WorldWideScience

Sample records for catabolism preinduces tolerance

  1. Redundancy in putrescine catabolism in solvent tolerant Pseudomonas putida S12.

    Science.gov (United States)

    Bandounas, Luaine; Ballerstedt, Hendrik; de Winde, Johannes H; Ruijssenaars, Harald J

    2011-06-10

    Pseudomonas putida S12 is a promising platform organism for the biological production of substituted aromatic compounds due to its extreme tolerance towards toxic chemicals. Solvent or aromatic stress tolerance may be due to membrane modifications and efflux pumps; however in general, polyamines have also been implicated in stressed cells. Previous transcriptomics results of P. putida strains producing an aromatic compound, or being exposed to the solvent toluene, indicated differentially expressed genes involved in polyamine transport and metabolism. Therefore, the metabolism of the polyamine, putrescine was investigated in P. putida S12, as no putrescine degradation pathways have been described for this strain. Via transcriptome analysis various, often redundant, putrescine-induced genes were identified as being potentially involved in putrescine catabolism via oxidative deamination and transamination. A series of knockout mutants were constructed in which up to six of these genes were sequentially deleted, and although putrescine degradation was affected in some of these mutants, complete elimination of putrescine degradation in P. putida S12 was not achieved. Evidence was found for the presence of an alternative pathway for putrescine degradation involving γ-glutamylation. The occurrence of multiple putrescine degradation routes in the solvent-tolerant P. putida S12 is indicative of the importance of controlling polyamine homeostasis, as well as of the high metabolic flexibility exhibited by this microorganism.

  2. Redundancy in putrescine catabolism in solvent tolerant Pseudomonas putida S12

    NARCIS (Netherlands)

    Bandounas, L.; Ballerstedt, H.; Winde, J.H. de; Ruijssenaars, H.J.

    2011-01-01

    Pseudomonas putida S12 is a promising platform organism for the biological production of substituted aromatic compounds due to its extreme tolerance towards toxic chemicals. Solvent or aromatic stress tolerance may be due to membrane modifications and efflux pumps; however in general, polyamines hav

  3. Catabolism of volatile organic compounds influences plant survival.

    Science.gov (United States)

    Oikawa, Patricia Y; Lerdau, Manuel T

    2013-12-01

    Plants emit a diverse array of phytogenic volatile organic compounds (VOCs). The production and emission of VOCs has been an important area of research for decades. However, recent research has revealed the importance of VOC catabolism by plants and VOC degradation in the atmosphere for plant growth and survival. Specifically, VOC catabolism and degradation have implications for plant C balance, tolerance to environmental stress, plant signaling, and plant-atmosphere interactions. Here we review recent advances in our understanding of VOC catabolism and degradation, propose experiments for investigating VOC catabolism, and suggest ways to incorporate catabolism into VOC emission models. Improving our knowledge of VOC catabolism and degradation is crucial for understanding plant metabolism and predicting plant survival in polluted environments.

  4. Tolerance

    NARCIS (Netherlands)

    Doorn, van M.

    2012-01-01

    Tolerance entails acceptance of the very things one disagrees with, disapproves of or dislikes. Tolerance can be seen as ‘a flawed virtue’ (Schuyt, 2001), because it concerns acceptance of the differences between others and ourselves we would rather fight, ignore or overcome. Although tolerance carr

  5. Tolerance

    DEFF Research Database (Denmark)

    Tønder, Lars

    Tolerance: A Sensorial Orientation to Politics is an experiment in re-orientation. The book is based on the wager that tolerance exceeds the more prevalent images of self-restraint and repressive benevolence because neither precludes the possibility of a more “active tolerance” motivated by the d...... these alternatives by returning to the notion of tolerance as the endurance of pain, linking this notion to exemplars and theories relevant to the politics of multiculturalism, religious freedom, and free speech.......Tolerance: A Sensorial Orientation to Politics is an experiment in re-orientation. The book is based on the wager that tolerance exceeds the more prevalent images of self-restraint and repressive benevolence because neither precludes the possibility of a more “active tolerance” motivated...... by the desire to experiment and to become otherwise. The objective is to discuss what gets lost, conceptually as well as politically, when we neglect the subsistence of active tolerance within other practices of tolerance, and to develop a theory of active tolerance in which tolerance's mobilizing character...

  6. Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications.

    Science.gov (United States)

    Fuentes, Sebastián; Méndez, Valentina; Aguila, Patricia; Seeger, Michael

    2014-06-01

    Bioremediation is an environmental sustainable and cost-effective technology for the cleanup of hydrocarbon-polluted soils and coasts. In spite of that longer times are usually required compared with physicochemical strategies, complete degradation of the pollutant can be achieved, and no further confinement of polluted matrix is needed. Microbial aerobic degradation is achieved by the incorporation of molecular oxygen into the inert hydrocarbon molecule and funneling intermediates into central catabolic pathways. Several families of alkane monooxygenases and ring hydroxylating dioxygenases are distributed mainly among Proteobacteria, Actinobacteria, Firmicutes and Fungi strains. Catabolic routes, regulatory networks, and tolerance/resistance mechanisms have been characterized in model hydrocarbon-degrading bacteria to understand and optimize their metabolic capabilities, providing the basis to enhance microbial fitness in order to improve hydrocarbon removal. However, microbial communities taken as a whole play a key role in hydrocarbon pollution events. Microbial community dynamics during biodegradation is crucial for understanding how they respond and adapt to pollution and remediation. Several strategies have been applied worldwide for the recovery of sites contaminated with persistent organic pollutants, such as polycyclic aromatic hydrocarbons and petroleum derivatives. Common strategies include controlling environmental variables (e.g., oxygen availability, hydrocarbon solubility, nutrient balance) and managing hydrocarbon-degrading microorganisms, in order to overcome the rate-limiting factors that slow down hydrocarbon biodegradation.

  7. Catabolism and detoxification of 1-aminoalkylphosphonic acids

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; McSorley, Fern R.; Zechel, David L.

    2012-01-01

    In Escherichia coli uptake and catabolism of organophosphonates are governed by the phnCDEFGHIJKLMNOP operon. The phnO cistron is shown to encode aminoalkylphosphonate N-acetyltransferase, which utilizes acetylcoenzyme A as acetyl donor and aminomethylphosphonate, (S)- and (R)-1-aminoethylphospho...

  8. Regulation of carbon catabolism in Lactococcus lactis.

    NARCIS (Netherlands)

    Aleksandrzak, T; Kowalczyk, M; Kok, J; Bardowski, J; Bielecki, S; Tramper, J; Polak, J

    2000-01-01

    The Lactococcus lactis IL1403 is a lactose negative, plasmid free strain. Nevertheless, it is able to hydrolyze lactose in the presence of cellobiose. In this work we describe identification of a gene involved in this process. The gene was found to be homologous to the sugar catabolism regulator, cc

  9. Metabolic control analysis of xylose catabolism in Aspergillus

    NARCIS (Netherlands)

    Prathumpai, W.; Gabelgaard, J.B.; Wanchanthuek, P.; Vondervoort, van de P.J.I.; Groot, de M.J.L.; McIntyre, M.; Nielsen, J.

    2003-01-01

    A kinetic model for xylose catabolism in Aspergillus is proposed. From a thermodynamic analysis it was found that the intermediate xylitol will accumulate during xylose catabolism. Use of the kinetic model allowed metabolic control analysis (MCA) of the xylose catabolic pathway to be carried out, an

  10. Glycosidases: inborn errors of glycosphingolipid catabolism.

    Science.gov (United States)

    Ashida, Hisashi; Li, Yu-Teh

    2014-01-01

    Glycosphingolipids (GSLs) are information-rich glycoconjugates that occur in nature mainly as constituents of biomembranes. Each GSL contains a complex carbohydrate chain linked to a ceramide moiety that anchors the molecule to biomembranes. In higher animals, catabolism of GSLs takes place in lysosomes where sugar chains in GSLs are hydrolyzed by exo-glycosidases to cleave a sugar residue from the non-reducing end of a sugar chain. Inborn errors of GSL-catabolism, collectively called sphingolipidoses or GSL-storage diseases, are caused by the deficiency of exo-glycosidases responsible for the degradation of the specific sugar residues at the non-reducing termini in GSLs. This chapter briefly discusses glycone, anomeric, linkage, and aglycone specificities of exo-glycosidases and some of the historical landmarks on their associations with the chemical pathology of the five best known sphingolipidoses: GM1 gangliosidosis, GM2 gangliosidosis (Tay-Sachs disease), Fabry disease, Gaucher disease, and Krabbe disease. PMID:25151392

  11. Catabolism and safety of supplemental L-arginine in animals.

    Science.gov (United States)

    Wu, Zhenlong; Hou, Yongqing; Hu, Shengdi; Bazer, Fuller W; Meininger, Cynthia J; McNeal, Catherine J; Wu, Guoyao

    2016-07-01

    L-arginine (Arg) is utilized via multiple pathways to synthesize protein and low-molecular-weight bioactive substances (e.g., nitric oxide, creatine, and polyamines) with enormous physiological importance. Furthermore, Arg regulates cell signaling pathways and gene expression to improve cardiovascular function, augment insulin sensitivity, enhance lean tissue mass, and reduce obesity in humans. Despite its versatile roles, the use of Arg as a dietary supplement is limited due to the lack of data to address concerns over its safety in humans. Data from animal studies are reviewed to assess arginine catabolism and the safety of long-term Arg supplementation. The arginase pathway was responsible for catabolism of 76-85 and 81-96 % Arg in extraintestinal tissues of pigs and rats, respectively. Dietary supplementation with Arg-HCl or the Arg base [315- and 630-mg Arg/(kg BW d) for 91 d] had no adverse effects on male or female pigs. Similarly, no safety issues were observed for male or female rats receiving supplementation with 1.8- and 3.6-g Arg/(kg BW d) for at least 91 d. Intravenous administration of Arg-HCl to gestating sheep at 81 and 180 mg Arg/(kg BW d) is safe for at least 82 and 40 d, respectively. Animals fed conventional diets can well tolerate large amounts of supplemental Arg [up to 630-mg Arg/(kg BW d) in pigs or 3.6-g Arg/(kg BW d) in rats] for 91 d, which are equivalent to 573-mg Arg/(kg BW d) for humans. Collectively, these results can help guide studies to determine the safety of long-term oral administration of Arg in humans. PMID:27156062

  12. Catabolism of hyaluronan: involvement of transition metals

    OpenAIRE

    Šoltés, Ladislav; Kogan, Grigorij

    2009-01-01

    One of the very complex structures in the vertebrates is the joint. The main component of the joint is the synovial fluid with its high-molar-mass glycosaminoglycan hyaluronan, which turnover is approximately twelve hours. Since the synovial fluid does not contain any hyaluronidases, the fast hyaluronan catabolism is caused primarily by reductive-oxidative processes. Eight transition metals – V23, Mn25, Fe26, Co27, Ni28, Cu29, Zn30, and Mo42 – naturally occurring in living organism are essent...

  13. Metabolic control analysis of xylose catabolism in Aspergillus

    DEFF Research Database (Denmark)

    Prathumpai, Wai; Gabelgaard, J.B.; Wanchanthuek, P.;

    2003-01-01

    A kinetic model for xylose catabolism in Aspergillus is proposed. From a thermodynamic analysis it was found that the intermediate xylitol will accumulate during xylose catabolism. Use of the kinetic model allowed metabolic control analysis (MCA) of the xylose catabolic pathway to be carried out...... nidulans grown on media containing xylose, and a concentration up to 30 mM was found. Applying MCA showed that the first polyol dehydrogenase (XDH) in the catabolic pathway of xylose exerted the main flux control in the two strains of A. nidulans and A. niger NW324, but the flux control was exerted mainly...

  14. Bone marrow: its contribution to heme catabolism.

    Science.gov (United States)

    Mähönen, Y; Anttinen, M; Vuopio, P; Tenhunen, R

    1976-01-01

    Heme oxygenase (HO) and biliverdin reductase (BR), the two NADPH-dependent enzymes involved in the degradation of hemoglobin and its derivatives, were measured in bone marrow aspirates from 5 hematologically normal persons, 4 patients with chronic leucemia (CL), 11 patients with acute leucemia (AL), 8 patients with refractory sideroblastic anemia (RA), 7 patients with iron-deficiency anemia (IA), 5 patients with hemolytic anemia (HA), and 7 patients with secondary anemia (SA) to determine the enzymatic capacity of the bone marrow in different hematologic disorders for heme catabolism. HO activity in the bone marrow of normal persons was 0.42 +/- 0.28 (SD) nmoles bilirubin/10 mg protein/min; in CL, 2.15 +/- 1.34; in AL, 0.39 +/- 0.25; in RA, 0.58 +/- 0.37; in IA, 0.41 +/- 0.28; in HA, 2.56 +/- 1.40; and in SA, 1.72 +/- 1.06. BR activity, respectively, was in normal persons 8.7 +/- 2.4 (SD) nmoles bilirubin/10 mg protein/min; in CL, 13.6 +/- 9.1; in AL, 3.8 +/- 3.1 in RA, 5.1 +/- 2.7; in IA, 5.5 +/- 3.7; in HA, 17.0 +/- 7.2; and in SA, 10.5 +/- 4.2. On the basis of these findings it seems evident that both oxygenase and biliverdin reductase activities of the bone marrow are capable of adaptive regulation. The physiologic role of bone marrow in heme catabolism seems to be of significant importance.

  15. Effects of lipopolysaccharide on the catabolic activity of macrophages

    International Nuclear Information System (INIS)

    The ability of macrophages to degrade and catabolize antigens is of relevance both as a means to process complex antigens prior to presentation to T cells, as well as a way to down regulate immune responses by destroying the antigenicity of polypeptides. With these considerations, the authors have investigated the regulation of macrophage catabolic activity by lipopolysaccharide (LPS). Catabolic activity was quantitated by following the distribution and molecular form of 125-I labelled surface components of heat-killed Listeria monocytogenes (HKLM) subsequent to their uptake by macrophages. They have compared the catabolic activity of macrophages from peritoneal exudates of mice injected i.p. with saline or LPS and have found that LPS-elicited macrophages display a greatly enhanced (3 fold) rate of catabolism. This increase in catabolic activity peaks 3 days after LPS injection and steadily declines thereafter, approaching a baseline level after 3 weeks. The enhancement of catabolic activity is under LPS gene control. LPS-elicited macrophages rapidly destroy the antigenicity of bacterial antigens and function poorly as antigen presenting cells in vitro. These results suggest that LPS elicits a macrophage population specialized for antigen degradation functions with negative regulatory effects on the induction of specific immune responses

  16. The Use of Anabolic Agents in Catabolic States

    OpenAIRE

    Demling, Robert

    2007-01-01

    Objective: We plan to review the current problem of lean mass erosion in catabolic states, caused by injury and critical illness. This protein loss is driven by the hormonal imbalance and excess inflammation referred to as the “stress response to injury.” We then plan to provide the current concepts on the use of available anabolic agents to attenuate the excess catabolism. Data Source: The available published literature on the pathogenesis of acute catabolic states and the use of anabolic an...

  17. Catabolism of host-derived compounds during extracellular bacterial infections.

    Science.gov (United States)

    Meadows, Jamie A; Wargo, Matthew J

    2014-02-01

    Efficient catabolism of host-derived compounds is essential for bacterial survival and virulence. While these links in intracellular bacteria are well studied, such studies in extracellular bacteria lag behind, mostly for technical reasons. The field has identified important metabolic pathways, but the mechanisms by which they impact infection and in particular, establishing the importance of a compound's catabolism versus alternate metabolic roles has been difficult. In this review we will examine evidence for catabolism during extracellular bacterial infections in animals and known or potential roles in virulence. In the process, we point out key gaps in the field that will require new or newly adapted techniques.

  18. Arginine transport in catabolic disease states.

    Science.gov (United States)

    Pan, Ming; Choudry, Haroon A; Epler, Mark J; Meng, Qinghe; Karinch, Anne; Lin, Chengmao; Souba, Wiley

    2004-10-01

    Arginine appears to be a semiessential amino acid in humans during critical illness. Catabolic disease states such as sepsis, injury, and cancer cause an increase in arginine utilization, which exceeds body production, leading to arginine depletion. This is aggravated by the reduced nutrient intake that is associated with critical illness. Arginine depletion may have negative consequences on tissue function under these circumstances. Nutritional regimens containing arginine have been shown to improve nitrogen balance and lymphocyte function, and stimulate arginine transport in the liver. We have studied the effects of stress mediators on arginine transport in vascular endothelium, liver, and gut epithelium. In vascular endothelium, endotoxin stimulates arginine uptake, an effect that is mediated by the cytokine tumor necrosis factor-alpha (TNF-alpha) and by the cyclo-oxygenase pathway. This TNF-alpha stimulation involves the activation of intracellular protein kinase C (PKC). A significant increase in hepatic arginine transport activity also occurs following burn injury and in rats with progressive malignant disease. Surgical removal of the growing tumor results in a normalization of the accelerated hepatic arginine transport within days. Chronic metabolic acidosis and sepsis individually augment intestinal arginine transport in rats and Caco-2 cell culture. PKC and mitogen-activated protein kinases are involved in mediating the sepsis/acidosis stimulation of arginine transport. Understanding the regulation of plasma membrane arginine transport will enhance our knowledge of nutrition and metabolism in seriously ill patients and may lead to the design of improved nutritional support formulas. PMID:15465794

  19. Catabolism of exogenous lactate reveals it as a legitimate metabolic substrate in breast cancer.

    Science.gov (United States)

    Kennedy, Kelly M; Scarbrough, Peter M; Ribeiro, Anthony; Richardson, Rachel; Yuan, Hong; Sonveaux, Pierre; Landon, Chelsea D; Chi, Jen-Tsan; Pizzo, Salvatore; Schroeder, Thies; Dewhirst, Mark W

    2013-01-01

    Lactate accumulation in tumors has been associated with metastases and poor overall survival in cancer patients. Lactate promotes angiogenesis and metastasis, providing rationale for understanding how it is processed by cells. The concentration of lactate in tumors is a balance between the amount produced, amount carried away by vasculature and if/how it is catabolized by aerobic tumor or stromal cells. We examined lactate metabolism in human normal and breast tumor cell lines and rat breast cancer: 1. at relevant concentrations, 2. under aerobic vs. hypoxic conditions, 3. under conditions of normo vs. hypoglucosis. We also compared the avidity of tumors for lactate vs. glucose and identified key lactate catabolites to reveal how breast cancer cells process it. Lactate was non-toxic at clinically relevant concentrations. It was taken up and catabolized to alanine and glutamate by all cell lines. Kinetic uptake rates of lactate in vivo surpassed that of glucose in R3230Ac mammary carcinomas. The uptake appeared specific to aerobic tumor regions, consistent with the proposed "metabolic symbiont" model; here lactate produced by hypoxic cells is used by aerobic cells. We investigated whether treatment with alpha-cyano-4-hydroxycinnamate (CHC), a MCT1 inhibitor, would kill cells in the presence of high lactate. Both 0.1 mM and 5 mM CHC prevented lactate uptake in R3230Ac cells at lactate concentrations at ≤ 20 mM but not at 40 mM. 0.1 mM CHC was well-tolerated by R3230Ac and MCF7 cells, but 5 mM CHC killed both cell lines ± lactate, indicating off-target effects. This study showed that breast cancer cells tolerate and use lactate at clinically relevant concentrations in vitro (± glucose) and in vivo. We provided additional support for the metabolic symbiont model and discovered that breast cells prevailingly take up and catabolize lactate, providing rationale for future studies on manipulation of lactate catabolism pathways for therapy.

  20. Protein catabolism and requirements in severe illness.

    Science.gov (United States)

    Genton, L; Pichard, C

    2011-03-01

    Reduced total body protein mass is a marker of protein-energy malnutrition and has been associated with numerous complications. Severe illness is characterized by a loss of total body protein mass, mainly from the skeletal muscle. Studies on protein turnover describe an increased protein breakdown and, to a lesser extent, an increased whole-body protein synthesis, as well as an increased flux of amino acids from the periphery to the liver. Appropriate nutrition could limit protein catabolism. Nutritional support limits but does not stop the loss of total body protein mass occurring in acute severe illness. Its impact on protein kinetics is so far controversial, probably due to the various methodologies and characteristics of nutritional support used in the studies. Maintaining calorie balance alone the days after an insult does not clearly lead to an improved clinical outcome. In contrast, protein intakes between 1.2 and 1.5 g/kg body weight/day with neutral energy balance minimize total body protein mass loss. Glutamine and possibly leucine may improve clinical outcome, but it is unclear whether these benefits occur through an impact on total body protein mass and its turnover, or through other mechanisms. Present recommendations suggest providing 20 - 25 kcal/kg/day over the first 72 - 96 hours and increasing energy intake to target thereafter. Simultaneously, protein intake should be between 1.2 and 1.5 g/kg/day. Enteral immunonutrition enriched with arginine, nucleotides, and omega-3 fatty acids is indicated in patients with trauma, acute respiratory distress syndrome (ARDS), and mild sepsis. Glutamine (0.2 - 0.4 g/kg/day of L-glutamine) should be added to enteral nutrition in burn and trauma patients (ESPEN guidelines 2006) and to parenteral nutrition, in the form of dipeptides, in intensive care unit (ICU) patients in general (ESPEN guidelines 2009). PMID:22139565

  1. Tolerating Zero Tolerance?

    Science.gov (United States)

    Moore, Brian N.

    2010-01-01

    The concept of zero tolerance dates back to the mid-1990s when New Jersey was creating laws to address nuisance crimes in communities. The main goal of these neighborhood crime policies was to have zero tolerance for petty crime such as graffiti or littering so as to keep more serious crimes from occurring. Next came the war on drugs. In federal…

  2. [Biochemical methods for the determination of a clinical protein catabolism].

    Science.gov (United States)

    Roth, E; Funovics, J; Schulz, F; Karner, J

    1980-12-01

    1. 20 patients before surgery received enteral nutrition for three days (12 g nitrogen, 1800 Kcal). Nitrogen and urea excretions in urine during the second and third day were determined. Eleven patients had a negative nitrogen balance (-2,7 and -2,4 g/day). In these patients urea production rates were 21,1 and 20,1 g/day. An urea production rate exceeding 15 g urea/day is probable an indication for a protein catabolism. The reason for this catabolic state seems to be a decreased protein utilisation (49 and 47 percent) as the result of a metabolic stress situation. This metabolic stress was determined according the stress index (Bistrian). The patients were in a stress situation comparable to postoperative stress (+3,7 and +3,9). The determination of urea production rate and catabolic index seems a suitable tool for defining a catabolic state. 2. 3-met-histidine excretion in urine were measured in seven patients postoperatively. In different periods saline or aminoacids solutions (5% alanine) were infused. During alanine administration protein (+49%)--and 3-met-histidine excretions (+50%) increased. It is not possible to state a catabolic situation out of the 3-met-histidine excretion, because an increased excretion may result from a stimulated protein synthesis in muscle tissue or from an increased muscleprotein wasting. 3. Free amino acid pools in plasma and muscle tissue were analysed in patients with severe illness of liver and pancreas. The free amino acid pattern differed from healthy volunteers. In patients with liver disease significantly increased concentrations of phenylalanine, tyrosine and methionine were found. In patients with acute pancreatitis highly abnormal pattern of intracellular amino acids occurred with decreased concentrations of glutamine, cysteine, histidine, lysine, arginine and ornithine. The highly significant decreased concentrations of glutamine (p less than 0,01) indicate a catabolic situation of these patients. A quantification of the

  3. Renal catabolism of albumin – current views and controversies

    Directory of Open Access Journals (Sweden)

    Jakub Gburek

    2011-10-01

    Full Text Available Albumin is the main protein of blood plasma, lymph, cerebrospinal fluid and interstitial fluid. The protein assists in many important body functions, including maintenance of proper colloidal osmotic pressure, transport of important metabolites and antioxidant action. Synthesis of albumin takes place mainly in the liver, and its catabolism occurs mostly in vascular endothelium of muscle, skin and liver as well as in the kidney tubular epithelium. Renal catabolism of albumin consists of glomerular filtration and tubular reabsorption. The tubular processes include endocytosis via the multiligand scavenger receptor tandem megalin and cubilin-amnionless complex. Possible ways of further catabolism of this protein are lysosomal proteolysis to amino acids and short peptides, recycling of degradation products into the bloodstream and tubular lumen or transcytosis of whole molecules. The article discusses the molecular aspects of these processes and presents the controversies arising in the light of the last decade of research.

  4. Variable carbon catabolism among Salmonella enterica serovar Typhi isolates.

    Directory of Open Access Journals (Sweden)

    Lay Ching Chai

    Full Text Available BACKGROUND: Salmonella enterica serovar Typhi (S. Typhi is strictly a human intracellular pathogen. It causes acute systemic (typhoid fever and chronic infections that result in long-term asymptomatic human carriage. S. Typhi displays diverse disease manifestations in human infection and exhibits high clonality. The principal factors underlying the unique lifestyle of S. Typhi in its human host during acute and chronic infections remain largely unknown and are therefore the main objective of this study. METHODOLOGY/PRINCIPAL FINDINGS: To obtain insight into the intracellular lifestyle of S. Typhi, a high-throughput phenotypic microarray was employed to characterise the catabolic capacity of 190 carbon sources in S. Typhi strains. The success of this study lies in the carefully selected library of S. Typhi strains, including strains from two geographically distinct areas of typhoid endemicity, an asymptomatic human carrier, clinical stools and blood samples and sewage-contaminated rivers. An extremely low carbon catabolic capacity (27% of 190 carbon substrates was observed among the strains. The carbon catabolic profiles appeared to suggest that S. Typhi strains survived well on carbon subtrates that are found abundantly in the human body but not in others. The strains could not utilise plant-associated carbon substrates. In addition, α-glycerolphosphate, glycerol, L-serine, pyruvate and lactate served as better carbon sources to monosaccharides in the S. Typhi strains tested. CONCLUSION: The carbon catabolic profiles suggest that S. Typhi could survive and persist well in the nutrient depleted metabolic niches in the human host but not in the environment outside of the host. These findings serve as caveats for future studies to understand how carbon catabolism relates to the pathogenesis and transmission of this pathogen.

  5. Serine one-carbon catabolism with formate overflow

    Science.gov (United States)

    Meiser, Johannes; Tumanov, Sergey; Maddocks, Oliver; Labuschagne, Christiaan Fred; Athineos, Dimitris; Van Den Broek, Niels; Mackay, Gillian M.; Gottlieb, Eyal; Blyth, Karen; Vousden, Karen; Kamphorst, Jurre J.; Vazquez, Alexei

    2016-01-01

    Serine catabolism to glycine and a one-carbon unit has been linked to the anabolic requirements of proliferating mammalian cells. However, genome-scale modeling predicts a catabolic role with one-carbon release as formate. We experimentally prove that in cultured cancer cells and nontransformed fibroblasts, most of the serine-derived one-carbon units are released from cells as formate, and that formate release is dependent on mitochondrial reverse 10-CHO-THF synthetase activity. We also show that in cancer cells, formate release is coupled to mitochondrial complex I activity, whereas in nontransformed fibroblasts, it is partially insensitive to inhibition of complex I activity. We demonstrate that in mice, about 50% of plasma formate is derived from serine and that serine starvation or complex I inhibition reduces formate synthesis in vivo. These observations transform our understanding of one-carbon metabolism and have implications for the treatment of diabetes and cancer with complex I inhibitors.

  6. Metabolic control analysis of Aspergillus niger L-arabinose catabolism

    DEFF Research Database (Denmark)

    de Groot, M.J.L.; Prathumpai, Wai; Visser, J.;

    2005-01-01

    , and their kinetic properties were characterized. For the other enzymes of the pathway the kinetic data were available from the literature. The metabolic model was used to analyze flux and metabolite concentration control of the L-arabinose catabolic pathway. The model demonstrated that flux control does not reside......A mathematical model of the L-arabinose/D-xylose catabolic pathway of Aspergillus niger was constructed based on the kinetic properties of the enzymes. For this purpose L-arabinose reductase, L-arabitol dehydrogenase and D-xylose reductase were purified using dye-affinity chromatography......-arabinose, a level that resulted in realistic intermediate concentrations in the model, flux control coefficients for L-arabinose reductase, L-arabitol dehydrogenase and L-xylulose reductase were 0.68, 0.17 and 0.14, respectively. The analysis can be used as a guide to identify targets for metabolic engineering...

  7. Mediated Electrochemical Measurements of Intracellular Catabolic Activities of Yeast Cells

    Institute of Scientific and Technical Information of China (English)

    Jin Sheng ZHAO; Zhen Yu YANG; Yao LU; Zheng Yu YANG

    2005-01-01

    Coupling with the dual mediator system menadione/ferricyanide, microelectrode voltammetric measurements were undertaken to detect the ferrocyanide accumulations arising from the mediated reduction of ferricyanide by yeast cells. The results indicate that the dual mediator system menadione/ferricyanide could be used as a probe to detect cellular catabolic activities in yeast cells and the electrochemical response has a positive relationship with the specific growth rate of yeast cells.

  8. Increase in sphingolipid catabolic enzyme activity during aging

    OpenAIRE

    Sacket, Santosh J; Chung, Hae-young; Okajima, Fumikazu; Im, Dong-Soon

    2009-01-01

    Aim: To understand the contribution of sphingolipid metabolism and its metabolites to development and aging. Methods: A systemic analysis on the changes in activity of sphingolipid metabolic enzymes in kidney, liver and brain tissues during development and aging was conducted. The study was conducted using tissues from 1-day-old to 720-day-old rats. Results: Catabolic enzyme activities as well as the level of sphingomyelinase (SMase) and ceramidase (CDase) were higher than that of anabolic en...

  9. Anaerobic catabolism of aromatic compounds: a genetic and genomic view.

    Science.gov (United States)

    Carmona, Manuel; Zamarro, María Teresa; Blázquez, Blas; Durante-Rodríguez, Gonzalo; Juárez, Javier F; Valderrama, J Andrés; Barragán, María J L; García, José Luis; Díaz, Eduardo

    2009-03-01

    Aromatic compounds belong to one of the most widely distributed classes of organic compounds in nature, and a significant number of xenobiotics belong to this family of compounds. Since many habitats containing large amounts of aromatic compounds are often anoxic, the anaerobic catabolism of aromatic compounds by microorganisms becomes crucial in biogeochemical cycles and in the sustainable development of the biosphere. The mineralization of aromatic compounds by facultative or obligate anaerobic bacteria can be coupled to anaerobic respiration with a variety of electron acceptors as well as to fermentation and anoxygenic photosynthesis. Since the redox potential of the electron-accepting system dictates the degradative strategy, there is wide biochemical diversity among anaerobic aromatic degraders. However, the genetic determinants of all these processes and the mechanisms involved in their regulation are much less studied. This review focuses on the recent findings that standard molecular biology approaches together with new high-throughput technologies (e.g., genome sequencing, transcriptomics, proteomics, and metagenomics) have provided regarding the genetics, regulation, ecophysiology, and evolution of anaerobic aromatic degradation pathways. These studies revealed that the anaerobic catabolism of aromatic compounds is more diverse and widespread than previously thought, and the complex metabolic and stress programs associated with the use of aromatic compounds under anaerobic conditions are starting to be unraveled. Anaerobic biotransformation processes based on unprecedented enzymes and pathways with novel metabolic capabilities, as well as the design of novel regulatory circuits and catabolic networks of great biotechnological potential in synthetic biology, are now feasible to approach.

  10. Directed evolution of a second xylitol catabolic pathway in Klebsiella pneumoniae.

    OpenAIRE

    Doten, R C; Mortlock, R P

    1984-01-01

    Klebsiella pneumoniae PRL-R3 has inducible catabolic pathways for the degradation of ribitol and D-arabitol but cannot utilize xylitol as a growth substrate. A mutation in the rbtB regulatory gene of the ribitol operon permits the constitutive synthesis of the ribitol catabolic enzymes and allows growth on xylitol. The evolved xylitol catabolic pathway consists of an induced D-arabitol permease system that also transports xylitol, a constitutively synthesized ribitol dehydrogenase that oxidiz...

  11. Lysosomes from rabbit type II cells catabolize surfactant lipids.

    Science.gov (United States)

    Rider, E D; Ikegami, M; Pinkerton, K E; Peake, J L; Jobe, A H

    2000-01-01

    The role of a lysosome fraction from rabbit type II cells in surfactant dipalmitoylphosphatidylcholine (DPPC) catabolism was investigated in vivo using radiolabeled DPPC and dihexadecylphosphatidylcholine (1, 2-dihexadecyl-sn-glycero-3-phosphocholine; DEPC), a phospholipase A(1)- and A(2)-resistant analog of DPPC. Freshly isolated type II cells were gently disrupted by shearing, and lysosomes were isolated with Percoll density gradients (density range 1.0591-1.1457 g/ml). The lysosome fractions were relatively free of contaminating organelles as determined by electron microscopy and organelle marker enzymes. After intratracheal injection of rabbits with [(3)H]DPPC and [(14)C]DEPC associated with a trace amount of natural rabbit surfactant, the degradation-resistant DEPC accumulated 16-fold compared with DPPC in lysosome fractions at 15 h. Lysosomes can be isolated from freshly isolated type II cells, and lysosomes from type II cells are the primary catabolic organelle for alveolar surfactant DPPC following reuptake by type II cells in vivo. PMID:10645892

  12. Phosphonate biosynthesis and catabolism: a treasure trove of unusual enzymology.

    Science.gov (United States)

    Peck, Spencer C; van der Donk, Wilfred A

    2013-08-01

    Natural product biosynthesis has proven a fertile ground for the discovery of novel chemistry. Herein we review the progress made in elucidating the biosynthetic pathways of phosphonate and phosphinate natural products such as the antibacterial compounds dehydrophos and fosfomycin, the herbicidal phosphinothricin-containing peptides, and the antimalarial compound FR-900098. In each case, investigation of the pathway has yielded unusual, and often unprecedented, biochemistry. Likewise, recent investigations have uncovered novel ways to cleave the CP bond to yield phosphate under phosphorus starvation conditions. These include the discovery of novel oxidative cleavage of the CP bond catalyzed by PhnY and PhnZ as well as phosphonohydrolases that liberate phosphate from phosphonoacetate. Perhaps the crown jewel of phosphonate catabolism has been the recent resolution of the longstanding problem of the C-P lyase responsible for reductively cleaving the CP bond of a number of different phosphonates to release phosphate. Taken together, the strides made on both metabolic and catabolic fronts illustrate an array of fascinating biochemistry. PMID:23870698

  13. Structural Organization of Enzymes of the Phenylacetate Catabolic Hybrid Pathway

    Directory of Open Access Journals (Sweden)

    Andrey M. Grishin

    2015-06-01

    Full Text Available Aromatic compounds are the second most abundant class of molecules on the earth and frequent environmental pollutants. They are difficult to metabolize due to an inert chemical structure, and of all living organisms, only microbes have evolved biochemical pathways that can open an aromatic ring and catabolize thus formed organic molecules. In bacterial genomes, the phenylacetate (PA utilization pathway is abundant and represents the central route for degradation of a variety of organic compounds, whose degradation reactions converge at this pathway. The PA pathway is a hybrid pathway and combines the dual features of aerobic metabolism, i.e., usage of both oxygen to open the aromatic ring and of anaerobic metabolism—coenzyme A derivatization of PA. This allows the degradation process to be adapted to fluctuating oxygen conditions. In this review we focus on the structural and functional aspects of enzymes and their complexes involved in the PA degradation by the catabolic hybrid pathway. We discuss the ability of the central PaaABCE monooxygenase to reversibly oxygenate PA, the controlling mechanisms of epoxide concentration by the pathway enzymes, and the similarity of the PA utilization pathway to the benzoate utilization Box pathway and β-oxidation of fatty acids.

  14. Structural Organization of Enzymes of the Phenylacetate Catabolic Hybrid Pathway.

    Science.gov (United States)

    Grishin, Andrey M; Cygler, Miroslaw

    2015-06-12

    Aromatic compounds are the second most abundant class of molecules on the earth and frequent environmental pollutants. They are difficult to metabolize due to an inert chemical structure, and of all living organisms, only microbes have evolved biochemical pathways that can open an aromatic ring and catabolize thus formed organic molecules. In bacterial genomes, the phenylacetate (PA) utilization pathway is abundant and represents the central route for degradation of a variety of organic compounds, whose degradation reactions converge at this pathway. The PA pathway is a hybrid pathway and combines the dual features of aerobic metabolism, i.e., usage of both oxygen to open the aromatic ring and of anaerobic metabolism-coenzyme A derivatization of PA. This allows the degradation process to be adapted to fluctuating oxygen conditions. In this review we focus on the structural and functional aspects of enzymes and their complexes involved in the PA degradation by the catabolic hybrid pathway. We discuss the ability of the central PaaABCE monooxygenase to reversibly oxygenate PA, the controlling mechanisms of epoxide concentration by the pathway enzymes, and the similarity of the PA utilization pathway to the benzoate utilization Box pathway and β-oxidation of fatty acids.

  15. Insights into the evolution of sialic acid catabolism among bacteria

    Directory of Open Access Journals (Sweden)

    Almagro-Moreno Salvador

    2009-05-01

    Full Text Available Abstract Background Sialic acids comprise a family of nine-carbon amino sugars that are prevalent in mucus rich environments. Sialic acids from the human host are used by a number of pathogens as an energy source. Here we explore the evolution of the genes involved in the catabolism of sialic acid. Results The cluster of genes encoding the enzymes N-acetylneuraminate lyase (NanA, epimerase (NanE, and kinase (NanK, necessary for the catabolism of sialic acid (the Nan cluster, are confined 46 bacterial species, 42 of which colonize mammals, 33 as pathogens and 9 as gut commensals. We found a putative sialic acid transporter associated with the Nan cluster in most species. We reconstructed the phylogenetic history of the NanA, NanE, and NanK proteins from the 46 species and compared them to the species tree based on 16S rRNA. Within the NanA phylogeny, Gram-negative and Gram-positive bacteria do not form distinct clades. NanA from Yersinia and Vibrio species was most closely related to the NanA clade from eukaryotes. To examine this further, we reconstructed the phylogeny of all NanA homologues in the databases. In this analysis of 83 NanA sequences, Bacteroidetes, a human commensal group formed a distinct clade with Verrucomicrobia, and branched with the Eukaryotes and the Yersinia/Vibrio clades. We speculate that pathogens such as V. cholerae may have acquired NanA from a commensal aiding their colonization of the human gut. Both the NanE and NanK phylogenies more closely represented the species tree but numerous incidences of incongruence are noted. We confirmed the predicted function of the sialic acid catabolism cluster in members the major intestinal pathogens Salmonella enterica, Vibrio cholerae, V. vulnificus, Yersinia enterocolitica and Y. pestis. Conclusion The Nan cluster among bacteria is confined to human pathogens and commensals conferring them the ability to utilize a ubiquitous carbon source in mucus rich surfaces of the human body

  16. Distinct Tryptophan Catabolism and Th17/Treg Balance in HIV Progressors and Elite Controllers

    NARCIS (Netherlands)

    Jenabian, Mohammad-Ali; Patel, Mital; Kema, Ido; Kanagaratham, Cynthia; Radzioch, Danuta; Thebault, Pamela; Lapointe, Rejean; Tremblay, Cecile; Gilmore, Norbert; Ancuta, Petronela; Routy, Jean-Pierre

    2013-01-01

    Tryptophan (Trp) catabolism into immunosuppressive kynurenine (Kyn) by indoleamine 2,3-dioxygenase (IDO) was previously linked to Th17/Treg differentiation and immune activation. Here we examined Trp catabolism and its impact on Th17/Treg balance in uninfected healthy subjects (HS) and a large cohor

  17. Catabolic effects of muramyl dipeptide on rabbit chondrocytes

    International Nuclear Information System (INIS)

    Muramyl dipeptide, an essential structure for the diverse biologic activities of bacterial cell wall peptidoglycan, inhibited the synthesis of glycosaminoglycan/proteoglycan in cultured rabbit costal chondrocytes in a dose-dependent manner. Muramyl dipeptide, as well as lipopolysaccharide and interleukin-1 alpha, also enhanced the release of 35S-sulfate-prelabeled glycosaminoglycan/proteoglycan from the cell layer, which seems to reflect, at least partially, the increasing degradation of glycosaminoglycan/proteoglycan. Five synthetic analogs of muramyl dipeptide known to be adjuvant active or adjuvant inactive were tested for their potential to inhibit synthesis of glycosaminoglycan/proteoglycan and to enhance the release of glycosaminoglycan/proteoglycan in chondrocytes. The structural dependence of these synthetic analogs on chondrocytes was found to parallel that of immunoadjuvant activity. These results suggest that muramyl dipeptide is a potent mediator of catabolism in chondrocytes

  18. Catabolic effects of muramyl dipeptide on rabbit chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ikebe, T.; Iribe, H.; Hirata, M.; Yanaga, F.; Koga, T. (Kyushu Univ., Fukuoka (Japan))

    1990-12-01

    Muramyl dipeptide, an essential structure for the diverse biologic activities of bacterial cell wall peptidoglycan, inhibited the synthesis of glycosaminoglycan/proteoglycan in cultured rabbit costal chondrocytes in a dose-dependent manner. Muramyl dipeptide, as well as lipopolysaccharide and interleukin-1 alpha, also enhanced the release of 35S-sulfate-prelabeled glycosaminoglycan/proteoglycan from the cell layer, which seems to reflect, at least partially, the increasing degradation of glycosaminoglycan/proteoglycan. Five synthetic analogs of muramyl dipeptide known to be adjuvant active or adjuvant inactive were tested for their potential to inhibit synthesis of glycosaminoglycan/proteoglycan and to enhance the release of glycosaminoglycan/proteoglycan in chondrocytes. The structural dependence of these synthetic analogs on chondrocytes was found to parallel that of immunoadjuvant activity. These results suggest that muramyl dipeptide is a potent mediator of catabolism in chondrocytes.

  19. Regulation and evolution of malonate and propionate catabolism in proteobacteria.

    Science.gov (United States)

    Suvorova, I A; Ravcheev, D A; Gelfand, M S

    2012-06-01

    Bacteria catabolize malonate via two pathways, encoded by the mdc and mat genes. In various bacteria, transcription of these genes is controlled by the GntR family transcription factors (TFs) MatR/MdcY and/or the LysR family transcription factor MdcR. Propionate is metabolized via the methylcitrate pathway, comprising enzymes encoded by the prp and acn genes. PrpR, the Fis family sigma 54-dependent transcription factor, is known to be a transcriptional activator of the prp genes. Here, we report a detailed comparative genomic analysis of malonate and propionate metabolism and its regulation in proteobacteria. We characterize genomic loci and gene regulation and identify binding motifs for four new TFs and also new regulon members, in particular, tripartite ATP-independent periplasmic (TRAP) transporters. We describe restructuring of the genomic loci and regulatory interactions during the evolution of proteobacteria.

  20. Cysteine catabolism: a novel metabolic pathway contributing to glioblastoma growth.

    Science.gov (United States)

    Prabhu, Antony; Sarcar, Bhaswati; Kahali, Soumen; Yuan, Zhigang; Johnson, Joseph J; Adam, Klaus-Peter; Kensicki, Elizabeth; Chinnaiyan, Prakash

    2014-02-01

    The relevance of cysteine metabolism in cancer has gained considerable interest in recent years, largely focusing on its role in generating the antioxidant glutathione. Through metabolomic profiling using a combination of high-throughput liquid and gas chromatography-based mass spectrometry on a total of 69 patient-derived glioma specimens, this report documents the discovery of a parallel pathway involving cysteine catabolism that results in the accumulation of cysteine sulfinic acid (CSA) in glioblastoma. These studies identified CSA to rank as one of the top metabolites differentiating glioblastoma from low-grade glioma. There was strong intratumoral concordance of CSA levels with expression of its biosynthetic enzyme cysteine dioxygenase 1 (CDO1). Studies designed to determine the biologic consequence of this metabolic pathway identified its capacity to inhibit oxidative phosphorylation in glioblastoma cells, which was determined by decreased cellular respiration, decreased ATP production, and increased mitochondrial membrane potential following pathway activation. CSA-induced attenuation of oxidative phosphorylation was attributed to inhibition of the regulatory enzyme pyruvate dehydrogenase. Studies performed in vivo abrogating the CDO1/CSA axis using a lentiviral-mediated short hairpin RNA approach resulted in significant tumor growth inhibition in a glioblastoma mouse model, supporting the potential for this metabolic pathway to serve as a therapeutic target. Collectively, we identified a novel, targetable metabolic pathway involving cysteine catabolism contributing to the growth of aggressive high-grade gliomas. These findings serve as a framework for future investigations designed to more comprehensively determine the clinical application of this metabolic pathway and its contributory role in tumorigenesis.

  1. Characterization of genes for chitin catabolism in Haloferax mediterranei.

    Science.gov (United States)

    Hou, Jing; Han, Jing; Cai, Lei; Zhou, Jian; Lü, Yang; Jin, Cheng; Liu, Jingfang; Xiang, Hua

    2014-02-01

    Chitin is the second most abundant natural polysaccharide after cellulose. But degradation of chitin has never been reported in haloarchaea. In this study, we revealed that Haloferax mediterranei, a metabolically versatile haloarchaeon, could utilize colloidal or powdered chitin for growth and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) accumulation, and the gene cluster (HFX_5025-5039) for the chitin catabolism pathway was experimentally identified. First, reverse transcription polymerase chain reaction results showed that the expression of the genes encoding the four putative chitinases (ChiAHme, ChiBHme, ChiCHme, and ChiDHme, HFX_5036-5039), the LmbE-like deacetylase (DacHme, HFX_5027), and the glycosidase (GlyAHme, HFX_5029) was induced by colloidal or powdered chitin, and chiA Hme, chiB Hme, and chiC Hme were cotranscribed. Knockout of chiABC Hme or chiD Hme had a significant effect on cell growth and PHBV production when chitin was used as the sole carbon source, and the chiABCD Hme knockout mutant lost the capability to utilize chitin. Knockout of dac Hme or glyA Hme also decreased PHBV accumulation on chitin. These results suggested that ChiABCDHme, DacHme, and GlyAHme were indeed involved in chitin degradation in H. mediterranei. Additionally, the chitinase assay showed that each chitinase possessed hydrolytic activity toward colloidal or powdered chitin, and the major product of colloidal chitin hydrolysis by ChiABCDHme was diacetylchitobiose, which was likely further degraded to monosaccharides by DacHme, GlyAHme, and other related enzymes for both cell growth and PHBV biosynthesis. Taken together, this study revealed the genes and enzymes involved in chitin catabolism in haloarchaea for the first time and indicated the potential of H. mediterranei as a whole-cell biocatalyst in chitin bioconversion.

  2. The Atg1-Tor pathway regulates yolk catabolism in Drosophila embryos.

    Science.gov (United States)

    Kuhn, Hallie; Sopko, Richelle; Coughlin, Margaret; Perrimon, Norbert; Mitchison, Tim

    2015-11-15

    Yolk provides an important source of nutrients during the early development of oviparous organisms. It is composed mainly of vitellogenin proteins packed into membrane-bound compartments called yolk platelets. Catabolism of yolk is initiated by acidification of the yolk platelet, leading to the activation of Cathepsin-like proteinases, but it is unknown how this process is triggered. Yolk catabolism initiates at cellularization in Drosophila melanogaster embryos. Using maternal shRNA technology we found that yolk catabolism depends on the Tor pathway and on the autophagy-initiating kinase Atg1. Whereas Atg1 was required for a burst of spatially regulated autophagy during late cellularization, autophagy was not required for initiating yolk catabolism. We propose that the conserved Tor metabolic sensing pathway regulates yolk catabolism, similar to Tor-dependent metabolic regulation on the lysosome.

  3. Catabolic efficiency of aerobic glycolysis: The Warburg effect revisited

    Directory of Open Access Journals (Sweden)

    Zhou Yi

    2010-05-01

    Full Text Available Abstract Background Cancer cells simultaneously exhibit glycolysis with lactate secretion and mitochondrial respiration even in the presence of oxygen, a phenomenon known as the Warburg effect. The maintenance of this mixed metabolic phenotype is seemingly counterintuitive given that aerobic glycolysis is far less efficient in terms of ATP yield per moles of glucose than mitochondrial respiration. Results Here, we resolve this apparent contradiction by expanding the notion of metabolic efficiency. We study a reduced flux balance model of ATP production that is constrained by the glucose uptake capacity and by the solvent capacity of the cell's cytoplasm, the latter quantifying the maximum amount of macromolecules that can occupy the intracellular space. At low glucose uptake rates we find that mitochondrial respiration is indeed the most efficient pathway for ATP generation. Above a threshold glucose uptake rate, however, a gradual activation of aerobic glycolysis and slight decrease of mitochondrial respiration results in the highest rate of ATP production. Conclusions Our analyses indicate that the Warburg effect is a favorable catabolic state for all rapidly proliferating mammalian cells with high glucose uptake capacity. It arises because while aerobic glycolysis is less efficient than mitochondrial respiration in terms of ATP yield per glucose uptake, it is more efficient in terms of the required solvent capacity. These results may have direct relevance to chemotherapeutic strategies attempting to target cancer metabolism.

  4. Tryptophan and tyrosine catabolic pattern in neuropsychiatric disorders.

    Directory of Open Access Journals (Sweden)

    Ravikumar A

    2000-07-01

    Full Text Available Catabolism of tryptophan and tyrosine in relation to the isoprenoid pathway was studied in neurological and psychiatric disorders. The concentration of trytophan, quinolinic acid, kynurenic acid, serotonin and 5-hydroxyindoleacetic acid was found to be higher in the plasma of patients with all these disorders; while that of tyrosine, dopamine, epinephrine and norepinephrine was lower. There was increase in free fatty acids and decrease in albumin (factors modulating tryptophan transport in the plasma of these patients. Concentration of digoxin, a modulator of amino acid transport, and the activity of HMG CoA reductase, which synthesizes digoxin, were higher in these patients; while RBC membrane Na+-K+ ATPase activity showed a decrease. Concentration of plasma ubiquinone (part of which is synthesised from tyrosine and magnesium was also lower in these patients. No morphine could be detected in the plasma of these patients except in MS. On the other hand, strychnine and nicotine were detectable. These results indicate hypercatabolism of tryptophan and hypocatabolism of tyrosine in these disorders, which could be a consequence of the modulating effect of hypothalamic digoxin on amino acid transport.

  5. Hyaluronan Synthesis, Catabolism, and Signaling in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Larry S. Sherman

    2015-01-01

    Full Text Available The glycosaminoglycan hyaluronan (HA, a component of the extracellular matrix, has been implicated in regulating neural differentiation, survival, proliferation, migration, and cell signaling in the mammalian central nervous system (CNS. HA is found throughout the CNS as a constituent of proteoglycans, especially within perineuronal nets that have been implicated in regulating neuronal activity. HA is also found in the white matter where it is diffusely distributed around astrocytes and oligodendrocytes. Insults to the CNS lead to long-term elevation of HA within damaged tissues, which is linked at least in part to increased transcription of HA synthases. HA accumulation is often accompanied by elevated expression of at least some transmembrane HA receptors including CD44. Hyaluronidases that digest high molecular weight HA into smaller fragments are also elevated following CNS insults and can generate HA digestion products that have unique biological activities. A number of studies, for example, suggest that both the removal of high molecular weight HA and the accumulation of hyaluronidase-generated HA digestion products can impact CNS injuries through mechanisms that include the regulation of progenitor cell differentiation and proliferation. These studies, reviewed here, suggest that targeting HA synthesis, catabolism, and signaling are all potential strategies to promote CNS repair.

  6. Inactivity amplifies the catabolic response of skeletal muscle to cortisol

    Science.gov (United States)

    Ferrando, A. A.; Stuart, C. A.; Sheffield-Moore, M.; Wolfe, R. R.

    1999-01-01

    Severe injury or trauma is accompanied by both hypercortisolemia and prolonged inactivity or bed rest (BR). Trauma and BR alone each result in a loss of muscle nitrogen, albeit through different metabolic alterations. Although BR alone can result in a 2-3% loss of lean body mass, the effects of severe trauma can be 2- to 3-fold greater. We investigated the combined effects of hypercortisolemia and prolonged inactivity on muscle protein metabolism in healthy volunteers. Six males were studied before and after 14 days of strict BR using a model based on arteriovenous sampling and muscle biopsy. Fractional synthesis and breakdown rates of skeletal muscle protein were also directly calculated. Each assessment of protein metabolism was conducted during a 12-h infusion of hydrocortisone sodium succinate (120 microg/kg x h), resulting in blood cortisol concentrations that mimic severe injury (approximately 31 microg/dL). After 14 days of strict BR, hypercortisolemia increased phenylalanine efflux from muscle by 3-fold (P muscle protein breakdown (P muscle protein synthesis. Muscle efflux of glutamine and alanine increased significantly after bed rest due to a significant increase in de novo synthesis (P skeletal muscle to the catabolic effects of hypercortisolemia. Furthermore, these effects on healthy volunteers are analogous to those seen after severe injury.

  7. Allantoin catabolism influences the production of antibiotics in Streptomyces coelicolor.

    Science.gov (United States)

    Navone, Laura; Casati, Paula; Licona-Cassani, Cuauhtémoc; Marcellin, Esteban; Nielsen, Lars K; Rodriguez, Eduardo; Gramajo, Hugo

    2014-01-01

    Purines are a primary source of carbon and nitrogen in soil; however, their metabolism is poorly understood in Streptomyces. Using a combination of proteomics, metabolomics, and metabolic engineering, we characterized the allantoin pathway in Streptomyces coelicolor. When cells grew in glucose minimal medium with allantoin as the sole nitrogen source, quantitative proteomics identified 38 enzymes upregulated and 28 downregulated. This allowed identifying six new functional enzymes involved in allantoin metabolism in S. coelicolor. From those, using a combination of biochemical and genetic engineering tools, it was found that allantoinase (EC 3.5.2.5) and allantoicase (EC 3.5.3.4) are essential for allantoin metabolism in S. coelicolor. Metabolomics showed that under these growth conditions, there is a significant intracellular accumulation of urea and amino acids, which eventually results in urea and ammonium release into the culture medium. Antibiotic production of a urease mutant strain showed that the catabolism of allantoin, and the subsequent release of ammonium, inhibits antibiotic production. These observations link the antibiotic production impairment with an imbalance in nitrogen metabolism and provide the first evidence of an interaction between purine metabolism and antibiotic biosynthesis.

  8. A product of heme catabolism modulates bacterial function and survival.

    Directory of Open Access Journals (Sweden)

    Christopher L Nobles

    Full Text Available Bilirubin is the terminal metabolite in heme catabolism in mammals. After deposition into bile, bilirubin is released in large quantities into the mammalian gastrointestinal (GI tract. We hypothesized that intestinal bilirubin may modulate the function of enteric bacteria. To test this hypothesis, we investigated the effect of bilirubin on two enteric pathogens; enterohemorrhagic E. coli (EHEC, a Gram-negative that causes life-threatening intestinal infections, and E. faecalis, a Gram-positive human commensal bacterium known to be an opportunistic pathogen with broad-spectrum antibiotic resistance. We demonstrate that bilirubin can protect EHEC from exogenous and host-generated reactive oxygen species (ROS through the absorption of free radicals. In contrast, E. faecalis was highly susceptible to bilirubin, which causes significant membrane disruption and uncoupling of respiratory metabolism in this bacterium. Interestingly, similar results were observed for other Gram-positive bacteria, including B. cereus and S. aureus. A model is proposed whereby bilirubin places distinct selective pressure on enteric bacteria, with Gram-negative bacteria being protected from ROS (positive outcome and Gram-positive bacteria being susceptible to membrane disruption (negative outcome. This work suggests bilirubin has differential but biologically relevant effects on bacteria and justifies additional efforts to determine the role of this neglected waste catabolite in disease processes, including animal models.

  9. Inactivity amplifies the catabolic response of skeletal muscle to cortisol

    Science.gov (United States)

    Ferrando, A. A.; Stuart, C. A.; Sheffield-Moore, M.; Wolfe, R. R.

    1999-01-01

    Severe injury or trauma is accompanied by both hypercortisolemia and prolonged inactivity or bed rest (BR). Trauma and BR alone each result in a loss of muscle nitrogen, albeit through different metabolic alterations. Although BR alone can result in a 2-3% loss of lean body mass, the effects of severe trauma can be 2- to 3-fold greater. We investigated the combined effects of hypercortisolemia and prolonged inactivity on muscle protein metabolism in healthy volunteers. Six males were studied before and after 14 days of strict BR using a model based on arteriovenous sampling and muscle biopsy. Fractional synthesis and breakdown rates of skeletal muscle protein were also directly calculated. Each assessment of protein metabolism was conducted during a 12-h infusion of hydrocortisone sodium succinate (120 microg/kg x h), resulting in blood cortisol concentrations that mimic severe injury (approximately 31 microg/dL). After 14 days of strict BR, hypercortisolemia increased phenylalanine efflux from muscle by 3-fold (P catabolic effects of hypercortisolemia. Furthermore, these effects on healthy volunteers are analogous to those seen after severe injury.

  10. Thyroid hormone stimulates hepatic lipid catabolism via activation of autophagy.

    Science.gov (United States)

    Sinha, Rohit Anthony; You, Seo-Hee; Zhou, Jin; Siddique, Mobin M; Bay, Boon-Huat; Zhu, Xuguang; Privalsky, Martin L; Cheng, Sheue-Yann; Stevens, Robert D; Summers, Scott A; Newgard, Christopher B; Lazar, Mitchell A; Yen, Paul M

    2012-07-01

    For more than a century, thyroid hormones (THs) have been known to exert powerful catabolic effects, leading to weight loss. Although much has been learned about the molecular mechanisms used by TH receptors (TRs) to regulate gene expression, little is known about the mechanisms by which THs increase oxidative metabolism. Here, we report that TH stimulation of fatty acid β-oxidation is coupled with induction of hepatic autophagy to deliver fatty acids to mitochondria in cell culture and in vivo. Furthermore, blockade of autophagy by autophagy-related 5 (ATG5) siRNA markedly decreased TH-mediated fatty acid β-oxidation in cell culture and in vivo. Consistent with this model, autophagy was altered in livers of mice expressing a mutant TR that causes resistance to the actions of TH as well as in mice with mutant nuclear receptor corepressor (NCoR). These results demonstrate that THs can regulate lipid homeostasis via autophagy and help to explain how THs increase oxidative metabolism.

  11. Increase in sphingolipid catabolic enzyme activity during aging

    Institute of Scientific and Technical Information of China (English)

    Santosh J SACKET; Hae-young CHUNG; Fumikazu OKAJIMA; Dong-soon IM

    2009-01-01

    Aim:To understand the contribution of sphingolipid metabolism and its metabolites to development and aging.Methods: A systemic analysis on the changes in activity of sphingolipid metabolic enzymes in kidney, liver and brain tissues during development and aging was conducted. The study was conducted using tissues from 1-day-old to 720-day-old rats.Results: Catabolic enzyme activities as well as the level of sphingomyelinase (SMase) and ceramidase (CDase) were higher than that of anabolic enzyme activities, sphingomyelin synthase and ceramide synthase. This suggested an accumulation of ceramide and sphingosine during development and aging. The liver showed the highest neutral-SMase activity among the tested enzymes while the kidney and brain exhibited higher neutral-SMase and ceramidase activities, indicating a high production of ceramide in liver and ceramide/sphingosine in the kidney and brain. The activities of sphingolipid metabolic enzymes were significantly elevated in all tested tissues during development and aging, although the onset of significant increase in activity varied on the tissue and enzyme type. During aging, 18 out of 21 enzyme activities were further increased on day 720 compared to day 180.Conclusion: Differential increases in sphingolipid metabolic enzyme activities suggest that sphingolipids including ceramide and sphingosine might play important and dynamic roles in proliferation, differentiation and apoptosis during development and aging.

  12. Characterization of purine catabolic pathway genes in coelacanths.

    Science.gov (United States)

    Forconi, Mariko; Biscotti, Maria Assunta; Barucca, Marco; Buonocore, Francesco; De Moro, Gianluca; Fausto, Anna Maria; Gerdol, Marco; Pallavicini, Alberto; Scapigliati, Giuseppe; Schartl, Manfred; Olmo, Ettore; Canapa, Adriana

    2014-09-01

    Coelacanths are a critically valuable species to explore the gene changes that took place in the transition from aquatic to terrestrial life. One interesting and biologically relevant feature of the genus Latimeria is ureotelism. However not all urea is excreted from the body; in fact high concentrations are retained in plasma and seem to be involved in osmoregulation. The purine catabolic pathway, which leads to urea production in Latimeria, has progressively lost some steps, reflecting an enzyme loss during diversification of terrestrial species. We report the results of analyses of the liver and testis transcriptomes of the Indonesian coelacanth Latimeria menadoensis and of the genome of Latimeria chalumnae, which has recently been fully sequenced in the framework of the coelacanth genome project. We describe five genes, uricase, 5-hydroxyisourate hydrolase, parahox neighbor B, allantoinase, and allantoicase, each coding for one of the five enzymes involved in urate degradation to urea, and report the identification of a putative second form of 5-hydroxyisourate hydrolase that is characteristic of the genus Latimeria. The present data also highlight the activity of the complete purine pathway in the coelacanth liver and suggest its involvement in the maintenance of high plasma urea concentrations.

  13. A key ABA catabolic gene, OsABA8ox3, is involved in drought stress resistance in rice.

    Directory of Open Access Journals (Sweden)

    Shanlan Cai

    Full Text Available Expressions of ABA biosynthesis genes and catabolism genes are generally co-regulated in plant development and responses to environmental stress. Up-regulation of OsNCED3 gene, a key gene in ABA biosynthesis, has been suggested as a way to enhance plant drought resistance but little is known for the role of ABA catabolic genes during drought stress. In this study, we found that OsABA8ox3 was the most highly expressed gene of the OsABA8ox family in rice leaves. Expression of OsABA8ox3 was promptly induced by rehydration after PEG-mimic dehydration, a tendency opposite to the changes of ABA level. We therefore constructed rice OsABA8ox3 silencing (RNA interference, RNAi and overexpression plants. There were no obvious phenotype differences between the transgenic seedlings and wild type under normal condition. However, OsABA8ox3 RNAi lines showed significant improvement in drought stress tolerance while the overexpression seedlings were hypersensitive to drought stress when compared with wild type in terms of plant survival rates after 10 days of unwatering. Enzyme activity analysis indicated that OsABA8ox3 RNAi plants had higher superoxide dismutase (SOD and catalase (CAT activities and less malondialdehyde (MDA content than those of wild type when the plants were exposed to dehydration treatment, indicating a better anti-oxidative stress capability and less membrane damage. DNA microarray and real-time PCR analysis under dehydration treatment revealed that expressions of a group of stress/drought-related genes, i.e. LEA genes, were enhanced with higher transcript levels in OsABA8ox3 RNAi transgenic seedlings. We therefore conclude that that OsABA8ox3 gene plays an important role in controlling ABA level and drought stress resistance in rice.

  14. A key ABA catabolic gene, OsABA8ox3, is involved in drought stress resistance in rice.

    Science.gov (United States)

    Cai, Shanlan; Jiang, Guobin; Ye, Nenghui; Chu, Zhizhan; Xu, Xuezhong; Zhang, Jianhua; Zhu, Guohui

    2015-01-01

    Expressions of ABA biosynthesis genes and catabolism genes are generally co-regulated in plant development and responses to environmental stress. Up-regulation of OsNCED3 gene, a key gene in ABA biosynthesis, has been suggested as a way to enhance plant drought resistance but little is known for the role of ABA catabolic genes during drought stress. In this study, we found that OsABA8ox3 was the most highly expressed gene of the OsABA8ox family in rice leaves. Expression of OsABA8ox3 was promptly induced by rehydration after PEG-mimic dehydration, a tendency opposite to the changes of ABA level. We therefore constructed rice OsABA8ox3 silencing (RNA interference, RNAi) and overexpression plants. There were no obvious phenotype differences between the transgenic seedlings and wild type under normal condition. However, OsABA8ox3 RNAi lines showed significant improvement in drought stress tolerance while the overexpression seedlings were hypersensitive to drought stress when compared with wild type in terms of plant survival rates after 10 days of unwatering. Enzyme activity analysis indicated that OsABA8ox3 RNAi plants had higher superoxide dismutase (SOD) and catalase (CAT) activities and less malondialdehyde (MDA) content than those of wild type when the plants were exposed to dehydration treatment, indicating a better anti-oxidative stress capability and less membrane damage. DNA microarray and real-time PCR analysis under dehydration treatment revealed that expressions of a group of stress/drought-related genes, i.e. LEA genes, were enhanced with higher transcript levels in OsABA8ox3 RNAi transgenic seedlings. We therefore conclude that that OsABA8ox3 gene plays an important role in controlling ABA level and drought stress resistance in rice. PMID:25647508

  15. Towards Tolerance

    NARCIS (Netherlands)

    Lisette Kuyper; Jurjen Iedema; Saskia Keuzenkamp

    2013-01-01

    Across Europe, public attitudes towards lesbian, gay and bisexual (LGB) individuals range from broad tolerance to widespread rejection. Attitudes towards homosexuality are more than mere individual opinions, but form part of the social and political structures which foster or hinder the equality and

  16. Aerobic bacterial catabolism of persistent organic pollutants - potential impact of biotic and abiotic interaction.

    Science.gov (United States)

    Jeon, Jong-Rok; Murugesan, Kumarasamy; Baldrian, Petr; Schmidt, Stefan; Chang, Yoon-Seok

    2016-04-01

    Several aerobic bacteria possess unique catabolic pathways enabling them to degrade persistent organic pollutants (POPs), including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polybrominated diphenylethers (PBDEs), and polychlorinated biphenyls (PCBs). The catabolic activity of aerobic bacteria employed for removal of POPs in the environment may be modulated by several biotic (i.e. fungi, plants, algae, earthworms, and other bacteria) and abiotic (i.e. zero-valent iron, advanced oxidation, and electricity) agents. This review describes the basic biochemistry of the aerobic bacterial catabolism of selected POPs and discusses how biotic and abiotic agents enhance or inhibit the process. Solutions allowing biotic and abiotic agents to exert physical and chemical assistance to aerobic bacterial catabolism of POPs are also discussed. PMID:26851837

  17. Aerobic bacterial catabolism of persistent organic pollutants - potential impact of biotic and abiotic interaction.

    Science.gov (United States)

    Jeon, Jong-Rok; Murugesan, Kumarasamy; Baldrian, Petr; Schmidt, Stefan; Chang, Yoon-Seok

    2016-04-01

    Several aerobic bacteria possess unique catabolic pathways enabling them to degrade persistent organic pollutants (POPs), including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polybrominated diphenylethers (PBDEs), and polychlorinated biphenyls (PCBs). The catabolic activity of aerobic bacteria employed for removal of POPs in the environment may be modulated by several biotic (i.e. fungi, plants, algae, earthworms, and other bacteria) and abiotic (i.e. zero-valent iron, advanced oxidation, and electricity) agents. This review describes the basic biochemistry of the aerobic bacterial catabolism of selected POPs and discusses how biotic and abiotic agents enhance or inhibit the process. Solutions allowing biotic and abiotic agents to exert physical and chemical assistance to aerobic bacterial catabolism of POPs are also discussed.

