WorldWideScience

Sample records for cat primary auditory

  1. Origin and immunolesioning of cholinergic basal forebrain innervation of cat primary auditory cortex.

    Science.gov (United States)

    Kamke, Marc R; Brown, Mel; Irvine, Dexter R F

    2005-08-01

    Numerous studies have implicated the cholinergic basal forebrain (cBF) in the modulation of auditory cortical responses. This study aimed to accurately define the sources of cBF input to primary auditory cortex (AI) and to assess the efficacy of a cholinergic immunotoxin in cat. Three anaesthetized cats received multiple injections of horseradish-peroxidase conjugated wheatgerm-agglutin into physiologically identified AI. Following one to two days survival, tetramethylbenzidine histochemistry revealed the greatest number of retrogradely labeled cells in ipsilateral putamen, globus pallidus and internal capsule, and smaller numbers in more medial nuclei of the basal forebrain (BF). Concurrent choline acetyltransferase immunohistochemistry showed that almost 80% of the retrogradely labeled cells in BF were cholinergic, with the vast majority of these cells arising from the more lateral BF nuclei identified above. In the second part of the study, unilateral intraparenchymal injections of the cholinergic immunotoxin ME20.4-SAP were made into the putamen/globus pallidus nuclei of six cats. Immuno- and histochemistry revealed a massive reduction in the number of cholinergic cells in and around the targeted area, and a corresponding reduction in the density of cholinergic fibers in auditory cortex. These results are discussed in terms of their implications for investigations of the role of the cBF in cortical plasticity.

  2. Behavioral detection of intra-cortical microstimulation in the primary and secondary auditory cortex of cats

    Directory of Open Access Journals (Sweden)

    Zhenling eZhao

    2015-04-01

    Full Text Available Although neural responses to sound stimuli have been thoroughly investigated in various areas of the auditory cortex, the results electrophysiological recordings cannot establish a causal link between neural activation and brain function. Electrical microstimulation, which can selectively perturb neural activity in specific parts of the nervous system, is an important tool for exploring the organization and function of brain circuitry. To date, the studies describing the behavioral effects of electrical stimulation have largely been conducted in the primary auditory cortex. In this study, to investigate the potential differences in the effects of electrical stimulation on different cortical areas, we measured the behavioral performance of cats in detecting intra-cortical microstimulation (ICMS delivered in the primary and secondary auditory fields (A1 and A2, respectively. After being trained to perform a Go/No-Go task cued by sounds, we found that cats could also learn to perform the task cued by ICMS; furthermore, the detection of the ICMS was similarly sensitive in A1 and A2. Presenting wideband noise together with ICMS substantially decreased the performance of cats in detecting ICMS in A1 and A2, consistent with a noise masking effect on the sensation elicited by the ICMS. In contrast, presenting ICMS with pure-tones in the spectral receptive field of the electrode-implanted cortical site reduced ICMS detection performance in A1 but not A2. Therefore, activation of A1 and A2 neurons may produce different qualities of sensation. Overall, our study revealed that ICMS-induced neural activity could be easily integrated into an animal’s behavioral decision process and had an implication for the development of cortical auditory prosthetics.

  3. Differential Modification of Cortical and Thalamic Projections to Cat Primary Auditory Cortex Following Early- and Late-Onset Deafness.

    Science.gov (United States)

    Chabot, Nicole; Butler, Blake E; Lomber, Stephen G

    2015-10-15

    Following sensory deprivation, primary somatosensory and visual cortices undergo crossmodal plasticity, which subserves the remaining modalities. However, controversy remains regarding the neuroplastic potential of primary auditory cortex (A1). To examine this, we identified cortical and thalamic projections to A1 in hearing cats and those with early- and late-onset deafness. Following early deafness, inputs from second auditory cortex (A2) are amplified, whereas the number originating in the dorsal zone (DZ) decreases. In addition, inputs from the dorsal medial geniculate nucleus (dMGN) increase, whereas those from the ventral division (vMGN) are reduced. In late-deaf cats, projections from the anterior auditory field (AAF) are amplified, whereas those from the DZ decrease. Additionally, in a subset of early- and late-deaf cats, area 17 and the lateral posterior nucleus (LP) of the visual thalamus project concurrently to A1. These results demonstrate that patterns of projections to A1 are modified following deafness, with statistically significant changes occurring within the auditory thalamus and some cortical areas. Moreover, we provide anatomical evidence for small-scale crossmodal changes in projections to A1 that differ between early- and late-onset deaf animals, suggesting that potential crossmodal activation of primary auditory cortex differs depending on the age of deafness onset.

  4. Effects of deafness and cochlear implant use on temporal response characteristics in cat primary auditory cortex.

    Science.gov (United States)

    Fallon, James B; Shepherd, Robert K; Nayagam, David A X; Wise, Andrew K; Heffer, Leon F; Landry, Thomas G; Irvine, Dexter R F

    2014-09-01

    We have previously shown that neonatal deafness of 7-13 months duration leads to loss of cochleotopy in the primary auditory cortex (AI) that can be reversed by cochlear implant use. Here we describe the effects of a similar duration of deafness and cochlear implant use on temporal processing. Specifically, we compared the temporal resolution of neurons in AI of young adult normal-hearing cats that were acutely deafened and implanted immediately prior to recording with that in three groups of neonatally deafened cats. One group of neonatally deafened cats received no chronic stimulation. The other two groups received up to 8 months of either low- or high-rate (50 or 500 pulses per second per electrode, respectively) stimulation from a clinical cochlear implant, initiated at 10 weeks of age. Deafness of 7-13 months duration had no effect on the duration of post-onset response suppression, latency, latency jitter, or the stimulus repetition rate at which units responded maximally (best repetition rate), but resulted in a statistically significant reduction in the ability of units to respond to every stimulus in a train (maximum following rate). None of the temporal response characteristics of the low-rate group differed from those in acutely deafened controls. In contrast, high-rate stimulation had diverse effects: it resulted in decreased suppression duration, longer latency and greater jitter relative to all other groups, and an increase in best repetition rate and cut-off rate relative to acutely deafened controls. The minimal effects of moderate-duration deafness on temporal processing in the present study are in contrast to its previously-reported pronounced effects on cochleotopy. Much longer periods of deafness have been reported to result in significant changes in temporal processing, in accord with the fact that duration of deafness is a major factor influencing outcome in human cochlear implantees.

  5. Behavioral modulation of neural encoding of click-trains in the primary and nonprimary auditory cortex of cats.

    Science.gov (United States)

    Dong, Chao; Qin, Ling; Zhao, Zhenling; Zhong, Renjia; Sato, Yu

    2013-08-07

    Neural representation of acoustic stimuli in the mammal auditory cortex (AC) has been extensively studied using anesthetized or awake nonbehaving animals. Recently, several studies have shown that active engagement in an auditory behavioral task can substantially change the neuron response properties compared with when animals were passively listening to the same sounds; however, these studies mainly investigated the effect of behavioral state on the primary auditory cortex and the reported effects were inconsistent. Here, we examined the single-unit spike activities in both the primary and nonprimary areas along the dorsal-to-ventral direction of the cat's AC, when the cat was actively discriminating click-trains at different repetition rates and when it was passively listening to the same stimuli. We found that the changes due to task engagement were heterogeneous in the primary AC; some neurons showed significant increases in driven firing rate, others showed decreases. But in the nonprimary AC, task engagement predominantly enhanced the neural responses, resulting in a substantial improvement of the neural discriminability of click-trains. Additionally, our results revealed that neural responses synchronizing to click-trains gradually decreased along the dorsal-to-ventral direction of cat AC, while nonsynchronizing responses remained less changed. The present study provides new insights into the hierarchical organization of AC along the dorsal-to-ventral direction and highlights the importance of using behavioral animals to investigate the later stages of cortical processing.

  6. Neural mechanisms of interstimulus interval-dependent responses in the primary auditory cortex of awake cats

    Directory of Open Access Journals (Sweden)

    Qin Ling

    2009-02-01

    Full Text Available Abstract Background Primary auditory cortex (AI neurons show qualitatively distinct response features to successive acoustic signals depending on the inter-stimulus intervals (ISI. Such ISI-dependent AI responses are believed to underlie, at least partially, categorical perception of click trains (elemental vs. fused quality and stop consonant-vowel syllables (eg.,/da/-/ta/continuum. Methods Single unit recordings were conducted on 116 AI neurons in awake cats. Rectangular clicks were presented either alone (single click paradigm or in a train fashion with variable ISI (2–480 ms (click-train paradigm. Response features of AI neurons were quantified as a function of ISI: one measure was related to the degree of stimulus locking (temporal modulation transfer function [tMTF] and another measure was based on firing rate (rate modulation transfer function [rMTF]. An additional modeling study was performed to gain insight into neurophysiological bases of the observed responses. Results In the click-train paradigm, the majority of the AI neurons ("synchronization type"; n = 72 showed stimulus-locking responses at long ISIs. The shorter cutoff ISI for stimulus-locking responses was on average ~30 ms and was level tolerant in accordance with the perceptual boundary of click trains and of consonant-vowel syllables. The shape of tMTF of those neurons was either band-pass or low-pass. The single click paradigm revealed, at maximum, four response periods in the following order: 1st excitation, 1st suppression, 2nd excitation then 2nd suppression. The 1st excitation and 1st suppression was found exclusively in the synchronization type, implying that the temporal interplay between excitation and suppression underlies stimulus-locking responses. Among these neurons, those showing the 2nd suppression had band-pass tMTF whereas those with low-pass tMTF never showed the 2nd suppression, implying that tMTF shape is mediated through the 2nd suppression. The

  7. The effects of background noise on the neural responses to natural sounds in cat primary auditory cortex

    Directory of Open Access Journals (Sweden)

    Omer Bar-Yosef

    2007-11-01

    Full Text Available Animal vocalizations in natural settings are invariably accompanied by an acoustic background with a complex statistical structure. We have previously demonstrated that neuronal responses in primary auditory cortex of halothane-anesthetized cats depend strongly on the natural background. Here, we study in detail the neuronal responses to the background sounds and their relationships to the responses to the foreground sounds. Natural bird chirps as well as modifications of these chirps were used. The chirps were decomposed into three components: the clean chirps, their echoes, and the background noise. The last two were weaker than the clean chirp by 13 and 29 dB on average respectively. The test stimuli consisted of the full natural stimulus, the three basic components, and their three pairwise combinations. When the level of the background components (echoes and background noise presented alone was sufficiently loud to evoke neuronal activity, these background components had an unexpectedly strong effect on the responses of the neurons to the main bird chirp. In particular, the responses to the original chirps were more similar on average to the responses evoked by the two background components than to the responses evoked by the clean chirp, both in terms of the evoked spike count and in terms of the temporal pattern of the responses. These results suggest that some of the neurons responded specifically to the acoustic background even when presented together with the substantially louder main chirp, and may imply that neurons in A1 already participate in auditory source segregation.

  8. Comparison of LFP-based and spike-based spectro-temporal receptive fields and cross-correlation in cat primary auditory cortex.

    Directory of Open Access Journals (Sweden)

    Jos J Eggermont

    Full Text Available Multi-electrode array recordings of spike and local field potential (LFP activity were made from primary auditory cortex of 12 normal hearing, ketamine-anesthetized cats. We evaluated 259 spectro-temporal receptive fields (STRFs and 492 frequency-tuning curves (FTCs based on LFPs and spikes simultaneously recorded on the same electrode. We compared their characteristic frequency (CF gradients and their cross-correlation distances. The CF gradient for spike-based FTCs was about twice that for 2-40 Hz-filtered LFP-based FTCs, indicating greatly reduced frequency selectivity for LFPs. We also present comparisons for LFPs band-pass filtered between 4-8 Hz, 8-16 Hz and 16-40 Hz, with spike-based STRFs, on the basis of their marginal frequency distributions. We find on average a significantly larger correlation between the spike based marginal frequency distributions and those based on the 16-40 Hz filtered LFP, compared to those based on the 4-8 Hz, 8-16 Hz and 2-40 Hz filtered LFP. This suggests greater frequency specificity for the 16-40 Hz LFPs compared to those of lower frequency content. For spontaneous LFP and spike activity we evaluated 1373 pair correlations for pairs with >200 spikes in 900 s per electrode. Peak correlation-coefficient space constants were similar for the 2-40 Hz filtered LFP (5.5 mm and the 16-40 Hz LFP (7.4 mm, whereas for spike-pair correlations it was about half that, at 3.2 mm. Comparing spike-pairs with 2-40 Hz (and 16-40 Hz LFP-pair correlations showed that about 16% (9% of the variance in the spike-pair correlations could be explained from LFP-pair correlations recorded on the same electrodes within the same electrode array. This larger correlation distance combined with the reduced CF gradient and much broader frequency selectivity suggests that LFPs are not a substitute for spike activity in primary auditory cortex.

  9. Comparison of LFP-based and spike-based spectro-temporal receptive fields and cross-correlation in cat primary auditory cortex.

    Science.gov (United States)

    Eggermont, Jos J; Munguia, Raymundo; Pienkowski, Martin; Shaw, Greg

    2011-01-01

    Multi-electrode array recordings of spike and local field potential (LFP) activity were made from primary auditory cortex of 12 normal hearing, ketamine-anesthetized cats. We evaluated 259 spectro-temporal receptive fields (STRFs) and 492 frequency-tuning curves (FTCs) based on LFPs and spikes simultaneously recorded on the same electrode. We compared their characteristic frequency (CF) gradients and their cross-correlation distances. The CF gradient for spike-based FTCs was about twice that for 2-40 Hz-filtered LFP-based FTCs, indicating greatly reduced frequency selectivity for LFPs. We also present comparisons for LFPs band-pass filtered between 4-8 Hz, 8-16 Hz and 16-40 Hz, with spike-based STRFs, on the basis of their marginal frequency distributions. We find on average a significantly larger correlation between the spike based marginal frequency distributions and those based on the 16-40 Hz filtered LFP, compared to those based on the 4-8 Hz, 8-16 Hz and 2-40 Hz filtered LFP. This suggests greater frequency specificity for the 16-40 Hz LFPs compared to those of lower frequency content. For spontaneous LFP and spike activity we evaluated 1373 pair correlations for pairs with >200 spikes in 900 s per electrode. Peak correlation-coefficient space constants were similar for the 2-40 Hz filtered LFP (5.5 mm) and the 16-40 Hz LFP (7.4 mm), whereas for spike-pair correlations it was about half that, at 3.2 mm. Comparing spike-pairs with 2-40 Hz (and 16-40 Hz) LFP-pair correlations showed that about 16% (9%) of the variance in the spike-pair correlations could be explained from LFP-pair correlations recorded on the same electrodes within the same electrode array. This larger correlation distance combined with the reduced CF gradient and much broader frequency selectivity suggests that LFPs are not a substitute for spike activity in primary auditory cortex.

  10. Areas of cat auditory cortex as defined by neurofilament proteins expressing SMI-32.

    Science.gov (United States)

    Mellott, Jeffrey G; Van der Gucht, Estel; Lee, Charles C; Carrasco, Andres; Winer, Jeffery A; Lomber, Stephen G

    2010-08-01

    The monoclonal antibody SMI-32 was used to characterize and distinguish individual areas of cat auditory cortex. SMI-32 labels non-phosphorylated epitopes on the high- and medium-molecular weight subunits of neurofilament proteins in cortical pyramidal cells and dendritic trees with the most robust immunoreactivity in layers III and V. Auditory areas with unique patterns of immunoreactivity included: primary auditory cortex (AI), second auditory cortex (AII), dorsal zone (DZ), posterior auditory field (PAF), ventral posterior auditory field (VPAF), ventral auditory field (VAF), temporal cortex (T), insular cortex (IN), anterior auditory field (AAF), and the auditory field of the anterior ectosylvian sulcus (fAES). Unique patterns of labeling intensity, soma shape, soma size, layers of immunoreactivity, laminar distribution of dendritic arbors, and labeled cell density were identified. Features that were consistent in all areas included: layers I and IV neurons are immunonegative; nearly all immunoreactive cells are pyramidal; and immunoreactive neurons are always present in layer V. To quantify the results, the numbers of labeled cells and dendrites, as well as cell diameter, were collected and used as tools for identifying and differentiating areas. Quantification of the labeling patterns also established profiles for ten auditory areas/layers and their degree of immunoreactivity. Areal borders delineated by SMI-32 were highly correlated with tonotopically-defined areal boundaries. Overall, SMI-32 immunoreactivity can delineate ten areas of cat auditory cortex and demarcate topographic borders. The ability to distinguish auditory areas with SMI-32 is valuable for the identification of auditory cerebral areas in electrophysiological, anatomical, and/or behavioral investigations.

  11. Auditory lateralization of conspecific and heterospecific vocalizations in cats.

    Science.gov (United States)

    Siniscalchi, Marcello; Laddago, Serena; Quaranta, Angelo

    2016-01-01

    Auditory lateralization in response to both conspecific and heterospecific vocalizations (dog vocalizations) was observed in 16 tabby cats (Felis catus). Six different vocalizations were used: cat "purring," "meowing" and "growling" and dog typical vocalizations of "disturbance," "isolation" and "play." The head-orienting paradigm showed that cats turned their head with the right ear leading (left hemisphere activation) in response to their typical-species vocalization ("meow" and "purring"); on the other hand, a clear bias in the use of the left ear (right hemisphere activation) was observed in response to vocalizations eliciting intense emotion (dogs' vocalizations of "disturbance" and "isolation"). Overall these findings suggest that auditory sensory domain seems to be lateralized also in cat species, stressing the role of the left hemisphere for intraspecific communication and of the right hemisphere in processing threatening and alarming stimuli.

  12. Primary Auditory Cortex Regulates Threat Memory Specificity

    Science.gov (United States)

    Wigestrand, Mattis B.; Schiff, Hillary C.; Fyhn, Marianne; LeDoux, Joseph E.; Sears, Robert M.

    2017-01-01

    Distinguishing threatening from nonthreatening stimuli is essential for survival and stimulus generalization is a hallmark of anxiety disorders. While auditory threat learning produces long-lasting plasticity in primary auditory cortex (Au1), it is not clear whether such Au1 plasticity regulates memory specificity or generalization. We used…

  13. Functional sex differences in human primary auditory cortex

    NARCIS (Netherlands)

    Ruytjens, Liesbet; Georgiadis, Janniko R.; Holstege, Gert; Wit, Hero P.; Albers, Frans W. J.; Willemsen, Antoon T. M.

    2007-01-01

    Background We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a bas

  14. Primary hyperaldosteronism in cats: expanding the diagnostic net

    NARCIS (Netherlands)

    Djajadiningrat-Laanen, S.C.

    2014-01-01

    Primary hyperaldosteronism or low-renin hyperaldosteronism in cats is characterized by inappropriately high aldosterone secretion from one or both adrenal glands, with systemic arterial hypertension and hypokalemia as leading clinical manifestations. In this thesis, non-tumorous primary hyperaldoste

  15. Response properties of neurons in the cat's putamen during auditory discrimination.

    Science.gov (United States)

    Zhao, Zhenling; Sato, Yu; Qin, Ling

    2015-10-01

    The striatum integrates diverse convergent input and plays a critical role in the goal-directed behaviors. To date, the auditory functions of striatum are less studied. Recently, it was demonstrated that auditory cortico-striatal projections influence behavioral performance during a frequency discrimination task. To reveal the functions of striatal neurons in auditory discrimination, we recorded the single-unit spike activities in the putamen (dorsal striatum) of free-moving cats while performing a Go/No-go task to discriminate the sounds with different modulation rates (12.5 Hz vs. 50 Hz) or envelopes (damped vs. ramped). We found that the putamen neurons can be broadly divided into four groups according to their contributions to sound discrimination. First, 40% of neurons showed vigorous responses synchronized to the sound envelope, and could precisely discriminate different sounds. Second, 18% of neurons showed a high preference of ramped to damped sounds, but no preference for modulation rate. They could only discriminate the change of sound envelope. Third, 27% of neurons rapidly adapted to the sound stimuli, had no ability of sound discrimination. Fourth, 15% of neurons discriminated the sounds dependent on the reward-prediction. Comparing to passively listening condition, the activities of putamen neurons were significantly enhanced by the engagement of the auditory tasks, but not modulated by the cat's behavioral choice. The coexistence of multiple types of neurons suggests that the putamen is involved in the transformation from auditory representation to stimulus-reward association.

  16. [A histochemical study of acetylcholinesterase in intact and deafferented cat auditory cortex].

    Science.gov (United States)

    Genis, E D

    1976-01-01

    The peculiarities of the AChE distribution were investigated in the intact cat auditory cortex and during early period of its neuronal isolation. It is shown that in the isolated cortex slab the staining of the AChE containing fibre disappeared from the neuropile, while in the intact cortex it was well pronounced. AChE accumulation was observed in the proximal parts of the transsected thalamo-cortical fibres. It is supposed that the AChE-containing fibres in the auditory cortex belong to nonspecific thalamic inputs.

  17. Neurogenesis in the brain auditory pathway of a marsupial, the northern native cat (Dasyurus hallucatus)

    Energy Technology Data Exchange (ETDEWEB)

    Aitkin, L.; Nelson, J.; Farrington, M.; Swann, S. (Department of Physiology, Monash University, Melbourne (Australia))

    1991-07-08

    Neurogenesis in the auditory pathway of the marsupial Dasyurus hallucatus was studied. Intraperitoneal injections of tritiated thymidine (20-40 microCi) were made into pouch-young varying from 1 to 56 days pouch-life. Animals were killed as adults and brain sections were prepared for autoradiography and counterstained with a Nissl stain. Neurons in the ventral cochlear nucleus were generated prior to 3 days pouch-life, in the superior olive at 5-7 days, and in the dorsal cochlear nucleus over a prolonged period. Inferior collicular neurogenesis lagged behind that in the medial geniculate, the latter taking place between days 3 and 9 and the former between days 7 and 22. Neurogenesis began in the auditory cortex on day 9 and was completed by about day 42. Thus neurogenesis was complete in the medullary auditory nuclei before that in the midbrain commenced, and in the medial geniculate before that in the auditory cortex commenced. The time course of neurogenesis in the auditory pathway of the native cat was very similar to that in another marsupial, the brushtail possum. For both, neurogenesis occurred earlier than in eutherian mammals of a similar size but was more protracted.

  18. Functional sex differences in human primary auditory cortex

    Energy Technology Data Exchange (ETDEWEB)

    Ruytjens, Liesbet [University Medical Center Groningen, Department of Otorhinolaryngology, Groningen (Netherlands); University Medical Center Utrecht, Department Otorhinolaryngology, P.O. Box 85500, Utrecht (Netherlands); Georgiadis, Janniko R. [University of Groningen, University Medical Center Groningen, Department of Anatomy and Embryology, Groningen (Netherlands); Holstege, Gert [University of Groningen, University Medical Center Groningen, Center for Uroneurology, Groningen (Netherlands); Wit, Hero P. [University Medical Center Groningen, Department of Otorhinolaryngology, Groningen (Netherlands); Albers, Frans W.J. [University Medical Center Utrecht, Department Otorhinolaryngology, P.O. Box 85500, Utrecht (Netherlands); Willemsen, Antoon T.M. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands)

    2007-12-15

    We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a baseline (no auditory stimulation). We found a sex difference in activation of the left and right PAC when comparing music to noise. The PAC was more activated by music than by noise in both men and women. But this difference between the two stimuli was significantly higher in men than in women. To investigate whether this difference could be attributed to either music or noise, we compared both stimuli with the baseline and revealed that noise gave a significantly higher activation in the female PAC than in the male PAC. Moreover, the male group showed a deactivation in the right prefrontal cortex when comparing noise to the baseline, which was not present in the female group. Interestingly, the auditory and prefrontal regions are anatomically and functionally linked and the prefrontal cortex is known to be engaged in auditory tasks that involve sustained or selective auditory attention. Thus we hypothesize that differences in attention result in a different deactivation of the right prefrontal cortex, which in turn modulates the activation of the PAC and thus explains the sex differences found in the activation of the PAC. Our results suggest that sex is an important factor in auditory brain studies. (orig.)

  19. Encoding of temporal information by timing, rate, and place in cat auditory cortex.

    Directory of Open Access Journals (Sweden)

    Kazuo Imaizumi

    Full Text Available A central goal in auditory neuroscience is to understand the neural coding of species-specific communication and human speech sounds. Low-rate repetitive sounds are elemental features of communication sounds, and core auditory cortical regions have been implicated in processing these information-bearing elements. Repetitive sounds could be encoded by at least three neural response properties: 1 the event-locked spike-timing precision, 2 the mean firing rate, and 3 the interspike interval (ISI. To determine how well these response aspects capture information about the repetition rate stimulus, we measured local group responses of cortical neurons in cat anterior auditory field (AAF to click trains and calculated their mutual information based on these different codes. ISIs of the multiunit responses carried substantially higher information about low repetition rates than either spike-timing precision or firing rate. Combining firing rate and ISI codes was synergistic and captured modestly more repetition information. Spatial distribution analyses showed distinct local clustering properties for each encoding scheme for repetition information indicative of a place code. Diversity in local processing emphasis and distribution of different repetition rate codes across AAF may give rise to concurrent feed-forward processing streams that contribute differently to higher-order sound analysis.

  20. Neural Representation of Concurrent Vowels in Macaque Primary Auditory Cortex.

    Science.gov (United States)

    Fishman, Yonatan I; Micheyl, Christophe; Steinschneider, Mitchell

    2016-01-01

    Successful speech perception in real-world environments requires that the auditory system segregate competing voices that overlap in frequency and time into separate streams. Vowels are major constituents of speech and are comprised of frequencies (harmonics) that are integer multiples of a common fundamental frequency (F0). The pitch and identity of a vowel are determined by its F0 and spectral envelope (formant structure), respectively. When two spectrally overlapping vowels differing in F0 are presented concurrently, they can be readily perceived as two separate "auditory objects" with pitches at their respective F0s. A difference in pitch between two simultaneous vowels provides a powerful cue for their segregation, which in turn, facilitates their individual identification. The neural mechanisms underlying the segregation of concurrent vowels based on pitch differences are poorly understood. Here, we examine neural population responses in macaque primary auditory cortex (A1) to single and double concurrent vowels (/a/ and /i/) that differ in F0 such that they are heard as two separate auditory objects with distinct pitches. We find that neural population responses in A1 can resolve, via a rate-place code, lower harmonics of both single and double concurrent vowels. Furthermore, we show that the formant structures, and hence the identities, of single vowels can be reliably recovered from the neural representation of double concurrent vowels. We conclude that A1 contains sufficient spectral information to enable concurrent vowel segregation and identification by downstream cortical areas.

  1. Background sounds contribute to spectrotemporal plasticity in primary auditory cortex.

    Science.gov (United States)

    Moucha, Raluca; Pandya, Pritesh K; Engineer, Navzer D; Rathbun, Daniel L; Kilgard, Michael P

    2005-05-01

    The mammalian auditory system evolved to extract meaningful information from complex acoustic environments. Spectrotemporal selectivity of auditory neurons provides a potential mechanism to represent natural sounds. Experience-dependent plasticity mechanisms can remodel the spectrotemporal selectivity of neurons in primary auditory cortex (A1). Electrical stimulation of the cholinergic nucleus basalis (NB) enables plasticity in A1 that parallels natural learning and is specific to acoustic features associated with NB activity. In this study, we used NB stimulation to explore how cortical networks reorganize after experience with frequency-modulated (FM) sweeps, and how background stimuli contribute to spectrotemporal plasticity in rat auditory cortex. Pairing an 8-4 kHz FM sweep with NB stimulation 300 times per day for 20 days decreased tone thresholds, frequency selectivity, and response latency of A1 neurons in the region of the tonotopic map activated by the sound. In an attempt to modify neuronal response properties across all of A1 the same NB activation was paired in a second group of rats with five downward FM sweeps, each spanning a different octave. No changes in FM selectivity or receptive field (RF) structure were observed when the neural activation was distributed across the cortical surface. However, the addition of unpaired background sweeps of different rates or direction was sufficient to alter RF characteristics across the tonotopic map in a third group of rats. These results extend earlier observations that cortical neurons can develop stimulus specific plasticity and indicate that background conditions can strongly influence cortical plasticity.

  2. Task engagement selectively modulates neural correlations in primary auditory cortex.

    Science.gov (United States)

    Downer, Joshua D; Niwa, Mamiko; Sutter, Mitchell L

    2015-05-13

    Noise correlations (r(noise)) between neurons can affect a neural population's discrimination capacity, even without changes in mean firing rates of neurons. r(noise), the degree to which the response variability of a pair of neurons is correlated, has been shown to change with attention with most reports showing a reduction in r(noise). However, the effect of reducing r(noise) on sensory discrimination depends on many factors, including the tuning similarity, or tuning correlation (r(tuning)), between the pair. Theoretically, reducing r(noise) should enhance sensory discrimination when the pair exhibits similar tuning, but should impair discrimination when tuning is dissimilar. We recorded from pairs of neurons in primary auditory cortex (A1) under two conditions: while rhesus macaque monkeys (Macaca mulatta) actively performed a threshold amplitude modulation (AM) detection task and while they sat passively awake. We report that, for pairs with similar AM tuning, average r(noise) in A1 decreases when the animal performs the AM detection task compared with when sitting passively. For pairs with dissimilar tuning, the average r(noise) did not significantly change between conditions. This suggests that attention-related modulation can target selective subcircuits to decorrelate noise. These results demonstrate that engagement in an auditory task enhances population coding in primary auditory cortex by selectively reducing deleterious r(noise) and leaving beneficial r(noise) intact.

  3. Auditory response properties of neurons in the putamen and globus pallidus of awake cats.

    Science.gov (United States)

    Zhong, Renjia; Qin, Ling; Sato, Yu

    2014-05-01

    Several decades of research have provided evidence that the basal ganglia are closely involved in motor processes. Recent clinical, electrophysiological, behavioral data have revealed that the basal ganglia also receive afferent input from the auditory system, but the detailed auditory response characteristics have not yet reported. The present study aimed to reveal the acoustic response properties of neurons in parts of the basal ganglia. We recorded single-unit activities from the putamen (PU) and globus pallidus (GP) of awake cats passively listening to pure tones, click trains, and natural sounds. Our major findings were: 1) responses in both PU and GP neurons were elicited by pure-tone stimuli, whereas PU neurons had lower intensity thresholds, shorter response latencies, shorter excitatory duration, and larger response magnitudes than GP neurons. 2) Some GP neurons showed a suppressive response lasting throughout the stimulus period. 3) Both PU and GP did not follow periodically repeated click stimuli well, and most neurons only showed a phasic response at the stimulus onset and offset. 4) In response to natural sounds, PU also showed a stronger magnitude and shorter duration of excitatory response than GP. The selectivity for natural sounds was low in both nuclei. 5) Nonbiological environmental sounds more efficiently evoked responses in PU and GP than the vocalizations of conspecifics and other species. Our results provide insights into how acoustic signals are processed in the basal ganglia and revealed the distinction of PU and GP in sensory representation.

  4. Tactile stimulation and hemispheric asymmetries modulate auditory perception and neural responses in primary auditory cortex.

    Science.gov (United States)

    Hoefer, M; Tyll, S; Kanowski, M; Brosch, M; Schoenfeld, M A; Heinze, H-J; Noesselt, T

    2013-10-01

    Although multisensory integration has been an important area of recent research, most studies focused on audiovisual integration. Importantly, however, the combination of audition and touch can guide our behavior as effectively which we studied here using psychophysics and functional magnetic resonance imaging (fMRI). We tested whether task-irrelevant tactile stimuli would enhance auditory detection, and whether hemispheric asymmetries would modulate these audiotactile benefits using lateralized sounds. Spatially aligned task-irrelevant tactile stimuli could occur either synchronously or asynchronously with the sounds. Auditory detection was enhanced by non-informative synchronous and asynchronous tactile stimuli, if presented on the left side. Elevated fMRI-signals to left-sided synchronous bimodal stimulation were found in primary auditory cortex (A1). Adjacent regions (planum temporale, PT) expressed enhanced BOLD-responses for synchronous and asynchronous left-sided bimodal conditions. Additional connectivity analyses seeded in right-hemispheric A1 and PT for both bimodal conditions showed enhanced connectivity with right-hemispheric thalamic, somatosensory and multisensory areas that scaled with subjects' performance. Our results indicate that functional asymmetries interact with audiotactile interplay which can be observed for left-lateralized stimulation in the right hemisphere. There, audiotactile interplay recruits a functional network of unisensory cortices, and the strength of these functional network connections is directly related to subjects' perceptual sensitivity.

  5. 9 CFR 3.14 - Primary enclosures used to transport live dogs and cats.

    Science.gov (United States)

    2010-01-01

    ... live dogs and cats. 3.14 Section 3.14 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION..., Treatment, and Transportation of Dogs and Cats 1 Transportation Standards § 3.14 Primary enclosures used to transport live dogs and cats. Any person subject to the Animal Welfare regulations (9 CFR parts 1, 2, and...

  6. Representation of lateralization and tonotopy in primary versus secondary human auditory cortex

    NARCIS (Netherlands)

    Langers, Dave R. M.; Backes, Walter H.; van Dijk, Pim

    2007-01-01

    Functional MRI was performed to investigate differences in the basic functional organization of the primary and secondary auditory cortex regarding preferred stimulus lateratization and frequency. A modified sparse acquisition scheme was used to spatially map the characteristics of the auditory cort

  7. Contextual modulation of primary visual cortex by auditory signals

    Science.gov (United States)

    Paton, A. T.

    2017-01-01

    Early visual cortex receives non-feedforward input from lateral and top-down connections (Muckli & Petro 2013 Curr. Opin. Neurobiol. 23, 195–201. (doi:10.1016/j.conb.2013.01.020)), including long-range projections from auditory areas. Early visual cortex can code for high-level auditory information, with neural patterns representing natural sound stimulation (Vetter et al. 2014 Curr. Biol. 24, 1256–1262. (doi:10.1016/j.cub.2014.04.020)). We discuss a number of questions arising from these findings. What is the adaptive function of bimodal representations in visual cortex? What type of information projects from auditory to visual cortex? What are the anatomical constraints of auditory information in V1, for example, periphery versus fovea, superficial versus deep cortical layers? Is there a putative neural mechanism we can infer from human neuroimaging data and recent theoretical accounts of cortex? We also present data showing we can read out high-level auditory information from the activation patterns of early visual cortex even when visual cortex receives simple visual stimulation, suggesting independent channels for visual and auditory signals in V1. We speculate which cellular mechanisms allow V1 to be contextually modulated by auditory input to facilitate perception, cognition and behaviour. Beyond cortical feedback that facilitates perception, we argue that there is also feedback serving counterfactual processing during imagery, dreaming and mind wandering, which is not relevant for immediate perception but for behaviour and cognition over a longer time frame. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044015

  8. Contextual modulation of primary visual cortex by auditory signals.

    Science.gov (United States)

    Petro, L S; Paton, A T; Muckli, L

    2017-02-19

    Early visual cortex receives non-feedforward input from lateral and top-down connections (Muckli & Petro 2013 Curr. Opin. Neurobiol. 23, 195-201. (doi:10.1016/j.conb.2013.01.020)), including long-range projections from auditory areas. Early visual cortex can code for high-level auditory information, with neural patterns representing natural sound stimulation (Vetter et al. 2014 Curr. Biol. 24, 1256-1262. (doi:10.1016/j.cub.2014.04.020)). We discuss a number of questions arising from these findings. What is the adaptive function of bimodal representations in visual cortex? What type of information projects from auditory to visual cortex? What are the anatomical constraints of auditory information in V1, for example, periphery versus fovea, superficial versus deep cortical layers? Is there a putative neural mechanism we can infer from human neuroimaging data and recent theoretical accounts of cortex? We also present data showing we can read out high-level auditory information from the activation patterns of early visual cortex even when visual cortex receives simple visual stimulation, suggesting independent channels for visual and auditory signals in V1. We speculate which cellular mechanisms allow V1 to be contextually modulated by auditory input to facilitate perception, cognition and behaviour. Beyond cortical feedback that facilitates perception, we argue that there is also feedback serving counterfactual processing during imagery, dreaming and mind wandering, which is not relevant for immediate perception but for behaviour and cognition over a longer time frame.This article is part of the themed issue 'Auditory and visual scene analysis'.

  9. Successful treatment of a cat with primary hypoadrenocorticism and severe hyponatremia with desoxycorticosterone pivalate (DOCP)

    Science.gov (United States)

    Woolcock, Andrew D.; Ward, Cynthia

    2015-01-01

    A 6-year-old, castrated male Siamese cat was diagnosed with primary hypoadrenocorticism, confirmed by an adrenocorticotopic hormone (ACTH) stimulation test documenting both hypocortisolism and hypoaldosteronism. The cat was successfully treated using a combination of prednisolone and desoxycorticosterone pivalate (DOCP). This case demonstrates that DOCP can be used successfully as mineralocorticoid supplementation in cats with hypoadrenocorticism and may have a longer therapeutic duration than that in dogs. PMID:26538671

  10. Neural Response Properties of Primary, Rostral, and Rostrotemporal Core Fields in the Auditory Cortex of Marmoset Monkeys

    OpenAIRE

    Bendor, Daniel; WANG, Xiaoqin

    2008-01-01

    The core region of primate auditory cortex contains a primary and two primary-like fields (AI, primary auditory cortex; R, rostral field; RT, rostrotemporal field). Although it is reasonable to assume that multiple core fields provide an advantage for auditory processing over a single primary field, the differential roles these fields play and whether they form a functional pathway collectively such as for the processing of spectral or temporal information are unknown. In this report we compa...

  11. Enhanced representation of spectral contrasts in the primary auditory cortex

    Directory of Open Access Journals (Sweden)

    Nicolas eCatz

    2013-06-01

    Full Text Available The role of early auditory processing may be to extract some elementary features from an acoustic mixture in order to organize the auditory scene. To accomplish this task, the central auditory system may rely on the fact that sensory objects are often composed of spectral edges, i.e. regions where the stimulus energy changes abruptly over frequency. The processing of acoustic stimuli may benefit from a mechanism enhancing the internal representation of spectral edges. While the visual system is thought to rely heavily on this mechanism (enhancing spatial edges, it is still unclear whether a related process plays a significant role in audition. We investigated the cortical representation of spectral edges, using acoustic stimuli composed of multi-tone pips whose time-averaged spectral envelope contained suppressed or enhanced regions. Importantly, the stimuli were designed such that neural responses properties could be assessed as a function of stimulus frequency during stimulus presentation. Our results suggest that the representation of acoustic spectral edges is enhanced in the auditory cortex, and that this enhancement is sensitive to the characteristics of the spectral contrast profile, such as depth, sharpness and width. Spectral edges are maximally enhanced for sharp contrast and large depth. Cortical activity was also suppressed at frequencies within the suppressed region. To note, the suppression of firing was larger at frequencies nearby the lower edge of the suppressed region than at the upper edge. Overall, the present study gives critical insights into the processing of spectral contrasts in the auditory system.

  12. Interactions across Multiple Stimulus Dimensions in Primary Auditory Cortex.

    Science.gov (United States)

    Sloas, David C; Zhuo, Ran; Xue, Hongbo; Chambers, Anna R; Kolaczyk, Eric; Polley, Daniel B; Sen, Kamal

    2016-01-01

    Although sensory cortex is thought to be important for the perception of complex objects, its specific role in representing complex stimuli remains unknown. Complex objects are rich in information along multiple stimulus dimensions. The position of cortex in the sensory hierarchy suggests that cortical neurons may integrate across these dimensions to form a more gestalt representation of auditory objects. Yet, studies of cortical neurons typically explore single or few dimensions due to the difficulty of determining optimal stimuli in a high dimensional stimulus space. Evolutionary algorithms (EAs) provide a potentially powerful approach for exploring multidimensional stimulus spaces based on real-time spike feedback, but two important issues arise in their application. First, it is unclear whether it is necessary to characterize cortical responses to multidimensional stimuli or whether it suffices to characterize cortical responses to a single dimension at a time. Second, quantitative methods for analyzing complex multidimensional data from an EA are lacking. Here, we apply a statistical method for nonlinear regression, the generalized additive model (GAM), to address these issues. The GAM quantitatively describes the dependence between neural response and all stimulus dimensions. We find that auditory cortical neurons in mice are sensitive to interactions across dimensions. These interactions are diverse across the population, indicating significant integration across stimulus dimensions in auditory cortex. This result strongly motivates using multidimensional stimuli in auditory cortex. Together, the EA and the GAM provide a novel quantitative paradigm for investigating neural coding of complex multidimensional stimuli in auditory and other sensory cortices.

  13. Interactions across Multiple Stimulus Dimensions in Primary Auditory Cortex

    Science.gov (United States)

    Zhuo, Ran; Xue, Hongbo; Chambers, Anna R.; Kolaczyk, Eric; Polley, Daniel B.

    2016-01-01

    Although sensory cortex is thought to be important for the perception of complex objects, its specific role in representing complex stimuli remains unknown. Complex objects are rich in information along multiple stimulus dimensions. The position of cortex in the sensory hierarchy suggests that cortical neurons may integrate across these dimensions to form a more gestalt representation of auditory objects. Yet, studies of cortical neurons typically explore single or few dimensions due to the difficulty of determining optimal stimuli in a high dimensional stimulus space. Evolutionary algorithms (EAs) provide a potentially powerful approach for exploring multidimensional stimulus spaces based on real-time spike feedback, but two important issues arise in their application. First, it is unclear whether it is necessary to characterize cortical responses to multidimensional stimuli or whether it suffices to characterize cortical responses to a single dimension at a time. Second, quantitative methods for analyzing complex multidimensional data from an EA are lacking. Here, we apply a statistical method for nonlinear regression, the generalized additive model (GAM), to address these issues. The GAM quantitatively describes the dependence between neural response and all stimulus dimensions. We find that auditory cortical neurons in mice are sensitive to interactions across dimensions. These interactions are diverse across the population, indicating significant integration across stimulus dimensions in auditory cortex. This result strongly motivates using multidimensional stimuli in auditory cortex. Together, the EA and the GAM provide a novel quantitative paradigm for investigating neural coding of complex multidimensional stimuli in auditory and other sensory cortices. PMID:27622211

  14. Correlates of perceptual awareness in human primary auditory cortex revealed by an informational masking experiment.

    Science.gov (United States)

    Wiegand, Katrin; Gutschalk, Alexander

    2012-05-15

    The presence of an auditory event may remain undetected in crowded environments, even when it is well above the sensory threshold. This effect, commonly known as informational masking, allows for isolating neural activity related to perceptual awareness, by comparing repetitions of the same physical stimulus where the target is either detected or not. Evidence from magnetoencephalography (MEG) suggests that auditory-cortex activity in the latency range 50-250 ms is closely coupled with perceptual awareness. Here, BOLD fMRI and MEG were combined to investigate at which stage in the auditory cortex neural correlates of conscious auditory perception can be observed. Participants were asked to indicate the perception of a regularly repeating target tone, embedded within a random multi-tone masking background. Results revealed widespread activation within the auditory cortex for detected target tones, which was delayed but otherwise similar to the activation of an unmasked control stimulus. The contrast of detected versus undetected targets revealed activity confined to medial Heschl's gyrus, where the primary auditory cortex is located. These results suggest that activity related to conscious perception involves the primary auditory cortex and is not restricted to activity in secondary areas.

  15. Measuring the dynamics of neural responses in primary auditory cortex

    CERN Document Server

    Depireux, D A; Shamma, S A; Depireux, Didier A.; Simon, Jonathan Z.; Shamma, Shihab A.

    1998-01-01

    We review recent developments in the measurement of the dynamics of the response properties of auditory cortical neurons to broadband sounds, which is closely related to the perception of timbre. The emphasis is on a method that characterizes the spectro-temporal properties of single neurons to dynamic, broadband sounds, akin to the drifting gratings used in vision. The method treats the spectral and temporal aspects of the response on an equal footing.

  16. Asymmetry in primary auditory cortex activity in tinnitus patients and controls

    NARCIS (Netherlands)

    Geven, L. I.; de Kleine, E.; Willemsen, A. T. M.; van Dijk, P.

    2014-01-01

    Tinnitus is a bothersome phantom sound percept and its neural correlates are not yet disentangled. Previously published papers, using [(18)F]-fluoro-deoxyglucose positron emission tomography (FDG-PET), have suggested an increased metabolism in the left primary auditory cortex in tinnitus patients. T

  17. Neural representation of concurrent harmonic sounds in monkey primary auditory cortex: implications for models of auditory scene analysis.

    Science.gov (United States)

    Fishman, Yonatan I; Steinschneider, Mitchell; Micheyl, Christophe

    2014-09-10

    The ability to attend to a particular sound in a noisy environment is an essential aspect of hearing. To accomplish this feat, the auditory system must segregate sounds that overlap in frequency and time. Many natural sounds, such as human voices, consist of harmonics of a common fundamental frequency (F0). Such harmonic complex tones (HCTs) evoke a pitch corresponding to their F0. A difference in pitch between simultaneous HCTs provides a powerful cue for their segregation. The neural mechanisms underlying concurrent sound segregation based on pitch differences are poorly understood. Here, we examined neural responses in monkey primary auditory cortex (A1) to two concurrent HCTs that differed in F0 such that they are heard as two separate "auditory objects" with distinct pitches. We found that A1 can resolve, via a rate-place code, the lower harmonics of both HCTs, a prerequisite for deriving their pitches and for their perceptual segregation. Onset asynchrony between the HCTs enhanced the neural representation of their harmonics, paralleling their improved perceptual segregation in humans. Pitches of the concurrent HCTs could also be temporally represented by neuronal phase-locking at their respective F0s. Furthermore, a model of A1 responses using harmonic templates could qualitatively reproduce psychophysical data on concurrent sound segregation in humans. Finally, we identified a possible intracortical homolog of the "object-related negativity" recorded noninvasively in humans, which correlates with the perceptual segregation of concurrent sounds. Findings indicate that A1 contains sufficient spectral and temporal information for segregating concurrent sounds based on differences in pitch.

