WorldWideScience

Sample records for catalysed partial oxidation

  1. Simultaneous iridium catalysed oxidation and enzymatic reduction employing orthogonal reagents

    NARCIS (Netherlands)

    Mutti, Francesco G.; Orthaber, Andreas; Schrittwieser, Joerg H.; Vries, Johannes G. de; Pietschnig, Rudolf; Kroutil, Wolfgang

    2010-01-01

    An iridium catalysed oxidation was coupled concurrently to an asymmetric biocatalytic reduction in one-pot; thus it was shown for the first time that iridium- and alcohol dehydrogenase-catalysed redox reactions are compatible. As a model system racemic chlorohydrins were transformed to

  2. Mechanistic aspects of Os(VIII) catalysed oxidation of loop diuretic ...

    Indian Academy of Sciences (India)

    furosemide by Ag(III) periodate complex in aqueous alkaline medium. SHWETA J .... Os(VIII) catalysed DPA oxidation, the order in [OH. −. ] ... Victoria-3170, Australia) connected to a rapid ..... follows. The furosemide, periodate and hydroxide ion.

  3. Mechanistic study of ruthenium (III) catalysed oxidation of L-lysine by ...

    Indian Academy of Sciences (India)

    Administrator

    MS received 15 April 2008; revised 2 July 2008. Abstract. The kinetics of Ru(III) catalysed oxidation of L-lysine by diperiodatoargentate (III) (DPA) in alkaline medium at 298 K and a constant ionic strength of 0⋅50 mol dm. –3 was studied spectrophotometri- cally. The oxidation products are aldehyde (5-aminopentanal) and ...

  4. Evaluating Pt-Ru/C mixtures as ethanol electro-oxidation catalysers

    Directory of Open Access Journals (Sweden)

    Bibian Alonso Hoyos

    2004-09-01

    Full Text Available This work studies ethanol electro-catalytic oxidation by cyclic voltametry in sulphuric acid solutions at different temperatures and concetrations, using platinum.rutenium mixtures supported in vitreous carbon as catalysers. The results indicate that ethanol oxidation in theses electrodes is irreversible, has slow kinetics, is controlled by charge transfer and is brought about by a bi-functional reaction mechanism, this being ethanol adsorption on platinum atoms and additional oxidation of specties adsorbed in the presence of platinum and retenium oxides. Experimental results show increased catalytic activity with electrodes, followed by reduced activity for electrodes having a greater quantity of rutenium.

  5. Organosilane oxidation by water catalysed by large gold nanoparticles in a membrane reactor

    NARCIS (Netherlands)

    Gitis, V.; Beerthuis, R.; Shiju, N.R.; Rothenberg, G.

    2014-01-01

    We show that gold nanoparticles catalyse the oxidation of organosilanes using water as oxidant at ambient conditions. Remarkably, monodispersions of small gold particles (3.5 nm diameter) and large ones (6-18 nm diameter) give equally good conversion rates. This is important because separating large

  6. Modelling of the partial oxidation of {alpha}, {beta}-unsaturated aldehydes on Mo-V-oxides based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Boehnke, H.; Petzoldt, J.C.; Stein, B.; Weimer, C.; Gaube, J.W. [Technische Univ. Darmstadt (Germany). Inst. fuer Chemische Technologie

    1998-12-31

    A kinetic model based on the Mars-van Krevelen mechanism that allows to describe the microkinetics of the heterogeneously catalysed partial oxidation of {alpha}, {beta}-unsaturated aldehydes is presented. This conversion is represented by a network, composed of the oxidation of the {alpha}, {beta}-unsaturated aldehyde towards the {alpha}, {beta}-unsaturated carboxylic acid and the consecutive oxidation of the acid as well as the parallel reaction of the aldehyde to products of deeper oxidation. The reaction steps of aldehyde respectively acid oxidation and catalyst reoxidation have been investigated separately in transient experiments. The combination of steady state and transient experiments has led to an improved understanding of the interaction of the catalyst with the aldehyde and the carboxylic acids as well as to a support of the kinetic model assumptions. (orig.)

  7. Mechanistic Investigation of Molybdate-Catalysed Transfer Hydrodeoxygenation

    DEFF Research Database (Denmark)

    Larsen, Daniel Bo; Petersen, Allan Robertson; Dethlefsen, Johannes Rytter

    2016-01-01

    The molybdate-catalysed transfer hydrodeoxygenation (HDO) of benzyl alcohol to toluene driven by oxidation of the solvent isopropyl alcohol to acetone has been investigated by using a combination of experimental and computational methods. A Hammett study that compared the relative rates for the t......The molybdate-catalysed transfer hydrodeoxygenation (HDO) of benzyl alcohol to toluene driven by oxidation of the solvent isopropyl alcohol to acetone has been investigated by using a combination of experimental and computational methods. A Hammett study that compared the relative rates...

  8. Palladium-catalysed anti-Markovnikov selective oxidative amination

    Science.gov (United States)

    Kohler, Daniel G.; Gockel, Samuel N.; Kennemur, Jennifer L.; Waller, Peter J.; Hull, Kami L.

    2018-03-01

    In recent years, the synthesis of amines and other nitrogen-containing motifs has been a major area of research in organic chemistry because they are widely represented in biologically active molecules. Current strategies rely on a multistep approach and require one reactant to be activated prior to the carbon-nitrogen bond formation. This leads to a reaction inefficiency and functional group intolerance. As such, a general approach to the synthesis of nitrogen-containing compounds from readily available and benign starting materials is highly desirable. Here we present a palladium-catalysed oxidative amination reaction in which the addition of the nitrogen occurs at the less-substituted carbon of a double bond, in what is known as anti-Markovnikov selectivity. Alkenes are shown to react with imides in the presence of a palladate catalyst to generate the terminal imide through trans-aminopalladation. Subsequently, olefin isomerization occurs to afford the thermodynamically favoured products. Both the scope of the transformation and mechanistic investigations are reported.

  9. Kinetics of bromide catalysed oxidation of dextrose by cerium (IV) in aqueous sulphuric acid solution

    International Nuclear Information System (INIS)

    Sharma, J.; Sah, M.P.

    1994-01-01

    Kinetics of bromide catalysed oxidation of dextrose by Ce IV in aqueous sulphuric acid medium show first order dependence each in dextrose and cerium(IV). The reaction rate decreases on increasing the concentration of hydrogen ion. The increase in [HSO 4 - ] or [SO 4 2- ] decreases the rate. The bromide ion shows positive catalytic effect on the reaction rate. The value of activation energy has been calculated and a suitable mechanism confirming to the kinetic data is proposed. (author). 3 refs., 3 tabs

  10. Structural changes of noble metal catalysts during ignition and extinction of the partial oxidation of methane studied by advanced QEXAFS techniques

    DEFF Research Database (Denmark)

    Grunwaldt, Jan-Dierk; Beier, M.; Kimmerle, B.

    2009-01-01

    The dynamics of the ignition and extinction of the catalytic partial oxidation (CPO) of methane to hydrogen and carbon monoxide over Pt-Rh/Al2O3 and Pt/Al2O3 were studied in the subsecond timescale using quick-EXAFS with a novel cam-driven X-ray monochromator employing Si(111) and Si(311) crystals...... to discuss the potential and limitation of this technique in catalysis and related areas. With respect to the noble metal catalysed partial oxidation of methane, several interesting observations were made: structural changes during ignition were-independent of the chosen reaction conditions......-significantly faster than during the extinction of the reaction. The dynamic behavior of the catalysts was dependent on the flow conditions and the respective noble metal component(s). Higher reaction gas flow led to a faster ignition process. While the ignition over Pt-Rh/Al2O3 occurred at lower temperature than over...

  11. Anion effect controlling the selectivity in the zinc-catalysed copolymerisation of CO2 and cyclohexene oxide

    Directory of Open Access Journals (Sweden)

    Sait Elmas

    2015-01-01

    Full Text Available The choice of the anion has a surprisingly strong effect on the incorporation of CO2 into the polymer obtained during the zinc-catalysed copolymerisation of CO2 and cyclohexene oxide. The product span ranges from polyethercarbonates, where short polyether sequences alternate with carbonate linkages, to polycarbonates with a strictly alternating sequence of the repeating units. Herein, we report on the influence of the coordination ability of the anion on the selectivity and kinetics of the copolymerisation reaction.

  12. Axial Changes of Catalyst Structure and Temperature in a Fixed-Bed Microreactor During Noble Metal Catalysed Partial Oxidation of Methane

    DEFF Research Database (Denmark)

    Hannemann, S.; Grunwaldt, Jan-Dierk; Kimmerle, B.

    2009-01-01

    The catalytic partial oxidation of methane (CPO) over flame-made 2.5%Rh-2.5%Pt/Al2O3 and 2.5%Rh/Al2O3 in 6%CH4/3%O-2/He shows the potential of in situ studies using miniaturized fixed-bed reactors, the importance of spatially resolved studies and its combination with infrared thermography and on-...

  13. Oxovanadium(IV)-catalysed oxidation of dibenzothiophene and 4,6-dimethyldibenzothiophene.

    Science.gov (United States)

    Ogunlaja, Adeniyi S; Chidawanyika, Wadzanai; Antunes, Edith; Fernandes, Manuel A; Nyokong, Tebello; Torto, Nelson; Tshentu, Zenixole R

    2012-12-07

    The reaction between [V(IV)OSO(4)] and the tetradentate N(2)O(2)-donor Schiff base ligand, N,N-bis(o-hydroxybenzaldehyde)phenylenediamine (sal-HBPD), obtained by the condensation of salicylaldehyde and o-phenylenediamine in a molar ratio of 2 : 1 respectively, resulted in the formation of [V(IV)O(sal-HBPD)]. The molecular structure of [V(IV)O(sal-HBPD)] was determined by single crystal X-ray diffraction, and confirmed the distorted square pyramidal geometry of the complex with the N(2)O(2) binding mode of the tetradentate ligand. The formation of the polymer-supported p[V(IV)O(sal-AHBPD)] proceeded via the nitrosation of sal-HBPD, followed by the reduction with hydrogen to form an amine group that was then linked to Merrifield beads followed by the reaction with [V(IV)OSO(4)]. XPS and EPR were used to confirm the presence of oxovanadium(IV) within the beads. The BET surface area and porosity of the heterogeneous catalyst p[V(IV)O(sal-AHBPD)] were found to be 6.9 m(2) g(-1) and 180.8 Å respectively. Microanalysis, TG, UV-Vis and FT-IR were used for further characterization of both [V(IV)O(sal-HBPD)] and p[V(IV)O(sal-AHBPD)]. Oxidation of dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) was investigated using [V(IV)O(sal-HBPD)] and p[V(IV)O(sal-AHBPD)] as catalysts. Progress for oxidation of these model compounds was monitored with a gas chromatograph fitted with a flame ionization detector. The oxidation products were characterized using gas chromatography-mass spectrometry, microanalysis and NMR. Dibenzothiophene sulfone (DBTO(2)) and 4,6-dimethyldibenzothiophene sulfone (4,6-DMDBTO(2)) were found to be the main products of oxidation. Oxovanadium(IV) Schiff base microspherical beads, p[V(IV)O(sal-AHBPD)], were able to catalyse the oxidation of sulfur in dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) to a tune of 88.0% and 71.8% respectively after 3 h at 40 °C. These oxidation results show promise for potential application

  14. Zeolite and zeotype-catalysed transformations of biofuranic compounds

    DEFF Research Database (Denmark)

    Li, Hu; Yang, Song; Riisager, Anders

    2016-01-01

    ,5-furandicarboxylic acid can be obtained from hexoses and pentoses via selective dehydration and subsequent etherification, hydrogenation, oxidation reactions, which show great potential for industrial applications to replace petroleum-based chemicals and fuels. Zeolite and zeotype micro- and mesoporous materials...... with tuneable acidity, good thermal stability and shape-selectivity have recently emerged as promising solid catalysts, exhibiting superior catalytic performance to other heterogeneous catalysts. This review focuses on the synthesis of biomass-derived furanic compounds catalysed by zeolitic materials, firstly...... introducing zeolite-catalysed hydrolysis of di-, oligo- and polysaccharides and isomerization reactions of monomeric sugars. Subsequently, the catalytic dehydration reactions of hexoses and pentoses to obtain HMF and furfural are reported. Particularly, a variety of reaction pathways towards upgrading...

  15. Enantioselective synthesis of almorexant via iridium-catalysed intramolecular allylic amidation

    NARCIS (Netherlands)

    Fananas Mastral, Martin; Teichert, Johannes F.; Fernandez-Salas, Jose Antonio; Heijnen, Dorus; Feringa, Ben L.

    2013-01-01

    An enantioselective synthesis of almorexant, a potent antagonist of human orexin receptors, is presented. The chiral tetrahydroisoquinoline core structure was prepared via iridium-catalysed asymmetric intramolecular allylic amidation. Further key catalytic steps of the synthesis include an oxidative

  16. Stopped Flow Kinetics of MnII Catalysed Periodate Oxidation of 2, 3- dimethylaniline - Evaluation of Stability Constant of the Ternary Intermediate Complex

    Directory of Open Access Journals (Sweden)

    Rajneesh Dutt Kaushik

    2015-03-01

    Full Text Available The formation of ternary intermediate unstable complex during the oxidation of aromatic amines by periodate ion catalysed by MnII has been proposed in case of some anilines. This paper is the first report on stopped-flow kinetic study and evaluation of stability constant of ternary complex forming in the MnII - catalysed periodate oxidation of 2, 3-dimethylaniline (D in acetone-water medium. Stop-flow spectrophotometric method was used to study the ternary complex formation and to determine its stability constant. The stop-flow trace shows the reaction to occur in two steps. The first step, which is presumably the formation of ternary complex, is relatively fast while the second stage is relatively quite slow. The stability constant evaluated for D - MnII - IO4- ternary complex by determining  equilibrium absorbance is (2.2 ± 1.0 × 105. Kinetics of ternary complex formation was defined by the rate law(A  under pseudo first order conditions. ln{[C2]eq / ( [C2]eq -[C2]} = kobs . t (A where, kobs is the pseudo first order rate constant, [C2] is concentration of ternary complex at given time t, and [C2]eq is the equilibrium concentration of ternary complex. © 2015 BCREC UNDIP. All rights reservedReceived: 3rd October 2014; Revised: 4th December 2014; Accepted: 15th December 2014How to Cite: Kaushik, R.D., Agarwal, R., Tyagi, P., Singh, O., Singh, J. (2015. Stopped Flow Kinetics of MnII Catalysed Periodate Oxidation of 2,3-dimethylaniline - Evaluation of Stability Constant of the Ternary Intermediate Complex. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (1: 78-87. (doi:10.9767/bcrec.10.1.7621.78-87Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.1.7621.78-87

  17. Oxidation of NAD dimers by horseradish peroxidase.

    OpenAIRE

    Avigliano, L; Carelli, V; Casini, A; Finazzi-Agrò, A; Liberatore, F

    1985-01-01

    Horseradish peroxidase catalyses the oxidation of NAD dimers, (NAD)2, to NAD+ in accordance with a reaction that is pH-dependent and requires 1 mol of O2 per 2 mol of (NAD)2. Horseradish peroxidase also catalyses the peroxidation of (NAD)2 to NAD+. In contrast, bacterial NADH peroxidase does not catalyse the peroxidation or the oxidation of (NAD)2. A free-radical mechanism is proposed for both horseradish-peroxidase-catalysed oxidation and peroxidation of (NAD)2.

  18. Partial oxidation of 2-propanol on perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Sumathi, R.; Viswanathan, B.; Varadarajan, T.K. [Indian Inst. of Tech., Madras (India). Dept. of Chemistry

    1998-12-31

    Partial oxidation of 2-propanol was carried out on AB{sub 1-x}B`{sub x}O{sub 3} (A=Ba, B=Pb, Ce, Ti; B`=Bi, Sb and Cu) type perovskite oxides. Acetone was the major product observed on all the catalysts. All the catalysts underwent partial reduction during the reaction depending on the composition of the reactant, nature of the B site cation and the extent of substitution at B site. The catalytic activity has been correlated with the reducibility of the perovskite oxides determined from Temperature Programmed Reduction (TPR) studies. (orig.)

  19. Reactor modeling and process analysis for partial oxidation of natural gas

    NARCIS (Netherlands)

    Albrecht, B.A.

    2004-01-01

    This thesis analyses a novel process of partial oxidation of natural gas and develops a numerical tool for the partial oxidation reactor modeling. The proposed process generates syngas in an integrated plant of a partial oxidation reactor, a syngas turbine and an air separation unit. This is called

  20. Kinetics and mechanism of RuIII catalysed oxidation of 1,2,3,4-tetrahydro-naphthalene (tetralin) by CeIV in aqueous nitric acid medium

    International Nuclear Information System (INIS)

    Vijaya Bhaskar Rao, N.; Anand Rao, M.

    2009-01-01

    The kinetics and mechanism of Ru III catalysed oxidation of 1,2,3,4-tetrahydronaphthalene (tetralin) by Ce IV in aqueous nitric acid to tetralone under the conditions (TL) > > (Ce IV ) at different temperatures (30-50 deg C) have been studied in 3.0 mol dm -3 nitric acid medium. The experimentally observed rate law conforms to -d(Ce IV )/dt = kK(Ce IV )(TL)(Ru III )/l + K(TL) + K(Ru III ). (author)

  1. Structural evidence for the partially oxidized dipyrromethene and dipyrromethanone forms of the cofactor of porphobilinogen deaminase: structures of the Bacillus megaterium enzyme at near-atomic resolution

    International Nuclear Information System (INIS)

    Azim, N.; Deery, E.; Warren, M. J.; Wolfenden, B. A. A.; Erskine, P.; Cooper, J. B.; Coker, A.; Wood, S. P.; Akhtar, M.

    2014-01-01

    The enzyme porphobilinogen deaminase (PBGD; hydroxymethylbilane synthase; EC 2.5.1.61) catalyses a key early step in the biosynthesis of tetrapyrroles in which four molecules of the monopyrrole porphobilinogen are condensed to form a linear tetrapyrrole. Two near-atomic resolution structures of PBGD from B. megaterium are reported that demonstrate the time-dependent accumulation of partially oxidized forms of the cofactor, including one that possesses a tetrahedral C atom in the terminal pyrrole ring. The enzyme porphobilinogen deaminase (PBGD; hydroxymethylbilane synthase; EC 2.5.1.61) catalyses an early step of the tetrapyrrole-biosynthesis pathway in which four molecules of the monopyrrole porphobilinogen are condensed to form a linear tetrapyrrole. The enzyme possesses a dipyrromethane cofactor, which is covalently linked by a thioether bridge to an invariant cysteine residue (Cys241 in the Bacillus megaterium enzyme). The cofactor is extended during the reaction by the sequential addition of the four substrate molecules, which are released as a linear tetrapyrrole product. Expression in Escherichia coli of a His-tagged form of B. megaterium PBGD has permitted the X-ray analysis of the enzyme from this species at high resolution, showing that the cofactor becomes progressively oxidized to the dipyrromethene and dipyrromethanone forms. In previously solved PBGD structures, the oxidized cofactor is in the dipyromethenone form, in which both pyrrole rings are approximately coplanar. In contrast, the oxidized cofactor in the B. megaterium enzyme appears to be in the dipyrromethanone form, in which the C atom at the bridging α-position of the outer pyrrole ring is very clearly in a tetrahedral configuration. It is suggested that the pink colour of the freshly purified protein is owing to the presence of the dipyrromethene form of the cofactor which, in the structure reported here, adopts the same conformation as the fully reduced dipyrromethane form

  2. Partial oxidation process

    International Nuclear Information System (INIS)

    Najjar, M.S.

    1987-01-01

    A process is described for the production of gaseous mixtures comprising H/sub 2/+CO by the partial oxidation of a fuel feedstock comprising a heavy liquid hydrocarbonaceous fuel having a nickel, iron, and vanadium-containing ash or petroleum coke having a nickel, iron, and vanadium-containing ash, or mixtures thereof. The feedstock includes a minimum of 0.5 wt. % of sulfur and the ash includes a minimum of 5.0 wt. % vanadium, a minimum of 0.5 ppm nickel, and a minimum of 0.5 ppm iron. The process comprises: (1) mixing together a copper-containing additive with the fuel feedstock; wherein the weight ratio of copper-containing additive to ash in the fuel feedstock is in the range of about 1.0-10.0, and there is at least 10 parts by weight of copper for each part by weight of vanadium; (2) reacting the mixture from (1) at a temperature in the range of 2200 0 F to 2900 0 F and a pressure in the range of about 5 to 250 atmospheres in a free-flow refactory lined partial oxidation reaction zone with a free-oxygen containing gas in the presence of a temperature moderator and in a reducing atmosphere to produce a hot raw effluent gas stream comprising H/sub 2/+CO and entrained molten slag; and where in the reaction zone and the copper-containing additive combines with at least a portion of the nickel and iron constituents and sulfur found in the feedstock to produce a liquid phase washing agent that collects and transports at least a portion of the vanadium-containing oxide laths and spinels and other ash components and refractory out of the reaction zone; and (3) separating nongaseous materials from the hot raw effluent gas stream

  3. Enhanced performance of solid oxide electrolysis cells by integration with a partial oxidation reactor: Energy and exergy analyses

    International Nuclear Information System (INIS)

    Visitdumrongkul, Nuttawut; Tippawan, Phanicha; Authayanun, Suthida; Assabumrungrat, Suttichai; Arpornwichanop, Amornchai

    2016-01-01

    Highlights: • Process design of solid oxide electrolyzer integrated with a partial oxidation reactor is studied. • Effect of key operating parameters of partial oxidation reactor on the electrolyzer performance is presented. • Exergy analysis of the electrolyzer process is performed. • Partial oxidation reactor can enhance the solid oxide electrolyzer performance. • Partial oxidation reactor in the process is the highest exergy destruction unit. - Abstract: Hydrogen production without carbon dioxide emission has received a large amount of attention recently. A solid oxide electrolysis cell (SOEC) can produce pure hydrogen and oxygen via a steam electrolysis reaction that does not emit greenhouse gases. Due to the high operating temperature of SOEC, an external heat source is required for operation, which also helps to improve SOEC performance and reduce operating electricity. The non-catalytic partial oxidation reaction (POX), which is a highly exothermic reaction, can be used as an external heat source and can be integrated with SOEC. Therefore, the aim of this work is to study the effect of operating parameters of non-catalytic POX (i.e., the oxygen to carbon ratio, operating temperature and pressure) on SOEC performance, including exergy analysis of the process. The study indicates that non-catalytic partial oxidation can enhance the hydrogen production rate and efficiency of the system. In terms of exergy analysis, the non-catalytic partial oxidation reactor is demonstrated to be the highest exergy destruction unit due to irreversible chemical reactions taking place, whereas SOEC is a low exergy destruction unit. This result indicates that the partial oxidation reactor should be improved and optimally designed to obtain a high energy and exergy system efficiency.

  4. Heterogeneous Partial (ammOxidation and Oxidative Dehydrogenation Catalysis on Mixed Metal Oxides

    Directory of Open Access Journals (Sweden)

    Jacques C. Védrine

    2016-01-01

    Full Text Available This paper presents an overview of heterogeneous partial (ammoxidation and oxidative dehydrogenation (ODH of hydrocarbons. The review has been voluntarily restricted to metal oxide-type catalysts, as the partial oxidation field is very broad and the number of catalysts is quite high. The main factors of solid catalysts for such reactions, designated by Grasselli as the “seven pillars”, and playing a determining role in catalytic properties, are considered to be, namely: isolation of active sites (known to be composed of ensembles of atoms, Me–O bond strength, crystalline structure, redox features, phase cooperation, multi-functionality and the nature of the surface oxygen species. Other important features and physical and chemical properties of solid catalysts, more or less related to the seven pillars, are also emphasized, including reaction sensitivity to metal oxide structure, epitaxial contact between an active phase and a second phase or its support, synergy effect between several phases, acid-base aspects, electron transfer ability, catalyst preparation and activation and reaction atmospheres, etc. Some examples are presented to illustrate the importance of these key factors. They include light alkanes (C1–C4 oxidation, ethane oxidation to ethylene and acetic acid on MoVTe(SbNb-O and Nb doped NiO, propene oxidation to acrolein on BiMoCoFe-O systems, propane (ammoxidation to (acrylonitrile acrylic acid on MoVTe(SbNb-O mixed oxides, butane oxidation to maleic anhydride on VPO: (VO2P2O7-based catalyst, and isobutyric acid ODH to methacrylic acid on Fe hydroxyl phosphates. It is shown that active sites are composed of ensembles of atoms whose size and chemical composition depend on the reactants to be transformed (their chemical and size features and the reaction mechanism, often of Mars and van Krevelen type. An important aspect is the fact that surface composition and surface crystalline structure vary with reaction on stream until

  5. Bactericidal activity of partially oxidized nanodiamonds.

    Science.gov (United States)

    Wehling, Julia; Dringen, Ralf; Zare, Richard N; Maas, Michael; Rezwan, Kurosch

    2014-06-24

    Nanodiamonds are a class of carbon-based nanoparticles that are rapidly gaining attention, particularly for biomedical applications, i.e., as drug carriers, for bioimaging, or as implant coatings. Nanodiamonds have generally been considered biocompatible with a broad variety of eukaryotic cells. We show that, depending on their surface composition, nanodiamonds kill Gram-positive and -negative bacteria rapidly and efficiently. We investigated six different types of nanodiamonds exhibiting diverse oxygen-containing surface groups that were created using standard pretreatment methods for forming nanodiamond dispersions. Our experiments suggest that the antibacterial activity of nanodiamond is linked to the presence of partially oxidized and negatively charged surfaces, specifically those containing acid anhydride groups. Furthermore, proteins were found to control the bactericidal properties of nanodiamonds by covering these surface groups, which explains the previously reported biocompatibility of nanodiamonds. Our findings describe the discovery of an exciting property of partially oxidized nanodiamonds as a potent antibacterial agent.

  6. Multicomponent Synthesis of Isoindolinone Frameworks via RhIII -Catalysed in situ Directing Group-Assisted Tandem Oxidative Olefination/Michael Addition.

    Science.gov (United States)

    Wang, Liang; Liu, Xi; Liu, Jian-Biao; Shen, Jun; Chen, Qun; He, Ming-Yang

    2018-04-04

    A Rh III -catalysed three-component synthesis of isoindolinone frameworks via direct assembly of benzoyl chlorides, o-aminophenols and activated alkenes has been developed. The process involves in situ generation of o-aminophenol (OAP)-based bidentate directing group (DG), Rh III -catalysed tandem ortho C-H olefination and subsequent cyclization via aza-Michael addition. This protocol exhibits good chemoselectivity and functional group tolerance. Computational studies showed that the presence of hydroxyl group on the N-aryl ring could enhance the chemoselectivity of the reaction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The dissolution of organic ion exchange resins using iron-catalysed hydrogen peroxide

    International Nuclear Information System (INIS)

    Hawkings, N.; Horton, K.D.; Snelling, K.W.

    1980-10-01

    Feasibility studies have been made of the dissolution/partial decomposition of radioactive waste resins by means of iron-catalysed hydrogen peroxide. They have shown that the procedure is limited in its application and successfully treats only polystyrene/divinylbenzene-based resins. Evaporation of the final solution produces a solid residue which is difficult to handle and results in only a relatively small reduction in volume. It is concluded that the method could be used to dissolve specific waste resins for easier handling and disposal, but is not of general applicability. (author)

  8. Magnetic properties of partially oxidized Fe films

    Science.gov (United States)

    Garcia, Miguel Angel; Lopez-Dominguez, Victor; Hernando, Antonio

    Hybrid magnetic nanostructures exhibit appealing properties due to interface and proximity effects. A simple and interesting system of hybrid magnetic nanomaterials are partially oxidized ferromagnetic films. We have fabricated Fe films by thermal evaporation and performed a partial oxidation to magnetite (Fe3O4) by annealing in air at different times and temperatures. The magnetic properties of the films evolve from those of pure metallic iron to pure magnetite, showing intermediate states where the proximity effects control the magnetic behavior. At some stages, the magnetization curves obtained by SQUID and MOKE magnetometry exhibit important differences due to the dissimilar contribution of both phases to the magneto-optical response of the system This work has been supported by the Ministerio Español de Economia y Competitividad (MINECO) MAT2013-48009-C4-1. V.L.D and M.A.G. acknowledges financial support from BBVA foundation.

  9. Rieske non-heme iron-dependent oxygenases catalyse diverse reactions in natural product biosynthesis.

    Science.gov (United States)

    Perry, Christopher; de Los Santos, Emmanuel L C; Alkhalaf, Lona M; Challis, Gregory L

    2018-04-13

    Covering: up to the end of 2017The roles played by Rieske non-heme iron-dependent oxygenases in natural product biosynthesis are reviewed, with particular focus on experimentally characterised examples. Enzymes belonging to this class are known to catalyse a range of transformations, including oxidative carbocyclisation, N-oxygenation, C-hydroxylation and C-C desaturation. Examples of such enzymes that have yet to be experimentally investigated are also briefly described and their likely functions are discussed.

  10. Isotopic effects in mechanistic studies of biotransformations of fluorine derivatives of L-alanine catalysed by L-alanine dehydrogenase

    International Nuclear Information System (INIS)

    Szymańska-Majchrzak, Jolanta; Pałka, Katarzyna; Kańska, Marianna

    2017-01-01

    Synthesis of 3-fluoro-[2- 2 H]-L-alanine (3-F-[ 2 H]-L-Ala) in reductive amination of 3-fluoropyruvic acid catalysed by L-alanine dehydrogenase (AlaDH) was described. Fluorine derivative was used to study oxidative deamination catalysed by AlaDH applied kinetic (for 3-F-L-Ala in H 2 O - KIE’s on V max : 1.1; on V max /K M : 1.2; for 3-F-L-Ala in 2 H 2 O – on V max : 1.4; on V max /K M : 2.1) and solvent isotope effect methods (for 3-F-L-Ala - SIE’s on V max : 1.0; on V max /K M : 0.87; for 3-F-[2- 2 H]-L-Ala – on V max : 1.4; on V max /K M : 1.5). Studies explain some details of reaction mechanism. - Highlights: • Synthesis of 3-fluoro-[2- 2 H]-L-alanine was performed. • The reactions were catalysed using the enzyme L-alanine dehydrogenase. • Performed reactions involved fluorinated analogues of L-alanine. • Solvent isotope effects of deuterium were determined. • Kinetic isotope effects were determined for obtained 3-fluoro-L-alanine. • The mechanism of reaction catalysed by L-alanine dehydrogenase was proposed.

  11. The influence of oscillations on product selectivity during the palladium-catalysed phenylacetylene oxidative carbonylation reaction.

    Science.gov (United States)

    Novakovic, Katarina; Grosjean, Christophe; Scott, Stephen K; Whiting, Andrew; Willis, Mark J; Wright, Allen R

    2008-02-07

    This paper reports on the influence of oscillations on product selectivity as well as the dynamics of product formation during the palladium-catalysed phenylacetylene oxidative carbonylation reaction in a catalytic system (PdI2, KI, Air, NaOAc in methanol). The occurrence of the pH oscillations is related to PdI2 granularity and the initial pH drop after phenylacetylene addition. To achieve pH and reaction exotherm oscillations regulation of the amount of PdI2 is required, ensuring that the initial pH does not fall significantly below 1 after phenylacetylene addition. Experiments in both oscillatory and non-oscillatory pH regimes were performed in an HEL SIMULAR reaction calorimeter with the concentration-time profiles measured using a GC-MS. It is demonstrated that when operating in an oscillatory pH regime product formation may be suppressed until oscillations occur after which there is a steep increase in the formation of Z-2-phenyl-but-2-enedioic acid dimethyl ester. When operating in non-oscillatory pH mode the products are formed steadily over time with the main products being Z-2-phenyl-but-2-enedioic acid dimethyl ester, 2-phenyl-acrylic acid methyl ester and E-3-phenyl-acrylic acid methyl ester.

  12. Palladium-Catalysed Coupling Reactions

    NARCIS (Netherlands)

    de Vries, Johannes G.; Beller, M; Blaser, HU

    2012-01-01

    Palladium-catalysed coupling reactions have gained importance as a tool for the production of pharmaceutical intermediates and to a lesser extent also for the production of agrochemicals, flavours and fragrances, and monomers for polymers. In this review only these cases are discussed where it seems

  13. Kinetics and Mechanistic Study of the Ruthenium(III Catalysed Oxidative Decarboxylation of L-Proline by Alkaline Heptavalent Manganese (Stopped flow technique

    Directory of Open Access Journals (Sweden)

    R. S. Shettar

    2005-01-01

    Full Text Available The kinetics of ruthenium(III catalysed oxidation of L-Proline by permanganate in alkaline medium at a constant ionic strength has been studied spectrophotometrically using a rapid kinetic accessory. The reaction between permanganate and L-Proline in alkaline medium exhibits 2:1 stoichiometry (KMnO4: L-Proline. The reaction shows first order dependence on [permanganate] and [ruthenium(III] and apparent less than unit order dependence each in L-Proline and alkali concentrations. Reaction rate increases with increase in ionic strength and decrease in solvent polarity of the medium. Initial addition of reaction products did not affect the rate significantly. A mechanism involving the formation of a complex between catalyst and substrate has been proposed. The activation parameters were computed with respect to the slow step of the mechanism and discussed

  14. Oxidation of C/SiC Composites at Reduced Oxygen Partial Pressures

    Science.gov (United States)

    Opila, Elizabeth J.; Serra, Jessica

    2009-01-01

    Carbon-fiber reinforced SiC (C/SiC) composites are proposed for leading edge applications of hypersonic vehicles due to the superior strength of carbon fibers at high temperatures (greater than 1500 C). However, the vulnerability of the carbon fibers in C/SiC to oxidation over a wide range of temperatures remains a problem. Previous oxidation studies of C/SiC have mainly been conducted in air or oxygen, so that the oxidation behavior of C/SiC at reduced oxygen partial pressures of the hypersonic flight regime are less well understood. In this study, both carbon fibers and C/SiC composites were oxidized over a wide range of temperatures and oxygen partial pressures to facilitate the understanding and modeling of C/SiC oxidation kinetics for hypersonic flight conditions.

  15. Hydrogen generator, via catalytic partial oxidation of methane for fuel cells

    Science.gov (United States)

    Recupero, Vincenzo; Pino, Lidia; Di Leonardo, Raffaele; Lagana', Massimo; Maggio, Gaetano

    It is well known that the most acknowledged process for generation of hydrogen for fuel cells is based upon the steam reforming of methane or natural gas. A valid alternative could be a process based on partial oxidation of methane, since the process is mildly exothermic and therefore not energy intensive. Consequently, great interest is expected from conversion of methane into syngas, if an autothermal, low energy intensive, compact and reliable process could be developed. This paper covers the activities, performed by the CNR Institute of Transformation and Storage of Energy (CNR-TAE), on theoretical and experimental studies for a compact hydrogen generator, via catalytic selective partial oxidation of methane, integrated with second generation fuel cells (EC-JOU2 contract). In particular, the project focuses the attention on methane partial oxidation via heterogeneous selective catalysts, in order to: demonstrate the basic catalytic selective partial oxidation of methane (CSPOM) technology in a subscale prototype, equivalent to a nominal output of 5 kWe; develop the CSPOM technology for its application in electric energy production by means of fuel cells; assess, by a balance of plant analysis, and a techno-economic evaluation, the potential benefits of the CSPOM for different categories of fuel cells.

  16. Ag-catalysed cutting of multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    La Torre, A; Rance, G A; Miners, S A; Lucas, C Herreros; Smith, E F; Giménez-López, M C; Khlobystov, A N; Fay, M W; Brown, P D; Zoberbier, T; Kaiser, U

    2016-01-01

    In this work, the cutting of carbon nanotubes is investigated using silver nanoparticles deposited on arc discharge multi-walled carbon nanotubes. The composite is subsequently heated in air to fabricate shortened multi-walled nanotubes. Complementary transmission electron microscopy and spectroscopy techniques shed light on the cutting mechanism. The nanotube cutting is catalysed by the fundamental mechanism based on the coordination of the silver atoms to the π-bonds of carbon nanotubes. As a result of the metal coordination, the strength of the carbon–carbon bond is reduced, promoting the oxidation of carbon at lower temperature when heated in air, or lowering the activation energy required for the removal of carbon atoms by electron beam irradiation, assuring in both cases the cutting of the nanotubes. (paper)

  17. Experimental and simulation analysis of hydrogen production by partial oxidation of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Sikander, U. [National Univ. of Science and Technology, Islamabad (Pakistan)

    2014-10-15

    Partial oxidation of methanol is the only self-sustaining process for onboard production of hydrogen. For this a fixed bed catalytic reactor is designed, based on heterogeneous catalytic reaction. To develop an optimized process, simulation is carried out using ASPEN HYSYS v 7.1. Reaction kinetics is developed on the basis of Langmuir Hinshel wood model. 45:55:5 of CuO: ZnO: Al/sub 2/O/sub 3/ is used as a catalyst. Simulation results are studied in detail to understand the phenomenon of partial oxidation of methanol inside the reactor. An experimental rig is developed for hydrogen production through partial oxidation of methanol. Results obtained from process simulation and experimental work; are compared with each other. (author)

  18. Effect of oxygen partial pressure on oxidation of Mo-metal

    Science.gov (United States)

    Sharma, Rabindar Kumar; Kumar, Prabhat; Singh, Megha; Gopal, Pawar; Reddy, G. B.

    2018-05-01

    This report explains the effect of oxygen partial pressure (PO2 ) on oxidation of Mo-metal in oxygen plasma. XRD results indulge that oxide layers formed on Mo-surfaces at different oxygen partial pressures have two different oxide phases (i.e. orthorhombic MoO3 and monoclinic Mo8O23). Intense XRD peaks at high pressure (i.e. 2.0×10-1 Torr) points out the formation of thick oxide layer on Mo-surface due to presence of large oxygen species in chamber and less oxide volatilization. Whereas, at low PO2 (6.5×10-2 and 7.5×10-2 Torr.) the reduced peak strength is owing to high oxide volatilization rate. SEM micrographs and thickness measurements also support XRD results and confirm that the optimum -2value of PO2 to deposited thicker and uniform oxide film on glass substrate is 7.5×10-2 Torr through plasma assistedoxidation process. Further to study the compositional properties, EDX of the sample M2 (the best sample) is carried out, which confirms that the stoichiometric ratio is less than 3 (i.e. 2.88). Less stoichiometric ratio again confirms the presence of sub oxides in oxide layers on Mo metal as evidenced by XRD results. All the observed results are well in consonance with each other.

  19. Catalytic Partial Oxidation of Biomass/Oil Mixture

    Czech Academy of Sciences Publication Activity Database

    Veselý, Václav; Hanika, Jiří; Tukač, V.; Lederer, J.; Kovač, D.

    2013-01-01

    Roč. 7, č. 10 (2013), s. 1940-1945 ISSN 1934-8983 R&D Projects: GA TA ČR TE01020080; GA MPO 2A-2TP1/024 Institutional support: RVO:67985858 Keywords : hydrocarbon oil * biomass * catalytic partial oxidation Subject RIV: CI - Industrial Chemistry, Chemical Engineering http://www.davidpublishing.com/journals_info.asp?jId=1718#

  20. Chemical polishing of partially oxidized T-111 alloy

    International Nuclear Information System (INIS)

    Teaney, P.E.

    1974-01-01

    The specimens were pressure-mounted in Bakelite and ground through 600 grit on silicon carbide papers. The specimens were rough-polished on a vibratory polisher for 4 to 6 h, using a water slurry of one micron alumina on Texmet, followed by 0.3-μ alumina on Texmet overnight. Final polishing was accomplished by continuous swabbing with a chemical polish. A chemical polish consisting of ten parts lactic acid, four parts nitric acid, and four parts hydrofluoric acid worked well for the T-111 parent material specimens; however, in the partially oxidized specimens, considerable pitting and staining occurred in the oxygen-affected zone and in the transition zone between the oxygen-affected zone and the parent material. A chemical polish was developed for the partially oxidized specimens by adjusting the ratio of the acids to ten parts lactic acid, two parts nitric acid, and two parts hydrofluoric acid. This slowed the chemical attack on the oxygen-affected zone considerably and, with continuous swabbing, the pitting and stain could be avoided. The specimens were rinsed and checked occasionally on the metallograph to determine when the proper polish had been obtained. Some specimens required intermittent polishing times up to 1 / 2 hour. No relationship could be established between the oxygen content of the specimen and the time required for chemical polishing in the partially oxidized specimens. However, the microstructure of the transition zone was the most difficult to obtain, and specimens with uniform reaction zones across the width of the specimen polished quicker than those with the transition zone

  1. Advances in the Partial Oxidation of Methane to Synthesis Gas

    Institute of Scientific and Technical Information of China (English)

    Quanli Zhu; Xutao Zhao; Youquan Deng

    2004-01-01

    The conversion and utilization of natural gas is of significant meaning to the national economy,even to the everyday life of people. However, it has not become a popular industrial process as expected due to the technical obstacles. In the past decades, much investigation into the conversion of methane,predominant component of natural gas, has been carried out. Among the possible routes of methane conversion, the partial oxidation of methane to synthesis gas is considered as an effective and economically feasible one. In this article, a brief review of recent studies on the mechanism of the partial oxidation of methane to synthesis gas together with catalyst development is wherein presented.

  2. Partial oxidation of methane in a temperature-controlled dielectric barrier discharge reactor

    KAUST Repository

    Zhang, Xuming

    2015-01-01

    We studied the relative importance of the reduced field intensity and the background reaction temperature in the partial oxidation of methane in a temperature-controlled dielectric barrier discharge reactor. We obtained important mechanistic insight from studying high-temperature and low-pressure conditions with similar reduced field intensities. In the tested range of background temperatures (297 < T < 773 K), we found that the conversion of methane and oxygen depended on both the electron-induced chemistry and the thermo-chemistry, whereas the chemical pathways to the products were overall controlled by the thermo-chemistry at a given temperature. We also found that the thermo-chemistry enhanced the plasma-assisted partial oxidation process. Our findings expand our understanding of the plasma-assisted partial oxidation process and may be helpful in the design of cost-effective plasma reformers. © 2014 The Combustion Institute.

  3. Hydrogen storage and evolution catalysed by metal hydride complexes.

    Science.gov (United States)

    Fukuzumi, Shunichi; Suenobu, Tomoyoshi

    2013-01-07

    The storage and evolution of hydrogen are catalysed by appropriate metal hydride complexes. Hydrogenation of carbon dioxide by hydrogen is catalysed by a [C,N] cyclometalated organoiridium complex, [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))benzoic acid-κC(3))(OH(2))](2)SO(4) [Ir-OH(2)](2)SO(4), under atmospheric pressure of H(2) and CO(2) in weakly basic water (pH 7.5) at room temperature. The reverse reaction, i.e., hydrogen evolution from formate, is also catalysed by [Ir-OH(2)](+) in acidic water (pH 2.8) at room temperature. Thus, interconversion between hydrogen and formic acid in water at ambient temperature and pressure has been achieved by using [Ir-OH(2)](+) as an efficient catalyst in both directions depending on pH. The Ir complex [Ir-OH(2)](+) also catalyses regioselective hydrogenation of the oxidised form of β-nicotinamide adenine dinucleotide (NAD(+)) to produce the 1,4-reduced form (NADH) under atmospheric pressure of H(2) at room temperature in weakly basic water. In weakly acidic water, the complex [Ir-OH(2)](+) also catalyses the reverse reaction, i.e., hydrogen evolution from NADH to produce NAD(+) at room temperature. Thus, interconversion between NADH (and H(+)) and NAD(+) (and H(2)) has also been achieved by using [Ir-OH(2)](+) as an efficient catalyst and by changing pH. The iridium hydride complex formed by the reduction of [Ir-OH(2)](+) by H(2) and NADH is responsible for the hydrogen evolution. Photoirradiation (λ > 330 nm) of an aqueous solution of the Ir-hydride complex produced by the reduction of [Ir-OH(2)](+) with alcohols resulted in the quantitative conversion to a unique [C,C] cyclometalated Ir-hydride complex, which can catalyse hydrogen evolution from alcohols in a basic aqueous solution (pH 11.9). The catalytic mechanisms of the hydrogen storage and evolution are discussed by focusing on the reactivity of Ir-hydride complexes.

  4. Generation of synthesis gas by partial oxidation of natural gas in a gas turbine

    NARCIS (Netherlands)

    Cornelissen, R.; Tober, E.; Kok, Jacobus B.W.; van der Meer, Theodorus H.

    2006-01-01

    The application of partial oxidation in a gas turbine (PO-GT) in the production of synthesis gas for methanol production is explored. In PO-GT, methane is compressed, preheated, partial oxidized and expanded. For the methanol synthesis a 12% gain in thermal efficiency has been calculated for the

  5. A hydrogen fuel cell for rapid, enzyme-catalysed organic synthesis with continuous monitoring.

    Science.gov (United States)

    Wan, Lei; Megarity, Clare F; Siritanaratkul, Bhavin; Armstrong, Fraser A

    2018-01-23

    A one-pot fuel cell for specific, enzyme-catalysed organic synthesis, with continuous monitoring of rate and reaction progress, combines an electrode catalysing rapid, reversible and diffusion-controlled interconversion of NADP + and NADPH with a Pt electrode catalysing 2H + /H 2 interconversion. This Communication demonstrates its performance and characteristics using the reductive amination of 2-oxoglutarate as a test system.

  6. Catalysed electrolytic metal oxide dissolution processes

    International Nuclear Information System (INIS)

    Machuron-Mandard, X.

    1994-01-01

    The hydrometallurgical processes designed for recovering valuable metals from mineral ores as well as industrial wastes usually require preliminary dissolution of inorganic compounds in aqueous media before extraction and purification steps. Unfortunately, most of the minerals concerned hardly or slowly dissolve in acidic or basic solutions. Metallic oxides, sulfides and silicates are among the materials most difficult to dissolve in aqueous solutions. They are also among the main minerals containing valuable metals. The redox properties of such materials sometimes permit to improve their dissolution by adding oxidizing or reducing species to the leaching solution, which leads to an increase in the dissolution rate. Moreover, limited amounts of redox promoters are required if the redox agent is regenerated continuously thanks to an electrochemical device. Nuclear applications of such concepts have been suggested since the dissolution of many actinide compounds (e.g., UO 2 , AmO 2 , PuC, PuN,...) is mainly based on redox reactions. In the 1980s, improvements of the plutonium dioxide dissolution process have been proposed on the basis of oxidation-reduction principles, which led a few years later to the design of industrial facilities (e.g., at Marcoule or at the french reprocessing plant of La Hague). General concepts and well-established results obtained in France at the Atomic Energy Commission (''Commissariat a l'Energie Atomique'') will be presented and will illustrate applications to industrial as well as analytical problems. (author)

  7. The influence of the oxygen partial pressure on the quasi-ternary system Cr-Mn-Ti-oxide

    International Nuclear Information System (INIS)

    Garcia-Rosales, C.; Schulze, H.A.; Naoumidis, A.; Nickel, H.

    1991-05-01

    The passivation layers formed by the oxidizing corrosion of high temperature alloys consist primarily of oxides and mixed oxides of the elements chromium, manganese and titanium. For a reproducible formation and characterization of such oxide layers it is necessary to know the phase equilibria of these oxide systems at temperature and oxygen partial pressure conditions which will be relevant during their application. For the investigation of the quasi-ternary system Cr-Mn-Ti-oxide, oxide powders were prepared and annealed at 1000deg C under different oxygen partial pressures ranging from 0.21 bar to 10 -21 bar. Phase identification and determination of lattice parameter using X-ray diffraction analysis as well as the direct measurement of phase boundaries as a function of oxygen partial pressure using the emf-methode were carried out for these investigations. In the quasi-ternary system Cr-Mn-Ti-oxide the spinels play a decisive role in the oxigen partial pressure range examined. The spinel MnCr 2 O 4 may be regarded as the most significant compound. Part of the chronium can be replaced by trivalent manganese at high oxygen partial pressures and by trivalent titanium at low pressures, and the formation of a solid solution with the spinel Mn 2 TiO 4 is possible in all cases. In this way a coherent single-phase spinel region is observed which extends over the entire oxygen partial pressure range form 0.21 bar to 10 -21 bar examined at 1000deg C. (orig.) [de

  8. One-Pot Synthesis of Cu(II Complex with Partially Oxidized TTF Moieties

    Directory of Open Access Journals (Sweden)

    Hiroki Oshio

    2012-07-01

    Full Text Available The one-pot synthesis of a Cu(II complex with partially oxidized tetrathiafulvalene (TTF moieties in its capping MT-Hsae-TTF ligands, [CuII(MT-sae-TTF2] [CuICl2] was realized by the simultaneous occurrence of Cu(II complexation and CuIICl2 mediated oxidation of TTF moieties. The crystal structure was composed of one-dimensional columns formed by partially oxidized TTF moieties and thus the cation radical salt showed relatively high electrical conductivity. Tight binding band structure calculations indicated the existence of a Peierls gap due to the tetramerization of the TTF moieties in the one-dimensional stacking column at room temperature, which is consistent with the semiconducting behavior of this salt.

  9. Kinetic studies of isooctane partial oxidation over a nickel-based catalyst

    International Nuclear Information System (INIS)

    Ibrahim, Hussameldin; Idem, Raphael; Aboudheir, Ahmed

    2006-01-01

    The production of hydrogen (H 2 ) for fuel cell applications in mobile vehicles by reforming technologies such as partial oxidation of various fossil fuels has gained much attention recently. In this study, the production of H 2 by the catalytic partial oxidation of isooctane ((C 8 H 18 ) used here as a surrogate for gasoline) was investigated over alumina (AI 2 O 3 )supported nickel (Ni) catalyst. The work investigated the kinetics of the partial oxidation of isooctane over a stable Ni/□-AI 2 O 3 catalyst in the range of 863 to 913 K, at atmospheric pressure, W/F i c8 in the range of 1.97 to 8.58 g h mol - 1, and molar feed ratio in the range of 2.0 to 8.0 experiments to obtain kinetic data were performed in a 12.7 mm diameter Inconel micro-reactor housed in an electrically controlled furnace. The chemical reaction was then modeled using rate models developed from the Langmuir-Hinshelwood-hougen-Watson (LHHW) and Eley-Rideal (ER) formulations. The model parameters were estimated using an adaptive Gauss-Newton and Marquardi-Levenberg minimization algorithm. Rival models were screened for their thermodynamic consistency and physicochemical significance of estimated parameters. Langmuir-Hinshelwood-hougen-Watson mechanism requiring the dissociative adsorption of isooctane and oxygen on two different sites appeared to be the most likely pathway for the partial oxidation reaction of isooctane. Reaction order with respect to isooctane indicates the strong coverage of nickel by isooctane. The activation energy of 73±3.1 kJ mol - 1 estimated from the LHHW model is consistent with the trend observed with lower hydrocarbons.(Author)

  10. Dipeptide catalysed prebiotic polymerization of RNA

    DEFF Research Database (Denmark)

    Wieczorek, Rafal; Luisi, Pier Luigi; Monnard, Pierre-Alain

    2011-01-01

    toward more peptide synthesis. In the present work we describe a prebiotically plausible system in which the SerHis dipeptide acts as catalyst for the formation of RNA oligomers from imidazole derivatives of mononucleotides. The thermodynamic shift towards condensation was achieved using water...... be an important factor from an origin-of-life point of view. Short peptides are plausible products of prebiotic chemistry2. Consequently, they could have influenced chemical evolution on an early stage. An enzyme catalysing hydrolytic reactions can in principle be used as catalyst for condensation: the reverse......-concentrated in the remaining liquid microinclusions, thus creating an environment with low water activity in which condensation reactions can occur. Successful oligomerization of RNA monomers catalysed by the SerHis dipeptide was observed in a broad range of pH, and with all four natural nucleobases. The isomeric dipeptide...

  11. Hemicellulose hydrolysis catalysed by solid acids

    NARCIS (Netherlands)

    Carà, P.D.; Pagliaro, M.; Elmekawy, A.; Brown, D.R.; Verschuren, P.; Shiju, N.R.; Rothenberg, G.

    2013-01-01

    Depolymerising hemicellulose into platform sugar molecules is a key step in developing the concept of an integrated biorefinery. This reaction is traditionally catalysed by either enzymes or homogeneous mineral acids. We compared various solid catalysts for hemicellulose hydrolysis, running

  12. Oxidative stress and partial migration in brown trout (Salmo trutta)

    DEFF Research Database (Denmark)

    Birnie-Gauvin, Kim; Peiman, K. S.; Larsen, Martin Hage

    2017-01-01

    of oxidative status in migration biology, particularly in fish. Semi-anadromous brown trout (Salmo trutta, Linnaeus 1758) exhibit partial migration, where some individuals smoltify and migrate to sea, and others become stream residents, providing us with an excellent model to investigate the link between...... oxidative stress and migration. Using the brown trout, we obtained blood samples from juveniles from a coastal stream in Denmark in the fall prior to peak seaward migration which occurs in the spring, and assayed for antioxidant capacity (oxygen radical absorbance capacity) and oxidative stress levels...

  13. An Overview of Recent Advances of the Catalytic Selective Oxidation of Ethane to Oxygenates

    Directory of Open Access Journals (Sweden)

    Robert D. Armstrong

    2016-05-01

    Full Text Available The selective partial oxidation of short chain alkanes is a key challenge within catalysis research. Direct ethane oxidation to oxygenates is a difficult aim, but potentially rewarding, and it could lead to a paradigm shift in the supply chain of several bulk chemicals. Unfortunately, low C–H bond reactivity and kinetically labile products are just some reasons affecting the development and commercialisation of such processes. Research into direct ethane oxidation is therefore disparate, with approaches ranging from oxidation in the gas phase at high temperatures to enzyme catalysed hydroxylation under ambient conditions. Furthermore, in overcoming the barrier posed by the chemically inert C–H bond a range of oxidants have been utilised. Despite years of research, this remains an intriguing topic from both academic and commercial perspectives. Herein we describe some recent developments within the field of catalytic ethane oxidation focusing on the formation of oxygenated products, whilst addressing the key challenges which are still to be overcome.

  14. Hydrogen or Soot?: Partial Oxidation of High-boiling Hydrocarbon Wastes

    Czech Academy of Sciences Publication Activity Database

    Lederer, J.; Hanika, Jiří; Nečesaný, F.; Poslední, W.; Tukač, V.; Veselý, Václav

    2015-01-01

    Roč. 29, č. 1 (2015), s. 5-11 ISSN 0352-9568 Institutional support: RVO:67985858 Keywords : partial oxidation * waste * hydrocarbon Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.675, year: 2015

  15. Study of film graphene/graphene oxide obtained by partial reduction chemical of oxide graphite

    International Nuclear Information System (INIS)

    Gascho, J.L.S.; Costa, S.F.; Hoepfner, J.C.; Pezzin, S.H.

    2014-01-01

    This study investigated the morphology of graphene/graphene oxide film obtained by partial chemical reduction of graphite oxide (OG) as well as its resistance to solvents. Films of graphene/graphene oxide are great candidates for replacement of indium oxide doped with tin (ITO) in photoelectric devices. The OG was obtained from natural graphite, by Hummer's method modified, and its reduction is made by using sodium borohydride. Infrared spectroscopy analysis of Fourier transform (FTIR), Xray diffraction (XRD) and scanning electron microscopy, high-resolution (SEM/FEG) for the characterization of graphene/graphene oxide film obtained were performed. This film proved to be resilient, not dispersing in any of the various tested solvents (such as ethanol, acetone and THF), even under tip sonication, this resistance being an important property for the applications. Furthermore, the film had a morphology similar to that obtained by other preparation methods.(author)

  16. Palladium(II)-Catalysed Aminocarbonylation of Terminal Alkynes for the Synthesis of 2-Ynamides: Addressing the Challenges of Solvents and Gas Mixtures.

    Science.gov (United States)

    Hughes, N Louise; Brown, Clare L; Irwin, Andrew A; Cao, Qun; Muldoon, Mark J

    2017-02-22

    2-Ynamides can be synthesised through Pd II catalysed oxidative carbonylation, utilising low catalyst loadings. A variety of alkynes and amines can be used to afford 2-ynamides in high yields, whilst overcoming the drawbacks associated with previous oxidative methods, which rely on dangerous solvents and gas mixtures. The use of [NBu 4 ]I allows the utilisation of the industrially recommended solvent ethyl acetate. O 2 can be used as the terminal oxidant, and the catalyst can operate under safer conditions with low O 2 concentrations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Palm H-FAME Production through Partially Hydrogenation using Nickel/Carbon Catalyst to Increase Oxidation Stability

    Directory of Open Access Journals (Sweden)

    Ramayeni Elsa

    2018-01-01

    Full Text Available One of the methods to improve the oxidation stability of palm biodiesel is through partially hydrogenation. The production using Nickel/Carbon catalyst to speed up the reaction rate. Product is called Palm H-FAME (Hydrogenated FAME. Partial hydrogenation breaks the unsaturated bond on FAME (Fatty Acid Methyl Ester, which is a key component of the determination of oxidative properties. Changes in FAME composition by partial hydrogenation are predicted to change the oxidation stability so it does not cause deposits that can damage the injection system of diesel engine, pump system, and storage tank. Partial hydrogenation is carried out under operating conditions of 120 °C and 6 bar with 100:1, 100:3, 100:5, 100:10 % wt catalyst in the stirred batch autoclave reactor. H-FAME synthesis with 100:5 % wt Ni/C catalyst can decrease the iodine number which is the empirical measure of the number of unsaturated bonds from 91.78 to 82.38 (g-I2/100 g with an increase of oxidation stability from 585 to 602 minutes.

  18. Palladium(II)‐Catalysed Aminocarbonylation of Terminal Alkynes for the Synthesis of 2‐Ynamides: Addressing the Challenges of Solvents and Gas Mixtures

    Science.gov (United States)

    Hughes, N. Louise; Brown, Clare L.; Irwin, Andrew A.; Cao, Qun

    2017-01-01

    Abstract 2‐Ynamides can be synthesised through PdII catalysed oxidative carbonylation, utilising low catalyst loadings. A variety of alkynes and amines can be used to afford 2‐ynamides in high yields, whilst overcoming the drawbacks associated with previous oxidative methods, which rely on dangerous solvents and gas mixtures. The use of [NBu4]I allows the utilisation of the industrially recommended solvent ethyl acetate. O2 can be used as the terminal oxidant, and the catalyst can operate under safer conditions with low O2 concentrations. PMID:27906507

  19. Mechanistic Investigation of Molybdate-Catalysed Transfer Hydrodeoxygenation.

    Science.gov (United States)

    Larsen, Daniel B; Petersen, Allan R; Dethlefsen, Johannes R; Teshome, Ayele; Fristrup, Peter

    2016-11-07

    The molybdate-catalysed transfer hydrodeoxygenation (HDO) of benzyl alcohol to toluene driven by oxidation of the solvent isopropyl alcohol to acetone has been investigated by using a combination of experimental and computational methods. A Hammett study that compared the relative rates for the transfer HDO of five para-substituted benzylic alcohols was carried out. Density-functional theory (DFT) calculations suggest a transition state with significant loss of aromaticity contributes to the lack of linearity observed in the Hammett study. The transfer HDO could also be carried out in neat PhCH 2 OH at 175 °C. Under these conditions, PhCH 2 OH underwent disproportionation to yield benzaldehyde, toluene, and significant amounts of bibenzyl. Isotopic-labelling experiments (using PhCH 2 OD and PhCD 2 OH) showed that incorporation of deuterium into the resultant toluene originated from the α position of benzyl alcohol, which is in line with the mechanism suggested by the DFT study. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Catalytic partial oxidation of pyrolysis oils

    Science.gov (United States)

    Rennard, David Carl

    2009-12-01

    This thesis explores the catalytic partial oxidation (CPO) of pyrolysis oils to syngas and chemicals. First, an exploration of model compounds and their chemistries under CPO conditions is considered. Then CPO experiments of raw pyrolysis oils are detailed. Finally, plans for future development in this field are discussed. In Chapter 2, organic acids such as propionic acid and lactic acid are oxidized to syngas over Pt catalysts. Equilibrium production of syngas can be achieved over Rh-Ce catalysts; alternatively mechanistic evidence is derived using Pt catalysts in a fuel rich mixture. These experiments show that organic acids, present in pyrolysis oils up to 25%, can undergo CPO to syngas or for the production of chemicals. As the fossil fuels industry also provides organic chemicals such as monomers for plastics, the possibility of deriving such species from pyrolysis oils allows for a greater application of the CPO of biomass. However, chemical production is highly dependent on the originating molecular species. As bio oil comprises up to 400 chemicals, it is essential to understand how difficult it would be to develop a pure product stream. Chapter 3 continues the experimentation from Chapter 2, exploring the CPO of another organic functionality: the ester group. These experiments demonstrate that equilibrium syngas production is possible for esters as well as acids in autothermal operation with contact times as low as tau = 10 ms over Rh-based catalysts. Conversion for these experiments and those with organic acids is >98%, demonstrating the high reactivity of oxygenated compounds on noble metal catalysts. Under CPO conditions, esters decompose in a predictable manner: over Pt and with high fuel to oxygen, non-equilibrium products show a similarity to those from related acids. A mechanism is proposed in which ethyl esters thermally decompose to ethylene and an acid, which decarbonylates homogeneously, driven by heat produced at the catalyst surface. Chapter 4

  1. Selenium dioxide catalysed oxidation of acetic acid hydrazide

    Indian Academy of Sciences (India)

    The mechanism of the reaction involves prior complex formation between the catalyst and substrate, hydrazide, followed by its oxidation by diprotonated bromate in a slow step. Acetic acid was found to be the oxidation product. Other kinetic data like effect of solvent polarity and ionic strength on the reaction support the ...

  2. The chemical energy unit partial oxidation reactor operation simulation modeling

    Science.gov (United States)

    Mrakin, A. N.; Selivanov, A. A.; Batrakov, P. A.; Sotnikov, D. G.

    2018-01-01

    The chemical energy unit scheme for synthesis gas, electric and heat energy production which is possible to be used both for the chemical industry on-site facilities and under field conditions is represented in the paper. The partial oxidation reactor gasification process mathematical model is described and reaction products composition and temperature determining algorithm flow diagram is shown. The developed software product verification showed good convergence of the experimental values and calculations according to the other programmes: the temperature determining relative discrepancy amounted from 4 to 5 %, while the absolute composition discrepancy ranged from 1 to 3%. The synthesis gas composition was found out practically not to depend on the supplied into the partial oxidation reactor (POR) water vapour enthalpy and compressor air pressure increase ratio. Moreover, air consumption coefficient α increase from 0.7 to 0.9 was found out to decrease synthesis gas target components (carbon and hydrogen oxides) specific yield by nearly 2 times and synthesis gas target components required ratio was revealed to be seen in the water vapour specific consumption area (from 5 to 6 kg/kg of fuel).

  3. The platinum catalysed decomposition of hydrazine in acidic media

    International Nuclear Information System (INIS)

    Ananiev, A.V.; Tananaev, I.G.; Brossard, Ph.; Broudic, J.C.

    2000-01-01

    Kinetic study of the hydrazine decomposition in the solutions of HClO 4 , H 2 SO 4 and HNO 3 in the presence of Pt/SiO 2 catalyst has been undertaken. It was shown that the kinetics of the hydrazine catalytic decomposition in HClO 4 and H 2 SO 4 are identical. The process is determined by the heterogeneous catalytic auto-decomposition of N 2 H 4 on the catalyst's surface. The platinum catalysed hydrazine decomposition in the nitric acid solutions is a complex process, including heterogeneous catalytic auto-decomposition of N 2 H 4 , reaction of hydrazine with catalytically generated nitrous acid and the catalytic oxidation of hydrazine by nitric acid. The kinetic parameters of these reactions have been determined. The contribution of each reaction in the total process is determined by the liquid phase composition and by the temperature. (authors)

  4. catalysed selective oxidation of benzyl alcohols using TEMPO and ...

    Indian Academy of Sciences (India)

    A general scheme for the oxidation of benzyl alcohols catalyzed by silica functionalized copper (II) has been designed. TEMPO, a free radical, assists this oxidation that was initiated by molecular oxygen which converts it to a primary oxidant. This catalytic combination i.e. SiO2 -Cu(II) in presence of TEMPO and oxygen ...

  5. Ce-Fe-O mixed oxide as oxygen carrier for the direct partial oxidation of methane to syngas

    Institute of Scientific and Technical Information of China (English)

    魏永刚; 王华; 李孔斋

    2010-01-01

    The Ce-Fe-O mixed oxide with a ratio of Ce/Fe=7:3, which was prepared by coprecipitation method and employed as oxygen carrier, for direct partial oxidation of methane to syngas in the absence of gaseous oxygen was explored. The mixed oxide was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), and the catalytic performances were studied in a fixed-bed quartz reactor and a thermogravimetric reactor, respectively. Approximately 99.4% H2 se...

  6. Complete and Partial Photo-oxidation of Dissolved Organic Matter Draining Permafrost Soils.

    Science.gov (United States)

    Ward, Collin P; Cory, Rose M

    2016-04-05

    Photochemical degradation of dissolved organic matter (DOM) to carbon dioxide (CO2) and partially oxidized compounds is an important component of the carbon cycle in the Arctic. Thawing permafrost soils will change the chemical composition of DOM exported to arctic surface waters, but the molecular controls on DOM photodegradation remain poorly understood, making it difficult to predict how inputs of thawing permafrost DOM may alter its photodegradation. To address this knowledge gap, we quantified the susceptibility of DOM draining the shallow organic mat and the deeper permafrost layer of arctic soils to complete and partial photo-oxidation and investigated changes in the chemical composition of each DOM source following sunlight exposure. Permafrost and organic mat DOM had similar lability to photomineralization despite substantial differences in initial chemical composition. Concurrent losses of carboxyl moieties and shifts in chemical composition during photodegradation indicated that photodecarboxylation could account for 40-90% of DOM photomineralized to CO2. Permafrost DOM had a higher susceptibility to partial photo-oxidation compared to organic mat DOM, potentially due to a lower abundance of phenolic moieties with antioxidant properties. These results suggest that photodegradation will likely continue to be an important control on DOM fate in arctic freshwaters as the climate warms and permafrost soils thaw.