  18. Irritability rather than depression during interferon treatment is linked to increased tryptophan catabolism

    NARCIS (Netherlands)

    Russo, S; Kema, IP; Haagsma, EB; Boon, JC; Willemse, PHB; Den Boer, JA; De Vries, EGE; Korf, J

    2005-01-01

    Objective: Treatment with recombinant interferon is associated with high rates of psychiatric comorbidity. We investigated the relation between catabolism of the essential amino acid tryptophan, being rate-limiting of peripheral and cerebral serotonin formation, and psychiatric symptoms in patients

  19. Abscisic Acid Catabolism in Maize Kernels in Response to Water Deficit at Early Endosperm Development

    OpenAIRE

    Wang, Zhaolong; MAMBELLI, STEFANIA; SETTER, TIM L.

    2002-01-01

    To further our understanding of the greater susceptibility of apical kernels in maize inflorescences to water stress, abscisic acid (ABA) catabolism activity was evaluated in developing kernels with chirally separated (+)‐[3H]ABA. The predominant pathway of ABA catabolism was via 8′‐hydroxylase to form phaseic acid, while conjugation to glucose was minor. In response to water deficit imposed on whole plants during kernel development, ABA accumulated to higher concentrations in apical than bas...

  20. Glutamine synthesis is a regulatory signal controlling glucose catabolism in Saccharomyces cerevisiae.

    OpenAIRE

    Flores-Samaniego, B; Olivera, H; González, A.

    1993-01-01

    The effect of glutamine biosynthesis and degradation on glucose catabolism in Saccharomyces cerevisiae was studied. A wild-type strain and mutants altered in glutamine biosynthesis and degradation were analyzed. Cells having low levels of glutamine synthetase activity showed high ATP/ADP ratios and a diminished rate of glucose metabolism. It is proposed that glutamine biosynthesis plays a role in the regulation of glucose catabolism.

  1. Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease.

    Science.gov (United States)

    Romani, Luigina; Fallarino, Francesca; De Luca, Antonella; Montagnoli, Claudia; D'Angelo, Carmen; Zelante, Teresa; Vacca, Carmine; Bistoni, Francesco; Fioretti, Maria C; Grohmann, Ursula; Segal, Brahm H; Puccetti, Paolo

    2008-01-10

    Half a century ago, chronic granulomatous disease (CGD) was first described as a disease fatally affecting the ability of children to survive infections. Various milestone discoveries have since been made, from an insufficient ability of patients' leucocytes to kill microbes to the underlying genetic abnormalities. In this inherited disorder, phagocytes lack NADPH oxidase activity and do not generate reactive oxygen species, most notably superoxide anion, causing recurrent bacterial and fungal infections. Patients with CGD also suffer from chronic inflammatory conditions, most prominently granuloma formation in hollow viscera. The precise mechanisms of the increased microbial pathogenicity have been unclear, and more so the reasons for the exaggerated inflammatory response. Here we show that a superoxide-dependent step in tryptophan metabolism along the kynurenine pathway is blocked in CGD mice with lethal pulmonary aspergillosis, leading to unrestrained Vgamma1(+) gammadelta T-cell reactivity, dominant production of interleukin (IL)-17, defective regulatory T-cell activity and acute inflammatory lung injury. Although beneficial effects are induced by IL-17 neutralization or gammadelta T-cell contraction, complete cure and reversal of the hyperinflammatory phenotype are achieved by replacement therapy with a natural kynurenine distal to the blockade in the pathway. Effective therapy, which includes co-administration of recombinant interferon-gamma (IFN-gamma), restores production of downstream immunoactive metabolites and enables the emergence of regulatory Vgamma4(+) gammadelta and Foxp3(+) alphabeta T cells. Therefore, paradoxically, the lack of reactive oxygen species contributes to the hyperinflammatory phenotype associated with NADPH oxidase deficiencies, through a dysfunctional kynurenine pathway of tryptophan catabolism. Yet, this condition can be reverted by reactivating the pathway downstream of the superoxide-dependent step.

  2. Morphine enhances purine nucleotide catabolism in rive and in vitro

    Institute of Scientific and Technical Information of China (English)

    Chang LIU; Jian-kai LIU; Mu-jie KAN; Lin GAO; Hai-ying FU; Hang ZHOU; Min HONG

    2007-01-01

    Aim: To investigate the effect and mechanism of morphine on purine nucleotide catabolism. Methods: The rat model of morphine dependence and withdrawal and rat C6 glioma cells in culture were used. Concentrations of uric acid in the plasma were measured by the uricase-rap method, adenosine deaminase (ADA) and xan- thine oxidase (XO) in the plasma and tissues were measured by the ADA and XO test kit. RT-PCR and RT-PCR-Southern blotting were used to examine the relative amount of ADA and XO gene transcripts in tissues and C6 cells. Results: (i) the concentration of plasma uric acid in the morphine-administered group was signifi-cantly higher (P<0.05) than the control group; (ii) during morphine administration and withdrawal periods, the ADA and XO concentrations in the plasma increased significantly (P<0.05); (iii) the amount of ADA and XO in the parietal lobe, liver, small intestine, and skeletal muscles of the morphine-administered groups increased, while the level of ADA and XO in those tissues of the withdrawal groups decreased; (iv) the transcripts of the ADA and XO genes in the parietal lobe, liver, small intestine, and skeletal muscles were higher in the morphine-administered group. The expression of the ADA and XO genes in those tissues returned to the control level during morphine withdrawal, with the exception of the skeletal muscles; and (v) the upregulation of the expression of the ADA and XO genes induced by morphine treatment could be reversed by naloxone. Conclusion: The effects of morphine on purine nucleotide metabolism might be an important, new biochemical pharmacological mechanism of morphine action.

  3. Salt Tolerance

    OpenAIRE

    Xiong, Liming; Zhu, Jian-Kang

    2002-01-01

    Studying salt stress is an important means to the understanding of plant ion homeostasis and osmo-balance. Salt stress research also benefits agriculture because soil salinity significantly limits plant productivity on agricultural lands. Decades of physiological and molecular studies have generated a large body of literature regarding potential salt tolerance determinants. Recent advances in applying molecular genetic analysis and genomics tools in the model plant Arabidopsis thaliana are sh...

  4. Imbalanced protein expression patterns of anabolic, catabolic, anti-catabolic and inflammatory cytokines in degenerative cervical disc cells: new indications for gene therapeutic treatments of cervical disc diseases.

    Directory of Open Access Journals (Sweden)

    Demissew S Mern

    Full Text Available Degenerative disc disease (DDD of the cervical spine is common after middle age and can cause loss of disc height with painful nerve impingement, bone and joint inflammation. Despite the clinical importance of these problems, in current publications the pathology of cervical disc degeneration has been studied merely from a morphologic view point using magnetic resonance imaging (MRI, without addressing the issue of biological treatment approaches. So far a wide range of endogenously expressed bioactive factors in degenerative cervical disc cells has not yet been investigated, despite its importance for gene therapeutic approaches. Although degenerative lumbar disc cells have been targeted by different biological treatment approaches, the quantities of disc cells and the concentrations of gene therapeutic factors used in animal models differ extremely. These indicate lack of experimentally acquired data regarding disc cell proliferation and levels of target proteins. Therefore, we analysed proliferation and endogenous expression levels of anabolic, catabolic, ant-catabolic, inflammatory cytokines and matrix proteins of degenerative cervical disc cells in three-dimensional cultures. Preoperative MRI grading of cervical discs was used, then grade III and IV nucleus pulposus (NP tissues were isolated from 15 patients, operated due to cervical disc herniation. NP cells were cultured for four weeks with low-glucose in collagen I scaffold. Their proliferation rates were analysed using 3-(4, 5-dimethylthiazolyl-2-2,5-diphenyltetrazolium bromide. Their protein expression levels of 28 therapeutic targets were analysed using enzyme-linked immunosorbent assay. During progressive grades of degeneration NP cell proliferation rates were similar. Significantly decreased aggrecan and collagen II expressions (P<0.0001 were accompanied by accumulations of selective catabolic and inflammatory cytokines (disintegrin and metalloproteinase with thrombospondin motifs 4

  5. Isolation and lipid degradation profile of Raoultella planticola strain 232-2 capable of efficiently catabolizing edible oils under acidic conditions.

    Science.gov (United States)

    Sugimori, Daisuke; Watanabe, Mika; Utsue, Tomohiro

    2013-01-01

    The lipids (fats and oils) degradation capabilities of soil microorganisms were investigated for possible application in treatment of lipids-contaminated wastewater. We isolated a strain of the bacterium Raoultella planticola strain 232-2 that is capable of efficiently catabolizing lipids under acidic conditions such as in grease traps in restaurants and food processing plants. The strain 232-2 efficiently catabolized a mixture (mixed lipids) of commercial vegetable oil, lard, and beef tallow (1:1:1, w/w/w) at 20-35 °C, pH 3-9, and 1,000-5,000 ppm lipid content. Highly effective degradation rate was observed at 35 °C and pH 4.0, and the 24-h degradation rate was 62.5 ± 10.5 % for 3,000 ppm mixed lipids. The 24-h degradation rate for 3,000 ppm commercial vegetable oil, lard, beef tallow, mixed lipids, and oleic acid was 71.8 %, 58.7 %, 56.1 %, 55.3 ± 8.5 %, and 91.9 % at pH 4 and 30 °C, respectively. R. planticola NBRC14939 (type strain) was also able to efficiently catabolize the lipids after repeated subculturing. The composition of the culture medium strongly influenced the degradation efficiency, with yeast extract supporting more complete dissimilation than BactoPeptone or beef extract. The acid tolerance of strain 232-2 is proposed to result from neutralization of the culture medium by urease-mediated decomposition of urea to NH(3). The rate of lipids degradation increased with the rates of neutralization and cell growth. Efficient lipids degradation using strain 232-2 has been achieved in the batch treatment of a restaurant wastewater.

  6. Substrate uptake and subcellular compartmentation of anoxic cholesterol catabolism in Sterolibacterium denitrificans.

    Science.gov (United States)

    Lin, Ching-Wen; Wang, Po-Hsiang; Ismail, Wael; Tsai, Yu-Wen; El Nayal, Ashraf; Yang, Chia-Ying; Yang, Fu-Chun; Wang, Chia-Hsiang; Chiang, Yin-Ru

    2015-01-01

    Cholesterol catabolism by actinobacteria has been extensively studied. In contrast, the uptake and catabolism of cholesterol by Gram-negative species are poorly understood. Here, we investigated microbial cholesterol catabolism at the subcellular level. (13)C metabolomic analysis revealed that anaerobically grown Sterolibacterium denitrificans, a β-proteobacterium, adopts an oxygenase-independent pathway to degrade cholesterol. S. denitrificans cells did not produce biosurfactants upon growth on cholesterol and exhibited high cell surface hydrophobicity. Moreover, S. denitrificans did not produce extracellular catabolic enzymes to transform cholesterol. Accordingly, S. denitrificans accessed cholesterol by direction adhesion. Cholesterol is imported through the outer membrane via a putative FadL-like transport system, which is induced by neutral sterols. The outer membrane steroid transporter is able to selectively import various C27 sterols into the periplasm. S. denitrificans spheroplasts exhibited a significantly higher efficiency in cholest-4-en-3-one-26-oic acid uptake than in cholesterol uptake. We separated S. denitrificans proteins into four fractions, namely the outer membrane, periplasm, inner membrane, and cytoplasm, and we observed the individual catabolic reactions within them. Our data indicated that, in the periplasm, various periplasmic and peripheral membrane enzymes transform cholesterol into cholest-4-en-3-one-26-oic acid. The C27 acidic steroid is then transported into the cytoplasm, in which side-chain degradation and the subsequent sterane cleavage occur. This study sheds light into microbial cholesterol metabolism under anoxic conditions.

  7. New insights into {gamma}-aminobutyric acid catabolism: Evidence for {gamma}-hydroxybutyric acid and polyhydroxybutyrate synthesis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Bach, Benoît; Meudec, Emmanuelle; Lepoutre, Jean-Paul; Rossignol, Tristan; Blondin, Bruno; Dequin, Sylvie; Camarasa, Carole

    2009-07-01

    The gamma-aminobutyrate (GABA) shunt, an alternative route for the conversion of alpha-ketoglutarate to succinate, involves the glutamate decarboxylase Gad1p, the GABA transaminase Uga1p and the succinate semialdehyde dehydrogenase Uga2p. This pathway has been extensively described in plants and animals, but its function in yeast remains unclear. We show that the flux through Gad1p is insignificant during fermentation in rich sugar-containing medium, excluding a role for this pathway in redox homeostasis under anaerobic conditions or sugar stress. However, we found that up to 4 g of exogenous GABA/liter was efficiently consumed by yeast. We studied the fate of this consumed GABA. Most was converted into succinate, with a reaction yield of 0.7 mol/mol. We also showed that a large proportion of GABA was stored within cells, indicating a possible role for this molecule in stress tolerance mechanisms or nitrogen storage. Furthermore, based on enzymatic and metabolic evidence, we identified an alternative route for GABA catabolism, involving the reduction of succinate-semialdehyde into gamma-hydroxybutyric acid and the polymerization of gamma-hydroxybutyric acid to form poly-(3-hydroxybutyric acid-co-4-hydroxybutyric acid). This study provides the first demonstration of a native route for the formation of this polymer in yeast. Our findings shed new light on the GABA pathway and open up new opportunities for industrial applications.

  8. Understanding Sugar Catabolism in Unicellular Cyanobacteria Toward the Application in Biofuel and Biomaterial Production.

    Science.gov (United States)

    Osanai, Takashi; Iijima, Hiroko; Hirai, Masami Yokota

    2016-01-01

    Synechocystis sp. PCC 6803 is a model species of the cyanobacteria that undergo oxygenic photosynthesis, and has garnered much attention for its potential biotechnological applications. The regulatory mechanism of sugar metabolism in this cyanobacterium has been intensively studied and recent omics approaches have revealed the changes in transcripts, proteins, and metabolites of sugar catabolism under different light and nutrient conditions. Several transcriptional regulators that control the gene expression of enzymes related to sugar catabolism have been identified in the past 10 years, including a sigma factor, transcription factors, and histidine kinases. The modification of these genes can lead to alterations in the primary metabolism as well as the levels of high-value products such as bioplastics and hydrogen. This review summarizes recent studies on sugar catabolism in Synechocystis sp. PCC 6803, emphasizing the importance of elucidating the molecular mechanisms of cyanobacterial metabolism for biotechnological applications. PMID:27023248

  9. Transcriptional Analysis of Prebiotic Uptake and Catabolism by Lactobacillus acidophilus NCFM

    DEFF Research Database (Denmark)

    Andersen, Joakim Mark; Barrangou, Rodolphe; Abou Hachem, Maher;

    2012-01-01

    -phospho-β-glucosidases implicated in the catabolism of gentiobiose and cellobiose. These findings highlight the broad oligosaccharide metabolic repertoire of L. acidophilus NCFM and establish a platform for selection and screening of both probiotic bacteria and prebiotic compounds that may positively...... and catabolism of 11 potential prebiotic compounds consisting of α- and β- linked galactosides and glucosides. These oligosaccharides induced genes encoding phosphoenolpyruvate-dependent sugar phosphotransferase systems (PTS), galactoside pentose hexuronide (GPH) permease, and ATP-binding cassette (ABC...... (GOS). The various transporters were associated with a number of glycoside hydrolases from families 1, 2, 4, 13, 32, 36, 42, and 65, involved in the catabolism of various α- and β-linked glucosides and galactosides. Further subfamily specialization was also observed for different PTS-associated GH1 6...

  10. Temporal Dynamics of Antioxidant Defence System in Relation to Polyamine Catabolism in Rice under Direct-Seeded and Transplanted Conditions

    Institute of Scientific and Technical Information of China (English)

    Manisha KUMARI; Bavita ASTHIR; Navtej Singh BAINS

    2014-01-01

    Six rice cultivars viz. PR120, PR116, Feng Ai Zan, PR115, PAU201 and Punjab Mehak 1 under the direct-seeded and transplanted conditions were used to investigate the involvement of antioxidative defence system in relation to polyamine catabolism in temporal regulation of developing grains. Activities of ascorbate peroxidase (APx), guaiacol peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), polyamine oxidases (PAO) and contents of ascorbate,α-tocopherol, proline and polyamines increased gradually until mid-milky stage and then declined towards maturity stage under both planting conditions. The transplanted condition led to higher activities of antioxidative enzymes (APx, GPx and CAT) and contents of ascorbate,α-tocopherol and proline whereas the direct-seeded condition had elevated levels of PAO and SOD activities and contents of polyamines, lipid peroxide and hydrogen peroxide. Cultivars Feng Ai Zan and PR120 exhibited superior tolerance over other cultivars by accumulating higher contents of ascorbate,α-tocopherol and proline with increasing level of PAO and SOD activities under the direct-seeded condition. However, under the transplanted condition PR116 and PAU201 showed higher activities of antioxidative enzymes with decreasing content of lipid peroxide. Therefore, we concluded that under the direct-seeded condition, enhancements of polyamines content and PAO activity enabled rice cultivars more tolerant to oxidative stress, while under the transplanted condition, antioxidative defence with decreasing of lipid peroxide content was closely associated with the protection of grains by maintaining membrane integrity during rice grain filling. The results indicated that temporal dynamics of H2O2 metabolic machinery was strongly up-regulated especially at the mid-milky stage.

  11. Catabolism of biomass-derived sugars in fungi and metabolic engineering as a tool for organic acid production

    Energy Technology Data Exchange (ETDEWEB)

    Koivistoinen, O.

    2013-11-01

    gene ladB was identified and the deletion of the gene resulted in growth arrest on galactitol indicating that the enzyme is an essential part of the oxido-reductive galactose pathway in fungi. The last step of this pathway converts D-sorbitol to D-fructose by sorbitol dehydrogenase encoded by sdhA gene. Sorbitol dehydrogenase was found to be a medium chain dehydrogenase and transcription analysis suggested that the enzyme is involved in D-galactose and D-sorbitol catabolism. The thesis also demonstrates how the understanding of cell metabolism can be used to engineer yeast to produce glycolic acid. Glycolic acid is a chemical, which can be used for example in the cosmetic industry and as a precursor for biopolymers. Currently, glycolic acid is produced by chemical synthesis in a process requiring toxic formaldehyde and fossil fuels. Thus, a biochemical production route would be preferable from a sustainability point of view. Yeasts do not produce glycolic acid under normal conditions but it is a desired production host for acid production because of its natural tolerance to low pH conditions. As a proof of concept, pure model substrates, e.g. D-xylose and ethanol, were used as starting materials for glycolic acid production but the knowledge can be further applied to an expanded substrate range such as biomass derived sugars. Already the introduction of a heterologous glyoxylate reductase gene resulted in glycolic acid production in the yeasts S. cerevisiae and Kluyveromyces lactis. Further modifications of the glyoxylate cycle increased the production of glycolic acid and it was successfully produced in bioreactor cultivation. The challenge of biotechnology is to produce high value products from cheap raw materials in an economically feasible way. This thesis gives more basic understanding to the topic in the form of new information regarding L-rhamnose and D-galactose metabolism in eukaryotic microbes as well as provides an example on how cell metabolism can be

  12. Oxygen-dependent catabolism of indole-3-acetic acid in Bradyrhizobium japonicum

    DEFF Research Database (Denmark)

    Egebo, L A; Nielsen, S V; Jochimsen, B U

    1991-01-01

    Some strains of Bradyrhizobium japonicum have the ability to catabolize indole-3-acetic acid (IAA). Examination of this catabolism in strain 110 by in vivo experiments has revealed an enzymatic activity catalyzing the degradation of IAA and 5-hydroxy-indole-3-acetic acid. The activity requires...... an oxygen-consuming opening of the indole ring analogous to the one catalyzed by tryptophan 2,3-dioxygenase. The pattern of metabolite usage by known tryptophan-auxotrophic mutants and studies of metabolites by high-performance liquid chromatography indicate that anthranilic acid is a terminal degradation...

  13. Isolation of a mutation resulting in constitutive synthesis of L-fucose catabolic enzymes.

    OpenAIRE

    Bartkus, J. M.; Mortlock, R. P.

    1986-01-01

    A ribitol-positive transductant of Escherichia coli K-12, JM2112, was used to facilitate the isolation and identification of mutations affecting the L-fucose catabolic pathway. Analysis of L-fucose-negative mutants of JM2112 enabled us to confirm that L-fucose-1-phosphate is the apparent inducer of the fucose catabolic enzymes. Plating of an L-fuculokinase-negative mutant of JM2112 on D-arabinose yielded an isolate containing a second fucose mutation which resulted in the constitutive synthes...

  14. Engineering Trehalose Synthesis in Lactococcus lactis for Improved Stress Tolerance ▿ †

    OpenAIRE

    Carvalho, Ana Lúcia; Cardoso, Filipa S.; Bohn, Andreas; Neves, Ana Rute; Santos, Helena

    2011-01-01

    Trehalose accumulation is a common cell defense strategy against a variety of stressful conditions. In particular, our team detected high levels of trehalose in Propionibacterium freudenreichii in response to acid stress, a result that led to the idea that endowing Lactococcus lactis with the capacity to synthesize trehalose could improve the acid tolerance of this organism. To this end, we took advantage of the endogenous genes involved in the trehalose catabolic pathway of L. lactis, i.e., ...

  15. Comparing how land use change impacts soil microbial catabolic respiration in Southwestern Amazon

    Directory of Open Access Journals (Sweden)

    Andre Mancebo Mazzetto

    2016-03-01

    Full Text Available Abstract Land use changes strongly impact soil functions, particularly microbial biomass diversity and activity. We hypothesized that the catabolic respiration response of the microbial biomass would differ depending on land use and that these differences would be consistent at the landscape scale. In the present study, we analyzed the catabolic response profile of the soil microbial biomass through substrate-induced respiration in different land uses over a wide geographical range in Mato Grosso and Rondônia state (Southwest Amazon region. We analyzed the differences among native areas, pastures and crop areas and within each land use and examined only native areas (Forest, Dense Cerrado and Cerrado, pastures (Nominal, Degraded and Improved and crop areas (Perennial, No-Tillage, Conventional Tillage. The metabolic profile of the microbial biomass was accessed using substrate-induced respiration. Pasture soils showed significant responses to amino acids and carboxylic acids, whereas native areas showed higher responses to malonic acid, malic acid and succinic acid. Within each land use category, the catabolic responses showed similar patterns in both large general comparisons (native area, pasture and crop areas and more specific comparisons (biomes, pastures and crop types. The results showed that the catabolic responses of the microbial biomass are highly correlated with land use, independent of soil type or climate. The substrate induced respiration approach is useful to discriminate microbial communities, even on a large scale.

  16. Amino acid catabolism by Lactobacillus helveticus in cheese

    DEFF Research Database (Denmark)

    Kananen, Soila Kaarina

    Amino acid catabolism is the final step in the conversion of caseins to flavour compounds and a part of a complex combination of biochemical pathways in cheese flavour formation. Lactobacillus helveticus is a thermophilic lactic acid bacterium that is used in cheese manufacture as a primary start...

  17. Catabolism of pyrimidines in yeast: A tool to understand degradation of anticancer drugs

    DEFF Research Database (Denmark)

    Andersen, Gorm; Merico, A.; Bjornberg, O.;

    2006-01-01

    The pyrimidine catabolic pathway is of crucial importance in cancer patients because it is involved in degradation of several chemotherapeutic drugs, such as 5-fluorouracil; it also is important in plants, unicellular eukaryotes, and bacteria for the degradation of pyrimidine-based biocides...

  18. Catabolism of pyrimidines in yeast: a tool to understand degradation of anticancer drugs

    DEFF Research Database (Denmark)

    Andersen, G; Merico, A; Björnberg, O;

    2006-01-01

    The pyrimidine catabolic pathway is of crucial importance in cancer patients because it is involved in degradation of several chemotherapeutic drugs, such as 5-fluorouracil; it also is important in plants, unicellular eukaryotes, and bacteria for the degradation of pyrimidine-based biocides...

  19. Mechanical ventilation induces myokine expression and catabolism in peripheral skeletal muscle in pigs

    Science.gov (United States)

    Endotoxin (LPS)-induced sepsis increases circulating cytokines which have been associated with skeletal muscle catabolism. During critical illness, it has been postulated that muscle wasting associated with mechanical ventilation (MV) occurs due to inactivity. We hypothesize that MV and sepsis promo...

  20. Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis.

    Science.gov (United States)

    Green, Courtney R; Wallace, Martina; Divakaruni, Ajit S; Phillips, Susan A; Murphy, Anne N; Ciaraldi, Theodore P; Metallo, Christian M

    2016-01-01

    Adipose tissue plays important roles in regulating carbohydrate and lipid homeostasis, but less is known about the regulation of amino acid metabolism in adipocytes. Here we applied isotope tracing to pre-adipocytes and differentiated adipocytes to quantify the contributions of different substrates to tricarboxylic acid (TCA) metabolism and lipogenesis. In contrast to proliferating cells, which use glucose and glutamine for acetyl-coenzyme A (AcCoA) generation, differentiated adipocytes showed increased branched-chain amino acid (BCAA) catabolic flux such that leucine and isoleucine from medium and/or from protein catabolism accounted for as much as 30% of lipogenic AcCoA pools. Medium cobalamin deficiency caused methylmalonic acid accumulation and odd-chain fatty acid synthesis. Vitamin B12 supplementation reduced these metabolites and altered the balance of substrates entering mitochondria. Finally, inhibition of BCAA catabolism compromised adipogenesis. These results quantitatively highlight the contribution of BCAAs to adipocyte metabolism and suggest that BCAA catabolism has a functional role in adipocyte differentiation. PMID:26571352

  1. Phytochemicals that modulate amino acid and peptide catabolism by caprine rumen microbes

    Science.gov (United States)

    Background: Microbe-derived ionophores and macrolide antibiotics are often added to ruminant diets, and growth promotion and feed efficiency are among the benefits. One mechanism is inhibition of microbes that catabolize amino acids or peptides and produce ammonia. Plants also produce antimicrobial ...

  2. Changes in expression of proteolytic genes in response to anabolic and catabolic signals in rainbow trout

    Science.gov (United States)

    Rates of protein accrual are largely affected by rates of protein degradation. Determining how proteolytic pathways are affected by catabolic and anabolic signals will contribute to the understanding of the impact and regulation these pathways have on protein turnover. Real time RT-PCR was used to...

  3. Comparing how land use change impacts soil microbial catabolic respiration in Southwestern Amazon.

    Science.gov (United States)

    Mazzetto, Andre Mancebo; Feigl, Brigitte Josefine; Cerri, Carlos Eduardo Pellegrino; Cerri, Carlos Clemente

    2016-01-01

    Land use changes strongly impact soil functions, particularly microbial biomass diversity and activity. We hypothesized that the catabolic respiration response of the microbial biomass would differ depending on land use and that these differences would be consistent at the landscape scale. In the present study, we analyzed the catabolic response profile of the soil microbial biomass through substrate-induced respiration in different land uses over a wide geographical range in Mato Grosso and Rondônia state (Southwest Amazon region). We analyzed the differences among native areas, pastures and crop areas and within each land use and examined only native areas (Forest, Dense Cerrado and Cerrado), pastures (Nominal, Degraded and Improved) and crop areas (Perennial, No-Tillage, Conventional Tillage). The metabolic profile of the microbial biomass was accessed using substrate-induced respiration. Pasture soils showed significant responses to amino acids and carboxylic acids, whereas native areas showed higher responses to malonic acid, malic acid and succinic acid. Within each land use category, the catabolic responses showed similar patterns in both large general comparisons (native area, pasture and crop areas) and more specific comparisons (biomes, pastures and crop types). The results showed that the catabolic responses of the microbial biomass are highly correlated with land use, independent of soil type or climate. The substrate induced respiration approach is useful to discriminate microbial communities, even on a large scale. PMID:26887228

  4. Comparing how land use change impacts soil microbial catabolic respiration in Southwestern Amazon.

    Science.gov (United States)

    Mazzetto, Andre Mancebo; Feigl, Brigitte Josefine; Cerri, Carlos Eduardo Pellegrino; Cerri, Carlos Clemente

    2016-01-01

    Land use changes strongly impact soil functions, particularly microbial biomass diversity and activity. We hypothesized that the catabolic respiration response of the microbial biomass would differ depending on land use and that these differences would be consistent at the landscape scale. In the present study, we analyzed the catabolic response profile of the soil microbial biomass through substrate-induced respiration in different land uses over a wide geographical range in Mato Grosso and Rondônia state (Southwest Amazon region). We analyzed the differences among native areas, pastures and crop areas and within each land use and examined only native areas (Forest, Dense Cerrado and Cerrado), pastures (Nominal, Degraded and Improved) and crop areas (Perennial, No-Tillage, Conventional Tillage). The metabolic profile of the microbial biomass was accessed using substrate-induced respiration. Pasture soils showed significant responses to amino acids and carboxylic acids, whereas native areas showed higher responses to malonic acid, malic acid and succinic acid. Within each land use category, the catabolic responses showed similar patterns in both large general comparisons (native area, pasture and crop areas) and more specific comparisons (biomes, pastures and crop types). The results showed that the catabolic responses of the microbial biomass are highly correlated with land use, independent of soil type or climate. The substrate induced respiration approach is useful to discriminate microbial communities, even on a large scale.

  5. Ischemic nucleotide breakdown increases during cardiac development due to drop in adenosine anabolism/catabolism ratio

    NARCIS (Netherlands)

    J.W. de Jong (Jan Willem); E. Keijzer (Elisabeth); T. Huizer (Tom); B. Schoutsen

    1990-01-01

    markdownabstractAbstract Our earlier work on reperfusion showed that adult rat hearts released almost twice as much purine nucleosides and oxypurines as newborn hearts did [Am J Physiol 254 (1988) H1091]. A change in the ratio anabolism/catabolism of adenosine could be responsible for this effect.

  6. Transcriptional Analysis of Prebiotic Uptake and Catabolism by Lactobacillus acidophilus NCFM.

    OpenAIRE

    Andersen, Joakim Mark; Barrangou, Rodolphe; Abou Hachem, Maher; Lahtinen, Sampo J.; Goh, Yong-Jun; Svensson, Birte; Klaenhammer, Todd R.

    2012-01-01

    The human gastrointestinal tract can be positively modulated by dietary supplementation of probiotic bacteria in combination with prebiotic carbohydrates. Here differential transcriptomics and functional genomics were used to identify genes in Lactobacillus acidophilus NCFM involved in the uptake and catabolism of 11 potential prebiotic compounds consisting of α- and β- linked galactosides and glucosides. These oligosaccharides induced genes encoding phosphoenolpyruvate-dependent sugar phosph...

  7. Regulation and control of L-arabinose catabolism in Aspergillus niger

    NARCIS (Netherlands)

    Groot, de M.J.L.

    2005-01-01

    This thesis describes studies on the biochemical properties and regulation of L-arabinose metabolism and arabinan degrading enzymes of Aspergillus niger. We focused on the investigation of the catabolic pathway, firstly by isolating pathway specific regulatory mutants using a newly developed selecti

  8. Detection of catabolic genes in indigenous microbial consortia isolated from a diesel-contaminated soil

    International Nuclear Information System (INIS)

    Bioremediation is often used for in situ remediation of petroleum-contaminated sites. The primary focus of this study was on understanding the indigenous microbial community which can survive in contaminated environment and is responsible for the degradation. Diesel, toluene and naphthalene-degrading microbial consortia were isolated from diesel-contaminated soil by growing on selective hydrocarbon substrates. The presence and frequency of the catabolic genes responsible for aromatic hydrocarbon biodegradation (xylE, ndoB) within the isolated consortia were screened using polymerase chain reaction PCR and DNA-DNA colony hybridization. The diesel DNA-extract possessed both the xylE catabolic gene for toluene, and the nah catabolic gene for polynuclear aromatic hydrocarbon degradation. The toluene DNA-extract possessed only the xylE catabolic gene, while the naphthalene DNA-extract only the ndoB gene. Restriction enzyme analysis with HaeIII indicated similar restriction patterns for the xylE gene fragment between toluene DNA-extract and a type strain, Pseudomonas putida ATCC 23973. A substantial proportion (74%) of the colonies from the diesel-consortium possessed the xylE gene, and the ndoB gene (78%), while a minority (29%) of the toluene-consortium harbored the xylE gene. 59% of the colonies from the naphthalene-consortium had the ndoB gene, and did not have the xylE gene. These results indicate that the microbial population has been naturally enriched in organisms carrying genes for aromatic hydrocarbon degradation and that significant aromatic biodegradative potential exists at the site. Characterization of the population genotype constitutes a molecular diagnosis which permits the determination of the catabolic potential of the site to degrade the contaminant present. (author)

  9. A role for TNFα in intervertebral disc degeneration: A non-recoverable catabolic shift

    Energy Technology Data Exchange (ETDEWEB)

    Purmessur, D.; Walter, B.A. [Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Roughley, P.J. [Shriners Hospital for Children, Montreal, QC (Canada); Laudier, D.M.; Hecht, A.C. [Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Iatridis, James, E-mail: james.iatridis@mssm.edu [Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States)

    2013-03-29

    Highlights: ► TNFα induced catabolic changes similar to human intervertebral disc degeneration. ► The metabolic shift induced by TNFα was sustained following removal. ► TNFα induced changes suggestive of cell senescence without affecting cell viability. ► Interventions are required to stimulate anabolism and increase cell proliferation. -- Abstract: This study examines the effect of TNFα on whole bovine intervertebral discs in organ culture and its association with changes characteristic of intervertebral disc degeneration (IDD) in order to inform future treatments to mitigate the chronic inflammatory state commonly found with painful IDD. Pro-inflammatory cytokines such as TNFα contribute to disc pathology and are implicated in the catabolic phenotype associated with painful IDD. Whole bovine discs were cultured to examine cellular (anabolic/catabolic gene expression, cell viability and senescence using β-galactosidase) and structural (histology and aggrecan degradation) changes in response to TNFα treatment. Control or TNFα cultures were assessed at 7 and 21 days; the 21 day group also included a recovery group with 7 days TNFα followed by 14 days in basal media. TNFα induced catabolic and anti-anabolic shifts in the nucleus pulposus (NP) and annulus fibrosus (AF) at 7 days and this persisted until 21 days however cell viability was not affected. Data indicates that TNFα increased aggrecan degradation products and suggests increased β-galactosidase staining at 21 days without any recovery. TNFα treatment of whole bovine discs for 7 days induced changes similar to the degeneration processes that occur in human IDD: aggrecan degradation, increased catabolism, pro-inflammatory cytokines and nerve growth factor expression. TNFα significantly reduced anabolism in cultured IVDs and a possible mechanism may be associated with cell senescence. Results therefore suggest that successful treatments must promote anabolism and cell proliferation in

  10. Phenylalanine induces Burkholderia cenocepacia phenylacetic acid catabolism through degradation to phenylacetyl-CoA in synthetic cystic fibrosis sputum medium.

    Science.gov (United States)

    Yudistira, Harry; McClarty, Leigh; Bloodworth, Ruhi A M; Hammond, Sydney A; Butcher, Haley; Mark, Brian L; Cardona, Silvia T

    2011-09-01

    Synthetic cystic fibrosis sputum medium (SCFM) is rich in amino acids and supports robust growth of Burkholderia cenocepacia, a member of the Burkholderia cepacia complex (Bcc). Previous work demonstrated that B. cenocepacia phenylacetic acid (PA) catabolic genes are up-regulated during growth in SCFM and are required for full virulence in a Caenorhabditis elegans host model. In this work, we investigated the role of phenylalanine, one of the aromatic amino acids present in SCFM, as an inducer of the PA catabolic pathway. Phenylalanine degradation intermediates were used as sole carbon sources for growth and gene reporter experiments. In addition to phenylalanine and PA, phenylethylamine, phenylpyruvate, and 2-phenylacetamide were usable as sole carbon sources by wild type B. cenocepacia K56-2, but not by a PA catabolism-defective mutant. EMSA analysis showed that the binding of PaaR, the negative regulator protein of B. cenocepacia PA catabolism, to PA regulatory DNA could only be relieved by phenylacetyl-Coenzyme A (PA-CoA), but not by any of the putative phenylalanine degradation intermediates. Taken together, our results show that in B. cenocepacia, phenylalanine is catabolized to PA and induces PA catabolism through PA activation to PA-CoA. Thus, PaaR shares the same inducer with PaaX, the regulator of PA catabolism in Escherichia coli, despite belonging to a different protein family.

  11. Amyloid beta-protein and lipid rafts: focused on biogenesis and catabolism.

    Science.gov (United States)

    Araki, Wataru; Tamaoka, Akira

    2015-01-01

    Cerebral accumulation of amyloid β-protein (Aβ) is thought to play a key role in the molecular pathology of Alzheimer's disease (AD). Three secretases (β-, γ-, and α-secretase) are proteases that control the production of Aβ from amyloid precursor protein. Increasing evidence suggests that cholesterol-rich membrane microdomains termed 'lipid rafts' are involved in the biogenesis and accumulation of Aβ as well as Aβ-mediated neurotoxicity. γ-Secretase is enriched in lipid rafts, which are considered an important site for Aβ generation. Additionally, Aβ-degrading peptidases located in lipid rafts, such as neprilysin, appear to play a role in Aβ catabolism. This mini-review focuses on the roles of lipid rafts in the biogenesis and catabolism of Aβ, covering recent research on the relationship between lipid rafts and the three secretases or Aβ-degrading peptidases. Furthermore, the significance of lipid rafts in Aβ aggregation and neurotoxicity is briefly summarized.

  12. The snakehead Channa asiatica accumulates alanine during aerial exposure, but is incapable of sustaining locomotory activities on land through partial amino acid catabolism.

    Science.gov (United States)

    Chew, Shit F; Wong, Mei Y; Tam, Wai L; Ip, Yuen K

    2003-02-01

    The freshwater snakehead Channa asiatica is an obligatory air-breather that resides in slow-flowing streams and in crevices near riverbanks in Southern China. In its natural habitat, it may encounter bouts of aerial exposure during the dry seasons. In the laboratory, the ammonia excretion rate of C. asiatica exposed to terrestrial conditions in a 12 h:12 h dark:light regime was one quarter that of the submerged control. Consequently, the ammonia contents in the muscle, liver and plasma increased significantly, and C. asiatica was able to tolerate quite high levels of ammonia in its tissues. Urea was not the major product of ammonia detoxification in C. asiatica, which apparently did not possess a functioning ornithine urea cycle. Rather, alanine increased fourfold to 12.6 micromol g(-1) in the muscle after 48 h of aerial exposure. This is the highest level known in adult teleosts exposed to air or an ammonia-loading situation. The accumulated alanine could account for 70% of the deficit in ammonia excretion during this period, indicating that partial amino acid catabolism had occurred. This would allow the utilization of certain amino acids as energy sources and, at the same time, maintain the new steady state levels of ammonia in various tissues, preventing them from rising further. There was a reduction in the aminating activity of glutamate dehydrogenase from the muscle and liver of specimens exposed to terrestrial conditions. Such a phenomenon has not been reported before and could, presumably, facilitate the entry of alpha-ketoglutarate into the Krebs cycle instead of its amination to glutamate, as has been suggested elsewhere. However, in contrast to mudskippers, C. asiatica was apparently unable to reduce the rates of proteolysis and amino acid catabolism, because the reduction in nitrogenous excretion during 48 h of aerial exposure was completely balanced by nitrogenous accumulation in the body. Alanine accumulation also occurred in specimens exposed to

  13. Characterization of genes involved in erythritol catabolism in Rhizobium leguminosarum bv. viciae.

    Science.gov (United States)

    Yost, Christopher K; Rath, Amber M; Noel, Tanya C; Hynes, Michael F

    2006-07-01

    A genetic locus encoding erythritol uptake and catabolism genes was identified in Rhizobium leguminosarum bv. viciae, and shown to be plasmid encoded in a wide range of R. leguminosarum strains. A Tn5-B22 mutant (19B-3) unable to grow on erythritol was isolated from a mutant library of R. leguminosarum strain VF39SM. The mutated gene eryF was cloned and partially sequenced, and determined to have a high homology to permease genes of ABC transporters. A cosmid complementing the mutation (pCos42) was identified and was shown to carry all the genes necessary to restore the ability to grow on erythritol to a VF39SM strain cured of pRleVF39f. In the genomic DNA sequence of strain 3841, the gene linked to the mutation in 19B-3 is flanked by a cluster of genes with high homology to the known erythritol catabolic genes from Brucella spp. Through mutagenesis studies, three distinct operons on pCos42 that are required for growth on erythritol were identified: an ABC-transporter operon (eryEFG), a catabolic operon (eryABCD) and an operon (deoR-tpiA2-rpiB) that encodes a gene with significant homology to triosephosphate isomerase (tpiA2). These genes all share high sequence identity to genes in the erythritol catabolism region of Brucella spp., and clustalw alignments suggest that horizontal transfer of the erythritol locus may have occurred between R. leguminosarum and Brucella. Transcription of the eryABCD operon is repressed by EryD and is induced by the presence of erythritol. Mutant 19B-3 was impaired in its ability to compete against wild-type for nodulation of pea plants but was still capable of forming nitrogen-fixing nodules.

  14. Microbial catabolic activities are naturally selected by metabolic energy harvest rate.

    Science.gov (United States)

    González-Cabaleiro, Rebeca; Ofiţeru, Irina D; Lema, Juan M; Rodríguez, Jorge

    2015-12-01

    The fundamental trade-off between yield and rate of energy harvest per unit of substrate has been largely discussed as a main characteristic for microbial established cooperation or competition. In this study, this point is addressed by developing a generalized model that simulates competition between existing and not experimentally reported microbial catabolic activities defined only based on well-known biochemical pathways. No specific microbial physiological adaptations are considered, growth yield is calculated coupled to catabolism energetics and a common maximum biomass-specific catabolism rate (expressed as electron transfer rate) is assumed for all microbial groups. Under this approach, successful microbial metabolisms are predicted in line with experimental observations under the hypothesis of maximum energy harvest rate. Two microbial ecosystems, typically found in wastewater treatment plants, are simulated, namely: (i) the anaerobic fermentation of glucose and (ii) the oxidation and reduction of nitrogen under aerobic autotrophic (nitrification) and anoxic heterotrophic and autotrophic (denitrification) conditions. The experimentally observed cross feeding in glucose fermentation, through multiple intermediate fermentation pathways, towards ultimately methane and carbon dioxide is predicted. Analogously, two-stage nitrification (by ammonium and nitrite oxidizers) is predicted as prevailing over nitrification in one stage. Conversely, denitrification is predicted in one stage (by denitrifiers) as well as anammox (anaerobic ammonium oxidation). The model results suggest that these observations are a direct consequence of the different energy yields per electron transferred at the different steps of the pathways. Overall, our results theoretically support the hypothesis that successful microbial catabolic activities are selected by an overall maximum energy harvest rate. PMID:26161636

  15. Formaldehyde catabolism is essential in cells deficient for the Fanconi anemia DNA-repair pathway.

    Science.gov (United States)

    Rosado, Ivan V; Langevin, Frédéric; Crossan, Gerry P; Takata, Minoru; Patel, Ketan J

    2011-11-13

    Metabolism is predicted to generate formaldehyde, a toxic, simple, reactive aldehyde that can damage DNA. Here we report a synthetic lethal interaction in avian cells between ADH5, encoding the main formaldehyde-detoxifying enzyme, and the Fanconi anemia (FA) DNA-repair pathway. These results define a fundamental role for the combined action of formaldehyde catabolism and DNA cross-link repair in vertebrate cell survival.

  16. Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes

    OpenAIRE

    Tasse, Lena; Bercovici, Juliette; Pizzut-Serin, Sandra; Robe, Patrick; Tap, Julien; Klopp, Christophe; Cantarel, Brandi L; Coutinho, Pedro M; Henrissat, Bernard; Leclerc, Marion; Doré, Joël; Monsan, Pierre; Remaud-Simeon, Magali; Potocki-Veronese, Gabrielle

    2010-01-01

    The human gut microbiome is a complex ecosystem composed mainly of uncultured bacteria. It plays an essential role in the catabolism of dietary fibers, the part of plant material in our diet that is not metabolized in the upper digestive tract, because the human genome does not encode adequate carbohydrate active enzymes (CAZymes). We describe a multi-step functionally based approach to guide the in-depth pyrosequencing of specific regions of the human gut metagenome encoding the CAZymes invo...

  17. Effects of Zinc Magnesium Aspartate (ZMA Supplementation on Training Adaptations and Markers of Anabolism and Catabolism

    Directory of Open Access Journals (Sweden)

    Almada Anthony

    2004-12-01

    Full Text Available Abstract This study examined whether supplementing the diet with a commercial supplement containing zinc magnesium aspartate (ZMA during training affects zinc and magnesium status, anabolic and catabolic hormone profiles, and/or training adaptations. Forty-two resistance trained males (27 ± 9 yrs; 178 ± 8 cm, 85 ± 15 kg, 18.6 ± 6% body fat were matched according to fat free mass and randomly assigned to ingest in a double blind manner either a dextrose placebo (P or ZMA 30–60 minutes prior to going to sleep during 8-weeks of standardized resistance-training. Subjects completed testing sessions at 0, 4, and 8 weeks that included body composition assessment as determined by dual energy X-ray absorptiometry, 1-RM and muscular endurance tests on the bench and leg press, a Wingate anaerobic power test, and blood analysis to assess anabolic/catabolic status as well as markers of health. Data were analyzed using repeated measures ANOVA. Results indicated that ZMA supplementation non-significantly increased serum zinc levels by 11 – 17% (p = 0.12. However, no significant differences were observed between groups in anabolic or catabolic hormone status, body composition, 1-RM bench press and leg press, upper or lower body muscular endurance, or cycling anaerobic capacity. Results indicate that ZMA supplementation during training does not appear to enhance training adaptations in resistance trained populations.

  18. Increased fat catabolism sustains water balance during fasting in zebra finches.

    Science.gov (United States)

    Rutkowska, Joanna; Sadowska, Edyta T; Cichoń, Mariusz; Bauchinger, Ulf

    2016-09-01

    Patterns of physiological flexibility in response to fasting are well established, but much less is known about the contribution of water deprivation to the observed effects. We investigated body composition and energy and water budget in three groups of zebra finches: birds with access to food and water, food-deprived birds having access to drinking water and food-and-water-deprived birds. Animals were not stimulated by elevated energy expenditure and they were in thermoneutral conditions; thus, based on previous studies, water balance of fasting birds was expected to be maintained by increased catabolism of proteins. In contrast to this expectation, we found that access to water did not prevent reduction of proteinaceous tissue, but it saved fat reserves of the fasting birds. Thus, water balance of birds fasting without access to water seemed to be maintained by elevated fat catabolism, which generated 6 times more metabolic water compared with that in birds that had access to water. Therefore, we revise currently established views and propose fat to serve as the primary source for metabolic water production. Previously assumed increased protein breakdown for maintenance of water budget would occur if fat stores were depleted or if fat catabolism reached its upper limits due to high energy demands. PMID:27582561

  19. The control of chlorophyll catabolism and the status of yellowing as a biomarker of leaf senescence.

    Science.gov (United States)

    Ougham, H; Hörtensteiner, S; Armstead, I; Donnison, I; King, I; Thomas, H; Mur, L

    2008-09-01

    The pathway of chlorophyll catabolism during leaf senescence is known in a fair amount of biochemical and cell biological detail. In the last few years, genes encoding a number of the catabolic enzymes have been characterized, including the key ring-opening activities, phaeophorbide a oxygenase (PaO) and red chlorophyll catabolite reductase (RCCR). Recently, a gene that modulates disassembly of chlorophyll-protein complexes and activation of pigment ring-opening has been isolated by comparative mapping in monocot species, positional cloning exploiting rice genomics resources and functional testing in Arabidopsis. The corresponding gene in pea has been identified as Mendel's I locus (green/yellow cotyledons). Mutations in this and other chlorophyll catabolic genes have significant consequences, both for the course of leaf senescence and senescence-like stress responses, notably hypersensitivity to pathogen challenge. Loss of chlorophyll can occur via routes other than the PaO/RCCR pathway, resulting in changes that superficially resemble senescence. Such 'pseudosenescence' responses tend to be pathological rather than physiological and may differ from senescence in fundamental aspects of biochemistry and regulation. PMID:18721307

  20. Novel Route for Agmatine Catabolism in Aspergillus niger Involves 4-Guanidinobutyrase.

    Science.gov (United States)

    Kumar, Sunil; Saragadam, Tejaswani; Punekar, Narayan S

    2015-08-15

    Agmatine, a significant polyamine in bacteria and plants, mostly arises from the decarboxylation of arginine. The functional importance of agmatine in fungi is poorly understood. The metabolism of agmatine and related guanidinium group-containing compounds in Aspergillus niger was explored through growth, metabolite, and enzyme studies. The fungus was able to metabolize and grow on l-arginine, agmatine, or 4-guanidinobutyrate as the sole nitrogen source. Whereas arginase defined the only route for arginine catabolism, biochemical and bioinformatics approaches suggested the absence of arginine decarboxylase in A. niger. Efficient utilization by the parent strain and also by its arginase knockout implied an arginase-independent catabolic route for agmatine. Urea and 4-guanidinobutyrate were detected in the spent medium during growth on agmatine. The agmatine-grown A. niger mycelia contained significant levels of amine oxidase, 4-guanidinobutyraldehyde dehydrogenase, 4-guanidinobutyrase (GBase), and succinic semialdehyde dehydrogenase, but no agmatinase activity was detected. Taken together, the results support a novel route for agmatine utilization in A. niger. The catabolism of agmatine by way of 4-guanidinobutyrate to 4-aminobutyrate into the Krebs cycle is the first report of such a pathway in any organism. A. niger GBase peptide fragments were identified by tandem mass spectrometry analysis. The corresponding open reading frame from the A. niger NCIM 565 genome was located and cloned. Subsequent expression of GBase in both Escherichia coli and A. niger along with its disruption in A. niger functionally defined the GBase locus (gbu) in the A. niger genome.

  1. The effect of CreA in glucose and xylose catabolism in Aspergillus nidulans

    DEFF Research Database (Denmark)

    Prathumpai, Wai; Mcintyre, Mhairi; Nielsen, Jens

    2004-01-01

    The catabolism of glucose and xylose was studied in a wild type and creA deleted (carbon catabolite de-repressed) strain of Aspergillus nidulans. Both strains were cultivated in bioreactors with either glucose or xylose as the sole carbon source, or in the presence of both sugars. In the cultivat......The catabolism of glucose and xylose was studied in a wild type and creA deleted (carbon catabolite de-repressed) strain of Aspergillus nidulans. Both strains were cultivated in bioreactors with either glucose or xylose as the sole carbon source, or in the presence of both sugars...... of key enzymes in the xylose utilisation pathway revealed that xylose metabolism was occurring in the creA deleted strain, even at high glucose concentrations. Conversely, in the wild type strain, activities of the key enzymes for xylose metabolism increased only when the effects of glucose repression...... had been relieved. Xylose was both a repressor and an inducer of xylanases at the same time. The creA mutation seemed to have pleiotropic effects on carbohydratases and carbon catabolism....

  2. SKN-1 and Nrf2 couples proline catabolism with lipid metabolism during nutrient deprivation.

    Science.gov (United States)

    Pang, Shanshan; Lynn, Dana A; Lo, Jacqueline Y; Paek, Jennifer; Curran, Sean P

    2014-10-06

    Mechanisms that coordinate different metabolic pathways, such as glucose and lipid, have been recognized. However, a potential interaction between amino acid and lipid metabolism remains largely elusive. Here we show that during starvation of Caenorhabditis elegans, proline catabolism is coupled with lipid metabolism by SKN-1. Mutation of alh-6, a conserved proline catabolic enzyme, accelerates fat mobilization, enhances the expression of genes involved in fatty acid oxidation and reduces survival in response to fasting. This metabolic coordination is mediated by the activation of the transcription factor SKN-1/Nrf2, possibly due to the accumulation of the alh-6 substrate P5C, and also requires the transcriptional co-regulator MDT-15. Constitutive activation of SKN-1 induces a similar transcriptional response, which protects animals from fat accumulation when fed a high carbohydrate diet. In human cells, an orthologous alh-6 enzyme, ALDH4A1, is also linked to the activity of Nrf2, the human orthologue of SKN-1, and regulates the expression of lipid metabolic genes. Our findings identify a link between proline catabolism and lipid metabolism, and uncover a physiological role for SKN-1 in metabolism.

  3. Plant-bacteria partnership: phytoremediation of hydrocarbons contaminated soil and expression of catabolic genes

    Directory of Open Access Journals (Sweden)

    Hamna Saleem

    2016-01-01

    Full Text Available Petroleum hydrocarbons are harmful to living organisms when they are exposed in natural environment. Once they come in contact, it is not an easy to remove them because many of their constituents are persistent in nature. To achieve this target, different approaches have been exploited by using plants, bacteria, and plant-bacteria together. Among them, combined use of plants and bacteria has gained tremendous attention as bacteria possess set of catabolic genes which produce catabolic enzymes to decontaminate hydrocarbons. In return, plant ooze out root exudates containing nutrients and necessary metabolites which facilitate the microbial colonization in plant rhizosphere. This results into high gene abundance and gene expression in the rhizosphere and, thus, leads to enhanced degradation. Moreover, high proportions of beneficial bacteria helps plant to gain more biomass due to their plant growth promoting activities and production of phytohromones. This review focuses functioning and mechanisms of catabolic genes responsible for degradation of straight chain and aromatic hydrocarbons with their potential of degradation in bioremediation. With the understanding of expression mechanisms, rate of degradation can be enhanced by adjusting environmental factors and acclimatizing plant associated bacteria in plant rhizosphere.

  4. Adaptation of phenylalanine and tyrosine catabolic pathway to hibernation in bats.

    Science.gov (United States)

    Pan, Yi-Hsuan; Zhang, Yijian; Cui, Jie; Liu, Yang; McAllan, Bronwyn M; Liao, Chen-Chung; Zhang, Shuyi

    2013-01-01

    Some mammals hibernate in response to harsh environments. Although hibernating mammals may metabolize proteins, the nitrogen metabolic pathways commonly activated during hibernation are not fully characterized. In contrast to the hypothesis of amino acid preservation, we found evidence of amino acid metabolism as three of five key enzymes, including phenylalanine hydroxylase (PAH), homogentisate 1,2-dioxygenase (HGD), fumarylacetoacetase (FAH), involved in phenylalanine and tyrosine catabolism were co-upregulated during hibernation in two distantly related species of bats, Myotis ricketti and Rhinolophus ferrumequinum. In addition, the levels of phenylalanine in the livers of these bats were significantly decreased during hibernation. Because phenylalanine and tyrosine are both glucogenic and ketogenic, these results indicate the role of this catabolic pathway in energy supply. Since any deficiency in the catabolism of these two amino acids can cause accumulations of toxic metabolites, these results also suggest the detoxification role of these enzymes during hibernation. A higher selective constraint on PAH, HPD, and HGD in hibernators than in non-hibernators was observed, and hibernators had more conserved amino acid residues in each of these enzymes than non-hibernators. These conserved amino acid residues are mostly located in positions critical for the structure and activity of the enzymes. Taken together, results of this work provide novel insights in nitrogen metabolism and removal of harmful metabolites during bat hibernation.

  5. Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism.

    Science.gov (United States)

    Zhang, Kewei; Halitschke, Rayko; Yin, Changxi; Liu, Chang-Jun; Gan, Su-Sheng

    2013-09-01

    The plant hormone salicylic acid (SA) plays critical roles in plant defense, stress responses, and senescence. Although SA biosynthesis is well understood, the pathways by which SA is catabolized remain elusive. Here we report the identification and characterization of an SA 3-hydroxylase (S3H) involved in SA catabolism during leaf senescence. S3H is associated with senescence and is inducible by SA and is thus a key part of a negative feedback regulation system of SA levels during senescence. The enzyme converts SA (with a Km of 58.29 µM) to both 2,3-dihydroxybenzoic acid (2,3-DHBA) and 2,5-DHBA in vitro but only 2,3-DHBA in vivo. The s3h knockout mutants fail to produce 2,3-DHBA sugar conjugates, accumulate very high levels of SA and its sugar conjugates, and exhibit a precocious senescence phenotype. Conversely, the gain-of-function lines contain high levels of 2,3-DHBA sugar conjugates and extremely low levels of SA and its sugar conjugates and display a significantly extended leaf longevity. This research reveals an elegant SA catabolic mechanism by which plants regulate SA levels by converting it to 2,3-DHBA to prevent SA overaccumulation. The research also provides strong molecular genetic evidence for an important role of SA in regulating the onset and rate of leaf senescence.

  6. Simple generic model for dynamic experiments with Saccharomyces cerevisiae in continuous culture. Decoupling between anabolism and catabolism

    DEFF Research Database (Denmark)

    Duboc, Philippe Jean; von Stockar, U.; Villadsen, John

    1998-01-01

    The dynamic behavior of a continuous culture of Saccharomyces cerevisiae subjected to a sudden increase in the dilution rate has been successfully modelled for anaerobic growth on glucose, and for aerobic growth on acetate, on ethanol, and on glucose. The catabolism responded by an immediate jump...... whereas biosynthesis did not. Thus catabolism was in excess to anabolism. The model considers the decoupling between biosynthesis and catabolism, both types of reactions being modelled by first-order kinetic expressions evolving towards maximal values. Yield parameters and maximal reaction rates were...... identified in steady state continuous cultures or during batch experiments. Only the time constant of biosynthesis regeneration, tau(x), and the time constant of catabolic capacity regeneration, tau(cat), had to be identified during transient experiments. In most experiments 7, was around 3 h, and tau...

  7. Software fault tolerance

    OpenAIRE

    Kazinov, Tofik Hasanaga; Mostafa, Jalilian Shahrukh

    2009-01-01

    Because of our present inability to produce errorfree software, software fault tolerance is and will contiune to be an important consideration in software system. The root cause of software design errors in the complexity of the systems. This paper surveys various software fault tolerance techniquest and methodologies. They are two gpoups: Single version and Multi version software fault tolerance techniques. It is expected that software fault tolerance research will benefit from this research...

  8. Insulin resistance is a two-sided mechanism acting under opposite catabolic and anabolic conditions.

    Science.gov (United States)

    Schwartsburd, Polina

    2016-04-01

    The survival of multi-cellular organisms depends on the organism ability to maintain glucose homeostasis for time of low/high nutrient availability or high energy needs, and the ability to fight infections or stress. These effects are realized through the insulin controlled transport of blood glucose into the insulin-responsive cells such as muscle, fat and liver cells. Reduction in the ability of these cells to take glucose from the blood in response to normal circulating levels of insulin is known as insulin resistance (IR). Chronic IR is a key pathological feature of obesity, type 2 diabetes, sepsis and cancer cachexia, however temporal IR are widely met in fasting/ hibernation, pregnancy, anti-bacterial immunity, exercise and stress. Paradoxically, a certain part of the IR-cases is associated with catabolic metabolism, whereas the other is related to anabolic pathways. How can this paradoxical IR-response be explained? What is the metabolic basis of this IR variability and its physiological and pathological impacts? An answer to these questions might be achieved through the hypothesis in which IR is considered as a two-sided mechanism acting under opposite metabolic conditions (catabolism and anabolism) but with the common aim to sustain glucose homeostasis in a wide metabolic range. To test this hypothesis, I examined the main metabolic distinctions between the varied IR-cases and their dependence on the blood glucose concentration, level of the IR-threshold, and catabolic/anabolic activation. On the basis of the established interrelations, a simple model of IR-distribution has been developed. The model revealed the «U-type distribution» form with separation into two main IR-groups, each determined in the catabolic or anabolic conditions with one exception - type 2 diabetes and its paradoxical catabolic activation in anabolic conditions. The dual opposing (or complementary) role for the IR opens a new possibility for better understanding the cause and

  9. Recognition and Toleration

    DEFF Research Database (Denmark)

    Lægaard, Sune

    2010-01-01

    Recognition and toleration are ways of relating to the diversity characteristic of multicultural societies. The article concerns the possible meanings of toleration and recognition, and the conflict that is often claimed to exist between these two approaches to diversity. Different forms...... or interpretations of recognition and toleration are considered, confusing and problematic uses of the terms are noted, and the compatibility of toleration and recognition is discussed. The article argues that there is a range of legitimate and importantly different conceptions of both toleration and recognition...

  10. Fault Tolerant Feedback Control

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.

    2001-01-01

    An architecture for fault tolerant feedback controllers based on the Youla parameterization is suggested. It is shown that the Youla parameterization will give a residual vector directly in connection with the fault diagnosis part of the fault tolerant feedback controller. It turns out...... that there is a separation be-tween the feedback controller and the fault tolerant part. The closed loop feedback properties are handled by the nominal feedback controller and the fault tolerant part is handled by the design of the Youla parameter. The design of the fault tolerant part will not affect the design...... of the nominal feedback con-troller....

  11. "Infectious" Transplantation Tolerance

    Science.gov (United States)

    Qin, Shixin; Cobbold, Stephen P.; Pope, Heather; Elliott, James; Kioussis, Dimitris; Davies, Joanna; Waldmann, Herman

    1993-02-01

    The maintenance of transplantation tolerance induced in adult mice after short-term treatment with nonlytic monoclonal antibodies to CD4 and CD8 was investigated. CD4^+ T cells from tolerant mice disabled naive lymphocytes so that they too could not reject the graft. The naive lymphocytes that had been so disabled also became tolerant and, in turn, developed the capacity to specifically disable other naive lymphocytes. This process of "infectious" tolerance explains why no further immunosuppression was needed to maintain long-term transplantation tolerance.

  12. Mechanical tolerance stackup and analysis

    CERN Document Server

    Fischer, Bryan R

    2004-01-01

    BackgroundDimensioning and TolerancingTolerance Format and Decimal PlacesConverting Plus/Minus Dimensions and Tolerances into Equal Bilaterally Toleranced DimensionsVariation and Sources of VariationTolerance AnalysisWorst-case Tolerance StackupsStatistical Tolerance StackupsGeometric Dimensioning and Tolerancing (GD&T)Converting Plus/Minus Tolerancing to Positional Tolerancing and Projected Tolerance ZonesDiametral and Radial Tolerance StackupsSpecifying Material Condition Modifiers and Their Effect on Tolerance Stackups The Tolerance Stackup SketchThe Tolerance Stackup Report FormTolerance S

  13. Recent Advances in Polyamine Metabolism and Abiotic Stress Tolerance

    Directory of Open Access Journals (Sweden)

    Parimalan Rangan

    2014-01-01

    Full Text Available Global warming is an alarming problem in agriculture and its effect on yield loss has been estimated to be five per cent for every degree centigrade rise in temperature. Plants exhibit multiple mechanisms like optimizing signaling pathway, involvement of secondary messengers, production of biomolecules specifically in response to stress, modulation of various metabolic networks in accordance with stress, and so forth, in order to overcome abiotic stress factors. Many structural genes and networks of pathway were identified and reported in plant systems for abiotic stress tolerance. One such crucial metabolic pathway that is involved in normal physiological function and also gets modulated during stress to impart tolerance is polyamine metabolic pathway. Besides the role of structural genes, it is also important to know the mechanism by which these structural genes are regulated during stress. Present review highlights polyamine biosynthesis, catabolism, and its role in abiotic stress tolerance with special reference to plant systems. Additionally, a system based approach is discussed as a potential strategy to dissect the existing variation in crop species in unraveling the interacting regulatory components/genetic determinants related to PAs mediated abiotic stress tolerance.

  14. Involvement of Phosphatidylinositol 3-kinase in the regulation of proline catabolism in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Anne-Sophie eLeprince

    2015-01-01

    Full Text Available Plant adaptation to abiotic stresses such as drought and salinity involves complex regulatory processes. Deciphering the signalling components that are involved in stress signal transduction and cellular responses is of importance to understand how plants cope with salt stress. Accumulation of osmolytes such as proline is considered to participate in the osmotic adjustment of plant cells to salinity. Proline accumulation results from a tight regulation between its biosynthesis and catabolism. Lipid signal components such as phospholipases C and D have previously been shown to be involved in the regulation of proline metabolism in Arabidopsis thaliana. In this study, we demonstrate that proline metabolism is also regulated by class-III Phosphatidylinositol 3-kinase (PI3K, VPS34, which catalyses the formation of phosphatidylinositol 3-phosphate (PI3P from phosphatidylinositol. Using pharmacological and biochemical approaches, we show that the PI3K inhibitor, LY294002, affects PI3P levels in vivo and that it triggers a decrease in proline accumulation in response to salt treatment of A. thaliana seedlings. The lower proline accumulation is correlated with a lower transcript level of Pyrroline-5-carboxylate synthetase 1 biosynthetic enzyme and higher transcript and protein levels of Proline dehydrogenase 1 (ProDH1, a key-enzyme in proline catabolism. We also found that the ProDH1 expression is induced in a pi3k-hemizygous mutant, further demonstrating that PI3K is involved in the regulation of proline catabolism through transcriptional regulation of ProDH1. A broader metabolomic analysis indicates that LY294002 also reduced other metabolites, such as hydrophobic and aromatic amino acids and sugars like raffinose.