  18. The temporal relationship between the brainstem and primary cortical auditory evoked potentials.

    Science.gov (United States)

    Shaw, N A

    1995-10-01

    Many methods are employed in order to define more precisely the generators of an evoked potential (EP) waveform. One technique is to compare the timing of an EP whose origin is well established with that of one whose origin is less certain. In the present article, the latency of the primary cortical auditory evoked potential (PCAEP) was compared to each of the seven subcomponents which compose the brainstem auditory evoked potential (BAEP). The data for this comparison was derived from a retrospective analysis of previous recordings of the PCAEP and BAEP. Central auditory conduction time (CACT) was calculated by subtracting the latency of the cochlear nucleus BAEP component (wave III) from that of the PCAEP. It was found that CACT in humans is 12 msec which is more than double that of central somatosensory conduction time. The interpeak latencies between BAEP waves V, VI, and VII and the PCAEP were also calculated. It was deduced that all three waves must have an origin rather more caudally within the central auditory system than is commonly supposed. In addition, it is demonstrated that the early components of the middle latency AEP (No and Na) largely reside within the time domain between the termination of the BAEP components and the PCAEP which would be consistent with their being far field reflections of midbrain and subcortical auditory activity. It is concluded that as the afferent volley ascends the central auditory pathways, it generates not a sequence of high frequency BAEP responses but rather a succession of slower post-synaptic waves. The only means of reconciling the timing of the BAEP waves with that of the PCAEP is to assume that the generation of all the BAEP components must be largely restricted to a quite confined region within the auditory nerve and the lower half of the pons.

  19. Noise-induced cell death in the mouse medial geniculate body and primary auditory cortex.

    Science.gov (United States)

    Basta, Dietmar; Tzschentke, Barbara; Ernst, Arne

    Noise-induced effects within the inner ear have been well investigated for several years. However, this peripheral damage cannot fully explain the audiological symptoms in noise-induced hearing loss (NIHL), e.g. tinnitus, recruitment, reduced speech intelligibility, hyperacusis. There are few reports on central noise effects. Noise can induce an apoptosis of neuronal tissue within the lower auditory pathway. Higher auditory structures (e.g. medial geniculate body, auditory cortex) are characterized by metabolic changes after noise exposure. However, little is known about the microstructural changes of the higher auditory pathway after noise exposure. The present paper was therefore aimed at investigating the cell density in the medial geniculate body (MGB) and the primary auditory cortex (AI) after noise exposure. Normal hearing mice were exposed to noise (10 kHz center frequency at 115 dB SPL for 3 h) at the age of 21 days under anesthesia (Ketamin/Rompun, 10:1). After 1 week, auditory brainstem response recordings (ABR) were performed in noise exposed and normal hearing animals. After fixation, the brain was microdissected and stained (Kluever-Barrera). The cell density in the MGB subdivisions and the AI were determined by counting the cells within a grid. Noise-exposed animals showed a significant ABR threshold shift over the whole frequency range. Cell density was significantly reduced in all subdivisions of the MGB and in layers IV-VI of AI. The present findings demonstrate a significant noise-induced change of the neuronal cytoarchitecture in central key areas of auditory processing. These changes could contribute to the complex psychoacoustic symptoms after NIHL.

  20. Processing of sounds by population spikes in a model of primary auditory cortex

    Directory of Open Access Journals (Sweden)

    Alex Loebel

    2007-10-01

    Full Text Available We propose a model of the primary auditory cortex (A1, in which each iso-frequency column is represented by a recurrent neural network with short-term synaptic depression. Such networks can emit Population Spikes, in which most of the neurons fire synchronously for a short time period. Different columns are interconnected in a way that reflects the tonotopic map in A1, and population spikes can propagate along the map from one column to the next, in a temporally precise manner that depends on the specific input presented to the network. The network, therefore, processes incoming sounds by precise sequences of population spikes that are embedded in a continuous asynchronous activity, with both of these response components carrying information about the inputs and interacting with each other. With these basic characteristics, the model can account for a wide range of experimental findings. We reproduce neuronal frequency tuning curves, whose width depends on the strength of the intracortical inhibitory and excitatory connections. Non-simultaneous two-tone stimuli show forward masking depending on their temporal separation, as well as on the duration of the first stimulus. The model also exhibits non-linear suppressive interactions between sub-threshold tones and broad-band noise inputs, similar to the hypersensitive locking suppression recently demonstrated in auditory cortex.We derive several predictions from the model. In particular, we predict that spontaneous activity in primary auditory cortex gates the temporally locked responses of A1 neurons to auditory stimuli. Spontaneous activity could, therefore, be a mechanism for rapid and reversible modulation of cortical processing.

  1. Directional tunings independent of orientation in the primary visual cortex of the cat

    Institute of Scientific and Technical Information of China (English)

    陈垚; 李兵; 李宝旺; 刁云程

    2001-01-01

    A family of moving ‘random-line' patterns was developed and used to study the directional tuning of 91 single units in cat primary visual cortex (V1). The results suggest that, in addition to the well-known orientation-dependent mechanism, there is also some kind of orientation-independent mechanism underlying the direction selectivity. The directional tuning of the neurons varies in accordance with the increase of orientation or non-orientation element in the stimulus.

  2. Primary goitrous hypothyroidism in a young adult domestic longhair cat: diagnosis and treatment monitoring

    Directory of Open Access Journals (Sweden)

    Mark E Peterson

    2015-11-01

    Full Text Available Case summary Primary goitrous hypothyroidism was diagnosed in a 12-month-old cat examined because of small stature, mental dullness, severe lethargy, generalized weakness and gait abnormalities. Radiographs of the long bones and spine revealed delayed epiphyseal ossification and epiphyseal dysgenesis. Diagnosis of primary hypothyroidism was confirmed by low serum concentrations of total and free thyroxine (T4 with high thyroid-stimulating hormone (TSH concentrations. Thyroid scintigraphy revealed severe enlargement of both thyroid lobes, as evidenced by a seven-fold increase in calculated thyroid volume above the reference interval. In addition, this bilateral goiter had an extremely high radionuclide uptake, about 10-fold higher than the normal feline thyroid gland. Treatment with twice-daily levothyroxine (L-T4, administered on an empty stomach, resulted in increased alertness, playfulness, strength and improvement in gait, as well as an increase in body length and weight. L-T4 replacement also led to normalization of serum thyroid hormone and TSH concentrations, and complete resolution of goiter. Relevance and novel information Spontaneous hypothyroidism is rarely reported in cats, with congenital hypothyroidism in kittens diagnosed most frequently. Despite the fact that this cat was a young adult, it likely had a form of congenital hypothyroidism caused by dyshormonogenesis (defect in thyroid hormone synthesis that led to compensatory development of goiter. In hypothyroid cats, treatment with L-T4 is best given twice daily on an empty stomach to ensure adequate absorption. Normalization of serum TSH and shrinkage of goiter, as well as improvement in clinical signs, is the goal of treatment for cats with goitrous hypothyroidism.

  3. The Feline Mystique: Dispelling the Myth of the Independent Cat.

    Science.gov (United States)

    Soltow, Willow

    1984-01-01

    Describes learning activities about cats for primary and intermediate grades. Primary grade activity subjects include cat behavior, needs, breeds, storybook cats, and celestial cats. Intermediate grade activity subjects include cat history, care, language, literary cats, and cats in art. (BC)

  4. Thalamic activation modulates the responses of neurons in rat primary auditory cortex: an in vivo intracellular recording study.

    Directory of Open Access Journals (Sweden)

    Lei Han

    Full Text Available Auditory cortical plasticity can be induced through various approaches. The medial geniculate body (MGB of the auditory thalamus gates the ascending auditory inputs to the cortex. The thalamocortical system has been proposed to play a critical role in the responses of the auditory cortex (AC. In the present study, we investigated the cellular mechanism of the cortical activity, adopting an in vivo intracellular recording technique, recording from the primary auditory cortex (AI while presenting an acoustic stimulus to the rat and electrically stimulating its MGB. We found that low-frequency stimuli enhanced the amplitudes of sound-evoked excitatory postsynaptic potentials (EPSPs in AI neurons, whereas high-frequency stimuli depressed these auditory responses. The degree of this modulation depended on the intensities of the train stimuli as well as the intervals between the electrical stimulations and their paired sound stimulations. These findings may have implications regarding the basic mechanisms of MGB activation of auditory cortical plasticity and cortical signal processing.

  5. IMPAIRED PROCESSING IN THE PRIMARY AUDITORY CORTEX OF AN ANIMAL MODEL OF AUTISM

    Directory of Open Access Journals (Sweden)

    Renata eAnomal

    2015-11-01

    Full Text Available Autism is a neurodevelopmental disorder clinically characterized by deficits in communication, lack of social interaction and, repetitive behaviors with restricted interests. A number of studies have reported that sensory perception abnormalities are common in autistic individuals and might contribute to the complex behavioral symptoms of the disorder. In this context, hearing incongruence is particularly prevalent. Considering that some of this abnormal processing might stem from the unbalance of inhibitory and excitatory drives in brain circuitries, we used an animal model of autism induced by valproic acid (VPA during pregnancy in order to investigate the tonotopic organization of the primary auditory cortex (AI and its local inhibitory circuitry. Our results show that VPA rats have distorted primary auditory maps with over-representation of high frequencies, broadly tuned receptive fields and higher sound intensity thresholds as compared to controls. However, we did not detect differences in the number of parvalbumin-positive interneurons in AI of VPA and control rats. Altogether our findings show that neurophysiological impairments of hearing perception in this autism model occur independently of alterations in the number of parvalbumin-expressing interneurons. These data support the notion that fine circuit alterations, rather than gross cellular modification, could lead to neurophysiological changes in the autistic brain.

  6. Enhanced peripheral visual processing in congenitally deaf humans is supported by multiple brain regions, including primary auditory cortex.

    Science.gov (United States)

    Scott, Gregory D; Karns, Christina M; Dow, Mark W; Stevens, Courtney; Neville, Helen J

    2014-01-01

    Brain reorganization associated with altered sensory experience clarifies the critical role of neuroplasticity in development. An example is enhanced peripheral visual processing associated with congenital deafness, but the neural systems supporting this have not been fully characterized. A gap in our understanding of deafness-enhanced peripheral vision is the contribution of primary auditory cortex. Previous studies of auditory cortex that use anatomical normalization across participants were limited by inter-subject variability of Heschl's gyrus. In addition to reorganized auditory cortex (cross-modal plasticity), a second gap in our understanding is the contribution of altered modality-specific cortices (visual intramodal plasticity in this case), as well as supramodal and multisensory cortices, especially when target detection is required across contrasts. Here we address these gaps by comparing fMRI signal change for peripheral vs. perifoveal visual stimulation (11-15° vs. 2-7°) in congenitally deaf and hearing participants in a blocked experimental design with two analytical approaches: a Heschl's gyrus region of interest analysis and a whole brain analysis. Our results using individually-defined primary auditory cortex (Heschl's gyrus) indicate that fMRI signal change for more peripheral stimuli was greater than perifoveal in deaf but not in hearing participants. Whole-brain analyses revealed differences between deaf and hearing participants for peripheral vs. perifoveal visual processing in extrastriate visual cortex including primary auditory cortex, MT+/V5, superior-temporal auditory, and multisensory and/or supramodal regions, such as posterior parietal cortex (PPC), frontal eye fields, anterior cingulate, and supplementary eye fields. Overall, these data demonstrate the contribution of neuroplasticity in multiple systems including primary auditory cortex, supramodal, and multisensory regions, to altered visual processing in congenitally deaf adults.

  7. Representation of individual elements of a complex call sequence in primary auditory cortex

    Directory of Open Access Journals (Sweden)

    Mark Nelson Wallace

    2013-10-01

    Full Text Available Conspecific communication calls can be rhythmic or contain extended, discontinuous series of either constant or frequency modulated harmonic tones and noise bursts separated by brief periods of silence. In the guinea pig, rhythmic calls can produce isomorphic responses within the primary auditory cortex (AI where single units respond to every call element. Other calls such as the chutter comprise a series of short irregular syllables that vary in their spectral content and are more like human speech. These calls can also evoke isomorphic responses, but may only do so in fields in the auditory belt and not in AI. Here we present evidence that cells in AI treat the individual elements within a syllable as separate auditory objects and respond selectively to one or a subset of them. We used a single chutter exemplar to compare single/multi-unit responses in the low-frequency portion of AI - AI(LF and the low-frequency part of the thalamic medial geniculate body - MGB(LF in urethane anaesthetised guinea pigs. Both thalamic and cortical cells responded with brief increases in firing rate to one, or more, of the 8 main elements present in the chutter call. Almost none of the units responded to all 8 elements. While there were many different combinations of responses to between one and five of the elements, MBG(LF and AI(LF neurons exhibited the same specific types of response combinations. Nearby units in the upper layers of the cortex tended to respond to similar combinations of elements while the deep layers were less responsive. Thus the responses from a number of AI units would need to be combined in order to represent the entire chutter call. Our results don’t rule out the possibility of constructive convergence but there was no evidence that a convergence of inputs within AI led to a complete representation of all eight elements.

  8. Layer specific sharpening of frequency tuning by selective attention in primary auditory cortex.

    Science.gov (United States)

    O'Connell, Monica Noelle; Barczak, Annamaria; Schroeder, Charles E; Lakatos, Peter

    2014-12-03

    Recent electrophysiological and neuroimaging studies provide converging evidence that attending to sounds increases the response selectivity of neuronal ensembles even at the first cortical stage of auditory stimulus processing in primary auditory cortex (A1). This is achieved by enhancement of responses in the regions that process attended frequency content, and by suppression of responses in the surrounding regions. The goals of our study were to define the extent to which A1 neuronal ensembles are involved in this process, determine its effect on the frequency tuning of A1 neuronal ensembles, and examine the involvement of the different cortical layers. To accomplish these, we analyzed laminar profiles of synaptic activity and action potentials recorded in A1 of macaques performing a rhythmic intermodal selective attention task. We found that the frequency tuning of neuronal ensembles was sharpened due to both increased gain at the preferentially processed or best frequency and increased response suppression at all other frequencies when auditory stimuli were attended. Our results suggest that these effects are due to a frequency-specific counterphase entrainment of ongoing delta oscillations, which predictively orchestrates opposite sign excitability changes across all of A1. This results in a net suppressive effect due to the large proportion of neuronal ensembles that do not specifically process the attended frequency content. Furthermore, analysis of laminar activation profiles revealed that although attention-related suppressive effects predominate the responses of supragranular neuronal ensembles, response enhancement is dominant in the granular and infragranular layers, providing evidence for layer-specific cortical operations in attentive stimulus processing.

  9. Global dynamics of selective attention and its lapses in primary auditory cortex.

    Science.gov (United States)

    Lakatos, Peter; Barczak, Annamaria; Neymotin, Samuel A; McGinnis, Tammy; Ross, Deborah; Javitt, Daniel C; O'Connell, Monica Noelle

    2016-12-01

    Previous research demonstrated that while selectively attending to relevant aspects of the external world, the brain extracts pertinent information by aligning its neuronal oscillations to key time points of stimuli or their sampling by sensory organs. This alignment mechanism is termed oscillatory entrainment. We investigated the global, long-timescale dynamics of this mechanism in the primary auditory cortex of nonhuman primates, and hypothesized that lapses of entrainment would correspond to lapses of attention. By examining electrophysiological and behavioral measures, we observed that besides the lack of entrainment by external stimuli, attentional lapses were also characterized by high-amplitude alpha oscillations, with alpha frequency structuring of neuronal ensemble and single-unit operations. Entrainment and alpha-oscillation-dominated periods were strongly anticorrelated and fluctuated rhythmically at an ultra-slow rate. Our results indicate that these two distinct brain states represent externally versus internally oriented computational resources engaged by large-scale task-positive and task-negative functional networks.

  10. Associative learning shapes the neural code for stimulus magnitude in primary auditory cortex.

    Science.gov (United States)

    Polley, Daniel B; Heiser, Marc A; Blake, David T; Schreiner, Christoph E; Merzenich, Michael M

    2004-11-16

    Since the dawn of experimental psychology, researchers have sought an understanding of the fundamental relationship between the amplitude of sensory stimuli and the magnitudes of their perceptual representations. Contemporary theories support the view that magnitude is encoded by a linear increase in firing rate established in the primary afferent pathways. In the present study, we have investigated sound intensity coding in the rat primary auditory cortex (AI) and describe its plasticity by following paired stimulus reinforcement and instrumental conditioning paradigms. In trained animals, population-response strengths in AI became more strongly nonlinear with increasing stimulus intensity. Individual AI responses became selective to more restricted ranges of sound intensities and, as a population, represented a broader range of preferred sound levels. These experiments demonstrate that the representation of stimulus magnitude can be powerfully reshaped by associative learning processes and suggest that the code for sound intensity within AI can be derived from intensity-tuned neurons that change, rather than simply increase, their firing rates in proportion to increases in sound intensity.

  11. The First Estimates of Marbled Cat Pardofelis marmorata Population Density from Bornean Primary and Selectively Logged Forest.

    Directory of Open Access Journals (Sweden)

    Andrew J Hearn

    Full Text Available The marbled cat Pardofelis marmorata is a poorly known wild cat that has a broad distribution across much of the Indomalayan ecorealm. This felid is thought to exist at low population densities throughout its range, yet no estimates of its abundance exist, hampering assessment of its conservation status. To investigate the distribution and abundance of marbled cats we conducted intensive, felid-focused camera trap surveys of eight forest areas and two oil palm plantations in Sabah, Malaysian Borneo. Study sites were broadly representative of the range of habitat types and the gradient of anthropogenic disturbance and fragmentation present in contemporary Sabah. We recorded marbled cats from all forest study areas apart from a small, relatively isolated forest patch, although photographic detection frequency varied greatly between areas. No marbled cats were recorded within the plantations, but a single individual was recorded walking along the forest/plantation boundary. We collected sufficient numbers of marbled cat photographic captures at three study areas to permit density estimation based on spatially explicit capture-recapture analyses. Estimates of population density from the primary, lowland Danum Valley Conservation Area and primary upland, Tawau Hills Park, were 19.57 (SD: 8.36 and 7.10 (SD: 1.90 individuals per 100 km2, respectively, and the selectively logged, lowland Tabin Wildlife Reserve yielded an estimated density of 10.45 (SD: 3.38 individuals per 100 km2. The low detection frequencies recorded in our other survey sites and from published studies elsewhere in its range, and the absence of previous density estimates for this felid suggest that our density estimates may be from the higher end of their abundance spectrum. We provide recommendations for future marbled cat survey approaches.

  12. Temporal overlaps of feral cats with prey and competitors in primary and human-altered habitats on Bohol Island, Philippines.

    Science.gov (United States)

    Bogdan, Vlastimil; Jůnek, Tomáš; Jůnková Vymyslická, Pavla

    2016-01-01

    The vertebrate fauna of the Philippines, known for its diversity and high proportion of endemic species, comprises mainly small- to medium-sized forms with a few large exceptions. As with other tropical ecosystems, the major threats to wildlife are habitat loss, hunting and invasive species, of which the feral cat (Felis catus) is considered the most damaging. Our camera-trapping study focused on a terrestrial vertebrate species inventory on Bohol Island and tempo-spatial co-occurrences of feral cats with their prey and competitors. The survey took place in the Rajah Sikatuna Protected Landscape, and we examined the primary rainforest, its border with agricultural land, and rural areas in the vicinity of villages. Altogether, over 2,885 trap days we captured 30 species of vertebrates-10 mammals (including Sus philippensis), 19 birds and one reptile, Varanus cumingi. We trapped 81.8% of expected vertebrates. Based on the number of events, the most frequent native species was the barred rail (Gallirallus torquatus). The highest overlap in diel activity between cats and potential prey was recorded with rodents in rural areas (Δ = 0.62); the lowest was in the same habitat with ground-dwelling birds (Δ = 0.40). Cat activity was not recorded inside the rainforest; in other habitats their diel activity pattern differed. The cats' activity declined in daylight in the proximity of humans, while it peaked at the transition zone between rainforest and fields. Both rodents and ground-dwelling birds exhibited a shift in activity levels between sites where cats were present or absent. Rodents tend to become active by day in cat-free habitats. No cats' temporal response to co-occurrences of civets (Paradoxurus hermaphroditus and Viverra tangalunga) was found but cats in diel activity avoided domestic dogs (Canis lupus familiaris). Our first insight into the ecology of this invasive predator in the Philippines revealed an avoidance of homogeneous primary rainforest and a

  13. Effect of Contrast on Visual Spatial Summation in Different Cell Categories in Cat Primary Visual Cortex.

    Directory of Open Access Journals (Sweden)

    Ke Chen

    Full Text Available Multiple cell classes have been found in the primary visual cortex, but the relationship between cell types and spatial summation has seldom been studied. Parvalbumin-expressing inhibitory interneurons can be distinguished from pyramidal neurons based on their briefer action potential durations. In this study, we classified V1 cells into fast-spiking units (FSUs and regular-spiking units (RSUs and then examined spatial summation at high and low contrast. Our results revealed that the excitatory classical receptive field and the suppressive non-classical receptive field expanded at low contrast for both FSUs and RSUs, but the expansion was more marked for the RSUs than for the FSUs. For most V1 neurons, surround suppression varied as the contrast changed from high to low. However, FSUs exhibited no significant difference in the strength of suppression between high and low contrast, although the overall suppression decreased significantly at low contrast for the RSUs. Our results suggest that the modulation of spatial summation by stimulus contrast differs across populations of neurons in the cat primary visual cortex.

  14. Asynchronous inputs alter excitability, spike timing, and topography in primary auditory cortex.

    Science.gov (United States)

    Pandya, Pritesh K; Moucha, Raluca; Engineer, Navzer D; Rathbun, Daniel L; Vazquez, Jessica; Kilgard, Michael P

    2005-05-01

    Correlation-based synaptic plasticity provides a potential cellular mechanism for learning and memory. Studies in the visual and somatosensory systems have shown that behavioral and surgical manipulation of sensory inputs leads to changes in cortical organization that are consistent with the operation of these learning rules. In this study, we examine how the organization of primary auditory cortex (A1) is altered by tones designed to decrease the average input correlation across the frequency map. After one month of separately pairing nucleus basalis stimulation with 2 and 14 kHz tones, a greater proportion of A1 neurons responded to frequencies below 2 kHz and above 14 kHz. Despite the expanded representation of these tones, cortical excitability was specifically reduced in the high and low frequency regions of A1, as evidenced by increased neural thresholds and decreased response strength. In contrast, in the frequency region between the two paired tones, driven rates were unaffected and spontaneous firing rate was increased. Neural response latencies were increased across the frequency map when nucleus basalis stimulation was associated with asynchronous activation of the high and low frequency regions of A1. This set of changes did not occur when pulsed noise bursts were paired with nucleus basalis stimulation. These results are consistent with earlier observations that sensory input statistics can shape cortical map organization and spike timing.

  15. Spike-frequency adaptation generates intensity invariance in a primary auditory interneuron.

    Science.gov (United States)

    Benda, Jan; Hennig, R Matthias

    2008-04-01

    Adaptation of the spike-frequency response to constant stimulation, as observed on various timescales in many neurons, reflects high-pass filter properties of a neuron's transfer function. Adaptation in general, however, is not sufficient to make a neuron's response independent of the mean intensity of a sensory stimulus, since low frequency components of the stimulus are still transmitted, although with reduced gain. We here show, based on an analytically tractable model, that the response of a neuron is intensity invariant, if the fully adapted steady-state spike-frequency response to constant stimuli is independent of stimulus intensity. Electrophysiological recordings from the AN1, a primary auditory interneuron of crickets, show that for intensities above 60 dB SPL (sound pressure level) the AN1 adapted with a time-constant of approximately 40 ms to a steady-state firing rate of approximately 100 Hz. Using identical random amplitude-modulation stimuli we verified that the AN1's spike-frequency response is indeed invariant to the stimulus' mean intensity above 60 dB SPL. The transfer function of the AN1 is a band pass, resulting from a high-pass filter (cutoff frequency at 4 Hz) due to adaptation and a low-pass filter (100 Hz) determined by the steady-state spike frequency. Thus, fast spike-frequency adaptation can generate intensity invariance already at the first level of neural processing.

  16. Effects of parietal TMS on visual and auditory processing at the primary cortical level -- a concurrent TMS-fMRI study.

    Science.gov (United States)

    Leitão, Joana; Thielscher, Axel; Werner, Sebastian; Pohmann, Rolf; Noppeney, Uta

    2013-04-01

    Accumulating evidence suggests that multisensory interactions emerge already at the primary cortical level. Specifically, auditory inputs were shown to suppress activations in visual cortices when presented alone but amplify the blood oxygen level-dependent (BOLD) responses to concurrent visual inputs (and vice versa). This concurrent transcranial magnetic stimulation-functional magnetic resonance imaging (TMS-fMRI) study applied repetitive TMS trains at no, low, and high intensity over right intraparietal sulcus (IPS) and vertex to investigate top-down influences on visual and auditory cortices under 3 sensory contexts: visual, auditory, and no stimulation. IPS-TMS increased activations in auditory cortices irrespective of sensory context as a result of direct and nonspecific auditory TMS side effects. In contrast, IPS-TMS modulated activations in the visual cortex in a state-dependent fashion: it deactivated the visual cortex under no and auditory stimulation but amplified the BOLD response to visual stimulation. However, only the response amplification to visual stimulation was selective for IPS-TMS, while the deactivations observed for IPS- and Vertex-TMS resulted from crossmodal deactivations induced by auditory activity to TMS sounds. TMS to IPS may increase the responses in visual (or auditory) cortices to visual (or auditory) stimulation via a gain control mechanism or crossmodal interactions. Collectively, our results demonstrate that understanding TMS effects on (uni)sensory processing requires a multisensory perspective.

  17. Surround modulation characteristics of local field potential and spiking activity in primary visual cortex of cat.

    Directory of Open Access Journals (Sweden)

    Li Zhang

    Full Text Available In primary visual cortex, spiking activity that evoked by stimulus confined in receptive field can be modulated by surround stimulus. This center-surround interaction is hypothesized to be the basis of visual feature integration and segregation. Spiking output has been extensively reported to be surround suppressive. However, less is known about the modulation properties of the local field potential (LFP, which generally reflects synaptic inputs. We simultaneously recorded spiking activity and LFP in the area 17 of anesthetized cats to examine and compare their modulation characteristics. When the stimulus went beyond the classical receptive field, LFP exhibited decreased power along the gamma band (30-100 Hz in most of our recording sites. Further investigation revealed that suppression of the LFP gamma mean power (gLFP depended on the angle between the center and surround orientations. The strongest suppression was induced when center and surround orientations were parallel. Moreover, the surround influence of the gLFP exhibited an asymmetric spatial organization. These results demonstrate that the gLFP has similar but not identical surround modulation properties, as compared to the spiking activity. The spatiotemporal integration of LFP implies that the oscillation and synchronization of local synaptic inputs may have important functions in surround modulation.

  18. Age-Related Deterioration of Perineuronal Nets in the Primary Auditory Cortex of Mice

    Directory of Open Access Journals (Sweden)

    Dustin H Brewton

    2016-11-01

    Full Text Available Age-related changes in inhibitory neurotransmission in sensory cortex may underlie deficits in sensory function. Perineuronal nets (PNNs are extracellular matrix components that ensheath some inhibitory neurons, particularly parvalbumin positive (PV+ interneurons. PNNs may protect PV+ cells from oxidative stress and help establish their rapid spiking properties. Although PNN expression has been well characterized during development, possible changes in aging sensory cortex have not been investigated. Here we tested the hypothesis that PNN+, PV+ and PV/PNN co-localized cell densities decline with age in the primary auditory cortex (A1. This hypothesis was tested using immunohistochemistry in two strains of mice (C57BL/6 and CBA/CaJ with different susceptibility to age-related hearing loss and at three different age ranges (1-3, 6-8 and 14-24 months old. We report that PNN+ and PV/PNN co-localized cell densities decline significantly with age in A1 in both mouse strains. In the PNN+ cells that remain in the old group, the intensity of PNN staining is reduced in the C57 strain, but not the CBA strain. PV+ cell density also declines only in the C57, but not the CBA, mouse suggesting a potential exacerbation of age-effects by hearing loss in the PV/PNN system. Taken together, these data suggest that PNN deterioration may be a key component of altered inhibition in the aging sensory cortex, that may lead to altered synaptic function, susceptibility to oxidative stress and processing deficits.

  19. Absolute Depth Sensitivity in Cat Primary Visual Cortex under Natural Viewing Conditions.

    Science.gov (United States)

    Pigarev, Ivan N; Levichkina, Ekaterina V

    2016-01-01

    Mechanisms of 3D perception, investigated in many laboratories, have defined depth either relative to the fixation plane or to other objects in the visual scene. It is obvious that for efficient perception of the 3D world, additional mechanisms of depth constancy could operate in the visual system to provide information about absolute distance. Neurons with properties reflecting some features of depth constancy have been described in the parietal and extrastriate occipital cortical areas. It has also been shown that, for some neurons in the visual area V1, responses to stimuli of constant angular size differ at close and remote distances. The present study was designed to investigate whether, in natural free gaze viewing conditions, neurons tuned to absolute depths can be found in the primary visual cortex (area V1). Single-unit extracellular activity was recorded from the visual cortex of waking cats sitting on a trolley in front of a large screen. The trolley was slowly approaching the visual scene, which consisted of stationary sinusoidal gratings of optimal orientation rear-projected over the whole surface of the screen. Each neuron was tested with two gratings, with spatial frequency of one grating being twice as high as that of the other. Assuming that a cell is tuned to a spatial frequency, its maximum response to the grating with a spatial frequency twice as high should be shifted to a distance half way closer to the screen in order to attain the same size of retinal projection. For hypothetical neurons selective to absolute depth, location of the maximum response should remain at the same distance irrespective of the type of stimulus. It was found that about 20% of neurons in our experimental paradigm demonstrated sensitivity to particular distances independently of the spatial frequencies of the gratings. We interpret these findings as an indication of the use of absolute depth information in the primary visual cortex.

  20. Effects of parietal TMS on visual and auditory processing at the primary cortical level -- a concurrent TMS-fMRI study

    DEFF Research Database (Denmark)

    Leitão, Joana; Thielscher, Axel; Werner, Sebastian

    2013-01-01

    cortices under 3 sensory contexts: visual, auditory, and no stimulation. IPS-TMS increased activations in auditory cortices irrespective of sensory context as a result of direct and nonspecific auditory TMS side effects. In contrast, IPS-TMS modulated activations in the visual cortex in a state......-dependent fashion: it deactivated the visual cortex under no and auditory stimulation but amplified the BOLD response to visual stimulation. However, only the response amplification to visual stimulation was selective for IPS-TMS, while the deactivations observed for IPS- and Vertex-TMS resulted from crossmodal......Accumulating evidence suggests that multisensory interactions emerge already at the primary cortical level. Specifically, auditory inputs were shown to suppress activations in visual cortices when presented alone but amplify the blood oxygen level-dependent (BOLD) responses to concurrent visual...

  1. Distortion product otoacoustic emissions in young adult and geriatric cats.

    Science.gov (United States)

    Strain, George M; McGee, Kain A

    2017-03-01

    Recordings of distortion product otoacoustic emissions (DPOAEs) were taken from 15 geriatric cats (mean age ± standard deviation, SD, 13.6 ± 2.7 years; range 10.2-19.4 years) and 12 young adult control cats (mean ± SD 4.6 ± 0.5 years; range 3.4-5 years) to identify frequency-specific age-related changes in cochlear responses. Recordings were performed for primary frequencies from 2 to 12 kHz in 2 kHz increments. Cats were considered to be geriatric > 11.9 ± 1.9 years of age. Brainstem auditory evoked response (BAER) recordings were also made for subjective comparison with DPOAE responses. No differences in DPOAE response amplitudes were observed at any tested frequency in geriatric cats compared to control cats, reflecting an apparent absence of loss of cochlear outer hair cells along the length of the cochlea. No linear regression relationships were found for DPOAE response amplitude versus age in geriatric cats, despite the progressive nature of age-related hearing loss in other species. The absence of reductions in response at any of the tested frequencies in cats within the age span where cats are considered to be geriatric indicates that age-related hearing loss, if it does develop in cats, begins later in the life span of cats than in dogs or human beings.

  2. Temporal overlaps of feral cats with prey and competitors in primary and human-altered habitats on Bohol Island, Philippines

    Directory of Open Access Journals (Sweden)

    Vlastimil Bogdan

    2016-08-01

    Full Text Available The vertebrate fauna of the Philippines, known for its diversity and high proportion of endemic species, comprises mainly small- to medium-sized forms with a few large exceptions. As with other tropical ecosystems, the major threats to wildlife are habitat loss, hunting and invasive species, of which the feral cat (Felis catus is considered the most damaging. Our camera-trapping study focused on a terrestrial vertebrate species inventory on Bohol Island and tempo-spatial co-occurrences of feral cats with their prey and competitors. The survey took place in the Rajah Sikatuna Protected Landscape, and we examined the primary rainforest, its border with agricultural land, and rural areas in the vicinity of villages. Altogether, over 2,885 trap days we captured 30 species of vertebrates–10 mammals (including Sus philippensis, 19 birds and one reptile, Varanus cumingi. We trapped 81.8% of expected vertebrates. Based on the number of events, the most frequent native species was the barred rail (Gallirallus torquatus. The highest overlap in diel activity between cats and potential prey was recorded with rodents in rural areas (Δ = 0.62; the lowest was in the same habitat with ground-dwelling birds (Δ = 0.40. Cat activity was not recorded inside the rainforest; in other habitats their diel activity pattern differed. The cats’ activity declined in daylight in the proximity of humans, while it peaked at the transition zone between rainforest and fields. Both rodents and ground-dwelling birds exhibited a shift in activity levels between sites where cats were present or absent. Rodents tend to become active by day in cat-free habitats. No cats’ temporal response to co-occurrences of civets (Paradoxurus hermaphroditus and Viverra tangalunga was found but cats in diel activity avoided domestic dogs (Canis lupus familiaris. Our first insight into the ecology of this invasive predator in the Philippines revealed an avoidance of homogeneous primary

  3. Bimodal stimulus timing-dependent plasticity in primary auditory cortex is altered after noise exposure with and without tinnitus.

    Science.gov (United States)

    Basura, Gregory J; Koehler, Seth D; Shore, Susan E

    2015-12-01

    Central auditory circuits are influenced by the somatosensory system, a relationship that may underlie tinnitus generation. In the guinea pig dorsal cochlear nucleus (DCN), pairing spinal trigeminal nucleus (Sp5) stimulation with tones at specific intervals and orders facilitated or suppressed subsequent tone-evoked neural responses, reflecting spike timing-dependent plasticity (STDP). Furthermore, after noise-induced tinnitus, bimodal responses in DCN were shifted from Hebbian to anti-Hebbian timing rules with less discrete temporal windows, suggesting a role for bimodal plasticity in tinnitus. Here, we aimed to determine if multisensory STDP principles like those in DCN also exist in primary auditory cortex (A1), and whether they change following noise-induced tinnitus. Tone-evoked and spontaneous neural responses were recorded before and 15 min after bimodal stimulation in which the intervals and orders of auditory-somatosensory stimuli were randomized. Tone-evoked and spontaneous firing rates were influenced by the interval and order of the bimodal stimuli, and in sham-controls Hebbian-like timing rules predominated as was seen in DCN. In noise-exposed animals with and without tinnitus, timing rules shifted away from those found in sham-controls to more anti-Hebbian rules. Only those animals with evidence of tinnitus showed increased spontaneous firing rates, a purported neurophysiological correlate of tinnitus in A1. Together, these findings suggest that bimodal plasticity is also evident in A1 following noise damage and may have implications for tinnitus generation and therapeutic intervention across the central auditory circuit.

  4. Fine Tuning: An Auditory-Visual Training Program. Book One: Primary-Intermediate Level.

    Science.gov (United States)

    Barsch, Ray

    This book offers a number of exercises to develop students' listening skills. The exercises consist of number or letter grid worksheets on which a graphic design or a message emerges when students follow a sequence of specific directions requiring careful listening and auditory-visual coordination. Preliminary information includes an introduction,…

  5. Cross-Modal Plasticity Results in Increased Inhibition in Primary Auditory Cortical Areas

    Directory of Open Access Journals (Sweden)

    Yu-Ting Mao

    2013-01-01

    Full Text Available Loss of sensory input from peripheral organ damage, sensory deprivation, or brain damage can result in adaptive or maladaptive changes in sensory cortex. In previous research, we found that auditory cortical tuning and tonotopy were impaired by cross-modal invasion of visual inputs. Sensory deprivation is typically associated with a loss of inhibition. To determine whether inhibitory plasticity is responsible for this process, we measured pre- and postsynaptic changes in inhibitory connectivity in ferret auditory cortex (AC after cross-modal plasticity. We found that blocking GABAA receptors increased responsiveness and broadened sound frequency tuning in the cross-modal group more than in the normal group. Furthermore, expression levels of glutamic acid decarboxylase (GAD protein were increased in the cross-modal group. We also found that blocking inhibition unmasked visual responses of some auditory neurons in cross-modal AC. Overall, our data suggest a role for increased inhibition in reducing the effectiveness of the abnormal visual inputs and argue that decreased inhibition is not responsible for compromised auditory cortical function after cross-modal invasion. Our findings imply that inhibitory plasticity may play a role in reorganizing sensory cortex after cross-modal invasion, suggesting clinical strategies for recovery after brain injury or sensory deprivation.

  6. Primary identification, biochemical characterization, and immunologic properties of the allergenic pollen cyclophilin cat R 1.

    Science.gov (United States)

    Ghosh, Debajyoti; Mueller, Geoffrey A; Schramm, Gabriele; Edwards, Lori L; Petersen, Arnd; London, Robert E; Haas, Helmut; Gupta Bhattacharya, Swati

    2014-08-01

    Cyclophilin (Cyp) allergens are considered pan-allergens due to frequently reported cross-reactivity. In addition to well studied fungal Cyps, a number of plant Cyps were identified as allergens (e.g. Bet v 7 from birch pollen, Cat r 1 from periwinkle pollen). However, there are conflicting data regarding their antigenic/allergenic cross-reactivity, with no plant Cyp allergen structures available for comparison. Because amino acid residues are fairly conserved between plant and fungal Cyps, it is particularly interesting to check whether they can cross-react. Cat r 1 was identified by immunoblotting using allergic patients' sera followed by N-terminal sequencing. Cat r 1 (∼ 91% sequence identity to Bet v 7) was cloned from a cDNA library and expressed in Escherichia coli. Recombinant Cat r 1 was utilized to confirm peptidyl-prolyl cis-trans-isomerase (PPIase) activity by a PPIase assay and the allergenic property by an IgE-specific immunoblotting and rat basophil leukemia cell (RBL-SX38) mediator release assay. Inhibition-ELISA showed cross-reactive binding of serum IgE from Cat r 1-allergic individuals to fungal allergenic Cyps Asp f 11 and Mala s 6. The molecular structure of Cat r 1 was determined by NMR spectroscopy. The antigenic surface was examined in relation to its plant, animal, and fungal homologues. The structure revealed a typical cyclophilin fold consisting of a compact β-barrel made up of seven anti-parallel β-strands along with two surrounding α-helices. This is the first structure of an allergenic plant Cyp revealing high conservation of the antigenic surface particularly near the PPIase active site, which supports the pronounced cross-reactivity among Cyps from various sources.

  7. Ultrastructure of pacinian corpuscle primary afferent terminals in the cat spinal cord.

    Science.gov (United States)

    Semba, K; Masarachia, P; Malamed, S; Jacquin, M; Harris, S; Egger, M D

    1984-06-04

    The glabrous skin of the hindlimb of the cat contains 3 types of low-threshold mechanoreceptors: Pacinian corpuscles (PC), and slowly and rapidly adapting receptors. In the present study, 12 primary afferent fibers transmitting impulses from PC were injected intra-axonally with horseradish peroxidase (HRP) in the spinal cord to examine the morphology of their terminals in the dorsal horn. At the light microscopic level, terminal arborizations were observed in laminae II-VI of the dorsal horn, extending up to 7 mm rostrocaudally in and near the seventh lumbar segment. Bouton-like swellings, predominantly (67%) of the en passant type, were distributed in two discrete clusters, one concentrated rostrally in Rexed's laminae III-IV, and the other concentrated caudally in lamina V. At the electron microscopic level, a combination of morphometric and serial reconstructive analyses with 3 fibers revealed the following. Boutons labelled with HRP invariably contained clear round vesicles, approximately 40 nm in diameter. Labelled bouton sections had longest dimensions of 1.84 +/- 0.63 micron. Their shapes varied from rounded to elongated forms with occasional scalloped appearances. A majority (73%) of the contacts associated with HRP-filled boutons were made with dendritic spines and shafts. Thick postsynaptic densities were usually associated with these synapses, although thinner densities were also observed. 24% of the contacts made by labelled boutons were synapse-like contacts with unlabelled vesicle-containing structures. The vesicles in the unlabelled structures were usually pleomorphic, but sometimes round. These contacts were identified as 'synapse-like' because labelling obscured possible landmarks necessary for definitive identification of synapses. However, in most of these contacts, there was an accumulation of vesicles near the cleft on the unlabelled side, suggesting that the labelled boutons were postsynaptic. Only 3% of the contacts made by labelled boutons

  8. Pacemaker activity in a sensory ending with multiple encoding sites : The cat muscle spindle primary ending

    NARCIS (Netherlands)

    Banks, RW; Hulliger, M; Scheepstra, KA; Otten, E

    1997-01-01

    1. A combined physiological, histological and computer modelling study was carried out on muscle spindles of the cat tenuissimus muscle to examine whether there was any correlation between the functional interaction of putative encoding sites, operated separately by static and dynamic fusimotor neur

  9. Directional tunings independent of orientation in the primary visual cortex of the cat

    Institute of Scientific and Technical Information of China (English)

    CHEN; Yao(

    2001-01-01

    [1]Movshon. J. A., Adelson, E. H., Gizzi, M. S. et al., The analysis of moving visual patterns, in Pattern Recognition Mechanisms (eds. Chagas, C., Gattass, R., Gross, C. G.), Vatican City: Ponticifica Academia Scientiarum, 1985, 117-151.[2]Gizzi. M. S., Katz, E., Schumer, R. A. et al., Selectivity for orientation and direction of motion of single neurons in cat striate and extrastriate visual cortex, J. Neurophysiol., 1990, 63: 1529-1543.[3]Nakayama, K., Silverman, G. H., The aperture problem. Ⅱ. Spatial integration of velocity information along contours, Vision Res., 1988, 28: 747-753.[4]Rubin. N., Hochstein, S., Solomon, S., Restricted ability to recover three-dimensional global motion from one-dimensional motion signals: Psychophysical observations, Vision Res., 1995, 35: 463-476.[5]Wang. Y., Wang, L., Li, B. et al., How is direction selectivity organized in the extrastriate visual area PMLS of the cat?Neuroreport, 1995, 63: 1969-1974.[6]Li, B., Wang, L, Wang, Y. et al,, Orientational and directional selectivities of visual neurons in the superior colliculus of the cat. Science in China, Ser. C, 1996, 39 (2): 123-132.[7]Hubel, D. H., Wiesel, T N., Receptive fields, binocular interaction and functional architecture in the cat's visual cortex, J.Physiol. (London), 1962, 168: 106-154.[8]Casanova, C., Savard, T., Nordmann, J. P. et al., Comparison of the responses to moving texture patterns of simple and complex cells in the cat's area 17, J. Neurophysiol., 1995, 74: 1271-1286.[9]Yang, J. K., Qi, X. L., Modem Biological Statistics (in Chinese), Hefei: Anhui Educational Publication, 1985, 160-215.[10]Shipp, S., Grant, S., Organization of reciprocal connections between area 17 and the lateral suprasylvian area of cat visual cortex, Visual Neurosci., 1991, 6: 339-355.[11]Albright, T. D., Stoner, G. R., Visual motion perception, Proc. Natl. Acad. Sci. USA, 1995, 92: 2433-2440.[12]Hammond, R, MacKay, D. M

  10. Trajectory of the main GABAergic interneuron populations from early development to old age in the rat primary auditory cortex

    Directory of Open Access Journals (Sweden)

    Lydia eOuellet

    2014-06-01

    Full Text Available In both humans and rodents, decline in cognitive function is a hallmark of the aging process, the basis for this decrease has yet to be fully characterized. However, using aged rodent models, deficits in auditory processing have been associated with significant decreases in inhibitory signaling attributed to a loss of GABAergic interneurons. Not only are these interneurons crucial for pattern detection and other large-scale population dynamics, but they have also been linked to mechanisms mediating plasticity and learning, making them a prime candidate for study and modelling of modifications to cortical communication pathways in neurodegenerative diseases. Using the rat primary auditory cortex (A1 as a model, we probed the known markers of GABAergic interneurons with immunohistological methods, using antibodies against gamma aminobutyric acid (GABA, parvalbumin (PV, somatostatin (SOM, calretinin (CR, vasoactive intestinal peptide (VIP, choline acetyltransferase (ChAT, neuropeptide Y (NPY and cholecystokinin (CCK to document the changes observed in interneuron populations across the rat’s lifespan. This analysis provided strong evidence that several but not all GABAergic neurons were affected by the aging process, showing most dramatic changes in expression of parvalbumin (PV and somatostatin (SOM expression. With this evidence, we show how understanding these trajectories of cell counts may be factored into a simple model to quantify changes in inhibitory signalling across the course of life, which may be applied as a framework for creating more advanced simulations of interneuronal implication in normal cerebral processing, normal aging, or pathological processes.