  7. Partial Oxidation of High-Boiling Hydrocarbon Mixtures in the Pilot Unit

    Czech Academy of Sciences Publication Activity Database

    Hanika, Jiří; Lederer, J.; Nečesaný, F.; Poslední, W.; Tukač, V.; Veselý, Václav

    2014-01-01

    Roč. 68, č. 12 (2014), s. 1701-1706 ISSN 0366-6352 Institutional support: RVO:67985858 Keywords : partial oxidation * high-boiling hydrocarbons * pilot plant Subject RIV: CI - Industrial Chemistry , Chemical Engineering Impact factor: 1.468, year: 2014

  8. Biological degradation of partially oxidated constituents of stabilized sapropel; Biologischer Abbau teiloxidierter Inhaltsstoffe stabilisierter Faulschlaemme

    Energy Technology Data Exchange (ETDEWEB)

    Scheminski, A.; Krull, R.; Hempel, D.C. [Technische Univ. Braunschweig (Germany). Inst. fuer Bioverfahrenstechnik

    1999-07-01

    Partial oxidation of sapropel with ozone destroys the cell walls of microorganisms in sludge and releases the cell constituents. Substances that are not biologically degraded because of the size or structure of their molecules are transformed into smaller, water-soluble and biologically degradable fractions by the reaction with ozone. The experiments aim to render the partially oxidated sewage sludge constituents highly biologically degradable using a minimum of oxidation agents. For the experiments described, stabilized sapropels with low biological activity are used. Hence the ozone is mainly used for the partial oxidation of recalcitrant constituents. (orig.) [German] Durch partielle Oxidation von Faulschlaemmen mit Ozon werden die Zellwaende der Mikroorganismen im Schlamm zerstoert und die Zellinhaltsstoffe freigesetzt. Dabei werden Substanzen, die aufgrund ihrer Molekuelgroesse oder -struktur biologisch nicht abgebaut werden, durch die Reaktion mit Ozon in kleinere, wasserloesliche und biologisch abbaubare Bruchstuecke ueberfuehrt. Ziel der Versuche ist es, durch den Einsatz moeglichst geringer Mengen an Oxidationsmitteln eine hohe biologische Abbaubarkeit der teiloxidierten Klaerschlamminhaltsstoffe zu erreichen. Fuer die hier vorgestellten Experimente wurden stabilisierte Faulschlaemme mit geringer biologischer Aktivitaet eingesetzt. Dadurch wird das Ozon vorwiegend zur Teiloxidation recalcitranter Inhaltsstoffe genutzt. (orig.)

  9. General-base catalysed hydrolysis and nucleophilic substitution of activated amides in aqueous solutions

    NARCIS (Netherlands)

    Buurma, NJ; Blandamer, MJ; Engberts, JBFN; Buurma, Niklaas J.

    The reactivity of 1-benzoyl-3-phenyl-1,2,4-triazole (1a) was studied in the presence of a range of weak bases in aqueous solution. A change in mechanism is observed from general-base catalysed hydrolysis to nucleophilic substitution and general-base catalysed nucleophilic substitution. A slight

  10. catalysed oxidation of atenolol by alkaline permanganate

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Kinetics of ruthenium (III) catalyzed oxidation of atenolol by permanganate in alkaline medium at constant ionic strength of 0⋅30 mol dm3 has been studied spectrophotometrically using a rapid kinetic accessory. Reaction between permanganate and atenolol in alkaline medium exhibits 1 : 8 stoichiometry.

  11. Laser-induced partial oxidation of cyclohexane in liquid phase

    International Nuclear Information System (INIS)

    Oshima, Y.; Wu, X.W.; Koda, S.

    1995-01-01

    A laser-induced partial oxidation of cyclohexane was studied in the liquid phase. With KrF excimer laser (248 nm) irradiation to neat liquid cyclohexane in which O 2 was dissolved, cyclohexanol and cyclohexanone were obtained with very high selectivities, together with cyclohexane as a minor product. Radical recombination reactions to produce dicyclohexyl ether and bicyclohexyl also took place, while these products were not observed in the gas phase reaction. These experimental results were considered to be due not only to higher concentration of cyclohexane but to the cage effect in the liquid phase oxidation. To clarify the reaction progress including the photoabsorption process, the effects of laser intensity and O 2 pressure on product distribution were studied. (author)

  12. Palladium-catalysed cyclisation of alkenols: Synthesis of oxaheterocycles as core intermediates of natural compounds

    Directory of Open Access Journals (Sweden)

    Miroslav Palík

    2014-09-01

    Full Text Available The study of Pd-catalysed cyclisation reactions of alkenols using different catalytic systems is reported. These transformations affect the stereoselective construction of mono- and/or bicyclic oxaheterocyclic derivatives depending on a starting alkenol. The substrate scope and proposed mechanism of Pd-catalysed cyclisation reactions are also discussed. Moreover, the diastereoselective Pd-catalysed cyclisation of appropriate alkenols to tetrahydrofurans and subsequent cyclisation provided properly substituted 2,5-dioxabicyclo[2.2.1]heptane and 2,6-dioxabicyclo[3.2.1]octane, respectively. Such bicyclic ring subunits are found in many natural products including ocellenynes and aurovertines.

  13. Partial oxidation of methane in a temperature-controlled dielectric barrier discharge reactor

    KAUST Repository

    Zhang, Xuming; Cha, Min

    2015-01-01

    We studied the relative importance of the reduced field intensity and the background reaction temperature in the partial oxidation of methane in a temperature-controlled dielectric barrier discharge reactor. We obtained important mechanistic insight

  14. Trans-Selective Rhodium Catalysed Conjugate Addition of Organoboron Reagents to Dihydropyranones

    Directory of Open Access Journals (Sweden)

    Hannah J. Edwards

    2015-04-01

    Full Text Available The selective synthesis of 2,6-trans-tetrahydropyran derivatives employing the rhodium catalysed addition of organoboron reagents to dihydropyranone templates, derived from a zinc-catalysed hetero-Diels-Alder reaction, is reported. The addition of both arylboronic acids and potassium alkenyltrifluoroborates have been accomplished in high yields using commercially-available [Rh(cod(OH]2 catalyst. The selective formation of the 2,6-trans-tetrahydropyran stereoisomer is consistent with a mechanism involving alkene association and carbometalation on the less hindered face of the dihydropyranone.

  15. Plasma-assisted partial oxidation of methane at low temperatures: numerical analysis of gas-phase chemical mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Goujard, Valentin; Nozaki, Tomohiro; Yuzawa, Shuhei; Okazaki, Ken [Department of Mechanical and Control Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, 1528552, Tokyo (Japan); Agiral, Anil, E-mail: tnozaki@mech.titech.ac.jp [Mesoscale Chemical Systems, MESA Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE, Enschede (Netherlands)

    2011-07-13

    Methane partial oxidation was investigated using a plasma microreactor. The experiments were performed at 5 and 300 deg. C. Microreactor configuration allows an efficient evacuation of the heat generated by methane partial oxidation and dielectric barrier discharges, allowing at the same time a better temperature control. At 5 deg. C, liquid condensation of low vapour pressure compounds, such as formaldehyde and methanol, occurs. {sup 1}H-NMR analysis allowed us to demonstrate significant CH{sub 3}OOH formation during plasma-assisted partial oxidation of methane. Conversion and product selectivity were discussed for both temperatures. In the second part of this work, a numerical simulation was performed and a gas-phase chemical mechanism was proposed and discussed. From the comparison between the experimental results and the simulation it was found that CH{sub 3}OO{center_dot} formation has a determinant role in oxygenated compound production, since its fast formation disfavoured radical recombination. At 5 deg. C the oxidation leads mainly towards oxygenated compound formation, and plasma dissociation was the major phenomenon responsible for CH{sub 4} conversion. At 300 deg. C, higher CH{sub 4} conversion resulted from oxidative reactions induced by {center_dot}OH radicals with a chemistry predominantly oxidative, producing CO, H{sub 2}, CO{sub 2} and H{sub 2}O.

  16. Chiral amides via copper-catalysed enantioselective conjugate addition

    NARCIS (Netherlands)

    Schoonen, Anne K.; Fernández-Ibáñez, M. Ángeles; Fañanás-Mastral, Martín; Teichert, Johannes F.; Feringa, Bernard

    2014-01-01

    A highly enantioselective one pot procedure for the synthesis of beta-substituted amides was developed starting from the corresponding alpha,beta-unsaturated esters. This new methodology is based on the copper-catalysed enantioselective conjugate addition of Grignard reagents to

  17. Solvent engineering and other reaction design methods for favouring enzyme-catalysed synthesis

    DEFF Research Database (Denmark)

    Zeuner, Birgitte

    . However, both FAEs catalysed the feruloylation and/or sinapoylation of solvent cation C2OHMIm+, thus underlining the broad acceptor specificity of FAEs and their potential for future solvent reactions. An engineered sialidase from Trypanosoma rangeli, Tr6, catalyses trans-sialylation but the yield......This thesis investigates different methods for improving reaction yields of enzyme-catalysed synthesis reactions. These methods include the use of non-conventional media such as ionic liquids (ILs) and organic solvents as main solvents or as co-solvents as well as the use of more classical reaction...... design methods, i.e. enzyme immobilization and the use of an enzymatic membrane reactor. Two different enzyme classes, namely feruloyl esterases (FAEs) and sialidases are employed. Using sinapoylation of glycerol as a model reaction it was shown that both the IL anion nature and the FAE structure were...

  18. Selenium dioxide catalysed oxidation of acetic acid hydrazide by ...

    Indian Academy of Sciences (India)

    followed by its oxidation by diprotonated bromate in a slow step. ... for metal extraction, polymer stabilization and ion ... both oxidant and catalyst in various organic transfor- ... sodium bromate are stable solids and easily handled as ... pared by dissolving KBrO3 (BDH) in water and stan- ..... active species of the reductant.

  19. catalysed ortho-carboxylation of acetanilide with CO

    Indian Academy of Sciences (India)

    Abstract. The mechanism of palladium(II)-catalysed carboxylation of acetanilide with CO has been investi- gated using density functional theory calculation done at the B3LYP/6-31G(d, p)(SDD for Pd) level of theory. Solvent effects on these reactions have been explored by calculation that included a polarizable continuum.

  20. Hydrogen Production via Synthetic Gas by Biomass/Oil Partial Oxidation

    Czech Academy of Sciences Publication Activity Database

    Hanika, Jiří; Lederer, J.; Tukač, V.; Veselý, Václav; Kováč, D.

    176-177, - (2011), s. 286-290 ISSN 1385-8947. [International Conference on Chemical Reactors CHEMREACTOR-19 /19./. Vienna, 05.09.2010-09.09.2010] R&D Projects: GA MPO 2A-2TP1/024 Institutional research plan: CEZ:AV0Z40720504 Keywords : hydrogen * biomass * partial oxidation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.461, year: 2011

  1. Partial oxidation of TiN coating by hydrothermal treatment and ozone treatment to improve its osteoconductivity

    International Nuclear Information System (INIS)

    Shi, Xingling; Xu, Lingli; Le, Thi Bang; Zhou, Guanghong; Zheng, Chuanbo; Tsuru, Kanji; Ishikawa, Kunio

    2016-01-01

    Dental implants made of pure titanium suffer from abrasion and scratch during routine oral hygiene procedures. This results in an irreversible surface damage, facilitates bacteria adhesion and increases risk of peri-implantitis. To overcome these problems, titanium nitride (TiN) coating was introduced to increase surface hardness of pure titanium. However, the osteoconductivity of TiN is considered to be similar or superior to that of titanium and its alloys and therefore surface modification is necessary. In this study, TiN coating prepared through gas nitriding was partially oxidized by hydrothermal (HT) treatment and ozone (O 3 ) treatment in pure water to improve its osteoconductivity. The effects of HT treatment and O 3 treatment on surface properties of TiN were investigated and the osteoconductivity after undergoing treatment was assessed in vitro using osteoblast evaluation. The results showed that the critical temperature for HT treatment was 100 °C since higher temperatures would impair the hardness of TiN coating. By contrast, O 3 treatment was more effective in oxidizing TiN surfaces, improving its wettability while preserving its morphology and hardness. Osteoblast attachment, proliferation, alkaline phosphatase (ALP) expression and mineralization were improved on oxidized specimens, especially on O 3 treated specimens, compared with untreated ones. These effects seemed to be consequences of partial oxidation, as well as improved hydrophilicity and surface decontamination. Finally, it was concluded that, partially oxidized TiN is a promising coating to be used for dental implant. - Highlights: • TiN coating surface was oxidized by hydrothermal or ozone treatment while preserving its hardness. • Improved wettability, decontamination and interstitial N promoted osteoblast responses. • Partial oxidation makes TiN a promising coating for dental implant with good osteoconductivity.

  2. Partial oxidation of TiN coating by hydrothermal treatment and ozone treatment to improve its osteoconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xingling [School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582 (Japan); Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian 223003 (China); Xu, Lingli, E-mail: linly311@163.com [School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Le, Thi Bang [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Zhou, Guanghong [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian 223003 (China); Zheng, Chuanbo, E-mail: zjust316@163.com [School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Tsuru, Kanji; Ishikawa, Kunio [Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582 (Japan)

    2016-02-01

    Dental implants made of pure titanium suffer from abrasion and scratch during routine oral hygiene procedures. This results in an irreversible surface damage, facilitates bacteria adhesion and increases risk of peri-implantitis. To overcome these problems, titanium nitride (TiN) coating was introduced to increase surface hardness of pure titanium. However, the osteoconductivity of TiN is considered to be similar or superior to that of titanium and its alloys and therefore surface modification is necessary. In this study, TiN coating prepared through gas nitriding was partially oxidized by hydrothermal (HT) treatment and ozone (O{sub 3}) treatment in pure water to improve its osteoconductivity. The effects of HT treatment and O{sub 3} treatment on surface properties of TiN were investigated and the osteoconductivity after undergoing treatment was assessed in vitro using osteoblast evaluation. The results showed that the critical temperature for HT treatment was 100 °C since higher temperatures would impair the hardness of TiN coating. By contrast, O{sub 3} treatment was more effective in oxidizing TiN surfaces, improving its wettability while preserving its morphology and hardness. Osteoblast attachment, proliferation, alkaline phosphatase (ALP) expression and mineralization were improved on oxidized specimens, especially on O{sub 3} treated specimens, compared with untreated ones. These effects seemed to be consequences of partial oxidation, as well as improved hydrophilicity and surface decontamination. Finally, it was concluded that, partially oxidized TiN is a promising coating to be used for dental implant. - Highlights: • TiN coating surface was oxidized by hydrothermal or ozone treatment while preserving its hardness. • Improved wettability, decontamination and interstitial N promoted osteoblast responses. • Partial oxidation makes TiN a promising coating for dental implant with good osteoconductivity.

  3. Interaction of dimethylamine with clean and partially oxidized copper surfaces

    Science.gov (United States)

    Kelber, J. A.; Rogers, J. W.; Banse, B. A.; Koel, B. E.

    1990-05-01

    The interaction of dimethylamine (DMA) with partially oxidized polycrystalline copper [Cu(poly)] and clean and partially oxidized Cu(110) between 110 and 500 K has been examined using electron stimulated desorption (ESD), high resolution electron energy loss spectroscopy (HREELS) and temperature programmed desorption (TPD). ESD mass spectra of the DMA adsorbed on O/Cu(poly) between 112 and 230 K consistently display peaks at 44 amu [(CH 3) 2N] + and 46 amu [(CH 3) 2NH-H] +, but no significant parent peak at 45 amu [(CH 3) 2NH] +, even though this last feature is prominent in the gas-phase mass spectrum. OH - is not observed at temperatures below 184 K and the yield at higher temperatures is much less than that of O +. HREELS of DMA on clean and oxygen covered Cu(110) obtained at temperatures between 100 and 320 K show characteristic vibrational spectra for molecular DMA and no OH(a) vibrational modes. TPD results show that the desorption profiles of all the major peaks in the DMA mass spectrum follow that of the parent peak with no evidence for production of H 2O. The ESD, HREELS and TPD results all indicate that DMA is molecularly and reversibly adsorbed, with no significant formation of surface hydroxyl species. The results indicate that preferential adsorption of amines from amine/epoxy mixtures onto metal oxide surfaces could passivate the surface and prevent subsequent bonding to the epoxy resin.

  4. Proline-catalysed asymmetric ketol cyclizations: The template ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. A modified template mechanism based on modelling studies of energy minimised complexes is presented for the asymmetric proline-catalysed cyclization of triketones 1, 2 and 3 to the 2S,3S-ketols. 1a, 2a and 3a respectively. The template model involves a three-point contact as favoured in enzyme– substrate ...

  5. Iron-catalysed fluoroaromatic coupling reactions under catalytic modulation with 1,2-bis(diphenylphosphino)benzene.

    Science.gov (United States)

    Hatakeyama, Takuji; Kondo, Yoshiyuki; Fujiwara, Yu-Ichi; Takaya, Hikaru; Ito, Shingo; Nakamura, Eiichi; Nakamura, Masaharu

    2009-03-14

    A catalytic amount of 1,2-bis(diphenylphosphino)benzene (DPPBz) achieves selective cleavage of sp(3)-carbon-halogen bond in the iron-catalysed cross-coupling between polyfluorinated arylzinc reagents and alkyl halides, which was unachievable with a stoichiometric modifier such as TMEDA; the selective iron-catalysed fluoroaromatic coupling provides easy and practical access to polyfluorinated aromatic compounds.

  6. Fenton Redox Chemistry : Arsenite Oxidation by Metallic Surfaces

    NARCIS (Netherlands)

    Borges Freitas, S.C.; Van Halem, D.; Badruzzaman, A.B.M.; Van der Meer, W.G.J.

    2014-01-01

    Pre-oxidation of As(III) is necessary in arsenic removal processes in order to increase its efficiency. Therefore, the Fenton Redox Chemistry is defined by catalytic activation of H2O2 and currently common used for its redox oxidative properties. In this study the effect of H2O2 production catalysed

  7. Chlorophyll catalyse the photo-transformation of carcinogenic benzo[a]pyrene in water

    Science.gov (United States)

    Luo, Lijuan; Lai, Xueying; Chen, Baowei; Lin, Li; Fang, Ling; Tam, Nora F. Y.; Luan, Tiangang

    2015-01-01

    Algal blooms cause great damage to water quality and aquaculture. However, this study showed that dead algal cells and chlorophyll could accelerate the photo-transformation of benzo[a]pyrene (BaP), a ubiquitous and persistent pollutant with potently mutagenic and carcinogenic toxicities, under visible light irradiation. Chlorophyll was found to be the major active substance in dead algal cells, and generated a high level of singlet oxygen to catalyse the photo-transformation of BaP. According to various BaP metabolites formed, the degradation mechanism was proposed as that chlorophyll in dead algal cells photo-oxidized BaP to quinones via photocatalytic generation of singlet oxygen. The results provided a good insight into the role of chlorophyll in the photo-transformation of organic contaminants and could be a possible remediation strategy of organic pollutants in natural environment. PMID:26239357

  8. Enzymatic Baeyer-Villiger Oxidation of Benzo-Fused Ketones : Formation of Regiocomplementary Lactones

    NARCIS (Netherlands)

    Rioz-Martinez, Ana; de Gonzalo, Gonzalo; Pazmino, Daniel E. Torres; Fraaije, Marco W.; Gotor, Vicente

    Baeyer-Villiger monooxygenases (BVMOs) are enzymes that are known to catalyse the Baeyer-Villiger oxidation of ketones in aqueous media using O(2) as oxidant. Herein, we describe the oxidation of a set of diverse benzo-fused ketones by three different BVMOs in both aqueous and non-conventional

  9. Kinetics of the partial oxidation of methanol over a Fe-Mo catalyst

    NARCIS (Netherlands)

    Deshmukh, S.A.R.K.; Sint Annaland, van M.; Kuipers, J.A.M.

    2005-01-01

    The intrinsic steady-state kinetics of the partial oxidation of methanol to formaldehyde over a commercial Fe-Mo catalyst has been studied experimentally in a differentially operated reactor at temperatures of 230–260 °C, over a wide range of methanol and oxygen concentrations. The principal

  10. Kinetics of the partial oxidation of methanol over a Fe-Mo catalyst

    NARCIS (Netherlands)

    Deshmukh, S.A.R.K.; van Sint Annaland, M.; Kuipers, J.A.M.

    2005-01-01

    The intrinsic steady-state kinetics of the partial oxidation of methanol to formaldehyde over a commercial Fe-Mo catalyst has been studied experimentally in a differentially operated reactor at temperatures of 230¿260 °C, over a wide range of methanol and oxygen concentrations. The principal

  11. catalysed indolylation and pyrrolylation of isatins: Efficient synthesis ...

    Indian Academy of Sciences (India)

    Abstract. An efficient and cheap synthetic approach to 3,3-di(indolyl)oxindoles and 3,3-di(pyrrolyl) oxindoles has been developed via Zn(OTf)2 catalysed indolylation and pyrrolylation of isatins. A preliminary biochemical assay of the synthesized molecules in rodent models were performed to estimate the serum glutamate ...

  12. Partial oxidation of methane over Ni/Mg/Al/La mixed oxides prepared from layered double hydrotalcites

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jun [Low Carbon Energy Conversion Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203 (China); State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, Shanxi (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, Ning; Wei, Wei [State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, Shanxi (China); Sun, Yuhan [Low Carbon Energy Conversion Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203 (China); State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, Shanxi (China)

    2010-11-15

    A series of Ni/Mg/Al/La mixed oxides prepared by thermal decomposition of layered double hydrotalcites (HT) were characterized by XRD, ICP, EXAFS, TGA, TPR-H{sub 2}, SEM, and N{sub 2} adsorption/desorption technique. The results revealed the formation of periclase-type catalysts with mesoporous structure, and the addition of La{sup 3+} lowered the phase crystallization with the formation of small oxide particles. Such catalysts had both high activities and stabilities toward partial oxidation of methane (POM). The catalyst containing 6.5 mol.% La{sup 3+} showed the highest performance at 1053 K with CH{sub 4} conversion of 99%, CO selectivity of 93% and H{sub 2} selectivity of 96%, which could be attributed to the presence of highly dispersed nickel and then the resistance to coke formation due to the promotion effect of lanthanum. (author)

  13. Comparison of partial and full nitrification processes applied for treating high-strength nitrogen wastewaters: microbial ecology through nitrous oxide production.

    Science.gov (United States)

    Ahn, Joon Ho; Kwan, Tiffany; Chandran, Kartik

    2011-04-01

    The goal of this study was to compare the microbial ecology, gene expression, biokinetics, and N2O emissions from a lab-scale bioreactor operated sequentially in full-nitrification and partial-nitrification modes. Based on sequencing of 16S rRNA and ammonia monooxygenase subunit A (amoA) genes, ammonia oxidizing bacteria (AOB) populations during full- and partial-nitrification modes were distinct from one another. The concentrations of AOB (XAOB) and their respiration rates during full- and partial-nitrification modes were statistically similar, whereas the concentrations of nitrite oxidizing bacteria (XNOB) and their respiration rates declined significantly after the switch from full- to partial-nitrification. The transition from full-nitrification to partial nitrification resulted in a protracted transient spike of nitrous oxide (N2O) and nitric oxide (NO) emissions, which later stabilized. The trends in N2O and NO emissions correlated well with trends in the expression of nirK and norB genes that code for the production of these gases in AOB. Both the transient and stabilized N2O and NO emissions during partial nitrification were statistically higher than those during steady-state full-nitrification. Based on these results, partial nitrification strategies for biological nitrogen removal, although attractive for their reduced operating costs and energy demand, may need to be optimized against the higher carbon foot-print attributed to their N2O emissions.

  14. Partial oxidation of n-hexadecane through decomposition of hydrogen peroxide in supercritical water

    KAUST Repository

    Alshammari, Y.M.

    2015-01-01

    © 2014 The Institution of Chemical Engineers. This work reports the experimental analysis of partial oxidation of n-hexadecane under supercritical water conditions. A novel reactor flow system was developed which allows for total decomposition of hydrogen peroxide in a separate reactor followed partial oxidation of n-hexadecane in a gasification reactor instead of having both reactions in one reactor. The kinetics of hydrothermal decomposition of hydrogen peroxide was studied in order to confirm its full conversion into water and oxygen under the desired partial oxidation conditions, and the kinetic data were found in a good agreement with previously reported literature. The gas yield and gasification efficiency were investigated under different operating parameters. Furthermore, the profile of C-C/C=C ratio was studied which showed the favourable conditions for maximising yields of n-alkanes via hydrogenation of their corresponding 1-alkenes. Enhanced hydrogenation of 1-alkenes was observed at higher O/C ratios and higher residence times, shown by the increase in the C-C/C=C ratio to more than unity, while increasing the temperature has shown much less effect on the C-C/C=C ratio at the current experimental conditions. In addition, GC-MS analysis of liquid samples revealed the formation of heavy oxygenated compounds which may suggest a new addition reaction to account for their formation under the current experimental conditions. Results show new promising routes for hydrogen production with in situ hydrogenation of heavy hydrocarbons in a supercritical water reactor.

  15. Enantioselective preparation of 1,3-dithiane 1-oxides by asymmetric oxidation of 1,3-dithianes bearing a chiral auxiliary

    OpenAIRE

    Yoshihiko, Watanabe; Yojiro, Ono; Shigefumi, Hayashi; Yoshio, Ueno; Takeshi, Toru

    1996-01-01

    Oxidation of 1,3-dithianes bearing a chiral auxiliary derived from (+) or (-)-camphor or diacetone D-(+)-glucose by the Sharpless reagent [Ti(OPi)4-diethyl L-(+)- or D-(-)-tartrate-ButOOH] affords, with high stereoselectivity, the monosulfoxides in good to excellent yields. Removal of the chiral auxiliary by base-catalysed hydrolysis yields (R)- and (S)-1,3-dithiane 1-oxides in high yields.

  16. Ex situ generation of stoichiometric HCN and its application in the Pd-catalysed cyanation of aryl bromides: evidence for a transmetallation step between two oxidative addition Pd-complexes.

    Science.gov (United States)

    Kristensen, Steffan K; Eikeland, Espen Z; Taarning, Esben; Lindhardt, Anders T; Skrydstrup, Troels

    2017-12-01

    A protocol for the Pd-catalysed cyanation of aryl bromides using near stoichiometric and gaseous hydrogen cyanide is reported for the first time. A two-chamber reactor was adopted for the safe liberation of ex situ generated HCN in a closed environment, which proved highly efficient in the Ni-catalysed hydrocyanation as the test reaction. Subsequently, this setup was exploited for converting a range of aryl and heteroaryl bromides (28 examples) directly into the corresponding benzonitriles in high yields, without the need for cyanide salts. Cyanation was achieved employing the Pd(0) precatalyst, P( t Bu) 3 -Pd-G3 and a weak base, potassium acetate, in a dioxane-water solvent mixture. The methodology was also suitable for the synthesis of 13 C-labelled benzonitriles with ex situ generated 13 C-hydrogen cyanide. Stoichiometric studies with the metal complexes were undertaken to delineate the mechanism for this catalytic transformation. Treatment of Pd(P( t Bu) 3 ) 2 with H 13 CN in THF provided two Pd-hydride complexes, (P( t Bu) 3 ) 2 Pd(H)( 13 CN), and [(P( t Bu) 3 )Pd(H)] 2 Pd( 13 CN) 4 , both of which were isolated and characterised by NMR spectroscopy and X-ray crystal structure analysis. When the same reaction was performed in a THF : water mixture in the presence of KOAc, only (P( t Bu) 3 ) 2 Pd(H)( 13 CN) was formed. Subjection of this cyano hydride metal complex with the oxidative addition complex (P( t Bu) 3 )Pd(Ph)(Br) in a 1 : 1 ratio in THF led to a transmetallation step with the formation of (P( t Bu) 3 ) 2 Pd(H)(Br) and 13 C-benzonitrile from a reductive elimination step. These experiments suggest the possibility of a catalytic cycle involving initially the formation of two Pd(ii)-species from the oxidative addition of L n Pd(0) into HCN and an aryl bromide followed by a transmetallation step to L n Pd(Ar)(CN) and L n Pd(H)(Br), which both reductively eliminate, the latter in the presence of KOAc, to generate the benzonitrile and L n Pd(0).

  17. Mediator oxidation systems in organic electrosynthesis

    International Nuclear Information System (INIS)

    Ogibin, Yurii N; Elinson, Michail N; Nikishin, Gennady I

    2009-01-01

    The data on the use of mediator oxidation systems activated by electric current (anodic or parallel anodic and cathodic) in organic electrosynthesis are considered and generalised. Electrochemical activation of these systems permits successful application of catalytic versions and easy scaling of mediator-promoted processes. Chemical and environmental advantages of electrochemical processes catalysed by mediator oxidation systems are demonstrated. Examples of the application of organic and inorganic mediators for the oxidation of various classes of organic compounds under conditions of electrolysis are given.

  18. Pd(OAc)2/DPPF-catalysed microwave-assisted cyanides-free ...

    Indian Academy of Sciences (India)

    Pd(OAc)2/DPPF-catalysed microwave-assisted cyanides-free synthesis of aryl nitriles. DINESH N. SAWANT and BHALCHANDRA M. BHANAGE*. Department of Chemistry, Institute of Chemical Technology, N. Parekh Marg, Matunga,. Mumbai 400019 India. e-mail bm.bhanage@ictmumbai.edu.in. INDEX ...

  19. Ultrasonic enhancement of lipase-catalysed transesterification for biodiesel synthesis.

    Science.gov (United States)

    Bhangu, Sukhvir Kaur; Gupta, Shweta; Ashokkumar, Muthupandian

    2017-01-01

    The production of biodiesel was carried out from canola oil and methanol catalysed by lipase from Candida rugosa under different ultrasonic experimental conditions using horn (20kHz) and plate (22, 44, 98 and 300kHz) transducers. The effects of experimental conditions such as horn tip diameter, ultrasonic power, ultrasonic frequency and enzyme concentrations on biodiesel yield were investigated. The results showed that the application of ultrasound decreased the reaction time from 22-24h to 1.5h with the use of 3.5cm ultrasonic horn, an applied power of 40W, methanol to oil molar ratio of 5:1 and enzyme concentration of 0.23wt/wt% of oil. Low intensity ultrasound is efficient and a promising tool for the enzyme catalysed biodiesel synthesis as higher intensities tend to inactivate the enzyme and reduce its efficiency. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. catalysed selective oxidation of benzyl alcohols using TEMPO

    Indian Academy of Sciences (India)

    oxygen provides excellent results in terms of yields and reaction time. SiO2-Cu(II) was very ... lytic systems using transition metal complexes and ter- minal oxidants are well ... dry toluene, TEMPO (0.5 mmol), potassium carbonate. (1.5 mmol) and ... The conditioning of the catalyst was done in water, ethanol and toluene to.

  1. Palladium-catalysed direct cross-coupling of secondary alkyllithium reagents

    NARCIS (Netherlands)

    Vila, Carlos; Giannerini, Massimo; Hornillos, Valentin; Fananas-Mastral, Martin; Feringa, Ben L.

    2014-01-01

    Palladium-catalysed cross-coupling of secondary C(sp(3)) organometallic reagents has been a long-standing challenge in organic synthesis, due to the problems associated with undesired isomerisation or the formation of reduction products. Based on our recently developed catalytic C-C bond formation

  2. Partial oxidation of landfill leachate in supercritical water: Optimization by response surface methodology

    International Nuclear Information System (INIS)

    Gong, Yanmeng; Wang, Shuzhong; Xu, Haidong; Guo, Yang; Tang, Xingying

    2015-01-01

    Highlights: • Partial oxidation of landfill leachate in supercritical water was investigated. • The process was optimized by Box–Behnken design and response surface methodology. • GY H2 , TRE and CR could exhibit up to 14.32 mmol·gTOC −1 , 82.54% and 94.56%. • Small amounts of oxidant can decrease the generation of tar and char. - Abstract: To achieve the maximum H 2 yield (GY H2 ), TOC removal rate (TRE) and carbon recovery rate (CR), response surface methodology was applied to optimize the process parameters for supercritical water partial oxidation (SWPO) of landfill leachate in a batch reactor. Quadratic polynomial models for GY H2 , CR and TRE were established with Box–Behnken design. GY H2 , CR and TRE reached up to 14.32 mmol·gTOC −1 , 82.54% and 94.56% under optimum conditions, respectively. TRE was invariably above 91.87%. In contrast, TC removal rate (TR) only changed from 8.76% to 32.98%. Furthermore, carbonate and bicarbonate were the most abundant carbonaceous substances in product, whereas CO 2 and H 2 were the most abundant gaseous products. As a product of nitrogen-containing organics, NH 3 has an important effect on gas composition. The carbon balance cannot be reached duo to the formation of tar and char. CR increased with the increase of temperature and oxidation coefficient

  3. Electrochemical and partial oxidation of methane

    Science.gov (United States)

    Singh, Rahul

    2008-10-01

    negligible coke formation on the novel fabricated anode by electroless plating process. Hydrogen is an environmentally cleaner source of energy. The recent increase in the demand of hydrogen as fuel for all types of fuel cells and petroleum refining process has boosted the need of production of hydrogen. Methane, a major component of natural gas is the major feedstock for production of hydrogen. The route of partial oxidation of methane to produce syngas (CO + H2) offers significant advantages over commercialized steam reforming process for higher efficiency and lower energy requirements. Partial oxidation of methane was studied by pulsing O2 into a CH4 flow over Rh/Al2O3 in a sequence of in situ infrared (IR) cell and fixed bed reactor at 773 K. The results obtained from the sequence of an IR cell followed by a fixed bed reactor show that (i) adsorbed CO produced possesses a long residence time, indicating that adsorbed oxygen leading to the formation of CO is significantly different from those leading to CO2 and (ii) CO2 is not an intermediate species for the formation of CO. In situ IR of pulse reaction coupled with alternating reactor sequence is an effective approach to study the primary and secondary reactions as well as the nature of their adsorbed species. As reported earlier, hydrogen remains to be the most effective fuel for fuel cells, the production of high purity hydrogen from naturally available resources such as coal, petroleum, and natural gas requires a number of energy-intensive steps, making fuel cell processes for stationary electric power generation prohibitively uneconomic. Direct use of coal or coal gas as the feed is a promising approach for low cost electricity generation. Coal gas solid oxide fuel cell was studied by pyrolyzing Ohio #5 coal to coal gas and transporting to a Cu anode solid oxide fuel cell to generate power. The study of coal-gas solid oxide fuel cell is divided into two sections, i.e., (i) understanding the composition of coal gas by

  4. Chlorodifluoromethane-triggered formation of difluoromethylated arenes catalysed by palladium

    Science.gov (United States)

    Feng, Zhang; Min, Qiao-Qiao; Fu, Xia-Ping; An, Lun; Zhang, Xingang

    2017-09-01

    Difluoromethylated aromatic compounds are of increasing importance in pharmaceuticals, agrochemicals and materials. Chlorodifluoromethane (ClCF2H), an inexpensive, abundant and widely used industrial raw material, represents the ideal and most straightforward difluoromethylating reagent, but introduction of the difluoromethyl group (CF2H) from ClCF2H into aromatics has not been reported. Here, we describe a direct palladium-catalysed difluoromethylation method for coupling ClCF2H with arylboronic acids and esters to generate difluoromethylated arenes with high efficiency. The reaction exhibits a remarkably broad substrate scope, including heteroarylboronic acids, and was used for difluoromethylation of a range of pharmaceuticals and biologically active compounds. Preliminary mechanistic studies revealed that a palladium difluorocarbene intermediate is involved in the reaction. Although numerous metal-difluorocarbene complexes have been prepared, the catalytic synthesis of difluoromethylated or difluoromethylenated compounds involving metal-difluorocarbene complexes has not received much attention. This new reaction therefore also opens the door to understand metal-difluorocarbene complex catalysed reactions.

  5. Modeling of termokinetic oscillations at partial oxidation of methane

    Science.gov (United States)

    Arutyunov, A. V.; Belyaev, A. A.; Inovenkov, I. N.; Nefedov, V. V.

    2017-12-01

    Partial oxidation of natural gas at moderate temperatures below 1500 K has significant interest for a number of industrial applications. But such processes can proceed at different unstable regimes including oscillating modes. Nonlinear phenomena at partial oxidation of methane were observed at different conditions. The investigation of the complex nonlinear system of equations that describes this process is a real method to insure its stability at industrial conditions and, at the same time, is an effective tool for its further enhancement. Numerical analysis of methane oxidation kinetics in the continuous stirred-tank reactor, with the use of detailed kinetic model has shown the possibility of the appearance of oscillating modes in the appropriate range of reaction parameters that characterize the composition, pressure, reagents flow, thermophysical features of the system, and geometry of the reactor. The appearance of oscillating modes is connected both with the reaction kinetics, heat release and sink and reagents introduction and removing. At that, oscillations appear only at a limited range of parameters, but can be accompanied by significant change in the yield of products. We have determined the range of initial temperature and pressure at which oscillations can be observed, if all other parameters remained fixed. The boundaries of existence of oscillations on the phase plane were calculated. It was shown that depending on the position inside the oscillation region the oscillations have different frequency and amplitude. It was reviled the role of heat exchange with the environment: at the absence of heat exchange the oscillating modes are impossible. In the vicinity of the boundary of phase range, where oscillations exist, significant change of concentration of some products were observed, for example, that of CO2, which in this case one of the principal products is. At that, insignificant increase in pressure not only change the character of CO2 behaving

  6. Kinetics and mechanism of the base-catalysed reaction of 4 ...

    African Journals Online (AJOL)

    NPMPF) in benzene has been investigated at 27oC and in the presence of functionally similar, but structurally different addenda, namely; imidazole, pyridine and triethylamine. The reaction is catalysed by the nucleophile and imidazole in a linear ...

  7. Phenylboronic acid catalysed synthesis of 1,5-benzodiazepines via ...

    Indian Academy of Sciences (India)

    J. Chem. Sci. Vol. 125, No. 4, July 2013, pp. 745–749. c Indian Academy of Sciences. Phenylboronic acid catalysed synthesis of 1,5-benzodiazepines via cyclocondensation of ... active compounds and gaining great consideration in the field of .... thesis of this heterocycles was accomplished by con- densation reaction of ...

  8. Partial oxidation of landfill leachate in supercritical water: Optimization by response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yanmeng; Wang, Shuzhong; Xu, Haidong; Guo, Yang; Tang, Xingying

    2015-09-15

    Highlights: • Partial oxidation of landfill leachate in supercritical water was investigated. • The process was optimized by Box–Behnken design and response surface methodology. • GY{sub H2}, TRE and CR could exhibit up to 14.32 mmol·gTOC{sup −1}, 82.54% and 94.56%. • Small amounts of oxidant can decrease the generation of tar and char. - Abstract: To achieve the maximum H{sub 2} yield (GY{sub H2}), TOC removal rate (TRE) and carbon recovery rate (CR), response surface methodology was applied to optimize the process parameters for supercritical water partial oxidation (SWPO) of landfill leachate in a batch reactor. Quadratic polynomial models for GY{sub H2}, CR and TRE were established with Box–Behnken design. GY{sub H2}, CR and TRE reached up to 14.32 mmol·gTOC{sup −1}, 82.54% and 94.56% under optimum conditions, respectively. TRE was invariably above 91.87%. In contrast, TC removal rate (TR) only changed from 8.76% to 32.98%. Furthermore, carbonate and bicarbonate were the most abundant carbonaceous substances in product, whereas CO{sub 2} and H{sub 2} were the most abundant gaseous products. As a product of nitrogen-containing organics, NH{sub 3} has an important effect on gas composition. The carbon balance cannot be reached duo to the formation of tar and char. CR increased with the increase of temperature and oxidation coefficient.

  9. Partial oxidation of municipal sludge with activited carbon catalyst in supercritical water

    International Nuclear Information System (INIS)

    Guo Yang; Wang Shuzhong; Gong Yanmeng; Xu Donghai; Tang Xingying; Ma Honghe

    2010-01-01

    The partial oxidation (POX) characteristics of municipal sludge in supercritical water (SCW) were investigated by using batch reactor. Effects of reaction parameters such as oxidant equivalent ratio (OER), reaction time and temperature were investigated. Activated carbon (AC) could effectively improve the mole fraction of H 2 in gas product at low OER. However, high OER (greater than 0.3) not only led to the combustion reaction of CO and H 2 , but also caused corrosion of reactor inner wall. Hydrogenation and polymerization of the intermediate products are possible reasons for the relative low COD removal rate in our tests. Metal oxide leached from the reactor inner wall and the main components of the granular sludge were deposited in the AC catalyst. Reaction time had more significant effect on BET surface area of AC than OER had. Long reaction time led to the methanation reaction following hydrolysis and oxidation reaction of AC in SCW in the presence of oxygen. Correspondingly, the possible reaction mechanisms were proposed.

  10. The influence of partial oxidation mechanisms on tar destruction in TwoStage biomass gasification

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Egsgaard, Helge; Stelte, Wolfgang

    2013-01-01

    adsorption and determined by stable isotope dilution analysis. The results have shown that partial oxidation reduces and converts primary tars into low molecular weight, polycyclic aromatic hydrocarbons (PAHs), primarily naphthalene. At temperatures above 950°C practically all phenol is converted...

  11. Structure sensitivity in the nonscalable regime explored via catalysed ethylene hydrogenation on supported platinum nanoclusters

    Science.gov (United States)

    Crampton, Andrew S.; Rötzer, Marian D.; Ridge, Claron J.; Schweinberger, Florian F.; Heiz, Ueli; Yoon, Bokwon; Landman, Uzi

    2016-01-01

    The sensitivity, or insensitivity, of catalysed reactions to catalyst structure is a commonly employed fundamental concept. Here we report on the nature of nano-catalysed ethylene hydrogenation, investigated through experiments on size-selected Ptn (n=8-15) clusters soft-landed on magnesia and first-principles simulations, yielding benchmark information about the validity of structure sensitivity/insensitivity at the bottom of the catalyst size range. Both ethylene-hydrogenation-to-ethane and the parallel hydrogenation-dehydrogenation ethylidyne-producing route are considered, uncovering that at the =10) clusters at T>150 K, with maximum room temperature reactivity observed for Pt13. Structure insensitivity, inherent for specific cluster sizes, is induced in the more active Pt13 by a temperature increase up to 400 K leading to ethylidyne formation. Control of sub-nanometre particle size may be used for tuning catalysed hydrogenation activity and selectivity.

  12. Oxygen partial pressure: a key to alloying and discovery in metal oxide--metal eutectic systems

    International Nuclear Information System (INIS)

    Holder, J.D.; Clark, G.W.; Oliver, B.F.

    1978-01-01

    Control of oxygen partial pressure is essential in the directional solidification of oxide--metal eutectic composites by techniques involving gas-solid and gas-liquid interactions. The existence of end components in the eutectic composite is Po 2 sensitive as are melt stoichiometry, solid phase compositions, and vapor losses due to oxidation-volatilization. Simple criteria are postulated which can aid the experimentalist in selecting the proper gas mixture for oxide--metal eutectic composite growth. The Cr 2 O 3 --Mo--Cr systems was used to verify certain aspects of the proposed criteria

  13. Mechanism and Stereoselectivity of Zeolite-catalysed Sugar Isomerisation in Alcohols

    DEFF Research Database (Denmark)

    Shunmugavel, Saravanamurugan; Riisager, Anders; Taarning, Esben

    2016-01-01

    Glucose isomerisation to fructose can occur by different pathways and the mechanism of zeolite-catalysed glucose isomerisation in methanol has remained incompletely understood. Herein, the mechanism is studied using an 1H-13C HSQC NMR assay resolving different fructose isotopomers. We find that z...

  14. Partial oxidation process for producing a stream of hot purified gas

    Science.gov (United States)

    Leininger, T.F.; Robin, A.M.; Wolfenbarger, J.K.; Suggitt, R.M.

    1995-03-28

    A partial oxidation process is described for the production of a stream of hot clean gas substantially free from particulate matter, ammonia, alkali metal compounds, halides and sulfur-containing gas for use as synthesis gas, reducing gas, or fuel gas. A hydrocarbonaceous fuel comprising a solid carbonaceous fuel with or without liquid hydrocarbonaceous fuel or gaseous hydrocarbon fuel, wherein said hydrocarbonaceous fuel contains halides, alkali metal compounds, sulfur, nitrogen and inorganic ash containing components, is reacted in a gasifier by partial oxidation to produce a hot raw gas stream comprising H{sub 2}, CO, CO{sub 2}, H{sub 2}O, CH{sub 4}, NH{sub 3}, HCl, HF, H{sub 2}S, COS, N{sub 2}, Ar, particulate matter, vapor phase alkali metal compounds, and molten slag. The hot raw gas stream from the gasifier is split into two streams which are separately deslagged, cleaned and recombined. Ammonia in the gas mixture is catalytically disproportionated into N{sub 2} and H{sub 2}. The ammonia-free gas stream is then cooled and halides in the gas stream are reacted with a supplementary alkali metal compound to remove HCl and HF. Alkali metal halides, vaporized alkali metal compounds and residual fine particulate matter are removed from the gas stream by further cooling and filtering. The sulfur-containing gases in the process gas stream are then reacted at high temperature with a regenerable sulfur-reactive mixed metal oxide sulfur sorbent material to produce a sulfided sorbent material which is then separated from the hot clean purified gas stream having a temperature of at least 1000 F. 1 figure.

  15. Thermodynamic Study on the Catalytic Partial Oxidation of Methane to Syngas

    Institute of Scientific and Technical Information of China (English)

    XUJian; WEIWeisheng; 等

    2002-01-01

    The catalytic partial oxidation of methane to syngas (CO+H2) has been simulated thermodynamically with the advanced process simulator PRO/Ⅱ. The influences of temperature,pressure,CH4/O2 ratio and steam addition in feed gas on the conversion of CH4 selectively to syngas and heat duty required were investigated, and their effects on carbon formation were also discussed. The simulation results were in good agreement with the literature data taken from a spouted bed reactor.

  16. On hydrazine oxidation in nitric acid media

    International Nuclear Information System (INIS)

    Zil'berman, B.Ya.; Lelyuk, G.A.; Mashkin, A.N.; Yasnovitskaya, A.L.

    1988-01-01

    Yield of products of radiolytic ( 60 Co gamma radiation) and chemical hydrazine (HZ) oxidation in nitric acid media is studied. Under radiolyte HZ oxidation by nitric acid hydrazoic acid, ammonia and nitrogen appear to be the reaction products. HN 3 yield maximum under HZN oxidation makes up ∼ 0.35 mol per a mol of oxiduzed HZN. Under chemical oxidation HZN is oxidized by HNO 3 according to reaction catalysed by technetium HN 3 yield makes up ∼ 0.35 mol per a mol of oxidized HZN. Radiation-chemical oxidation of HN 3 proceeds up to its complete decomposition, decomposition rate is comparable with HZ oxidation rate. Under the chemical oxidation HN 3 is more stable, it is slowly decomposed after complete HZ decomposition

  17. Hydrogen production by ethanol partial oxidation over nano-iron oxide catalysts produced by chemical vapour synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Wael Ahmed Abou Taleb Sayed

    2011-01-13

    This work presents the experimental results of the synthesis of unsupported and supported SiC iron oxide nanoparticles and their catalytic activity towards ethanol partial oxidation. For comparison, further unsupported iron oxide phases were investigated towards the ethanol partial oxidation. These {gamma}-Fe{sub 2}O{sub 3} and {alpha}/{gamma}-Fe{sub 2}O{sub 3} phase catalysts were prepared by the CVS method using Fe(CO){sub 5} as precursor, supplied by another author. The {alpha}-Fe{sub 2}O{sub 3} and SiC nanoparticles were prepared by the CVS method using a home made hot wall reactor technique at atmospheric pressure. Ferrocene and tetramethylsilane were used as precursor for the production process. Process parameters of precursor evaporation temperature, precursor concentration, gas mixture velocity and gas mixture dilution were investigated and optimised to produce particle sizes in a range of 10 nm. For Fe{sub 2}O{sub 3}/SiC catalyst series production, a new hot wall reactor setup was used. The particles were produced by simultaneous thermal decomposition of ferrocene and tetramethylsilane in one reactor from both sides. The production parameters of inlet tube distance inside the reactor, precursor evaporation temperature and carrier gas flow were investigated to produce a series of samples with different iron oxide content. The prepared catalysts composition, physical and chemical properties were characterized by XRD, EDX, SEM, BET surface area, FTIR, XPS and dynamic light scattering (DLS) techniques. The catalytic activity for the ethanol gas-phase oxidation was investigated in a temperature range from 260 C to 290 C. The product distributions obtained over all catalysts were analysed with mass spectrometry analysis tool. The activity of bulk Fe{sub 2}O{sub 3} and SiC nanoparticles was compared with prepared nano-iron oxide phase catalysts. The reaction parameters, such as reaction temperature and O{sub 2}/ethanol ratio were investigated. The catalysts

  18. FORMALDEHYDE DISMUTASE ACTIVITIES IN GRAM-POSITIVE BACTERIA OXIDIZING METHANOL

    NARCIS (Netherlands)

    BYSTRYKH, LV; GOVORUKHINA, NI; VANOPHEM, PW; HEKTOR, HJ; DIJKHUIZEN, L; DUINE, JA; Govorukhina, Natalya; Ophem, Peter W. van; Duine, Johannis A.

    Extracts of methanol-grown cells of Amycolatopsis methanolica and Mycobacterium gastri oxidized methanol and ethanol with concomitant reduction of N,N'-dimethyl-4-nitrosoaniline (NDMA). Anion-exchange chromatography revealed the presence of a single enzyme able to catalyse this activity in methanol-

  19. Oxidation of SiC/BN/SiC Composites in Reduced Oxygen Partial Pressures

    Science.gov (United States)

    Opila, Elizabeth J.; Boyd, Meredith

    2010-01-01

    SiC fiber-reinforced SiC composites with a BN interphase are proposed for use as leading edge structures of hypersonic vehicles. The durability of these materials under hypersonic flight conditions is therefore of interest. Thermogravimetric analysis was used to characterize the oxidation kinetics of both the constituent fibers and composite coupons at four temperatures: 816, 1149, 1343, and 1538 C (1500, 2100, 2450, and 2800 F) and in oxygen partial pressures between 5% and 0.1% (balance argon) at 1 atm total pressure. One edge of the coupons was ground off so the effects of oxygen ingress into the composite could be monitored by post-test SEM and EDS. Additional characterization of the oxidation products was conducted by XPS and TOF-SIMS. Under most conditions, the BN oxidized rapidly, leading to the formation of borosilicate glass. Rapid initial oxidation followed by volatilization of boria lead to protective oxide formation and further oxidation was slow. At 1538C in 5% oxygen, both the fibers and coupons exhibited borosilicate glass formation and bubbling. At 1538C in 0.1% oxygen, active oxidation of both the fibers and the composites was observed leading to rapid SiC degradation. BN oxidation at 1538C in 0.1% oxygen was not significant.

  20. Development of a novel reactor concept for the partial oxidation of methane to syngas

    NARCIS (Netherlands)

    Smit, J.; van Sint Annaland, M.; Kuipers, J.A.M.

    2004-01-01

    The gas-to-liquid process, consisting of the partial oxidation of methane (POM) followed by the Fischer-Tropsch reaction, is a promising alternative to conventional oil processing for the production of liquid fuels. The cost of a conventional POM process is mainly determined by cryogenic air

  1. Modelling of a reverse flow catalytic membrane reactor for the partial oxidation of methane

    NARCIS (Netherlands)

    Smit, J.; van Sint Annaland, M.; Kuipers, J.A.M.

    2003-01-01

    Gas-To-Liquid (GTL) processes have great potential as alternative to conventional oil and coal processing for the production of liquid fuels. In GTL-processes the partial oxidation of methane (POM) is combined with the Fischer-Tropsch reaction. An important part of the investment costs of a

  2. "On-water" rhodium-catalysed hydroformylation for the production of linear alcohols

    NARCIS (Netherlands)

    Diebolt, O.H.; Müller, Christian; Vogt, D.

    2012-01-01

    Optimisation of the reaction conditions for the rhodium-catalysed aldehyde hydrogenation under hydroformylation conditions showed that water used as co-solvent enhances both rate and selectivity towards primary alcohols. One-pot hydroformylation–hydrogenation using rhodium as the only transition

  3. Iron(III) porphyrin-catalysed oxidation reactions by m-chloro ...

    Indian Academy of Sciences (India)

    Unknown

    The notable feature in this study is that none of the kinetic traces are expo- nential. A representative plot is given in figure 1 and the quantitative spectrum of TTBP• radical in dichloromethane is given in figure 2 (bold line). In this oxidation reaction under all the conditions, non-exponential kinetic traces were always obser-.

  4. Electrocatalytic oxidations of pyridine derivatives using Ru(IV) poly pyridine complex

    International Nuclear Information System (INIS)

    Oliveira, S.M. de.

    1989-01-01

    The oxidation reactions electro catalysed by bi pyridine oxo tri pyridine ruthenium perchlorate metallic complex from selected organic substrates are studied. The obtained results are compared with forecasting results showing the coherence of suggested mechanism. The substrates 2-, 2- and 4- picolines with its respective 1-oxides and 1,2 -; 1,3 - and 1,4 - dimethyl pyridine chloride salts were analysed. The oxidation of toluene as reference substrate was also studied and the mass spectra of oxidation products were interpreted. (M.C.K.)

  5. Reaction scheme of partial oxidation of methane to synthesis gas over yttrium-stabilized zirconia

    NARCIS (Netherlands)

    Zhu, J.J.; van Ommen, J.G.; Lefferts, Leonardus

    2004-01-01

    The partial oxidation of methane to synthesis gas over yttrium-stabilized zirconia (YSZ) was studied with in situ FTIR and both steady-state and transient experiments. The four major products, CO, H2, CO2, and H2O, are primary products of CPOM over YSZ. Besides these major products and traces of

  6. Plant cells oxidize hydroxylamines to NO

    Science.gov (United States)

    Rümer, Stefan; Gupta, Kapuganti Jagadis; Kaiser, Werner M.

    2009-01-01

    Plants are known to produce NO via the reduction of nitrite. Oxidative NO production in plants has been considered only with respect to a nitric oxide synthase (NOS). Here it is shown that tobacco cell suspensions emitted NO when hydroxylamine (HA) or salicylhydroxamate (SHAM), a frequently used AOX inhibitor, was added. NG-hydroxy-L-arginine, a putative intermediate in the NOS-reaction, gave no NO emission. Only a minor fraction (≤1%) of the added HA or SHAM was emitted as NO. Production of NO was decreased by anoxia or by the addition of catalase, but was increased by conditions inducing reactive oxygen (ROS) or by the addition of hydrogen peroxide. Cell-free enzyme solutions generating superoxide or hydrogen peroxide also led to the formation of NO from HA or (with lower rates) from SHAM, and nitrite was also an oxidation product. Unexpectedly, the addition of superoxide dismutase (SOD) to cell suspensions stimulated NO formation from hydroxylamines, and SOD alone (without cells) also catalysed the production of NO from HA or SHAM. NO production by SOD plus HA was higher in nitrogen than in air, but from SOD plus SHAM it was lower in nitrogen. Thus, SOD-catalysed NO formation from SHAM and from HA may involve different mechanisms. While our data open a new possibility for oxidative NO formation in plants, the existence and role of these reactions under physiological conditions is not yet clear. PMID:19357430

  7. Oscillatory behaviour of catalytic properties, structure and temperature during the catalytic partial oxidation of methane on Pd/Al2O3

    DEFF Research Database (Denmark)

    Kimmerle, B.; Baiker, A.; Grunwaldt, Jan-Dierk

    2010-01-01

    Pd/Al2O3 catalysts showed an oscillatory behaviour during the catalytic partial oxidation (CPO) of methane, which was investigated simultaneously by IR-thermography, X-ray absorption spectroscopy, and online mass-spectrometry to correlate the temperature, state of the catalyst and catalytic...... to self-reduction leading to extinction of the process. The latter was the key driver for the oscillations and thus gave additional insight into the mechanism of partial methane oxidation....

  8. A novel technique for hydrogen production from hog-manure in supercritical partial oxidation (SCWPO)

    Energy Technology Data Exchange (ETDEWEB)

    Youssef, Emhemmed A.; Charpentier, Paul [Western Ontario Univ., London, ON (Canada). Dept. of Chemical and Biochemical Engineering; Nakhla, George [Western Ontario Univ., London, ON (Canada). Dept. of Chemical and Biochemical Engineering; Western Ontario Univ., London, ON (Canada). Dept. of Civil and Environmental Engineering; Elbeshbishy, Elsayed; Hafez, Hisham [Western Ontario Univ., London, ON (Canada). Dept. of Civil and Environmental Engineering

    2010-07-01

    In this study, the catalytic hydrogen production from hog manure using supercritical water partial oxidation was investigated in a batch reactor at a temperature of 500 C, and pressure of 28 MPa using several metallic catalysts. Hog manure was characterized by a total and soluble chemical oxygen demand (TCOD, SCOD) of 57000 and 28000 mg/L, total and volatile suspended solids (TSS, VSS) of 25000, 19000, and ammonia of 2400 mg/L, respectively. The order of H{sub 2} production was the following: Pd/AC > Ru/Al{sub 2}O{sub 3} > Ru/AC > AC > NaOH. The order of COD reduction efficiency was as follows: NaOH > Ru/AC > AC > Ru/Al{sub 2}O{sub 3} > Pd/AC. The behaviour of the volatile fatty acids (VFA's), ethanol, methanol, ammonia, H{sub 2}S, and Sulfate was investigated experimentally and discussed. A 35 % reduction in the H{sub 2} and CH{sub 4} yields was observed in the sequential gasification partial oxidation (oxidant at an 80 % of theoretical requirement) experiments compared to the gasification experiments (catalyst only). Moreover, this reduction in gas yields was coincided with a 45 % reduction in the liquid effluent chemical oxygen demand (COD), 60 % reduction of the ammonia concentration in the liquid effluent, and 20 % reduction in the H{sub 2}S concentration in the effluent gas. (orig.)

  9. On the Mechanism of the Digold(I)-Hydroxide-Catalysed Hydrophenoxylation of Alkynes

    KAUST Repository

    Gó mez-Suá rez, Adriá n; Oonishi, Yoshihiro; Martin, Anthony R.; Vummaleti, Sai V. C.; Nelson, David J.; Cordes, David B.; Slawin, Alexandra M. Z.; Cavallo, Luigi; Nolan, Steven P.; Poater, Albert

    2015-01-01

    Herein, we present a detailed investigation of the mechanistic aspects of the dual gold-catalysed hydrophenoxylation of alkynes by both experimental and computational methods. The dissociation of [{Au(NHC)}2(μ-OH)][BF4] is essential to enter

  10. Sn-Beta catalysed conversion of hemicellulosic sugars

    DEFF Research Database (Denmark)

    Holm, Martin; Pagán-Torres, Yomaira J.; Shunmugavel, Saravanamurugan

    2012-01-01

    are observed for the pentoses. This finding is in accordance to a reaction pathway that involves the retro aldol condensation of the sugars to form a triose and glycolaldehyde for the pentoses, and two trioses for hexoses. When reacting glycolaldehyde (formally a C2-sugar) in the presence of Sn-Beta, aldol...... condensation occurs, leading to the formation of methyl lactate, methyl vinylglycolate and methyl 2-hydroxy-4-methoxybutanoate. In contrast, when converting the sugars in water at low temperatures (100 °C), Sn-Beta catalyses the isomerisation of sugars (ketose–aldose epimers), rather than the formation...

  11. Kinetics and mechanism of the oxidation of thiocyanate ion by di-m ...

    African Journals Online (AJOL)

    phenanthroline)dimanganese(III,IV) perchlorate in acid medium has been investigated. The reaction follows first order in both the oxidant and the reductant. The reaction is catalysed by hydrogen ion and the rate dependence given as k2 = a + b[H+].

  12. Oxidative Stress in Patients with Drug Resistant Partial Complex Seizure

    Directory of Open Access Journals (Sweden)

    Lourdes Lorigados Pedre

    2018-06-01

    Full Text Available Oxidative stress (OS has been implicated as a pathophysiological mechanism of drug-resistant epilepsy, but little is known about the relationship between OS markers and clinical parameters, such as the number of drugs, age onset of seizure and frequency of seizures per month. The current study’s aim was to evaluate several oxidative stress markers and antioxidants in 18 drug-resistant partial complex seizure (DRPCS patients compared to a control group (age and sex matched, and the results were related to clinical variables. We examined malondialdehyde (MDA, advanced oxidation protein products (AOPP, advanced glycation end products (AGEs, nitric oxide (NO, uric acid, superoxide dismutase (SOD, glutathione, vitamin C, 4-hydroxy-2-nonenal (4-HNE and nitrotyrosine (3-NT. All markers except 4-HNE and 3-NT were studied by spectrophotometry. The expressions of 4-HNE and 3-NT were evaluated by Western blot analysis. MDA levels in patients were significantly increased (p ≤ 0.0001 while AOPP levels were similar to the control group. AGEs, NO and uric acid concentrations were significantly decreased (p ≤ 0.004, p ≤ 0.005, p ≤ 0.0001, respectively. Expressions of 3-NT and 4-HNE were increased (p ≤ 0.005 similarly to SOD activity (p = 0.0001, whereas vitamin C was considerably diminished (p = 0.0001. Glutathione levels were similar to the control group. There was a positive correlation between NO and MDA with the number of drugs. The expression of 3-NT was positively related with the frequency of seizures per month. There was a negative relationship between MDA and age at onset of seizures, as well as vitamin C with seizure frequency/month. We detected an imbalance in the redox state in patients with DRCPS, supporting oxidative stress as a relevant mechanism in this pathology. Thus, it is apparent that some oxidant and antioxidant parameters are closely linked with clinical variables.

  13. Partial oxidation of dimethyl ether using the structured catalyst Rh/Al2O3/Al prepared through the anodic oxidation of aluminum.

    Science.gov (United States)

    Yu, B Y; Lee, K H; Kim, K; Byun, D J; Ha, H P; Byun, J Y

    2011-07-01

    The partial oxidation of dimethyl ether (DME) was investigated using the structured catalyst Rh/Al2O3/Al. The porous Al2O3 layer was synthesized on the aluminum plate through anodic oxidation in an oxalic-acid solution. It was observed that about 20 nm nanopores were well developed in the Al2O3 layer. The thickness of Al2O3 layer can be adjusted by controlling the anodizing time and current density. After pore-widening and hot-water treatment, the Al2O3/Al plate was calcined at 500 degrees C for 3 h. The obtained delta-Al2O3 had a specific surface area of 160 m2/g, making it fit to be used as a catalyst support. A microchannel reactor was designed and fabricated to evaluate the catalytic activity of Rh/Al2O3/Al in the partial oxidation of DME. The structured catalyst showed an 86% maximum hydrogen yield at 450 degrees C. On the other hand, the maximum syngas yield by a pack-bed-type catalyst could be attained by using a more than fivefold Rh amount compared to that used in the structured Rh/Al2O3/Al catalyst.

  14. Gas chromatography-electron capture determination of styrene-7,8-oxide enantiomers

    NARCIS (Netherlands)

    Kezić, S.; Jakasa, I.; Wenker, M. A.; Boogaard, P. J.; Monster, A. C.; de Wolff, F. A.

    2000-01-01

    The enantiomers of styrene-7,8-oxide (phenyloxirane, SO) were determined using a method based on base catalysed hydrolysis with sodium methoxide. The oxirane ring opening resulted in formation, without racemisation, of the enantiomeric pairs of the two regional isomers, 2-methoxy-1-phenylethanol and

  15. Francis Farley presenting his novel "Catalysed Fusion" in the CERN Library

    CERN Multimedia

    Farley, Irina

    2013-01-01

    "Catalysed Fusion" is described by its author Francis Farley, 92, as a "true-to-life fantasy woven around particle physics" set in 1980s Geneva – "the city where nations meet and particles collide". Farley presented the book in the program "Literature in Focus" on Tuesday 16th April 2013.

  16. Kinetics and correlation analysis of reactivity in the oxidation of ...

    Indian Academy of Sciences (India)

    The oxidation of a number of monosubstituted aryl methyl, alkyl phenyl, dialkyl, and diphenyl sulfides by butyltriphenylphosphonium dichromate (BTPPD), to the corresponding sulfoxides, is first order with respect to BTPPD and is second order with respect to sulfide. The reaction is catalysed by hydrogen ions and the ...

  17. Production of reduction gases: partial oxidation of hydrocarbons and coal

    Energy Technology Data Exchange (ETDEWEB)

    Tippmer, K

    1976-04-01

    After some general remarks on reduction gas and quality demands, the Texaco process of partial oxidation with scrubbing is dealt with. A comparison of current iron-sponge techniques shows that a heat demand below 3 M kcal/t Fe should be envisaged, which means that heavy fuel oil or coal should be used. The special features of oxygen generation, coal processing, demands made on fuel oil, gasoline, and natural gas, gas generation, soot recovery, hydrogen sulphide-carbon dioxide scrubbing, system Benfield HP process, recycle-carbon dioxide scrubbing, auxiliary steam system, gas preheating, recycle gas cooling and compression, process data and heat balances for natural gas (one-heat system) and heating fuel oil or naphtha (two-heat system) are given.

  18. Uncatalysed and potassium-catalysed pyrolysis of the cell-wall constituents of biomass and their model compounds

    Energy Technology Data Exchange (ETDEWEB)

    Nowakowski, Daniel J.; Jones, Jenny M. [Energy and Resources Research Institute, School of Process, Environmental and Materials Engineering (SPEME), University of Leeds, Leeds, LS2 9JT (United Kingdom)

    2008-09-15

    Cell-wall components (cellulose, hemicellulose (oat spelt xylan), lignin (Organosolv)), and model compounds (levoglucosan (an intermediate product of cellulose decomposition) and chlorogenic acid (structurally similar to lignin polymer units)) have been investigated to probe in detail the influence of potassium on their pyrolysis behaviours as well as their uncatalysed decomposition reaction. Cellulose and lignin were pretreated to remove salts and metals by hydrochloric acid, and this dematerialized sample was impregnated with 1% of potassium as potassium acetate. Levoglucosan, xylan and chlorogenic acid were mixed with CH{sub 3}COOK to introduce 1% K. Characterisation was performed using thermogravimetric analysis (TGA) and differential thermal analysis (DTA). In addition to the TGA pyrolysis, pyrolysis-gas chromatography-mass spectrometry (PY-GC-MS) analysis was introduced to examine reaction products. Potassium-catalysed pyrolysis has a huge influence on the char formation stage and increases the char yields considerably (from 7.7% for raw cellulose to 27.7% for potassium impregnated cellulose; from 5.7% for raw levoglucosan to 20.8% for levoglucosan with CH{sub 3}COOK added). Major changes in the pyrolytic decomposition pathways were observed for cellulose, levoglucosan and chlorogenic acid. The results for cellulose and levoglucosan are consistent with a base catalysed route in the presence of the potassium salt which promotes complete decomposition of glucosidic units by a heterolytic mechanism and favours its direct depolymerization and fragmentation to low molecular weight components (e.g. acetic acid, formic acid, glyoxal, hydroxyacetaldehyde and acetol). Base catalysed polymerization reactions increase the char yield. Potassium-catalysed lignin pyrolysis is very significant: the temperature of maximum conversion in pyrolysis shifts to lower temperature by 70 K and catalysed polymerization reactions increase the char yield from 37% to 51%. A similar trend

  19. Phage inactivation by triplet acetone

    International Nuclear Information System (INIS)

    Gomes, R.A.

    1985-01-01

    The exposure of lambda phage to triplet acetone is studied. The triplet acetone is obtained from aerobic oxidation of isobutanal catalysed by peroxidase. A decrease of lambda phage ability to infect Escherichia coli is reported, perhaps, partially due to the possible production of lesions in the phage genome. (M.A.C.) [pt

  20. Adiabatic Gasification and Pyrolysis of Coffee Husk Using Air-Steam for Partial Oxidation

    OpenAIRE

    Catalina Rodriguez; Gerardo Gordillo

    2011-01-01

    Colombian coffee industry produces about 0.6 million tons of husk (CH) per year which could serve as feedstock for thermal gasification to produce gaseous and liquid fuels. The current paper deals with: (i) CH adiabatic gasification modeling using air-steam blends for partial oxidation and (ii) experimental thermogravimetric analysis to determine the CH activation energy (E). The Chemical Equilibrium with Applications Program (CEA), developed by NASA, was used to estimate the effect of equiva...