  15. Resistance training minimizes catabolic effects induced by sleep deprivation in rats.

    Science.gov (United States)

    Mônico-Neto, Marcos; Antunes, Hanna Karen Moreira; Lee, Kil Sun; Phillips, Stuart M; Giampá, Sara Quaglia de Campos; Souza, Helton de Sá; Dáttilo, Murilo; Medeiros, Alessandra; de Moraes, Wilson Max; Tufik, Sergio; de Mello, Marco Túlio

    2015-11-01

    Sleep deprivation (SD) can induce muscle atrophy. We aimed to investigate the changes underpinning SD-induced muscle atrophy and the impact of this condition on rats that were previously submitted to resistance training (RT). Adult male Wistar EPM-1 rats were randomly allocated into 1 of 5 groups: control, sham, SD (for 96 h), RT, and RT+SD. The major outcomes of this study were muscle fiber cross-sectional area (CSA), anabolic and catabolic hormone profiles, and the abundance of select proteins involved in muscle protein synthesis and degradation pathways. SD resulted in muscle atrophy; however, when SD was combined with RT, the reduction in muscle fiber CSA was attenuated. The levels of IGF-1 and testosterone were reduced in SD animals, and the RT+SD group had higher levels of these hormones than the SD group. Corticosterone was increased in the SD group compared with the control group, and this increase was minimized in the RT+SD group. The increases in corticosterone concentrations paralleled changes in the abundance of ubiquitinated proteins and the autophagic proteins LC3 and p62/SQSTM1, suggesting that corticosterone may trigger these changes. SD induced weight loss, but this loss was minimized in the RT+SD group. We conclude that SD induced muscle atrophy, probably because of the increased corticosterone and catabolic signal. High-intensity RT performed before SD was beneficial in containing muscle loss induced by SD. It also minimized the catabolic signal and increased synthetic activity, thereby minimizing the body's weight loss. PMID:26513007

  16. Lysosomal glycosphingolipid catabolism by acid ceramidase: formation of glycosphingoid bases during deficiency of glycosidases.

    Science.gov (United States)

    Ferraz, Maria J; Marques, André R A; Appelman, Monique D; Verhoek, Marri; Strijland, Anneke; Mirzaian, Mina; Scheij, Saskia; Ouairy, Cécile M; Lahav, Daniel; Wisse, Patrick; Overkleeft, Herman S; Boot, Rolf G; Aerts, Johannes M

    2016-03-01

    Glycosphingoid bases are elevated in inherited lysosomal storage disorders with deficient activity of glycosphingolipid catabolizing glycosidases. We investigated the molecular basis of the formation of glucosylsphingosine and globotriaosylsphingosine during deficiency of glucocerebrosidase (Gaucher disease) and α-galactosidase A (Fabry disease). Independent genetic and pharmacological evidence is presented pointing to an active role of acid ceramidase in both processes through deacylation of lysosomal glycosphingolipids. The potential pathophysiological relevance of elevated glycosphingoid bases generated through this alternative metabolism in patients suffering from lysosomal glycosidase defects is discussed.

  17. Regulation of fructose uptake and catabolism by succinate in Azospirillum brasilense.

    OpenAIRE

    Mukherjee, A; S. Ghosh

    1987-01-01

    Fructose uptake and catabolism in Azospirillum brasilense is dependent on three fructose-inducible enzymes (fru-enzymes): (i) enzyme I and (ii) enzyme II of the phosphoenolpyruvate:fructose phosphotransferase system and (iii) 1-phosphofructokinase. In minimal medium containing 3.7 mM succinate and 22 mM fructose as sources of carbon, growth of A. brasilense was diauxic, succinate being utilized in the first phase of growth and fructose in the second phase with a lag period between the two gro...

  18. Developmental and hormonal regulation of gibberellin biosynthesis and catabolism in pea fruit.

    Science.gov (United States)

    Ozga, Jocelyn A; Reinecke, Dennis M; Ayele, Belay T; Ngo, Phuong; Nadeau, Courtney; Wickramarathna, Aruna D

    2009-05-01

    In pea (Pisum sativum), normal fruit growth requires the presence of the seeds. The coordination of growth between the seed and ovary tissues involves phytohormones; however, the specific mechanisms remain speculative. This study further explores the roles of the gibberellin (GA) biosynthesis and catabolism genes during pollination and fruit development and in seed and auxin regulation of pericarp growth. Pollination and fertilization events not only increase pericarp PsGA3ox1 message levels (codes for GA 3-oxidase that converts GA(20) to bioactive GA(1)) but also reduce pericarp PsGA2ox1 mRNA levels (codes for GA 2-oxidase that mainly catabolizes GA(20) to GA(29)), suggesting a concerted regulation to increase levels of bioactive GA(1) following these events. 4-Chloroindole-3-acetic acid (4-Cl-IAA) was found to mimic the seeds in the stimulation of PsGA3ox1 and the repression of PsGA2ox1 mRNA levels as well as the stimulation of PsGA2ox2 mRNA levels (codes for GA 2-oxidase that mainly catabolizes GA(1) to GA(8)) in pericarp at 2 to 3 d after anthesis, while the other endogenous pea auxin, IAA, did not. This GA gene expression profile suggests that both seeds and 4-Cl-IAA can stimulate the production, as well as modulate the half-life, of bioactive GA(1), leading to initial fruit set and subsequent growth and development of the ovary. Consistent with these gene expression profiles, deseeded pericarps converted [(14)C]GA(12) to [(14)C]GA(1) only if treated with 4-Cl-IAA. These data further support the hypothesis that 4-Cl-IAA produced in the seeds is transported to the pericarp, where it differentially regulates the expression of pericarp GA biosynthesis and catabolism genes to modulate the level of bioactive GA(1) required for initial fruit set and growth. PMID:19297588

  19. Biochemical and Structural Characterization of a Ureidoglycine Aminotransferase in the Klebsiella pneumoniae Uric Acid Catabolic Pathway

    Energy Technology Data Exchange (ETDEWEB)

    French, Jarrod B.; Ealick, Steven E. (Cornell)

    2010-09-03

    Many plants, fungi, and bacteria catabolize allantoin as a mechanism for nitrogen assimilation. Recent reports have shown that in plants and some bacteria the product of hydrolysis of allantoin by allantoinase is the unstable intermediate ureidoglycine. While this molecule can spontaneously decay, genetic analysis of some bacterial genomes indicates that an aminotransferase may be present in the pathway. Here we present evidence that Klebsiella pneumoniae HpxJ is an aminotransferase that preferentially converts ureidoglycine and an {alpha}-keto acid into oxalurate and the corresponding amino acid. We determined the crystal structure of HpxJ, allowing us to present an explanation for substrate specificity.

  20. D-Allose catabolism of Escherichia coli

    DEFF Research Database (Denmark)

    Poulsen, Tim S.; Chang, Ying-Ying; Hove-Jensen, Bjarne

    1999-01-01

    gene) were Als-. Transcription of the two allose operons, measured as β-galactosidase activity specified by alsI-lacZ+ or alsE-lacZ+ operon fusions, was induced by allose. Ribose also caused derepression of expression of the regulon under conditions in which ribose phosphate catabolism was impaired.......Genes involved in allose utilization of Escherichia coli K-12 are organized in at least two operons, alsRBACE and alsI, located next to each other on the chromosome but divergently transcribed. Mutants defective in alsI (allose 6-phosphate isomerase gene) and alsE (allulose 6-phosphate epimerase...

  1. Ecotoxicological assessment of soil microbial community tolerance to glyphosate.

    Science.gov (United States)

    Allegrini, Marco; Zabaloy, María Celina; Gómez, Elena del V

    2015-11-15

    Glyphosate is the most used herbicide worldwide. While contrasting results have been observed related with its impact on soil microbial communities, more studies are necessary to elucidate the potential effects of the herbicide. Differences in tolerance detected by Pollution Induced Community Tolerance (PICT) approach could reflect these effects. The objective of the present study was to assess the tolerance to glyphosate (the active ingredient and a commercial formulation) of contrasting soils with (H) and without (NH) history of exposure. The hypothesis of a higher tolerance in H soils due to a sustained selection pressure on community structure was tested through the PICT approach. Results indicated that tolerance to glyphosate is not consistent with previous history of exposure to the herbicide either for the active ingredient or for a commercial formulation. Soils of H and NH sites were also characterized in order to determine to what extent they differ in their functional diversity and structure of microbial communities. Denaturant Gradient Gel Electrophoresis (DGGE) and Quantitative Real Time PCR (Q-PCR) indicated high similarity of Eubacteria profiles as well as no significant differences in abundance, respectively, between H and NH sites. Community level physiological profiling (CLPP) indicated some differences in respiration of specific sources but functional diversity was very similar as reflected by catabolic evenness (E). These results support PICT assay, which ideally requires soils with differences in their exposure to the contaminant but minor differences in other characteristics. This is, to our knowledge, the first report of PICT approach with glyphosate examining tolerance at soil microbial community level.

  2. Toleration and its enemies

    DEFF Research Database (Denmark)

    Jarvad, Ib Martin

    2010-01-01

    After a presentation of the development of freedom of expression in Danish constitutional law, to freedom of the press in European human rights law - the Jersild case- to a right to mock and ridicule other faiths in recent Danish practice, the essay of Locke on toleration is examined, its...... background in arminist protestant theology of toleration considered, its conclusion that only faiths that demand allegiance and obedience to foreign powers can be excluded from toleration is highlighted....

  3. MERICAN CULTURAL TOLERANCE

    Institute of Scientific and Technical Information of China (English)

    ZHANG RUIXIAO

    2014-01-01

    As an emigrant country, the essential characteristic of America culture is its tolerance. It contributes to the formation the diversity of American culture. By tracing back to American history, this essay shows what caused American cultural tolerance. Through describing briefly the manifestation of American cultural tolerance from certain aspects and analyzing the major factors, it will give us a clue about the reason why America can be always prosperous. At last, the paper shows the limitation as well as advantages about the tolerance from the point of current status.

  4. Immunity and tolerance to fungi in hematopoietic transplantation: principles and perspectives.

    Science.gov (United States)

    Carvalho, Agostinho; Cunha, Cristina; Bozza, Silvia; Moretti, Silvia; Massi-Benedetti, Cristina; Bistoni, Francesco; Aversa, Franco; Romani, Luigina

    2012-01-01

    Resistance and tolerance are two complementary host defense mechanisms that increase fitness in response to low-virulence fungi. Resistance is meant to reduce pathogen burden during infection through innate and adaptive immune mechanisms, whereas tolerance mitigates the substantial cost of resistance to host fitness through a multitude of anti-inflammatory mechanisms, including immunological tolerance. In experimental fungal infections, both defense mechanisms are activated through the delicate equilibrium between Th1/Th17 cells, which provide antifungal resistance, and regulatory T cells limiting the consequences of the ensuing inflammatory pathology. Indoleamine 2,3-dioxygenase (IDO), a rate-limiting enzyme in the tryptophan catabolism, plays a key role in induction of tolerance against fungi. Both hematopoietic and non-hematopoietic compartments contribute to the resistance/tolerance balance against Aspergillus fumigatus via the involvement of selected innate receptors converging on IDO. Several genetic polymorphisms in pattern recognition receptors influence resistance and tolerance to fungal infections in human hematopoietic transplantation. Thus, tolerance mechanisms may be exploited for novel diagnostics and therapeutics against fungal infections and diseases.

  5. Immunity and tolerance to fungi in hematopoietic transplantation: Principles and perspectives

    Directory of Open Access Journals (Sweden)

    Agostinho eCarvalho

    2012-06-01

    Full Text Available Resistance and tolerance are two complementary host defence mechanism that increase fitness in response to low-virulence fungi. Resistance is meant to reduce pathogen burden during infection through innate and adaptive immune mechanisms, whereas tolerance mitigate the substantial cost of resistance to host fitness through a multitude of anti-inflammatory mechanisms, including immunological tolerance. In experimental fungal infections, both defense mechanisms are activated through the delicate equilibrium between Th1/Th17 cells, which provide antifungal resistance, and regulatory T cells limiting the consequences of the ensuing inflammatory pathology.Indoleamine 2,3-dioxygenase (IDO, a rate-limiting enzyme in the tryptophan catabolism, plays a key role in induction of tolerance against fungi. Both hematopoietic and nonhematopoietic compartments contribute to the resistance/tolerance balance against Aspergillus fumigatus via the involvement of selected innate receptors converging on IDO. Several genetic polymorphisms in pattern recognition receptors influence resistance and tolerance to fungal infections in human hematopoietic transplantation. Thus, tolerance mechanisms may be exploited for novel diagnostics and therapeutics against fungal infections and diseases.

  6. Acetone formation in the Vibrio family: a new pathway for bacterial leucine catabolism.

    Science.gov (United States)

    Nemecek-Marshall, M; Wojciechowski, C; Wagner, W P; Fall, R

    1999-12-01

    There is current interest in biological sources of acetone, a volatile organic compound that impacts atmospheric chemistry. Here, we determined that leucine-dependent acetone formation is widespread in the Vibrionaceae. Sixteen Vibrio isolates, two Listonella species, and two Photobacterium angustum isolates produced acetone in the presence of L-leucine. Shewanella isolates produced much less acetone. Growth of Vibrio splendidus and P. angustum in a fermentor with controlled aeration revealed that acetone was produced after a lag in late logarithmic or stationary phase of growth, depending on the medium, and was not derived from acetoacetate by nonenzymatic decarboxylation in the medium. L-Leucine, but not D-leucine, was converted to acetone with a stoichiometry of approximately 0.61 mol of acetone per mol of L-leucine. Testing various potential leucine catabolites as precursors of acetone showed that only alpha-ketoisocaproate was efficiently converted by whole cells to acetone. Acetone production was blocked by a nitrogen atmosphere but not by electron transport inhibitors, suggesting that an oxygen-dependent reaction is required for leucine catabolism. Metabolic labeling with deuterated (isopropyl-d(7))-L-leucine revealed that the isopropyl carbons give rise to acetone with full retention of deuterium in each methyl group. These results suggest the operation of a new catabolic pathway for leucine in vibrios that is distinct from the 3-hydroxy-3-methylglutaryl-coenzyme A pathway seen in pseudomonads. PMID:10601206

  7. In vitro catabolism of rutin by human fecal bacteria and the antioxidant capacity of its catabolites.

    Science.gov (United States)

    Jaganath, Indu B; Mullen, William; Lean, Michael E J; Edwards, Christine A; Crozier, Alan

    2009-10-15

    The role of colonic microflora in the breakdown of quercetin-3-O-rutinoside (rutin) was investigated. An in vitro fermentation model was used and (i) 28 micromol of rutin and (ii) 55 micromol of quercetin plus 18 x 10(6) dpm of [4-(14)C]quercetin (60 nmol) were incubated with fresh fecal samples from three human volunteers, in the presence and absence of glucose. The accumulation of quercetin during in vitro fermentation demonstrated that deglycosylation is the initial step in the breakdown of rutin. The subsequent degradation of quercetin was dependent upon the interindividual composition of the bacterial microflora and was directed predominantly toward the production of either hydroxyphenylacetic acid derivatives or hydroxybenzoic acids. Possible catabolic pathways for these conversions are proposed. The presence of glucose as a carbon source stimulated the growth and production of bacterial microflora responsible for both the deglycosylation of rutin and the catabolism of quercetin. 3,4-Dihydroxyphenylacetic acid accumulated in large amounts in the fecal samples and was found to possess significant reducing power and free radical scavenging activity. This catabolite may play a key role in the overall antioxidant capacity of the colonic lumen after the ingestion of quercetin-rich foods.

  8. The abundant marine bacterium Pelagibacter simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jing; Todd, Jonathan D.; Thrash, J. Cameron; Qian, Yanping; Qian, Michael C.; Temperton, Ben; Guo, Jiazhen; Fowler, EMily K.; Aldrich, Joshua T.; Nicora, Carrie D.; Lipton, Mary S.; Smith, Richard D.; De Leenheer, Patrick; Payne, Samuel H.; Johnston, Andrew W.; Davie-Martin, Cleo L.; Halsey, Kimberly H.; Giovannoni, Stephen J.

    2016-05-16

    Marine phytoplankton produce ~109 tons of dimethylsulfoniopropionate (DMSP) per year1,2, an estimated 10% of which is catabolized by bacteria through the DMSP cleavage pathway to the climatically active gas dimethyl sulfide (DMS)3,4. SAR11 Alphaproteobacteria (order Pelagibacterales), the most abundant chemoorganotrophic bacteria in the oceans, have been shown to assimilate DMSP into biomass, thereby supplying this cell’s unusual requirement for reduced sulfur5,6. Here we report that Pelagibacter HTCC1062 produces the gas methanethiol (MeSH) and that simultaneously a second DMSP catabolic pathway, mediated by a DMSP lyase, shunts as much as 59% of DMSP uptake to DMS production. We propose a model in which the allocation of DMSP between these pathways is kinetically controlled to release increasing amounts of DMS as the supply of DMSP exceeds cellular sulfur demands for biosynthesis. These findings suggest that DMSP supply and demand relationships in Pelagibacter metabolism are important to determining rates of oceanic DMS production.

  9. Membrane lipids regulate ganglioside GM2 catabolism and GM2 activator protein activity.

    Science.gov (United States)

    Anheuser, Susi; Breiden, Bernadette; Schwarzmann, Günter; Sandhoff, Konrad

    2015-09-01

    Ganglioside GM2 is the major lysosomal storage compound of Tay-Sachs disease. It also accumulates in Niemann-Pick disease types A and B with primary storage of SM and with cholesterol in type C. Reconstitution of GM2 catabolism with β-hexosaminidase A and GM2 activator protein (GM2AP) at uncharged liposomal surfaces carrying GM2 as substrate generated only a physiologically irrelevant catabolic rate, even at pH 4.2. However, incorporation of anionic phospholipids into the GM2 carrying liposomes stimulated GM2 hydrolysis more than 10-fold, while the incorporation of plasma membrane stabilizing lipids (SM and cholesterol) generated a strong inhibition of GM2 hydrolysis, even in the presence of anionic phospholipids. Mobilization of membrane lipids by GM2AP was also inhibited in the presence of cholesterol or SM, as revealed by surface plasmon resonance studies. These lipids also reduced the interliposomal transfer rate of 2-NBD-GM1 by GM2AP, as observed in assays using Förster resonance energy transfer. Our data raise major concerns about the usage of recombinant His-tagged GM2AP compared with untagged protein. The former binds more strongly to anionic GM2-carrying liposomal surfaces, increases GM2 hydrolysis, and accelerates intermembrane transfer of 2-NBD-GM1, but does not mobilize membrane lipids.

  10. Membrane lipids regulate ganglioside GM2 catabolism and GM2 activator protein activity[S

    Science.gov (United States)

    Anheuser, Susi; Breiden, Bernadette; Schwarzmann, Günter; Sandhoff, Konrad

    2015-01-01

    Ganglioside GM2 is the major lysosomal storage compound of Tay-Sachs disease. It also accumulates in Niemann-Pick disease types A and B with primary storage of SM and with cholesterol in type C. Reconstitution of GM2 catabolism with β-hexosaminidase A and GM2 activator protein (GM2AP) at uncharged liposomal surfaces carrying GM2 as substrate generated only a physiologically irrelevant catabolic rate, even at pH 4.2. However, incorporation of anionic phospholipids into the GM2 carrying liposomes stimulated GM2 hydrolysis more than 10-fold, while the incorporation of plasma membrane stabilizing lipids (SM and cholesterol) generated a strong inhibition of GM2 hydrolysis, even in the presence of anionic phospholipids. Mobilization of membrane lipids by GM2AP was also inhibited in the presence of cholesterol or SM, as revealed by surface plasmon resonance studies. These lipids also reduced the interliposomal transfer rate of 2-NBD-GM1 by GM2AP, as observed in assays using Förster resonance energy transfer. Our data raise major concerns about the usage of recombinant His-tagged GM2AP compared with untagged protein. The former binds more strongly to anionic GM2-carrying liposomal surfaces, increases GM2 hydrolysis, and accelerates intermembrane transfer of 2-NBD-GM1, but does not mobilize membrane lipids. PMID:26175473

  11. Central Role of Pyruvate Kinase in Carbon Co-catabolism of Mycobacterium tuberculosis.

    Science.gov (United States)

    Noy, Tahel; Vergnolle, Olivia; Hartman, Travis E; Rhee, Kyu Y; Jacobs, William R; Berney, Michael; Blanchard, John S

    2016-03-25

    Mycobacterium tuberculosis (Mtb) displays a high degree of metabolic plasticity to adapt to challenging host environments. Genetic evidence suggests thatMtbrelies mainly on fatty acid catabolism in the host. However,Mtbalso maintains a functional glycolytic pathway and its role in the cellular metabolism ofMtbhas yet to be understood. Pyruvate kinase catalyzes the last and rate-limiting step in glycolysis and theMtbgenome harbors one putative pyruvate kinase (pykA, Rv1617). Here we show thatpykAencodes an active pyruvate kinase that is allosterically activated by glucose 6-phosphate (Glc-6-P) and adenosine monophosphate (AMP). Deletion ofpykApreventsMtbgrowth in the presence of fermentable carbon sources and has a cidal effect in the presence of glucose that correlates with elevated levels of the toxic catabolite methylglyoxal. Growth attenuation was also observed in media containing a combination of short chain fatty acids and glucose and surprisingly, in media containing odd and even chain fatty acids alone. Untargeted high sensitivity metabolomics revealed that inactivation of pyruvate kinase leads to accumulation of phosphoenolpyruvate (P-enolpyruvate), citrate, and aconitate, which was consistent with allosteric inhibition of isocitrate dehydrogenase by P-enolpyruvate. This metabolic block could be relieved by addition of the α-ketoglutarate precursor glutamate. Taken together, our study identifies an essential role of pyruvate kinase in preventing metabolic block during carbon co-catabolism inMtb. PMID:26858255

  12. Induced superficial chondrocyte death reduces catabolic cartilage damage in murine posttraumatic osteoarthritis.

    Science.gov (United States)

    Zhang, Minjie; Mani, Sriniwasan B; He, Yao; Hall, Amber M; Xu, Lin; Li, Yefu; Zurakowski, David; Jay, Gregory D; Warman, Matthew L

    2016-08-01

    Joints that have degenerated as a result of aging or injury contain dead chondrocytes and damaged cartilage. Some studies have suggested that chondrocyte death precedes cartilage damage, but how the loss of chondrocytes affects cartilage integrity is not clear. In this study, we examined whether chondrocyte death undermines cartilage integrity in aging and injury using a rapid 3D confocal cartilage imaging technique coupled with standard histology. We induced autonomous expression of diphtheria toxin to kill articular surface chondrocytes in mice and determined that chondrocyte death did not lead to cartilage damage. Moreover, cartilage damage after surgical destabilization of the medial meniscus of the knee was increased in mice with intact chondrocytes compared with animals whose chondrocytes had been killed, suggesting that chondrocyte death does not drive cartilage damage in response to injury. These data imply that chondrocyte catabolism, not death, contributes to articular cartilage damage following injury. Therefore, therapies targeted at reducing the catabolic phenotype may protect against degenerative joint disease. PMID:27427985

  13. Argininosuccinate synthetase regulates hepatic AMPK linking protein catabolism and ureagenesis to hepatic lipid metabolism.

    Science.gov (United States)

    Madiraju, Anila K; Alves, Tiago; Zhao, Xiaojian; Cline, Gary W; Zhang, Dongyan; Bhanot, Sanjay; Samuel, Varman T; Kibbey, Richard G; Shulman, Gerald I

    2016-06-14

    A key sensor of cellular energy status, AMP-activated protein kinase (AMPK), interacts allosterically with AMP to maintain an active state. When active, AMPK triggers a metabolic switch, decreasing the activity of anabolic pathways and enhancing catabolic processes such as lipid oxidation to restore the energy balance. Unlike oxidative tissues, in which AMP is generated from adenylate kinase during states of high energy demand, the ornithine cycle enzyme argininosuccinate synthetase (ASS) is a principle site of AMP generation in the liver. Here we show that ASS regulates hepatic AMPK, revealing a central role for ureagenesis flux in the regulation of metabolism via AMPK. Treatment of primary rat hepatocytes with amino acids increased gluconeogenesis and ureagenesis and, despite nutrient excess, induced both AMPK and acetyl-CoA carboxylase (ACC) phosphorylation. Antisense oligonucleotide knockdown of hepatic ASS1 expression in vivo decreased liver AMPK activation, phosphorylation of ACC, and plasma β-hydroxybutyrate concentrations. Taken together these studies demonstrate that increased amino acid flux can activate AMPK through increased AMP generated by ASS, thus providing a novel link between protein catabolism, ureagenesis, and hepatic lipid metabolism. PMID:27247419

  14. Correlating denitrifying catabolic genes with N2O and N2 emissions from swine slurry composting.

    Science.gov (United States)

    Angnes, G; Nicoloso, R S; da Silva, M L B; de Oliveira, P A V; Higarashi, M M; Mezzari, M P; Miller, P R M

    2013-07-01

    This work evaluated N dynamics that occurs over time within swine slurry composting piles. Real-time quantitative PCR (qPCR) analyzes were conducted to estimate concentrations of bacteria community harboring specific catabolic nitrifying-ammonium monooxygenase (amoA), and denitrifying nitrate- (narG), nitrite- (nirS and nirG), nitric oxide- (norB) and nitrous oxide reductases (nosZ) genes. NH3-N, N2O-N, N2-N emissions represented 15.4 ± 1.9%, 5.4 ± 0.9%, and 79.1 ± 2.0% of the total nitrogen losses, respectively. Among the genes tested, temporal distribution of narG, nirS, and nosZ concentration correlated significantly (pcompost pile. Considering our current empirical limitations to accurately measure N2 emissions from swine slurry composting at field scale the use of these catabolic genes could represent a promising monitoring tool to aid minimize our uncertainties on biological N mass balances in these systems.

  15. Copper suppresses abscisic acid catabolism and catalase activity, and inhibits seed germination of rice.

    Science.gov (United States)

    Ye, Nenghui; Li, Haoxuan; Zhu, Guohui; Liu, Yinggao; Liu, Rui; Xu, Weifeng; Jing, Yu; Peng, Xinxiang; Zhang, Jianhua

    2014-11-01

    Although copper (Cu) is an essential micronutrient for plants, a slight excess of Cu in soil can be harmful to plants. Unfortunately, Cu contamination is a growing problem all over the world due to human activities, and poses a soil stress to plant development. As one of the most important biological processes, seed germination is sensitive to Cu stress. However, little is known about the mechanism of Cu-induced inhibition of seed germination. In the present study, we investigated the relationship between Cu and ABA which is the predominant regulator of seed germination. Cu at a concentration of 30 µM effectively inhibited germination of rice caryopsis. ABA content in germinating seeds under copper stress was also higher than that under control conditions. Quantitative real-time PCR (qRT-PCR) revealed that Cu treatment reduced the expression of OsABA8ox2, a key gene of ABA catabolism in rice seeds. In addition, both malondialdehyde (MDA) and H2O2 contents were increased by Cu stress in the germinating seeds. Antioxidant enzyme assays revealed that only catalase activity was reduced by excess Cu, which was consistent with the mRNA profile of OsCATa during seed germination under Cu stress. Together, our results demonstrate that suppression of ABA catabolism and catalase (CAT) activity by excess Cu leads to the inhibition of seed germination of rice.

  16. Empagliflozin, via Switching Metabolism Toward Lipid Utilization, Moderately Increases LDL Cholesterol Levels Through Reduced LDL Catabolism.

    Science.gov (United States)

    Briand, François; Mayoux, Eric; Brousseau, Emmanuel; Burr, Noémie; Urbain, Isabelle; Costard, Clément; Mark, Michael; Sulpice, Thierry

    2016-07-01

    In clinical trials, a small increase in LDL cholesterol has been reported with sodium-glucose cotransporter 2 (SGLT2) inhibitors. The mechanisms by which the SGLT2 inhibitor empagliflozin increases LDL cholesterol levels were investigated in hamsters with diet-induced dyslipidemia. Compared with vehicle, empagliflozin 30 mg/kg/day for 2 weeks significantly reduced fasting blood glucose by 18%, with significant increase in fasting plasma LDL cholesterol, free fatty acids, and total ketone bodies by 25, 49, and 116%, respectively. In fasting conditions, glycogen hepatic levels were further reduced by 84% with empagliflozin, while 3-hydroxy-3-methylglutaryl-CoA reductase activity and total cholesterol hepatic levels were 31 and 10% higher, respectively (both P empagliflozin. Importantly, none of these parameters were changed by empagliflozin in fed conditions. Empagliflozin significantly reduced the catabolism of (3)H-cholesteryl oleate-labeled LDL injected intravenously by 20%, indicating that empagliflozin raises LDL levels through reduced catabolism. Unexpectedly, empagliflozin also reduced intestinal cholesterol absorption in vivo, which led to a significant increase in LDL- and macrophage-derived cholesterol fecal excretion (both P empagliflozin, by switching energy metabolism from carbohydrate to lipid utilization, moderately increases ketone production and LDL cholesterol levels. Interestingly, empagliflozin also reduces intestinal cholesterol absorption, which in turn promotes LDL- and macrophage-derived cholesterol fecal excretion. PMID:27207551

  17. Membrane lipids regulate ganglioside GM2 catabolism and GM2 activator protein activity.

    Science.gov (United States)

    Anheuser, Susi; Breiden, Bernadette; Schwarzmann, Günter; Sandhoff, Konrad

    2015-09-01

    Ganglioside GM2 is the major lysosomal storage compound of Tay-Sachs disease. It also accumulates in Niemann-Pick disease types A and B with primary storage of SM and with cholesterol in type C. Reconstitution of GM2 catabolism with β-hexosaminidase A and GM2 activator protein (GM2AP) at uncharged liposomal surfaces carrying GM2 as substrate generated only a physiologically irrelevant catabolic rate, even at pH 4.2. However, incorporation of anionic phospholipids into the GM2 carrying liposomes stimulated GM2 hydrolysis more than 10-fold, while the incorporation of plasma membrane stabilizing lipids (SM and cholesterol) generated a strong inhibition of GM2 hydrolysis, even in the presence of anionic phospholipids. Mobilization of membrane lipids by GM2AP was also inhibited in the presence of cholesterol or SM, as revealed by surface plasmon resonance studies. These lipids also reduced the interliposomal transfer rate of 2-NBD-GM1 by GM2AP, as observed in assays using Förster resonance energy transfer. Our data raise major concerns about the usage of recombinant His-tagged GM2AP compared with untagged protein. The former binds more strongly to anionic GM2-carrying liposomal surfaces, increases GM2 hydrolysis, and accelerates intermembrane transfer of 2-NBD-GM1, but does not mobilize membrane lipids. PMID:26175473

  18. Calcium-dependent phospholipid catabolism and arachidonic acid mobilization in cerebral minces

    International Nuclear Information System (INIS)

    Cerebral minces were used to investigate the role of calcium influx on trauma-induced alterations of brain lipid metabolism. Cerebral phospholipids, nonpolar lipids, and free fatty acids were radiolabeled in vivo with [3H]arachidonic acid. Tissue incubation stimulated the time-dependent catabolism of choline and inositol glycerophospholipids, and resulted in the accumulation of [3H]free fatty acids. These effects were attenuated in Ca2+-free incubations, and when EGTA or verapamil were present. The inhibition of calcium influx also reduced the labeling of diglycerides, whereas ethanolamine and serine glycerophospholipids were not affected by incubation or treatments. Replacing Ca2+ with other cations also attenuated the incubation-dependent alterations in lipid metabolism. However, only cadmium was able to compete with calcium and reduce the accumulation of [3H]free fatty acids. It appeared that about half of the observed phospholipid catabolism was dependent on Ca2+ influx and that at least 80% of the [3H]free fatty acid accumulation required calcium

  19. Calcium-dependent phospholipid catabolism and arachidonic acid mobilization in cerebral minces

    Energy Technology Data Exchange (ETDEWEB)

    Damron, D.S.; Dorman, R.V. (Kent State Univ., OH (USA))

    1990-06-01

    Cerebral minces were used to investigate the role of calcium influx on trauma-induced alterations of brain lipid metabolism. Cerebral phospholipids, nonpolar lipids, and free fatty acids were radiolabeled in vivo with ({sup 3}H)arachidonic acid. Tissue incubation stimulated the time-dependent catabolism of choline and inositol glycerophospholipids, and resulted in the accumulation of ({sup 3}H)free fatty acids. These effects were attenuated in Ca{sup 2}{sup +}-free incubations, and when EGTA or verapamil were present. The inhibition of calcium influx also reduced the labeling of diglycerides, whereas ethanolamine and serine glycerophospholipids were not affected by incubation or treatments. Replacing Ca{sup 2}{sup +} with other cations also attenuated the incubation-dependent alterations in lipid metabolism. However, only cadmium was able to compete with calcium and reduce the accumulation of ({sup 3}H)free fatty acids. It appeared that about half of the observed phospholipid catabolism was dependent on Ca{sup 2}{sup +} influx and that at least 80% of the ({sup 3}H)free fatty acid accumulation required calcium.

  20. Characterization of a Unique Pathway for 4-Cresol Catabolism Initiated by Phosphorylation in Corynebacterium glutamicum.

    Science.gov (United States)

    Du, Lei; Ma, Li; Qi, Feifei; Zheng, Xianliang; Jiang, Chengying; Li, Ailei; Wan, Xiaobo; Liu, Shuang-Jiang; Li, Shengying

    2016-03-18

    4-Cresol is not only a significant synthetic intermediate for production of many aromatic chemicals, but also a priority environmental pollutant because of its toxicity to higher organisms. In our previous studies, a gene cluster implicated to be involved in 4-cresol catabolism, creCDEFGHIR, was identified in Corynebacterium glutamicum and partially characterized in vivo. In this work, we report on the discovery of a novel 4-cresol biodegradation pathway that employs phosphorylated intermediates. This unique pathway initiates with the phosphorylation of the hydroxyl group of 4-cresol, which is catalyzed by a novel 4-methylbenzyl phosphate synthase, CreHI. Next, a unique class I P450 system, CreJEF, specifically recognizes phosphorylated intermediates and successively oxidizes the aromatic methyl group into carboxylic acid functionality via alcohol and aldehyde intermediates. Moreover, CreD (phosphohydrolase), CreC (alcohol dehydrogenase), and CreG (aldehyde dehydrogenase) were also found to be required for efficient oxidative transformations in this pathway. Steady-state kinetic parameters (Km and kcat) for each catabolic step were determined, and these results suggest that kinetic controls serve a key role in directing the metabolic flux to the most energy effective route.

  1. Central Role of Pyruvate Kinase in Carbon Co-catabolism of Mycobacterium tuberculosis.

    Science.gov (United States)

    Noy, Tahel; Vergnolle, Olivia; Hartman, Travis E; Rhee, Kyu Y; Jacobs, William R; Berney, Michael; Blanchard, John S

    2016-03-25

    Mycobacterium tuberculosis (Mtb) displays a high degree of metabolic plasticity to adapt to challenging host environments. Genetic evidence suggests thatMtbrelies mainly on fatty acid catabolism in the host. However,Mtbalso maintains a functional glycolytic pathway and its role in the cellular metabolism ofMtbhas yet to be understood. Pyruvate kinase catalyzes the last and rate-limiting step in glycolysis and theMtbgenome harbors one putative pyruvate kinase (pykA, Rv1617). Here we show thatpykAencodes an active pyruvate kinase that is allosterically activated by glucose 6-phosphate (Glc-6-P) and adenosine monophosphate (AMP). Deletion ofpykApreventsMtbgrowth in the presence of fermentable carbon sources and has a cidal effect in the presence of glucose that correlates with elevated levels of the toxic catabolite methylglyoxal. Growth attenuation was also observed in media containing a combination of short chain fatty acids and glucose and surprisingly, in media containing odd and even chain fatty acids alone. Untargeted high sensitivity metabolomics revealed that inactivation of pyruvate kinase leads to accumulation of phosphoenolpyruvate (P-enolpyruvate), citrate, and aconitate, which was consistent with allosteric inhibition of isocitrate dehydrogenase by P-enolpyruvate. This metabolic block could be relieved by addition of the α-ketoglutarate precursor glutamate. Taken together, our study identifies an essential role of pyruvate kinase in preventing metabolic block during carbon co-catabolism inMtb.

  2. Opposing effects of apolipoprotein m on catabolism of apolipoprotein B-containing lipoproteins and atherosclerosis

    DEFF Research Database (Denmark)

    Christoffersen, Christina; Pedersen, Tanja Xenia; Gordts, Philip L S M;

    2010-01-01

    (LDL). Objective: We explored putative links between apoM and very-low-density (VLDL)/LDL metabolism and the antiatherogenic potential of apoM in vivo. Methods and Results: Plasma apoM was increased approximately 2.1 and approximately 1.5 fold in mice lacking LDL receptors (Ldlr(-/-)) and expressing...... dysfunctional LDL receptor-related protein 1 (Lrp1(n2/n2)), respectively, but was unaffected in apoE-deficient (ApoE(-/-)) mice. Thus, pathways controlling catabolism of VLDL and LDL affect plasma apoM. Overexpression ( approximately 10-fold) of human apoM increased (50% to 70%) and apoM deficiency decreased......M impairs the catabolism of VLDL/LDL that occurs independently of the LDL receptor and LRP1. ApoM overexpression decreased atherosclerosis in ApoE(-/-) (60%) and cholate/cholesterol-fed wild-type mice (70%). However, in Ldlr(-/-) mice the antiatherogenic effect of apoM was attenuated by its VLDL...

  3. Bleached Porites compressa and Montipora capitata corals catabolize δ13C-enriched lipids

    Science.gov (United States)

    Grottoli, Andréa G.; Rodrigues, Lisa J.

    2011-09-01

    Corals rely on stored energy reserves (i.e., lipids, carbohydrates, and protein) to survive bleaching events. To better understand the physiological implications of coral bleaching on lipid catabolism and/or synthesis, we measured the δ13C of coral total lipids (δ13CTL) in experimentally bleached (treatment) and non-bleached (control) Porites compressa and Montipora capitata corals immediately after bleaching and after 1.5 and 4 months of recovery on the reef. Overall δ13CTL values in treatment corals were significantly lower than in control corals because of a 1.9 and 3.4‰ decrease in δ13CTL immediately after bleaching in P. compressa and M. capitata, respectively. The decrease in δ13CTL coincided with decreases in total lipid concentration, indicating that corals catabolized δ13C-enriched lipids. Since storage lipids are primarily depleted during bleaching, we hypothesize that they are isotopically enriched relative to other lipid classes. This work further helps clarify our understanding of changes to coral metabolism and biogeochemistry when bleached and helps elucidate how lipid classes may influence recovery from bleaching and ultimately coral survival.

  4. Catabolism and Deactivation of the Lipid-derived Hormone Jasmonoyl-isoleucine

    Directory of Open Access Journals (Sweden)

    Abraham JK Koo

    2012-02-01

    Full Text Available The oxylipin hormone jasmonate controls myriad processes involved in plant growth, development and immune function. The discovery of jasmonoyl-L-isoleucine (JA-Ile as the major bioactive form of the hormone highlights the need to understand biochemical and cell biological processes underlying JA-Ile homeostasis. Among the major metabolic control points governing the accumulation of JA-Ile in plant tissues are the availability of jasmonic acid, the immediate precursor of JA-Ile, and oxidative enzymes involved in catabolism and deactivation of the hormone. Recent studies indicate that JA-Ile turnover is mediated by a ω-oxidation pathway involving members of the CYP94 family of cytochromes P450. This discovery opens new opportunities to genetically manipulate JA-Ile levels for enhanced resistance to environmental stress, and further highlights ω-oxidation as a conserved pathway for catabolism of lipid-derived signals in plants and animals. Functional characterization of the full complement of CYP94 P450s promises to reveal new pathways for jasmonate metabolism and provide insight into the evolution of oxylipin signaling in land plants.

  5. The ygeW encoded protein from Escherichia coli is a knotted ancestral catabolic transcarbamylase

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongdong; Jin, Zhongmin; Yu, Xiaolin; Allewell, Norma M.; Tuchman, Mendel; Shi, Dashuang (Maryland); (GWU); (Georgia)

    2012-06-28

    Purine degradation plays an essential role in nitrogen metabolism in most organisms. Uric acid is the final product of purine catabolism in humans, anthropoid apes, birds, uricotelic reptiles, and almost all insects. Elevated levels of uric acid in blood (hyperuricemia) cause human diseases such as gout, kidney stones, and renal failure. Although no enzyme has been identified that further degrades uric acid in humans, it can be oxidized to produce allantoin by free-radical attack. Indeed, elevated levels of allantoin are found in patients with rheumatoid arthritis, chronic lung disease, bacterial meningitis, and noninsulin-dependent diabetes mellitus. In other mammals, some insects and gastropods, uric acid is enzymatically degraded to the more soluble allantoin through the sequential action of three enzymes: urate oxidase, 5-hydroxyisourate (HIU) hydrolase and 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) decarboxylase. Therefore, an elective treatment for acute hyperuricemia is the administration of urate oxidase. Many organisms, including plants, some fungi and several bacteria, are able to catabolize allantoin to release nitrogen, carbon, and energy. In Arabidopsis thaliana and Eschrichia coli, S-allantoin has recently been shown to be degraded to glycolate and urea by four enzymes: allantoinase, allantoate amidohydrolase, ureidoglycine aminohydrolase, and ureidoglycolate amidohydrolase.

  6. Loss Tolerant Optical Qubits

    CERN Document Server

    Ralph, T C; Gilchrist, A; Gilchrist, Alexei

    2005-01-01

    We present a linear optics quantum computation scheme that employs a new encoding approach that incrementally adds qubits and is tolerant to photon loss errors. The scheme employs a circuit model but uses techniques from cluster state computation and achieves comparable resource usage. To illustrate our techniques we describe a quantum memory which is fault tolerant to photon loss.

  7. Remember Tolerance Differently

    DEFF Research Database (Denmark)

    Tønder, Lars

    2012-01-01

    This essay questions the linear conception of history which often accompanies the way contemporary democratic theory tends to disavow tolerance's discontinuities and remainders. In the spirit of Foucault's genealogy of descent, the idea is to develop a new sense of tolerance's history, not by inv...

  8. Toleration, Groups, and Multiculturalism

    DEFF Research Database (Denmark)

    Lægaard, Sune

    2014-01-01

    to the political and social relationship between the subject and the objects of toleration. Finally, toleration is often argued to be a normative requirement on the basis of the way it affects the object or receiver of toleration, e.g. on the basis of the good of or right to freedom from non-interference which....... The chapter relates the different possible meanings of groups toleration to widespread criticisms of multiculturalism for being excessively 'groupist' (e.g. to essentialise or reify groups), to promote group rights over individual rights, or to deny or ignore the internal heterogeneity of groups...... or the multiple identity affiliations of individuals. The chapter suggests that some of these standard criticisms of multiculturalism for being overly tolerant of minority groups, or being so in a way elevating groups over individuals, are less pressing on some understandings of the meaning of 'group...

  9. Compromise and Toleration

    DEFF Research Database (Denmark)

    Rostbøll, Christian F.

    respecting the plurality of conceptions of the good in society, whereas political compromise embodies the disagreements in coercive laws. This difference between toleration and compromise has two important consequences. First, political compromise is justified in a different manner than is toleration...... in compromise are more stringent than those for being tolerated. Still, the limits of compromise cannot be drawn to narrowly if it is to remain its value as a form of agreement that respects and embodies the differences of opinion in society.......Political compromise is akin to toleration, since both consist of an "agreement to disagree." Compromise and toleration also share a predicament of being regarded as ambiguous virtues that require of us to accept something we actually regard as wrong. However, we misunderstand the nature...

  10. Influence of black gram (Vigna mungo) trypsin inhibitory fraction on the hepatic protein catabolism in male albino mice.

    Science.gov (United States)

    Kamalakannan, V; Sathyamoorthy, A V; Motlag, D B

    1984-01-01

    The effect of black gram and black gram trypsin inhibitor on the protein catabolism of male albino mice has been investigated. Group 1 was given autoclaved black gram (control), Group II raw black gram and Group III the autoclaved black gram incorporated with 1% black gram trypsin inhibitor. Blood as well as urinary urea and creatine were found to be elevated in Groups II and III. Increased levels of arginase, ornithine transcarbamylase and transaminases were noted in Groups II and III. The results suggested an enhanced catabolism of proteins evoked by the native black gram trypsin inhibitor.

  11. A Key ABA Catabolic Gene, OsABA8ox3, Is Involved in Drought Stress Resistance in Rice

    OpenAIRE

    Shanlan Cai; Guobin Jiang; Nenghui Ye; Zhizhan Chu; Xuezhong Xu; Jianhua Zhang; Guohui Zhu

    2015-01-01

    Expressions of ABA biosynthesis genes and catabolism genes are generally co-regulated in plant development and responses to environmental stress. Up-regulation of OsNCED3 gene, a key gene in ABA biosynthesis, has been suggested as a way to enhance plant drought resistance but little is known for the role of ABA catabolic genes during drought stress. In this study, we found that OsABA8ox3 was the most highly expressed gene of the OsABA8ox family in rice leaves. Expression of OsABA8ox3 was prom...

  12. Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Subtil Thorsten

    2012-03-01

    Full Text Available Abstract Background In mixed sugar fermentations with recombinant Saccharomyces cerevisiae strains able to ferment D-xylose and L-arabinose the pentose sugars are normally only utilized after depletion of D-glucose. This has been attributed to competitive inhibition of pentose uptake by D-glucose as pentose sugars are taken up into yeast cells by individual members of the yeast hexose transporter family. We wanted to investigate whether D-glucose inhibits pentose utilization only by blocking its uptake or also by interfering with its further metabolism. Results To distinguish between inhibitory effects of D-glucose on pentose uptake and pentose catabolism, maltose was used as an alternative carbon source in maltose-pentose co-consumption experiments. Maltose is taken up by a specific maltose transport system and hydrolyzed only intracellularly into two D-glucose molecules. Pentose consumption decreased by about 20 - 30% during the simultaneous utilization of maltose indicating that hexose catabolism can impede pentose utilization. To test whether intracellular D-glucose might impair pentose utilization, hexo-/glucokinase deletion mutants were constructed. Those mutants are known to accumulate intracellular D-glucose when incubated with maltose. However, pentose utilization was not effected in the presence of maltose. Addition of increasing concentrations of D-glucose to the hexo-/glucokinase mutants finally completely blocked D-xylose as well as L-arabinose consumption, indicating a pronounced inhibitory effect of D-glucose on pentose uptake. Nevertheless, constitutive overexpression of pentose-transporting hexose transporters like Hxt7 and Gal2 could improve pentose consumption in the presence of D-glucose. Conclusion Our results confirm that D-glucose impairs the simultaneous utilization of pentoses mainly due to inhibition of pentose uptake. Whereas intracellular D-glucose does not seem to have an inhibitory effect on pentose utilization

  13. DETERMINATION OF PROTEIN CATABOLIC RATE IN PATIENTS ON CHRONIC INTERMITTENT HEMODIALYSIS - UREA OUTPUT MEASUREMENTS COMPARED WITH DIETARY-PROTEIN INTAKE AND WITH CALCULATION OF UREA GENERATION RATE

    NARCIS (Netherlands)

    STEGEMAN, CA; HUISMAN, RM; DEROUW, B; JOOSTEMA, A; DEJONG, PE

    1995-01-01

    We assessed the agreement between different methods of determining protein catabolic rate (PCR) in hemodialysis patients and the possible influence of postdialysis urea rebound and the length of the interdialytic interval on the PCR determination. Protein catabolic rate derived from measured total u

  14. 76 FR 23891 - Pyrasulfotole; Pesticide Tolerances

    Science.gov (United States)

    2011-04-29

    ... Federal Register of June 23, 2010 (75 FR 35801) (FRL-8831- 3), EPA issued a notice pursuant to section 408... catabolism (metabolic breakdown) of tyrosine (an amino acid derived from proteins in the diet). Inhibition of... treat patients suffering from rare genetic diseases of tyrosine catabolism. Treatment starts...

  15. A forward genetic approach in Chlamydomonas reinhardtii as a strategy for exploring starch catabolism.

    Directory of Open Access Journals (Sweden)

    Hande Tunçay

    Full Text Available A screen was recently developed to study the mobilization of starch in the unicellular green alga Chlamydomonas reinhardtii. This screen relies on starch synthesis accumulation during nitrogen starvation followed by the supply of nitrogen and the switch to darkness. Hence multiple regulatory networks including those of nutrient starvation, cell cycle control and light to dark transitions are likely to impact the recovery of mutant candidates. In this paper we monitor the specificity of this mutant screen by characterizing the nature of the genes disrupted in the selected mutants. We show that one third of the mutants consisted of strains mutated in genes previously reported to be of paramount importance in starch catabolism such as those encoding β-amylases, the maltose export protein, and branching enzyme I. The other mutants were defective for previously uncharacterized functions some of which are likely to define novel proteins affecting starch mobilization in green algae.

  16. Bioaugmentation of DDT-contaminated soil by dissemination of the catabolic plasmid pDOD

    Institute of Scientific and Technical Information of China (English)

    Chunming Gao; Xiangxiang Jin; Jingbei Ren; Hua Fang; Yunlong Yu

    2015-01-01

    A plasmid transfer-mediated bioaugmentation method for the enhancement of dichlorodiphenyltrichloroethane (DDT) degradation in soil was developed using the catabolic plasmid pDOD from Sphingobacterium sp.D-6.The pDOD plasmid could be transferred to soil bacteria,such as members of Cellulomonas,to form DDT degraders and thus accelerate DDT degradation.The transfer efficiency of pDOD was affected by the donor,temperature,moisture,and soil type.Approximately 50.7% of the DDT in the contaminated field was removed 210 days after the application of Escherichia coli TG Ⅰ (pDOD-gfp).The results suggested that seeding pDOD into soil is an effective bioaugmentation method for enhancing the degradation of DDT.

  17. Addiction to Coupling of the Warburg Effect with Glutamine Catabolism in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Bradley Smith

    2016-10-01

    Full Text Available Metabolic reprogramming is critical to oncogenesis, but the emergence and function of this profound reorganization remain poorly understood. Here we find that cooperating oncogenic mutations drive large-scale metabolic reprogramming, which is both intrinsic to cancer cells and obligatory for the transition to malignancy. This involves synergistic regulation of several genes encoding metabolic enzymes, including the lactate dehydrogenases LDHA and LDHB and mitochondrial glutamic pyruvate transaminase 2 (GPT2. Notably, GPT2 engages activated glycolysis to drive the utilization of glutamine as a carbon source for TCA cycle anaplerosis in colon cancer cells. Our data indicate that the Warburg effect supports oncogenesis via GPT2-mediated coupling of pyruvate production to glutamine catabolism. Although critical to the cancer phenotype, GPT2 activity is dispensable in cells that are not fully transformed, thus pinpointing a metabolic vulnerability specifically associated with cancer cell progression to malignancy.

  18. Products of Leishmania braziliensis glucose catabolism: release of D-lactate and, under anaerobic conditions, glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Darling, T.N.; Davis, D.G.; London, R.E.; Blum, J.J.

    1987-10-01

    Leishmania braziliensis panamensis promastigotes were incubated with glucose as the sole carbon source. About one-fifth of the glucose consumed under aerobic conditions was oxidized to CO/sub 2/. Nuclear magnetic resonance studies with (1-/sup 13/C)glucose showed that the other products released were succinate, acetate, alanine, pyruvate, and lactate. Under anaerobic conditions, lactate output increased, glycerol became a major product, and, surprisingly, glucose consumption decreased. Enzymatic assays showed that the lactate formed was D(-)-lactate. The release of alanine during incubation with glucose as the sole carbon source suggested that appreciable proteolysis occurred, consistent with our observation that a large amount of ammonia was released under these conditions. The discoveries that D-lactate is a product of L. braziliensis glucose catabolism, that glycerol is produced under anaerobic conditions, and that the cells exhibit a reverse Pasteur effect open the way for detailed studies of the pathways of glucose metabolism and their regulation in this organism.

  19. Designed Inhibitors of Insulin-Degrading Enzyme Regulate the Catabolism and Activity of Insulin

    Energy Technology Data Exchange (ETDEWEB)

    Leissring, Malcolm A.; Malito, Enrico; Hedouin, Sabrine; Reinstatler, Lael; Sahara, Tomoko; Abdul-Hay, Samer O.; Choudhry, Shakeel; Maharvi, Ghulam M.; Fauq, Abdul H.; Huzarska, Malwina; May, Philip S.; Choi, Sungwoon; Logan, Todd P.; Turk, Benjamin E.; Cantley, Lewis C.; Manolopoulou, Marika; Tang, Wei-Jen; Stein, Ross L.; Cuny, Gregory D.; Selkoe, Dennis J. (Harvard-Med); (BWH); (Yale-MED); (Scripps); (UC); (Mayo)

    2010-09-20

    Insulin is a vital peptide hormone that is a central regulator of glucose homeostasis, and impairments in insulin signaling cause diabetes mellitus. In principle, it should be possible to enhance the activity of insulin by inhibiting its catabolism, which is mediated primarily by insulin-degrading enzyme (IDE), a structurally and evolutionarily distinctive zinc-metalloprotease. Despite interest in pharmacological inhibition of IDE as an attractive anti-diabetic approach dating to the 1950s, potent and selective inhibitors of IDE have not yet emerged. We used a rational design approach based on analysis of combinatorial peptide mixtures and focused compound libraries to develop novel peptide hydroxamic acid inhibitors of IDE. The resulting compounds are {approx} 10{sup 6} times more potent than existing inhibitors, non-toxic, and surprisingly selective for IDE vis-a-vis conventional zinc-metalloproteases. Crystallographic analysis of an IDE-inhibitor complex reveals a novel mode of inhibition based on stabilization of IDE's 'closed,' inactive conformation. We show further that pharmacological inhibition of IDE potentiates insulin signaling by a mechanism involving reduced catabolism of internalized insulin. Conclusions/Significance: The inhibitors we describe are the first to potently and selectively inhibit IDE or indeed any member of this atypical zinc-metalloprotease superfamily. The distinctive structure of IDE's active site, and the mode of action of our inhibitors, suggests that it may be possible to develop inhibitors that cross-react minimally with conventional zinc-metalloproteases. Significantly, our results reveal that insulin signaling is normally regulated by IDE activity not only extracellularly but also within cells, supporting the longstanding view that IDE inhibitors could hold therapeutic value for the treatment of diabetes.

  20. Genetic and metabolic analysis of the carbofuran catabolic pathway in Novosphingobium sp. KN65.2.

    Science.gov (United States)

    Nguyen, Thi Phi Oanh; Helbling, Damian E; Bers, Karolien; Fida, Tekle Tafese; Wattiez, Ruddy; Kohler, Hans-Peter E; Springael, Dirk; De Mot, René

    2014-10-01

    The widespread agricultural application of carbofuran and concomitant contamination of surface and ground waters has raised health concerns due to the reported toxic effects of this insecticide and its degradation products. Most bacteria that degrade carbofuran only perform partial degradation involving carbamate hydrolysis without breakdown of the resulting phenolic metabolite. The capacity to mineralize carbofuran beyond the benzofuran ring has been reported for some bacterial strains, especially sphingomonads, and some common metabolites, including carbofuran phenol, were identified. In the current study, the catabolism of carbofuran by Novosphingobium sp. KN65.2 (LMG 28221), a strain isolated from a carbofuran-exposed Vietnamese soil and utilizing the compound as a sole carbon and nitrogen source, was studied. Several KN65.2 plasposon mutants with diminished or abolished capacity to degrade and mineralize carbofuran were generated and characterized. Metabolic profiling of representative mutants revealed new metabolic intermediates, in addition to the initial hydrolysis product carbofuran phenol. The promiscuous carbofuran-hydrolyzing enzyme Mcd, which is present in several bacteria lacking carbofuran ring mineralization capacity, is not encoded by the Novosphingobium sp. KN65.2 genome. An alternative hydrolase gene required for this step was not identified, but the constitutively expressed genes of the unique cfd operon, including the oxygenase genes cfdC and cfdE, could be linked to further degradation of the phenolic metabolite. A third involved oxygenase gene, cfdI, and the transporter gene cftA, encoding a TonB-dependent outer membrane receptor with potential regulatory function, are located outside the cfd cluster. This study has revealed the first dedicated carbofuran catabolic genes and provides insight in the early steps of benzofuran ring degradation.

  1. Role of Myofibrillar Protein Catabolism in Development of Glucocorticoid Myopathy: Aging and Functional Activity Aspects

    Directory of Open Access Journals (Sweden)

    Teet Seene

    2016-05-01

    Full Text Available Muscle weakness in corticosteroid myopathy is mainly the result of the destruction and atrophy of the myofibrillar compartment of fast-twitch muscle fibers. Decrease of titin and myosin, and the ratio of nebulin and MyHC in myopathic muscle, shows that these changes of contractile and elastic proteins are the result of increased catabolism of the abovementioned proteins in skeletal muscle. Slow regeneration of skeletal muscle is in good correlation with a decreased number of satellite cells under the basal lamina of muscle fibers. Aging causes a reduction of AMP-activated protein kinase (AMPK activity as the result of the reduced function of the mitochondrial compartment. AMPK activity increases as a result of increased functional activity. Resistance exercise causes anabolic and anticatabolic effects in skeletal muscle: muscle fibers experience hypertrophy while higher myofibrillar proteins turn over. These changes are leading to the qualitative remodeling of muscle fibers. As a result of these changes, possible maximal muscle strength is increasing. Endurance exercise improves capillary blood supply, increases mitochondrial biogenesis and muscle oxidative capacity, and causes a faster turnover rate of sarcoplasmic proteins as well as qualitative remodeling of type I and IIA muscle fibers. The combination of resistance and endurance exercise may be the fastest way to prevent or decelerate muscle atrophy due to the anabolic and anticatabolic effects of exercise combined with an increase in oxidative capacity. The aim of the present short review is to assess the role of myofibrillar protein catabolism in the development of glucocorticoid-caused myopathy from aging and physical activity aspects.

  2. Designed inhibitors of insulin-degrading enzyme regulate the catabolism and activity of insulin.

    Directory of Open Access Journals (Sweden)

    Malcolm A Leissring

    Full Text Available BACKGROUND: Insulin is a vital peptide hormone that is a central regulator of glucose homeostasis, and impairments in insulin signaling cause diabetes mellitus. In principle, it should be possible to enhance the activity of insulin by inhibiting its catabolism, which is mediated primarily by insulin-degrading enzyme (IDE, a structurally and evolutionarily distinctive zinc-metalloprotease. Despite interest in pharmacological inhibition of IDE as an attractive anti-diabetic approach dating to the 1950s, potent and selective inhibitors of IDE have not yet emerged. METHODOLOGY/PRINCIPAL FINDINGS: We used a rational design approach based on analysis of combinatorial peptide mixtures and focused compound libraries to develop novel peptide hydroxamic acid inhibitors of IDE. The resulting compounds are approximately 10(6 times more potent than existing inhibitors, non-toxic, and surprisingly selective for IDE vis-à-vis conventional zinc-metalloproteases. Crystallographic analysis of an IDE-inhibitor complex reveals a novel mode of inhibition based on stabilization of IDE's "closed," inactive conformation. We show further that pharmacological inhibition of IDE potentiates insulin signaling by a mechanism involving reduced catabolism of internalized insulin. CONCLUSIONS/SIGNIFICANCE: The inhibitors we describe are the first to potently and selectively inhibit IDE or indeed any member of this atypical zinc-metalloprotease superfamily. The distinctive structure of IDE's active site, and the mode of action of our inhibitors, suggests that it may be possible to develop inhibitors that cross-react minimally with conventional zinc-metalloproteases. Significantly, our results reveal that insulin signaling is normally regulated by IDE activity not only extracellularly but also within cells, supporting the longstanding view that IDE inhibitors could hold therapeutic value for the treatment of diabetes.

  3. Microbial life in frozen boreal soils-environmental constraints on catabolic and anabolic activity

    Science.gov (United States)

    Oquist, M. G.; Sparrman, T.; Haei, M.; Segura, J.; Schleucher, J.; Nilsson, M. B.

    2013-12-01

    Microbial activity in frozen soils has recently gained increasing attention and the fact that soil microorganisms can perform significant metabolic activity at temperatures below freezing is apparent. However, to what extent microbial activity is constrained by the environmental conditions prevailing in a frozen soil matrix is still very uncertain. This presentation will address how the fundamental environmental factors of temperature, liquid water availability and substrate availability combine to regulate rates of catabolic and anabolic microbial processes in frozen soils. The presented results are gained from investigations of the surface layers of boreal forest soils with seasonal freezing. We show that the amount and availability of liquid water is an integral factor regulating rates of microbial activity in the frozen soil matrix and can also explain frequently observed deviations in the temperature responses of biogenic CO2 production in frozen soils, as compared to unfrozen soils. In turn, the capacity for a specific soil to retain liquid water at sub-zero temperatures is controlled by the structural composition of the soil, and especially the soil organic matter is of integral importance. We also show that the partitioning of substrate carbon, in the form of monomeric sugar (glucose), for catabolic and anabolic metabolism remain constant in the temperature range of -4C to 9C. This confirms that microbial growth may proceed even when soils are frozen. In addition we present corresponding data for organisms metabolizing polymeric substrates (cellulose) requiring exoenzymatic activity. We conclude that the metabolic response of soil microorganism to controlling factors may change substantially across the freezing point of soil water, and also the patterns of interaction among controlling factors are affected. Thus, it is evident that metabolic response functions derived from investigations of unfrozen soils cannot be superimposed on frozen soils. Nonetheless

  4. Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival.

    Directory of Open Access Journals (Sweden)

    Christian Frezza

    Full Text Available Hypoxia is one of the features of poorly vascularised areas of solid tumours but cancer cells can survive in these areas despite the low oxygen tension. The adaptation to hypoxia requires both biochemical and genetic responses that culminate in a metabolic rearrangement to counter-balance the decrease in energy supply from mitochondrial respiration. The understanding of metabolic adaptations under hypoxia could reveal novel pathways that, if targeted, would lead to specific death of hypoxic regions. In this study, we developed biochemical and metabolomic analyses to assess the effects of hypoxia on cellular metabolism of HCT116 cancer cell line. We utilized an oxygen fluorescent probe in anaerobic cuvettes to study oxygen consumption rates under hypoxic conditions without the need to re-oxygenate the cells and demonstrated that hypoxic cells can maintain active, though diminished, oxidative phosphorylation even at 1% oxygen. These results were further supported by in situ microscopy analysis of mitochondrial NADH oxidation under hypoxia. We then used metabolomic methodologies, utilizing liquid chromatography-mass spectrometry (LC-MS, to determine the metabolic profile of hypoxic cells. This approach revealed the importance of synchronized and regulated catabolism as a mechanism of adaptation to bioenergetic stress. We then confirmed the presence of autophagy under hypoxic conditions and demonstrated that the inhibition of this catabolic process dramatically reduced the ATP levels in hypoxic cells and stimulated hypoxia-induced cell death. These results suggest that under hypoxia, autophagy is required to support ATP production, in addition to glycolysis, and that the inhibition of autophagy might be used to selectively target hypoxic regions of tumours, the most notoriously resistant areas of solid tumours.

  5. Catabolism of indole-3-acetic acid and 4- and 5-chloroindole-3-acetic acid in Bradyrhizobium japonicum

    DEFF Research Database (Denmark)

    Jensen, J B; Egsgaard, H; Van Onckelen, H;

    1995-01-01

    Some strains of Bradyrhizobium japonicum have the ability to catabolize indole-3-acetic acid. Indoleacetic acid (IAA), 4-chloro-IAA (4-Cl-IAA), and 5-Cl-IAA were metabolized to different extents by strains 61A24 and 110. Metabolites were isolated and analyzed by high-performance liquid chromatogr...

  6. Repression of nitrogen catabolic genes by ammonia and glutamine in nitrogen-limited continuous cultures of Saccharomyces cerevisiae

    NARCIS (Netherlands)

    ter Schure, E G; Silljé, H H; Vermeulen, E E; Kalhorn, J W; Verkleij, A J; Boonstra, J; Verrips, C T

    1998-01-01

    Growth of Saccharomyces cerevisiae on ammonia and glutamine decreases the expression of many nitrogen catabolic genes to low levels. To discriminate between ammonia- and glutamine-driven repression of GAP1, PUT4, GDH1 and GLN1, a gln1-37 mutant was used. This mutant is not able to convert ammonia in

  7. CATABOLISM OF AROMATIC BIOGENIC AMINES BY 'PSEUDOMONAS AERUGINOSA' PA01 VIA META CLEAVAGE OF HOMOPROTOCATECHUIC ACID (JOURNAL VERSION)

    Science.gov (United States)

    Pseudomonas aruginosa PA01 catabolized the aromatic amines tyramine and octopamine through 4-hydroxyphenylacetic acid and 3,4-dihydroxyphenylacetic acid (HPA). Meta ring cleavage was mediated by 3-4-dihydroxyphenylacetate 2,3-dioxygenase (HPADO), producing 2-hydroxy-5-carboxymeth...

  8. Oxidised low density lipoprotein causes human macrophage cell death through oxidant generation and inhibition of key catabolic enzymes.

    Science.gov (United States)

    Katouah, Hanadi; Chen, Alpha; Othman, Izani; Gieseg, Steven P

    2015-10-01

    Oxidised low density lipoprotein (oxLDL) is thought to be a significant contributor to the death of macrophage cells observed in advanced atherosclerotic plaques. Using human-derived U937 cells we have examined the effect of cytotoxic oxLDL on oxidative stress and cellular catabolism. Within 3h of the addition of oxLDL, there was a rapid, concentration dependent rise in cellular reactive oxygen species followed by the loss of cellular GSH, and the enzyme activity of both glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and aconitase. The loss of these catabolic enzymes was accompanied by the loss of cellular ATP and lower lactate generation. Addition of the macrophage antioxidant 7,8-dihydroneopterin inhibited the ROS generation, glutathione loss and catabolic inactivation. NOX was shown to be activated by oxLDL addition while apocynin inhibited the loss of GSH and cell viability. The data suggests that oxLDL triggers an excess of ROS production through NOX activation, and catabolic failure through thiol oxidation resulting in cell death. PMID:26255116

  9. Increased VLDL in nephrotic patients results from a decreased catabolism while increased LDL results from increased synthesis

    NARCIS (Netherlands)

    de Sain-van der Velden, M; Kaysen, GA; Barrett, HA; Stellaard, F; Gadellaa, MM; Voorbij, HA; Reijngoud, DJ; Rabelink, TJ

    1998-01-01

    Increased very low density lipoprotein (VLDL) in nephrotic patients results from a decreased catabolism while increased low density lipoprotein (LDL) results from increased synthesis. Hyperlipidemias a hallmark of nephrotic syndrome that has been associated with increased risk for ischemic heart dis

  10. White-to-brite conversion in human adipocytes promotes metabolic reprogramming towards fatty acid anabolic and catabolic pathways

    Directory of Open Access Journals (Sweden)

    V. Barquissau

    2016-05-01

    Conclusions: Conversion of human white fat cells into brite adipocytes results in a major metabolic reprogramming inducing fatty acid anabolic and catabolic pathways. PDK4 redirects glucose from oxidation towards triglyceride synthesis and favors the use of fatty acids as energy source for uncoupling mitochondria.