  11. Cortical inhibition reduces information redundancy at presentation of communication sounds in the primary auditory cortex.

    Science.gov (United States)

    Gaucher, Quentin; Huetz, Chloé; Gourévitch, Boris; Edeline, Jean-Marc

    2013-06-26

    In all sensory modalities, intracortical inhibition shapes the functional properties of cortical neurons but also influences the responses to natural stimuli. Studies performed in various species have revealed that auditory cortex neurons respond to conspecific vocalizations by temporal spike patterns displaying a high trial-to-trial reliability, which might result from precise timing between excitation and inhibition. Studying the guinea pig auditory cortex, we show that partial blockage of GABAA receptors by gabazine (GBZ) application (10 μm, a concentration that promotes expansion of cortical receptive fields) increased the evoked firing rate and the spike-timing reliability during presentation of communication sounds (conspecific and heterospecific vocalizations), whereas GABAB receptor antagonists [10 μm saclofen; 10-50 μm CGP55845 (p-3-aminopropyl-p-diethoxymethyl phosphoric acid)] had nonsignificant effects. Computing mutual information (MI) from the responses to vocalizations using either the evoked firing rate or the temporal spike patterns revealed that GBZ application increased the MI derived from the activity of single cortical site but did not change the MI derived from population activity. In addition, quantification of information redundancy showed that GBZ significantly increased redundancy at the population level. This result suggests that a potential role of intracortical inhibition is to reduce information redundancy during the processing of natural stimuli.

  12. The Effect of Visual and Auditory Enhancements on Excitability of the Primary Motor Cortex during Motor Imagery: A Pilot Study

    Science.gov (United States)

    Ikeda, Kohei; Higashi, Toshio; Sugawara, Kenichi; Tomori, Kounosuke; Kinoshita, Hiroshi; Kasai, Tatsuya

    2012-01-01

    The effect of visual and auditory enhancements of finger movement on corticospinal excitability during motor imagery (MI) was investigated using the transcranial magnetic stimulation technique. Motor-evoked potentials were elicited from the abductor digit minimi muscle during MI with auditory, visual and, auditory and visual information, and no…

  13. The Effects of Aircraft Noise on the Auditory Language Processing Abilities of English First Language Primary School Learners in Durban, South Africa

    Science.gov (United States)

    Hollander, Cara; de Andrade, Victor Manuel

    2014-01-01

    Schools located near to airports are exposed to high levels of noise which can cause cognitive, health, and hearing problems. Therefore, this study sought to explore whether this noise may cause auditory language processing (ALP) problems in primary school learners. Sixty-one children attending schools exposed to high levels of noise were matched…

  14. Characterizing contrast adaptation in a population of cat primary visual cortical neurons using Fisher information.

    Science.gov (United States)

    Durant, Szonya; Clifford, Colin W G; Crowder, Nathan A; Price, Nicholas S C; Ibbotson, Michael R

    2007-06-01

    When cat V1/V2 cells are adapted to contrast at their optimal orientation, a reduction in gain and/or a shift in the contrast response function is found. We investigated how these factors combine at the population level to affect the accuracy for detecting variations in contrast. Using the contrast response function parameters from a physiologically measured population, we model the population accuracy (using Fisher information) for contrast discrimination. Adaptation at 16%, 32%, and 100% contrast causes a shift in peak accuracy. Despite an overall drop in firing rate over the whole population, accuracy is enhanced around the adapted contrast and at higher contrasts, leading to greater efficiency of contrast coding at these levels. The estimated contrast discrimination threshold curve becomes elevated and shifted toward higher contrasts after adaptation, as has been found previously in human psychophysical experiments.

  15. Firing frequency and entrainment maintained in primary auditory neurons in the presence of combined BDNF and NT3.

    Science.gov (United States)

    Wright, Tess; Gillespie, Lisa N; O'Leary, Stephen J; Needham, Karina

    2016-06-23

    Primary auditory neurons rely on neurotrophic factors for development and survival. We previously determined that exposure to brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3) alters the activity of hyperpolarization-activated currents (Ih) in this neuronal population. Since potassium channels are sensitive to neurotrophins, and changes in Ih are often accompanied by a shift in voltage-gated potassium currents (IK), this study examined IK with exposure to both BDNF and NT3 and the impact on firing entrainment during high frequency pulse trains. Whole-cell patch-clamp recordings revealed significant changes in action potential latency and duration, but no change in firing adaptation or total outward IK. Dendrotoxin-I (DTX-I), targeting voltage-gated potassium channel subunits KV1.1 and KV1.2, uncovered an increase in the contribution of DTX-I sensitive currents with exposure to neurotrophins. No difference in Phrixotoxin-1 (PaTX-1) sensitive currents, mediated by KV4.2 and KV4.3 subunits, was observed. Further, no difference was seen in firing entrainment. These results show that combined BDNF and NT3 exposure influences the contribution of KV1.1 and KV1.2 to the low voltage-activated potassium current (IKL). Whilst this is accompanied by a shift in spike latency and duration, both firing frequency and entrainment to high frequency pulse trains are preserved.

  16. Quantification of mid and late evoked sinks in laminar current source density profiles of columns in the primary auditory cortex.

    Science.gov (United States)

    Schaefer, Markus K; Hechavarría, Julio C; Kössl, Manfred

    2015-01-01

    Current source density (CSD) analysis assesses spatiotemporal synaptic activations at somatic and/or dendritic levels in the form of depolarizing current sinks. Whereas many studies have focused on the short (primary auditory cortex of Mongolian gerbils. By applying an algorithm for contour calculation, three distinct mid and four late evoked sinks were identified in layers I, III, Va, VIa, and VIb. Our results further showed that the patterns of intracortical information-flow remained qualitatively similar for low and for high sound pressure level stimuli at the characteristic frequency (CF) as well as for stimuli ± 1 octave from CF. There were, however, differences associated with the strength, vertical extent, onset latency, and duration of the sinks for the four stimulation paradigms used. Stimuli one octave above the most sensitive frequency evoked a new, and quite reliable, sink in layer Va whereas low level stimulation led to the disappearance of the layer VIb sink. These data indicate the presence of input sources specifically activated in response to level and/or frequency parameters. Furthermore, spectral integration above vs. below the CF of neurons is asymmetric as illustrated by CSD profiles. These results are important because synaptic feedback associated with mid and late sinks-beginning at 50 ms post stimulus latency-is likely crucial for response modulation resulting from higher order processes like memory, learning or cognitive control.

  17. Neural tuning characteristics of auditory primary afferents in the chicken embryo

    Science.gov (United States)

    Jones, S. M.; Jones, T. A.

    1995-01-01

    Primary afferent activity was recorded from the cochlear ganglion in chicken embryos (Gallus domesticus) at 19 days of incubation (E19). The ganglion was accessed via the recessus scala tympani and impaled with glass micropipettes. Frequency tuning curves were obtained using a computerized threshold tracking procedure. Tuning curves were evaluated to determine characteristics frequencies (CFs), CF thresholds, slopes of low and high frequency flanks, and tip sharpness (Q10dB). The majority of tuning curves exhibited the typical 'V' shape described for older birds and, on average, appeared relatively mature based on mean values for CF thresholds (59.6 +/- 20.3 dBSPL) and tip sharpness (Q10dB = 5.2 +/- 3). The mean slopes of low (61.9 +/- 37 dB/octave) and high (64.6 +/- 33 dB/octave) frequency flanks although comparable were somewhat less than those reported for 21-day-old chickens. Approximately 14% of the tuning curves displayed an unusual 'saw-tooth' pattern. CFs ranged from 188 to 1623 Hz. The highest CF was well below those reported for post-hatch birds. In addition, a broader range of Q10dB values (1.2 to 16.9) may related to a greater variability in embryonic tuning curves. Overall, these data suggest that an impressive functional maturity exists in the embryo at E19. The most significant sign of immaturity was the limited expression of high frequencies. It is argued that the limited high CF in part may be due to the developing middle ear transfer function and/or to a functionally immature cochlear base.

  18. Raphe magnus and reticulospinal actions on primary afferent depolarization of group I muscle afferents in the cat.

    Science.gov (United States)

    Quevedo, J; Eguibar, J R; Jiménez, I; Rudomin, P

    1995-02-01

    1. In the anaesthetized cat, electrical stimulation of the bulbar reticular formation produced a short latency (2.1 +/- 0.3 ms) positive potential in the cord dorsum. In contrast, stimulation of the nucleus raphe magnus with strengths below 50 microA evoked a slow negative potential with a mean latency of 5.5 +/- 0.6 ms that persisted after sectioning the contralateral pyramid and was abolished by sectioning the ipsilateral dorsolateral funiculus. 2. The field potentials evoked by stimulation of the bulbar reticular formation and of the nucleus raphe magnus had a different intraspinal distribution, suggesting activation of different sets of segmental interneurones. 3. Stimulation of these two supraspinal nuclei produced primary afferent depolarization (PAD) in single Ib fibres and inhibited the PAD elicited by group I volleys in single Ia fibres. The inhibition of the PAD of Ia fibres produced by reticulospinal and raphespinal inputs appears to be exerted on different interneurones along the PAD pathway. 4. It is concluded that, although reticulospinal and raphespinal pathways have similar inhibitory effects on PAD of Ia fibres, and similar excitatory effects on the PAD of Ib fibres, their actions are conveyed by partly independent pathways. This would allow their separate involvement in the control of posture and movement.

  19. Dynamic range adaptation to sound level statistics in the auditory nerve.

    Science.gov (United States)

    Wen, Bo; Wang, Grace I; Dean, Isabel; Delgutte, Bertrand

    2009-11-04

    The auditory system operates over a vast range of sound pressure levels (100-120 dB) with nearly constant discrimination ability across most of the range, well exceeding the dynamic range of most auditory neurons (20-40 dB). Dean et al. (2005) have reported that the dynamic range of midbrain auditory neurons adapts to the distribution of sound levels in a continuous, dynamic stimulus by shifting toward the most frequently occurring level. Here, we show that dynamic range adaptation, distinct from classic firing rate adaptation, also occurs in primary auditory neurons in anesthetized cats for tone and noise stimuli. Specifically, the range of sound levels over which firing rates of auditory nerve (AN) fibers grows rapidly with level shifts nearly linearly with the most probable levels in a dynamic sound stimulus. This dynamic range adaptation was observed for fibers with all characteristic frequencies and spontaneous discharge rates. As in the midbrain, dynamic range adaptation improved the precision of level coding by the AN fiber population for the prevailing sound levels in the stimulus. However, dynamic range adaptation in the AN was weaker than in the midbrain and not sufficient (0.25 dB/dB, on average, for broadband noise) to prevent a significant degradation of the precision of level coding by the AN population above 60 dB SPL. These findings suggest that adaptive processing of sound levels first occurs in the auditory periphery and is enhanced along the auditory pathway.

  20. Cat scratch encephalopathy.

    Science.gov (United States)

    Silver, B E; Bean, C S

    1991-06-01

    Cat scratch disease is usually benign, self-limited and without sequelae. Margileth has established four clinical criteria, three of which must be satisfied to make the diagnosis: 1) a history of animal exposure, usually kitten, with primary skin or ocular lesions; 2) regional chronic adenopathy without other apparent cause; 3) a positive cat scratch disease antigen skin test; and 4) lymph node biopsy demonstrating noncaseating granulomas and germinal center hyperplasia. Central nervous system involvement in cat scratch disease has been previously reported, although it is extremely uncommon. In a several-month period, we encountered two cases of cat scratch disease complicated by encephalopathy. The intents of this paper are twofold: 1) to briefly review the current literature on cat scratch disease, 2) to demonstrate that cat scratch disease complicated by encephalopathy presents acutely with seizures, posturing and coma and resolves rapidly with supportive care.

  1. Patterns of primary afferent depolarization of segmental and ascending intraspinal collaterals of single joint afferents in the cat.

    Science.gov (United States)

    Rudomin, P; Lomelí, J

    2007-01-01

    We have examined in the anesthetized cat the threshold changes produced by sensory and supraspinal stimuli on intraspinal collaterals of single afferents from the posterior articular nerve (PAN). Forty-eight fibers were tested in the L3 segment, in or close to Clarke's column, and 70 fibers in the L6-L7 segments within the intermediate zone. Of these, 15 pairs of L3 and L6-L7 collaterals were from the same afferent. Antidromically activated fibers had conduction velocities between 23 and 74 m/s and peripheral thresholds between 1.1 and 4.7 times the threshold of the most excitable fibers (xT), most of them below 3 xT. PAN afferents were strongly depolarized by stimulation of muscle afferents and by cutaneous afferents, as well as by stimulation of the bulbar reticular formation and the midline raphe nuclei. Stimulation of muscle nerves (posterior biceps and semitendinosus, quadriceps) produced a larger PAD (primary afferent depolarization) in the L6-L7 than in the L3 terminations. Group II were more effective than group I muscle afferents. As with group I muscle afferents, the PAD elicited in PAN afferents by stimulation of muscle nerves could be inhibited by conditioning stimulation of cutaneous afferents. Stimulation of the cutaneous sural and superficial peroneal nerves increased the threshold of few terminations (i.e., produced primary afferent hyperpolarization, PAH) and reduced the threshold of many others, particularly of those tested in the L6-L7 segments. Yet, there was a substantial number of terminals where these conditioning stimuli had minor or no effects. Autogenetic stimulation of the PAN with trains of pulses increased the intraspinal threshold in 46% and reduced the threshold in 26% of fibers tested in the L6-L7 segments (no tests were made with trains of pulses on fibers ending in L3). These observations indicate that PAN afferents have a rather small autogenetic PAD, particularly if this is compared with the effects of heterogenetic stimulation

  2. Dynamics of Neural Responses in Ferret Primary Auditory Cortex: I. Spectro-Temporal Response Field Characterization by Dynamic Ripple Spectra

    Science.gov (United States)

    1999-01-01

    Eggermont 1993 and references therein; Kvale and Schreiner 1995; Kowalski et al. 1996a; deCharms et al. 1998; Escabi and Schreiner 1999; Theunissen et al...Neurophysiol. 76, 3524–3534. Kvale , M. and C. E. Schreiner (1995). Perturbative m-sequences for auditory systems identification. Acustica 81. Mendelson

  3. An electron microscopic study of primary afferent terminals from slowly adapting type I receptors in the cat.

    Science.gov (United States)

    Semba, K; Masarachia, P; Malamed, S; Jacquin, M; Harris, S; Yang, G; Egger, M D

    1983-12-20

    Primary afferent fibers transmitting impulses from slowly adapting (SA) Type I receptors in the glabrous skin of the hind paw of the cat were injected intraaxonally in the spinal cord with horseradish peroxidase (HRP). At the light microscopic level, terminal arborizations were observed in the medial dorsal horn extending up to 6 mm rostrocaudally in and near the seventh lumbar segment. Boutonlike swellings labelled with HRP were distributed in clusters in Rexed's laminae III-VI. There was a tendency for the most dorsal clusters from an individual fiber to be located rostrally and for the most ventral clusters to be located caudally. At the electron microscopic level, a combination of morphometric analysis and serial reconstruction revealed the following: (1) All the boutons labelled with HRP contained predominantly clear, round synaptic vesicles, 40-50 nm in diameter. (2) Labelled boutons (n = 75) had cross-sectional longest dimensions of 1.72 +/- 0.53 micron (Mean +/- S.D.), perimeters of 4.95 +/- 1.52 micron, and areas of 1.18 +/- 0.59 micron 2. Their shapes in section varied from rounded to elongated forms. (3) The sizes of labelled boutons decreased significantly and linearly with depth from lamina IV to VI. The shapes of the bouton cross sections also became rounder with depth in the dorsal horn. (4) About 72% of synaptic contacts associated with HRP-filled boutons were with dendritic spines and shafts; most of these synapses were of the asymmetric type. (5) The remainder (28%) of the appositions were synapselike contacts between labelled boutons and unlabelled structures containing flattened or pleomorphic vesicles, and occasional dense-cored vesicles. (6) We observed no unequivocal axosomatic contacts made by labelled boutons. (7) The lengths of synaptic appositions with dendritic spines (0.46 +/- 0.20 micron) or with dendritic shafts (0.51 +/- 0.18 micron) were significantly greater than the synapselike contacts with vesicle-containing unlabelled

  4. Comparative study on direction selectivity and functional organization of the primary visual cortical cells in monkeys and cats

    Institute of Scientific and Technical Information of China (English)

    寿天德; 周逸峰; 俞洪波

    2000-01-01

    Although the directionally selective cells in many visual cortical areas are organized in columnar manner, the functional organization of direction selectivity of area VI in the monkey still remains unclear. We quantitatively studied the proportion of directionally selective cells, direction selectivity and the functional organization of the striate cortical cells in the monkey and compared those with the cat. The results show that the direction selectivity and directional organization of striate cortical cells in the monkey are significantly weaker than those in the cat, suggesting that the species difference between the two kinds of animal is related to their different anatomic pathways.

  5. Comparative study on direction selectivity and functional organization of the primary visual cortical cells in monkeys and cats

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Although the directionally selective cells in many visual cortical areas are organized in columnar manner, the functional organization of direction selectivity of area Vl in the monkey still remains unclear. We quantitatively studied the proportion of directionally selective cells, direction selectivity and the functional organization of the striate cortical cells in the monkey and compared those with the cat. The results show that the direction selectivity and directional organization of striate cortical cells in the monkey are significantly weaker than those in the cat, suggesting that the species difference between the two kinds of animal is related to their different anatomic pathways.

  6. Cat parasites

    OpenAIRE

    Vošická, Kristýna

    2016-01-01

    The content of this bachelor thesis describes a different variety of cat parasites. This study discovers that the most infected group of the outdoor cats due to the fact that these animals are not provided with the same care as the household pets. Those cats are usually not vaccinated, not rid of worms, no one takes care of their fur and so they tend to become a host for the parasites. There are several kinds of parasites which attack cats. Among those belong the skin parasites like a cat fle...

  7. Selective cortical and segmental control of primary afferent depolarization of single muscle afferents in the cat spinal cord.

    Science.gov (United States)

    Eguibar, J R; Quevedo, J; Rudomin, P

    1997-03-01

    This study was primarily aimed at investigating the selectivity of the cortico-spinal actions exerted on the pathways mediating primary afferent depolarization (PAD) of muscle spindle and tendon organ afferents ending within the intermediate nucleus at the L6-L7 segmental level. To this end we analyzed, in the anesthetized cat, the effects produced by electrical stimulation of sensory nerves and of the cerebral cortex on (a) the intraspinal threshold of pairs of single group I afferent fibers belonging to the same or to different hindlimb muscles and (b) the intraspinal threshold of two collaterals of the same muscle afferent fiber. Afferent fibers were classified in three categories, according to the effects produced by stimulation of segmental nerves and of the cerebral cortex. Twenty-five of 40 fibers (62.5%) were depolarized by stimulation of group I posterior biceps and semitendinosus (PBSt) or tibialis (Tib) fibers, but not by stimulation of the cerebral cortex or of cutaneous and joint nerves, which instead inhibited the PBSt- or Tib-induced PAD (type A PAD pattern, usually seen in Ia fibers). The remaining 15 fibers (37.5%) were all depolarized by stimulation of the PBSt or Tib nerves and the cerebral cortex. Stimulation of cutaneous and joint nerves produced PAD in 10 of those 15 fibers (type B PAD pattern) and inhibited the PBSt- or Tib-induced PAD in the 5 remaining fibers (type C PAD pattern). Fibers with a type B or C PAD pattern are likely to be Ib. Not all sites in the cerebral cortex inhibited with the same effectiveness the segmentally induced PAD of group I fibers with a type A PAD pattern. With the weakest stimulation of the cortical surface, the most effective sites that inhibited the PAD of individual fibers were surrounded by less effective sites, scattered all along the motor cortex (area 4gamma and 6) and sensory cortex (areas 3, 2 and 1), far beyond the area of projection of group I fibers from the hindlimb. With higher strengths of

  8. Morphological properties of nociceptive and non-nociceptive neurons in primary somatic cerebral cortex (SI) of cat

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    With the techniques of intracellular recording and labelling, we investigated pain sensation and modulation of the somatic cortical cortex at the neuron's level. After observing the evoked potentials from stimulating the saphenous nerves (SN) of 654 neurons in SI area of the cats, we labelled 30 of the neurons with Neurobiotin to preserve the distribution and the morphologic characteristics of the neurons in the cortex. Based on the tridimensional reconstruction in addition to the eletrophysiological functions, we found clear morphological distinctions between nociceptive and non-nociceptive neurons (P<0.01). This result provided new experimental material to illustrate the function of nociceptive neurons in somatosensory cortex (SI) and presented further evidence to support the "specificity theory" of pain sensation in terms of morphology.

  9. Bioacoustic Signal Classification in Cat Auditory Cortex

    Science.gov (United States)

    1994-01-01

    representation as the input ( front end ) to a self- organizing signal classifier and as training pattern for the output of a dynamic neural network. In the...potential use as a front end for a biological based signal classifier, their use as a trainer for network models, and their ability to predict spatial...usually contributing more spikes, at best level, than monotonic neurons. d) One region in the center of the dorsal-ventral extent of czt Al appears to have

  10. Cat Ownership Perception and Caretaking Explored in an Internet Survey of People Associated with Cats.

    Directory of Open Access Journals (Sweden)

    Sarah Zito

    Full Text Available People who feed cats that they do not perceive they own (sometimes called semi-owners are thought to make a considerable contribution to unwanted cat numbers because the cats they support are generally not sterilized. Understanding people's perception of cat ownership and the psychology underlying cat semi-ownership could inform approaches to mitigate the negative effects of cat semi-ownership. The primary aims of this study were to investigate cat ownership perception and to examine its association with human-cat interactions and caretaking behaviours. A secondary aim was to evaluate a definition of cat semi-ownership (including an association time of ≥1 month and frequent feeding, revised from a previous definition proposed in the literature to distinguish cat semi-ownership from casual interactions with unowned cats. Cat owners and semi-owners displayed similar types of interactions and caretaking behaviours. Nevertheless, caretaking behaviours were more commonly displayed towards owned cats than semi-owned cats, and semi-owned cats were more likely to have produced kittens (p<0.01. All interactions and caretaking behaviours were more likely to be displayed towards cats in semi-ownership relationships compared to casual interaction relationships. Determinants of cat ownership perception were identified (p<0.05 and included association time, attachment, perceived cat friendliness and health, and feelings about unowned cats, including the acceptability of feeding unowned cats. Encouraging semi-owners to have the cats they care for sterilized may assist in reducing the number of unwanted kittens and could be a valuable alternative to trying to prevent semi-ownership entirely. Highly accessible semi-owner "gatekeepers" could help to deliver education messages and facilitate the provision of cat sterilization services to semi-owners. This research enabled semi-ownership to be distinguished from casual interaction relationships and can assist

  11. Middle components of the auditory evoked response in bilateral temporal lobe lesions. Report on a patient with auditory agnosia

    DEFF Research Database (Denmark)

    Parving, A; Salomon, G; Elberling, Claus

    1980-01-01

    An investigation of the middle components of the auditory evoked response (10--50 msec post-stimulus) in a patient with auditory agnosia is reported. Bilateral temporal lobe infarctions were proved by means of brain scintigraphy, CAT scanning, and regional cerebral blood flow measurements. The mi...

  12. Auditory hallucinations.

    Science.gov (United States)

    Blom, Jan Dirk

    2015-01-01

    Auditory hallucinations constitute a phenomenologically rich group of endogenously mediated percepts which are associated with psychiatric, neurologic, otologic, and other medical conditions, but which are also experienced by 10-15% of all healthy individuals in the general population. The group of phenomena is probably best known for its verbal auditory subtype, but it also includes musical hallucinations, echo of reading, exploding-head syndrome, and many other types. The subgroup of verbal auditory hallucinations has been studied extensively with the aid of neuroimaging techniques, and from those studies emerges an outline of a functional as well as a structural network of widely distributed brain areas involved in their mediation. The present chapter provides an overview of the various types of auditory hallucination described in the literature, summarizes our current knowledge of the auditory networks involved in their mediation, and draws on ideas from the philosophy of science and network science to reconceptualize the auditory hallucinatory experience, and point out directions for future research into its neurobiologic substrates. In addition, it provides an overview of known associations with various clinical conditions and of the existing evidence for pharmacologic and non-pharmacologic treatments.

  13. Noise-improved signal detection in cat primary visual cortex via a well-balanced stochastic resonance-like procedure.

    Science.gov (United States)

    Funke, Klaus; Kerscher, Nicolas J; Wörgötter, Florentin

    2007-09-01

    Adding noise to a weak signal can paradoxically improve signal detection, a process called 'stochastic resonance' (SR). In the visual system, noise might be introduced by the image jitter resulting from high-frequency eye movements, like eye microtremor and microsaccades. To test whether this kind of noise might be beneficial or detrimental for cortical signal detection, we performed single-unit recordings from area 17 of anaesthetized cats while jittering the visual stimulus in a frequency and amplitude range resembling the possible range of eye movements. We used weak, sub- and peri-threshold visual stimuli, on top of which we superimposed noise with variable jitter amplitude. In accordance with the typical SR effect, we found that small noise levels actually increased the signal-to-noise ratio (SNR) of previously weak cortical visual responses, while originally strong responses were little affected or even reduced. Above a certain noise level, the SNR dropped a little, but not as a result of increased background activity - as would be proposed by SR theory - but because of a lowered response to signal and noise. Therefore, it seems that the ascending visual pathway optimally utilizes signal detection improvement by a SR-like process, while at the same time preventing spurious noise-induced activity and keeping the SNR sufficiently high.

  14. Cat Ownership Perception and Caretaking Explored in an Internet Survey of People Associated with Cats.

    Science.gov (United States)

    Zito, Sarah; Vankan, Dianne; Bennett, Pauleen; Paterson, Mandy; Phillips, Clive J C

    2015-01-01

    People who feed cats that they do not perceive they own (sometimes called semi-owners) are thought to make a considerable contribution to unwanted cat numbers because the cats they support are generally not sterilized. Understanding people's perception of cat ownership and the psychology underlying cat semi-ownership could inform approaches to mitigate the negative effects of cat semi-ownership. The primary aims of this study were to investigate cat ownership perception and to examine its association with human-cat interactions and caretaking behaviours. A secondary aim was to evaluate a definition of cat semi-ownership (including an association time of ≥1 month and frequent feeding), revised from a previous definition proposed in the literature to distinguish cat semi-ownership from casual interactions with unowned cats. Cat owners and semi-owners displayed similar types of interactions and caretaking behaviours. Nevertheless, caretaking behaviours were more commonly displayed towards owned cats than semi-owned cats, and semi-owned cats were more likely to have produced kittens (pcats in semi-ownership relationships compared to casual interaction relationships. Determinants of cat ownership perception were identified (pcat friendliness and health, and feelings about unowned cats, including the acceptability of feeding unowned cats. Encouraging semi-owners to have the cats they care for sterilized may assist in reducing the number of unwanted kittens and could be a valuable alternative to trying to prevent semi-ownership entirely. Highly accessible semi-owner "gatekeepers" could help to deliver education messages and facilitate the provision of cat sterilization services to semi-owners. This research enabled semi-ownership to be distinguished from casual interaction relationships and can assist welfare and government agencies to identify cat semi-owners in order to develop strategies to address this source of unwanted cats.

  15. Spatial dynamics of receptive fields in cat primary visual cortex related to the temporal structure of thalamocortical feedforward activity. Experiments and models.

    Science.gov (United States)

    Suder, Katrin; Funke, Klaus; Zhao, Yongqiang; Kerscher, Nicolas; Wennekers, Thomas; Wörgötter, Florentin

    2002-06-01

    We investigated how changes in the temporal firing rate of thalamocortical activity affect the spatiotemporal structure of receptive field (RF) subunits in cat primary visual cortex. Spike activity of 67 neurons (48 simple, 19 complex cells) was extracellulary recorded from area 17/18 of anesthetized and paralyzed cats. A total of 107 subfields (on/off) were mapped by applying a reverse correlation technique to the activity elicited by bright and dark rectangles flashed for 300 ms in a 20x10 grid. We found that the width of the (suprathreshold) discharge fields shrank on average by 22% during this 300-ms-long stimulus presentation time. Fifty-eight subfields (54%) shrank by more than 20% of peak width and only ten (less than 10%) showed a slight increase over time. The main size reduction took place 40-60 ms after response onset, which corresponded to the transition from transient peak firing to tonic visual activity in thalamocortical relay cells (TC). The experimentally obtained RFs were then fitted with the aid of a neural field model of the primary visual pathway. Assuming a Gaussian-shaped spatial sensitivity profile across the RF subfield width, the model allowed us to estimate the subthreshold RF (depolarization field, D-field) from the minimal discharge field (MDF). The model allowed us to test to what degree the temporal dynamics of thalamocortical activity contributes to the spatiotemporal changes of cortical RFs. To this end, we performed the fitting procedure either with a pure feedforward model or with a field model that also included intracortical feedback. Spatial and temporal parameters obtained from fits of the experimental RFs matched closely to those achieved by simulating a pure feedforward system with the field model but were not compatible with additional intracortical feedback. Thus, our results show that dot stimulation, which optimally excites thalamocortical cells, leads to a shrinkage with respect to the size of the RF subfield at the

  16. Cat Scan

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> A man takes his motionless dog to the vet."Doc,I think my dog is dead.”The vet looks the dog over, goes into a backroom,and comes out with a cat.He places the caton the table next to the dog.The cat walks aroundand sniffs at the dog.The dog does not move.The

  17. Synaptic potentials of primary afferent fibers and motoneurons evoked by single intermediate nucleus interneurons in the cat spinal cord.

    Science.gov (United States)

    Rudomin, P; Solodkin, M; Jiménez, I

    1987-05-01

    Spike-triggered averaging of dorsal and ventral root potentials was used in anesthetized cats to disclose possible synaptic connections of spinal interneurons in the intermediate nucleus with afferent fibers and/or motoneurons. With this method we have been able to document the existence of a distinct group of interneurons whose activity was associated with the recording of inhibitory potentials in the ventral roots (iVRPs), but not with negative dorsal root potentials (nDRPs). The iVRPs had mean durations of 60.8 +/- 22.1 ms and latencies between 1.7 and 5.1 ms relative to the onset of the interneuronal spikes. Within this group of neurons it was possible to characterize two categories depending on their responses to segmental inputs. Most type A interneurons were mono- or disynaptically activated by group I muscle afferents and polysynaptically by low threshold (1.08-1.69 X T) cutaneous fibers. Type B interneurons were instead polysynaptically activated by group II muscle and by cutaneous fibers with thresholds ranging from 1.02 to 3.1 X T. Whenever tested, both type A and B interneurons could be antidromically activated from Clarke's columns. There was a second group of interneurons whose activity was associated with the generation of both iVRPs and nDRPs. These potentials had mean durations of 107.5 +/- 35.6 and 131.5 +/- 32 ms, respectively, and onset latencies between 1.7 and 6.1 ms. The interneurons belonging to this group, which appear not to send axonal projections to Clarke's column, could be classified in three categories depending on their responses to peripheral inputs. Type C interneurons responded mono- or disynaptically to group I muscle volleys and polysynaptically to intermediate threshold (1.22-2.7 X T) cutaneous afferents. Type D interneurons were polysynaptically activated by group II muscle afferents (2.3-8.5 X T) and by intermediate threshold (1.4-3 X T) cutaneous fibers and type E interneurons only by group I muscle afferents with mono- or

  18. Zif268 mRNA Expression Patterns Reveal a Distinct Impact of Early Pattern Vision Deprivation on the Development of Primary Visual Cortical Areas in the Cat.

    Science.gov (United States)

    Laskowska-Macios, Karolina; Zapasnik, Monika; Hu, Tjing-Tjing; Kossut, Malgorzata; Arckens, Lutgarde; Burnat, Kalina

    2015-10-01

    Pattern vision deprivation (BD) can induce permanent deficits in global motion perception. The impact of timing and duration of BD on the maturation of the central and peripheral visual field representations in cat primary visual areas 17 and 18 remains unknown. We compared early BD, from eye opening for 2, 4, or 6 months, with late onset BD, after 2 months of normal vision, using the expression pattern of the visually driven activity reporter gene zif268 as readout. Decreasing zif268 mRNA levels between months 2 and 4 characterized the normal maturation of the (supra)granular layers of the central and peripheral visual field representations in areas 17 and 18. In general, all BD conditions had higher than normal zif268 levels. In area 17, early BD induced a delayed decrease, beginning later in peripheral than in central area 17. In contrast, the decrease occurred between months 2 and 4 throughout area 18. Lack of pattern vision stimulation during the first 4 months of life therefore has a different impact on the development of areas 17 and 18. A high zif268 expression level at a time when normal vision is restored seems to predict the capacity of a visual area to compensate for BD.

  19. Auditory-visual spatial interaction and modularity

    Science.gov (United States)

    Radeau, M

    1994-02-01

    The results of dealing with the conditions for pairing visual and auditory data coming from spatially separate locations argue for cognitive impenetrability and computational autonomy, the pairing rules being the Gestalt principles of common fate and proximity. Other data provide evidence for pairing with several properties of modular functioning. Arguments for domain specificity are inferred from comparison with audio-visual speech. Suggestion of innate specification can be found in developmental data indicating that the grouping of visual and auditory signals is supported very early in life by the same principles that operate in adults. Support for a specific neural architecture comes from neurophysiological studies of the bimodal (auditory-visual) neurons of the cat superior colliculus. Auditory-visual pairing thus seems to present the four main properties of the Fodorian module.

  20. HEMANGIOMA HEPÁTICO PRIMÁRIO EM GATA PERSA COM DOENÇA RENAL POLICÍSTICA PRIMARY HEPATIC HEMANGIOMA IN PERSIAN CAT WITH POLYCYSTIC KIDNEY DISEASE

    Directory of Open Access Journals (Sweden)

    Valdemiro Amaro da Silva Júnior

    2008-07-01

    great possibility of the rupture, hipovolemic shock and death. Because of its rarity in felines, the aim of case report was describes a primary hepatic hemangioma in a female Persian cat aged ten which the clinical symptoms initially observed were: abdominal volume increase, intermittent vomiting, apathy, anorexia and irregular ruts. Radiographic exam revealed the presence of radiopaque tissues in the liver. The hepatic ultrasound exhibited irregular shape, heterogeneous and hyperechogenic parenchyma, presenting hollowed areas which suggests neoplasm and cysts. Macroscopically it was observed ascite, hepatic steatosis and a neoplastic mass measuring about 12 x 8 cm, in addition to a considerable number of cysts. Polycystic kidneys and ovaries and cystic endometrial hyperplasia were also noticed. Microscopically was diagnosed in the liver: cysts limited by endothelial cells and delicate capsule of connective tissue, steatosis and periportal mononuclear linfocitary hepatitis with biliar ducts proliferation. The tumoral mass rose from the hepatic capsule of the conjunctive tissue. It was characterized by vascular sprouts originated from the endothelial cells with anastomosis and vessels expansion begin on superficial areas. Primary hepatic hemangioma cavernous/capillary was diagnosed. PD was diagnosed in ovarian, uterine and renal tissue.

    KEY WORDS: Cat, liver, vascular tumor.

  1. Cat and Dog Bites

    Science.gov (United States)

    ... Prevention and Wellness Staying Healthy Pets and Animals Cat and Dog Bites Cat and Dog Bites Pets and AnimalsPrevention and WellnessStaying Healthy Share Cat and Dog Bites Cat and dog bites are ...

  2. Cat Scratch Disease

    Science.gov (United States)

    Cat scratch disease (CSD) is an illness caused by the bacterium Bartonella henselae. Almost half of all cats carry ... infection does not make cats sick. However, the scratch or bite of an infected cat can cause ...

  3. My Cat

    Institute of Scientific and Technical Information of China (English)

    王悦; 李成梅

    2002-01-01

    The name of my cat is Naty. This year he is one year old. He isvery fat, but he is very nice. He has a big round white head. His mouth and nose are small. His eyes are interesting. In the day,they are small and black,but at night they are big and blue.

  4. Membrane potential characteristics of intracellular responses of rat primary auditory cortex neurons to acoustic stimulation in vivo%大鼠初级听皮层神经元对声刺激反应的膜电位特征

    Institute of Scientific and Technical Information of China (English)

    韩磊; 张永海; 肖雄健; 熊鹰

    2011-01-01

    Objective To investigate the membrane potential characteristics of intracellular responses of individual rat primary auditory cortex neurons to the acoustic stimulation in vivo. Methods The intracellu lar responses of individual primary auditory cortex neurons to the acoustic stimulation in vivo were observed in anesthetized rats using the intracellular microelectrode recording technique. Results Sixty-four neurons were recorded in the primary auditory cortex of rats, of which thirty-three responded to the acoustic stimulation with excitatory auditory responses, twenty-four with inhibitory auditory responses, two with on-off auditory responses, and the remaining five without obvious responses. According to the characteristics of sound-evoked excitatory postsynaptic potential (EPSP)/inhibitory postsynaptic potential (IPSP) as well as action potential (AP), theexcitatory auditory responses could be classified into 4 patterns: long-term EPSP pattern, short-term EPSP pattern, regular spike pattern and subthreshold EPSP pattern; the inhibitory auditory responses could also be classified into 4 patterns: AP-IPSP pattern, EPSP-IPSP pattern, IPSP pattern and AP-hyperpolarization pattern. The latency [(46.3 ± 20.5 ) ms]and rising phase duration [( 10.1 ± 4.4) ms]of sound-evoked IPSP were significantly longer than those [( 15.1 ± 4.7) ms, (6.1 ± 3.5 ) ms]of EPSP ( P < 0. 05, P < 0. 01 ). The spike intervals and sound durations of on-off auditory responses were in a phase-locking mode. Conclusion Different patterns of auditory responses can be induced in the primary auditory cortex neurons of rats by the same natural acoustic stimulation. Besides, the components and membrane potential characteristics of each pattern are various, which may lay a basis for the functional diversity of primary auditory cortex neurons.%目的 探讨大鼠初级听皮层单个神经元对声刺激反应的膜电位特征.方法 运用在体细胞内微电极记录技术观察麻醉大鼠

  5. Differential modulation of primary afferent depolarization of segmental and ascending intraspinal collaterals of single muscle afferents in the cat spinal cord.

    Science.gov (United States)

    Rudomin, P; Lomelí, J; Quevedo, J

    2004-06-01

    We examined primary afferent depolarization (PAD) in the anesthetized cat elicited in 109 pairs of intraspinal collaterals of single group I afferents from the gastrocnemius nerve, one of the pair ending in the L3 segment, around the Clarke's column nuclei, and the other in the L6 segment within the intermediate zone. Tests for refractoriness were made to assess whether the responses produced by intraspinal stimulation in the L3 and L6 segments were due to activation of collaterals of the same afferent fiber. PAD in each collateral was estimated by independent computer-controlled measurement of the intraspinal current required to maintain a constant probability of antidromic firing. In most fibers, stimulation of the ipsilateral posterior biceps and semitendinosus (PBSt) nerve with trains of pulses maximal for group I afferents had a qualitatively similar effect but produced a larger PAD in the L6 than in the L3 collaterals. Stimulation of cutaneous nerves (sural and superficial peroneus) with single pulses and of the posterior articular nerve, the ipsilateral reticular formation, nucleus raphe magnus and contralateral motor cortex with trains of pulses often had qualitatively different effects. They could produce PAD and/or facilitate the PBSt-induced PAD in one collateral, and produce PAH and/or inhibit the PAD in the other collateral. These patterns could be changed in a differential manner by sensory or supraspinal conditioning stimulation. In summary, the present investigation suggests that the segmental and ascending collaterals of individual afferents are not fixed routes for information transmission, but parts of dynamic systems in which information transmitted to segmental reflex pathways and to Clarke's column neurons by common sources can be decoupled by sensory and descending inputs and funneled to specific targets according to the motor tasks to be performed.

  6. A Catalogue of Anatomical Fugitive Sheets: Cat. 49-62

    OpenAIRE

    1999-01-01

    Images Cat. 50 Cat. 51 Cat. 53 Cat. 54 Cat. 55 (a) Cat. 55 (b) Cat. 56 Cat. 57: 1 Cat. 57: 2 Cat. 57: 3 Cat. 57: 4 Cat. 59: 1 Cat. 59: 2 Cat. 59: 3 Cat. 59: 4 Cat. 60 Cat. 61 Cat. 62: 1 (a) Cat. 62: 1 (b) Cat. 62: 2 (a) Cat. 62: 2 (b)

  7. A Catalogue of Anatomical Fugitive Sheets: Cat. 26-48

    OpenAIRE

    1999-01-01

    Images Cat. 26: 1 (a) Cat. 26: 1 (b) Cat. 26: 2 (a) Cat. 26: 2(b) Cat. 27: 1 (a) Cat. 27: 1 (b) Cat. 27: 2 (a) Cat. 27: 2 (b) Cat. 28 Cat. 29: 2 (a) Cat. 29: 2 (b) Cat. 30: 1 Cat. 30: 2 Cat. 30: 3 Cat. 33 Cat. 34: 1 Cat. 34: 2 Cat. 35: 1 Cat. 35: 2 Cat. 35: 3 Cat. 36 Cat. 37 Cat. 38: 1 Cat. 38: 2 Cat. 40 Cat. 42 Cat. 43 Cat. 44 Cat. 45: 1 Cat. 45: 2 Cat. 46 Cat. 47: 1 Cat. 47: 2 Cat. 47: 3 Cat. 48: 1 Cat. 48: 2 Cat. 48: 3

  8. Auditory Hallucinations Nomenclature and Classification

    NARCIS (Netherlands)

    Blom, Jan Dirk; Sommer, Iris E. C.

    2010-01-01

    Introduction: The literature on the possible neurobiologic correlates of auditory hallucinations is expanding rapidly. For an adequate understanding and linking of this emerging knowledge, a clear and uniform nomenclature is a prerequisite. The primary purpose of the present article is to provide an

  9. black cat

    Institute of Scientific and Technical Information of China (English)

    杜铁梅

    2016-01-01

    The black cat is a masterpiece of short fiction of Poe. He successfully solved the problem of creating of the horror effect by using scene description, symbol, repetition and first-person narrative methods. And created a complete and unified mysterious terror, achieved the effect of shocking. This paper aims to discuss the mystery in-depth and to enrich the research system in Poe’s novels.

  10. Plasticity in the tonotopic organization of the medial geniculate body in adult cats following restricted unilateral cochlear lesions.

    Science.gov (United States)

    Kamke, Marc R; Brown, Mel; Irvine, Dexter R F

    2003-05-12

    To investigate subcortical contributions to cortical reorganization, the frequency organization of the ventral nucleus of the medial geniculate body (MGv) in six normal adult cats and in eight cats with restricted unilateral cochlear lesions was investigated using multiunit electrophysiological recording techniques. The tonotopic organization of MGv in the lesioned animals, with severe mid-to-high frequency hearing losses, was investigated 40-186 days following the lesioning procedure. Frequency maps were generated from neural responses to pure tone bursts presented separately to each ear under barbiturate anesthesia. Consideration of the frequency organization in normal animals, and of the apparently normal representation of the ipsilateral (unlesioned) cochlea in lesioned animals, allowed for a detailed specification of the extent of changes observed in MGv. In the lesioned animals it was found that, in the region of MGv in which mid-to-high frequencies are normally represented, there was an "expanded representation" of lesion-edge frequencies. Neuron clusters within these regions of enlarged representation that had "new" characteristic frequencies displayed response properties (latency, bandwidth) very similar to those in normal animals. Thresholds of these neurons were not consistent with the argument that the changes merely reflect the residue of prelesion responses, suggesting a dynamic process of reorganization. The tonotopic reorganization observed in MGv is similar to that seen in the primary auditory cortex and is more extensive than the reorganization found in the auditory midbrain, suggesting that the auditory thalamus plays an important role in cortical plasticity.

  11. Auditory Hallucination

    Directory of Open Access Journals (Sweden)

    MohammadReza Rajabi

    2003-09-01

    Full Text Available Auditory Hallucination or Paracusia is a form of hallucination that involves perceiving sounds without auditory stimulus. A common is hearing one or more talking voices which is associated with psychotic disorders such as schizophrenia or mania. Hallucination, itself, is the most common feature of perceiving the wrong stimulus or to the better word perception of the absence stimulus. Here we will discuss four definitions of hallucinations:1.Perceiving of a stimulus without the presence of any subject; 2. hallucination proper which are the wrong perceptions that are not the falsification of real perception, Although manifest as a new subject and happen along with and synchronously with a real perception;3. hallucination is an out-of-body perception which has no accordance with a real subjectIn a stricter sense, hallucinations are defined as perceptions in a conscious and awake state in the absence of external stimuli which have qualities of real perception, in that they are vivid, substantial, and located in external objective space. We are going to discuss it in details here.

  12. Cat scratch disease.

    Science.gov (United States)

    Bozhkov, V; Madjov, R; Plachkov, I; Arnaudov, P; Chernopolsky, P; Krasnaliev, I

    2014-01-01

    Approximately 24,000 people are infected with cat scratch disease (CSD) every year. CSD is caused by the bacteria Bartonella henselae, a gram-negative bacteria most often transmitted to humans through a bite or scratch from an infected cat or kitten. Although CSD is often a benign and self-limiting condition, it can affect any major organ system in the body, manifesting in different ways and sometimes leading to lifelong sequelae. It is a disease that is often overlooked in primary care because of the wide range of symptom presentation and relative rarity of serious complications. It is important for health care providers to recognize patients at risk for CSD, know what laboratory testing and treatments are available, and be aware of complications that may arise from this disease in the future.