  1. Effect of surface composition of yttrium-stabilized zirconia on partial oxidation of methane to synthesis gas.

    NARCIS (Netherlands)

    Zhu, J.J.; van Ommen, J.G.; Knoester, A.; Lefferts, Leonardus

    2005-01-01

    Catalytic partial oxidation of methane to synthesis gas (CPOM) over yttrium-stabilized zirconia (YSZ) was studied within a wide temperature window (500¿1100 °C). The catalysts were characterized by X-ray fluorescence (XRF) and low-energy ion scattering (LEIS). The influence of calcination

  2. Oxidation of thioacids by quinaldinium fluorochromate

    Directory of Open Access Journals (Sweden)

    Krishnamoorthy Guna Sekar

    2016-07-01

    Full Text Available The kinetics of oxidation of thioglycolic, thiolactic and thiomalic acids by quinaldinium fluorochromate [QnFC] has been studied in non aqueous medium. The oxidation kinetics was followed spectrophotometrically in the temperature range of 30–60 °C. The reaction shows unit order dependence each with respect to substrate and oxidant. The reaction is catalysed by hydrogen ions. The hydrogen ion dependence takes the form kobs = a + b [H+]. The reaction rate decreases with increasing the concentration of Mn2+ ions. The reaction does not induce polymerization of acrylonitrile. A plausible mechanism has been proposed for the formation of a thioester and its decomposition which occur in the slow step.

  3. Development of a simultaneous partial nitrification and anaerobic ammonia oxidation process in a single reactor.

    Science.gov (United States)

    Cho, Sunja; Fujii, Naoki; Lee, Taeho; Okabe, Satoshi

    2011-01-01

    Up-flow oxygen-controlled biofilm reactors equipped with a non-woven fabric support were used as a single reactor system for autotrophic nitrogen removal based on a combined partial nitrification and anaerobic ammonium oxidation (anammox) reaction. The up-flow biofilm reactors were initiated as either a partial nitrifying reactor or an anammox reactor, respectively, and simultaneous partial nitrification and anammox was established by careful control of the aeration rate. The combined partial nitrification and anammox reaction was successfully developed in both biofilm reactors without additional biomass inoculation. The reactor initiated as the anammox reactor gave a slightly higher and more stable mean nitrogen removal rate of 0.35 (±0.19) kg-N m(-3) d(-1) than the reactor initiated as the partial nitrifying reactor (0.23 (±0.16) kg-N m(-3) d(-1)). FISH analysis revealed that the biofilm in the reactor started as the anammox reactor were composed of anammox bacteria located in inner anoxic layers that were surrounded by surface aerobic AOB layers, whereas AOB and anammox bacteria were mixed without a distinguishable niche in the biofilm in the reactor started as the partial nitrifying reactor. However, it was difficult to efficiently maintain the stable partial nitrification owing to inefficient aeration in the reactor, which is a key to development of the combined partial nitrification and anammox reaction in a single biofilm reactor. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Effects of Oxygen Partial Pressure on Oxidation Behavior of CMnSi TRIP Steel in an Oxidation-Reduction Scheme

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong-Hwan; Huh, Joo-Youl [Korea University, Seoul (Korea, Republic of); Kim, Myung-Soo; Kim, Jong-Sang [POSCO Technical Research Laboratories, Gwangyang (Korea, Republic of)

    2017-02-15

    An oxidation-reduction scheme is an alternative approach for improving the galvanizability of advanced high-strength steel in the continuous hot-dip galvanizing process. Here, we investigated the effect of oxygen partial pressure (Po{sub 2}) on the oxidation behavior of a transformation-induced plasticity steel containing 1.5 wt% Si and 1.6 wt% Mn during heating to and holding for 60 s at 700 ℃ under atmospheres with various Po{sub 2} values. Irrespective of Po{sub 2}, a thin amorphous Si-rich layer of Si-Mn-O was formed underneath the Fe oxide scale (a Fe{sub 2}O{sub 3}/Fe{sub 3}O{sub 4} bilayer) in the heating stage. In contrast to Si, Mn tended to segregate at the scale surface as (Fe,Mn){sub 2}O{sub 3}. The multilayered structure of (Fe,Mn){sub 2}O{sub 3}/Fe{sub 2}O{sub 3}/Fe{sub 3}O{sub 4}/amorphous Si-Mn-O remained even after extended oxidizing at 700 ℃ for 60 s. Fe{sub 2}O{sub 3} was the dominantly growing oxide phase in the scale. The enhanced growth rate of Fe{sub 2}O{sub 3} with increasing Po{sub 2} resulted in the formation of more Kirkendall voids in the amorphous Si-rich layer and a less Mn segregation at the scale surface. The mechanisms underlying the absence of FeO and the formation of Kirkendall voids are discussed.

  5. Screening test for rapid food safety evaluation by menadione-catalysed chemiluminescent assay.

    Science.gov (United States)

    Yamashoji, Shiro; Yoshikawa, Naoko; Kirihara, Masayuki; Tsuneyoshi, Toshihiro

    2013-06-15

    The chemiluminescent assay of menadione-catalysed H2O2 production by living mammalian cells was proposed to be useful for rapid food safety evaluation. The tested foods were extracted with water, ethanol and dimethylsulfoxide, and each extract was incubated with NIH3T3, Neuro-2a and HepG2 cells for 4h. Menadione-catalysed H2O2 production by living mammalian cells exposed to each extract was determined by the chemiluminescent assay requiring only 10 min, and the viability of the cells was estimated as percentage based on H2O2 production by intact cells. In this study the cytotoxicity of food was rated in order of inhibitory effect on H2O2 production by intact cells. The well known natural toxins such as Fusarium mycotoxin, tomato toxin tomatine, potato toxin solanine and marine toxins terodotoxin and brevetoxin could be detected by the above chemiluminescent assay. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Partial oxidation of methane to syngas on Rh/Al{sub 2}O{sub 3} and Rh/Ce-ZrO{sub 2} catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Raquel L.; Bitencourt, Isabela G.; Passos, Fabio B., E-mail: fbpassos@vm.uff.br [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Engenharia Quimica e Petroleo

    2013-01-15

    The partial oxidation of methane with {gamma}-Al{sub 2}O{sub 3}-, CeO{sub 2}-, ZrO{sub 2}- and Ce-ZrO{sub 2}-supported rhodium catalysts was investigated. DRIFTS (diffuse reflectance infrared spectroscopy) measurements of adsorbed CO showed the formation of different rhodium species on different supports, which influenced the dispersion of the metal. The effects of the metal dispersion, oxygen storage capacity on the activity of these catalysts for the partial oxidation of methane are discussed. (author)

  7. Rhodium-catalysed syn-carboamination of alkenes via a transient directing group.

    Science.gov (United States)

    Piou, Tiffany; Rovis, Tomislav

    2015-11-05

    Alkenes are the most ubiquitous prochiral functional groups--those that can be converted from achiral to chiral in a single step--that are accessible to synthetic chemists. For this reason, difunctionalization reactions of alkenes (whereby two functional groups are added to the same double bond) are particularly important, as they can be used to produce highly complex molecular architectures. Stereoselective oxidation reactions, including dihydroxylation, aminohydroxylation and halogenation, are well established methods for functionalizing alkenes. However, the intermolecular incorporation of both carbon- and nitrogen-based functionalities stereoselectively across an alkene has not been reported. Here we describe the rhodium-catalysed carboamination of alkenes at the same (syn) face of a double bond, initiated by a carbon-hydrogen activation event that uses enoxyphthalimides as the source of both the carbon and the nitrogen functionalities. The reaction methodology allows for the intermolecular, stereospecific formation of one carbon-carbon and one carbon-nitrogen bond across an alkene, which is, to our knowledge, unprecedented. The reaction design involves the in situ generation of a bidentate directing group and the use of a new cyclopentadienyl ligand to control the reactivity of rhodium. The results provide a new way of synthesizing functionalized alkenes, and should lead to the convergent and stereoselective assembly of amine-containing acyclic molecules.

  8. Identification of key nitrous oxide production pathways in aerobic partial nitrifying granules.

    Science.gov (United States)

    Ishii, Satoshi; Song, Yanjun; Rathnayake, Lashitha; Tumendelger, Azzaya; Satoh, Hisashi; Toyoda, Sakae; Yoshida, Naohiro; Okabe, Satoshi

    2014-10-01

    The identification of the key nitrous oxide (N2O) production pathways is important to establish a strategy to mitigate N2O emission. In this study, we combined real-time gas-monitoring analysis, (15)N stable isotope analysis, denitrification functional gene transcriptome analysis and microscale N2O concentration measurements to identify the main N2O producers in a partial nitrification (PN) aerobic granule reactor, which was fed with ammonium and acetate. Our results suggest that heterotrophic denitrification was the main contributor to N2O production in our PN aerobic granule reactor. The heterotrophic denitrifiers were probably related to Rhodocyclales bacteria, although different types of bacteria were active in the initial and latter stages of the PN reaction cycles, most likely in response to the presence of acetate. Hydroxylamine oxidation and nitrifier denitrification occurred, but their contribution to N2O emission was relatively small (20-30%) compared with heterotrophic denitrification. Our approach can be useful to quantitatively examine the relative contributions of the three pathways (hydroxylamine oxidation, nitrifier denitrification and heterotrophic denitrification) to N2O emission in mixed microbial populations. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Peptide catalysed prebiotic polymerization of RNA

    DEFF Research Database (Denmark)

    Wieczorek, Rafal; Luisi, Pier Luigi; Monnard, Pierre-Alain

    A short peptide composed of only two amino acid residues, serine and histidine, is here reported to enable oligomerization of RNA monomers. SerHis dipeptide was previously reported to catalyse formation of peptide bonds (Gorlero et al. 2009) as well as possessing broad hydrolytic activities...... – in such environment hydrolysis is thermodynamically favoured over condensation. However, the thermodynamic equilibrium towards condensation can be shifted even in this environment. In this poster we describe a prebiotically plausible system in which the SerHis dipeptide acts as catalyst for the formation of RNA...... oligomers from imidazole derivatives of mononucleotides. The thermodynamic shift towards condensation was achieved using water/ice eutectic phase environment (Monnard and Ziock 2008). To obtain such an environment, a reaction solution is cooled below its freezing point, but above the eutectic point. Under...

  10. Direct Synthesis of Methanol by Partial Oxidation of Methane with Oxygen over Cobalt Modified Mesoporous H-ZSM-5 Catalyst

    Directory of Open Access Journals (Sweden)

    Yuni Krisyuningsih Krisnandi

    2015-11-01

    Full Text Available Partial oxidation of methane over mesoporous catalyst cobalt modified H-ZSM-5 has been carried out. Mesoporous Na-ZSM-5 (Si/Al = 35.4 was successfully synthesized using double template method which has high surface area (450 m2/g and average pore diameter distribution of 1.9 nm. The as-synthesized Na-ZSM-5 was converted to H-ZSM-5 through multi-exchange treatment with ammonium ion solution, causing decreased crystallinity and surface area, but increased porous diameter, due to dealumination during treatment process. Moreover, H-ZSM-5 was loaded with cobalt (Co = 2.5% w by the incipient impregnation method and calcined at 550 °C. Partial oxidation of methane was performed in the batch reactor with 0.75 bar methane and 2 bar of nitrogen (with impurities of 0.5% oxygen as the input at various reaction time (30, 60 and 120 min. The reaction results show that cobalt species in catalyst has an important role, because H-ZSM-5 cannot produce methanol in partial oxidation of methane. The presence of molecular oxygen increased the percentage of methanol yield. The reaction is time-dependent with the highest methanol yield (79% was acquired using Co/H-ZSM-5 catalyst for 60 min.

  11. In situ photoemission spectroscopy using synchrotron radiation for O2 translational kinetic energy induced oxidation processes of partially-oxidized Si(001) surfaces

    International Nuclear Information System (INIS)

    Teraoka, Yuden; Yoshigoe, Akitaka

    2001-01-01

    The influence of translational kinetic energy of incident O 2 molecules for the passive oxidation process of partially-oxidized Si(001) surfaces has been studied by photoemission spectroscopy. The translational kinetic energy of O 2 molecules was controlled up to 3 eV by a supersonic seed beam technique using a high temperature nozzle. Two translational kinetic energy thresholds (1.0 eV and 2.6 eV) were found out in accordance with the first-principles calculation for the oxidation of clean surfaces. Si-2p photoemission spectra measured in representative translational kinetic energies revealed that the translational kinetic energy dependent oxidation of dimers and the second layer (subsurface) backbonds were caused by the direct dissociative chemisorption of O 2 molecules. Moreover, the difference in chemical bonds for oxygen atoms was found out to be as low and high binding energy components in O-1s photoemission spectra. Especially, the low binding energy component increased with increasing the translational kinetic energy that indicates the translational kinetic energy induced oxidation in backbonds. (author)

  12. Calculated ionisation potentials to determine the oxidation of vanillin precursors by lignin peroxidase.

    NARCIS (Netherlands)

    Have, ten R.; Rietjens, I.M.C.M.; Hartmans, S.; Swarts, H.J.; Field, J.A.

    1998-01-01

    In view of the biocatalytic production of vanillin, this research focused on the lignin peroxidase (LiP) catalysed oxidation of naturally occurring phenolic derivatives: O-methyl ethers, O-acetyl esters, and O-glucosyl ethers. The ionisation potential (IP) of a series of model compounds was

  13. Exploring the atmospheric chemistry of O2SO3- and assessing the maximum turnover number of ion-catalysed H2SO4 formation

    DEFF Research Database (Denmark)

    Bork, Nicolai Christian; Kurtén, T.; Vehkamäki, H.

    2013-01-01

    molecule, but reaction (b) is in general much more probable. Although we are unable to assess the overall importance of this cycle in the real atmosphere due to the unknown influence of CO2 and NOx, we roughly estimate that ion-induced catalysis may contribute with several percent of H2SO4 levels......It has recently been demonstrated that the O2SO3- ion forms in the atmosphere as a natural consequence of ionizing radiation. Here, we present a density functional theory-based study of the reactions of O2SO3- with O-3. The most important reactions are (a) oxidation to O3SO3- and (b) cluster...... the two major sinks for O2SO3- is assessed, thereby providing a measure of the maximum turnover number of ion-catalysed SO2 oxidation, i.e. how many SO2 can be oxidized per free electron. The rate ratio between reactions (a) and (b) is significantly altered by the presence or absence of a single water...

  14. Catalytic partial oxidation of methane over porous silica supported VO{sub x} catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Pirovano, C.; Schoenborn, E.; Kalevaru, V.N.; Wohlrab, S.; Luecke, B.; Martin, A. [University Rostock e.V., Rostock (Germany). Leibniz Inst. for Catalysis

    2011-07-01

    High surface area mesoporous siliceous MCM-41 and SBA-15 materials have been used as supports to disperse vanadium oxide species using wet impregnation and incipient wetness impregnation methods. These materials were used as catalysts for the partial oxidation of methane (POM) to formaldehyde. The physico-chemical properties of the solids were studied by means of BET, DR-UV/Vis spectroscopy, Py-FTIR and TEM. The influence of support and the preparation method on the dispersion of VOx is also investigated. The catalytic properties of the catalysts were examined in a fixed bed stainless steel reactor at 923 K. So far a maximum production of formaldehyde can be detected on SBA-15 supported VOx-catalysts prepared by incipient wetness impregnation. On this V/SBA-15 material a covalent attachment of catalytic active molecular vanadium species dominates, which in turn leads to a lower activation temperature and thereby reduced over-oxidation. From the best case, the space time yield of HCHO could be reached close to 775 g{sub HCHO} Kg{sub cat}{sup -1} h{sup -1}. (orig.)

  15. 3H-labelling of belladonna alkaloids by catalysed exchange with microwave excitation

    International Nuclear Information System (INIS)

    Zhang Liming; Zheng Dongzhu; Yuan Jianmin; Jiang Xiaoma; Zhao Xialing

    1992-01-01

    The specific activities of the 3 H-labelled belladonna alkaloids obtained by catalysed exchange method with microwave excitation were 16-32 TBq/mol. More than 90% labelled positions of these 3 H-tracers were on phenyl rings. The radiochemical purity and chemical purity of crude products were both in 75-80%

  16. Sulfur isotope fractionation during oxidation of sulfur dioxide: gas-phase oxidation by OH radicals and aqueous oxidation by H2O2, O3 and iron catalysis

    Directory of Open Access Journals (Sweden)

    J. N. Crowley

    2012-01-01

    Full Text Available The oxidation of SO2 to sulfate is a key reaction in determining the role of sulfate in the environment through its effect on aerosol size distribution and composition. Sulfur isotope analysis has been used to investigate sources and chemical processes of sulfur dioxide and sulfate in the atmosphere, however interpretation of measured sulfur isotope ratios is challenging due to a lack of reliable information on the isotopic fractionation involved in major transformation pathways. This paper presents laboratory measurements of the fractionation factors for the major atmospheric oxidation reactions for SO2: Gas-phase oxidation by OH radicals, and aqueous oxidation by H2O2, O3 and a radical chain reaction initiated by iron. The measured fractionation factor for 34S/32S during the gas-phase reaction is αOH = (1.0089±0.0007−((4±5×10−5 T(°C. The measured fractionation factor for 34S/32S during aqueous oxidation by H2O2 or O3 is αaq = (1.0167±0.0019−((8.7±3.5 ×10−5T(°C. The observed fractionation during oxidation by H2O2 and O3 appeared to be controlled primarily by protonation and acid-base equilibria of S(IV in solution, which is the reason that there is no significant difference between the fractionation produced by the two oxidants within the experimental error. The isotopic fractionation factor from a radical chain reaction in solution catalysed by iron is αFe = (0.9894±0.0043 at 19 °C for 34S/32S. Fractionation was mass-dependent with regards to 33S/32S for all the reactions investigated. The radical chain reaction mechanism was the only measured reaction that had a faster rate for the light isotopes. The results presented in this study will be particularly useful to determine the importance of the transition metal-catalysed oxidation pathway compared to other oxidation pathways, but other main oxidation pathways can not be distinguished based on stable sulfur isotope measurements alone.

  17. Gold nanoparticles in oxidation catalysis [Les nanoparticules d'or en catalyse d'oxydation

    KAUST Repository

    Caps, Valerie

    2010-10-25

    When gold dimensions are reduced to a few nanometers, gold exhibits unique properties in oxidation catalysis. By performing selective oxidations of hydrocarbons at low temperature (typically below 100°C), gold nanoparticles achieve high selectivities at levels of conversion usually obtained at higher temperature. This is attributed to the activation modes of molecular oxygen on gold. Indeed, unlike platinum, gold does not chemisorb oxygen at its operating temperature. On the other hand, it seems to catalyze the formation of reduced and active dioxygen species in the presence of a reductant (hydrogen or hydrocarbon) and the decomposition of organic hydroperoxides. It thus allows using an alkane as a promoter of the epoxidation of an alkene. In the liquid phase, this translates into an ultra-selective radical mechanism, initiated and controlled by gold particles, which uses oxygen from the air at atmospheric pressure as oxidant and which can be generalized to other types of oxidations. This unique activity at low temperature, which can be optimized upon a thorough control of the surface chemistry of the material, makes gold a catalyst of choice to reconsider the oxidative transformations of petrochemicals in an eco-efficient way.

  18. Effects of dissolved oxygen and pH on nitrous oxide production rates in autotrophic partial nitrification granules.

    Science.gov (United States)

    Rathnayake, Rathnayake M L D; Oshiki, Mamoru; Ishii, Satoshi; Segawa, Takahiro; Satoh, Hisashi; Okabe, Satoshi

    2015-12-01

    The effects of dissolved oxygen (DO) and pH on nitrous oxide (N2O) production rates and pathways in autotrophic partial nitrification (PN) granules were investigated at the granular level. N2O was primarily produced by betaproteobacterial ammonia-oxidizing bacteria, mainly Nitrosomonas europaea, in the oxic surface layer (production increased with increasing bulk DO concentration owing to activation of the ammonia (i.e., hydroxylamine) oxidation in this layer. The highest N2O emissions were observed at pH 7.5, although the ammonia oxidation rate was unchanged between pH 6.5 and 8.5. Overall, the results of this study suggest that in situ analyses of PN granules are essential to gaining insight into N2O emission mechanisms in a granule. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Steam and partial oxidation reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Directory of Open Access Journals (Sweden)

    Yousri M.A. Welaya

    2012-06-01

    Full Text Available Proton exchange membrane fuel cell (PEM generates electrical power from air and from hydrogen or hydrogen rich gas mixtures. Therefore, there is an increasing interest in converting current hydrocarbon based marine fuels such as natural gas, gasoline, and diesel into hydrogen rich gases acceptable to the PEM fuel cells on board ships. Using chemical flow sheeting software, the total system efficiency has been calculated. Natural gas appears to be the best fuel for hydrogen rich gas production due to its favorable composition of lower molecular weight compounds. This paper presents a study for a 250 kW net electrical power PEM fuel cell system utilizing a partial oxidation in one case study and steam reformers in the second. This study has shown that steam-reforming process is the most competitive fuel processing option in terms of fuel processing efficiency. Partial oxidation process has proved to posses the lowest fuel processing efficiency. Among the options studied, the highest fuel processing efficiency is achieved with natural gas steam reforming system.

  20. Manganese-catalysed benzylic C(sp3)-H amination for late-stage functionalization.

    Science.gov (United States)

    Clark, Joseph R; Feng, Kaibo; Sookezian, Anasheh; White, M Christina

    2018-06-01

    Reactions that directly install nitrogen into C-H bonds of complex molecules are significant because of their potential to change the chemical and biological properties of a given compound. Although selective intramolecular C-H amination reactions are known, achieving high levels of reactivity while maintaining excellent site selectivity and functional-group tolerance remains a challenge for intermolecular C-H amination. Here, we report a manganese perchlorophthalocyanine catalyst [MnIII(ClPc)] for intermolecular benzylic C-H amination of bioactive molecules and natural products that proceeds with unprecedented levels of reactivity and site selectivity. In the presence of a Brønsted or Lewis acid, the [MnIII(ClPc)]-catalysed C-H amination demonstrates unique tolerance for tertiary amine, pyridine and benzimidazole functionalities. Mechanistic studies suggest that C-H amination likely proceeds through an electrophilic metallonitrene intermediate via a stepwise pathway where C-H cleavage is the rate-determining step of the reaction. Collectively, these mechanistic features contrast with previous base-metal-catalysed C-H aminations and provide new opportunities for tunable selectivities.

  1. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel

    Science.gov (United States)

    Gao, Shan; Lin, Yue; Jiao, Xingchen; Sun, Yongfu; Luo, Qiquan; Zhang, Wenhua; Li, Dianqi; Yang, Jinlong; Xie, Yi

    2016-01-01

    Electroreduction of CO2 into useful fuels, especially if driven by renewable energy, represents a potentially ‘clean’ strategy for replacing fossil feedstocks and dealing with increasing CO2 emissions and their adverse effects on climate. The critical bottleneck lies in activating CO2 into the CO2•- radical anion or other intermediates that can be converted further, as the activation usually requires impractically high overpotentials. Recently, electrocatalysts based on oxide-derived metal nanostructures have been shown to enable CO2 reduction at low overpotentials. However, it remains unclear how the electrocatalytic activity of these metals is influenced by their native oxides, mainly because microstructural features such as interfaces and defects influence CO2 reduction activity yet are difficult to control. To evaluate the role of the two different catalytic sites, here we fabricate two kinds of four-atom-thick layers: pure cobalt metal, and co-existing domains of cobalt metal and cobalt oxide. Cobalt mainly produces formate (HCOO-) during CO2 electroreduction; we find that surface cobalt atoms of the atomically thin layers have higher intrinsic activity and selectivity towards formate production, at lower overpotentials, than do surface cobalt atoms on bulk samples. Partial oxidation of the atomic layers further increases their intrinsic activity, allowing us to realize stable current densities of about 10 milliamperes per square centimetre over 40 hours, with approximately 90 per cent formate selectivity at an overpotential of only 0.24 volts, which outperforms previously reported metal or metal oxide electrodes evaluated under comparable conditions. The correct morphology and oxidation state can thus transform a material from one considered nearly non-catalytic for the CO2 electroreduction reaction into an active catalyst. These findings point to new opportunities for manipulating and improving the CO2 electroreduction properties of metal systems

  2. Investigation of partial oxidation of hydrogen sulfide for dry desulfurisation of fuel gases; Untersuchung der Partialoxidation von Schwefelwasserstoff zur Trockenentschwefelung von Brenngasen

    Energy Technology Data Exchange (ETDEWEB)

    Kliemczak, U.

    2002-07-01

    Three process variants for direct desulfurisation in the dry state of coal gasification gases by partial oxidation of H{sub 2}S were investigated in Prenflo conditions: 1. Heterogeneously catalyzed partial oxidation of H{sub 2}S on fly dust followed by sulfur deposition on the dust; 2. Non-catalyzed partial oxidation of H{sub 2}S in a homogeneous gaseous phase followed by sulfur deposition in a spray separator; 3. Heterogeneously catalyzed partial oxidation of H{sub 2}S in a fixed bed. The experiments were carried out in conditions similar to the crude gas conditions of slag bath gasification at SVZ Schwarze Pumpe. The fixed bed materials investigated were hearth furnace coke, Berl saddles, and an activated carbon developed specially for the investigations, Oxorbon CJ. The focus of the investigations was on the envisaged continuous operation of the process. [German] Im Rahmen der vorliegenden Arbeit wurde an einer zu diesem Zweck modifizierten Technikumsanlage die trockene Direktentschwefelung von Brenngasen aus der Kohlevergasung durch partielle Oxidation von H{sub 2}S untersucht. Im Vordergrund standen zwei Verfahrensvarianten, deren Eignung fuer die Bedingungen der Prenflo-Vergasung ueberprueft werden sollte: Variante 1: die heterogen katalysierte Partialoxidation von H{sub 2}S an Flugstaub mit anschliessender Schwefelabscheidung auf dem Staub und, Variante 2: die nichtkatalysierte Partialoxidation von H{sub 2}S in homogener Gasphase mit anschliessender Schwefelabscheidung in einem Spruehabscheider. Ausgehend von den Versuchsergebnissen der Verfahrensvarianten 1 und 2 wurde zusaetzlich als Verfahrensvariante 3 die heterogen katalysierte Partialoxidation von H{sub 2}S am Festbett untersucht. Diese Versuche orientierten sich an den Rohgasbedingungen der Schlackebadvergasung des SVZ Schwarze Pumpe. Als Festbettmaterialien kamen Herdofenkoks, Berlsaettel und eine, speziell fuer diese Verfahrensvariante entwickelte Aktivkohle Oxorbon CJ, zum Einsatz. Die Eignung des

  3. Chemoselective N-arylation of aminobenzamides via copper catalysed Chan-Evans-Lam reactions.

    Science.gov (United States)

    Liu, Shuai; Zu, Weisai; Zhang, Jinli; Xu, Liang

    2017-11-15

    Chemoselective N-arylation of unprotected aminobenzamides was achieved via Cu-catalysed Chan-Evans-Lam cross-coupling with aryl boronic acids for the first time. Simple copper catalysts enable the selective arylation of amino groups in ortho/meta/para-aminobenzamides under open-flask conditions. The reactions were scalable and compatible with a wide range of functional groups.

  4. A novel partial SOI LDMOSFET with periodic buried oxide for breakdown voltage and self heating effect enhancement

    Science.gov (United States)

    Jamali Mahabadi, S. E.; Rajabi, Saba; Loiacono, Julian

    2015-09-01

    In this paper a partial silicon on insulator (PSOI) lateral double diffused metal oxide semiconductor field effect transistor (LDMOSFET) with periodic buried oxide layer (PBO) for enhancing breakdown voltage (BV) and self-heating effects (SHEs) is proposed for the first time. This new structure is called periodic buried oxide partial silicon on insulator (PBO-PSOI). In this structure, periodic small pieces of SiO2 were used as the buried oxide (BOX) layer in PSOI to modulate the electric field in the structure. It was demonstrated that the electric field is distributed more evenly by producing additional electric field peaks, which decrease the common peaks near the drain and gate junctions in the PBO-PSOI structure. Hence, the area underneath the electric field curve increases which leads to higher breakdown voltage. Also a p-type Si window was introduced in the source side to force the substrate to share the vertical voltage drop, leading to a higher vertical BV. Furthermore, the Si window under the source and those between periodic pieces of SiO2 create parallel conduction paths between the active layer and substrate thereby alleviating the SHEs. Simulations with the two dimensional ATLAS device simulator from the Silvaco suite of simulation tools show that the BV of PBO-PSOI is 100% higher than that of the conventional partial SOI (C-PSOI) structure. Furthermore the PBO-PSOI structure alleviates SHEs to a greater extent than its C-PSOI counterpart. The achieved drain current for the PBO-PSOI structure (100 μA), at drain-source voltage of VDS = 100 V and gate-source voltage of VGS = 25 V, is shown to be significantly larger than that in C-PSOI and fully depleted SOI (FD-SOI) structures (87 μA and 51 μA respectively). Drain current can be further improved at the expense of BV by increasing the doping of the drift region.

  5. Degradation of quinoline by wet oxidation - kinetic aspects and reaction mechanisms

    DEFF Research Database (Denmark)

    Thomsen, A.B.

    1998-01-01

    The high temperature, high pressure wet oxidation reaction of quinoline has been studied as a function of initial concentration, pH and temperature. At neutral to acidic pH, it is effective in the oxidation of quinoline at 240 degrees C and above, whereas under alkaline conditions the reaction...... is markedly slowed down. The results indicate that the reaction is an auto-catalysed, free radical chain reaction transforming 99% of quinoline to other substances. Of the quinoline. 30-50% was oxidised to CO2 and H2O depending on the initial concentration. Wet oxidation of deuterium-labelled quinoline...

  6. SAM-dependent enzyme-catalysed pericyclic reactions in natural product biosynthesis

    Science.gov (United States)

    Ohashi, Masao; Liu, Fang; Hai, Yang; Chen, Mengbin; Tang, Man-Cheng; Yang, Zhongyue; Sato, Michio; Watanabe, Kenji; Houk, K. N.; Tang, Yi

    2017-09-01

    Pericyclic reactions—which proceed in a concerted fashion through a cyclic transition state—are among the most powerful synthetic transformations used to make multiple regioselective and stereoselective carbon-carbon bonds. They have been widely applied to the synthesis of biologically active complex natural products containing contiguous stereogenic carbon centres. Despite the prominence of pericyclic reactions in total synthesis, only three naturally existing enzymatic examples (the intramolecular Diels-Alder reaction, and the Cope and the Claisen rearrangements) have been characterized. Here we report a versatile S-adenosyl-L-methionine (SAM)-dependent enzyme, LepI, that can catalyse stereoselective dehydration followed by three pericyclic transformations: intramolecular Diels-Alder and hetero-Diels-Alder reactions via a single ambimodal transition state, and a retro-Claisen rearrangement. Together, these transformations lead to the formation of the dihydropyran core of the fungal natural product, leporin. Combined in vitro enzymatic characterization and computational studies provide insight into how LepI regulates these bifurcating biosynthetic reaction pathways by using SAM as the cofactor. These pathways converge to the desired biosynthetic end product via the (SAM-dependent) retro-Claisen rearrangement catalysed by LepI. We expect that more pericyclic biosynthetic enzymatic transformations remain to be discovered in naturally occurring enzyme ‘toolboxes’. The new role of the versatile cofactor SAM is likely to be found in other examples of enzyme catalysis.

  7. Recent Advances in the Synthesis of N-Containing Heteroaromatics via Heterogeneously Transition Metal Catalysed Cross-Coupling Reactions

    Directory of Open Access Journals (Sweden)

    Laurent Djakovitch

    2011-06-01

    Full Text Available N-containing heteroaromatics are important substructures found in numerous natural or synthetic alkaloids. The diversity of the structures encountered, as well as their biological and pharmaceutical relevance, have motivated research aimed at the development of new economical, efficient and selective synthetic strategies to access these compounds. Over more than 100 years of research, this hot topic has resulted in numerous so-called “classical synthetic methods” that have really contributed to this important area. However, when the selective synthesis of highly functional heteroaromatics like indoles, quinolones, indoxyls, etc. is considered these methods remain limited. Recently transition metal-catalysed (TM-catalysed procedures for the synthesis of such compounds and further transformations, have been developed providing increased tolerance toward functional groups and leading generally to higher reaction yields. Many of these methods have proven to be the most powerful and are currently applied in target- or diversity-oriented syntheses. This review article aims at reporting the recent developments devoted to this important area, focusing on the use of heterogeneous catalysed procedures that include either the formation of the heterocyclic ring towards the nuclei or their transformations to highly substituted compounds.

  8. Oxidation of trichloroethylene, toluene, and ethanol vapors by a partially saturated permeable reactive barrier

    Science.gov (United States)

    Mahmoodlu, Mojtaba G.; Hassanizadeh, S. Majid; Hartog, Niels; Raoof, Amir

    2014-08-01

    The mitigation of volatile organic compound (VOC) vapors in the unsaturated zone largely relies on the active removal of vapor by ventilation. In this study we considered an alternative method involving the use of solid potassium permanganate to create a horizontal permeable reactive barrier for oxidizing VOC vapors. Column experiments were carried out to investigate the oxidation of trichloroethylene (TCE), toluene, and ethanol vapors using a partially saturated mixture of potassium permanganate and sand grains. Results showed a significant removal of VOC vapors due to the oxidation. We found that water saturation has a major effect on the removal capacity of the permeable reactive layer. We observed a high removal efficiency and reactivity of potassium permanganate for all target compounds at the highest water saturation (Sw = 0.6). A change in pH within the reactive layer reduced oxidation rate of VOCs. The use of carbonate minerals increased the reactivity of potassium permanganate during the oxidation of TCE vapor by buffering the pH. Reactive transport of VOC vapors diffusing through the permeable reactive layer was modeled, including the pH effect on the oxidation rates. The model accurately described the observed breakthrough curve of TCE and toluene vapors in the headspace of the column. However, miscibility of ethanol in water in combination with produced water during oxidation made the modeling results less accurate for ethanol. A linear relationship was found between total oxidized mass of VOC vapors per unit volume of permeable reactive layer and initial water saturation. This behavior indicates that pH changes control the overall reactivity and longevity of the permeable reactive layer during oxidation of VOCs. The results suggest that field application of a horizontal permeable reactive barrier can be a viable technology against upward migration of VOC vapors through the unsaturated zone.

  9. A DRIFTS study of the partial oxidation of ethanol on Rh catalysts; Estudo da oxidacao parcial do etanol em catalisadores de Rh por DRIFTS

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Raquel Lima; Passos, Fabio Barboza, E-mail: fbpassos@vm.uff.br [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Departamento de Engenharia Quimica e de Petroleo

    2013-09-01

    The partial oxidation of ethanol on {gamma}-Al{sub 2}O{sub 3}, CeO{sub 2}, ZrO{sub 2} and Ce{sub x}Zr{sub 1-x}O{sub 2} supported rhodium catalysts was investigated by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The catalysts were characterized by temperature-programmed reduction (TPR) and cyclohexane dehydrogenation. DRIFTS studies on the partial oxidation of ethanol showed that ethanol is adsorbed dissociatively, through O-H bond breaking, with the formation of ethoxy species, followed by successive dehydrogenation to acetaldehyde and acetyl species. Further oxidation to acetate and carbonate species lead to the formation of CO, CH{sub 4} and H{sub 2} by decomposition. The presence of CeO{sub 2} in the catalysts favored the oxidation steps due to its oxygen storage capacity. (author)

  10. Ancillary ligand-free copper catalysed hydrohydrazination of terminal alkynes with NH2NH2.

    Science.gov (United States)

    Peltier, Jesse L; Jazzar, Rodolphe; Melaimi, Mohand; Bertrand, Guy

    2016-02-14

    An efficient and selective Cu-catalysed hydrohydrazination of terminal alkynes with parent hydrazine is reported. The methodology tolerates a broad range of functional groups, allows for the synthesis of symmetrical and unsymmetrical azines, and can be extended to hydrazine derivatives and amines.

  11. Gold nanoparticles in oxidation catalysis [Les nanoparticules d'or en catalyse d'oxydation

    KAUST Repository

    Caps, Valerie

    2010-01-01

    On the other hand, it seems to catalyze the formation of reduced and active dioxygen species in the presence of a reductant (hydrogen or hydrocarbon) and the decomposition of organic hydroperoxides. It thus allows using an alkane as a promoter of the epoxidation of an alkene. In the liquid phase, this translates into an ultra-selective radical mechanism, initiated and controlled by gold particles, which uses oxygen from the air at atmospheric pressure as oxidant and which can be generalized to other types of oxidations. This unique activity at low temperature, which can be optimized upon a thorough control of the surface chemistry of the material, makes gold a catalyst of choice to reconsider the oxidative transformations of petrochemicals in an eco-efficient way.

  12. Total syntheses of mitragynine, paynantheine and speciogynine via an enantioselective thiourea-catalysed Pictet-Spengler reaction

    NARCIS (Netherlands)

    Kerschgens, I. P.; Claveau, E.; Wanner, M.J.; Ingemann, S.; van Maarseveen, J.H.; Hiemstra, H.

    2012-01-01

    The pharmacologically interesting indole alkaloids (-)-mitragynine, (+)-paynantheine and (+)-speciogynine were synthesised in nine steps from 4-methoxytryptamine by a route featuring (i) an enantioselective thiourea-catalysed Pictet-Spengler reaction, providing the tetrahydro-β-carboline ring and

  13. Oscillatory Behavior during the Catalytic Partial Oxidation of Methane: Following Dynamic Structural Changes of Palladium Using the QEXAFS Technique

    DEFF Research Database (Denmark)

    Stoetzel, Jan; Frahm, Ronald; Kimmerle, Bertram

    2012-01-01

    oxidation of methane, the catalyst reduced from the end to the beginning of the catalyst bed and oxidized again toward the end as soon as the entire catalyst bed was reduced. On an entirely oxidized catalyst bed, only total oxidation of methane was observed and consumed the oxygen until the conditions...... of the Pd particles at increasing age of the catalyst was observed, which leads to a lower oscillation frequency. Effects of particle size, oven temperature, and oxygen/methane ratio on the oscillation behavior were studied in detail. The deactivation period (reoxidation of Pd) was much less influenced...... by the oven temperature than the ignition behavior of the catalytic partial oxidation of methane. This indicates that deactivation is caused by an autoreduction of the palladium at the beginning of the catalyst bed due to the high temperature achieved by total oxidation of methane....

  14. Multimetallic catalysed cross-coupling of aryl bromides with aryl triflates

    Science.gov (United States)

    Ackerman, Laura K. G.; Lovell, Matthew M.; Weix, Daniel J.

    2015-08-01

    The advent of transition-metal catalysed strategies for forming new carbon-carbon bonds has revolutionized the field of organic chemistry, enabling the efficient synthesis of ligands, materials, and biologically active molecules. In cases where a single metal fails to promote a selective or efficient transformation, the synergistic cooperation of two distinct catalysts--multimetallic catalysis--can be used instead. Many important reactions rely on multimetallic catalysis, such as the Wacker oxidation of olefins and the Sonogashira coupling of alkynes with aryl halides, but this approach has largely been limited to the use of metals with distinct reactivities, with only one metal catalyst undergoing oxidative addition. Here, we demonstrate that cooperativity between two group 10 metal catalysts--(bipyridine)nickel and (1,3-bis(diphenylphosphino)propane)palladium--enables a general cross-Ullmann reaction (the cross-coupling of two different aryl electrophiles). Our method couples aryl bromides with aryl triflates directly, eliminating the use of arylmetal reagents and avoiding the challenge of differentiating between multiple carbon-hydrogen bonds that is required for direct arylation methods. Selectivity can be achieved without an excess of either substrate and originates from the orthogonal reactivity of the two catalysts and the relative stability of the two arylmetal intermediates. While (1,3-bis(diphenylphosphino)propane)palladium reacts preferentially with aryl triflates to afford a persistent intermediate, (bipyridine)nickel reacts preferentially with aryl bromides to form a transient, reactive intermediate. Although each catalyst forms less than 5 per cent cross-coupled product in isolation, together they are able to achieve a yield of up to 94 per cent. Our results reveal a new method for the synthesis of biaryls, heteroaryls, and dienes, as well as a general mechanism for the selective transfer of ligands between two metal catalysts. We anticipate that this

  15. Online UV-visible spectroscopy and multivariate curve resolution as powerful tool for model-free investigation of laccase-catalysed oxidation.

    Science.gov (United States)

    Kandelbauer, A; Kessler, W; Kessler, R W

    2008-03-01

    The laccase-catalysed transformation of indigo carmine (IC) with and without a redox active mediator was studied using online UV-visible spectroscopy. Deconvolution of the mixture spectra obtained during the reaction was performed on a model-free basis using multivariate curve resolution (MCR). Thereby, the time courses of educts, products, and reaction intermediates involved in the transformation were reconstructed without prior mechanistic assumptions. Furthermore, the spectral signature of a reactive intermediate which could not have been detected by a classical hard-modelling approach was extracted from the chemometric analysis. The findings suggest that the combined use of UV-visible spectroscopy and MCR may lead to unexpectedly deep mechanistic evidence otherwise buried in the experimental data. Thus, although rather an unspecific method, UV-visible spectroscopy can prove useful in the monitoring of chemical reactions when combined with MCR. This offers a wide range of chemists a cheap and readily available, highly sensitive tool for chemical reaction online monitoring.

  16. Computing the correlation between catalyst composition and its performance in the catalysed process

    Czech Academy of Sciences Publication Activity Database

    Holeňa, Martin; Steinfeldt, N.; Baerns, M.; Štefka, David

    2012-01-01

    Roč. 43, 10 August (2012), s. 55-67 ISSN 0098-1354 R&D Projects: GA ČR GA201/08/0802 Institutional support: RVO:67985807 Keywords : catalysed process * catalyst performance * correlation measures * estimating correlation value * analysis of variance * regression trees Subject RIV: IN - Informatics, Computer Science Impact factor: 2.091, year: 2012

  17. Development of a membrane-assisted fluidized bed reactor - 2 - Experimental demonstration and modeling for the partial oxidation of methanol

    NARCIS (Netherlands)

    Deshmukh, S.A.R.K.; Laverman, J.A.; van Sint Annaland, M.; Kuipers, J.A.M.

    2005-01-01

    A small laboratory-scale membrane-assisted fluidized bed reactor (MAFBR) was constructed in order to experimentally demonstrate the reactor concept for the partial oxidation of methanol to formaldehyde. Methanol conversion and product selectivities were measured at various overall fluidization

  18. Characteristics of hydrogen produced by partial oxidation and auto-thermal reforming in a small methanol reformer

    Science.gov (United States)

    Horng, Rong-Fang; Chou, Huann-Ming; Lee, Chiou-Hwang; Tsai, Hsien-Te

    This paper investigates experimentally, the transient characteristics of a small methanol reformer using partial oxidation (POX) and auto-thermal reforming (ATR) for fuel cell applications. The parameters varied were heating temperature, methanol supply rate, steady mode shifting temperature, O 2/C (O 2/CH 3OH) and S/C (H 2O/CH 3OH) molar ratios with the main aim of promoting a rapid response and a high flow rate of hydrogen. The experiments showed that a high steady mode shifting temperature resulted in a faster temperature rise at the catalyst outlet and vice versa and that a low steady mode shifting temperature resulted in a lower final hydrogen concentration. However, when the mode shifting temperature was too high, the hydrogen production response was not necessarily improved. It was subsequently shown that the optimum steady mode shifting temperature for this experimental set-up was approximately 75 °C. Further, the hydrogen concentration produced by the auto-thermal process was as high as 49.12% and the volume flow rate up to 23.0 L min -1 compared to 40.0% and 20.5 L min -1 produced by partial oxidation.

  19. Electro-oxidation of methanol on copper in alkaline solution

    International Nuclear Information System (INIS)

    Heli, H.; Jafarian, M.; Mahjani, M.G.; Gobal, F.

    2004-01-01

    The electro-oxidation of methanol on copper in alkaline solutions has been studied by the methods of cyclic voltammetry, quasi-steady state polarization and chronoamperometry. It has been found that in the course of an anodic potential sweep the electro-oxidation of methanol follows the formation of Cu III and is catalysed by this species through a mediated electron transfer mechanism. The reaction also continues in the early stages of the reversed cycle until it is stopped by the prohibitively negative potentials. The process is diffusion controlled and the current-time responses follow Cottrellian behavior. The rate constants, turnover frequency, anodic transfer coefficient and the apparent activation energy of the electro-oxidation reaction are reported

  20. Role of manganese oxides in peptide synthesis: implication in chemical evolution

    Science.gov (United States)

    Bhushan, Brij; Nayak, Arunima; Kamaluddin

    2017-10-01

    During the course of chemical evolution the role of metal oxides may have been very significant in catalysing the polymerization of biomonomers. The peptide bond formation of alanine (ala) and glycine (gly) in the presence of various oxides of manganese were performed for a period of 35 days at three different temperatures 50, 90 and 120°C without applying drying/wetting cycling. The reaction was monitored every week. The products formed were characterized by high-performance liquid chromatography and electrospray ionization-mass spectrometry techniques. Trace amount of oligomers was observed at 50°C. Maximum yield of peptides was found after 35 days at 90°C. It is important to note that very high temperatures of 120°C favoured the formation of diketopiperazine derivatives. Different types of manganese oxides [manganosite (MnO), bixbyite (Mn2O3), hausmannite (Mn3O4) and pyrolusite (MnO2)] were used as catalyst. The MnO catalysed glycine to cyclic (Gly)2, (Gly)2 and (Gly)3, and alanine, to cyclic (Ala)2 and (Ala)2. Mn3O4 also produced the same products but in lesser yield, while Mn2O3 and MnO2 produced cyclic anhydride of glycine and alanine with a trace amount of dimers and trimmers. Manganese of lower oxidation state is much more efficient in propagating the reaction than higher oxidation states. The possible mechanism of these reactions and the relevance of the results for the prebiotic chemistry are discussed.

  1. Effect of PEEP and inhaled nitric oxide on pulmonary gas exchange during gaseous and partial liquid ventilation with small volumes of perfluorocarbon.

    Science.gov (United States)

    Max, M; Kuhlen, R; Falter, F; Reyle-Hahn, M; Dembinski, R; Rossaint, R

    2000-04-01

    Partial liquid ventilation, positive end-expiratory pressure (PEEP) and inhaled nitric oxide (NO) can improve ventilation/perfusion mismatch in acute lung injury (ALI). The aim of the present study was to compare gas exchange and hemodynamics in experimental ALI during gaseous and partial liquid ventilation at two different levels of PEEP, with and without the inhalation of nitric oxide. Seven pigs (24+/-2 kg BW) were surfactant-depleted by repeated lung lavage with saline. Gas exchange and hemodynamic parameters were assessed in all animals during gaseous and subsequent partial liquid ventilation at two levels of PEEP (5 and 15 cmH2O) and intermittent inhalation of 10 ppm NO. Arterial oxygenation increased significantly with a simultaneous decrease in cardiac output when PEEP 15 cmH2O was applied during gaseous and partial liquid ventilation. All other hemodynamic parameters revealed no relevant changes. Inhalation of NO and instillation of perfluorocarbon had no additive effects on pulmonary gas exchange when compared to PEEP 15 cmH2O alone. In experimental lung injury, improvements in gas exchange are most distinct during mechanical ventilation with PEEP 15 cmH2O without significantly impairing hemodynamics. Partial liquid ventilation and inhaled NO did not cause an additive increase of PaO2.

  2. Partial catalytic oxidation of CH{sub 4} to synthesis gas for power generation - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mantzaras, I.; Schneider, A.

    2006-03-15

    The partial oxidation of methane to synthesis gas over rhodium catalysts has been investigated experimentally and numerically in the pressure range of 4 to 10 bar. The methane/oxidizer feed has been diluted with large amounts of H{sub 2}O and CO{sub 2} (up to 70% vol.) in order to simulate new power generation cycles with large exhaust gas recycle. Experiments were carried out in an optically accessible channel-flow reactor that facilitated laser-based in situ measurements, and also in a subscale gas-turbine catalytic reactor. Full-elliptic steady and transient two-dimensional numerical codes were used, which included elementary hetero-/homogeneous chemical reaction schemes. The following are the key conclusions: a) Heterogeneous (catalytic) and homogeneous (gas-phase) schemes have been validated for the partial catalytic oxidation of methane with large exhaust gas recycle. b) The impact of added H{sub 2}O and CO{sub 2} has been elucidated. The added H{sub 2}O increased the methane conversion and hydrogen selectivity, while it decreased the CO selectivity. The chemical impact of CO{sub 2} (dry reforming) was minimal. c) The numerical model reproduced the measured catalytic ignition times. It was further shown that the chemical impact of H{sub 2}O and CO{sub 2} on the catalytic ignition delay times was minimal. d) The noble metal dispersion increased with different support materials, in the order Rh/{alpha}-Al{sub 2}O{sub 3}, Rh/ZrO{sub 2}, and Rh/Ce-ZrO{sub 2}. An evident relationship was established between the noble metal dispersion and the catalytic behavior. (authors)

  3. Differential substrate behaviours of ethylene oxide and propylene oxide towards human glutathione transferase theta hGSTT1-1.

    Science.gov (United States)

    Thier, R; Wiebel, F A; Bolt, H M

    1999-11-01

    The transformation of ethylene oxide (EO), propylene oxide (PO) and 1-butylene oxide (1-BuO) by human glutathione transferase theta (hGSTT1-1) was studied comparatively using 'conjugator' (GSTT1 + individuals) erythrocyte lysates. The relative sequence of velocity of enzymic transformation was PO > EO > 1-BuO. The faster transformation of PO compared to EO was corroborated in studies with human and rat GSTT1-1 (hGSTT1-1 and rGSTT1-1, respectively) expressed by Salmonella typhimurium TA1535. This sequence of reactivities of homologous epoxides towards GSTT1-1 contrasts to the sequence observed in homologous alkyl halides (methyl bromide, MBr; ethyl bromide, EtBr; n-propyl bromide, PrBr) where the relative sequence MeBr > EtBr > PrBr is observed. The higher reactivity towards GSTT1-1 of propylene oxide compared to ethylene oxide is consistent with a higher chemical reactivity. This is corroborated by experimental data of acid-catalysed hydrolysis of a number of aliphatic epoxides, including ethylene oxide and propylene oxide and consistent with semi-empirical molecular orbital modelings.

  4. Characteristic of nitrous oxide production in partial denitrification process with high nitrite accumulation.

    Science.gov (United States)

    Du, Rui; Peng, Yongzhen; Cao, Shenbin; Wang, Shuying; Niu, Meng

    2016-03-01

    Nitrous oxide (N2O) production during the partial denitrification process with nitrate (NO3(-)-N) to nitrite (NO2(-)-N) transformation ratio of 80% was investigated in this study. Results showed that N2O was seldom observed before complete depletion of NO3(-)-N, but it was closely related to the reduction of NO2(-)-N rather than NO3(-)-N. High COD/NO3(-)-N was in favor of N2O production in partial denitrification with high NO2(-)-N accumulation. It was seriously enhanced at constant acidic pH due to the free nitrous acid (FNA) inhibition. However, the N2O production was much lower at initial pH of 5.5 and 6.5 due to the pH increase during denitrification process. Significantly, the pH turning point could be chosen as a controlled parameter to denote the end of NO3(-)-N reduction, which could not only achieve high NO2(-)-N accumulation but also decrease the N2O production significantly for practical application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Visualizing a Catalyst at Work during the Ignition of the Catalytic Partial Oxidation of Methane

    DEFF Research Database (Denmark)

    Kimmerle, Bertram; Grunwaldt, Jan-Dierk; Baiker, Alfons

    2009-01-01

    We present a spatiotemporal operando X-ray absorption study of a highly dynamic process, the ignition of the noble metal catalyzed partial oxidation of methane. Evolvement and propagation of the platinum component's structural changes are investigated with a high-speed X-ray camera, which...... in combination with temperature profiling by IR-thermography and catalytic activity measurements by online mass spectrometry gives insight into the first stages of the ignition of the reaction toward hydrogen and carbon monoxide....

  6. Click synthesis of 1,4-disubstituted-1,2,3-triazoles catalysed by CuO ...

    Indian Academy of Sciences (India)

    Click synthesis of 1,4-disubstituted-1,2,3-triazoles catalysed by. CuO–CeO2 nanocomposite in the presence of amberlite-supported azide. JALAL ALBADIa,∗, JAFAR ABBASI SHIRANb and AZAM MANSOURNEZHADc. aBehbahan Khatam Alanbia University of Technology, Behbahan 6361647189, Iran. bFaculty of Science ...

  7. Thin film oxygen partial pressure sensor

    Science.gov (United States)

    Wortman, J. J.; Harrison, J. W.; Honbarrier, H. L.; Yen, J.

    1972-01-01

    The development is described of a laboratory model oxygen partial pressure sensor using a sputtered zinc oxide thin film. The film is operated at about 400 C through the use of a miniature silicon bar. Because of the unique resistance versus temperature relation of the silicon bar, control of the operational temperature is achieved by controlling the resistance. A circuit for accomplishing this is described. The response of sputtered zinc oxide films of various thicknesses to oxygen, nitrogen, argon, carbon dioxide, and water vapor caused a change in the film resistance. Over a large range, film conductance varied approximately as the square root of the oxygen partial pressure. The presence of water vapor in the gas stream caused a shift in the film conductance at a given oxygen partial pressure. A theoretical model is presented to explain the characteristic features of the zinc oxide response to oxygen.

  8. Nitrous Oxide Production in a Granule-based Partial Nitritation Reactor: A Model-based Evaluation.

    Science.gov (United States)

    Peng, Lai; Sun, Jing; Liu, Yiwen; Dai, Xiaohu; Ni, Bing-Jie

    2017-04-03

    Sustainable wastewater treatment has been attracting increasing attentions over the past decades. However, the production of nitrous oxide (N 2 O), a potent GHG, from the energy-efficient granule-based autotrophic nitrogen removal is largely unknown. This study applied a previously established N 2 O model, which incorporated two N 2 O production pathways by ammonia-oxidizing bacteria (AOB) (AOB denitrification and the hydroxylamine (NH 2 OH) oxidation). The two-pathway model was used to describe N 2 O production from a granule-based partial nitritation (PN) reactor and provide insights into the N 2 O distribution inside granules. The model was evaluated by comparing simulation results with N 2 O monitoring profiles as well as isotopic measurement data from the PN reactor. The model demonstrated its good predictive ability against N 2 O dynamics and provided useful information about the shift of N 2 O production pathways inside granules for the first time. The simulation results indicated that the increase of oxygen concentration and granule size would significantly enhance N 2 O production. The results further revealed a linear relationship between N 2 O production and ammonia oxidation rate (AOR) (R 2  = 0.99) under the conditions of varying oxygen levels and granule diameters, suggesting that bulk oxygen and granule size may exert an indirect effect on N 2 O production by causing a change in AOR.

  9. Heterogeneously Catalysed Chemical Reactions in Carbon Dioxide Medium

    DEFF Research Database (Denmark)

    Musko, Nikolai E.

    In this PhD-study the different areas of chemical engineering, heterogeneous catalysis, supercritical fluids, and phase equilibrium thermodynamics have been brought together for selected reactions. To exploit the beneficial properties of supercritical fluids in heterogeneous catalysis, experimental...... studies of catalytic chemical reactions in dense and supercritical carbon dioxide have been complemented by the theoretical calculations of phase equilibria using advanced thermodynamic models. In the recent years, the use of compressed carbon dioxide as innovative, non-toxic and non-flammable, cheap......, and widely available reaction medium for many practical and industrial applications has drastically increased. Particularly attractive are heterogeneously catalysed chemical reactions. The beneficial use of CO2 is attributed to its unique properties at dense and supercritical states (at temperatures...

  10. Effect of CaCO_3 addition on ash sintering behaviour during K_2CO_3 catalysed steam gasification of a Chinese lignite

    International Nuclear Information System (INIS)

    Zhang, Jiguang; Li, Jianbo; Mao, Yandong; Bi, Jicheng; Zhu, Mingming; Zhang, Zhezi; Zhang, Li; Zhang, Dongke

    2017-01-01

    Highlights: • K_2CO_3 decreased ash sintering temperature and enhanced ash melting in gasification. • CaCO_3 addition enhanced ash melting and lowered ash sintering temperatures. • CaCO_3 reacted with SiO_2 to form fluxing phases and amorphous materials. • CaCO_3 addition inhibited the potassium aluminium silicate formation. • CaCO_3 addition preserved the catalytic activity of potassium. - Abstract: The ash sintering behaviour of a Chinese lignite (LLI) with different amounts of CaCO_3 addition during K_2CO_3-catalysed gasification was investigated. 0–10 wt% K_2CO_3 was doped into the lignite for catalytic gasification, and CaCO_3 was added into the K_2CO_3-doped samples, varying in the range of 0–20 wt% relative to the lignite, for understanding its impact on ash sintering and catalytic gasification activity. Ash samples were prepared by completely gasifying the lignite samples with steam in a fixed-bed catalytic gasification system operating at 1073 K and atmospheric pressure. Sintering temperature, mineralogy and morphology of the ash samples thus obtained were determined using a pressure-drop sintering device, XRD and SEM-EDS, respectively. The results showed that the ash sintering temperature decreased as the K_2CO_3 addition increased, indicating that K_2CO_3 as the catalyst for gasification would promote ash sintering. SEM imaging analysis showed that all the ash samples from LLI with K_2CO_3 addition were composed of agglomerated particles with smooth surfaces, indicating the ashes had incurred partial melting. The degree of melting became more apparent as the K_2CO_3 addition ratio increased. These molten phases were identified as K-bearing arcanite and kaliophilite, which contributed to the formation of liquid phases at lower temperatures, resulting in lowered ash sintering temperatures. It was also revealed that the addition of CaCO_3 decreased the sintering temperatures of ash samples, indicating that the ash sintering was further

  11. Models for the Configuration and Integrity of Partially Oxidized Fuel Rod Cladding at High Temperatures

    International Nuclear Information System (INIS)

    Siefken, L.J.

    1999-01-01

    Models were designed to resolve deficiencies in the SCDAP/RELAP5/MOD3.2 calculations of the configuration and integrity of hot, partially oxidized cladding. These models are expected to improve the calculations of several important aspects of fuel rod behavior. First, an improved mapping was established from a compilation of PIE results from severe fuel damage tests of the configuration of melted metallic cladding that is retained by an oxide layer. The improved mapping accounts for the relocation of melted cladding in the circumferential direction. Then, rules based on PIE results were established for calculating the effect of cladding that has relocated from above on the oxidation and integrity of the lower intact cladding upon which it solidifies. Next, three different methods were identified for calculating the extent of dissolution of the oxidic part of the cladding due to its contact with the metallic part. The extent of dissolution effects the stress and thus the integrity of the oxidic part of the cladding. Then, an empirical equation was presented for calculating the stress in the oxidic part of the cladding and evaluating its integrity based on this calculated stress. This empirical equation replaces the current criterion for loss of integrity which is based on temperature and extent of oxidation. Finally, a new rule based on theoretical and experimental results was established for identifying the regions of a fuel rod with oxidation of both the inside and outside surfaces of the cladding. The implementation of these models is expected to eliminate the tendency of the SCDAP/RELAP5 code to overpredict the extent of oxidation of the upper part of fuel rods and to underpredict the extent of oxidation of the lower part of fuel rods and the part with a high concentration of relocated material. This report is a revision and reissue of the report entitled, Improvements in Modeling of Cladding Oxidation and Meltdown

  12. Fuel processor integrated H{sub 2}S catalytic partial oxidation technology for sulfur removal in fuel cell power plants

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, T.H.; Berry, D.A.; Lyons, K.D.; Beer, S.K.; Freed, A.D. [U.S. Department of Energy, Morgantown, WV (USA). National Energy Technology Laboratory

    2002-12-01

    H{sub 2}S catalytic partial oxidation technology with an activated carbon catalyst was found to be a promising method for the removal of hydrogen sulfide from fuel cell hydrocarbon feedstocks. Three different fuel cell feedstocks were considered for analysis: sour natural gas, sour effluent from a liquid middle distillate fuel processor and a Texaco O{sub 2}-blown coal-derived synthesis gas. The H{sub 2}S catalytic partial oxidation reaction, its integratability into fuel cell power plants with different hydrocarbon feedstocks and its salient features are discussed. Experimental results indicate that H{sub 2}S concentration can be removed down to the part-per-million level in these plants. Additionally, a power law rate expression was developed and reaction kinetics compared to prior literature. The activation energy for this reaction was determined to be 34.4 kJ/g mol with the reaction being first order in H{sub 2}S and 0.3 order in O{sub 2}. 18 refs., 14 figs., 3 tabs.

  13. Nitrous oxide production in intermittently aerated Partial Nitritation-Anammox reactor: oxic N2O production dominates and relates with ammonia removal rate

    DEFF Research Database (Denmark)

    Blum, Jan-Michael; Jensen, Marlene Mark; Smets, Barth F.

    2018-01-01

    Emissions of the greenhouse gas nitrous oxide from the Partial Nitritation-Anammox process are of concern and can determine the carbon footprint of the process. In order to reduce nitrous oxide emissions intermittent aeration regimes have been shown to be a promising mode of operation, possibly due...

  14. High temperature mechanisms and kinetics of SiC oxidation under low partial pressures of oxygen: application to the fuel cladding of gas fast reactors

    International Nuclear Information System (INIS)

    Hun, N.

    2011-01-01

    Gas Fast Reactor (GFR) is one of the different Generation IV concepts under investigation for energy production. SiC/SiC composites are candidates of primary interest for a GFR fuel cladding use, thanks to good corrosion resistance among other properties. The mechanisms and kinetics of SiC oxidation under operating conditions have to be identified and quantified as the corrosion can decrease the mechanical properties of the composite. An experimental device has been developed to study the oxidation of silicon carbide under high temperature and low oxygen partial pressure. The results pointed out that not only parabolic oxidation, but also interfacial reactions and volatilization occur under such conditions. After determining the kinetics of each mechanism, as functions of oxygen partial pressure and temperature, the data are used for the modeling of the composites oxidation. The model will be used to predict the lifetime of the composite in operating conditions. (author) [fr

  15. Complete deficiency of mitochondrial trifunctional protein due to a novel mutation within the beta-subunit of the mitochondrial trifunctional protein gene leads to failure of long-chain fatty acid beta-oxidation with fatal outcome

    NARCIS (Netherlands)

    Schwab, Karl Otfried; Ensenauer, Regina; Matern, Dietrich; Uyanik, Gökhan; Schnieders, Birgit; Wanders, Ronald A.; Lehnert, Willy

    2003-01-01

    The mitochondrial trifunctional protein (MTP) is a multienzyme complex which catalyses three of the four chain-shortening reactions in the beta-oxidation of long-chain fatty acids. Clinically, failure of long-chain fatty acid beta-oxidation leads to hypoketotic hypoglycaemia associated with coma,

  16. Enzyme catalysed production of sialylated human milk oligosaccharides and galactooligosaccharides by Trypanosoma cruzi trans-sialidase

    DEFF Research Database (Denmark)

    Holck, Jesper; Larsen, Dorte Møller; Michalak, Malwina

    2014-01-01

    Bifidobacterium strains in single culture fermentations. The trans-sialidase also catalysed the transfer of sialic acid from CGMP to galacto-oligosaccharides (GOS) and to the human milk oligosaccharide (HMO) backbone lacto-N-tetraose (LNT) to produce 3′-sialyl-GOS, including doubly sialylated GOS products, and 3...

  17. Gold film-catalysed benzannulation by Microwave-Assisted, Continuous Flow Organic Synthesis (MACOS

    Directory of Open Access Journals (Sweden)

    Gjergji Shore

    2009-07-01

    Full Text Available Methodology has been developed for laying down a thin gold-on-silver film on the inner surface of glass capillaries for the purpose of catalysing benzannulation reactions. The cycloaddition precursors are flowed through these capillaries while the metal film is being heated to high temperatures using microwave irradiation. The transformation can be optimized rapidly, tolerates a wide number of functional groups, is highly regioselective, and proceeds in good to excellent conversion.

  18. Isotopic labelling studies for a gold-catalysed skeletal rearrangement of alkynyl aziridines

    Directory of Open Access Journals (Sweden)

    Neil Spencer

    2011-06-01

    Full Text Available Isotopic labelling studies were performed to probe a proposed 1,2-aryl shift in the gold-catalysed cycloisomerisation of alkynyl aziridines into 2,4-disubstituted pyrroles. Two isotopomers of the expected skeletal rearrangement product were identified using 13C-labelling and led to a revised mechanism featuring two distinct skeletal rearrangements. The mechanistic proposal has been rationalised against the reaction of a range of 13C- and deuterium-labelled substrates.

  19. Mechanisms in manganese catalysed oxidation of alkenes with H2O2

    NARCIS (Netherlands)

    Saisaha, Pattama; de Boer, Johannes W.; Browne, Wesley R.

    2013-01-01

    The development of new catalytic systems for cis-dihydroxylation and epoxidation of alkenes, based on atom economic and environmentally friendly concepts, is a major contemporary challenge. In recent years, several systems based on manganese catalysts using H2O2 as the terminal oxidant have been

  20. Bioacetylation of alcohols catalysed by Saccharum officinarum; Bioacetilacao de alcoois catalisada por Saccharum officinarum

    Energy Technology Data Exchange (ETDEWEB)

    Assuncao, Joao Carlos C.; Lemos, Telma Leda G.; Monte, Francisco Jose Q. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica], e-mail: fmonte@dqoi.ufc.br

    2009-07-01

    Lipase-catalysed esterifications of alcohols using immobilized enzyme system from sugar cane (Saccharum officinarum) as biocatalyst afforded the corresponding esters in considerable yields (68-93%). Under optimized conditions, the material was utilized for reactions of acetylation with several advantage. It also investigated the possibility of reuse of immobilized enzymes of S. officinarum as biocatalyst under optimal reaction conditions. (author)

  1. Kinetics and Mechanism of Oxidation of Benzyl Alcohol by Benzimidazolium Fluorochromate

    Directory of Open Access Journals (Sweden)

    J. Dharmaraja

    2008-01-01

    Full Text Available The kinetics of oxidation of benzyl alcohol (BzOH by benzimidazolium fluorochromate (BIFC has been studied in 50% aqueous acetic acid medium at 308 K. The reaction is first order with respect to [oxidant] and [benzyl alcohol]. The reaction is catalysed by hydrogen ions. The decrease in dielectric constant of the medium increases the rate of the reaction. Addition of sodium perchlorate increases the rate of the reaction appreciably. No polymerization with acrylonitrile. The reaction has been conducted at four different temperature and the activation parameters were calculated. From the observed kinetic results a suitable mechanism was proposed.