  11. Inflammatory and catabolic signalling in intervertebral discs: The roles of NF-B and MAP Kinases

    Directory of Open Access Journals (Sweden)

    K Wuertz

    2012-02-01

    Full Text Available Painful intervertebral disc disease is characterised not only by an imbalance between anabolic (i.e., matrix synthesis and catabolic (i.e., matrix degradation processes, but also by inflammatory mechanisms. The increased expression and synthesis of matrix metalloproteinases and inflammatory factors is mediated by specific signal transduction, in particular the nuclear factor-kappaB (NF-kB and mitogen-activated protein kinase (MAPK-mediated pathways. NF-kB and MAPK have been identified as the master regulators of inflammation and catabolism in several musculoskeletal disorders (e.g., osteoarthritis, and recently growing evidence supports the importance of these signalling pathways in painful disc disease. With continuing research exploiting in vitro and in vivo model systems to elucidate the roles of these pathways in disc degeneration, it may be possible in the near future to specifically target these major inflammatory / catabolic signalling pathways to treat painful degenerative disc disease. In this perspective, we aim to summarise the current state of knowledge concerning the inflammatory and catabolic molecular pathways of intervertebral disc disease (IDD, with a detailed description of NF-kB and MAP kinase-mediated signal transduction in disc cells. Furthermore, we will discuss the emerging novel molecular treatment modalities for IDD using pharmacological inhibitors targeting these pathways.

  12. Contribution of polyamines metabolism and GABA shunt to chilling tolerance induced by nitric oxide in cold-stored banana fruit.

    Science.gov (United States)

    Wang, Yansheng; Luo, Zisheng; Mao, Linchun; Ying, Tiejin

    2016-04-15

    Effect of exogenous nitric oxide (NO) on polyamines (PAs) catabolism, γ-aminobutyric acid (GABA) shunt, proline accumulation and chilling injury of banana fruit under cold storage was investigated. Banana fruit treated with NO sustained lower chilling injury index than the control. Notably elevated nitric oxide synthetase activity and endogenous NO level were observed in NO-treated banana fruit. PAs contents in treated fruit were significantly higher than control fruit, due to the elevated activities of arginine decarboxylase and ornithine decarboxylase. NO treatment increased the activities of diamine oxidase, polyamine oxidase and glutamate decarboxylase, while reduced GABA transaminase activity to lower levels compared with control fruit, which resulted the accumulation of GABA. Besides, NO treatment upregulated proline content and significantly enhanced the ornithine aminotransferase activity. These results indicated that the chilling tolerance induced by NO treatment might be ascribed to the enhanced catabolism of PAs, GABA and proline.

  13. [INABILITY TO TOLERATE COSMETICS].

    Science.gov (United States)

    Piérard, G E; Piérard-Franchimont, C

    2016-05-01

    Inability to tolerate cosmetics can result from distinct mechanisms which appear as the so-called sensitive skin corresponding to one aspect of invisible dermatosis, or which corresponds to manifestations of a contact allergic or irritation dermatitis.

  14. Tolerance Induction in Liver

    OpenAIRE

    M.H Karimi; Geramizadeh, B; Malek-Hosseini, S. A.

    2015-01-01

    Liver is an exclusive anatomical and immunological organ that displays a considerable tolerance effect. Liver allograft acceptance is shown to occur spontaneously within different species. Although in human transplant patients tolerance is rarely seen, the severity level and cellular mechanisms of transplant rejection vary. Non-paranchymal liver cells, including Kupffer cells, liver sinusoidal endothelial cells, hepatic stellate cells, and resident dendritic cells may participate in liver tol...

  15. Sialic acid transport and catabolism are cooperatively regulated by SiaR and CRP in nontypeable Haemophilus influenzae

    Directory of Open Access Journals (Sweden)

    Johnston Jason W

    2010-09-01

    Full Text Available Abstract Background The transport and catabolism of sialic acid, a critical virulence factor for nontypeable Haemophilus influenzae, is regulated by two transcription factors, SiaR and CRP. Results Using a mutagenesis approach, glucosamine-6-phosphate (GlcN-6P was identified as a co-activator for SiaR. Evidence for the cooperative regulation of both the sialic acid catabolic and transport operons suggested that cooperativity between SiaR and CRP is required for regulation. cAMP was unable to influence the expression of the catabolic operon in the absence of SiaR but was able to induce catabolic operon expression when both SiaR and GlcN-6P were present. Alteration of helical phasing supported this observation by uncoupling SiaR and CRP regulation. The insertion of one half-turn of DNA between the SiaR and CRP operators resulted in the loss of SiaR-mediated repression of the transport operon while eliminating cAMP-dependent induction of the catabolic operon when GlcN-6P was present. SiaR and CRP were found to bind to their respective operators simultaneously and GlcN-6P altered the interaction of SiaR with its operator. Conclusions These results suggest multiple novel features for the regulation of these two adjacent operons. SiaR functions as both a repressor and an activator and SiaR and CRP interact to regulate both operons from a single set of operators.

  16. Tolerance and recognition

    Directory of Open Access Journals (Sweden)

    Hans Marius Hansteen

    2014-03-01

    Full Text Available Even though “toleration” and “recognition” designate opposing attitudes (to tolerate something, implies a negative stance towards it, whereas recognition seems to imply a positive one, the concepts do not constitute mutually exclusive alternatives. However, “toleration” is often associated with liberal universalism, focusing on individual rights, whereas “recognition” often connotes communitarian perspectives, focusing on relations and identity. This paper argues that toleration may be founded on recognition, and that recognition may imply toleration. In outlining a differentiated understanding of the relationship between toleration and recognition, it seems apt to avoid an all-to-general dichotomy between universalism and particularism or, in other words, to reach beyond the debate between liberalism and communitarianism in political philosophy.The paper takes as its starting point the view that the discussion on toleration and diversity in intercultural communication is one of the contexts where it seems important to get beyond the liberal/communitarian dichotomy. Some basic features of Rainer Forst’s theory of toleration and Axel Honneth’s theory of the struggle for recognition are presented, in order to develop a more substantial understanding of the relationship between the concepts of toleration and recognition. One lesson from Forst is that toleration is a normatively dependent concept, i.e., that it is impossible to deduce principles for toleration and its limits from a theory of toleration as such. A central lesson from Honneth is that recognition – understood as a basic human need – is always conflictual and therefore dynamic.Accordingly, a main point in the paper is that the theory of struggles for and about recognition (where struggles for designates struggles within an established order of recognition, and struggles about designates struggles that challenge established orders of recognition may clarify what

  17. Heat tolerance in wheat

    DEFF Research Database (Denmark)

    Sharma, Dew Kumari

    and quantitative genetics in particular, plant phenotyping based quantitative trait loci (QTL) discovery for a physiological trait under heat stress. Chlorophyll a fluorescence trait, Fv/Fm was used as a phenotyping tool, as it reflects the effect of heat stress on maximum photochemical efficiency of photosystem...... reveal how important these identified QTLs are in terms of improving heat tolerance in wheat. Similar approach of plant phenotyping based gene discovery can be used to understand other physiological traits in plants in response to different abiotic stresses, which may lead to identification of genes...... climate, wheat is sensitive to heat stress. We need to understand how our crops will perform in these changing climatic conditions and how we can develop varieties, which are more tolerant. The PhD study focussed on understanding heat tolerance in wheat with a combined approach of plant physiology...

  18. Combination of recreational soccer and caloric restricted diet reduces markers of protein catabolism and cardiovascular risk in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    de Sousa, M Vieira; Fukui, R; Krustrup, Peter;

    2016-01-01

    D) patients. Objective: We compared the effects of acute and chronic soccer training plus calorie-restricted diet on protein catabolism and cardiovascular risk markers in T2D. Design, setting and subjects: Fifty-one T2D patients (61.1±6.4 years, 29 females: 22 males) were randomly allocated...... levels were suggestive of lower muscle protein catabolism. Conclusions: Recreational soccer training was popular and safe, and was associated with decreased plasma glucose and IGFBP-3 levels, decreased ammoniagenesis, and increased lipolytic activity and IGF-1/IGFBP-3 ratio, all indicative of attenuated...... catabolism....

  19. Inequality, Tolerance, and Growth

    DEFF Research Database (Denmark)

    Bjørnskov, Christian

    This paper argues for the importance of individuals' tolerance of inequality for economic growth. By using the political ideology of governments as a measure of revealed tolerance of inequality, the paper shows that controlling for ideology improves the accuracy with which the effects of inequality...... are measured. Results show that inequality reduces growth but more so in societies where people perceive it as being relatively unfair. Further results indicate that legal quality and social trust are likely transmission channels for the effects of inequality....

  20. Inequality, Tolerance, and Growth

    DEFF Research Database (Denmark)

    Bjørnskov, Christian

    2004-01-01

    This paper argues for the importance of individuals' tolerance of inequality for economic growth. By using the political ideology of governments as a measure of revealed tolerance of inequality, the paper shows that controlling for ideology improves the accuracy with which the effects of inequality...... are measured. Results show that inequality reduces growth but more so in societies where people perceive it as being relatively unfair. Further results indicate that legal quality and social trust are likely transmission channels for the effects of inequality....

  1. Toleration out of respect?

    DEFF Research Database (Denmark)

    Lægaard, Sune

    2014-01-01

    Under conditions of pluralism different cultures, interests or values can come into conflict, which raises the problem of how to secure peaceful co-existence. The idea of toleration historically emerged as an answer to this problem. Recently Rainer Forst has argued that toleration should not just...... prescription, which Forst presents as a requirement of justice. At both levels, it is argued that Forst’s respect conception is problematic since it presupposes that answers to very substantial normative questions, which are precisely what people tend to disagree on under conditions of pluralism, are already...

  2. Toleration out of respect?

    DEFF Research Database (Denmark)

    Lægaard, Sune

    2013-01-01

    Under conditions of pluralism different cultures, interests or values can come into conflict, which raises the problem of how to secure peaceful co-existence. The idea of toleration historically emerged as an answer to this problem. Recently Rainer Forst has argued that toleration should not just...... prescription, which Forst presents as a requirement of justice. At both levels, it is argued that Forst’s respect conception is problematic since it presupposes that answers to very substantial normative questions, which are precisely what people tend to disagree on under conditions of pluralism, are already...

  3. Planktonic versus biofilm catabolic communities: importance of the biofilm for species selection and pesticide degradation.

    Science.gov (United States)

    Verhagen, Pieter; De Gelder, Leen; Hoefman, Sven; De Vos, Paul; Boon, Nico

    2011-07-01

    Chloropropham-degrading cultures were obtained from sludge and soil samples by using two different enrichment techniques: (i) planktonic enrichments in shaken liquid medium and (ii) biofilm enrichments on two types of solid matrixes (plastic chips and gravel). Denaturing gradient gel electrophoresis fingerprinting showed that planktonic and biofilm cultures had a different community composition depending on the presence and type of added solid matrix during enrichment. This was reflected in the unique chloropropham-degrading species that could be isolated from the different cultures. Planktonic and biofilm cultures also differed in chloropropham-degrading activity. With biofilm cultures, slower chloropropham removal was observed, but with less build-up of the toxic intermediate 3-chloroaniline. Disruption of the biofilm architecture resulted in degradation characteristics shifting toward those of the free suspensions, indicating the importance of a well-established biofilm structure for good performance. These results show that biofilm-mediated enrichment techniques can be used to select for pollutant-degrading microorganisms that like to proliferate in a biofilm and that cannot be isolated using conventional shaken-liquid procedures. Furthermore, the influence of the biofilm architecture on the pesticide degradation characteristics suggests that for bioaugmentation the use of biofilm catabolic communities might be a proficient alternative to using planktonic freely suspended cultures. PMID:21602394

  4. Catabolism of Branched Chain Amino Acids Supports Respiration but Not Volatile Synthesis in Tomato Fruits

    Institute of Scientific and Technical Information of China (English)

    Andrej Kochevenko; Wagner L.Araújo; Gregory S.Maloney; Denise M.Tieman; Phuc Thi Do; Mark G.Taylor; Harry J.Klee; Alisdair R.Fernie

    2012-01-01

    The branched-chain amino acid transaminases (BCATs) have a crucial role in metabolism of the branched-chain amino acids leucine,isoleucine,and valine.These enzymes catalyze the last step of synthesis and the initial step of degradation of these amino acids.Although the biosynthetic pathways of branched chain amino acids in plants have been extensively investigated and a number of genes have been characterized,their catabolism in plants is not yet completely understood.We previously characterized the branched chain amino acid transaminase gene family in tomato,revealing both the subcellular localization and kinetic properties of the enzymes encoded by six genes.Here,we examined possible functions of the enzymes during fruit development.We further characterized transgenic plants differing in the expression of branched chain amino acid transaminases 1 and 3,evaluating the rates of respiration in fruits deficient in BCAT1 and the levels of volatiles in lines overexpressing either BCAT1 or BCAT3.We quantitatively tested,via precursor and isotope feeding experiments,the importance of the branched chain amino acids and their corresponding keto acids in the formation of fruit volatiles.Our results not only demonstrate for the first time the importance of branched chain amino acids in fruit respiration,but also reveal that keto acids,rather than amino acids,are the likely precursors for the branched chain flavor volatiles.

  5. Metabolic switch during adipogenesis: From branched chain amino acid catabolism to lipid synthesis.

    Science.gov (United States)

    Halama, Anna; Horsch, Marion; Kastenmüller, Gabriele; Möller, Gabriele; Kumar, Pankaj; Prehn, Cornelia; Laumen, Helmut; Hauner, Hans; Hrabĕ de Angelis, Martin; Beckers, Johannes; Suhre, Karsten; Adamski, Jerzy

    2016-01-01

    Fat cell metabolism has an impact on body homeostasis and its proper function. Nevertheless, the knowledge about simultaneous metabolic processes, which occur during adipogenesis and in mature adipocytes, is limited. Identification of key metabolic events associated with fat cell metabolism could be beneficial in the field of novel drug development, drug repurposing, as well as for the discovery of patterns predicting obesity risk. The main objective of our work was to provide comprehensive characterization of metabolic processes occurring during adipogenesis and in mature adipocytes. In order to globally determine crucial metabolic pathways involved in fat cell metabolism, metabolomics and transcriptomics approaches were applied. We observed significantly regulated metabolites correlating with significantly regulated genes at different stages of adipogenesis. We identified the synthesis of phosphatidylcholines, the metabolism of even and odd chain fatty acids, as well as the catabolism of branched chain amino acids (BCAA; leucine, isoleucine and valine) as key regulated pathways. Our further analysis led to identification of an enzymatic switch comprising the enzymes Hmgcs2 (3-hydroxy-3-methylglutaryl-CoA synthase) and Auh (AU RNA binding protein/enoyl-CoA hydratase) which connects leucine degradation with cholesterol synthesis. In addition, propionyl-CoA, a product of isoleucine degradation, was identified as a putative substrate for odd chain fatty acid synthesis. The uncovered crosstalks between BCAA and lipid metabolism during adipogenesis might contribute to the understanding of molecular mechanisms of obesity and have potential implications in obesity prediction. PMID:26408941

  6. Effects of a block in cysteine catabolism on energy balance and fat metabolism in mice.

    Science.gov (United States)

    Niewiadomski, Julie; Zhou, James Q; Roman, Heather B; Liu, Xiaojing; Hirschberger, Lawrence L; Locasale, Jason W; Stipanuk, Martha H

    2016-01-01

    To gain further insights into the effects of elevated cysteine levels on energy metabolism and the possible mechanisms underlying these effects, we conducted studies in cysteine dioxygenase (Cdo1)-null mice. Cysteine dioxygenase (CDO) catalyzes the first step of the major pathway for cysteine catabolism. When CDO is absent, tissue and plasma cysteine levels are elevated, resulting in enhanced flux of cysteine through desulfhydration reactions. When Cdo1-null mice were fed a high-fat diet, they gained more weight than their wild-type controls, regardless of whether the diet was supplemented with taurine. Cdo1-null mice had markedly lower leptin levels, higher feed intakes, and markedly higher abundance of hepatic stearoyl-CoA desaturase 1 (SCD1) compared to wild-type control mice, and these differences were not affected by the fat or taurine content of the diet. Thus, reported associations of elevated cysteine levels with greater weight gain and with elevated hepatic Scd1 expression are also seen in the Cdo1-null mouse model. Hepatic accumulation of acylcarnitines suggests impaired mitochondrial β-oxidation of fatty acids in Cdo1-null mice. The strong associations of elevated cysteine levels with excess H2 S production and impairments in energy metabolism suggest that H2 S signaling could be involved.

  7. Novel Insights into the Diversity of Catabolic Metabolism from Ten Haloarchaeal Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain; Scheuner, Carmen; Goker, Markus; Mavromatis, Kostas; Hooper, Sean D.; Porat, Iris; Klenk, Hans-Peter; Ivanova, Natalia; Kyrpides, Nikos

    2011-05-03

    The extremely halophilic archaea are present worldwide in saline environments and have important biotechnological applications. Ten complete genomes of haloarchaea are now available, providing an opportunity for comparative analysis. We report here the comparative analysis of five newly sequenced haloarchaeal genomes with five previously published ones. Whole genome trees based on protein sequences provide strong support for deep relationships between the ten organisms. Using a soft clustering approach, we identified 887 protein clusters present in all halophiles. Of these core clusters, 112 are not found in any other archaea and therefore constitute the haloarchaeal signature. Four of the halophiles were isolated from water, and four were isolated from soil or sediment. Although there are few habitat-specific clusters, the soil/sediment halophiles tend to have greater capacity for polysaccharide degradation, siderophore synthesis, and cell wall modification. Halorhabdus utahensis and Haloterrigena turkmenica encode over forty glycosyl hydrolases each, and may be capable of breaking down naturally occurring complex carbohydrates. H. utahensis is specialized for growth on carbohydrates and has few amino acid degradation pathways. It uses the non-oxidative pentose phosphate pathway instead of the oxidative pathway, giving it more flexibility in the metabolism of pentoses. These new genomes expand our understanding of haloarchaeal catabolic pathways, providing a basis for further experimental analysis, especially with regard to carbohydrate metabolism. Halophilic glycosyl hydrolases for use in biofuel production are more likely to be found in halophiles isolated from soil or sediment.

  8. Characterization of the Erwinia chrysanthemi Gan locus, involved in galactan catabolism.

    Science.gov (United States)

    Delangle, Aurélie; Prouvost, Anne-France; Cogez, Virginie; Bohin, Jean-Pierre; Lacroix, Jean-Marie; Cotte-Pattat, Nicole Hugouvieux

    2007-10-01

    beta-1,4-Galactan is a major component of the ramified regions of pectin. Analysis of the genome of the plant pathogenic bacteria Erwinia chrysanthemi revealed the presence of a cluster of eight genes encoding proteins potentially involved in galactan utilization. The predicted transport system would comprise a specific porin GanL and an ABC transporter made of four proteins, GanFGK(2). Degradation of galactans would be catalyzed by the periplasmic 1,4-beta-endogalactanase GanA, which released oligogalactans from trimer to hexamer. After their transport through the inner membrane, oligogalactans would be degraded into galactose by the cytoplasmic 1,4-beta-exogalactanase GanB. Mutants affected for the porin or endogalactanase were unable to grow on galactans, but they grew on galactose and on a mixture of galactotriose, galactotetraose, galactopentaose, and galactohexaose. Mutants affected for the periplasmic galactan binding protein, the transporter ATPase, or the exogalactanase were only able to grow on galactose. Thus, the phenotypes of these mutants confirmed the functionality of the gan locus in transport and catabolism of galactans. These mutations did not affect the virulence of E. chrysanthemi on chicory leaves, potato tubers, or Saintpaulia ionantha, suggesting an accessory role of galactan utilization in the bacterial pathogeny. PMID:17644603

  9. Experimental evidence of a xylose-catabolic pathway on the pAO1 megaplasmid of Arthrobacter nicotinovorans

    Directory of Open Access Journals (Sweden)

    Marius Mihasan

    2012-09-01

    Full Text Available The pAO1 megaplasmid of A. nicotinovorans consists of 165 ORF's related mainly to nicotine degradation, uptake and utilization of carbohydrates, amino acids and sarcosine. A putative sugar catabolic pathway consisting of 11 ORF's organized as a single operon were previously described. The current work brings experimental data supporting the existence of a D-Xylose catabolic pathway on the pAO1 megaplasmid. When grown on D-xylose containing media, the cells harboring the pAO1 megaplasmid grow to higher cell densities and also express the OxRe protein coded by the megaplasmid. A putative pathway similar to Weimberg pentose pathway is postulated, in which D-xylose is transported in the cell by the ABC-type transport system and then transformed using the putative sugar-dehidrogenase OxRe to D-xylonate, which is further degrated to 2-ketoglutarate and integrated into the general metabolism of the cell

  10. Cytosolic re-localization and optimization of valine synthesis and catabolism enables inseased isobutanol production with the yeast Saccharomyces cerevisiae

    OpenAIRE

    Brat Dawid; Weber Christian; Lorenzen Wolfram; Bode Helge B; Boles Eckhard

    2012-01-01

    Abstract Background The branched chain alcohol isobutanol exhibits superior physicochemical properties as an alternative biofuel. The yeast Saccharomyces cerevisiae naturally produces low amounts of isobutanol as a by-product during fermentations, resulting from the catabolism of valine. As S. cerevisiae is widely used in industrial applications and can easily be modified by genetic engineering, this microorganism is a promising host for the fermentative production of higher amounts of isobut...

  11. Cytosolic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeast Saccharomyces cerevisiae

    OpenAIRE

    Brat, Dawid; Weber, Christian; Lorenzen, Wolfram; Bode, Helge Björn; Boles, Eckhard

    2012-01-01

    Background: The branched chain alcohol isobutanol exhibits superior physicochemical properties as an alternative biofuel. The yeast Saccharomyces cerevisiae naturally produces low amounts of isobutanol as a by-product during fermentations, resulting from the catabolism of valine. As S. cerevisiae is widely used in industrial applications and can easily be modified by genetic engineering, this microorganism is a promising host for the fermentative production of higher amounts of isobutanol. ...

  12. The influence of environmental parameters on the catabolism of branched-chain amino acids by Staphylococcus xylosus and Staphylococcus carnosus

    DEFF Research Database (Denmark)

    Olesen, Pelle Thonning; Stahnke, Louise Heller

    2004-01-01

    Degradation of the amino acids leucine, isoleucine and valine into branched flavour compounds by Staphylococcus xylosus and Staphylococcus carnosus was studied using resting cell cultures added to a defined reaction medium under different environmental conditions relevant to sausage fermentation...... detection (GC/FID). Main volatile catabolic products of leucine, isoleucine and valine were 3-methylbutanoic, 2-methylbutanoic and 2-methylpropanoic acids, respectively. The generation of branched flavour compounds was influenced significantly by most of the investigated environmental parameters...

  13. Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types

    Science.gov (United States)

    Amend, Jan P.; McCollom, Thomas M.; Hentscher, Michael; Bach, Wolfgang

    2011-10-01

    Active deep-sea hydrothermal vents are hosted by a range of different rock types, including basalt, peridotite, and felsic rocks. The associated hydrothermal fluids exhibit substantial chemical variability, which is largely attributable to compositional differences among the underlying host rocks. Numerical models were used to evaluate the energetics of seven inorganic redox reactions (potential catabolisms of chemolithoautotrophs) and numerous biomolecule synthesis reactions (anabolism) in a representative sampling of these systems, where chemical gradients are established by mixing hydrothermal fluid with seawater. The wide ranging fluid compositions dictate demonstrable differences in Gibbs energies (Δ G r) of these catabolic and anabolic reactions in three peridotite-hosted, six basalt-hosted, one troctolite-basalt hybrid, and two felsic rock-hosted systems. In peridotite-hosted systems at low to moderate temperatures (10), hydrogen oxidation yields the most catabolic energy, but the oxidation of methane, ferrous iron, and sulfide can also be moderately exergonic. At higher temperatures, and consequent SW:HF mixing ratios anabolism in chemolithoautotrophs—represented here by the synthesis of amino acids, nucleotides, fatty acids, saccharides, and amines—were generally most favorable at moderate temperatures (22-32 °C) and corresponding SW:HF mixing ratios (˜15). In peridotite-hosted and the troctolite-basalt hybrid systems, Δ G r for primary biomass synthesis yielded up to ˜900 J per g dry cell mass. The energetics of anabolism in basalt- and felsic rock-hosted systems were far less favorable. The results suggest that in peridotite-hosted (and troctolite-basalt hybrid) systems, compared with their basalt (and felsic rock) counterparts, microbial catabolic strategies—and consequently variations in microbial phylotypes—may be far more diverse and some biomass synthesis may yield energy rather than imposing a high energetic cost.

  14. Separation and partial characterization of the enzymes of the toluene-4-monooxygenase catabolic pathway in Pseudomonas mendocina KR1.

    OpenAIRE

    Whited, G M; Gibson, D T

    1991-01-01

    The route of toluene degradation by Pseudomonas mendocina KR1 was studied by separating or purifying from toluene-grown cells the catabolic enzymes responsible for oxidation of p-cresol through the ring cleavage step. Enzymatic transformations corresponding to each of the metabolic steps in the proposed degradative pathway were conducted with cell-free preparations. p-Cresol was metabolized by the enzyme p-cresol methylhydroxylase to p-hydroxybenzaldehyde. p-Hydroxybenzaldehyde was further ox...

  15. Effects of vegetation type on soil microbial community structure and catabolic diversity assessed by polyphasic methods in North China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Soil microbes play a major role in ecological processes and are closely associated with the aboveground plant community. In order to understand the effects of vegetation type on the characteristics of soil microbial communities, the soil microbial communities were assessed by plate counts, phospholipid fatty acid (PLFA) and Biolog microplate techniques in five plant communities, i.e., soybean field (SF), artificial turf (AT), artificial shrub (AS), natural shrub (NS), and maize field (MF) in Jinan, Shandong Province, North China. The results showed that plant diversity had little discernible effect on microbial biomass but a positive impact on the evennessof utilized substrates in Biolog microplate. Legumes could significantly enhance the number of cultural microorganisms, microbial biomass, and community catabolic diversity. Except for SF dominated by legumes, the biomass of fungi and the catabolic diversity of microbial community were higher in less disturbed soil beneath NS than in frequently disturbed soils beneath the other vegetation types. These results confirmed that high number of plant species, legumes, and natural vegetation types tend to support soil microbial communities with higher function. The present study also found a significant correlation between the number of cultured bacteria and catabolic diversity of the bacterial community. Different research methods led to varied results in this study. The combination of several approaches is recommended for accurately describing the characteristics of microbial communities in many respects.

  16. Stable isotope resolved metabolomics revealed the role of anabolic and catabolic processes in glyphosate-induced amino acid accumulation in Amaranthus palmeri biotypes

    Science.gov (United States)

    Using stable isotope resolved metabolomics (SIRM), we characterized the role of anabolic (de novo synthesis) vs catabolic (protein catalysis) processes contributing to free amino acid pools in glyphosate susceptible (S) and resistant (R) Amaranthus palmeri biotypes. Following exposure to glyphosate ...

  17. Roles of a sustained activation of NCED3 and the synergistic regulation of ABA biosynthesis and catabolism in ABA signal production in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    REN HuiBo; JIA WenSuo; FAN YiJian; GAO ZhiHui; WEI KaiFa; LI GuiFen; LIU Jing; CHEN Lin; LI BingBing; HU JianFang

    2007-01-01

    ABA, acting as a stress signal, plays crucial roles in plant resistance to water stress. Because ABA signal production is based on ABA biosynthesis, the regulation of NCED, a key enzyme in the ABA biosynthesis pathway, is normally thought of as the sole factor controlling ABA signal production. Here we demonstrate that ABA catabolism in combination with a synergistic regulation of ABA biosynthesis plays a crucial role in governing ABA signal production. Water stress induced a significant accumulation of ABA, which exhibited different patterns in detached and attached leaves. ABA catabolism followed a temporal trend of exponential decay for both basic and stress ABA, and there was little difference in the catabolic half-lives of basic ABA and stress ABA. Thus, the absolute rate of ABA catabolism, i.e. the amount of ABA catabolized per unit time, increases with increased ABA accumulation. From the dynamic processes of ABA biosynthesis and catabolism, it can be inferred that stress ABA accumulation may be governed by a synergistic regulation of all the steps in the ABA biosynthesis pathway. Moreover, to maintain an elevated level of stress ABA sustained activation of NCED3 should be required. This inference was supported by further findings that the genes encoding major enzymes in the ABA biosynthesis pathway, e.g. NCED3, AAO3 and ABA3 were all activated by water stress, and with ABA accumulation progressing, the expressions of NCED3, AAO3 and ABA3 remained activated. Data on ABA catabolism and gene expression jointly indicate that ABA signal production is controlled by a sustained activation of NCED3 and the synergistic regulation of ABA biosynthesis and catabolism.

  18. Complete Genome Sequence of the d-Amino Acid Catabolism Bacterium Phaeobacter sp. Strain JL2886, Isolated from Deep Seawater of the South China Sea.

    Science.gov (United States)

    Fu, Yingnan; Wang, Rui; Zhang, Zilian; Jiao, Nianzhi

    2016-01-01

    Phaeobacter sp. strain JL2886, isolated from deep seawater of the South China Sea, can catabolize d-amino acids. Here, we report the complete genome sequence of Phaeobacter sp. JL2886. It comprises ~4.06 Mbp, with a G+C content of 61.52%. A total of 3,913 protein-coding genes and 10 genes related to d-amino acid catabolism were obtained. PMID:27587825

  19. The Homogentisate Pathway: a Central Catabolic Pathway Involved in the Degradation of l-Phenylalanine, l-Tyrosine, and 3-Hydroxyphenylacetate in Pseudomonas putida

    OpenAIRE

    Arias-Barrau, Elsa; Olivera, Elías R.; Luengo, José M.; Fernández, Cristina; Galán, Beatriz; García, José L.; Díaz, Eduardo; Miñambres, Baltasar

    2004-01-01

    Pseudomonas putida metabolizes Phe and Tyr through a peripheral pathway involving hydroxylation of Phe to Tyr (PhhAB), conversion of Tyr into 4-hydroxyphenylpyruvate (TyrB), and formation of homogentisate (Hpd) as the central intermediate. Homogentisate is then catabolized by a central catabolic pathway that involves three enzymes, homogentisate dioxygenase (HmgA), fumarylacetoacetate hydrolase (HmgB), and maleylacetoacetate isomerase (HmgC), finally yielding fumarate and acetoacetate. Wherea...

  20. Opine catabolism and conjugal transfer of the nopaline Ti plasmid pTiC58 are coordinately regulated by a single repressor.

    OpenAIRE

    Beck von Bodman, S; Hayman, G. T.; Farrand, S K

    1992-01-01

    The Ti plasmids of Agrobacterium tumefaciens are conjugal elements whose transfer is strongly repressed. Transfer is induced by the conjugal opines, a group of unique carbon compounds synthesized in crown gall tumors. The opines also induce Ti plasmid-encoded genes required by the bacteria for opine catabolism. We have cloned and sequenced a gene from the Ti plasmid pTiC58, whose product mediates the opine-dependent regulation of conjugal transfer and catabolism of the conjugal opines, agroci...

  1. Opine catabolism and conjugal transfer of the nopaline Ti plasmid pTiC58 are coordinately regulated by a single repressor.

    Science.gov (United States)

    Beck von Bodman, S; Hayman, G T; Farrand, S K

    1992-01-15

    The Ti plasmids of Agrobacterium tumefaciens are conjugal elements whose transfer is strongly repressed. Transfer is induced by the conjugal opines, a group of unique carbon compounds synthesized in crown gall tumors. The opines also induce Ti plasmid-encoded genes required by the bacteria for opine catabolism. We have cloned and sequenced a gene from the Ti plasmid pTiC58, whose product mediates the opine-dependent regulation of conjugal transfer and catabolism of the conjugal opines, agrocinopines A and B. The gene, accR, is closely linked to the agrocinopine catabolic locus. A spontaneous mutant Ti plasmid, pTiC58Trac, which constitutively expresses conjugal transfer and opine catabolism, was complemented in trans by a clone of wild-type accR. Comparative sequence analysis identified a 5-base-pair deletion close to the 5' end of the mutant accR allele from pTiC58Trac. Analysis of lacZ fusions in conjugal transfer and opine catabolic structural genes demonstrated that the accR-encoded function is a transcriptional repressor. accR can encode a 28-kDa protein. This protein is related to a class of repressor proteins that includes LacR, GutR, DeoR, FucR, and GlpR that regulate sugar catabolic systems in several bacterial genera. PMID:1731335

  2. Vitamin A deficiency increases protein catabolism and induces urea cycle enzymes in rats.

    Science.gov (United States)

    Esteban-Pretel, Guillermo; Marín, M Pilar; Cabezuelo, Francisco; Moreno, Verónica; Renau-Piqueras, Jaime; Timoneda, Joaquín; Barber, Teresa

    2010-04-01

    Chronic vitamin A deficiency induces a substantial delay in the rates of weight and height gain in both humans and experimental animals. This effect has been associated with an impaired nutrient metabolism and loss of body protein. Therefore, we analyzed the effect of vitamin A deficiency on endogenous proteolysis and nitrogen metabolism and its reversibility with all-trans retinoic acid (RA). Male weanling rats, housed in pairs, were pair-fed a vitamin A-deficient (VAD) or control diet until they were 60 d old. A group of deficient rats were further treated with daily intraperitoneal injections of all-trans RA for 10 d. Final body and tissue (i.e. liver and heart) weights were significantly lower and tissue:body weight ratios were similar in VAD rats and in controls. Conversely, the epididymal white fat:body weight ratio and the plasma concentrations of alanine aminotransferase and adiponectin were significantly higher in VAD rats, which also had hepatic macrovesicular lipid accumulations. Plasma and gastrocnemius muscle 3-methylhistidine, urine nitrogen, and plasma and urine urea concentrations were all significantly higher in the VAD group. The expression of the genes encoding urea cycle enzymes and their activities increased in VAD livers. These changes were partially reverted by all-trans RA. We propose that fuel partitioning in vitamin A deficiency may shift from fatty acids to protein catabolism as an energy source. Our results emphasize the importance of vitamin A on the energy balance control system and they provide an explanation for the role of vitamin A in protein turnover, development, and growth.

  3. Estimating fermentative amino acid catabolism in the small intestine of growing pigs.

    Science.gov (United States)

    Columbus, D A; Cant, J P; de Lange, C F M

    2015-11-01

    Fermentative catabolism (FAAC) of dietary and endogenous amino acids (AA) in the small intestine contributes to loss of AA available for protein synthesis and body maintenance functions in pigs. A continuous isotope infusion study was performed to determine whole body urea flux, urea recycling and FAAC in the small intestine of ileal-cannulated growing pigs fed a control diet (CON, 18.6% CP; n=6), a high fibre diet with 12% added pectin (HF, 17.7% CP; n = 4) or a low-protein diet (LP, 13.4% CP; n = 6). (15)N-ammonium chloride and (13)C-urea were infused intragastrically and intravenously, respectively, for 4 days. Recovery of ammonia at the distal ileum was increased by feeding additional fibre when compared with the CON (P > 0.05) but was not affected by dietary protein (0.24, 0.39 and 0.14 mmol nitrogen/kg BW/day for CON, HF and LP, respectively; P small intestine suggesting rapid absorption of ammonia before the distal ileum and lack of uniformity of enrichment in the digesta ammonia pool. A two-pool model was developed to determine possible value ranges for nitrogen flux in the small intestine assuming rapid absorption of ammonia.Maximum estimated FAAC based on this model was significantly lower when dietary protein content was decreased (32.9, 33.4 and 17.4 mmol nitrogen/kg BW/day; P small intestine nitrogen flux( P > 0.05)compared with CON. The two-pool model developed in the present study allows for estimation of FAAC but still has limitations. Quantifying FAAC in the small intestine of pigs, as well as other non-ruminants and humans, offers a number of challenges but warrants further investigation.

  4. Molecular and population analyses of a recombination event in the catabolic plasmid pJP4.

    Science.gov (United States)

    Larraín-Linton, Juanita; De la Iglesia, Rodrigo; Melo, Francisco; González, Bernardo

    2006-10-01

    Cupriavidus necator JMP134(pJP4) harbors a catabolic plasmid, pJP4, which confers the ability to grow on chloroaromatic compounds. Repeated growth on 3-chlorobenzoate (3-CB) results in selection of a recombinant strain, which degrades 3-CB better but no longer grows on 2,4-dichlorophenoxyacetate (2,4-D). We have previously proposed that this phenotype is due to a double homologous recombination event between inverted repeats of the multicopies of this plasmid within the cell. One recombinant form of this plasmid (pJP4-F3) explains this phenotype, since it harbors two copies of the chlorocatechol degradation tfd gene clusters, which are essential to grow on 3-CB, but has lost the tfdA gene, encoding the first step in degradation of 2,4-D. The other recombinant plasmid (pJP4-FM) should harbor two copies of the tfdA gene but no copies of the tfd gene clusters. A molecular analysis using a multiplex PCR approach to distinguish the wild-type plasmid pJP4 from its two recombinant forms, was carried out. Expected PCR products confirming this recombination model were found and sequenced. Few recombinant plasmid forms in cultures grown in several carbon sources were detected. Kinetic studies indicated that cells containing the recombinant plasmid pJP4-FM were not selectable by sole carbon source growth pressure, whereas those cells harboring recombinant plasmid pJP4-F3 were selected upon growth on 3-CB. After 12 days of repeated growth on 3-CB, the complete plasmid population in C. necator JMP134 apparently corresponds to this form. However, wild-type plasmid forms could be recovered after growing this culture on 2,4-D, indicating that different plasmid forms can be found in C. necator JMP134 at the population level. PMID:16980481

  5. Organic matter mineralization in frozen boreal soils-environmental constraints on catabolic and anabolic microbial activity

    Science.gov (United States)

    Oquist, Mats G.; Sparrman, Tobias; Schleucher, Jürgen; Nilsson, Mats B.

    2014-05-01

    Heterotrophic microbial mineralization of soil organic matter (SOM) and associated production and emission of atmospheric trace gases proceed during the winter months in the frozen soils of high latitude ecosystems. However, in what ways this microbial activity is constrained by the environmental conditions prevailing in a frozen soil matrix is uncertain. This presentation will address how temperature, water availability and substrate availability combine to regulate rates of microbial activity at below freezing temperatures and the implications of this activity for SOM mineralization in the surface layers of boreal forest soils experiencing seasonal freezing. We show that the amount and availability of liquid water is an integral factor regulating rates of microbial activity in the frozen soil matrix and can also explain frequently observed deviations in the temperature responses of biogenic CO2 production in frozen soils, as compared to unfrozen soils. Using stable isotope labeling (13C) we also show that the partitioning of substrate carbon, in the form of monomeric sugar (glucose), for catabolic and anabolic metabolism remain constant in the temperature range of -4C to 9C. This confirms that microbial growth may proceed even when soils are frozen. In addition we present corresponding data for organisms metabolizing polymeric substrates (cellulose) requiring exoenzymatic activity prior to substrate uptake. We conclude that the metabolic response of soil microorganism to controlling factors may change substantially across the freezing point of soil water, and also the patterns of interaction among controlling factors are affected. Thus, it is evident that metabolic response functions derived from investigations of unfrozen soils cannot be superimposed on frozen soils. Nonetheless, the soil microbial population appear very adapted to seasonal freezing with respect to their metabolic performance.

  6. Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes.

    Science.gov (United States)

    Tasse, Lena; Bercovici, Juliette; Pizzut-Serin, Sandra; Robe, Patrick; Tap, Julien; Klopp, Christophe; Cantarel, Brandi L; Coutinho, Pedro M; Henrissat, Bernard; Leclerc, Marion; Doré, Joël; Monsan, Pierre; Remaud-Simeon, Magali; Potocki-Veronese, Gabrielle

    2010-11-01

    The human gut microbiome is a complex ecosystem composed mainly of uncultured bacteria. It plays an essential role in the catabolism of dietary fibers, the part of plant material in our diet that is not metabolized in the upper digestive tract, because the human genome does not encode adequate carbohydrate active enzymes (CAZymes). We describe a multi-step functionally based approach to guide the in-depth pyrosequencing of specific regions of the human gut metagenome encoding the CAZymes involved in dietary fiber breakdown. High-throughput functional screens were first applied to a library covering 5.4 × 10(9) bp of metagenomic DNA, allowing the isolation of 310 clones showing beta-glucanase, hemicellulase, galactanase, amylase, or pectinase activities. Based on the results of refined secondary screens, sequencing efforts were reduced to 0.84 Mb of nonredundant metagenomic DNA, corresponding to 26 clones that were particularly efficient for the degradation of raw plant polysaccharides. Seventy-three CAZymes from 35 different families were discovered. This corresponds to a fivefold target-gene enrichment compared to random sequencing of the human gut metagenome. Thirty-three of these CAZy encoding genes are highly homologous to prevalent genes found in the gut microbiome of at least 20 individuals for whose metagenomic data are available. Moreover, 18 multigenic clusters encoding complementary enzyme activities for plant cell wall degradation were also identified. Gene taxonomic assignment is consistent with horizontal gene transfer events in dominant gut species and provides new insights into the human gut functional trophic chain. PMID:20841432

  7. Abuse Tolerance Improvements

    Energy Technology Data Exchange (ETDEWEB)

    Orendorff, Christopher J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nagasubramanian, Ganesan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fenton, Kyle R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Allcorn, Eric [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    As lithium-ion battery technologies mature, the size and energy of these systems continues to increase (> 50 kWh for EVs); making safety and reliability of these high energy systems increasingly important. While most material advances for lithium-ion chemistries are directed toward improving cell performance (capacity, energy, cycle life, etc.), there are a variety of materials advancements that can be made to improve lithium-ion battery safety. Issues including energetic thermal runaway, electrolyte decomposition and flammability, anode SEI stability, and cell-level abuse tolerance continue to be critical safety concerns. This report highlights work with our collaborators to develop advanced materials to improve lithium-ion battery safety and abuse tolerance and to perform cell-level characterization of new materials.

  8. Full Tolerant Archiving System

    Science.gov (United States)

    Knapic, C.; Molinaro, M.; Smareglia, R.

    2013-10-01

    The archiving system at the Italian center for Astronomical Archives (IA2) manages data from external sources like telescopes, observatories, or surveys and handles them in order to guarantee preservation, dissemination, and reliability, in most cases in a Virtual Observatory (VO) compliant manner. A metadata model dynamic constructor and a data archive manager are new concepts aimed at automatizing the management of different astronomical data sources in a fault tolerant environment. The goal is a full tolerant archiving system, nevertheless complicated by the presence of various and time changing data models, file formats (FITS, HDF5, ROOT, PDS, etc.) and metadata content, even inside the same project. To avoid this unpleasant scenario a novel approach is proposed in order to guarantee data ingestion, backward compatibility, and information preservation.

  9. Fault Tolerant Control Systems

    DEFF Research Database (Denmark)

    Bøgh, S.A.

    requirements for a dedicated software environment for fault tolerant control systems design. The second detailed study addressed the detection of a fault event and determination of the failed component. A variety of algorithms were compared, based on two fault scenarios in the speed governor actuator setup......This thesis considered the development of fault tolerant control systems. The focus was on the category of automated processes that do not necessarily comprise a high number of identical sensors and actuators to maintain safe operation, but still have a potential for improving immunity to component...... failures. It is often feasible to increase availability for these control loops by designing the control system to perform on-line detection and reconfiguration in case of faults before the safety system makes a close-down of the process. A general development methodology is given in the thesis...

  10. Glucose tolerance test - non-pregnant

    Science.gov (United States)

    Oral glucose tolerance test - non-pregnant; OGTT - non-pregnant; Diabetes - glucose tolerance test ... The most common glucose tolerance test is the oral glucose tolerance test (OGTT). Before the test begins, a sample of blood will be ...

  11. Socially-Tolerable Discrimination

    OpenAIRE

    Amegashie, J. Atsu

    2008-01-01

    History is replete with overt discrimination on the basis of race, gender, age, citizenship, ethnicity, marital status, academic performance, health status, volume of market transactions, religion, sexual orientation, etc. However, these forms of discrimination are not equally tolerable. For example, discrimination based on immutable or prohibitively unalterable characteristics such as race, gender, or ethnicity is much less acceptable. Why? I develop a simple rent-seeking model of conflict w...

  12. Socially-Tolerable Discrimination

    OpenAIRE

    J. Atsu Amegashie

    2008-01-01

    History is replete with overt discrimination of various forms. However, these forms of discrimination are not equally tolerable. For example, discrimination based on immutable or prohibitively unalterable characteristics such as race or gender is much less acceptable. Why? I develop a simple model of conflict which is driven by either racial (gender) discrimination or generational discrimination (i.e., young versus old). I show that there exist parameters of the model where racial (gender) di...

  13. Socially-Tolerable Discrimination

    OpenAIRE

    Amegashie, J. Atsu

    2008-01-01

    History is replete with overt discrimination on the basis of race, gender, age, citizenship, ethnicity, marital status, academic performance, health status, volume of market transactions, religion, sexual orientation, etc. However, these forms of discrimination are not equally tolerable. For example, discrimination based on immutable or prohibitively unalterable characteristics such as race, gender, or ethnicity is much less acceptable. Why? I develop a simple model of conflict which is drive...

  14. Socially-tolerable discrimination

    OpenAIRE

    Amegashie, J. Atsu

    2008-01-01

    History is replete with overt discrimination on the basis of race, gender, age, citizenship, ethnicity, marital status, academic performance, health status, volume of market transactions, religion, sexual orientation, etc. However, these forms of discrimination are not equally tolerable. For example, discrimination based on immutable or prohibitively unalterable characteristics such as race, gender, or ethnicity is much less acceptable. Why? I develop a simple rent-seeking model of conflict w...

  15. Drought Tolerance in Wheat

    Directory of Open Access Journals (Sweden)

    Arash Nezhadahmadi

    2013-01-01

    Full Text Available Drought is one of the most important phenomena which limit crops’ production and yield. Crops demonstrate various morphological, physiological, biochemical, and molecular responses to tackle drought stress. Plants’ vegetative and reproductive stages are intensively influenced by drought stress. Drought tolerance is a complicated trait which is controlled by polygenes and their expressions are influenced by various environmental elements. This means that breeding for this trait is so difficult and new molecular methods such as molecular markers, quantitative trait loci (QTL mapping strategies, and expression patterns of genes should be applied to produce drought tolerant genotypes. In wheat, there are several genes which are responsible for drought stress tolerance and produce different types of enzymes and proteins for instance, late embryogenesis abundant (lea, responsive to abscisic acid (Rab, rubisco, helicase, proline, glutathione-S-transferase (GST, and carbohydrates during drought stress. This review paper has concentrated on the study of water limitation and its effects on morphological, physiological, biochemical, and molecular responses of wheat with the possible losses caused by drought stress.

  16. A Multirelational Account of Toleration

    DEFF Research Database (Denmark)

    Ferretti, Maria Paola; Lægaard, Sune

    2013-01-01

    Toleration classically denotes a relation between two agents that is characterised by three components: objection, power, and acceptance overriding the objection. Against recent claims that classical toleration is not applicable in liberal democracies and that toleration must therefore either be...... as wholes, rather than as sets of isolated relations. We explain this by showing how certain cases of toleration are multi-dimensional and how the descriptive concept of toleration might be understood intersectionally. We exemplify this by drawing on case studies of mosque controversies in Germany...

  17. A Multirelational Account of Toleration

    DEFF Research Database (Denmark)

    Ferretti, Maria Paola; Lægaard, Sune

    2013-01-01

    be understood purely attitudinally or purely politically, we argue that the components of classical toleration are crucial elements of contemporary cases of minority accommodation. The concept of toleration is applicable to, and is an important element of descriptions of such cases, provided that one views them...... and Denmark. Finally, we propose that intersectionality is not only relevant to the descriptive concept of toleration but also captures an important aspect of normative theories of toleration. We illustrate this by discussing ideals of respect-based toleration, which we also apply to the case studies....

  18. Carotenoid Biosynthetic and Catabolic Pathways: Gene Expression and Carotenoid Content in Grains of Maize Landraces

    Directory of Open Access Journals (Sweden)

    Rafael da Silva Messias

    2014-01-01

    Full Text Available Plant carotenoids have been implicated in preventing several age-related diseases, and they also provide vitamin A precursors; therefore, increasing the content of carotenoids in maize grains is of great interest. It is not well understood, however, how the carotenoid biosynthetic pathway is regulated. Fortunately, the maize germplasm exhibits a high degree of genetic diversity that can be exploited for this purpose. Here, the accumulation of carotenoids and the expression of genes from carotenoid metabolic and catabolic pathways were investigated in several maize landraces. The carotenoid content in grains varied from 10.03, in the white variety MC5, to 61.50 μg·g−1, in the yellow-to-orange variety MC3, and the major carotenoids detected were lutein and zeaxanthin. PSY1 (phythoene synthase expression showed a positive correlation with the total carotenoid content. Additionally, the PSY1 and HYD3 (ferredoxin-dependent di-iron monooxygenase expression levels were positively correlated with β-cryptoxanthin and zeaxanthin, while CYP97C (cytochrome P450-type monooxygenase expression did not correlate with any of the carotenoids. In contrast, ZmCCD1 (carotenoid dioxygenase was more highly expressed at the beginning of grain development, as well as in the white variety, and its expression was inversely correlated with the accumulation of several carotenoids, suggesting that CCD1 is also an important enzyme to be considered when attempting to improve the carotenoid content in maize. The MC27 and MC1 varieties showed the highest HYD3/CYP97C ratios, suggesting that they are promising candidates for increasing the zeaxanthin content; in contrast, MC14 and MC7 showed low HYD3/CYP97C, suggesting that they may be useful in biofortification efforts aimed at promoting the accumulation of provitamin A. The results of this study demonstrate the use of maize germplasm to provide insight into the regulation of genes involved in the carotenoid pathway, which

  19. CYP24, the enzyme that catabolizes the antiproliferative agent vitamin D, is increased in lung cancer.

    Science.gov (United States)

    Parise, Robert A; Egorin, Merrill J; Kanterewicz, Beatriz; Taimi, Mohammed; Petkovich, Martin; Lew, April M; Chuang, Samuel S; Nichols, Mark; El-Hefnawy, Talal; Hershberger, Pamela A

    2006-10-15

    1Alpha,25-dihydroxyvitamin D3 (1,25D3) displays potent antiproliferative activity in a variety of tumor model systems and is currently under investigation in clinical trials in cancer. Studies were initiated to explore its potential in nonsmall cell lung cancer (NSCLC), as effective approaches to the treatment of that disease are needed. In evaluating factors that may affect activity in NSCLC, the authors found that CYP24 (25-hydroxyvitamin D3-24-hydroxylase), the enzyme that catabolizes 1,25D3, is frequently expressed in NSCLC cell lines but not in the nontumorigenic bronchial epithelial cell line, Beas2B. CYP24 expression by RT-PCR was also detected in 10/18 primary lung tumors but in only 1/11 normal lung tissue specimens. Tumor-specific CYP24 upregulation was confirmed at the protein level via immunoblot analysis of patient-matched normal lung tissue and lung tumor extracts. Enzymatically active CYP24 is expected to desensitize NSCLC cells to 1,25D3. The authors therefore implemented a high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) assay for 1,25D3 and its CYP24-generated metabolites to determine whether NSCLC cells express active enzyme. Analysis of NSCLC cell cultures revealed time-dependent loss of 1,25D3 coincident with the appearance of CYP24-generated metabolites. MK-24(S)-S(O)(NH)-Ph-1, a specific inhibitor of CYP24, slowed the loss of 1,25D3 and increased 1,25D3 half-life. Furthermore, combination of 1,25D3 with MK-24(S)-S(O)(NH)-Ph-1 resulted in a significant decrease in the concentration of 1,25D3 required to achieve maximum growth inhibition in NSCLC cells. These data suggest that increased CYP24 expression in lung tumors restricts 1,25D3 activity and support the preclinical evaluation of CYP24 inhibitors for lung cancer treatment. PMID:16708384

  20. Improvement of cellulose catabolism in Clostridium cellulolyticum by sporulation abolishment and carbon alleviation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongchao [ORNL; Xu, Tao [University of Oklahoma, Norman; Tschaplinski, Timothy J [ORNL; Engle, Nancy L [ORNL; Graham, David E [ORNL; He, Zhili [University of Oklahoma, Norman; Zhou, Jizhong [University of Oklahoma, Norman

    2014-01-01

    Background Clostridium cellulolyticum can degrade lignocellulosic biomass, and ferment the soluble sugars to produce valuable chemicals such as lactate, acetate, ethanol and hydrogen. However, the cellulose utilization efficiency of C. cellulolyticum still remains very low, impeding its application in consolidated bioprocessing for biofuels production. In this study, two metabolic engineering strategies were exploited to improve cellulose utilization efficiency, including sporulation abolishment and carbon overload alleviation. Results The spo0A gene at locus Ccel_1894, which encodes a master sporulation regulator was inactivated. The spo0A mutant abolished the sporulation ability. In a high concentration of cellulose (50 g/l), the performance of the spo0A mutant increased dramatically in terms of maximum growth, final concentrations of three major metabolic products, and cellulose catabolism. The microarray and gas chromatography mass spectrometry (GC-MS) analyses showed that the valine, leucine and isoleucine biosynthesis pathways were up-regulated in the spo0A mutant. Based on this information, a partial isobutanol producing pathway modified from valine biosynthesis was introduced into C. cellulolyticum strains to further increase cellulose consumption by alleviating excessive carbon load. The introduction of this synthetic pathway to the wild-type strain improved cellulose consumption from 17.6 g/l to 28.7 g/l with a production of 0.42 g/l isobutanol in the 50 g/l cellulose medium. However, the spo0A mutant strain did not appreciably benefit from introduction of this synthetic pathway and the cellulose utilization efficiency did not further increase. A technical highlight in this study was that an in vivo promoter strength evaluation protocol was developed using anaerobic fluorescent protein and flow cytometry for C. cellulolyticum. Conclusions In this study, we inactivated the spo0A gene and introduced a heterologous synthetic pathway to manipulate the stress

  1. Location and PCR analysis of catabolic genes in a novel Streptomyces sp. DUT_AHX capable of degrading nitrobenzene

    Institute of Scientific and Technical Information of China (English)

    AI Haixin; ZHOU Jiti; LV Hong; WANG Jing; GUO Jianbo; LIU Guangfei; QU Yuanyuan

    2008-01-01

    A novel strain of Streptomyces sp. DUT_AHX was isolated from sludge contaminated with nitrobenzene and identified on the basis of physiological and biochemical tests and 16S ribosomal DNA (rDNA) sequence analysis. The optimal degradation conditions were as follows: temperature 30℃, pH 7.0-8.0, shaking speed 150-180 r/min and inocula 10% (V/V). The strain, which possessed a partial reductive pathway with the release of ammonia, was also able to grow on mineral salts basal (MSB) medium plates with 2-aminophenol, phenol, or toluene as the sole carbon source. Furthermore, the enzyme activity tests showed crude extracts of nitrobenzene-grown DUT_AHX contained 2-aminophenol 1,6-dioxygenase activity. The 17-kb plasmid was isolated by the modified alkaline lysis method and was further cured by sodium dodecyl sulphate (SDS) together with 37℃. As a result, the cured derivative strain DUT_AHX-4 lost the 2-aminophenol 1,6-dioxygenase activity. The results suggested that the catabolic genes encoding the nitrobenzene-degrading enzymes were plasmid-associated. Moreover, the plasmid DNA was amplified with degenerate primers by touchdown PCR and an expected size fragment (471 bp) was generated. The Blast results revealed that the gene encoding a 157 amino acid polypeptide was 39% to 76% identical to YHS domain protein. The further examination of the plasmid would demonstrate the molecular basis of nitrobenzene catabolism in Streptomyces, such as regulation and genetic organization of the catabolic genes.

  2. Simultaneous catabolism of plant-derived aromatic compounds results in enhanced growth for members of the Roseobacter lineage.

    Science.gov (United States)

    Gulvik, Christopher A; Buchan, Alison

    2013-06-01

    Plant-derived aromatic compounds are important components of the dissolved organic carbon pool in coastal salt marshes, and their mineralization by resident bacteria contributes to carbon cycling in these systems. Members of the roseobacter lineage of marine bacteria are abundant in coastal salt marshes, and several characterized strains, including Sagittula stellata E-37, utilize aromatic compounds as primary growth substrates. The genome sequence of S. stellata contains multiple, potentially competing, aerobic ring-cleaving pathways. Preferential hierarchies in substrate utilization and complex transcriptional regulation have been demonstrated to be the norm in many soil bacteria that also contain multiple ring-cleaving pathways. The purpose of this study was to ascertain whether substrate preference exists in S. stellata when the organism is provided a mixture of aromatic compounds that proceed through different ring-cleaving pathways. We focused on the protocatechuate (pca) and the aerobic benzoyl coenzyme A (box) pathways and the substrates known to proceed through them, p-hydroxybenzoate (POB) and benzoate, respectively. When these two substrates were provided at nonlimiting carbon concentrations, temporal patterns of cell density, gene transcript abundance, enzyme activity, and substrate concentrations indicated that S. stellata simultaneously catabolized both substrates. Furthermore, enhanced growth rates were observed when S. stellata was provided both compounds simultaneously compared to the rates of cells grown singly with an equimolar concentration of either substrate alone. This simultaneous-catabolism phenotype was also demonstrated in another lineage member, Ruegeria pomeroyi DSS-3. These findings challenge the paradigm of sequential aromatic catabolism reported for soil bacteria and contribute to the growing body of physiological evidence demonstrating the metabolic versatility of roseobacters.

  3. Quality assurances and tolerances

    Energy Technology Data Exchange (ETDEWEB)

    Kirschling, G.

    1991-12-31

    This book presents a comprehensive statistical solution to tolerance problems to be used as an alternative to the conventional arithmetic approach that is used for tolerancing. The book is a translation from an original text in German. The classificatio nof the book would be as a reference text for engineers who are working in the production and quality control fields, particularly in process control. Academics who are teaching such subjects as statistical process control of geometric dimensioning and tolerancing will also find the book useful.

  4. State, religion and toleration

    DEFF Research Database (Denmark)

    Huggler, Jørgen

    2009-01-01

    to underline not only the broadmindedness and liberty of individuals or of groups, but also the relevant distinctions and arguments in political philosophy, epistemology, philosophy of religion and philosophical anthropology and their connection with educational issues. Through a discussion of these relations......Contribution to Religion and State - From separation to cooperation? Legal-philosophical reflections for a de-secularized world. (IVR Cracow Special Workshop). Eds. Bart. C. Labuschagne & Ari M. Solon. Abstract: Toleration is indeed a complex phenomenon. A discussion of the concept will have...

  5. Acute local inflammation alters synthesis, distribution, and catabolism of third component of complement (C3) in rabbits.

    OpenAIRE

    Manthei, U; Strunk, R. C.; Giclas, P. C.

    1984-01-01

    In order to evaluate the basis for changes in plasma concentrations of the third component of complement (C3) during inflammation, we injected purified radiolabeled C3 into normal New Zealand White rabbits and into rabbits with turpentine-induced pleurisy. In the normal animals, C3 was distributed between the intravascular compartment (75%) and the extravascular space (25%), with an exchange rate of 1.8 +/- 0.1% of the plasma pool per hour. The fractional catabolic rate (FCR) was 2.7 +/- 0.3%...

  6. Alternative route for biosynthesis of amino sugars in Escherichia coli K-12 mutants by means of a catabolic isomerase.

    OpenAIRE

    Vogler, A P; Trentmann, S.; Lengeler, J W

    1989-01-01

    By inserting a lambda placMu bacteriophage into gene glmS encoding glucosamine 6-phosphate synthetase (GlmS), the key enzyme of amino sugar biosynthesis, a nonreverting mutant of Escherichia coli K-12 that was strictly dependent on exogenous N-acetyl-D-glucosamine or D-glucosamine was generated. Analysis of suppressor mutations rendering the mutant independent of amino sugar supply revealed that the catabolic enzyme D-glucosamine-6-phosphate isomerase (deaminase), encoded by gene nagB of the ...

  7. An Unexpected Location of the Arginine Catabolic Mobile Element (ACME) in a USA300-Related MRSA Strain

    DEFF Research Database (Denmark)

    Damkjær Bartels, Mette; Hansen, Lars H.; Boye, Kit;

    2011-01-01

    In methicillin resistant Staphylococcus aureus (MRSA), the arginine catabolic mobile element (ACME) was initially described in USA300 (t008-ST8) where it is located downstream of the staphylococcal cassette chromosome mec (SCCmec). A common health-care associated MRSA in Copenhagen, Denmark (t024...... composite island of S. epidermidis strain ATCC12228. Sequencing of an ACME negative t024-ST8 strain (M299) showed that DR1 and the sequence between DR1 and DR3 was missing. The finding of a mobile ACME II-like element inserted downstream of orfX and upstream of SCCmec indicates a novel recombination between...

  8. Regulation of insulin-like growth factor binding protein-1 (IGFBP-1) and implications in catabolic conditions

    OpenAIRE

    Lindgren, Björn

    1997-01-01

    This thesis has studied the regulation of IGFBP-1 (insulin-like growth factor binding protein 1), which is one factor regulating the bioavailability of IGF-I with special interest how IGFBP-1 is regulated in vitro and in humans, especially in diabetes and catabolic conditions. The IGFBP-1 cDNA was cloned and used for studies in human hepatoma cells, HepG2, which showed that both insulin and IGF-I could decrease IGFBP-1 in the cell conditioned medium. IGF-I inhibited also IGF...

  9. The pentraxins, C-reactive protein and serum amyloid P component, are cleared and catabolized by hepatocytes in vivo.

    OpenAIRE

    Hutchinson, W L; Noble, G. E.; Hawkins, P N; Pepys, M B

    1994-01-01

    The cellular sites of clearance and degradation of the pentraxin plasma proteins, C-reactive protein, the classical acute phase reactant, and serum amyloid P component (SAP), a universal constituent of amyloid deposits, were sought using the ligand 125I-tyramine cellobiose (TC) which is substantially retained within the cells in which catabolism takes place. Pentraxins labeled with 125I-TC showed the same in vitro and in vivo ligand binding and the same in vivo plasma t1/2 as the directly iod...

  10. Nutritional regulation and role of peroxisome proliferator-activated receptor delta in fatty acid catabolism in skeletal muscle

    DEFF Research Database (Denmark)

    Holst, Dorte; Luquet, Serge; Nogueira, Véronique;

    2003-01-01

    Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors primarily involved in lipid homeostasis. PPARdelta displays strong expression in tissues with high lipid metabolism, such as adipose, intestine and muscle. Its role in skeletal muscle remains largely unknown. After a 24-h...... of genes involved in lipid metabolism and increment of fatty acid oxidation. Overexpression of PPARdelta enhanced these cellular responses, whereas expression of the dominant-negative mutant exerts opposite effects. These data strongly support a role for PPARdelta in the regulation of fatty acid oxidation...... in skeletal muscle and in adaptive response of this tissue to lipid catabolism....

  11. Ethnopoly promotes tolerance

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    On Friday 23 April, 225 primary school children from the eight schools in Meyrin-Cointrin and their accompanying adults took part in a big game of Ethnopoly. Private individuals, associations, administrations, shopkeepers and CERN all opened their doors to them to talk about their countries, their customs and what they are doing to promote tolerance and integration.   The CERN stand set up at ForumMeyrin for the Ethnopoly game. Scurrying from one place to another, the 10 and 11 year olds were made aware of the rich cultural diversity of their commune, which is home to 130 different nationalities. Physicists and engineers from CERN took up residence in the Forum Meyrin for the day in order to talk to the children about the advantages of international collaboration, a subject dear to the Organization's heart. They welcomed around fifty children in the course of the day, conveying to them a message of tolerance: despite their differences, the 10,000 scientists and other members of the CERN...

  12. Monotropein exerts protective effects against IL-1β-induced apoptosis and catabolic responses on osteoarthritis chondrocytes.

    Science.gov (United States)

    Wang, Feng; Wu, Longhuo; Li, Linfu; Chen, Siyi

    2014-12-01

    Osteoarthritis, characterized by a loss of articular cartilage accompanied with inflammation, is the most common age-associated degenerative disease. Monotropein, an iridoids glycoside isolated from the roots of Morinda officinalis How, has been demonstrated to exhibit anti-inflammatory activity. In the present study, monotropein was firstly to exhibit cartilage protective activity by down regulating the pro-inflammatory cytokines in the knee synovial fluid in vivo. The anti-apoptotic and anti-catabolic effects of monotropein on rat OA chondrocytes treated by IL-1β were investigated in vitro. In cultured chondrocytes, monotropein attenuated apoptosis in a dose-dependent manner in response to IL-1β stimulation. Moreover, treatment with monotropein, the expressions of MMP-3 and MMP-13 were significantly decreased, the expression of COL2A1 was increased. Taken together, these findings suggested that monotropein exerted anti-apoptosis and anti-catabolic activity in chondrocytes, which might support its possible therapeutic role in OA. PMID:25466264

  13. Catabolic and regulatory systems in Shewanella oneidensis MR-1 involved in electricity generation in microbial fuel cells

    Directory of Open Access Journals (Sweden)

    Atsushi eKouzuma

    2015-06-01

    Full Text Available Shewanella oneidensis MR-1 is a facultative anaerobe that respires using a variety of inorganic and organic compounds. MR-1 is also capable of utilizing extracellular solid materials, including anodes in microbial fuel cells (MFCs, as electron acceptors, thereby enabling electricity generation. As MFCs have the potential to generate electricity from biomass waste and wastewater, MR-1 has been extensively studied to identify the molecular systems that are involved in electricity generation in MFCs. These studies have demonstrated the importance of extracellular electron-transfer pathways that electrically connect the quinone pool in the cytoplasmic membrane to extracellular electron acceptors. Electricity generation is also dependent on intracellular catabolic pathways that oxidize electron donors, such as lactate, and regulatory systems that control the expression of genes encoding the components of catabolic and electron-transfer pathways. In addition, recent findings suggest that cell-surface polymers, e.g., exopolysaccharides, and secreted chemicals, which function as electron shuttles, are also involved in electricity generation. Despite these advances in our knowledge on the extracellular electron-transfer processes in MR-1, further efforts are necessary to fully understand the underlying intra- and extra-cellular molecular systems for electricity generation in MFCs. We suggest that investigating how MR-1 coordinates these systems to efficiently transfer electrons to electrodes and conserve electrochemical energy for cell proliferation is important for establishing the biological bases for MFCs.