  13. Primary afferent depolarization of muscle afferents elicited by stimulation of joint afferents in cats with intact neuraxis and during reversible spinalization.

    Science.gov (United States)

    Quevedo, J; Eguibar, J R; Jiménez, I; Schmidt, R F; Rudomin, P

    1993-11-01

    1. In the anesthetized and artificially ventilated cat, stimulation of the posterior articular nerve (PAN) with low strengths (1.2-1.4 x T) produced a small negative response (N1) in the cord dorsum of the lumbosacral spinal cord with a mean onset latency of 5.2 ms. Stronger stimuli (> 1.4 x T) produced two additional components (N2 and N3) with longer latencies (mean latencies 7.5 and 15.7 ms, respectively), usually followed by a slow positivity lasting 100-150 ms. With stimulus strengths above 10 x T there was in some experiments a delayed response (N4; mean latency 32 ms). 2. Activation of posterior knee joint nerve with single pulses and intensities producing N1 responses only, usually produced no dorsal root potentials (DRPs), or these were rather small. Stimulation with strengths producing N2 and N3 responses produced distinct DRPs. Trains of pulses were clearly more effective than single pulses in producing DRPs, even in the low-intensity range. 3. Cooling the thoracic spinal cord to block impulse conduction, increased the DRPs and the N3 responses produced by PAN stimulation without significantly affecting the N2 responses. Reversible spinalization also increased the DRPs produced by stimulation of cutaneous nerves. In contrast, the DRPs produced by stimulation of group I afferents from flexors were reduced. 4. Conditioning electrical stimulation of intermediate and high-threshold myelinated fibers in the PAN depressed the DRPs produced by stimulation of group I muscle and of cutaneous nerves. 5. Analysis of the intraspinal threshold changes of single Ia and Ib fibers has provided evidence that stimulation of intermediate and high threshold myelinated fibers in the posterior knee joint nerve inhibits the primary afferent depolarization (PAD) of Ia fibers, and may either produce PAD or inhibit the PAD in Ib fibers, in the same manner as stimulation of cutaneous nerves. In 7/16 group I fibers the inhibition of the PAD was increased during reversible

  14. Chimera in a neuronal network model of the cat brain

    OpenAIRE

    Santos, M. S.; Szezech Jr., J. D.; Borges, F. S.; Iarosz, K. C.; Caldas, I. L.; Batista, A. M.; Viana, R. L.; Kurths, J.

    2016-01-01

    Neuronal systems have been modeled by complex networks in different description levels. Recently, it has been verified that networks can simultaneously exhibit one coherent and other incoherent domain, known as chimera states. In this work, we study the existence of chimera states in a network considering the connectivity matrix based on the cat cerebral cortex. The cerebral cortex of the cat can be separated in 65 cortical areas organised into the four cognitive regions: visual, auditory, so...

  15. Linking topography to tonotopy in the mouse auditory thalamocortical circuit

    DEFF Research Database (Denmark)

    Hackett, Troy A; Rinaldi Barkat, Tania; O'Brien, Barbara M J;

    2011-01-01

    The mouse sensory neocortex is reported to lack several hallmark features of topographic organization such as ocular dominance and orientation columns in primary visual cortex or fine-scale tonotopy in primary auditory cortex (AI). Here, we re-examined the question of auditory functional topography...

  16. A critical period for auditory thalamocortical connectivity

    DEFF Research Database (Denmark)

    Rinaldi Barkat, Tania; Polley, Daniel B; Hensch, Takao K

    2011-01-01

    connectivity by in vivo recordings and day-by-day voltage-sensitive dye imaging in an acute brain slice preparation. Passive tone-rearing modified response strength and topography in mouse primary auditory cortex (A1) during a brief, 3-d window, but did not alter tonotopic maps in the thalamus. Gene...... locus of change for the tonotopic plasticity. The evolving postnatal connectivity between thalamus and cortex in the days following hearing onset may therefore determine a critical period for auditory processing....

  17. Auditory Imagery: Empirical Findings

    Science.gov (United States)

    Hubbard, Timothy L.

    2010-01-01

    The empirical literature on auditory imagery is reviewed. Data on (a) imagery for auditory features (pitch, timbre, loudness), (b) imagery for complex nonverbal auditory stimuli (musical contour, melody, harmony, tempo, notational audiation, environmental sounds), (c) imagery for verbal stimuli (speech, text, in dreams, interior monologue), (d)…

  18. Depth-Dependent Temporal Response Properties in Core Auditory Cortex

    OpenAIRE

    Christianson, G. Björn; Sahani, Maneesh; Linden, Jennifer F.

    2011-01-01

    The computational role of cortical layers within auditory cortex has proven difficult to establish. One hypothesis is that interlaminar cortical processing might be dedicated to analyzing temporal properties of sounds; if so, then there should be systematic depth-dependent changes in cortical sensitivity to the temporal context in which a stimulus occurs. We recorded neural responses simultaneously across cortical depth in primary auditory cortex and anterior auditory field of CBA/Ca mice, an...

  19. A water soluble extract from Uncaria tomentosa (Cat's Claw) is a potent enhancer of DNA repair in primary organ cultures of human skin.

    Science.gov (United States)

    Mammone, Thomas; Akesson, Christina; Gan, David; Giampapa, Vincent; Pero, Ronald W

    2006-03-01

    Cat's Claw (Uncaria tomentosa) water extracts, essentially free of oxindole alkaloids, have been shown to possess a broad spectrum of biological activity including DNA repair enhancement and antiinflammatory properties. These two biological mechanisms are key molecular targets to develop treatments that protect skin exposed to ultraviolet light from the sun. Because C-Med-100, a Cat's Claw water extract, is the only documented natural source of components that can up-regulate simultaneously both DNA repair and antiinflammation, its ability to modulate DNA repair in human skin organ cultures was undertaken. For this purpose skin cultures were treated with or without 5 mg/mL C-Med-100, irradiated with 0-100 mJ/cm2 UVB, and microscopically analysed for necrosis as well as the level of pyrimidine dimers using immunofluorescent TT-dimer antibody staining. The data clearly demonstrated that co-incubation with C-Med-100 reduced skin cell death from UV exposure, and this protection was accounted for by a concomitant increase in DNA repair. Based on these results, it was concluded that C-Med-100 was a natural plant extract worthy of further consideration as a sunscreen product.

  20. Effects of stressors on the behavior and physiology of domestic cats.

    Science.gov (United States)

    Stella, Judi; Croney, Candace; Buffington, Tony

    2013-01-31

    Feline interstitial cystitis (FIC) is a chronic pain syndrome of domestic cats. Cats with FIC have chronic, recurrent lower urinary tract signs (LUTS) and other comorbid disorders that are exacerbated by stressors. The aim of this study was to evaluate behavioral and physiological responses of healthy cats and cats diagnosed with FIC after exposure to a five day stressor. Ten healthy cats and 18 cats with FIC were housed at The Ohio State University Veterinary Medical Center (OSUVMC) vivarium. All cats were housed in enriched cages for at least one year prior to the experiment. Cats had daily play time and socialization outside of the cage, food treats and auditory enrichment. The daily husbandry schedule was maintained at a consistent time of day and cats were cared for by two familiar caretakers. During the test days, cats were exposed to multiple unpredictable stressors which included exposure to multiple unfamiliar caretakers, an inconsistent husbandry schedule, and discontinuation of play time, socialization, food treats, and auditory enrichment. Sickness behaviors (SB), including vomiting, diarrhea, anorexia or decreased food and water intake, fever, lethargy, somnolence, enhanced pain-like behaviors, decreased general activity, body care activities (grooming), and social interactions, were recorded daily. Blood samples were collected in the morning, before and after the stress period, for measurement of serum cortisol concentration, leukocytes, lymphocytes, neutrophils, neutrophil: lymphocyte (N:L) ratio and mRNA for the cytokines interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α). Overall, the short term stressors led to a significant increase in SB in both healthy cats and cats with FIC, whereas lymphopenia and N:L changes occurred only in FIC cats. Daily monitoring of cats for SB may be a noninvasive and reliable way to assess stress responses and overall welfare of cats housed in cages.

  1. Basal forebrain cholinergic input is not essential for lesion-induced plasticity in mature auditory cortex.

    Science.gov (United States)

    Kamke, Marc R; Brown, Mel; Irvine, Dexter R F

    2005-11-23

    The putative role of the basal forebrain cholinergic system in mediating lesion-induced plasticity in topographic cortical representations was investigated. Cholinergic immunolesions were combined with unilateral restricted cochlear lesions in adult cats, demonstrating the consequence of cholinergic depletion on lesion-induced plasticity in primary auditory cortex (AI). Immunolesions almost eliminated the cholinergic input to AI, while cochlear lesions produced broad high-frequency hearing losses. The results demonstrate that the near elimination of cholinergic input does not disrupt reorganization of the tonotopic representation of the lesioned (contralateral) cochlea in AI and does not affect the normal representation of the unlesioned (ipsilateral) cochlea. It is concluded that cholinergic basal forebrain input to AI is not essential for the occurrence of lesion-induced plasticity in AI.

  2. Quantitative map of multiple auditory cortical regions with a stereotaxic fine-scale atlas of the mouse brain

    OpenAIRE

    Hiroaki Tsukano; Masao Horie; Ryuichi Hishida; Kuniyuki Takahashi; Hirohide Takebayashi; Katsuei Shibuki

    2016-01-01

    Optical imaging studies have recently revealed the presence of multiple auditory cortical regions in the mouse brain. We have previously demonstrated, using flavoprotein fluorescence imaging, at least six regions in the mouse auditory cortex, including the anterior auditory field (AAF), primary auditory cortex (AI), the secondary auditory field (AII), dorsoanterior field (DA), dorsomedial field (DM), and dorsoposterior field (DP). While multiple regions in the visual cortex and somatosensory ...

  3. Mandibular Osteosarcoma in Cat: Case report

    OpenAIRE

    2011-01-01

    The primary malignant bone tumors are uncommon in cats. Osteosarcoma is the most frequently observed in old animals. This tumors affects the appendicular skeleton, however the axial skeleton is also affected, but the bones of the head and pelvis frequent sites of injury. This paper reports a case of a cat with a history of progressive swelling in the left mandible, with follow-up period of four months. The presumptive diagnosis of osteopathy, signed by clinical and radiographic observations w...

  4. Auditory processing in fragile x syndrome.

    Science.gov (United States)

    Rotschafer, Sarah E; Razak, Khaleel A

    2014-01-01

    Fragile X syndrome (FXS) is an inherited form of intellectual disability and autism. Among other symptoms, FXS patients demonstrate abnormalities in sensory processing and communication. Clinical, behavioral, and electrophysiological studies consistently show auditory hypersensitivity in humans with FXS. Consistent with observations in humans, the Fmr1 KO mouse model of FXS also shows evidence of altered auditory processing and communication deficiencies. A well-known and commonly used phenotype in pre-clinical studies of FXS is audiogenic seizures. In addition, increased acoustic startle response is seen in the Fmr1 KO mice. In vivo electrophysiological recordings indicate hyper-excitable responses, broader frequency tuning, and abnormal spectrotemporal processing in primary auditory cortex of Fmr1 KO mice. Thus, auditory hyper-excitability is a robust, reliable, and translatable biomarker in Fmr1 KO mice. Abnormal auditory evoked responses have been used as outcome measures to test therapeutics in FXS patients. Given that similarly abnormal responses are present in Fmr1 KO mice suggests that cellular mechanisms can be addressed. Sensory cortical deficits are relatively more tractable from a mechanistic perspective than more complex social behaviors that are typically studied in autism and FXS. The focus of this review is to bring together clinical, functional, and structural studies in humans with electrophysiological and behavioral studies in mice to make the case that auditory hypersensitivity provides a unique opportunity to integrate molecular, cellular, circuit level studies with behavioral outcomes in the search for therapeutics for FXS and other autism spectrum disorders.

  5. Auditory Processing in Fragile X Syndrome

    Directory of Open Access Journals (Sweden)

    Sarah E Rotschafer

    2014-02-01

    Full Text Available Fragile X syndrome (FXS is an inherited form of intellectual disability and autism. Among other symptoms, FXS patients demonstrate abnormalities in sensory processing and communication. Clinical, behavioral and electrophysiological studies consistently show auditory hypersensitivity in humans with FXS. Consistent with observations in humans, the Fmr1 KO mouse model of FXS also shows evidence of altered auditory processing and communication deficiencies. A well-known and commonly used phenotype in pre-clinical studies of FXS is audiogenic seizures. In addition, increased acoustic startle is also seen in the Fmr1 KO mice. In vivo electrophysiological recordings indicate hyper-excitable responses, broader frequency tuning and abnormal spectrotemporal processing in primary auditory cortex of Fmr1 KO mice. Thus, auditory hyper-excitability is a robust, reliable and translatable biomarker in Fmr1 KO mice. Abnormal auditory evoked responses have been used as outcome measures to test therapeutics in FXS patients. Given that similarly abnormal responses are present in Fmr1 KO mice suggests that cellular mechanisms can be addressed. Sensory cortical deficits are relatively more tractable from a mechanistic perspective than more complex social behaviors that are typically studied in autism and FXS. The focus of this review is to bring together clinical, functional and structural studies in humans with electrophysiological and behavioral studies in mice to make the case that auditory hypersensitivity provides a unique opportunity to integrate molecular, cellular, circuit level studies with behavioral outcomes in the search for therapeutics for FXS and other autism spectrum disorders.

  6. Network and external perturbation induce burst synchronisation in cat cerebral cortex

    Science.gov (United States)

    Lameu, Ewandson L.; Borges, Fernando S.; Borges, Rafael R.; Batista, Antonio M.; Baptista, Murilo S.; Viana, Ricardo L.

    2016-05-01

    The brain of mammals are divided into different cortical areas that are anatomically connected forming larger networks which perform cognitive tasks. The cat cerebral cortex is composed of 65 areas organised into the visual, auditory, somatosensory-motor and frontolimbic cognitive regions. We have built a network of networks, in which networks are connected among themselves according to the connections observed in the cat cortical areas aiming to study how inputs drive the synchronous behaviour in this cat brain-like network. We show that without external perturbations it is possible to observe high level of bursting synchronisation between neurons within almost all areas, except for the auditory area. Bursting synchronisation appears between neurons in the auditory region when an external perturbation is applied in another cognitive area. This is a clear evidence that burst synchronisation and collective behaviour in the brain might be a process mediated by other brain areas under stimulation.

  7. A Catalogue of Anatomical Fugitive Sheets: Cat. 1-10

    OpenAIRE

    1999-01-01

    Images Cat. 1 Cat. 2 (a) Cat. 2 (b) Cat. 2 (c) Cat. 2 (d) Cat. 2 (e) Cat. 2 (f) Cat. 3: 1 (a) Cat. 3: 1 (b) Cat. 3: 2 (a) Cat. 3: 2 (b) Cat. 4: 1 Cat. 4: 2 Cat. 6: 1 (a) Cat. 6: 1 (b) Cat. 6: 2 (a) Cat. 6: 2 (b) Cat. 7: 1 (a) Cat. 7: 1 (b) Cat. 7: 2 (a) Cat. 7: 2 (b) Cat. 8: 1 Cat. 9: 1 Cat. 9: 2 Cat. 10: 1 Cat. 10: 2

  8. Auditory hallucinations in nonverbal quadriplegics.

    Science.gov (United States)

    Hamilton, J

    1985-11-01

    When a system for communicating with nonverbal, quadriplegic, institutionalized residents was developed, it was discovered that many were experiencing auditory hallucinations. Nine cases are presented in this study. The "voices" described have many similar characteristics, the primary one being that they give authoritarian commands that tell the residents how to behave and to which the residents feel compelled to respond. Both the relationship of this phenomenon to the theoretical work of Julian Jaynes and its effect on the lives of the residents are discussed.

  9. Narrow, duplicated internal auditory canal

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, T. [Servico de Neurorradiologia, Hospital Garcia de Orta, Avenida Torrado da Silva, 2801-951, Almada (Portugal); Shayestehfar, B. [Department of Radiology, UCLA Oliveview School of Medicine, Los Angeles, California (United States); Lufkin, R. [Department of Radiology, UCLA School of Medicine, Los Angeles, California (United States)

    2003-05-01

    A narrow internal auditory canal (IAC) constitutes a relative contraindication to cochlear implantation because it is associated with aplasia or hypoplasia of the vestibulocochlear nerve or its cochlear branch. We report an unusual case of a narrow, duplicated IAC, divided by a bony septum into a superior relatively large portion and an inferior stenotic portion, in which we could identify only the facial nerve. This case adds support to the association between a narrow IAC and aplasia or hypoplasia of the vestibulocochlear nerve. The normal facial nerve argues against the hypothesis that the narrow IAC is the result of a primary bony defect which inhibits the growth of the vestibulocochlear nerve. (orig.)

  10. A Catalogue of Anatomical Fugitive Sheets: Cat. 11-25

    OpenAIRE

    1999-01-01

    Images Cat. 11 (a) Cat. 11 (b) Cat. 11 (c) Cat. 11 (d) Cat. 12: 1 (a) Cat. 12: 1 (b) Cat. 12: 2 (a) Cat. 12: 2 (b) Cat. 13 Cat. 14 (a) Cat. 14 (b) Cat. 14 (c) Cat. 15 (a) Cat. 15 (b) Cat. 17: 1 Cat. 17: 2 Cat. 18: 1 Cat. 18: 2 Cat. 19: 1 (a) Cat. 19: 1 (b) Cat. 19: 2 (a) Cat. 19: 2 (b) Cat. 20: 1 Cat. 20: 2 (a) Cat. 20: 2 (b) Cat. 21 (a) Cat. 21 (b) Cat. 21 (c) Cat. 21 (d) Cat. 21 (e) Cat. 22 Cat. 24: 1 and 2 Cat. 25: 1 Cat. 25: 2 Cat. 25: 3 Cat. 25: 4

  11. Auditory cortex basal activity modulates cochlear responses in chinchillas.

    Directory of Open Access Journals (Sweden)

    Alex León

    Full Text Available BACKGROUND: The auditory efferent system has unique neuroanatomical pathways that connect the cerebral cortex with sensory receptor cells. Pyramidal neurons located in layers V and VI of the primary auditory cortex constitute descending projections to the thalamus, inferior colliculus, and even directly to the superior olivary complex and to the cochlear nucleus. Efferent pathways are connected to the cochlear receptor by the olivocochlear system, which innervates outer hair cells and auditory nerve fibers. The functional role of the cortico-olivocochlear efferent system remains debated. We hypothesized that auditory cortex basal activity modulates cochlear and auditory-nerve afferent responses through the efferent system. METHODOLOGY/PRINCIPAL FINDINGS: Cochlear microphonics (CM, auditory-nerve compound action potentials (CAP and auditory cortex evoked potentials (ACEP were recorded in twenty anesthetized chinchillas, before, during and after auditory cortex deactivation by two methods: lidocaine microinjections or cortical cooling with cryoloops. Auditory cortex deactivation induced a transient reduction in ACEP amplitudes in fifteen animals (deactivation experiments and a permanent reduction in five chinchillas (lesion experiments. We found significant changes in the amplitude of CM in both types of experiments, being the most common effect a CM decrease found in fifteen animals. Concomitantly to CM amplitude changes, we found CAP increases in seven chinchillas and CAP reductions in thirteen animals. Although ACEP amplitudes were completely recovered after ninety minutes in deactivation experiments, only partial recovery was observed in the magnitudes of cochlear responses. CONCLUSIONS/SIGNIFICANCE: These results show that blocking ongoing auditory cortex activity modulates CM and CAP responses, demonstrating that cortico-olivocochlear circuits regulate auditory nerve and cochlear responses through a basal efferent tone. The diversity of the

  12. Prevalence of otitis externa in stray cats in northern Italy.

    Science.gov (United States)

    Perego, Roberta; Proverbio, Daniela; Bagnagatti De Giorgi, Giada; Della Pepa, Alessandra; Spada, Eva

    2014-06-01

    Feline otitis externa is a dermatological disorder that has not been evaluated much in stray cats. One hundred and eighty-seven stray cats were randomly selected during a trap-neuter-release programme to investigate the prevalence of otitis externa in stray cat colonies in northern Italy. Swabs for cytological examination were obtained from the external ear canal of each cat. A direct otoscopic assessment of the external ear canal was made in 86/187 cats. Cytological evidence of otitis externa was present in 55.1% of cats. The influence on otitis of age, gender, habitat and season of sampling was tested, but no risk factors were found. Otodectes cynotis (as a sole agent or in combination) was the primary cause of otitis in 53.3% of cats. Cocci and rods, either alone or in combination with other agents, were perpetuating factors in 71.8% and 29.1% of cats, respectively. Pregnancy status was a risk factor for otitis caused by coccal infections. Malassezia species, alone or in combination, was the perpetuating factor in 50.5% of cats with otitis. Urban habitat and winter season were risk factors for otitis associated with Malassezia species. Demodex cati was identified as an incidental finding in two cats. There was good agreement between otoscopy and cytology with regard to the diagnosis of otitis externa. The results of this study show a high prevalence of otitis externa in stray colony cats and provide information on causal factors for feline otitis externa.

  13. The mitochondrial connection in auditory neuropathy.

    Science.gov (United States)

    Cacace, Anthony T; Pinheiro, Joaquim M B

    2011-01-01

    'Auditory neuropathy' (AN), the term used to codify a primary degeneration of the auditory nerve, can be linked directly or indirectly to mitochondrial dysfunction. These observations are based on the expression of AN in known mitochondrial-based neurological diseases (Friedreich's ataxia, Mohr-Tranebjærg syndrome), in conditions where defects in axonal transport, protein trafficking, and fusion processes perturb and/or disrupt mitochondrial dynamics (Charcot-Marie-Tooth disease, autosomal dominant optic atrophy), in a common neonatal condition known to be toxic to mitochondria (hyperbilirubinemia), and where respiratory chain deficiencies produce reductions in oxidative phosphorylation that adversely affect peripheral auditory mechanisms. This body of evidence is solidified by data derived from temporal bone and genetic studies, biochemical, molecular biologic, behavioral, electroacoustic, and electrophysiological investigations.

  14. Auditory Integration Training

    Directory of Open Access Journals (Sweden)

    Zahra Jafari

    2002-07-01

    Full Text Available Auditory integration training (AIT is a hearing enhancement training process for sensory input anomalies found in individuals with autism, attention deficit hyperactive disorder, dyslexia, hyperactivity, learning disability, language impairments, pervasive developmental disorder, central auditory processing disorder, attention deficit disorder, depressin, and hyperacute hearing. AIT, recently introduced in the United States, and has received much notice of late following the release of The Sound of a Moracle, by Annabel Stehli. In her book, Mrs. Stehli describes before and after auditory integration training experiences with her daughter, who was diagnosed at age four as having autism.

  15. Activity changes of the cat paraventricular hypothalamus during stressor exposure

    DEFF Research Database (Denmark)

    Kristensen, Morten Pilgaard; Rector, David M; Poe, Gina R

    2004-01-01

    Dorso-medial paraventricular hypothalamus (PVH) activity was assessed by light scattering procedures in freely behaving cats during auditory stressor exposure. Acoustic noise (> 95dB) raised plasma ACTH concentrations, somatic muscle tonus, respiratory frequency and cardiac rates; PVH activity...... and nadir. Isolated pixels appeared opposite in activity pattern to overall changes. We suggest that transient activity increases represent initial PVH neural stress responses, and that subsequent profound declines result from neural inhibitory feedback....

  16. Missing a trick: Auditory load modulates conscious awareness in audition.

    Science.gov (United States)

    Fairnie, Jake; Moore, Brian C J; Remington, Anna

    2016-07-01

    In the visual domain there is considerable evidence supporting the Load Theory of Attention and Cognitive Control, which holds that conscious perception of background stimuli depends on the level of perceptual load involved in a primary task. However, literature on the applicability of this theory to the auditory domain is limited and, in many cases, inconsistent. Here we present a novel "auditory search task" that allows systematic investigation of the impact of auditory load on auditory conscious perception. An array of simultaneous, spatially separated sounds was presented to participants. On half the trials, a critical stimulus was presented concurrently with the array. Participants were asked to detect which of 2 possible targets was present in the array (primary task), and whether the critical stimulus was present or absent (secondary task). Increasing the auditory load of the primary task (raising the number of sounds in the array) consistently reduced the ability to detect the critical stimulus. This indicates that, at least in certain situations, load theory applies in the auditory domain. The implications of this finding are discussed both with respect to our understanding of typical audition and for populations with altered auditory processing. (PsycINFO Database Record

  17. Auditory Responses of Infants

    Science.gov (United States)

    Watrous, Betty Springer; And Others

    1975-01-01

    Forty infants, 3- to 12-months-old, participated in a study designed to differentiate the auditory response characteristics of normally developing infants in the age ranges 3 - 5 months, 6 - 8 months, and 9 - 12 months. (Author)

  18. Amplified somatosensory and visual cortical projections to a core auditory area, the anterior auditory field, following early- and late-onset deafness.

    Science.gov (United States)

    Wong, Carmen; Chabot, Nicole; Kok, Melanie A; Lomber, Stephen G

    2015-09-01

    Cross-modal reorganization following the loss of input from a sensory modality can recruit sensory-deprived cortical areas to process information from the remaining senses. Specifically, in early-deaf cats, the anterior auditory field (AAF) is unresponsive to auditory stimuli but can be activated by somatosensory and visual stimuli. Similarly, AAF neurons respond to tactile input in adult-deafened animals. To examine anatomical changes that may underlie this functional adaptation following early or late deafness, afferent projections to AAF were examined in hearing cats, and cats with early- or adult-onset deafness. Unilateral deposits of biotinylated dextran amine were made in AAF to retrogradely label cortical and thalamic afferents to AAF. In early-deaf cats, ipsilateral neuronal labeling in visual and somatosensory cortices increased by 329% and 101%, respectively. The largest increases arose from the anterior ectosylvian visual area and the anterolateral lateral suprasylvian visual area, as well as somatosensory areas S2 and S4. Consequently, labeling in auditory areas was reduced by 36%. The age of deafness onset appeared to influence afferent connectivity, with less marked differences observed in late-deaf cats. Profound changes to visual and somatosensory afferent connectivity following deafness may reflect corticocortical rewiring affording acoustically deprived AAF with cross-modal functionality.

  19. Bacterial pericarditis in a cat

    Directory of Open Access Journals (Sweden)

    Nicole LeBlanc

    2015-09-01

    Full Text Available Case summary A 4-year-old male neutered domestic shorthair cat was presented to the Oregon State University cardiology service for suspected pericardial effusion. Cardiac tamponade was documented and pericardiocentesis yielded purulent fluid with cytologic results supportive of bacterial pericarditis. The microbial population consisted of Pasteurella multocida, Actinomyces canis, Fusobacterium and Bacteroides species. Conservative management was elected consisting of intravenous antibiotic therapy with ampicillin sodium/sulbactam sodium and metronidazole for 48 h followed by 4 weeks of oral antibiotics. Re-examination 3 months after the initial incident indicated no recurrence of effusion and the cat remained free of clinical signs 2 years after presentation. Relevance and novel information Bacterial pericarditis is a rare cause of pericardial effusion in cats. Growth of P multocida, A canis, Fusobacterium and Bacteroides species has not previously been documented in feline septic pericarditis. Conservative management with broad-spectrum antibiotics may be considered when further diagnostic imaging or exploratory surgery to search for a primary nidus of infection is not feasible or elected.

  20. Computed tomographic aspects of primary brain tumors in dogs and cats; Aspectos tomograficos de tumores cerebrais primarios em caes e gatos

    Energy Technology Data Exchange (ETDEWEB)

    Babicsak, Viviam Rocco; Zardo, Karen Maciel; Santos, Debora Rodrigues dos; Silva, Luciana Carandina da; Machado, Vania Maria de Vasconcelos; Vulcano, Luiz Carlos, E-mail: viviam.babicsak@gmail.com [Setor de Diagnostico por Imagem - FMVZ - UNESP/Botucatu, SP (Brazil)

    2011-07-01

    Over the years, the Veterinary Medicine has made great advances, enabling thus the diagnosis of many diseases. As a result of this new situation, there was an increased expectation of life of animals resulting in an increase in the number of clinical care of older animals. Thus, diseases considered unusual in the past, begin to be diagnosed more frequently, as is the case of brain damage. Recently, computed tomography has been widely used in Brazil as a tool to aid in the diagnosis of several diseases. This noninvasive imaging technique allows the identification and evaluation of lesions of central nervous tissue such as brain tumors. This provides information about the size, shape and location of the lesion, in addition to the magnitude of compression and invasion of adjacent structures by the tumor and its side effects (such as the peritumoral edema and hydrocephalus). The image obtained from computed tomography may suggest the presence of a certain type brain tumor, data of great importance for the prognosis and treatment of the animal. This review covers the computed tomography aspects of primary brain tumors such as meningiomas, astrocytomas, oligodendrogliomas, choroid plexus tumors and ependymomas. However, despite the computed tomography provide much information about the changes inside the skull; no way replace histopathological examination in determining the definitive diagnosis. (author)

  1. Cat-scratch disease

    Science.gov (United States)

    ... scratch or bite from a cat, your health care provider may suspect cat-scratch disease. A physical examination may also reveal an enlarged spleen . Sometimes, an infected lymph node may form a tunnel ( fistula ) through the skin and drain (leak fluid). This ...

  2. Hyperadrenocorticism in a cat.

    Science.gov (United States)

    Zerbe, C A; Nachreiner, R F; Dunstan, R W; Dalley, J B

    1987-03-01

    A diabetic cat with hyperadrenocorticism had polydipsia, polyuria, ventral abdominal alopecia, thin dry skin, and a pendulous abdomen. Results of laboratory testing indicated persistent resting hypercortisolemia, hyperresponsiveness of the adrenal glands (increased cortisol concentration) to ACTH gel, and no suppression of cortisol concentrations after administration of dexamethasone at 0.01 or 1.0 mg/kg of body weight. Necropsy revealed a pituitary gland tumor, bilateral adrenal hyperplasia, hepatic neoplasia, and demodicosis. Adrenal gland function was concurrently assessed in 2 cats with diabetes mellitus. One cat had resting hypercortisolemia, and both had hyperresponsiveness to ACTH gel (increased cortisol concentration) at one hour. After administration of dexamethasone (0.01 and 1.0 mg/kg), the diabetic cats appeared to have normal suppression of cortisol concentrations. The effects of mitotane were investigated in 4 clinically normal cats. Adrenocortical suppression of cortisol production occurred in 2 of 4 cats after dosages of 25, 37, and 50 mg/kg. Three cats remained clinically normal throughout the study. One cat experienced vomiting, diarrhea, and anorexia.

  3. Cat-Scratch Disease

    Science.gov (United States)

    ... bites and scratches well with soap and running water. Do not allow cats to lick your wounds. Contact your doctor if you develop any symptoms of cat-scratch disease or infection. CSD is caused by a bacterium called Bartonella henselae . About 40% ...

  4. That Fat Cat

    Science.gov (United States)

    Lambert, Phyllis Gilchrist

    2012-01-01

    This activity began with a picture book, Nurit Karlin's "Fat Cat On a Mat" (HarperCollins; 1998). The author and her students started their project with a 5-inch circular template for the head of their cats. They reviewed shapes as they drew the head and then added the ears and nose, which were triangles. Details to the face were added when…

  5. Cat scratch colon.

    Science.gov (United States)

    Ruiz-Rebollo, M Lourdes; Velayos-Jiménez, Benito; Prieto de Paula, José María; Alvarez Quiñones, María; González Hernández, José Manuel

    2011-01-01

    Over the past few years, we have read several publications regarding the term "cat scratch colon." This neologism was developed to define some bright red linear markings seen in the colonic mucosa that resemble scratches made by a cat. We would like to communicate a recent case attended at our institution.

  6. Cat Scratch Colon

    Directory of Open Access Journals (Sweden)

    M. Lourdes Ruiz-Rebollo

    2011-01-01

    Full Text Available Over the past few years, we have read several publications regarding the term “cat scratch colon.” This neologism was developed to define some bright red linear markings seen in the colonic mucosa that resemble scratches made by a cat. We would like to communicate a recent case attended at our institution.

  7. State of cat genomics.

    Science.gov (United States)

    O'Brien, Stephen J; Johnson, Warren; Driscoll, Carlos; Pontius, Joan; Pecon-Slattery, Jill; Menotti-Raymond, Marilyn

    2008-06-01

    Our knowledge of cat family biology was recently expanded to include a genomics perspective with the completion of a draft whole genome sequence of an Abyssinian cat. The utility of the new genome information has been demonstrated by applications ranging from disease gene discovery and comparative genomics to species conservation. Patterns of genomic organization among cats and inbred domestic cat breeds have illuminated our view of domestication, revealing linkage disequilibrium tracks consequent of breed formation, defining chromosome exchanges that punctuated major lineages of mammals and suggesting ancestral continental migration events that led to 37 modern species of Felidae. We review these recent advances here. As the genome resources develop, the cat is poised to make a major contribution to many areas in genetics and biology.

  8. Impact of Educational Level on Performance on Auditory Processing Tests.

    Science.gov (United States)

    Murphy, Cristina F B; Rabelo, Camila M; Silagi, Marcela L; Mansur, Letícia L; Schochat, Eliane

    2016-01-01

    Research has demonstrated that a higher level of education is associated with better performance on cognitive tests among middle-aged and elderly people. However, the effects of education on auditory processing skills have not yet been evaluated. Previous demonstrations of sensory-cognitive interactions in the aging process indicate the potential importance of this topic. Therefore, the primary purpose of this study was to investigate the performance of middle-aged and elderly people with different levels of formal education on auditory processing tests. A total of 177 adults with no evidence of cognitive, psychological or neurological conditions took part in the research. The participants completed a series of auditory assessments, including dichotic digit, frequency pattern and speech-in-noise tests. A working memory test was also performed to investigate the extent to which auditory processing and cognitive performance were associated. The results demonstrated positive but weak correlations between years of schooling and performance on all of the tests applied. The factor "years of schooling" was also one of the best predictors of frequency pattern and speech-in-noise test performance. Additionally, performance on the working memory, frequency pattern and dichotic digit tests was also correlated, suggesting that the influence of educational level on auditory processing performance might be associated with the cognitive demand of the auditory processing tests rather than auditory sensory aspects itself. Longitudinal research is required to investigate the causal relationship between educational level and auditory processing skills.

  9. Auditory perceptual simulation: Simulating speech rates or accents?

    Science.gov (United States)

    Zhou, Peiyun; Christianson, Kiel

    2016-07-01

    When readers engage in Auditory Perceptual Simulation (APS) during silent reading, they mentally simulate characteristics of voices attributed to a particular speaker or a character depicted in the text. Previous research found that auditory perceptual simulation of a faster native English speaker during silent reading led to shorter reading times that auditory perceptual simulation of a slower non-native English speaker. Yet, it was uncertain whether this difference was triggered by the different speech rates of the speakers, or by the difficulty of simulating an unfamiliar accent. The current study investigates this question by comparing faster Indian-English speech and slower American-English speech in the auditory perceptual simulation paradigm. Analyses of reading times of individual words and the full sentence reveal that the auditory perceptual simulation effect again modulated reading rate, and auditory perceptual simulation of the faster Indian-English speech led to faster reading rates compared to auditory perceptual simulation of the slower American-English speech. The comparison between this experiment and the data from Zhou and Christianson (2016) demonstrate further that the "speakers'" speech rates, rather than the difficulty of simulating a non-native accent, is the primary mechanism underlying auditory perceptual simulation effects.

  10. Auditory and visual spatial impression: Recent studies of three auditoria

    Science.gov (United States)

    Nguyen, Andy; Cabrera, Densil

    2004-10-01

    Auditory spatial impression is widely studied for its contribution to auditorium acoustical quality. By contrast, visual spatial impression in auditoria has received relatively little attention in formal studies. This paper reports results from a series of experiments investigating the auditory and visual spatial impression of concert auditoria. For auditory stimuli, a fragment of an anechoic recording of orchestral music was convolved with calibrated binaural impulse responses, which had been made with the dummy head microphone at a wide range of positions in three auditoria and the sound source on the stage. For visual stimuli, greyscale photographs were used, taken at the same positions in the three auditoria, with a visual target on the stage. Subjective experiments were conducted with auditory stimuli alone, visual stimuli alone, and visual and auditory stimuli combined. In these experiments, subjects rated apparent source width, listener envelopment, intimacy and source distance (auditory stimuli), and spaciousness, envelopment, stage dominance, intimacy and target distance (visual stimuli). Results show target distance to be of primary importance in auditory and visual spatial impression-thereby providing a basis for covariance between some attributes of auditory and visual spatial impression. Nevertheless, some attributes of spatial impression diverge between the senses.

  11. Comparative study of aural microflora in healthy cats, allergic cats and cats with systemic disease.

    Science.gov (United States)

    Pressanti, Charline; Drouet, Clémence; Cadiergues, Marie-Christine

    2014-12-01

    Twenty healthy cats (group 1) with clinically normal ears, 15 cats with systemic disease (group 2) and 15 allergic cats (group 3) were included in a prospective study. The experimental unit was the ear. A clinical score was established for each ear canal after otoscopic examination. Microbial population was assessed on cytological examination of smears performed with the cotton-tipped applicator smear technique. Fungal population was significantly more prominent in allergic cats (P cats compared with healthy cats (P cats than in healthy cats (P cats suffering from systemic disease (P cats with systemic disease than healthy cats. In cats from group 2, only fungal overgrowth was associated with otitis severity. In group 3, only bacterial overgrowth was associated with otitis severity.

  12. Giardia infection in cats.

    Science.gov (United States)

    Janeczko, Stephanie; Griffin, Brenda

    2010-08-01

    The protozoon Giardia duodenalis is a common gastrointestinal parasite of cats. While most Giardia-infected cats are asymptomatic, acute small bowel diarrhea, occasionally with concomitant weight loss, may occur. Giardia poses a diagnostic challenge, but newer tests, including a commercially available ELISA kit, have improved clinicians' ability to obtain an accurate diagnosis. Several treatment options have been reported, and although none has been shown to be universally effective, most cases can be successfully managed with drug therapy, supportive measures, and environmental control. Current recommendations suggest that combination therapy with fenbendazole and metronidazole may be the safest, most effective treatment option for symptomatic cats.

  13. Auditory and Visual Sensations

    CERN Document Server

    Ando, Yoichi

    2010-01-01

    Professor Yoichi Ando, acoustic architectural designer of the Kirishima International Concert Hall in Japan, presents a comprehensive rational-scientific approach to designing performance spaces. His theory is based on systematic psychoacoustical observations of spatial hearing and listener preferences, whose neuronal correlates are observed in the neurophysiology of the human brain. A correlation-based model of neuronal signal processing in the central auditory system is proposed in which temporal sensations (pitch, timbre, loudness, duration) are represented by an internal autocorrelation representation, and spatial sensations (sound location, size, diffuseness related to envelopment) are represented by an internal interaural crosscorrelation function. Together these two internal central auditory representations account for the basic auditory qualities that are relevant for listening to music and speech in indoor performance spaces. Observed psychological and neurophysiological commonalities between auditor...

  14. StreamCat

    Data.gov (United States)

    U.S. Environmental Protection Agency — The StreamCat Dataset provides summaries of natural and anthropogenic landscape features for ~2.65 million streams, and their associated catchments, within the...

  15. IndexCat

    Data.gov (United States)

    U.S. Department of Health & Human Services — IndexCat provides access to the digitized version of the printed Index-Catalogue of the Library of the Surgeon General's Office; eTK for medieval Latin texts; and...

  16. Cat tongue Velcro

    Science.gov (United States)

    Noel, Alexis; Martinez, Andrea; Jung, Hyewon; Tsai, Ting-Wen; Hu, David

    2016-11-01

    A cat's tongue is covered in an array of spines called papillae. These spines are thought to be used in grooming and rasping meat from bones of prey, although no mechanism has been given. We use high-speed video to film a cat removing cat food deeply wedged into a 3-D printed fur mat. We show that the spines on the tongue act as Velcro for particles. The tongue itself is highly elastic. As the cat presses it against a substrate, the tongue flattens and the spines separate. When the tongue is removed from the substrate the spines come together, wedging particles between them. This elasticity-driven entrapment permits the surface of the tongue to act as a carrier for hard to reach particles, and to increase the efficacy of grooming and feeding.

  17. Effects of passive, moderate-level sound exposure on the mature auditory cortex: spectral edges, spectrotemporal density, and real-world noise.

    Science.gov (United States)

    Pienkowski, Martin; Munguia, Raymundo; Eggermont, Jos J

    2013-02-01

    Persistent, passive exposure of adult cats to bandlimited tone pip ensembles or sharply-filtered white noise at moderate levels (∼70 dB SPL) leads to a long-term suppression of spontaneous and sound-evoked activity in the region(s) of primary auditory cortex (AI) normally tuned to the exposure spectrum, and to an enhancement of activity in one or more neighboring regions of AI, all in the apparent absence of hearing loss. Here, we first examined the effects of passive exposure to a more structured, real-world noise, consisting of a mix of power tool and construction sounds. This "factory noise" had less pronounced effects on adult cat AI than our previous random tone pip ensembles and white noise, and these effects appeared limited to the region of AI tuned to frequencies near the sharp factory noise cutoff at 16 kHz. To further investigate the role of sharp spectral edges in passive exposure-induced cortical plasticity, a second group of adult cats was exposed to a tone pip ensemble with a flat spectrum between 2 and 4 kHz and shallow cutoff slopes (12 dB/oct) on either side. Compared to our previous ensemble with the same power in the 2-4 kHz band but very steep slopes, exposure to the overall more intense, sloped stimulus had much weaker effects on AI. Finally, we explored the issue of exposure stimulus spectrotemporal density and found that low aggregate tone pip presentation rates of about one per second sufficed to induce changes in the adult AI similar to those characteristic of our previous, much denser exposures. These results are discussed in light of the putative mechanisms underlying exposure-induced auditory cortical plasticity, and the potential adverse consequences of working or living in moderately noisy environments.

  18. Shaping the aging brain: Role of auditory input patterns in the emergence of auditory cortical impairments

    Directory of Open Access Journals (Sweden)

    Brishna Soraya Kamal

    2013-09-01

    Full Text Available Age-related impairments in the primary auditory cortex (A1 include poor tuning selectivity, neural desynchronization and degraded responses to low-probability sounds. These changes have been largely attributed to reduced inhibition in the aged brain, and are thought to contribute to substantial hearing impairment in both humans and animals. Since many of these changes can be partially reversed with auditory training, it has been speculated that they might not be purely degenerative, but might rather represent negative plastic adjustments to noisy or distorted auditory signals reaching the brain. To test this hypothesis, we examined the impact of exposing young adult rats to 8 weeks of low-grade broadband noise on several aspects of A1 function and structure. We then characterized the same A1 elements in aging rats for comparison. We found that the impact of noise exposure on A1 tuning selectivity, temporal processing of auditory signal and responses to oddball tones was almost indistinguishable from the effect of natural aging. Moreover, noise exposure resulted in a reduction in the population of parvalbumin inhibitory interneurons and cortical myelin as previously documented in the aged group. Most of these changes reversed after returning the rats to a quiet environment. These results support the hypothesis that age-related changes in A1 have a strong activity-dependent component and indicate that the presence or absence of clear auditory input patterns might be a key factor in sustaining adult A1 function.

  19. Auditory evacuation beacons

    NARCIS (Netherlands)

    Wijngaarden, S.J. van; Bronkhorst, A.W.; Boer, L.C.

    2005-01-01

    Auditory evacuation beacons can be used to guide people to safe exits, even when vision is totally obscured by smoke. Conventional beacons make use of modulated noise signals. Controlled evacuation experiments show that such signals require explicit instructions and are often misunderstood. A new si

  20. Virtual Auditory Displays

    Science.gov (United States)

    2000-01-01

    timbre , intensity, distance, room modeling, radio communication Virtual Environments Handbook Chapter 4 Virtual Auditory Displays Russell D... musical note “A” as a pure sinusoid, there will be 440 condensations and rarefactions per second. The distance between two adjacent condensations or...and complexity are pitch, loudness, and timbre respectively. This distinction between physical and perceptual measures of sound properties is an

  1. The neglected neglect: auditory neglect.

    Science.gov (United States)

    Gokhale, Sankalp; Lahoti, Sourabh; Caplan, Louis R

    2013-08-01

    Whereas visual and somatosensory forms of neglect are commonly recognized by clinicians, auditory neglect is often not assessed and therefore neglected. The auditory cortical processing system can be functionally classified into 2 distinct pathways. These 2 distinct functional pathways deal with recognition of sound ("what" pathway) and the directional attributes of the sound ("where" pathway). Lesions of higher auditory pathways produce distinct clinical features. Clinical bedside evaluation of auditory neglect is often difficult because of coexisting neurological deficits and the binaural nature of auditory inputs. In addition, auditory neglect and auditory extinction may show varying degrees of overlap, which makes the assessment even harder. Shielding one ear from the other as well as separating the ear from space is therefore critical for accurate assessment of auditory neglect. This can be achieved by use of specialized auditory tests (dichotic tasks and sound localization tests) for accurate interpretation of deficits. Herein, we have reviewed auditory neglect with an emphasis on the functional anatomy, clinical evaluation, and basic principles of specialized auditory tests.