  2. Ion-tagged π-acidic alkene ligands promote Pd-catalysed allyl-aryl couplings in an ionic liquid

    NARCIS (Netherlands)

    Bäuerlein, P.S.; Fairlamb, I.J.S.; Jarvis, A.G.; Lee, A.F.; Müller, C.; Slattery, J.M.; Thatcher, R.J.; Vogt, D.; Whitwood, A.C.

    2009-01-01

    Ionic p-acidic alkene ligands based on chalcone and benzylidene acetone frameworks have been ?doped? into ionic liquids to provide functional reaction media for Pd-catalysed cross-couplings of a cyclohexenyl carbonate with aryl siloxanes that allow simple product isolation, free from Pd (

  3. Temperature oscillations in methanol partial oxidation reactor for the production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinsu; Byeon, Jeonguk; Seo, Il Gyu; Lee, Hyun Chan; Kim, Dong Hyun; Lee, Jietae [Kyungpook National University, Daegu (Korea, Republic of)

    2013-04-15

    Methanol partial oxidation (POX) is a well-known reforming reaction for the production of hydrogen from methanol. Since POX is relatively fast and highly exothermic, this reforming method will be efficient for the fast start-up and load-following operation. However, POX generates hot spots around catalyst and even oscillations in the reactor temperature. These should be relieved for longer operations of the reactor without catalyst degradations. For this, temperature oscillations in a POX reactor are investigated experimentally. Various patterns of temperature oscillations according to feed flow rates of reactants and reactor temperatures are obtained. The bifurcation phenomena from regular oscillations to chaotic oscillations are found as the methanol flow rate increases. These experimental results can be used for theoretical analyses of oscillations and for designing safe reforming reactors.

  4. Temperature oscillations in methanol partial oxidation reactor for the production of hydrogen

    International Nuclear Information System (INIS)

    Kim, Jinsu; Byeon, Jeonguk; Seo, Il Gyu; Lee, Hyun Chan; Kim, Dong Hyun; Lee, Jietae

    2013-01-01

    Methanol partial oxidation (POX) is a well-known reforming reaction for the production of hydrogen from methanol. Since POX is relatively fast and highly exothermic, this reforming method will be efficient for the fast start-up and load-following operation. However, POX generates hot spots around catalyst and even oscillations in the reactor temperature. These should be relieved for longer operations of the reactor without catalyst degradations. For this, temperature oscillations in a POX reactor are investigated experimentally. Various patterns of temperature oscillations according to feed flow rates of reactants and reactor temperatures are obtained. The bifurcation phenomena from regular oscillations to chaotic oscillations are found as the methanol flow rate increases. These experimental results can be used for theoretical analyses of oscillations and for designing safe reforming reactors

  5. Regioselectivity and Enantioselectivity in Nickel-Catalysed Reductive Coupling Reactions of Alkynes

    Science.gov (United States)

    Moslin, Ryan M.; Miller-Moslin, Karen; Jamison, Timothy F.

    2011-01-01

    Nickel-catalysed reductive coupling reactions of alkynes have emerged as powerful synthetic tools for the selective preparation of functionalized alkenes. One of the greatest challenges associated with these transformations is control of regioselectivity. Recent work from our laboratory has provided an improved understanding of several of the factors governing regioselectivity in these reactions, and related studies have revealed that the reaction mechanism can differ substantially depending on the ligand employed. A discussion of stereoselective transformations and novel applications of nickel catalysis in coupling reactions of alkynes is also included. PMID:17971951

  6. Advanced STEM/EDX investigation on an oxide scale thermally grown on a high-chromium iron–nickel alloy under very low oxygen partial pressure

    International Nuclear Information System (INIS)

    Latu-Romain, L.; Madi, Y.; Mathieu, S.; Robaut, F.; Petit, J.-P.; Wouters, Y.

    2015-01-01

    Highlights: • A scale grown on a high-chromium iron–nickel alloy under low oxygen partial pressure was studied. • STEM-EDX maps at high resolution on a transversal thin lamella have been conducted. • The real complexity of the oxide layer has been highlighted. • These results explain the elevated number of semiconducting contributions. - Abstract: A thermal oxide scale has been grown on a high-chromium iron-nickel alloy under very low oxygen partial pressure (1050 °C, 10"−"1"0 Pa). In this paper, a special attention has been paid to morphological and chemical characterizations of the scale by scanning transmission electron microscopy and energy dispersive X-ray analysis at high resolution on a cross-section thin lamella beforehand prepared by using a combined focused ion beam/scanning electron microscope instrument. The complexity of the oxide layer is highlighted, and the correlation between the present results and the ones of a photoelectrochemical study is discussed.

  7. Hypochlorite-induced oxidation of thiols

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan; Hawkins, C L

    2000-01-01

    -molecular-weight thiols such as reduced glutathione (GSH), and sulfur-containing amino acids in proteins, are major targets for HOCl. Radicals have not generally been implicated as intermediates in thiol oxidation by HOCl, though there is considerable literature evidence for the involvement of radicals in the metal ion......-, thermal- or UV light-catalysed decomposition of sulfenyl or sulfonyl chlorides which are postulated intermediates in thiol oxidation. In this study we show that thiyl radicals are generated on reaction of a number of low-molecular-weight thiols with HOCl. With sub-stoichiometric amounts of HOCl, relative...... to the thiol, thiyl radicals are the major species detected by EPR spin trapping. When the HOCl is present in excess over the thiol, additional radicals are detected with compounds which contain amine functions; these additional radicals are assigned to nitrogen-centered species. Evidence is presented...

  8. SUPERCRITICAL WATER PARTIAL OXIDATION PHASE I - PILOT-SCALE TESTING / FEASIBILITY STUDIES FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    SPRITZER,M; HONG,G

    2005-01-01

    Under Cooperative Agreement No. DE-FC36-00GO10529 for the Department of Energy, General Atomics (GA) is developing Supercritical Water Partial Oxidation (SWPO) as a means of producing hydrogen from low-grade biomass and other waste feeds. The Phase I Pilot-scale Testing/Feasibility Studies have been successfully completed and the results of that effort are described in this report. The Key potential advantages of the SWPO process is the use of partial oxidation in-situ to rapidly heat the gasification medium, resulting in less char formation and improved hydrogen yield. Another major advantage is that the high-pressure, high-density aqueous environment is ideal for reaching and gasifying organics of all types. The high water content of the medium encourages formation of hydrogen and hydrogen-rich products and is especially compatible with high water content feeds such as biomass materials. The high water content of the medium is also effective for gasification of hydrogen-poor materials such as coal. A versatile pilot plant for exploring gasification in supercritical water has been established at GA's facilities in San Diego. The Phase I testing of the SWPO process with wood and ethanol mixtures demonstrated gasification efficiencies of about 90%, comparable to those found in prior laboratory-scale SCW gasification work carreid out at the University of Hawaii at Manoa (UHM) as well as other biomass gasification experience with conventional gasifiers. As in the prior work at UHM, a significant amount of the hydrogen found in the gas phase products is derived from the water/steam matrix. The studies at UHM utilized an indirectly heated gasifier with an acitvated carbon catalyst. In contrast, the GA studies utilized a directly heated gasifier without catalyst, plus a surrogate waste fuel. Attainment of comparable gasification efficiencies without catalysis is an important advancement for the GA process, and opens the way for efficient hydrogen production from low

  9. The partial pressure of oxygen affects biomarkers of oxidative stress in cultured rainbow trout (Oncorhynchus mykiss) hepatocytes.

    Science.gov (United States)

    Finne, E F; Olsvik, P A; Berntssen, M H G; Hylland, K; Tollefsen, K E

    2008-09-01

    Oxidative stress, the imbalance between production of reactive oxygen species and the cellular detoxification of these reactive compounds, is believed to be involved in the pathology of various diseases. Several biomarkers for oxidative stress have been proposed to serve as tools in toxicological and ecotoxicological research. Not only may exposure to various pro-oxidants create conditions of cellular oxidative stress, but hyperoxic conditions may also increase the production of reactive oxygen species. The objective of the current study was to determine the extent to which differences in oxygen partial pressure would affect biomarkers of oxidative stress in a primary culture of hepatocytes from rainbow trout (Oncorhynchus mykiss). Membrane integrity, metabolic activity, levels of total and oxidized glutathione (tGSH/GSSG) was determined, as well as mRNA expression levels of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GSSG-R), gamma-glutamyl-cystein synthetase (GCS) and thioredoxin (TRX). The results show that different biomarkers of oxidative stress are affected when the cell culture is exposed to atmospheric oxygen, and that changes such as increased GSSG content and induction of GSSG-R and GSH-Px can be reduced by culturing the cells under lower oxygen tension. Oxygen tension may thus influence results of in vitro based cell research and is particularly important when assessing parameters in the antioxidant defence system. Further research is needed to establish the magnitude of this effect in different cellular systems.

  10. Effect of mass-transport limitations on the performance of a packed bed membrane reactor for partial oxidations. Intraparticle mass transport

    NARCIS (Netherlands)

    Sint Annaland, van M.; Kurten, U.; Kuipers, J.A.M.

    2007-01-01

    For partial oxidation systems, where the reaction order in oxygen of the formation rate of the target product is smaller than the reaction order in oxygen of the consecutive reaction rate toward the waste product, a packed bed membrane reactor can be applied to distributively dose oxygen along the

  11. Effect of Mass-Transport Limitations on the Performance of a Packed Bed Membrane Reactor for Partial Oxidations. Intraparticle Mass Transport

    NARCIS (Netherlands)

    van Sint Annaland, M.; Kurten, U.; Kuipers, J.A.M.

    2007-01-01

    For partial oxidation systems, where the reaction order in oxygen of the formation rate of the target product is smaller than the reaction order in oxygen of the consecutive reaction rate toward the waste product, a packed bed membrane reactor can be applied to distributively dose oxygen along the

  12. Adiabatic Fixed-Bed Gasification of Colombian Coffee Husk Using Air-Steam Blends for Partial Oxidation

    Directory of Open Access Journals (Sweden)

    Javier Bonilla

    2017-01-01

    Full Text Available The increasing energy consumption, mostly supplied by fossil fuels, has motivated the research and development of alternative fuel technologies to decrease the humanity’s dependence on fossil fuels, which leads to pollution of natural sources. Small-scale biomass gasification, using air-steam blends for partial oxidation, is a good alternative since biomass is a neutral carbon feedstock for sustainable energy generation. This research presents results obtained from an experimental study on coffee husk (CH gasification, using air-steam blends for partial oxidation in a 10 kW fixed-bed gasifier. Parametric studies on equivalence ratio (ER (1.53 < ER < 6.11 and steam-fuel (SF ratio (0.23 < SF < 0.89 were carried out. The results show that increasing both SF and ER results in a syngas rich in CH4 and H2 but poor in CO. Also, decreased SF and ER decrease the peak temperature (Tpeak at the gasifier combustion zone. The syngas high heating value (HHV ranged from 3112 kJ/SATPm3 to 5085 kJ/SATPm3 and its maximum value was obtained at SF = 0.87 and ER = 4.09. The dry basis molar concentrations of the species, produced under those operating conditions (1.53 < ER < 6.11 and 0.23 < SF < 0.89, were between 1.12 and 4.1% for CH4, between 7.77 and 13.49% for CO, and between 7.54 and 19.07% for H2. Other species were in trace amount.

  13. The kinetic and mechanistic aspects of the oxidative dehydrogenation of ethane over Li/Na/MgO catalysts

    NARCIS (Netherlands)

    Swaan, H.M.; Swaan, H.M.; Toebes, A.; Toebes, A.; van Ommen, J.G.; Seshan, Kulathuiyer; Ross, J.R.H.; Ross, J.R.H.

    1992-01-01

    Kinetic and mechanistic aspects of the oxidative dehydrogenation of ethane catalysed by Li/MgO and Li/Na/MgO have been investigated. Initial rate measurements at 600°C; revealed that the Li/MgO catalyst produced C2H4, CO2, CO and H2 by parallel reactions whereas the sodium-promoted catalyst produced

  14. Partially and fully de-alloyed glassy ribbons based on Au: Application in methanol electro-oxidation studies

    Energy Technology Data Exchange (ETDEWEB)

    Paschalidou, Eirini Maria, E-mail: epaschal@unito.it [Dipartimento di Chimica e Centro Interdipartimentale NIS (Nanostructured Surfaces and Interfaces), Università di Torino, Via Pietro Giuria 7, 10125, Torino (Italy); Scaglione, Federico [Dipartimento di Chimica e Centro Interdipartimentale NIS (Nanostructured Surfaces and Interfaces), Università di Torino, Via Pietro Giuria 7, 10125, Torino (Italy); Gebert, Annett; Oswald, Steffen [Leibniz Institut für Festkörper- und Werkstoffforschung IFW, Helmholtzstraße 20, 01069, Dresden (Germany); Rizzi, Paola; Battezzati, Livio [Dipartimento di Chimica e Centro Interdipartimentale NIS (Nanostructured Surfaces and Interfaces), Università di Torino, Via Pietro Giuria 7, 10125, Torino (Italy)

    2016-05-15

    In this work, electrochemical de-alloying of an amorphous alloy, Au{sub 40}Cu{sub 28}Ag{sub 7}Pd{sub 5}Si{sub 20}, cast in ribbon form by melt spinning, has been performed, obtaining self standing nanoporous materials suitable for use as electrodes for electrocatalytic applications. The de-alloying encompasses removal of less noble elements and the crystallization of Au, resulting in interconnected ligaments whose size and morphology are described as a function of time. Depending on de-alloying time, the crystals may contain residual amounts of Cu, Ag and Pd, as shown by Auger Electron Spectroscopy (AES), Energy Dispersive Spectroscopy (EDS) and Cyclic Voltammetry (CV) in a basic solution. Current density peaks in the 0.16–0.28 V range (vs Ag/AgCl) indicate that the porous ribbons are active for the electro-oxidation of methanol. The partially de-alloyed samples, which still partially contain the amorphous phase because of the shorter etching times, have finer ligaments and display peaks at lower potential. However, the current density decreases rapidly during repeated potential scans. This is attributed to the obstruction of Au sites, mainly by the Cu oxides formed during the scans. The fully de-alloyed ribbons display current peaks at about 0.20 V and remain active for hundreds of scans at more than 60% of the initial current density. They can be fully re-activated to achieve the same performance levels after a brief immersion in nitric acid. The good activity is due to trapped Ag and Pd atoms in combination with ligament morphology. - Graphical abstract: Fine ligaments and pores made by de-alloying a glassy ribbon of a Au-based alloy, homogeneously produced across the thickness (25 μm) for studying methanol's electro-oxidation behavior. - Highlights: • Size and composition of nanoporous layers tailored in de-alloying Au-based glassy ribbons. • From amorphous precursor fine crystals occur in ligaments with residual Pd and Ag. • Fully de

  15. Carbene Transfer Reactions Catalysed by Dyes of the Metalloporphyrin Group

    Directory of Open Access Journals (Sweden)

    Mário M. Q. Simões

    2018-03-01

    Full Text Available Carbene transfer reactions are very important transformations in organic synthesis, allowing the generation of structurally challenging products by catalysed cyclopropanation, cyclopropenation, carbene C-H, N-H, O-H, S-H, and Si-H insertion, and olefination of carbonyl compounds. In particular, chiral and achiral metalloporphyrins have been successfully explored as biomimetic catalysts for these carbene transfer reactions under both homogeneous and heterogeneous conditions. In this work the use of synthetic metalloporphyrins (MPorph, M = Fe, Ru, Os, Co, Rh, Ir, Sn as homogeneous or heterogeneous catalysts for carbene transfer reactions in the last years is reviewed, almost exclusively focused on the literature since the year 2010, except when reference to older publications was deemed to be crucial.

  16. Thin film devices used as oxygen partial pressure sensors

    Science.gov (United States)

    Canady, K. S.; Wortman, J. J.

    1970-01-01

    Electrical conductivity of zinc oxide films to be used in an oxygen partial pressure sensor is measured as a function of temperature, oxygen partial pressure, and other atmospheric constituents. Time response following partial pressure changes is studied as a function of temperature and environmental changes.

  17. Partial oxidation of methane to methanol over catalyst ZSM-5 from coal fly ash and rice husk ash

    Directory of Open Access Journals (Sweden)

    Mirda Yanti Fusia

    2017-01-01

    Full Text Available Methane is one of the greenhouse gases that can be converted into liquid fuels such as methanol to retain most of the energy of methane and produce a cleaner environment. The conversion of methane to methanol using ZMS-5 represents a breakthrough in the utilization of methane. However, material sources for zeolite synthesis as catalyst usually are pro-analysis grade materials, which are expensive. Therefore, in this research, coal fly ash and rice husk ash were used as raw materials for mesoporous ZSM-5 zeolite synthesis. First, coal fly ash and rice husk were subjected to pre-treatment to extract silicate (SiO44− and aluminate (AlO45− and impurities separation. The ZSM-5 zeolite was synthesized through hydrothermal treatment using two types of templates. After ZSM-5 was synthesized, it was modified with Cobalt through impregnation method. The catalytic activity of both ZSM-5 and Co/ZSM-5 zeolites as heterogeneous catalysts in partial oxidation of methane were preliminary tested and compared with that commercial one. The result showed that the zeolite catalyst ZSM-5 from fly ash coal and rice husk ash has the potential to be used as catalysts in the partial oxidation of methane to methanol.

  18. Palladium-catalysed arylation of acetoacetate esters to yield 2-arylacetic acid esters

    CSIR Research Space (South Africa)

    Zeevaart, JG

    2004-05-24

    Full Text Available , was developed simultaneously by Hart- wig and Buchwald.5 Typically the tert-butyl ester of propionic acid is treated with an aryl halide (bromide or chloride) in the presence of a strong base, palladium and a bulky phosphine ligand or a bulky imidazolinium CO2t... novel palladium- catalysed conditions for the arylation of acetoacetate esters resulting in the formation of 2-arylacetic acid esters. When we attempted the arylation of tert-butyl aceto- acetate 1a with bromobenzene 2a using mild reaction conditions (K3...

  19. Study of film graphene/graphene oxide obtained by partial reduction chemical of oxide graphite; Estudo de filme de grafeno/oxido de grafeno obtido por reducao quimica parcial do oxido de grafite

    Energy Technology Data Exchange (ETDEWEB)

    Gascho, J.L.S.; Costa, S.F.; Hoepfner, J.C.; Pezzin, S.H., E-mail: juliagascho@hotmail.com [Universidade do Estado de Santa Catarina (UDESC), Joinville, SC (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais

    2014-07-01

    This study investigated the morphology of graphene/graphene oxide film obtained by partial chemical reduction of graphite oxide (OG) as well as its resistance to solvents. Films of graphene/graphene oxide are great candidates for replacement of indium oxide doped with tin (ITO) in photoelectric devices. The OG was obtained from natural graphite, by Hummer's method modified, and its reduction is made by using sodium borohydride. Infrared spectroscopy analysis of Fourier transform (FTIR), Xray diffraction (XRD) and scanning electron microscopy, high-resolution (SEM/FEG) for the characterization of graphene/graphene oxide film obtained were performed. This film proved to be resilient, not dispersing in any of the various tested solvents (such as ethanol, acetone and THF), even under tip sonication, this resistance being an important property for the applications. Furthermore, the film had a morphology similar to that obtained by other preparation methods.(author)

  20. Methane partial oxidation over a LaCr0.85Ru0.15O3 catalyst : Characterization, activity tests and kinetic modeling

    NARCIS (Netherlands)

    Melchiori, T.; Di Felice, L.; Mota, N.; Navarro, R.M.; Fierro, J.L.G.; Sint Annaland, van M.; Gallucci, F.

    2014-01-01

    A new LaCr0.85Ru0.15O3 perovskite-type catalyst for CH4 partial oxidation with a high activity and selectivity for syngas with good thermal stability and resistance against coking has been developed. In this paper, the catalyst preparation method, catalyst characterization, results of catalytic

  1. Copper-mediated oxidative degradation of catecholamines and oxidative damage of protein

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, P.R.; Harria, M.I.N.; Felix, J.M.; Hoffmann, M.E. [Universidade Estadual de Campinas, SP (Brazil). Inst. de Biologia

    1997-12-31

    Full text. Degradative oxidation of catecholamines has been a matter of large interest in recent years due to the evidences associating their autoxidation with the etiology of neurotoxic and cardiotoxic processes. In this work we present data on the degradative oxidation of catecholamines of physiological importance: isoproterenol (IP), epinephrine (EP), norepinephrine (NEP), deoxyepinephrine (DEP) and dopamine (DA). The degradative oxidation of the catecholamines was followed by measurement of spectral changes and oxygen consumption by neutral aqueous solutions. The data show that Cu{sup 2+} strongly accelerated the rate of catecholamine oxidation, following the decreasing order; EP>DEP>IP>NEP>DA. The production of superoxide anion radical during catecholamine oxidation was very slow, even in the presence of Cu{sup 2+}. The ability of IP to induce damages on bovine serum albumin (BSA) was determined by measuring the formation of carbonyl-groups in the protein, detected by reduction with tritiated Na BH{sub 4}. The incubation of BSA with IP (50-500{mu}M), in the presence of 100{mu}M Cu{sup 2+} leaded to an increased and dose dependent {sup 3} H-incorporation by the oxidized protein. The production of oxidative damage by IP/Cu{sup 2+} was accompanied by marked BSA fragmentation, detected by SDS-polyacrylamide gel dependent (25-400{mu}M IP) des appearance of the original BSA band and appearance of smaller fragments spread in the gel, when incubation has been done in the presence of 100{mu}M Cu{sup 2+}. These results suggest that copper-catalysed oxidative degradation of proteins induced by catecholamines might be critically involved in the toxic action of these molecules

  2. Production of uranium hexafluoride by the catalysed fluorox process: pilot plant and supporting bench-scale studies

    International Nuclear Information System (INIS)

    Janov, J.; Charlton, B.G.; LePage, A.H.; Vilkaitis, V.K.

    1982-04-01

    The feasibility of producing UF 6 by the catalysed reaction of UF 4 with oxygen (the Fluorox process) was investigated in a 150 mm diameter fluidised bed reactor and in supporting bench-scale experiments. The rate of the Fluorox reaction in batch experiments was increased by an order of magnitude with 1 to 5 per cent catalyst (containing 3 to 4 per cent platinum on alumina). The maximum UF 6 production rate at 650 deg. C was 0.9 kg h -1 . However, the platinum catalyst was completely poisoned after production of only 1 and 20 kg UF 6 per kg of catalyst when using respectively French and British UF 4 . Regeneration of the catalyst was demonstrated to be technically feasible by washing with water or ammonium oxalate solution or treating with hydrogen and hydrogen fluoride at 350-650 deg. C. However, since the very fast rate of poisoning would necessitate higher catalyst concentrations and/or frequent regeneration, the catalysed Fluorox process in unlikely to be economically competitive with the direct fluorination of UF 4

  3. Detection of HOCl-mediated protein oxidation products in the extracellular matrix of human atherosclerotic plaques

    DEFF Research Database (Denmark)

    Woods, Alan A; Linton, Stuart M; Davies, Michael Jonathan

    2003-01-01

    Oxidation is believed to play a role in atherosclerosis. Oxidized lipids, sterols and proteins have been detected in early, intermediate and advanced human lesions at elevated levels. The spectrum of oxidized side-chain products detected on proteins from homogenates of advanced human lesions has...... been interpreted in terms of the occurrence of two oxidative mechanisms, one involving oxygen-derived radicals catalysed by trace transition metal ions, and a second involving chlorinating species (HOCl or Cl2), generated by the haem enzyme myeloperoxidase (MPO). As MPO is released extracellularly...... for 83-96% of the total oxidized protein side-chain products detected in these plaques. Oxidation of matrix components extracted from healthy artery tissue, and model proteins, with reagent HOCl is shown to give rise to a similar pattern of products to those detected in advanced human lesions...

  4. Catalysed fusion: a very different book about CERN

    CERN Multimedia

    CERN Library

    2013-01-01

    Not many books get reviews resulting in headlines like "Steamy novel challenges CERN's serious image", "Love and death at CERN" and so on. But Francis Farley's book "Catalysed Fusion" does not leave its readers untouched.   Those of you who have been around some time will know Farley from when he worked at CERN. For "newcomers", Farley is a well-known physicist who put together the first experiment on the anomalous magnetic moment of the muon and has since taken part in all the experiments relating to this phenomenon. The back cover of his book reads: "A sizzling romance and a romp with subatomic particles at CERN. Love, discovery and adventure in the city where nations meet and beams collide. Life in a large laboratory. As always, the challenges are the same. Who leads? Who follows? Who succeeds? Who gets the credit? Who gets the women or the men? Young Jeremy arrives in CERN and joins the quest ...

  5. Inactivation of barley limit dextrinase inhibitor by thioredoxin-catalysed disulfide reduction

    DEFF Research Database (Denmark)

    Jensen, Johanne Mørch; Hägglund, Per; Christensen, Hans Erik Mølager

    2012-01-01

    and one glutathionylated cysteine. Here, thioredoxin is shown to progressively reduce disulfide bonds in LDI accompanied by loss of activity. A preferential reduction of the glutathionylated cysteine, as indicated by thiol quantification and molecular mass analysis using electrospray ionisation mass......Barley limit dextrinase (LD) that catalyses hydrolysis of α-1,6 glucosidic linkages in starch-derived dextrins is inhibited by limit dextrinase inhibitor (LDI) found in mature seeds. LDI belongs to the chloroform/methanol soluble protein family (CM-protein family) and has four disulfide bridges...... spectrometry, was not related to LDI inactivation. LDI reduction is proposed to cause conformational destabilisation leading to loss of function....

  6. Oxygen binding to partially nitrosylated hemoglobin.

    Science.gov (United States)

    Fago, Angela; Crumbliss, Alvin L; Hendrich, Michael P; Pearce, Linda L; Peterson, Jim; Henkens, Robert; Bonaventura, Celia

    2013-09-01

    Reactions of nitric oxide (NO) with hemoglobin (Hb) are important elements in protection against nitrosative damage. NO in the vasculature is depleted by the oxidative reaction with oxy Hb or by binding to deoxy Hb to generate partially nitrosylated Hb (Hb-NO). Many aspects of the formation and persistence of Hb-NO are yet to be clarified. In this study, we used a combination of EPR and visible absorption spectroscopy to investigate the interactions of partially nitrosylated Hb with O2. Partially nitrosylated Hb samples had predominantly hexacoordinate NO-heme geometry and resisted oxidation when exposed to O2 in the absence of anionic allosteric effectors. Faster oxidation occurred in the presence of 2,3-diphosphoglycerate (DPG) or inositol hexaphosphate (IHP), where the NO-heme derivatives had higher levels of pentacoordinate heme geometry. The anion-dependence of the NO-heme geometry also affected O2 binding equilibria. O2-binding curves of partially nitrosylated Hb in the absence of anions were left-shifted at low saturations, indicating destabilization of the low O2 affinity T-state of the Hb by increasing percentages of NO-heme, much as occurs with increasing levels of CO-heme. Samples containing IHP showed small decreases in O2 affinity, indicating shifts toward the low-affinity T-state and formation of inert α-NO/β-met tetramers. Most remarkably, O2-equilibria in the presence of the physiological effector DPG were essentially unchanged by up to 30% NO-heme in the samples. As will be discussed, under physiological conditions the interactions of Hb with NO provide protection against nitrosative damage without impairing O2 transport by Hb's unoccupied heme sites. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Hybrid Nitrous Oxide Production from a Partial Nitrifying Bioreactor: Hydroxylamine Interactions with Nitrite.

    Science.gov (United States)

    Terada, Akihiko; Sugawara, Sho; Hojo, Keisuke; Takeuchi, Yuki; Riya, Shohei; Harper, Willie F; Yamamoto, Tomoko; Kuroiwa, Megumi; Isobe, Kazuo; Katsuyama, Chie; Suwa, Yuichi; Koba, Keisuke; Hosomi, Masaaki

    2017-03-07

    The goal of this study was to elucidate the mechanisms of nitrous oxide (N 2 O) production from a bioreactor for partial nitrification (PN). Ammonia-oxidizing bacteria (AOB) enriched from a sequencing batch reactor (SBR) were subjected to N 2 O production pathway tests. The N 2 O pathway test was initiated by supplying an inorganic medium to ensure an initial NH 4 + -N concentration of 160 mg-N/L, followed by 15 NO 2 - (20 mg-N/L) and dual 15 NH 2 OH (each 17 mg-N/L) spikings to quantify isotopologs of gaseous N 2 O ( 44 N 2 O, 45 N 2 O, and 46 N 2 O). N 2 O production was boosted by 15 NH 2 OH spiking, causing exponential increases in mRNA transcription levels of AOB functional genes encoding hydroxylamine oxidoreductase (haoA), nitrite reductase (nirK), and nitric oxide reductase (norB) genes. Predominant production of 45 N 2 O among N 2 O isotopologs (46% of total produced N 2 O) indicated that coupling of 15 NH 2 OH with 14 NO 2 - produced N 2 O via N-nitrosation hybrid reaction as a predominant pathway. Abiotic hybrid N 2 O production was also observed in the absence of the AOB-enriched biomass, indicating multiple pathways for N 2 O production in a PN bioreactor. The additional N 2 O pathway test, where 15 NH 4 + was spiked into 400 mg-N/L of NO 2 - concentration, confirmed that the hybrid N 2 O production was a dominant pathway, accounting for approximately 51% of the total N 2 O production.

  8. Study of the Mo(VI) catalytic response in the oxidation of iodide by hydrogen peroxide using a monosegmented continuous-flow system

    International Nuclear Information System (INIS)

    Andrade, J.C. de; Eiras, S.P.; Bruns, R.E.

    1991-01-01

    Fractional factorial, modified simplex and response surface studies of the Mo(VI)-catalysed and non-catalysed oxidation of iodide by hydrogen peroxide in acidic medium were executed using a monosegmented continuous-flow system (MCFS). As this reaction is commonly used for the spectrophotometric catalytic determination of Mo(VI), the behaviour of the analytically useful response, ΔA, the difference of the average absorbance values of the Mo(VI)-catalysed and non-catalysed reactions, was studied over a large range of experimental conditions. The effects of simultaneous changes in the sample flow-rate, the H 2 SO 4 , KI and H 2 O 2 concentrations and the reaction time on the signals were measured. The optimum concentrations found using MCFS are 0.0665, 0.1528 and 0.0041 M for H 2 SO 4 , KI and H 2 O 2 , respectively. Rigorous control of the acid concentration is essential to maintain the sensitivity of the analytical signal for operating conditions close to the optimum values recommended here. On the other hand, the ΔA values are much less sensitive to variations in the H 2 O 2 concentration. Increasing KI concentrations can improve the sensitivity but can also cause baseline instability. The response surface is convenient for visualizing the overall behaviour of the system for the experimental control values investigated. (author). 24 refs.; 3 figs.; 1 tab

  9. Hydrogen Production by Catalytic Partial Oxidation of Coke Oven Gas in BaCo0.7Fe0.3-xZrxO3-δ Ceramic Membrane Reactors

    Directory of Open Access Journals (Sweden)

    Yao Weilin

    2016-01-01

    Full Text Available The BaCo0.7Fe0.3-xZrxO3-δ (BCFZ, x = 0.04–0.12 mixed ionic–electronic conducting (MIEC membranes were synthesized with a sol–gel method and evaluated as potential membrane reactor materials for the partial oxidation of coke oven gas (COG. The effect of zirconium content on the phase structure, microstructure and performance of the BCFZ membrane under He or COG atmosphere were systemically investigated. The BaCo0.7Fe0.24Zr0.06O3-δ membrane exhibited the best oxygen permeability and good operation stability, which could be a potential candidate of the membrane materials for hydrogen production through the partial oxidation of COG.

  10. Mixed conducting materials for partial oxidation of hydrocarbons

    Directory of Open Access Journals (Sweden)

    Frade, J. R.

    2004-06-01

    Full Text Available Thermodynamic calculations with additional conditions for the conservation of carbon and hydrogen were used to predict the gas composition obtained by partial oxidation of methane as a function of oxygen partial pressure and temperature; this was used to assess the stability and oxygen permeability requirements of mixed conducting membrane materials proposed for this purpose. A re-examination of known mixed conductors shows that most materials with highest permeability still fail to fulfil the requirements of stability under reducing conditions. Other materials possess sufficient stability but their oxygen permeability is insufficient. Different approaches were thus used to attempt to overcome those limitations, including changes in composition in the A and B site positions of ABO3 perovskites, and tests of materials with different structure types. Promising results were obtained mainly for some materials with perovskite or related K2NiF4-type structures. Limited stability of the most promising materials shows that one should rely mainly on kinetic limitations in the permeate side to protect the mixed conductor from severe reducing conditions.

    Se han usado cálculos termodinámicos con condiciones adicionales para la conservación del carbono e hidrógeno para predecir la composición del gas obtenido mediante la oxidación parcial del metano en función de la presión parcial de oxígeno y de la temperatura; esto se ha usado para asegurar los requerimientos de estabilidad y permeabilidad al oxígeno de los materiales conductores mixtos empleados como membrana para este propósito. Un nuevo exámen de los conductores mixtos conocidos muestra que la mayoría de los materiales con la mayor permeabilidad todavía fallan en el cumplimiento de los requerimientos de estabilidad bajo condiciones reductoras. Otros materiales poseen suficiente estabilidad, pero su permeabilidad al oxígeno es insuficiente. Por ello se han empleado diferentes

  11. Exploring the atmospheric chemistry of O2SO3− and assessing the maximum turnover number of ion-catalysed H2SO4 formation

    Directory of Open Access Journals (Sweden)

    N. Bork

    2013-04-01

    Full Text Available It has recently been demonstrated that the O2SO3− ion forms in the atmosphere as a natural consequence of ionizing radiation. Here, we present a density functional theory-based study of the reactions of O2SO3− with O3. The most important reactions are (a oxidation to O2SO3− and (b cluster decomposition into SO3, O2 and O3−. The former reaction is highly exothermic, and the nascent O2SO3− will rapidly decompose into SO4− and O2. If the origin of O2SO3− is SO2 oxidation by O3−, the latter reaction closes a catalytic cycle wherein SO2 is oxidized to SO3. The relative rate between the two major sinks for O2SO3− is assessed, thereby providing a measure of the maximum turnover number of ion-catalysed SO2 oxidation, i.e. how many SO2 can be oxidized per free electron. The rate ratio between reactions (a and (b is significantly altered by the presence or absence of a single water molecule, but reaction (b is in general much more probable. Although we are unable to assess the overall importance of this cycle in the real atmosphere due to the unknown influence of CO2 and NOx, we roughly estimate that ion-induced catalysis may contribute with several percent of H2SO4 levels in typical CO2-free and low NOx reaction chambers, e.g. the CLOUD chamber at CERN.

  12. The Relationship Between Structural and Catalytic Activity of α and γ-Bismuth-Molybdate Catalysts for Partial Oxidation of Propylene to Acrolein

    Science.gov (United States)

    Fansuri, H.; Pham, G. H.; Wibawanta, S.; Zhang, D. K.; French, David

    Bismuth-molybdate catalysts are known to be effective for catalytic partial oxidation of propylene to acrolein. Their properties and the kinetics and reaction mechanisms for acrolein production have been extensively studied, especially in their basic forms, such as α, β, and γ-bismuth-molybdate. Although the reaction mechanisms have been reported widely in the literature, a general agreement has not been reached, especially from a catalyst-structure point of view. The present contribution reports an effort to understand the structural changes of α and γ-bismuth-molybdate catalysts at varying temperatures as examined using high temperature XRD and to relate the catalyst performance (activity and selectivity) for propylene partial oxidation to acrolein. The XRD analysis was performed at temperature between 250 and 450°C in ambient atmosphere and the Rietveld refinement method was used to extract unit cell parameters. The results showed a distinct similarity between the shapes of the thermal expansion of the catalysts and their activity and selectivity curves, indicating a significant role that the catalyst interatomic structure plays in the overall reaction mechanism.

  13. Radiation chemical oxidation of propen under the influence of UV- and gamma radiation

    International Nuclear Information System (INIS)

    Litschke, P.I.

    1978-01-01

    The oxidation of propen is studied in the liquid state under the influence of electromagnetic radiation using hydrogenperoxide, organic hydroperoxides and oxygen. In this investigation propen oxide is of main interest. The study of systems with oxygen is based on the concept that the formation of hydroperoxide from organic oxygen compounds is enhanced by irradiation, thus favouring an in situ method for expoxidation with hydroperoxides. The influence of UV-radiation from high and low pressure mercury discharge lamps and 60 Co gamma radiation has been studied as well as the effect of solvents and catalysers, which are resolved in the system. (orig./WBU) [de

  14. Simulation study of a PEM fuel cell system fed by hydrogen produced by partial oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Ozdogan, S [Marmara University, Faculty of Engineering, Istanbul (Turkey); Ersoz, A; Olgun, H [TUBITAK Marmara Research Center, Energy Systems and Environmental Research Institute, Kocaeli (Turkey)

    2003-09-01

    Within the frame of sustainable development, efficient and clean, if possible zero emission energy production technologies are of utmost importance in various sectors such as utilities, industry, households and transportation. Low-temperature fuel cell systems are suitable for powering transportation systems such as automobiles and trucks in an efficient and low-emitting manner. Proton exchange membrane (PEM) fuel cell systems constitute the most promising low temperature fuel cell option being developed globally. PEM fuel cells generate electric power from air and hydrogen or from a hydrogen rich gas via electrochemical reactions. Water and waste heat are the only by-products of PEM fuel cells. There is great interest in converting current hydrocarbon based common transportation fuels such as gasoline and diesel into hydrogen rich gases acceptable by PEM fuel cells. Hydrogen rich gases can be produced from conventional transportation fuels via various reforming technologies. Steam reforming, partial oxidation and auto-thermal reforming are the three major reforming technologies. In this paper, we discuss the results of a simulation study for a PEM fuel cell with partial oxidation. The Aspen HYSYS 3.1 code has been used for simulation purposes. Two liquid hydrocarbon fuels have been selected to investigate the effect of average molecular weights of hydrocarbons, on the fuel processing efficiency. The overall system efficiency depends on the fuel preparation and fuel cell efficiencies as well as on the heat integration within the system. It is desired to investigate the overall system efficiencies for net electrical power production at 100 kW considering bigger scale transport applications. Results indicate that fuel properties, fuel preparation system operating parameters and PEM fuel cell polarization curve characteristics all affect the overall system efficiency. (authors)

  15. Partial oxidation of n- and i-pentane over promoted vanadium-phosphorus oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zazhigalov, V.A.; Mikhajluk, B.D.; Komashko, G.A. [AN Ukrainskoj SSR, Kiev (Ukraine). Inst. Fizicheskoj Khimii

    1998-12-31

    It is known, that the cost of raw materials for catalytic oxidation processes is about 60% of the product price. Cheap initial compounds to produce variety of products and to replace olefins and aromatic hydrocarbons are paraffins. That is why catalytic systems which could be possibly rather efficient in selective oxidation of paraffin hydrocarbons are under very close investigation now. One of such processes in n-pentane oxidation. The obtained results on n-pentane oxidation over VPO catalysts were quite encouraging in respect of possible reach high selectivity and yield of phthalic anhydride. However, in our work it was shown that the main product of n-pentane oxidation in the presence of VPO catalytic system as well as VPMeO was maleic anhydride. Some later our results were confirmed in, where to grow the selectivity towards phthalic anhydride the Co-additive was introduced. On the basis of the proposal made before on the mechanism of paraffins conversion over the vanadyl pyrophosphate surface with their activation at the first and fourth carbon atoms, we assumed possible methylmaleic (citraconic) anhydride forming at n- and i-pentane oxidation. This assumption has been recently supported by both our and other researchers` experimental results. In it was also hypothized possible mechanistic features for phthalic anhydride forming from n-pentane. The present work deals with the results of n- and i-pentane oxidation over VPO catalysts promoted with Bi, Cs, Te, Zr. (orig.)

  16. Enzymatic Upgrading of Heavy Crudes via Partial Oxidation or Conversion of PAHs

    Energy Technology Data Exchange (ETDEWEB)

    Borole, A P; Davison, B H; Kuritz, T

    2002-07-01

    The objective of this program was to investigate new enzyme-based technologies for upgrading of heavy oils. Enzymes were selected for screening from those capable of conversion of polyaromatic hydrocarbons (PAHs) reported in the literature. Oxidative reactions of PAHs using hydrogen peroxide as an oxidant with conversion to partially oxidized products were used. The enzymes (lignin peroxidase, cytochrome c) were tested in various organic solvents and found to loose activity in pure organic solvents. A thermodynamic analysis revealed lack of effective interaction between the substrate and enzyme as the cause for low activity. The protein cytochrome c was modified to work in organic media by chemical hydrophobic group attachment. Two different modifications were made: attachment of polyethylene glycol (PEG) and alkyl groups. Alkyl groups, being small could be attached at interior locations within the core of the enzyme and possibly near the active site. Increase in the threshold solvent concentration where maximum enzyme activity occurred indicated potential of this strategy for effective enzyme-substrate interaction. Further improvements in enzyme activity called for other diverse methods due to the unavailability of sufficient chemical modification sites. Genetic techniques were therefore explored for further improvements. These experiments focused on cloning of a gene for the fungal enzyme lignin peroxidase (lip) into yeast Pichia pastoris, which would allow easy manipulation of the gene. However, differences in the fungal and yeast cellular machinery impeded significant expression of the fungal enzyme. Several strategies were explored to allow higher-level expression of the enzyme, which was required for enzyme improvement. The strategies used in this investigation are described in the report. Industrial in-kind support was available throughout the project period. review of the research results was carried out on a regular basis (bimonthly reports and annual

  17. Pd/TOMPP-catalysed telomerisation of 1,3-butadiene with lignin-type phenols and thermal Claisen rearrangement of linear telomers

    NARCIS (Netherlands)

    Hausoul, P.J.C.; Tefera, S.D.; Blekxtoon, J.; Bruijnincx, P.C.A.; Klein Gebbink, R.J.M.; Weckhuysen, B.M.

    2013-01-01

    The Pd/TOMPP-catalysed (TOMPP = tris(2-methoxyphenyl)phosphine) telomerisation of 1,3-butadiene was studied under solvent- and base-free conditions with phenolic substrates that can be potentially derived from lignin. Large differences in catalytic activity were observed, with reactivity increasing

  18. Analysis and protease-catalysed synthesis of sucrose alkanoate regioisomers

    DEFF Research Database (Denmark)

    Lie, Aleksander

    2014-01-01

    The aims of the presented research were to develop quantifiable methods for reversed-phase high-performance liquid chromatography analysis of sucrose alkanoate regioisomers and to investigate the activity and regioisomeric distribution in the biocatalytic esterification of sucrose with vinyl laur...... in the reaction mixture appeared to be catalysed by the presence of aluminosilicate molecular sieves in the reaction medium. Mass spectrometry analysis of sucrose laurate product confirmed the molecular mass.......The aims of the presented research were to develop quantifiable methods for reversed-phase high-performance liquid chromatography analysis of sucrose alkanoate regioisomers and to investigate the activity and regioisomeric distribution in the biocatalytic esterification of sucrose with vinyl...... laurate in DMF using serine proteases and a metalloprotease. A broad range of elution strategies for the chromatographic analysis of sucrose alkanoate regioisomers was systematically investigated using design of experiments strategies and statistical and multivariate analysis and modelling. Efficiency...

  19. Soot oxidation over NOx storage catalysts. Activity and deactivation

    International Nuclear Information System (INIS)

    Krishna, K.; Makkee, M.

    2006-01-01

    Soot oxidation activity and deactivation of NO x storage and reduction (NSR) catalysts containing Pt, K, and Ba supported on Al 2 O 3 , are studied under a variety of reaction conditions. K-containing catalysts decrease soot oxidation temperature with O 2 alone and the presence of Pt further enhance the activity due to synergetic effect. The active species responsible for synergism on Pt/K-Al 2 O 3 are unstable and cannot be regenerated. Soot oxidation temperature decreases by about 150 o C with NO+O 2 exhaust feed gas and under lean conditions NSR system acts as catalysed soot filter (CSF). The reactions that are mainly responsible for decreasing soot oxidation temperature are: (1) soot oxidation with NO 2 followed by NO recycles to NO 2 , and (2) soot oxidation with O 2 assisted by NO 2 . Only a part of the stored NO x that is decomposed at high temperatures under lean conditions is found to be useful for soot oxidation. NO x storage capacity of NSR catalysts decreases upon ageing under soot oxidising conditions. This will lead to a decreased soot oxidation activity on stored nitrate decomposition. Pt/K-Al 2 O 3 catalyst is more active, but least stable compared with Pt/Ba-Al 2 O 3 . (author)

  20. Adiabatic Gasification and Pyrolysis of Coffee Husk Using Air-Steam for Partial Oxidation

    Directory of Open Access Journals (Sweden)

    Catalina Rodriguez

    2011-01-01

    Full Text Available Colombian coffee industry produces about 0.6 million tons of husk (CH per year which could serve as feedstock for thermal gasification to produce gaseous and liquid fuels. The current paper deals with: (i CH adiabatic gasification modeling using air-steam blends for partial oxidation and (ii experimental thermogravimetric analysis to determine the CH activation energy (E. The Chemical Equilibrium with Applications Program (CEA, developed by NASA, was used to estimate the effect of equivalence ratio (ER and steam to fuel ratio (S : F on equilibrium temperature and gas composition of ~150 species. Also, an atom balance model was developed for comparison purposes. The results showed that increased ER and (S : F ratios produce mixtures that are rich in H2 and CO2 but poor in CO. The value for the activation energy was estimated to be 221 kJ/kmol.

  1. Experimental investigation and thermodynamic simulation of the uranium oxide-zirconium oxide-iron oxide system in air

    Czech Academy of Sciences Publication Activity Database

    Petrov, Y. B.; Udalov, Y. P.; Šubrt, Jan; Bakardjieva, Snejana; Sázavský, P.; Kiselová, M.; Selucký, P.; Bezdička, Petr; Joumeau, C.; Piluso, P.

    2011-01-01

    Roč. 37, č. 2 (2011), s. 212-229 ISSN 1087-6596 Institutional research plan: CEZ:AV0Z40320502 Keywords : uranium oxide * zirconium oxide * iron oxide * fusibility curve * oxygen partial pressure * crystallization * phase composition Subject RIV: CA - Inorganic Chemistry Impact factor: 0.492, year: 2011

  2. Silver triflate/p-TSA co-catalysed synthesis of 3-substituted isocoumarins from 2-alkynylbenzoates.

    Science.gov (United States)

    Gianni, Jonathan; Pirovano, Valentina; Abbiati, Giorgio

    2018-05-02

    In this paper, we describe the silver triflate/p-toluenesulfonic acid co-catalysed synthesis of seventeen isocoumarins and two thieno[2,3-c]pyran-7-ones starting from 2-alkynylbenzoates and 3-alkynylthiophene-2-carboxylates, respectively. The reaction proceeds with absolute regioselectivity under mild reaction conditions and low catalyst loading, to afford the desired products in good to excellent yields. A conceivable reaction mechanism is proposed and supported by isotope-exchange tests, 1H NMR studies and ad hoc experiments.

  3. Bias-induced migration of ionized donors in amorphous oxide semiconductor thin-film transistors with full bottom-gate and partial top-gate structures

    Directory of Open Access Journals (Sweden)

    Mallory Mativenga

    2012-09-01

    Full Text Available Bias-induced charge migration in amorphous oxide semiconductor thin-film transistors (TFTs confirmed by overshoots of mobility after bias stressing dual gated TFTs is presented. The overshoots in mobility are reversible and only occur in TFTs with a full bottom-gate (covers the whole channel and partial top-gate (covers only a portion of the channel, indicating a bias-induced uneven distribution of ionized donors: Ionized donors migrate towards the region of the channel that is located underneath the partial top-gate and the decrease in the density of ionized donors in the uncovered portion results in the reversible increase in mobility.

  4. Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid

    NARCIS (Netherlands)

    Girisuta, B.; Danon, B.; Manurung, R.; Janssen, L. P. B. M.; Heeres, H. J.

    2008-01-01

    A comprehensive experimental and modelling study on the acid-catalysed hydrolysis of the water hyacinth plant (Eichhornia crassipes) to optimise the yield of levulinic acid (LA) is reported (T = 150-175 degrees C, C-H2SO4 - 0.1-1 M, water hyacinth intake = 1-5 wt%). At high acid concentrations (>

  5. Aqueous arsenite removal by simultaneous ultraviolet photocatalytic oxidation-coagulation of titanium sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuxia [Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, School of Environmental & Municipal Engineering, Xi’an University of Architecture and Technology (China); Duan, Jinming, E-mail: jinmingduan@xauat.edu.cn [Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, School of Environmental & Municipal Engineering, Xi’an University of Architecture and Technology (China); Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, Mawson Lakes Campus, South Australia (Australia); Li, Wei [Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, School of Environmental & Municipal Engineering, Xi’an University of Architecture and Technology (China); Beecham, Simon; Mulcahy, Dennis [Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, Mawson Lakes Campus, South Australia (Australia)

    2016-02-13

    Highlights: • A simultaneous UV catalysed oxidation–coagulation for As(III) removal is proposed. • As(III) was effectively oxidised to As(V) by the UV catalysed coagulation. • >99% removal for As(III) in pH 4–6 at low doses of Ti(SO{sub 4}){sub 2} was achieved. • Concurrent UV radiation in massive small crystal formation facilitate the effects. • Reaction mechanisms involve both hydroxyl radicals and superoxide radicals. - Abstract: This study explored the efficacy and efficiency of a simultaneous UV-catalyzed oxidation–coagulation process of titanium sulfate (UV/Ti(SO{sub 4}){sub 2}) for efficient removal of As(III) from water. It revealed that, As(III) could be oxidized to As(V) during the UV catalyzed coagulation of Ti(SO{sub 4}){sub 2} with highly efficient As(III) removal in the pH range 4–6{sub .} The UV catalyzed oxidation–coagulation showed surprisingly effective oxidation of As(III) to As(V) within a short time. XPS indicated that 84.7% of arsenic on the coagulated precipitate was in the oxidized form of As(V) after the UV/Ti(SO{sub 4}){sub 2} treatment of As(III) aqueous solutions at pH 5. Arsenic remaining in solution at high pH was in the oxidized form As(V). Removal efficiencies of As(III) were investigated as a function of pH, Ti(SO{sub 4}){sub 2} dosage, initial As(III) concentration and irradiation energy. As(III) could almost completely be removed (>99%) by the photocatalytic oxidation–coagulation process with a moderate dose of Ti(SO{sub 4}){sub 2} in the pH range 4–6 at an initial arsenic concentration of 200 μg/L. The mechanisms of the photocatalytic coagulation oxidation of Ti(SO{sub 4}){sub 2} are similar to those of UV/crystalline TiO{sub 2} particles, involving the formation and reactions of the hydroxyl radical OH· and superoxide HO{sub 2}·/O{sub 2}{sup ·−}.

  6. The reaction mechanism of the partial oxidation of methane to synthesis gas: a transient kinetic study over rhodium and a comparison with platinum

    NARCIS (Netherlands)

    Mallens, E.P.J.; Hoebink, J.H.B.J.; Marin, G.B.M.M.

    1997-01-01

    The partial oxidation of methane to synthesis gas over rhodium sponge has been investigated by admitting pulses of pure methane and pure oxygen as well as mixtures of methane and oxygen to rhodium sponge at temperatures from 873 to 1023 K. Moreover, pulses of oxygen followed by methane and vice

  7. Calculated ionisation potentials to determine the oxidation of vanillin precursors by lignin peroxidase.

    OpenAIRE

    Have, ten, R.; Rietjens, I.M.C.M.; Hartmans, S.; Swarts, H.J.; Field, J.A.

    1998-01-01

    In view of the biocatalytic production of vanillin, this research focused on the lignin peroxidase (LiP) catalysed oxidation of naturally occurring phenolic derivatives: O-methyl ethers, O-acetyl esters, and O-glucosyl ethers. The ionisation potential (IP) of a series of model compounds was calculated and compared to their experimental conversion by LiP, defining a relative IP threshold of approximately 9.0 eV. Based on this threshold value only the O-acetyl esters and glucosides of isoeugeno...

  8. Efficient Method for Aromatic-Aldehyde Oxidation by Cleavage of Their Hydrazones Catalysed by Trimethylsilanolate

    Czech Academy of Sciences Publication Activity Database

    Bürglová, K.; Okorochenkov, S.; Buděšínský, Miloš; Hlaváč, J.

    2017-01-01

    Roč. 2017, č. 2 (2017), s. 389-396 ISSN 1434-193X R&D Projects: GA MŠk(CZ) LO1304 Institutional support: RVO:61388963 Keywords : aldehydes * oxidation * hydrazones * solid-phase synthesis * reaction mechanisms Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 2.834, year: 2016

  9. Chemoenzymatic one-pot synthesis in an aqueous medium: combination of metal-catalysed allylic alcohol isomerisation-asymmetric bioamination.

    Science.gov (United States)

    Ríos-Lombardía, Nicolás; Vidal, Cristian; Cocina, María; Morís, Francisco; García-Álvarez, Joaquín; González-Sabín, Javier

    2015-07-11

    The ruthenium-catalysed isomerisation of allylic alcohols was coupled, for the first time, with asymmetric bioamination in a one-pot process in an aqueous medium. In the cases involving prochiral ketones, the ω-TA exhibited excellent enantioselectivity, identical to that observed in the single step. As a result, amines were obtained from allylic alcohols with high overall yields and excellent enantiomeric excesses.

  10. Partial thermodynamic functions of hydrogen in complex hydrated vanadium(5) and tungsten(6) oxides

    International Nuclear Information System (INIS)

    Volkov, V.L.; Zakharova, G.S.

    2003-01-01

    The partial thermodynamic characteristics of hydrogen in the complex hydrated vanadium(5) and tungsten(6) oxides, obtained through the sol-gel method, of the general formula H 2 V 12-y W y O 31+δ ·nH 2 O (0 ≤ x ≤ 0.33) are determined through the emf method. The changes in these values (ΔG-bar(H 2 ), ΔH-bar(H 2 ) and ΔS-bar(H 2 )) in dependence on the compound composition are discussed. It is established that ΔG-bar(H 2 ) phases, amorphous to X-rays are determined by the ΔS-bar(H 2 ) value and crystalline ones by ΔH-bar(H 2 ). The scheme of the phase relationships of the H 2 O-H-WO 3 -V 2 O 5 system, whereto the given phases are related are presented [ru

  11. A new partial SOI-LDMOSFET with a modified buried oxide layer for improving self-heating and breakdown voltage

    International Nuclear Information System (INIS)

    Jamali Mahabadi, S E; Orouji, Ali A; Keshavarzi, P; Moghadam, Hamid Amini

    2011-01-01

    In this paper, for the first time, we propose a partial silicon-on-insulator (P-SOI) lateral double-diffused metal-oxide-semiconductor-field-effect-transistor (LDMOSFET) with a modified buried layer in order to improve breakdown voltage (BV) and self-heating effects (SHEs). The main idea of this work is to control the electric field by shaping the buried layer. With two steps introduced in the buried layer, the electric field distribution is modified. Also a P-type window introduced makes the substrate share the vertical voltage drop, leading to a high vertical BV. Moreover, four interface electric field peaks are introduced by the buried P-layer, the Si window and two steps, which modulate the electric field in the SOI layer and the substrate. Hence, a more uniform electric field is obtained; consequently, a high BV is achieved. Furthermore, the Si window creates a conduction path between the active layer and substrate and alleviates the SHE. Two-dimensional simulations show that the BV of double step partial silicon on insulator is nearly 69% higher and alleviates SHEs 17% in comparison with its single step partial SOI counterpart and nearly 265% higher and alleviate SHEs 18% in comparison with its conventional SOI counterpart

  12. Hydrogen or synthesis gas production via the partial oxidation of methane over supported nickel-cobalt catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Alaric C.W. [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Chen, Luwei; Lin, Jianyi [Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Kee Leong, Weng [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Johnson, Brian F.G.; Khimyak, Tetyana [University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, UK CB2 1EW (United Kingdom)

    2007-05-15

    Activity, selectivity, and coking-resistance of a series of Ni{sub x}Co{sub y} (where x,y are the respective metal loadings of 0, 1, 2 or 3 wt.%; x+y=3) bimetallic catalysts supported on CaAl{sub 2}O{sub 4}/Al{sub 2}O{sub 3} have been studied for hydrogen/synthesis gas production via the catalytic partial oxidation (CPO) of methane. Catalysts were characterized by temperature programmed reduction (TPR), transmission electron microscopy (TEM) and X-ray fluorescence multi-element analysis (XRF). Their activity for the partial oxidation of methane to hydrogen and carbon monoxide (at 1 bar, gas hourly space velocity (GHSV) of 144,000cm{sup 3}g{sup -1}h{sup -1} and CH{sub 4}/O{sub 2} molar ratio of 2) was investigated, and coke deposited on the spent catalysts was studied by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and thermogravimetric analysis (TGA). The activity was found to decrease in the order of Ni{sub 2}Co>Ni{sub 3}>NiCo{sub 2}>>Co{sub 3}, while CO and H{sub 2} selectivities were found to be in the order ofNi{sub 2}Co>Ni{sub 3}{approx}NiCo{sub 2}>Co{sub 3}. Ni{sub 2}Co is also shown to be more resistant to coking as compared to Ni{sub 3}, which is a current catalyst of choice. Results show that not only does Ni{sub 2}Co have the highest activity and selectivity among all the catalysts tested, it is also relatively resistant to coking. This finding would be helpful for catalyst design to achieve high coking resistivity catalysts for hydrogen production from CPO of methane. (author)

  13. Diesel soot oxidation under controlled conditions

    OpenAIRE

    Song, Haiwen

    2003-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 11/12/2003. In order to improve understanding of diesel soot oxidation, an experimental rig was designed and set up, in which the soot oxidation conditions, such as temperature, oxygen partial pressure, and CO2 partial pressure, could be varied independently of each other. The oxidizing gas flow in the oxidizer was under laminar condition. This test rig comprised a naturally-aspirated single ...

  14. N-Heterocyclic Carbene-Catalysed Diastereoselective Vinylogous Michael Addition Reaction of gamma-Substituted deconjugated Butenolides

    KAUST Repository

    Guo, Hao

    2015-11-16

    An efficient N-heterocyclic carbene (NHC)-catalysed vinylogous Michael addition of deconjugated butenolides was developed. In the presence of 5 mol% of the NHC catalyst, both γ-alkyl and aryl-substituted deconjugated butenolides undergo vinylogous Michael addition with various α, β-unsaturated ketones, esters, or nitriles to afford γ,γ-disubstituted butenolides containing adjacent quaternary and tertiary carbon centers in good to excellent yields with excellent diastereoselectivities. In this process, the free carbene is assumed to act as a strong Brønsted base to promote the conjugate addition.

  15. N-Heterocyclic Carbene-Catalysed Diastereoselective Vinylogous Michael Addition Reaction of gamma-Substituted deconjugated Butenolides

    KAUST Repository

    Guo, Hao; Xing, Fen; Du, Guang-Fen; Huang, Kuo-Wei; Dai, Bin; He, Lin

    2015-01-01

    An efficient N-heterocyclic carbene (NHC)-catalysed vinylogous Michael addition of deconjugated butenolides was developed. In the presence of 5 mol% of the NHC catalyst, both γ-alkyl and aryl-substituted deconjugated butenolides undergo vinylogous Michael addition with various α, β-unsaturated ketones, esters, or nitriles to afford γ,γ-disubstituted butenolides containing adjacent quaternary and tertiary carbon centers in good to excellent yields with excellent diastereoselectivities. In this process, the free carbene is assumed to act as a strong Brønsted base to promote the conjugate addition.

  16. Iridium- and ruthenium-catalysed synthesis of 2,3-disubstituted indoles from anilines and vicinal diols

    DEFF Research Database (Denmark)

    Tursky, Matyas; Lorentz-Petersen, Linda Luise Reeh; Olsen, L. B.

    2010-01-01

    A straightforward and atom-economical method is described for the synthesis of 2,3-disubstituted indoles. Anilines and 1,2-diols are condensed under neat conditions with catalytic amounts of either [Cp*IrCl2](2)/MsOH or RuCl3 center dot xH(2)O/phosphine (phosphine = PPh3 or xantphos). The reactio...... the alpha-hydroxyimine which rearranges to the corresponding alpha-aminoketone. Acid-or metal-catalysed electrophilic ring-closure with the release of water then furnishes the indole product....

  17. Effect of systemic nitric oxide synthase inhibition on optic disc oxygen partial pressure in normoxia and in hypercapnia.

    Science.gov (United States)

    Petropoulos, Ioannis K; Pournaras, Jean-Antoine C; Stangos, Alexandros N; Pournaras, Constantin J

    2009-01-01

    To investigate the effect of systemic nitric oxide synthase (NOS) inhibition on optic disc oxygen partial pressure (PO(2)) in normoxia and hypercapnia. Intervascular optic disc PO(2) was measured in 12 anesthetized minipigs by using oxygen-sensitive microelectrodes placed 0.1), despite a 21% increase of mean arterial pressure. Optic disc PO(2) increase under hypercapnia was blunted after L-NAME injection (DeltaPO(2) = 0.6 +/- 1.1 mm Hg; 3%; P > 0.1), and this effect was reversible by L-arginine. Moreover, L-NAME reduced the response to carbogen by 29% (DeltaPO(2) = 9.1 +/- 4.4 mm Hg; 49%; P = 0.01 versus before L-NAME). The response to hyperoxia was not affected. Whereas systemic NOS inhibition did not affect optic disc PO(2) in normoxia, a blunting effect was noted on the CO(2)-induced optic disc PO(2) increase. Nitric oxide appears to mediate the hypercapnic optic disc PO(2) increase.

  18. Catalyst development and systems analysis of methanol partial oxidation for the fuel processor - fuel cell integration

    Energy Technology Data Exchange (ETDEWEB)

    Newson, E; Mizsey, P; Hottinger, P; Truong, T B; Roth, F von; Schucan, Th H [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Methanol partial oxidation (pox) to produce hydrogen for mobile fuel cell applications has proved initially more successful than hydrocarbon pox. Recent results of catalyst screening and kinetic studies with methanol show that hydrogen production rates have reached 7000 litres/hour/(litre reactor volume) for the dry pox route and 12,000 litres/hour/(litre reactor volume) for wet pox. These rates are equivalent to 21 and 35 kW{sub th}/(litre reactor volume) respectively. The reaction engineering problems remain to be solved for dry pox due to the significant exotherm of the reaction (hot spots of 100-200{sup o}C), but wet pox is essentially isothermal in operation. Analyses of the integrated fuel processor - fuel cell systems show that two routes are available to satisfy the sensitivity of the fuel cell catalysts to carbon monoxide, i.e. a preferential oxidation reactor or a membrane separator. Targets for individual system components are evaluated for the base and best case systems for both routes to reach the combined 40% efficiency required for the integrated fuel processor - fuel cell system. (author) 2 figs., 1 tab., 3 refs.

  19. Preparation of inorganic hydrophobic catalysts

    International Nuclear Information System (INIS)

    Yang, Yong; Wang, Heyi; Du, Yang

    2009-04-01

    In order to catalyse the oxidation of tritium gas, two inorganic hydrophobic catalysts are prepared. Under room temperature, the catalysed oxidation ratio of 0.3%-1% (V/V) hydrogen gas in air is higher than 95%. Pt-II inorganic hydrophobic catalysts has obviously better catalysing ability than Pt-PTFE and lower ability than Pt-SDB in H 2 -HTO isotopic exchange, because the pressure resistence of Pt-II is much higher than Pt-SDB, it can be used to the CECE cell of heavy water detritium system. (authors)

  20. Effect of Mass-Transport Limitations on the Performance of a Packed Bed Membrane Reactor for Partial Oxidations. Transport from the Membrane to the Packed Bed

    NARCIS (Netherlands)

    van Sint Annaland, M.; Kurten, U.; Kuipers, J.A.M.

    2007-01-01

    With a packed bed membrane reactor, the product yield can be significantly enhanced for partial oxidation systems, via distributive addition of oxygen to the reaction mixture along the axial coordinate of the reactor, provided that the reaction order in oxygen of the formation rate of the target

  1. Effect of mass-transport limitations on the performance of a packed bed membrane reactor for partial oxidations. Transport from the membrane to the packed bed

    NARCIS (Netherlands)

    Sint Annaland, van M.; Kurten, U.; Kuipers, J.A.M.

    2007-01-01

    With a packed bed membrane reactor, the product yield can be significantly enhanced for partial oxidation systems, via distributive addition of oxygen to the reaction mixture along the axial coordinate of the reactor, provided that the reaction order in oxygen of the formation rate of the target

  2. An on-line communication system as an international catalysator for initiating storage projects

    International Nuclear Information System (INIS)

    Hennig, E.; Stephanblome, Th.

    1998-01-01

    The presented internet platform realizes an international contact stock of the companies and institutes being interested in storage technologies and cooperation and will take over the function of a catalysator for the planning of future storage use. In this regard the system creates an information and marketing device that will help, in the shape of an international, virtual exhibition hall, to find new markets, that are interesting for producers and suppliers of electrical energy storage technologies. In this virtual exhibition hall, need and offer regarding the electrical energy storage technologies are shown in order to support the main aim of the works regarding Annex IX, the starting of concrete projects. (author)

  3. Efficient one-pot enzymatic synthesis of alpha-(1 -> 4)-glucosidic disaccharides through a coupled reaction catalysed by Lactobacillus acidophilus NCFM maltose phosphorylase

    DEFF Research Database (Denmark)

    Nakai, Hiroyuki; Dilokpimol, Adiphol; Abou Hachem, Maher

    2010-01-01

    Lactobacillus acidophilus NCFM maltose phosphorylase (LaMalP) of glycoside hydrolase family 65 catalysed enzymatic synthesis of alpha-(1 -> 4)-glucostdic disacchandes from maltose and five monosacchandes in a coupled phosphorolysis/reverse phosphorolysis one-pot reaction Thus phosphorolysis...