  14. Transcriptomic and metabolomic analyses identify a role for chlorophyll catabolism and phytoalexin during Medicago nonhost resistance against Asian soybean rust.

    Science.gov (United States)

    Ishiga, Yasuhiro; Uppalapati, Srinivasa Rao; Gill, Upinder S; Huhman, David; Tang, Yuhong; Mysore, Kirankumar S

    2015-08-12

    Asian soybean rust (ASR) caused by Phakopsora pachyrhizi is a devastating foliar disease affecting soybean production worldwide. Understanding nonhost resistance against ASR may provide an avenue to engineer soybean to confer durable resistance against ASR. We characterized a Medicago truncatula-ASR pathosystem to study molecular mechanisms of nonhost resistance. Although urediniospores formed appressoria and penetrated into epidermal cells of M. truncatula, P. pachyrhizi failed to sporulate. Transcriptomic analysis revealed the induction of phenylpropanoid, flavonoid and isoflavonoid metabolic pathway genes involved in the production of phytoalexin medicarpin in M. truncatula upon infection with P. pachyrhizi. Furthermore, genes involved in chlorophyll catabolism were induced during nonhost resistance. We further characterized one of the chlorophyll catabolism genes, Stay-green (SGR), and demonstrated that the M. truncatula sgr mutant and alfalfa SGR-RNAi lines showed hypersensitive-response-like enhanced cell death upon inoculation with P. pachyrhizi. Consistent with transcriptomic analysis, metabolomic analysis also revealed the accumulation of medicarpin and its intermediate metabolites. In vitro assay showed that medicarpin inhibited urediniospore germination and differentiation. In addition, several triterpenoid saponin glycosides accumulated in M. truncatula upon inoculation with P. pachyrhizi. In summary, using multi-omic approaches, we identified a correlation between phytoalexin production and M. truncatula defense responses against ASR.

  15. Pathway-level acceleration of glycogen catabolism by a response regulator in the cyanobacterium Synechocystis species PCC 6803.

    Science.gov (United States)

    Osanai, Takashi; Oikawa, Akira; Numata, Keiji; Kuwahara, Ayuko; Iijima, Hiroko; Doi, Yoshiharu; Saito, Kazuki; Hirai, Masami Yokota

    2014-04-01

    Response regulators of two-component systems play pivotal roles in the transcriptional regulation of responses to environmental signals in bacteria. Rre37, an OmpR-type response regulator, is induced by nitrogen depletion in the unicellular cyanobacterium Synechocystis species PCC 6803. Microarray and quantitative real-time polymerase chain reaction analyses revealed that genes related to sugar catabolism and nitrogen metabolism were up-regulated by rre37 overexpression. Protein levels of GlgP(slr1367), one of the two glycogen phosphorylases, in the rre37-overexpressing strain were higher than those of the parental wild-type strain under both nitrogen-replete and nitrogen-depleted conditions. Glycogen amounts decreased to less than one-tenth by rre37 overexpression under nitrogen-replete conditions. Metabolome analysis revealed that metabolites of the sugar catabolic pathway and amino acids were altered in the rre37-overexpressing strain after nitrogen depletion. These results demonstrate that Rre37 is a pathway-level regulator that activates the metabolic flow from glycogen to polyhydroxybutyrate and the hybrid tricarboxylic acid and ornithine cycle, unraveling the mechanism of the transcriptional regulation of primary metabolism in this unicellular cyanobacterium.

  16. Functional characterization of diverse ring-hydroxylating oxygenases and induction of complex aromatic catabolic gene clusters in Sphingobium sp. PNB

    Directory of Open Access Journals (Sweden)

    Pratick Khara

    2014-01-01

    Full Text Available Sphingobium sp. PNB, like other sphingomonads, has multiple ring-hydroxylating oxygenase (RHO genes. Three different fosmid clones have been sequenced to identify the putative genes responsible for the degradation of various aromatics in this bacterial strain. Comparison of the map of the catabolic genes with that of different sphingomonads revealed a similar arrangement of gene clusters that harbors seven sets of RHO terminal components and a sole set of electron transport (ET proteins. The presence of distinctly conserved amino acid residues in ferredoxin and in silico molecular docking analyses of ferredoxin with the well characterized terminal oxygenase components indicated the structural uniqueness of the ET component in sphingomonads. The predicted substrate specificities, derived from the phylogenetic relationship of each of the RHOs, were examined based on transformation of putative substrates and their structural homologs by the recombinant strains expressing each of the oxygenases and the sole set of available ET proteins. The RHO AhdA1bA2b was functionally characterized for the first time and was found to be capable of transforming ethylbenzene, propylbenzene, cumene, p-cymene and biphenyl, in addition to a number of polycyclic aromatic hydrocarbons. Overexpression of aromatic catabolic genes in strain PNB, revealed by real-time PCR analyses, is a way forward to understand the complex regulation of degradative genes in sphingomonads.

  17. Salt Tolerance in Soybean

    Institute of Scientific and Technical Information of China (English)

    Tsui-Hung Phang; Guihua Shao; Hon-Ming Lam

    2008-01-01

    Soybean is an Important cash crop and its productivity is significantly hampered by salt stress. High salt Imposes negative impacts on growth, nodulation, agronomy traits, seed quality and quantity, and thus reduces the yield of soybean. To cope with salt stress, soybean has developed several tolerance mechanisms, including: (I) maintenance of ion homeostasis; (ii) adjustment in response to osmotic stress; (iii) restoration of osmotic balance; and (iv) other metabolic and structural adaptations. The regulatory network for abiotic stress responses in higher plants has been studied extensively in model plants such as Arabidopsis thaliana. Some homologous components involved in salt stress responses have been identified in soybean. In this review, we tried to integrate the relevant works on soybean and proposes a working model to descdbe Its salt stress responses at the molecular level.

  18. Manufacturing tolerant topology optimization

    DEFF Research Database (Denmark)

    Sigmund, Ole

    2009-01-01

    In this paper we present an extension of the topology optimization method to include uncertainties during the fabrication of macro, micro and nano structures. More specifically, we consider devices that are manufactured using processes which may result in (uniformly) too thin (eroded) or too thick...... (dilated) structures compared to the intended topology. Examples are MEMS devices manufactured using etching processes, nano-devices manufactured using e-beam lithography or laser micro-machining and macro structures manufactured using milling processes. In the suggested robust topology optimization...... that the method provides manufacturing tolerant designs with little decrease in performance. As a positive side effect the robust design formulation also eliminates the longstanding problem of one-node connected hinges in compliant mechanism design using topology optimization....

  19. Legal Quality, Inequality, and Tolerance

    DEFF Research Database (Denmark)

    Bjørnskov, Christian

    2004-01-01

    Previous findings suggest that income inequality leads to lower legal quality. This paper argues that voters' tolerance of inequality exerts an additional influence. Empirical findings suggest that inequality leads to lower legal quality due to its effect on trust while the tolerance of inequality...

  20. Legal Quality, Inequality, and Tolerance

    DEFF Research Database (Denmark)

    Bjørnskov, Christian

    Previous findings suggest that income inequality leads to lower legal quality. This paper argues that voters' tolerance of inequality exerts an additional influence. Empirical findings suggest that inequality leads to lower legal quality due to its effect on trust while the tolerance of inequality...

  1. Ability of a solid state fermentation technique to significantly minimize catabolic repression of. alpha. -amylase production by Bacillus licheniformis M27

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh, M.V.; Lonsane, B.K. (Central Food Technological Research Inst., Mysore (India). Fermentation Technology and Bioengineering Discipline)

    1991-08-01

    The production of {alpha}-amylase by Bacillus licheniformis M27 in submerged fermentation was completely inhibited due to catabolic repression in medium containing 1% glucose. In contrast, the enzyme production in a solid state fermentation system was 19,550 units/ml extract even when the medium contained 15% glucose. The peak in enzyme titre was, however, shifted from 48 to 72 h. The ability of the solid state fermentation system to significantly overcome catabolic repression was not known earlier and is probably conferred by various physico-chemical factors and culture conditions specific to the system. (orig.).

  2. General tolerances -- Part 2: Geometrical tolerances for features without individual tolerance indications

    CERN Document Server

    International Organization for Standardization. Geneva

    1989-01-01

    This part is intended to simplify drawing indications and specifies general tolerances in three tolerance classes. It mainly applies to features which are produced by removal of material. It contains tour tables and an informative annex A with regard to concepts behind general tolerancing of dimensions, as well as an informative annex B with further information.

  3. A CAD MODEL FOR FUZZY CONCURRENT TOLERANCE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Research situation of concurrent tolerance design has been analyzed. As fuzzy factors are objective and unavoidable in concurrent tolerance design, fuzzy optimization theory is applied in the design. A new mathematical model of concurrent tolerance design is constructed.

  4. Genetic Interaction of Aspergillus nidulans galR, xlnR and araR in Regulating D-Galactose and L-Arabinose Release and Catabolism Gene Expression.

    Directory of Open Access Journals (Sweden)

    Joanna E Kowalczyk

    Full Text Available In Aspergillus nidulans, the xylanolytic regulator XlnR and the arabinanolytic regulator AraR co-regulate pentose catabolism. In nature, the pentose sugars D-xylose and L-arabinose are both main building blocks of the polysaccharide arabinoxylan. In pectin and arabinogalactan, these two monosaccharides are found in combination with D-galactose. GalR, the regulator that responds to the presence of D-galactose, regulates the D-galactose catabolic pathway. In this study we investigated the possible interaction between XlnR, AraR and GalR in pentose and/or D-galactose catabolism in A. nidulans. Growth phenotypes and metabolic gene expression profiles were studied in single, double and triple disruptant A. nidulans strains of the genes encoding these paralogous transcription factors. Our results demonstrate that AraR and XlnR not only control pentose catabolic pathway genes, but also genes of the oxido-reductive D-galactose catabolic pathway. This suggests an interaction between three transcriptional regulators in D-galactose catabolism. Conversely, GalR is not involved in regulation of pentose catabolism, but controls only genes of the oxido-reductive D-galactose catabolic pathway.

  5. Manufacturing tolerant topology optimization

    Institute of Scientific and Technical Information of China (English)

    Ole Sigmund

    2009-01-01

    In this paper we present an extension of the topology optimization method to include uncertainties during the fabrication of macro, micro and nano structures. More specifically, we consider devices that are manufactured using processes which may result in (uniformly) too thin (eroded)or too thick (dilated) structures compared to the intended topology. Examples are MEMS devices manufactured using etching processes, nano-devices manufactured using e-beam lithography or laser micro-machining and macro structures manufactured using milling processes. In the suggested robust topology optimization approach, under- and over-etching is modelled by image processing-based "erode" and "dilate" operators and the optimization problem is formulated as a worst case design problem. Applications of the method to the design of macro structures for minimum compliance and micro compliant mechanisms show that the method provides manufacturing tolerant designs with little decrease in performance. As a positive side effect the robust design formulation also eliminates the longstanding problem of one-node connected hinges in compliant mechanism design using topology optimization.

  6. Commitment and tolerance.

    Science.gov (United States)

    Thomasma, D C

    1988-11-01

    The article attempts to approach the abortion issue in a rather unconventional manner. Instead of picking a side and then trying to support it, the author demonstrates first how most people in the US are fence sitters on the issue of abortion. They support neither side with very much intensity, although most of them are currently facing the pro-abortion side. From there the author argues that the activists on both side are so extreme in their views that they both lose their legitimacy. The anti-abortionists do not seem interested in improving the quality of life for anyone other than unborn fetuses and as such they do not really seem to be "pro-life". On the other hand, pro-abortionists focus too much on the autonomy of women and seem to ignore the fact that an abortion is the ending of a potential human life. They do not put the value of the fetus into their "pro-choice" views, it is only a choice for a woman to make about her body, not a choice of one person's right over the rights of a potential person. It is this fundamental extremism that the author cites as the source of the furor over abortion. If both sides were more tolerant of each and chose sides. It is this fundamental extremism that must be replaced with persuasion if either side is to truly achieve a victory. The author's personal belief is that abortion on demand must be ended in this country.

  7. The influence of precultivation parameters on the catabolism of branched-chain amino acids by Staphylococcus xylosus and Staphylococcus carnosus

    DEFF Research Database (Denmark)

    Olesen, Pelle Thonning; Stahnke, Louise Heller

    2003-01-01

    The influence of precultivation. parameters on the ability of Staphylococcus xylosus and Staphylococcus carnosus to convert branched-chain amino acids-leucine, isoleucine and valine-into volatile flavour compounds was investigated using resting cells in a defined reaction medium. The studied...... precultivation parameters were: growth phase, temperature, NaCl concentration and the concentration of leucine, isoleucine and valine (only for S. xylosus). Flavour compounds were sampled by automatic static headspace collection and separated/quantified using gas chromatography/flame ionization detection (GC....../FID).Main catabolic products from degradation of leucine, isoleucine and valine were the flavour intensive branched-chain acids: 2-and 3-methylbutanoic and 2-methylpropanoic acids. The precultivation parameters altered the production of the branched-chain acids significantly, but to various degrees for S. xylosus...

  8. The putrescine biosynthesis pathway in Lactococcus lactis is transcriptionally regulated by carbon catabolic repression, mediated by CcpA.

    Science.gov (United States)

    Linares, Daniel M; del Río, Beatriz; Ladero, Victor; Redruello, Begoña; Martín, María Cruz; Fernández, María; Alvarez, Miguel A

    2013-07-01

    Lactococcus lactis is the lactic acid bacterium most widely used by the dairy industry as a starter for the manufacture of fermented products such as cheese and buttermilk. However, some strains produce putrescine from agmatine via the agmatine deiminase (AGDI) pathway. The proteins involved in this pathway, including those necessary for agmatine uptake and conversion into putrescine, are encoded by the aguB, aguD, aguA and aguC genes, which together form an operon. This paper reports the mechanism of regulation of putrescine biosynthesis in L. lactis. It is shown that the aguBDAC operon, which contains a cre site at the promoter of aguB (the first gene of the operon), is transcriptionally regulated by carbon catabolic repression (CCR) mediated by the catabolite control protein CcpA. PMID:23688550

  9. Association of a high normalized protein catabolic rate and low serum albumin level with carpal tunnel syndrome in hemodialysis patients.

    Science.gov (United States)

    Huang, Wen-Hung; Hsu, Ching-Wei; Weng, Cheng-Hao; Yen, Tzung-Hai; Lin, Jui-Hsiang; Lee, Meng

    2016-06-01

    Carpal tunnel syndrome (CTS) is the most common mononeuropathy in patients with end-stage renal disease (ESRD). The association between chronic inflammation and CTS in hemodialysis (HD) patients has rarely been investigated. HD patients with a high normalized protein catabolic rate (nPCR) and low serum albumin level likely have adequate nutrition and inflammation. In this study, we assume that a low serum albumin level and high nPCR is associated with CTS in HD patients. We recruited 866 maintenance hemodialysis (MHD) patients and divided them into 4 groups according to their nPCR and serum albumin levels: (1) nPCR MHD patients, nPCR ≥1.29 g/kg/d and serum albumin 7.5 years were associated with CTS. A high nPCR and low serum albumin level, which likely reflect adequate nutrition and inflammation, were associated with CTS in MHD patients. PMID:27368039

  10. 2-Methylbutyryl-coenzyme A dehydrogenase deficiency: functional and molecular studies on a defect in isoleucine catabolism

    DEFF Research Database (Denmark)

    Sass, Jörn Oliver; Ensenauer, Regina; Röschinger, Wulf;

    2007-01-01

    individuals showed clinical symptoms attributable to MBD deficiency although the defect in isoleucine catabolism was demonstrated both in vivo and in vitro. Several mutations in the ACADSB gene were identified, including a novel one. MBD deficiency may be a harmless metabolic variant although significant......2-Methylbutyryl-CoA dehydrogenase (MBD; coded by the ACADSB gene) catalyzes the step in isoleucine metabolism that corresponds to the isovaleryl-CoA dehydrogenase reaction in the degradation of leucine. Deficiencies of both enzymes may be detected by expanded neonatal screening with tandem...... impairment of valproic acid metabolism cannot be excluded and further study is required to assess the long-term outcome of individuals with this condition. The relatively high prevalence of ACADSB gene mutations in control subjects suggests that MBD deficiency may be more common than previously thought...

  11. The old 3-oxoadipate pathway revisited: new insights in the catabolism of aromatics in the saprophytic fungus Aspergillus nidulans.

    Science.gov (United States)

    Martins, Tiago M; Hartmann, Diego O; Planchon, Sébastien; Martins, Isabel; Renaut, Jenny; Silva Pereira, Cristina

    2015-01-01

    Aspergilli play major roles in the natural turnover of elements, especially through the decomposition of plant litter, but the end catabolism of lignin aromatic hydrocarbons remains largely unresolved. The 3-oxoadipate pathway of their degradation combines the catechol and the protocatechuate branches, each using a set of specific genes. However, annotation for most of these genes is lacking or attributed to poorly- or un-characterised families. Aspergillus nidulans can utilise as sole carbon/energy source either benzoate or salicylate (upstream aromatic metabolites of the protocatechuate and the catechol branches, respectively). Using this cultivation strategy and combined analyses of comparative proteomics, gene mining, gene expression and characterisation of particular gene-replacement mutants, we precisely assigned most of the steps of the 3-oxoadipate pathway to specific genes in this fungus. Our findings disclose the genetically encoded potential of saprophytic Ascomycota fungi to utilise this pathway and provide means to untie associated regulatory networks, which are vital to heightening their ecological significance.

  12. Biomimetic aggrecan reduces cartilage extracellular matrix from degradation and lowers catabolic activity in ex vivo and in vivo models.

    Science.gov (United States)

    Sharma, Shaili; Lee, Aeju; Choi, Kuiwon; Kim, Kwangmeyung; Youn, Inchan; Trippel, Stephen B; Panitch, Alyssa

    2013-09-01

    Aggrecan, a major macromolecule in cartilage, protects the extracellular matrix (ECM) from degradation during the progression of osteoarthritis (OA). However, aggrecan itself is also susceptible to proteolytic cleavage. Here, the use of a biomimetic proteoglycan (mAGC) is presented, which functionally mimics aggrecan but lacks the known cleavage sites, protecting the molecule from proteolytic degradation. The objective of this study is to test the efficacy of this molecule in ex vivo (human OA synovial fluid) and in vivo (Sprague-Dawley rats) osteoarthritic models. These results indicate that mAGC's may protect articular cartilage against the loss of key ECM components, and lower catabolic protein and gene expression in both models. This suppression of matrix degradation has the potential to provide a healthy environment for tissue repair.

  13. Mechanical tolerance stackup and analysis

    CERN Document Server

    Fischer, Bryan R

    2011-01-01

    Use Tolerance Analysis Techniques to Avoid Design, Quality, and Manufacturing Problems Before They Happen Often overlooked and misunderstood, tolerance analysis is a critical part of improving products and their design processes. Because all manufactured products are subject to variation, it is crucial that designers predict and understand how these changes can affect form, fit, and function of parts and assemblies--and then communicate their findings effectively. Written by one of the developers of ASME Y14.5 and other geometric dimension and tolerancing (GD&T) standards, Mechanical Tolerance

  14. An Algebra of Fault Tolerance

    CERN Document Server

    Rao, Shrisha

    2009-01-01

    Every system of any significant size is created by composition from smaller sub-systems or components. It is thus fruitful to analyze the fault-tolerance of a system as a function of its composition. In this paper, two basic types of system composition are described, and an algebra to describe fault tolerance of composed systems is derived. The set of systems forms monoids under the two composition operators, and a semiring when both are concerned. A partial ordering relation between systems is used to compare their fault-tolerance behaviors.

  15. Tolerance of anaerobic conditions caused by flooding during germination and early growth in rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Berta eMiro

    2013-07-01

    Full Text Available Rice is semi-aquatic, adapted to a wide range of hydrologies, from aerobic soils in uplands to anaerobic and flooded fields in waterlogged lowlands, to even deeply submerged soils in flood-prone areas. Considerable diversity is present in native rice landraces selected by farmers over centuries. Our understanding of the adaptive features of these landraces to native ecosystems has improved considerably over the recent past. In some cases, major genes associated with tolerance have been cloned, such as SUB1A that confers tolerance of complete submergence and SNORKEL genes that control plant elongation to escape deepwater. Modern rice varieties are sensitive to flooding during germination and early growth, a problem commonly encountered in rainfed areas, but few landraces capable of germination under these conditions have recently been identified, enabling research into tolerance mechanisms. Major QTLs were also identified, and are being targeted for molecular breeding and for cloning. Nevertheless, limited progress have been made in identifying regulatory processes for traits that are unique to tolerant genotypes, including faster germination and coleoptile elongation, formation of roots and leaves under hypoxia, ability to catabolize starch into simple sugars for subsequent use in glycolysis and fermentative pathways to generate energy. Here we discuss the state of knowledge on the role of the PDC-ALDH-ACS bypass and the ALDH enzyme as the likely candidates effective in tolerant rice genotypes. Potential involvement of factors such as cytoplasmic pH regulation, phytohormones, reactive oxygen species scavenging and other metabolites is also discussed. Further characterization of contrasting genotypes would help in elucidating the genetic and biochemical regulatory and signaling mechanisms associated with tolerance. This could facilitate breeding rice varieties suitable for direct seeding systems and guide efforts for improving waterlogging

  16. Altered heme catabolism by heme oxygenase-1 caused by mutations in human NADPH cytochrome P450 reductase

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Amit V., E-mail: amit@pandeylab.org [Pediatric Endocrinology, Diabetology and Metabolism, Department of Clinical Research, University of Bern, Tiefenaustrasse 120c, CH-3004 Bern (Switzerland); Flueck, Christa E.; Mullis, Primus E. [Pediatric Endocrinology, Diabetology and Metabolism, Department of Clinical Research, University of Bern, Tiefenaustrasse 120c, CH-3004 Bern (Switzerland)

    2010-09-24

    Research highlights: {yields} Mutations in POR identified from patients lead to reduced HO-1 activities. {yields} POR mutation Y181D affecting FMN binding results in total loss of HO-1 activity. {yields} POR mutations A287P, C569Y and V608F, lost 50-70% activity. {yields} Mutations in FAD binding domain, R457H, Y459H and V492E lost all HO-1 activity. {yields} POR polymorphisms P228L, R316W, G413S, A503V and G504R have normal activity. -- Abstract: Human heme oxygenase-1 (HO-1) carries out heme catabolism supported by electrons supplied from the NADPH through NADPH P450 reductase (POR, CPR). Previously we have shown that mutations in human POR cause a rare form of congenital adrenal hyperplasia. In this study, we have evaluated the effects of mutations in POR on HO-1 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified HO-1 to measure heme degradation in a coupled assay using biliverdin reductase. Here we show that mutations in POR found in patients may reduce HO-1 activity, potentially influencing heme catabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had total loss of HO-1 activity, while POR mutations A287P, C569Y and V608F lost 50-70% activity. The POR variants P228L, R316W and G413S, A503V and G504R identified as polymorphs had close to WT activity. Loss of HO-1 activity may result in increased oxidative neurotoxicity, anemia, growth retardation and iron deposition. Further examination of patients affected with POR deficiency will be required to assess the metabolic effects of reduced HO-1 activity in affected individuals.

  17. Evidence for the importance of 5'-deoxy-5-fluorouridine catabolism in humans from 19F nuclear magnetic resonance spectrometry.

    Science.gov (United States)

    Malet-Martino, M C; Armand, J P; Lopez, A; Bernadou, J; Béteille, J P; Bon, M; Martino, R

    1986-04-01

    The use of a new methodology, 19F nuclear magnetic resonance, has allowed detection of all the fluorinated metabolites in the biofluids of patients treated with 5'-deoxy-5-fluorouridine (5'-dFUrd) injected i.v. at a dose of 10 g/m2 over 6 h. This technique, which requires no labeled drug, allows a direct study of the biological sample with no need for extraction or derivatization and a simultaneous identification and quantitation of all the different fluorinated metabolites. As well as the already known metabolites, unmetabolized 5'-dFUrd, 5-fluorouracil, and 5,6-dihydro-5-fluorouracil, the presence of alpha-fluoro-beta-ureidopropionic acid, alpha-fluoro-beta-alanine (FBAL), N-carboxy-alpha-fluoro-beta-alanine, and the fluoride anion F- is reported. The catabolic pathway proposed for 5'-dFUrd is analogous to that of 5-fluorouracil, completed with FBAL----F- step, and the plasmatic equilibrium of FBAL with N-carboxy-alpha-fluoro-beta-alanine, its N-carboxy derivative. The quantitative analysis of the different metabolites found in plasma and urine emphasizes the significance of the catabolic pathway. High concentrations of alpha-fluoro-beta ureidopropionic acid and FBAL are recovered in plasma from 3 h after the beginning of the perfusion to 1 h after its end. The global urinary excretion results show that there is a high excretion of 5'-dFUrd and metabolites. Unchanged 5'-dFUrd and FBAL are by far the major excretory products and are at nearly equal rates. The protocol followed in this study produces relatively low but persistent plasmatic concentrations of 5-fluorouracil throughout the perfusion. PMID:2936452

  18. Platelet-Rich Plasma Increases the Levels of Catabolic Molecules and Cellular Dedifferentiation in the Meniscus of a Rabbit Model

    Directory of Open Access Journals (Sweden)

    Hye-Rim Lee

    2016-01-01

    Full Text Available Despite the susceptibility to frequent intrinsic and extrinsic injuries, especially in the inner zone, the meniscus does not heal spontaneously owing to its poor vascularity. In this study, the effect of platelet-rich plasma (PRP, containing various growth factors, on meniscal mechanisms was examined under normal and post-traumatic inflammatory conditions. Isolated primary meniscal cells of New Zealand white (NZW rabbits were incubated for 3, 10, 14 and 21 days with PRP(−, 10% PRP (PRP(+, IL(+ or IL(+PRP(+. The meniscal cells were collected and examined using reverse-transcription polymerase chain reaction (RT-PCR. Culture media were examined by immunoblot analyses for matrix metalloproteinases (MMP catabolic molecules. PRP containing growth factors improved the cellular viability of meniscal cells in a concentration-dependent manner at Days 1, 4 and 7. However, based on RT-PCR, meniscal cells demonstrated dedifferentiation, along with an increase in type I collagen in the PRP(+ and in IL(+PRP(+. In PRP(+, the aggrecan expression levels were lower than in the PRP(− until Day 21. The protein levels of MMP-1 and MMP-3 were higher in each PRP group, i.e., PRP(+ and IL(+PRP(+, at each culture time. A reproducible 2-mm circular defect on the meniscus of NZW rabbit was used to implant fibrin glue (control or PRP in vivo. After eight weeks, the lesions in the control and PRP groups were occupied with fibrous tissue, but not with meniscal cells. This study shows that PRP treatment of the meniscus results in an increase of catabolic molecules, especially those related to IL-1α-induced inflammation, and that PRP treatment for an in vivo meniscus injury accelerates fibrosis, instead of meniscal cartilage.

  19. Catabolism of Phenol and Its Derivatives in Bacteria: Genes, Their Regulation, and Use in the Biodegradation of Toxic Pollutants.

    Science.gov (United States)

    Nešvera, Jan; Rucká, Lenka; Pátek, Miroslav

    2015-01-01

    Phenol and its derivatives (alkylphenols, halogenated phenols, nitrophenols) are natural or man-made aromatic compounds that are ubiquitous in nature and in human-polluted environments. Many of these substances are toxic and/or suspected of mutagenic, carcinogenic, and teratogenic effects. Bioremediation of the polluted soil and water using various bacteria has proved to be a promising option for the removal of these compounds. In this review, we describe a number of peripheral pathways of aerobic and anaerobic catabolism of various natural and xenobiotic phenolic compounds, which funnel these substances into a smaller number of central catabolic pathways. Finally, the metabolites are used as carbon and energy sources in the citric acid cycle. We provide here the characteristics of the enzymes that convert the phenolic compounds and their catabolites, show their genes, and describe regulatory features. The genes, which encode these enzymes, are organized on chromosomes and plasmids of the natural bacterial degraders in various patterns. The accumulated data on similarities and the differences of the genes, their varied organization, and particularly, an astonishingly broad range of intricate regulatory mechanism may be read as an exciting adventurous book on divergent evolutionary processes and horizontal gene transfer events inscribed in the bacterial genomes. In the end, the use of this wealth of bacterial biodegradation potential and the manipulation of its genetic basis for purposes of bioremediation is exemplified. It is envisioned that the integrated high-throughput techniques and genome-level approaches will enable us to manipulate systems rather than separated genes, which will give birth to systems biotechnology.

  20. In situ, real-time catabolic gene expression: Extraction and characterization of naphthalene dioxygenase mRNA transcripts from groundwater

    International Nuclear Information System (INIS)

    The authors developed procedures for isolating and characterizing in situ-transcribed mRNA from groundwater microorganisms catabolizing naphthalene at a coal tar waste-contaminated site. Groundwater was pumped through 0.22-microm-pore-size filters, which were then frozen to dry ice-ethanol. RNA was extracted from the frozen filters by boiling sodium dodecyl sulfate lysis and acidic phenol-chloroform extraction. Transcript characterization was performed with a series of PCR primers designed to amplify nahAc homologs. Several primer pairs were found to amplify nahAc homologs representing the entire diversity of the naphthalene-degrading genes. The environmental RNA extract was reverse transcribed, and the resultant mixture of cDNAs was amplified by PCR. A digoxigenin-labeled probe mixture was produced by PCR amplification of groundwater cDNA. This probe mixture hybridized under stringent conditions with the corresponding PCR products from naphthalene-degrading bacteria carrying a variety of nahAc homologs, indicating that diverse dioxygenase transcripts had been retrieved from groundwater. Diluted and undiluted cDNA preparations were independently amplified, and 28 of the resulting PCR products were cloned and sequenced. Sequence comparisons revealed two major groups related to the dioxygenase genes ndoB and dntAc, previously cloned from Pseudomonas putida NCIB 9816-4 and Burkholderia sp. strain DNT, respectively. A distinctive subgroup of sequences was found only in experiments performed with the undiluted cDNA preparation. To the authors' knowledge, these results are the first to directly document in situ transcription of genes encoding naphthalene catabolism at a contaminated site by indigenous microorganisms. The retrieved sequences represent greater diversity than has been detected at the study site by culture-based approaches

  1. Catabolism of (64)Cu and Cy5.5-labeled human serum albumin in a tumor xenograft model.

    Science.gov (United States)

    Kang, Choong Mo; Kim, Hyunjung; Koo, Hyun-Jung; Park, Jin Won; An, Gwang Il; Choi, Joon Young; Lee, Kyung-Han; Kim, Byung-Tae; Choe, Yearn Seong

    2016-07-01

    Human serum albumin (HSA), the most abundant protein in blood plasma, has been used as a drug carrier for the last few decades. Residualizingly radiolabeled serum albumin has been reported to be avidly taken up by tumors of sarcoma-bearing mice and to most likely undergo lysosomal degradation. In this study, we prepared (64)Cu-1,4,7,10-tetraazacyclododecane-N,N',N″,N'″-tetraacetic acid (DOTA) and Cy5.5-conjugated HSA (dual probe), and evaluated its tumor uptake and catabolism. Two dual probes were prepared using different DOTA conjugation sites of HSA (one via Lys residues and the other via the Cys residue). (64)Cu-DOTA-Lys-HSA-Cy5.5 (dual probe-Lys) exhibited higher uptake by RR1022 sarcoma cells in vitro than (64)Cu-DOTA-Cys-HSA-Cy5.5 (dual probe-Cys). In RR1022 tumor-bearing mice, the two dual probes showed a similar level of tumor uptake, but uptake of dual probe-Lys was reduced in the liver and spleen compared to dual probe-Cys, probably because of the presence of a higher number of DOTA molecules in the former. At 24 and 48 h after injection, dual probe-Lys was intact or partially degraded in blood, liver, kidney, and tumor samples, but (64)Cu-DOTA-Lys was observed in the urine using radioactivity detection. Similarly, Cy5.5-Lys was observed in the urine using fluorescence detection. These results indicate that dual probe-Lys may be useful for predicting the catabolic fate of drug-HSA conjugates. PMID:27098932

  2. The use of amino sugars by Bacillus subtilis: presence of a unique operon for the catabolism of glucosamine.

    Science.gov (United States)

    Gaugué, Isabelle; Oberto, Jacques; Putzer, Harald; Plumbridge, Jacqueline

    2013-01-01

    B. subtilis grows more rapidly using the amino sugar glucosamine as carbon source, than with N-acetylglucosamine. Genes for the transport and metabolism of N-acetylglucosamine (nagP and nagAB) are found in all the sequenced Bacilli (except Anoxybacillus flavithermus). In B. subtilis there is an additional operon (gamAP) encoding second copies of genes for the transport and catabolism of glucosamine. We have developed a method to make multiple deletion mutations in B. subtilis employing an excisable spectinomycin resistance cassette. Using this method we have analysed the contribution of the different genes of the nag and gam operons for their role in utilization of glucosamine and N-acetylglucosamine. Faster growth on glucosamine is due to the presence of the gamAP operon, which is strongly induced by glucosamine. Although the gamA and nagB genes encode isozymes of GlcN6P deaminase, catabolism of N-acetylglucosamine relies mostly upon the gamA gene product. The genes for use of N-acetylglucosamine, nagAB and nagP, are repressed by YvoA (NagR), a GntR family regulator, whose gene is part of the nagAB yvoA(nagR) operon. The gamAP operon is repressed by YbgA, another GntR family repressor, whose gene is expressed divergently from gamAP. The nagAB yvoA synton is found throughout the Bacilli and most firmicutes. On the other hand the ybgA-gamAP synton, which includes the ybgB gene for a small protein of unknown provenance, is only found in B. subtilis (and a few very close relatives). The origin of ybgBA-gamAP grouping is unknown but synteny analysis suggests lateral transfer from an unidentified donor. The presence of gamAP has enabled B. subtilis to efficiently use glucosamine as carbon source.

  3. The Hypocrea jecorina (syn. Trichoderma reesei) lxr1 gene encodes a D-mannitol dehydrogenase and is not involved in L-arabinose catabolism

    NARCIS (Netherlands)

    Metz, Benjamin; de Vries, Ronald P; Polak, Stefan; Seidl, Verena; Seiboth, Bernhard

    2009-01-01

    The Hypocrea jecorina LXR1 was described as the first fungal L-xylulose reductase responsible for NADPH dependent reduction of L-xylulose to xylitol in L-arabinose catabolism. Phylogenetic analysis now reveals that LXR1 forms a clade with fungal D-mannitol 2-dehydrogenases. Lxr1 and the orthologous

  4. Physiological Role of phnP-specified Phosphoribosyl Cyclic Phosphodiesterase in Catabolism of Organophosphonic Acids by the Carbon−Phosphorus Lyase Pathway

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; McSorley, Fern R.; Zechel, David L.

    2011-01-01

    In Escherichia coli , internalization and catabolism of organophosphonicacids are governed by the 14-cistron phnCDEFGHIJKLMNOP operon. The phnP gene product was previously shown to encode a phosphodiesterase with unusual specificity toward ribonucleoside 2',3'-cyclic phosphates. Furthermore, phnP...

  5. The transcriptional activators AraR and XlnR from Aspergillus niger regulate expression of pentose catabolic and pentose phosphate pathway genes

    NARCIS (Netherlands)

    Battaglia, Evy; Zhou, M.; de Vries, Ronald P; van den Brink, J.

    2014-01-01

    The pentose catabolic pathway (PCP) and the pentose phosphate pathway (PPP) are required for the conversion of pentose sugars in fungi and are linked via d-xylulose-5-phosphate. Previously, it was shown that the PCP is regulated by the transcriptional activators XlnR and AraR in Aspergillus niger. H

  6. Mean transit times and the sites of synthesis and catabolism of tissue plasminogen activator and plasminogen activator inhibitor type 1 in young subjects

    DEFF Research Database (Denmark)

    Jørgensen, M; Petersen, K R; Vinberg, N;

    2001-01-01

    Using an invasive technique, we studied the mean transit time, the net quantitative turnover rate, and the sites of synthesis and catabolism of tissue plasminogen activator (t-PA) and plasminogen activator inhibitor type 1 (PAI-1) in healthy young volunteers in the fasting, steady state. Blood wa...

  7. Influence of Hepatitis C Virus Sustained Virological Response on Immunosuppressive Tryptophan Catabolism in ART-Treated HIV/HCV Coinfected Patients

    NARCIS (Netherlands)

    Jenabian, Mohammad-Ali; Mehraj, Vikram; Costiniuk, Cecilia T.; Vyboh, Kishanda; Kema, Ido; Rollet, Kathleen; Ramirez, Robert Paulino; Klein, Marina B.; Routy, Jean-Pierre

    2016-01-01

    Background: We previously reported an association between tryptophan (Trp) catabolism and immune dysfunction in HIV monoinfection. Coinfection with HIV is associated with more rapid evolution of hepatitis C virus (HCV)-associated liver disease despite antiretroviral therapy (ART), possibly due to im

  8. In Vivo Determination of Site and Rate of Insulin Catabolism Using the Double Tracer Technique with 51Cr And 131I

    International Nuclear Information System (INIS)

    Double labelling of a peptide with 51Cr and 125(131)I results in an isotopic ratio that changes when and where the molecule in vivo is catabolized. Intracellular hydrolysis of the peptide liberates the iodine into the iodine pool, whereas the chromium by virtue of being a multivalent ion enters a new linkage at the site of breakdown. The isotopic ratio at the site of breakdown alters concomitantly with the hydrolysis rate. Experiments with 51Cr- and 125I-labelled insulin in mice in vivo and in vitro showed the liver (not muscle), bone (including marrow) and thyroid gland to be the major site of insulin catabolism with a half-life of approximately 10 min. In eight normal persons and diabetic patients insulin catabolism was analysed by the whole body counter following an iv injection of 0.77-0.95 μg insulin labelled with 51Cr and 131I. Counts were taken simultaneously from the area of the liver, thyroid, thigh and posterior pelvis. Again, the.data indicated the liver as the site of insulin catabolism, the normal half-life being approximately 20 min. Iodine- labelled insulin was commercially supplied. 51Cr-labelled insulin, prepared according to the methods of Kavai and Kesztyüs, was analysed by immune precipitation and Sephadex G200 chromatography. In the countercurrent distribution the 51Cr insulin showed enhanced water solubility. (author)

  9. Antibiotic tolerance and microbial biofilms

    DEFF Research Database (Denmark)

    Folkesson, Anders

    Increased tolerance to antimicrobial agents is thought to be an important feature of microbes growing in biofilms. We study the dynamics of antibiotic action within hydrodynamic flow chamber biofilms of Escherichia coli and Pseudomonas aeruginosa using isogenic mutants and fluorescent gene...... expression reporters and we address the question of how biofilm organization affects antibiotic susceptibility. The dynamics of microbial killing is monitored by viable count determination, and confocal laser microscopy. Our work shows that the apparent increased antibiotic tolerance is due to the formation...... of antibiotic tolerant subpopulations within the biofilm. The formation of these subpopulations is highly variable and dependent on the antibiotic used, the biofilm structural organization and the induction of specific tolerance mechanisms....

  10. Accident tolerant fuel analysis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis [Idaho National Laboratory; Chichester, Heather [Idaho National Laboratory; Johns, Jesse [Texas A& M University; Teague, Melissa [Idaho National Laboratory; Tonks, Michael Idaho National Laboratory; Youngblood, Robert [Idaho National Laboratory

    2014-09-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about light water reactor design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway research and development (R&D) is to support plant decisions for risk-informed margins management by improving economics and reliability, and sustaining safety, of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced ''RISMC toolkit'' that enables more accurate representation of NPP safety margin. In order to carry out the R&D needed for the Pathway, the Idaho National Laboratory is performing a series of case studies that will explore methods- and tools-development issues, in addition to being of current interest in their own right. One such study is a comparative analysis of safety margins of plants using different fuel cladding types: specifically, a comparison between current-technology Zircaloy cladding and a notional ''accident-tolerant'' (e.g., SiC-based) cladding. The present report begins the process of applying capabilities that are still under development to the problem of assessing new fuel designs. The approach and lessons learned from this case study will be included in future Technical Basis Guides produced by the RISMC Pathway. These guides will be the mechanism for developing the specifications for RISMC tools and for defining how plant

  11. Freeze-Tolerant Condensers

    Science.gov (United States)

    Crowley, Christopher J.; Elkouhk, Nabil

    2004-01-01

    Two condensers designed for use in dissipating heat carried by working fluids feature two-phase, self-adjusting configurations such that their working lengths automatically vary to suit their input power levels and/or heat-sink temperatures. A key advantage of these condensers is that they can function even if the temperatures of their heat sinks fall below the freezing temperatures of their working fluids and the fluids freeze. The condensers can even be restarted from the frozen condition. The top part of the figure depicts the layout of the first condenser. A two-phase (liquid and vapor) condenser/vapor tube is thermally connected to a heat sink typically, a radiatively or convectively cooled metal panel. A single-phase (liquid) condensate-return tube (return artery) is also thermally connected to the heat sink. At intervals along their lengths, the condenser/vapor tube and the return artery are interconnected through porous plugs. This condenser configuration affords tolerance of freezing, variable effective thermal conductance (such that the return temperature remains nearly constant, independently of the ultimate sink temperature), and overall pressure drop smaller than it would be without the porous interconnections. An additional benefit of this configuration is that the condenser can be made to recover from the completely frozen condition either without using heaters, or else with the help of heaters much smaller than would otherwise be needed. The second condenser affords the same advantages and is based on a similar principle, but it has a different configuration that affords improved flow of working fluid, simplified construction, reduced weight, and faster recovery from a frozen condition.

  12. Retromer in Osteoblasts Interacts With Protein Phosphatase 1 Regulator Subunit 14C, Terminates Parathyroid Hormone's Signaling, and Promotes Its Catabolic Response.

    Science.gov (United States)

    Xiong, Lei; Xia, Wen-Fang; Tang, Fu-Lei; Pan, Jin-Xiu; Mei, Lin; Xiong, Wen-Cheng

    2016-07-01

    Parathyroid hormone (PTH) plays critical, but distinct, roles in bone remodeling, including bone formation (anabolic response) and resorption (catabolic response). Although its signaling and function have been extensively investigated, it just began to be understood how distinct functions are induced by PTH activating a common receptor, the PTH type 1 receptor (PTH1R), and how PTH1R signaling is terminated. Here, we provide evidence for vacuolar protein sorting 35 (VPS35), a major component of retromer, in regulating PTH1R trafficking, turning off PTH signaling, and promoting its catabolic function. VPS35 is expressed in osteoblast (OB)-lineage cells. VPS35-deficiency in OBs impaired PTH(1-34)-promoted PTH1R translocation to the trans-Golgi network, enhanced PTH(1-34)-driven signaling, and reduced PTH(1-34)'s catabolic response in culture and in mice. Further mechanical studies revealed that VPS35 interacts with not only PTH1R, but also protein phosphatase 1 regulatory subunit 14C (PPP1R14C), an inhibitory subunit of PP1 phosphatase. PPP1R14C also interacts with PTH1R, which is necessary for the increased endosomal PTH1R signaling and decreased PTH(1-34)'s catabolic response in VPS35-deficient OB-lineage cells. Taken together, these results suggest that VPS35 deregulates PTH1R-signaling likely by its interaction with PTH1R and PPP1R14C. This event is critical for the control of PTH(1-34)-signaling dynamics, which may underlie PTH-induced catabolic response and adequate bone remodeling. PMID:27333042

  13. HipH Catalyzes the Hydroxylation of 4-Hydroxyisophthalate to Protocatechuate in 2,4-Xylenol Catabolism by Pseudomonas putida NCIMB 9866.

    Science.gov (United States)

    Chao, Hong-Jun; Chen, Yan-Fei; Fang, Ti; Xu, Ying; Huang, Wei E; Zhou, Ning-Yi

    2016-01-01

    In addition to growing on p-cresol, Pseudomonas putida NCIMB 9866 is the only reported strain capable of aerobically growing on 2,4-xylenol, which is listed as a priority pollutant by the U.S. Environmental Protection Agency. Several enzymes involved in the oxidation of the para-methyl group, as well as the corresponding genes, have previously been reported. The enzyme catalyzing oxidation of the catabolic intermediate 4-hydroxyisophthalate to the ring cleavage substrate protocatechuate was also purified from strain NCIMB 9866, but its genetic determinant is still unavailable. In this study, the gene hipH, encoding 4-hydroxyisophthalate hydroxylase, from strain NCIMB 9866 was cloned by transposon mutagenesis. Purified recombinant HipH-His6 was found to be a dimer protein with a molecular mass of approximately 110 kDa. HipH-His6 catalyzed the hydroxylation of 4-hydroxyisophthalate to protocatechuate with a specific activity of 1.54 U mg(-1) and showed apparent Km values of 11.40 ± 3.05 μM for 4-hydroxyisophthalate with NADPH and 11.23 ± 2.43 μM with NADH and similar Km values for NADPH and NADH (64.31 ± 13.16 and 72.76 ± 12.06 μM, respectively). The identity of protocatechuate generated from 4-hydroxyisophthalate hydroxylation by HipH-His6 has also been confirmed by high-performance liquid chromatography and mass spectrometry. Gene transcriptional analysis, gene knockout, and complementation indicated that hipH is essential for 2,4-xylenol catabolism but not for p-cresol catabolism in this strain. This fills a gap in our understanding of the gene that encodes a critical step in 2,4-xylenol catabolism and also provides another example of biochemical and genetic diversity of microbial catabolism of structurally similar compounds. PMID:26567311

  14. Developing herbicide-tolerant crops from mutations

    International Nuclear Information System (INIS)

    Herbicide-tolerant crops in combination with their corresponding herbicides are able to control many weeds that cannot be or are less effectively controlled with other means. Commercial herbicide-tolerant crops developed from herbicide-tolerant mutants include imidazolinone-tolerant maize, rice, wheat, oilseed rape, sunflower, and lentil; sulfonylurea-tolerant soybean and sunflower; cyclohexanedione-tolerant maize; and triazine-tolerant oilseed rape. Most of the herbicide-tolerant mutants were developed through chemical mutagenesis followed by herbicide selection. Several herbicide-tolerant mutants were also discovered through direct herbicide selection of spontaneous mutations. All mutations used in commercial herbicide-tolerant crops are derived from a single nucleotide substitution of genes that encode enzymes or proteins targeted by herbicides. Imidazolinone-tolerant maize, rice, wheat, and oilseed rape have a gene variant encoding an altered acetohydoxyacid synthase (AHAS) with the S653N amino acid substitution. Additionally, imidazolinone-tolerant maize and oilseed rape have an AHAS with the W574L amino acid substitution. Imidazolinone-tolerant sunflower has been developed from the A205V AHAS gene mutation. In contrast, sulfonylurea-tolerant sunflower selected from a farm field has an AHAS enzyme variant with the P197L amino acid substitution. Similarly, sulfonylurea-tolerant soybean has a P197S AHAS gene mutation. Sulfonylurea-tolerant sunflower from seed mutagenesis and imidazolinone-tolerant lentil are also derived from AHAS gene mutations. Cyclohexanedione-tolerant maize has an altered acetyl-CoA carboxylase with the I1781L amino acid substitution. Triazine-tolerant oil seed rape possesses a psbA gene variant that encodes the D1 protein of photosynthesis with the S264G amino acid substitution. The alleles of all commercial herbicide-tolerant mutations are incompletely-dominant and not pleiotropic except for the triazine-tolerant mutation which is

  15. Mathematical model of cylindrical form tolerance

    Institute of Scientific and Technical Information of China (English)

    蔡敏; 杨将新; 吴昭同

    2004-01-01

    Tolerance is essential for integration of CAD and CAM. Unfortunately, the meaning of tolerances in the national standard is expressed in graphical and language forms and is not adaptable for expression, processing and data transferring with computers. How to interpret its semantics is becoming a focus of relevant studies. This work based on the mathematical definition of form tolerance in ANSI Y 14.5.1 M-1994, established the mathematical model of form tolerance for cylindrical feature. First, each tolerance in the national standard was established by vector equation. Then on the foundation of toler-ance's mathematical definition theory, each tolerance zone's mathematical model was established by inequality based on degrees of feature. At last the variance area of each tolerance zone is derived. This model can interpret the semantics of form tolerance exactly and completely.

  16. Bioinformatic evaluation of L-arginine catabolic pathways in 24 cyanobacteria and transcriptional analysis of genes encoding enzymes of L-arginine catabolism in the cyanobacterium Synechocystis sp. PCC 6803

    Directory of Open Access Journals (Sweden)

    Pistorius Elfriede K

    2007-11-01

    Full Text Available Abstract Background So far very limited knowledge exists on L-arginine catabolism in cyanobacteria, although six major L-arginine-degrading pathways have been described for prokaryotes. Thus, we have performed a bioinformatic analysis of possible L-arginine-degrading pathways in cyanobacteria. Further, we chose Synechocystis sp. PCC 6803 for a more detailed bioinformatic analysis and for validation of the bioinformatic predictions on L-arginine catabolism with a transcript analysis. Results We have evaluated 24 cyanobacterial genomes of freshwater or marine strains for the presence of putative L-arginine-degrading enzymes. We identified an L-arginine decarboxylase pathway in all 24 strains. In addition, cyanobacteria have one or two further pathways representing either an arginase pathway or L-arginine deiminase pathway or an L-arginine oxidase/dehydrogenase pathway. An L-arginine amidinotransferase pathway as a major L-arginine-degrading pathway is not likely but can not be entirely excluded. A rather unusual finding was that the cyanobacterial L-arginine deiminases are substantially larger than the enzymes in non-photosynthetic bacteria and that they are membrane-bound. A more detailed bioinformatic analysis of Synechocystis sp. PCC 6803 revealed that three different L-arginine-degrading pathways may in principle be functional in this cyanobacterium. These are (i an L-arginine decarboxylase pathway, (ii an L-arginine deiminase pathway, and (iii an L-arginine oxidase/dehydrogenase pathway. A transcript analysis of cells grown either with nitrate or L-arginine as sole N-source and with an illumination of 50 μmol photons m-2 s-1 showed that the transcripts for the first enzyme(s of all three pathways were present, but that the transcript levels for the L-arginine deiminase and the L-arginine oxidase/dehydrogenase were substantially higher than that of the three isoenzymes of L-arginine decarboxylase. Conclusion The evaluation of 24

  17. Boolean Logic with Fault Tolerant Coding

    OpenAIRE

    Alagoz, B. Baykant

    2009-01-01

    Error detectable and error correctable coding in Hamming space was researched to discover possible fault tolerant coding constellations, which can implement Boolean logic with fault tolerant property. Basic logic operators of the Boolean algebra were developed to apply fault tolerant coding in the logic circuits. It was shown that application of three-bit fault tolerant codes have provided the digital system skill of auto-recovery without need for designing additional-fault tolerance mechanisms.

  18. Developing Herbicide-Tolerant Crops from Mutations

    International Nuclear Information System (INIS)

    Several herbicide-tolerant crops have been developed and commercialized from herbicide-tolerant mutants obtained through chemical mutagenesis followed by herbicide selection or direct herbicide selection of spontaneous mutations. All mutations used in commercial herbicide-tolerant crops are derived from a single nucleotide substitution of genes that encode enzymes or proteins targeted by herbicides. The alleles of all commercial herbicide-tolerant mutations are incompletely-dominant except for the triazine-tolerant mutation. (author)

  19. Tolerance and acculturation

    Directory of Open Access Journals (Sweden)

    Ursula Småland Goth

    2014-03-01

    study shows a varied pattern of use of GP services among the diverse groups of foreign-born residents. Results suggest that immigrants are more likely to use emergency-room services during the first few years after arrival. Results also indicate that information about the patient-list system does not always reach newly arrived immigrants. Contrary to general understanding, non-visible immigrants (when considering factors such as skin color and clothing diverge the most from the pattern of the majority. Immigrants originating from European countries, such as Sweden and Poland, use the emergency room most frequently. From the qualitative aspects of the study, we have also found that primary health care services are not perceived as equitable.Conclusion: Recently arrived immigrants’ utilization of primary health care services shows an unfavorable pattern. The choice of primary health care service providers is dependent on the individual’s preferences, expectations, experiences and/or actual obstacles. The observed utilization of services provided at emergency rooms is one more reason for monitoring and increasing tolerance and cultural sensitivity in primary health care.

  20. Multiperspective analysis of erosion tolerance

    Directory of Open Access Journals (Sweden)

    Sparovek Gerd

    2003-01-01

    Full Text Available Erosion tolerance is the most multidisciplinary field of soil erosion research. Scientists have shown lack in ability to adequately analyze the huge list of variables that influence soil loss tolerance definitions. For these the perspectives of erosion made by farmers, environmentalists, society and politicians have to be considered simultaneously. Partial and biased definitions of erosion tolerance may explain not only the polemic nature of the currently suggested values but also, in part, the nonadoption of the desired levels of erosion control. To move towards a solution, considerable changes would have to occur on how this topic is investigated, especially among scientists, who would have to change methods and strategies and extend the perspective of research out of the boundaries of the physical processes and the frontiers of the academy. A more effective integration and communication with the society and farmers, to learn about their perspective of erosion and a multidisciplinary approach, integrating soil, social, economic and environmental sciences are essential for improved erosion tolerance definitions. In the opinion of the authors, soil erosion research is not moving in this direction and a better understanding of erosion tolerance is not to be expected in the near future.

  1. Regulation and characterization of the dadRAX locus for D-amino acid catabolism in Pseudomonas aeruginosa PAO1.

    Science.gov (United States)

    He, Weiqing; Li, Congran; Lu, Chung-Dar

    2011-05-01

    D-amino acids are essential components for bacterial peptidoglycan, and these natural compounds are also involved in cell wall remodeling and biofilm disassembling. In Pseudomonas aeruginosa, the dadAX operon, encoding the D-amino acid dehydrogenase DadA and the amino acid racemase DadX, is essential for D- and L-Ala catabolism, and its expression requires a transcriptional regulator, DadR. In this study, purified recombinant DadA alone was sufficient to demonstrate the proposed enzymatic activity with very broad substrate specificity; it utilizes all D-amino acids tested as substrates except D-Glu and D-Gln. DadA also showed comparable k(cat) and K(m) values on D-Ala and several D-amino acids. dadRAX knockout mutants were constructed and subjected to analysis of their growth phenotypes on amino acids. The results revealed that utilization of L-Ala, L-Trp, D-Ala, and a specific set of D-amino acids as sole nitrogen sources was abolished in the dadA mutant and/or severely hampered in the dadR mutant while growth yield on D-amino acids was surprisingly improved in the dadX mutant. The dadA promoter was induced by several L-amino acids, most strongly by Ala, and only by D-Ala among all tested D-amino acids. Enhanced growth of the dadX mutant on D-amino acids is consistent with the finding that the dadA promoter was constitutively induced in the dadX mutant, where exogenous D-Ala but not L-Ala reduced the expression. Binding of DadR to the dadA regulatory region was demonstrated by electromobility shift assays, and the presence of L-Ala but not D-Ala increased affinity by 3-fold. The presence of multiple DadR-DNA complexes in the dadA regulatory region was demonstrated in vitro, and the formation of these nucleoprotein complexes exerted a complicated impact on promoter activation in vivo. In summary, the results from this study clearly demonstrate DadA to be the enzyme solely responsible for the proposed D-amino acid dehydrogenase activity of broad substrate

  2. Immune tolerance in radiation chimeras

    International Nuclear Information System (INIS)

    Establishment of immune tolerance in radiation chimeras and the mechanism of maintaining it were discussed from certain points. Semiallogeneic radiation chimeras are mostly of long-living, and the hematopoietic organ of this individual consists mainly of the cells derived from the marrow donor, i. e., F1-type cells. F1-type lymphocytes can distinguish parental strain cells from themselves. In these chimeras, a F1-skin graft maintains to be fresh as long as the host is alive, showing immune tolerance effective through its life. In establishment and maintenance of this immune tolerance, the suppressing mechanism of host-type or F1-type seems to be involved. The allogeneic radiation chimera has very poor long-survival rate compared with that of the semiallogeneic radiation chimera. To raise this survival rate, efforts are now being made from the immunological point of view. (Ueda, J.)

  3. Neuropilin-1 in Transplantation Tolerance

    Directory of Open Access Journals (Sweden)

    Mauricio eCampos-Mora

    2013-11-01

    Full Text Available In the immune system, Neuropilin-1 (Nrp1 is a molecule that plays an important role in establishing the immunological synapse between dendritic cells (DCs and T cells. Recently, Nrp1 has been identified as a marker that seems to distinguish natural T regulatory (nTreg cells, generated in the thymus, from inducible T regulatory (iTreg cells raised in the periphery. Given the crucial role of both nTreg and iTreg cells in the generation and maintenance of immune tolerance, the ability to phenotypically identify each of these cell populations in vivo is needed to elucidate their biological properties. In turn, these properties have the potential to be developed for therapeutic use to promote immune tolerance. Here we describe the nature and functions of Nrp1, including its potential use as a therapeutic target in transplantation tolerance.

  4. Fault-Tolerant Heat Exchanger

    Science.gov (United States)

    Izenson, Michael G.; Crowley, Christopher J.

    2005-01-01

    A compact, lightweight heat exchanger has been designed to be fault-tolerant in the sense that a single-point leak would not cause mixing of heat-transfer fluids. This particular heat exchanger is intended to be part of the temperature-regulation system for habitable modules of the International Space Station and to function with water and ammonia as the heat-transfer fluids. The basic fault-tolerant design is adaptable to other heat-transfer fluids and heat exchangers for applications in which mixing of heat-transfer fluids would pose toxic, explosive, or other hazards: Examples could include fuel/air heat exchangers for thermal management on aircraft, process heat exchangers in the cryogenic industry, and heat exchangers used in chemical processing. The reason this heat exchanger can tolerate a single-point leak is that the heat-transfer fluids are everywhere separated by a vented volume and at least two seals. The combination of fault tolerance, compactness, and light weight is implemented in a unique heat-exchanger core configuration: Each fluid passage is entirely surrounded by a vented region bridged by solid structures through which heat is conducted between the fluids. Precise, proprietary fabrication techniques make it possible to manufacture the vented regions and heat-conducting structures with very small dimensions to obtain a very large coefficient of heat transfer between the two fluids. A large heat-transfer coefficient favors compact design by making it possible to use a relatively small core for a given heat-transfer rate. Calculations and experiments have shown that in most respects, the fault-tolerant heat exchanger can be expected to equal or exceed the performance of the non-fault-tolerant heat exchanger that it is intended to supplant (see table). The only significant disadvantages are a slight weight penalty and a small decrease in the mass-specific heat transfer.

  5. Mathematical model of cylindrical form tolerance

    Institute of Scientific and Technical Information of China (English)

    蔡敏; 杨将新; 吴昭同

    2004-01-01

    Tolerance is essential for integration of CAD and CAM.Unfortunately,the meaning of tolerances in the national standard is expressed in graphical and language forms and is not adaptable for expression,processing and data transferring with computers.How to interpret its semantics is becoming a focus of relevant studies.This work based on the mathematical definition of form tolerance in ANSI Y 14.5.1 M-1994,established the mathematical model of form tolerance for cylindrical feature.First,each tolerance in the national standard was established by vector equation.Then on the foundation of tolerance's mathematical definition theory,each tolerance zone's mathematical model was established by inequality based on degrees of feature.At last the variance area of each tolerance zone is derived.This model can interpret the semantics of form tolerance exactly and completely.

  6. Building Intrusion Tolerant Software System

    Institute of Scientific and Technical Information of China (English)

    PENG Wen-ling; WANG Li-na; ZHANG Huan-guo; CHEN Wei

    2005-01-01

    In this paper, we describe and analyze the hypothesis about intrusion tolerance software system, so that it can provide an intended server capability and deal with the impacts caused by the intruder exploiting the inherent security vulnerabilities. We present some intrusion tolerance technology by exploiting N-version module threshold method in constructing multilevel secure software architecture, by detecting with hash value, by placing an "antigen" word next to the return address on the stack that is similar to human immune system, and by adding "Honey code" nonfunctional code to disturb intruder, so that the security and the availability of the software system are ensured.

  7. Tolerating extremism : to what extent should intolerance be tolerated?

    NARCIS (Netherlands)

    Guiora, Amos Neuser

    2013-01-01

    In discussing extremism, the key questions are: to whom is a duty owed and what are the limits of intolerance that are to be tolerated? Answering these questions requires examining limits and rights; analyzing them in the context of extremism is the ‘core’ of this book. While freedom of speech and f

  8. Importance of freeze-thaw events in low temperature ecotoxicology of cold tolerant enchytraeids.

    Science.gov (United States)

    Silva, Ana L Patrício; Enggrob, Kirsten; Slotsbo, Stine; Amorim, Mónica J B; Holmstrup, Martin

    2014-08-19

    Due to global warming it is predicted that freeze-thaw cycles will increase in Arctic and cold temperate regions. The effects of this variation becomes of particular ecological importance to freeze-tolerant species when it is combined with chemical pollutants. We compared the effect of control temperature (2 °C), daily freeze-thaw cycles (2 to -4 °C) and constant freezing (-2 °C) temperatures on the cold-tolerance of oligochaete worms (Enchytraeus albidus) and tested how survival was influenced by pre-exposure to 4-nonylphenol (4-NP), a common nonionic detergent found in sewage sludge amended soils. Results showed that combined effect of 4-NP and daily freeze-thaw cycles can cause higher mortality to worms as compared with sustained freezing or control temperature. Exposure to 4-NP caused a substantial depletion of glycogen reserves which is catabolized during freezing to produce cryoprotective concentrations of free glucose. Further, exposure to freeze-thaw cycles resulted in higher concentrations of 4-NP in worm tissues as compared to constant freezing or control temperature (2 °C). Thus, worms exposed to combined effect of freeze-thaw cycles and 4-NP suffer higher consequences, with the toxic effect of the chemical potentiating the deleterious effects of freezing and thawing.

  9. N-acetylaspartate catabolism determines cytosolic acetyl-CoA levels and histone acetylation in brown adipocytes.

    Science.gov (United States)

    Prokesch, A; Pelzmann, H J; Pessentheiner, A R; Huber, K; Madreiter-Sokolowski, C T; Drougard, A; Schittmayer, M; Kolb, D; Magnes, C; Trausinger, G; Graier, W F; Birner-Gruenberger, R; Pospisilik, J A; Bogner-Strauss, J G

    2016-04-05

    Histone acetylation depends on the abundance of nucleo-cytoplasmic acetyl-CoA. Here, we present a novel route for cytoplasmic acetyl-CoA production in brown adipocytes. N-acetylaspartate (NAA) is a highly abundant brain metabolite catabolized by aspartoacylase yielding aspartate and acetate. The latter can be further used for acetyl-CoA production. Prior to this work, the presence of NAA has not been described in adipocytes. Here, we show that accumulation of NAA decreases the brown adipocyte phenotype. We increased intracellular NAA concentrations in brown adipocytes via media supplementation or knock-down of aspartoacylase and measured reduced lipolysis, thermogenic gene expression, and oxygen consumption. Combinations of approaches to increase intracellular NAA levels showed additive effects on lipolysis and gene repression, nearly abolishing the expression of Ucp1, Cidea, Prdm16, and Ppara. Transcriptome analyses of aspartoacylase knock-down cells indicate deficiencies in acetyl-CoA and lipid metabolism. Concordantly, cytoplasmic acetyl-CoA levels and global histone H3 acetylation were decreased. Further, activating histone marks (H3K27ac and H3K9ac) in promoters/enhancers of brown marker genes showed reduced acetylation status. Taken together, we present a novel route for cytoplasmic acetyl-CoA production in brown adipocytes. Thereby, we mechanistically connect the NAA pathway to the epigenomic regulation of gene expression, modulating the phenotype of brown adipocytes.

  10. Physicochemical changes effected in activated sludge by the earthworm Eisenia foetida. [Concentration of heavy metals during sludge catabolism

    Energy Technology Data Exchange (ETDEWEB)

    Hartenstein, R. (State Univ. of New York, Syracuse); Hartenstein, F.

    1981-09-01

    Measurements were made of some physicochemical changes effected in activated sludge by the earthworm Eisenia foetida following conversion of the sludge into wormcasts. Mineralization was accelerated 1.3-fold and 2% of the minerals were assimilated. The rate at which heavy metals were concentrated during sludge catabolism was also accelerated. Castings stabilized within 2 weeks, as indexed by respirometry. Nucleic acids, which can be used as an index of microbial biomass, were present at a greater concentration in the wormcasts than in the sludge, while the phenolic content, which may potentially serve as an index of humification, was less concentrated. Other changes included a reduction in pH and an increase in oxidation-reduction potential and cation exchange capacity. The major general effect of E. foetida on the physicochemical properties of activated sludge is to convert a material which has a relatively small surface/volume ratio into numerous particles with an overall large S/V ratio, thus accelerating decomposition, mineralization, drying, and preclusion of malodor.

  11. Inactivation of a heterocyst-specific invertase indicates a principal role of sucrose catabolism in heterocysts of Anabaena sp.

    Science.gov (United States)

    López-Igual, Rocío; Flores, Enrique; Herrero, Antonia

    2010-10-01

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that carries out N(2) fixation in specialized cells called heterocysts, which exchange nutrients and regulators with the filament's vegetative cells that perform the photosynthetic fixation of CO(2). The Anabaena genome carries two genes coding for alkaline/neutral invertases, invA and invB. As shown by Northern analysis, both genes were expressed monocistronically and induced under nitrogen deprivation, although induction was stronger for invB than for invA. Whereas expression of an InvA-N-GFP fusion (green fluorescent protein [GFP] fused to the N terminus of the InvA protein [InvA-N]) was homogeneous along the cyanobacterial filament, consistent with the lack of dependence on HetR, expression of an InvB-N-GFP fusion upon combined nitrogen deprivation took place mainly in differentiating and mature heterocysts. In an hetR genetic background, the InvB-N-GFP fusion was strongly expressed all along the filament. An insertional mutant of invA could grow diazotrophically but was impaired in nifHDK induction and exhibited an increased frequency of heterocysts, suggesting a regulatory role of the invertase-mediated carbon flux in vegetative cells. In contrast, an invB mutant was strongly impaired in diazotrophic growth, showing a crucial role of sucrose catabolism mediated by the InvB invertase in the heterocysts.