  2. An anatomical and functional topography of human auditory cortical areas.

    Science.gov (United States)

    Moerel, Michelle; De Martino, Federico; Formisano, Elia

    2014-01-01

    While advances in magnetic resonance imaging (MRI) throughout the last decades have enabled the detailed anatomical and functional inspection of the human brain non-invasively, to date there is no consensus regarding the precise subdivision and topography of the areas forming the human auditory cortex. Here, we propose a topography of the human auditory areas based on insights on the anatomical and functional properties of human auditory areas as revealed by studies of cyto- and myelo-architecture and fMRI investigations at ultra-high magnetic field (7 Tesla). Importantly, we illustrate that-whereas a group-based approach to analyze functional (tonotopic) maps is appropriate to highlight the main tonotopic axis-the examination of tonotopic maps at single subject level is required to detail the topography of primary and non-primary areas that may be more variable across subjects. Furthermore, we show that considering multiple maps indicative of anatomical (i.e., myelination) as well as of functional properties (e.g., broadness of frequency tuning) is helpful in identifying auditory cortical areas in individual human brains. We propose and discuss a topography of areas that is consistent with old and recent anatomical post-mortem characterizations of the human auditory cortex and that may serve as a working model for neuroscience studies of auditory functions.

  3. Left hemispheric dominance during auditory processing in a noisy environment

    Directory of Open Access Journals (Sweden)

    Ross Bernhard

    2007-11-01

    Full Text Available Abstract Background In daily life, we are exposed to different sound inputs simultaneously. During neural encoding in the auditory pathway, neural activities elicited by these different sounds interact with each other. In the present study, we investigated neural interactions elicited by masker and amplitude-modulated test stimulus in primary and non-primary human auditory cortex during ipsi-lateral and contra-lateral masking by means of magnetoencephalography (MEG. Results We observed significant decrements of auditory evoked responses and a significant inter-hemispheric difference for the N1m response during both ipsi- and contra-lateral masking. Conclusion The decrements of auditory evoked neural activities during simultaneous masking can be explained by neural interactions evoked by masker and test stimulus in peripheral and central auditory systems. The inter-hemispheric differences of N1m decrements during ipsi- and contra-lateral masking reflect a basic hemispheric specialization contributing to the processing of complex auditory stimuli such as speech signals in noisy environments.

  4. An anatomical and functional topography of human auditory cortical areas

    Directory of Open Access Journals (Sweden)

    Michelle eMoerel

    2014-07-01

    Full Text Available While advances in magnetic resonance imaging (MRI throughout the last decades have enabled the detailed anatomical and functional inspection of the human brain non-invasively, to date there is no consensus regarding the precise subdivision and topography of the areas forming the human auditory cortex. Here, we propose a topography of the human auditory areas based on insights on the anatomical and functional properties of human auditory areas as revealed by studies of cyto- and myelo-architecture and fMRI investigations at ultra-high magnetic field (7 Tesla. Importantly, we illustrate that - whereas a group-based approach to analyze functional (tonotopic maps is appropriate to highlight the main tonotopic axis - the examination of tonotopic maps at single subject level is required to detail the topography of primary and non-primary areas that may be more variable across subjects. Furthermore, we show that considering multiple maps indicative of anatomical (i.e. myelination as well as of functional properties (e.g. broadness of frequency tuning is helpful in identifying auditory cortical areas in individual human brains. We propose and discuss a topography of areas that is consistent with old and recent anatomical post mortem characterizations of the human auditory cortex and that may serve as a working model for neuroscience studies of auditory functions.

  5. Modality specific neural correlates of auditory and somatic hallucinations

    Science.gov (United States)

    Shergill, S; Cameron, L; Brammer, M; Williams, S; Murray, R; McGuire, P

    2001-01-01

    Somatic hallucinations occur in schizophrenia and other psychotic disorders, although auditory hallucinations are more common. Although the neural correlates of auditory hallucinations have been described in several neuroimaging studies, little is known of the pathophysiology of somatic hallucinations. Functional magnetic resonance imaging (fMRI) was used to compare the distribution of brain activity during somatic and auditory verbal hallucinations, occurring at different times in a 36 year old man with schizophrenia. Somatic hallucinations were associated with activation in the primary somatosensory and posterior parietal cortex, areas that normally mediate tactile perception. Auditory hallucinations were associated with activation in the middle and superior temporal cortex, areas involved in processing external speech. Hallucinations in a given modality seem to involve areas that normally process sensory information in that modality.

 PMID:11606687

  6. Weak Cat-Operads

    CERN Document Server

    Dosen, K

    2010-01-01

    An operad (this paper deals with non-symmetric operads) may be conceived as a partial algebra with a family of insertion operations, Gerstenhaber's circle-i products, which satisfy two kinds of associativity, one of them involving commutativity. A Cat-operad is an operad enriched over the category Cat of small categories, as a 2-category with small hom-categories is a category enriched over Cat. The notion of weak Cat-operad is to the notion of Cat-operad what the notion of bicategory is to the notion of 2-category. The equations of operads like associativity of insertions are replaced by isomorphisms in a category. The goal of this paper is to formulate conditions concerning these isomorphisms that ensure coherence, in the sense that all diagrams of canonical arrows commute. This is the sense in which the notions of monoidal category and bicategory are coherent. The coherence proof in the paper is much simplified by indexing the insertion operations in a context-independent way, and not in the usual manner. ...

  7. Psychophysical and Neural Correlates of Auditory Attraction and Aversion

    Science.gov (United States)

    Patten, Kristopher Jakob

    This study explores the psychophysical and neural processes associated with the perception of sounds as either pleasant or aversive. The underlying psychophysical theory is based on auditory scene analysis, the process through which listeners parse auditory signals into individual acoustic sources. The first experiment tests and confirms that a self-rated pleasantness continuum reliably exists for 20 various stimuli (r = .48). In addition, the pleasantness continuum correlated with the physical acoustic characteristics of consonance/dissonance (r = .78), which can facilitate auditory parsing processes. The second experiment uses an fMRI block design to test blood oxygen level dependent (BOLD) changes elicited by a subset of 5 exemplar stimuli chosen from Experiment 1 that are evenly distributed over the pleasantness continuum. Specifically, it tests and confirms that the pleasantness continuum produces systematic changes in brain activity for unpleasant acoustic stimuli beyond what occurs with pleasant auditory stimuli. Results revealed that the combination of two positively and two negatively valenced experimental sounds compared to one neutral baseline control elicited BOLD increases in the primary auditory cortex, specifically the bilateral superior temporal gyrus, and left dorsomedial prefrontal cortex; the latter being consistent with a frontal decision-making process common in identification tasks. The negatively-valenced stimuli yielded additional BOLD increases in the left insula, which typically indicates processing of visceral emotions. The positively-valenced stimuli did not yield any significant BOLD activation, consistent with consonant, harmonic stimuli being the prototypical acoustic pattern of auditory objects that is optimal for auditory scene analysis. Both the psychophysical findings of Experiment 1 and the neural processing findings of Experiment 2 support that consonance is an important dimension of sound that is processed in a manner that aids

  8. Postnatal development of the endbulb of Held in congenitally deaf cats

    Directory of Open Access Journals (Sweden)

    Christa A Baker

    2010-05-01

    Full Text Available The endbulbs of Held are formed by the ascending branches of myelinated auditory nerve fibers and represent one of the largest synaptic endings in the brain. Normally, these endings are highly branched and each can form up to 1000 dome-shaped synapses. The deaf white cat is a model of congenital deafness involving a type of cochleosaccular degeneration that mimics the Scheibe deformity in humans. Mature deaf white cats exhibit reduced endbulb branching, hypertrophy of postsynaptic densities (PSDs, and changes in synaptic vesicle density. Because cats are essentially deaf at birth, we wanted to determine if the progression of brain abnormalities was linked in time to the failure of normal hearing development. The rationale was that the lack of sound-evoked activity would trigger pathologic change in deaf kittens. The cochleae of deaf cats did not exhibit abnormal morphology at birth. After the first postnatal week, however, the presence of a collapsed scala media signaled the difference between deaf and hearing cats. By working backwards in age, endbulbs of deaf cats expressed flattened and elongated PSDs and increased synaptic vesicle density as compared to normal endbulbs. These differences are present at birth in some white kittens, presaging deafness despite their normal cochlear histology. We speculate that hearing pathology is signaled by a perinatal loss of spontaneous bursting activity in auditory nerve fibers or perhaps by some factor released by hair cell synapses before obliteration of the organ of Corti.

  9. Clinicopathological and ultrasonographic features of cats with eosinophilic enteritis.

    Science.gov (United States)

    Tucker, Samuel; Penninck, Dominique G; Keating, John H; Webster, Cynthia R L

    2014-12-01

    Eosinophilic enteritis (EE) in cats is poorly characterized. The aim of the current study was to retrospectively evaluate the clinical and ultrasonographic findings in cats with histologic evidence of eosinophilic inflammation on gastrointestinal biopsy. Twenty-five cats with tissue eosinophilia on surgical (10) or endoscopic (15) biopsy of the gastrointestinal tract, having an abdominal ultrasound performed within 48 h of biopsy acquisition, were enrolled. History, clinical presentation, clinical pathology and abdominal ultrasound findings were reviewed. Intestinal biopsies were evaluated by a single pathologist and separated into two groups based on the degree of eosinophilic infiltrate: mild (eosinophils/high-power field [HPF], 11/25 cats), or moderate/marked (>10 eosinophils/HPF, 14/25 cats). The former were considered primary lymphoplasmacytic or lymphocytic inflammatory bowel disease (LPE) with subtle eosinophilic infiltrates, and the latter to have EE. Signalment, history and clinical signs were similar in all cats. Only cats with EE (6/14) had palpably thickened intestines. The only distinguishing clinicopathological feature of cats with EE was the presence of peripheral eosinophilia (6/14). On ultrasound, when compared with cats with LPE, cats with EE had a greater mean jejunal wall thickness (3.34 mm ± 0.72 mm vs 4.07 mm ± 0.58 mm, respectively) and an increased incidence of thickening of the muscularis layer (1/11 and 11/14, respectively). In conclusion, ultrasonographic evidence of a prominent intestinal muscularis layer, palpably thickened intestines and peripheral eosinophilia can serve as biomarkers for the presence of EE in cats with chronic intestinal signs.

  10. Auditory pathways: anatomy and physiology.

    Science.gov (United States)

    Pickles, James O

    2015-01-01

    This chapter outlines the anatomy and physiology of the auditory pathways. After a brief analysis of the external, middle ears, and cochlea, the responses of auditory nerve fibers are described. The central nervous system is analyzed in more detail. A scheme is provided to help understand the complex and multiple auditory pathways running through the brainstem. The multiple pathways are based on the need to preserve accurate timing while extracting complex spectral patterns in the auditory input. The auditory nerve fibers branch to give two pathways, a ventral sound-localizing stream, and a dorsal mainly pattern recognition stream, which innervate the different divisions of the cochlear nucleus. The outputs of the two streams, with their two types of analysis, are progressively combined in the inferior colliculus and onwards, to produce the representation of what can be called the "auditory objects" in the external world. The progressive extraction of critical features in the auditory stimulus in the different levels of the central auditory system, from cochlear nucleus to auditory cortex, is described. In addition, the auditory centrifugal system, running from cortex in multiple stages to the organ of Corti of the cochlea, is described.

  11. Animal models for auditory streaming.

    Science.gov (United States)

    Itatani, Naoya; Klump, Georg M

    2017-02-19

    Sounds in the natural environment need to be assigned to acoustic sources to evaluate complex auditory scenes. Separating sources will affect the analysis of auditory features of sounds. As the benefits of assigning sounds to specific sources accrue to all species communicating acoustically, the ability for auditory scene analysis is widespread among different animals. Animal studies allow for a deeper insight into the neuronal mechanisms underlying auditory scene analysis. Here, we will review the paradigms applied in the study of auditory scene analysis and streaming of sequential sounds in animal models. We will compare the psychophysical results from the animal studies to the evidence obtained in human psychophysics of auditory streaming, i.e. in a task commonly used for measuring the capability for auditory scene analysis. Furthermore, the neuronal correlates of auditory streaming will be reviewed in different animal models and the observations of the neurons' response measures will be related to perception. The across-species comparison will reveal whether similar demands in the analysis of acoustic scenes have resulted in similar perceptual and neuronal processing mechanisms in the wide range of species being capable of auditory scene analysis.This article is part of the themed issue 'Auditory and visual scene analysis'.

  12. Population structure of Bartonella henselae in Algerian urban stray cats.

    Directory of Open Access Journals (Sweden)

    Naouelle Azzag

    Full Text Available Whole blood samples from 211 stray cats from Algiers, Algeria, were cultured to detect the presence of Bartonella species and to evaluate the genetic diversity of B. henselae strains by multiple locus VNTR analysis (MLVA. Bartonella henselae was the only species isolated from 36 (17% of 211 cats. B. henselae genotype I was the predominant genotype (64%. MLVA typing of 259 strains from 30 bacteremic cats revealed 52 different profiles as compared to only 3 profiles using MLST. Of these 52 profiles, 48 (92.3% were identified for the first time. One-third of the cats harbored one MLVA profile only. As there was a correlation between the age of cats and the number of MLVA profiles, we hypothesized that the single profile in these cats was the profile of the initial infecting strain. Two-third of the cats harbored 2 to 6 MLVA profiles simultaneously. The similarity of MLVA profiles obtained from the same cat, neighbor-joining clustering and structure-neighbor clustering indicate that such a diversity likely results from two different mechanisms occurring either independently or simultaneously: independent infections and genetic drift from a primary strain.

  13. Resizing Auditory Communities

    DEFF Research Database (Denmark)

    Kreutzfeldt, Jacob

    2012-01-01

    Heard through the ears of the Canadian composer and music teacher R. Murray Schafer the ideal auditory community had the shape of a village. Schafer’s work with the World Soundscape Project in the 70s represent an attempt to interpret contemporary environments through musical and auditory...... parameters highlighting harmonious and balanced qualities while criticizing the noisy and cacophonous qualities of modern urban settings. This paper present a reaffirmation of Schafer’s central methodological claim: that environments can be analyzed through their sound, but offers considerations on the role...... musicalized through electro acoustic equipment installed in shops, shopping streets, transit areas etc. Urban noise no longer acts only as disturbance, but also structure and shape the places and spaces in which urban life enfold. Based on research done in Japanese shopping streets and in Copenhagen the paper...

  14. C57BL/6J小鼠初级听皮层神经元凋亡与caspase-3表达的年龄相关性改变%The Age-related Changes of the Expression of Caspase-3 and the apoptosis States of Neurons in Primary Auditory Cortex(AI) of C57BL/6J Mice

    Institute of Scientific and Technical Information of China (English)

    李洪波; 陈继川; 姬长友

    2009-01-01

    目的 探讨不同月龄C57BL/6J小鼠初级听皮层中caspase-3的表达及初级听皮层神经元凋亡情况,探讨两者之间的关系以及caspase-3、凋亡在老年性聋发生、发展中的作用.方法 分别选取2月龄(1 5~20克)和10月龄(45~60克)C57BL/6J小鼠各15只,免疫组织化学法染色检测两组C57BL/6J小鼠初级听皮层caspase-3的表达情况,末端转移酶介导的原位缺口末端标记染色(TUNEL)技术检测两组小鼠仞级听皮层神经元凋亡状况.结果 与2月龄组C57BL/6J小鼠相比,10月龄组C57BL/6J小鼠初级听皮层中caspase-3的表达显著增多,初级听皮层神经元凋亡数目明显增多(P值均<0.01),且caspase-3的表达与神经元的凋亡呈正相关(r=0.5202).结论 caspase-3的表达可能在老年性聋的发生、发展过程中起重要作用,它参与了小鼠初级听皮层神经元的凋亡调控过程,可能是老年性聋的发病机制中一个重要因素.%Objective This study is to study the age related changes of the expression of caspase-3 and the apoptosis states of neurons in primary auditory cortex of 15 young C57BL/6J mice(2 months, 15~20 g) and 15 old C57BL/6J mice(10 months, 50~60 g) and to determine probable physical effects underlying these changes. This paper also discusses the relationship of caspase-3 and apotosis states in primary auditory cortex, the possible role of caspase-3 in primary auditory cortex and the pathogenesis of presbycusis. Methods The immunohistochemical methods were applied to explore the differences of the expression of caspase-3 and the apoptosis states determined by TUNEI. method in the primary auditory cortex between young and old C57BL/6J mice. Results The expression of caspase-3 and apoptosis in Al of old C57BL/6J mice was significantly higher than that in the counterpart of young C57BL/6J mice. Conclusion The results presented a direct morphological evidence for the strengthening of caspase-3 in the primary auditory cortex in

  15. Temporal sequence of visuo-auditory interaction in multiple areas of the guinea pig visual cortex.

    Directory of Open Access Journals (Sweden)

    Masataka Nishimura

    Full Text Available Recent studies in humans and monkeys have reported that acoustic stimulation influences visual responses in the primary visual cortex (V1. Such influences can be generated in V1, either by direct auditory projections or by feedback projections from extrastriate cortices. To test these hypotheses, cortical activities were recorded using optical imaging at a high spatiotemporal resolution from multiple areas of the guinea pig visual cortex, to visual and/or acoustic stimulations. Visuo-auditory interactions were evaluated according to differences between responses evoked by combined auditory and visual stimulation, and the sum of responses evoked by separate visual and auditory stimulations. Simultaneous presentation of visual and acoustic stimulations resulted in significant interactions in V1, which occurred earlier than in other visual areas. When acoustic stimulation preceded visual stimulation, significant visuo-auditory interactions were detected only in V1. These results suggest that V1 is a cortical origin of visuo-auditory interaction.

  16. Cat Scratch Disease (For Parents)

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old Cat Scratch Disease KidsHealth > For Parents > Cat Scratch Disease A A A What's in this ... Doctor en español Enfermedad por arañazo de gato Cat scratch disease is a bacterial infection that a ...

  17. A tortoiseshell male cat

    DEFF Research Database (Denmark)

    Pedersen, A. S.; Berg, Lise Charlotte; Almstrup, Kristian

    2014-01-01

    . Immunostaining using anti-vimentin and anti-VASA (DDX4) showed that only Sertoli cells and no germ cells were observed in the testicular tubules. As no sign of spermatogenesis was detected, we conclude that this is a classic case of a sterile, male tortoiseshell cat with a 39,XXY chromosome complement. © 2013 S...

  18. Vibrational Schroedinger Cats

    Science.gov (United States)

    Kis, Z.; Janszky, J.; Vinogradov, An. V.; Kobayashi, T.

    1996-01-01

    The optical Schroedinger cat states are simple realizations of quantum states having nonclassical features. It is shown that vibrational analogues of such states can be realized in an experiment of double pulse excitation of vibrionic transitions. To track the evolution of the vibrational wave packet we derive a non-unitary time evolution operator so that calculations are made in a quasi Heisenberg picture.

  19. The Fishing Cat

    Institute of Scientific and Technical Information of China (English)

    孙雅飞; 乐伟国

    2008-01-01

    @@ 一、故事内容 A cat goes fishing every day. He wants to eat fish, but he can't catch any fish. One day, he goes to the river as usual. Suddenly, a fish comes out. He catches the fish and putsthe fish in the basket. He's very happy, but he forgest to put the lid on the basket.

  20. A model of auditory nerve responses to electrical stimulation

    DEFF Research Database (Denmark)

    Joshi, Suyash Narendra; Dau, Torsten; Epp, Bastian

    to neutralize the charge induced during the cathodic phase. Single-neuron recordings in cat auditory nerve using monophasic electrical stimulation show, however, that both phases in isolation can generate an AP. The site of AP generation differs for both phases, being more central for the anodic phase and more...... perception of CI listeners, a model needs to incorporate the correct responsiveness of the AN to anodic and cathodic polarity. Previous models of electrical stimulation have been developed based on AN responses to symmetric biphasic stimulation or to monophasic cathodic stimulation. These models, however......, fail to correctly predict responses to anodic stimulation. This study presents a model that simulates AN responses to anodic and cathodic stimulation. The main goal was to account for the data obtained with monophasic electrical stimulation in cat AN. The model is based on an exponential integrate...

  1. Hemodynamic responses in human multisensory and auditory association cortex to purely visual stimulation

    Directory of Open Access Journals (Sweden)

    Baumann Simon

    2007-02-01

    Full Text Available Abstract Background Recent findings of a tight coupling between visual and auditory association cortices during multisensory perception in monkeys and humans raise the question whether consistent paired presentation of simple visual and auditory stimuli prompts conditioned responses in unimodal auditory regions or multimodal association cortex once visual stimuli are presented in isolation in a post-conditioning run. To address this issue fifteen healthy participants partook in a "silent" sparse temporal event-related fMRI study. In the first (visual control habituation phase they were presented with briefly red flashing visual stimuli. In the second (auditory control habituation phase they heard brief telephone ringing. In the third (conditioning phase we coincidently presented the visual stimulus (CS paired with the auditory stimulus (UCS. In the fourth phase participants either viewed flashes paired with the auditory stimulus (maintenance, CS- or viewed the visual stimulus in isolation (extinction, CS+ according to a 5:10 partial reinforcement schedule. The participants had no other task than attending to the stimuli and indicating the end of each trial by pressing a button. Results During unpaired visual presentations (preceding and following the paired presentation we observed significant brain responses beyond primary visual cortex in the bilateral posterior auditory association cortex (planum temporale, planum parietale and in the right superior temporal sulcus whereas the primary auditory regions were not involved. By contrast, the activity in auditory core regions was markedly larger when participants were presented with auditory stimuli. Conclusion These results demonstrate involvement of multisensory and auditory association areas in perception of unimodal visual stimulation which may reflect the instantaneous forming of multisensory associations and cannot be attributed to sensation of an auditory event. More importantly, we are able

  2. Auditory Neuropathy: Findings of Behavioral, Physiological and Neurophysiological Tests

    Directory of Open Access Journals (Sweden)

    Mohammad Farhadi

    2006-12-01

    Full Text Available Background and Aim: Auditory neuropathy (AN can be diagnosed by abnormal auditory brainstem response (ABR, in the presence of normal cochlear microphonic (CM and otoacoustic emissions (OAEs.The aim of this study was to investigate the ABR and other electrodiagnostic test results of 6 patients suspicious to AN with problems in speech recognition. Materials and Methods: this cross sectional study was conducted on 6 AN patients with different ages evaluated by pure tone audiometry, speech discrimination score (SDS , immittance audiometry. ElectroCochleoGraphy , ABR, middle latency response (MLR, Late latency response (LLR, and OAEs. Results: Behavioral pure tone audiometric tests showed moderate to profound hearing loss. SDS was so poor which is not in accordance with pure tone thresholds. All patients had normal tympanogram but absent acoustic reflexes. CMs and OAEs were within normal limits. There was no contra lateral suppression of OAEs. None of cases had normal ABR or MLR although LLR was recorded in 4. Conclusion: All patients in this study are typical cases of auditory neuropathy. Despite having abnormal input, LLR remains normal that indicates differences in auditory evoked potentials related to required neural synchrony. These findings show that auditory cortex may play a role in regulating presentation of deficient signals along auditory pathways in primary steps.

  3. Impact of morphometry, myelinization and synaptic current strength on spike conduction in human and cat spiral ganglion neurons.

    Directory of Open Access Journals (Sweden)

    Frank Rattay

    Full Text Available BACKGROUND: Our knowledge about the neural code in the auditory nerve is based to a large extent on experiments on cats. Several anatomical differences between auditory neurons in human and cat are expected to lead to functional differences in speed and safety of spike conduction. METHODOLOGY/PRINCIPAL FINDINGS: Confocal microscopy was used to systematically evaluate peripheral and central process diameters, commonness of myelination and morphology of spiral ganglion neurons (SGNs along the cochlea of three human and three cats. Based on these morphometric data, model analysis reveales that spike conduction in SGNs is characterized by four phases: a postsynaptic delay, constant velocity in the peripheral process, a presomatic delay and constant velocity in the central process. The majority of SGNs are type I, connecting the inner hair cells with the brainstem. In contrast to those of humans, type I neurons of the cat are entirely myelinated. Biophysical model evaluation showed delayed and weak spikes in the human soma region as a consequence of a lack of myelin. The simulated spike conduction times are in accordance with normal interwave latencies from auditory brainstem response recordings from man and cat. Simulated 400 pA postsynaptic currents from inner hair cell ribbon synapses were 15 times above threshold. They enforced quick and synchronous spiking. Both of these properties were not present in type II cells as they receive fewer and much weaker (∼26 pA synaptic stimuli. CONCLUSIONS/SIGNIFICANCE: Wasting synaptic energy boosts spike initiation, which guarantees the rapid transmission of temporal fine structure of auditory signals. However, a lack of myelin in the soma regions of human type I neurons causes a large delay in spike conduction in comparison with cat neurons. The absent myelin, in combination with a longer peripheral process, causes quantitative differences of temporal parameters in the electrically stimulated human cochlea

  4. Effects of sequential streaming on auditory masking using psychoacoustics and auditory evoked potentials.

    Science.gov (United States)

    Verhey, Jesko L; Ernst, Stephan M A; Yasin, Ifat

    2012-03-01

    The present study was aimed at investigating the relationship between the mismatch negativity (MMN) and psychoacoustical effects of sequential streaming on comodulation masking release (CMR). The influence of sequential streaming on CMR was investigated using a psychoacoustical alternative forced-choice procedure and electroencephalography (EEG) for the same group of subjects. The psychoacoustical data showed, that adding precursors comprising of only off-signal-frequency maskers abolished the CMR. Complementary EEG data showed an MMN irrespective of the masker envelope correlation across frequency when only the off-signal-frequency masker components were present. The addition of such precursors promotes a separation of the on- and off-frequency masker components into distinct auditory objects preventing the auditory system from using comodulation as an additional cue. A frequency-specific adaptation changing the representation of the flanking bands in the streaming conditions may also contribute to the reduction of CMR in the stream conditions, however, it is unlikely that adaptation is the primary reason for the streaming effect. A neurophysiological correlate of sequential streaming was found in EEG data using MMN, but the magnitude of the MMN was not correlated with the audibility of the signal in CMR experiments. Dipole source analysis indicated different cortical regions involved in processing auditory streaming and modulation detection. In particular, neural sources for processing auditory streaming include cortical regions involved in decision-making.

  5. Behind the Scenes of Auditory Perception

    OpenAIRE

    Shamma, Shihab A.; Micheyl, Christophe

    2010-01-01

    Auditory scenes” often contain contributions from multiple acoustic sources. These are usually heard as separate auditory “streams”, which can be selectively followed over time. How and where these auditory streams are formed in the auditory system is one of the most fascinating questions facing auditory scientists today. Findings published within the last two years indicate that both cortical and sub-cortical processes contribute to the formation of auditory streams, and they raise importan...

  6. Auditory and non-auditory effects of noise on health

    NARCIS (Netherlands)

    Basner, M.; Babisch, W.; Davis, A.; Brink, M.; Clark, C.; Janssen, S.A.; Stansfeld, S.

    2013-01-01

    Noise is pervasive in everyday life and can cause both auditory and non-auditory health eff ects. Noise-induced hearing loss remains highly prevalent in occupational settings, and is increasingly caused by social noise exposure (eg, through personal music players). Our understanding of molecular mec

  7. Genetic testing in domestic cats.

    Science.gov (United States)

    Lyons, Leslie A

    2012-12-01

    Varieties of genetic tests are currently available for the domestic cat that support veterinary health care, breed management, species identification, and forensic investigations. Approximately thirty-five genes contain over fifty mutations that cause feline health problems or alterations in the cat's appearance. Specific genes, such as sweet and drug receptors, have been knocked-out of Felidae during evolution and can be used along with mtDNA markers for species identification. Both STR and SNP panels differentiate cat race, breed, and individual identity, as well as gender-specific markers to determine sex of an individual. Cat genetic tests are common offerings for commercial laboratories, allowing both the veterinary clinician and the private owner to obtain DNA test results. This article will review the genetic tests for the domestic cat, and their various applications in different fields of science. Highlighted are genetic tests specific to the individual cat, which are a part of the cat's genome.

  8. Hierarchical processing of auditory objects in humans.

    Directory of Open Access Journals (Sweden)

    Sukhbinder Kumar

    2007-06-01

    Full Text Available This work examines the computational architecture used by the brain during the analysis of the spectral envelope of sounds, an important acoustic feature for defining auditory objects. Dynamic causal modelling and Bayesian model selection were used to evaluate a family of 16 network models explaining functional magnetic resonance imaging responses in the right temporal lobe during spectral envelope analysis. The models encode different hypotheses about the effective connectivity between Heschl's Gyrus (HG, containing the primary auditory cortex, planum temporale (PT, and superior temporal sulcus (STS, and the modulation of that coupling during spectral envelope analysis. In particular, we aimed to determine whether information processing during spectral envelope analysis takes place in a serial or parallel fashion. The analysis provides strong support for a serial architecture with connections from HG to PT and from PT to STS and an increase of the HG to PT connection during spectral envelope analysis. The work supports a computational model of auditory object processing, based on the abstraction of spectro-temporal "templates" in the PT before further analysis of the abstracted form in anterior temporal lobe areas.

  9. Coding of melodic gestalt in human auditory cortex.

    Science.gov (United States)

    Schindler, Andreas; Herdener, Marcus; Bartels, Andreas

    2013-12-01

    The perception of a melody is invariant to the absolute properties of its constituting notes, but depends on the relation between them-the melody's relative pitch profile. In fact, a melody's "Gestalt" is recognized regardless of the instrument or key used to play it. Pitch processing in general is assumed to occur at the level of the auditory cortex. However, it is unknown whether early auditory regions are able to encode pitch sequences integrated over time (i.e., melodies) and whether the resulting representations are invariant to specific keys. Here, we presented participants different melodies composed of the same 4 harmonic pitches during functional magnetic resonance imaging recordings. Additionally, we played the same melodies transposed in different keys and on different instruments. We found that melodies were invariantly represented by their blood oxygen level-dependent activation patterns in primary and secondary auditory cortices across instruments, and also across keys. Our findings extend common hierarchical models of auditory processing by showing that melodies are encoded independent of absolute pitch and based on their relative pitch profile as early as the primary auditory cortex.

  10. Partial Epilepsy with Auditory Features

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-07-01

    Full Text Available The clinical characteristics of 53 sporadic (S cases of idiopathic partial epilepsy with auditory features (IPEAF were analyzed and compared to previously reported familial (F cases of autosomal dominant partial epilepsy with auditory features (ADPEAF in a study at the University of Bologna, Italy.

  11. Word Recognition in Auditory Cortex

    Science.gov (United States)

    DeWitt, Iain D. J.

    2013-01-01

    Although spoken word recognition is more fundamental to human communication than text recognition, knowledge of word-processing in auditory cortex is comparatively impoverished. This dissertation synthesizes current models of auditory cortex, models of cortical pattern recognition, models of single-word reading, results in phonetics and results in…

  12. The Cheshire Cat revisited

    CERN Document Server

    Vento, V

    1998-01-01

    The concept of effective field theory leads in a natural way to a construction principle for phenomenological sensible models known under the name of the Cheshire Cat Principle. We review its formulation in the chiral bag scenario and discuss its realization for the flavor singlet axial charge. Quantum effects inside the chiral bag induce a color anomaly which requires a compensating surface term to prevent breakdown of color gauge invariance. The presence of this surface term allows one to derive in a gauge-invariant way a chiral-bag version of the Shore-Veneziano two-component formula for the flavor-singlet axial charge of the proton. We show that one can obtain a striking Cheshire-Cat phenomenon with a negligibly small singlet axial charge.

  13. Mineral metabolism in cats

    OpenAIRE

    Pineda Martos, Carmen María

    2014-01-01

    The present Doctoral Thesis wa metabolism in the feline species. Through a series of studies, the relationship between calcium metabolism and the main hormones involved in it has been determined metabolism during the juvenile stage of growing cats effects linked to feeding calculolytic diets on feline mineral metabolism. The first part of the work was aimed the quantification of intact (I-PTH) and whole PTH) and to characterize the dynamics of PTH secretion, including ...

  14. Hypocobalaminaemia is uncommon in cats in the United Kingdom.

    Science.gov (United States)

    Ibarrola, Patricia; Blackwood, Laura; Graham, Peter A; Evans, Helen; German, Alexander J

    2005-12-01

    Recent work has highlighted the importance of cobalamin deficiency in cats with a range of alimentary tract diseases. The primary aim of our study was to determine the incidence of subnormal cobalamin concentrations in sick cats with and without alimentary system disorders. Firstly, serum cobalamin concentrations were measured in a population of cats, with and without gastrointestinal (GI) disease, evaluated at a referral hospital. In the second part of the study, the incidence of cobalamin deficiency was assessed in samples submitted to a commercial laboratory specifically for cobalamin measurement. For both studies, a validated radioimmunoassay was used to measure serum cobalamin concentrations (reference range: > 150 pg/ml). In the first part of the study, 132 cats were included and none of these cats had subnormal cobalamin concentrations (median=1,172; range: 278 to >2,000). There were no differences in cobalamin concentrations between cats with alimentary system disorders, and those with diseases of other organs. In the second part, 682 samples were submitted for cobalamin assay over a period of 3 years, and only one cat had a result below the reference range (median=794; range: 147 to >2,000). Cobalamin deficiency was rare in the population tested and this may suggest that the incidence of this biochemical abnormality is less common than reported in the USA.

  15. Simultaneously-evoked auditory potentials (SEAP): A new method for concurrent measurement of cortical and subcortical auditory-evoked activity.

    Science.gov (United States)

    Slugocki, Christopher; Bosnyak, Daniel; Trainor, Laurel J

    2017-03-01

    Recent electrophysiological work has evinced a capacity for plasticity in subcortical auditory nuclei in human listeners. Similar plastic effects have been measured in cortically-generated auditory potentials but it is unclear how the two interact. Here we present Simultaneously-Evoked Auditory Potentials (SEAP), a method designed to concurrently elicit electrophysiological brain potentials from inferior colliculus, thalamus, and primary and secondary auditory cortices. Twenty-six normal-hearing adult subjects (mean 19.26 years, 9 male) were exposed to 2400 monaural (right-ear) presentations of a specially-designed stimulus which consisted of a pure-tone carrier (500 or 600 Hz) that had been amplitude-modulated at the sum of 37 and 81 Hz (depth 100%). Presentation followed an oddball paradigm wherein the pure-tone carrier was set to 500 Hz for 85% of presentations and pseudo-randomly changed to 600 Hz for the remaining 15% of presentations. Single-channel electroencephalographic data were recorded from each subject using a vertical montage referenced to the right earlobe. We show that SEAP elicits a 500 Hz frequency-following response (FFR; generated in inferior colliculus), 80 (subcortical) and 40 (primary auditory cortex) Hz auditory steady-state responses (ASSRs), mismatch negativity (MMN) and P3a (when there is an occasional change in carrier frequency; secondary auditory cortex) in addition to the obligatory N1-P2 complex (secondary auditory cortex). Analyses showed that subcortical and cortical processes are linked as (i) the latency of the FFR predicts the phase delay of the 40 Hz steady-state response, (ii) the phase delays of the 40 and 80 Hz steady-state responses are correlated, and (iii) the fidelity of the FFR predicts the latency of the N1 component. The SEAP method offers a new approach for measuring the dynamic encoding of acoustic features at multiple levels of the auditory pathway. As such, SEAP is a promising tool with which to study how

  16. Cancer of the external auditory canal

    DEFF Research Database (Denmark)

    Nyrop, Mette; Grøntved, Aksel

    2002-01-01

    OBJECTIVE: To evaluate the outcome of surgery for cancer of the external auditory canal and relate this to the Pittsburgh staging system used both on squamous cell carcinoma and non-squamous cell carcinoma. DESIGN: Retrospective case series of all patients who had surgery between 1979 and 2000....... PATIENTS: Ten women and 10 men with previously untreated primary cancer. Median age at diagnosis was 67 years (range, 31-87 years). Survival data included 18 patients with at least 2 years of follow-up or recurrence. INTERVENTION: Local canal resection or partial temporal bone resection. MAIN OUTCOME...

  17. Peripheral Auditory Mechanisms

    CERN Document Server

    Hall, J; Hubbard, A; Neely, S; Tubis, A

    1986-01-01

    How weIl can we model experimental observations of the peripheral auditory system'? What theoretical predictions can we make that might be tested'? It was with these questions in mind that we organized the 1985 Mechanics of Hearing Workshop, to bring together auditory researchers to compare models with experimental observations. Tbe workshop forum was inspired by the very successful 1983 Mechanics of Hearing Workshop in Delft [1]. Boston University was chosen as the site of our meeting because of the Boston area's role as a center for hearing research in this country. We made a special effort at this meeting to attract students from around the world, because without students this field will not progress. Financial support for the workshop was provided in part by grant BNS- 8412878 from the National Science Foundation. Modeling is a traditional strategy in science and plays an important role in the scientific method. Models are the bridge between theory and experiment. Tbey test the assumptions made in experim...

  18. A review of over three decades of research on cat-human and human-cat interactions and relationships.

    Science.gov (United States)

    Turner, Dennis C

    2017-01-22

    This review article covers research conducted over the last three decades on cat-human and human-cat interactions and relationships, especially from an ethological point of view. It includes findings on cat-cat and cat-human communication, cat personalities and cat-owner personalities, the effects of cats on humans, and problems caused by cats.

  19. Evoked potentials in immobilized cats to a combination of clicks with painful electrocutaneous stimuli

    Science.gov (United States)

    Gilinskiy, M. A.; Korsakov, I. A.

    1979-01-01

    Averaged evoked potentials in the auditory, somatosensory, and motor cortical zones, as well as in the mesencephalic reticular formation were recorded in acute experiments on nonanesthetized, immobilized cats. Omission of the painful stimulus after a number of pairings resulted in the appearance of a delayed evoked potential, often resembling the late phases of the response to the painful stimulus. The characteristics of this response are discussed in comparison with conditioned changes of the sensory potential amplitudes.

  20. Robust speech features representation based on computational auditory model

    Institute of Scientific and Technical Information of China (English)

    LU Xugang; JIA Chuan; DANG Jianwu

    2004-01-01

    A speech signal processing and features extracting method based on computational auditory model is proposed. The computational model is based on psychological, physiological knowledge and digital signal processing methods. In each stage of a hearing perception system, there is a corresponding computational model to simulate its function. Based on this model, speech features are extracted. In each stage, the features in different kinds of level are extracted. A further processing for primary auditory spectrum based on lateral inhibition is proposed to extract much more robust speech features. All these features can be regarded as the internal representations of speech stimulation in hearing system. The robust speech recognition experiments are conducted to test the robustness of the features. Results show that the representations based on the proposed computational auditory model are robust representations for speech signals.

  1. Auditory short-term memory in the primate auditory cortex.

    Science.gov (United States)

    Scott, Brian H; Mishkin, Mortimer

    2016-06-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ׳working memory' bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ׳match' stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. This article is part of a Special Issue entitled SI: Auditory working memory.

  2. Forelimb and hindlimb ground reaction forces of walking cats: Assessment and comparison with walking dogs

    NARCIS (Netherlands)

    Corbee, Ronald; Hazewinkel, Herman; Doornenbal, Arie; Maas, Huub

    2014-01-01

    The primary aim of this study was to assess the potential of force plate analysis for describing the stride cycle of the cat. The secondary aim was to define differences in feline and canine locomotion based on force plate characteristics. Ground reaction forces of 24 healthy cats were measured and

  3. Auditory Neuropathy - A Case of Auditory Neuropathy after Hyperbilirubinemia

    Directory of Open Access Journals (Sweden)

    Maliheh Mazaher Yazdi

    2007-12-01

    Full Text Available Background and Aim: Auditory neuropathy is an hearing disorder in which peripheral hearing is normal, but the eighth nerve and brainstem are abnormal. By clinical definition, patient with this disorder have normal OAE, but exhibit an absent or severely abnormal ABR. Auditory neuropathy was first reported in the late 1970s as different methods could identify discrepancy between absent ABR and present hearing threshold. Speech understanding difficulties are worse than can be predicted from other tests of hearing function. Auditory neuropathy may also affect vestibular function. Case Report: This article presents electrophysiological and behavioral data from a case of auditory neuropathy in a child with normal hearing after bilirubinemia in a 5 years follow-up. Audiological findings demonstrate remarkable changes after multidisciplinary rehabilitation. Conclusion: auditory neuropathy may involve damage to the inner hair cells-specialized sensory cells in the inner ear that transmit information about sound through the nervous system to the brain. Other causes may include faulty connections between the inner hair cells and the nerve leading from the inner ear to the brain or damage to the nerve itself. People with auditory neuropathy have OAEs response but absent ABR and hearing loss threshold that can be permanent, get worse or get better.

  4. Topography of acoustic response characteristics in the auditory cortex of the Kunming mouse

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Topography of acoustic response characteristics in the auditory cortex (AC) of the Kunming (KM) mouse has been examined by using microelectrode recording techniques.Based on best-frequency (BF) maps,both the primary auditory field (AⅠ) and the anterior auditory field (AAF) are tonotopically organized with a counter running frequency gradient.Within an isofrequency stripe,the width of the frequency-threshold curves of single neurons increases,and minimum threshold (MT) decreases towards more ventral locations.BFs in AⅠand AAF range from 4 to 38 kHz.Auditory neurons with BFs above 40 kHz are located at the rostrodorsal part of the AC.The findings suggest that the KM mouse is a good model suitable for auditory research.

  5. Modeling auditory processing and speech perception in hearing-impaired listeners

    DEFF Research Database (Denmark)

    Jepsen, Morten Løve

    A better understanding of how the human auditory system represents and analyzes sounds and how hearing impairment affects such processing is of great interest for researchers in the fields of auditory neuroscience, audiology, and speech communication as well as for applications in hearing......-instrument and speech technology. In this thesis, the primary focus was on the development and evaluation of a computational model of human auditory signal-processing and perception. The model was initially designed to simulate the normal-hearing auditory system with particular focus on the nonlinear processing...... aimed at experimentally characterizing the effects of cochlear damage on listeners' auditory processing, in terms of sensitivity loss and reduced temporal and spectral resolution. The results showed that listeners with comparable audiograms can have very different estimated cochlear input...

  6. ServCat Document Selection Guidelines

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The ServCat document selection guidelines were developed for selecting appropriate documents to upload into ServCat. When beginning to upload documents into ServCat,...

  7. Auditory Processing Disorder (For Parents)

    Science.gov (United States)

    ... CAPD often have trouble maintaining attention, although health, motivation, and attitude also can play a role. Auditory ... programs. Several computer-assisted programs are geared toward children with APD. They mainly help the brain do ...

  8. Tonotopic organization of human auditory association cortex.

    Science.gov (United States)

    Cansino, S; Williamson, S J; Karron, D

    1994-11-07

    Neuromagnetic studies of responses in human auditory association cortex for tone burst stimuli provide evidence for a tonotopic organization. The magnetic source image for the 100 ms component evoked by the onset of a tone is qualitatively similar to that of primary cortex, with responses lying deeper beneath the scalp for progressively higher tone frequencies. However, the tonotopic sequence of association cortex in three subjects is found largely within the superior temporal sulcus, although in the right hemisphere of one subject some sources may be closer to the inferior temporal sulcus. The locus of responses for individual subjects suggests a progression across the cortical surface that is approximately proportional to the logarithm of the tone frequency, as observed previously for primary cortex, with the span of 10 mm for each decade in frequency being comparable for the two areas.

  9. College Students and Their Cats

    Science.gov (United States)

    Weinstein, Lawrence; Alexander, Ralph

    2010-01-01

    Twenty-two Siamese and 32 mixed breed cats' personalities were rated by their respective college student owners and compared. Further, the owners' self rated personality traits were correlated with the pets'; significant Siamese and Mixed differences and correlations were obtained. These are the first data to examine breed of cat on a personality…

  10. CONTRACT ADMINISTRATIVE TRACKING SYSTEM (CATS)

    Science.gov (United States)

    The Contract Administrative Tracking System (CATS) was developed in response to an ORD NHEERL, Mid-Continent Ecology Division (MED)-recognized need for an automated tracking and retrieval system for Cost Reimbursable Level of Effort (CR/LOE) Contracts. CATS is an Oracle-based app...

  11. Oral masses in two cats.

    Science.gov (United States)

    Bock, P; Hach, V; Baumgärtner, W

    2011-07-01

    Incisional biopsies from the oral cavity of 2 adult cats were submitted for histological investigation. Cat No. 1 showed a solitary well-circumscribed neoplasm in the left mandible. Cat No. 2 demonstrated a diffusely infiltrating neoplasm in the left maxilla. Both tumors consisted of medium-size epithelial cells embedded in a fibrovascular stroma. The mitotic index was 0 to 1 mitosis per high-power field. The epithelial cells showed an irregular arrangement forming nests or streams in cat No. 1, whereas a palisading growth was noted in cat No. 2. Both tumors, especially that of cat No. 1, showed multifocal accumulations of amyloid as confirmed by Congo red staining and a distinct green birefringence under polarized light, which lacked cytokeratin immunoreactivity as well as and AL and AA amyloid immunoreactivity. In addition, the amyloid in cat No. 2 was positive for the odontogenic ameloblast-associated protein, formerly termed APin. In sum, both cats suffered from an amyloid-producing odontogenic tumor, but their tumors varied with respect to morphology and type of amyloid produced.

  12. Lumbosacral agenesis in a cat

    Directory of Open Access Journals (Sweden)

    Gabrielle C Hybki

    2016-01-01

    Full Text Available Case summary Lumbosacral agenesis is a rare congenital condition reported in children. We report a 17-week-old female domestic shorthair cat with lumbosacral agenesis on whole-body radiographs. The cat was euthanized shortly thereafter presentation. A necropsy was not permitted. Relevance and novel information This is the first reported feline case of lumbosacral agenesis.