  4. A potential role of substrate as a base for deprotonation pathway in Rh-catalysed C-H amination of heteroArenes: DFT insights

    KAUST Repository

    Ajitha, Manjaly John; Huang, Kuo-Wei; Kwak, Jaesung; Kim, Hyun Jin; Chang, Sukbok; Jung, Yousung

    2016-01-01

    The possibility of direct introduction of a new functionality through C–H bond activation is an attractive strategy in covalent synthesis. Here, we investigated the mechanism of Rh-catalysed C-H amination of the hetero-aryl substrate (2

  5. CO2 separation by calcium looping from full and partial fuel oxidation processes

    International Nuclear Information System (INIS)

    Sivalingam, Senthoorselvan

    2013-01-01

    This thesis work deals with the research and development of calcium looping process for CO 2 separation from full and partial fuel oxidation based power generation systems. CO 2 is the main greenhouse gas and undoubtedly a major contributor to the global warming. It is estimated that more than one third of the total anthropogenic CO 2 emissions come from fossil fuel based heat and power generation. Moreover, fossil fuels are unlikely to be phased out rapidly, since developing alternative energy sources not only take time but also require huge investments and infrastructure. An alternative way to reduce emissions in a medium term is to capture the CO 2 from fossil fueled power plants and store it away from the atmosphere. This process system combining a bunch of technologies is called carbon capture and storage (CCS). CO 2 capture is an important and costly part of CCS and an array of technologies is considered for this. Calcium looping (CaL) is one of such and seems to offer effective and efficient CO 2 separation from fuel oxidation processes. CaL process involves separation of CO 2 at high temperatures (600-700 C) by calcium sorbents (CaO). CO 2 reacts with CaO in a carbonation process and produces CaCO 3 . In a subsequent thermal regeneration (>850 C) called calcination, the CO 2 is released from CaCO 3 . By alternating carbonations and calcinations over multiple cycles, CO 2 is separated from a gas stream. Moreover, the CaL is realised in industrial scale with dual fluidised bed reactors for CO 2 capture (the carbonator) and sorbent regeneration (the calciner). As a process in the development, research is still required in many aspects from thermodynamic modeling to experimental studies. Research works have been carried out in process simulations, sorbent reactivity and optimisation studies in a controlled reactor environment and process parametric studies in a semi-pilot scale CaL test facility. ASPEN Plus power plant simulations integrating the CaL based CO 2

  6. Mathematical Modelling of Intraretinal Oxygen Partial Pressure

    African Journals Online (AJOL)

    Erah

    oxygen availability) is required for retinal oxidative metabolism. .... retina was described using Hill's equation and Fick's law. ... ganglion cell / nerve fiber layer and the superficial ..... parameter values producing the best. Figure 2: Partial ...

  7. Palladium-catalysed electrophilic aromatic C-H fluorination

    Science.gov (United States)

    Yamamoto, Kumiko; Li, Jiakun; Garber, Jeffrey A. O.; Rolfes, Julian D.; Boursalian, Gregory B.; Borghs, Jannik C.; Genicot, Christophe; Jacq, Jérôme; van Gastel, Maurice; Neese, Frank; Ritter, Tobias

    2018-02-01

    Aryl fluorides are widely used in the pharmaceutical and agrochemical industries, and recent advances have enabled their synthesis through the conversion of various functional groups. However, there is a lack of general methods for direct aromatic carbon-hydrogen (C-H) fluorination. Conventional methods require the use of either strong fluorinating reagents, which are often unselective and difficult to handle, such as elemental fluorine, or less reactive reagents that attack only the most activated arenes, which reduces the substrate scope. A method for the direct fluorination of aromatic C-H bonds could facilitate access to fluorinated derivatives of functional molecules that would otherwise be difficult to produce. For example, drug candidates with improved properties, such as increased metabolic stability or better blood-brain-barrier penetration, may become available. Here we describe an approach to catalysis and the resulting development of an undirected, palladium-catalysed method for aromatic C-H fluorination using mild electrophilic fluorinating reagents. The reaction involves a mode of catalysis that is unusual in aromatic C-H functionalization because no organometallic intermediate is formed; instead, a reactive transition-metal-fluoride electrophile is generated catalytically for the fluorination of arenes that do not otherwise react with mild fluorinating reagents. The scope and functional-group tolerance of this reaction could provide access to functional fluorinated molecules in pharmaceutical and agrochemical development that would otherwise not be readily accessible.

  8. OXIDATIVE-REFORMING OF METHANE AND PARTIAL OXIDATION OF METHANE REACTIONS OVER NiO/PrO2/ZrO2 CATALYSTS: EFFECT OF NICKEL CONTENT

    Directory of Open Access Journals (Sweden)

    Y. J. O. Asencios

    Full Text Available Abstract In this work the behavior of NiO-PrO2-ZrO2 catalysts containing various nickel loadings was evaluated in the partial oxidation of methane and oxidative-reforming reactions of methane. The catalysts were characterized by X-Ray Diffraction Analysis (in situ-XRD, Temperature Programmed Reduction (H2-TPR, Scanning Electron Microscopy (SEM/EDX and Adsorption-Desorption of nitrogen (BET area. The reactions were carried out at 750 °C and 1 atm for 5 hours. The catalysts were studied with different nickel content: 0, 5, 10 and 15% (related to total weight of catalyst, wt%. In both reactions, the catalyst containing the mixture of the three oxides (NiO/PrO2/ZrO2 with 15% nickel (15NiPrZr catalyst showed the best activity for the conversion of the reactants into Syngas and showed high selectivity for H2 and CO. The results suggest that the promoter PrO2 and the Niº centers are in a good proportion in the catalyst with 15% Ni. Our results showed that low nickel concentrations in the catalyst led to high metallic dispersion; however, very low nickel concentrations did not favor the methane transformation into Syngas. The catalyst containing only NiO/ZrO2 in the mixture was not sufficient for the catalysis. The presence of the promoter PrO2 was very important for the catalysis of the POM.

  9. Ruthenium water oxidation catalysts containing the non-planar tetradentate ligand, biisoquinoline dicarboxylic acid (biqaH2).

    Science.gov (United States)

    Scherrer, Dominik; Schilling, Mauro; Luber, Sandra; Fox, Thomas; Spingler, Bernhard; Alberto, Roger; Richmond, Craig J

    2016-12-06

    Two ruthenium complexes containing the tetradentate ligand [1,1'-biisoquinoline]-3,3'-dicarboxylic acid, and 4-picoline or 6-bromoisoquinoline as axial ligands have been prepared. The complexes have been fully characterised and initial studies on their potential to function as molecular water oxidation catalysts have been performed. Both complexes catalyse the oxidation of water in acidic media with Ce IV as a stoichiometric chemical oxidant, although turnover numbers and turnover frequencies are modest when compared with the closely related Ru-bda and Ru-pda analogues. Barriers for the water nucleophilic attack and intermolecular coupling pathways were obtained from density functional theory calculations and the crucial influence of the ligand framework in determining the most favourable reaction pathway was elucidated from a combined analysis of the theoretical and experimental results.

  10. The syngas production by partial oxidation using a homogeneous charge compression ignition engine

    International Nuclear Information System (INIS)

    Yang, Yoon Cheol; Lim, Mun Sup; Chun, Young Nam

    2009-01-01

    It is essential to develop the environment-friendly alternative energies urgently considering the limited fossil fuel and the global warming caused by environmental destruction. In this research, the new technology was studied to produce syngas from methane or simulated biogas with a HCCI reforming engine. The purpose is to provide the basics for the research on biogas treatment mainly comprising of methane and carbon dioxide, the cause of global warming. This experiment was conducted on the changes in syngas concentration according to the variations of oxygen/methane ratio, total flow rate, intake heating temperature, CO 2 in mixture and oxygen enrichment with partial oxidation. Through the parametric screening studies, optimum conditions and their results in this study was taken as follows; The maximum content of syngas was; 27.4% at 0.3 of oxygen/methane ratio, 32.38% at 117.3 L/min of total flow rate, and 35.83% at 355 C of intake heating temperature. 41.06% of syngas was produced at 50.33% of oxygen enrichment ratio. (author)

  11. Oxidation of methyl heterocyclic compounds on vanadium oxide catalysts

    International Nuclear Information System (INIS)

    Shimanskaya, M.V.; Lejtis, L.A.; Iovel', I.G.; Gol'dberg, Yu.Sh.; Skolmejstere, R.A.; Golender, L.O.

    1985-01-01

    Data on vapor-phase oxidation of methyl derivatives of thiophene, Δ 2 - thiazo line, pyridine, pyrazine and pyramidine on oxide vanadium-molybdenum catalysts to corresponding heterylaldehydes are generalized. The dependence of catalytic properties of oxide vanadium-molybdenum systems in oxidation reactions of methylheterocyclic compounds on V:Mo ratio in the catalyst is revealed. It is shown that heterocyclic compounds are coordinated by a heteroatom on Lewis centres of V-Mo-O-catalyst primarily with partially reduced vanadium ions

  12. Gravity Effects Observed In Partially Premixed Flames

    Science.gov (United States)

    Puri, Ishwar K.; Aggarwal, Suresh K.; Lock, Andrew J.; Gauguly, Ranjan; Hegde, Uday

    2003-01-01

    Partially premixed flames (PPFs) contain a rich premixed fuel air mixture in a pocket or stream, and, for complete combustion to occur, they require the transport of oxidizer from an appropriately oxidizer-rich (or fuel-lean) mixture that is present in another pocket or stream. Partial oxidation reactions occur in fuel-rich portions of the mixture and any remaining unburned fuel and/or intermediate species are consumed in the oxidizer-rich portions. Partial premixing, therefore, represents that condition when the equivalence ratio (phi) in one portion of the flowfield is greater than unity, and in another section its value is less than unity. In general, for combustion to occur efficiently, the global equivalence ratio is in the range fuel-lean to stoichiometric. These flames can be established by design by placing a fuel-rich mixture in contact with a fuel-lean mixture, but they also occur otherwise in many practical systems, which include nonpremixed lifted flames, turbulent nonpremixed combustion, spray flames, and unwanted fires. Other practical applications of PPFs are reported elsewhere. Although extensive experimental studies have been conducted on premixed and nonpremixed flames under microgravity, there is a absence of previous experimental work on burner stabilized PPFs in this regard. Previous numerical studies by our group employing a detailed numerical model showed gravity effects to be significant on the PPF structure. We report on the results of microgravity experiments conducted on two-dimensional (established on a Wolfhard-Parker slot burner) and axisymmetric flames (on a coannular burner) that were investigated in a self-contained multipurpose rig. Thermocouple and radiometer data were also used to characterize the thermal transport in the flame.

  13. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme

    DEFF Research Database (Denmark)

    Gallage, Nethaji J; Hansen, Esben H; Kannangara, Rubini

    2014-01-01

    Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural vanilla flavour obtained from cured vanilla pods. Here we show that a single hydratase/lyase type enzyme designated vanillin synthase (VpVAN) catalyses direct conversion of ferulic acid and its glucoside...... to the inner part of the vanilla pod and high transcript levels are found in single cells located a few cell layers from the inner epidermis. Transient expression of VpVAN in tobacco and stable expression in barley in combination with the action of endogenous alcohol dehydrogenases and UDP...

  14. Alginate as immobilization matrix and stabilizing agent in a two-phase liquid system: application in lipase-catalysed reactions.

    Science.gov (United States)

    Hertzberg, S; Kvittingen, L; Anthonsen, T; Skjåk-Braek, G

    1992-01-01

    Alginate was evaluated as an immobilization matrix for enzyme-catalyzed reactions in organic solvents. In contrast to most hydrogels, calcium alginate was found to be stable in a range of organic solvents and to retain the enzyme inside the gel matrix. In hydrophobic solvents, the alginate gel (greater than 95% water) thus provided a stable, two-phase liquid system. The lipase from Candida cylindracea, after immobilization in alginate beads, catalysed esterification and transesterification in n-hexane under both batch and continuous-flow conditions. The operational stability of the lipase was markedly enhanced by alginate entrapment. In the esterification of butanoic acid with n-butanol, better results were obtained in the typical hydrophilic calcium alginate beads than in less hydrophilic matrices. The effects of substrate concentration, matrix area, and polarity of the substrate alcohols and of the organic solvent on the esterification activity were examined. The transesterification of octyl 2-bromopropanoate with ethanol was less efficient than that of ethyl 2-bromopropanoate with octanol. By using the hydrophilic alginate gel as an immobilization matrix in combination with a mobile hydrophobic phase, a two-phase liquid system was achieved with definite advantages for a continuous, enzyme-catalysed process.

  15. Enantioselective Synthesis of Aminodiols by Sequential Rhodium-Catalysed Oxyamination/Kinetic Resolution: Expanding the Substrate Scope of Amidine-Based Catalysis.

    Science.gov (United States)

    Guasch, Joan; Giménez-Nueno, Irene; Funes-Ardoiz, Ignacio; Bernús, Miguel; Matheu, M Isabel; Maseras, Feliu; Castillón, Sergio; Díaz, Yolanda

    2018-03-26

    Regio- and stereoselective oxyamination of dienes through a tandem rhodium-catalysed aziridination-nucleophilic opening affords racemic oxazolidinone derivatives, which undergo a kinetic resolution acylation process with amidine-based catalysts (ABCs) to achieve s values of up to 117. This protocol was applied to the enantioselective synthesis of sphingosine. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. On the Mechanism of the Digold(I)-Hydroxide-Catalysed Hydrophenoxylation of Alkynes

    KAUST Repository

    Gómez-Suárez, Adrián

    2015-12-13

    Herein, we present a detailed investigation of the mechanistic aspects of the dual gold-catalysed hydrophenoxylation of alkynes by both experimental and computational methods. The dissociation of [{Au(NHC)}2(μ-OH)][BF4] is essential to enter the catalytic cycle, and this step is favoured by the presence of bulky, non-coordinating counter ions. Moreover, in silico studies confirmed that phenol does not only act as a reactant, but also as a co-catalyst, lowering the energy barriers of several transition states. A gem-diaurated species might form during the reaction, but this lies deep within a potential energy well, and is likely to be an "off-cycle" rather than an "in-cycle" intermediate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. On the Mechanism of the Digold(I)-Hydroxide-Catalysed Hydrophenoxylation of Alkynes.

    Science.gov (United States)

    Gómez-Suárez, Adrián; Oonishi, Yoshihiro; Martin, Anthony R; Vummaleti, Sai V C; Nelson, David J; Cordes, David B; Slawin, Alexandra M Z; Cavallo, Luigi; Nolan, Steven P; Poater, Albert

    2016-01-18

    Herein, we present a detailed investigation of the mechanistic aspects of the dual gold-catalysed hydrophenoxylation of alkynes by both experimental and computational methods. The dissociation of [{Au(NHC)}2 (μ-OH)][BF4 ] is essential to enter the catalytic cycle, and this step is favoured by the presence of bulky, non-coordinating counter ions. Moreover, in silico studies confirmed that phenol does not only act as a reactant, but also as a co-catalyst, lowering the energy barriers of several transition states. A gem-diaurated species might form during the reaction, but this lies deep within a potential energy well, and is likely to be an "off-cycle" rather than an "in-cycle" intermediate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Revisiting the Brønsted acid catalysed hydrolysis kinetics of polymeric carbohydrates in ionic liquids by in situ ATR-FTIR spectroscopy

    DEFF Research Database (Denmark)

    Kunov-Kruse, Andreas Jonas; Riisager, Anders; Shunmugavel, Saravanamurugan

    2013-01-01

    A new versatile method to measure rates and determine activation energies for the Brønsted acid catalysed hydrolysis of cellulose and cellobiose (and other polymeric carbohydrates) in ionic liquids is demonstrated by following the C–O stretching band of the glycoside bond with in situ ATR...

  19. Redox process catalysed by growing crystal-strengite, FePO4,2H2O, crystallizing from solution with iron(II) and hydroxylamine

    Science.gov (United States)

    Lundager Madsen, Hans Erik

    2014-09-01

    In an attempt to grow pure crystals of the iron(II) phosphate vivianite, Fe3(PO4)2,8H2O, from a solution of Mohr's salt, Fe(NH4)2(SO4)2,6H2O, added to a solution of ammonium phosphate, hydroxylammonium chloride, NH3OHCl, was added to the iron(II) stock solution to eliminate oxidation of iron(II) by oxygen from the air. However, the effect turned out to be the opposite of the expected: whereas hydroxylamine reduces iron(III) in bulk solution, it acted as a strong oxidant in the presence of growing iron phosphate crystals, causing the crystallization of the iron(III) phosphate strengite, FePO4,2H2O, as the only solid phase. Evidently the crystal surface catalyses oxidation of iron(II) by hydroxylamine. The usual composite kinetics of spiral growth and surface nucleation was found. The surface-nucleation part yielded edge free energy λ in the range 12-45 pJ/m, virtually independent of temperature and in the range typical for phosphates of divalent metals. The scatter of values for λ presumably arises from contributions from different crystal forms to the overall growth rate. The low mean value points to strong adsorption of iron(II), which is subsequently oxidized at the crystal surface, forming strengite. The state of the system did not tend to thermodynamic equilibrium, but to a metastable state, presumably controlled by the iron(II) rich surface layer of the crystal. In addition to crystal growth, it was possible to measure nucleation kinetics by light scattering (turbidimetry). A point of transition from heterogeneous to homogeneous nucleation was found, and from the results for the homogeneous domain a rather precise value of crystal surface free energy γ=55 mJ/m2 was found. This is a relatively low value as well, indicating that the redox process plays a role already at the nucleation stage.

  20. Unprecedented Carbonato Intermediates in Cyclic Carbonate Synthesis Catalysed by Bimetallic Aluminium(Salen) Complexes.

    Science.gov (United States)

    Castro-Osma, José A; North, Michael; Offermans, Willem K; Leitner, Walter; Müller, Thomas E

    2016-04-21

    The mechanism by which [Al(salen)]2 O complexes catalyse the synthesis of cyclic carbonates from epoxides and carbon dioxide in the absence of a halide cocatalyst has been investigated. Density functional theory (DFT) studies, mass spectrometry and (1) H NMR, (13) C NMR and infrared spectroscopies provide evidence for the formation of an unprecedented carbonato bridged bimetallic aluminium complex which is shown to be a key intermediate for the halide-free synthesis of cyclic carbonates from epoxides and carbon dioxide. Deuterated and enantiomerically-pure epoxides were used to study the reaction pathway. Based on the experimental and theoretical results, a catalytic cycle is proposed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A new strategy to inhibit the excision reaction catalysed by HIV-1 reverse transcriptase: compounds that compete with the template–primer

    Science.gov (United States)

    Cruchaga, Carlos; Anso, Elena; Font, María; Martino, Virginia S.; Rouzaut, Ana; Martinez-Irujo, Juan J.

    2007-01-01

    Inhibitors of the excision reaction catalysed by HIV-1 RT (reverse transcriptase) represent a promising approach in the fight against HIV, because these molecules would interfere with the main mechanism of resistance of this enzyme towards chain-terminating nucleotides. Only a limited number of compounds have been demonstrated to inhibit this reaction to date, including NNRTIs (non-nucleoside RT inhibitors) and certain pyrophosphate analogues. We have found previously that 2GP (2-O-galloylpunicalin), an antiviral compound extracted from the leaves of Terminalia triflora, was able to inhibit both the RT and the RNase H activities of HIV-1 RT without affecting cell proliferation or viability. In the present study, we show that 2GP also inhibited the ATP- and PPi-dependent phosphorolysis catalysed by wild-type and AZT (3′-azido-3′-deoxythymidine)-resistant enzymes at sub-micromolar concentrations. Kinetic and direct-binding analysis showed that 2GP was a non-competitive inhibitor against the nucleotide substrate, whereas it competed with the binding of RT to the template–primer (Kd=85 nM). As expected from its mechanism of action, 2GP was active against mutations conferring resistance to NNRTIs and AZT. The combination of AZT with 2GP was highly synergistic when tested in the presence of pyrophosphate, indicating that the inhibition of RT-catalysed phosphorolysis was responsible for the synergy found. Although other RT inhibitors that compete with the template–primer have been described, this is the first demonstration that these compounds can be used to block the excision of chain terminating nucleotides, providing a rationale for their combination with nucleoside analogues. PMID:17355225

  2. Excellent performance of Pt-C/TiO2 for methanol oxidation: Contribution of mesopores and partially coated carbon

    Science.gov (United States)

    Wu, Xinbing; Zhuang, Wei; Lu, Linghong; Li, Licheng; Zhu, Jiahua; Mu, Liwen; Li, Wei; Zhu, Yudan; Lu, Xiaohua

    2017-12-01

    Partial deposition of carbon onto mesoporous TiO2 (C/TiO2) were prepared as supporting substrate for Pt catalyst development. Carbon deposition is achieved by in-situ carbonization of furfuryl alcohol. The hybrid catalysts were characterized by XRD, Raman, SEM and TEM and exhibited outstanding catalytic activity and stability in methanol oxidation reaction. The heterogeneous carbon coated on mesoporous TiO2 fibers provided excellent electrical conductivity and strong interfacial interaction between TiO2 support and Pt metal nanoparticles. Methanol oxidation reaction results showed that the activity of Pt-C/TiO2 is 3.0 and 1.5 times higher than that of Pt-TiO2 and Pt-C, respectively. In addition, the Pt-C/TiO2 exhibited a 6.7 times enhanced stability compared with Pt-C after 2000 cycles. The synergistic effect of C/TiO2 is responsible for the enhanced activity of Pt-C/TiO2, and its excellent durability could be ascribed to the strong interfacial interaction between Pt nanoparticles and C/TiO2 support.

  3. Gold(I)-Catalysed Hydroarylation of 1,3-Disubstituted Allenes with Efficient Axial-to-Point Chirality Transfer.

    Science.gov (United States)

    Sutherland, Daniel R; Kinsman, Luke; Angiolini, Stuart M; Rosair, Georgina M; Lee, Ai-Lan

    2018-05-11

    Hydroarylation of enantioenriched 1,3-disubstituted allenes has the potential to proceed with axial-to-point chirality transfer to yield enantioenriched allylated (hetero)aryl compounds. However, the gold-catalysed intermolecular reaction was previously reported to occur with no chirality transfer owing to competing allene racemisation. Herein, we describe the development of the first intermolecular hydroarylations of allenes to proceed with efficient chirality transfer and summarise some of the key criteria for achieving high regio- and stereoselectivity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Oxidative 1,2-carboamination of alkenes with alkyl nitriles and amines toward γ-amino alkyl nitriles

    Science.gov (United States)

    Liu, Yan-Yun; Yang, Xu-Heng; Song, Ren-Jie; Luo, Shenglian; Li, Jin-Heng

    2017-04-01

    Difunctionalization of alkenes has become a powerful tool for quickly increasing molecular complexity in synthesis. Despite significant progress in the area of alkene difunctionalization involving the incorporation of a nitrogen atom across the C-C double bonds, approaches for the direct 1,2-carboamination of alkenes to produce linear N-containing molecules are scarce and remain a formidable challenge. Here we describe a radical-mediated oxidative intermolecular 1,2-alkylamination of alkenes with alkyl nitriles and amines involving C(sp3)-H oxidative functionalization catalysed by a combination of Ag2CO3 with iron Lewis acids. This three-component alkene 1,2-alkylamination method is initiated by the C(sp3)-H oxidative radical functionalization, which enables one-step formation of two new chemical bonds, a C-C bond and a C-N bond, to selectively produce γ-amino alkyl nitriles.

  5. Selective oxidation

    International Nuclear Information System (INIS)

    Cortes Henao, Luis F.; Castro F, Carlos A.

    2000-01-01

    It is presented a revision and discussion about the characteristics and factors that relate activity and selectivity in the catalytic and not catalytic partial oxidation of methane and the effect of variables as the temperature, pressure and others in the methane conversion to methanol. It thinks about the zeolites use modified for the catalytic oxidation of natural gas

  6. Study of the dynamics of the MoO2-Mo2C system for catalytic partial oxidation reactions

    Science.gov (United States)

    Cuba Torres, Christian Martin

    On a global scale, the energy demand is largely supplied by the combustion of non-renewable fossil fuels. However, their rapid depletion coupled with environmental and sustainability concerns are the main drivers to seek for alternative energetic strategies. To this end, the sustainable generation of hydrogen from renewable resources such as biodiesel would represent an attractive alternative solution to fossil fuels. Furthermore, hydrogen's lower environmental impact and greater independence from foreign control make it a strong contender for solving this global problem. Among a wide variety of methods for hydrogen production, the catalytic partial oxidation offers numerous advantages for compact and mobile fuel processing systems. For this reaction, the present work explores the versatility of the Mo--O--C catalytic system under different synthesis methods and reforming conditions using methyl oleate as a surrogate biodiesel. MoO2 exhibits good catalytic activity and exhibits high coke-resistance even under reforming conditions where long-chain oxygenated compounds are prone to form coke. Moreover, the lattice oxygen present in MoO2 promotes the Mars-Van Krevelen mechanism. Also, it is introduced a novel beta-Mo2C synthesis by the in-situ formation method that does not utilize external H2 inputs. Herein, the MoO 2/Mo2C system maintains high catalytic activity for partial oxidation while the lattice oxygen serves as a carbon buffer for preventing coke formation. This unique feature allows for longer operation reforming times despite slightly lower catalytic activity compared to the catalysts prepared by the traditional temperature-programmed reaction method. Moreover, it is demonstrated by a pulse reaction technique that during the phase transformation of MoO2 to beta-Mo2C, the formation of Mo metal as an intermediate is not responsible for the sintering of the material wrongly assumed by the temperature-programmed method.

  7. Reaction phenomena of catalytic partial oxidation of methane under the impact of carbon dioxide addition and heat recirculation

    International Nuclear Information System (INIS)

    Chen, Wei-Hsin; Lin, Shih-Cheng

    2015-01-01

    The reaction phenomena of CPOM (catalytic partial oxidation of methane) in a Swiss-roll reactor are studied numerically where a rhodium-based catalyst bed is embedded at the center of the reactor. CO 2 is added into the feed gas and excess enthalpy recovery is performed to evaluate their influences on CPOM performance. In the study, the mole ratio of O 2 to CH 4 (O 2 /CH 4 ratio) is fixed at 0.5 and the mole ratio of CO 2 to O 2 (CO 2 /O 2 ratio) is in the range of 0–2. The results reveal that CO 2 addition into the influent has a slight effect on methane combustion, but significantly enhances dry reforming and suppresses steam reforming. The reaction extents of steam reforming and dry reforming in CPOM without heat recovery and CO 2 addition are in a comparable state. Once CO 2 is added into the feed gas, the dry reforming is enhanced, thereby dominating CH 4 consumption. Compared to the reactor without excess enthalpy recovery, heat recirculation drastically increases the maximum reaction temperature and CH 4 conversion in the catalyst bed; it also intensifies the H 2 selectivity, H 2 yield, CO 2 conversion, and syngas production rate. The predictions indicate that the heat recirculation is able to improve the syngas formation up to 45%. - Highlights: • Catalytic partial oxidation of methane with CO 2 addition and heat recovery is studied. • CO 2 addition has a slight effect on methane combustion. • CO 2 addition significantly enhances dry reforming and suppresses steam reforming. • Dry reforming dominates CH 4 consumption when CO 2 addition is large. • Heat recirculation can improve the syngas formation up to 45%

  8. Synthesis of 11C labelled methyl esters: transesterification of enol esters versus BF3 catalysed esterification-a comparative study

    International Nuclear Information System (INIS)

    Ackermann, Uwe; Blanc, Paul; Falzon, Cheryl L.; Issa, William; White, Jonathan; Tochon-Danguy, Henri J.; Sachinidis, John I.; Scott, Andrew M.

    2006-01-01

    C-11 labelled methyl esters have been synthesized via the transesterification of enol esters in the presence of C-11 methanol and 1,3 dichlorodibutylstannoxane as catalyst. This method leaves functional groups intact and allows access to a wider variety of C-11 labelled methyl esters compared to the BF 3 catalysed ester formation, which uses carboxylic acids and C-11 methanol as starting materials

  9. Partial Oxidation of n-Butane over a Sol-Gel Prepared Vanadium Phosphorous Oxide

    Directory of Open Access Journals (Sweden)

    Juan M. Salazar

    2013-01-01

    Full Text Available Vanadium phosphorous oxide (VPO is traditionally manufactured from solid vanadium oxides by synthesizing VOHPO4∙0.5H2O (the precursor followed by in situ activation to produce (VO2P2O7 (the active phase. This paper discusses an alternative synthesis method based on sol-gel techniques. Vanadium (V triisopropoxide oxide was reacted with ortho-phosphoric acid in an aprotic solvent. The products were dried at high pressure in an autoclave with a controlled excess of solvent. This procedure produced a gel of VOPO4 with interlayer entrapped molecules. The surface area of the obtained materials was between 50 and 120 m2/g. Alcohol produced by the alkoxide hydrolysis reduced the vanadium during the drying step, thus VOPO4 was converted to the precursor. This procedure yielded non-agglomerated platelets, which were dehydrated and evaluated in a butane-air mixture. Catalysts were significantly more selective than the traditionally prepared materials with similar intrinsic activity. It is suggested that the small crystallite size obtained increased their selectivity towards maleic anhydride.

  10. Microbial resource management for the mitigation of nitrous oxide emissions from the Partial Nitritation- Anammox process

    DEFF Research Database (Denmark)

    Blum, Jan-Michael

    Urban wastewater treatment plants are designed to remove pathogens and pollutants from wastewater in order to provide sanitation and to protect receiving water bodies from eutrophication. Reactive nitrogen, mainly in the form of ammonium, is one of the components in wastewater that is converted...... to dinitrogen gas during treatment. The Partial Nitritation-Anammox process (PNA) uses the capacity of autotrophic aerobic and anaerobic ammonia oxidizing bacteria (AOB and AnAOB) to perform this task. The process is mainly applied to treat ammonium-rich wastewater streams with low concentrations of organic...... with the specific ammonia removal rate, while during non-aerated phases net N2O production rates were positively correlated with the nitrite concentration (NO2-). Operation of PNA at reduced specific ammonia removal rates is, therefore, a feasible strategy to mitigate N2O emissions. However, when high ammonium...

  11. A single methyltransferase YefA (RlmCD) catalyses both m5U747 and m5U1939 modifications in Bacillus subtilis 23S rRNA

    DEFF Research Database (Denmark)

    Desmolaize, Benoit; Fabret, Céline; Brégeon, Damien

    2011-01-01

    Escherichia coli possesses three paralogues. These comprise the methyltransferases TrmA that targets U54 in tRNAs, RlmC that modifies U747 in 23S rRNA and RlmD that is specific for U1939 in 23S rRNA. The tRNAs and rRNAs of the Gram-positive bacterium Bacillus subtilis have the same three m(5)U modifications....... However, as previously shown, the m(5)U54 modification in B. subtilis tRNAs is catalysed in a fundamentally different manner by the folate-dependent enzyme TrmFO, which is unrelated to the E. coli TrmA. Here, we show that methylation of U747 and U1939 in B. subtilis rRNA is catalysed by a single enzyme...

  12. KOH catalysed preparation of activated carbon aerogels for dye adsorption.

    Science.gov (United States)

    Ling, Sie King; Tian, H Y; Wang, Shaobin; Rufford, Thomas; Zhu, Z H; Buckley, C E

    2011-05-01

    Organic carbon aerogels (CAs) were prepared by a sol-gel method from polymerisation of resorcinol, furfural, and hexamethylenetetramine catalysed by KOH at around pH 9 using ambient pressure drying. The effect of KOH in the sol-gel on CA synthesis was studied. It was found that addition of KOH prior to the sol-gel polymerisation process improved thermal stability of the gel, prevented the crystallinity of the gel to graphite, increased the microporosity of CA and promoted activation of CA. The CAs prepared using the KOH catalyst exhibited higher porosity than uncatalysed prepared samples. Activation in CO(2) at higher temperature also enhanced the porosity of CAs. Adsorption tests indicated that the CAs were effective for both basic and acid dye adsorption and the adsorption increased with increasing surface area and pore volume. The kinetic adsorption of dyes was diffusion control and could be described by the second-order kinetic model. The equilibrium adsorption of dyes was higher than activated carbon. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Natural spectroscopic hydrogen isotope transfer in alcohol dehydrogenase-catalysed reduction

    International Nuclear Information System (INIS)

    Ben-Li Zhang; Pionnier, S.

    2002-01-01

    The enantiomeric purity of natural α-mono deuterated enantiomers, (R) and (S)ethanol-1-d 1 , in the alcohol produced by sugar fermentation with yeast was studied by 2 H NMR using their esters derived from optical mandelic acid. The results of isotope tracing experiments show that the transfer pathways of the two eantiotopic hydrogens of the methylene group are different. It was observed that (S)-deuterium comes only from the medium water. The (R)-deuterium transferred by NADH in alcohol dehydrogenase reduction of the acetaldehyde is complex origin. Some of them originates from carbon bound hydrogen of the sugar, especially from C(4) position of glucose and most of them comes from water. Only a small portion of the NADH deuterium is incorporated indirectly from water through enzyme catalysed exchange between the pro-S site of NADH and flavin. When a carbonyl compound (ethyl acetoacetate) was reduced under the same conditions during the alcoholic fermentation, among the NADH-transferred deuterium, only a small portion comes from water while most comes from the unexchangeable positions of the glucose. (author)

  14. pH-Dependent isotope exchange and hydrogenation catalysed by water-soluble NiRu complexes as functional models for [NiFe]hydrogenases.

    Science.gov (United States)

    Kure, Bunsho; Matsumoto, Takahiro; Ichikawa, Koji; Fukuzumi, Shunichi; Higuchi, Yoshiki; Yagi, Tatsuhiko; Ogo, Seiji

    2008-09-21

    The pH-dependent hydrogen isotope exchange reaction between gaseous isotopes and medium isotopes and hydrogenation of the carbonyl compounds have been investigated with water-soluble bis(mu-thiolate)(mu-hydride)NiRu complexes, Ni(II)(mu-SR)(2)(mu-H)Ru(II) {(mu-SR)(2) = N,N'-dimethyl-N,N'-bis(2-mercaptoethyl)-1,3-propanediamine}, as functional models for [NiFe]hydrogenases. In acidic media (at pH 4-6), the mu-H ligand of the Ni(II)(mu-SR)(2)(mu-H)Ru(II) complexes has H(+) properties, and the complexes catalyse the hydrogen isotope exchange reaction between gaseous isotopes and medium isotopes. A mechanism of the hydrogen isotope exchange reaction between gaseous isotopes and medium isotopes through a low-valent Ni(I)(mu-SR)(2)Ru(I) complex is proposed. In contrast, in neutral-basic media (at pH 7-10), the mu-H ligand of the Ni(II)(mu-SR)(2)(mu-H)Ru(II) complexes acts as H(-), and the complexes catalyse the hydrogenation of carbonyl compounds.

  15. Efficient and selective N-alkylation of amines with alcohols catalysed by manganese pincer complexes

    Science.gov (United States)

    Elangovan, Saravanakumar; Neumann, Jacob; Sortais, Jean-Baptiste; Junge, Kathrin; Darcel, Christophe; Beller, Matthias

    2016-01-01

    Borrowing hydrogen (or hydrogen autotransfer) reactions represent straightforward and sustainable C–N bond-forming processes. In general, precious metal-based catalysts are employed for this effective transformation. In recent years, the use of earth abundant and cheap non-noble metal catalysts for this process attracted considerable attention in the scientific community. Here we show that the selective N-alkylation of amines with alcohols can be catalysed by defined PNP manganese pincer complexes. A variety of substituted anilines are monoalkylated with different (hetero)aromatic and aliphatic alcohols even in the presence of other sensitive reducible functional groups. As a special highlight, we report the chemoselective monomethylation of primary amines using methanol under mild conditions. PMID:27708259

  16. Evidence for radical-oxidation of plasma proteins in humans

    International Nuclear Information System (INIS)

    Wang, D.; Davies, M.; Dean, R.; Fu, S.; Taurins, A.; Sullivans, D.

    1998-01-01

    Oxidation of proteins by radicals has been implicated in many pathological processes. The hydroxyl radical is known to generate protein-bound hydroxylated derivatives of amino acids, for example hydroxyvaline (from Val), hydroxyleucine (from Leu), o-tyrosine (from Phe), and DOPA (from Tyr). In this study, we have investigated the occurrence of these oxidised amino acids in human plasma proteins from both normal subjects and dialysis patients. By employing previously established HPLC methods [Fu et al. Biochemical Journal, 330, 233-239, 1998], we have found that oxidised amino acids exist in normal human plasma proteins (n=32). The level of these oxidised amino acids is not correlated to age. Similar levels of oxidised amino acids are found in the plasma proteins of the dialysis patients (n=6), but a more detailed survey is underway. The relative abundance of the oxidised amino acids is similar to that resulting from oxidation of BSA by hydroxy radicals or Fenton systems [Fu et al. Biochemical Journal, 333, 519-525, 1998]. The results suggest that metal-ion catalysed oxyl-radical chemistry may be a key contributor to the oxidative damage in plasma proteins in vivo in humans

  17. Synthesis of ZSM-5 zeolite from coal fly ash and rice husk: characterization and application for partial oxidation of methane to methanol

    Science.gov (United States)

    Krisnandi, Y. K.; Yanti, F. M.; Murti, S. D. S.

    2017-04-01

    Indonesian fly ash (SiO2/Al2O3 mole ratio = 3.59) was used together with rice husk (SiO2 92%) as raw material for mesoporous ZSM-5 zeolite synthesis. Prior being used, coal fly ash and rice husk were subjected to pre-treatment in order to extract silicate (SiO4 4-) and aluminate (AlO4 5-) and to remove the impurities. Then the ZSM-5 zeolite were synthesized through hydrothermal treatment using two types of templates (TPAOH and PDDA). The as-synthesized ZSM-5 was characterized using FTIR, XRD, SEM-EDX, and BET. The result of FTIR showed peaks at 1250-950 cm-1 (v asymetric T-O), 820-650 cm-1 (v symetric T-O), and at 650-500 cm-1 confirming the presence of the five number ring of the pentasil structure. The result of XRD showed the appearance of certain peaks in the position 2 theta between 7-9° and 22-25° indicative of ZSM-5 structure, but also showed the pattern of low intensity magnetite and hematite. The SEM image showed the rough surface of hexagonal crystals from ZSM-5 structure, indicative of mesoporosity in the structure. EDX result showed Si/Al ratio of 20, while surface area analysis gave SA of 43.16. The ZSM-5 zeolites then was modified with cobalt oxide through impregnation method. The catalytic activity as heterogeneous catalysts in partial oxidation of methane was tested. The result showed that hence the catalytic activity of ZSM-5 and Co/ZSM-5 from fly ash and rice husk were still inferior compared to the pro-analysis sourced-counterpart, they were potential to be used as catalyst in the partial oxidation of methane to methanol.

  18. Bio-oil steam reforming, partial oxidation or oxidative steam reforming coupled with bio-oil dry reforming to eliminate CO{sub 2} emission

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xun [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Lu, Gongxuan [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2010-07-15

    Biomass is carbon-neutral and utilization of biomass as hydrogen resource shows no impact on atmospheric CO{sub 2} level. Nevertheless, a significant amount of CO{sub 2} is always produced in biomass gasification processes. If the CO{sub 2} produced can further react with biomass, then the biomass gasification coupled with CO{sub 2} reforming of biomass will result in a net decrease of CO{sub 2} level in atmosphere and produce the chemical raw material, syngas. To achieve this concept, a ''Y'' type reactor is developed and applied in bio-oil steam reforming, partial oxidation, or oxidative steam reforming coupled with CO{sub 2} reforming of bio-oil to eliminate the emission of CO{sub 2}. The experimental results show that the reaction systems can efficiently suppress the emission of CO{sub 2} from various reforming processes. The different coupled reaction systems generate the syngas with different molar ratio of CO/H{sub 2}. In addition, coke deposition is encountered in the different reforming processes. Both catalysts and experimental parameters significantly affect the coke deposition. Ni/La{sub 2}O{sub 3} catalyst shows much higher resistivity toward coke deposition than Ni/Al{sub 2}O{sub 3} catalyst, while employing high reaction temperature is vital for elimination of coke deposition. Although the different coupled reaction systems show different characteristic in terms of product distribution and coke deposition, which all can serve as methods for storage of the carbon from fossil fuels or air. (author)

  19. Estimation of Oxidation Kinetics and Oxide Scale Void Position of Ferritic-Martensitic Steels in Supercritical Water

    Directory of Open Access Journals (Sweden)

    Li Sun

    2017-01-01

    Full Text Available Exfoliation of oxide scales from high-temperature heating surfaces of power boilers threatened the safety of supercritical power generating units. According to available space model, the oxidation kinetics of two ferritic-martensitic steels are developed to predict in supercritical water at 400°C, 500°C, and 600°C. The iron diffusion coefficients in magnetite and Fe-Cr spinel are extrapolated from studies of Backhaus and Töpfer. According to Fe-Cr-O ternary phase diagram, oxygen partial pressure at the steel/Fe-Cr spinel oxide interface is determined. The oxygen partial pressure at the magnetite/supercritical water interface meets the equivalent oxygen partial pressure when system equilibrium has been attained. The relative error between calculated values and experimental values is analyzed and the reasons of error are suggested. The research results show that the results of simulation at 600°C are approximately close to experimental results. The iron diffusion coefficient is discontinuous in the duplex scale of two ferritic-martensitic steels. The simulation results of thicknesses of the oxide scale on tubes (T91 of final superheater of a 600 MW supercritical boiler are compared with field measurement data and calculation results by Adrian’s method. The calculated void positions of oxide scales are in good agreement with a cross-sectional SEM image of the oxide layers.

  20. Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection.

    Science.gov (United States)

    Yao, B C; Wu, Y; Yu, C B; He, J R; Rao, Y J; Gong, Y; Fu, F; Chen, Y F; Li, Y R

    2016-03-24

    Fluorescent resonance energy transfer (FRET) with naturally exceptional selectivity is a powerful technique and widely used in chemical and biomedical analysis. However, it is still challenging for conventional FRET to perform as a high sensitivity compact sensor. Here we propose a novel 'FRET on Fiber' concept, in which a partially reduced graphene oxide (prGO) film is deposited on a fiber-optic modal interferometer, acting as both the fluorescent quencher for the FRET and the sensitive cladding for optical phase measurement due to refractive index changes in biochemical detection. The target analytes induced fluorescence recovery with good selectivity and optical phase shift with high sensitivity are measured simultaneously. The functionalized prGO film coated on the fiber-optic interferometer shows high sensitivities for the detections of metal ion, dopamine and single-stranded DNA (ssDNA), with detection limits of 1.2 nM, 1.3 μM and 1 pM, respectively. Such a prGO based 'FRET on fiber' configuration, bridging the FRET and the fiber-optic sensing technology, may serve as a platform for the realization of series of integrated 'FRET on Fiber' sensors for on-line environmental, chemical, and biomedical detection, with excellent compactness, high sensitivity, good selectivity and fast response.

  1. The base catalysed hydrolysis of methyl paraben: a test reaction for flow microcalorimeters used for determination of both kinetic and thermodynamic parameters

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, M.A.A.; Beezer, A.E.; Labetoulle, C.; Nicolaides, L.; Mitchell, J.C.; Orchard, J.A.; Connor, J.A.; Kemp, R.B.; Olomolaiye, D

    2003-03-24

    The results of an inter/intra-laboratory study into a test and reference reaction for isothermal microcalorimeters, the imidazole catalysed hydrolysis of triacetin, have been reported in a recent paper [Thermochim. Acta 380 (2001) 13]. The results and conclusions drawn from this study have been extended to a consideration of the need for a similar test and reference reaction for isothermal microcalorimeters operating in flow mode. This paper reports the findings of a preliminary inter/intra-laboratory study of the base catalysed hydrolysis of methyl 4-hydroxy benzoate (methyl paraben) and its suitability as a test and reference reaction. The derived values for the hydrolysis reaction were (3.15{+-}0.11)x10{sup -4} s{sup -1} and -50.5{+-}4.3 kJ mol{sup -1} for the rate constant and enthalpy, respectively. It is also reported how such a test and reference reaction can be used to validate the thermal output from a LKB 10-700-1 and Thermometric Thermal Activity Monitor (TAM) 2277-202 flow microcalorimeters.

  2. "Nanocrystal bilayer for tandem catalysis"

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yusuke; Tsung, Chia Kuang; Huang, Wenyu; Huo, Ziyang; E.Habas, Susan E; Soejima, Tetsuro; Aliaga, Cesar E; Samorjai, Gabor A; Yang, Peidong

    2011-01-24

    Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO2-Pt and Pt-SiO2, can be used to catalyse two distinct sequential reactions. The CeO2-Pt interface catalysed methanol decomposition to produce CO and H2, which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO2 interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts

  3. The uptake and excretion of partially oxidized sulfur expands the repertoire of energy resources metabolized by hydrothermal vent symbioses.

    Science.gov (United States)

    Beinart, R A; Gartman, A; Sanders, J G; Luther, G W; Girguis, P R

    2015-05-07

    Symbiotic associations between animals and chemoautotrophic bacteria crowd around hydrothermal vents. In these associations, symbiotic bacteria use chemical reductants from venting fluid for the energy to support autotrophy, providing primary nutrition for the host. At vents along the Eastern Lau Spreading Center, the partially oxidized sulfur compounds (POSCs) thiosulfate and polysulfide have been detected in and around animal communities but away from venting fluid. The use of POSCs for autotrophy, as an alternative to the chemical substrates in venting fluid, could mitigate competition in these communities. To determine whether ESLC symbioses could use thiosulfate to support carbon fixation or produce POSCs during sulfide oxidation, we used high-pressure, flow-through incubations to assess the productivity of three symbiotic mollusc genera-the snails Alviniconcha spp. and Ifremeria nautilei, and the mussel Bathymodiolus brevior-when oxidizing sulfide and thiosulfate. Via the incorporation of isotopically labelled inorganic carbon, we found that the symbionts of all three genera supported autotrophy while oxidizing both sulfide and thiosulfate, though at different rates. Additionally, by concurrently measuring their effect on sulfur compounds in the aquaria with voltammetric microelectrodes, we showed that these symbioses excreted POSCs under highly sulfidic conditions, illustrating that these symbioses could represent a source for POSCs in their habitat. Furthermore, we revealed spatial disparity in the rates of carbon fixation among the animals in our incubations, which might have implications for the variability of productivity in situ. Together, these results re-shape our thinking about sulfur cycling and productivity by vent symbioses, demonstrating that thiosulfate may be an ecologically important energy source for vent symbioses and that they also likely impact the local geochemical regime through the excretion of POSCs.

  4. The influence of deformation, annealing and recrystallisation on oxide nanofeatures in oxide dispersion strengthened steel

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Karl, E-mail: k.dawson@liverpool.ac.uk; Tatlock, Gordon J.

    2017-04-01

    This work demonstrates that Y-Ti oxide nanofeatures, observed in as-extruded oxide dispersion strengthened steel, are structurally modified by cold forging. A 950 °C heat treatment promoted restructuring of the deformed particles and partial recrystallisation of the cold forged alloy. Transmission electron microscopy revealed that cuboid shaped nanofeatures were deformed during forging, which resulted in high number densities of lens shaped yttrium-titanium oxide particles. Annealing the forged alloy promoted partial recrystallisation of the ferritic matrix. Particle morphology reverted from lens shaped, as witnessed in the deformed material, to cuboid shaped oxide nanofeatures, identical to those observed in as-extruded material. Precipitation distributions evaluated in both recrystallised and recovering grains were indistinguishable from those first measured in the as-extruded alloy. TEM images revealed a widespread orientation relationship between the oxide precipitates and the recrystallised grains; registration with the ferrite lattice was omnipresent in both recovering and recrystallised grains.

  5. Determination of plutonium in nitric acid solutions - Method by oxidation by cerium(IV), reduction by iron(II) ammonium sulfate and amperometric back-titration with potassium dichromate

    International Nuclear Information System (INIS)

    1987-01-01

    This International Standard specifies a precise and accurate analytical method for determining plutonium in nitric acid solutions. Plutonium is oxidized to plutonium(VI) in a 1 mol/l nitric acid solution with cerium(IV). Addition of sulfamic acid prevents nitrite-induced side reactions. The excess of cerium(IV) is reduced by adding a sodium arsenite solution, catalysed by osmium tetroxide. A slight excess of arsenite is oxidized by adding a 0.2 mol/l potassium permanganate solution. The excess of permanganate is reduced by adding a 0.1 mol/l oxalic acid solution. Iron(III) is used to catalyse the reduction. A small excess of oxalic acid does not interfere in the subsequent plutonium determination. These reduction and oxidation stages can be followed amperometrically and the plutonium is left in the hexavalent state. The sulfuric acid followed by a measured amount of standardized iron(II) ammonium sulfate solution in excess of that required to reduce the plutonium(VI) to plutonium(IV) is added. The excess iron(II) and any plutonium(III) formed to produce iron(III) and plutonium(IV) is amperometrically back-titrated using a standard potassium dichromate solution. The method is almost specifically for plutonium. It is suitable for the direct determination of plutonium in materials ranging from pure product solutions, to fast reactor fuel solutions with a uranium/plutonium ratio of up to 10:1, either before or after irradiation

  6. CO{sub 2} separation by calcium looping from full and partial fuel oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Sivalingam, Senthoorselvan

    2013-06-05

    This thesis work deals with the research and development of calcium looping process for CO{sub 2} separation from full and partial fuel oxidation based power generation systems. CO{sub 2} is the main greenhouse gas and undoubtedly a major contributor to the global warming. It is estimated that more than one third of the total anthropogenic CO{sub 2} emissions come from fossil fuel based heat and power generation. Moreover, fossil fuels are unlikely to be phased out rapidly, since developing alternative energy sources not only take time but also require huge investments and infrastructure. An alternative way to reduce emissions in a medium term is to capture the CO{sub 2} from fossil fueled power plants and store it away from the atmosphere. This process system combining a bunch of technologies is called carbon capture and storage (CCS). CO{sub 2} capture is an important and costly part of CCS and an array of technologies is considered for this. Calcium looping (CaL) is one of such and seems to offer effective and efficient CO{sub 2} separation from fuel oxidation processes. CaL process involves separation of CO{sub 2} at high temperatures (600-700 C) by calcium sorbents (CaO). CO{sub 2} reacts with CaO in a carbonation process and produces CaCO{sub 3}. In a subsequent thermal regeneration (>850 C) called calcination, the CO{sub 2} is released from CaCO{sub 3}. By alternating carbonations and calcinations over multiple cycles, CO{sub 2} is separated from a gas stream. Moreover, the CaL is realised in industrial scale with dual fluidised bed reactors for CO{sub 2} capture (the carbonator) and sorbent regeneration (the calciner). As a process in the development, research is still required in many aspects from thermodynamic modeling to experimental studies. Research works have been carried out in process simulations, sorbent reactivity and optimisation studies in a controlled reactor environment and process parametric studies in a semi-pilot scale CaL test facility

  7. The Cytochrome bd Oxidase of Porphyromonas gingivalis Contributes to Oxidative Stress Resistance and Dioxygen Tolerance.

    Directory of Open Access Journals (Sweden)

    Julia Leclerc

    Full Text Available Porphyromonas gingivalis is an etiologic agent of periodontal disease in humans. The disease is associated with the formation of a mixed oral biofilm which is exposed to oxygen and environmental stress, such as oxidative stress. To investigate possible roles for cytochrome bd oxidase in the growth and persistence of this anaerobic bacterium inside the oral biofilm, mutant strains deficient in cytochrome bd oxidase activity were characterized. This study demonstrated that the cytochrome bd oxidase of Porphyromonas gingivalis, encoded by cydAB, was able to catalyse O2 consumption and was involved in peroxide and superoxide resistance, and dioxygen tolerance.

  8. The production of hydrogen through the uncatalyzed partial oxidation of methane in an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Ghazi A.; Wierzba, I. [Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary (Canada)

    2008-04-15

    The thermodynamic and kinetic limitations of the uncatalyzed partial oxidation of methane for the production of synthesis gas, which is made up of mostly hydrogen and carbon monoxide in a variety of proportions, are reviewed. It is suggested that such processes can be made to proceed successfully in a conventional internal combustion engine when operated on excessively rich mixtures of methane and oxygenated air. This is achieved while simultaneously producing power and regenerative exhaust gas heating. Experimental results are described that show a dual fuel engine of the compression ignition type with pilot liquid fuel injection can be operated on excessively rich mixtures of methane and air supplemented with oxygen gas to produce hydrogen rich gas with high methane conversion rates. Similarly, a spark ignition engine was reported to be equally capable of such production and performance. It is shown that there are viable prospects for the simultaneous production of synthesis gas in engines with efficient useful mechanical power and exhaust gas regenerative heating. (author)

  9. Oxides of nitrogen and the clouds of Venus

    International Nuclear Information System (INIS)

    Watson, A.J.; Donahue, T.M.; Stedman, D.H.; Knollenberg, R.G.; Ragent, B.; Blamont, J.

    1979-01-01

    Nitric Oxide may be produced in the atmosphere of Venus by lightning storms in the clouds. Here we suggest that the odd nitrogen thus formed may play an important part in the chemistry of the clouds. Specifically, we estimate production rates for NO 2 in the limiting case of high NO concentrations. If the NO density is high we suggest that NO 2 may catalyse the production of sulfuric acid aerosol from sulfur dioxide and water vapor, and may also form nitrogen--sulfur compounds such as nitrosyl sulfuric acid, NOHSO 4 . The ''large particles'' seen by the Pioneer Venus sounder probe may contain considerable quantities of NOHSO 4 . If this is the case odd nitrogen must be present in the atmosphere in at least a parts-per-million mixing ratio

  10. Increased penile expression of transforming growth factor and elevated systemic oxidative stress in rabbits with chronic partial bladder outlet obstruction.

    Science.gov (United States)

    Lin, W-Y; Chang, P-J; Lin, Y-P; Wu, S-B; Chen, C-S; Levin, R M; Wei, Y-H

    2012-02-01

    There is a growing body of evidence to support the direct link between obstructive bladder dysfunction and erectile dysfunction (ED). However, there have been few pathophysiological studies to determine the relationship between lower urinary tract syndrome (LUTS) and ED. As the transforming growth factor-β1 (TGF-β1) that induces the synthesis of collagen in the penile tissues is critical for the development of ED, the first aim of this study was to investigate the expression of TGF-β1 in the penis from male rabbits with chronic partial bladder outlet obstruction (PBOO). Besides, it has been suggested that oxidative stress plays a significant role in the pathophysiological mechanism of ED. Thus, the second aim of this study was to further investigate whether the urinary or serum oxidative stress markers are involved in chronic PBOO-induced penile dysfunction. A total of 16 male New Zealand White rabbits were separated equally into four groups: a control group and PBOO groups obstructed for 2, 4 and 8 weeks respectively. Using the RT-PCR and Western blot analysis, a progressive increase of TGF-β1 in penis was found at 2, 4 and 8 weeks after obstruction. Moreover, the biomarkers for oxidative stress or oxidative damage were significantly detected in the penis of rabbits after PBOO, which include the enhancement of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in urine and plasma, plasma malondialdehyde (MDA) and total antioxidant capacity (TAC), as well as reduction of glutathione (GSH). On the basis of our results, the increase of TGF-β1 and elevated systemic oxidative stress may play key roles to contribute to penile dysfunction after chronic PBOO. © 2011 The Authors. International Journal of Andrology © 2011 European Academy of Andrology.

  11. The silver catalyst process for converting methanol to formaldehyde - kinetic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Panzer, E.; Emig, G. [Erlangen-Nuernberg Univ., Erlangen (Germany). Lehrstuhl fuer Technische Chemie 1

    1998-12-31

    In pre-experiments a tubular reactor was checked whether it is suitable for kinetic measurement on the system of the silver-catalysed partial oxidation of methanol to formaldehyde. Detrimental effects of heat-transfer and mass-transfer on the experimental results were ruled out. Investigations on the characteristics of the reaction showed that it is possible to manipulate the composition of the product mixture by changing the inlet concentration of the reactants. A modified power-law model was established to describe the reaction kinetics. It considers the preadsorption step of oxygen on the catalysts surface and fits the experimental data quite well. During the rapid oxidation the catalysts surface undergoes a drastic change. It gets coarse and has an adsorption capacity of 11 m{sup 2}/g after being exposed to the reaction mixture. (orig.)

  12. Partial oxidation of jet fuels over Rh/Al_2O_3. Design and reaction kinetics of sulfur-containing surrogates

    International Nuclear Information System (INIS)

    Baer, Julian Nicolaas

    2016-01-01

    The conversion of logistic fuels via catalytic partial oxidation (CPOX) on Rh/Al_2O_3 at short contact times is an efficient method for generating hydrogen-rich synthesis gas. Depending on the inlet conditions, fuel, and catalyst, high syngas yields, low by-product formation, and rates of high fuel conversion can be achieved. CPOX is relevant for mobile hydrogen generation, e.g., on board of airplanes in order to increase the fuel efficiency via fuel cell-based auxiliary power units. Jet fuels contain hundreds of different hydrocarbons and a significant amount of sulfur. The hydrocarbon composition and sulfur content of a jet fuel vary depending on distributor, origin, and refinement of the crude oil. Little is known about the influence of the various compounds on the synthesis-gas yield and the impact of sulfur on the product yield. In this work, the influence of three main chemical compounds of a jet fuel (aromatics, alkanes, and sulfur compounds) on syngas selectivity, the catalyst deactivation process, and reaction sequence is unraveled. As representative components of alkanes and aromatics, n-dodecane and 1,2,4-trimethylbenzene were chosen for ex-situ and in-situ investigations on the CPOX over Rh/Al_2O_3, respectively. Additionally, for a fixed paraffin-to-aromatics ratio, benzothiophene or dibenzothiophene were added as a sulfur component in three different concentrations. The knowledge gained about the catalytic partial oxidation of jet fuels and their surrogates is used to identify requirements for jet fuels in mobile applications based on CPOX and to optimize the overall system efficiency. The results show an influence of the surrogate composition on syngas selectivity. The tendency for syngas formation increases with higher paraffin contents. A growing tendency for by-product formation can be observed with increasing aromatics contents in the fuel. The impact of sulfur on the reaction system shows an immediate change in the product distribution. An

  13. Acid-catalysed xylose dehydration into furfural in the presence of kraft lignin.

    Science.gov (United States)

    Lamminpää, Kaisa; Ahola, Juha; Tanskanen, Juha

    2015-02-01

    In this study, the effects of kraft lignin (Indulin AT) on acid-catalysed xylose dehydration into furfural were studied in formic and sulphuric acids. The study was done using D-optimal design. Three variables in both acids were included in the design: time (20-80 min), temperature (160-180°C) and initial lignin concentration (0-20 g/l). The dependent variables were xylose conversion, furfural yield, furfural selectivity and pH change. The results showed that the xylose conversion and furfural yield decreased in sulphuric acid, while in formic acid the changes were minor. Additionally, it was showed that lignin has an acid-neutralising capacity, and the added lignin increased the pH of reactant solutions in both acids. The pH rise was considerably lower in formic acid than in sulphuric acid. However, the higher pH did not explain all the changes in conversion and yield, and thus lignin evidently inhibits the formation of furfural. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Formation of imines by selective gold-catalysed aerobic oxidative coupling of alcohols and amines under ambient conditions

    DEFF Research Database (Denmark)

    Kegnæs, Søren; Mielby, Jerrik Jørgen; Mentzel, Uffe Vie

    2010-01-01

    with excellent selectivity (above 98%) at moderate conversion under optimized conditions. The effect of catalytic amounts of different bases was studied, along with reaction temperature and time. Utilisation of a selective catalyst system that uses dioxygen as an oxidant and only produces water as by...

  15. Rare earth oxide-doped titania nanocomposites with enhanced photocatalytic activity towards the degradation of partially hydrolysis polyacrylamide

    International Nuclear Information System (INIS)

    Li Jinhuan; Yang Xia; Yu Xiaodan; Xu, Leilei; Kang Wanli; Yan Wenhua; Gao Hongfeng; Liu Zhonghe; Guo Yihang

    2009-01-01

    Rare-earth oxide-doped titania nanocomposites (RE 3+ /TiO 2 , where RE = Eu 3+ , Pr 3+ , Gd 3+ , Nd 3+ , and Y 3+ ) were prepared by a one-step sol-gel-solvothermal method. The products exhibited anatase phase structure, mesoporosity, and interesting surface compositions with three oxygen species and two titanium species. The products were used as the photocatalysts to degrade a partially hydrolysis polyacrylamide (HPAM) under UV-light irradiation, a very useful polymer in oil recovery. For comparison, Degussa P25 and as-prepared pure TiO 2 were also tested under the same conditions. The enhanced photocatalytic activity was obtained on as-prepared Eu 3+ (Gd 3+ , Pr 3+ )/TiO 2 composites, and the reasons were explained. Finally, the degradation pathway of HPAM over the RE 3+ /TiO 2 composite was put forward based on the intermediates produced during the photocatalysis procedure.

  16. Experimental and numerical investigation of the catalytic partial oxidation of methane to synthesis gas for power generation applications[Dissertation 17183

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, A.

    2007-07-01

    The present work addresses the catalytic partial oxidation (CPO) of methane to synthesis gas, with particular emphasis on power generation applications. A combined experimental and numerical investigation of methane partial oxidation to synthesis gas (H{sub 2}, CO) over rhodium-based catalysts has been carried out at pressures of up to 10 bar. The reactivity of the produced hydrogen and the suitably-low light-off temperatures of the CPO reactor, greatly facilitate operation of power generation gas turbines with reduced NO{sub x} emissions, stable operation with low calorific value fuels, and new combustion strategies for efficient CO{sub 2} capture. Those strategies utilize CPO of methane with oxygen (separated from air) and large exhaust gas recycle (H{sub 2}O and CO{sub 2}). An optically accessible catalytic channel-flow reactor was used to carry out Raman spectroscopy of major gas-phase species and laser induced fluorescence (LIF) of formaldehyde, in order to gain fundamental information on the catalytic and gas-phase chemical pathways. Transverse concentration profiles measured by the spontaneous Raman scattering technique determined the catalytic reactivity, while the LIF provided flame shapes and anchoring positions that, in turn, characterized the gaseous reactivity. Comparison between measurements and 2-D CFD computations, led to the validation of detailed catalytic and gas-phase reaction mechanisms. Experiments in a subscale gas-turbine honeycomb catalytic reactor have shown that the foregoing reaction mechanisms were also appropriate under gas-turbine relevant conditions with short reactant residence times. The light-off behavior of the subscale honeycomb reactor was reproduced by transient 2-D CFD computations. Ignition and extinction in CPO was studied. It was shown that, despite the chemical impact of the H{sub 2}O diluent during the transient catalytic ignition event, the light-off times themselves were largely unaffected by the exhaust gas dilution

  17. Hydrogen Oxidation Reaction at the Ni/YSZ Anode of Solid Oxide Fuel Cells from First Principles

    Science.gov (United States)

    Cucinotta, Clotilde S.; Bernasconi, Marco; Parrinello, Michele

    2011-11-01

    By means of ab initio simulations we here provide a comprehensive scenario for hydrogen oxidation reactions at the Ni/zirconia anode of solid oxide fuel cells. The simulations have also revealed that in the presence of water chemisorbed at the oxide surface, the active region for H oxidation actually extends beyond the metal/zirconia interface unraveling the role of water partial pressure in the decrease of the polarization resistance observed experimentally.

  18. Calculated ionisation potentials determine the oxidation of vanillin precursors by lignin peroxidase.

    Science.gov (United States)

    ten Have, R; Rietjens, I M; Hartmans, S; Swarts, H J; Field, J A

    1998-07-03

    In view of the biocatalytic production of vanillin, this research focused on the lignin peroxidase (LiP) catalysed oxidation of naturally occurring phenolic derivatives: O-methyl ethers, O-acetyl esters, and O-glucosyl ethers. The ionisation potential (IP) of a series of model compounds was calculated and compared to their experimental conversion by LiP, defining a relative IP threshold of approximately 9.0 eV. Based on this threshold value only the O-acetyl esters and glucosides of isoeugenol and coniferyl alcohol would be potential LiP substrates. Both O-acetyl esters were tested and were shown to be converted to O-acetyl vanillin in molar yields of 51.8 and 2.3%, respectively.

  19. A potential role of substrate as a base for deprotonation pathway in Rh-catalysed C-H amination of heteroArenes: DFT insights

    KAUST Repository

    Ajitha, Manjaly John

    2016-03-29

    The possibility of direct introduction of a new functionality through C–H bond activation is an attractive strategy in covalent synthesis. Here, we investigated the mechanism of Rh-catalysed C-H amination of the hetero-aryl substrate (2-phenylpyridine) using phenyl azide as nitrogen source by density functional theory (DFT). For the deprotocyclometallation and protodecyclometallation processes of the title reaction, we propose a stepwise base-assisted mechanism (pathway I) instead of previously reported concerted mechanism (pathway II). In the new mechanism proposed here, 2-phenylpyridine acts as a base in the initial deprotonation step (C-H bond cleavage) and transports the proton towards the final protonation step. In fact, the N-H bond of the strong conjugate acid (formed during initial C-H bond cleavage) considered in pathway I (via TS4) is more acidic than the C-H bond of the neutral substrate considered in pathway II (via TS5). The higher activation barrier of TS5 mainly originates from the ring strain of the four membered cyclic transition state. The vital role of base, as disclosed here, can potentially have broader mechanistic implications for the development of reaction conditions of transition metal catalysed reactions.

  20. Partial Reduction of Esters to Aldehydes Using a Novel Modified Red-Al Reducing Agent

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Won Kyu; Kang, Daehoon; An, Duk Keun [Kangwon National Univ., Chunchon (Korea, Republic of)

    2014-07-15

    We have developed a convenient alternative method for the synthesis of aldehydes from both aromatic and aliphatic esters in very good to excellent yields in the absence of any additives using a modified Red-Al that was easily prepared by reacting commercially available Red-Al with cis-2,6-dimethyl morpholine. The advantages of the present methodology are as follows: simple preparation procedure of the reducing agent, improved product yields, convenient reaction temperature, and short reaction times. Therefore, the new reagent has great potential to be a useful alternative partial reducing agent for the synthesis of aldehydes from esters in organic synthesis. Aldehydes are valuable building blocks and reactive intermediates in organic synthesis. The general and classical syntheses of aldehydes from esters involve reduction-oxidation and partial reduction using efficient partial reducing agents. Obviously, one-step partial reduction methods are more useful than two-step reduction-oxidation methods owing to their simplicity, and generality in organic synthesis.

  1. Are zirconia corrosion films a form of partially stabilised zirconia (PSZ)?

    International Nuclear Information System (INIS)

    Cox, B.

    1987-03-01

    The problem of understanding the development of porosity in a zirconium oxide film still under biaxial compression is discussed. The oxide film is compared with partially stabilised zirconia (PSZ) where stress induced transformation of tetragonal zirconia has been observed to lead to microcracking of the structure. The similarities between PSZ and the thermal oxide films formed on zirconium alloys are enumerated, and an hypothesis is proposed that can both explain the penetration of pores or microcracks in oxides on Zircaloy-2 to a point very close to the oxide/metal interface, and explain the observation that such a phenomenon does not occur in oxide films on Zr-2.5%Nb. This hypothesis could be tested by laser Raman spectroscopy on oxide films during growth at elevated temperatures. 87 refs

  2. Challenge of non-precious metal oxide-based cathode for polymer electrolyte fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, Akimitsu; Matsuzawa, Koichi; Mitsushima, Shigenori; Ota, Ken-ichiro [Yokohama National Univ. (Japan)

    2010-07-01

    The partially oxidized TaC{sub 0.58}N{sub 0.42} was investigated as non-platinum cathode for PEFC. In order to quantify the degree of oxidation, the degree of oxidation (DOO) was defined using the XRD peaks of Ta-CN and Ta{sub 2}O{sub 5}. The onset potential for the oxidation reduction reaction (ORR) had high value, that is, 0.9 V vs. RHE (reversible hydrogen electrode), at higher oxidation state of the TaC{sub 0.58}N{sub 0.42}. We found that the partial oxidation of TaC{sub 0.58}N{sub 0.42} was greatly useful to enhance the catalytic activity for the ORR. The volcano plot of the ionization potential vs. the E{sub ORR} suggested that there was a suitable interaction between the surface of the partially oxidized TaC{sub 0.58}N{sub 0.42} and oxygen. (orig.)