  12. Glucagon Couples Hepatic Amino Acid Catabolism to mTOR-Dependent Regulation of α-Cell Mass.

    Science.gov (United States)

    Solloway, Mark J; Madjidi, Azadeh; Gu, Chunyan; Eastham-Anderson, Jeff; Clarke, Holly J; Kljavin, Noelyn; Zavala-Solorio, Jose; Kates, Lance; Friedman, Brad; Brauer, Matt; Wang, Jianyong; Fiehn, Oliver; Kolumam, Ganesh; Stern, Howard; Lowe, John B; Peterson, Andrew S; Allan, Bernard B

    2015-07-21

    Understanding the regulation of islet cell mass has important implications for the discovery of regenerative therapies for diabetes. The liver plays a central role in metabolism and the regulation of endocrine cell number, but liver-derived factors that regulate α-cell and β-cell mass remain unidentified. We propose a nutrient-sensing circuit between liver and pancreas in which glucagon-dependent control of hepatic amino acid metabolism regulates α-cell mass. We found that glucagon receptor inhibition reduced hepatic amino acid catabolism, increased serum amino acids, and induced α-cell proliferation in an mTOR-dependent manner. In addition, mTOR inhibition blocked amino-acid-dependent α-cell replication ex vivo and enabled conversion of α-cells into β-like cells in vivo. Serum amino acids and α-cell proliferation were increased in neonatal mice but fell throughout postnatal development in a glucagon-dependent manner. These data reveal that amino acids act as sensors of glucagon signaling and can function as growth factors that increase α-cell proliferation. PMID:26166562

  13. Metabolomic and proteomic insights into carbaryl catabolism by Burkholderia sp. C3 and degradation of ten N-methylcarbamates.

    Science.gov (United States)

    Seo, Jong-Su; Keum, Young-Soo; Li, Qing X

    2013-11-01

    Burkholderia sp. C3, an efficient polycyclic aromatic hydrocarbon degrader, can utilize nine of the ten N-methylcarbamate insecticides including carbaryl as a sole source of carbon. Rapid hydrolysis of carbaryl in C3 is followed by slow catabolism of the resulting 1-naphthol. This study focused on metabolomes and proteomes in C3 cells utilizing carbaryl in comparison to those using glucose or nutrient broth. Sixty of the 867 detected proteins were involved in primary metabolism, adaptive sensing and regulation, transport, stress response, and detoxification. Among the 41 proteins expressed in response to carbaryl were formate dehydrogenase, aldehyde-alcohol dehydrogenase and ethanolamine utilization protein involved in one carbon metabolism. Acetate kinase and phasin were 2 of the 19 proteins that were not detected in carbaryl-supported C3 cells, but detected in glucose-supported C3 cells. Down-production of phasin and polyhydroxyalkanoates in carbaryl-supported C3 cells suggests insufficient carbon sources and lower levels of primary metabolites to maintain an ordinary level of metabolism. Differential metabolomes (~196 identified polar metabolites) showed up-production of metabolites in pentose phosphate pathways and metabolisms of cysteine, cystine and some other amino acids, disaccharides and nicotinate, in contract to down-production of most of the other amino acids and hexoses. The proteomic and metabolomic analyses showed that carbaryl-supported C3 cells experienced strong toxic effects, oxidative stresses, DNA/RNA damages and carbon nutrient deficiency.

  14. Glucagon Couples Hepatic Amino Acid Catabolism to mTOR-Dependent Regulation of α-Cell Mass

    Directory of Open Access Journals (Sweden)

    Mark J. Solloway

    2015-07-01

    Full Text Available Understanding the regulation of islet cell mass has important implications for the discovery of regenerative therapies for diabetes. The liver plays a central role in metabolism and the regulation of endocrine cell number, but liver-derived factors that regulate α-cell and β-cell mass remain unidentified. We propose a nutrient-sensing circuit between liver and pancreas in which glucagon-dependent control of hepatic amino acid metabolism regulates α-cell mass. We found that glucagon receptor inhibition reduced hepatic amino acid catabolism, increased serum amino acids, and induced α-cell proliferation in an mTOR-dependent manner. In addition, mTOR inhibition blocked amino-acid-dependent α-cell replication ex vivo and enabled conversion of α-cells into β-like cells in vivo. Serum amino acids and α-cell proliferation were increased in neonatal mice but fell throughout postnatal development in a glucagon-dependent manner. These data reveal that amino acids act as sensors of glucagon signaling and can function as growth factors that increase α-cell proliferation.

  15. A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes.

    Science.gov (United States)

    Rabus, Ralf; Venceslau, Sofia S; Wöhlbrand, Lars; Voordouw, Gerrit; Wall, Judy D; Pereira, Inês A C

    2015-01-01

    Dissimilatory sulphate reduction is the unifying and defining trait of sulphate-reducing prokaryotes (SRP). In their predominant habitats, sulphate-rich marine sediments, SRP have long been recognized to be major players in the carbon and sulphur cycles. Other, more recently appreciated, ecophysiological roles include activity in the deep biosphere, symbiotic relations, syntrophic associations, human microbiome/health and long-distance electron transfer. SRP include a high diversity of organisms, with large nutritional versatility and broad metabolic capacities, including anaerobic degradation of aromatic compounds and hydrocarbons. Elucidation of novel catabolic capacities as well as progress in the understanding of metabolic and regulatory networks, energy metabolism, evolutionary processes and adaptation to changing environmental conditions has greatly benefited from genomics, functional OMICS approaches and advances in genetic accessibility and biochemical studies. Important biotechnological roles of SRP range from (i) wastewater and off gas treatment, (ii) bioremediation of metals and hydrocarbons and (iii) bioelectrochemistry, to undesired impacts such as (iv) souring in oil reservoirs and other environments, and (v) corrosion of iron and concrete. Here we review recent advances in our understanding of SRPs focusing mainly on works published after 2000. The wealth of publications in this period, covering many diverse areas, is a testimony to the large environmental, biogeochemical and technological relevance of these organisms and how much the field has progressed in these years, although many important questions and applications remain to be explored.

  16. Catabolism of volatile sulfur compounds precursors by Brevibacterium linens and Geotrichum candidum, two microorganisms of the cheese ecosystem.

    Science.gov (United States)

    Arfi, Kenza; Amárita, Felix; Spinnler, Henry-Eric; Bonnarme, Pascal

    2003-11-01

    Two Brevibacterium linens strains and the cheese-ripening yeast Geotrichum candidum were compared with regard to their ability to produce volatile sulfur compounds (VSCs) from three different precursors namely L-methionine, 4-methylthio-2-oxobutyric acid (KMBA) and 4-methylthio-2-hydroxybutyric acid (HMBA). All microorganisms were able to convert these precursors to VSCs. However, although all were able to produce VSCs from L-methionine, only G. candidum accumulated KMBA when cultivated on this amino acid, contrary to B. linens suggesting that the transamination pathway is not active in this microorganism. Conversely, a L-methionine gamma-lyase activity--which catalyses the one step L-methionine to methanethiol (MTL) degradation route--was only found in B. linens strains. Several other enzymatic activities involved in the catabolism of the precursors tested were investigated. KMBA transiently accumulated in G. candidum cultures, and was then reduced to HMBA by a KMBA dehydrogenase (KDH) activity. This activity was not detected in B. linens. Despite no HMBA dehydrogenase (HDH) was found in G. candidum, a strong HMBA oxidase (HOX) activity was measured in this microorganism. This latter activity was weakly active in B. linens. KMBA and HMBA demethiolating activities were found in all the microorganisms. Our results illustrate the metabolic diversity between cheese-ripening microorganisms of the cheese ecosystem.

  17. Ethylene-enhanced catabolism of ( sup 14 C)indole-3-acetic acid to indole-3-carboxylic acid in citrus leaf tissues. [Citrus sinensis

    Energy Technology Data Exchange (ETDEWEB)

    Sagee, O.; Riov, J.; Goren, J. (Hebrew Univ. of Jerusalem, Rehovot (Israel))

    1990-01-01

    Exogenous ({sup 14}C)indole-3-acetic acid (IAA) is conjugated in citrus (Citrus sinensis) leaf tissues to one major substance which has been identified as indole-3-acetylaspartic acid (IAAsp). Ethylene pretreatment enhanced the catabolism of ({sup 14}C)IAA to indole-3-carboxylic acid (ICA), which accumulated as glucose esters (ICGlu). Increased formation of ICGlu by ethylene was accompanied by a concomitant decrease in IAAsp formation. IAAsp and ICGlu were identified by combined gas chromatography-mass spectrometry. Formation of ICGlu was dependent on the concentration of ethylene and the duration of the ethylene pretreatment. It is suggested that the catabolism of IAA to ICA may be one of the mechanisms by which ethylene endogenous IAA levels.

  18. Homologous gene clusters of nicotine catabolism, including a new ω-amidase for α-ketoglutaramate, in species of three genera of Gram-positive bacteria.

    Science.gov (United States)

    Cobzaru, Cristina; Ganas, Petra; Mihasan, Marius; Schleberger, Paula; Brandsch, Roderich

    2011-04-01

    Gram-positive soil bacteria Arthrobacter nicotinovorans, Nocardioides sp. JS614 and Rhodococcus opacus were shown to contain similarly organized clusters of homologous genes for nicotine catabolism. An uncharacterized gene of a predicted nitrilase within these gene clusters was cloned from A. nicotinovorans and biochemical data unexpectedly showed that the protein exhibited ω-amidase activity toward α-ketoglutaramate. Structural modelling of the protein suggested the presence of the catalytic triad Cys-Glu-Lys, characteristic of this class of enzymes, and supported α-ketoglutaramate as substrate. A-ketoglutaramate could be generated by hydrolytic cleavage of the C-N bond of the trihydroxypyridine ring produced by nicotine catabolism in these bacteria. This ω-amidase, together with glutamate dehydrogenase, may form a physiologically relevant enzyme couple, leading to transformation of metabolically inert α-ketoglutaramate derived from trihydroxypyridine into glutamate, a central compound of nitrogen metabolism.

  19. Workshop Oriented Tolerance Synthesis for Spatial PKM

    Institute of Scientific and Technical Information of China (English)

    Jianguang Li; Jian Ding; Yingxue Yao; Zhaohong Yi; Huaijing Jing; Honggen Fang

    2015-01-01

    To promote the pose accuracy performance of a spatial parallel kinematic Mechanism ( PKM) in service, a workshop oriented tolerance synthesis method based on design of experiment ( DOE) is proposed, which involves two consecutive stages. In the first stage of DOE, the tolerance factor sensitivities are obtained according to initial tolerance settings with the consideration of the current manufacturing capacity, and the second stage of DOE makes use of them to produce multiple tolerance allocations which can adapt to current manufacturing capacity. A tolerance synthesis procedure is developed and integrated in tolerance design system for PKM. Comparing the results with peer method, the validity and practicability of this method is verified.

  20. Molecular Characterization of PauR and Its Role in Control of Putrescine and Cadaverine Catabolism through the γ-Glutamylation Pathway in Pseudomonas aeruginosa PAO1

    OpenAIRE

    Chou, Han Ting; Li, Jeng-Yi; Peng, Yu-Chih; Lu, Chung-Dar

    2013-01-01

    Pseudomonas aeruginosa PAO1 grows on a variety of polyamines as the sole source of carbon and nitrogen. Catabolism of polyamines is mediated by the γ-glutamylation pathway, which is complicated by the existence of multiple homologous enzymes with redundant specificities toward different polyamines for a more diverse metabolic capacity in this organism. Through a series of markerless gene knockout mutants and complementation tests, specific combinations of pauABCD (polyamine utilization) genes...

  1. The Involvement of Mig1 from Xanthophyllomyces dendrorhous in Catabolic Repression: An Active Mechanism Contributing to the Regulation of Carotenoid Production

    Science.gov (United States)

    Córdova, Pamela; Marcoleta, Andrés E.; Contreras, Gabriela; Barahona, Salvador; Sepúlveda, Dionisia; Fernández-Lobato, María; Baeza, Marcelo; Cifuentes, Víctor

    2016-01-01

    The red yeast X. dendrorhous is one of the few natural sources of astaxanthin, a carotenoid used in aquaculture for salmonid fish pigmentation and in the cosmetic and pharmaceutical industries for its antioxidant properties. Genetic control of carotenogenesis is well characterized in this yeast; however, little is known about the regulation of the carotenogenesis process. Several lines of evidence have suggested that carotenogenesis is regulated by catabolic repression, and the aim of this work was to identify and functionally characterize the X. dendrorhous MIG1 gene encoding the catabolic repressor Mig1, which mediates transcriptional glucose-dependent repression in other yeasts and fungi. The identified gene encodes a protein of 863 amino acids that demonstrates the characteristic conserved features of Mig1 proteins, and binds in vitro to DNA fragments containing Mig1 boxes. Gene functionality was demonstrated by heterologous complementation in a S. cerevisiae mig1- strain; several aspects of catabolic repression were restored by the X. dendrorhous MIG1 gene. Additionally, a X. dendrorhous mig1- mutant was constructed and demonstrated a higher carotenoid content than the wild-type strain. Most important, the mig1- mutation alleviated the glucose-mediated repression of carotenogenesis in X. dendrorhous: the addition of glucose to mig1- and wild-type cultures promoted the growth of both strains, but carotenoid synthesis was observed only in the mutant strain. Transcriptomic and RT-qPCR analyses revealed that several genes were differentially expressed between X. dendrorhous mig1- and the wild-type strain when cultured with glucose as the sole carbon source. The results obtained in this study demonstrate that catabolic repression in X. dendrorhous is an active process in which the identified MIG1 gene product plays a central role in the regulation of several biological processes, including carotenogenesis. PMID:27622474

  2. Amino acid efflux by asexual blood-stage Plasmodium falciparum and its utility in interrogating the kinetics of hemoglobin endocytosis and catabolism in vivo.

    Science.gov (United States)

    Dalal, Seema; Klemba, Michael

    2015-06-01

    The endocytosis and catabolism of large quantities of host cell hemoglobin is a hallmark of the intraerythrocytic asexual stage of the human malaria parasite Plasmodium falciparum. It is known that the parasite's production of amino acids from hemoglobin far exceeds its metabolic needs. Here, we show that P. falciparum effluxes large quantities of certain non-polar (Ala, Leu, Val, Pro, Phe, Gly) and polar (Ser, Thr, His) amino acids to the external medium. That these amino acids originate from hemoglobin catabolism is indicated by the strong correlation between individual amino acid efflux rates and their abundances in hemoglobin, and the ability of the food vacuole falcipain inhibitor E-64d to greatly suppress efflux rates. We then developed a rapid, sensitive and precise method for quantifying flux through the hemoglobin endocytic-catabolic pathway that is based on leucine efflux. Optimization of the method involved the generation of a novel amino acid-restricted RPMI formulation as well as the validation of D-norvaline as an internal standard. The utility of this method was demonstrated by characterizing the effects of the phosphatidylinositol-3-kinase inhibitors wortmannin and dihydroartemisinin on the kinetics of Leu efflux. Both compounds rapidly inhibited Leu efflux, which is consistent with a role for phosphtidylinositol-3-phosphate production in the delivery of hemoglobin to the food vacuole; however, wortmannin inhibition was transient, which was likely due to the instability of this compound in culture medium. The simplicity, convenience and non-invasive nature of the Leu efflux assay described here makes it ideal for characterizing the in vivo kinetics of hemoglobin endocytosis and catabolism, for inhibitor target validation studies, and for medium-throughput screens to identify novel inhibitors of cytostomal endocytosis.

  3. Catabolism of Branched Chain Amino Acids Contributes Significantly to Synthesis of Odd-Chain and Even-Chain Fatty Acids in 3T3-L1 Adipocytes

    OpenAIRE

    Crown, Scott B.; Nicholas Marze; Antoniewicz, Maciek R

    2015-01-01

    The branched chain amino acids (BCAA) valine, leucine and isoleucine have been implicated in a number of diseases including obesity, insulin resistance, and type 2 diabetes mellitus, although the mechanisms are still poorly understood. Adipose tissue plays an important role in BCAA homeostasis by actively metabolizing circulating BCAA. In this work, we have investigated the link between BCAA catabolism and fatty acid synthesis in 3T3-L1 adipocytes using parallel 13C-labeling experiments, mass...

  4. Dicamba Tolerant Soybean MON 87708

    OpenAIRE

    Directorate, Issued by Health Canada's Food

    2014-01-01

    Health Canada has notified Monsanto Canada Inc. that it has no objection to the sale of food derived from Dicamba Tolerant Soybean MON 87708. The Department conducted a comprehensive assessment of this soybean event according to its Guidelines for the Safety Assessment of Novel Foods. These Guidelines are based upon internationally accepted principles for establishing the safety of foods with novel traits.

  5. Desiccation tolerance of somatic embryoids.

    NARCIS (Netherlands)

    Tetteroo, F.A.A.

    1996-01-01

    This thesis describes the research performed on the subject "Desiccation tolerance in somatic embryoids". Somatic embryoids are bipolar structures formed in tissue culture, with both a shoot and a root apex, which resemble very much zygotic embryos found in seeds. Through simultaneous development of

  6. Biocatalysts with enhanced inhibitor tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shihui; Linger, Jeffrey; Franden, Mary Ann; Pienkos, Philip T.; Zhang, Min

    2015-12-08

    Disclosed herein are biocatalysts for the production of biofuels, including microorganisms that contain genetic modifications conferring tolerance to growth and fermentation inhibitors found in many cellulosic feedstocks. Methods of converting cellulose-containing materials to fuels and chemicals, as well as methods of fermenting sugars to fuels and chemicals, using these biocatalysts are also disclosed.

  7. Arabidopsis CYP94B3 encodes jasmonyl-L-isoleucine 12-hydroxylase, a key enzyme in the oxidative catabolism of jasmonate.

    Science.gov (United States)

    Kitaoka, Naoki; Matsubara, Takuya; Sato, Michio; Takahashi, Kosaku; Wakuta, Shinji; Kawaide, Hiroshi; Matsui, Hirokazu; Nabeta, Kensuke; Matsuura, Hideyuki

    2011-10-01

    The hormonal action of jasmonate in plants is controlled by the precise balance between its biosynthesis and catabolism. It has been shown that jasmonyl-L-isoleucine (JA-Ile) is the bioactive form involved in the jasmonate-mediated signaling pathway. However, the catabolism of JA-Ile is poorly understood. Although a metabolite, 12-hydroxyJA-Ile, has been characterized, detailed functional studies of the compound and the enzyme that produces it have not been conducted. In this report, the kinetics of wound-induced accumulation of 12-hydroxyJA-Ile in plants were examined, and its involvement in the plant wound response is described. Candidate genes for the catabolic enzyme were narrowed down from 272 Arabidopsis Cyt P450 genes using Arabidopsis mutants. The candidate gene was functionally expressed in Pichia pastoris to reveal that CYP94B3 encodes JA-Ile 12-hydroxylase. Expression analyses demonstrate that expression of CYP94B3 is induced by wounding and shows specific activity toward JA-Ile. Plants grown in medium containing JA-Ile show higher sensitivity to JA-Ile in cyp94b3 mutants than in wild-type plants. These results demonstrate that CYP94B3 plays a major regulatory role in controlling the level of JA-Ile in plants. PMID:21849397

  8. Catabolic fate of Streptomyces viridosporus T7A-Produced, acid precipitable polymeric lignin upon incubation with ligninolytic Streptomyces species and Phanerochaete chrysosporium

    International Nuclear Information System (INIS)

    Degradation of ground and hot-water-extracted corn stover (Zea mays) lignocellulose by Streptomyces viridosporus T7A generates a water-soluble lignin degradation intermediate termed acid-precipitable polymeric lignin (APPL). The further catabolism of T7A-APPL by S. viridosporus T7A, S. badius 252, and S. setonii75Vi2 was followed for 3 weeks. APPL catabolism by Phanerochaete chrysosporium was followed in stationary cultures in a low-nitrogen medium containing 1% (wt/vol) glucose and 0.05% (wt/vol) T7A-APPL. Metabolism of the APPL was followed by turbidometric assay (600 nm) and by direct measurement of APPL recoverable from the medium. Accumulation and disappearance of soluble low-molecular-weight products of APPL catabolism were followed by gas-liquid chromatography and by high-pressure liquid chromatography, utilizing a diode array detector. Mineralization of a [14C-lignin]APPL was also followed. The percent 14C recovered as 14CO2, 14C-APPL, 14C-labeled water-soluble products, and cell mass-associated radioactivity, were determined for each microorganism after 1 and 3 weeks of incubation in bubbler tube cultures at 370C. P. chrysosporium evolved the most 14CO2, and S. viridosporus gave the greatest decrease in recoverable 14C-APPL. The results show that S. badius was not able to significantly degrade the APPL, while the other microorganisms demonstrated various APPL-degrading abilities

  9. Stable Isotope Resolved Metabolomics Reveals the Role of Anabolic and Catabolic Processes in Glyphosate-Induced Amino Acid Accumulation in Amaranthus palmeri Biotypes.

    Science.gov (United States)

    Maroli, Amith; Nandula, Vijay; Duke, Stephen; Tharayil, Nishanth

    2016-09-21

    Biotic and abiotic stressors often result in the buildup of amino acid pools in plants, which serve as potential stress mitigators. However, the role of anabolic (de novo amino acid synthesis) versus catabolic (proteolytic) processes in contributing to free amino acid pools is less understood. Using stable isotope-resolved metabolomics (SIRM), we measured the de novo amino acid synthesis in glyphosate susceptible (S-) and resistant (R-) Amaranthus palmeri biotypes. In the S-biotype, glyphosate treatment at 0.4 kg ae/ha resulted in an increase in total amino acids, a proportional increase in both (14)N and (15)N amino acids, and a decrease in soluble proteins. This indicates a potential increase in de novo amino acid synthesis, coupled with a lower protein synthesis and a higher protein catabolism following glyphosate treatment in the S-biotype. Furthermore, the ratio of glutamine/glutamic acid (Gln/Glu) in the glyphosate-treated S- and R-biotypes indicated that the initial assimilation of inorganic nitrogen to organic forms is less affected by glyphosate. However, amino acid biosynthesis downstream of glutamine is disproportionately disrupted in the glyphosate treated S-biotype. It is thus concluded that the herbicide-induced amino acid abundance in the S-biotype is contributed by both protein catabolism and de novo synthesis of amino acids such as glutamine and asparagine.

  10. In Planta Biocontrol of Pectobacterium atrosepticum by Rhodococcus erythropolis Involves Silencing of Pathogen Communication by the Rhodococcal Gamma-Lactone Catabolic Pathway.

    Directory of Open Access Journals (Sweden)

    Corinne Barbey

    Full Text Available The virulence of numerous Gram-negative bacteria is under the control of a quorum sensing process based on synthesis and perception of N-acyl homoserine lactones. Rhodococcus erythropolis, a Gram-positive bacterium, has recently been proposed as a biocontrol agent for plant protection against soft-rot bacteria, including Pectobacterium. Here, we show that the γ-lactone catabolic pathway of R. erythropolis disrupts Pectobacterium communication and prevents plant soft-rot. We report the first characterization and demonstration of N-acyl homoserine lactone quenching in planta. In particular, we describe the transcription of the R. erythropolis lactonase gene, encoding the key enzyme of this pathway, and the subsequent lactone breakdown. The role of this catabolic pathway in biocontrol activity was confirmed by deletion of the lactonase gene from R. erythropolis and also its heterologous expression in Escherichia coli. The γ-lactone catabolic pathway is induced by pathogen communication rather than by pathogen invasion. This is thus a novel and unusual biocontrol pathway, differing from those previously described as protecting plants from phytopathogens. These findings also suggest the existence of an additional pathway contributing to plant protection.

  11. Arabidopsis CYP94B3 encodes jasmonyl-L-isoleucine 12-hydroxylase, a key enzyme in the oxidative catabolism of jasmonate.

    Science.gov (United States)

    Kitaoka, Naoki; Matsubara, Takuya; Sato, Michio; Takahashi, Kosaku; Wakuta, Shinji; Kawaide, Hiroshi; Matsui, Hirokazu; Nabeta, Kensuke; Matsuura, Hideyuki

    2011-10-01

    The hormonal action of jasmonate in plants is controlled by the precise balance between its biosynthesis and catabolism. It has been shown that jasmonyl-L-isoleucine (JA-Ile) is the bioactive form involved in the jasmonate-mediated signaling pathway. However, the catabolism of JA-Ile is poorly understood. Although a metabolite, 12-hydroxyJA-Ile, has been characterized, detailed functional studies of the compound and the enzyme that produces it have not been conducted. In this report, the kinetics of wound-induced accumulation of 12-hydroxyJA-Ile in plants were examined, and its involvement in the plant wound response is described. Candidate genes for the catabolic enzyme were narrowed down from 272 Arabidopsis Cyt P450 genes using Arabidopsis mutants. The candidate gene was functionally expressed in Pichia pastoris to reveal that CYP94B3 encodes JA-Ile 12-hydroxylase. Expression analyses demonstrate that expression of CYP94B3 is induced by wounding and shows specific activity toward JA-Ile. Plants grown in medium containing JA-Ile show higher sensitivity to JA-Ile in cyp94b3 mutants than in wild-type plants. These results demonstrate that CYP94B3 plays a major regulatory role in controlling the level of JA-Ile in plants.

  12. HbNIN2, a cytosolic alkaline/neutral-invertase, is responsible for sucrose catabolism in rubber-producing laticifers of Hevea brasiliensis (para rubber tree).

    Science.gov (United States)

    Liu, Shujin; Lan, Jixian; Zhou, Binhui; Qin, Yunxia; Zhou, Yihua; Xiao, Xiaohu; Yang, Jianghua; Gou, Jiqing; Qi, Jiyan; Huang, Yacheng; Tang, Chaorong

    2015-04-01

    In Hevea brasiliensis, an alkaline/neutral invertase (A/N-Inv) is responsible for sucrose catabolism in latex (essentially the cytoplasm of rubber-producing laticifers, the source of natural rubber) and implicated in rubber yield. However, neither the gene encoding this enzyme nor its molecular and biochemical properties have been well documented. Three Hevea A/N-Inv genes, namely HbNIN1, 2 and 3, were first cloned and characterized in planta and in Escherichia coli. Cellular localizations of HbNIN2 mRNA and protein were probed. From latex, active A/N-Inv proteins were purified, identified, and explored for enzymatic properties. HbNIN2 was identified as the major A/N-Inv gene functioning in latex based on its functionality in E. coli, its latex-predominant expression, the conspicuous localization of its mRNA and protein in the laticifers, and its expressional correlation with rubber yield. An active A/N-Inv protein was partially purified from latex, and determined as HbNIN2. The enhancement of HbNIN2 enzymatic activity by pyridoxal is peculiar to A/N-Invs in other plants. We conclude that HbNIN2, a cytosolic A/N-Inv, is responsible for sucrose catabolism in rubber laticifers. The results contribute to the studies of sucrose catabolism in plants as a whole and natural rubber synthesis in particular. PMID:25581169

  13. Stable Isotope Resolved Metabolomics Reveals the Role of Anabolic and Catabolic Processes in Glyphosate-Induced Amino Acid Accumulation in Amaranthus palmeri Biotypes.

    Science.gov (United States)

    Maroli, Amith; Nandula, Vijay; Duke, Stephen; Tharayil, Nishanth

    2016-09-21

    Biotic and abiotic stressors often result in the buildup of amino acid pools in plants, which serve as potential stress mitigators. However, the role of anabolic (de novo amino acid synthesis) versus catabolic (proteolytic) processes in contributing to free amino acid pools is less understood. Using stable isotope-resolved metabolomics (SIRM), we measured the de novo amino acid synthesis in glyphosate susceptible (S-) and resistant (R-) Amaranthus palmeri biotypes. In the S-biotype, glyphosate treatment at 0.4 kg ae/ha resulted in an increase in total amino acids, a proportional increase in both (14)N and (15)N amino acids, and a decrease in soluble proteins. This indicates a potential increase in de novo amino acid synthesis, coupled with a lower protein synthesis and a higher protein catabolism following glyphosate treatment in the S-biotype. Furthermore, the ratio of glutamine/glutamic acid (Gln/Glu) in the glyphosate-treated S- and R-biotypes indicated that the initial assimilation of inorganic nitrogen to organic forms is less affected by glyphosate. However, amino acid biosynthesis downstream of glutamine is disproportionately disrupted in the glyphosate treated S-biotype. It is thus concluded that the herbicide-induced amino acid abundance in the S-biotype is contributed by both protein catabolism and de novo synthesis of amino acids such as glutamine and asparagine. PMID:27469508

  14. [Do the variations in water carbon dioxide pressure and PH have an effect on the nature of end products of protein catabolism, ammonia and urea, in the clawed frog Xenopus laevis?].

    Science.gov (United States)

    Dejours, P; Armand, J; Beekenkamp, H

    1991-01-01

    The effects of PCO2 and pH changes in the ambient water on the nitrogen catabolism and the proportions of the excreted nitrogenous end products, ammonia and urea, were studied in the clawed frog, Xenopus laevis, at 24 degrees C. In animals living in artificial fresh water, the exposure to a hypocapnic alkalosis (PCO2 = 0.7 Torr instead of 10 Torr) did not entail any change in the nitrogen catabolism. In animals who lived in a water loaded with NaCl and had therefore a higher oxygen consumption, an intense nitrogen catabolism and a marked ureotelism, the hypocapnic alkalosis seems to have increased the intensity of the nitrogen catabolism. In neither group were there signs of ammonia toxicity.

  15. A Developmental View of Children's Behavioral Tolerance.

    Science.gov (United States)

    Safran, Joan S.; Safran, Stephen P.

    1985-01-01

    Analysis of scores of 469 third to sixth graders on the Children's Tolerance Scale yielded significant grade level differences with older children generally the most tolerant. The more outer-directed behaviors were rated as most disturbing. (CL)

  16. Increasing ideological tolerance in social psychology.

    Science.gov (United States)

    Inbar, Yoel; Lammers, Joris

    2015-01-01

    We argue that recognizing current ideological diversity in social psychology and promoting tolerance of minority views is just as important as increasing the number of non-liberal researchers. Increasing tolerance will allow individuals in the minority to express dissenting views, which will improve psychological science by reducing bias. We present four recommendations for increasing tolerance.

  17. 15 CFR 750.11 - Shipping tolerances.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Shipping tolerances. 750.11 Section... PROCESSING, ISSUANCE, AND DENIAL § 750.11 Shipping tolerances. (a) Applicability and use of shipping... a shipping tolerance. This section tells you, as the licensee, when you may take advantage of...

  18. 7 CFR 51.886 - Tolerances.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Tolerances. 51.886 Section 51.886 Agriculture... Standards for Grades of Table Grapes (European or Vinifera Type) 1 Tolerances § 51.886 Tolerances. (a) No... other than the allowances specified in § 51.888 or in the sampling and testing procedures of...

  19. Biodistribution and catabolism of {sup 18}F-labeled N-{epsilon}-fructoselysine as a model of Amadori products

    Energy Technology Data Exchange (ETDEWEB)

    Hultsch, Christina [Institute of Radiopharmacy, Research Center Rossendorf, P.O. Box 51 01 19, D-01314 Dresden (Germany)]. E-mail: ch.hultsch@fz-rossendorf.de; Hellwig, Michael [Institute of Food Chemistry, Technische Universitaet Dresden, D-01062 Dresden (Germany); Pawelke, Beate [Institute of Radiopharmacy, Research Center Rossendorf, P.O. Box 51 01 19, D-01314 Dresden (Germany); Bergmann, Ralf [Institute of Radiopharmacy, Research Center Rossendorf, P.O. Box 51 01 19, D-01314 Dresden (Germany); Rode, Katrin [Institute of Radiopharmacy, Research Center Rossendorf, P.O. Box 51 01 19, D-01314 Dresden (Germany); Pietzsch, Jens [Institute of Radiopharmacy, Research Center Rossendorf, P.O. Box 51 01 19, D-01314 Dresden (Germany); Krause, Rene [Institute of Food Chemistry, Technische Universitaet Dresden, D-01062 Dresden (Germany); Henle, Thomas [Institute of Food Chemistry, Technische Universitaet Dresden, D-01062 Dresden (Germany)

    2006-10-15

    Amadori products are formed in the early stage of the so-called Maillard reaction between reducing sugars and amino acids or proteins. Such nonenzymatic glycosylation may occur during the heating or storage of foods, but also under physiological conditions. N-{epsilon}-fructoselysine is formed via this reaction between the {epsilon}-amino group of peptide-bound lysine and glucose. Despite the fact that, in certain heated foods, up to 50% of lysyl moieties may be modified to such lysine derivatives, up to now, very little is known about the metabolic fate of alimentary administered Amadori compounds. In the present study, N-succinimidyl-4-[{sup 18}F]fluorobenzoate was used to modify N-{epsilon}-fructoselysine at the {alpha}-amino group of the lysyl moiety. The in vitro stability of the resulting 4-[{sup 18}F]fluorobenzoylated derivative was tested in different tissue homogenates. Furthermore, the 4-[{sup 18}F]fluorobenzoylated N-{epsilon}-fructoselysine was used in positron emission tomography studies, as well as in studies concerning biodistribution and catabolism. The results show that the 4-[{sup 18}F]fluorobenzoylated N-{epsilon}-fructoselysine is phosphorylated in vitro, as well as in vivo. This phosphorylation is caused by fructosamine 3-kinases and occurs in vivo, particularly in the kidneys. Despite the action of these enzymes, it was shown that a large part of the intravenously applied radiolabeled N-{epsilon}-fructoselysine was excreted nearly unchanged in the urine. Therefore, it was concluded that the predominant part of peptide-bound lysine that was fructosylated during food processing is not available for nutrition.

  20. Biodistribution and catabolism of 18F-labeled N-ε-fructoselysine as a model of Amadori products

    International Nuclear Information System (INIS)

    Amadori products are formed in the early stage of the so-called Maillard reaction between reducing sugars and amino acids or proteins. Such nonenzymatic glycosylation may occur during the heating or storage of foods, but also under physiological conditions. N-ε-fructoselysine is formed via this reaction between the ε-amino group of peptide-bound lysine and glucose. Despite the fact that, in certain heated foods, up to 50% of lysyl moieties may be modified to such lysine derivatives, up to now, very little is known about the metabolic fate of alimentary administered Amadori compounds. In the present study, N-succinimidyl-4-[18F]fluorobenzoate was used to modify N-ε-fructoselysine at the α-amino group of the lysyl moiety. The in vitro stability of the resulting 4-[18F]fluorobenzoylated derivative was tested in different tissue homogenates. Furthermore, the 4-[18F]fluorobenzoylated N-ε-fructoselysine was used in positron emission tomography studies, as well as in studies concerning biodistribution and catabolism. The results show that the 4-[18F]fluorobenzoylated N-ε-fructoselysine is phosphorylated in vitro, as well as in vivo. This phosphorylation is caused by fructosamine 3-kinases and occurs in vivo, particularly in the kidneys. Despite the action of these enzymes, it was shown that a large part of the intravenously applied radiolabeled N-ε-fructoselysine was excreted nearly unchanged in the urine. Therefore, it was concluded that the predominant part of peptide-bound lysine that was fructosylated during food processing is not available for nutrition

  1. Combined fluxomics and transcriptomics analysis of glucose catabolism via a partially cyclic pentose phosphate pathway in Gluconobacter oxydans 621H.

    Science.gov (United States)

    Hanke, Tanja; Nöh, Katharina; Noack, Stephan; Polen, Tino; Bringer, Stephanie; Sahm, Hermann; Wiechert, Wolfgang; Bott, Michael

    2013-04-01

    In this study, the distribution and regulation of periplasmic and cytoplasmic carbon fluxes in Gluconobacter oxydans 621H with glucose were studied by (13)C-based metabolic flux analysis ((13)C-MFA) in combination with transcriptomics and enzyme assays. For (13)C-MFA, cells were cultivated with specifically (13)C-labeled glucose, and intracellular metabolites were analyzed for their labeling pattern by liquid chromatography-mass spectrometry (LC-MS). In growth phase I, 90% of the glucose was oxidized periplasmically to gluconate and partially further oxidized to 2-ketogluconate. Of the glucose taken up by the cells, 9% was phosphorylated to glucose 6-phosphate, whereas 91% was oxidized by cytoplasmic glucose dehydrogenase to gluconate. Additional gluconate was taken up into the cells by transport. Of the cytoplasmic gluconate, 70% was oxidized to 5-ketogluconate and 30% was phosphorylated to 6-phosphogluconate. In growth phase II, 87% of gluconate was oxidized to 2-ketogluconate in the periplasm and 13% was taken up by the cells and almost completely converted to 6-phosphogluconate. Since G. oxydans lacks phosphofructokinase, glucose 6-phosphate can be metabolized only via the oxidative pentose phosphate pathway (PPP) or the Entner-Doudoroff pathway (EDP). (13)C-MFA showed that 6-phosphogluconate is catabolized primarily via the oxidative PPP in both phases I and II (62% and 93%) and demonstrated a cyclic carbon flux through the oxidative PPP. The transcriptome comparison revealed an increased expression of PPP genes in growth phase II, which was supported by enzyme activity measurements and correlated with the increased PPP flux in phase II. Moreover, genes possibly related to a general stress response displayed increased expression in growth phase II. PMID:23377928

  2. Combined fluxomics and transcriptomics analysis of glucose catabolism via a partially cyclic pentose phosphate pathway in Gluconobacter oxydans 621H.

    Science.gov (United States)

    Hanke, Tanja; Nöh, Katharina; Noack, Stephan; Polen, Tino; Bringer, Stephanie; Sahm, Hermann; Wiechert, Wolfgang; Bott, Michael

    2013-04-01

    In this study, the distribution and regulation of periplasmic and cytoplasmic carbon fluxes in Gluconobacter oxydans 621H with glucose were studied by (13)C-based metabolic flux analysis ((13)C-MFA) in combination with transcriptomics and enzyme assays. For (13)C-MFA, cells were cultivated with specifically (13)C-labeled glucose, and intracellular metabolites were analyzed for their labeling pattern by liquid chromatography-mass spectrometry (LC-MS). In growth phase I, 90% of the glucose was oxidized periplasmically to gluconate and partially further oxidized to 2-ketogluconate. Of the glucose taken up by the cells, 9% was phosphorylated to glucose 6-phosphate, whereas 91% was oxidized by cytoplasmic glucose dehydrogenase to gluconate. Additional gluconate was taken up into the cells by transport. Of the cytoplasmic gluconate, 70% was oxidized to 5-ketogluconate and 30% was phosphorylated to 6-phosphogluconate. In growth phase II, 87% of gluconate was oxidized to 2-ketogluconate in the periplasm and 13% was taken up by the cells and almost completely converted to 6-phosphogluconate. Since G. oxydans lacks phosphofructokinase, glucose 6-phosphate can be metabolized only via the oxidative pentose phosphate pathway (PPP) or the Entner-Doudoroff pathway (EDP). (13)C-MFA showed that 6-phosphogluconate is catabolized primarily via the oxidative PPP in both phases I and II (62% and 93%) and demonstrated a cyclic carbon flux through the oxidative PPP. The transcriptome comparison revealed an increased expression of PPP genes in growth phase II, which was supported by enzyme activity measurements and correlated with the increased PPP flux in phase II. Moreover, genes possibly related to a general stress response displayed increased expression in growth phase II.

  3. Identification and pharmacological induction of autophagy in the larval stages of Echinococcus granulosus: an active catabolic process in calcareous corpuscles.

    Science.gov (United States)

    Loos, Julia A; Caparros, Pedro A; Nicolao, María Celeste; Denegri, Guillermo M; Cumino, Andrea C

    2014-06-01

    Autophagy is a fundamental catabolic pathway conserved from yeast to mammals, but which remains unknown in parasite cestodes. In this work, the pharmacological induction of autophagy was cellularly and molecularly analysed in the larval stages of Echinococcus granulosus. Metacestode sensitivity to rapamycin and TORC1 expression in protoscoleces and metacestodes were shown. Ultrastructural studies showed that treated parasites had an isolation membrane, autophagosomes and autolysosomes, all of which evidenced the autophagic flux. Genes coding for key autophagy-related proteins were also identified in the Echinococcus genome. These genes were involved in autophagosome formation and transcriptional over-expression of Eg-atg5, Eg-atg6, Eg-atg8, Eg-atg12, Eg-atg16 and Eg-atg18 was shown in presence of rapamycin or arsenic trioxide. Thus, Echinococcus autophagy could be regulated by non-transcriptional inhibition through TOR and by transcription-dependent up-regulation via FoxO-like transcription factors and/or TFEB proteins. An increase in the punctate pattern and Eg-Atg8 polypeptide level in the tegument, parenchyma cells and excretory system of protoscoleces and in vesicularised parasites was detected after rapamycin treatment. This suggests the occurrence of basal autophagy in the larval stages and during vesicular development. In arsenic-treated protoscoleces, high Eg-Atg8 polypeptide levels within the free cytoplasmic matrix of calcareous corpuscles were observed, thus verifying the occurrence of autophagic events. These experiments also confirmed that the calcareous corpuscles are sites of arsenic trioxide accumulation. The detection of the autophagic machinery in this parasite represents a basic starting point to unravel the role of autophagy under both physiological and stress conditions which will allow identification of new strategies for drug discovery against neglected parasitic diseases caused by cestodes.

  4. An unexpected location of the arginine catabolic mobile element (ACME in a USA300-related MRSA strain.

    Directory of Open Access Journals (Sweden)

    Mette Damkjær Bartels

    Full Text Available In methicillin resistant Staphylococcus aureus (MRSA, the arginine catabolic mobile element (ACME was initially described in USA300 (t008-ST8 where it is located downstream of the staphylococcal cassette chromosome mec (SCCmec. A common health-care associated MRSA in Copenhagen, Denmark (t024-ST8 is clonally related to USA300 and is frequently PCR positive for the ACME specific arcA-gene. This study is the first to describe an ACME element upstream of the SCCmec in MRSA. By traditional SCCmec typing schemes, the SCCmec of t024-ST8 strain M1 carries SCCmec IVa, but full sequencing of the cassette revealed that the entire J3 region had no homology to published SCCmec IVa. Within the J3 region of M1 was a 1705 bp sequence only similar to a sequence in S. haemolyticus strain JCSC1435 and 2941 bps with no homology found in GenBank. In addition to the usual direct repeats (DR at each extremity of SCCmec, M1 had two new DR between the orfX gene and the J3 region of the SCCmec. The region between the orfX DR (DR1 and DR2 contained the ccrAB4 genes. An ACME II-like element was located between DR2 and DR3. The entire 26,468 bp sequence between DR1 and DR3 was highly similar to parts of the ACME composite island of S. epidermidis strain ATCC12228. Sequencing of an ACME negative t024-ST8 strain (M299 showed that DR1 and the sequence between DR1 and DR3 was missing. The finding of a mobile ACME II-like element inserted downstream of orfX and upstream of SCCmec indicates a novel recombination between staphylococcal species.

  5. Anabolic and Catabolic Signaling Pathways in mouse Longissimus Dorsi after 30-day BION-M1 Spaceflight and Subsequent Recovery

    Science.gov (United States)

    Mirzoev, Timur; Blottner, Dieter; Shenkman, Boris; Lomonosova, Yulia; Vilchinskaya, Natalia; Nemirovskaya, Tatiana; Salanova, Michele

    The aim of the study was to analyze some of the key markers regulating anabolic and catabolic processes in mouse m. longissimus dorsi, an important back muscle system for trunk stabilization, following 30-day spaceflight and 8-day recovery period. C57/black mice were divided into 3 groups: 1) Vivarium Control (n=7), 2) Flight (n=5), 3) Recovery (n=5). The experiment was carried out in accordance with the rules of biomedical ethics certified by the Russian Academy of Sciences Committee on Bioethics. Using Western-blotting analysis we determined the content of IRS-1, p-AMPK, MURF-1 and eEF2 in m. longissimus dorsi. The content of IRS-1 in mice m. longissimus dorsi after the 30-day flight did not differ from the control group, however, in the Recovery group IRS-1 level was 80% higher (p<0.05) as compared to Control. Phospho-AMPK content remained unchanged. In the Recovery group there was an increase of eEF2 by 75% compared to the Control (p<0.05). After spaceflight MuRF-1 content was increased more than 2 times compared to the control animals. Thus, our findings showed that the work of the IRS-1 - dependent signaling pathway is only active in the recovery period. The content of the ubiquitin-ligase MURF-1 that takes parts in degrading myosin heavy chain was increased after the spaceflight, however, after 8-day recovery period MURF-1 level did not exceed the control indicating normalization of protein degradation in m. longissimus dorsi. The work was supported by the program of basic research of RAS and Federal Space Program of Russia for the period of 2006-2015.

  6. Cytosolic re-localization and optimization of valine synthesis and catabolism enables inseased isobutanol production with the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Brat Dawid

    2012-09-01

    Full Text Available Abstract Background The branched chain alcohol isobutanol exhibits superior physicochemical properties as an alternative biofuel. The yeast Saccharomyces cerevisiae naturally produces low amounts of isobutanol as a by-product during fermentations, resulting from the catabolism of valine. As S. cerevisiae is widely used in industrial applications and can easily be modified by genetic engineering, this microorganism is a promising host for the fermentative production of higher amounts of isobutanol. Results Isobutanol production could be improved by re-locating the valine biosynthesis enzymes Ilv2, Ilv5 and Ilv3 from the mitochondrial matrix into the cytosol. To prevent the import of the three enzymes into yeast mitochondria, N-terminally shortened Ilv2, Ilv5 and Ilv3 versions were constructed lacking their mitochondrial targeting sequences. SDS-PAGE and immunofluorescence analyses confirmed expression and re-localization of the truncated enzymes. Growth tests or enzyme assays confirmed enzymatic activities. Isobutanol production was only increased in the absence of valine and the simultaneous blockage of the mitochondrial valine synthesis pathway. Isobutanol production could be even more enhanced after adapting the codon usage of the truncated valine biosynthesis genes to the codon usage of highly expressed glycolytic genes. Finally, a suitable ketoisovalerate decarboxylase, Aro10, and alcohol dehydrogenase, Adh2, were selected and overexpressed. The highest isobutanol titer was 0.63 g/L at a yield of nearly 15 mg per g glucose. Conclusion A cytosolic isobutanol production pathway was successfully established in yeast by re-localization and optimization of mitochondrial valine synthesis enzymes together with overexpression of Aro10 decarboxylase and Adh2 alcohol dehydrogenase. Driving forces were generated by blocking competition with the mitochondrial valine pathway and by omitting valine from the fermentation medium. Additional deletion of

  7. Copper tolerance of Trichoderma species

    Directory of Open Access Journals (Sweden)

    Jovičić-Petrović Jelena

    2014-01-01

    Full Text Available Some Trichoderma strains can persist in ecosystems with high concentrations of heavy metals. The aim of this research was to examine the variability of Trichoderma strains isolated from different ecosystems, based on their morphological properties and restriction analysis of ITS fragments. The fungal growth was tested on potato dextrose agar, amended with Cu(II concentrations ranging from 0.25 to 10 mmol/l, in order to identify copper-resistant strains. The results indicate that some isolated strains of Trichoderma sp. show tolerance to higher copper concentrations. Further research to examine the ability of copper bioaccumulation by tolerant Trichoderma strains is needed. [Projekat Ministarstva nauke Republike Srbije, br. TR 31080 i br. III 43010

  8. Fault Tolerant External Memory Algorithms

    DEFF Research Database (Denmark)

    Jørgensen, Allan Grønlund; Brodal, Gerth Stølting; Mølhave, Thomas

    2009-01-01

    Algorithms dealing with massive data sets are usually designed for I/O-efficiency, often captured by the I/O model by Aggarwal and Vitter. Another aspect of dealing with massive data is how to deal with memory faults, e.g. captured by the adversary based faulty memory RAM by Finocchi and Italiano....... However, current fault tolerant algorithms do not scale beyond the internal memory. In this paper we investigate for the first time the connection between I/O-efficiency in the I/O model and fault tolerance in the faulty memory RAM, and we assume that both memory and disk are unreliable. We show a lower...... bound on the number of I/Os required for any deterministic dictionary that is resilient to memory faults. We design a static and a dynamic deterministic dictionary with optimal query performance as well as an optimal sorting algorithm and an optimal priority queue. Finally, we consider scenarios where...

  9. Fault Tolerant Wind Farm Control

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2013-01-01

    with best at a wind turbine control level. However, some faults are better dealt with at the wind farm control level, if the wind turbine is located in a wind farm. In this paper a benchmark model for fault detection and isolation, and fault tolerant control of wind turbines implemented at the wind farm...... scenarios. This benchmark model is used in an international competition dealing with Wind Farm fault detection and isolation and fault tolerant control....... control level is presented. The benchmark model includes a small wind farm of nine wind turbines, based on simple models of the wind turbines as well as the wind and interactions between wind turbines in the wind farm. The model includes wind and power references scenarios as well as three relevant fault...

  10. Rice's Salt Tolerance Gene Cloned

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ In cooperation with US colleagues, CAS researchers have made significant progress in their studies into functional genes for key agronomic traits by cloning SKC1, a salt-tolerant functional gene of rice and making clear its biological functions and mechanisms. This pioneering work,which was reported in the Oct. issue of Nature Genetics (37:1141-1146), is believed to hold promise to increase the output of the crop plant in this country.

  11. Tolerance bands for functional data.

    Science.gov (United States)

    Rathnayake, Lasitha N; Choudhary, Pankaj K

    2016-06-01

    Often the object of inference in biomedical applications is a range that brackets a given fraction of individual observations in a population. A classical estimate of this range for univariate measurements is a "tolerance interval." This article develops its natural extension for functional measurements, a "tolerance band," and proposes a methodology for constructing its pointwise and simultaneous versions that incorporates both sparse and dense functional data. Assuming that the measurements are observed with noise, the methodology uses functional principal component analysis in a mixed model framework to represent the measurements and employs bootstrapping to approximate the tolerance factors needed for the bands. The proposed bands also account for uncertainty in the principal components decomposition. Simulations show that the methodology has, generally, acceptable performance unless the data are quite sparse and unbalanced, in which case the bands may be somewhat liberal. The methodology is illustrated using two real datasets, a sparse dataset involving CD4 cell counts and a dense dataset involving core body temperatures. PMID:26574904

  12. Noise Tolerance under Risk Minimization

    CERN Document Server

    Manwani, Naresh

    2011-01-01

    In this paper we explore the problem of noise tolerant learning of classifiers. We formulate the problem as follows. We assume that there is an ${\\bf unobservable}$ training set which is noise-free. The actual training set given to the learning algorithm is obtained from this ideal data set by corrupting the class label of each example where the probability that the class label on an example is corrupted is a function of the feature vector of the example. This would account for almost all kinds of noisy data one may encounter in practice. We say that a learning method is noise tolerant if the classifiers learnt with the ideal noise-free data and with noisy data have the same classification accuracy on the noise-free data. In this paper we analyze the noise tolerant properties of risk minimization, which is a generic method for learning classifiers. We consider different loss functions such as 0-1 loss, hinge loss, exponential loss, squared error loss etc. We show that the risk minimization under 0-1 loss func...

  13. SALT TOLERANCE OF CROP PLANTS

    Directory of Open Access Journals (Sweden)

    Hamdia, M. A

    2010-09-01

    Full Text Available Several environmental factors adversely affect plant growth and development and final yield performance of a crop. Drought, salinity, nutrient imbalances (including mineral toxicities and deficiencies and extremes of temperature are among the major environmental constraints to crop productivity worldwide. Development of crop plants with stress tolerance, however, requires, among others, knowledge of the physiological mechanisms and genetic controls of the contributing traits at different plant developmental stages. In the past 2 decades, biotechnology research has provided considerable insights into the mechanism of biotic stress tolerance in plants at the molecular level. Furthermore, different abiotic stress factors may provoke osmotic stress, oxidative stress and protein denaturation in plants, which lead to similar cellular adaptive responses such as accumulation of compatible solutes, induction of stress proteins, and acceleration of reactive oxygen species scavenging systems. Recently, the authores try to improve plant tolerance to salinity injury through either chemical treatments (plant hormones, minerals, amino acids, quaternary ammonium compounds, polyamines and vitamins or biofertilizers treatments (Asymbiotic nitrogen-fixing bacteria, symbiotic nitrogen-fixing bacteria and mycorrhiza or enhanced a process used naturally by plants to minimise the movement of Na+ to the shoot, using genetic modification to amplify the process, helping plants to do what they already do - but to do it much better."

  14. Soft Computing Approaches To Fault Tolerant Systems

    Directory of Open Access Journals (Sweden)

    Neeraj Prakash Srivastava

    2014-05-01

    Full Text Available We present in this paper as an introduction to soft computing techniques for fault tolerant systems and the terminology with different ways of achieving fault tolerance. The paper focuses on the problem of fault tolerance using soft computing techniques. The fundamentals of soft computing approaches and its type with introduction of fault tolerance are discussed. The main objective is to show how to implement soft computing approaches for fault detection, isolation and identification. The paper contains details about soft computing application with an application of wireless sensor network as fault tolerant system.

  15. IRON-TOLERANT CYANOBACTERIA: IMPLICATIONS FOR ASTROBIOLOGY

    Science.gov (United States)

    Brown, Igor I.; Allen, Carlton C.; Mummey, Daniel L.; Sarkisova, Svetlana A.; McKay, David S.

    2006-01-01

    The review is dedicated to the new group of extremophiles - iron tolerant cyanobacteria. The authors have analyzed earlier published articles about the ecology of iron tolerant cyanobacteria and their diversity. It was concluded that contemporary iron depositing hot springs might be considered as relative analogs of Precambrian environment. The authors have concluded that the diversity of iron-tolerant cyanobacteria is understudied. The authors also analyzed published data about the physiological peculiarities of iron tolerant cyanobacteria. They made the conclusion that iron tolerant cyanobacteria may oxidize reduced iron through the photosystem of cyanobacteria. The involvement of both Reaction Centers 1 and 2 is also discussed. The conclusion that iron tolerant protocyanobacteria could be involved in banded iron formations generation is also proposed. The possible mechanism of the transition from an oxygenic photosynthesis to an oxygenic one is also discussed. In the final part of the review the authors consider the possible implications of iron tolerant cyanobacteria for astrobiology.

  16. Parallel fault-tolerant robot control

    Science.gov (United States)

    Hamilton, D. L.; Bennett, J. K.; Walker, I. D.

    1992-01-01

    A shared memory multiprocessor architecture is used to develop a parallel fault-tolerant robot controller. Several versions of the robot controller are developed and compared. A robot simulation is also developed for control observation. Comparison of a serial version of the controller and a parallel version without fault tolerance showed the speedup possible with the coarse-grained parallelism currently employed. The performance degradation due to the addition of processor fault tolerance was demonstrated by comparison of these controllers with their fault-tolerant versions. Comparison of the more fault-tolerant controller with the lower-level fault-tolerant controller showed how varying the amount of redundant data affects performance. The results demonstrate the trade-off between speed performance and processor fault tolerance.

  17. Sequential alterations in catabolic and anabolic gene expression parallel pathological changes during progression of monoiodoacetate-induced arthritis.

    Directory of Open Access Journals (Sweden)

    Jin Nam

    Full Text Available Chronic inflammation is one of the major causes of cartilage destruction in osteoarthritis. Here, we systematically analyzed the changes in gene expression associated with the progression of cartilage destruction in monoiodoacetate-induced arthritis (MIA of the rat knee. Sprague Dawley female rats were given intra-articular injection of monoiodoacetate in the knee. The progression of MIA was monitored macroscopically, microscopically and by micro-computed tomography. Grade 1 damage was observed by day 5 post-monoiodoacetate injection, progressively increasing to Grade 2 by day 9, and to Grade 3-3.5 by day 21. Affymetrix GeneChip was utilized to analyze the transcriptome-wide changes in gene expression, and the expression of salient genes was confirmed by real-time-PCR. Functional networks generated by Ingenuity Pathways Analysis (IPA from the microarray data correlated the macroscopic/histologic findings with molecular interactions of genes/gene products. Temporal changes in gene expression during the progression of MIA were categorized into five major gene clusters. IPA revealed that Grade 1 damage was associated with upregulation of acute/innate inflammatory responsive genes (Cluster I and suppression of genes associated with musculoskeletal development and function (Cluster IV. Grade 2 damage was associated with upregulation of chronic inflammatory and immune trafficking genes (Cluster II and downregulation of genes associated with musculoskeletal disorders (Cluster IV. The Grade 3 to 3.5 cartilage damage was associated with chronic inflammatory and immune adaptation genes (Cluster III. These findings suggest that temporal regulation of discrete gene clusters involving inflammatory mediators, receptors, and proteases may control the progression of cartilage destruction. In this process, IL-1β, TNF-α, IL-15, IL-12, chemokines, and NF-κB act as central nodes of the inflammatory networks, regulating catabolic processes. Simultaneously

  18. Catabolism of glucose and lactose in Bifidobacterium animalis subsp. lactis, studied by 13C Nuclear Magnetic Resonance.

    Science.gov (United States)

    González-Rodríguez, Irene; Gaspar, Paula; Sánchez, Borja; Gueimonde, Miguel; Margolles, Abelardo; Neves, Ana Rute

    2013-12-01

    Bifidobacteria are widely used as probiotics in several commercial products; however, to date there is little knowledge about their carbohydrate metabolic pathways. In this work, we studied the metabolism of glucose and lactose in the widely used probiotic strain Bifidobacterium animalis subsp. lactis BB-12 by in vivo (13)C nuclear magnetic resonance (NMR) spectroscopy. The metabolism of [1-(13)C]glucose was characterized in cells grown in glucose as the sole carbon source. Moreover, the metabolism of lactose specifically labeled with (13)C on carbon 1 of the glucose or the galactose moiety was determined in suspensions of cells grown in lactose. These experiments allowed the quantification of some intermediate and end products of the metabolic pathways, as well as determination of the consumption rate of carbon sources. Additionally, the labeling patterns in metabolites derived from the metabolism of glucose specifically labeled with (13)C on carbon 1, 2, or 3 in cells grown in glucose or lactose specifically labeled in carbon 1 of the glucose moiety ([1-(13)Cglucose]lactose), lactose specifically labeled in carbon 1 of the galactose moiety ([1-(13)Cgalactose]lactose), and [1-(13)C]glucose in lactose-grown cells were determined in cell extracts by (13)C NMR. The NMR analysis showed that the recovery of carbon was fully compatible with the fructose 6-phosphate, or bifid, shunt. The activity of lactate dehydrogenase, acetate kinase, fructose 6-phosphate phosphoketolase, and pyruvate formate lyase differed significantly between glucose and lactose cultures. The transcriptional analysis of several putative glucose and lactose transporters showed a significant induction of Balat_0475 in the presence of lactose, suggesting a role for this protein as a lactose permease. This report provides the first in vivo experimental evidence of the metabolic flux distribution in the catabolic pathway of glucose and lactose in bifidobacteria and shows that the bifid shunt is the only

  19. Isolation of a wheat (Triticum aestivum L.) mutant in ABA 8′-hydroxylase gene: effect of reduced ABA catabolism on germination inhibition under field condition

    Science.gov (United States)

    Chono, Makiko; Matsunaka, Hitoshi; Seki, Masako; Fujita, Masaya; Kiribuchi-Otobe, Chikako; Oda, Shunsuke; Kojima, Hisayo; Kobayashi, Daisuke; Kawakami, Naoto

    2013-01-01

    Pre-harvest sprouting, the germination of mature seeds on the mother plant under moist condition, is a serious problem in cereals. To investigate the effect of reduced abscisic acid (ABA) catabolism on germination in hexaploid wheat (Triticum aestivum L.), we cloned the wheat ABA 8′-hydroxyase gene which was highly expressed during seed development (TaABA8′OH1) and screened for mutations that lead to reduced ABA catabolism. In a screen for natural variation, one insertion mutation in exon 5 of TaABA8′OH1 on the D genome (TaABA8′OH1-D) was identified in Japanese cultivars including ‘Tamaizumi’. However, a single mutation in TaABA8′OH1-D had no clear effect on germination inhibition in double haploid lines. In a screen for a mutation, one deletion mutant lacking the entire TaABA8′OH1 on the A genome (TaABA8′OH1-A), TM1833, was identified from gamma-ray irradiation lines of ‘Tamaizumi’. TM1833 (a double mutant in TaABA8′OH1-A and TaABA8′OH1-D) showed lower TaABA8′OH1 expression, higher ABA content in embryos during seed development under field condition and lower germination than those in ‘Tamaizumi’ (a single mutant in TaABA8′OH1-D). These results indicate that reduced ABA catabolism through mutations in TaABA8′OH1 may be effective in germination inhibition in field-grown wheat. PMID:23641187

  20. Isolation of a wheat (Triticum aestivum L.) mutant in ABA 8'-hydroxylase gene: effect of reduced ABA catabolism on germination inhibition under field condition.

    Science.gov (United States)

    Chono, Makiko; Matsunaka, Hitoshi; Seki, Masako; Fujita, Masaya; Kiribuchi-Otobe, Chikako; Oda, Shunsuke; Kojima, Hisayo; Kobayashi, Daisuke; Kawakami, Naoto

    2013-03-01

    Pre-harvest sprouting, the germination of mature seeds on the mother plant under moist condition, is a serious problem in cereals. To investigate the effect of reduced abscisic acid (ABA) catabolism on germination in hexaploid wheat (Triticum aestivum L.), we cloned the wheat ABA 8'-hydroxyase gene which was highly expressed during seed development (TaABA8'OH1) and screened for mutations that lead to reduced ABA catabolism. In a screen for natural variation, one insertion mutation in exon 5 of TaABA8'OH1 on the D genome (TaABA8'OH1-D) was identified in Japanese cultivars including 'Tamaizumi'. However, a single mutation in TaABA8'OH1-D had no clear effect on germination inhibition in double haploid lines. In a screen for a mutation, one deletion mutant lacking the entire TaABA8'OH1 on the A genome (TaABA8'OH1-A), TM1833, was identified from gamma-ray irradiation lines of 'Tamaizumi'. TM1833 (a double mutant in TaABA8'OH1-A and TaABA8'OH1-D) showed lower TaABA8'OH1 expression, higher ABA content in embryos during seed development under field condition and lower germination than those in 'Tamaizumi' (a single mutant in TaABA8'OH1-D). These results indicate that reduced ABA catabolism through mutations in TaABA8'OH1 may be effective in germination inhibition in field-grown wheat.

  1. The genome of Variovorax paradoxus strain TBEA6 provides new understandings for the catabolism of 3,3'-thiodipropionic acid and hence the production of polythioesters.

    Science.gov (United States)

    Wübbeler, Jan Hendrik; Hiessl, Sebastian; Meinert, Christina; Poehlein, Anja; Schuldes, Jörg; Daniel, Rolf; Steinbüchel, Alexander

    2015-09-10

    The betaproteobacterium Variovorax paradoxus strain TBEA6 is capable of using 3,3'-thiodipropionic acid (TDP) as sole carbon and energy source for growth. This thioether is employed for several industrial applications. It can be applied as precursor for the biotechnical production of polythioesters (PTE), which represent persistent bioplastics. Consequently, the genome of V. paradoxus strain TBEA6 was sequenced. The draft genome sequence comprises approximately 7.2Mbp and 6852 predicted open reading frames. Furthermore, transposon mutagenesis to unravel the catabolism of TDP in strain TBEA6 was performed. Screening of 20,000 mutants mapped the insertions of Tn5::mob in 32 mutants, which all showed no growth with TDP as sole carbon source. Based on the annotated genome sequence together with transposon-induced mutagenesis, defined gene deletions, in silico analyses and comparative genomics, a comprehensive pathway for the catabolism of TDP is proposed: TDP is imported via the tripartite tricarboxcylate transport system and/or the TRAP-type dicarboxylate transport system. The initial cleavage of TDP into 3-hydroxypropionic acid (3HP) and 3-mercaptopropionic acid (3MP), which serves as precursor substrate for PTE synthesis, is most probably performed by the FAD-dependent oxidoreductase Fox. 3HP is presumably catabolized via malonate semialdehyde, whereas 3MP is oxygenated by the 3MP-dioxygenase Mdo yielding 3-sulfinopropionic acid (3SP). Afterwards, 3SP is linked to coenzyme A. The next step is the abstraction of sulfite by a desulfinase, and the resulting propionyl-CoA enters the central metabolism. Sulfite is oxidized to sulfate by the sulfite-oxidizing enzyme SoeABC and is subsequently excreted by the cells by the sulfate exporter Pse. PMID:26073999

  2. Alpha-Calcitonin Gene-Related Peptide Can Reverse The Catabolic Influence Of UHMWPE Particles On RANKL Expression In Primary Human Osteoblasts

    Directory of Open Access Journals (Sweden)

    Max D. Kauther, Jie Xu, Christian Wedemeyer

    2010-01-01

    Full Text Available Background and purpose: A linkage between the neurotransmitter alpha-calcitonin gene-related peptide (alpha-CGRP and particle-induced osteolysis has been shown previously. The suggested osteoprotective influence of alpha-CGRP on the catabolic effects of ultra-high molecular weight polyethylene (UHMWPE particles is analyzed in this study in primary human osteoblasts. Methods: Primary human osteoblasts were stimulated by UHMWPE particles (cell/particle ratios 1:100 and 1:500 and different doses of alpha-CGRP (10-7 M, 10-9 M, 10-11 M. Receptor activator of nuclear factor-κB ligand (RANKL and osteoprotegerin (OPG mRNA expression and protein levels were measured by RT-PCR and Western blot. Results: Particle stimulation leads to a significant dose-dependent increase of RANKL mRNA in both cell-particle ratios and a significant down-regulation of OPG mRNA in cell-particle concentrations of 1:500. A significant depression of alkaline phosphatase was found due to particle stimulation. Alpha-CGRP in all tested concentrations showed a significant depressive effect on the expression of RANKL mRNA in primary human osteoblasts under particle stimulation. Comparable reactions of RANKL protein levels due to particles and alpha-CGRP were found by Western blot analysis. In cell-particle ratios of 1:100 after 24 hours the osteoprotective influence of alpha-CGRP reversed the catabolic effects of particles on the RANKL expression. Interpretation: The in-vivo use of alpha-CGRP, which leads to down-regulated RANKL in-vitro, might inhibit the catabolic effect of particles in conditions of particle induced osteolysis.

