4'-diaminodiphenylmethane(DADPM) as a third comononmer.The polyimide prepared is soluble in common solvents, such as NMP, DMAc, DMF and chloroform. The polyimide films obtained have excellent thermal stability and mechanical property. At the same time, the liquid membrane transport of potassimn ions by the new polyimide was investigated, which testified that compared to ODPA-DADPM polyimide, the polyimide containing calix[4] arenes has the transport ability to metal ions in regard to bulky, cone-like calix [4] arene moieties.

  20. Arene ruthenium complexes with monoanionic carborane ligand [9-SMe2-7,8-C2B9H10]-

    International Nuclear Information System (INIS)

    Cation ruthenium complexes [(η-arene)Ru(η-9-SMe2-7,8-C2B9H10)]+ (arene = C6H6 (1), 1, 3, 5 - C6H3Me3 (2), Me = methyl), containing carborane ligand, were prepared with the yield of ∼ 50% by interaction between salt Na[9-SMe2-7,8-C2B9H10] and complexes [(η - arene)RuCl2]2. Products of the reactions were characterized by the methods of elementary analysis and 1H, 11B NMR. According to X-ray diffraction analysis data complex cation 1 has a sandwich structure. Distances from ruthenium atom to plane C2B3 in carborane ligand and to plane C6 of arene make up 1.630 and 1.732 A, respectively