  3. Study of propane partial oxidation on vanadium-containing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Komashko, G.A.; Khalamejda, S.V.; Zazhigalov, V.A. [AN Ukrainskoj SSR, Kiev (Ukraine). Inst. Fizicheskoj Khimii

    1998-12-31

    The present results indicate that maximum selectivity to acrylic acid can be reached over V-P-Zr-O catalysts. When the hydrocarbon concentration is 5.1 vol.% the selectivity is about 30% at quite high paraffin conversion. Conclusively, some explanations to the observed facts can be given. The V-P-O catalyst promotion with lanthanum by means of mechanochemical treatment is distinguished by the additive uniform spreading all over the matrix surface. Such twophase system is highly active in propane conversion (lanthanum oxide) and further oxidation of the desired products. The similar properties are attributed to V-P-Bi-La-O catalyst. Bismuth, tellurium and zirconium additives having clearly defined acidic properties provoke the surface acidity strengthening and make easier desorption of the acidic product (acrylic acid) from the surface lowering its further oxidation. Additionally, since bismuth and zirconium are able to form phosphates and, according to, to create space limitations for the paraffin molecule movement out of the active group boundaries, this can be one more support in favour of the selectivity increase. With this point of view very interesting results were obtained. It has been shown that the more limited the size of the vanadium unit, the higher the selectivity is. Monoclinic phase AV{sub 2}P{sub 2}O{sub 10} which consists in clusters of four vanadium atoms is sensibly more reactive than the orthorhombic phase consists in V{sub {infinity}} infinite chains. (orig.)

  4. Ni/SiO2 Catalyst Prepared with Nickel Nitrate Precursor for Combination of CO2 Reforming and Partial Oxidation of Methane: Characterization and Deactivation Mechanism Investigation

    Directory of Open Access Journals (Sweden)

    Sufang He

    2015-01-01

    Full Text Available The performance of Ni/SiO2 catalyst in the process of combination of CO2 reforming and partial oxidation of methane to produce syngas was studied. The Ni/SiO2 catalysts were prepared by using incipient wetness impregnation method with nickel nitrate as a precursor and characterized by FT-IR, TG-DTA, UV-Raman, XRD, TEM, and H2-TPR. The metal nickel particles with the average size of 37.5 nm were highly dispersed over the catalyst, while the interaction between nickel particles and SiO2 support is relatively weak. The weak NiO-SiO2 interaction disappeared after repeating oxidation-reduction-oxidation in the fluidized bed reactor at 700°C, which resulted in the sintering of metal nickel particles. As a result, a rapid deactivation of the Ni/SiO2 catalysts was observed in 2.5 h reaction on stream.

  5. Review Of Plutonium Oxidation Literature

    International Nuclear Information System (INIS)

    Korinko, P.

    2009-01-01

    A brief review of plutonium oxidation literature was conducted. The purpose of the review was to ascertain the effect of oxidation conditions on oxide morphology to support the design and operation of the PDCF direct metal oxidation (DMO) furnace. The interest in the review was due to a new furnace design that resulted in oxide characteristics that are different than those of the original furnace. Very little of the published literature is directly relevant to the DMO furnace operation, which makes assimilation of the literature data with operating conditions and data a convoluted task. The oxidation behavior can be distilled into three regimes, a low temperature regime (RT to 350 C) with a relatively slow oxidation rate that is influenced by moisture, a moderate temperature regime (350-450 C) that is temperature dependent and relies on more or less conventional oxidation growth of a partially protective oxide scale, and high temperature oxidation (> 500 C) where the metal autocatalytically combusts and oxidizes. The particle sizes obtained from these three regimes vary with the finest being from the lowest temperature. It is surmised that the slow growth rate permits significant stress levels to be achieved that help break up the oxides. The intermediate temperatures result in a fairly compact scale that is partially protective and that grows to critical thickness prior to fracturing. The growth rate in this regime may be parabolic or paralinear, depending on the oxidation time and consequently the oxide thickness. The high temperature oxidation is invariant in quiescent or nearly quiescent conditions due to gas blanketing while it accelerates with temperature under flowing conditions. The oxide morphology will generally consist of fine particles ( 250 (micro)m). The particle size ratio is expected to be < 5%, 25%, and 70% for fine, medium and large particles, respectively, for metal temperatures in the 500-600 C range.

  6. Catalytic Activity Studies of Vanadia/Silica–Titania Catalysts in SVOC Partial Oxidation to Formaldehyde: Focus on the Catalyst Composition

    Directory of Open Access Journals (Sweden)

    Niina Koivikko

    2018-02-01

    Full Text Available In this work, silica–titania supported catalysts were prepared by a sol–gel method with various compositions. Vanadia was impregnated on SiO2-TiO2 with different loadings, and materials were investigated in the partial oxidation of methanol and methyl mercaptan to formaldehyde. The materials were characterized by using N2 physisorption, X-ray diffraction (XRD, X-ray fluorescence spectroscopy (XRF, X-ray photoelectron spectroscopy (XPS, Scanning transmission electron microscope (STEM, NH3-TPD, and Raman techniques. The activity results show the high importance of an optimized SiO2-TiO2 ratio to reach a high reactant conversion and formaldehyde yield. The characteristics of mixed oxides ensure a better dispersion of the active phase on the support and in this way increase the activity of the catalysts. The addition of vanadium pentoxide on the support lowered the optimal temperature of the reaction significantly. Increasing the vanadia loading from 1.5% to 2.5% did not result in higher formaldehyde concentration. Over the 1.5%V2O5/SiO2 + 30%TiO2 catalyst, the optimal selectivity was reached at 415 °C when the maximum formaldehyde concentration was ~1000 ppm.

  7. Neutral complexes as oxidants for the reduced form of parsley (Petroselinum crispum) [2Fe--2S] ferredoxin. Evidence for partial blocking by redox-inactive Cr(III) complexes.

    Science.gov (United States)

    Adzamli, I K; Kim, H O; Sykes, A G

    1982-01-01

    The 1 : 1 reactions of three neutral Co(III) oxidants, Co(acac)3, Co(NH3)3(NO2)3 and Co(acac)2(NH3)(NO2), with reduced parsley (Petroselinum crispum) [2Fe--2S] ferredoxin (which carries a substantial negative charge), have been studied at 25 degrees C, pH 8.0 (Tris/HCl), I0.10 (NaCl). Whereas it has previously been demonstrated that with Co(NH3)6+ as oxidant the reaction if completely blocked by redox-inactive Cr(NH3)63+, the neutral oxidants are only partially blocked by this same complex. The effects of three Cr(III) complexes, Cr(NH3)63+%, Cr(en)33+ and (en)2Cr . mu(OH,O2CCH3) . CR(en)24+ have been investigated. Kinetic data for the response of 3+, neutral, as well as 1--oxidants to the presence of 3+ (and 4+) Cr(III) complexes can now be rationalized in terms of a single functional site on the protein for electron transfer. Electrostatics have a significant influence on association at this site. PMID:7115307

  8. Precise control of Si(001) initial oxidation by translational kinetic energy of O2 molecules

    International Nuclear Information System (INIS)

    Teraoka, Yuden; Yoshigoe, Akitaka

    2002-01-01

    The influence of translation kinetic energy of incident O 2 molecules on the passive oxidation of the clean Si(001) surface and the partially oxidized-Si(001) surface has been studied by high-resolution photoemission spectroscopy using synchrotron radiation. The incident energy of O 2 molecules was controlled up to 3 eV by a supersonic seeded molecular beam technique. Although two incident energy thresholds (1.0 eV and 2.6 eV) have been determined for the partially oxidized-surface oxidation in accordance with the first-principle calculation, the monotonic increase of oxygen saturation coverage was observed for the clean surface oxidation. The difference is caused by the initial dangling bond termination (Si-H and Si-OH) on the partially oxidized surface. Si-2p and O-1s photoemission spectra measured at representative incident energies showed the incident-energy-induced oxidation at the back bonds of Si dimers and the second-layer (subsurface) Si atoms. Moreover, the low-and high-binding-energy components in the O-1s photoemission spectra were assigned to bridge site oxygen and dangling bond site oxygen for the partially oxidized-surface oxidation. (author)

  9. Acidic resin-catalysed conversion of fructose into furan derivatives in low boiling point solvents.

    Science.gov (United States)

    Zhu, Hong; Cao, Quan; Li, Chunhu; Mu, Xindong

    2011-09-27

    Conversion of fructose into furan derivatives 5-hydroxymethylfurfural (HMF) and 5-methoxymethylfurfural (MMF) is performed in tetrahydrofuran (THF) and methanol-organic solvent systems, catalysed by an acidic resin Amberlyst-15. The melted fructose can be converted into HMF on the surface of the solid resin catalyst in the presence of THF as an extracting phase, which is a good solvent for HMF and other by-products. The solid resin catalyst can be reused eleven times without losing its catalytic ability, with an average HMF yield of approximately 50%. Upon the addition of methanol, the generated HMF can further react with methanol to form MMF, and the total yield of HMF and MMF could be promoted to 65%. GC-MS analysis confirms the formation of a small amount of methyl levulinate in methanolorganic solvent system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Synthesis and binding studies of 2-arylapomorphines

    DEFF Research Database (Denmark)

    Søndergaard, Kåre; Kristensen, Jesper Langgaard; Palner, Mikael

    2005-01-01

    From codeine, four different 2-aryl substituted apomorphines were synthesised in 6 steps each. Oxidation of codeine with IBX followed by acid catalysed rearrangement gave morphothebaine, which was selectively triflylated at the 2-position and subsequently O-acetylated at the 11-position. The resu......From codeine, four different 2-aryl substituted apomorphines were synthesised in 6 steps each. Oxidation of codeine with IBX followed by acid catalysed rearrangement gave morphothebaine, which was selectively triflylated at the 2-position and subsequently O-acetylated at the 11-position...

  11. Glycolysis of carbon fiber-epoxy unidirectional mat catalysed by sodium hydroxide

    Science.gov (United States)

    Zaini, Mariana Binti Mohd; Badri, Khairiah Haji

    2014-09-01

    This study was conducted to recycle carbon fibre-epoxy (CFRP) composite in woven sheet/ mat form. The CFRP was recycled through glycolysis with polyethlyene glycol (PEG 200) as the solvent. The CFRP was loaded into the solvent at a ratio of 4:1 (w/w). PEG200 was diluted with water to a ratio of 80:20 (v/v). This reaction was catalysed by sodium hydroxide (NaOH) solution with varying concentrations at 1.5, 1.7 and 1.9% (w/v). The glycolysis was conducted at 180-190 °C. The recovered CF (rCF) was analysed using Fourier Transform Infrared (FTIR), Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray (EDX) while the degraded solution was analysed using FTIR and the epoxy content was determined. The FTIR spectrum of the rCF exhibited the disappearance of the COC peak belonged to epoxy and supported by the SEM micrographs that showed clear rCF. On the other hand, the analysed filtrate detected the disappearance of oxygen peak element in the EDX spectrum for all rCF samples. This gave an indication that the epoxy resin has been removed from the surface of the carbon fiber.

  12. Characterisation of hydrocarbonaceous overlayers important in metal-catalysed selective hydrogenation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Lennon, David; Warringham, Robbie [School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Guidi, Tatiana [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Parker, Stewart F., E-mail: stewart.parker@stfc.ac.uk [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom)

    2013-12-12

    Highlights: • Inelastic neutron scattering spectroscopy of a commercial dehydrogenation catalyst. • The overlayer present on the catalyst is predominantly aliphatic. • A population of strongly hydrogen bonded hydroxyls is also present. - Abstract: The hydrogenation of alkynes to alkenes over supported metal catalysts is an important industrial process and it has been shown that hydrocarbonaceous overlayers are important in controlling selectivity profiles of metal-catalysed hydrogenation reactions. As a model system, we have selected propyne hydrogenation over a commercial Pd(5%)/Al{sub 2}O{sub 3} catalyst. Inelastic neutron scattering studies show that the C–H stretching mode ranges from 2850 to 3063 cm{sup −1}, indicating the mostly aliphatic nature of the overlayer and this is supported by the quantification of the carbon and hydrogen on the surface. There is also a population of strongly hydrogen-bonded hydroxyls, their presence would indicate that the overlayer probably contains some oxygen functionality. There is little evidence for any olefinic or aromatic species. This is distinctly different from the hydrogen-poor overlayers that are deposited on Ni/Al{sub 2}O{sub 3} catalysts during methane reforming.

  13. Glycolysis of carbon fiber-epoxy unidirectional mat catalysed by sodium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Zaini, Mariana Binti Mohd [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Badri, Khairiah Haji [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia and Polymer Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43 (Malaysia)

    2014-09-03

    This study was conducted to recycle carbon fibre-epoxy (CFRP) composite in woven sheet/ mat form. The CFRP was recycled through glycolysis with polyethlyene glycol (PEG 200) as the solvent. The CFRP was loaded into the solvent at a ratio of 4:1 (w/w). PEG200 was diluted with water to a ratio of 80:20 (v/v). This reaction was catalysed by sodium hydroxide (NaOH) solution with varying concentrations at 1.5, 1.7 and 1.9% (w/v). The glycolysis was conducted at 180-190 °C. The recovered CF (rCF) was analysed using Fourier Transform Infrared (FTIR), Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray (EDX) while the degraded solution was analysed using FTIR and the epoxy content was determined. The FTIR spectrum of the rCF exhibited the disappearance of the COC peak belonged to epoxy and supported by the SEM micrographs that showed clear rCF. On the other hand, the analysed filtrate detected the disappearance of oxygen peak element in the EDX spectrum for all rCF samples. This gave an indication that the epoxy resin has been removed from the surface of the carbon fiber.

  14. Ameliorative role of gemfibrozil against partial abdominal aortic constriction-induced cardiac hypertrophy in rats.

    Science.gov (United States)

    Singh, Amrit Pal; Singh, Randhir; Krishan, Pawan

    2015-04-01

    Fibrates are peroxisome proliferator-activated receptor-α agonists and are clinically used for treatment of dyslipidemia and hypertriglyceridemia. Fenofibrate is reported as a cardioprotective agent in various models of cardiac dysfunction; however, limited literature is available regarding the role of gemfibrozil as a possible cardioprotective agent, especially in a non-obese model of cardiac remodelling. The present study investigated the role of gemfibrozil against partial abdominal aortic constriction-induced cardiac hypertrophy in rats. Cardiac hypertrophy was induced by partial abdominal aortic constriction in rats and they survived for 4 weeks. The cardiac hypertrophy was assessed by measuring left ventricular weight to body weight ratio, left ventricular wall thickness, and protein and collagen content. The oxidative stress in the cardiac tissues was assessed by measuring thiobarbituric acid-reactive substances, superoxide anion generation, and reduced glutathione level. The haematoxylin-eosin and picrosirius red staining was used to observe cardiomyocyte diameter and collagen deposition, respectively. Moreover, serum levels of cholesterol, high-density lipoproteins, triglycerides, and glucose were also measured. Gemfibrozil (30 mg/kg, p.o.) was administered since the first day of partial abdominal aortic constriction and continued for 4 weeks. The partial abdominal aortic constriction-induced cardiac oxidative stress and hypertrophy are indicated by significant change in various parameters used in the present study that were ameliorated with gemfibrozil treatment in rats. No significant change in serum parameters was observed between various groups used in the present study. It is concluded that gemfibrozil ameliorates partial abdominal aortic constriction-induced cardiac oxidative stress and hypertrophy and in rats.

  15. Highly Active, Carbon-supported, PdSn Nano-core, Partially ...

    African Journals Online (AJOL)

    Carbon-supported, Pt partially covered, PdSn alloy nanoparticles (Pt-PdSn/C) were synthesized via a metathetical reaction of PdSn alloy nanoparticles, and a platinum precursor. The electrochemical activity was evaluated by methanol oxidation. The Pt-PdSn/C catalysts were characterized by transmission electron ...

  16. Méthodes générales de synthèse des catalyseurs à base d'oxydes General Synthesis Methods for Mixed Oxide Catalysts

    Directory of Open Access Journals (Sweden)

    Courty Ph.

    2006-11-01

    Full Text Available De nombreux procédés industriels (industrie céramique, électronique, nucléaire catalyse hétérogène utilisent des matériaux constitués d'oxydes mixtes. Les études fondamentales réalisées en catalyse et leurs applications industrielles montrent qu'au-delà des diverses interprétations fines de l'activité catalytique des oxydes mixtes, une notion plus générale se dégage, celle de l'homogénéité de la phase active, donc du premier intermédiaire de fabrication du catalyseur (le précurseur. Les différentes méthodes de synthèse des oxydes mixtes, puis des catalyseurs, sont alors exposées. Pour chacune d'entre elles, il est montré comment l'obtention d'un précurseur homogène peut être favorisée et maintenue. Un exemple illustre le cas de l'oxyde mixte déposé sur support. Finalement, l'étape de mise en forme de l'oxyde mixte est évoquée, l'aspect économique de la fabrication du catalyseur conclut ce texte. A great mony industrial processes (ceramics, electronics, nuclear energy, hererogeneous catalysis use materials made up of mixed oxides. Fundamental research on catalysis and its industrial applications has shown that, over and beyond the various subtle interpretations of the catalytic activity of mixed oxides, a more general concept emerges, i. e. that of the homogeneity of the active phase, hence of the first catalyst-manufacturing intermediate (the precursor. Different synthesis methods for mixed oxides, and then for cotalysts, are described. The demonstration is made for each of them how the production of a homogeneous precursor con be enhanced and maintained. An example illustrotes the case of a mixed oxide deposited on a carrier. To conclude, the shaping of the mixed oxide is described, followed by the economic aspect of catalyst manufacturing.

  17. The change of steel surface chemistry regarding oxygen partial pressure and dew point

    Science.gov (United States)

    Norden, Martin; Blumenau, Marc; Wuttke, Thiemo; Peters, Klaus-Josef

    2013-04-01

    By investigating the surface state of a Ti-IF, TiNb-IF and a MnCr-DP after several series of intercritical annealing, the impact of the annealing gas composition on the selective oxidation process is discussed. On behalf of the presented results, it can be concluded that not the general oxygen partial pressure in the annealing furnace, which is a result of the equilibrium reaction of water and hydrogen, is the main driving force for the selective oxidation process. It is shown that the amounts of adsorbed gases at the strip surface and the effective oxygen partial pressure resulting from the adsorbed gases, which is mainly dependent on the water content of the annealing furnace, is driving the selective oxidation processes occurring during intercritical annealing. Thus it is concluded, that for industrial applications the dew point must be the key parameter value for process control.

  18. Obtainment of zirconium oxide and partially stabilized zirconium oxide with yttrium and rare earth oxides, from Brazilian zirconite, for ceramic aim

    International Nuclear Information System (INIS)

    Ribeiro, S.

    1991-05-01

    This work presents experimental results for processing of brazilian zirconite in order to obtain zirconium oxide with Yttrium and Rare Earth oxide by mutual coprecipitation for ceramics purposes. Due to analysis of experimental results was possible to obtain the optimum conditions for each one of technological route stage, such as: alkaline fusion; acid leaching; sulfactation and coprecipitation. (author)

  19. Systems biology and the origins of life? part II. Are biochemical networks possible ancestors of living systems? networks of catalysed chemical reactions: non-equilibrium, self-organization and evolution.

    Science.gov (United States)

    Ricard, Jacques

    2010-01-01

    The present article discusses the possibility that catalysed chemical networks can evolve. Even simple enzyme-catalysed chemical reactions can display this property. The example studied is that of a two-substrate proteinoid, or enzyme, reaction displaying random binding of its substrates A and B. The fundamental property of such a system is to display either emergence or integration depending on the respective values of the probabilities that the enzyme has bound one of its substrate regardless it has bound the other substrate, or, specifically, after it has bound the other substrate. There is emergence of information if p(A)>p(AB) and p(B)>p(BA). Conversely, if p(A)equilibrium. Moreover, in such systems, emergence results in an increase of the energy level of the ternary EAB complex that becomes closer to the transition state of the reaction, thus leading to the enhancement of catalysis. Hence a drift from quasi-equilibrium is, to a large extent, responsible for the production of information and enhancement of catalysis. Non-equilibrium of these simple systems must be an important aspect that leads to both self-organization and evolutionary processes. These conclusions can be extended to networks of catalysed chemical reactions. Such networks are, in fact, networks of networks, viz. meta-networks. In this formal representation, nodes are chemical reactions catalysed by poorly specific proteinoids, and links can be identified to the transport of metabolites from proteinoid to proteinoid. The concepts of integration and emergence can be applied to such situations and can be used to define the identity of these networks and therefore their evolution. Defined as open non-equilibrium structures, such biochemical networks possess two remarkable properties: (1) the probability of occurrence of their nodes is dependant upon the input and output of matter in, and from, the system and (2) the probability of occurrence of the nodes is strictly linked to their degree of

  20. Ruthenium(II)-catalysed remote C-H alkylations as a versatile platform to meta-decorated arenes

    Science.gov (United States)

    Li, Jie; Korvorapun, Korkit; de Sarkar, Suman; Rogge, Torben; Burns, David J.; Warratz, Svenja; Ackermann, Lutz

    2017-06-01

    The full control of positional selectivity is of prime importance in C-H activation technology. Chelation assistance served as the stimulus for the development of a plethora of ortho-selective arene functionalizations. In sharp contrast, meta-selective C-H functionalizations continue to be scarce, with all ruthenium-catalysed transformations currently requiring difficult to remove or modify nitrogen-containing heterocycles. Herein, we describe a unifying concept to access a wealth of meta-decorated arenes by a unique arene ligand effect in proximity-induced ruthenium(II) C-H activation catalysis. The transformative nature of our strategy is mirrored by providing a step-economical entry to a range of meta-substituted arenes, including ketones, acids, amines and phenols--key structural motifs in crop protection, material sciences, medicinal chemistry and pharmaceutical industries.

  1. Direct Partial Oxidation of Natural Gas to Liquid Chemicals

    DEFF Research Database (Denmark)

    Rasmussen, Christian Lund

    2007-01-01

    Direkte delvis oxidation af naturgas til flydende kemikalier er en attraktiv industriel proces, hvor naturgas omdannes til stoffer; primært methanol (CH3OH) som let kan transporteres over store afstande. Omdannelsen sker i en simpel et-trinsproces under højt tryk, lave forbrændingstemperaturer, s...

  2. Synthesis of Nitrogen-Doped Mesoporous Carbon for the Catalytic Oxidation of Ethylbenzene

    Science.gov (United States)

    Wang, Ruicong; Yu, Yifeng; Zhang, Yue; Lv, Haijun; Chen, Aibing

    2017-06-01

    Nitrogen-doped ordered mesoporous carbon (NOMC) was fabricated via a simple hard-template method by functionalized ionic liquids as carbon and nitrogen source, SBA-15 as a hard-template. The obtained NOMC materials have a high nitrogen content of 5.55 %, a high surface area of 446.2 m2 g-1, and an excellent performance in catalysing oxidation of ethylbenzene. The conversion rate of ethylbenzene can be up to 84.5% and the yield of acetophenone can be up to 69.9%, the results indicated that the NOMC materials have a faster catalytic rate and a higher production of acetophenone than catalyst-free and CMK-3, due to their uniform pore size, high surface area and rich active sites in the carbon pore walls.

  3. Separation medium containing thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Herrera-Alonso, Margarita (Inventor)

    2012-01-01

    A separation medium, such as a chromatography filling or packing, containing a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g, wherein the thermally exfoliated graphite oxide has a surface that has been at least partially functionalized.

  4. Nitrous oxide production pathways in a partial nitritation-anammox reactor: Isotopic evidence for nitrous oxide production associated anaerobic ammonium oxidation?

    Science.gov (United States)

    Wunderlin, P.; Harris, E. J.; Joss, A.; Emmenegger, L.; Kipf, M.; Mohn, J.; Siegrist, H.

    2014-12-01

    Nitrous oxide (N2O) is a strong greenhouse gas and a major sink for stratospheric ozone. In biological wastewater treatment N2O can be produced via several pathways. This study investigates the dynamics of N2O emissions from a nitritation-anammox reactor, and links its interpretation to the nitrogen and oxygen isotopic signature of the emitted N2O. A 400-litre single-stage nitritation-anammox reactor was operated and continuously fed with digester liquid. The isotopic composition of N2O emissions was monitored online with quantum cascade laser absorption spectroscopy (QCLAS; Aerodyne Research, Inc.; Waechter et al., 2008). Dissolved ammonium and nitrate were monitored online (ISEmax, Endress + Hauser), while nitrite was measured with test strips (Nitrite-test 0-24mgN/l, Merck). Table 1. Summary of experiments conducted to understand N2O emissions Experimental conditions O2[mgO2/L] NO2-[mgN/L] NH4+[mgN/L] N2O/NH4+[%] Normal operation production pathway, which is hypothesized to be mediated by anammox activity (Figure 1). A less likely explanation is that the SP of N2O was increased by partial N2O reduction by heterotrophic denitrification. Various experiments were conducted to further investigate N2O formation pathways in the reactor. Our data reveal that N2O emissions increased when reactor operation was not ideal, for example when dissolved oxygen was too high (Table 1). SP measurements confirmed that these N2O peaks were due to enhanced nitrifier denitrification, generally related to nitrite build-up in the reactor (Figure 1; Table 1). Overall, process control via online N2O monitoring was confirmed to be an ideal method to detect imbalances in reactor operation and regulate aeration, to ensure optimal reactor conditions and minimise N2O emissions. ReferencesWaechter H. et al. (2008) Optics Express, 16: 9239-9244. Wunderlin, P et al. (2013) Environmental Science & Technology 47: 1339-1348.

  5. Enantioselective construction of quaternary N-heterocycles by palladium-catalysed decarboxylative allylic alkylation of lactams

    KAUST Repository

    Behenna, Douglas C.

    2011-12-18

    The enantioselective synthesis of nitrogen-containing heterocycles (N-heterocycles) represents a substantial chemical research effort and resonates across numerous disciplines, including the total synthesis of natural products and medicinal chemistry. In this Article, we describe the highly enantioselective palladium-catalysed decarboxylative allylic alkylation of readily available lactams to form 3,3-disubstituted pyrrolidinones, piperidinones, caprolactams and structurally related lactams. Given the prevalence of quaternary N-heterocycles in biologically active alkaloids and pharmaceutical agents, we envisage that our method will provide a synthetic entry into the de novo asymmetric synthesis of such structures. As an entry for these investigations we demonstrate how the described catalysis affords enantiopure quaternary lactams that intercept synthetic intermediates previously used in the synthesis of the Aspidosperma alkaloids quebrachamine and rhazinilam, but that were previously only available by chiral auxiliary approaches or as racemic mixtures. © 2012 Macmillan Publishers Limited. All rights reserved.

  6. Titanium Oxide/Platinum Catalysis: Charge Transfer from a Titanium Oxide Support Controls Activity and Selectivity in Methanol Oxidation on Platinum

    KAUST Repository

    Hervier, Antoine

    2011-11-24

    Platinum films of 1 nm thickness were deposited by electron beam evaporation onto 100 nm thick titanium oxide films (TiOx) with variable oxygen vacancy concentrations and fluorine (F) doping. Methanol oxidation on the platinum films produced formaldehyde, methyl formate, and carbon dioxide. F-doped samples demonstrated significantly higher activity for methanol oxidation when the TiOx was stoichiometric (TiO 2), but lower activity when it was nonstoichiometric (TiO 1.7 and TiO1.9). These results correlate with the chemical behavior of the same types of catalysts in CO oxidation. Fluorine doping of stoichiometric TiO2 also increased selectivity toward partial oxidation of methanol to formaldehyde and methyl formate, but had an opposite effect in the case of nonstoichiometric TiOx. Introduction of oxygen vacancies and fluorine doping both increased the conductivity of the TiO x film. For oxygen vacancies, this occurred by the formation of a conduction channel in the band gap, whereas in the case of fluorine doping, F acted as an n-type donor, forming a conduction channel at the bottom of the conduction band, about 0.5-1.0 eV higher in energy. The higher energy electrons in F-doped stoichiometric TiOx led to higher turnover rates and increased selectivity toward partial oxidation of methanol. This correlation between electronic structure and turnover rate and selectivity indicates that the ability of the support to transfer charges to surface species controls in part the activity and selectivity of the reaction. © 2011 American Chemical Society.

  7. Mechanism of 1, 1-d2 propene oxidation over oxide catalysts

    International Nuclear Information System (INIS)

    Portefaix, J.L.; Figueras, F.; Forissier, M.

    1980-01-01

    CD 2 CHCH 3 was oxidized over bismuth molybdate, tin-antimony mixed oxides and supported molybdenum and vanadium oxide catalysts. The deuterium retention is high ( > 90%) in the recovered propene. Percentage retentions of deuterium in the acrolein agree with literature data when bismuth molybdate is used as catalyst. On Sb-Sn-O and supported Mo and V oxides, no isotope effect is noticed for the abstraction of the second hydrogen from the olefin. The slow step of the reaction may therefore be different for the oxidation of propene on Bi-Mo-O and Sb-Sn-O. The ethanal produced by oxidation of CD 2 CHCH 3 contains only minor amounts of deuterium, whatever the catalyst used. It is suggested that partial oxidation of propene to acrolein and C-C bond rupture are parallel reactions which involve different intermediates. Possible mechanisms adapted from organic chemistry are presented to explain these findings. 4 tables

  8. Glucose and Fructose to Platform Chemicals: Understanding the Thermodynamic Landscapes of Acid-Catalysed Reactions Using High-Level ab Initio Methods

    Energy Technology Data Exchange (ETDEWEB)

    Assary, Rajeev S.; Kim, Taijin; Low, John; Greeley, Jeffrey P.; Curtiss, Larry A.

    2012-12-28

    Molecular level understanding of acid-catalysed conversion of sugar molecules to platform chemicals such as hydroxy-methyl furfural (HMF), furfuryl alcohol (FAL), and levulinic acid (LA) is essential for efficient biomass conversion. In this paper, the high-level G4MP2 method along with the SMD solvation model is employed to understand detailed reaction energetics of the acid-catalysed decomposition of glucose and fructose to HMF. Based on protonation free energies of various hydroxyl groups of the sugar molecule, the relative reactivity of gluco-pyranose, fructo-pyranose and fructo-furanose are predicted. Calculations suggest that, in addition to the protonated intermediates, a solvent assisted dehydration of one of the fructo-furanosyl intermediates is a competing mechanism, indicating the possibility of multiple reaction pathways for fructose to HMF conversion in aqueous acidic medium. Two reaction pathways were explored to understand the thermodynamics of glucose to HMF; the first one is initiated by the protonation of a C2–OH group and the second one through an enolate intermediate involving acyclic intermediates. Additionally, a pathway is proposed for the formation of furfuryl alcohol from glucose initiated by the protonation of a C2–OH position, which includes a C–C bond cleavage, and the formation of formic acid. The detailed free energy landscapes predicted in this study can be used as benchmarks for further exploring the sugar decomposition reactions, prediction of possible intermediates, and finally designing improved catalysts for biomass conversion chemistry in the future.

  9. Partial oxidation of jet fuels over Rh/Al{sub 2}O{sub 3}. Design and reaction kinetics of sulfur-containing surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Julian Nicolaas

    2016-07-01

    The conversion of logistic fuels via catalytic partial oxidation (CPOX) on Rh/Al{sub 2}O{sub 3} at short contact times is an efficient method for generating hydrogen-rich synthesis gas. Depending on the inlet conditions, fuel, and catalyst, high syngas yields, low by-product formation, and rates of high fuel conversion can be achieved. CPOX is relevant for mobile hydrogen generation, e.g., on board of airplanes in order to increase the fuel efficiency via fuel cell-based auxiliary power units. Jet fuels contain hundreds of different hydrocarbons and a significant amount of sulfur. The hydrocarbon composition and sulfur content of a jet fuel vary depending on distributor, origin, and refinement of the crude oil. Little is known about the influence of the various compounds on the synthesis-gas yield and the impact of sulfur on the product yield. In this work, the influence of three main chemical compounds of a jet fuel (aromatics, alkanes, and sulfur compounds) on syngas selectivity, the catalyst deactivation process, and reaction sequence is unraveled. As representative components of alkanes and aromatics, n-dodecane and 1,2,4-trimethylbenzene were chosen for ex-situ and in-situ investigations on the CPOX over Rh/Al{sub 2}O{sub 3}, respectively. Additionally, for a fixed paraffin-to-aromatics ratio, benzothiophene or dibenzothiophene were added as a sulfur component in three different concentrations. The knowledge gained about the catalytic partial oxidation of jet fuels and their surrogates is used to identify requirements for jet fuels in mobile applications based on CPOX and to optimize the overall system efficiency. The results show an influence of the surrogate composition on syngas selectivity. The tendency for syngas formation increases with higher paraffin contents. A growing tendency for by-product formation can be observed with increasing aromatics contents in the fuel. The impact of sulfur on the reaction system shows an immediate change in the product

  10. BL153 Partially Prevents High-Fat Diet Induced Liver Damage Probably via Inhibition of Lipid Accumulation, Inflammation, and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2014-01-01

    Full Text Available The present study was to investigate whether a magnolia extract, named BL153, can prevent obesity-induced liver damage and identify the possible protective mechanism. To this end, obese mice were induced by feeding with high fat diet (HFD, 60% kcal as fat and the age-matched control mice were fed with control diet (10% kcal as fat for 6 months. Simultaneously these mice were treated with or without BL153 daily at 3 dose levels (2.5, 5, and 10 mg/kg by gavage. HFD feeding significantly increased the body weight and the liver weight. Administration of BL153 significantly reduced the liver weight but without effects on body weight. As a critical step of the development of NAFLD, hepatic fibrosis was induced in the mice fed with HFD, shown by upregulating the expression of connective tissue growth factor and transforming growth factor beta 1, which were significantly attenuated by BL153 in a dose-dependent manner. Mechanism study revealed that BL153 significantly suppressed HFD induced hepatic lipid accumulation and oxidative stress and slightly prevented liver inflammation. These results suggest that HFD induced fibrosis in the liver can be prevented partially by BL153, probably due to reduction of hepatic lipid accumulation, inflammation and oxidative stress.

  11. Effects of inoculum type and bulk dissolved oxygen concentration on achieving partial nitrification by entrapped-cell-based reactors.

    Science.gov (United States)

    Rongsayamanont, Chaiwat; Limpiyakorn, Tawan; Khan, Eakalak

    2014-07-01

    An entrapment of nitrifiers into gel matrix is employed as a tool to fulfill partial nitrification under non-limiting dissolved oxygen (DO) concentrations in bulk solutions. This study aims to clarify which of these two attributes, inoculum type and DO concentration in bulk solutions, is the decisive factor for partial nitrification in an entrapped-cell based system. Four polyvinyl alcohol entrapped inocula were prepared to have different proportions of nitrite-oxidizing bacteria (NOB) and nitrite-oxidizing activity. At a DO concentration of 3 mg l(-1), the number of active NOB cells in an inoculum was the decisive factor for partial nitrification enhancement. However, when the DO concentration was reduced to 2 mg l(-1), all entrapped cell inocula showed similar degrees of partial nitrification. The results suggested that with the lower bulk DO concentration, the preparation of entrapped cell inocula is not useful as the DO level becomes the decisive factor for achieving partial nitrification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Biochemical characterization of the purple form of Marinobacter hydrocarbonoclasticus nitrous oxide reductase

    Science.gov (United States)

    Dell'Acqua, Simone; Pauleta, Sofia R.; Moura, José J. G.; Moura, Isabel

    2012-01-01

    Nitrous oxide reductase (N2OR) catalyses the final step of the denitrification pathway—the reduction of nitrous oxide to nitrogen. The catalytic centre (CuZ) is a unique tetranuclear copper centre bridged by inorganic sulphur in a tetrahedron arrangement that can have different oxidation states. Previously, Marinobacter hydrocarbonoclasticus N2OR was isolated with the CuZ centre as CuZ*, in the [1Cu2+ : 3Cu+] redox state, which is redox inert and requires prolonged incubation under reductive conditions to be activated. In this work, we report, for the first time, the isolation of N2OR from M. hydrocarbonoclasticus in the ‘purple’ form, in which the CuZ centre is in the oxidized [2Cu2+ : 2Cu+] redox state and is redox active. This form of the enzyme was isolated in the presence of oxygen from a microaerobic culture in the presence of nitrate and also from a strictly anaerobic culture. The purple form of the enzyme was biochemically characterized and was shown to be a redox active species, although it is still catalytically non-competent, as its specific activity is lower than that of the activated fully reduced enzyme and comparable with that of the enzyme with the CuZ centre in either the [1Cu2+ : 3Cu+] redox state or in the redox inactive CuZ* state. PMID:22451106

  13. Calcium manganese oxides as oxygen evolution catalysts: O2 formation pathways indicated by 18O-labelling studies.

    Science.gov (United States)

    Shevela, Dmitriy; Koroidov, Sergey; Najafpour, M Mahdi; Messinger, Johannes; Kurz, Philipp

    2011-05-02

    Oxygen evolution catalysed by calcium manganese and manganese-only oxides was studied in (18)O-enriched water. Using membrane-inlet mass spectrometry, we monitored the formation of the different O(2) isotopologues (16)O(2), (16)O(18)O and (18)O(2) in such reactions simultaneously with good time resolution. From the analysis of the data, we conclude that entirely different pathways of dioxygen formation catalysis exist for reactions involving hydrogen peroxide (H(2)O(2)), hydrogen persulfate (HSO(5)(-)) or single-electron oxidants such as Ce(IV) and [Ru(III) (bipy)(3)](3+) . Like the studied oxide catalysts, the active sites of manganese catalase and the oxygen-evolving complex (OEC) of photosystem II (PSII) consist of μ-oxido manganese or μ-oxido calcium manganese sites. The studied processes show very similar (18)O-labelling behaviour to the natural enzymes and are therefore interesting model systems for in vivo oxygen formation by manganese metalloenzymes such as PSII. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A study of the electro-catalytic oxidation of methanol on a cobalt hydroxide modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Jafarian, M.; Mahjani, M.G.; Heli, H.; Gobal, F.; Khajehsharifi, H.; Hamedi, M.H.

    2003-01-01

    Cobalt hydroxide modified glassy carbon electrodes (CHM/GC) prepared by the anodic deposition in presence of tartrate ions have been used for the electro-catalytic oxidation of methanol in alkaline solutions where the methods of cyclic voltammetery (CV), chronoamperometry (CA) and impedance spectroscopy (IS) have been employed. In CV studies, in the presence of methanol the peak current of the oxidation of cobalt hydroxide increase is followed by a decrease in the corresponding cathodic current. This suggests that the oxidation of methanol is being catalysed through the mediated electron transfer across the cobalt hydroxide layer comprising of cobalt ions of various valence states. A mechanism based on the electro-chemical generation of Co(IV) active sites and their subsequent consumptions by methanol have been discussed and the corresponding rate law under the control of charge transfer has been developed and kinetic parameters have been derived. In this context the charge transfer resistance accessible both theoretically and through the IS studies have been used as a criteria. Under the CA regimes the reaction followed a Cottrellian behaviour

  15. Gas phase deposition of oxide and metal-oxide coatings on fuel particles

    International Nuclear Information System (INIS)

    Patokin, A.P.; Khrebtov, V.L.; Shirokov, B.M.

    2008-01-01

    Production processes and properties of oxide (Al 2 O 3 , ZrO 2 ) and metal-oxide (Mo-Al 2 O 3 , Mo-ZrO 2 , W-Al 2 O 3 , W-ZrO 2 ) coatings on molybdenum substrates and uranium dioxide fuel particles were investigated. It is shown that the main factors that have an effect on the deposition rate, density, microstructure and other properties of coatings are the deposition temperature, the ratio of H 2 and CO 2 flow rates, the total reactor pressure and the ratio of partial pressures of corresponding metal chlorides during formation of metal-oxide coatings

  16. Gas-phase fragmentation of coordination compounds: loss of CO(2) from inorganic carbonato complexes to give metal oxide ions

    Science.gov (United States)

    Dalgaard; McKenzie

    1999-10-01

    Using electrospray ionization mass spectrometry, novel transition metal oxide coordination complex ions are proposed as the products of the collision-induced dissociation (CID) of some carbonato complex ions through the loss of a mass equivalent to CO(2). CID spectra of [(tpa)CoCO(3)](+) (tpa = tris(2-pyridylmethyl)methylamine), [(bispicMe(2)en)Fe(&mgr;-O)(&mgr;-CO(3))Fe(bispicMe(2)en)]2+ (bispicMe(2)en = N,N'-dimethyl-N,N'-bis(2-pyridylmethy)eth- ane-1, 2-diamine) and [(bpbp)Cu(2)CO(3)](+) (bpbp(-) = bis[(bis-(2-pyridylmethyl)amino)methyl]-4-tertbutylpheno-lato(1-)), show peaks assigned to the mono- and dinuclear oxide cations, [(tpa)CoO](+), [(bispicMe(2)en)(2)Fe(2)(O)(2)]2+ and [(bpbp)Cu(2)O](+), as the dominant species. These results can be likened to the reverse of typical synthetic reactions in which metal hydroxide compounds react with CO(2) to give metal carbonato compounds. Because of the lack of available protons in the gas phase, novel oxide species rather than the more common hydroxide ions are generated. These oxide ions are relevant to the highly oxidizing species proposed in oxygenation reactions catalysed by metal oxides and metalloenzymes. Copyright 1999 John Wiley & Sons, Ltd.

  17. The impact of partial manganese superoxide dismutase (SOD2)-deficiency on mitochondrial oxidant stress, DNA fragmentation and liver injury during acetaminophen hepatotoxicity

    International Nuclear Information System (INIS)

    Ramachandran, Anup; Lebofsky, Margitta; Weinman, Steven A.; Jaeschke, Hartmut

    2011-01-01

    Acetaminophen (APAP) hepatotoxicity is the most frequent cause of acute liver failure in many countries. The mechanism of cell death is initiated by formation of a reactive metabolite that binds to mitochondrial proteins and promotes mitochondrial dysfunction and oxidant stress. Manganese superoxide dismutase (SOD2) is a critical defense enzyme located in the mitochondrial matrix. The objective of this investigation was to evaluate the functional consequences of partial SOD2-deficiency (SOD2+/-) on intracellular signaling mechanisms of necrotic cell death after APAP overdose. Treatment of C57Bl/6J wild type animals with 200 mg/kg APAP resulted in liver injury as indicated by elevated plasma alanine aminotransferase activities (2870 ± 180 U/L) and centrilobular necrosis at 6 h. In addition, increased tissue glutathione disulfide (GSSG) levels and GSSG-to-GSH ratios, delayed mitochondrial GSH recovery, and increased mitochondrial protein carbonyls and nitrotyrosine protein adducts indicated mitochondrial oxidant stress. In addition, nuclear DNA fragmentation (TUNEL assay) correlated with translocation of Bax to the mitochondria and release of apoptosis-inducing factor (AIF). Furthermore, activation of c-jun-N-terminal kinase (JNK) was documented by the mitochondrial translocation of phospho-JNK. SOD2+/- mice showed 4-fold higher ALT activities and necrosis, an enhancement of all parameters of the mitochondrial oxidant stress, more AIF release and more extensive DNA fragmentation and more prolonged JNK activation. Conclusions: the impaired defense against mitochondrial superoxide formation in SOD2+/- mice prolongs JNK activation after APAP overdose and consequently further enhances the mitochondrial oxidant stress leading to exaggerated mitochondrial dysfunction, release of intermembrane proteins with nuclear DNA fragmentation and more necrosis.

  18. Tantalum oxide-based compounds as new non-noble cathodes for polymer electrolyte fuel cell

    International Nuclear Information System (INIS)

    Ishihara, Akimitsu; Tamura, Motoko; Matsuzawa, Koichi; Mitsushima, Shigenori; Ota, Ken-ichiro

    2010-01-01

    Tantalum oxide-based compounds were examined as new non-noble cathodes for polymer electrolyte fuel cell. Tantalum carbonitride powder was partially oxidized under a trace amount of oxygen gas at 900 o C for 4 or 8 h. Onset potential for oxygen reduction reaction (ORR) of the specimen heat-treated for 8 h was 0.94 V vs. reversible hydrogen electrode in 0.1 mol dm -3 sulfuric acid at 30 o C. The partial oxidation of tantalum carboniride was effective to enhance the catalytic activity for the ORR. The partially oxidized specimen with highest catalytic activity had ca. 5.25 eV of ionization potential, indicating that there was most suitable strength of the interaction of oxygen and tantalum on the catalyst surface.

  19. Lycium barbarum (wolfberry reduces secondary degeneration and oxidative stress, and inhibits JNK pathway in retina after partial optic nerve transection.

    Directory of Open Access Journals (Sweden)

    Hongying Li

    Full Text Available Our group has shown that the polysaccharides extracted from Lycium barbarum (LBP are neuroprotective for retinal ganglion cells (RGCs in different animal models. Protecting RGCs from secondary degeneration is a promising direction for therapy in glaucoma management. The complete optic nerve transection (CONT model can be used to study primary degeneration of RGCs, while the partial optic nerve transection (PONT model can be used to study secondary degeneration of RGCs because primary degeneration of RGCs and secondary degeneration can be separated in location in the same retina in this model; in other situations, these types of degeneration can be difficult to distinguish. In order to examine which kind of degeneration LBP could delay, both CONT and PONT models were used in this study. Rats were fed with LBP or vehicle daily from 7 days before surgery until sacrifice at different time-points and the surviving numbers of RGCs were evaluated. The expression of several proteins related to inflammation, oxidative stress, and the c-jun N-terminal kinase (JNK pathways were detected with Western-blot analysis. LBP did not delay primary degeneration of RGCs after either CONT or PONT, but it did delay secondary degeneration of RGCs after PONT. We found that LBP appeared to exert these protective effects by inhibiting oxidative stress and the JNK/c-jun pathway and by transiently increasing production of insulin-like growth factor-1 (IGF-1. This study suggests that LBP can delay secondary degeneration of RGCs and this effect may be linked to inhibition of oxidative stress and the JNK/c-jun pathway in the retina.

  20. Lycium Barbarum (Wolfberry) Reduces Secondary Degeneration and Oxidative Stress, and Inhibits JNK Pathway in Retina after Partial Optic Nerve Transection

    Science.gov (United States)

    Li, Hongying; Liang, Yuxiang; Chiu, Kin; Yuan, Qiuju; Lin, Bin; Chang, Raymond Chuen-Chung; So, Kwok-Fai

    2013-01-01

    Our group has shown that the polysaccharides extracted from Lycium barbarum (LBP) are neuroprotective for retinal ganglion cells (RGCs) in different animal models. Protecting RGCs from secondary degeneration is a promising direction for therapy in glaucoma management. The complete optic nerve transection (CONT) model can be used to study primary degeneration of RGCs, while the partial optic nerve transection (PONT) model can be used to study secondary degeneration of RGCs because primary degeneration of RGCs and secondary degeneration can be separated in location in the same retina in this model; in other situations, these types of degeneration can be difficult to distinguish. In order to examine which kind of degeneration LBP could delay, both CONT and PONT models were used in this study. Rats were fed with LBP or vehicle daily from 7 days before surgery until sacrifice at different time-points and the surviving numbers of RGCs were evaluated. The expression of several proteins related to inflammation, oxidative stress, and the c-jun N-terminal kinase (JNK) pathways were detected with Western-blot analysis. LBP did not delay primary degeneration of RGCs after either CONT or PONT, but it did delay secondary degeneration of RGCs after PONT. We found that LBP appeared to exert these protective effects by inhibiting oxidative stress and the JNK/c-jun pathway and by transiently increasing production of insulin-like growth factor-1 (IGF-1). This study suggests that LBP can delay secondary degeneration of RGCs and this effect may be linked to inhibition of oxidative stress and the JNK/c-jun pathway in the retina. PMID:23894366

  1. Bifluoride-catalysed sulfur(VI) fluoride exchange reaction for the synthesis of polysulfates and polysulfonates

    Science.gov (United States)

    Gao, Bing; Zhang, Linda; Zheng, Qinheng; Zhou, Feng; Klivansky, Liana M.; Lu, Jianmei; Liu, Yi; Dong, Jiajia; Wu, Peng; Sharpless, K. Barry

    2017-11-01

    Polysulfates and polysulfonates possess exceptional mechanical properties making them potentially valuable engineering polymers. However, they have been little explored due to a lack of reliable synthetic access. Here we report bifluoride salts (Q+[FHF]-, where Q+ represents a wide range of cations) as powerful catalysts for the sulfur(VI) fluoride exchange (SuFEx) reaction between aryl silyl ethers and aryl fluorosulfates (or alkyl sulfonyl fluorides). The bifluoride salts are significantly more active in catalysing the SuFEx reaction compared to organosuperbases, therefore enabling much lower catalyst-loading (down to 0.05 mol%). Using this chemistry, we are able to prepare polysulfates and polysulfonates with high molecular weight, narrow polydispersity and excellent functional group tolerance. The process is practical with regard to the reduced cost of catalyst, polymer purification and by-product recycling. We have also observed that the process is not sensitive to scale-up, which is essential for its future translation from laboratory research to industrial applications.

  2. A novel reaction catalysed by active carbons production of dichloromethane from phosgene and formaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, T A; Stacey, M H

    1984-08-01

    A variety of Activated charcoals have been found to catalyse a reaction between phosgene and formaldehyde. In a continuous flow fluidized bed reactor, the reaction rate reaches a broad maximum near 170/sup 0/C where the selectivity is consistent with the stoichiometry. The reaction proceeds via a strongly adsorbed intermediate which has been identified as chloromethyl chloroformate. This ester is an adduct of formaldehyde and phosgen and forms rapidly above 100/sup 0/C in co-adsorption/desorption experiments. It decomposes rapidly 170/sup 0/C without significant desorption of the intact molecule to give the observed products dichloromethane and carbon dioxide. Under steady-state conditions the rate-determining step is the formation of this ester so that it is normally only present on the surface at low coverages; hence it is not observable in the gas phase. The catalysis is probably due to the presence of polar acid or base sites on the surface of the activated charcoals.

  3. SUPERCRITICAL WATER PARTIAL OXIDATION PHASE I - PILOT-SCALE TESTING/FEASIBILTY SUDIES FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    SPRITZER.M; HONG,G

    2005-01-01

    General Atomics (GA) is developing Supercritical Water Partial Oxidation (SWPO) as a means of producing hydrogen from low-grade biomass and other waste feeds. The Phase I Pilot-scale Testing/Feasibility Studies have been successfully completed and the results of that effort are described in this report. The key potential advantage of the SWPO process is the use of partial oxidation in-situ to rapidly heat the gasification medium, resulting in less char formation and improved hydrogen yield. Another major advantage is that the high-pressure, high-density aqueous environment is ideal for reacting and gasifying organics of all types. The high water content of the medium encourages formation of hydrogen and hydrogen-rich products and is especially compatible with high water content feeds such as biomass materials. The high water content of the medium is also effective for gasification of hydrogen-poor materials such as coal. A versatile pilot plant for exploring gasification in supercritical water has been established at GA's facilities in San Diego. The Phase I testing of the SWPO process with wood and ethanol mixtures demonstrated gasification efficiencies of about 90%, comparable to those found in prior laboratory-scale SCW gasification work carried out at the University of Hawaii at Manoa (UHM), as well as other biomass gasification experience with conventional gasifiers. As in the prior work at UHM, a significant amount of the hydrogen found in the gas phase products is derived from the water/steam matrix. The studies at UHM utilized an indirectly heated gasifier with an activated carbon catalyst. In contrast, the GA studies utilized a directly heated gasifier without catalyst, plus a surrogate waste fuel. Attainment of comparable gasification efficiencies without catalysis is an important advancement for the GA process, and opens the way for efficient hydrogen production from low-value, dirty feed materials. The Phase I results indicate that a practical

  4. Oxidation of sulphite to sulphate in presence of protohematin - 1. general characteristics (1961); Oxydation du sulfite en sulfate en presence de protohematine - 1. caracteristiques generales (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Fromageot, P; Chapeville, F [Commissariat a l' Energie Atomique, Dept. de Biologie, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    Protohematin catalyzes the oxidation of sulphite. The optimum pH of the reaction is approximately 7 in the presence of a 0.05 M phosphate buffer. The oxidation of sulphite is not coupled to the reduction of protohematin to protohaem. Reagents able to form complexes with the iron of protohematin are inhibitors of its catalytic function. (authors) [French] La protohematine possede la propriete de catalyser l'oxydation du sulfite. Le pH optimum de cette reaction est voisin de 7 en presence d'un tampon phosphate 0,05 M. L'oxydation du sulfite n'est pas liee a la reduction de la protohematine en protoheme et les substances susceptibles de former des complexes avec le fer de la protohematine sont des inhibiteurs de son action catalytique. (auteurs)

  5. Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators

    Science.gov (United States)

    Badalyan, Artavazd; Stahl, Shannon S.

    2016-07-01

    The electrochemical oxidation of alcohols is a major focus of energy and chemical conversion efforts, with potential applications ranging from fuel cells to biomass utilization and fine-chemical synthesis. Small-molecule electrocatalysts for processes of this type are promising targets for further development, as demonstrated by recent advances in nickel catalysts for electrochemical production and oxidation of hydrogen. Complexes with tethered amines that resemble the active site of hydrogenases have been shown both to catalyse hydrogen production (from protons and electrons) with rates far exceeding those of such enzymes and to mediate reversible electrocatalytic hydrogen production and oxidation with enzyme-like performance. Progress in electrocatalytic alcohol oxidation has been more modest. Nickel complexes similar to those used for hydrogen oxidation have been shown to mediate efficient electrochemical oxidation of benzyl alcohol, with a turnover frequency of 2.1 per second. These compounds exhibit poor reactivity with ethanol and methanol, however. Organic nitroxyls, such as TEMPO (2,2,6,6-tetramethyl-1-piperidine N-oxyl), are the most widely studied electrocatalysts for alcohol oxidation. These catalysts exhibit good activity (1-2 turnovers per second) with a wide range of alcohols and have great promise for electro-organic synthesis. Their use in energy-conversion applications, however, is limited by the high electrode potentials required to generate the reactive oxoammonium species. Here we report (2,2‧-bipyridine)Cu/nitroxyl co-catalyst systems for electrochemical alcohol oxidation that proceed with much faster rates, while operating at an electrode potential a half-volt lower than that used for the TEMPO-only process. The (2,2‧-bipyridine)Cu(II) and TEMPO redox partners exhibit cooperative reactivity and exploit the low-potential, proton-coupled TEMPO/TEMPOH redox process rather than the high-potential TEMPO/TEMPO+ process. The results show how

  6. Microwave-Assisted Coprecipitation Synthesis of LaCoO3 Nanoparticles and Their Catalytic Activity for Syngas Production by Partial Oxidation of Methane

    Directory of Open Access Journals (Sweden)

    Consuelo Alvarez-Galvan

    2018-04-01

    Full Text Available LaCoO3 perovskite-type oxides were prepared by microwave-assisted coprecipitation route and investigated in the catalytic partial oxidation of methane (CPOM to syngas. This preparation method aims to achieve higher specific surface areas (ssa than soft-chemical methods commonly used in the preparation of engineered materials. In an attempt to accomplish the creation of mesostructured porous LaCoO3, an ionic template such as cetyl trimethyl ammonium bromide has been used as endotemplate in some samples. The influence of pH and the type of precipitating agent has been studied. The materials have been characterized at different levels: morphology has been studied by scanning electron microscopy, textural properties by nitrogen adsorption–desorption at −196°C, structural analysis by X-ray diffraction, surface composition by X-ray photoelectron spectroscopy, thermal stability by thermogravimetric analysis, and carbon formation in spent catalysts by Raman spectroscopy. Structure-activity correlations point out that the precipitating agent has a key role on the morphology and porosity of the resultant oxide, as well as on the average crystalline domain of lanthanum perovskite (catalyst precursor. Thus, the use of ammonium hydroxide as precipitant leads to materials with a higher surface area and a greater ssa of cobalt (per unit mass, improving their catalytic performance for the CPOM reaction. The best catalytic performance was found for the catalyst prepared using ammonium hydroxide as precipitant (pH 9 and without adding CTAB as endotemplate.

  7. Beta-lactam degradation catalysed by Cd2+ ion in methanol.

    Science.gov (United States)

    Martínez, J H; Navarro, P G; Garcia, A A; de las Parras, P J

    1999-08-01

    Kinetic schemes are established for degradation catalysed by Cd2+ ions in methanolic medium for penicillin G, penicillin V and cephalothin, a cephalosporin. Methanolysis of penicillin V and cephalothin occurs with the formation of a single substrate-metal ion intermediate complex, SM, while degradation of penicillin G occurs with the initial formation of two complexes with different stoichiometry, SM and S2M. In each case. degradation is of first order with respect to SM with rate constant values equal to 0.079 min(-1), 0.120 min(-1) and 0.166 min(-1) at 20, 25 and 30 degrees C, respectively, for penicillin G; 0.061 min(-1) at 20 degrees C for penicillin V; and 2.0 x 10(-3) min(-1) at 20 degrees C for cephalothin. Activation energy for the decomposition process of the SM intermediate for penicillin G was calculated to be about 5.5 x 10(4) J/mol. Equilibrium constant values between SM compound and S2M at 20 degrees C (77.1 l/mol), 25 degrees C (45.3 l/mol) and at 30 degrees C (25.7 l/mol) were also calculated as well as the normal enthalpy of this equilibrium. With respect to the reaction products there is evidence that Cd2+ becomes part of their structure, forming complexes between Cd2+ and the product resulting from antibiotic methanolysis (L). Some characteristics of these complexes are discussed.

  8. Exploring the chemical kinetics of partially oxidized intermediates by combining experiments, theory, and kinetic modeling.

    Science.gov (United States)

    Hoyermann, Karlheinz; Mauß, Fabian; Olzmann, Matthias; Welz, Oliver; Zeuch, Thomas

    2017-07-19

    Partially oxidized intermediates play a central role in combustion and atmospheric chemistry. In this perspective, we focus on the chemical kinetics of alkoxy radicals, peroxy radicals, and Criegee intermediates, which are key species in both combustion and atmospheric environments. These reactive intermediates feature a broad spectrum of chemical diversity. Their reactivity is central to our understanding of how volatile organic compounds are degraded in the atmosphere and converted into secondary organic aerosol. Moreover, they sensitively determine ignition timing in internal combustion engines. The intention of this perspective article is to provide the reader with information about the general mechanisms of reactions initiated by addition of atomic and molecular oxygen to alkyl radicals and ozone to alkenes. We will focus on critical branching points in the subsequent reaction mechanisms and discuss them from a consistent point of view. As a first example of our integrated approach, we will show how experiment, theory, and kinetic modeling have been successfully combined in the first infrared detection of Criegee intermediates during the gas phase ozonolysis. As a second example, we will examine the ignition timing of n-heptane/air mixtures at low and intermediate temperatures. Here, we present a reduced, fuel size independent kinetic model of the complex chemistry initiated by peroxy radicals that has been successfully applied to simulate standard n-heptane combustion experiments.

  9. Comparison of two different synthesis methods of perovskites, SrCo0.5FeO3 type, aiming at evaluating their use as membranes for partial oxidation of methane

    Directory of Open Access Journals (Sweden)

    Noronha F.B.

    2004-01-01

    Full Text Available In this work two different synthesis methods of perovskites, SrCo0.5FeO3, were compared: combustion synthesis and oxides mixture aiming at evaluating their use as membranes for partial oxidation of methane. The combustion synthesis method explores an exothermic, generally very fast and self-sustaining chemical reaction between the desired metal salts and a suitable organic fuel, which is ignited at a temperature much lower than the actual phase formation temperature. The oxides mixture are based on a physical mixture of the powder oxides followed by calcination to obtain the desired phase. In order to obtain the membranes, we studied the conformation of bodies and the temperatures of sintering in the two powders synthesized. The powders were analyzed by density and grain size distribution and characterized by X-ray diffraction (XRD and scanning electron microscopy (SEM. After conformation, in cylindrical form, the green bodies were analyzed by density. After sintering at 1150 °C, the membranes were analyzed by density and they were characterized by XRD and SEM. The powder obtained by combustion synthesis shows lower density and fine grains than the other obtained by oxides mixture. The membranes obtained present very different morphology depending on the precursor powder synthesis. The sintered membranes obtained by combustion method also present a very uniform morphology without segregation.

  10. Preparation and tumor cell model based biobehavioral evaluation of the nanocarrier system using partially reduced graphene oxide functionalized by surfactant

    Directory of Open Access Journals (Sweden)

    Wang Y

    2015-07-01

    Full Text Available Yimin Wang,1 Kunping Liu,1,2 Zewei Luo,1 Yixiang Duan1 1Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, 2Faculty of Biotechnology Industry, Chengdu University, Chengdu, People’s Republic of China Background: Currently, surfactant-functionalized nanomaterials are tending toward development of novel tumor-targeted drug carriers to overcome multidrug resistance in cancer therapy. Now, investigating the biocompatibility and uptake mechanism of specific drug delivery systems is a growing trend, but usually a troublesome issue, in simple pharmaceutical research.Methods: We first reported the partially reduced graphene oxide modified with poly(sodium 4-styrenesulfonate (PSS as a nanocarrier system. Then, the nanocarrier was characterized by atomic force microscope, scanning electron microscope, high-resolution transmission electron microscope, ultraviolet–visible (UV-vis spectroscopy, Fourier transform infrared spectroscopy, X-Ray powder diffraction, and Raman spectroscopy. Epirubicin (EPI was attached to PSSG via π–π stacking, hydrogen bonding, and physical absorption to form conjugates of PSSG–EPI. The adsorption and desorption profiles, cytotoxicity coupled with drug accumulation, and uptake of PSSG and PSSG–EPI were evaluated. Finally, the subcellular behaviors, distribution, and biological fate of the drug delivery system were explored by confocal laser scanning microscope using direct fluorescence colocalization imaging and transmission electron microscopy.Results: The partially reduced graphene oxide sheets functionalized by surfactant exhibit good dispersibility. Moreover, due to much less carboxyl groups retained on the edge of PSSG sheets, the nanocarriers exhibit biocompatibility in vitro. The obtained PSSG shows a high drug-loading capacity of 2.22 mg/mg. The complexes of PSSG–EPI can be transferred to

  11. Ethanol generation, oxidation and energy production in a cooperative bioelectrochemical system.

    Science.gov (United States)

    Pagnoncelli, Kamila C; Pereira, Andressa R; Sedenho, Graziela C; Bertaglia, Thiago; Crespilho, Frank N

    2018-08-01

    Integrating in situ biofuel production and energy conversion into a single system ensures the production of more robust networks as well as more renewable technologies. For this purpose, identifying and developing new biocatalysts is crucial. Herein, is reported a bioelectrochemical system consisting of alcohol dehydrogenase (ADH) and Saccharomyces cerevisiae, wherein both function cooperatively for ethanol production and its bioelectrochemical oxidation. Here, it is shown that it is possible to produce ethanol and use it as a biofuel in a tandem manner. The strategy is to employ flexible carbon fibres (FCF) electrode that could adsorb both the enzyme and the yeast cells. Glucose is used as a substrate for the yeast for the production of ethanol, while the enzyme is used to catalyse the oxidation of ethanol to acetaldehyde. Regarding the generation of reliable electricity based on electrochemical systems, the biosystem proposed in this study operates at a low temperature and ethanol production is proportional to the generated current. With further optimisation of electrode design, we envision the use of the cooperative biofuel cell for energy conversion and management of organic compounds. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Cyclic catalytic upgrading of chemical species using metal oxide materials

    Science.gov (United States)

    White, James H; Schutte, Erick J; Rolfe, Sara L

    2013-05-07

    Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having the following formulas: (a) Ce.sub.xB.sub.yB'.sub.zB''O.sub..delta., wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, and/or Fe; B''=Cu; 0.01Ba, Ca, La, or K; 0.02oxides.

  13. A novel hydrogen oxidizer amidst the sulfur-oxidizing Thiomicrospira lineage

    Science.gov (United States)

    Hansen, Moritz; Perner, Mirjam

    2015-01-01

    Thiomicrospira species are ubiquitously found in various marine environments and appear particularly common in hydrothermal vent systems. Members of this lineage are commonly classified as sulfur-oxidizing chemolithoautotrophs. Although sequencing of Thiomicrospira crunogena's genome has revealed genes that encode enzymes for hydrogen uptake activity and for hydrogenase maturation and assembly, hydrogen uptake ability has so far not been reported for any Thiomicrospira species. We isolated a Thiomicrospira species (SP-41) from a deep sea hydrothermal vent and demonstrated that it can oxidize hydrogen. We show in vivo hydrogen consumption, hydrogen uptake activity in partially purified protein extracts and transcript abundance of hydrogenases during different growth stages. The ability of this strain to oxidize hydrogen opens up new perspectives with respect to the physiology of Thiomicrospira species that have been detected in hydrothermal vents and that have so far been exclusively associated with sulfur oxidation. PMID:25226028

  14. Potential hydrogen and oxygen partial pressures in legacy plutonium oxide packages at Oak Ridge

    Energy Technology Data Exchange (ETDEWEB)

    Veirs, Douglas K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-07-07

    An approach to estimate the maximum hydrogen and oxygen partial pressures within sealed containers is described and applied to a set of packages containing high-purity plutonium dioxide. The approach uses experimentally determined maximum hydrogen and oxygen partial pressures and scales the experimentally determined pressures to the relevant packaged material properties. The important material properties are the specific wattage and specific surface area (SSA). Important results from the experimental determination of maximum partial pressures are (1) the ratio of hydrogen to oxygen is stoichiometric, and (2) the maximum pressures increase with increasing initial rates of production. The material properties that influence the rates are the material specific wattage and the SSA. The unusual properties of these materials, high specific wattage and high SSA, result in higher predicted maximum pressures than typical plutonium dioxide in storage. The pressures are well within the deflagration range for mixtures of hydrogen and oxygen.

  15. Base catalysed isomerisation of aldoses of the arabino and lyxo series in the presence of aluminate.

    Science.gov (United States)

    Ekeberg, Dag; Morgenlie, Svein; Stenstrøm, Yngve

    2002-04-30

    Base-catalysed isomerisation of aldoses of the arabino and lyxo series in aluminate solution has been investigated. L-Arabinose and D-galactose give L-erythro-2-pentulose (L-ribulose) and D-lyxo-2-hexulose (D-tagatose), respectively, in good yields, whereas lower reactivity is observed for 6-deoxy-D-galactose (D-fucose). From D-lyxose, D-mannose and 6-deoxy-L-mannose (L-rhamnose) are obtained mixtures of ketoses and C-2 epimeric aldoses. Small amounts of the 3-epimers of the ketoses were also formed. 6-Deoxy-L-arabino-2-hexulose (6-deoxy-L-fructose) and 6-deoxy-L-glucose (L-quinovose) were formed in low yields from 6-deoxy-L-mannose and isolated as their O-isopropylidene derivatives. Explanations of the differences in reactivity and course of the reaction have been suggested on the basis of steric effects.

  16. Proton and oxide ion conductivity of doped LaScO3

    DEFF Research Database (Denmark)

    Lybye, D.; Bonanos, N.