  3. Autophagy attenuates the catabolic effect during inflammatory conditions in nucleus pulposus cells, as sustained by NF-κB and JNK inhibition.

    Science.gov (United States)

    Xu, Kang; Chen, Weijian; Wang, Xiaofei; Peng, Yan; Liang, Anjing; Huang, Dongsheng; Li, Chunhai; Ye, Wei

    2015-09-01

    Proteoglycan degradation contributing to the pathogenesis of intervertebral disc (IVD) degeneration is induced by inflammatory cytokines, such as tumor necrosis factor‑α (TNF‑α) and interleukin‑1β (IL‑1β). Cell autophagy exists in degenerative diseases, including osteoarthritis and intervertebral disc degeneration. However, the autophagy induced by TNF‑α and IL‑1β and the corresponding molecular mechanism appear to be cell‑type dependent. The effect and mechanism of autophagy regulated by TNF‑α and IL‑1β in IVDs remains unclear. Additionally, the impact of autophagy on the catabolic effect in inflammatory conditions also remains elusive. In the present study, autophagy activator and inhibitor were used to demonstrate the impact of autophagy on the catabolic effect induced by TNF‑α. A critical role of autophagy was identified in rat nucleus pulposus (NP) cells: Inhibition of autophagy suppresses, while activation of autophagy enhances, the catabolic effect of cytokines. Subsequently, the autophagy‑related gene expression in rat NP cells following TNF‑α and IL‑1β treatment was observed using immunofluorescence, quantitative polymerase chain reaction and western blot analysis; however, no association was present. In addition, nuclear factor κB (NF‑κB), c‑Jun N‑terminal kinase (JNK), extracellular signal‑regulated kinases and p38 mitogen‑activated protein kinase inhibitors and TNF‑α were used to determine the molecular mechanism of autophagy during the inflammatory conditions, and only the NF‑κB and JNK inhibitor were found to enhance the autophagy of rat NP cells. Finally, IKKβ knockdown was used to further confirm the effect of the NF‑κB signal on human NP cells autophagy, and the data showed that IKKβ knockdown upregulated the autophagy of NP cells during inflammatory conditions.

  4. Molecular characterization of PauR and its role in control of putrescine and cadaverine catabolism through the γ-glutamylation pathway in Pseudomonas aeruginosa PAO1.

    Science.gov (United States)

    Chou, Han Ting; Li, Jeng-Yi; Peng, Yu-Chih; Lu, Chung-Dar

    2013-09-01

    Pseudomonas aeruginosa PAO1 grows on a variety of polyamines as the sole source of carbon and nitrogen. Catabolism of polyamines is mediated by the γ-glutamylation pathway, which is complicated by the existence of multiple homologous enzymes with redundant specificities toward different polyamines for a more diverse metabolic capacity in this organism. Through a series of markerless gene knockout mutants and complementation tests, specific combinations of pauABCD (polyamine utilization) genes were deciphered for catabolism of different polyamines. Among six pauA genes, expression of pauA1, pauA2, pauA4, and pauA5 was found to be inducible by diamines putrescine (PUT) and cadaverine (CAD) but not by diaminopropane. Activation of these promoters was regulated by the PauR repressor, as evidenced by constitutively active promoters in the pauR mutant. The activities of these promoters were further enhanced by exogenous PUT or CAD in the mutant devoid of all six pauA genes. The recombinant PauR protein with a hexahistidine tag at its N terminus was purified, and specific bindings of PauR to the promoter regions of most pau operons were demonstrated by electromobility shift assays. Potential interactions of PUT and CAD with PauR were also suggested by chemical cross-linkage analysis with glutaraldehyde. In comparison, growth on PUT was more proficient than that on CAD, and this observed growth phenotype was reflected in a strong catabolite repression of pauA promoter activation by CAD but was completely absent as reflected by activation by PUT. In summary, this study clearly establishes the function of PauR in control of pau promoters in response to PUT and CAD for their catabolism through the γ-glutamylation pathway.

  5. Human serum albumin homeostasis: a new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements

    Science.gov (United States)

    Levitt, David G; Levitt, Michael D

    2016-01-01

    Serum albumin concentration (CP) is a remarkably strong prognostic indicator of morbidity and mortality in both sick and seemingly healthy subjects. Surprisingly, the specifics of the pathophysiology underlying the relationship between CP and ill-health are poorly understood. This review provides a summary that is not previously available in the literature, concerning how synthesis, catabolism, and renal and gastrointestinal clearance of albumin interact to bring about albumin homeostasis, with a focus on the clinical factors that influence this homeostasis. In normal humans, the albumin turnover time of about 25 days reflects a liver albumin synthesis rate of about 10.5 g/day balanced by renal (≈6%), gastrointestinal (≈10%), and catabolic (≈84%) clearances. The acute development of hypoalbuminemia with sepsis or trauma results from increased albumin capillary permeability leading to redistribution of albumin from the vascular to interstitial space. The best understood mechanism of chronic hypoalbuminemia is the decreased albumin synthesis observed in liver disease. Decreased albumin production also accounts for hypoalbuminemia observed with a low-protein and normal caloric diet. However, a calorie- and protein-deficient diet does not reduce albumin synthesis and is not associated with hypoalbuminemia, and CP is not a useful marker of malnutrition. In most disease states other than liver disease, albumin synthesis is normal or increased, and hypoalbuminemia reflects an enhanced rate of albumin turnover resulting either from an increased rate of catabolism (a poorly understood phenomenon) or enhanced loss of albumin into the urine (nephrosis) or intestine (protein-losing enteropathy). The latter may occur with subtle intestinal pathology and hence may be more prevalent than commonly appreciated. Clinically, reduced CP appears to be a result rather than a cause of ill-health, and therapy designed to increase CP has limited benefit. The ubiquitous occurrence of

  6. Tolerable soil erosion in Europe

    Science.gov (United States)

    Verheijen, Frank; Jones, Bob; Rickson, Jane; Smith, Celina

    2010-05-01

    Soil loss by erosion has been identified as an important threat to soils in Europe* and is recognised as a contributing process to soil degradation and associated deterioration, or loss, of soil functioning. From a policy perspective, it is imperative to establish well-defined baseline values to evaluate soil erosion monitoring data against. For this purpose, accurate baseline values - i.e. tolerable soil loss - need to be differentiated at appropriate scales for monitoring and, ideally, should take soil functions and even changing environmental conditions into account. The concept of tolerable soil erosion has been interpreted in the scientific literature in two ways: i) maintaining the dynamic equilibrium of soil quantity, and ii) maintaining biomass production, at a location. The first interpretation ignores soil quality by focusing only on soil quantity. The second approach ignores many soil functions by focusing only on the biomass (particularly crop) production function of soil. Considering recognised soil functions, tolerable soil erosion may be defined as 'any mean annual cumulative (all erosion types combined) soil erosion rate at which a deterioration or loss of one or more soil functions does not occur'. Assumptions and problems of this definition will be discussed. Soil functions can generally be judged not to deteriorate as long as soil erosion does not exceed soil formation. At present, this assumption remains largely untested, but applying the precautionary principle appears to be a reasonable starting point. Considering soil formation rates by both weathering and dust deposition, it is estimated that for the majority of soil forming factors in most European situations, soil formation rates probably range from ca. 0.3 - 1.4 t ha-1 yr-1. Although the current agreement on these values seems relatively strong, how the variation within the range is spatially distributed across Europe and how this may be affected by climate, land use and land management

  7. Anhydrobiosis and Freezing-Tolerance

    DEFF Research Database (Denmark)

    McGill, Lorraine; Shannon, Adam; Pisani, Davide;

    2015-01-01

    Anhydrobiotic animals can survive the loss of both free and bound water from their cells. While in this state they are also resistant to freezing. This physiology adapts anhydrobiotes to harsh environments and it aids their dispersal. Panagrolaimus davidi, a bacterial feeding anhydrobiotic nematode...... Panagrolaimus strains from tropical, temperate, continental and polar habitats and we analysed their phylogenetic relationships. We found that several other Panagrolaimus isolates can also survive freezing when fully hydrated and that tissue extracts from these freezing-tolerant nematodes can inhibit the growth...

  8. Amino acid catabolism and antibiotic synthesis: valine is a source of precursors for macrolide biosynthesis in Streptomyces ambofaciens and Streptomyces fradiae.

    OpenAIRE

    Tang, L; Zhang, Y X; Hutchinson, C R

    1994-01-01

    Targeted inactivation of the valine (branched-chain amino acid) dehydrogenase gene (vdh) was used to study the role of valine catabolism in the production of tylosin in Streptomyces fradiae and spiramycin in Streptomyces ambofaciens. The deduced products of the vdh genes, cloned and sequenced from S. fradiae C373.1 and S. ambofaciens ATCC 15154, are approximately 80% identical over all 363 amino acids and 96% identical over a span of the first N-terminal 107 amino acids, respectively, to the ...

  9. Capture of a catabolic plasmid that encodes only 2,4-dichlorophenoxyacetic acid:alpha-ketoglutaric acid dioxygenase (TfdA) by genetic complementation.

    OpenAIRE

    Top, E. M.; Maltseva, O V; Forney, L J

    1996-01-01

    The modular pathway for the metabolism of 2,4-dichlorophenoxyacetic acid (2,4-D) encoded on plasmid pJP4 of Alcaligenes eutrophus JMP134 appears to be an example in which two genes, tfdA and tfdB, have been recruited during the evolution of a catabolic pathway. The products of these genes act to convert 2,4-D to a chloro-substituted catechol that can be further metabolized by enzymes of a modified ortho-cleavage pathway encoded by tfdCDEF. Given that modified ortho-cleavage pathways are compa...

  10. Mechanism of DNA damage tolerance

    Institute of Scientific and Technical Information of China (English)

    Xin; Bi

    2015-01-01

    DNA damage may compromise genome integrity and lead to cell death. Cells have evolved a variety of processes to respond to DNA damage including damage repair and tolerance mechanisms, as well as damage checkpoints. The DNA damage tolerance(DDT) pathway promotes the bypass of single-stranded DNA lesions encountered by DNA polymerases during DNA replication. This prevents the stalling of DNA replication. Two mechanistically distinct DDT branches have been characterized. One is translesion synthesis(TLS) in which a replicative DNA polymerase is temporarily replaced by a specialized TLS polymerase that has the ability to replicate across DNA lesions. TLS is mechanistically simple and straightforward, but it is intrinsically error-prone. The other is the error-free template switching(TS) mechanism in which the stalled nascent strand switches from the damaged template to the undamaged newly synthesized sister strand for extension past the lesion. Error-free TS is a complex but preferable process for bypassing DNA lesions. However, our current understanding of this pathway is sketchy. An increasing number of factors are being found to participate or regulate this important mechanism, which is the focus of this editorial.

  11. Genomic and Genetic Approaches to Solvent Tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Eleftherios T. Papoutsakis

    2005-06-10

    The proposed research is to understand and exploit the molecular basis that determines tolerance of the industrially important anaerobic clostridia to solvents. Furthermore, we aim to develop general genomic and metabolic engineering strategies for understanding the molecular basis of tolerance to chemicals and for developing tolerant strains. Our hypothesis is that the molecular basis of what makes bacterial cells able to withstand high solvent concentrations can be used to metabolically engineer cells so that they can tolerate higher concentrations of solvents and related chemicals.

  12. Diagnosis and Fault-tolerant Control

    DEFF Research Database (Denmark)

    Blanke, Mogens; Kinnaert, Michel; Lunze, Jan;

    that can be used to ensure fault tolerance. Design methods for diagnostic systems and fault-tolerant controllers are presented for processes that are described by analytical models, by discrete-event models or that can be dealt with as quantised systems. Four case studies on pilot processes show......The book presents effective model-based analysis and design methods for fault diagnosis and fault-tolerant control. Architectural and structural models are used to analyse the propagation of the fault through the process, to test the fault detectability and to find the redundancies in the process......-tolerant control....

  13. Synthesis of Fault-Tolerant Embedded Systems

    DEFF Research Database (Denmark)

    Eles, Petru; Izosimov, Viacheslav; Pop, Paul;

    2008-01-01

    This work addresses the issue of design optimization for fault- tolerant hard real-time systems. In particular, our focus is on the handling of transient faults using both checkpointing with rollback recovery and active replication. Fault tolerant schedules are generated based on a conditional...... process graph representation. The formulated system synthesis approaches decide the assignment of fault-tolerance policies to processes, the optimal placement of checkpoints and the mapping of processes to processors, such that multiple transient faults are tolerated, transparency requirements...

  14. Establishing soil loss tolerance: an overview

    Directory of Open Access Journals (Sweden)

    Costanza Di Stefano

    2016-09-01

    Full Text Available Soil loss tolerance is a criterion for establishing if a soil is potentially subjected to erosion risk, productivity loss and if a river presents downstream over-sedimentation or other off-site effects are present at basin scale. At first this paper reviews the concept of tolerable soil loss and summarises the available definitions and the knowledge on the recommended values and evaluating criteria. Then a threshold soil loss value, at the annual temporal scale, established for limiting riling was used for defining the classical soil loss tolerance. Finally, some research needs on tolerable soil loss are listed.

  15. Tolerance and cross-tolerance to neurocognitive effects of THC and alcohol in heavy cannabis users

    OpenAIRE

    Ramaekers, Johannes G.; Theunissen, Eef L.; de Brouwer, Marjolein; Toennes, Stefan W.; Moeller, Manfred R; Kauert, Gerhold

    2010-01-01

    Introduction Previous research has shown that heavy cannabis users develop tolerance to the impairing effects of Δ9-tetrahydrocannabinol (THC) on neurocognitive functions. Animal studies suggest that chronic cannabis consumption may also produce cross-tolerance for the impairing effects of alcohol, but supportive data in humans is scarce. Purpose The present study was designed to assess tolerance and cross-tolerance to the neurocognitive effects of THC and alcohol in heavy cannabis users. Met...

  16. Roles of gibberellin catabolism and signaling in growth and physiological response to drought and short-day photoperiods in Populus trees.

    Directory of Open Access Journals (Sweden)

    Christine Zawaski

    Full Text Available Survival and productivity of perennial plants in temperate zones are dependent on robust responses to prolonged and seasonal cycles of unfavorable conditions. Here we report whole-genome microarray, expression, physiological, and transgenic evidence in hybrid poplar (Populus tremula × Populus alba showing that gibberellin (GA catabolism and repressive signaling mediates shoot growth inhibition and physiological adaptation in response to drought and short-day (SD induced bud dormancy. Both water deprivation and SDs elicited activation of a suite of poplar GA2ox and DELLA encoding genes. Poplar transgenics with up-regulated GA 2-oxidase (GA2ox and DELLA domain proteins showed hypersensitive growth inhibition in response to both drought and SDs. In addition, the transgenic plants displayed greater drought resistance as evidenced by increased pigment concentrations (chlorophyll and carotenoid and reductions in electrolyte leakage (EL. Comparative transcriptome analysis using whole-genome microarray showed that the GA-deficiency and GA-insensitivity, SD-induced dormancy, and drought response in poplar share a common regulon of 684 differentially-expressed genes, which suggest GA metabolism and signaling plays a role in plant physiological adaptations in response to alterations in environmental factors. Our results demonstrate that GA catabolism and repressive signaling represents a major route for control of growth and physiological adaptation in response to immediate or imminent adverse conditions.

  17. The mitochondrial sulfur dioxygenase ETHYLMALONIC ENCEPHALOPATHY PROTEIN1 is required for amino acid catabolism during carbohydrate starvation and embryo development in Arabidopsis.

    Science.gov (United States)

    Krüßel, Lena; Junemann, Johannes; Wirtz, Markus; Birke, Hannah; Thornton, Jeremy D; Browning, Luke W; Poschet, Gernot; Hell, Rüdiger; Balk, Janneke; Braun, Hans-Peter; Hildebrandt, Tatjana M

    2014-05-01

    The sulfur dioxygenase ETHYLMALONIC ENCEPHALOPATHY PROTEIN1 (ETHE1) catalyzes the oxidation of persulfides in the mitochondrial matrix and is essential for early embryo development in Arabidopsis (Arabidopsis thaliana). We investigated the biochemical and physiological functions of ETHE1 in plant metabolism using recombinant Arabidopsis ETHE1 and three transfer DNA insertion lines with 50% to 99% decreased sulfur dioxygenase activity. Our results identified a new mitochondrial pathway catalyzing the detoxification of reduced sulfur species derived from cysteine catabolism by oxidation to thiosulfate. Knockdown of the sulfur dioxygenase impaired embryo development and produced phenotypes of starvation-induced chlorosis during short-day growth conditions and extended darkness, indicating that ETHE1 has a key function in situations of high protein turnover, such as seed production and the use of amino acids as alternative respiratory substrates during carbohydrate starvation. The amino acid profile of mutant plants was similar to that caused by defects in the electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase complex and associated dehydrogenases. Thus, in addition to sulfur amino acid catabolism, ETHE1 also affects the oxidation of branched-chain amino acids and lysine.

  18. AccR is a master regulator involved in carbon catabolite repression of the anaerobic catabolism of aromatic compounds in Azoarcus sp. CIB.

    Science.gov (United States)

    Valderrama, J Andrés; Shingler, Victoria; Carmona, Manuel; Díaz, Eduardo

    2014-01-24

    Here we characterized the first known transcriptional regulator that accounts for carbon catabolite repression (CCR) control of the anaerobic catabolism of aromatic compounds in bacteria. The AccR response regulator of Azoarcus sp. CIB controls succinate-responsive CCR of the central pathways for the anaerobic catabolism of aromatics by this strain. Phosphorylation of AccR to AccR-P triggers a monomer-to-dimer transition as well as the ability to bind to the target promoter and causes repression both in vivo and in vitro. Substitution of the Asp(60) phosphorylation target residue of the N-terminal receiver motif of AccR to a phosphomimic Glu residue generates a constitutively active derivative that behaves as a superrepressor of the target genes. AccR-P binds in vitro to a conserved inverted repeat (ATGCA-N6-TGCAT) present at two different locations within the PN promoter of the bzd genes for anaerobic benzoate degradation. Because the DNA binding-proficient C-terminal domain of AccR is monomeric, we propose an activation mechanism in which phosphorylation of Asp(60) of AccR alleviates interdomain repression mediated by the N-terminal domain. The presence of AccR-like proteins encoded in the genomes of other β-proteobacteria of the Azoarcus/Thauera group further suggests that AccR constitutes a master regulator that controls anaerobic CCR in these bacteria. PMID:24302740

  19. AccR Is a Master Regulator Involved in Carbon Catabolite Repression of the Anaerobic Catabolism of Aromatic Compounds in Azoarcus sp. CIB*

    Science.gov (United States)

    Valderrama, J. Andrés; Shingler, Victoria; Carmona, Manuel; Díaz, Eduardo

    2014-01-01

    Here we characterized the first known transcriptional regulator that accounts for carbon catabolite repression (CCR) control of the anaerobic catabolism of aromatic compounds in bacteria. The AccR response regulator of Azoarcus sp. CIB controls succinate-responsive CCR of the central pathways for the anaerobic catabolism of aromatics by this strain. Phosphorylation of AccR to AccR-P triggers a monomer-to-dimer transition as well as the ability to bind to the target promoter and causes repression both in vivo and in vitro. Substitution of the Asp60 phosphorylation target residue of the N-terminal receiver motif of AccR to a phosphomimic Glu residue generates a constitutively active derivative that behaves as a superrepressor of the target genes. AccR-P binds in vitro to a conserved inverted repeat (ATGCA-N6-TGCAT) present at two different locations within the PN promoter of the bzd genes for anaerobic benzoate degradation. Because the DNA binding-proficient C-terminal domain of AccR is monomeric, we propose an activation mechanism in which phosphorylation of Asp60 of AccR alleviates interdomain repression mediated by the N-terminal domain. The presence of AccR-like proteins encoded in the genomes of other β-proteobacteria of the Azoarcus/Thauera group further suggests that AccR constitutes a master regulator that controls anaerobic CCR in these bacteria. PMID:24302740

  20. Loss of arylformamidase with reduced thymidine kinase expression leads to impaired glucose tolerance

    Directory of Open Access Journals (Sweden)

    Alison J. Hugill

    2015-11-01

    Full Text Available Tryptophan metabolites have been linked in observational studies with type 2 diabetes, cognitive disorders, inflammation and immune system regulation. A rate-limiting enzyme in tryptophan conversion is arylformamidase (Afmid, and a double knockout of this gene and thymidine kinase (Tk has been reported to cause renal failure and abnormal immune system regulation. In order to further investigate possible links between abnormal tryptophan catabolism and diabetes and to examine the effect of single Afmid knockout, we have carried out metabolic phenotyping of an exon 2 Afmid gene knockout. These mice exhibit impaired glucose tolerance, although their insulin sensitivity is unchanged in comparison to wild-type animals. This phenotype results from a defect in glucose stimulated insulin secretion and these mice show reduced islet mass with age. No evidence of a renal phenotype was found, suggesting that this published phenotype resulted from loss of Tk expression in the double knockout. However, despite specifically removing only exon 2 of Afmid in our experiments we also observed some reduction of Tk expression, possibly due to a regulatory element in this region. In summary, our findings support a link between abnormal tryptophan metabolism and diabetes and highlight beta cell function for further mechanistic analysis.

  1. Control of Disease Tolerance to Malaria by Nitric Oxide and Carbon Monoxide

    Directory of Open Access Journals (Sweden)

    Viktória Jeney

    2014-07-01

    Full Text Available Nitric oxide (NO and carbon monoxide (CO are gasotransmitters that suppress the development of severe forms of malaria associated with Plasmodium infection. Here, we addressed the mechanism underlying their protective effect against experimental cerebral malaria (ECM, a severe form of malaria that develops in Plasmodium-infected mice, which resembles, in many aspects, human cerebral malaria (CM. NO suppresses the pathogenesis of ECM via a mechanism involving (1 the transcription factor nuclear factor erythroid 2-related factor 2 (NRF-2, (2 induction of heme oxygenase-1 (HO-1, and (3 CO production via heme catabolism by HO-1. The protection afforded by NO is associated with inhibition of CD4+ T helper (TH and CD8+ cytotoxic (TC T cell activation in response to Plasmodium infection via a mechanism involving HO-1 and CO. The protective effect of NO and CO is not associated with modulation of host pathogen load, suggesting that these gasotransmitters establish a crosstalk-conferring disease tolerance to Plasmodium infection.

  2. Tolerance of probiotics and prebiotics.

    Science.gov (United States)

    Marteau, Philippe; Seksik, Philippe

    2004-07-01

    The clinical efficacy of probiotics and prebiotics has been proved in several clinical settings. The authors review their proved or potential side effects. Probiotics as living microorganisms may theoretically be responsible for 4 types of side effects in susceptible individuals: infections, deleterious metabolic activities, excessive immune stimulation, and gene transfer. Very few cases of infection have been observed. These occurred mainly in very sick patients who received probiotic drugs because of severe medical conditions. Prebiotics exert an osmotic effect in the intestinal lumen and are fermented in the colon. They may induce gaseousness and bloating. Abdominal pain and diarrhea only occur with large doses. An increase in gastroesophageal reflux has recently been associated with large daily doses. Tolerance depends on the dose and individual sensitivity factors (probably the presence of irritable bowel syndrome or gastroesophageal reflux), and may be an adaptation to chronic consumption. PMID:15220662

  3. Robot Position Sensor Fault Tolerance

    Science.gov (United States)

    Aldridge, Hal A.

    1997-01-01

    Robot systems in critical applications, such as those in space and nuclear environments, must be able to operate during component failure to complete important tasks. One failure mode that has received little attention is the failure of joint position sensors. Current fault tolerant designs require the addition of directly redundant position sensors which can affect joint design. A new method is proposed that utilizes analytical redundancy to allow for continued operation during joint position sensor failure. Joint torque sensors are used with a virtual passive torque controller to make the robot joint stable without position feedback and improve position tracking performance in the presence of unknown link dynamics and end-effector loading. Two Cartesian accelerometer based methods are proposed to determine the position of the joint. The joint specific position determination method utilizes two triaxial accelerometers attached to the link driven by the joint with the failed position sensor. The joint specific method is not computationally complex and the position error is bounded. The system wide position determination method utilizes accelerometers distributed on different robot links and the end-effector to determine the position of sets of multiple joints. The system wide method requires fewer accelerometers than the joint specific method to make all joint position sensors fault tolerant but is more computationally complex and has lower convergence properties. Experiments were conducted on a laboratory manipulator. Both position determination methods were shown to track the actual position satisfactorily. A controller using the position determination methods and the virtual passive torque controller was able to servo the joints to a desired position during position sensor failure.

  4. 40 CFR 180.349 - Fenamiphos; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Fenamiphos; tolerances for residues...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.349 Fenamiphos; tolerances for residues. (a) General. Tolerances are established for the...

  5. 40 CFR 180.298 - Methidathion; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Methidathion; tolerances for residues...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.298 Methidathion; tolerances for residues. (a) General. Tolerances are established for residues...

  6. 40 CFR 180.208 - Benfluralin; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Benfluralin; tolerances for residues...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.208 Benfluralin; tolerances for residues. (a) General. Tolerances are established for residues...

  7. 40 CFR 180.263 - Phosalone; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Phosalone; tolerances for residues...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.263 Phosalone; tolerances for residues. (a) General. Tolerances are established for residues...

  8. 40 CFR 180.314 - Triallate; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Triallate; tolerances for residues...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.314 Triallate; tolerances for residues. (a) General. Tolerances are established for residues...

  9. 40 CFR 180.231 - Dichlobenil; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Dichlobenil; tolerances for residues...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.231 Dichlobenil; tolerances for residues. (a) General. Tolerances are established for the...

  10. 40 CFR 180.144 - Cyhexatin; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Cyhexatin; tolerances for residues...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.144 Cyhexatin; tolerances for residues. (a) General. Tolerances are established for...

  11. 40 CFR 180.191 - Folpet; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Folpet; tolerances for residues. 180... PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.191 Folpet; tolerances for residues. (a) General. Tolerances are established for the fungicide folpet...

  12. 40 CFR 180.178 - Ethoxyquin; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Ethoxyquin; tolerances for residues...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.178 Ethoxyquin; tolerances for residues. (a) General. A tolerance is established for residues...

  13. 40 CFR 180.172 - Dodine; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Dodine; tolerances for residues. 180... PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.172 Dodine; tolerances for residues. (a) General. Tolerances are established for the fungicide dodine...

  14. 40 CFR 180.243 - Propazine; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Propazine; tolerances for residues...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.243 Propazine; tolerances for residues. Tolerances are established for negligible residues (N)...

  15. 40 CFR 180.116 - Ziram; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Ziram; tolerances for residues. 180... PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.116 Ziram; tolerances for residues. (a) General. Tolerances are established for residues of the...

  16. 40 CFR 180.200 - Dicloran; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Dicloran; tolerances for residues. 180... PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.200 Dicloran; tolerances for residues. (a) General. (1) Tolerances are established for residues of...

  17. 40 CFR 180.106 - Diuron; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Diuron; tolerances for residues. 180... PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.106 Diuron; tolerances for residues. (a) General. Tolerances are established for the combined residues of...

  18. 40 CFR 180.114 - Ferbam; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Ferbam; tolerances for residues. 180... PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.114 Ferbam; tolerances for residues. (a) General. Tolerances are established for residues of the...

  19. 40 CFR 180.132 - Thiram; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Thiram; tolerances for residues. 180... PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.132 Thiram; tolerances for residues. (a) General. Tolerances are established for residues of the...

  20. 40 CFR 180.229 - Fluometuron; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Fluometuron; tolerances for residues...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.229 Fluometuron; tolerances for residues. (a) General. (1) Tolerances are established for...

  1. 40 CFR 180.222 - Prometryn; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Prometryn; tolerances for residues...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.222 Prometryn; tolerances for residues. (a) General. Tolerances are established for residues...

  2. 40 CFR 180.133 - Lindane; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Lindane; tolerances for residues. 180... PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.133 Lindane; tolerances for residues. (a) General. Tolerances are established for residues of the...

  3. 40 CFR 180.241 - Bensulide; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bensulide; tolerances for residues...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.241 Bensulide; tolerances for residues. (a) General. Tolerances are established for the...

  4. 40 CFR 180.210 - Bromacil; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bromacil; tolerances for residues. 180... PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.210 Bromacil; tolerances for residues. (a) General. Tolerances are established for residues of the...

  5. 40 CFR 180.245 - Streptomycin; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Streptomycin; tolerances for residues...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.245 Streptomycin; tolerances for residues. (a) General. (1) Tolerances are established...

  6. 40 CFR 180.317 - Propyzamide; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Propyzamide; tolerances for residues...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.317 Propyzamide; tolerances for residues. (a) General. Tolerances are established for the...

  7. 40 CFR 180.315 - Methamidophos; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Methamidophos; tolerances for residues...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.315 Methamidophos; tolerances for residues. (a) Tolerances are established for residues of...

  8. 40 CFR 180.278 - Phenmedipham; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Phenmedipham; tolerances for residues...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.278 Phenmedipham; tolerances for residues. (a) General. Tolerances are established for...

  9. Personality Correlates of Pain Perception and Tolerance.

    Science.gov (United States)

    Lukin, Penny R.; Ray, A. Bartow

    1982-01-01

    Explored personality correlates of pain perception and tolerance in a nonmedical sample and setting. Results showed no significant correlations with personality measures and cold-pressor scores, but a significant relationship between pain tolerance and cognitive focus; those who focused on the experimental situation had much shorter tolerance…

  10. 76 FR 55807 - Novaluron; Pesticide Tolerances

    Science.gov (United States)

    2011-09-09

    ...) 305-5805. II. Summary of Petitioned-for Tolerance In the Federal Register of June 23, 2010 (75 FR... tolerance expression. The methods may be requested from: Chief, Analytical Chemistry Branch, Environmental... balanced dietary burdens (RBDBs) for novaluron are 9.6 ppm for beef cattle, 18.3 ppm for dairy cattle,...

  11. 78 FR 8407 - Endosulfan; Pesticide Tolerance

    Science.gov (United States)

    2013-02-06

    ... Zhejiang International Tea Industry. With this document, EPA is amending the tolerances for endosulfan to... Industry to the timing of a revocation action concerning the endosulfan tolerance on tea. This action may... grants the objection of the Chamber of Commerce of Zhejiang International Tea Industry...

  12. Elementary Teachers' Tolerance of Problem Behaviors.

    Science.gov (United States)

    Safran, Stephen P.; Safran, Joan S.

    1984-01-01

    A total of 46 teachers rated observable mild-to-moderate school-related problem behaviors in order to identify aspects of teacher tolerance specific to the elementary classroom. Findings indicated that behaviors least tolerated are other-directed or disruptive; self- or teacher-directed behaviors elicited less negative ratings. (RH)

  13. 78 FR 53682 - Tetrachlorvinphos; Pesticide Tolerances

    Science.gov (United States)

    2013-08-30

    ... AGENCY 40 CFR Part 180 Tetrachlorvinphos; Pesticide Tolerances AGENCY: Environmental Protection Agency... by converting them to permanent tolerances for the combined residues of the insecticide...-OPP-2011-0360, is available at http://www.regulations.gov or at the Office of Pesticide...

  14. 76 FR 76304 - Saflufenacil; Pesticide Tolerances

    Science.gov (United States)

    2011-12-07

    ... Banana; Coffee, green bean; and Mango. BASF Corporation requested these tolerances under the Federal Food...: Crop production (NAICS code 111). Animal production (NAICS code 112). Food manufacturing (NAICS code... Tolerance In the Federal Register of February 4, 2011 (76 FR 6465) (FRL-8858- 7), EPA issued a...

  15. 76 FR 69642 - Flutriafol; Pesticide Tolerances

    Science.gov (United States)

    2011-11-09

    ... engaged in the following activities: Crop production (NAICS code 111). Animal production (NAICS code 112...-5805. II. Summary of Petitioned-For Tolerance In the Federal Register of December 15, 2010 (75 FR 78241... degradates, in or on banana, whole (import tolerance) at 0.50 parts per million (ppm) (PP 0E7772)....

  16. In vivo mechanisms of acquired thymic tolerance

    DEFF Research Database (Denmark)

    Chen, W; Issazadeh-Navikas, Shohreh; Sayegh, M H;

    1997-01-01

    Injection of antigen into the thymus of adult animals induces specific systemic tolerance, but the mechanisms of acquired thymic tolerance are not well understood. To investigate these mechanisms we used a model of intrathymic injection of ovalbumin (OVA) in BALB/c mice. We show an antigen-specif...

  17. Political Socialization, Tolerance, and Sexual Identity

    Science.gov (United States)

    Avery, Patricia G.

    2002-01-01

    Key concepts in political socialization, tolerance, groups, rights and responsibilities can be used to understand the way in which young people struggle with sexual identity issues. Educators may promote greater tolerance for homosexuality among heterosexuals by situating sexual identity issues within a broader discussion of democratic principles.…

  18. Beliefs, Persons and Practices : Beyond Tolerance

    NARCIS (Netherlands)

    van der Burg, W.

    1998-01-01

    The central thesis of this paper is that, for most issues of multiculturalism, regarding them as a problem of tolerance puts us on the wrong track because there are certain biases inherent in the principle of tolerance. These biases - individualism, combined with a focus on religion and a focus on b

  19. 75 FR 40741 - Hexythiazox; Pesticide Tolerances

    Science.gov (United States)

    2010-07-14

    ... hexythiazox in or on cherry and peach at 1.0 ppm, and plum (including prune) at 0.2 ppm. There are no...-5805. II. Summary of Petitioned-For Tolerance In the Federal Register of August 19, 2009 (74 FR 41898... the existing separate tolerance for fresh, prune, plums at 0.1 parts per million (ppm); revising...

  20. 75 FR 24428 - Spirodiclofen; Pesticide Tolerances

    Science.gov (United States)

    2010-05-05

    ... account acute exposure estimates from dietary consumption of food and drinking water. No adverse effect... tolerances under the Federal Food, Drug, and Cosmetic Act (FFDCA). DATES: This regulation is effective May 5...-5805. II. Petition for Tolerance In the Federal Register of June 10, 2009 (74 FR 27538) (FRL-8915-...

  1. 76 FR 5704 - Sulfentrazone; Pesticide Tolerances

    Science.gov (United States)

    2011-02-02

    ... bean, succulent seed without pod (lima bean and cowpea), as the tolerance expired on December 31, 2007...-5805. II. Summary of Petitioned-For Tolerances In the Federal Register of March 12, 2008 (73 FR 13225..., subgroup 9A at 0.10 ppm; vegetable, fruiting, group 8 at 0.05 ppm; okra at 0.05 ppm; pea, succulent at...

  2. 77 FR 26467 - Fluoxastrobin; Pesticide Tolerances

    Science.gov (United States)

    2012-05-04

    ... (liquid chromatography/mass spectrometry/mass spectrometry) is available to enforce the tolerance... on peanut and peanut, refined oil. Arysta LifeScience North America, LLC requested these tolerances... In the Federal Register of July 20, 2011 (76 FR 43236) (FRL-8880- 1), EPA issued a notice pursuant...

  3. 76 FR 61587 - Prothioconazole; Pesticide Tolerances

    Science.gov (United States)

    2011-10-05

    ... barley at 0.2 ppm; oats, rye, and wheat at 0.05 ppm each; in the fodder (dry) of cereal grains at 5 ppm...) 305-5805. II. Summary of Petitioned-For Tolerance In the Federal Register of March 29, 2011 (76 FR..., cereal group 15, except sweet corn and sorghum. Likewise, the rice straw tolerance will now be covered...

  4. 78 FR 68741 - Tebuconazole; Pesticide Tolerances

    Science.gov (United States)

    2013-11-15

    ... and hepatocarcinogenic in mice. Some induce thyroid tumors in rats. Some induce developmental.... Summary of Petitioned-for Tolerance In the Federal Register of August 22, 2012 (77 FR 50661) (FRL-9358- 9... tolerances (76 FR 54127) (August 31, 2011) and its supporting documents. Subsequently, EPA considered...

  5. The coevolutionary implications of host tolerance.

    Science.gov (United States)

    Best, Alex; White, Andy; Boots, Mike

    2014-05-01

    Host tolerance to infectious disease, whereby hosts do not directly "fight" parasites but instead ameliorate the damage caused, is an important defense mechanism in both plants and animals. Because tolerance to parasite virulence may lead to higher prevalence of disease in a population, evolutionary theory tells us that while the spread of resistance genes will result in negative frequency dependence and the potential for diversification, the evolution of tolerance is instead likely to result in fixation. However, our understanding of the broader implications of tolerance is limited by a lack of fully coevolutionary theory. Here we examine the coevolution of tolerance across a comprehensive range of classic coevolutionary host-parasite frameworks, including equivalents of gene-for-gene and matching allele and evolutionary invasion models. Our models show that the coevolution of host tolerance and parasite virulence does not lead to the generation and maintenance of diversity through either static polymorphisms or through "Red-queen" cycles. Coevolution of tolerance may however lead to multiple stable states leading to sudden shifts in parasite impacts on host health. More broadly, we emphasize that tolerance may change host-parasite interactions from antagonistic to a form of "apparent commensalism," but may also lead to the evolution of parasites that are highly virulent in nontolerant hosts.

  6. 76 FR 18915 - Ethiprole; Pesticide Tolerances

    Science.gov (United States)

    2011-04-06

    ...) 305-5805. II. Summary of Petitioned-For Tolerance In the Federal Register of August 19, 2009 (74 FR... proposed tolerances for the combined residues of the insecticide ethiprole in or on various livestock commodities. Adequate residue data are available from the rice field trials conducted in China, India...

  7. 77 FR 67771 - Flonicamid; Pesticide Tolerances

    Science.gov (United States)

    2012-11-14

    ... Tolerance In the Federal Register of Wednesday, March 14, 2012 (77 FR 15012) (FRL-9335-9), EPA issued a... residues. EPA is also revising the existing crop group tolerance on ``Vegetable, cucurbit, group 9'' to... increased incidences of lung tumors associated with Clara cell activation, this tumor type is...

  8. 75 FR 26668 - Flutriafol; Pesticide Tolerances

    Science.gov (United States)

    2010-05-12

    ...; soybean meal; soybean hull; and soybean oil. Additionally, tolerances were increased for soybean seed... determined that apple juice, wet apple pomace, soybean meal, soybean hull, and soybean oil tolerances are... on apple at 0.20 ppm; soybean, seed at 0.35 ppm; and grain, aspirated fractions at 2.2 ppm;...

  9. Zero Tolerance Policies. ERIC Digest Number 146.

    Science.gov (United States)

    McAndrews, Tobin

    State legislatures and school boards are adopting a growing number of zero-tolerance polices toward weapons, guns, and violence. Zero-tolerance polices are rules intended to address specific school-safety issues. They have arisen in part as a response to the threat of the withdrawal of federal funds under the 1994 Gun-Free Schools Act, and…

  10. 76 FR 70890 - Fenamidone; Pesticide Tolerances

    Science.gov (United States)

    2011-11-16

    ... separated into separate ones as proposed. EPA is removing the tolerances for corn, field forage; corn, field, grain; corn, field, stover; corn, sweet, forage, corn, sweet, plus cob with husks removed; corn, sweet... Tolerance In the Federal Register of December 15, 2010 (75 FR 78240) (FRL- 8853-1), EPA issued a...

  11. Algorithms for worst-case tolerance optimization

    DEFF Research Database (Denmark)

    Schjær-Jacobsen, Hans; Madsen, Kaj

    1979-01-01

    New algorithms are presented for the solution of optimum tolerance assignment problems. The problems considered are defined mathematically as a worst-case problem (WCP), a fixed tolerance problem (FTP), and a variable tolerance problem (VTP). The basic optimization problem without tolerances...... is denoted the zero tolerance problem (ZTP). For solution of the WCP we suggest application of interval arithmetic and also alternative methods. For solution of the FTP an algorithm is suggested which is conceptually similar to algorithms previously developed by the authors for the ZTP. Finally, the VTP...... is solved by a double-iterative algorithm in which the inner iteration is performed by the FTP- algorithm. The application of the algorithm is demonstrated by means of relatively simple numerical examples. Basic properties, such as convergence properties, are displayed based on the examples....

  12. Screening Drought Tolerance Criteria in Maize

    Directory of Open Access Journals (Sweden)

    Masoud Kiani

    2013-05-01

    Full Text Available Six pure lines of maize were tested in a randomized complete block design with three replication under irrigated and rainfed conditions. Genetic variation was found between the genotypes for yield potential (Yp stress yield (Ys, tolerance index (TOL, geometric mean productivity (GMP, harmonic mean (HM and stress tolerance index (STI. Stress tolerance index was corrected using a correction coefficient (Ki and thus a modified stress tolerance index (MSTI was introduced as the optimal selection criterion for drought-tolerant genotypes. The results of three-D plotting indicated that the most desirable genotype for irrigated and rainfed conditions was the genotype K1515, for non-stressed conditions K18 and for stress conditions K104/3, K760/7 and K126/10.

  13. Diagnosis and fault-tolerant control

    CERN Document Server

    Blanke, Mogens; Lunze, Jan; Staroswiecki, Marcel

    2016-01-01

    Fault-tolerant control aims at a gradual shutdown response in automated systems when faults occur. It satisfies the industrial demand for enhanced availability and safety, in contrast to traditional reactions to faults, which bring about sudden shutdowns and loss of availability. The book presents effective model-based analysis and design methods for fault diagnosis and fault-tolerant control. Architectural and structural models are used to analyse the propagation of the fault through the process, to test the fault detectability and to find the redundancies in the process that can be used to ensure fault tolerance. It also introduces design methods suitable for diagnostic systems and fault-tolerant controllers for continuous processes that are described by analytical models of discrete-event systems represented by automata. The book is suitable for engineering students, engineers in industry and researchers who wish to get an overview of the variety of approaches to process diagnosis and fault-tolerant contro...

  14. Historical Aspects in Tolerance Phenomenon Research

    Directory of Open Access Journals (Sweden)

    Janat A. Karmanova

    2013-01-01

    Full Text Available The article examines the historical aspect of the tolerance phenomenon research, particularly the study of tolerance in the age of Antiquity, Middle Ages, New Times, Enlightenment. It is remarkable that the problem of tolerance, emerged in Western civilization on religious grounds, laid the foundation for all other freedoms, attained in many countries. Besides, the article attaches special attention to the researchers of the East, such as Abu Nasr al-Farabi, Khoja Ahmed Yasawi, studies the historical aspect of works by Kazakhstan thinkers A. Kunanbayev, C. Valikhanova, K.B. Zharikbayev, S.K. Kaliyev, A.N. Nysanbayev, A.I. Artemev and others. The analysis of historical research of the tolerance phenomenon brings the author to the conclusion that religious freedom was the starting point for the emergence of new areas of tolerance display. The content of this phenomenon changed according to the historical peculiarities of the societies’ development

  15. Induced tolerance from a sublethal insecticide leads to cross-tolerance to other insecticides.

    Science.gov (United States)

    Hua, Jessica; Jones, Devin K; Relyea, Rick A

    2014-04-01

    As global pesticide use increases, the ability to rapidly respond to pesticides by increasing tolerance has important implications for the persistence of nontarget organisms. A recent study of larval amphibians discovered that increased tolerance can be induced by an early exposure to low concentrations of a pesticide. Since natural systems are often exposed to a variety of pesticides that vary in mode of action, we need to know whether the induction of increased tolerance to one pesticide confers increased tolerance to other pesticides. Using larval wood frogs (Lithobates sylvaticus), we investigated whether induction of increased tolerance to the insecticide carbaryl (AChE-inhibitor) can induce increased tolerance to other insecticides that have the same mode of action (chlorpyrifos, malathion) or a different mode of action (Na(+)channel-interfering insecticides; permethrin, cypermethrin). We found that embryonic exposure to sublethal concentrations of carbaryl induced higher tolerance to carbaryl and increased cross-tolerance to malathion and cypermethrin but not to chlorpyrifos or permethrin. In one case, the embryonic exposure to carbaryl induced tolerance in a nonlinear pattern (hormesis). These results demonstrate that that the newly discovered phenomenon of induced tolerance also provides induced cross-tolerance that is not restricted to pesticides with the same mode of action.

  16. Subcellular localization of copper in tolerant and non-tolerant plant

    Institute of Scientific and Technical Information of China (English)

    NI Cai-ying; CHEN Ying-xv; LIN Qi; TIAN Guang-ming

    2005-01-01

    The ability of Elsholtzia splendens Naki( E. splendens) to accumulate copper appears to be governed by its high degree of copper tolerance. However, the tolerance mechanism on the physiological basis is unknown. Using transmission electron microscope (TEM) and energy dispersive analysis of X-rays(EDX), the likely location of copper within the cells of the tolerant and non-tolerant was determined. Here the role of vacuolar and cell wall compartmentalization in this copper tolerant plant were investigated. A direct comparison of copper locations of E. splendens and the non-tolerant Astragalus sinicus L. ( A. sinicus) showed that the majority of copper in the tolerant was localized primarily in the vacuolar, cell wall, on the plasmamembrane, beside lipid grains induced by copper pollution, in the chloroplasts and amyloids; but in the non-tolerant, copper precipitates only be observed on the plasmamembrane, in the chloroplasts and cytoplasm under copper exposure conditions that were toxic to both species. This revealed that the tolerant accumulates more copper in the vacuole and cell wall than the non-tolerant, where was regarded as the storage compartment of tolerant plant or hyperaccumulator for heavy metals.

  17. Immune mechanisms in cerebral ischemic tolerance

    Directory of Open Access Journals (Sweden)

    Lidia eGarcia-Bonilla

    2014-03-01

    Full Text Available Stressor-induced tolerance is a central mechanism in the response of bacteria, plants, and animals to potentially harmful environmental challenges. This response is characterized by immediate changes in cellular metabolism and by the delayed transcriptional activation or inhibition of genetic programs that are not generally stressor specific (cross-tolerance. These programs are aimed at countering the deleterious effects of the stressor. While induction of this response (preconditioning can be established at the cellular level, activation of systemic networks is essential for the protection to occur throughout the organs of the body. This is best signified by the phenomenon of remote ischemic preconditioning, whereby application of ischemic stress to one tissue or organ induces ischemic tolerance in remote organs through humoral, cellular and neural signaling. The immune system is an essential component in cerebral ischemic tolerance acting simultaneously both as mediator and target. This dichotomy is based on the fact that activation of inflammatory pathways is necessary to establish ischemic tolerance and that ischemic tolerance can be, in part, attributed to a subdued immune activation after index ischemia. Here we describe the components of the immune system required for induction of ischemic tolerance and review the mechanisms by which a reprogrammed immune response contributes to the neuroprotection observed after preconditioning. Learning how local and systemic immune factors participate in endogenous neuroprotection could lead to the development of new stroke therapies.

  18. Regulatory focus affects physician risk tolerance.

    Science.gov (United States)

    Veazie, Peter J; McIntosh, Scott; Chapman, Benjamin P; Dolan, James G

    2014-01-01

    Risk tolerance is a source of variation in physician decision-making. This variation, if independent of clinical concerns, can result in mistaken utilization of health services. To address such problems, it will be helpful to identify nonclinical factors of risk tolerance, particularly those amendable to intervention-regulatory focus theory suggests such a factor. This study tested whether regulatory focus affects risk tolerance among primary care physicians. Twenty-seven primary care physicians were assigned to promotion-focused or prevention-focused manipulations and compared on the Risk Taking Attitudes in Medical Decision Making scale using a randomization test. Results provide evidence that physicians assigned to the promotion-focus manipulation adopted an attitude of greater risk tolerance than the physicians assigned to the prevention-focused manipulation (p = 0.01). The Cohen's d statistic was conventionally large at 0.92. Results imply that situational regulatory focus in primary care physicians affects risk tolerance and may thereby be a nonclinical source of practice variation. Results also provide marginal evidence that chronic regulatory focus is associated with risk tolerance (p = 0.05), but the mechanism remains unclear. Research and intervention targeting physician risk tolerance may benefit by considering situational regulatory focus as an explanatory factor.

  19. Software fault tolerance in computer operating systems

    Science.gov (United States)

    Iyer, Ravishankar K.; Lee, Inhwan

    1994-01-01

    This chapter provides data and analysis of the dependability and fault tolerance for three operating systems: the Tandem/GUARDIAN fault-tolerant system, the VAX/VMS distributed system, and the IBM/MVS system. Based on measurements from these systems, basic software error characteristics are investigated. Fault tolerance in operating systems resulting from the use of process pairs and recovery routines is evaluated. Two levels of models are developed to analyze error and recovery processes inside an operating system and interactions among multiple instances of an operating system running in a distributed environment. The measurements show that the use of process pairs in Tandem systems, which was originally intended for tolerating hardware faults, allows the system to tolerate about 70% of defects in system software that result in processor failures. The loose coupling between processors which results in the backup execution (the processor state and the sequence of events occurring) being different from the original execution is a major reason for the measured software fault tolerance. The IBM/MVS system fault tolerance almost doubles when recovery routines are provided, in comparison to the case in which no recovery routines are available. However, even when recovery routines are provided, there is almost a 50% chance of system failure when critical system jobs are involved.

  20. Oral Tolerance: Therapeutic Implications for Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Ana M. C. Faria

    2006-01-01

    Full Text Available Oral tolerance is classically defined as the suppression of immune responses to antigens (Ag that have been administered previously by the oral route. Multiple mechanisms of tolerance are induced by oral Ag. Low doses favor active suppression, whereas higher doses favor clonal anergy/deletion. Oral Ag induces Th2 (IL-4/IL-10 and Th3 (TGF-β regulatory T cells (Tregs plus CD4+CD25+ regulatory cells and LAP+T cells. Induction of oral tolerance is enhanced by IL-4, IL-10, anti-IL-12, TGF-β, cholera toxin B subunit (CTB, Flt-3 ligand, anti-CD40 ligand and continuous feeding of Ag. In addition to oral tolerance, nasal tolerance has also been shown to be effective in suppressing inflammatory conditions with the advantage of a lower dose requirement. Oral and nasal tolerance suppress several animal models of autoimmune diseases including experimental allergic encephalomyelitis (EAE, uveitis, thyroiditis, myasthenia, arthritis and diabetes in the nonobese diabetic (NOD mouse, plus non-autoimmune diseases such as asthma, atherosclerosis, colitis and stroke. Oral tolerance has been tested in human autoimmune diseases including MS, arthritis, uveitis and diabetes and in allergy, contact sensitivity to DNCB, nickel allergy. Positive results have been observed in phase II trials and new trials for arthritis, MS and diabetes are underway. Mucosal tolerance is an attractive approach for treatment of autoimmune and inflammatory diseases because of lack of toxicity, ease of administration over time and Ag-specific mechanism of action. The successful application of oral tolerance for the treatment of human diseases will depend on dose, developing immune markers to assess immunologic effects, route (nasal versus oral, formulation, mucosal adjuvants, combination therapy and early therapy.

  1. Fraud: zero tolerance at CERN

    CERN Multimedia

    2014-01-01

    In this week’s Bulletin (see here), you’ll read that fraudulent activities were uncovered last year by our Internal Audit Service. CERN has a very clearly defined policy in such cases: we base our efforts on prevention through education, we have a policy of protecting those reporting fraud from recrimination, and we have a zero-tolerance policy should fraud be uncovered.   I don’t intend to enter into the details of what occurred, but I’d like to remind you that fraud is a very grave business, and something we take extremely seriously. What do we mean by fraud at CERN? Operational Circular No. 10 on “Principles and procedures governing the investigation of fraud” defines fraud in terms of any deception intended to benefit the perpetrator, or a third party, that results in a loss to the Organization. This loss can be to funds, property or reputation. Thankfully, fraud at CERN is a rare occurrence, but we should never be complacent. ...

  2. TOLERABILITY OF VARIOUS ANTIHYPERTENSIVE COMBINATIONS

    Directory of Open Access Journals (Sweden)

    S. V. Malchikova

    2016-01-01

    Full Text Available Aim. To compare tolerability of various antihypertensive combinations in patients with arterial hypertension (HT.Material and methods. 140 patients with HT with history of non-effective antihypertensive therapy were randomized in 4 groups, 35 patients in each. Patients of group A received indapamide retard/perindopril; group B - indapamide retard/amlodipine; group C – amlodipine/lisinopril; group D – amlodipine/bisoprolol. Therapy duration was 12 weeks.Results. 28 (20% patients dropped out of the study. All antihypertensive combinations significantly decreased blood pressure level. Patients of group A did not stop therapy because of adverse events. 6 (17,1% dropped out of the study because of ineffective therapy in maximal doses and therapy rejection. Palpitation was a reason of drug withdrawal in 3 (8,6% of 8 (22,9% dropped patients of group B. Low limb edema was a reason of drug withdrawal in 4 (11,4% of 8 (22,9% dropped patients of group D. Cough was a reason of drug withdrawal in 4 (11,4% of 5 dropped patients of group C. Dose reduction was needed in some patients of all groups because of hypotension.Conclusion. The adverse events were observed in 25% of patients during 12 weeks of therapy. The patients received indapamide retard/amlodipine and amlodipine/bisoprolol had the highest rate of drug withdrawal because of adverse events. Low limb edema, cough and palpitation were the most frequent adverse events needed therapy withdrawal.

  3. TOLERABILITY OF VARIOUS ANTIHYPERTENSIVE COMBINATIONS

    Directory of Open Access Journals (Sweden)

    S. V. Malchikova

    2009-01-01

    Full Text Available Aim. To compare tolerability of various antihypertensive combinations in patients with arterial hypertension (HT.Material and methods. 140 patients with HT with history of non-effective antihypertensive therapy were randomized in 4 groups, 35 patients in each. Patients of group A received indapamide retard/perindopril; group B - indapamide retard/amlodipine; group C – amlodipine/lisinopril; group D – amlodipine/bisoprolol. Therapy duration was 12 weeks.Results. 28 (20% patients dropped out of the study. All antihypertensive combinations significantly decreased blood pressure level. Patients of group A did not stop therapy because of adverse events. 6 (17,1% dropped out of the study because of ineffective therapy in maximal doses and therapy rejection. Palpitation was a reason of drug withdrawal in 3 (8,6% of 8 (22,9% dropped patients of group B. Low limb edema was a reason of drug withdrawal in 4 (11,4% of 8 (22,9% dropped patients of group D. Cough was a reason of drug withdrawal in 4 (11,4% of 5 dropped patients of group C. Dose reduction was needed in some patients of all groups because of hypotension.Conclusion. The adverse events were observed in 25% of patients during 12 weeks of therapy. The patients received indapamide retard/amlodipine and amlodipine/bisoprolol had the highest rate of drug withdrawal because of adverse events. Low limb edema, cough and palpitation were the most frequent adverse events needed therapy withdrawal.

  4. Cocaine tolerance in honey bees.

    Directory of Open Access Journals (Sweden)

    Eirik Søvik

    Full Text Available Increasingly invertebrates are being used to investigate the molecular and cellular effects of drugs of abuse to explore basic mechanisms of addiction. However, in mammals the principle factors contributing to addiction are long-term adaptive responses to repeated drug use. Here we examined whether adaptive responses to cocaine are also seen in invertebrates using the honey bee model system. Repeated topical treatment with a low dose of cocaine rendered bees resistant to the deleterious motor effects of a higher cocaine dose, indicating the development of physiological tolerance to cocaine in bees. Cocaine inhibits biogenic amine reuptake transporters, but neither acute nor repeated cocaine treatments caused measurable changes in levels of biogenic amines measured in whole bee brains. Our data show clear short and long-term behavioural responses of bees to cocaine administration, but caution that, despite the small size of the bee brain, measures of biogenic amines conducted at the whole-brain level may not reveal neurochemical effects of the drug.

  5. 40 CFR 180.467 - Carbon disulfide; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances..., insecticide, and fungicide carbon disulfide, from the application of sodium tetrathiocarbonate, in or on...

  6. 40 CFR 180.198 - Trichlorfon; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances... the insecticide trichlorfon (dimethyl (2,2,2-trichloro-1-hydroxyethyl) phosphonate) in or on...

  7. 40 CFR 180.239 - Phosphamidon; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances... residues of the insecticide phosphamidon (2-chloro-2-diethylcarbamoyl-1-methylvinyl dimethyl...

  8. The 14C-monomethylamino-antipyrine breath test as in vivo parameter for characterizing the induction of the drug catabolizing enzyme system in the guinea pig

    International Nuclear Information System (INIS)

    The aim of these investigations was to help clarify the following questions: 1) Does MAAP, following 14C labelling of the exocyclic aminomethyl group, offer a suitable substrate for a breath test in guinea pigs. 2) Which procedures for evaluating the 14C exhalation curves of the breath test are especially valid. 3) Can an induction of the drug catabolizing enzyme system following pre-treatment with various inducing substances be detected by the 14C-MAAP breath test. 4) Do inducer-specific differences arise in response to the 14C-MAAP breath test by which the inducers can be characterized. 5) Is monomethylamino-antipyrine similar to amidopyrine in that it is a suitable independent in vivo parameter for the drug metasbolizing enzyme system in the liver of guinea pigs. (orig./MG)

  9. Mechanisms Underlying Induction of Tolerance to Foods.

    Science.gov (United States)

    Berin, M Cecilia; Shreffler, Wayne G

    2016-02-01

    Oral tolerance refers to a systemic immune nonresponsiveness to antigens first encountered by the oral route, and a failure in development of this homeostatic process can result in food allergy. Clinical tolerance induced by allergen immunotherapy is associated with alterations in immune mechanisms relevant to the allergic response, including reduction of basophil reactivity, induction of IgG4, loss of effector Th2 cells, and induction of Tregs. The relative contribution of these immune changes to clinical tolerance to foods, and the duration of these immune changes after termination of immunotherapy, remains to be identified. PMID:26617229

  10. Tolerance – a Culturally Dependent Concept?

    Directory of Open Access Journals (Sweden)

    Trond Jørgensen

    2014-12-01

    Full Text Available This article presents research on Japanese interpretations of the first article of the Universal Declaration of Human Rights as a point of departure for discussing how the Japanese cultural contexts present an alternative understanding of tolerance to the Western liberal. According to Rainer Forst, tolerance is a normatively dependent concept (Forst 2010. This implies that the specific cultural values or the ‘normative context’ and environment become relevant. Since the praxis of tolerance always takes place in a specific cultural and moral environment, the cultural context influences how tolerance is carried out in practice as well as the norms defining its limits. Japanese informants held that cultural norms and values in Japan differ somewhat from those in the West. They perceived the human rights discourse as culturally dependent and culturally marked and clearly considered the first article of the Universal Declaration of Human Rights to be a product of Western thought. It states that ‘All human beings are born free and equal in dignity and rights. They are endowed with reason and conscience and should act towards one another in the spirit of brotherhood’ (United Nations 1948. While the role of tolerance in Western political philosophy seems to be attached to liberal values of autonomy and freedom, the Confucian-influenced environment in Japan places more emphasis on inter-dependency, cultivation, and learning social rules and proper-place-occupation as bases for moral conduct and deserving of respect. According to the Japanese informants, people are not ‘born with rights’ or ‘born free and equal’. Maintaining harmony, consensus, and proper behaviour according to relationships and hierarchy creates a different kind of setting for tolerance. The inter-dependent perspectives of Japanese culture may restrain freedom and can thus be expected to limit toleration of divergent views or behaviour. The culture-specific perception of

  11. Fault tolerant control for switched linear systems

    CERN Document Server

    Du, Dongsheng; Shi, Peng

    2015-01-01

    This book presents up-to-date research and novel methodologies on fault diagnosis and fault tolerant control for switched linear systems. It provides a unified yet neat framework of filtering, fault detection, fault diagnosis and fault tolerant control of switched systems. It can therefore serve as a useful textbook for senior and/or graduate students who are interested in knowing the state-of-the-art of filtering, fault detection, fault diagnosis and fault tolerant control areas, as well as recent advances in switched linear systems.  

  12. An architecture for fault tolerant controllers

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    2005-01-01

    degradation in the sense of guaranteed degraded performance. A number of fault diagnosis problems, fault tolerant control problems, and feedback control with fault rejection problems are formulated/considered, mainly from a fault modeling point of view. The method is illustrated on a servo example including......A general architecture for fault tolerant control is proposed. The architecture is based on the (primary) YJBK parameterization of all stabilizing compensators and uses the dual YJBK parameterization to quantify the performance of the fault tolerant system. The approach suggested can be applied...

  13. β-Alanine does not act through branched-chain amino acid catabolism in carp, a species with low muscular carnosine storage.

    Science.gov (United States)

    Geda, F; Declercq, A; Decostere, A; Lauwaerts, A; Wuyts, B; Derave, W; Janssens, G P J

    2015-02-01

    This study was executed to investigate the effect of dietary β-alanine (BA) on amino acid (AA) metabolism and voluntary feed intake in carp (Cyprinus carpio) at mildly elevated temperature to exert AA catabolism. Twenty-four fish in 12 aquaria were randomly assigned to either a control diet or the same diet with 500 mg BA/kg. A 14-day period at an ideal temperature (23 °C) was followed by 15 days at chronic mildly elevated temperature (27 °C). After the 15 days, all fish were euthanised for muscle analysis on histidine-containing dipeptides (HCD), whole blood on free AA and carnitine esters. The carnosine and anserine analysis indicated that all analyses were below the detection limit of 5 µmol/L, confirming that carp belongs to a species that does not store HCD. The increases in free AA concentrations due to BA supplementation failed to reach the level of significance. The effects of dietary BA on selected whole blood carnitine esters and their ratios were also not significant. The supplementation of BA tended to increase body weight gain (P = 0.081) and feed intake (P = 0.092). The lack of differences in the selected nutrient metabolites in combination with tendencies of improved growth performance warrants further investigation to unravel the mechanism of BA affecting feed intake. This first trial on the effect of BA supplementation on AA catabolism showed that its metabolic effect in carp at chronic mildly elevated temperature was very limited. Further studies need to evaluate which conditions are able to exert an effect of BA on AA metabolism.

  14. β-Alanine does not act through branched-chain amino acid catabolism in carp, a species with low muscular carnosine storage.

    Science.gov (United States)

    Geda, F; Declercq, A; Decostere, A; Lauwaerts, A; Wuyts, B; Derave, W; Janssens, G P J

    2015-02-01

    This study was executed to investigate the effect of dietary β-alanine (BA) on amino acid (AA) metabolism and voluntary feed intake in carp (Cyprinus carpio) at mildly elevated temperature to exert AA catabolism. Twenty-four fish in 12 aquaria were randomly assigned to either a control diet or the same diet with 500 mg BA/kg. A 14-day period at an ideal temperature (23 °C) was followed by 15 days at chronic mildly elevated temperature (27 °C). After the 15 days, all fish were euthanised for muscle analysis on histidine-containing dipeptides (HCD), whole blood on free AA and carnitine esters. The carnosine and anserine analysis indicated that all analyses were below the detection limit of 5 µmol/L, confirming that carp belongs to a species that does not store HCD. The increases in free AA concentrations due to BA supplementation failed to reach the level of significance. The effects of dietary BA on selected whole blood carnitine esters and their ratios were also not significant. The supplementation of BA tended to increase body weight gain (P = 0.081) and feed intake (P = 0.092). The lack of differences in the selected nutrient metabolites in combination with tendencies of improved growth performance warrants further investigation to unravel the mechanism of BA affecting feed intake. This first trial on the effect of BA supplementation on AA catabolism showed that its metabolic effect in carp at chronic mildly elevated temperature was very limited. Further studies need to evaluate which conditions are able to exert an effect of BA on AA metabolism. PMID:25549626

  15. Common catabolic enzyme patterns in a microplankton community of the Humboldt Current System off northern and central-south Chile: Malate dehydrogenase activity as an index of water-column metabolism in an oxygen minimum zone

    Science.gov (United States)

    González, R. R.; Quiñones, R. A.

    2009-07-01

    An extensive subsurface oxygen minimum zone off northern and central-south Chile, associated with the Peru-Chile undercurrent, has important effects on the metabolism of the organisms inhabiting therein. Planktonic species deal with the hypoxic and anoxic environments by relying on biochemical as well as physiological processes related to their anaerobic metabolisms. Here we characterize, for the first time, the potential enzymatic activities involved in the aerobic and anaerobic energy production pathways of microplanktonic organisms (catabolic pathways in the oxygen minimum zone. Malate dehydrogenase had the highest oxidizing activity of nicotinamide adenine dinucleotide (reduced form) in the batch of catabolic enzymatic activities assayed, including potential pyruvate oxidoreductases activity, the electron transport system, and dissimilatory nitrate reductase. Malate dehydrogenase correlated significantly with almost all the enzymes analyzed within and above the oxygen minimum zone, and also with the oxygen concentration and microplankton biomass in the water column of the Humboldt Current System, especially in the oxygen minimum zone off Iquique. These results suggest a possible specific pattern for the catabolic activity of the microplanktonic realm associated with the oxygen minimum zone spread along the Humboldt Current System off Chile. We hypothesize that malate dehydrogenase activity could be an appropriate indicator of microplankton catabolism in the oxygen minimum zone and adjacent areas.

  16. Fault Tolerant, Radiation Hard DSP Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a radiation tolerant/hardened signal processing node, which effectively utilizes state-of-the-art commercial semiconductors plus our...

  17. "Origins of Tolerance": Reply to Crockett

    Science.gov (United States)

    Williams, J. Allen, Jr.; And Others

    1976-01-01

    Refutes the criticisms made by Harry Crockett (Social Forces 55(2), 1976) and conclude that there is no evidence in his criticisms that the interpretations of the origins of tolerance previously expressed are wrong. (AM)

  18. Spinoza and the Theory of Active Tolerance

    DEFF Research Database (Denmark)

    Tønder, Lars

    2013-01-01

    of active tolerance that, for the most part, has been lost in contemporary democratic theory. Spinoza’s philosophy of immanence does so because it animates a sensorial orientation to politics, one that heightens our attention to the affective components of political life, enabling us to better theorize how......This paper considers the politics of tolerance through the lens of Spinoza’s philosophy of immanence. The contention is that Spinoza’s philosophy of immanence provides us with a better conceptualization of the relationship between tolerance and power, and that it in so doing reinvigorates a theory...... all modes of existence, including the so-called passive ones, harbor a degree of power that can be mobilized for purposes that go beyond the “non-practice” highlighted by advocates and critics of tolerance in contemporary democratic theory. The paper develops this argument with ongoing reference...