  13. CAT-generation of ideals

    CERN Document Server

    Ueckerdt, Torsten

    2010-01-01

    We consider the problem of generating all ideals of a poset. It is a long standing open problem, whether or not the ideals of any poset can be generated in constant amortized time, CAT for short. We refine the tree traversal, a method introduced by Pruesse and Ruskey in 1993, to obtain a CAT-generator for two large classes of posets: posets of interval dimension at most two and so called locally planar posets. This includes all posets for which a CAT-generator was known before. Posets of interval dimension at most two generalize both, interval orders and 2-dimensional posets. Locally planar posets generalize for example posets with a planar cover graph. We apply our results to CAT-generate all $c$-orientations of a planar graph. As a special case this is a CAT-generator for many combinatorial objects like domino and lozenge tilings, planar spanning trees, planar bipartite perfect matchings, Schnyder woods, and others.

  14. Effects of chronic stress on the auditory system and fear learning: an evolutionary approach.

    Science.gov (United States)

    Dagnino-Subiabre, Alexies

    2013-01-01

    Stress is a complex biological reaction common to all living organisms that allows them to adapt to their environments. Chronic stress alters the dendritic architecture and function of the limbic brain areas that affect memory, learning, and emotional processing. This review summarizes our research about chronic stress effects on the auditory system, providing the details of how we developed the main hypotheses that currently guide our research. The aims of our studies are to (1) determine how chronic stress impairs the dendritic morphology of the main nuclei of the rat auditory system, the inferior colliculus (auditory mesencephalon), the medial geniculate nucleus (auditory thalamus), and the primary auditory cortex; (2) correlate the anatomic alterations with the impairments of auditory fear learning; and (3) investigate how the stress-induced alterations in the rat limbic system may spread to nonlimbic areas, affecting specific sensory system, such as the auditory and olfactory systems, and complex cognitive functions, such as auditory attention. Finally, this article gives a new evolutionary approach to understanding the neurobiology of stress and the stress-related disorders.

  15. A songbird forebrain area potentially involved in auditory discrimination and memory formation

    Indian Academy of Sciences (India)

    Raphael Pinaud; Thomas A Terleph

    2008-03-01

    Songbirds rely on auditory processing of natural communication signals for a number of social behaviors, including mate selection, individual recognition and the rare behavior of vocal learning – the ability to learn vocalizations through imitation of an adult model, rather than by instinct. Like mammals, songbirds possess a set of interconnected ascending and descending auditory brain pathways that process acoustic information and that are presumably involved in the perceptual processing of vocal communication signals. Most auditory areas studied to date are located in the caudomedial forebrain of the songbird and include the thalamo-recipient field L (subfields L1, L2 and L3), the caudomedial and caudolateral mesopallium (CMM and CLM, respectively) and the caudomedial nidopallium (NCM). This review focuses on NCM, an auditory area previously proposed to be analogous to parts of the primary auditory cortex in mammals. Stimulation of songbirds with auditory stimuli drives vigorous electrophysiological responses and the expression of several activity-regulated genes in NCM. Interestingly, NCM neurons are tuned to species-specific songs and undergo some forms of experience-dependent plasticity in-vivo. These activity-dependent changes may underlie long-term modifications in the functional performance of NCM and constitute a potential neural substrate for auditory discrimination. We end this review by discussing evidence that suggests that NCM may be a site of auditory memory formation and/or storage.

  16. The impact of educational level on performance on auditory processing tests

    Directory of Open Access Journals (Sweden)

    Cristina F.B. Murphy

    2016-03-01

    Full Text Available Research has demonstrated that a higher level of education is associated with better performance on cognitive tests among middle-aged and elderly people. However, the effects of education on auditory processing skills have not yet been evaluated. Previous demonstrations of sensory-cognitive interactions in the aging process indicate the potential importance of this topic. Therefore, the primary purpose of this study was to investigate the performance of middle-aged and elderly people with different levels of formal education on auditory processing tests. A total of 177 adults with no evidence of cognitive, psychological or neurological conditions took part in the research. The participants completed a series of auditory assessments, including dichotic digit, frequency pattern and speech-in-noise tests. A working memory test was also performed to investigate the extent to which auditory processing and cognitive performance were associated. The results demonstrated positive but weak correlations between years of schooling and performance on all of the tests applied. The factor years of schooling was also one of the best predictors of frequency pattern and speech-in-noise test performance. Additionally, performance on the working memory, frequency pattern and dichotic digit tests was also correlated, suggesting that the influence of educational level on auditory processing performance might be associated with the cognitive demand of the auditory processing tests rather than auditory sensory aspects itself. Longitudinal research is required to investigate the causal relationship between educational level and auditory processing skills.

  17. Representation of speech in human auditory cortex: is it special?

    Science.gov (United States)

    Steinschneider, Mitchell; Nourski, Kirill V; Fishman, Yonatan I

    2013-11-01

    Successful categorization of phonemes in speech requires that the brain analyze the acoustic signal along both spectral and temporal dimensions. Neural encoding of the stimulus amplitude envelope is critical for parsing the speech stream into syllabic units. Encoding of voice onset time (VOT) and place of articulation (POA), cues necessary for determining phonemic identity, occurs within shorter time frames. An unresolved question is whether the neural representation of speech is based on processing mechanisms that are unique to humans and shaped by learning and experience, or is based on rules governing general auditory processing that are also present in non-human animals. This question was examined by comparing the neural activity elicited by speech and other complex vocalizations in primary auditory cortex of macaques, who are limited vocal learners, with that in Heschl's gyrus, the putative location of primary auditory cortex in humans. Entrainment to the amplitude envelope is neither specific to humans nor to human speech. VOT is represented by responses time-locked to consonant release and voicing onset in both humans and monkeys. Temporal representation of VOT is observed both for isolated syllables and for syllables embedded in the more naturalistic context of running speech. The fundamental frequency of male speakers is represented by more rapid neural activity phase-locked to the glottal pulsation rate in both humans and monkeys. In both species, the differential representation of stop consonants varying in their POA can be predicted by the relationship between the frequency selectivity of neurons and the onset spectra of the speech sounds. These findings indicate that the neurophysiology of primary auditory cortex is similar in monkeys and humans despite their vastly different experience with human speech, and that Heschl's gyrus is engaged in general auditory, and not language-specific, processing. This article is part of a Special Issue entitled

  18. Diffusion tensor imaging and MR morphometry of the central auditory pathway and auditory cortex in aging.

    Science.gov (United States)

    Profant, O; Škoch, A; Balogová, Z; Tintěra, J; Hlinka, J; Syka, J

    2014-02-28

    Age-related hearing loss (presbycusis) is caused mainly by the hypofunction of the inner ear, but recent findings point also toward a central component of presbycusis. We used MR morphometry and diffusion tensor imaging (DTI) with a 3T MR system with the aim to study the state of the central auditory system in a group of elderly subjects (>65years) with mild presbycusis, in a group of elderly subjects with expressed presbycusis and in young controls. Cortical reconstruction, volumetric segmentation and auditory pathway tractography were performed. Three parameters were evaluated by morphometry: the volume of the gray matter, the surface area of the gyrus and the thickness of the cortex. In all experimental groups the surface area and gray matter volume were larger on the left side in Heschl's gyrus and planum temporale and slightly larger in the gyrus frontalis superior, whereas they were larger on the right side in the primary visual cortex. Almost all of the measured parameters were significantly smaller in the elderly subjects in Heschl's gyrus, planum temporale and gyrus frontalis superior. Aging did not change the side asymmetry (laterality) of the gyri. In the central part of the auditory pathway above the inferior colliculus, a trend toward an effect of aging was present in the axial vector of the diffusion (L1) variable of DTI, with increased values observed in elderly subjects. A trend toward a decrease of L1 on the left side, which was more pronounced in the elderly groups, was observed. The effect of hearing loss was present in subjects with expressed presbycusis as a trend toward an increase of the radial vectors (L2L3) in the white matter under Heschl's gyrus. These results suggest that in addition to peripheral changes, changes in the central part of the auditory system in elderly subjects are also present; however, the extent of hearing loss does not play a significant role in the central changes.

  19. Toxoplasmosis : Beware of Cats !!!

    Directory of Open Access Journals (Sweden)

    Rubina Kumari Baithalu

    2010-10-01

    Full Text Available Anthropozoonotic parasite Toxoplasma gondii causes widespread human and animal diseases, mostly involving central nervous system. Human acquires toxoplasmosis from cats, from consuming raw or undercooked meat and from vertical transmission to the fetus through placenta from mother during pregnancy. Socio-epidemiological as well as unique environmental factors also plays a significant role in transmission of this infection. Preventive measures should be taken into account the importance of culture, tradition, and beliefs of people in various communities more than solving poverty and giving health education. Therefore the focus of this article is to create public awareness regarding sense of responsibility of looking after pets to prevent such an important zoonotic disease. [Vet. World 2010; 3(5.000: 247-249

  20. Cortical connections of auditory cortex in marmoset monkeys: lateral belt and parabelt regions

    OpenAIRE

    de la Mothe, Lisa A.; Blumell, Suzanne; Kajikawa, Yoshinao; Hackett, Troy A.

    2012-01-01

    The current working model of primate auditory cortex is constructed from a number of studies of both New and Old World monkeys. It includes three levels of processing. A primary level, the core region, is surrounded both medially and laterally by a secondary belt region. A third level of processing, the parabelt region, is located lateral to the belt. The marmoset monkey (Callithrix jacchus jacchus) has become an important model system to study auditory processing, but its anatomical organiza...

  1. Pemphigus foliaceus in a cat.

    Science.gov (United States)

    Kofod, H

    1993-01-16

    The author's cat started to develop the signs of pemphigus foliaceus one month after he returned home after six months absence. The initial signs included dry coughing and difficulty with purring and swallowing, followed by typical changes of the skin. The cat was treated by a combination of chrysotherapy and systemic glucocorticoid injections, and remained free of clinical signs for one and a half years. The cat then relapsed and showed the initial signs except that coughing was not observed. It was treated as before but after a second relapse and the same treatment it slowly developed a general weakness and was euthanased.

  2. Intrinsic modulators of auditory thalamocortical transmission.

    Science.gov (United States)

    Lee, Charles C; Sherman, S Murray

    2012-05-01

    Neurons in layer 4 of the primary auditory cortex receive convergent glutamatergic inputs from thalamic and cortical projections that activate different groups of postsynaptic glutamate receptors. Of particular interest in layer 4 neurons are the Group II metabotropic glutamate receptors (mGluRs), which hyperpolarize neurons postsynaptically via the downstream opening of GIRK channels. This pronounced effect on membrane conductance could influence the neuronal processing of synaptic inputs, such as those from the thalamus, essentially modulating information flow through the thalamocortical pathway. To examine how Group II mGluRs affect thalamocortical transmission, we used an in vitro slice preparation of the auditory thalamocortical pathways in the mouse to examine synaptic transmission under conditions where Group II mGluRs were activated. We found that both pre- and post-synaptic Group II mGluRs are involved in the attenuation of thalamocortical EPSP/Cs. Thus, thalamocortical synaptic transmission is suppressed via the presynaptic reduction of thalamocortical neurotransmitter release and the postsynaptic inhibition of the layer 4 thalamorecipient neurons. This could enable the thalamocortical pathway to autoregulate transmission, via either a gating or gain control mechanism, or both.

  3. Diverse Roles of Axonemal Dyneins in Drosophila Auditory Neuron Function and Mechanical Amplification in Hearing.

    Science.gov (United States)

    Karak, Somdatta; Jacobs, Julie S; Kittelmann, Maike; Spalthoff, Christian; Katana, Radoslaw; Sivan-Loukianova, Elena; Schon, Michael A; Kernan, Maurice J; Eberl, Daniel F; Göpfert, Martin C

    2015-11-26

    Much like vertebrate hair cells, the chordotonal sensory neurons that mediate hearing in Drosophila are motile and amplify the mechanical input of the ear. Because the neurons bear mechanosensory primary cilia whose microtubule axonemes display dynein arms, we hypothesized that their motility is powered by dyneins. Here, we describe two axonemal dynein proteins that are required for Drosophila auditory neuron function, localize to their primary cilia, and differently contribute to mechanical amplification in hearing. Promoter fusions revealed that the two axonemal dynein genes Dmdnah3 (=CG17150) and Dmdnai2 (=CG6053) are expressed in chordotonal neurons, including the auditory ones in the fly's ear. Null alleles of both dyneins equally abolished electrical auditory neuron responses, yet whereas mutations in Dmdnah3 facilitated mechanical amplification, amplification was abolished by mutations in Dmdnai2. Epistasis analysis revealed that Dmdnah3 acts downstream of Nan-Iav channels in controlling the amplificatory gain. Dmdnai2, in addition to being required for amplification, was essential for outer dynein arms in auditory neuron cilia. This establishes diverse roles of axonemal dyneins in Drosophila auditory neuron function and links auditory neuron motility to primary cilia and axonemal dyneins. Mutant defects in sperm competition suggest that both dyneins also function in sperm motility.

  4. Neural plasticity expressed in central auditory structures with and without tinnitus

    Directory of Open Access Journals (Sweden)

    Larry E Roberts

    2012-05-01

    Full Text Available Sensory training therapies for tinnitus are based on the assumption that, notwithstanding neural changes related to tinnitus, auditory training can alter the response properties of neurons in auditory pathways. To address this question, we investigated whether brain changes induced by sensory training in tinnitus sufferers and measured by EEG are similar to those induced in age and hearing loss matched individuals without tinnitus trained on the same auditory task. Auditory training was given using a 5 kHz 40-Hz amplitude-modulated sound that was in the tinnitus frequency region of the tinnitus subjects and enabled extraction of the 40-Hz auditory steady-state response (ASSR and P2 transient response known to localize to primary and nonprimary auditory cortex, respectively. P2 amplitude increased with training equally in participants with tinnitus and in control subjects, suggesting normal remodeling of nonprimary auditory regions in tinnitus. However, training-induced changes in the ASSR differed between the tinnitus and control groups. In controls ASSR phase advanced toward the stimulus waveform by about ten degrees over training, in agreement with previous results obtained in young normal hearing individuals. However, ASSR phase did not change significantly with training in the tinnitus group, although some participants showed phase shifts resembling controls. On the other hand, ASSR amplitude increased with training in the tinnitus group, whereas in controls this response (which is difficult to remodel in young normal hearing subjects did not change with training. These results suggest that neural changes related to tinnitus altered how neural plasticity was expressed in the region of primary but not nonprimary auditory cortex. Auditory training did not reduce tinnitus loudness although a small effect on the tinnitus spectrum was detected.

  5. Intrathoracic neoplasms in the dog and cat

    Energy Technology Data Exchange (ETDEWEB)

    Weller, R.E.

    1994-03-01

    Very little is known regarding the epidemiology, etiology, and mechanisms of spontaneous intrathoracic neoplasia in companion animals. Much of what we know or suspect about thoracic neoplasia in animals has been extrapolated from experimentally-induced neoplasms. Most studies of thoracic neoplasia have focused on the pathology of primary and metastatic neoplasms of the lung with little attention given to diagnostic and therapeutic considerations. Although the cited incidence rate for primary respiratory tract neoplasia is low, 8.5 cases per 100,000 dogs and 5.5 cases per 100,000 cats, intrathoracic masses often attract attention out of proportion to their actual importance since they are often readily visualized on routine thoracic radiographs.

  6. Fundamentals of ServCat

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This training manual for the U.S. Fish and Wildlife Service Catalog (ServCat) provides detailed instructions on searching for records, creating records, and managing...

  7. NRPC ServCat priorities

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document lists the Natural Resource Program Center’s priority ServCat documents. It is recommended that these documents- which include annual narrative reports,...

  8. Auditory Hallucinations in Acute Stroke

    Directory of Open Access Journals (Sweden)

    Yair Lampl

    2005-01-01

    Full Text Available Auditory hallucinations are uncommon phenomena which can be directly caused by acute stroke, mostly described after lesions of the brain stem, very rarely reported after cortical strokes. The purpose of this study is to determine the frequency of this phenomenon. In a cross sectional study, 641 stroke patients were followed in the period between 1996–2000. Each patient underwent comprehensive investigation and follow-up. Four patients were found to have post cortical stroke auditory hallucinations. All of them occurred after an ischemic lesion of the right temporal lobe. After no more than four months, all patients were symptom-free and without therapy. The fact the auditory hallucinations may be of cortical origin must be taken into consideration in the treatment of stroke patients. The phenomenon may be completely reversible after a couple of months.

  9. Food hypersensitivity in a cat.

    Science.gov (United States)

    Medleau, L; Latimer, K S; Duncan, J R

    1986-09-15

    Food hypersensitivity was diagnosed in a 4-year-old Siamese cat. Clinical signs included intense erythema, with alopecia, excoriations, erosions, and crusts involving the ventral portion of the abdomen, inguinal region, medial aspect of each thigh, and cranial and lateral aspects of all 4 limbs. The cat was intensely pruritic. Histologically, there was cutaneous mast cell hyperplasia and diffuse infiltration of eosinophils in the dermis. Blood eosinophilia also was found. Clinical signs resolved after exclusive feeding of a hypoallergenic diet.

  10. Sex differences in brain structure in auditory and cingulate regions

    OpenAIRE

    Brun, Caroline C.; Lepore, Natasha; Luders, Eileen; Chou, Yi-Yu; Madsen, Sarah K.; Toga, Arthur W; Thompson, Paul M.

    2009-01-01

    We applied a new method to visualize the three-dimensional profile of sex differences in brain structure based on MRI scans of 100 young adults. We compared 50 men with 50 women, matched for age and other relevant demographics. As predicted, left hemisphere auditory and language-related regions were proportionally expanded in women versus men, suggesting a possible structural basis for the widely replicated sex differences in language processing. In men, primary visual, and visuo-spatial asso...

  11. Schrodinger's cat: much ado about nothing

    CERN Document Server

    Ionicioiu, Radu

    2016-01-01

    In this note I briefly discuss the Schrodinger's cat Gedankenexperiment. By analysing the information flow in the system I show that no entanglement exists between the atom and the cat. The atom and the cat are connected only through a classical information channel (detector clicks $\\rightarrow$ poison is released $\\rightarrow$ cat is dead). No amount of local operations and classical communication can entangle the atom and the cat. Consequently, the paradox disappears.

  12. Forelimb and hindlimb ground reaction forces of walking cats: assessment and comparison with walking dogs.

    Science.gov (United States)

    Corbee, R J; Maas, H; Doornenbal, A; Hazewinkel, H A W

    2014-10-01

    The primary aim of this study was to assess the potential of force plate analysis for describing the stride cycle of the cat. The secondary aim was to define differences in feline and canine locomotion based on force plate characteristics. Ground reaction forces of 24 healthy cats were measured and compared with ground reaction forces of 24 healthy dogs. Force-time waveforms in cats generated by force plate analysis were consistent, as reflected by intra-class correlation coefficients for peak vertical force, peak propulsive force and peak braking force (0.94-0.95, 0.85-0.89 and 0.89-0.90, respectively). Compared with dogs, cats had a higher peak vertical force during the propulsion phase (cat, 3.89 ± 0.19 N/kg; dog, 3.03 ± 0.16 N/kg), and a higher hindlimb propulsive force (cat, -1.08 ± 0.13 N/kg; dog, (-0.87 ± 0.13 N/kg) and hindlimb impulse (cat, -0.18 ± 0.03 N/kg; dog, -0.14 ± 0.02 N/kg). Force plate analysis is a valuable tool for the assessment of locomotion in cats, because it can be applied in the clinical setting and provides a non-invasive and objective measurement of locomotion characteristics with high repeatability in cats, as well as information about kinetic characteristics. Differences in force-time waveforms between cats and dogs can be explained by the more crouched position of cats during stance and their more compliant gait compared with dogs. Feline waveforms of the medio-lateral ground reaction forces also differ between cats and dogs and this can be explained by differences in paw supination-pronation.

  13. Auditory Scene Analysis and sonified visual images. Does consonance negatively impact on object formation when using complex sonified stimuli?

    Directory of Open Access Journals (Sweden)

    David J Brown

    2015-10-01

    Full Text Available A critical task for the brain is the sensory representation and identification of perceptual objects in the world. When the visual sense is impaired, hearing and touch must take primary roles and in recent times compensatory techniques have been developed that employ the tactile or auditory system as a substitute for the visual system. Visual-to-auditory sonifications provide a complex, feature-based auditory representation that must be decoded and integrated into an object-based representation by the listener. However, we don’t yet know what role the auditory system plays in the object integration stage and whether the principles of auditory scene analysis apply. Here we used coarse sonified images in a two-tone discrimination task to test whether auditory feature-based representations of visual objects would be confounded when their features conflicted with the principles of auditory consonance. We found that listeners (N = 36 performed worse in an object recognition task when the auditory feature-based representation was harmonically consonant. We also found that this conflict was not negated with the provision of congruent audio-visual information. The findings suggest that early auditory processes of harmonic grouping dominate the object formation process and that the complexity of the signal, and additional sensory information have limited effect on this.

  14. Auditory scene analysis and sonified visual images. Does consonance negatively impact on object formation when using complex sonified stimuli?

    Science.gov (United States)

    Brown, David J; Simpson, Andrew J R; Proulx, Michael J

    2015-01-01

    A critical task for the brain is the sensory representation and identification of perceptual objects in the world. When the visual sense is impaired, hearing and touch must take primary roles and in recent times compensatory techniques have been developed that employ the tactile or auditory system as a substitute for the visual system. Visual-to-auditory sonifications provide a complex, feature-based auditory representation that must be decoded and integrated into an object-based representation by the listener. However, we don't yet know what role the auditory system plays in the object integration stage and whether the principles of auditory scene analysis apply. Here we used coarse sonified images in a two-tone discrimination task to test whether auditory feature-based representations of visual objects would be confounded when their features conflicted with the principles of auditory consonance. We found that listeners (N = 36) performed worse in an object recognition task when the auditory feature-based representation was harmonically consonant. We also found that this conflict was not negated with the provision of congruent audio-visual information. The findings suggest that early auditory processes of harmonic grouping dominate the object formation process and that the complexity of the signal, and additional sensory information have limited effect on this.

  15. A model of synaptic vesicle-pool depletion and replenishment can account for the interspike interval distributions and nonrenewal properties of spontaneous spike trains of auditory-nerve fibers.

    Science.gov (United States)

    Peterson, Adam J; Irvine, Dexter R F; Heil, Peter

    2014-11-05

    In mammalian auditory systems, the spiking characteristics of each primary afferent (type I auditory-nerve fiber; ANF) are mainly determined by a single ribbon synapse in a single receptor cell (inner hair cell; IHC). ANF spike trains therefore provide a window into the operation of these synapses and cells. It was demonstrated previously (Heil et al., 2007) that the distribution of interspike intervals (ISIs) of cat ANFs during spontaneous activity can be modeled as resulting from refractoriness operating on a non-Poisson stochastic point process of excitation (transmitter release events from the IHC). Here, we investigate nonrenewal properties of these cat-ANF spontaneous spike trains, manifest as negative serial ISI correlations and reduced spike-count variability over short timescales. A previously discussed excitatory process, the constrained failure of events from a homogeneous Poisson point process, can account for these properties, but does not offer a parsimonious explanation for certain trends in the data. We then investigate a three-parameter model of vesicle-pool depletion and replenishment and find that it accounts for all experimental observations, including the ISI distributions, with only the release probability varying between spike trains. The maximum number of units (single vesicles or groups of simultaneously released vesicles) in the readily releasable pool and their replenishment time constant can be assumed to be constant (∼4 and 13.5 ms, respectively). We suggest that the organization of the IHC ribbon synapses not only enables sustained release of neurotransmitter but also imposes temporal regularity on the release process, particularly when operating at high rates.

  16. Compensating Level-Dependent Frequency Representation in Auditory Cortex by Synaptic Integration of Corticocortical Input

    Science.gov (United States)

    Happel, Max F. K.; Ohl, Frank W.

    2017-01-01

    Robust perception of auditory objects over a large range of sound intensities is a fundamental feature of the auditory system. However, firing characteristics of single neurons across the entire auditory system, like the frequency tuning, can change significantly with stimulus intensity. Physiological correlates of level-constancy of auditory representations hence should be manifested on the level of larger neuronal assemblies or population patterns. In this study we have investigated how information of frequency and sound level is integrated on the circuit-level in the primary auditory cortex (AI) of the Mongolian gerbil. We used a combination of pharmacological silencing of corticocortically relayed activity and laminar current source density (CSD) analysis. Our data demonstrate that with increasing stimulus intensities progressively lower frequencies lead to the maximal impulse response within cortical input layers at a given cortical site inherited from thalamocortical synaptic inputs. We further identified a temporally precise intercolumnar synaptic convergence of early thalamocortical and horizontal corticocortical inputs. Later tone-evoked activity in upper layers showed a preservation of broad tonotopic tuning across sound levels without shifts towards lower frequencies. Synaptic integration within corticocortical circuits may hence contribute to a level-robust representation of auditory information on a neuronal population level in the auditory cortex. PMID:28046062

  17. Determination of multidirectional myocardial deformations in cats with hypertrophic cardiomyopathy by using two-dimensional speckle-tracking echocardiography.

    Science.gov (United States)

    Suzuki, Ryohei; Mochizuki, Yohei; Yoshimatsu, Hiroki; Teshima, Takahiro; Matsumoto, Hirotaka; Koyama, Hidekazu

    2017-02-01

    Objectives Hypertrophic cardiomyopathy, a primary disorder of the myocardium, is the most common cardiac disease in cats. However, determination of myocardial deformation with two-dimensional speckle-tracking echocardiography in cats with various stages of hypertrophic cardiomyopathy has not yet been reported. This study was designed to measure quantitatively multidirectional myocardial deformations of cats with hypertrophic cardiomyopathy. Methods Thirty-two client-owned cats with hypertrophic cardiomyopathy and 14 healthy cats serving as controls were enrolled and underwent assessment of myocardial deformation (peak systolic strain and strain rate) in the longitudinal, radial and circumferential directions. Results Longitudinal and radial deformations were reduced in cats with hypertrophic cardiomyopathy, despite normal systolic function determined by conventional echocardiography. Cats with severely symptomatic hypertrophic cardiomyopathy also had lower peak systolic circumferential strain, in addition to longitudinal and radial strain. Conclusions and relevance Longitudinal and radial deformation may be helpful in the diagnosis of hypertrophic cardiomyopathy. Additionally, the lower circumferential deformation in cats with severe hypertrophic cardiomyopathy may contribute to clinical findings of decompensation, and seems to be related to severe cardiac clinical signs. Indices of multidirectional myocardial deformations by two-dimensional speckle-tracking echocardiography may be useful markers and help to distinguish between cats with hypertrophic cardiomyopathy and healthy cats. Additionally, they may provide more detailed assessment of contractile function in cats with hypertrophic cardiomyopathy.

  18. Auditory responses and stimulus-specific adaptation in rat auditory cortex are preserved across NREM and REM sleep.

    Science.gov (United States)

    Nir, Yuval; Vyazovskiy, Vladyslav V; Cirelli, Chiara; Banks, Matthew I; Tononi, Giulio

    2015-05-01

    Sleep entails a disconnection from the external environment. By and large, sensory stimuli do not trigger behavioral responses and are not consciously perceived as they usually are in wakefulness. Traditionally, sleep disconnection was ascribed to a thalamic "gate," which would prevent signal propagation along ascending sensory pathways to primary cortical areas. Here, we compared single-unit and LFP responses in core auditory cortex as freely moving rats spontaneously switched between wakefulness and sleep states. Despite robust differences in baseline neuronal activity, both the selectivity and the magnitude of auditory-evoked responses were comparable across wakefulness, Nonrapid eye movement (NREM) and rapid eye movement (REM) sleep (pairwise differences sleep and wakefulness using an oddball paradigm. Robust stimulus-specific adaptation (SSA) was observed following the onset of repetitive tones, and the strength of SSA effects (13-20%) was comparable across vigilance states. Thus, responses in core auditory cortex are preserved across sleep states, suggesting that evoked activity in primary sensory cortices is driven by external physical stimuli with little modulation by vigilance state. We suggest that sensory disconnection during sleep occurs at a stage later than primary sensory areas.

  19. [Deafness in the dog and cat: aetiology, diagnostics and treatment].

    Science.gov (United States)

    Bach, J-P; Lüpke, M; Wefstaedt, P

    2013-01-01

    Deafness is one of the most common sensory deficits in cats and dogs. Determining the scope and the cause of deafness is important for a possible therapy and can enable the handling of the animal by its owner as well as influence the decision about breeding with the affected animal. Electrodiagnostic testing using the brainstem auditory evoked response (BAER) enables an objective evaluation of the hearing function. Additionally, otoscopy and various diagnostic imaging techniques, including computed tomography, can help in determining the cause of deafness. While conductive deafness can often be treated, there is normally no satisfactory treatment for sensorineural deafness. In such cases, an important task of the attending veterinarian is to advise the owner on handling his/her animal.

  20. Activity changes of the cat paraventricular hypothalamus during stressor exposure.

    Science.gov (United States)

    Kristensen, Morten P; Rector, David M; Poe, Gina R; Harper, Ronald M

    2004-01-19

    Dorso-medial paraventricular hypothalamus (PVH) activity was assessed by light scattering procedures in freely behaving cats during auditory stressor exposure. Acoustic noise (> 95dB) raised plasma ACTH concentrations, somatic muscle tonus, respiratory frequency and cardiac rates; PVH activity peaked 0.8s following stimulation, and then markedly declined below baseline to a trough at 9.7s. Hypothalamic responses were not uniformly distributed across the recorded PVH field. Activity changes emerged from subregions within the visualized area, and were widespread at the overall activity zenith and nadir. Isolated pixels appeared opposite in activity pattern to overall changes. We suggest that transient activity increases represent initial PVH neural stress responses, and that subsequent profound declines result from neural inhibitory feedback.

  1. Auditory and audio-visual processing in patients with cochlear, auditory brainstem, and auditory midbrain implants: An EEG study.

    Science.gov (United States)

    Schierholz, Irina; Finke, Mareike; Kral, Andrej; Büchner, Andreas; Rach, Stefan; Lenarz, Thomas; Dengler, Reinhard; Sandmann, Pascale

    2017-04-01

    There is substantial variability in speech recognition ability across patients with cochlear implants (CIs), auditory brainstem implants (ABIs), and auditory midbrain implants (AMIs). To better understand how this variability is related to central processing differences, the current electroencephalography (EEG) study compared hearing abilities and auditory-cortex activation in patients with electrical stimulation at different sites of the auditory pathway. Three different groups of patients with auditory implants (Hannover Medical School; ABI: n = 6, CI: n = 6; AMI: n = 2) performed a speeded response task and a speech recognition test with auditory, visual, and audio-visual stimuli. Behavioral performance and cortical processing of auditory and audio-visual stimuli were compared between groups. ABI and AMI patients showed prolonged response times on auditory and audio-visual stimuli compared with NH listeners and CI patients. This was confirmed by prolonged N1 latencies and reduced N1 amplitudes in ABI and AMI patients. However, patients with central auditory implants showed a remarkable gain in performance when visual and auditory input was combined, in both speech and non-speech conditions, which was reflected by a strong visual modulation of auditory-cortex activation in these individuals. In sum, the results suggest that the behavioral improvement for audio-visual conditions in central auditory implant patients is based on enhanced audio-visual interactions in the auditory cortex. Their findings may provide important implications for the optimization of electrical stimulation and rehabilitation strategies in patients with central auditory prostheses. Hum Brain Mapp 38:2206-2225, 2017. © 2017 Wiley Periodicals, Inc.

  2. Nigel: A Severe Auditory Dyslexic

    Science.gov (United States)

    Cotterell, Gill

    1976-01-01

    Reported is the case study of a boy with severe auditory dyslexia who received remedial treatment from the age of four and progressed through courses at a technical college and a 3-year apprenticeship course in mechanics by the age of eighteen. (IM)

  3. Modeling auditory-nerve responses to electrical stimulation

    DEFF Research Database (Denmark)

    Joshi, Suyash Narendra; Dau, Torsten; Epp, Bastian

    2014-01-01

    Cochlear implants (CI) directly stimulate the auditory nerve (AN), bypassing the mechano-electrical transduction in the inner ear. Trains of biphasic, charge balanced pulses (anodic and cathodic) are used as stimuli to avoid damage of the tissue. The pulses of either polarity are capable of produ......Cochlear implants (CI) directly stimulate the auditory nerve (AN), bypassing the mechano-electrical transduction in the inner ear. Trains of biphasic, charge balanced pulses (anodic and cathodic) are used as stimuli to avoid damage of the tissue. The pulses of either polarity are capable......μs, which is large enough to affect the temporal coding of sounds and hence, potentially, the communication abilities of the CI listener. In the present study, two recently proposed models of electric stimulation of the AN [1,2] were considered in terms of their efficacy to predict the spike timing...... for anodic and cathodic stimulation of the AN of cat [3]. The models’ responses to the electrical pulses of various shapes [4,5,6] were also analyzed. It was found that, while the models can account for the firing rates in response to various biphasic pulse shapes, they fail to correctly describe the timing...

  4. Development of Brainstem-Evoked Responses in Congenital Auditory Deprivation

    Directory of Open Access Journals (Sweden)

    J. Tillein

    2012-01-01

    Full Text Available To compare the development of the auditory system in hearing and completely acoustically deprived animals, naive congenitally deaf white cats (CDCs and hearing controls (HCs were investigated at different developmental stages from birth till adulthood. The CDCs had no hearing experience before the acute experiment. In both groups of animals, responses to cochlear implant stimulation were acutely assessed. Electrically evoked auditory brainstem responses (E-ABRs were recorded with monopolar stimulation at different current levels. CDCs demonstrated extensive development of E-ABRs, from first signs of responses at postnatal (p.n. day 3 through appearance of all waves of brainstem response at day 8 p.n. to mature responses around day 90 p.n.. Wave I of E-ABRs could not be distinguished from the artifact in majority of CDCs, whereas in HCs, it was clearly separated from the stimulus artifact. Waves II, III, and IV demonstrated higher thresholds in CDCs, whereas this difference was not found for wave V. Amplitudes of wave III were significantly higher in HCs, whereas wave V amplitudes were significantly higher in CDCs. No differences in latencies were observed between the animal groups. These data demonstrate significant postnatal subcortical development in absence of hearing, and also divergent effects of deafness on early waves II–IV and wave V of the E-ABR.

  5. Behavioral semantics of learning and crossmodal processing in auditory cortex: the semantic processor concept.

    Science.gov (United States)

    Scheich, Henning; Brechmann, André; Brosch, Michael; Budinger, Eike; Ohl, Frank W; Selezneva, Elena; Stark, Holger; Tischmeyer, Wolfgang; Wetzel, Wolfram

    2011-01-01

    Two phenomena of auditory cortex activity have recently attracted attention, namely that the primary field can show different types of learning-related changes of sound representation and that during learning even this early auditory cortex is under strong multimodal influence. Based on neuronal recordings in animal auditory cortex during instrumental tasks, in this review we put forward the hypothesis that these two phenomena serve to derive the task-specific meaning of sounds by associative learning. To understand the implications of this tenet, it is helpful to realize how a behavioral meaning is usually derived for novel environmental sounds. For this purpose, associations with other sensory, e.g. visual, information are mandatory to develop a connection between a sound and its behaviorally relevant cause and/or the context of sound occurrence. This makes it plausible that in instrumental tasks various non-auditory sensory and procedural contingencies of sound generation become co-represented by neuronal firing in auditory cortex. Information related to reward or to avoidance of discomfort during task learning, that is essentially non-auditory, is also co-represented. The reinforcement influence points to the dopaminergic internal reward system, the local role of which for memory consolidation in auditory cortex is well-established. Thus, during a trial of task performance, the neuronal responses to the sounds are embedded in a sequence of representations of such non-auditory information. The embedded auditory responses show task-related modulations of auditory responses falling into types that correspond to three basic logical classifications that may be performed with a perceptual item, i.e. from simple detection to discrimination, and categorization. This hierarchy of classifications determine the semantic "same-different" relationships among sounds. Different cognitive classifications appear to be a consequence of learning task and lead to a recruitment of

  6. Energy requirements of adult cats.

    Science.gov (United States)

    Bermingham, Emma N; Thomas, David G; Morris, Penelope J; Hawthorne, Amanda J

    2010-04-01

    A meta-analysis was carried out in order to establish the energy requirements of adult cats. Publications that identified cat body weight (BW) were used to generate allometric relationships between energy requirements and BW of healthy adult cats, using log-log linear regression. Energy requirements were expressed in kcal/kg BW to be consistent with those reported by the National Research Council. Mean maintenance energy requirements were 55.1 (se 1.2) kcal/kg BW (115 treatment groups). Three allometric equations were identified to predict the energy requirements for maintenance of BW in the cat based on BW: light (53.7 kcal/kg BW- 1.061), normal (46.8 kcal/kg BW- 1.115) and heavy (131.8 kcal/kg BW- 0 .366). When reported on lean mass, the allometric equation revealed maintenance requirements were 58.4 kcal/kg lean mass- 1.140 (adjusted R2 0.694; thirty-six treatment groups). The present review suggests that values for maintenance energy requirements based on BW alone may not be an accurate prediction and more detailed information on the age, sex and neuter status, BW and composition would enhance the ability to interpret the maintenance energy requirements of cats.

  7. Characteristics of cats sterilized through a subsidized, reduced-cost spay-neuter program in Massachusetts and of owners who had cats sterilized through this program.

    Science.gov (United States)

    Benka, Valerie A; McCobb, Emily

    2016-09-01

    OBJECTIVE To determine characteristics of cats sterilized through a subsidized, reduced-cost spay-neuter program in Massachusetts and of owners who had their cats sterilized through this program. DESIGN Cross-sectional anonymous survey and telephone interviews. SAMPLE 1,188 (anonymous surveys) and 99 (telephone interviews) cat owners. PROCEDURES Owners who had a cat sterilized at clinics held between January 2006 and December 2008 were invited to complete anonymous surveys. Semistructured telephone interviews were conducted with owners who had a cat sterilized during clinics held in 2009. RESULTS Most cats had never been seen by a veterinarian previously; "too expensive" was the most common reason for this. Total annual household income was significantly associated with the number of times the cat had been examined by a veterinarian and reason why the cat had not been spayed or neutered previously. Most cats were acquired through informal means and without actively being sought, and there was often a time lag between acquisition and sterilization. Undesirable behavior and avoiding pregnancy were primary motivations for neutering and spaying, respectively. Nearly half of owners who indicated they would have had their cat sterilized through a private veterinarian if the clinic had not been available stated that the surgery would have been delayed because of cost. CONCLUSIONS AND CLINICAL RELEVANCE Findings suggested that spay-neuter decisions were related to owner income and procedure cost, that elimination of the reduced-cost spay-neuter program would likely have exacerbated the spay-delay problem, and that gradations of financial need should be considered when evaluating relationships between income and spay-neuter decisions.

  8. Multi-sensory integration in brainstem and auditory cortex.

    Science.gov (United States)

    Basura, Gregory J; Koehler, Seth D; Shore, Susan E

    2012-11-16

    Tinnitus is the perception of sound in the absence of a physical sound stimulus. It is thought to arise from aberrant neural activity within central auditory pathways that may be influenced by multiple brain centers, including the somatosensory system. Auditory-somatosensory (bimodal) integration occurs in the dorsal cochlear nucleus (DCN), where electrical activation of somatosensory regions alters pyramidal cell spike timing and rates of sound stimuli. Moreover, in conditions of tinnitus, bimodal integration in DCN is enhanced, producing greater spontaneous and sound-driven neural activity, which are neural correlates of tinnitus. In primary auditory cortex (A1), a similar auditory-somatosensory integration has been described in the normal system (Lakatos et al., 2007), where sub-threshold multisensory modulation may be a direct reflection of subcortical multisensory responses (Tyll et al., 2011). The present work utilized simultaneous recordings from both DCN and A1 to directly compare bimodal integration across these separate brain stations of the intact auditory pathway. Four-shank, 32-channel electrodes were placed in DCN and A1 to simultaneously record tone-evoked unit activity in the presence and absence of spinal trigeminal nucleus (Sp5) electrical activation. Bimodal stimulation led to long-lasting facilitation or suppression of single and multi-unit responses to subsequent sound in both DCN and A1. Immediate (bimodal response) and long-lasting (bimodal plasticity) effects of Sp5-tone stimulation were facilitation or suppression of tone-evoked firing rates in DCN and A1 at all Sp5-tone pairing intervals (10, 20, and 40 ms), and greater suppression at 20 ms pairing-intervals for single unit responses. Understanding the complex relationships between DCN and A1 bimodal processing in the normal animal provides the basis for studying its disruption in hearing loss and tinnitus models. This article is part of a Special Issue entitled: Tinnitus Neuroscience.

  9. Free-ranging farm cats: home range size and predation on a livestock unit in Northwest Georgia.

    Science.gov (United States)

    Kitts-Morgan, Susanna E; Caires, Kyle C; Bohannon, Lisa A; Parsons, Elizabeth I; Hilburn, Katharine A

    2015-01-01

    This study's objective was to determine seasonal and diurnal vs. nocturnal home range size, as well as predation for free-ranging farm cats at a livestock unit in Northwest Georgia. Seven adult cats were tracked with attached GPS units for up to two weeks for one spring and two summer seasons from May 2010 through August 2011. Three and five cats were tracked for up to two weeks during the fall and winter seasons, respectively. Feline scat was collected during this entire period. Cats were fed a commercial cat food daily. There was no seasonal effect (P > 0.05) on overall (95% KDE and 90% KDE) or core home range size (50% KDE). Male cats tended (P = 0.08) to have larger diurnal and nocturnal core home ranges (1.09 ha) compared to female cats (0.64 ha). Reproductively intact cats (n = 2) had larger (P cats. Feline scat processing separated scat into prey parts, and of the 210 feline scats collected during the study, 75.24% contained hair. Of these 158 scat samples, 86 contained non-cat hair and 72 contained only cat hair. Other prey components included fragments of bone in 21.43% of scat and teeth in 12.86% of scat. Teeth were used to identify mammalian prey hunted by these cats, of which the Hispid cotton rat (Sigmodon hispidus) was the primary rodent. Other targeted mammals were Peromyscus sp., Sylvilagus sp. and Microtus sp. Invertebrates and birds were less important as prey, but all mammalian prey identified in this study consisted of native animals. While the free-ranging farm cats in this study did not adjust their home range seasonally, sex and reproductive status did increase diurnal and nocturnal home range size. Ultimately, larger home ranges of free-ranging cats could negatively impact native wildlife.

  10. Spectral and temporal processing in rat posterior auditory cortex.

    Science.gov (United States)

    Pandya, Pritesh K; Rathbun, Daniel L; Moucha, Raluca; Engineer, Navzer D; Kilgard, Michael P

    2008-02-01

    The rat auditory cortex is divided anatomically into several areas, but little is known about the functional differences in information processing between these areas. To determine the filter properties of rat posterior auditory field (PAF) neurons, we compared neurophysiological responses to simple tones, frequency modulated (FM) sweeps, and amplitude modulated noise and tones with responses of primary auditory cortex (A1) neurons. PAF neurons have excitatory receptive fields that are on average 65% broader than A1 neurons. The broader receptive fields of PAF neurons result in responses to narrow and broadband inputs that are stronger than A1. In contrast to A1, we found little evidence for an orderly topographic gradient in PAF based on frequency. These neurons exhibit latencies that are twice as long as A1. In response to modulated tones and noise, PAF neurons adapt to repeated stimuli at significantly slower rates. Unlike A1, neurons in PAF rarely exhibit facilitation to rapidly repeated sounds. Neurons in PAF do not exhibit strong selectivity for rate or direction of narrowband one octave FM sweeps. These results indicate that PAF, like nonprimary visual fields, processes sensory information on larger spectral and longer temporal scales than primary cortex.

  11. Convergence and divergence in the evolution of cat skulls: temporal and spatial patterns of morphological diversity.

    Directory of Open Access Journals (Sweden)

    Manabu Sakamoto

    Full Text Available BACKGROUND: Studies of biological shape evolution are greatly enhanced when framed in a phylogenetic perspective. Inclusion of fossils amplifies the scope of macroevolutionary research, offers a deep-time perspective on tempo and mode of radiations, and elucidates life-trait changes. We explore the evolution of skull shape in felids (cats through morphometric analyses of linear variables, phylogenetic comparative methods, and a new cladistic study of saber-toothed cats. METHODOLOGY/PRINCIPAL FINDINGS: A new phylogenetic analysis supports the monophyly of saber-toothed cats (Machairodontinae exclusive of Felinae and some basal felids, but does not support the monophyly of various saber-toothed tribes and genera. We quantified skull shape variation in 34 extant and 18 extinct species using size-adjusted linear variables. These distinguish taxonomic group membership with high accuracy. Patterns of morphospace occupation are consistent with previous analyses, for example, in showing a size gradient along the primary axis of shape variation and a separation between large and small-medium cats. By combining the new phylogeny with a molecular tree of extant Felinae, we built a chronophylomorphospace (a phylogeny superimposed onto a two-dimensional morphospace through time. The evolutionary history of cats was characterized by two major episodes of morphological divergence, one marking the separation between saber-toothed and modern cats, the other marking the split between large and small-medium cats. CONCLUSIONS/SIGNIFICANCE: Ancestors of large cats in the 'Panthera' lineage tend to occupy, at a much later stage, morphospace regions previously occupied by saber-toothed cats. The latter radiated out into new morphospace regions peripheral to those of extant large cats. The separation between large and small-medium cats was marked by considerable morphologically divergent trajectories early in feline evolution. A chronophylomorphospace has wider

  12. Adaptation in the auditory system: an overview

    Directory of Open Access Journals (Sweden)

    David ePérez-González

    2014-02-01

    Full Text Available The early stages of the auditory system need to preserve the timing information of sounds in order to extract the basic features of acoustic stimuli. At the same time, different processes of neuronal adaptation occur at several levels to further process the auditory information. For instance, auditory nerve fiber responses already experience adaptation of their firing rates, a type of response that can be found in many other auditory nuclei and may be useful for emphasizing the onset of the stimuli. However, it is at higher levels in the auditory hierarchy where more sophisticated types of neuronal processing take place. For example, stimulus-specific adaptation, where neurons show adaptation to frequent, repetitive stimuli, but maintain their responsiveness to stimuli with different physical characteristics, thus representing a distinct kind of processing that may play a role in change and deviance detection. In the auditory cortex, adaptation takes more elaborate forms, and contributes to the processing of complex sequences, auditory scene analysis and attention. Here we review the multiple types of adaptation that occur in the auditory system, which are part of the pool of resources that the neurons employ to process the auditory scene, and are critical to a proper understanding of the neuronal mechanisms that govern auditory perception.