    1999-01-01

    . At temperatures below 800 degrees C and low partial pressure of oxygen, proton conduction was dominant. Above this temperature, the ionic conductivity is dominated by oxide ion transport. The protonic transport number was estimated from the conductivities measured in dry and in water-moisturised gas. An isotope......The conductivity of La0.9Sr0.1Sc0.9Mg0.1O3 has been studied by impedance spectroscopy in controlled atmospheres. The material was found to be a mixed conductor with p-type conduction at high oxygen partial pressures and a combined proton and oxide ion conductor at low oxygen partial pressures...

  17. Negative secondary ion emission from oxidized surfaces

    International Nuclear Information System (INIS)

    Gnaser, H.; Kernforschungsanlage Juelich G.m.b.H.

    1984-01-01

    The emission of negative secondary ions from 23 elements was studied for 10 keV O 2 + and 10 keV In + impact at an angle of incidence of 45 0 . Partial oxidation of the sample surfaces was achieved by oxygen bombardment and/or by working at a high oxygen partial pressure. It was found that the emission of oxide ions shows an element-characteristic pattern. For the majority of the elements investigated these features are largely invariant against changes of the surface concentration of oxygen. For the others admission of oxygen strongly changes the relative intensities of oxide ions: a strong increase of MO 3 - signals (M stands for the respective element) is accompanied by a decrease of MO - and M - intensities. Different primary species frequently induce changes of both the relative and the absolute negative ion intensities. Carbon - in contrast to all other elements - does not show any detectable oxide ion emission but rather intense cluster ions Csub(n) - (detected up to n=12) whose intensities oscillate in dependence on n. (orig./RK)

  18. Hydrogen-water deuterium exchange over metal oxide promoted nickel catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Sagert, N H; Shaw-Wood, P E; Pouteau, R M.L. [Atomic Energy of Canada Ltd., Pinawa, Manitoba. Whiteshell Nuclear Research Establishment

    1975-11-01

    Specific rates have been measured for hydrogen-water deuterium isotope exchange over unsupported nickel promoted with about 20% of various metal oxides. The oxides used were Cr/sub 2/O/sub 3/, MoO/sub 2/, MnO, WO/sub 2/-WO/sub 3/, and UO/sub 2/. Nickel surface areas, which are required to measure the specific rates, were determined by hydrogen chemisorption. Specific rates were measured as a function of temperature in the range 353 to 573 K and as a function of the partial pressure of hydrogen and water over a 10-fold range of partial pressure. The molybdenum and tungsten oxides gave the highest specific rates, and manganese and uranium oxides the lowest. Chromium oxide was intermediate, although it gave the highest rate per gram of catalyst. The orders with respect to hydrogen and water over molybdenum oxide and tungsten oxide promoted nickel were consistent with a mechanism in which nickel oxide is formed from the reaction of water with the catalyst, and then is reduced by hydrogen. Over manganese and uranium oxide promoted catalysts, these orders are consistent with a mechanism in which adsorbed water exchanges with chemisorbed hydrogen atoms on the nickel surface. Chromium oxide is intermediate. It was noted that those oxides which favored the nickel oxide route had electronic work functions closest to those of metallic nickel and nickel oxide.

  19. The influence of H2O and CO2 on the reactivity of limestone for the oxidation of NH3

    DEFF Research Database (Denmark)

    Zijlma, G. J.; Jensen, Anker Degn; Johnsson, Jan Erik

    2000-01-01

    Although it is known that both H2O and CO2 reduce the catalytic activity of CaO, the kinetics of NO formation catalysed by CaO are often obtained without the presence of H2O or CO2. In this work, the catalytic activity for NH3 oxidation with three types of calcined limestone was tested under...... fluidised bed combustion conditions by adding H2O (0-12 vol%) and CO2 (0-16 vol%). All three types of limestones are active catalysts for the oxidation of NH3. When water is added the activity decreases sharply and already at 3 vol% water the NH3 conversion is reduced by 50%. When the water addition...... is stopped the water desorbs and the activity is restored. Addition of CO2 did not result in a decrease in the oxidation of NH3. Blocking of the active sites by adsorption of H2O is the main cause of the deactivation. A model with a Langmuir adsorption type was developed and both NO and NH3 exit...

  20. The oxidation of the aldehyde groups in dialdehyde starch

    NARCIS (Netherlands)

    Haaksman, I.K.; Besemer, A.C.; Jetten, J.M.; Timmermans, J.W.; Slaghek, T.M.

    2006-01-01

    This paper describes the difference in relative reactivity of the aldehyde groups present in dialdehyde starch towards different oxidising agents. The oxidation of dialdehyde starch with peracetic acid and sodium bromide leads to only partial oxidation to give mono-aldehyde-carboxy starch, while

  1. On the formation of nitrogen oxides during the combustion of partially pre-vaporized droplets

    Energy Technology Data Exchange (ETDEWEB)

    Moesl, Klaus Georg

    2012-12-12

    This study contributes to the topic of nitrogen oxide (NO{sub x}) formation at the level of single droplet and droplet array combustion. The influence of the degree of droplet vaporization and the influence of ambient conditions on NO{sub x} emissions are studied in detail by experiments as well as by numerical simulations. Consequently, this study illustrates correlations and dependencies of the most relevant parameters with respect to the formation of NO{sub x}. It merges the fields of droplet pre-vaporization, ignition, combustion, and exhaust gas formation, including a sophisticated approach to NO{sub x} determination. Even though the study was conducted in order to help understand the fundamental process of burning idealized droplets, the processes in spray combustion have also been taken into consideration within its scope. The portability of results obtained from those idealized droplet burning regimes is evaluated for real applications. Thus, this study may also help to derive design recommendations for liquid-fueled combustion devices. While the experimental part focuses on droplet array combustion, the numerical part highlights spherically symmetric single droplet combustion. By performing experiments in a microgravity environment, quasi-spherical conditions were facilitated for droplet burning, and comparability was provided for the experimental and numerical results. A novelty of the numerical part is the investigation of mechanisms of NO{sub x} formation under technically relevant conditions. This includes partial pre-vaporization of the droplets as well as droplet combustion in a hot exhaust gas environment, such as an aero-engine. The results show that the trade-off between ambient temperature and available oxygen determines the NO{sub x} formation of droplets burning in hot exhaust gas. If the ambient temperature is high and there is still sufficient oxygen for full oxidation of the fuel provided by the droplet, the maximum of NOx formation is

  2. Direct rate assessment of laccase catalysed radical formation in lignin by electron paramagnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Munk, Line; Andersen, Mogens Larsen; Meyer, Anne S.

    2017-01-01

    Laccases (EC 1.10.3.2) catalyse removal of an electron and a proton from phenolic hydroxyl groups, including phenolic hydroxyls in lignins, to form phenoxy radicals during reduction of O2. We employed electron paramagnetic resonance spectroscopy (EPR) for real time measurement of such catalytic...... to suspensions of the individual lignin samples produced immediate time and enzyme dose dependent increases in intensity in the EPR signal with g-values in the range 2.0047–2.0050 allowing a direct quantitative monitoring of the radical formation and thus allowed laccase enzyme kinetics assessment on lignin...... for the radical formation rate in organosolv lignin was determined by response surface methodology to pH 4.8, 33 °C and pH 5.8, 33 °C for the Tv laccase and the Mt laccase, respectively. The results verify direct radical formation action of fungal laccases on lignin without addition of mediators and the EPR...

  3. A comparative study of silver-graphene oxide nanocomposites as a recyclable catalyst for the aerobic oxidation of benzyl alcohol: Support effect

    Energy Technology Data Exchange (ETDEWEB)

    Zahed, Bahareh; Hosseini-Monfared, Hassan, E-mail: monfared@znu.ac.ir

    2015-02-15

    Graphical abstract: - Highlights: • Characteristics of three different graphene oxide (GO) are studied as a support for Ag nanoparticles. • The required conditions for a best support are determined. • For the first time the silver nanoparticles decorated GO as catalyst for aerobic oxidation of benzyl alcohol and the effects of the degree of reduction of GO on AgNPs on GO are reported. - Abstract: Three different nanocomposites of silver and graphene oxide, namely silver nanoparticles (AgNPs) immobilized on reduced graphene oxide (AgNPs/rGO), partially reduced graphene oxide (AgNPs/GO) and thiolated partially reduced graphene oxide (AgNPs/GOSH), were synthesized in order to compare their properties. Characterizations were carried out by infrared and UV–Vis and Raman spectroscopy, ICP, X-ray diffraction, SEM and TEM, confirming both the targeted chemical modification and the composite formation. The nanocomposites were successfully employed in the aerobic oxidation of benzyl alcohol at atmospheric pressure. AgNPs/GOSH is stable and recyclable catalyst which showed the highest activity in the aerobic oxidation of benzyl alcohol in the presence of N-hydroxyphthalimide (NHPI) to give benzaldehyde with 58% selectivity in 24 h at 61% conversion. The favorite properties of AgNPs/GOSH are reasonably attributed to the stable and well distributed AgNPs over GOSH due to strong adhesion between AgNPs and GOSH.

  4. Nucleophile-directed selectivity towards linear carbonates in the niobium pentaethoxide-catalysed cycloaddition of CO2 and propylene oxide

    KAUST Repository

    Dutta, Barnali

    2014-01-01

    Homoleptic Nb-complexes combined with selected organic nucleophiles generate very active catalytic systems for the cycloaddition of propylene oxide and CO2 under ambient conditions. An unprecedented reaction pathway towards an acyclic organic carbonate is observed when extending the study to [Nb(OEt)5] in combination with 4-dimethylamino-pyridine (DMAP) or tetra-n-butylammonium bromide (TBAB). Mechanistic insights of the reaction are provided based on experimental and spectroscopic evidences. This journal is © the Partner Organisations 2014.

  5. Optimization geometries of a vortex gliding-arc reactor for partial oxidation of methane

    International Nuclear Information System (INIS)

    Guofeng, Xu; Xinwei, Ding

    2012-01-01

    The effects of the geometry of gliding-arc reactor – such as distance between the electrodes, outlet diameter, and inlet position – on the reactor characteristics (methane conversion, hydrogen yield, and energy efficiency) have not been fully investigated. In this paper, AC gliding-arc reactors including the vortex flow configuration are designed to produce hydrogen from the methane by partial oxidation. The influence of vortex flow configuration on the reactor characteristics is also studied by varying the inlet position. When the inlet of the gliding-arc reactor is positioned close to the outlet, reverse vortex flow reactor (RVFR), the maximum energy efficiency reaches 50% and the yields of hydrogen and carbon monoxide are 40% and 65%, respectively. As the distance between electrodes increases from 5 mm to 15 mm, both hydrogen yield and energy efficiency increase approximately 10% for the RVFR. The energy efficiency and hydrogen yield are highest when the ratio of the outlet diameter to the inner diameter is 0.5 for the RVFR. Experimental results indicate that the flow field in the plasma reactor has an important influence on the reactor performance. Furthermore, hydrogen production increases as the number of feed gas flows in contact with the plasma zone increases. -- Highlights: ► Gliding-arc reactors were designed to produce hydrogen for studying the characteristics of the vortex flow reactor. ► Hydrogen yield of reverse vortex flow reactor was 10% higher than that of forward vortex flow reactor. ► Maximum energy efficiency was 50% for reverse vortex flow reactor. ► If discharge power was supplied to the reactors, the reactor performance increased with increasing distance between electrodes. ► Optimum ratio of the outlet and inner diameter was 1/2.

  6. Isotopic evidence for nitrous oxide production pathways in a partial nitritation-anammox reactor.

    Science.gov (United States)

    Harris, Eliza; Joss, Adriano; Emmenegger, Lukas; Kipf, Marco; Wolf, Benjamin; Mohn, Joachim; Wunderlin, Pascal

    2015-10-15

    Nitrous oxide (N2O) production pathways in a single stage, continuously fed partial nitritation-anammox reactor were investigated using online isotopic analysis of offgas N2O with quantum cascade laser absorption spectroscopy (QCLAS). N2O emissions increased when reactor operating conditions were not optimal, for example, high dissolved oxygen concentration. SP measurements indicated that the increase in N2O was due to enhanced nitrifier denitrification, generally related to nitrite build-up in the reactor. The results of this study confirm that process control via online N2O monitoring is an ideal method to detect imbalances in reactor operation and regulate aeration, to ensure optimal reactor conditions and minimise N2O emissions. Under normal operating conditions, the N2O isotopic site preference (SP) was much higher than expected - up to 40‰ - which could not be explained within the current understanding of N2O production pathways. Various targeted experiments were conducted to investigate the characteristics of N2O formation in the reactor. The high SP measurements during both normal operating and experimental conditions could potentially be explained by a number of hypotheses: i) unexpectedly strong heterotrophic N2O reduction, ii) unknown inorganic or anammox-associated N2O production pathway, iii) previous underestimation of SP fractionation during N2O production from NH2OH, or strong variations in SP from this pathway depending on reactor conditions. The second hypothesis - an unknown or incompletely characterised production pathway - was most consistent with results, however the other possibilities cannot be discounted. Further experiments are needed to distinguish between these hypotheses and fully resolve N2O production pathways in PN-anammox systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. 'Scaling-up is a craft not a science': Catalysing scale-up of health innovations in Ethiopia, India and Nigeria.

    Science.gov (United States)

    Spicer, Neil; Bhattacharya, Dipankar; Dimka, Ritgak; Fanta, Feleke; Mangham-Jefferies, Lindsay; Schellenberg, Joanna; Tamire-Woldemariam, Addis; Walt, Gill; Wickremasinghe, Deepthi

    2014-11-01

    Donors and other development partners commonly introduce innovative practices and technologies to improve health in low and middle income countries. Yet many innovations that are effective in improving health and survival are slow to be translated into policy and implemented at scale. Understanding the factors influencing scale-up is important. We conducted a qualitative study involving 150 semi-structured interviews with government, development partners, civil society organisations and externally funded implementers, professional associations and academic institutions in 2012/13 to explore scale-up of innovative interventions targeting mothers and newborns in Ethiopia, the Indian state of Uttar Pradesh and the six states of northeast Nigeria, which are settings with high burdens of maternal and neonatal mortality. Interviews were analysed using a common analytic framework developed for cross-country comparison and themes were coded using Nvivo. We found that programme implementers across the three settings require multiple steps to catalyse scale-up. Advocating for government to adopt and finance health innovations requires: designing scalable innovations; embedding scale-up in programme design and allocating time and resources; building implementer capacity to catalyse scale-up; adopting effective approaches to advocacy; presenting strong evidence to support government decision making; involving government in programme design; invoking policy champions and networks; strengthening harmonisation among external programmes; aligning innovations with health systems and priorities. Other steps include: supporting government to develop policies and programmes and strengthening health systems and staff; promoting community uptake by involving media, community leaders, mobilisation teams and role models. We conclude that scale-up has no magic bullet solution - implementers must embrace multiple activities, and require substantial support from donors and governments in

  8. Functional characterization of O-methyltransferases used to catalyse site-specific methylation in the post-tailoring steps of pradimicin biosynthesis.

    Science.gov (United States)

    Han, J W; Ng, B G; Sohng, J K; Yoon, Y J; Choi, G J; Kim, B S

    2018-01-01

    To identify the roles of the two O-methyltransferase homologous genes pdmF and pdmT in the pradimicin biosynthetic gene cluster of Actinomadura hibisca P157-2. Pradimicins are pentangular polyphenol antibiotics synthesized by bacterial type II polyketide synthases (PKSs) and tailoring enzymes. Pradimicins are naturally derivatized by combinatorial O-methylation at two positions (i.e., 7-OH and 11-OH) of the benzo[α]naphthacenequinone structure. PdmF and PdmT null mutants (PFKO and PTKO) were generated. PFKO produced the 11-O-demethyl shunt metabolites 11-O-demethylpradimicinone II (1), 11-O-demethyl-7-methoxypradimicinone II (2), 11-O-demethylpradimicinone I (3) and 11-O-demethylpradimicin A (4), while PTKO generated the 7-O-demethyl derivatives pradimicinone II (5) and 7-hydroxypradimicin A (6). Pradimicinones 1, 2, 3, and 5 were fed to a heterologous host Escherichia coli harbouring expression plasmid pET-22b::pdmF or pET-28a::pdmT. PdmF catalysed 11-O-methylation of pradimicinones 1, 2, and 3 regardless of O-methylation at the C-7 position, while PdmT was unable to catalyse 7-O-methylation when the C-11 hydroxyl group was methylated (5). PdmF and PdmT were involved in 11-O- and 7-O-methylations of the benzo[α]naphthacenequinone moiety of pradimicin, respectively. Methylation of the C-7 hydroxyl group precedes methylation of the C-11 hydroxyl group in pradimicin biosynthesis. This is the first reported demonstration of the functions of PdmF and PdmT for regiospecific O-methylation, which contributes to better understanding of the post-PKS modifications in pradimicin biosynthesis as well as to rational engineering of the pradimicin biosynthetic machinery. © 2017 The Society for Applied Microbiology.

  9. Modes of oxidation in SiC-reinforced mullite/ZrO2 composites: Oxidation vs depth behavior

    International Nuclear Information System (INIS)

    Lin, C.C.; Ruh, R.

    1999-01-01

    Two basic oxidation modes of composites with oxidizing particles in a non-oxidizing matrix have been observed. Mode I is defined as the complete oxidation of all the particles within an outer layer of the composite, while mode II exhibits partial oxidation of the particles, deep into the composite. Using microscopic observations to plot the silica layer thickness on particles (whiskers) vs the depth of the particles (whiskers) below the composite surface is proposed as a powerful means of categorizing and quantifying actual oxidation modes. Thus, mullite/SiC-whisker composites were found to have mode I oxidation behavior, while certain (mullite + ZrO 2 )/SiC-whisker composites were found to exhibit mode II behavior, followed by a mixed mode after severe exposures. It is proposed that mode II behavior appears when oxygen diffusivity in the matrix is much higher than that in the product oxide layer

  10. Biodiesel Derive Bio-oil of Hermetia illucens Pre-pupae Catalysed by Sulphonated Biochar

    Directory of Open Access Journals (Sweden)

    Leong Siew Yoong

    2018-01-01

    Full Text Available This study investigates the development of biochar catalyst from bamboo applied for biodiesel synthesis. A non-conventional biodiesel feedstock was used in the in-situ transesterification reaction. This non-conventional feedstock is obtained from an insect’s fly, the Hermetia illucens fly. Biochar derived from bamboo has been investigated as a promising catalyst for biodiesel synthesis. The biochar acid catalysts were prepared by sulphonation via impregnation with concentrated sulphuric acid. The prepared catalysts were investigated for their performance to catalyse in-situ transesterification via ultra-sonication of Hermetia illucens bio-oil. The effects of carbonisation time (1 hour and 2 hour and temperature (400°C, 500°C and 600°C as well as catalyst loading (5-20 wt% on oil basis on the transesterification yield were studied. Result showed that the highest yield of FAME obtained was 95.6% with catalyst loading of 15 wt% carbonized at 500°C for 2 hours. Sharp band of methyl ester functional groups were observed in the FTIR spectra at 1735-1750cm-1. The composition of this methyl ester was further deduced using gas chromatography and the fatty acid was predominantly lauric acid.

  11. Biodiesel Derive Bio-oil of Hermetia illucens Pre-pupae Catalysed by Sulphonated Biochar

    Science.gov (United States)

    Yoong Leong, Siew; Chong, Soo Shin; Chin, Kah Seng

    2018-03-01

    This study investigates the development of biochar catalyst from bamboo applied for biodiesel synthesis. A non-conventional biodiesel feedstock was used in the in-situ transesterification reaction. This non-conventional feedstock is obtained from an insect's fly, the Hermetia illucens fly. Biochar derived from bamboo has been investigated as a promising catalyst for biodiesel synthesis. The biochar acid catalysts were prepared by sulphonation via impregnation with concentrated sulphuric acid. The prepared catalysts were investigated for their performance to catalyse in-situ transesterification via ultra-sonication of Hermetia illucens bio-oil. The effects of carbonisation time (1 hour and 2 hour) and temperature (400°C, 500°C and 600°C) as well as catalyst loading (5-20 wt% on oil basis) on the transesterification yield were studied. Result showed that the highest yield of FAME obtained was 95.6% with catalyst loading of 15 wt% carbonized at 500°C for 2 hours. Sharp band of methyl ester functional groups were observed in the FTIR spectra at 1735-1750cm-1. The composition of this methyl ester was further deduced using gas chromatography and the fatty acid was predominantly lauric acid.

  12. Strategies for catalyst development: possibilities of the ``rational approach`` illustrated with partial oxidation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W.; Schedel-Niedrig, T.; Schloegl, R. [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin (Germany). Abt. Oberflaechenphysik

    1998-12-31

    The paper discusses two petrochemical selective oxidation reactions namely the practised formation of styrene (STY) and the desired oxidative functionalisation of propane. The present knowledge about the mode of operation of oxide catalysts is critically considered. The dehydrogenation of ethylbenzene (EB) should be described by an oxidehydration with water acting as oxidant. The potential role of the coke formed during catalytic reaction as co-catalyst will be discussed. Selective oxidation is connected with the participation of lattice oxygen mechanism which transforms unselective gas phase oxygen into selective oxygen. The atomistic description of this process is still quite unclear as well as the electron structural properties of the activated oxygen atom. The Role of solid state acidity as compared to the role of lattice oxygen is much less well investigated modern multiphase-multielement oxide (MMO) catalysts. The rationale is that the significant efforts made to improve current MMO systems by chemical modifications can be very much more fruitful when in a first step the mode of action of a catalyst is clarified on the basis of suitable experiments. Such time-consuming experiments at the beginning of a campaign for catalyst improvement pay back their investment in later stages of the project when strategies of chemical development can be derived on grounds of understanding. (orig.)

  13. Complete nitrification by Nitrospira bacteria

    DEFF Research Database (Denmark)

    Daims, Holger; Lebedeva, Elena V.; Pjevac, Petra

    2015-01-01

    Nitrification, the oxidation of ammonia via nitrite to nitrate, has always been considered to be a two-step process catalysed by chemolithoautotrophic microorganisms oxidizing either ammonia or nitrite. No known nitrifier carries out both steps, although complete nitrification should be energetic...

  14. Trace methane oxidation and the methane dependency of sulfate reduction in anaerobic granular sludge

    KAUST Repository

    Meulepas, Roel J.W.

    2010-05-01

    This study investigates the oxidation of labeled methane (CH4) and the CH4 dependence of sulfate reduction in three types of anaerobic granular sludge. In all samples, 13C-labeled CH4 was anaerobically oxidized to 13C-labeled CO2, while net endogenous CH4 production was observed. Labeled-CH4 oxidation rates followed CH4 production rates, and the presence of sulfate hampered both labeled-CH4 oxidation and methanogenesis. Labeled-CH4 oxidation was therefore linked to methanogenesis. This process is referred to as trace CH4 oxidation and has been demonstrated in methanogenic pure cultures. This study shows that the ratio between labeled-CH4 oxidation and methanogenesis is positively affected by the CH4 partial pressure and that this ratio is in methanogenic granular sludge more than 40 times higher than that in pure cultures of methanogens. The CH4 partial pressure also positively affected sulfate reduction and negatively affected methanogenesis: a repression of methanogenesis at elevated CH4 partial pressures confers an advantage to sulfate reducers that compete with methanogens for common substrates, formed from endogenous material. The oxidation of labeled CH 4 and the CH4 dependence of sulfate reduction are thus not necessarily evidence of anaerobic oxidation of CH4 coupled to sulfate reduction. © 2010 Federation of European Microbiological Societies.

  15. Enhanced selectivity in non-heme iron catalysed oxidation of alkanes with peracids : evidence for involvement of Fe(IV)=O species

    NARCIS (Netherlands)

    Berg, Tieme A. van den; Boer, Johannes W. de; Browne, Wesley R.; Roelfes, Gerard; Feringa, Bernard

    2004-01-01

    Catalytic alkane oxidation with high selectivity using peracids and an (N4Py)Fe complex is presented and the role of [(N4Py)Fe(IV)=O]2+ species, molecular oxygen and hydroxyl radicals in the catalysis is discussed.

  16. Seaweed Polysaccharides (Laminarin and Fucoidan) as Functional Ingredients in Pork Meat: An Evaluation of Anti-Oxidative Potential, Thermal Stability and Bioaccessibility

    Science.gov (United States)

    Moroney, Natasha C.; O’Grady, Michael N.; Lordan, Sinéad; Stanton, Catherine; Kerry, Joseph P.

    2015-01-01

    The anti-oxidative potential of laminarin (L), fucoidan (F) and an L/F seaweed extract was measured using the DPPH free radical scavenging assay, in 25% pork (longissimus thoracis et lumborum (LTL)) homogenates (TBARS) (3 and 6 mg/mL) and in horse heart oxymyoglobin (OxyMb) (0.1 and 1 mg/mL). The DPPH activity of fresh and cooked minced LTL containing L (100 mg/g; L100), F100 and L/F100,300, and bioaccessibility post in vitro digestion (L/F300), was assessed. Theoretical cellular uptake of antioxidant compounds was measured in a transwell Caco-2 cell model. Laminarin displayed no activity and fucoidan reduced lipid oxidation but catalysed OxyMb oxidation. Fucoidan activity was lowered by cooking while the L/F extract displayed moderate thermal stability. A decrease in DPPH antioxidant activity of 44.15% and 36.63%, after 4 and 20 h respectively, indicated theoretical uptake of L/F antioxidant compounds. Results highlight the potential use of seaweed extracts as functional ingredients in pork. PMID:25903283

  17. Seaweed Polysaccharides (Laminarin and Fucoidan as Functional Ingredients in Pork Meat: An Evaluation of Anti-Oxidative Potential, Thermal Stability and Bioaccessibility

    Directory of Open Access Journals (Sweden)

    Natasha C. Moroney

    2015-04-01

    Full Text Available The anti-oxidative potential of laminarin (L, fucoidan (F and an L/F seaweed extract was measured using the DPPH free radical scavenging assay, in 25% pork (longissimus thoracis et lumborum (LTL homogenates (TBARS (3 and 6 mg/mL and in horse heart oxymyoglobin (OxyMb (0.1 and 1 mg/mL. The DPPH activity of fresh and cooked minced LTL containing L (100 mg/g; L100, F100 and L/F100,300, and bioaccessibility post in vitro digestion (L/F300, was assessed. Theoretical cellular uptake of antioxidant compounds was measured in a transwell Caco-2 cell model. Laminarin displayed no activity and fucoidan reduced lipid oxidation but catalysed OxyMb oxidation. Fucoidan activity was lowered by cooking while the L/F extract displayed moderate thermal stability. A decrease in DPPH antioxidant activity of 44.15% and 36.63%, after 4 and 20 h respectively, indicated theoretical uptake of L/F antioxidant compounds. Results highlight the potential use of seaweed extracts as functional ingredients in pork.

  18. Reduced Graphene Oxide: Is it a promising catalyst for the electrochemistry of [UO2(CO3)3]4−/[UO2(CO3)3]5−?

    International Nuclear Information System (INIS)

    Guin, Saurav K.; Ambolikar, Arvind S.; Kamat, J.V.

    2015-01-01

    Highlights: • First report on aqueous electrochemistry of uranium on graphene materials. • Graphene(Nafion)/GC did not show applicability for the anionic analytes. • Electrochemically Reduced Graphene Oxide (ERGNO) was synthesised by cyclic voltammetry. • ERGNO catalysed the electrochemistry of [U VI O 2 (CO 3 ) 3 ] 4- /[U V O 2 (CO 3 ) 3 ] 5- . • Both the cathodic and anodic overpotentials of U(VI)/U(V) reaction decreased on ERGNO. - Abstract: The graphene has been emerging in the electrocatalysis and electroanalysis as the potent surface modifying agents for the working electrodes. However, the aqueous electrochemistry of the actinides on graphene (or graphene type materials) is yet unexplored. In this paper, the aqueous electrochemistry of [U VI O 2 (CO 3 ) 3 ] 4− /[U V O 2 (CO 3 ) 3 ] 5− redox couple was systematically investigated on electrochemically reduced graphene oxide (ERGNO) modified glassy carbon (GC) electrode in saturated Na 2 CO 3 solution (pH ∼12.3). This is the first report on aqueous actinide electrochemistry on graphene materials. The results showed that ERGNO could catalyse the redox chemistry of [U VI O 2 (CO 3 ) 3 ] 4− /[U V O 2 (CO 3 ) 3 ] 5− by reducing both the cathodic and anodic overpotentials compared to bare GC electrode. However, no enhancement in the peak current was observed on ERGNO electrode for the same reaction. Therefore, the present study introduces an appeal for a systematic investigation on the electrochemistry of the actinides at graphene materials to gear up their applications in nuclear technology

  19. Performance evaluation of a biodiesel fuelled transportation engine retrofitted with a non-noble metal catalysed diesel oxidation catalyst for controlling unregulated emissions.

    Science.gov (United States)

    Shukla, Pravesh Chandra; Gupta, Tarun; Agarwal, Avinash Kumar

    2018-02-15

    In present study, engine exhaust was sampled for measurement and analysis of unregulated emissions from a four cylinder transportation diesel engine using a state-of-the-art FTIR (Fourier transform infrared spectroscopy) emission analyzer. Test fuels used were Karanja biodiesel blend (B20) and baseline mineral diesel. Real-time emission measurements were performed for raw exhaust as well as exhaust sampled downstream of the two in-house prepared non-noble metal based diesel oxidation catalysts (DOCs) and a baseline commercial DOC based on noble metals. Two prepared non-noble metal based DOCs were based on Co-Ce mixed oxide and Lanthanum based perovskite catalysts. Perovskite based DOC performed superior compared to Co-Ce mixed oxide catalyst based DOC. Commercial noble metal based DOC was found to be the most effective in reducing unregulated hydrocarbon emissions in the engine exhaust, followed by the two in-house prepared non-noble metal based DOCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Formation of polymerization compounds during thermal oxidation of cottonseed oil, partially hydrogenated cottonseed oil and their blends

    Directory of Open Access Journals (Sweden)

    Barrera-Arellano, D. Laboratório de Óleos e Gorduras, Departa

    2006-09-01

    Full Text Available Samples of cottonseed oil, partially hydrogenated cottonseed oil and their blends, with iodine values between 60 and 110, tocopherol-stripped or not by aluminium oxide treatment, were submitted to thermal oxidation, at 180 °C, for 10 hours. Samples were collected at 0, 2, 5, 8 and 10 hours, for the determination of dimers and polymers (degradation compounds and of tocopherols. The influence of the degree of hydrogenation on the formation of dimers and polymers and the role of originally present tocopherols in the protection of fats and oils against thermal degradation was verified. The degradation curves for tocopherols showed a fast destruction rate for the tocopherols present in cottonseed fats and oil (α and γ-tocopherols, with residual levels close to zero after 10 hours under thermal oxidation conditions. Nevertheless, samples with their natural tocopherols presented a slower rate of thermal degradation. The unsaturation degree was apparently more important in the protection against thermal degradation than the content of tocopherolsMuestras de aceite de algodón, aceite de algodón parcialmente hidrogenado y sus mezclas, con índices de yodo de 60 a 110, tratadas o no con óxido de aluminio, fueron sometidas a termoxidación, a 180 °C, durante 10 horas. Se retiraron muestras en los tiempos 0, 2, 5, 8 y 10 horas, para determinación de dímeros y polímeros (compuestos de degradación y de tocoferoles. Se verificó la influencia del grado de hidrogenación sobre la formación de dímeros y polímeros, y también el papel de los tocoferoles originalmente presentes en el aceite y en las grasas, en la protección contra la degradación térmica. Las curvas de degradación de los tocoferoles mostraron una destrucción bastante rápida de los tocoferoles presentes en el aceite y en las grasas de algodón (α y γ-tocoferoles, con niveles residuales próximos a cero después de 10 horas de termoxidación. Aún así, muestras con sus

  1. Effects of pH and seasonal temperature variation on simultaneous partial nitrification and anammox in free-water surface wetlands.

    Science.gov (United States)

    He, Yuling; Tao, Wendong; Wang, Ziyuan; Shayya, Walid

    2012-11-15

    Design considerations to enhance simultaneous partial nitrification and anammox in constructed wetlands are largely unknown. This study examined the effects of pH and seasonal temperature variation on simultaneous partial nitrification and anammox in two free-water surface wetlands. In order to enhance partial nitrification and inhibit nitrite oxidation, furnace slag was placed on the rooting substrate to maintain different pH levels in the wetland water. The wetlands were batch operated for dairy wastewater treatment under oxygen-limited conditions at a cycle time of 7 d. Fluorescence in situ hybridization analysis found that aerobic ammonium oxidizing bacteria and anammox bacteria accounted for 42-73% of the bacterial populations in the wetlands, which was the highest relative abundance of ammonium oxidizing and anammox bacteria in constructed wetlands enhancing simultaneous partial nitrification and anammox. The two wetlands removed total inorganic nitrogen efficiently, 3.36-3.38 g/m(2)/d in the warm season with water temperatures at 18.9-24.9 °C and 1.09-1.50 g/m(2)/d in the cool season at 13.8-18.9 °C. Plant uptake contributed 2-45% to the total inorganic nitrogen removal in the growing season. A seasonal temperature variation of more than 6 °C would affect simultaneous partial nitrification and anammox significantly. Significant pH effects were identified only when the temperatures were below 18.9 °C. Anammox was the limiting stage of simultaneous partial nitrification and anammox in the wetlands. Water pH should be controlled along with influent ammonium concentration and temperature to avoid toxicity of free ammonia to anammox bacteria. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Oxidation behavior of V-Cr-Ti alloys in low-partial-pressure oxygen environments

    International Nuclear Information System (INIS)

    Natesan, K.; Uz, M.

    1998-01-01

    A test program is in progress at Argonne National Laboratory to evaluate the effect of pO 2 in the exposure environment on oxygen uptake, scaling kinetics, and scale microstructure in V-Cr-Ti alloys. The data indicate that the oxidation process follows parabolic kinetics in all of the environments used in the present study. From the weight change data, parabolic rate constants were evaluated as a function of temperature and exposure environment. The temperature dependence of the parabolic rate constants was described by an Arrhenius relationship. Activation energy for the oxidation process was fairly constant in the oxygen pressure range of 1 x 10 -6 to 1 x 10 -1 torr for both the alloys. The activation energy for oxidation in air was significantly lower than in low-pO 2 environments, and for oxidation in pure O 2 at 760 torr was much lower than in low-pO 2 environments. X-ray diffraction analysis of the specimens showed that VO 2 was the dominant phase in low-pO 2 environments, while V 2 O 5 was dominant in air and in pure oxygen at 76f0 torr

  3. Design and control of the oxygen partial pressure of UO2 in TGA using the humidification system

    International Nuclear Information System (INIS)

    Lee, S.; Knight, T.W.; Roberts, E.

    2015-01-01

    Highlights: • We focus on measurement of oxygen partial pressure and change of O/M ratio under specific conditions produced by the humidification system. • This shows that the humidification system is stable, accurate, and reliable enough to be used for experiments of the oxygen partial pressure measurement for the oxide fuels. • The humidification system has benefits of easy control and flexibility for producing various oxygen partial pressures with fixed hydrogen gas flow rate. - Abstract: The oxygen to uranium (O/U) ratio of UO 2±x is determined by the oxygen content of the sample and is affected by oxygen partial pressure (pO 2 ) of the surrounding gas. Oxygen partial pressure is controllable by several methods. A common method to produce different oxygen partial pressures is the use of equilibria of different reaction gases. There are two common methods: H 2 O/H 2 reaction and CO 2 /CO reaction. In this work, H 2 O/H 2 reaction using a humidifier was employed and investigated to ensure that this humidification system for oxygen partial pressure is stable and accurate for use in Thermogravimetric Analyzer (TGA) experiments with UO 2 . This approach has the further advantage of flexibility to make a wide range of oxygen partial pressure with fixed hydrogen gas flow rate only by varying temperature of water in the humidifier. The whole system for experiments was constructed and includes the humidification system, TGA, oxygen analyzer, and gas flow controller. Uranium dioxide (UO 2 ) samples were used for experiments and oxygen partial pressure was measured at the equilibrium state of stoichiometric UO 2.0 . Oxygen partial pressures produced by humidification (wet gas) system were compared to the approach using mixed dry gases (without humidification system) to demonstrate that the humidification system provides for more stable and accurate oxygen partial pressure control. This work provides the design, method, and analysis of a humidification system for

  4. Oxidation-induced crack healing in Ti3AlC2 ceramics

    NARCIS (Netherlands)

    Song, G.M.; Pei, Y.T.; Sloof, W.G.; Li, S.B.; Hosson, J.Th.M. De; Zwaag, S. van der

    Crack healing of Ti3AlC2 was investigated by oxidizing a partially pre-cracked sample. A crack near a notch was introduced into the sample by tensile deformation. After oxidation at 1100 degrees C in air for 2 h, the crack was completely healed, with oxidation products consisting primarily of

  5. N-Heterocyclic Carbene Complexes in Dehalogenation Reactions

    Science.gov (United States)

    Mas-Marzá, Elena; Page, Michael J.; Whittlesey, Michael K.

    Catalytic dehalogenation represents an underdeveloped transformation in M-NHC chemistry with a small number of reports detailing the reactivity of Co, Ru, Ni and Pd catalysts. In situ generated nickel and palladium NHC complexes catalyse the hydrodechlorination of aryl chlorides. Lower coordinate Ni complexes are proposed to operate in the hydrodefluorination of mono- and poly-fluorinated substrates. The single example of Ru-NHC catalysed hydrodefluorination of fully and partially fluorinated aromatic substrates is characterised by an unusual regioselectivity. The highly regioselective dehydrohalogenation of relatively unreactive alkyl halide substrates is achieved with a cobalt NHC catalyst.

  6. Spectral and Mechanistic Investigation of Oxidative Decarboxylation of Phenylsulfinylacetic Acid by Cr(VI)

    International Nuclear Information System (INIS)

    Subramaniam, Perumal; Selvi, Natesan Thamil; Devi, Soundarapandian Sugirtha

    2014-01-01

    The oxidative decarboxylation of phenylsulfinylacetic acid (PSAA) by Cr(VI) in 20% acetonitrile . 80% water (v/v) medium follows overall second order kinetics, first order each with respect to [PSAA] and [Cr(VI)] at constant [H + ] and ionic strength. The reaction is acid catalysed, the order with respect to [H + ] is unity and the active oxidizing species is found to be HCrO 3 + . The reaction mechanism involves the rate determining nucleophilic attack of sulfur atom of PSAA on chromium of HCrO 3 + forming a sulfonium ion intermediate. The intermediate then undergoes α,β-cleavage leading to the liberation of CO 2 . The product of the reaction is found to be methyl phenyl sulfone. The operation of substituent effect shows that PSAA containing electron-releasing groups in the meta- and para-positions accelerate the reaction rate while electron withdrawing groups retard the rate. An excellent correlation is found to exist between log k 2 and Hammett σ constants with a negative value of reaction constant. The ρ value decreases with increase in temperature evidencing the high reactivity and low selectivity in the case of substituted PSAAs

  7. Stability of solid oxide fuel cell materials

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, T.R.; Bates, J.L.; Chick, L.A. [Pacific Northwest Lab., Richland, WA (United States)

    1996-04-01

    Interconnection materials in a solid oxide fuel cell are exposed to both highly oxidizing conditions at the cathode and to highly reducing conditions at the anode. The thermal expansion characteristics of substituted lanthanum and yttrium chromite interconnect materials were evaluated by dilatometry as a function of oxygen partial pressures from 1 atm to 10{sup -18} atm, controlled using a carbon dioxide/hydrogen buffer.

  8. Ammonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium in two US Great Basin hot springs with abundant ammonia-oxidizing archaea.

    Science.gov (United States)

    Dodsworth, Jeremy A; Hungate, Bruce A; Hedlund, Brian P

    2011-08-01

    Many thermophiles catalyse free energy-yielding redox reactions involving nitrogenous compounds; however, little is known about these processes in natural thermal environments. Rates of ammonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium (DNRA) were measured in source water and sediments of two ≈ 80°C springs in the US Great Basin. Ammonia oxidation and denitrification occurred mainly in sediments. Ammonia oxidation rates measured using (15)N-NO(3)(-) pool dilution ranged from 5.5 ± 0.8 to 8.6 ± 0.9 nmol N g(-1) h(-1) and were unaffected or only mildly stimulated by amendment with NH(4) Cl. Denitrification rates measured using acetylene block ranged from 15.8 ± 0.7 to 51 ± 12 nmol N g(-1) h(-1) and were stimulated by amendment with NO(3)(-) and complex organic compounds. The DNRA rate in one spring sediment measured using an (15)N-NO(3)(-) tracer was 315 ± 48 nmol N g(-1) h(-1). Both springs harboured distinct planktonic and sediment microbial communities. Close relatives of the autotrophic, ammonia-oxidizing archaeon 'Candidatus Nitrosocaldus yellowstonii' represented the most abundant OTU in both spring sediments by 16S rRNA gene pyrotag analysis. Quantitative PCR (qPCR) indicated that 'Ca. N. yellowstonii'amoA and 16S rRNA genes were present at 3.5-3.9 × 10(8) and 6.4-9.0 × 10(8) copies g(-1) sediment. Potential denitrifiers included members of the Aquificales and Thermales. Thermus spp. comprised <1% of 16S rRNA gene pyrotags in both sediments and qPCR for T. thermophilus narG revealed sediment populations of 1.3-1.7 × 10(6) copies g(-1) sediment. These data indicate a highly active nitrogen cycle (N-cycle) in these springs and suggest that ammonia oxidation may be a major source of energy fuelling primary production. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  9. Oxidation during reflood of reactor core with melting cladding

    Energy Technology Data Exchange (ETDEWEB)

    Siefken, L.J.; Allison, C.M.; Davis, K.L. [and others

    1995-09-01

    Models were recently developed and incorporated into the SCDAP/RELAP5 code for calculating the oxidation of fuel rods during cladding meltdown and reflood. Experiments have shown that a period of intense oxidation may occur when a hot partially oxidized reactor core is reflooded. This paper offers an explanation of the cladding meltdown and oxidation processes that cause this intense period of oxidation. Models for the cladding meltdown and oxidation processes are developed. The models are assessed by simulating a severe fuel damage experiment that involved reflood. The models for cladding meltdown and oxidation were found to improve calculation of the temperature and oxidation of fuel rods during the period in which hot fuel rods are reflooded.

  10. Lipase-catalysed acylation of starch and determination of the degree of substitution by methanolysis and GC

    Science.gov (United States)

    2010-01-01

    Background Natural polysaccharides such as starch are becoming increasingly interesting as renewable starting materials for the synthesis of biodegradable polymers using chemical or enzymatic methods. Given the complexity of polysaccharides, the analysis of reaction products is challenging. Results Esterification of starch with fatty acids has traditionally been monitored by saponification and back-titration, but in our experience this method is unreliable. Here we report a novel GC-based method for the fast and reliable quantitative determination of esterification. The method was used to monitor the enzymatic esterification of different starches with decanoic acid, using lipase from Thermomyces lanuginosus. The reaction showed a pronounced optimal water content of 1.25 mL per g starch, where a degree of substitution (DS) of 0.018 was obtained. Incomplete gelatinization probably accounts for lower conversion with less water. Conclusions Lipase-catalysed esterification of starch is feasible in aqueous gel systems, but attention to analytical methods is important to obtain correct DS values. PMID:21114817

  11. Sn-Beta zeolites with borate salts catalyse the epimerization of carbohydrates via an intramolecular carbon shift

    Science.gov (United States)

    Gunther, William R.; Wang, Yuran; Ji, Yuewei; Michaelis, Vladimir K.; Hunt, Sean T.; Griffin, Robert G.; Román-Leshkov, Yuriy

    2012-01-01

    Carbohydrate epimerization is an essential technology for the widespread production of rare sugars. In contrast to other enzymes, most epimerases are only active on sugars substituted with phosphate or nucleotide groups, thus drastically restricting their use. Here we show that Sn-Beta zeolite in the presence of sodium tetraborate catalyses the selective epimerization of aldoses in aqueous media. Specifically, a 5 wt% aldose (for example, glucose, xylose or arabinose) solution with a 4:1 aldose:sodium tetraborate molar ratio reacted with catalytic amounts of Sn-Beta yields near-equilibrium epimerization product distributions. The reaction proceeds by way of a 1,2 carbon shift wherein the bond between C-2 and C-3 is cleaved and a new bond between C-1 and C-3 is formed, with C-1 moving to the C-2 position with an inverted configuration. This work provides a general method of performing carbohydrate epimerizations that surmounts the main disadvantages of current enzymatic and inorganic processes. PMID:23047667

  12. Lipase-catalysed acylation of starch and determination of the degree of substitution by methanolysis and GC

    Directory of Open Access Journals (Sweden)

    Hauer Bernhard

    2010-11-01

    Full Text Available Abstract Background Natural polysaccharides such as starch are becoming increasingly interesting as renewable starting materials for the synthesis of biodegradable polymers using chemical or enzymatic methods. Given the complexity of polysaccharides, the analysis of reaction products is challenging. Results Esterification of starch with fatty acids has traditionally been monitored by saponification and back-titration, but in our experience this method is unreliable. Here we report a novel GC-based method for the fast and reliable quantitative determination of esterification. The method was used to monitor the enzymatic esterification of different starches with decanoic acid, using lipase from Thermomyces lanuginosus. The reaction showed a pronounced optimal water content of 1.25 mL per g starch, where a degree of substitution (DS of 0.018 was obtained. Incomplete gelatinization probably accounts for lower conversion with less water. Conclusions Lipase-catalysed esterification of starch is feasible in aqueous gel systems, but attention to analytical methods is important to obtain correct DS values.

  13. Partial muscle carnitine palmitoyltransferase-A deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Ross, N.S.; Hoppel, C.L.

    1987-01-02

    After initiation of ibuprofen therapy, a 45-year-old woman developed muscle weakness and tenderness with rhabdomyolysis, culminating in respiratory failure. A muscle biopsy specimen showed a vacuolar myopathy, and markedly decreased muscle carnitine content and carnitine palmitoyltransferase activity. Following recovery, muscle carnitine content was normal but carnitine palmitoyltransferase activity was still abnormally low. The ratio of palmitoyl-coenzyme A plus carnitine to palmitoylcarnitine oxidation by muscle mitochondria isolated from the patient was markedly decreased. The authors conclude that transiently decreased muscle carnitine content interacted with partial deficiency of carnitine palmitoyltransferase-A to produce rhabdomyolysis and respiratory failure and that ibuprofen may have precipitated the clinical event.

  14. Partial muscle carnitine palmitoyltransferase-A deficiency

    International Nuclear Information System (INIS)

    Ross, N.S.; Hoppel, C.L.

    1987-01-01

    After initiation of ibuprofen therapy, a 45-year-old woman developed muscle weakness and tenderness with rhabdomyolysis, culminating in respiratory failure. A muscle biopsy specimen showed a vacuolar myopathy, and markedly decreased muscle carnitine content and carnitine palmitoyltransferase activity. Following recovery, muscle carnitine content was normal but carnitine palmitoyltransferase activity was still abnormally low. The ratio of palmitoyl-coenzyme A plus carnitine to palmitoylcarnitine oxidation by muscle mitochondria isolated from the patient was markedly decreased. The authors conclude that transiently decreased muscle carnitine content interacted with partial deficiency of carnitine palmitoyltransferase-A to produce rhabdomyolysis and respiratory failure and that ibuprofen may have precipitated the clinical event

  15. Evaluation of thermodynamic and kinetic stability of P-type transparent conducting oxide, SrCu2O2 under various oxygen partial pressures

    International Nuclear Information System (INIS)

    Sugimoto, Takayuki; Yanagawa, Atsumi; Hashimoto, Takuya

    2012-01-01

    Highlights: ▶ Thermodynamic and kinetic stabilities of SrCu 2 O 2 under various P(O 2 ) was estimated. ▶ The reaction rate for decomposition decreased with decreasing temperature and P(O 2 ). ▶ The activation energy for decomposition of SrCu 2 O 2 was estimated to be 66 kJ/mol. ▶ SrCu 2 O 2 showed less stability than those of other transparent p-type semiconductors. - Abstract: Kinetic stability of transparent p-type conducting oxide, SrCu 2 O 2 , has been evaluated by using X-ray diffraction measurement and thermogravimetry. It was revealed that SrCu 2 O 2 decomposed to mixture of CuO and Sr 14 Cu 24 O 41 in air at temperatures above 300 °C. The decomposition reaction rate can be successfully explained by kinetic model assuming first-order chemical reaction. The rate constant can be suppressed with decreasing temperature and oxygen partial pressure. The activation energy for decomposition reaction of SrCu 2 O 2 calculated from Arrhenius plot was 66 kJ/mol, which was lower than those of other transparent p-type semiconductors such as CuAlO 2 and CuGaO 2 . The low decomposition temperature and activation energy for decomposition indicate that chemical stability of SrCu 2 O 2 is far lower than those of other p-type conducting oxides.

  16. High temperature oxidation behaviour of nanostructured cermet coatings in a mixed CO2 - O2 environment

    Science.gov (United States)

    Farrokhzad, M. A.; Khan, T. I.

    2014-06-01

    Nanostructured ceramic-metallic (cermet) coatings composed of nanosized ceramic particles (α-Al2O3 and TiO2) dispersed in a nickel matrix were co-electrodeposited and then oxidized at 500°C, 600°C and 700°C in a mixed gas using a Thermo-gravimetric Analysis (TGA) apparatus. The mixed gas was composed of 15% CO2, 10% O2 and 75% N2. This research investigates the effects of CO2 and O2 partial pressures on time-depended oxidation rates for coatings and compared them to the results from atmospheric oxidation under similar temperatures. The increase in partial pressure of oxygen due to the presence of CO2 at each tested temperature was calculated and correlated to the oxidation rate of the coatings. The results showed that the presence of CO2 in the system increased the oxidation rate of cermet coatings when compared to atmospheric oxidation at the same temperature. It was also shown that the increase in the oxidation rate is not the result of CO2 acting as the primary oxidant but as a secondary oxidant which results in an increase of the total partial pressure of oxygen and consequently higher oxidation rates. The WDS and XRD analyses results showed that the presence of nanosized TiO2 particles in a nickel matrix can improve oxidation behaviour of the coatings by formation of Ni-Ti compounds on oxidizing surface of the coating which was found beneficiary in reducing the oxidation rates for cermet coatings.

  17. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme

    Science.gov (United States)

    Gallage, Nethaji J.; Hansen, Esben H.; Kannangara, Rubini; Olsen, Carl Erik; Motawia, Mohammed Saddik; Jørgensen, Kirsten; Holme, Inger; Hebelstrup, Kim; Grisoni, Michel; Møller, Birger Lindberg

    2014-01-01

    Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural vanilla flavour obtained from cured vanilla pods. Here we show that a single hydratase/lyase type enzyme designated vanillin synthase (VpVAN) catalyses direct conversion of ferulic acid and its glucoside into vanillin and its glucoside, respectively. The enzyme shows high sequence similarity to cysteine proteinases and is specific to the substitution pattern at the aromatic ring and does not metabolize caffeic acid and p-coumaric acid as demonstrated by coupled transcription/translation assays. VpVAN localizes to the inner part of the vanilla pod and high transcript levels are found in single cells located a few cell layers from the inner epidermis. Transient expression of VpVAN in tobacco and stable expression in barley in combination with the action of endogenous alcohol dehydrogenases and UDP-glucosyltransferases result in vanillyl alcohol glucoside formation from endogenous ferulic acid. A gene encoding an enzyme showing 71% sequence identity to VpVAN was identified in another vanillin-producing plant species Glechoma hederacea and was also shown to be a vanillin synthase as demonstrated by transient expression in tobacco. PMID:24941968

  18. Oxidation of vanadium metal in oxygen plasma and their characterizations

    Science.gov (United States)

    Sharma, Rabindar Kumar; Singh, Megha; Kumar, Prabhat; Reddy, G. B.

    2015-09-01

    In this report, the role of oxygen plasma on oxidation of vanadium (V) metal and the volatilization of its oxides has been studied as a function of source (V metal strip) temperature (Tss) and oxygen partial pressure (PO2). The presence of O2-plasma not only enhances the oxidation rate but also ficilitates in transport of oxide molecules from metal to substrate, as confirmed by the simultanous deposition of oxide film onto substrate. Both the oxidized metal strips and oxide films deposited on substrates are characterized separately. The structural and vibrational results evidence the presence of two different oxide phases (i.e. orthorhombic V2O5 and monocilinic V O2) in oxide layers formed on V metal strips, whereas the oxide films deposited on substrates exhibit only orthorhombic phase (i.e. V2O5). The decrease in peak intensities recorded from heated V metal strips on increasing Tss points out the increment in the rate of oxide volatilization, which also confirms by the oxide layer thickness measurements. The SEM results show the noticeable surface changes on V-strips as the function of Tss and PO2 and their optimum values are recorded to be 500 ˚ C and 7.5 × 10-2 Torr, respectively to deposit maximum thick oxide film on substrate. The formation of microcracks on oxidized V-strips, those responsible to countinue oxidation is also confirmed by SEM results. The compositional study of oxide layers formed on V-strips, corroborates their pureness and further assures about the existence of mixed oxide phases. The effect of oxygen partial pressure on oxidation of V-metal has also been discussed in the present report. All the results are well in agreement to each other.

  19. Extinction of laminar partially premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Suresh K. [Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor Street, Room 2039, MC-251, Chicago, IL 60607-7022 (United States)

    2009-12-15

    Flame extinction represents one of the classical phenomena in combustion science. It is important to a variety of combustion systems in transportation and power generation applications. Flame extinguishment studies are also motivated from the consideration of fire safety and suppression. Such studies have generally considered non-premixed and premixed flames, although fires can often originate in a partially premixed mode, i.e., fuel and oxidizer are partially premixed as they are transported to the reaction zone. Several recent investigations have considered this scenario and focused on the extinction of partially premixed flames (PPFs). Such flames have been described as hybrid flames possessing characteristics of both premixed and non-premixed flames. This paper provides a review of studies dealing with the extinction of PPFs, which represent a broad family of flames, including double, triple (tribrachial), and edge flames. Theoretical, numerical and experimental studies dealing with the extinction of such flames in coflow and counterflow configurations are discussed. Since these flames contain both premixed and non-premixed burning zones, a brief review of the dilution-induced extinction of premixed and non-premixed flames is also provided. For the coflow configuration, processes associated with flame liftoff and blowout are described. Since lifted non-premixed jet flames often contain a partially premixed or an edge-flame structure prior to blowout, the review also considers such flames. While the perspective of this review is broad focusing on the fundamental aspects of flame extinction and blowout, results mostly consider flame extinction caused by the addition of a flame suppressant, with relevance to fire suppression on earth and in space environment. With respect to the latter, the effect of gravity on the extinction of PPFs is discussed. Future research needs are identified. (author)

  20. Identification of a novel Arabidopsis thaliana nitric oxide-binding molecule with guanylate cyclase activity in vitro

    KAUST Repository

    Mulaudzi, Takalani

    2011-09-01

    While there is evidence of nitric oxide (NO)-dependent signalling via the second messenger cyclic guanosine 3′,5′-monophosphate (cGMP) in plants, guanylate cyclases (GCs), enzymes that catalyse the formation of cGMP from guanosine 5′-triphosphate (GTP) have until recently remained elusive and none of the candidates identified to-date are NO-dependent. Using both a GC and heme-binding domain specific (H-NOX) search motif, we have identified an Arabidopsis flavin monooxygenase (At1g62580) and shown electrochemically that it binds NO, has a higher affinity for NO than for O 2 and that this molecule can generate cGMP from GTP in vitro in an NO-dependent manner. © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. Oxidation of boron carbide at high temperatures

    International Nuclear Information System (INIS)

    Steinbrueck, Martin

    2005-01-01

    The oxidation kinetics of various types of boron carbides (pellets, powder) were investigated in the temperature range between 1073 and 1873 K. Oxidation rates were measured in transient and isothermal tests by means of mass spectrometric gas analysis. Oxidation of boron carbide is controlled by the formation of superficial liquid boron oxide and its loss due to the reaction with surplus steam to volatile boric acids and/or direct evaporation at temperatures above 1770 K. The overall reaction kinetics is paralinear. Linear oxidation kinetics established soon after the initiation of oxidation under the test conditions described in this report. Oxidation is strongly influenced by the thermohydraulic boundary conditions and in particular by the steam partial pressure and flow rate. On the other hand, the microstructure of the B 4 C samples has a limited influence on oxidation. Very low amounts of methane were produced in these tests

  2. Cast Partial Denture versus Acrylic Partial Denture for Replacement of Missing Teeth in Partially Edentulous Patients

    Directory of Open Access Journals (Sweden)

    Pramita Suwal

    2017-03-01

    Full Text Available Aim: To compare the effects of cast partial denture with conventional all acrylic denture in respect to retention, stability, masticatory efficiency, comfort and periodontal health of abutments. Methods: 50 adult partially edentulous patient seeking for replacement of missing teeth having Kennedy class I and II arches with or without modification areas were selected for the study. Group-A was treated with cast partial denture and Group-B with acrylic partial denture. Data collected during follow-up visit of 3 months, 6 months, and 1 year by evaluating retention, stability, masticatory efficiency, comfort, periodontal health of abutment. Results: Chi-square test was applied to find out differences between the groups at 95% confidence interval where p = 0.05. One year comparison shows that cast partial denture maintained retention and stability better than acrylic partial denture (p< 0.05. The masticatory efficiency was significantly compromising from 3rd month to 1 year in all acrylic partial denture groups (p< 0.05. The comfort of patient with cast partial denture was maintained better during the observation period (p< 0.05. Periodontal health of abutment was gradually deteriorated in all acrylic denture group (p

  3. Study of the oxidation mechanisms between impurities and surfaces applied to the future gas-cooled nuclear reactors

    International Nuclear Information System (INIS)

    Duval, A.

    2010-01-01

    Inconel 617, main candidate for the heat exchangers of the gas-cooled next generation of nuclear reactors has been investigated. Two different problems occurring in the cooling system splits the study into two parts. Oxidizing impurities contained in the coolant can cause severe corrosion at 850 C. Radioactive impurities, coming from the fission reaction of the core can, in another hand contaminate the cooling loop and cause radioprotection problem for the maintenance and dismantling operations. Firstly, oxidizing gas partial pressure influence on oxidation of IN 617 at 850 C was investigated varying oxygen and water vapour partial pressure between 1.10 -5 mbar and 200 mbar. Oxide layers were characterized using XPS, SEM, EDX, GD-OES, XRD. Influence of partial pressure on layers structure and composition was determined. Effect of water vapour and partial pressure on growth mechanisms were also investigated. The second part of this study is focused on diffusion of Ag, stable isotope of Ag-110m in IN617 alloy and in the oxide layer forming at its surface at 850 C. Concentration profiles were obtained by GD-OES calibrated analysis. Diffusion coefficient could be obtained from these diffusion profiles: volume diffusion and grain boundary diffusion coefficients for the diffusion in the alloy, and an apparent diffusion coefficient for the diffusion in the oxide, due to the porosity of the structure. (author) [fr

  4. β-Naphthoflavone enhances oxidative stress responses and the induction of preneoplastic lesions in a diethylnitrosamine-initiated hepatocarcinogenesis model in partially hepatectomized rats

    International Nuclear Information System (INIS)

    Dewa, Yasuaki; Nishimura, Jihei; Muguruma, Masako; Jin, Meilan; Saegusa, Yukie; Okamura, Toshiya; Tasaki, Masako; Umemura, Takashi; Mitsumori, Kunitoshi

    2008-01-01

    The tumour-promoting effects of β-naphthoflavone (BNF), a novel aryl hydrocarbon receptor (AhR) agonist, were investigated using a medium-term hepatocarcinogenesis model in rats. Six-week-old male F344 rats received an intraperitoneal injection of N-diethylnitrosamine (DEN) at a dose of 200 mg/kg body weight and were fed a diet containing 0% (basal diet), 0.5% or 1% BNF for 6 weeks from 2 weeks after DEN treatment. All animals were subjected to two-thirds partial hepatectomy 1 week after the BNF treatment. The number and area of glutathione S-transferase placental form (GST-P) positive foci significantly increased in the livers of rats treated with BNF with concomitantly increased cell proliferation compared to those in the livers of the DEN alone group. Global gene expression analysis and subsequent quantitative real-time reverse transcription-polymerase chain reaction revealed that BNF induced not only the 'AhR gene battery'Cyp1a1, Cyp1a2, Cyp1b1, Nqo1, Aldh3a1 and Ugt1a6 but also the transcription factor NF-E2-related factor 2 (Nrf2)-regulated genes such as Gstm1, Gpx2, Akr7a3 and Yc2 (and also Nqo1), presumably due to the adaptive response against BNF-triggered oxidative stress responses. Reactive oxygen species production increased in microsomes isolated from the livers of BNF-treated rats, and this enhancement was suppressed by the P450 inhibitor SKF-525A. Furthermore, BNF enhanced oxidative DNA damage and lipid peroxidation, estimated by the levels of 8-hydroxydeoxyguanosine (8-OHdG) and thiobarbituric acid-reactive substances. These results suggest that the administration of BNF at a high dose and over a long-term enhance oxidative stress responses which may contribute to its hepatocarcinogenic potential in rats

  5. The utilization of aconate and itaconate by Micrococcus sp

    Science.gov (United States)

    Cooper, R. A.; Itiaba, K.; Kornberg, H. L.

    1965-01-01

    1. An organism, identified as Micrococcus sp., was isolated by elective culture on aconate; it also grew on itaconate. 2. Washed suspensions of the aconate-grown organism readily oxidized intermediates of the tricarboxylic acid cycle, aconate and succinic semialdehyde, but not itaconate. Itaconate-grown cells oxidized tricarboxylic acid-cycle intermediates, succinic semialdehyde and itaconate, but not aconate. Succinate-grown cells oxidized neither itaconate nor aconate. 3. Extracts of aconate-grown cells catalysed the formation of succinic semialdehyde and carbon dioxide, in equimolar amounts, from aconate. In the presence of NAD or NADP, succinic semialdehyde was oxidized to succinate with concomitant reduction of the coenzyme. 4. Extracts of itaconate-grown cells catalysed the formation of pyruvate and acetyl-CoA from itaconyl-CoA. 5. Key enzymes involved in the formation of succinate from aconate, and of pyruvate and acetyl-CoA from itaconate, were distinct and inducible: their formation preceded growth on the appropriate substrate. PMID:14342240

  6. The possible role of cerium oxide (CeO 2 ) nanoparticles in ...

    African Journals Online (AJOL)

    Results showed that CeO2NPs resulted in partial neuroprotection against disturbances in motor performance. It also partially decreased apoptosis and oxidative stress in preventive group, while it failed to increase striatal dopamine level as compared to untreated rats. The present study verified some neuroprotective effects ...

  7. A theoretical study on the mechanism of hydrogen evolution on non-precious partially oxidized nickel-based heterostructures for fuel cells.

    Science.gov (United States)

    Pan, Xinju; Zhou, Gang

    2018-03-28

    It is desirable, yet challenging, to utilize non-precious metals instead of noble-metals as efficient catalysts in the renewable energy manufacturing industry. Using first principles calculations, we study the structural characteristics of partially oxidized nickel-based nanoheterostructures (NiO/Ni NHSs), and the interfacial effects on hydrogen evolution. The origin of the enhanced hydrogen evolution performance is discussed at the microscopic level. This study identifies two types of active sites of the exposed Ni surface available for the hydrogen evolution reaction (HER). One is the hcp-hollow sites near the perimeter boundary that exhibit a more excellent HER performance than platinum (Pt), and the other the second nearest neighbor fcc-hollow sites away from the boundary that exhibit a similar performance to Pt. The interfacial effects result from the competitive charge transfer between NiO and Ni surfaces in NHSs, and enhance the reactivity of NiO/Ni NHSs by shifting the d-states of surface atoms down in energy. The illumination of the mechanism would be helpful for the design of more efficient and cheap transition metal-based catalysts.

  8. Participation of oxidized sulfur center in intramolecular free radical processes in the model organic compounds of biological importance

    International Nuclear Information System (INIS)

    Pogocki, D.M.

    2004-01-01

    The pathogenesis of neurodegenerative diseases such as prion diseases (Creutzfeldt-Jacob disease) and Alzheimer's disease is strongly associated with the presence of β-amyloid peptide (βA) and prion protein (hPrP) in the brain tissue. Both macromolecules contain methionine (Met) residues. Their presence seems to be responsible for unique redox properties of βA and hPrP. These residues may undergo relatively easy autooxidation and/or metal-catalysed oxidation. The presented studies were focused on the potential function of Met residues as antioxidants or pro-oxidants and on their role in radical-mediated oxidation of peptides and proteins. The role of S-, O-, N- and C-centered radicals generated in various oligopeptides containing Met and relevant model compounds has been examined in detail with respect to formation of 2c-3e bonds, redox processes, fragmentation and their mutual interconversion. In order to achieve these goals several experimental radiation, photochemical, and molecular modelling methods were applied. The experimental and molecular modelling results show significant influence of functional neighbouring groups and conformational flexibility of a peptide backbone on the oxidative reduction pathway in oligopeptides containing single and multiple Met residues. The results presented here allow for better understanding of the known propensities of βA and hPrP to reduce transition metals and to form reactive oxygen species and free radicals. (author)

  9. Oxygen transport by oxygen potential gradient in dense ceramic oxide membranes

    Energy Technology Data Exchange (ETDEWEB)

    Maiya, P.S.; Balachandran, U.; Dusek, J.T.; Mieville, R.L. [Argonne National Lab., IL (United States). Energy Technology Div.; Kleefisch, M.S.; Udovich, C.A. [Amoco Exploration/Production, Naperville, IL (United States)

    1996-05-01

    Numerous studies have been conducted in recent years on the partial oxidation of methane to synthesis gas (syngas: CO + H{sub 2}) with air as the oxidant. In partial oxidation, a mixed-oxide ceramic membrane selectively transports oxygen from the air; this transport is driven by the oxygen potential gradient. Of the several ceramic materials the authors have tested, a mixed oxide based on the Sr-Fe-Co-O system has been found to be very attractive. Extensive oxygen permeability data have been obtained for this material in methane conversion experiments carried out in a reactor. The data have been analyzed by a transport equation based on the phenomenological theory of diffusion under oxygen potential gradients. Thermodynamic calculations were used to estimate the driving force for the transport of oxygen ions. The results show that the transport equation deduced from the literature describes the permeability data reasonably well and can be used to determine the diffusion coefficients and the associated activation energy of oxygen ions in the ceramic membrane material.