  19. Radiation Tolerant Software Defined Video Processor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MaXentric's is proposing a radiation tolerant Software Define Video Processor, codenamed SDVP, for the problem of advanced motion imaging in the space environment....

  20. Reconfigurable fault tolerant avionics system

    Science.gov (United States)

    Ibrahim, M. M.; Asami, K.; Cho, Mengu

    This paper presents the design of a reconfigurable avionics system based on modern Static Random Access Memory (SRAM)-based Field Programmable Gate Array (FPGA) to be used in future generations of nano satellites. A major concern in satellite systems and especially nano satellites is to build robust systems with low-power consumption profiles. The system is designed to be flexible by providing the capability of reconfiguring itself based on its orbital position. As Single Event Upsets (SEU) do not have the same severity and intensity in all orbital locations, having the maximum at the South Atlantic Anomaly (SAA) and the polar cusps, the system does not have to be fully protected all the time in its orbit. An acceptable level of protection against high-energy cosmic rays and charged particles roaming in space is provided within the majority of the orbit through software fault tolerance. Check pointing and roll back, besides control flow assertions, is used for that level of protection. In the minority part of the orbit where severe SEUs are expected to exist, a reconfiguration for the system FPGA is initiated where the processor systems are triplicated and protection through Triple Modular Redundancy (TMR) with feedback is provided. This technique of reconfiguring the system as per the level of the threat expected from SEU-induced faults helps in reducing the average dynamic power consumption of the system to one-third of its maximum. This technique can be viewed as a smart protection through system reconfiguration. The system is built on the commercial version of the (XC5VLX50) Xilinx Virtex5 FPGA on bulk silicon with 324 IO. Simulations of orbit SEU rates were carried out using the SPENVIS web-based software package.

  1. Social Studies Teachers’ Perceptions of Tolerance

    Directory of Open Access Journals (Sweden)

    Hatice Türe

    2014-10-01

    Full Text Available Problem: Tolerance is one of the values which citizens should have in today's multicultural and democratic society. Educational system should teach tolerance to the individuals in a democratic society. Tolerance can be given through curricula in educational process. Social studies is one of the courses for conducting tolerance education. Skills and perspectives of teachers are important for tolerance education in social studies. The purpose of this study is to understand social studies teachers' perceptions of tolerance. Method: In the study, qualitative research method and phenomenology that is one of the qualitative research designs was employed. The participants were determined using criterion sampling. 10 social studies teachers graduated from social studies education departments working at schools of Eskisehir Provincial Directorate of National Education participated in the study. The research process consisted of two phases. The data were gathered through semi-structured interviews. The interviews were conducted in two steps in order to make an in-depth analysis. In Phase I of the study, semi-structured interviews were conducted with 10 teachers in December and January months during the 2012-2013 school year. The data obtained from the first interviews were also the base for the questions in the second interviews. In Phase II of the study, semi-structured interviews were again conducted with 10 teachers who participated in the first interviews in April and May months during the 2012-2013 school year. Teacher Interview Form-1 in the first interviews and Teacher Interview Form-2 in the second interviews were used for data collection. As for data analysis, thematic analysis technique was used. The data were analysed, the findings were defined and interpreted based on the research questions. Findings: The findings of the study revealed that the social studies teachers described tolerance as respecting ideas, values, beliefs and behaviors

  2. Drought Tolerance in Modern and Wild Wheat

    Directory of Open Access Journals (Sweden)

    Hikmet Budak

    2013-01-01

    Full Text Available The genus Triticum includes bread (Triticum aestivum and durum wheat (Triticum durum and constitutes a major source for human food consumption. Drought is currently the leading threat on world's food supply, limiting crop yield, and is complicated since drought tolerance is a quantitative trait with a complex phenotype affected by the plant's developmental stage. Drought tolerance is crucial to stabilize and increase food production since domestication has limited the genetic diversity of crops including wild wheat, leading to cultivated species, adapted to artificial environments, and lost tolerance to drought stress. Improvement for drought tolerance can be achieved by the introduction of drought-grelated genes and QTLs to modern wheat cultivars. Therefore, identification of candidate molecules or loci involved in drought tolerance is necessary, which is undertaken by “omics” studies and QTL mapping. In this sense, wild counterparts of modern varieties, specifically wild emmer wheat (T. dicoccoides, which are highly tolerant to drought, hold a great potential. Prior to their introgression to modern wheat cultivars, drought related candidate genes are first characterized at the molecular level, and their function is confirmed via transgenic studies. After integration of the tolerance loci, specific environment targeted field trials are performed coupled with extensive analysis of morphological and physiological characteristics of developed cultivars, to assess their performance under drought conditions and their possible contributions to yield in certain regions. This paper focuses on recent advances on drought related gene/QTL identification, studies on drought related molecular pathways, and current efforts on improvement of wheat cultivars for drought tolerance.

  3. Marking a path to transplant tolerance

    OpenAIRE

    Seyfert-Margolis, Vicki; Turka, Laurence A.

    2008-01-01

    Long-term allograft survival requires lifelong immunosuppression, which comes with serious side effects. Inducing immune tolerance to the transplant would enable immunosuppression withdrawal and revolutionize the quality of life of transplant recipients. In this issue of the JCI, Martínez-Llordella et al. identify a profile of biomarkers that predict tolerance in liver transplant recipients (see the related article beginning on page 2845). These findings translate into a new means for prospec...

  4. Tolerance as a Phenomenon of Kazakh Culture

    OpenAIRE

    AUBAKIROVA SALTANAT; ISMAGAMBETOVA ZUKHRA; GABITOV TURSUN; AKHMETOVA GAUKHAR

    2014-01-01

    Analysis of traditional Kazakh culture shows that tolerance is organically inherent in Kazakh culture with ethical principle, and is its most important feature. Kazakh worldview is focused on the preservation of world harmony as a way of existence with the approval of the other person in the world context. Ethical principles of Kazakh nation imbued high universal ideas of kindness and mercy. The compassion and humanity as the highest manifestation of tolerance are core values of the cultural ...

  5. Henri Fayol and Zero Tolerance Policies

    OpenAIRE

    Lee SCHIMMOELLER

    2012-01-01

    Zero tolerance policies have been increasingly popular in both education and business. Henri Fayol was the one of the earliest and influential thinkers in modern management theory. He defined management as a body of knowledge and defined his 14 administrative principles. It is an interesting exercise to apply Fayol’s teachings to the theory of zero tolerance and attempt to determine what Fayol would think of this new management technique.

  6. Mast cell degranulation breaks peripheral tolerance

    OpenAIRE

    De Vries, V. C.; Wasiuk, A.; Bennett, K A; Benson, M. J.; Elgueta, R.; Waldschmidt, T. J.; Noelle, R J

    2009-01-01

    Mast cells (MC) have been shown to mediate regulatory T-cell (T(reg))-dependent, peripheral allograft tolerance in both skin and cardiac transplants. Furthermore, T(reg) have been implicated in mitigating IgE-mediated MC degranulation, establishing a dynamic, reciprocal relationship between MC and T(reg) in controlling inflammation. In an allograft tolerance model, it is now shown that intragraft or systemic MC degranulation results in the transient loss of T(reg) suppressor activities with t...

  7. Energy-efficient fault-tolerant systems

    CERN Document Server

    Mathew, Jimson; Pradhan, Dhiraj K

    2013-01-01

    This book describes the state-of-the-art in energy efficient, fault-tolerant embedded systems. It covers the entire product lifecycle of electronic systems design, analysis and testing and includes discussion of both circuit and system-level approaches. Readers will be enabled to meet the conflicting design objectives of energy efficiency and fault-tolerance for reliability, given the up-to-date techniques presented.

  8. Mechanisms of tolerance induction to foreign proteins

    OpenAIRE

    Água-Doce, Ana

    2013-01-01

    Tese de doutoramento, Ciências Biomédicas (Imunologia), Universidade de Lisboa, Faculdade de Medicina, 2013 Several immune mediated diseases, such as autoimmunity and allergy or transplant rejection are consequence of inappropriate immune responses towards specific antigens. The therapeutic induction of robust immune tolerance has, therefore been considered the Holy Grail of immunology since the pioneering work of Medawar and colleagues who have demonstrated the feasibility of tolerance in...

  9. Alkaline tolerant dextranase from streptomyces anulatus

    Science.gov (United States)

    Decker, Stephen R.; Adney, William S.; Vinzant, Todd B.; Himmel, Michael E.

    2003-01-01

    A process for production of an alkaline tolerant dextranase enzyme comprises culturing a dextran-producing microorganism Streptomyces anulatus having accession no. ATCC PTA-3866 to produce an alkaline tolerant dextranase, Dex 1 wherein the protein in said enzyme is characterized by a MW of 63.3 kDa and Dex 2 wherein its protein is characterized by a MW of 81.8 kDa.

  10. Drought Tolerance in Modern and Wild Wheat

    OpenAIRE

    Hikmet Budak; Melda Kantar; Kuaybe Yucebilgili Kurtoglu

    2013-01-01

    The genus Triticum includes bread (Triticum aestivum) and durum wheat (Triticum durum) and constitutes a major source for human food consumption. Drought is currently the leading threat on world's food supply, limiting crop yield, and is complicated since drought tolerance is a quantitative trait with a complex phenotype affected by the plant's developmental stage. Drought tolerance is crucial to stabilize and increase food production since domestication has limited the genetic diversity of c...

  11. [Opioid tolerance and dependence--pharmacological aspects].

    Science.gov (United States)

    Jaba, I M; Luncanu, I; Mungiu, O C

    2001-01-01

    Prolonged opioids administration leads inevitably to tolerance and dependence, a phenomenon we meet more often in healthy people than in ill patients. Tolerance means a hypersensibility of neuronal membranes as well as changes in the number and affinity of opioid receptors, which implies intake of larger doses to obtain the initial effect. Physical dependence, quite different of the psychological one, is the appearance of abstinence syndrome on sudden interruption of opioid administration or on administration of an antagonist. There is usually cross-tolerance in opioids, but it can also be incomplete, when the initial opioid can be replaced with another one that produces a milder abstinence syndrome. Classically, metadone is used in long time therapy, after detoxification with an antagonist is performed (naloxon, naltrexon). Modern pharmacological alternatives are levo-alpha-acetyl-methadol (LAAM) and agonists-antagonists (butorphanol, buprenorphine, pentazocine, nalbuphine). An antagonist can also be used if associated with an alpha--stimulant (clonidine), in order to remove noradrenergic manifestations of abstinence syndrome. Now other therapeutical principles are being studied: enkephalinaze inhibitors to reduce the abstinence syndrome, NMDA receptor antagonists, NO sintetasis inhibitors, that facilitates opioid analgesia and hinders tolerance development; colecystokinin-receptors agonists or antagonists to reduce tolerance on morphine. A recent study showed that the concomitant administration of an opioid agonist (sufentanil) and a calcium channels blocker (nimodipine) not only prevents from tolerance development but also triggers hypersensibility to analgesic effects of the opioid. PMID:12092171

  12. Functional tolerance theory in incremental growth design

    Institute of Scientific and Technical Information of China (English)

    YANG Bo; YANG Tao; ZE Xiangbo

    2007-01-01

    The evolutionary tolerance design strategy and its characteristics are studied on the basis of automation technology in the product structure design.To guarantee a successful transformation from the functional requirement to geometry constraints between parts,and finally to dimension constraints,a functional tolerance design theory in the process of product growth design is put forward.A mathematical model with a correlated sensitivity function between cost and the tolerance is created,in which the design cost,the manufacturing cost,the usage cost,and the depreciation cost of the product are regarded as control constraints of the tolerance allocation.Considering these costs,a multifactor-cost function to express quality loss of the product is applied into the model.In the mathematical model,the minimum cost is used as the objective function; a reasonable process capability index,the assembly function,and assembly quality are taken as the constraints; and depreciation cost in the objective function is expressed as the discount rate-terminology in economics.Thus,allocation of the dimension tolerance as the function and cost over the whole lifetime of the product is realized.Finally,a design example is used to demonstrate the successful application of the proposed functional tolerance theory in the incremental growth design of the product.

  13. Screening cotton genotypes for seedling drought tolerance

    Directory of Open Access Journals (Sweden)

    Penna Julio C. Viglioni

    1998-01-01

    Full Text Available The objectives of this study were to adapt a screening method previously used to assess seedling drought tolerance in cereals for use in cotton (Gossypium hirsutum L. and to identify tolerant accessions among a wide range of genotypes. Ninety genotypes were screened in seven growth chamber experiments. Fifteen-day-old seedlings were subjected to four 4-day drought cycles, and plant survival was evaluated after each cycle. Three cycles are probably the minimum required in cotton work. Significant differences (at the 0.05 level or lower among entries were obtained in four of the seven experiments. A "confirmation test" with entries previously evaluated as "tolerant" (high survival and "susceptible" (low survival was run. A number of entries duplicated their earlier performance, but others did not, which indicates the need to reevaluate selections. Germplasms considered tolerant included: `IAC-13-1', `IAC-RM4-SM5', `Minas Sertaneja', `Acala 1517E-1' and `4521'. In general, the technique is simple, though time-consuming, with practical value for screening a large number of genotypes. Results from the screening tests generally agreed with field information. The screening procedure is suitable to select tolerant accessions from among a large number of entries in germplasm collections as a preliminary step in breeding for drought tolerance. This research also demonstrated the need to characterize the internal lack of uniformity in growth chambers to allow for adequate designs of experiments.

  14. Tolerance Backward Propagation Based on Manufacturing Difficulties in Computer-aided Tolerance Design

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The interval constraint can be applied in tolerance design iftolerances are considered as interval, and backward propagation can be used to realize tolerance synthesis in which tolerances are allocated to meet functional requirements. The intervals are tightened uniformly or according to interval width or nominal value of dimension in previous methods. A tolerance backward propagation method based on manufacturing difficulties is presented in this paper. In the new arithmetic, the interval is tightened according to the manufacturing difficulty of the interval. So it will be easy to manufacture and has lower manufacturing cost. Finally, the proposed arithmetic is tested on a practical example.

  15. In vitro selection of induced mutants to salt-tolerance: Inducible gene regulation for salt tolerance

    International Nuclear Information System (INIS)

    A selection protocol to obtain salt tolerant calli, followed by regeneration and progeny-test of the regenerated plants for salt tolerance in rice was investigated. Callus cultures were initiated from salt-sensitive US elite rice lines and cv. 'Pokkali'. Salt-tolerant cell lines were selected from these by a single step selection procedure. The selected salt-tolerant lines grew well on medium with ± 0.5% or 1% NaCl, while the parent lines occasionally survived, but did not grow at these salt concentrations. Plants were regenerated from these cell lines through different passages on medium containing salt. Seed was collected from the regenerated plants and salt tolerance of R2 seedlings was compared with those regenerated without salt selection. Salt-tolerance was measured by survival and productive growth of newly germinated seedlings in Hoagland solution with 0.3% and 0.5% NaCl for 4 weeks. Heritable improvement in salt tolerance was obtained in R2 seedlings from one plant regenerated after 5 months selection. Survival and growth of these seedlings was equivalent to that from 'Pokkali' seedlings. These results show that cellular tolerance can provide salt-tolerance in rice plants. (author). 6 refs, 2 tabs

  16. Incorporating Fault Tolerance Tactics in Software Architecture Patterns

    NARCIS (Netherlands)

    Harrison, Neil B.; Avgeriou, Paris

    2008-01-01

    One important way that an architecture impacts fault tolerance is by making it easy or hard to implement measures that improve fault tolerance. Many such measures are described as fault tolerance tactics. We studied how various fault tolerance tactics can be implemented in the best-known architectur

  17. 40 CFR 180.40 - Tolerances for crop groups.

    Science.gov (United States)

    2010-07-01

    ... Section 180.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Procedural Regulations § 180.40 Tolerances..., any needed tolerance or exemption from a tolerance for the pesticide in meat, milk, poultry...

  18. 40 CFR 180.108 - Acephate; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... under 40 CFR 180.315 (2) A food tolerance of 0.02 ppm is established for residues of acephate per se (O... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Acephate; tolerances for residues. 180... PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances §...

  19. 40 CFR 180.291 - Pentachloronitrobenzene; tolerance for residues.

    Science.gov (United States)

    2010-07-01

    ... residues. 180.291 Section 180.291 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.291 Pentachloronitrobenzene; tolerance for residues. (a) General. Tolerances are established...

  20. 40 CFR 180.252 - Tetrachlorvinphos; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... residues. 180.252 Section 180.252 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.252 Tetrachlorvinphos; tolerances for residues. (a) General. Tolerances are established for...

  1. Tolerabilidad de Aspirina Aspirin tolerability

    Directory of Open Access Journals (Sweden)

    M. R. Moreno-Brea

    2005-09-01

    ácter atero-trombótico. El síndrome de Reye es un cuadro de rara presentación, pero de graves consecuencias, que contraindica el uso de Aspirina en niños o adolescentes con fiebre o ciertas infecciones virales. Dada la extensa utilización de Aspirina, puede ser considerado un fármaco bien tolerado en general, cuyas reacciones adversas más graves deben ser objeto de una especial farmacovigilancia, prestando especial atención a la población de mayor riesgo. Esta situación aconseja, asimismo, la puesta en marcha de programas de educación sanitaria sobre el uso de los analgésicos. En todo caso, Aspirina sigue siendo un fármaco de referencia con una importante potencialidad terapéutica derivada de los beneficios inherentes a su uso.The acetylsalicylic acid (ASA is a widely used drug worldwide, both as prescription and over-the-counter products, and both as the only active drug or associated to other drugs in fixed doses. It is used either occasionally for the management of acute symptomatic conditions, or continuously in prophylactic anti-thrombotic regimes. Its profile of adverse reactions and potential interactions with other drugs makes it very important to have a well-tolerated and safe substance. Both things are particularly relevant when the population exposed to this drug has reached a certain age, since its specific features may increase its susceptibility to side effects and complications. Aspirin shares the general profile of adverse reactions of the NSAIs and it is considered as its prototype. When acutely administered, the incidence of side effects, most of them light, are the same as with other analgesics. Gastrointestinal effects are the most frequent of all and several risk factors have been identify for the development of severe gastrointestinal complications. These risk factors must be considered along with the need to take prophylactic measures in order to reduce the morbi-mortality. In recent years, special attention has been devoted to

  2. CYCLOXYDIM-TOLERANT MAIZE – BREEDERS STANDPOINT

    Directory of Open Access Journals (Sweden)

    G. Bekavac

    2008-09-01

    Full Text Available Cycloxydim-Tolerant Maize (CTM was developed by researches at the University of Minnesota. CTM plants were regenerated from tissue culture selected for callus growth in the presence of cycloxydim, and the resulting plants were shown to contain a nuclear mutation, expressed as a single, partially dominant gene (known as Acc1 that conferred tolerance to the herbicide. Cycloxydim is a systemic herbicide for post emergence application in dicot crops to selectively control grass weeds. Corn, like most grasses is susceptible to cycloxydim due to inhibited acetyl-coenzyimeA carboxylaze enzyme activity. There are two key benefits of this technology: first, cycloxydim applications in CTM hybrids can be delayed until the weed spectrum and population density exceed agro-economic threshold; second, cycloxydim can be applied at either stage of plant development with no effect on basic agronomic traits, compared to non treated plants. Nevertheless, this type of tolerance requires 2 genes to be fully effective, i.e. gene must be present in both inbred parents to provide complete tolerance in the resulting hybrid. Such type of tolerance doubles the chances for yield drag and doubles the number of inbred conversions needed. This also limits germplasm integration and increases time lag in developing hybrids. Despite these difficulties, many seed companies introduce tolerance to cycloxydim into their commercial inbreds, and many of them have already commercialized CTM hybrids. Finally, it came as a logical question what is more important – hybrid performance or new trait? Critical to the success of this technology has been yield performance of CTM hybrids. At the same time, performance and herbicide tolerance do not exclude each other and can surely co-exist. To be accepted, this coexistence must secure high profitability to corn producers. However, CTM hybrids will not replace conventional ones on a large scale, but could be used as a specific tool, or could

  3. Drought tolerance in potato (S. tuberosum L.): Can we learn from drought tolerance research in cereals?

    Science.gov (United States)

    Monneveux, Philippe; Ramírez, David A; Pino, María-Teresa

    2013-05-01

    Drought tolerance is a complex trait of increasing importance in potato. Our knowledge is summarized concerning drought tolerance and water use efficiency in this crop. We describe the effects of water restriction on physiological characteristics, examine the main traits involved, report the attempts to improve drought tolerance through in vitro screening and marker assisted selection, list the main genes involved and analyze the potential interest of native and wild potatoes to improve drought tolerance. Drought tolerance has received more attention in cereals than in potato. The review compares these crops for indirect selection methods available for assessment of drought tolerance related traits, use of genetic resources, progress in genomics, application of water saving techniques and availability of models to anticipate the effects of climate change on yield. It is concluded that drought tolerance improvement in potato could greatly benefit from the transfer of research achievements in cereals. Several promising research directions are presented, such as the use of fluorescence, reflectance, color and thermal imaging and stable isotope techniques to assess drought tolerance related traits, the application of the partial root-zone drying technique to improve efficiency of water supply and the exploitation of stressful memory to enhance hardiness.

  4. 40 CFR 180.32 - Procedure for modifying and revoking tolerances or exemptions from tolerances.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Procedure for modifying and revoking... FOOD Procedural Regulations § 180.32 Procedure for modifying and revoking tolerances or exemptions from... modifying or revoking a tolerance for a pesticide chemical residue on raw agricultural commodities...

  5. Education for Toleration in an Era of Zero Tolerance School Policies: A Deweyan Analysis

    Science.gov (United States)

    Rice, Suzanne

    2009-01-01

    Americans in U.S. Society find themselves at a historical juncture where schools are implementing zero tolerance policies and--at the same time--also trying to promote tolerance, typically across differences such as race, class, culture, ability, and religion. Both these efforts respond to deeply held and serious concerns. But depending on the…

  6. Genetic Approaches to Develop Salt Tolerant Germplasm

    KAUST Repository

    Tester, Mark A.

    2015-08-19

    Forty percent of the world\\'s food is produced under irrigation, and this is directly threatened by over-exploitation and changes in the global environment. One way to address this threat is to develop systems for increasing our ability to use lower quality water, in particular saline water. Low cost partial desalination of brackish water, use of saline water for cooling and increases in the salinity tolerance of crops can all contribute to the development of this new agricultural system. In this talk, the focus will be on the use of forward genetic approaches for discovery of genes related to salinity tolerance in barley and tomatoes. Rather than studying salinity tolerance as a trait in itself, we dissect salinity tolerance into a series of components that are hypothesised to contribute to overall salinity tolerance (following the paradigm of Munns & Tester, 2008). For example, one significant component of tolerance of most crop plants to moderate soil salinity is due to the ability to maintain low concentrations of Na+ in the leaves, and much analysis of this aspect has been done (e.g. Roy et al., 2013, 2014). A major site for the control of shoot Na+ accumulation is at the plasma membrane of the mature stele of the root. Alleles of HKT, a major gene underlying this transport process have been characterized and, in work led by Dr Rana Munns (CSIRO), have now been introgressed into commercial durum wheat and led to significantly increased yields in saline field conditions (Munns et al., 2012). The genotyping of mapping populations is now highly efficient. However, the ability to quantitatively phenotype these populations is now commonly limiting forward progress in plant science. The increasing power of digital imaging and computational technologies offers the opportunity to relieve this phenotyping bottleneck. The Plant Accelerator is a 4500m2 growth facility that provides non-destructive phenotyping of large populations of plants (http

  7. Restoring immune tolerance in neuromyelitis optica

    Science.gov (United States)

    Bar-Or, Amit; Steinman, Larry; Behne, Jacinta M.; Benitez-Ribas, Daniel; Chin, Peter S.; Clare-Salzler, Michael; Healey, Donald; Kim, James I.; Kranz, David M.; Lutterotti, Andreas; Martin, Roland; Schippling, Sven; Villoslada, Pablo; Wei, Cheng-Hong; Weiner, Howard L.; Zamvil, Scott S.; Yeaman, Michael R.

    2016-01-01

    Neuromyelitis optica spectrum disorder (NMO/SD) and its clinical variants have at their core the loss of immune tolerance to aquaporin-4 and perhaps other autoantigens. The characteristic phenotype is disruption of astrocyte function and demyelination of spinal cord, optic nerves, and particular brain regions. In this second of a 2-part article, we present further perspectives regarding the pathogenesis of NMO/SD and how this disease might be amenable to emerging technologies aimed at restoring immune tolerance to disease-implicated self-antigens. NMO/SD appears to be particularly well-suited for these strategies since aquaporin-4 has already been identified as the dominant autoantigen. The recent technical advances in reintroducing immune tolerance in experimental models of disease as well as in humans should encourage quantum leaps in this area that may prove productive for novel therapy. In this part of the article series, the potential for regulatory T and B cells is brought into focus, as are new approaches to oral tolerization. Finally, a roadmap is provided to help identify potential issues in clinical development and guide applications in tolerization therapy to solving NMO/SD through the use of emerging technologies. Each of these perspectives is intended to shine new light on potential cures for NMO/SD and other autoimmune diseases, while sparing normal host defense mechanisms. PMID:27648464

  8. How some T cells escape tolerance induction.

    Science.gov (United States)

    Gammon, G; Sercarz, E

    1989-11-01

    A feature common to many animal models of autoimmune disease, for example, experimental allergic encephalomyelitis, experimental autoimmune myasthenia gravis and collagen-induced arthritis, is the presence of self-reactive T cells in healthy animals, which are activated to produce disease by immunization with exogenous antigen. It is unclear why these T cells are not deleted during ontogeny in the thymus and, having escaped tolerance induction, why they are not spontaneously activated by self-antigen. To investigate these questions, we have examined an experimental model in which mice are tolerant to an antigen despite the presence of antigen-reactive T cells. We find that the T cells that escape tolerance induction are specific for minor determinants on the antigen. We propose that these T cells evade tolerance induction because some minor determinants are only available in relatively low amounts after in vivo processing of the whole antigen. For the same reason, these T cells are not normally activated but can be stimulated under special circumstances to circumvent tolerance. PMID:2478888

  9. Possible new roles for tolerable risk mediators

    International Nuclear Information System (INIS)

    In his report on the Sizewell B Inquiry, the Inspector, Sir Frank Layfield, Q.C. introduced the term ''tolerable risk''. He regarded this as a better concept than the much abused and mis-interpreted phrase ''acceptable risk''. The application of tolerable risk implies that, even after regulation and incorporation of appropriate design safety criteria, there will always be a residual risk over which elements of the public will remain uneasy. They may tolerate, but they do not accept. They only tolerate because they have come to trust the process by which safety is assessed and delivered. This interpretation also implies that no safety target, the central theme of this meeting, should ever be regarded as stable or final. Such targets should continually be argued about and subject to regular searching review. Above all, such targets need to be re-justified to a doubting public so that they can be assured that the safety delivery process, namely the principles and management methods to ensure safety levels are actually met, is accountable and open for them to inspect. Thus the ''tolerable zone'' of nuclear plant safety is the product of procedures not simply assessments. These procedures need to be robust and adaptable. They need to be able to incorporate diversity of viewpoints and have a capacity to enable all who are involved to learn from each other's viewpoints and experience. In short the safety determination process needs to be more participatory and creative. (author)

  10. Role of Proteomics in Crop Stress Tolerance.

    Science.gov (United States)

    Ahmad, Parvaiz; Abdel Latef, Arafat A H; Rasool, Saiema; Akram, Nudrat A; Ashraf, Muhammad; Gucel, Salih

    2016-01-01

    Plants often experience various biotic and abiotic stresses during their life cycle. The abiotic stresses include mainly drought, salt, temperature (low/high), flooding and nutritional deficiency/excess which hamper crop growth and yield to a great extent. In view of a projection 50% of the crop loss is attributable to abiotic stresses. However, abiotic stresses cause a myriad of changes in physiological, molecular and biochemical processes operating in plants. It is now widely reported that several proteins respond to these stresses at pre- and post-transcriptional and translational levels. By knowing the role of these stress inducible proteins, it would be easy to comprehensively expound the processes of stress tolerance in plants. The proteomics study offers a new approach to discover proteins and pathways associated with crop physiological and stress responses. Thus, studying the plants at proteomic levels could help understand the pathways involved in stress tolerance. Furthermore, improving the understanding of the identified key metabolic proteins involved in tolerance can be implemented into biotechnological applications, regarding recombinant/transgenic formation. Additionally, the investigation of identified metabolic processes ultimately supports the development of antistress strategies. In this review, we discussed the role of proteomics in crop stress tolerance. We also discussed different abiotic stresses and their effects on plants, particularly with reference to stress-induced expression of proteins, and how proteomics could act as vital biotechnological tools for improving stress tolerance in plants. PMID:27660631

  11. GRID COMPUTING AND FAULT TOLERANCE APPROACH

    Directory of Open Access Journals (Sweden)

    Pankaj Gupta,

    2011-10-01

    Full Text Available Grid computing is a means of allocating the computational power of alarge number of computers to complex difficult computation orproblem. Grid computing is a distributed computing paradigm thatdiffers from traditional distributed computing in that it is aimed toward large scale systems that even span organizational boundaries. This paper proposes a method to achieve maximum fault tolerance in the Grid environment system by using Reliability consideration by using Replication approach and Check-point approach. Fault tolerance is an important property for large scale computational grid systems, where geographically distributed nodes co-operate to execute a task. In order to achieve high level of reliability and availability, the grid infrastructure should be a foolproof fault tolerant. Since the failure of resources affects job execution fatally, fault tolerance service is essential to satisfy QOS requirement in grid computing. Commonly utilized techniques for providing fault tolerance are job check pointing and replication. Both techniques mitigate the amount of work lost due to changing system availability but can introduce significant runtime overhead. The latter largely depends on the length of check pointing interval and the chosen number of replicas, respectively. In case of complex scientific workflows where tasks can execute in well defined order reliability is another biggest challenge because of the unreliable nature of the grid resources.

  12. Selection of clc, cba, and fcb chlorobenzoate-catabolic genotypes from groundwater and surface waters adjacent to the Hyde park, Niagara Falls, chemical landfill.

    Science.gov (United States)

    Peel, M C; Wyndham, R C

    1999-04-01

    The frequency of isolation of three nonhomologous chlorobenzoate catabolic genotypes (clc, cba, and fcb) was determined for 464 isolates from freshwater sediments and groundwater in the vicinity of the Hyde Park industrial landfill site in the Niagara watershed. Samples were collected from both contaminated and noncontaminated sites during spring, summer, and fall and enriched at 4, 22, or 32 degrees C with micromolar to millimolar concentrations of chlorobenzoates and 3-chlorobiphenyl (M. C. Peel and R. C. Wyndham, Microb. Ecol: 33:59-68, 1997). Hybridization at moderate stringency to restriction-digested genomic DNA with DNA probes revealed the chlorocatechol 1,2-dioxygenase operon (clcABD), the 3-chlorobenzoate 3,4-(4,5)-dioxygenase operon (cbaABC), and the 4-chlorobenzoate dehalogenase (fcbB) gene in isolates enriched from all contaminated sites in the vicinity of the industrial landfill. Nevertheless, the known genes were found in less than 10% of the isolates from the contaminated sites, indicating a high level of genetic diversity in the microbial community. The known genotypes were not enriched from the noncontaminated control sites nearby. The clc, cba, and fcb isolates were distributed across five phenotypically distinct groups based on Biolog carbon source utilization, with the breadth of the host range decreasing in the order clc > cba > fcb. Restriction fragment length polymorphism (RFLP) patterns showed that the cba genes were conserved in all isolates whereas the clc and fcb genes exhibited variation in RFLP patterns. These observations are consistent with the recent spread of the cba genes by horizontal transfer as part of transposon Tn5271 in response to contaminant exposure at Hyde Park. Consistent with this hypothesis, IS1071, the flanking element in Tn5271, was found in all isolates that carried the cba genes. Interestingly, IS1071 was also found in a high proportion of isolates from Hyde Park carrying the clc and fcb genes, as well as in type

  13. Catabolism of Branched Chain Amino Acids Contributes Significantly to Synthesis of Odd-Chain and Even-Chain Fatty Acids in 3T3-L1 Adipocytes.

    Directory of Open Access Journals (Sweden)

    Scott B Crown

    Full Text Available The branched chain amino acids (BCAA valine, leucine and isoleucine have been implicated in a number of diseases including obesity, insulin resistance, and type 2 diabetes mellitus, although the mechanisms are still poorly understood. Adipose tissue plays an important role in BCAA homeostasis by actively metabolizing circulating BCAA. In this work, we have investigated the link between BCAA catabolism and fatty acid synthesis in 3T3-L1 adipocytes using parallel 13C-labeling experiments, mass spectrometry and model-based isotopomer data analysis. Specifically, we performed parallel labeling experiments with four fully 13C-labeled tracers, [U-13C]valine, [U-13C]leucine, [U-13C]isoleucine and [U-13C]glutamine. We measured mass isotopomer distributions of fatty acids and intracellular metabolites by GC-MS and analyzed the data using the isotopomer spectral analysis (ISA framework. We demonstrate that 3T3-L1 adipocytes accumulate significant amounts of even chain length (C14:0, C16:0 and C18:0 and odd chain length (C15:0 and C17:0 fatty acids under standard cell culture conditions. Using a novel GC-MS method, we demonstrate that propionyl-CoA acts as the primer on fatty acid synthase for the production of odd chain fatty acids. BCAA contributed significantly to the production of all fatty acids. Leucine and isoleucine contributed at least 25% to lipogenic acetyl-CoA pool, and valine and isoleucine contributed 100% to lipogenic propionyl-CoA pool. Our results further suggest that low activity of methylmalonyl-CoA mutase and mass action kinetics of propionyl-CoA on fatty acid synthase result in high rates of odd chain fatty acid synthesis in 3T3-L1 cells. Overall, this work provides important new insights into the connection between BCAA catabolism and fatty acid synthesis in adipocytes and underscores the high capacity of adipocytes for metabolizing BCAA.

  14. Catabolism of Branched Chain Amino Acids Contributes Significantly to Synthesis of Odd-Chain and Even-Chain Fatty Acids in 3T3-L1 Adipocytes.

    Science.gov (United States)

    Crown, Scott B; Marze, Nicholas; Antoniewicz, Maciek R

    2015-01-01

    The branched chain amino acids (BCAA) valine, leucine and isoleucine have been implicated in a number of diseases including obesity, insulin resistance, and type 2 diabetes mellitus, although the mechanisms are still poorly understood. Adipose tissue plays an important role in BCAA homeostasis by actively metabolizing circulating BCAA. In this work, we have investigated the link between BCAA catabolism and fatty acid synthesis in 3T3-L1 adipocytes using parallel 13C-labeling experiments, mass spectrometry and model-based isotopomer data analysis. Specifically, we performed parallel labeling experiments with four fully 13C-labeled tracers, [U-13C]valine, [U-13C]leucine, [U-13C]isoleucine and [U-13C]glutamine. We measured mass isotopomer distributions of fatty acids and intracellular metabolites by GC-MS and analyzed the data using the isotopomer spectral analysis (ISA) framework. We demonstrate that 3T3-L1 adipocytes accumulate significant amounts of even chain length (C14:0, C16:0 and C18:0) and odd chain length (C15:0 and C17:0) fatty acids under standard cell culture conditions. Using a novel GC-MS method, we demonstrate that propionyl-CoA acts as the primer on fatty acid synthase for the production of odd chain fatty acids. BCAA contributed significantly to the production of all fatty acids. Leucine and isoleucine contributed at least 25% to lipogenic acetyl-CoA pool, and valine and isoleucine contributed 100% to lipogenic propionyl-CoA pool. Our results further suggest that low activity of methylmalonyl-CoA mutase and mass action kinetics of propionyl-CoA on fatty acid synthase result in high rates of odd chain fatty acid synthesis in 3T3-L1 cells. Overall, this work provides important new insights into the connection between BCAA catabolism and fatty acid synthesis in adipocytes and underscores the high capacity of adipocytes for metabolizing BCAA.

  15. Genomic and functional analyses of the 2-aminophenol catabolic pathway and partial conversion of its substrate into picolinic acid in Burkholderia xenovorans LB400.

    Directory of Open Access Journals (Sweden)

    Bernardita Chirino

    Full Text Available 2-aminophenol (2-AP is a toxic nitrogen-containing aromatic pollutant. Burkholderia xenovorans LB400 possess an amn gene cluster that encodes the 2-AP catabolic pathway. In this report, the functionality of the 2-aminophenol pathway of B. xenovorans strain LB400 was analyzed. The amnRJBACDFEHG cluster located at chromosome 1 encodes the enzymes for the degradation of 2-aminophenol. The absence of habA and habB genes in LB400 genome correlates with its no growth on nitrobenzene. RT-PCR analyses in strain LB400 showed the co-expression of amnJB, amnBAC, amnACD, amnDFE and amnEHG genes, suggesting that the amn cluster is an operon. RT-qPCR showed that the amnB gene expression was highly induced by 2-AP, whereas a basal constitutive expression was observed in glucose, indicating that these amn genes are regulated. We propose that the predicted MarR-type transcriptional regulator encoded by the amnR gene acts as repressor of the amn gene cluster using a MarR-type regulatory binding sequence. This report showed that LB400 resting cells degrade completely 2-AP. The amn gene cluster from strain LB400 is highly identical to the amn gene cluster from P. knackmussi strain B13, which could not grow on 2-AP. However, we demonstrate that B. xenovorans LB400 is able to grow using 2-AP as sole nitrogen source and glucose as sole carbon source. An amnBA (- mutant of strain LB400 was unable to grow with 2-AP as nitrogen source and glucose as carbon source and to degrade 2-AP. This study showed that during LB400 growth on 2-AP this substrate was partially converted into picolinic acid (PA, a well-known antibiotic. The addition of PA at lag or mid-exponential phase inhibited LB400 growth. The MIC of PA for strain LB400 is 2 mM. Overall, these results demonstrate that B. xenovorans strain LB400 posses a functional 2-AP catabolic central pathway, which could lead to the production of picolinic acid.

  16. Catabolism of Branched Chain Amino Acids Contributes Significantly to Synthesis of Odd-Chain and Even-Chain Fatty Acids in 3T3-L1 Adipocytes.

    Science.gov (United States)

    Crown, Scott B; Marze, Nicholas; Antoniewicz, Maciek R

    2015-01-01

    The branched chain amino acids (BCAA) valine, leucine and isoleucine have been implicated in a number of diseases including obesity, insulin resistance, and type 2 diabetes mellitus, although the mechanisms are still poorly understood. Adipose tissue plays an important role in BCAA homeostasis by actively metabolizing circulating BCAA. In this work, we have investigated the link between BCAA catabolism and fatty acid synthesis in 3T3-L1 adipocytes using parallel 13C-labeling experiments, mass spectrometry and model-based isotopomer data analysis. Specifically, we performed parallel labeling experiments with four fully 13C-labeled tracers, [U-13C]valine, [U-13C]leucine, [U-13C]isoleucine and [U-13C]glutamine. We measured mass isotopomer distributions of fatty acids and intracellular metabolites by GC-MS and analyzed the data using the isotopomer spectral analysis (ISA) framework. We demonstrate that 3T3-L1 adipocytes accumulate significant amounts of even chain length (C14:0, C16:0 and C18:0) and odd chain length (C15:0 and C17:0) fatty acids under standard cell culture conditions. Using a novel GC-MS method, we demonstrate that propionyl-CoA acts as the primer on fatty acid synthase for the production of odd chain fatty acids. BCAA contributed significantly to the production of all fatty acids. Leucine and isoleucine contributed at least 25% to lipogenic acetyl-CoA pool, and valine and isoleucine contributed 100% to lipogenic propionyl-CoA pool. Our results further suggest that low activity of methylmalonyl-CoA mutase and mass action kinetics of propionyl-CoA on fatty acid synthase result in high rates of odd chain fatty acid synthesis in 3T3-L1 cells. Overall, this work provides important new insights into the connection between BCAA catabolism and fatty acid synthesis in adipocytes and underscores the high capacity of adipocytes for metabolizing BCAA. PMID:26710334

  17. Geochemically induced shifts in catabolic energy yields explain past ecological changes of diffuse vents in the East Pacific Rise 9°50'N area

    Directory of Open Access Journals (Sweden)

    Hentscher Michael

    2012-01-01

    Full Text Available Abstract The East Pacific Rise (EPR at 9°50'N hosts a hydrothermal vent field (Bio9 where the change in fluid chemistry is believed to have caused the demise of a tubeworm colony. We test this hypothesis and expand on it by providing a thermodynamic perspective in calculating free energies for a range of catabolic reactions from published compositional data. The energy calculations show that there was excess H2S in the fluids and that oxygen was the limiting reactant from 1991 to 1997. Energy levels are generally high, although they declined in that time span. In 1997, sulfide availability decreased substantially and H2S was the limiting reactant. Energy availability dropped by a factor of 10 to 20 from what it had been between 1991 and 1995. The perishing of the tubeworm colonies began in 1995 and coincided with the timing of energy decrease for sulfide oxidizers. In the same time interval, energy availability for iron oxidizers increased by a factor of 6 to 8, and, in 1997, there was 25 times more energy per transferred electron in iron oxidation than in sulfide oxidation. This change coincides with a massive spread of red staining (putative colonization by Fe-oxidizing bacteria between 1995 and 1997. For a different cluster of vents from the EPR 9°50'N area (Tube Worm Pillar, thermodynamic modeling is used to examine changes in subseafloor catabolic metabolism between 1992 and 2000. These reactions are deduced from deviations in diffuse fluid compositions from conservative behavior of redox-sensitive species. We show that hydrogen is significantly reduced relative to values expected from conservative mixing. While H2 concentrations of the hydrothermal endmember fluids were constant between 1992 and 1995, the affinities for hydrogenotrophic reactions in the diffuse fluids decreased by a factor of 15 and then remained constant between 1995 and 2000. Previously, these fluids have been shown to support subseafloor methanogenesis. Our

  18. Benefits of tolerance in public goods games

    CERN Document Server

    Szolnoki, Attila

    2015-01-01

    Leaving the joint enterprise when defection is unveiled is always a viable option to avoid being exploited. Although loner strategy helps the population not to be trapped into the tragedy of the commons state, it could offer only a modest income for non-participants. In this paper we demonstrate that showing some tolerance toward defectors could not only save cooperation in harsh environments, but in fact results in a surprisingly high average payoff for group members in public goods games. Phase diagrams and the underlying spatial patterns reveal the high complexity of evolving states where cyclic dominant strategies or two-strategy alliances can characterize the final state of evolution. We identify microscopic mechanisms which are responsible for the superiority of global solutions containing tolerant players. This phenomenon is robust and can be observed both in well-mixed and in structured populations highlighting the importance of tolerance in our everyday life.

  19. Engineering antigen-specific immunological tolerance.

    Energy Technology Data Exchange (ETDEWEB)

    Kontos, Stephan; Grimm, Alizee J.; Hubbell, Jeffrey A.

    2015-05-01

    Unwanted immunity develops in response to many protein drugs, in autoimmunity, in allergy, and in transplantation. Approaches to induce immunological tolerance aim to either prevent these responses or reverse them after they have already taken place. We present here recent developments in approaches, based on engineered peptides, proteins and biomaterials, that harness mechanisms of peripheral tolerance both prophylactically and therapeutically to induce antigenspecific immunological tolerance. These mechanisms are based on responses of B and T lymphocytes to other cells in their immune environment that result in cellular deletion or ignorance to particular antigens, or in development of active immune regulatory responses. Several of these approaches are moving toward clinical development, and some are already in early stages of clinical testing.

  20. State Toleration, Religious Recognition and Equality

    DEFF Research Database (Denmark)

    Lægaard, Sune

    2013-01-01

    . I first note that this purely conceptual argument for going ‘beyond toleration’ is inconclusive, since it is far from clear whether, and, if so, how, the classic notion of toleration applies to institutions like the state. States are non-personal institutions regulating society, so...... it is not immediately clear in what, if any, sense they can be the subjects of the attitudes of disapproval required for toleration, and it is also not obvious that non-interference has the same meaning in relation to a political authority regulating society through general rules as in relation to individual conduct. I......In debates about multiculturalism, it is widely claimed that ‘toleration is not enough’ and that we need to go ‘beyond toleration’ to some form of politics of recognition in order to satisfactorily address contemporary forms of cultural diversity (e.g. the presence in Europe of Muslim minorities...

  1. Variation Tolerant On-Chip Interconnects

    CERN Document Server

    Nigussie, Ethiopia Enideg

    2012-01-01

    This book presents design techniques, analysis and implementation of high performance and power efficient, variation tolerant on-chip interconnects.  Given the design paradigm shift to multi-core, interconnect-centric designs and the increase in sources of variability and their impact in sub-100nm technologies, this book will be an invaluable reference for anyone concerned with the design of next generation, high-performance electronics systems. Provides comprehensive, circuit-level explanation of high-performance, energy-efficient, variation-tolerant on-chip interconnect; Describes design techniques to mitigate problems caused by variation; Includes techniques for design and implementation of self-timed on-chip interconnect, delay variation insensitive communication protocols, high speed signaling techniques and circuits, bit-width independent completion detection and process, voltage and temperature variation tolerance.                          

  2. Benefits of tolerance in public goods games

    Science.gov (United States)

    Szolnoki, Attila; Chen, Xiaojie

    2015-10-01

    Leaving the joint enterprise when defection is unveiled is always a viable option to avoid being exploited. Although loner strategy helps the population not to be trapped into the tragedy of the commons state, it could offer only a modest income for nonparticipants. In this paper we demonstrate that showing some tolerance toward defectors could not only save cooperation in harsh environments but in fact results in a surprisingly high average payoff for group members in public goods games. Phase diagrams and the underlying spatial patterns reveal the high complexity of evolving states where cyclic dominant strategies or two-strategy alliances can characterize the final state of evolution. We identify microscopic mechanisms which are responsible for the superiority of global solutions containing tolerant players. This phenomenon is robust and can be observed both in well-mixed and in structured populations highlighting the importance of tolerance in our everyday life.

  3. Reduced Multiplicative Tolerance Ranking and Applications

    Directory of Open Access Journals (Sweden)

    Sebastian Sitarz

    2013-02-01

    Full Text Available In this paper a reduced multiplicative tolerance - a measure of sensitivity analysis in multi-objective linear programming (MOLP is presented. By using this new measure a method for ranking the set of efficient extreme solutions is proposed. The idea is to rank these solutions by values of the reduced tolerance. This approach can be applied to many MOLP problems, where sensitivity analysis is important for a decision maker. In the paper, applications of the presented methodology are shown in the market model and the transportation problem.

  4. Aluminum tolerance association mapping in triticale

    Directory of Open Access Journals (Sweden)

    Niedziela Agnieszka

    2012-02-01

    Full Text Available Abstract Background Crop production practices and industrialization processes result in increasing acidification of arable soils. At lower pH levels (below 5.0, aluminum (Al remains in a cationic form that is toxic to plants, reducing growth and yield. The effect of aluminum on agronomic performance is particularly important in cereals like wheat, which has promoted the development of programs directed towards selection of tolerant forms. Even in intermediately tolerant cereals (i.e., triticale, the decrease in yield may be significant. In triticale, Al tolerance seems to be influenced by both wheat and rye genomes. However, little is known about the precise chromosomal location of tolerance-related genes, and whether wheat or rye genomes are crucial for the expression of that trait in the hybrid. Results A mapping population consisting of 232 advanced breeding triticale forms was developed and phenotyped for Al tolerance using physiological tests. AFLP, SSR and DArT marker platforms were applied to obtain a sufficiently large set of molecular markers (over 3000. Associations between the markers and the trait were tested using General (GLM and Multiple (MLM Linear Models, as well as the Statistical Machine Learning (SML approach. The chromosomal locations of candidate markers were verified based on known assignments of SSRs and DArTs or by using genetic maps of rye and triticale. Two candidate markers on chromosome 3R and 9, 15 and 11 on chromosomes 4R, 6R and 7R, respectively, were identified. The r2 values were between 0.066 and 0.220 in most cases, indicating a good fit of the data, with better results obtained with the GML than the MLM approach. Several QTLs on rye chromosomes appeared to be involved in the phenotypic expression of the trait, suggesting that rye genome factors are predominantly responsible for Al tolerance in triticale. Conclusions The Diversity Arrays Technology was applied successfully to association mapping studies

  5. Cognitive Ability, Principled Reasoning and Political Tolerance

    DEFF Research Database (Denmark)

    Hebbelstrup Rye Rasmussen, Stig; Nørgaard, Asbjørn Sonne

    and ‘principled reasoning’ influence political tolerance judgments. The extent to which cognitive ability plays a role has not been entertained even if the capacity to think abstractly, comprehend complex ideas and apply abstract ideas to concrete situations is inherent to both principled tolerance judgment...... of threat into account. Also, a survey experiment shows that the most cognitively able are more willing to extend civil liberties to extreme groups (Neo Nazis) as compared to non-extreme groups (Far Right/Christian Fundamentalists) than the less cognitively able. In the conclusion we discuss the theoretical...

  6. Transplantation tolerance--a historical introduction.

    Science.gov (United States)

    Brent, Leslie

    2016-03-01

    The concept of immunological tolerance--the state of specific unresponsiveness to allogeneic transplants and all manner of other antigens--began in 1945 with R.D. Owen's finding that cattle dizygotic twins are red blood cell chimeras. Peter Medawar's group in Birmingham likewise discovered, quite independently, that cattle dizygotic twins accept each others' skin grafts. These findings, together with F.M. Burnet and F. Fenner's speculations in 1949, prompted Medawar, together with R.E. Billingham and L. Brent, now at University College London, to embark on an extensive series of experiments that established immunological tolerance as a fundamental phenomenon, forming a new branch of immunology. PMID:26694700

  7. Low phosphorus tolerance mechanisms: phosphorus recycling and photosynthate partitioning in the tropical forage grass, Brachiaria hybrid cultivar Mulato compared with rice.

    Science.gov (United States)

    Nanamori, Masahito; Shinano, Takuro; Wasaki, Jun; Yamamura, Takuya; Rao, Idupulapati M; Osaki, Mitsuru

    2004-04-01

    The Brachiaria hybrid cv. Mulato is well adapted to low-fertility acid soils deficient in phosphorus (P). To study the grassy forage's mechanisms for tolerating low P supply, we compared it with rice (Oryza sativa L. cv. Kitaake). We tested by using nutrient solution cultures, and quantified the effects of P deficiency on the enzymatic activities of phosphohydrolases and on carbon metabolism in P-deficient leaves. While P deficiency markedly induced activity of phosphohydrolases in both crops, the ratio of inorganic phosphorus to total P in leaves was greater in Brachiaria hybrid. Phosphorus deficiency in leaves also markedly influenced the partitioning of carbon in both crops. In the Brachiaria hybrid, compared with rice, the smaller proportion of (14)C partitioned into sugars and the larger proportion into amino acids and organic acids in leaves coincided with decreased levels of sucrose and starch. Hence, in P-deficient leaves of the Brachiaria hybrid, triose-P was metabolized into amino acids or organic acids. Results thus indicate that the Brachiaria hybrid, compared with rice, tolerates low P supply to leaves by enhancing sugar catabolism and by inducing the activity of several phosphohydrolases. This apparently causes rapid P turnover and enables the Brachiaria hybrid to use P more efficiently. PMID:15111721

  8. Enhanced tolerance and remediation to mixed contaminates of PCBs and 2,4-DCP by transgenic alfalfa plants expressing the 2,3-dihydroxybiphenyl-1,2-dioxygenase.

    Science.gov (United States)

    Wang, Yan; Ren, Hejun; Pan, Hongyu; Liu, Jinliang; Zhang, Lanying

    2015-04-01

    Polychlorinated biphenyls (PCBs) and 2,4-dichlorophenol (2,4-DCP) generally led to mixed contamination of soils as a result of commercial and agricultural activities. Their accumulation in the environment poses great risks to human and animal health. Therefore, the effective strategies for disposal of these pollutants are urgently needed. In this study, genetic engineering to enhance PCBs/2,4-DCP phytoremediation is a focus. We cloned the 2,3-dihydroxybiphenyl-1,2-dioxygenase (BphC.B) from a soil metagenomic library, which is the key enzyme of aerobic catabolism of a variety of aromatic compounds, and then it was expressed in alfalfa driven by CaMV 35S promoter using Agrobacterium-mediated transformation. Transgenic line BB11 was selected out through PCR, Western blot analysis and enzyme activity assays. Its disposal and tolerance to both PCBs and 2,4-DCP were examined. The tolerance capability of transgenic line BB11 towards complex contaminants of PCBs/2,4-DCP significantly increased compared with non-transgenic plants. Strong dissipation of PCBs and high removal efficiency of 2,4-DCP were exhibited in a short time. It was confirmed expressing BphC.B would be a feasible strategy to help achieving phytoremediation in mixed contaminated soils with PCBs and 2,4-DCP.

  9. Relationships between PSII-independent hydrogen bioproduction and starch metabolism as evidenced from isolation of starch catabolism mutants in the green alga Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Chochois, Vincent; Constans, Laure; Beyly, Audrey; Soliveres, Melanie; Peltier, Gilles; Cournac, Laurent [CEA, DSV, IBEB, Laboratoire de Bioenergetique et Biotechnologie des Bacteries and Microalgues, Saint Paul Lez Durance, F-13108 (France); CNRS, UMR Biologie Vegetale and Microbiologie Environnementales, Saint Paul lez Durance, F-13108 (France); Aix-Marseille Universite, Saint Paul lez Durance, F-13108 (France); Dauvillee, David; Ball, Steven [Univ Lille Nord de France, F-59000 Lille (France); USTL, UGSF, F-59650 Villeneuve d' Ascq (France); CNRS, UMR 8576, F-59650 Villeneuve d' Ascq (France)

    2010-10-15

    Sulfur deprivation, which is considered as an efficient way to trigger long-term hydrogen photoproduction in unicellular green algae has two major effects: a decrease in PSII which allows anaerobiosis to be reached and carbohydrate (starch) storage. Starch metabolism has been proposed as one of the major factors of hydrogen production, particularly during the PSII-independent (or indirect) pathway. While starch biosynthesis has been characterized in the green alga Chlamydomonas reinhardtii, little remains known concerning starch degradation. In order to gain a better understanding of starch catabolism pathways and identify those steps likely to limit the starch-dependent hydrogen production, we have designed a genetic screening procedure aimed at isolating mutants of the green alga C. reinhardtii affected in starch mobilization. Using two different screening protocols, the first one based on aerobic starch degradation in the dark and the second one on anaerobic starch degradation in the light, eighteen mutants were isolated among a library of 15,000 insertion mutants, eight (std1-8) with the first screen and ten (sda1-10) with the second. Most of the mutant strains isolated in this study showed a reduction or a delay in the PSII-independent hydrogen production. Further characterization of these mutants should allow the identification of molecular determinants of starch-dependent hydrogen production and supply targets for future biotechnological improvements. (author)

  10. The transcriptional activators AraR and XlnR from Aspergillus niger regulate expression of pentose catabolic and pentose phosphate pathway genes.

    Science.gov (United States)

    Battaglia, Evy; Zhou, Miaomiao; de Vries, Ronald P

    2014-09-01

    The pentose catabolic pathway (PCP) and the pentose phosphate pathway (PPP) are required for the conversion of pentose sugars in fungi and are linked via d-xylulose-5-phosphate. Previously, it was shown that the PCP is regulated by the transcriptional activators XlnR and AraR in Aspergillus niger. Here we assessed whether XlnR and AraR also regulate the PPP. Expression of two genes, rpiA and talB, was reduced in the ΔaraR/ΔxlnR strain and increased in the xylulokinase negative strain (xkiA1) on d-xylose and/or l-arabinose. Bioinformatic analysis of the 1 kb promoter regions of rpiA and talB showed the presence of putative XlnR binding sites. Combining all results in this study, it strongly suggests that these two PPP genes are under regulation of XlnR in A. niger.

  11. Comparative acute effects of l-carnitine and dl-carnitine on hepatic catabolism of l-alanine and l-glutamine in rats

    Institute of Scientific and Technical Information of China (English)

    Gisele LOPES; Vilma A F G GAZOLA; Sharize B GALENDE; Wilson ALVES-DO-PRADO; Rui CURI; Roberto B BAZOTTE

    2004-01-01

    AIM: To compare the acute effects of l-carnitine (LCT) and dl-camitine (DLC) on hepatic catabolism of l-alanine andl-glutamine in rats. METHODS: Livers from 24 h fasted and fed rats were perfused in situ. The substrates l-alanine (5 mmol/L) and l-glutamine (5 mmol/L) were employed. The gluconeogenic and ureogenic activity was measured as the difference between the rates of glucose and urea released during and before the infusion of l-glutamine or l-alanine. RESULTS: LCT (60 μmol/L) but not DLC (60 μmol/L and 120 μmol/L) increased the production of glucose and urea froml-glutamine. However, neither LCT (60 μmol/L and 120 μmol/L) nor DLC (60 μmol/L and 240 μmol/L) showed any significant effect on hepatic glucose and urea production froml-alanine.CONCLUSION: The results showed a different acute effect of LCT and DLC on the activation of hepatic gluconeogenesis and ureagenesis promoted byl-glutamine, reinforcing the idea that DLC could not replace LCT.

  12. A short period of fasting before surgery conserves basal metabolism and suppresses catabolism according to indirect calorimetry performed under general anesthesia.

    Science.gov (United States)

    Yoshimura, Shinichiro; Fujita, Yoshihito; Hirate, Hiroyuki; Kusama, Nobuyoshi; Azami, Takafumi; Sobue, Kazuya

    2015-06-01

    It is recommended that the period of fasting before elective surgery should be shortened to facilitate a rapid recovery by preventing catabolism. We examined the effects of a short period of fasting on metabolism by performing indirect calorimetry (IC) under general anesthesia. A prospective observational study involving 26 consecutive patients who underwent elective surgery and whose metabolism was evaluated using IC during anesthesia was conducted. The patients were divided into two groups, those who fasted for 10 h (group L). Oxygen consumption, the volume of carbon dioxide emissions (VCO2), the respiratory quotient (RQ), resting energy expenditure (REE), and basal energy expenditure (BEE) were compared. The REE, VCO2, and RQ of group L (17.7 ± 2.3 kcal/kg/day, 118.5 ± 20.8 ml/min, and 0.71 ± 0.12, respectively) were significantly lower than those of group S (19.7 ± 2.3 kcal/kg/day, 143.6 ± 30.9 ml/min, and 0.81 ± 0.09, respectively) (P metabolism.

  13. Evaluation of a quantitative screening method for hydrogen sulfide production by cheese-ripening microorganisms: the first step towards l-cysteine catabolism.

    Science.gov (United States)

    Lopez del Castillo Lozano, M; Tâche, R; Bonnarme, P; Landaud, S

    2007-04-01

    A practical adaptation of the methylene blue reaction for hydrogen sulfide quantification was developed to perform microbial selection. Closed plate flasks containing a zinc-agar layer above the liquid microbial culture are proposed as a trap system where the H(2)S can be retained and then quantified by the methylene blue reaction. Using this quantitative method, the ability to produce H(2)S was studied in several cheese-ripening microorganisms. Our aim was to select strains that produce the highest quantities of H(2)S as the main product of L-cysteine catabolism. Thirty seven yeast and bacteria strains were cultivated with or without L-cysteine. The separation between the growth medium and the H(2)S trapping layer displayed good performance: all the studied strains grew efficiently and only negligible loss of H(2)S was observed during culturing. The strains displayed large differences in their H(2)S production capabilities: yeast strains were greater producers of H(2)S than bacteria with production strain-related in both cases. Furthermore, the relationship between H(2)S production and L-cysteine consumption was analyzed, which made it possible for us to select microorganisms with high capacity in L-cysteine degradation. The production of volatile sulfur compounds was also studied and the possible effect of culture pH and metabolic differences between strains are discussed.

  14. Comparative transcriptional profiling of melatonin synthesis and catabolic genes indicates the possible role of melatonin in developmental and stress responses in rice

    Directory of Open Access Journals (Sweden)

    Yunxie eWei

    2016-05-01

    Full Text Available As a well-known animal hormone, melatonin (N-acetyl-5-methoxytryptamine is also involved in multiple plant biological processes, especially in various stress responses. Rice is one of the most important crops, and melatonin is taken in by many people everyday from rice. However, the transcriptional profiling of melatonin-related genes in rice is largely unknown. In this study, the expression patterns of 11 melatonin related genes in rice in different periods, tissues, in response to different treatments were synthetically analyzed using published microarray data. These results suggest that the melatonin-related genes may play important and dual roles in rice developmental stages. We highlight the commonly regulation of rice melatonin-related genes by abscisic acid (ABA, jasmonic acid (JA, various abiotic stresses and pathogen infection, indicating the possible role of these genes in multiple stress responses and underlying crosstalks of plant hormones, especially ABA and JA. Taken together, this study may provide insight into the association among melatonin biosynthesis and catabolic pathway, plant development and stress responses in rice. The profile analysis identified candidate genes for further functional characterization in circadian rhythm and specific stress responses.

  15. MICROTHREAD BASED (MTB) COARSE GRAINED FAULT TOLERANCE SUPERSCALAR PROCESSOR ARCHITECTURE

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Fault tolerance in microprocessor systems has become a popular topic of architecture research.Much work has been done at different levels to accomplish reliability against soft errors, and some fault tolerance architectures have been proposed. But little attention is paid to the thread level superscalar fault tolerance.This letter introduces microthread concept into superscalar processor fault tolerance domain, and puts forward a novel fault tolerance architecture, namely, MicroThread Based (MTB) coarse grained transient fault tolerance superscalar processor architecture, then discusses some detailed implementations.

  16. Tolerance Verification of Micro and Nano Structures on Polycarbonate Substrates

    DEFF Research Database (Denmark)

    Gasparin, Stefania; Tosello, Guido; Hansen, Hans Nørgaard

    2010-01-01

    Micro and nano structures are an increasing challenge in terms of tolerance verification and process quality control: smaller dimensions led to a smaller tolerance zone to be evaluated. This paper focuses on the verification of CD, DVD and HD-DVD nanoscale features. CD tolerance features are defi......Micro and nano structures are an increasing challenge in terms of tolerance verification and process quality control: smaller dimensions led to a smaller tolerance zone to be evaluated. This paper focuses on the verification of CD, DVD and HD-DVD nanoscale features. CD tolerance features...

  17. Tolerant Mechanism and Chromosome Location of Gene Controlling Sprouting Tolerance in Aegilops Tauschii Cosson

    Institute of Scientific and Technical Information of China (English)

    LAN Xiu-jin; ZHENG You-liang; LIU Deng-cai; WEI Yu-ming; YAN Ze-hong; ZHOU Yong-hong

    2002-01-01

    An artificial amphiploid RSP (2n = 42, AABBDD) between tetraploid landrace Ailanmai(Triticum turgidum L., 2n= 28, AABB) and Aegilops tauschii (DD, 2n = 14) expressed high tolerance to preharvest sprouting which derived from Ae. tauschii. Tolerance to preharvest sprouting of RSP was examined by four ways in six varying periods after anthesis. The germination percentages of preharvest intact spikes were only 6.06 % in its high peak period of germination. Its tolerance was mainly decided by the seed a recessive trait which was controlled by one gene, located on chromosome 2D.

  18. Investigating the physiological roles of low-efficiency D-mannonate and D-gluconate dehydratases in the enolase superfamily: pathways for the catabolism of L-gulonate and L-idonate.

    Science.gov (United States)

    Wichelecki, Daniel J; Vendiola, Jean Alyxa Ferolin; Jones, Amy M; Al-Obaidi, Nawar; Almo, Steven C; Gerlt, John A

    2014-09-01

    The sequence/function space in the D-mannonate dehydratase subgroup (ManD) of the enolase superfamily was investigated to determine how enzymatic function diverges as sequence identity decreases [Wichelecki, D. J., et al. (2014) Biochemistry 53, 2722-2731]. That study revealed that members of the ManD subgroup vary in substrate specificity and catalytic efficiency: high-efficiency (kcat/KM = 10(3)-10(4) M(-1) s(-1)) for dehydration of D-mannonate, low-efficiency (kcat/KM = 10-10(2) M(-1) s(-1)) for dehydration of D-mannonate and/or D-gluconate, and no activity. Characterization of high-efficiency members revealed that these are ManDs in the D-glucuronate catabolic pathway {analogues of UxuA [Wichelecki, D. J., et al. (2014) Biochemistry 53, 4087-4089]}. However, the genomes of organisms that encode low-efficiency members of the ManDs subgroup encode UxuAs; therefore, these must have divergent physiological functions. In this study, we investigated the physiological functions of three low-efficiency members of the ManD subgroup and identified a novel physiologically relevant pathway for L-gulonate catabolism in Chromohalobacter salexigens DSM3043 as well as cryptic pathways for L-gulonate catabolism in Escherichia coli CFT073 and L-idonate catabolism in Salmonella enterica subsp. enterica serovar Enteritidis str. P125109. However, we could not identify physiological roles for the low-efficiency members of the ManD subgroup, allowing the suggestion that these pathways may be either evolutionary relics or the starting points for new metabolic potential.

  19. 75 FR 29435 - Diquat Dibromide; Pesticide Tolerances

    Science.gov (United States)

    2010-05-26

    ... alterations) occurred at a higher dose than the dose causing maternal toxicity (mortality, clinical signs...) 305-5805. II. Summary of Petitioned-For Tolerance In the Federal Register of February 4, 2010 (75 FR... mortality and clinical signs. In a subchronic inhalation study in rats, the lung was determined to be...

  20. 77 FR 75039 - Propiconazole; Pesticide Tolerances

    Science.gov (United States)

    2012-12-19

    .... Summary of Petitioned-for Tolerance In the Federal Register of November 9, 2011 (Volume 76, FR 69690) (FRL... synthesis studies in human fibroblasts and primary rat hepatocytes, mitotic gene conversion assay and the... pretreatment with an initiator, like phenobarbital, a known liver tumor promoter. Liver enzyme...