  13. Auditory adaptation improves tactile frequency perception.

    Science.gov (United States)

    Crommett, Lexi E; Pérez-Bellido, Alexis; Yau, Jeffrey M

    2017-01-11

    Our ability to process temporal frequency information by touch underlies our capacity to perceive and discriminate surface textures. Auditory signals, which also provide extensive temporal frequency information, can systematically alter the perception of vibrations on the hand. How auditory signals shape tactile processing is unclear: perceptual interactions between contemporaneous sounds and vibrations are consistent with multiple neural mechanisms. Here we used a crossmodal adaptation paradigm, which separated auditory and tactile stimulation in time, to test the hypothesis that tactile frequency perception depends on neural circuits that also process auditory frequency. We reasoned that auditory adaptation effects would transfer to touch only if signals from both senses converge on common representations. We found that auditory adaptation can improve tactile frequency discrimination thresholds. This occurred only when adaptor and test frequencies overlapped. In contrast, auditory adaptation did not influence tactile intensity judgments. Thus, auditory adaptation enhances touch in a frequency- and feature-specific manner. A simple network model in which tactile frequency information is decoded from sensory neurons that are susceptible to auditory adaptation recapitulates these behavioral results. Our results imply that the neural circuits supporting tactile frequency perception also process auditory signals. This finding is consistent with the notion of supramodal operators performing canonical operations, like temporal frequency processing, regardless of input modality.

  14. Auditory Dysfunction in Patients with Cerebrovascular Disease

    Directory of Open Access Journals (Sweden)

    Sadaharu Tabuchi

    2014-01-01

    Full Text Available Auditory dysfunction is a common clinical symptom that can induce profound effects on the quality of life of those affected. Cerebrovascular disease (CVD is the most prevalent neurological disorder today, but it has generally been considered a rare cause of auditory dysfunction. However, a substantial proportion of patients with stroke might have auditory dysfunction that has been underestimated due to difficulties with evaluation. The present study reviews relationships between auditory dysfunction and types of CVD including cerebral infarction, intracerebral hemorrhage, subarachnoid hemorrhage, cerebrovascular malformation, moyamoya disease, and superficial siderosis. Recent advances in the etiology, anatomy, and strategies to diagnose and treat these conditions are described. The numbers of patients with CVD accompanied by auditory dysfunction will increase as the population ages. Cerebrovascular diseases often include the auditory system, resulting in various types of auditory dysfunctions, such as unilateral or bilateral deafness, cortical deafness, pure word deafness, auditory agnosia, and auditory hallucinations, some of which are subtle and can only be detected by precise psychoacoustic and electrophysiological testing. The contribution of CVD to auditory dysfunction needs to be understood because CVD can be fatal if overlooked.

  15. The auditory brainstem is a barometer of rapid auditory learning.

    Science.gov (United States)

    Skoe, E; Krizman, J; Spitzer, E; Kraus, N

    2013-07-23

    To capture patterns in the environment, neurons in the auditory brainstem rapidly alter their firing based on the statistical properties of the soundscape. How this neural sensitivity relates to behavior is unclear. We tackled this question by combining neural and behavioral measures of statistical learning, a general-purpose learning mechanism governing many complex behaviors including language acquisition. We recorded complex auditory brainstem responses (cABRs) while human adults implicitly learned to segment patterns embedded in an uninterrupted sound sequence based on their statistical characteristics. The brainstem's sensitivity to statistical structure was measured as the change in the cABR between a patterned and a pseudo-randomized sequence composed from the same set of sounds but differing in their sound-to-sound probabilities. Using this methodology, we provide the first demonstration that behavioral-indices of rapid learning relate to individual differences in brainstem physiology. We found that neural sensitivity to statistical structure manifested along a continuum, from adaptation to enhancement, where cABR enhancement (patterned>pseudo-random) tracked with greater rapid statistical learning than adaptation. Short- and long-term auditory experiences (days to years) are known to promote brainstem plasticity and here we provide a conceptual advance by showing that the brainstem is also integral to rapid learning occurring over minutes.

  16. EUROmediCAT signal detection

    DEFF Research Database (Denmark)

    Luteijn, Johannes Michiel; Morris, Joan K; Garne, Ester

    2016-01-01

    AIMS: Information about medication safety in pregnancy is inadequate. We aimed to develop a signal detection methodology to routinely identify unusual associations between medications and congenital anomalies using data collected by 15 European congenital anomaly registries. METHODS: EUROmediCAT......). CONCLUSIONS: Medication exposure data in the EUROmediCAT central database can be analyzed systematically to determine a manageable set of associations for validation and then testing in independent datasets. Detection of teratogens depends on frequency of exposure, level of risk and teratogenic specificity....

  17. Neural encoding of auditory discrimination in ventral premotor cortex

    Science.gov (United States)

    Lemus, Luis; Hernández, Adrián; Romo, Ranulfo

    2009-01-01

    Monkeys have the capacity to accurately discriminate the difference between two acoustic flutter stimuli. In this task, monkeys must compare information about the second stimulus to the memory trace of the first stimulus, and must postpone the decision report until a sensory cue triggers the beginning of the decision motor report. The neuronal processes associated with the different components of this task have been investigated in the primary auditory cortex (A1); but, A1 seems exclusively associated with the sensory and not with the working memory and decision components of this task. Here, we show that ventral premotor cortex (VPC) neurons reflect in their activities the current and remembered acoustic stimulus, their comparison, and the result of the animal's decision report. These results provide evidence that the neural dynamics of VPC is involved in the processing steps that link sensation and decision-making during auditory discrimination. PMID:19667191

  18. Degenerative mucinotic mural folliculitis in cats.

    Science.gov (United States)

    Gross, T L; Olivry, T; Vitale, C B; Power, H T

    2001-10-01

    A novel form of mural folliculitis is described in seven cats. Clinically, all cats exhibited generalized alopecia with scaling or crusting that was more pronounced over the head, neck, and shoulders. The face and muzzle of all cats was unusually thickened. Six of seven cats were progressively lethargic but did not demonstrate any other consistent systemic abnormalities. Histologically, there was severe mixed inflammation of the wall of the follicular isthmus in all cats, accompanied by some follicular destruction in five cats. Sebaceous glands were not affected. All cats had variable, but often striking, follicular mucin deposition, as well as epidermal hyperkeratosis and crusting. The cause of the severe mural folliculitis was not identified, and all cats responded poorly to immunomodulating therapy. Follicular mucinosis may be a nonspecific finding, likely reflective of the follicular lymphocytic milieu, and does not always herald follicular lymphoma.

  19. Cerebral cysticercosis in a cat : clinical communication

    Directory of Open Access Journals (Sweden)

    E.V. Schwan

    2002-07-01

    Full Text Available The metacestode of Taenia solium, Cysticercus cellulosae, was recovered from the brain of a cat showing central nervous clinical signs ante mortem. This is the first record of cerebral cysticercosis in a cat in South Africa.

  20. Activity of pulmonary intravascular macrophages in cats and dogs with and without adult Dirofilaria immitis.

    Science.gov (United States)

    Dillon, A R; Warner, A E; Brawner, W; Hudson, J; Tillson, M

    2008-12-10

    Pulmonary intravascular macrophages (PIMs), large (20-80 microm diameter) monocytes are present in sheep, pigs, and horses, but not in dogs, rats, rabbits, or primates. The present study evaluated the phagocytic activity of various organs in cats and dogs and determined the influence of Dirofilaria immitis infections on PIM activity. Live or dead adult heartworm (HW) was transplanted via jugular venotomy into cats and dogs. Cats (four per group) were allocated to five groups: surgical controls--no HW, dead HW for 1 week, live HW for 1 week, dead HW for 3 weeks, or live HW for 3 weeks. Radioactive technetium (Tc-99m, 1.2mCi in 0.3ml) sulfa-colloid was injected intravenously. All cats with HW were clinically asymptomatic and developed radiographic pulmonary parenchymal changes. No gross changes were visible at necropsy for cats with HW; inflammatory changes were less severe in cats with live HW. In cats with dead HW for 3 weeks, worms were present but folded, flattened, and located in distal pulmonary arteries. Uninfected control dogs and those with dead HW did not demonstrate any PIM activity. In control cats, lungs were the primary phagocytic organ after systemic IV colloid injection (72.5% of the total recovered radioactive dose). The lung and liver together represented over 95% of the recovered Tc-99m colloid in all cats. In each group of cats with HW, phagocytic activity of the lung was significantly less (p < 0.001) than the PIM activity of controls. Cats with dead HW at 1 week (50.1%) had a significant (p < 0.019) decrease in PIM activity compared with cats with dead HW at 3 weeks (59.5%). The PIM activity in cats with live HW was significantly decreased (p < 0.001) from that in groups with dead HW, but there was no significant difference between the two groups infected with live worms. There were no significant differences in recovery between any groups in pairwise analysis of the spleen, heart, skeletal muscle, kidney, bone marrow, or blood. Significant

  1. Auditory Motion Elicits a Visual Motion Aftereffect

    Directory of Open Access Journals (Sweden)

    Christopher C. Berger

    2016-12-01

    Full Text Available The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect—an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  2. Toxoplasmosis: An Important Message for Cat Owners

    Science.gov (United States)

    ... a s t is O : wAnneIrmsportant What role do cats play in the spread of toxoplasmosis? Cats get Toxoplasma infection by eating infected rodents, birds ... animals, or anything contaminated with feces from another cat that is shedding the microscopic parasite in its ...

  3. Getting a CAT Scan (For Kids)

    Science.gov (United States)

    ... What Happens in the Operating Room? Getting a CAT Scan (Video) KidsHealth > For Kids > Getting a CAT Scan (Video) A A A en español Obtención de una tomografía computada (video) CAT stands for "computerized axial tomography." Translated, that means ...

  4. Dipylidium (Dog and Cat Flea Tapeworm) FAQs

    Science.gov (United States)

    ... the most common kind of tapeworm dogs and cats get? The most common tapeworm of dogs and cats in the United States is called Dipylidium caninum . ... infected with a tapeworm larvae. A dog or cat may swallow a flea while self-grooming. Once ...

  5. Cats & Dogs%猫狗大战

    Institute of Scientific and Technical Information of China (English)

    阿萌

    2003-01-01

    @@ ( Dogs and cats are permanent enemies. A dog named Bubby is catnapped by the cats. The whole cats' world is shocked and alert. ) Dog Chairman: Gentlemen, a few moments ago I received word of the gravest nature. The key agent working the Brody case has been catnapped. Although he is safe, new must replace him as soon as possible.

  6. EUROmediCAT signal detection

    DEFF Research Database (Denmark)

    Given, Joanne E; Loane, Maria; Luteijn, Johannes Michiel

    2016-01-01

    AIMS: To evaluate congenital anomaly (CA)-medication exposure associations produced by the new EUROmediCAT signal detection system and determine which require further investigation. METHODS: Data from 15 EUROCAT registries (1995-2011) with medication exposures at the chemical substance (5th level...

  7. A strange cat in Dublin

    Science.gov (United States)

    O'Raifeartaigh, Cormac

    2012-11-01

    Not many life stories in physics involve Nazis, illicit sex, a strange cat and the genetic code. Thus, a new biography of the great Austrian physicist Erwin Schrödinger is always of interest, and with Erwin Schrödinger and the Quantum Revolution, veteran science writer John Gribbin does not disappoint.

  8. Speech distortion measure based on auditory properties

    Institute of Scientific and Technical Information of China (English)

    CHEN Guo; HU Xiulin; ZHANG Yunyu; ZHU Yaoting

    2000-01-01

    The Perceptual Spectrum Distortion (PSD), based on auditory properties of human being, is presented to measure speech distortion. The PSD measure calculates the speech distortion distance by simulating the auditory properties of human being and converting short-time speech power spectrum to auditory perceptual spectrum. Preliminary simulative experiments in comparison with the Itakura measure have been done. The results show that the PSD measure is a perferable speech distortion measure and more consistent with subjective assessment of speech quality.

  9. Auditory evoked potentials and multiple sclerosis

    OpenAIRE

    Carla Gentile Matas; Sandro Luiz de Andrade Matas; Caroline Rondina Salzano de Oliveira; Isabela Crivellaro Gonçalves

    2010-01-01

    Multiple sclerosis (MS) is an inflammatory, demyelinating disease that can affect several areas of the central nervous system. Damage along the auditory pathway can alter its integrity significantly. Therefore, it is important to investigate the auditory pathway, from the brainstem to the cortex, in individuals with MS. OBJECTIVE: The aim of this study was to characterize auditory evoked potentials in adults with MS of the remittent-recurrent type. METHOD: The study comprised 25 individuals w...

  10. Sequence Variants and Haplotype Analysis of Cat ERBB2 Gene: A Survey on Spontaneous Cat Mammary Neoplastic and Non-Neoplastic Lesions

    Science.gov (United States)

    Santos, Sara; Bastos, Estela; Baptista, Cláudia S.; Sá, Daniela; Caloustian, Christophe; Guedes-Pinto, Henrique; Gärtner, Fátima; Gut, Ivo G.; Chaves, Raquel

    2012-01-01

    The human ERBB2 proto-oncogene is widely considered a key gene involved in human breast cancer onset and progression. Among spontaneous tumors, mammary tumors are the most frequent cause of cancer death in cats and second most frequent in humans. In fact, naturally occurring tumors in domestic animals, more particularly cat mammary tumors, have been proposed as a good model for human breast cancer, but critical genetic and molecular information is still scarce. The aims of this study include the analysis of the cat ERBB2 gene partial sequences (between exon 17 and 20) in order to characterize a normal and a mammary lesion heterogeneous populations. Cat genomic DNA was extracted from normal frozen samples (n = 16) and from frozen and formalin-fixed paraffin-embedded mammary lesion samples (n = 41). We amplified and sequenced two cat ERBB2 DNA fragments comprising exons 17 to 20. It was possible to identify five sequence variants and six haplotypes in the total population. Two sequence variants and two haplotypes show to be specific for cat mammary tumor samples. Bioinformatics analysis predicts that four of the sequence variants can produce alternative transcripts or activate cryptic splicing sites. Also, a possible association was identified between clinicopathological traits and the variant haplotypes. As far as we know, this is the first attempt to examine ERBB2 genetic variations in cat mammary genome and its possible association with the onset and progression of cat mammary tumors. The demonstration of a possible association between primary tumor size (one of the two most important prognostic factors) and the number of masses with the cat ERBB2 variant haplotypes reveal the importance of the analysis of this gene in veterinary medicine. PMID:22489125

  11. Seeing the song: left auditory structures may track auditory-visual dynamic alignment.

    Directory of Open Access Journals (Sweden)

    Julia A Mossbridge

    Full Text Available Auditory and visual signals generated by a single source tend to be temporally correlated, such as the synchronous sounds of footsteps and the limb movements of a walker. Continuous tracking and comparison of the dynamics of auditory-visual streams is thus useful for the perceptual binding of information arising from a common source. Although language-related mechanisms have been implicated in the tracking of speech-related auditory-visual signals (e.g., speech sounds and lip movements, it is not well known what sensory mechanisms generally track ongoing auditory-visual synchrony for non-speech signals in a complex auditory-visual environment. To begin to address this question, we used music and visual displays that varied in the dynamics of multiple features (e.g., auditory loudness and pitch; visual luminance, color, size, motion, and organization across multiple time scales. Auditory activity (monitored using auditory steady-state responses, ASSR was selectively reduced in the left hemisphere when the music and dynamic visual displays were temporally misaligned. Importantly, ASSR was not affected when attentional engagement with the music was reduced, or when visual displays presented dynamics clearly dissimilar to the music. These results appear to suggest that left-lateralized auditory mechanisms are sensitive to auditory-visual temporal alignment, but perhaps only when the dynamics of auditory and visual streams are similar. These mechanisms may contribute to correct auditory-visual binding in a busy sensory environment.

  12. Auditory Training and Its Effects upon the Auditory Discrimination and Reading Readiness of Kindergarten Children.

    Science.gov (United States)

    Cullen, Minga Mustard

    The purpose of this investigation was to evaluate the effects of a systematic auditory training program on the auditory discrimination ability and reading readiness of 55 white, middle/upper middle class kindergarten students. Following pretesting with the "Wepman Auditory Discrimination Test,""The Clymer-Barrett Prereading Battery," and the…

  13. Effects of Methylphenidate (Ritalin) on Auditory Performance in Children with Attention and Auditory Processing Disorders.

    Science.gov (United States)

    Tillery, Kim L.; Katz, Jack; Keller, Warren D.

    2000-01-01

    A double-blind, placebo-controlled study examined effects of methylphenidate (Ritalin) on auditory processing in 32 children with both attention deficit hyperactivity disorder and central auditory processing (CAP) disorder. Analyses revealed that Ritalin did not have a significant effect on any of the central auditory processing measures, although…

  14. Central auditory function of deafness genes.

    Science.gov (United States)

    Willaredt, Marc A; Ebbers, Lena; Nothwang, Hans Gerd

    2014-06-01

    The highly variable benefit of hearing devices is a serious challenge in auditory rehabilitation. Various factors contribute to this phenomenon such as the diversity in ear defects, the different extent of auditory nerve hypoplasia, the age of intervention, and cognitive abilities. Recent analyses indicate that, in addition, central auditory functions of deafness genes have to be considered in this context. Since reduced neuronal activity acts as the common denominator in deafness, it is widely assumed that peripheral deafness influences development and function of the central auditory system in a stereotypical manner. However, functional characterization of transgenic mice with mutated deafness genes demonstrated gene-specific abnormalities in the central auditory system as well. A frequent function of deafness genes in the central auditory system is supported by a genome-wide expression study that revealed significant enrichment of these genes in the transcriptome of the auditory brainstem compared to the entire brain. Here, we will summarize current knowledge of the diverse central auditory functions of deafness genes. We furthermore propose the intimately interwoven gene regulatory networks governing development of the otic placode and the hindbrain as a mechanistic explanation for the widespread expression of these genes beyond the cochlea. We conclude that better knowledge of central auditory dysfunction caused by genetic alterations in deafness genes is required. In combination with improved genetic diagnostics becoming currently available through novel sequencing technologies, this information will likely contribute to better outcome prediction of hearing devices.

  15. Neuromagnetic fields reveal cortical plasticity when learning an auditory discrimination task.

    Science.gov (United States)

    Cansino, S; Williamson, S J

    1997-08-01

    Auditory evoked neuromagnetic fields of the primary and association auditory cortices were recorded while subjects learned to discriminate small differences in frequency and intensity between two consecutive tones. When discrimination was no better than chance, evoked field patterns across the scalp manifested no significant differences between correct and incorrect responses. However, when performance was correct on at least 75% of the trials, the spatial pattern of magnetic field differed significantly between correct and incorrect responses during the first 70 ms following the onset of the second tone. In this respect, the magnetic field pattern predicted when the subject would make an incorrect judgment more than 100 ms prior to indicating the judgment by a button press. One subject improved discrimination for much smaller differences between stimuli after 200 h of training. Evidence of cortical plasticity with improved discrimination is provided by an accompanying decrease of the relative magnetic field amplitude of the 100 ms response components in the primary and association auditory cortices.

  16. Neural biomarkers for dyslexia, ADHD and ADD in the auditory cortex of children

    Directory of Open Access Journals (Sweden)

    Bettina Serrallach

    2016-07-01

    Full Text Available Dyslexia, attention deficit hyperactivity disorder (ADHD, and attention deficit disorder (ADD show distinct clinical profiles that may include auditory and language-related impairments. Currently, an objective brain-based diagnosis of these developmental disorders is still unavailable. We investigated the neuro-auditory systems of dyslexic, ADHD, ADD, and age-matched control children (N=147 using neuroimaging, magnet-encephalography and psychoacoustics. All disorder subgroups exhibited an oversized left planum temporale and an abnormal interhemispheric asynchrony (10-40 ms of the primary auditory evoked P1-response. Considering right auditory cortex morphology, bilateral P1 source waveform shapes, and auditory performance, the three disorder subgroups could be reliably differentiated with outstanding accuracies of 89-98%. We therefore for the first time provide differential biomarkers for a brain-based diagnosis of dyslexia, ADHD, and ADD. The method allowed not only a clear discrimination between two subtypes of attentional disorders (ADHD and ADD, a topic controversially discussed for decades in the scientific community, but also revealed the potential for objectively identifying comorbid cases. Noteworthy, in children playing a musical instrument, after three and a half years of training the observed interhemispheric asynchronies were reduced by about 2/3, thus suggesting a strong beneficial influence of music experience on brain development. These findings might have far-reaching implications for both research and practice and enable a profound understanding of the brain-related etiology, diagnosis, and musically based therapy of common auditory-related developmental disorders and learning disabilities.

  17. Neural Biomarkers for Dyslexia, ADHD, and ADD in the Auditory Cortex of Children

    Science.gov (United States)

    Serrallach, Bettina; Groß, Christine; Bernhofs, Valdis; Engelmann, Dorte; Benner, Jan; Gündert, Nadine; Blatow, Maria; Wengenroth, Martina; Seitz, Angelika; Brunner, Monika; Seither, Stefan; Parncutt, Richard; Schneider, Peter; Seither-Preisler, Annemarie

    2016-01-01

    Dyslexia, attention deficit hyperactivity disorder (ADHD), and attention deficit disorder (ADD) show distinct clinical profiles that may include auditory and language-related impairments. Currently, an objective brain-based diagnosis of these developmental disorders is still unavailable. We investigated the neuro-auditory systems of dyslexic, ADHD, ADD, and age-matched control children (N = 147) using neuroimaging, magnetencephalography and psychoacoustics. All disorder subgroups exhibited an oversized left planum temporale and an abnormal interhemispheric asynchrony (10–40 ms) of the primary auditory evoked P1-response. Considering right auditory cortex morphology, bilateral P1 source waveform shapes, and auditory performance, the three disorder subgroups could be reliably differentiated with outstanding accuracies of 89–98%. We therefore for the first time provide differential biomarkers for a brain-based diagnosis of dyslexia, ADHD, and ADD. The method allowed not only allowed for clear discrimination between two subtypes of attentional disorders (ADHD and ADD), a topic controversially discussed for decades in the scientific community, but also revealed the potential for objectively identifying comorbid cases. Noteworthy, in children playing a musical instrument, after three and a half years of training the observed interhemispheric asynchronies were reduced by about 2/3, thus suggesting a strong beneficial influence of music experience on brain development. These findings might have far-reaching implications for both research and practice and enable a profound understanding of the brain-related etiology, diagnosis, and musically based therapy of common auditory-related developmental disorders and learning disabilities. PMID:27471442

  18. Diminished Auditory Responses during NREM Sleep Correlate with the Hierarchy of Language Processing.

    Directory of Open Access Journals (Sweden)

    Meytal Wilf

    Full Text Available Natural sleep provides a powerful model system for studying the neuronal correlates of awareness and state changes in the human brain. To quantitatively map the nature of sleep-induced modulations in sensory responses we presented participants with auditory stimuli possessing different levels of linguistic complexity. Ten participants were scanned using functional magnetic resonance imaging (fMRI during the waking state and after falling asleep. Sleep staging was based on heart rate measures validated independently on 20 participants using concurrent EEG and heart rate measurements and the results were confirmed using permutation analysis. Participants were exposed to three types of auditory stimuli: scrambled sounds, meaningless word sentences and comprehensible sentences. During non-rapid eye movement (NREM sleep, we found diminishing brain activation along the hierarchy of language processing, more pronounced in higher processing regions. Specifically, the auditory thalamus showed similar activation levels during sleep and waking states, primary auditory cortex remained activated but showed a significant reduction in auditory responses during sleep, and the high order language-related representation in inferior frontal gyrus (IFG cortex showed a complete abolishment of responses during NREM sleep. In addition to an overall activation decrease in language processing regions in superior temporal gyrus and IFG, those areas manifested a loss of semantic selectivity during NREM sleep. Our results suggest that the decreased awareness to linguistic auditory stimuli during NREM sleep is linked to diminished activity in high order processing stations.

  19. [Correlation of evoked potentials in the frontal cortex and hippocampus of cats in emotional stress].

    Science.gov (United States)

    Vanetsian, G L; Pavlova, I V

    2002-01-01

    Averaged auditory evoked potentials (AEPs) were recorded in symmetric points of the frontal cortex and dorsal hippocampus of cats performing acquired conditioned food-procuring reaction reinforced in 100% cases, urgent transition to 30%-reinforcement, and return to 100%-reinforcement. Emotional stress estimated by a heart rate rise developed during increased food motivation of a cat as well as during change in ordinary food-procuring stereotype. The emotional stress was accompanied by a high positive correlation of cortical and hippocampal AEPs. Decrease in the stress level led to a drop between AEP correlations and appearance of their negative values. In emotional stress, the interactions between the frontal cortex and dorsal hippocampus were asymmetric: right-side correlations were higher.

  20. Ventricular and extraventricular ependymal tumors in 18 cats.

    Science.gov (United States)

    Woolford, L; de Lahunta, A; Baiker, K; Dobson, E; Summers, B A

    2013-03-01

    Ependymal tumors are reported rarely in domestic animals. The aims of this study were to examine the clinical and pathologic features of ventricular and extraventricular ependymomas and subependymomas in 18 domestic cats examined between 1978 and 2011. Parameters examined included age, sex, breed, clinical signs, and macroscopic and histopathologic features. The mean age of affected cats was 9 years, 4 months; median age, 8.5 years. There were 8 female and 4 male cats, and 6 cats for which sex was not recorded. Breeds included 10 domestic shorthaired, 2 domestic longhaired, 1 Persian, and 1 Siamese. Clinical signs included altered mentation or behavior, seizures, circling, propulsive gait, generalized discomfort, and loss of condition. The tumors often formed intraventricular masses and usually arose from the lining of the lateral or third ventricles, followed by the fourth ventricle, mesencephalic aqueduct, and spinal cord central canal. Three tumors were extraventricular, forming masses within the cerebrum and adjacent subarachnoid space. Histologically, 15 tumors were classified as variants of ependymomas (classic, papillary, tanycytic, or clear cell) and 3 as subependymomas. Tumors were generally well demarcated; however, 6 ependymomas focally or extensively infiltrated the adjacent neural parenchyma. Characteristic perivascular pseudorosettes were observed in all ependymomas; true rosettes were less common. Some tumors had areas of necrosis, mineralization, cholesterol clefts, and/or hemorrhage. This cohort study of feline ependymal tumors includes subependymoma and primary extraventricular ependymoma, variants not previously described in the veterinary literature but well recognized in humans.

  1. My Experience of Feeding a Cat

    Institute of Scientific and Technical Information of China (English)

    乔琳

    2006-01-01

    I liked cat very much. In my old opinion, cat was cute and gentle. One day, my friend asked me to feed the cat for him. So I went to his house in order to take care of his cat. His neighbor was an old woman. When I was doing some cleaning, the old woman asked me if I needed some help. Suddenly, the cat stretched out its sharp claws, and clawed me and bit me with its sharp teeth. WowA It was too abrupt. The old woman got scared. “It goes crazyA” I said and asked her to get out of the room, otherwise she woul...

  2. The fecal microbiome in cats with diarrhea.

    Directory of Open Access Journals (Sweden)

    Jan S Suchodolski

    Full Text Available Recent studies have revealed that microbes play an important role in the pathogenesis of gastrointestinal (GI diseases in various animal species, but only limited data is available about the microbiome in cats with GI disease. The aim of this study was to evaluate the fecal microbiome in cats with diarrhea. Fecal samples were obtained from healthy cats (n = 21 and cats with acute (n = 19 or chronic diarrhea (n = 29 and analyzed by sequencing of 16S rRNA genes, and PICRUSt was used to predict the functional gene content of the microbiome. Linear discriminant analysis (LDA effect size (LEfSe revealed significant differences in bacterial groups between healthy cats and cats with diarrhea. The order Burkholderiales, the families Enterobacteriaceae, and the genera Streptococcus and Collinsella were significantly increased in diarrheic cats. In contrast the order Campylobacterales, the family Bacteroidaceae, and the genera Megamonas, Helicobacter, and Roseburia were significantly increased in healthy cats. Phylum Bacteroidetes was significantly decreased in cats with chronic diarrhea (>21 days duration, while the class Erysipelotrichi and the genus Lactobacillus were significantly decreased in cats with acute diarrhea. The observed changes in bacterial groups were accompanied by significant differences in functional gene contents: metabolism of fatty acids, biosynthesis of glycosphingolipids, metabolism of biotin, metabolism of tryptophan, and ascorbate and aldarate metabolism, were all significantly (p<0.001 altered in cats with diarrhea. In conclusion, significant differences in the fecal microbiomes between healthy cats and cats with diarrhea were identified. This dysbiosis was accompanied by changes in bacterial functional gene categories. Future studies are warranted to evaluate if these microbial changes correlate with changes in fecal concentrations of microbial metabolites in cats with diarrhea for the identification of potential diagnostic or

  3. Temporal pattern of acoustic imaging noise asymmetrically modulates activation in the auditory cortex.

    Science.gov (United States)

    Ranaweera, Ruwan D; Kwon, Minseok; Hu, Shuowen; Tamer, Gregory G; Luh, Wen-Ming; Talavage, Thomas M

    2016-01-01

    This study investigated the hemisphere-specific effects of the temporal pattern of imaging related acoustic noise on auditory cortex activation. Hemodynamic responses (HDRs) to five temporal patterns of imaging noise corresponding to noise generated by unique combinations of imaging volume and effective repetition time (TR), were obtained using a stroboscopic event-related paradigm with extra-long (≥27.5 s) TR to minimize inter-acquisition effects. In addition to confirmation that fMRI responses in auditory cortex do not behave in a linear manner, temporal patterns of imaging noise were found to modulate both the shape and spatial extent of hemodynamic responses, with classically non-auditory areas exhibiting responses to longer duration noise conditions. Hemispheric analysis revealed the right primary auditory cortex to be more sensitive than the left to the presence of imaging related acoustic noise. Right primary auditory cortex responses were significantly larger during all the conditions. This asymmetry of response to imaging related acoustic noise could lead to different baseline activation levels during acquisition schemes using short TR, inducing an observed asymmetry in the responses to an intended acoustic stimulus through limitations of dynamic range, rather than due to differences in neuronal processing of the stimulus. These results emphasize the importance of accounting for the temporal pattern of the acoustic noise when comparing findings across different fMRI studies, especially those involving acoustic stimulation.

  4. Cat odor causes long-lasting contextual fear conditioning and increased pituitary-adrenal activation, without modifying anxiety.

    Science.gov (United States)

    Muñoz-Abellán, Cristina; Daviu, Nuria; Rabasa, Cristina; Nadal, Roser; Armario, Antonio

    2009-10-01

    A single exposure to a cat or cat odors has been reported by some groups to induce contextual and auditory fear conditioning and long-lasting changes in anxiety-like behaviour, but there is no evidence for parallel changes in biological stress markers. In the present study we demonstrated in male rats that exposure to a novel environment containing a cloth impregnated with cat fur odor resulted in avoidance of the odor, lower levels of activity and higher pituitary-adrenal (PA) response as compared to those exposed to the novel environment containing a clean cloth, suggesting increased levels of stress in the former animals. When re-exposed 9 days later to the same environment with a clean cloth, previously cat fur exposed rats again showed avoidance of the cloth area and lower levels of activity, suggesting development of contextual fear conditioning, which again was associated with a higher PA activation. In contrast, unaltered both anxiety-like behaviour and PA responsiveness to an elevated plus-maze were found 7 days after cat odor exposure. It is concluded that: (i) PA activation is able to reflect both the stressful properties of cat fur odor and odor-induced contextual fear conditioning; (ii) development of cat odor-induced contextual fear conditioning is independent of the induction of long-lasting changes in anxiety-like behaviour; and (iii) greater PA activation during exposure to the odor context is not explained by non-specific sensitization of the PA axis caused by previous exposure to cat fur odor.

  5. Myeloproliferative disease in a cat

    Energy Technology Data Exchange (ETDEWEB)

    Yates, R.W.; Weller, R.E.; Feldman, B.F.

    1984-10-01

    Myeloproliferative disorders, a complex of cytologic abnormalities arising in the bone marrow, are among domestic animals most frequently recognized in cats but are relatively uncommon. A 4-year-old female Siamese, with splenomegaly and weight loss, was listless, anorectic, pale and dehydrated. A hemogram showed severe, macrocytic normochromic anemia, leukocytosis and reticulocytosis, with abnormally high numbers of nucleated RBC and undifferentiated blast cells. Bone marrow smears contained predominantly undifferentiated blast cells, RBC precursors and myeloblasts. The fluorescent antibody test for FeLV was positive. The cat died 66 days later despite a blood transfusion and chemotherapy. Necropsy confirmed a diagnosis of myeloproliferative disease, with hepatic and splenic invasion. 15 references, 5 figures, 1 table.

  6. Eosinophilic leukaemia in a cat.

    Science.gov (United States)

    Sharifi, Hassan; Nassiri, Seyed Mahdi; Esmaelli, Hossein; Khoshnegah, Javad

    2007-12-01

    A 14-year-old female domestic shorthair cat was presented to Tehran University Veterinary Teaching Hospital for a persistent fever, anorexia, intermittent vomiting, weight loss and weakness. The main clinical signs were pale mucous membranes, dehydration and splenomegaly. The complete blood count and serum biochemistry tests revealed non-regenerative anaemia, thrombocytopenia and increased alkaline phosphatase (ALP) activity. An enzyme-linked immunosorbent assay (ELISA) test for feline leukaemia virus was negative. Blood film and bone marrow examination revealed a large number of immature eosinophils with variable sizes and numbers of faintly azurophilic granules. Cytochemical staining of blood film demonstrated 70% positive cells for ALP activity. Four percent CD34 positive cells were detected by flow cytometry. As eosinophilic leukaemia is difficult to identify by light microscopy, well-defined diagnostic criteria and the use of flow cytometry and cytochemical staining can improve the ability to correctly diagnose this type of leukaemia in cats.

  7. Autosomal recessive hereditary auditory neuropathy

    Institute of Scientific and Technical Information of China (English)

    王秋菊; 顾瑞; 曹菊阳

    2003-01-01

    Objectives: Auditory neuropathy (AN) is a sensorineural hearing disorder characterized by absent or abnormal auditory brainstem responses (ABRs) and normal cochlear outer hair cell function as measured by otoacoustic emissions (OAEs). Many risk factors are thought to be involved in its etiology and pathophysiology. Three Chinese pedigrees with familial AN are presented herein to demonstrate involvement of genetic factors in AN etiology. Methods: Probands of the above - mentioned pedigrees, who had been diagnosed with AN, were evaluated and followed up in the Department of Otolaryngology Head and Neck Surgery, China PLA General Hospital. Their family members were studied and the pedigree diagrams were established. History of illness, physical examination,pure tone audiometry, acoustic reflex, ABRs and transient evoked and distortion- product otoacoustic emissions (TEOAEs and DPOAEs) were obtained from members of these families. DPOAE changes under the influence of contralateral sound stimuli were observed by presenting a set of continuous white noise to the non - recording ear to exam the function of auditory efferent system. Some subjects received vestibular caloric test, computed tomography (CT)scan of the temporal bone and electrocardiography (ECG) to exclude other possible neuropathy disorders. Results: In most affected subjects, hearing loss of various degrees and speech discrimination difficulties started at 10 to16 years of age. Their audiological evaluation showed absence of acoustic reflex and ABRs. As expected in AN, these subjects exhibited near normal cochlear outer hair cell function as shown in TEOAE & DPOAE recordings. Pure- tone audiometry revealed hearing loss ranging from mild to severe in these patients. Autosomal recessive inheritance patterns were observed in the three families. In Pedigree Ⅰ and Ⅱ, two affected brothers were found respectively, while in pedigree Ⅲ, 2 sisters were affected. All the patients were otherwise normal without

  8. Exploration of Teachers' Awareness and Knowledge of (Central) Auditory Processing Disorder ((C)APD)

    Science.gov (United States)

    Ryan, Anita; Logue-Kennedy, Maria

    2013-01-01

    The aim of this study was to explore primary school teachers' awareness and knowledge of (Central) Auditory Processing Disorder ((C)APD). Teachers' awareness and knowledge are crucial for initial recognition and appropriate referral of children suspected of having (C)APD. When a child is diagnosed with (C)APD, teachers have a role in implementing…

  9. One click, two clicks: the past shapes the future in auditory cortex.

    Science.gov (United States)

    Fritz, Jonathan; Shamma, Shihab; Elhilali, Mounya

    2005-08-04

    What are the synaptic and cellular mechanisms by which stimulus context shapes cortical responses? In this issue of Neuron, Wehr and Zador describe intracellular recordings of responses to click pairs in rat primary auditory cortex (A1) and offer new insights into the successive roles of inhibition and synaptic depression in suppressing responses to the second click in many A1 neurons.

  10. Mapping tonotopy in human auditory cortex

    NARCIS (Netherlands)

    van Dijk, Pim; Langers, Dave R M; Moore, BCJ; Patterson, RD; Winter, IM; Carlyon, RP; Gockel, HE

    2013-01-01

    Tonotopy is arguably the most prominent organizational principle in the auditory pathway. Nevertheless, the layout of tonotopic maps in humans is still debated. We present neuroimaging data that robustly identify multiple tonotopic maps in the bilateral auditory cortex. In contrast with some earlier

  11. Bilateral duplication of the internal auditory canal

    Energy Technology Data Exchange (ETDEWEB)

    Weon, Young Cheol; Kim, Jae Hyoung; Choi, Sung Kyu [Seoul National University College of Medicine, Department of Radiology, Seoul National University Bundang Hospital, Seongnam-si (Korea); Koo, Ja-Won [Seoul National University College of Medicine, Department of Otolaryngology, Seoul National University Bundang Hospital, Seongnam-si (Korea)

    2007-10-15

    Duplication of the internal auditory canal is an extremely rare temporal bone anomaly that is believed to result from aplasia or hypoplasia of the vestibulocochlear nerve. We report bilateral duplication of the internal auditory canal in a 28-month-old boy with developmental delay and sensorineural hearing loss. (orig.)

  12. Further Evidence of Auditory Extinction in Aphasia

    Science.gov (United States)

    Marshall, Rebecca Shisler; Basilakos, Alexandra; Love-Myers, Kim

    2013-01-01

    Purpose: Preliminary research ( Shisler, 2005) suggests that auditory extinction in individuals with aphasia (IWA) may be connected to binding and attention. In this study, the authors expanded on previous findings on auditory extinction to determine the source of extinction deficits in IWA. Method: Seventeen IWA (M[subscript age] = 53.19 years)…

  13. Auditory Processing Disorder and Foreign Language Acquisition

    Science.gov (United States)

    Veselovska, Ganna

    2015-01-01

    This article aims at exploring various strategies for coping with the auditory processing disorder in the light of foreign language acquisition. The techniques relevant to dealing with the auditory processing disorder can be attributed to environmental and compensatory approaches. The environmental one involves actions directed at creating a…

  14. Extinction reveals that primary sensory cortex predicts reinforcement outcome

    OpenAIRE

    Bieszczad, Kasia M.; Weinberger, Norman M.

    2012-01-01

    Primary sensory cortices are traditionally regarded as stimulus analyzers. However, studies of associative learning-induced plasticity in the primary auditory cortex (A1) indicate involvement in learning, memory and other cognitive processes. For example, the area of representation of a tone becomes larger for stronger auditory memories and the magnitude of area gain is proportional to the degree that a tone becomes behaviorally important. Here, we used extinction to investigate whether “beha...

  15. Cats, Cancer and Comparative Oncology

    OpenAIRE

    Cannon, Claire M.

    2015-01-01

    Naturally occurring tumors in dogs are well-established models for several human cancers. Domestic cats share many of the benefits of dogs as a model (spontaneous cancers developing in an immunocompetent animal sharing the same environment as humans, shorter lifespan allowing more rapid trial completion and data collection, lack of standard of care for many cancers allowing evaluation of therapies in treatment-naïve populations), but have not been utilized to the same degree in the One Medici...

  16. Sparse representation of sounds in the unanesthetized auditory cortex.

    Directory of Open Access Journals (Sweden)

    Tomás Hromádka

    2008-01-01

    Full Text Available How do neuronal populations in the auditory cortex represent acoustic stimuli? Although sound-evoked neural responses in the anesthetized auditory cortex are mainly transient, recent experiments in the unanesthetized preparation have emphasized subpopulations with other response properties. To quantify the relative contributions of these different subpopulations in the awake preparation, we have estimated the representation of sounds across the neuronal population using a representative ensemble of stimuli. We used cell-attached recording with a glass electrode, a method for which single-unit isolation does not depend on neuronal activity, to quantify the fraction of neurons engaged by acoustic stimuli (tones, frequency modulated sweeps, white-noise bursts, and natural stimuli in the primary auditory cortex of awake head-fixed rats. We find that the population response is sparse, with stimuli typically eliciting high firing rates (>20 spikes/second in less than 5% of neurons at any instant. Some neurons had very low spontaneous firing rates (<0.01 spikes/second. At the other extreme, some neurons had driven rates in excess of 50 spikes/second. Interestingly, the overall population response was well described by a lognormal distribution, rather than the exponential distribution that is often reported. Our results represent, to our knowledge, the first quantitative evidence for sparse representations of sounds in the unanesthetized auditory cortex. Our results are compatible with a model in which most neurons are silent much of the time, and in which representations are composed of small dynamic subsets of highly active neurons.

  17. Cat Scratch Disease: Expanded Spectrum

    Science.gov (United States)

    Aziz, Hassan A.; Plesec, Thomas P.; Sabella, Camille; Udayasankar, Unni K.; Singh, Arun D.

    2016-01-01

    Background To expand the spectrum of ophthalmic manifestations in cat scratch disease. Methods Case report. Results A 7-year-old male was referred for evaluation of his left optic disc after failing vision screening test at school. His visual acuity was 20/20 OD and light perception OS. Fundus examination showed a left optic disc lesion associated with an exudative retinal detachment and vitreous seeding. Ultrasonography revealed a 7 × 7.5 × 3.8 mm lesion with a possible 6.3 mm of retrolaminar extension into the substance of the optic nerve. Brain MRI did not show evidence of optic nerve involvement but revealed a 6-mm nodule of the pineal gland suggestive of a pineoblastoma. Enucleation was performed and histopathology revealed a suppurative granulomatous inflammation suggestive of Bartonella infection. Upon further questioning, the patient had recent exposure to kittens with areas of cat scratches along both of his arms. He was subsequently referred to and treated with a 2-week course of trimethoprim-sulfamethoxazole and rifampin by the pediatric infectious disease specialist. Repeat brain MRI showed interval total resolution of enlarged pineal gland. Conclusion: Optic nerve granulomas are a rare presentation of cat scratch disease and could potentially masquerade as retinoblastoma. PMID:27843905

  18. Schroedinger's Cat is not Alone

    CERN Document Server

    Gato, Beatriz

    2010-01-01

    We introduce the `Complete Wave Function' and deduce that all living beings, not just Schroedinger's cat, are actually described by a superposition of `alive' and `dead' quantum states; otherwise they would never die. Therefore this proposal provides a quantum mechanical explanation to the world-wide observation that we all pass away. Next we consider the Measurement problem in the framework of M-theory. For this purpose, together with Schroedinger's cat we also place inside the box Rasputin's cat, which is unaffected by poisson. We analyse the system identifying its excitations (catons and catinos) and we discuss its evolution: either to a classical fight or to a quantum entanglement. We also propose the $BSV\\Psi$ scenario, which implements the Complete Wave Function as well as the Big Bang and the String Landscape in a very (super)natural way. Then we test the gravitational decoherence of the entangled system applying an experimental setting due to Galileo. We also discuss the Information Loss paradox. For ...

  19. Polyprenyl Immunostimulant Treatment of Cats with Presumptive Non-Effusive Feline Infectious Peritonitis In a Field Study

    Science.gov (United States)

    Legendre, Alfred M.; Kuritz, Tanya; Galyon, Gina; Baylor, Vivian M.; Heidel, Robert Eric

    2017-01-01

    Feline infectious peritonitis (FIP) is a fatal disease with no clinically effective treatment. This field study evaluated treatment with Polyprenyl Immunostimulant (PI) in cats with the non-effusive form of FIP. Because immune suppression is a major component in the pathology of FIP, we hypothesized that treatment with an immune system stimulant would increase survival times of cats with dry FIP. Sixty cats, diagnosed with dry FIP by primary care and specialist veterinarians and meeting the acceptance criteria, were treated with PI without intentional selection of less severe cases. The survival time from the start of PI treatment in cats diagnosed with dry FIP showed that of the 60 cats with dry FIP treated with PI, 8 survived over 200 days, and 4 of 60 survived over 300 days. A literature search identified 59 cats with non-effusive or dry FIP; no cat with only dry FIP lived longer than 200 days. Veterinarians of cats treated with PI that survived over 30 days reported improvements in clinical signs and behavior. The survival times in our study were significantly longer in cats who were not treated with corticosteroids concurrently with PI. While not a cure, PI shows promise in the treatment of dry form FIP, but a controlled study will be needed to verify the benefit. PMID:28261584

  20. Polyprenyl Immunostimulant Treatment of Cats with Presumptive Non-Effusive Feline Infectious Peritonitis In a Field Study.