  10. High temperature oxidation behaviour of nanostructured cermet coatings in a mixed CO2 – O2 environment

    International Nuclear Information System (INIS)

    Farrokhzad, M A; Khan, T I

    2014-01-01

    Nanostructured ceramic-metallic (cermet) coatings composed of nanosized ceramic particles (α-Al 2 O3 and TiO 2 ) dispersed in a nickel matrix were co-electrodeposited and then oxidized at 500°C, 600°C and 700°C in a mixed gas using a Thermo-gravimetric Analysis (TGA) apparatus. The mixed gas was composed of 15% CO 2 , 10% O 2 and 75% N 2 . This research investigates the effects of CO 2 and O 2 partial pressures on time-depended oxidation rates for coatings and compared them to the results from atmospheric oxidation under similar temperatures. The increase in partial pressure of oxygen due to the presence of CO 2 at each tested temperature was calculated and correlated to the oxidation rate of the coatings. The results showed that the presence of CO 2 in the system increased the oxidation rate of cermet coatings when compared to atmospheric oxidation at the same temperature. It was also shown that the increase in the oxidation rate is not the result of CO2 acting as the primary oxidant but as a secondary oxidant which results in an increase of the total partial pressure of oxygen and consequently higher oxidation rates. The WDS and XRD analyses results showed that the presence of nanosized TiO 2 particles in a nickel matrix can improve oxidation behaviour of the coatings by formation of Ni-Ti compounds on oxidizing surface of the coating which was found beneficiary in reducing the oxidation rates for cermet coatings

  11. Oxidation of Dodecanoate Intercalated Iron(II)–Iron(III) Layered Double Hydroxide to Form 2D Iron(III) (Hydr)oxide Layers

    DEFF Research Database (Denmark)

    Huang, Li‐Zhi; Ayala‐Luis, Karina B.; Fang, Liping

    2013-01-01

    hydroxide planar layer were preserved during the oxidation, as shown by FTIR spectroscopy. The high positive charge in the hydroxide layer produced by the oxidation of iron(II) to iron(III) is partially compensated by the deprotonation of hydroxy groups, as shown by X‐ray photoelectron spectroscopy...... between the alkyl chains of the intercalated dodecanoate anions play a crucial role in stabilizing the structure and hindering the collapse of the iron(II)–iron(III) (hydr)oxide structure during oxidation. This is the first report describing the formation of a stable planar layered octahedral iron......(III) (hydr)oxide. oxGRC12 shows promise as a sorbent and host for hydrophobic reagents, and as a possible source of single planar layers of iron(III) (hydr)oxide....

  12. Circulating nitric oxide metabolites and cardiovascular changes in the turtle Trachemys scripta during normoxia, anoxia and reoxygenation

    DEFF Research Database (Denmark)

    Jacobsen, Søren B; Hansen, Marie N; Jensen, Nini Skovgaard

    2012-01-01

    Turtles of the genus Trachemys show a remarkable ability to survive prolonged anoxia. This is achieved by a strong metabolic depression, redistribution of blood flow and high levels of antioxidant defence. To understand whether nitric oxide (NO), a major regulator of vasodilatation and oxygen...... consumption, may be involved in the adaptive response of Trachemys to anoxia, we measured NO metabolites (nitrite, S-nitroso, Fe-nitrosyl and N-nitroso compounds) in the plasma and red blood cells of venous and arterial blood of Trachemys scripta turtles during normoxia and after anoxia (3 h......-nitroso compounds were present at high micromolar levels under normoxia and increased further after anoxia and reoxygenation, suggesting NO generation from nitrite catalysed by deoxygenated haemoglobin, which in turtle had a higher nitrite reductase activity than in hypoxia-intolerant species. Taken together...

  13. The water-water cycle as alternative photon and electron sinks.

    OpenAIRE

    Asada, K

    2000-01-01

    The water-water cycle in chloroplasts is the photoreduction of dioxygen to water in photosystem I (PS I) by the electrons generated in photosystem II (PS II) from water. In the water-water cycle, the rate of photoreduction of dioxygen in PS I is several orders of magnitude lower than those of the disproportionation of superoxide catalysed by superoxide dismutase, the reduction of hydrogen peroxide to water catalysed by ascorbate peroxidase, and the reduction of the resulting oxidized forms of...

  14. Fulltext PDF

    Indian Academy of Sciences (India)

    Administrator

    Titanium-catalysed dehydrocoupling of chiral carbosilanes.................................. . .... Copper(II) nickel(II), cobalt(II) and oxovanadium(IV) complexes of substituted .... Electrocatalytic oxidation of hydrogen peroxide by poly(NiII-teta) complex.

  15. Efficient synthesis of graphene oxide and the mechanisms of oxidation and exfoliation

    Science.gov (United States)

    Yuan, Rui; Yuan, Jing; Wu, Yanping; Chen, Lei; Zhou, Huidi; Chen, Jianmin

    2017-09-01

    An efficient method for the preparation of graphene oxide (GO) was descried through inducing the ultrasonic in the rate-determining step of oxidation processes. Both the transformation procedures and the detailed molecular behavior of parent graphene (PG), partially oxidized graphene (PGO) and GO in H2SO4 and aqueous solution were investigated by molecular dynamic simulation (MD) combining with experiments. The results obtained from MD simulation show that the addition of KMnO4 truly marked the beginning of the reaction which carried out from the border of PG flakes to the centre. This oxidation procedure was the rate-determining step and mainly contained three steps: the boundary carbon atoms oxidized, the distance of the corresponding interlayer enlarged and the oxidizing agent diffused into the unoxidized region, the processes was repeated until oxidized completely. So, the introducing ultrasonic in this section can accelerate not only the exfoliation of layers but also the diffusion of oxidizer and finally raises the oxidation efficiency dramatically. To further clarify these simulation results, the GO was prepared by the method mentioned above. The analyses results for the X-ray diffraction (XRD), Raman spectra and X-ray photoelectron spectroscopy (XPS) of the resulting GO show that the ultrasonic method could perfectly shortens the oxidation time from 12 h to 3 h and forms the higher degree of oxidation products with more carboxylic acid groups on its edges. Thus, this study provides a better understanding of the transformation procedures of graphite and proposes an efficient way to produce GOs suitable for various chemical modifications.

  16. The oxidation of hydroxylamine by nitric and nitrous acids in the presence of technetium (VII)

    International Nuclear Information System (INIS)

    Koltunov, V.S.; Gomonova, T.V.; Savilova, O.A.; Zhuravleva, G.I.

    2000-01-01

    The oxidation of hydroxylamine by nitric acid in the presence of technetium ions at temperatures above ∝60 C is an autocatalytic process comprising an induction period and then a catalysed reaction involving HNO 2 , which has accumulated in the solution. Tc ions have no appreciable effect on the reaction rate, which is governed only by the nitric and nitrous acid oxidation reactions of hydroxylamine, but the presence of Tc ions does extend the initial induction period. The rate of hydroxylamine oxidation by HNO 3 in the presence of HNO 2 , that is, after the induction period, was found to be: -d[NH 3 OH + ]/dt = k[NH 3 OH + ][HNO 2 ][HNO 3 ] 3.5 where k = 120 ± 10 l 4.5 mol -4.5 min -1 at T = 80 C, μ = 2 and [H + ] ≤ 2 M. Under these conditions, the reaction apparently has a high activation energy of 160-180 kJ mol -1 . At low temperatures (20-40 C) hydroxylamine is effectively stable in solutions of HNO 3 up to concentrations of ∝2 M, whether or not Tc(VII) ions are present. Tc(V) was also observed to form at least one complex on reduction with excess hydroxylamine with an absorption maximum between 467 and 480 nm dependent on the solution acidity. (orig.)

  17. Pipeline transportation of emerging partially upgraded bitumen

    International Nuclear Information System (INIS)

    Luhning, R.W.; Anand, A.; Blackmore, T.; Lawson, D.S.

    2002-01-01

    upgrading heavy oil, and the tank bottom recovery and remediation (TaBoRR) process, the value creation upgrading process, Genoil hydro-processor upgrading, Albian Muskeg River oil sands mining, Vapex Process for in situ upgrading, super critical partial oxidation (SUPOX), ionic liquid catalysts, biocatalyst upgrading, CAPRI in situ upgrading, the aquaconversion process, the ROSE process for partial upgrading, the Chattanooga process, the CANMET emulsion upgrading process, the UniPure sulphur removal and upgrading, and the Geotreater process. 40 refs., 14 tabs., 3 figs

  18. Analysis of the oxidation of short chain alkynes by flavocytochrome P450 BM3.

    Science.gov (United States)

    Waltham, Timothy N; Girvan, Hazel M; Butler, Christopher F; Rigby, Stuart R; Dunford, Adrian J; Holt, Robert A; Munro, Andrew W

    2011-04-01

    Bacillus megaterium flavocytochrome P450 BM3 (BM3) is a high activity fatty acid hydroxylase, formed by the fusion of soluble cytochrome P450 and cytochrome P450 reductase modules. Short chain (C6, C8) alkynes were shown to be substrates for BM3, with productive outcomes (i.e. alkyne hydroxylation) dependent on position of the carbon-carbon triple bond in the molecule. Wild-type P450 BM3 catalyses ω-3 hydroxylation of both 1-hexyne and 1-octyne, but is suicidally inactivated in NADPH-dependent turnover with non-terminal alkynes. A F87G mutant of P450 BM3 also undergoes turnover-dependent heme destruction with the terminal alkynes, pointing to a key role for Phe87 in controlling regioselectivity of alkyne oxidation. The terminal alkynes access the BM3 heme active site led by the acetylene functional group, since hydroxylated products are not observed near the opposite end of the molecules. For both 1-hexyne and 1-octyne, the predominant enantiomeric product formed (up to ∼90%) is the (S)-(-)-1-alkyn-3-ol form. Wild-type P450 BM3 is shown to be an effective oxidase catalyst of terminal alkynes, with strict regioselectivity of oxidation and potential biotechnological applications. The absence of measurable octanoic or hexanoic acid products from oxidation of the relevant 1-alkynes is also consistent with previous studies suggesting that removal of the phenyl group in the F87G mutant does not lead to significant levels of ω-oxidation of alkyl chain substrates.

  19. Thermochemical characteristics of La n+1Ni nO3n+1 oxides

    International Nuclear Information System (INIS)

    Bannikov, D.O.; Safronov, A.P.; Cherepanov, V.A.

    2006-01-01

    Lanthanum nickelates: La 2 NiO 4+δ , La 3 Ni 2 O 7-δ , La 4 Ni 3 O 10-δ and LaNiO 3-δ the members of Ruddlesden-Popper series La n+1 Ni n O 3n+1 were prepared using citrate route. Dissolution enthalpies of complex oxides as well as a number of subsidiary substances were measured by means of Calvet calorimeter in 1 M solution of hydrochloric acid at 25 deg. C. The dissolution scheme of complex oxides in hydrochloric acid was proposed and enthalpies of formation of the complex oxides from binary oxides were calculated considering oxygen nonstoichiometry of these substances. Enthalpies of step-by-step oxidation were evaluated. Partial enthalpy contribution of LaO layers was calculated endothermic equals to 30.9 J/mol while partial enthalpy contribution of perovskite LaNiO 3 layers was negative equals to -97.0 J/mol. Enthalpy of formation of any complex oxide of Ruddlesden-Popper series fits very well to the linear regression based on these values

  20. Macrokinetics of magnesium sulfite oxidation inhibited by ascorbic acid

    International Nuclear Information System (INIS)

    Lidong, Wang; Yongliang, Ma; Wendi, Zhang; Qiangwei, Li; Yi, Zhao; Zhanchao, Zhang

    2013-01-01

    Graphical abstract: Ascorbic acid is used as an inhibitor to retard the oxidation rate of magnesium sulfite. It shows that the oxidation rate would decrease greatly with the rise of initial ascorbic acid concentration, which provides a useful reference for sulfite recovery in magnesia desulfurization. -- Highlights: • We studied the kinetics of magnesium sulfite oxidation inhibited by ascorbic acid. • The oxidation process was simulated by a three-phase model and proved by HPLC–MS. • We calculated the kinetic parameters of intrinsic oxidation of magnesium sulfite. -- Abstract: Magnesia flue gas desulfurization is a promising process for small to medium scale industrial coal-fired boilers in order to reduce sulfur dioxide emissions, in which oxidation control of magnesium sulfite is of great importance for the recycling of products. Effects of four inhibitors were compared by kinetic experiments indicating that ascorbic acid is the best additive, which retards the oxidation process of magnesium sulfite in trace presence. The macrokinetics of magnesium sulfite oxidation inhibited by ascorbic acid were studied. Effects of the factors, including ascorbic acid concentration, magnesium sulfite concentration, oxygen partial pressure, pH, and temperature, were investigated in a stirred reactor with bubbling. The results show that the reaction rate is −0.55 order in ascorbic acid, 0.77 in oxygen partial pressure, and zero in magnesium sulfite concentration, respectively. The apparent activation energy is 88.0 kJ mol −1 . Integrated with the kinetic model, it is concluded that the oxidation rate of magnesium sulfite inhibited by ascorbic acid is controlled by the intrinsic chemical reaction. The result provides a useful reference for sulfite recovery in magnesia desulfurization

  1. Structural and magnetic properties of core-shell iron-iron oxide nanoparticles

    DEFF Research Database (Denmark)

    Kuhn, Luise Theil; Bojesen, A.; Timmermann, L.

    2002-01-01

    We present studies of the structural and magnetic properties of core-shell iron-iron oxide nanoparticles. alpha-Fe nanoparticles were fabricated by sputtering and subsequently covered with a protective nanocrystalline oxide shell consisting of either maghaemite (gamma-Fe2O3) or partially oxidized...... magnetite (Fe3O4). We observed that the nanoparticles were stable against further oxidation, and Mossbauer spectroscopy at high applied magnetic fields and low temperatures revealed a stable form of partly oxidized magnetite. The nanocrystalline structure of the oxide shell results in strong canting...... of the spin structure in the oxide shell, which thereby modifies the magnetic properties of the core-shell nanoparticles....

  2. Chirality Transfer in Gold(I)-Catalysed Direct Allylic Etherifications of Unactivated Alcohols: Experimental and Computational Study.

    Science.gov (United States)

    Barker, Graeme; Johnson, David G; Young, Paul C; Macgregor, Stuart A; Lee, Ai-Lan

    2015-09-21

    Gold(I)-catalysed direct allylic etherifications have been successfully carried out with chirality transfer to yield enantioenriched, γ-substituted secondary allylic ethers. Our investigations include a full substrate-scope screen to ascertain substituent effects on the regioselectivity, stereoselectivity and efficiency of chirality transfer, as well as control experiments to elucidate the mechanistic subtleties of the chirality-transfer process. Crucially, addition of molecular sieves was found to be necessary to ensure efficient and general chirality transfer. Computational studies suggest that the efficiency of chirality transfer is linked to the aggregation of the alcohol nucleophile around the reactive π-bound Au-allylic ether complex. With a single alcohol nucleophile, a high degree of chirality transfer is predicted. However, if three alcohols are present, alternative proton transfer chain mechanisms that erode the efficiency of chirality transfer become competitive. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  3. C-13 isotopic studies of the surface catalysed reactions of methane

    International Nuclear Information System (INIS)

    Long, M.A.; He, S.J.X.; Adebajo, M.

    1997-01-01

    The ability of methane to methylate aromatic compounds, which are considered to be models for coal, is being studied. Related to this reaction, but at higher temperatures, is the direct formation of benzene from methane in the presence of these catalysts. Controversy exists in the literature on the former reaction, and 13 C isotope studies are being used to resolve the question. The interest in this reaction arises because the utilisation of methane, in the form of natural gas, in place of hydrogen for direct coal liquefaction would have major economic advantage. For this reason Isotope studies in this area have contributed significantly to an understanding of the methylation reactions. The paper describes experiments utilising methane 13 C, which show that methylation of aromatics such as naphthalene by the methane 13 C is catalysed by microporous, Cu-exchanged SAPO-5, at elevated pressures (6.8 MPa) and temperatures around 400 degree C. The mass spectrometric analysis and n.m.r. study of the isotopic composition of the products of the methylation reaction demonstrate unequivocally that methane provides the additional carbon atom for the methylated products. Thermodynamic calculations predict that the reaction is favourable at high methane pressures under these experimental conditions. The mechanism as suggested by the isotope study is discussed. The catalysts which show activity for the activation of methane for direct methylation of organic compounds, such as naphthalene, toluene, phenol and pyrene, are substituted aluminophosphate molecular sieves, EIAPO-5 (where El=Pb, Cu, Ni and Si) and a number of metal substituted zeolites. Our earlier tritium studies had shown that these catalysts will activate alkanes, at least as far as isotope hydrogen exchange reactions are concerned

  4. High temperature oxidation behaviour of nanostructured cermet coatings in amixed CO/sub 2/ - O/sub 2/ environment

    International Nuclear Information System (INIS)

    Farrokhzad, M. A.; Khan, T. I.

    2013-01-01

    Nanostructured ceramic-metallic (cermet) coatings composed of nanosized ceramic particles (alpha-Al /sub 2/O/sub 3/ and TiO/sub 2/) dispersed in a nickel matrix were co-electrodeposited and then oxidized at 500 degree C, 600 degree C and 700 degree C in a mixed gas using a Thermo-gravimetric Analysis (TGA) apparatus. The mixed gas was composed of 15 percentage CO/sub 2/, 10 percentage O/sub 2/ and 75 percentage N/sub 2/. This research investigates the effects of CO/sub 2/ and O/sub 2/ partial pressures on time-depended oxidation rates for coatings and compared them to the results from atmospheric oxidation under similar temperatures. The increase in partial pressure of oxygen due to the presence of CO/sub 2/ at each tested temperature was calculated and correlated to the oxidation rate of the coatings. The results showed that the presence of CO/sub 2/ in the system increased the oxidation rate of cermet coatings when compared to atmospheric oxidation at the same temperature. It was also shown that the increase in the oxidation rate is not the result of CO/sub 2/ acting as the primary oxidant but as a secondary oxidant which results in an increase of the total partial pressure of oxygen and consequently higher oxidation rates. The WDS and XRD analyses results showed that the presence of nanosized TiO/sub 2/ particles in a nickel matrix can improve oxidation behaviour of the coatings by formation of Nu i-Tau i compounds on oxidizing surface of the coating which was found beneficiary in reducing the oxidation rates for cermet coatings. (author)

  5. Oxidation behavior of TiC, ZrC, and HfC dispersed in oxide matrices

    International Nuclear Information System (INIS)

    Arun, R.; Subramanian, M.; Mehrotra, G.M.

    1990-01-01

    The oxidation behavior of hot pressed TiC-Al 2 O 3 , TiC-ZrO 2 , ZrC-ZrO 2 , and HfC-HfO 2 composites has been investigated at 1273 K. The oxidation of TiC, ZrC, and HfC in hot-pressed composites containing ZrO 2 and HfO 2 has been found to be extremely rapid. The kinetics of oxidation of TiC and a 90 wt% TiC-Al 2 O 3 composite appear to be faster compared to that of pure TiC. X-ray diffraction results for hot-pressed ZrC-HfO 2 and HfC-HfO 2 composites indicate partial stabilization of tetragonal ZrO 2 and HfO 2 phases in these composites

  6. New biphasic monocomponent composite material obtained by the partial oxypropylation of bacterial cellulose

    International Nuclear Information System (INIS)

    Rosa, Joyce Rover; Silva, Ingrid S.V. da; Pasquini, Daniel; Santos, Daniele B. dos; Barud, Hernane S.; Ribeiro, Sidney J.L.

    2011-01-01

    This study aimed to partial oxypropylation of bacterial cellulose (CB), as well as the characterization of pure CB, oxypropylated CB (CBO) and oxypropylated CB after Soxhlet extraction with hexane (CBOE). The oxypropylation reaction was carried out by propylene oxide polymerization, catalyzed by KOH, in the presence of CB The CB samples, before and after modification, were subjected to analysis of scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). It was possible verify that the partial transformation of bacterial cellulose by inserting a layer of thermoplastic polymer on its surface occurred efficiently, obtaining a biphasic monocomponent composite material. (author)

  7. Thermodynamic Studies of the Phase Relationships of Nonstoichiometric Cerium Oxides at Higher Temperatures

    DEFF Research Database (Denmark)

    Sørensen, Ole Toft

    1976-01-01

    Partial molar thermodynamic quantities for oxygen in nonstoichiometric cerium oxides were determined by thermogravimetric analysis in CO/CO2 mixtures in the temperature range 900–1400°C. Under these conditions compositions within the range 2.00 greater-or-equal, slanted O/M greater-or-equal, slan......Partial molar thermodynamic quantities for oxygen in nonstoichiometric cerium oxides were determined by thermogravimetric analysis in CO/CO2 mixtures in the temperature range 900–1400°C. Under these conditions compositions within the range 2.00 greater-or-equal, slanted O/M greater...

  8. Partial equilibrium in induced redox reactions of plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Nikol' skii, B P; Posvol' skii, M V; Krylov, L I; Morozova, Z P

    1975-01-01

    A study was made of oxidation-reduction reactions of Pu in buffer solutions containing bichromate and a reducing agent which reacted with hexavalent chromium at pH=3.5. In most cases sodium nitrite was used. A rather slow reduction of Pu (6) with NaNO/sub 2/ in the course of which tetravalent plutonium was formed via disproportionation reaction of plutonium (5), became very rapid upon the addition of bichromate to the solution. The yield of tetravalent plutonium increased with an increase in the concentration of NaNO/sub 2/ and the bichromate but never reached 100%. This was due to a simultaneous occurrenc of the induced oxidation reaction of Pu(4), leading to a partial equilibrium between the valence forms of plutonium in the nitrite-bichromate system which on the whole was in a nonequilibrium state. It was shown that in the series of reactions leading to the reduction of plutonium the presence of bivalent chromium was a necessary link.

  9. Lewis acidic metal catalysed organic transformations by designed ...

    Indian Academy of Sciences (India)

    Administrator

    ture even at very high temperature.3 This particular property of the ... with desirable size, shape, electronic, and chiral properties. ... cyanosilylation reaction of the aldehyde that resulted ..... on the ring-opening reactions.19 Cyclohexene oxide.

  10. A method for increasing the surface area of perovskite-type oxides

    Indian Academy of Sciences (India)

    ABO3-type perovskite oxides (A = rare earth element with or without its partial substitution by alkaline earth element, and B = transition element such as Co, Mn, Ni, Fe, etc., with or without its partial substitution by other transition elements) have high potential for their ... In our very recent communication 8, we have reported a ...

  11. Characterising Complex Enzyme Reaction Data.

    Directory of Open Access Journals (Sweden)

    Handan Melike Dönertaş

    Full Text Available The relationship between enzyme-catalysed reactions and the Enzyme Commission (EC number, the widely accepted classification scheme used to characterise enzyme activity, is complex and with the rapid increase in our knowledge of the reactions catalysed by enzymes needs revisiting. We present a manual and computational analysis to investigate this complexity and found that almost one-third of all known EC numbers are linked to more than one reaction in the secondary reaction databases (e.g., KEGG. Although this complexity is often resolved by defining generic, alternative and partial reactions, we have also found individual EC numbers with more than one reaction catalysing different types of bond changes. This analysis adds a new dimension to our understanding of enzyme function and might be useful for the accurate annotation of the function of enzymes and to study the changes in enzyme function during evolution.

  12. Borax partially prevents neurologic disability and oxidative stress in experimental spinal cord ischemia/reperfusion injury.

    Science.gov (United States)

    Koc, Emine Rabia; Gökce, Emre Cemal; Sönmez, Mehmet Akif; Namuslu, Mehmet; Gökce, Aysun; Bodur, A Said

    2015-01-01

    The aim of this study is to investigate the potential effects of borax on ischemia/reperfusion injury of the rat spinal cord. Twenty-one Wistar albino rats were divided into 3 groups: sham (no ischemia/reperfusion), ischemia/reperfusion, and borax (ischemia/reperfusion + borax); each group was consist of 7 animals. Infrarenal aortic cross clamp was applied for 30 minutes to generate spinal cord ischemia. Animals were evaluated functionally with the Basso, Beattie, and Bresnahan scoring system and inclined-plane test. The spinal cord tissue samples were harvested to analyze tissue concentrations of nitric oxide, nitric oxide synthase activity, xanthine oxidase activity, total antioxidant capacity, and total oxidant status and to perform histopathological examination. At the 72nd hour after ischemia, the borax group had significantly higher Basso, Beattie, and Bresnahan and inclined-plane scores than those of ischemia/reperfusion group. Histopathological examination of spinal cord tissues in borax group showed that treatment with borax significantly reduced the degree of spinal cord edema, inflammation, and tissue injury disclosed by light microscopy. Xanthine oxidase activity and total oxidant status levels of the ischemia/reperfusion group were significantly higher than those of the sham and borax groups (P borax group were significantly higher than those of the ischemia/reperfusion group (P borax groups in terms of total antioxidant capacity levels (P > .05). The nitric oxide levels and nitric oxide synthase activity of all groups were similar (P > .05). Borax treatment seems to protect the spinal cord against injury in a rat ischemia/reperfusion model and improve neurological outcome. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  13. Recurrent Partial Words

    Directory of Open Access Journals (Sweden)

    Francine Blanchet-Sadri

    2011-08-01

    Full Text Available Partial words are sequences over a finite alphabet that may contain wildcard symbols, called holes, which match or are compatible with all letters; partial words without holes are said to be full words (or simply words. Given an infinite partial word w, the number of distinct full words over the alphabet that are compatible with factors of w of length n, called subwords of w, refers to a measure of complexity of infinite partial words so-called subword complexity. This measure is of particular interest because we can construct partial words with subword complexities not achievable by full words. In this paper, we consider the notion of recurrence over infinite partial words, that is, we study whether all of the finite subwords of a given infinite partial word appear infinitely often, and we establish connections between subword complexity and recurrence in this more general framework.

  14. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Transition metal catalysed Grignard-like allylic activation across tetragonal tin(II) oxide · Pradipta Sinha Moloy Banerjee Abhijit Kundu Sujit Roy · More Details Abstract Fulltext PDF. The reaction of allyl halide and a carbonyl compound under the aegis of tetragonal tin(II) oxide and catalytic 8, 10 metal complexes provides ...

  15. Influence of Oxygen Partial Pressure during Processing on the Thermoelectric Properties of Aerosol-Deposited CuFeO₂.

    Science.gov (United States)

    Stöcker, Thomas; Exner, Jörg; Schubert, Michael; Streibl, Maximilian; Moos, Ralf

    2016-03-24

    In the field of thermoelectric energy conversion, oxide materials show promising potential due to their good stability in oxidizing environments. Hence, the influence of oxygen partial pressure during synthesis on the thermoelectric properties of Cu-Delafossites at high temperatures was investigated in this study. For these purposes, CuFeO₂ powders were synthetized using a conventional mixed-oxide technique. X-ray diffraction (XRD) studies were conducted to determine the crystal structures of the delafossites associated with the oxygen content during the synthesis. Out of these powders, films with a thickness of about 25 µm were prepared by the relatively new aerosol-deposition (AD) coating technique. It is based on a room temperature impact consolidation process (RTIC) to deposit dense solid films of ceramic materials on various substrates without using a high-temperature step during the coating process. On these dense CuFeO₂ films deposited on alumina substrates with electrode structures, the Seebeck coefficient and the electrical conductivity were measured as a function of temperature and oxygen partial pressure. We compared the thermoelectric properties of both standard processed and aerosol deposited CuFeO₂ up to 900 °C and investigated the influence of oxygen partial pressure on the electrical conductivity, on the Seebeck coefficient and on the high temperature stability of CuFeO₂. These studies may not only help to improve the thermoelectric material in the high-temperature case, but may also serve as an initial basis to establish a defect chemical model.

  16. Initial oxidation processes of Si(001) surfaces by supersonic O2 molecular beams. Different oxidation mechanisms for clean and partially-oxidized surfaces

    International Nuclear Information System (INIS)

    Teraoka, Yuden; Yoshigoe, Akitaka

    2002-01-01

    Potential energy barriers for dissociative chemisorption of O 2 molecules on Si(001) clean surfaces were investigated using supersonic O 2 molecular beams and photoemission spectroscopy. Relative initial sticking probabilities of O 2 molecules and the saturated oxygen amount on the Si(001) surface were measured as a function of incident energy of O 2 molecules. Although the probability was independent on the incident energy in the region larger than 1 eV, the saturated oxygen amount was dependent on the incident energy without energy thresholds. An Si-2p photoemission spectrum of the Si(001) surface oxidized by thermal O 2 gas revealed the oxygen insertion into dimer backbond sites. These facts indicate that a reaction path of the oxygen insertion into dimer backbonds through bridge sites is open for the clean surface oxidation, and the direct chemisorption probability at the backbonds is negligibly small comparing with that at the bridge sites. (author)

  17. Oxidation of zirconium-aluminum alloys

    International Nuclear Information System (INIS)

    Cox, B.

    1967-10-01

    Examination of the processes occurring during the oxidation of Zr-1% A1, Zr-3% A1, and Zr-1.5% A1-0.5% Mo alloys has shown that in steam rapid oxidation occurs predominantly around the Zr 3 A1 particles, which at low temperatures appear to be relatively unattacked. The unoxidised particles become incorporated in the oxide, and become fully oxidised as the film thickens. This rapid localised oxidation is preceded by a short period of uniform film growth, during which the oxide film thickness does not exceed ∼200A-o. Thus the high oxidation rates can probably be ascribed to aluminum in solution in the zirconium matrix, although its precise mode of operation has not been determined. Once the solubility limit of aluminum is exceeded, the size, distribution and number of intermetallic particles affects the oxidation rate merely by altering the distribution of regions of metal giving high oxidation rates. The controlling process during the early stages of oxidation is electron transport and not ionic transport. Thus, the aluminum in the oxide film is presumably increasing the ionic conductivity more than the electronic. The oxidation rates in atmospheric pressure steam are very high and their irregular temperature dependence suggests that the oxidation rate will be pressure dependent. This was confirmed, in part, by a comparison with oxidation in moist air. It was found that the rate of development of white oxide around intermetallic particles was considerably reduced by the decrease in the partial pressure of H 2 O; the incubation period was not much different, however. (author)

  18. Research advances in the catalysts for the selective oxidation of ethane to aldehydes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhe; ZHAO Zhen; XU Chunming

    2005-01-01

    Selective oxidation of ethane to aldehydes is one of the most difficult processes in the catalysis researches of low alkanes. The development of selective oxidation of ethane to aldehydes (formaldehyde, acetaldehyde and acrolein) is discussed. The latest progress of the catalysts, including bulk or supported metal oxide catalysts, highly dispersed and isolated active sites catalysts, and the photo-catalytic ethane oxidation catalysts, partial oxidation of ethane in the gas phase, and the proposed reaction pathways from ethane to aldehydes are involved.

  19. Influence of Nitrogen Partial Pressure on Microstructure and Tribological Properties of Mo-Cu-V-N Composite Coatings with High Cu Content

    Directory of Open Access Journals (Sweden)

    Haijuan Mei

    2018-01-01

    Full Text Available In this study, Mo-Cu-V-N composite coatings with high Cu content of ~18 at.% were deposited on 316L stainless steel and YT14 cemented carbide substrates by high power impulse magnetron sputtering in Ar–N2 gas mixtures. The influence of N2 partial pressure was investigated with respect to the microstructure and tribological properties of the coatings. The results indicated that the Mo-Cu-V-N composite coatings exhibited FCC B1-MoN phase with a strong (200 preferred orientation, and Cu phase was found to exist as metallic species. As the N2 partial pressure increased from 0.11 to 0.35 Pa, the peak intensity of (200 plane decreased gradually and simultaneous peak broadening was observed, which was typical for grain refinement. With increasing the N2 partial pressure, the columnar microstructure became much coarser, which led to the decrease of residual stress and hardness. The Mo-Cu-V-N composite coatings with high Cu content exhibited a relatively low wear rate of 10−8 mm3/N·m at 25 °C, which was believed to be attributed to the mixed lubricious oxides of MoO2, CuO and V2O5 formed during tribo-oxidation, which cannot be formed in the coatings with low Cu content. When the wear temperature was increased up to 400 °C, the wear rate increased sharply up to 10−6 mm3/N·m despite the formation of lubricious oxides of MoO3/CuMoO4 and V2O5. This could be due to the loss of nitrogen and pronounced oxidation at high temperatures, which led the wear mechanism to be transformed from mild oxidation wear to severe oxidation wear.

  20. A kinetic model of the oxidative dissolution of brannerite, UTi2O6

    International Nuclear Information System (INIS)

    Thomas, B.S.; Zhang, Y.

    2003-01-01

    The aqueous dissolution of synthetic brannerite (UTi 2 O 6 ) in an open atmosphere has been investigated. Previous data in the literature have been combined with new experimental work, dealing with the release of uranium from brannerite as a function of solution pH and aqueous carbonate species, in oxygenated solutions. From these data we have developed a conceptual model for uranium release from brannerite consisting of two reaction steps: oxidation of surface uranium(IV) atoms, and subsequent detachment of U(VI) atoms into solution, which is catalysed by surface coordination with protons (acidic media) or carbonate species (alkaline media in equilibrium with the atmosphere). A kinetic rate law is derived for this simple reaction mechanism and fitted to experimental data. The resulting predictive equation for uranium release qualitatively describes the pH-dependent behaviour observed in experiment, and quantitatively gives an upper limit for uranium release from brannerite over a range of conditions and experiment types. (orig.)

  1. Partial nitrification using aerobic granules in continuous-flow reactor: rapid startup.

    Science.gov (United States)

    Wan, Chunli; Sun, Supu; Lee, Duu-Jong; Liu, Xiang; Wang, Li; Yang, Xue; Pan, Xiangliang

    2013-08-01

    This study applied a novel strategy to rapid startup of partial nitrification in continuous-flow reactor using aerobic granules. Mature aerobic granules were first cultivated in a sequencing batch reactor at high chemical oxygen demand in 16 days. The strains including the Pseudoxanthomonas mexicana strain were enriched in cultivated granules to enhance their structural stability. Then the cultivated granules were incubated in a continuous-flow reactor with influent chemical oxygen deamnad being stepped decreased from 1,500 ± 100 (0-19 days) to 750 ± 50 (20-30 days), and then to 350 ± 50 mg l(-1) (31-50 days); while in the final stage 350 mg l(-1) bicarbonate was also supplied. Using this strategy the ammonia-oxidizing bacterium, Nitrosomonas europaea, was enriched in the incubated granules to achieve partial nitrification efficiency of 85-90% since 36 days and onwards. The partial nitrification granules were successfully harvested after 52 days, a period much shorter than those reported in literature. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. A comparison between different oxide dispersion strengthened ferritic steel ongoing in situ oxide dissolution in High Voltage Electron Microscope

    International Nuclear Information System (INIS)

    Monnet, I.; Van den Berghe, T.; Dubuisson, Ph.

    2012-01-01

    ODS materials are considered for nuclear applications but previous experimental studies have shown a partial dissolution of some oxides under neutron irradiation. In this work, electron irradiations were used to evaluate the stability of the oxides depending on the chemical composition of the oxide dispersion. Four ferritic steels based on EM10 (Fe–9Cr–1Mo) and reinforced respectively by Al 2 O 3 , MgO, MgAl 2 O 4 and Y 2 O 3 , were studied. These materials were irradiated with 1 MeV or 1.2 MeV electrons in a High Voltage Electron Microscope. This technique allows to follow one single oxide and to determine the evolution of its size during the irradiation. In situ HVEM observations indicate that the dissolution rate depends on the chemical composition of the oxide, on the temperature and on the irradiation dose.

  3. Experimental and modeling study of hydrogen/syngas production and particulate emissions from a natural gas-fueled partial oxidation engine

    International Nuclear Information System (INIS)

    McMillian, Michael H.; Lawson, Seth A.

    2006-01-01

    In this study, a combustion model was first applied to conditions representing varying compression ratios and equivalence ratios to investigate engine exhaust composition from partial oxidation (POX) of natural gas in reciprocating engines. The model was experimentally validated over a range of equivalence ratios from 1.3 to 1.6 with a spark-ignited single cylinder engine fueled by natural gas. The modeling results matched well with engine gaseous emission data over the experimental range. The model was also extended to higher equivalence ratios to predict H 2 and CO production at engine conditions and stoichiometries representative of homogeneous charge compression ignition (HCCI) engine operation. Secondly, over the same experimental range of equivalence ratios, particulate samples were taken to determine both total particulate mass production (g/hph) via gravimetric measurement as well as particle size distribution and loading via a scanning mobility particle sizer (SMPS). While experiments indicate hydrogen yields up to 11% using spark ignition (SI), modeling results indicate that greater than 20% H 2 yield may be possible in HCCI operation. Over the experimental range, rich-burn particulate matter (PM) production is no greater than that from typical lean-burn operation. Finally, an energy balance was performed over the range of engine experimental operation. (author)

  4. Alternative Processes for Manufacturing of Metal Oxide-based Potentiometric Chemosensors

    Directory of Open Access Journals (Sweden)

    Winfried VONAU

    2015-10-01

    Full Text Available New possibilities for the preparation of partially selective redox electrodes based on passivated metals of the subgroups IV to VI of the periodic system are presented by the example of vanadium. The gas phase oxidation at controlled oxygen partial pressures (CPO and the pulsed laser deposition (PLD as an high-vacuum method are utilised as alternative methods beside the well- established chemical and electrochemical passivation which usually lead to the highest possible oxidation state of the passivated metal. These newly available methods enable in principle the tailoring of oxidation states in the sensitive layer and therefore the optimisation of the electrochemical sensitivity and selectivity of sensors equipped with it. The use of vanadium as basic electrode material is crucial because it shows in several matrices a remarkable corrosion susceptibility. This problem can be solved by the introduction of stable alloys with high vanadium contents. These materials can be efficiently produced by pulsed laser deposition (PLD.

  5. Selective Oxidation and Reactive Wetting during Galvanizing of a CMnAl TRIP-Assisted Steel

    Science.gov (United States)

    Bellhouse, E. M.; McDermid, J. R.

    2011-09-01

    A transformation induced plasticity (TRIP)-assisted steel with 0.2 pct C, 1.5 pct Mn, and 1.5 pct Al was successfully galvanized using a thermal cycle previously shown to produce an excellent combination of strength and ductility. The steel surface chemistry and oxide morphology were determined as a function of process atmosphere oxygen partial pressure. For the 220 K (-53 °C) dew point (dp) + 20 pct H2 atmosphere, the oxide morphology was a mixture of films and nodules. For the 243 K (-30 °C) dp + 5 pct H2 atmosphere, nodules of MnO were found primarily at grain boundaries. For the 278 K (+5 °C) dp + 5 pct H2 atmosphere, nodules of metallic Fe were found on the surface as a result of alloy element internal oxidation. The steel surface chemistry and oxide morphology were then related to the reactive wetting behavior during continuous hot dip galvanizing. Good wetting was obtained using the two lower oxygen partial pressure process atmospheres [220 K dp and 243 K dp (-53 °C dp and -30 °C dp)]. An increase in the number of bare spots was observed when using the higher oxygen partial pressure process atmosphere (+5 °C dp) due to the increased thickness of localized oxide films.

  6. The Effect of Influent Characteristics and Operational Conditions over the Performance and Microbial Community Structure of Partial Nitritation Reactors

    Directory of Open Access Journals (Sweden)

    Alejandro Rodriguez-Sanchez

    2014-06-01

    Full Text Available Nitrogen is a main contaminant of wastewater worldwide. Novel processes for nitrogen removal have been developed over the last several decades. One of these is the partial nitritation process. This process includes the oxidation of ammonium to nitrite without the generation of nitrate. The partial nitritation process has several advantages over traditional nitrification-denitrification processes for nitrogen removal from wastewaters. In addition, partial nitritation is required for anammox elimination of nitrogen from wastewater. Partial nitritation is affected by operational conditions and substances present in the influent, such as quinolone antibiotics. In this review, the impact that several operational conditions, such as temperature, pH, dissolved oxygen concentration, hydraulic retention time and solids retention time, have over the partial nitritation process is covered. The effect of quinolone antibiotics and other emerging contaminants are discussed. Finally, future perspectives for the partial nitritation process are commented upon.

  7. Synthesis of graphene oxide and reduced graphene oxide using volumetric method by a novel approach without NaNO2 or NaNO3

    Science.gov (United States)

    Gunda, Rajitha; Madireddy, Buchi Suresh; Dash, Raj Kishora

    2018-02-01

    In the present work, graphite was processed to graphene oxide (GO) using modified Hummer's method by volumetric titration approach, without attaining zero temperature and the addition of toxic chemicals (NaNO2/NaNO3). The complete oxidation of graphite to graphene oxide was obtained by controlled addition (volumetric titration) of KMnO4. The addition of higher KMnO4 resulted in partial oxidation and 2-3 mono-layers with less defects/disordered structure of reduced graphene oxide (RGO) sheets were achieved. Samples were analyzed by XRD, FT-IR, Raman analysis, and TEM analysis. X-ray diffraction displayed the oxidized peak of graphene oxide at 11.9° and reduced graphene oxide at 23.8°. The prolonged stability of the synthesized GO with lower mole ratios of oxidizing agent was confirmed from UV-visible spectroscopy. Based on the results, processed graphene oxide is found to be a candidate material for thermally stable capacitor application.

  8. Unravelling the cross-talk between iron starvation and oxidative stress responses highlights the key role of PerR (alr0957) in peroxide signalling in the cyanobacterium Nostoc PCC 7120.

    Science.gov (United States)

    Yingping, Fan; Lemeille, Sylvain; Talla, Emmanuel; Janicki, Annick; Denis, Yann; Zhang, Cheng-Cai; Latifi, Amel

    2014-10-01

    The cyanobacterial phylum includes oxygenic photosynthetic prokaryotes of a wide variety of morphologies, metabolisms and ecologies. Their adaptation to their various ecological niches is mainly achieved by sophisticated regulatory mechanisms and depends on a fine cross-talk between them. We assessed the global transcriptomic response of the filamentous cyanobacterium Nostoc PCC 7120 to iron starvation and oxidative stress. More than 20% of the differentially expressed genes in response to iron stress were also responsive to oxidative stress. These transcripts include antioxidant proteins-encoding genes that confirms that iron depletion leads to reactive oxygen accumulation. The activity of the Fe-superoxide dismutase was not significantly decreased under iron starvation, indicating that the oxidative stress generated under iron deficiency is not a consequence of (SOD) deficiency. The transcriptional data indicate that the adaptation of Nostoc to iron-depleted conditions displays important differences with what has been shown in unicellular cyanobacteria. While the FurA protein that regulates the response to iron deprivation has been well characterized in Nostoc, the regulators in charge of the oxidative stress response are unknown. Our study indicates that the alr0957 (perR) gene encodes the master regulator of the peroxide stress. PerR is a peroxide-sensor repressor that senses peroxide by metal-catalysed oxidation.

  9. Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Rabovitser

    2009-06-30

    The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half of the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures

  10. Directing a Non-Heme Iron(III)-Hydroperoxide Species on a Trifurcated Reactivity Pathway

    DEFF Research Database (Denmark)

    Wegeberg, Christina; Lauritsen, Frants R.; Frandsen, Cathrine

    2018-01-01

    The reactivity of [FeIII(tpena)]2+ (tpena=N,N,N'-tris(2-pyridylmethyl)ethylenediamine-N'-acetate) as a catalyst for oxidation reactions depends on its ratio to the terminal oxidant H2O2 and presence or absence of sacrificial substrates. The outcome can be switched between: 1)catalysed H2O2...

  11. Catalysis by Atomic-Sized Centers: Methane Activation for Partial Oxidation and Combustion

    Science.gov (United States)

    2015-07-21

    example, H adsorbed alone on an oxide surface will bind to oxygen to form a hydroxide . However, if a Lewis base (e.g. any electron donor) is...that on a gold surface, which is not surprising considering the bonding character between the cluster and metal surfaces. The high mobility verifies

  12. Magnetic and Mössbauer spectroscopy studies of nanocrystalline iron oxide aerogels

    DEFF Research Database (Denmark)

    Carpenter, E.E.; Long, J.W.; Rolison, D.R.

    2006-01-01

    A sol-gel synthesis was used to produce iron oxide aerogels. These nanocrystalline aerogels have a pore-solid structure similar to silica aerogels but are composed entirely of iron oxides. Mössbauer experiments and x-ray diffraction showed that the as-prepared aerogel is an amorphous or poorly...... crystalline iron oxide, which crystallized as a partially oxidized magnetite during heating in argon. After further heat treatment in air, the nanocrystallites are fully converted to maghemite. The particles are superparamagnetic at high temperatures, but the magnetic properties are strongly influenced...

  13. Efficient Aerobic Oxidation of Cyclohexane to KA Oil Catalyzed by Pt ...

    Indian Academy of Sciences (India)

    127, No. 7, July 2015, pp. 1167–1172. c Indian Academy of Sciences. ... The catalyst was used for the partial oxidation of cyclohexane in a Parr type reactor. It was found that Pt-Sn supported on MWCNTs can act as an efficient catalyst for the partial ... version ratio with high selectivity for KA oil in a liquid ... These gases.

  14. The oxidative conversion of toluene to benzene

    NARCIS (Netherlands)

    Jong, de J.G.; Batist, P.A.

    1971-01-01

    An oxidative reaction is described in which toluene is converted into benzene. The reaction is catalyzed by bismuth uranate. Selectivities up to 70% are obtained if toluene vapor reacts with the catalyst without O (g) being present; the catalyst becomes partially reduced, but is easily reoxidized

  15. Química atmosférica do enxofre (IV: emissões, reações em fase aquosa e impacto ambiental

    Directory of Open Access Journals (Sweden)

    Martins Cláudia Rocha

    2002-01-01

    Full Text Available The oxidation process of sulfur(IV species by oxygen, ozone and nitrogen oxides, catalysed by trace metal ions, can play an important role in atmospheric chemistry processes like acid rain, visibility degradation and health hazard. An overview of the more relevant investigations on emissions sources, aqueous phase conversion process and environmental impact is presented.

  16. Catalytic wet oxidation of ammonia solution: Activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst

    International Nuclear Information System (INIS)

    Hung, C.-M.

    2009-01-01

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H 2 PtCl 6 , Pd(NO 3 ) 3 and Rh(NO 3 ) 3 . Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h -1 in the wet catalytic processes

  17. Catalytic wet oxidation of ammonia solution: Activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Hung, C.-M. [Department of Industry Engineering and Management, Yung-Ta Institute of Technology and Commerce, 316 Chung-shan Road, Linlo, Pingtung 909, Taiwan (China)], E-mail: hungcm1031@gmail.com

    2009-04-15

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H{sub 2}PtCl{sub 6}, Pd(NO{sub 3}){sub 3} and Rh(NO{sub 3}){sub 3}. Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h{sup -1} in the wet catalytic processes.

  18. Catalytic wet oxidation of ammonia solution: activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst.

    Science.gov (United States)

    Hung, Chang-Mao

    2009-04-15

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H(2)PtCl(6), Pd(NO(3))(3) and Rh(NO(3))(3). Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes.

  19. Oxide nano-rod array structure via a simple metallurgical process

    International Nuclear Information System (INIS)

    Nanko, M; Do, D T M

    2011-01-01

    A simple method for fabricating oxide nano-rod array structure via metallurgical process is reported. Some dilute alloys such as Ni(Al) solid solution shows internal oxidation with rod-like oxide precipices during high-temperature oxidation with low oxygen partial pressure. By removing a metal part in internal oxidation zone, oxide nano-rod array structure can be developed on the surface of metallic components. In this report, Al 2 O 3 or NiAl 2 O 4 nano-rod array structures were prepared by using Ni(Al) solid solution. Effects of Cr addition into Ni(Al) solid solution on internal oxidation were also reported. Pack cementation process for aluminizing of Ni surface was applied to prepare nano-rod array components with desired shape. Near-net shape Ni components with oxide nano-rod array structure on their surface can be prepared by using the pack cementation process and internal oxidation,

  20. Preparation of vinyl chloride – vinyl ether copolymers via partial etherification from PVC

    Directory of Open Access Journals (Sweden)

    2007-08-01

    Full Text Available The chemical modifications of poly (vinyl chloride with aliphatic and aromatic alcohols compounds have been investigated at room temperature and atmospheric pressure, catalysed by a new green basic catalyst, the Maghnite-K+. The presence of ether groups in the products is proven by infra red spectroscopy (IR as well as by nuclear magnetic resonance spectroscopy (1H NMR, and characterized by intrinsic viscosity as well as by gel permeation chromatography (GPC.

  1. Homogeneously catalysed hydrogenation of unsaturated fatty acids to unsaturated fatty alcohols

    NARCIS (Netherlands)

    Stouthamer, B.; Vlugter, J.C.

    1965-01-01

    The use of copper and cadmium oxides or soaps as catalysts for the hydrogenation of unsaturated fatty acids to unsaturated fatty alcohols has been investigated. It is shown that copper soaps homogeneously activate hydrogen. When copper and cadmium oxides are used as catalysts, they react with the

  2. Partial tooth gear bearings

    Science.gov (United States)

    Vranish, John M. (Inventor)

    2010-01-01

    A partial gear bearing including an upper half, comprising peak partial teeth, and a lower, or bottom, half, comprising valley partial teeth. The upper half also has an integrated roller section between each of the peak partial teeth with a radius equal to the gear pitch radius of the radially outwardly extending peak partial teeth. Conversely, the lower half has an integrated roller section between each of the valley half teeth with a radius also equal to the gear pitch radius of the peak partial teeth. The valley partial teeth extend radially inwardly from its roller section. The peak and valley partial teeth are exactly out of phase with each other, as are the roller sections of the upper and lower halves. Essentially, the end roller bearing of the typical gear bearing has been integrated into the normal gear tooth pattern.

  3. Organising nursing practice into care models that catalyse quality: A clinical nurse leader case study.

    Science.gov (United States)

    Bender, Miriam; Spiva, LeeAnna; Su, Wei; Hites, Lisle

    2018-02-09

    To determine the power of a conceptual clinical nurse leader practice model to explain the care model's enactment and trajectory in real world settings. How nursing, organised into specific models of care, functions as an organisational strategy for quality is not well specified. Clinical nurse leader integrated care delivery is one emerging model with growing adoption. A recently validated clinical nurse leader practice model conceptualizes the care model's characteristics and hypothesizes their mechanisms of action. Pattern matching case study design and mixed methods were used to determine how the care model's constructs were operationalized in one regional United States health system that integrated clinical nurse leaders into their care delivery system in 2010. The findings confirmed the empirical presence of all clinical nurse leader practice model constructs and provided a rich description of how the health system operationalized the constructs in practice. The findings support the hypothesized model pathway from Clinical Nurse Leader structuring to Clinical Nurse Leader practice and outcomes. The findings indicate analytic generalizability of the clinical nurse leader practice model. Nursing practice organised to focus on microsystem care processes can catalyse multidisciplinary engagement with, and consistent enactment of, quality practices. The model has great potential for transferability across diverse health systems. © 2018 John Wiley & Sons Ltd.

  4. Vanillyl-alcohol oxidase, a tasteful biocatalyst

    NARCIS (Netherlands)

    Heuvel, van den R.H.H.; Fraaije, M.W.; Mattevi, A.; Laane, C.; Berkel, van W.J.H.

    2001-01-01

    The covalent flavoenzyme vanillyl-alcohol oxidase (VAO) is a versatile biocatalyst. It converts a wide range of phenolic compounds by catalysing oxidation, deamination, demethylation, dehydrogenation and hydroxylation reactions. The production of natural vanillin, 4-hydroxybenzaldehyde, coniferyl

  5. Effect of substrate temperature and oxygen partial pressure on RF sputtered NiO thin films

    Science.gov (United States)

    Cheemadan, Saheer; Santhosh Kumar, M. C.

    2018-04-01

    Nickel oxide (NiO) thin films were deposited by RF sputtering process and the physical properties were investigated for varying substrate temperatures and oxygen partial pressure. The variation of the crystallographic orientation and microstructure of the NiO thin films with an increase in substrate temperature were studied. It was observed that NiO thin films deposited at 350 °C shows relatively good crystalline characteristics with a preferential orientation along (111) plane. With the optimum substrate temperature of 350 °C, the NiO thin films were deposited under various oxygen partial pressures at the same experimental conditions. The structural, optical and electrical properties of NiO thin films under varying oxygen partial pressure of 10%–50% were investigated. From XRD it is clear that the films prepared in the pure argon atmosphere were amorphous while the films in oxygen partial pressure exhibited polycrystalline NiO phase. SEM and AFM investigations unveil that the higher substrate temperature improves the microstructure of the thin films. It is revealed that the NiO thin films deposited at oxygen partial pressure of 40% and a substrate temperature of 350 °C, showed higher electrical conductivity with p-type characteristics.

  6. Oxidation kinetics of a continuous carbon phase in a nonreactive matrix

    Science.gov (United States)

    Eckel, Andrew J.; Cawley, James D.; Parthasarathy, Triplicane A.

    1995-01-01

    Analytical solutions of and experimental results on the oxidation kinetics of carbon in a pore are presented. Reaction rate, reaction sequence, oxidant partial pressure, total system pressure, pore/crack dimensions, and temperature are analyzed with respect to the influence of each on an overall linear-parabolic rate relationship. Direct measurement of carbon recession is performed using two microcomposite model systems oxidized in the temperature range of 700 to 1200 C, and for times to 35 h. Experimental results are evaluated using the derived analytical solutions. Implications on the oxidation resistance of continuous-fiber-reinforced ceramic-matrix composites containing a carbon constituent are discussed.

  7. First approach for thermodynamic modelling of the high temperature oxidation behaviour of ternary γ′-strengthened Co–Al–W superalloys

    International Nuclear Information System (INIS)

    Klein, L.; Zendegani, A.; Palumbo, M.; Fries, S.G.; Virtanen, S.

    2014-01-01

    Highlights: • Thermodynamic modelling of the oxidation behaviour of a novel Co-base superalloy. • Calculated oxide layer sequence is in good agreement with formed oxide scales. • Prediction of an optimised alloy composition with increased phase stability. • Prediction of the influence of oxygen partial pressure on Al 2 O 3 formation. - Abstract: In the present work, thermodynamic modelling of the high temperature oxidation behaviour of a γ′-strengthened Co-base superalloy is presented. The ternary Co–9Al–9W alloy (values in at%) was isothermally oxidised for 500 h at 800 and 900 °C in air. Results reveal that the calculated oxide layer sequence (Thermo-Calc, TCNI6) is in good agreement with the formed oxide scales on the alloy surface. Furthermore, prediction of the influence of oxygen partial pressure on Al 2 O 3 formation is presented. The modelling results indicate pathways for alloy development or possible pre-oxidation surface treatments for improved oxidation resistance of the material

  8. Investigation of flow condition on the oxidation of Zircaloy-4 in air at 850 and 1100 .deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Maeng, Yun Hwan; Lee, Jae Young [Hangdong Global University, Pohang (Korea, Republic of); Park, Sang Gil [ACT Co. Ltd, Daejeon (Korea, Republic of)

    2016-05-15

    An oxidation behavior of the Zircaloy-4 was experimentally studied by varying a flow rate and partial pressure of air. Tests were conducted at two distinct temperatures in which a kinetic transition was occurred, or not: 850 .deg. C and 1100 .deg. C. The effects of flow rate and partial pressure of air was studied by a measurement of mass gain using thermogravimetric analyzer (TGA). After experiments, samples were observed with macrophotography and metallography using optical microscopy. The effect of flow rate and partial pressure of air were qualitatively analyzed with those methods. The effects of flow conditions on the oxidation kinetics of Zircaloy-4 samples were qualitatively studied. The flow rate and the partial pressure of air were changed and their effects was different when the temperature was changed.

  9. Carbon-coated magnetic palladium: applications in partial oxidation of alcohols and coupling reactions.

    Science.gov (United States)

    Magnetic carbon supported Pd catalyst has been synthesized via in situ generation of nanoferrites and incorporation of carbon from renewable cellulose via calcination; catalyst can be used for oxidation of alcohols, amination reaction and arylation of aryl halides (cross coupli...

  10. From Partial nitrification to canon in an aerobic granular SBR

    International Nuclear Information System (INIS)

    Vazquez-Padin, J.; Figueroa, M.; Campos, J. L.; Mosquera-Corral, A.; Mendez, R.

    2009-01-01

    Nitrogen removal via nitrification-denitrification processes is commonly used in biology wastewater treatment plants to remove nitrogen compounds. In recent years new technologies emerged bringing solutions to remove nitrogen from wastewaters with not enough COD content to complete the denitrification process. An alternative strategy to the conventional nitrification-denitrification processes has been developed in the nine tries consisting of a combination of the oxidation of half of the ammonium from the wastewater to nitrite via partial nitrification and the removal of both, ammonium and formed nitrite by the Anammox process. (Author)

  11. Convenient synthesis of volatile streptomyces lactones

    Digital Repository Service at National Institute of Oceanography (India)

    Amonkar, C.P.; Tilve, S.G.; Parameswaran, P.S.

    A convenient three-step synthetic approach towards 3-alkyl-5-methyl-2[5H]furanones is described. The steps involved in the synthesis are domino primary alcohol oxidation-Wittig reaction, acid-catalysed lactonisation and isomerisation. This synthetic...

  12. A general strategy for synthesis of cyclophane-braced peptide macrocycles via palladium-catalysed intramolecular sp3 C-H arylation

    Science.gov (United States)

    Zhang, Xuekai; Lu, Gang; Sun, Meng; Mahankali, Madhu; Ma, Yanfei; Zhang, Mingming; Hua, Wangde; Hu, Yuting; Wang, Qingbing; Chen, Jinghuo; He, Gang; Qi, Xiangbing; Shen, Weijun; Liu, Peng; Chen, Gong

    2018-05-01

    New methods capable of effecting cyclization, and forming novel three-dimensional structures while maintaining favourable physicochemical properties are needed to facilitate the development of cyclic peptide-based drugs that can engage challenging biological targets, such as protein-protein interactions. Here, we report a highly efficient and generally applicable strategy for constructing new types of peptide macrocycles using palladium-catalysed intramolecular C(sp3)-H arylation reactions. Easily accessible linear peptide precursors of simple and versatile design can be selectively cyclized at the side chains of either aromatic or modified non-aromatic amino acid units to form various cyclophane-braced peptide cycles. This strategy provides a powerful tool to address the long-standing challenge of size- and composition-dependence in peptide macrocyclization, and generates novel peptide macrocycles with uniquely buttressed backbones and distinct loop-type three-dimensional structures. Preliminary cell proliferation screening of the pilot library revealed a potent lead compound with selective cytotoxicity toward proliferative Myc-dependent cancer cell lines.

  13. Investigation of anodic oxide coatings on zirconium after heat treatment

    International Nuclear Information System (INIS)

    Sowa, Maciej; Dercz, Grzegorz; Suchanek, Katarzyna; Simka, Wojciech

    2015-01-01

    Highlights: • Oxide layers prepared via PEO of zirconium were subjected to heat treatment. • Surface characteristics were determined for the obtained oxide coatings. • Heat treatment led to the partial destruction of the anodic oxide layer. • Pitting corrosion resistance of zirconium was improved after the modification. - Abstract: Herein, results of heat treatment of zirconium anodised under plasma electrolytic oxidation (PEO) conditions at 500–800 °C are presented. The obtained oxide films were investigated by means of SEM, XRD and Raman spectroscopy. The corrosion resistance of the zirconium specimens was evaluated in Ringer's solution. A bilayer oxide coatings generated in the course of PEO of zirconium were not observed after the heat treatment. The resulting oxide layers contained a new sublayer located at the metal/oxide interface is suggested to originate from the thermal oxidation of zirconium. The corrosion resistance of the anodised metal was improved after the heat treatment

  14. A polygeneration from a dual-gas partial catalytic oxidation coupling with an oxygen-permeable membrane reactor

    International Nuclear Information System (INIS)

    Hao, Yanhong; Huang, Yi; Gong, Minhui; Li, Wenying; Feng, Jie; Yi, Qun

    2015-01-01

    Highlights: • A new polygeneration system (PL-PCO-OPMR) to DME/methanol/power is proposed. • Exergeo-economic analysis is adopted to disclose the performance of systems. • Key technological conditions and parameters for PL-PCO-OPMR are optimized. • PL-PCO-OPMR shows high energy efficiency and low CO_2 emission. • PL-PCO-OPMR is an attractive way for high efficient and clean use of COG and CGG. - Abstract: Polygeneration system, typically involving chemicals/fuels and electricity co-production, is a promising technology for the sustainable development of energy and environment. In this study, a new polygeneration system based on coal and coke oven gas (COG) inputs for co-production of dimethyl ether (DME)/methanol and electricity is proposed. In the new system, an appropriate syngas for the synthesis of DME is from coal gasified gas (CGG) reforming of COG coupled with an oxygen-permeable membrane reactor, in which both COG and CGG reforming process and fuel combustion process are incorporated, which reduces exergy destruction in the whole reforming process. In order to obtain the best performance of CO_2 reduction, energy saving and economic benefit, the key operation parameters of the proposed process are analyzed and optimized. The new system is compared with the process based on CH_4/CO_2 dry reforming, in terms of exergy efficiency, exergy cost and CO_2 emissions. Through the new system, the exergy efficiency can be increased by 7.8%, the exergy cost can be reduced by 0.88 USD/GJ and the CO_2 emission can be reduced by 0.023 kg/MJ. These results suggest that the polygeneration system from CGG and COG partial catalytic oxidation coupling with an oxygen-permeable membrane reactor (PL-PCO-OPMR) would be a more attractive way for highly efficient and clean use of CGG and COG.

  15. Silver manganese oxide electrodes for lithium batteries

    Science.gov (United States)

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2006-05-09

    This invention relates to electrodes for non-aqueous lithium cells and batteries with silver manganese oxide positive electrodes, denoted AgxMnOy, in which x and y are such that the manganese ions in the charged or partially charged electrodes cells have an average oxidation state greater than 3.5. The silver manganese oxide electrodes optionally contain silver powder and/or silver foil to assist in current collection at the electrodes and to improve the power capability of the cells or batteries. The invention relates also to a method for preparing AgxMnOy electrodes by decomposition of a permanganate salt, such as AgMnO4, or by the decomposition of KMnO4 or LiMnO4 in the presence of a silver salt.

  16. Oxygen effect of transparent conducting amorphous Indium Zinc Tin Oxide films on Polyimide substrate for flexible electrode

    International Nuclear Information System (INIS)

    Ko, Yoon Duk; Lee, Chang Hun; Moon, Doo Kyung; Kim, Young Sung

    2013-01-01

    This paper discusses the effect of oxygen on the transparent conducting properties and mechanical durability of the amorphous indium zinc tin oxide (IZTO) films. IZTO films deposited on flexible clear polyimide (PI) substrate using pulsed direct current (DC) magnetron sputtering at room temperature under various oxygen partial pressures. All IZTO films deposited at room temperature exhibit an amorphous structure. The electrical and optical properties of the IZTO films were sensitively influenced by oxygen partial pressures. At optimized deposition condition of 3.0% oxygen partial pressure, the IZTO film shows the lowest resistivity of 6.4 × 10 −4 Ωcm, high transmittance of over 80% in the visible range, and figure of merit value of 3.6 × 10 −3 Ω −1 without any heat controls. In addition, high work function and good mechanical flexibility of amorphous IZTO films are beneficial to flexible applications. It is proven that the proper oxygen partial pressure is important parameter to enhance the transparent conducting properties of IZTO films on PI substrate deposited at room temperature. - Highlights: • Indium zinc tin oxide (IZTO) films were deposited on polyimide at room temperature. • Transparent conducting properties of IZTO were influenced with oxygen partial pressure. • The smooth surface and high work function of IZTO were beneficial to anode layer. • The mechanical reliability of IZTO shows better performance to indium tin oxide film

  17. Oxidation kinetics of polycyclic aromatic hydrocarbons by permanganate.

    Science.gov (United States)

    Forsey, Steven P; Thomson, Neil R; Barker, James F

    2010-04-01

    The reactivity of permanganate towards polycyclic aromatics hydrocarbons (PAHs) is well known but little kinetic information is available. This study investigated the oxidation kinetics of a selected group of coal tar creosote compounds and alkylbenzenes in water using permanganate, and the correlation between compound reactivity and physical/chemical properties. The oxidation of naphthalene, phenanthrene, chrysene, 1-methylnaphthalene, 2-methylnaphthalene, acenaphthene, fluorene, carbazole isopropylbenzene, ethylbenzene and methylbenzene closely followed pseudo first-order reaction kinetics. The oxidation of pyrene was initially very rapid and did not follow pseudo first-order kinetics at early times. Fluoranthene was only partially oxidized and the oxidation of anthracene was too fast to be captured. Biphenyl, dibenzofuran, benzene and tert-butylbenzene were non-reactive under the study conditions. The oxidation rate was shown to increase with increasing number of polycyclic rings because less energy is required to overcome the aromatic character of a polycyclic ring than is required for benzene. Thus the rate of oxidation increased in the series naphthalenepermanganate. 2010 Elsevier Ltd. All rights reserved.

  18. Functional and catalytic active sites prediction and docking analysis ...

    African Journals Online (AJOL)

    The initial critical step of reduction of azo bond during the metabolism of azo dyes is catalysed by a group of NADH and FAD dependant enzyme called azoreductases. Although several azoreductases have been identified from microorganisms and partially characterized, very little is known about the structural basis of the ...

  19. Increased electrochemical properties of ruthenium oxide and graphene/ruthenium oxide hybrid dispersed by polyvinylpyrrolidone

    International Nuclear Information System (INIS)

    Chen, Yao; Zhang, Xiong; Zhang, Dacheng; Ma, Yanwei

    2012-01-01

    Highlights: ► A good dispersion of RuO 2 and graphene/RuO 2 is obtained by polyvinylpyrrolidone. ► PVP as a dispersant also can prevent the formation of metal Ru in graphene/RuO 2 . ► The max capacitances of the hybrid and RuO 2 reach 435 and 597 F g −1 at 0.2 A g −1 . ► The hybrid shows the best rate capability of 39% at 50 A g −1 . - Abstract: Ruthenium oxide has been prepared by a sol–gel method. Polyvinylpyrrolidone (PVP) as an excellent polymeric dispersant is adopted to prevent aggregation of ruthenium oxide. In order to enhance the rate capability of ruthenium oxide, graphene with residual oxygen functional groups as a 2D support has been merged into ruthenium oxide. These oxygen functional groups not only favor to form stable few layers of graphene colloids, but also offer the sites to anchor ruthenium oxide nanoparticles. X-ray diffraction infers that PVP can also hinder the partial formation of Ru by blocking the direct contact between the Ru 3+ and the graphene in the sol–gel synthesis of the hybrids. The ruthenium oxide and the graphene/ruthenium oxide hybrids dispersed by PVP have superior electrochemical properties due to good dispersing and protecting ability of PVP. Especially, the hybrids using PVP exhibit the best rate capability, indicating that the composites possess an advanced structure of combining sheets and particles in nano-scale.

  20. Effect of partial oxygen pressure on physicochemical properties of Kh18N10T steel at isothermal oxidation

    International Nuclear Information System (INIS)

    Alekseev, V.N.; Oshe, E.K.; Fokin, M.N.; Bogdanova, S.V.; Loskutov, A.I.

    1990-01-01

    Auger-electron spectroscopy, photoelectric polarization, conductometry methods have been used to analyze chemical and defect composition of surface oxide layers, formed on stainless steel Kh18N10T in vacuum (10 -9 - 10 -2 torr) and at temperatures 593-673 K. The boundary conditions of manifestation of extermal behaviour of the dependence of the surface oxide growth rate at isothermal oxidation of this steel are determined. The relation between passivation properties of the surface oxide and the magnitude of the edge angle of the surface wetting with molten tin is revealed