    Science.gov (United States)

    Legendre, Alfred M; Kuritz, Tanya; Galyon, Gina; Baylor, Vivian M; Heidel, Robert Eric

    2017-01-01

    Feline infectious peritonitis (FIP) is a fatal disease with no clinically effective treatment. This field study evaluated treatment with Polyprenyl Immunostimulant (PI) in cats with the non-effusive form of FIP. Because immune suppression is a major component in the pathology of FIP, we hypothesized that treatment with an immune system stimulant would increase survival times of cats with dry FIP. Sixty cats, diagnosed with dry FIP by primary care and specialist veterinarians and meeting the acceptance criteria, were treated with PI without intentional selection of less severe cases. The survival time from the start of PI treatment in cats diagnosed with dry FIP showed that of the 60 cats with dry FIP treated with PI, 8 survived over 200 days, and 4 of 60 survived over 300 days. A literature search identified 59 cats with non-effusive or dry FIP; no cat with only dry FIP lived longer than 200 days. Veterinarians of cats treated with PI that survived over 30 days reported improvements in clinical signs and behavior. The survival times in our study were significantly longer in cats who were not treated with corticosteroids concurrently with PI. While not a cure, PI shows promise in the treatment of dry form FIP, but a controlled study will be needed to verify the benefit.

  1. Speech perception as complex auditory categorization

    Science.gov (United States)

    Holt, Lori L.

    2002-05-01

    Despite a long and rich history of categorization research in cognitive psychology, very little work has addressed the issue of complex auditory category formation. This is especially unfortunate because the general underlying cognitive and perceptual mechanisms that guide auditory category formation are of great importance to understanding speech perception. I will discuss a new methodological approach to examining complex auditory category formation that specifically addresses issues relevant to speech perception. This approach utilizes novel nonspeech sound stimuli to gain full experimental control over listeners' history of experience. As such, the course of learning is readily measurable. Results from this methodology indicate that the structure and formation of auditory categories are a function of the statistical input distributions of sound that listeners hear, aspects of the operating characteristics of the auditory system, and characteristics of the perceptual categorization system. These results have important implications for phonetic acquisition and speech perception.

  2. Red eyes in the necropsy floor: twenty cases of hyphema in dogs and cats

    Directory of Open Access Journals (Sweden)

    Tessie Beck Martins

    2015-01-01

    Full Text Available Hyphema (hemorrhage within the anterior chamber of the eye can be caused by several mechanisms and can easily be detected in routine ophthalmic or necroscopic examination as discolored red eye(s. The purpose of this study is to report the cause of hyphema diagnosed as a postmortem finding in dogs and cats. Twenty cases, 14 dogs and six cats of several ages and breeds and of both sexes were included in the study. Hyphema presented as a unilateral (14 cases out of 20 or bilateral (6/20 disorder in dogs and cats and extension of hemorrhage varied from minimal to diffuse. Hyphema was secondary to systemic disease (15/20 or occurred as a primary ocular lesion (5/20 in four dogs and one cat. Primary hyphema was always unilateral. In four of these cases, the cause of hyphema was trauma and remaining case was caused by phacoclastic uveitis in a dog with bilateral hypermature cataract. Various causes of bleeding disorders were found related to secondary hyphema: in decreasing order of frequency, they included vasculitis (8/15, systemic hypertension (5/15, and acquired coagulopathies (2/15. Vasculitis due to feline infectious peritonitis accounted for half of the cases (n=3 of systemic hyphema in cats. The various pathological aspects and pathogenesis of hyphema in dogs and cats are described and discussed.

  3. Management of obesity in cats

    Directory of Open Access Journals (Sweden)

    Hoelmkjaer KM

    2014-09-01

    Full Text Available Kirsten M Hoelmkjaer, Charlotte R Bjornvad Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark Abstract: Obesity is a common nutritional disorder in cats, especially when they are neutered and middle-aged. Obesity predisposes cats to several metabolic and clinical disorders, including insulin resistance, diabetes mellitus, lameness, and skin disease. Prevention and treatment of obesity is therefore of great importance in veterinary practice. Correct assessment of body composition is important for recognizing early states of obesity and for monitoring success of weight-loss programs. Various methods for assessing body composition have been proposed, of which a 9-point body-condition score has been validated in cats, and is possibly the most simple to use in the clinic; however, for extremely obese individuals, it is less useful. When calculating the appropriate daily caloric intake for a weight-loss plan, the aim is to maintain a safe weight-loss rate, increasing the chance of preserving lean body mass and decreasing the risk of developing hepatic lipidosis, while also producing a sufficient weight-loss rate to keep owners motivated. A weight-loss rate of 0.5%–2% per week is recommended, which for a cat that needs to lose 3 kg body weight results in an anticipated time for reaching the target weight of 24–60 weeks. There are several purpose-made weight-loss diets available. The optimal composition of a weight-loss diet for cats is unknown, but most of the available products have lower caloric density, an increased nutrient:energy ratio, and higher protein and fiber content. Regular follow-up visits allow the caloric intake to be adjusted based on progress, and possibly increase the chance of success. This review discusses the risk factors for and consequences of obesity, and gives directions for formulating a weight-loss plan, including daily caloric

  4. THE EFFECTS OF SALICYLATE ON AUDITORY EVOKED POTENTIAL AMPLITWDE FROM THE AUDITORY CORTEX AND AUDITORY BRAINSTEM

    Institute of Scientific and Technical Information of China (English)

    Brian Sawka; SUN Wei

    2014-01-01

    Tinnitus has often been studied using salicylate in animal models as they are capable of inducing tempo-rary hearing loss and tinnitus. Studies have recently observed enhancement of auditory evoked responses of the auditory cortex (AC) post salicylate treatment which is also shown to be related to tinnitus like behavior in rats. The aim of this study was to observe if enhancements of the AC post salicylate treatment are also present at structures in the brainstem. Four male Sprague Dawley rats with AC implanted electrodes were tested for both AC and auditory brainstem response (ABR) recordings pre and post 250 mg/kg intraperitone-al injections of salicylate. The responses were recorded as the peak to trough amplitudes of P1-N1 (AC), ABR wave V, and ABR waveⅡ. AC responses resulted in statistically significant enhancement of ampli-tude at 2 hours post salicylate with 90 dB stimuli tone bursts of 4, 8, 12, and 20 kHz. Wave V of ABR re-sponses at 90 dB resulted in a statistically significant reduction of amplitude 2 hours post salicylate and a mean decrease of amplitude of 31%for 16 kHz. WaveⅡamplitudes at 2 hours post treatment were signifi-cantly reduced for 4, 12, and 20 kHz stimuli at 90 dB SPL. Our results suggest that the enhancement chang-es of the AC related to salicylate induced tinnitus are generated superior to the level of the inferior colliculus and may originate in the AC.

  5. Lead-free primary explosives

    Science.gov (United States)

    Huynh, My Hang V.

    2010-06-22

    Lead-free primary explosives of the formula (cat).sub.Y[M.sup.II(T).sub.X(H.sub.2O).sub.6-X].sub.Z, where T is 5-nitrotetrazolate, and syntheses thereof are described. Substantially stoichiometric equivalents of the reactants lead to high yields of pure compositions thereby avoiding dangerous purification steps.

  6. Voxel based statistical analysis method for microPET studies to assess the cerebral glucose metabolism in cat deafness model: comparison to ROI based method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Su; Lee, Jae Sung; Park, Min Hyun; Lee, Jong Jin; Kang, Hye Jin; Lee, Hyo Jeong; Oh, Seung Ha; Kim, Chong Sun; Jung, June Key; Lee, Myung Chul; Lee, Dong Soo [Seoul National University College of Medicine, Seoul (Korea, Republic of); Lim, Sang Moo [KIRAMS, Seoul (Korea, Republic of)

    2005-07-01

    Imaging research on the brain of sensory-deprived cats using small animal PET scanner has gained interest since the abundant information about the sensory system of ths animal is available and close examination of the brain is possible due to larger size of its brain than mouse or rat. In this study, we have established the procedures for 3D voxel-based statistical analysis (SPM) of FDG PET image of cat brain, and confirmed using ROI based-method. FDG PET scans of 4 normal and 4 deaf cats were acquired for 30 minutes using microPET R4 scanner. Only the brain cortices were extracted using a masking and threshold method to facilitate spatial normalization. After spatial normalization and smoothing, 3D voxel-wise and ROI based t-test were performed to identify the regions with significant different FDG uptake between the normal and deaf cats. In ROI analysis, 26 ROIs were drawn on both hemispheres, and regional mean pixel value in each ROI was normalized to the global mean of the brain. Cat brains were spatially normalized well onto the target brain due to the removal of background activity. When cerebral glucose metabolism of deaf cats were compared to the normal controls after removing the effects of the global count, the glucose metabolism in the auditory cortex, head of caudate nucleus, and thalamus in both hemispheres of the deaf cats was significantly lower than that of the controls (P<0.01). No area showed a significantly increased metabolism in the deaf cats even in higher significance level (P<0.05). ROI analysis also showed significant reduction of glucose metabolism in the same region. This study established and confirmed a method for voxel-based analysis of animal PET data of cat brain, which showed high localization accuracy and specificity and was useful for examining the cerebral glucose metabolism in a cat cortical deafness model.

  7. Spatiotemporal properties of the BOLD response in the songbirds' auditory circuit during a variety of listening tasks.

    Science.gov (United States)

    Van Meir, Vincent; Boumans, Tiny; De Groof, Geert; Van Audekerke, Johan; Smolders, Alain; Scheunders, Paul; Sijbers, Jan; Verhoye, Marleen; Balthazart, Jacques; Van der Linden, Annemie

    2005-05-01

    Auditory fMRI in humans has recently received increasing attention from cognitive neuroscientists as a tool to understand mental processing of learned acoustic sequences and analyzing speech recognition and development of musical skills. The present study introduces this tool in a well-documented animal model for vocal learning, the songbird, and provides fundamental insight in the main technical issues associated with auditory fMRI in these songbirds. Stimulation protocols with various listening tasks lead to appropriate activation of successive relays in the songbirds' auditory pathway. The elicited BOLD response is also region and stimulus specific, and its temporal aspects provide accurate measures of the changes in brain physiology induced by the acoustic stimuli. Extensive repetition of an identical stimulus does not lead to habituation of the response in the primary or secondary telencephalic auditory regions of anesthetized subjects. The BOLD signal intensity changes during a stimulation and subsequent rest period have a very specific time course which shows a remarkable resemblance to auditory evoked BOLD responses commonly observed in human subjects. This observation indicates that auditory fMRI in the songbird may establish a link between auditory related neuro-imaging studies done in humans and the large body of neuro-ethological research on song learning and neuro-plasticity performed in songbirds.

  8. Differential activity in Heschl's gyrus between deaf and hearing individuals is due to auditory deprivation rather than language modality.

    Science.gov (United States)

    Cardin, Velia; Smittenaar, Rebecca C; Orfanidou, Eleni; Rönnberg, Jerker; Capek, Cheryl M; Rudner, Mary; Woll, Bencie

    2016-01-01

    Sensory cortices undergo crossmodal reorganisation as a consequence of sensory deprivation. Congenital deafness in humans represents a particular case with respect to other types of sensory deprivation, because cortical reorganisation is not only a consequence of auditory deprivation, but also of language-driven mechanisms. Visual crossmodal plasticity has been found in secondary auditory cortices of deaf individuals, but it is still unclear if reorganisation also takes place in primary auditory areas, and how this relates to language modality and auditory deprivation. Here, we dissociated the effects of language modality and auditory deprivation on crossmodal plasticity in Heschl's gyrus as a whole, and in cytoarchitectonic region Te1.0 (likely to contain the core auditory cortex). Using fMRI, we measured the BOLD response to viewing sign language in congenitally or early deaf individuals with and without sign language knowledge, and in hearing controls. Results show that differences between hearing and deaf individuals are due to a reduction in activation caused by visual stimulation in the hearing group, which is more significant in Te1.0 than in Heschl's gyrus as a whole. Furthermore, differences between deaf and hearing groups are due to auditory deprivation, and there is no evidence that the modality of language used by deaf individuals contributes to crossmodal plasticity in Heschl's gyrus.

  9. Relationship between Sympathetic Skin Responses and Auditory Hypersensitivity to Different Auditory Stimuli.

    Science.gov (United States)

    Kato, Fumi; Iwanaga, Ryoichiro; Chono, Mami; Fujihara, Saori; Tokunaga, Akiko; Murata, Jun; Tanaka, Koji; Nakane, Hideyuki; Tanaka, Goro

    2014-07-01

    [Purpose] Auditory hypersensitivity has been widely reported in patients with autism spectrum disorders. However, the neurological background of auditory hypersensitivity is currently not clear. The present study examined the relationship between sympathetic nervous system responses and auditory hypersensitivity induced by different types of auditory stimuli. [Methods] We exposed 20 healthy young adults to six different types of auditory stimuli. The amounts of palmar sweating resulting from the auditory stimuli were compared between groups with (hypersensitive) and without (non-hypersensitive) auditory hypersensitivity. [Results] Although no group × type of stimulus × first stimulus interaction was observed for the extent of reaction, significant type of stimulus × first stimulus interaction was noted for the extent of reaction. For an 80 dB-6,000 Hz stimulus, the trends for palmar sweating differed between the groups. For the first stimulus, the variance became larger in the hypersensitive group than in the non-hypersensitive group. [Conclusion] Subjects who regularly felt excessive reactions to auditory stimuli tended to have excessive sympathetic responses to repeated loud noises compared with subjects who did not feel excessive reactions. People with auditory hypersensitivity may be classified into several subtypes depending on their reaction patterns to auditory stimuli.

  10. Spectro-Temporal Methods in Primary Auditory Cortex

    Science.gov (United States)

    2006-01-01

    LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 25 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE... Funcion Spike-triggered averaging of the spectro-temporal envelope directly gives a similar spectro-temporal response field to the spike- triggered

  11. Molecular Detection of Rickettsia felis in Humans, Cats, and Cat Fleas in Bangladesh, 2013-2014.

    Science.gov (United States)

    Ahmed, Rajib; Paul, Shyamal Kumar; Hossain, Muhammad Akram; Ahmed, Salma; Mahmud, Muhammad Chand; Nasreen, Syeda Anjuman; Ferdouse, Faria; Sharmi, Rumana Hasan; Ahamed, Farid; Ghosh, Souvik; Urushibara, Noriko; Aung, Meiji Soe; Kobayashi, Nobumichi

    2016-05-01

    High prevalence of Rickettsia felis in patients with fever of unknown origin was revealed in the north-central Bangladesh from 2012 to 2013. Subsequently, in this study, prevalence of R. felis in cats and cat fleas (Ctenocephalides felis), together with febrile patients, was studied by PCR detection of 17 kDa antigen gene and DNA sequencing. R. felis was detected in 28% (28/100) and 21% (14/68) of cat blood and cat flea samples, respectively, whereas 42% (21/50) of patients were positive for R. felis. R. felis-positive cat fleas were detected at significantly higher rate on R. felis-positive cats. The results suggested a potential role of cats and cat fleas for transmission of R. felis to humans in Bangladesh.

  12. Incidence of pyometra in Swedish insured cats.

    Science.gov (United States)

    Hagman, Ragnvi; Ström Holst, Bodil; Möller, Lotta; Egenvall, Agneta

    2014-07-01

    Pyometra is a clinically relevant problem in intact female cats and dogs. The etiology is similar in both animal species, with the disease caused by bacterial infection of a progesterone-sensitized uterus. Here, we studied pyometra in cats with the aim to describe the incidence and probability of developing pyometra based on age and breed. The data used were reimbursed claims for veterinary care insurance or life insurance claims or both in cats insured in a Swedish insurance database from 1999 to 2006. The mean incidence rate (IR) for pyometra was about 17 cats per 10,000 cat years at risk (CYAR). Cats with pyometra were diagnosed at a median age of 4 years and a significant breed effect was observed. The breed with the highest IR (433 cats per 10,000 CYAR) was the Sphynx, and other breeds with IR over 60 cats per 10,000 CYAR were Siberian cat, Ocicat, Korat, Siamese, Ragdoll, Maine coon, and Bengal. Pyometra was more commonly diagnosed with increasing age, with a marked increase in cats older than 7 years. The mean case fatality rate in all cats was 5.7%, which is slightly higher than corresponding reports in dogs of 3% to 4%. Geographical location (urban or rural) did not affect the risk of developing the disease. The present study provides information of incidence and probability of developing pyometra based on age, breed, and urban or rural geographical location. These data may be useful for designing cat breeding programs in high-risk breeds and for future studies of the genetic background of the disease.

  13. Modeling the anti-masking effects of the olivocochlear reflex in auditory nerve responses to tones in sustained noise.

    Science.gov (United States)

    Chintanpalli, Ananthakrishna; Jennings, Skyler G; Heinz, Michael G; Strickland, Elizabeth A

    2012-04-01

    The medial olivocochlear reflex (MOCR) has been hypothesized to provide benefit for listening in noise. Strong physiological support for an anti-masking role for the MOCR has come from the observation that auditory nerve (AN) fibers exhibit reduced firing to sustained noise and increased sensitivity to tones when the MOCR is elicited. The present study extended a well-established computational model for normal-hearing and hearing-impaired AN responses to demonstrate that these anti-masking effects can be accounted for by reducing outer hair cell (OHC) gain, which is a primary effect of the MOCR. Tone responses in noise were examined systematically as a function of tone level, noise level, and OHC gain. Signal detection theory was used to predict detection and discrimination for different spontaneous rate fiber groups. Decreasing OHC gain decreased the sustained noise response and increased maximum discharge rate to the tone, thus modeling the ability of the MOCR to decompress AN fiber rate-level functions. Comparing the present modeling results with previous data from AN fibers in decerebrate cats suggests that the ipsilateral masking noise used in the physiological study may have elicited up to 20 dB of OHC gain reduction in addition to that inferred from the contralateral noise effects. Reducing OHC gain in the model also extended the dynamic range for discrimination over a wide range of background noise levels. For each masker level, an optimal OHC gain reduction was predicted (i.e., where maximum discrimination was achieved without increased detection threshold). These optimal gain reductions increased with masker level and were physiologically realistic. Thus, reducing OHC gain can improve tone-in-noise discrimination even though it may produce a “hearing loss” in quiet. Combining MOCR effects with the sensorineural hearing loss effects already captured by this computational AN model will be beneficial for exploring the implications of their interaction

  14. The Value of Cat Ownership to Elderly Women Living Alone.

    Science.gov (United States)

    Mahalski, Pauline A.; And Others

    1988-01-01

    Surveyed elderly women in two New Zealand cities; one allowed pet cats, one did not. Attitudes toward pet cats were more positive in city allowing pets and among pensioners who owned, or wished to own, cats. Since positive attitudes outweighed negative ones, City Authority banning cats reversed its policy. Found conflicting evidence about cats'…

  15. 42 CFR 71.51 - Dogs and cats.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Dogs and cats. 71.51 Section 71.51 Public Health... QUARANTINE Importations § 71.51 Dogs and cats. (a) Definitions. As used in this section the term: Cat means all domestic cats. Confinement means restriction of a dog or cat to a building or other enclosure at...

  16. Controlled Archaeological Test Site (CATS) Facility

    Data.gov (United States)

    Federal Laboratory Consortium — CATS facility is at the Construction Engineering Research Laboratory (CERL), Champaign, IL. This 1-acre test site includes a variety of subsurface features carefully...

  17. Silent music reading: auditory imagery and visuotonal modality transfer in singers and non-singers.

    Science.gov (United States)

    Hoppe, Christian; Splittstößer, Christoph; Fliessbach, Klaus; Trautner, Peter; Elger, Christian E; Weber, Bernd

    2014-11-01

    In daily life, responses are often facilitated by anticipatory imagery of expected targets which are announced by associated stimuli from different sensory modalities. Silent music reading represents an intriguing case of visuotonal modality transfer in working memory as it induces highly defined auditory imagery on the basis of presented visuospatial information (i.e. musical notes). Using functional MRI and a delayed sequence matching-to-sample paradigm, we compared brain activations during retention intervals (10s) of visual (VV) or tonal (TT) unimodal maintenance versus visuospatial-to-tonal modality transfer (VT) tasks. Visual or tonal sequences were comprised of six elements, white squares or tones, which were low, middle, or high regarding vertical screen position or pitch, respectively (presentation duration: 1.5s). For the cross-modal condition (VT, session 3), the visuospatial elements from condition VV (session 1) were re-defined as low, middle or high "notes" indicating low, middle or high tones from condition TT (session 2), respectively, and subjects had to match tonal sequences (probe) to previously presented note sequences. Tasks alternately had low or high cognitive load. To evaluate possible effects of music reading expertise, 15 singers and 15 non-musicians were included. Scanner task performance was excellent in both groups. Despite identity of applied visuospatial stimuli, visuotonal modality transfer versus visual maintenance (VT>VV) induced "inhibition" of visual brain areas and activation of primary and higher auditory brain areas which exceeded auditory activation elicited by tonal stimulation (VT>TT). This transfer-related visual-to-auditory activation shift occurred in both groups but was more pronounced in experts. Frontoparietal areas were activated by higher cognitive load but not by modality transfer. The auditory brain showed a potential to anticipate expected auditory target stimuli on the basis of non-auditory information and

  18. A corollary discharge mechanism modulates central auditory processing in singing crickets.

    Science.gov (United States)

    Poulet, J F A; Hedwig, B

    2003-03-01

    Crickets communicate using loud (100 dB SPL) sound signals that could adversely affect their own auditory system. To examine how they cope with this self-generated acoustic stimulation, intracellular recordings were made from auditory afferent neurons and an identified auditory interneuron-the Omega 1 neuron (ON1)-during pharmacologically elicited singing (stridulation). During sonorous stridulation, the auditory afferents and ON1 responded with bursts of spikes to the crickets' own song. When the crickets were stridulating silently, after one wing had been removed, only a few spikes were recorded in the afferents and ON1. Primary afferent depolarizations (PADs) occurred in the terminals of the auditory afferents, and inhibitory postsynaptic potentials (IPSPs) were apparent in ON1. The PADs and IPSPs were composed of many summed, small-amplitude potentials that occurred at a rate of about 230 Hz. The PADs and the IPSPs started during the closing wing movement and peaked in amplitude during the subsequent opening wing movement. As a consequence, during silent stridulation, ON1's response to acoustic stimuli was maximally inhibited during wing opening. Inhibition coincides with the time when ON1 would otherwise be most strongly excited by self-generated sounds in a sonorously stridulating cricket. The PADs and the IPSPs persisted in fictively stridulating crickets whose ventral nerve cord had been isolated from muscles and sense organs. This strongly suggests that the inhibition of the auditory pathway is the result of a corollary discharge from the stridulation motor network. The central inhibition was mimicked by hyperpolarizing current injection into ON1 while it was responding to a 100 dB SPL sound pulse. This suppressed its spiking response to the acoustic stimulus and maintained its response to subsequent, quieter stimuli. The corollary discharge therefore prevents auditory desensitization in stridulating crickets and allows the animals to respond to external

  19. Membrane potential dynamics of populations of cortical neurons during auditory streaming.

    Science.gov (United States)

    Farley, Brandon J; Noreña, Arnaud J

    2015-10-01

    How a mixture of acoustic sources is perceptually organized into discrete auditory objects remains unclear. One current hypothesis postulates that perceptual segregation of different sources is related to the spatiotemporal separation of cortical responses induced by each acoustic source or stream. In the present study, the dynamics of subthreshold membrane potential activity were measured across the entire tonotopic axis of the rodent primary auditory cortex during the auditory streaming paradigm using voltage-sensitive dye imaging. Consistent with the proposed hypothesis, we observed enhanced spatiotemporal segregation of cortical responses to alternating tone sequences as their frequency separation or presentation rate was increased, both manipulations known to promote stream segregation. However, across most streaming paradigm conditions tested, a substantial cortical region maintaining a response to both tones coexisted with more peripheral cortical regions responding more selectively to one of them. We propose that these coexisting subthreshold representation types could provide neural substrates to support the flexible switching between the integrated and segregated streaming percepts.

  20. Auditory filters at low-frequencies

    DEFF Research Database (Denmark)

    Orellana, Carlos Andrés Jurado; Pedersen, Christian Sejer; Møller, Henrik

    2009-01-01

    Prediction and assessment of low-frequency noise problems requires information about the auditory filter characteristics at low-frequencies. Unfortunately, data at low-frequencies is scarce and practically no results have been published for frequencies below 100 Hz. Extrapolation of ERB results......-ear transfer function), the asymmetry of the auditory filter changed from steeper high-frequency slopes at 1000 Hz to steeper low-frequency slopes below 100 Hz. Increasing steepness at low-frequencies of the middle-ear high-pass filter is thought to cause this effect. The dynamic range of the auditory filter...

  1. Assessing the aging effect on auditory-verbal memory by Persian version of dichotic auditory verbal memory test

    Directory of Open Access Journals (Sweden)

    Zahra Shahidipour

    2014-01-01

    Conclusion: Based on the obtained results, significant reduction in auditory memory was seen in aged group and the Persian version of dichotic auditory-verbal memory test, like many other auditory verbal memory tests, showed the aging effects on auditory verbal memory performance.

  2. Use of auditory learning to manage listening problems in children

    OpenAIRE

    Moore, David R.; Halliday, Lorna F.; Amitay, Sygal

    2008-01-01

    This paper reviews recent studies that have used adaptive auditory training to address communication problems experienced by some children in their everyday life. It considers the auditory contribution to developmental listening and language problems and the underlying principles of auditory learning that may drive further refinement of auditory learning applications. Following strong claims that language and listening skills in children could be improved by auditory learning, researchers hav...

  3. Cats

    Science.gov (United States)

    ... Dogs Farm Animals Backyard Poultry Ferrets Fish Horses Reptiles and Amphibians Turtles Kept as Pets Key Messages ... L. Feline Bartonellosis. The Veterinary Clinics of North America. Small Animal Practice. 2010 Nov;40(6):1073- ...

  4. New perspectives on the auditory cortex: learning and memory.

    Science.gov (United States)

    Weinberger, Norman M

    2015-01-01

    Primary ("early") sensory cortices have been viewed as stimulus analyzers devoid of function in learning, memory, and cognition. However, studies combining sensory neurophysiology and learning protocols have revealed that associative learning systematically modifies the encoding of stimulus dimensions in the primary auditory cortex (A1) to accentuate behaviorally important sounds. This "representational plasticity" (RP) is manifest at different levels. The sensitivity and selectivity of signal tones increase near threshold, tuning above threshold shifts toward the frequency of acoustic signals, and their area of representation can increase within the tonotopic map of A1. The magnitude of area gain encodes the level of behavioral stimulus importance and serves as a substrate of memory strength. RP has the same characteristics as behavioral memory: it is associative, specific, develops rapidly, consolidates, and can last indefinitely. Pairing tone with stimulation of the cholinergic nucleus basalis induces RP and implants specific behavioral memory, while directly increasing the representational area of a tone in A1 produces matching behavioral memory. Thus, RP satisfies key criteria for serving as a substrate of auditory memory. The findings suggest a basis for posttraumatic stress disorder in abnormally augmented cortical representations and emphasize the need for a new model of the cerebral cortex.

  5. Environmental enrichment improves response strength, threshold, selectivity, and latency of auditory cortex neurons.

    Science.gov (United States)

    Engineer, Navzer D; Percaccio, Cherie R; Pandya, Pritesh K; Moucha, Raluca; Rathbun, Daniel L; Kilgard, Michael P

    2004-07-01

    Over the last 50 yr, environmental enrichment has been shown to generate more than a dozen changes in brain anatomy. The consequences of these physical changes on information processing have not been well studied. In this study, rats were housed in enriched or standard conditions either prior to or after reaching sexual maturity. Evoked potentials from awake rats and extracellular recordings from anesthetized rats were used to document responses of auditory cortex neurons. This report details several significant, new findings about the influence of housing conditions on the responses of rat auditory cortex neurons. First, enrichment dramatically increases the strength of auditory cortex responses. Tone-evoked potentials of enriched rats, for example, were more than twice the amplitude of rats raised in standard laboratory conditions. Second, cortical responses of both young and adult animals benefit from exposure to an enriched environment and are degraded by exposure to an impoverished environment. Third, housing condition resulted in rapid remodeling of cortical responses in <2 wk. Fourth, recordings made under anesthesia indicate that enrichment increases the number of neurons activated by any sound. This finding shows that the evoked potential plasticity documented in awake rats was not due to differences in behavioral state. Finally, enrichment made primary auditory cortex (A1) neurons more sensitive to quiet sounds, more selective for tone frequency, and altered their response latencies. These experiments provide the first evidence of physiologic changes in auditory cortex processing resulting from generalized environmental enrichment.

  6. [A Role of the Basal Ganglia in Processing of Complex Sounds and Auditory Attention].

    Science.gov (United States)

    Silkis, I G

    2015-01-01

    A hypothetical mechanism is suggested for processing of complex sounds and auditory attention in parallel neuronal loops including various auditory cortical areas connected with parts of the medial geniculate body, inferior colliculus and basal ganglia. Release of dopamine in the striatum promotes bidirectional modulation of strong and weak inputs from the neocortex to striatal neurons giving rise to direct and indirect pathways through the basal ganglia. Subsequent synergistic disinhibition of one and inhibition of other groups of thalamic neurons by the basal ganglia result in the creation of contrasted neuronal representations of properties of auditory stimuli in related cortical areas. Contrasting is strengthened due to a simultaneous disinhibition of pedunculopontine nucleus and action at muscarine receptors on neurons in the medial geniculate body. It follows from this mechanism that involuntary attention to sound tone can enhance an early component of the responses of neurons in the primary auditory cortical area (50 msec) in the absence of dopamine due to a disinhibition of thalamic neurons via the direct pathway through the basal ganglia, whereas voluntary attention to complex sounds can enhance only those components of responses of neurones in secondary auditory cortical areas which latencies exceeds latencies of dopaminergic cells (i.e. after 100 msec). Various consequences of proposed mechanism are in agreement with known experimental data.

  7. Mismatch responses in the awake rat: evidence from epidural recordings of auditory cortical fields.

    Directory of Open Access Journals (Sweden)

    Fabienne Jung

    Full Text Available Detecting sudden environmental changes is crucial for the survival of humans and animals. In the human auditory system the mismatch negativity (MMN, a component of auditory evoked potentials (AEPs, reflects the violation of predictable stimulus regularities, established by the previous auditory sequence. Given the considerable potentiality of the MMN for clinical applications, establishing valid animal models that allow for detailed investigation of its neurophysiological mechanisms is important. Rodent studies, so far almost exclusively under anesthesia, have not provided decisive evidence whether an MMN analogue exists in rats. This may be due to several factors, including the effect of anesthesia. We therefore used epidural recordings in awake black hooded rats, from two auditory cortical areas in both hemispheres, and with bandpass filtered noise stimuli that were optimized in frequency and duration for eliciting MMN in rats. Using a classical oddball paradigm with frequency deviants, we detected mismatch responses at all four electrodes in primary and secondary auditory cortex, with morphological and functional properties similar to those known in humans, i.e., large amplitude biphasic differences that increased in amplitude with decreasing deviant probability. These mismatch responses significantly diminished in a control condition that removed the predictive context while controlling for presentation rate of the deviants. While our present study does not allow for disambiguating precisely the relative contribution of adaptation and prediction error processing to the observed mismatch responses, it demonstrates that MMN-like potentials can be obtained in awake and unrestrained rats.

  8. Intermodal auditory, visual, and tactile attention modulates early stages of neural processing.

    Science.gov (United States)

    Karns, Christina M; Knight, Robert T

    2009-04-01

    We used event-related potentials (ERPs) and gamma band oscillatory responses (GBRs) to examine whether intermodal attention operates early in the auditory, visual, and tactile modalities. To control for the effects of spatial attention, we spatially coregistered all stimuli and varied the attended modality across counterbalanced blocks in an intermodal selection task. In each block, participants selectively responded to either auditory, visual, or vibrotactile stimuli from the stream of intermodal events. Auditory and visual ERPs were modulated at the latencies of early cortical processing, but attention manifested later for tactile ERPs. For ERPs, auditory processing was modulated at the latency of the Na (29 msec), which indexes early cortical or thalamocortical processing and the subsequent P1 (90 msec) ERP components. Visual processing was modulated at the latency of the early phase of the C1 (62-72 msec) thought to be generated in the primary visual cortex and the subsequent P1 and N1 (176 msec). Tactile processing was modulated at the latency of the N160 (165 msec) likely generated in the secondary association cortex. Intermodal attention enhanced early sensory GBRs for all three modalities: auditory (onset 57 msec), visual (onset 47 msec), and tactile (onset 27 msec). Together, these results suggest that intermodal attention enhances neural processing relatively early in the sensory stream independent from differential effects of spatial and intramodal selective attention.

  9. The selective processing of emotional visual stimuli while detecting auditory targets: an ERP analysis.

    Science.gov (United States)

    Schupp, Harald T; Stockburger, Jessica; Bublatzky, Florian; Junghöfer, Markus; Weike, Almut I; Hamm, Alfons O

    2008-09-16

    Event-related potential studies revealed an early posterior negativity (EPN) for emotional compared to neutral pictures. Exploring the emotion-attention relationship, a previous study observed that a primary visual discrimination task interfered with the emotional modulation of the EPN component. To specify the locus of interference, the present study assessed the fate of selective visual emotion processing while attention is directed towards the auditory modality. While simply viewing a rapid and continuous stream of pleasant, neutral, and unpleasant pictures in one experimental condition, processing demands of a concurrent auditory target discrimination task were systematically varied in three further experimental conditions. Participants successfully performed the auditory task as revealed by behavioral performance and selected event-related potential components. Replicating previous results, emotional pictures were associated with a larger posterior negativity compared to neutral pictures. Of main interest, increasing demands of the auditory task did not modulate the selective processing of emotional visual stimuli. With regard to the locus of interference, selective emotion processing as indexed by the EPN does not seem to reflect shared processing resources of visual and auditory modality.

  10. Brain state-dependent abnormal LFP activity in the auditory cortex of a schizophrenia mouse model.

    Science.gov (United States)

    Nakao, Kazuhito; Nakazawa, Kazu

    2014-01-01

    In schizophrenia, evoked 40-Hz auditory steady-state responses (ASSRs) are impaired, which reflects the sensory deficits in this disorder, and baseline spontaneous oscillatory activity also appears to be abnormal. It has been debated whether the evoked ASSR impairments are due to the possible increase in baseline power. GABAergic interneuron-specific NMDA receptor (NMDAR) hypofunction mutant mice mimic some behavioral and pathophysiological aspects of schizophrenia. To determine the presence and extent of sensory deficits in these mutant mice, we recorded spontaneous local field potential (LFP) activity and its click-train evoked ASSRs from primary auditory cortex of awake, head-restrained mice. Baseline spontaneous LFP power in the pre-stimulus period before application of the first click trains was augmented at a wide range of frequencies. However, when repetitive ASSR stimuli were presented every 20 s, averaged spontaneous LFP power amplitudes during the inter-ASSR stimulus intervals in the mutant mice became indistinguishable from the levels of control mice. Nonetheless, the evoked 40-Hz ASSR power and their phase locking to click trains were robustly impaired in the mutants, although the evoked 20-Hz ASSRs were also somewhat diminished. These results suggested that NMDAR hypofunction in cortical GABAergic neurons confers two brain state-dependent LFP abnormalities in the auditory cortex; (1) a broadband increase in spontaneous LFP power in the absence of external inputs, and (2) a robust deficit in the evoked ASSR power and its phase-locking despite of normal baseline LFP power magnitude during the repetitive auditory stimuli. The "paradoxically" high spontaneous LFP activity of the primary auditory cortex in the absence of external stimuli may possibly contribute to the emergence of schizophrenia-related aberrant auditory perception.

  11. Brain state-dependent abnormal LFP activity in the auditory cortex of a schizophrenia mouse model

    Directory of Open Access Journals (Sweden)

    Kazuhito eNakao

    2014-07-01

    Full Text Available In schizophrenia, evoked 40-Hz auditory steady-state responses (ASSRs are impaired, which reflects the sensory deficits in this disorder, and baseline spontaneous oscillatory activity also appears to be abnormal. It has been debated whether the evoked ASSR impairments are due to the possible increase in baseline power. GABAergic interneuron-specific NMDA receptor (NMDAR hypofunction mutant mice mimic some behavioral and pathophysiological aspects of schizophrenia. To determine the presence and extent of sensory deficits in these mutant mice, we recorded spontaneous local field potential (LFP activity and its click-train evoked ASSRs from primary auditory cortex of awake, head-restrained mice. Baseline spontaneous LFP power in the pre-stimulus period before application of the first click trains was augmented at a wide range of frequencies. However, when repetitive ASSR stimuli were presented every 20 sec, averaged spontaneous LFP power amplitudes during the inter-ASSR stimulus intervals in the mutant mice became indistinguishable from the levels of control mice. Nonetheless, the evoked 40-Hz ASSR power and their phase locking to click trains were robustly impaired in the mutants, although the evoked 20-Hz ASSRs were also somewhat diminished. These results suggested that NMDAR hypofunction in cortical GABAergic neurons confers two brain state-dependent LFP abnormalities in the auditory cortex; (1 a broadband increase in spontaneous LFP power in the absence of external inputs, and (2 a robust deficit in the evoked ASSR power and its phase-locking despite of normal baseline LFP power magnitude during the repetitive auditory stimuli. The paradoxically high spontaneous LFP activity of the primary auditory cortex in the absence of external stimuli may possibly contribute to the emergence of schizophrenia-related aberrant auditory perception.

  12. Laser Remote Sensing From ISS: CATS Cloud and Aerosol Level 2 Data Products (Heritage Edition)

    Science.gov (United States)

    Rodier, Sharon; Vaughan, Mark; Palm, Steve; Jensen, Mike; Yorks, John; McGill, Matt; Trepte, Chip; Murray, Tim; Lee, Kam-Pui

    2015-01-01

    The Cloud-Aerosol Transport System (CATS) instrument was developed at NASA's Goddard Space Flight Center (GSFC) and deployed to the International Space Station (ISS) on 10 January 2015. CATS is mounted on the Japanese Experiment Module's Exposed Facility (JEM_EF) and will provide near-continuous, altitude-resolved measurements of clouds and aerosols in the Earth's atmosphere. The CATS ISS orbit path provides a unique opportunity to capture the full diurnal cycle of cloud and aerosol development and transport, allowing for studies that are not possible with the lidar aboard the CALIPSO platform, which flies in the sun-synchronous A-Train orbit." " One of the primary science objectives of CATS is to continue the CALIPSO aerosol and cloud profile data record to provide continuity of lidar climate observations during the transition from CALIPSO to EarthCARE. To accomplish this, the CATS project at NASA's Goddard Space Flight Center (GSFC) and the CALIPSO project at NASA's Langley Research Center (LaRC) are closely collaborating to develop and deliver a full suite of CALIPSO-like level 2 data products that will be produced using the newly acquired CATS level 1B data whenever CATS is operating in science modes 1. The CALIPSO mission is now well into its ninth year of on-orbit operations, and has developed a robust set of mature and well-validated science algorithms to retrieve the spatial and optical properties of clouds and aerosols from multi-wavelength lidar backscatter signals. By leveraging both new and existing NASA technical resources, this joint effort by the CATS and CALIPSO teams will deliver validated lidar data sets to the user community at the earliest possible opportunity. The science community will have access to two sets of CATS Level 2 data products. The "Operational" data products will be produced by the GSFC CATS team utilizing the new instrument capabilities (e.g., multiple FOVs and 1064 nm depolarization), while the "Heritage" data products created

  13. Cats, Cancer and Comparative Oncology

    Directory of Open Access Journals (Sweden)

    Claire M. Cannon

    2015-06-01

    Full Text Available Naturally occurring tumors in dogs are well-established models for several human cancers. Domestic cats share many of the benefits of dogs as a model (spontaneous cancers developing in an immunocompetent animal sharing the same environment as humans, shorter lifespan allowing more rapid trial completion and data collection, lack of standard of care for many cancers allowing evaluation of therapies in treatment-naïve populations, but have not been utilized to the same degree in the One Medicine approach to cancer. There are both challenges and opportunities in feline compared to canine models. This review will discuss three specific tumor types where cats may offer insights into human cancers. Feline oral squamous cell carcinoma is common, shares both clinical and molecular features with human head and neck cancer and is an attractive model for evaluating new therapies. Feline mammary tumors are usually malignant and aggressive, with the ‘triple-negative’ phenotype being more common than in humans, offering an enriched population in which to examine potential targets and treatments. Finally, although there is not an exact corollary in humans, feline injection site sarcoma may be a model for inflammation-driven tumorigenesis, offering opportunities for studying variations in individual susceptibility as well as preventative and therapeutic strategies.

  14. Domestic cat allergen and allergic sensitisation in young children

    NARCIS (Netherlands)

    Chen, Chih-Mei; Gehring, Ulrike; Wickman, Magnus; Hoek, Gerard; Giovannangelo, Mariella; Nordling, Emma; Wijga, Alet; de Jongste, Johan; Pershagen, Goeran; Almqvist, Catarina; Kerkhof, Marjan; Bellander, Tom; Wichmann, H. -Erich; Brunekreef, Bert; Heinrich, Joachim

    2008-01-01

    Studies have presented conflicting associations between cat allergen exposure and sensitisation and atopic disease. We therefore investigated the association between the observed domestic cat allergen level and cat sensitisation in young children in four study populations from three European countri

  15. [Approaches to therapy of auditory agnosia].

    Science.gov (United States)

    Fechtelpeter, A; Göddenhenrich, S; Huber, W; Springer, L

    1990-01-01

    In a 41-year-old stroke patient with bitemporal brain damage, we found severe signs of auditory agnosia 6 months after onset. Recognition of environmental sounds was extremely impaired when tested in a multiple choice sound-picture matching task, whereas auditory discrimination between sounds and picture identifications by written names was almost undisturbed. In a therapy experiment, we tried to enhance sound recognition via semantic categorization and association, imitation of sound and analysis of auditory features, respectively. The stimulation of conscious auditory analysis proved to be increasingly effective over a 4-week period of therapy. We were able to show that the patient's improvement was not only a simple effect of practicing, but it was stable and carried over to nontrained items.

  16. Environment for Auditory Research Facility (EAR)

    Data.gov (United States)

    Federal Laboratory Consortium — EAR is an auditory perception and communication research center enabling state-of-the-art simulation of various indoor and outdoor acoustic environments. The heart...

  17. Effect of omega-3 on auditory system

    Directory of Open Access Journals (Sweden)

    Vida Rahimi

    2014-01-01

    Full Text Available Background and Aim: Omega-3 fatty acid have structural and biological roles in the body 's various systems . Numerous studies have tried to research about it. Auditory system is affected a s well. The aim of this article was to review the researches about the effect of omega-3 on auditory system.Methods: We searched Medline , Google Scholar, PubMed, Cochrane Library and SID search engines with the "auditory" and "omega-3" keywords and read textbooks about this subject between 19 70 and 20 13.Conclusion: Both excess and deficient amounts of dietary omega-3 fatty acid can cause harmful effects on fetal and infant growth and development of brain and central nervous system esspesially auditory system. It is important to determine the adequate dosage of omega-3.

  18. Quantum Computer Games: Schrodinger Cat and Hounds

    Science.gov (United States)

    Gordon, Michal; Gordon, Goren

    2012-01-01

    The quantum computer game "Schrodinger cat and hounds" is the quantum extension of the well-known classical game fox and hounds. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. "Schrodinger cat and hounds" demonstrates the effects of superposition, destructive and constructive interference, measurements and…

  19. Malassezia spp. overgrowth in allergic cats.

    Science.gov (United States)

    Ordeix, Laura; Galeotti, Franca; Scarampella, Fabia; Dedola, Carla; Bardagí, Mar; Romano, Erica; Fondati, Alessandra

    2007-10-01

    A series of 18 allergic cats with multifocal Malassezia spp. overgrowth is reported: atopic dermatitis was diagnosed in 16, an adverse food reaction in another and one was euthanized 2 months after diagnosis of Malassezia overgrowth. All the cats were otherwise healthy and those tested (16 out of 18) for feline leukaemia or feline immunodeficiency virus infections were all negative. At dermatological examination, multifocal alopecia, erythema, crusting and greasy adherent brownish scales were variably distributed on all cats. Cytological examination revealed Malassezia spp. overgrowth with/without bacterial infection in facial skin (n = 11), ventral neck (n = 6), abdomen (n = 6), ear canal (n = 4), chin (n = 2), ear pinnae (n = 2), interdigital (n = 1) and claw folds skin (n = 1). Moreover, in two cats Malassezia pachydermatis was isolated in fungal cultures from lesional skin. Azoles therapy alone was prescribed in seven, azoles and antibacterial therapy in eight and azoles with both antibacterial and anti-inflammatory therapy in three of the cats. After 3-4 weeks of treatment, substantial reduction of pruritus and skin lesions was observed in all 11 cats treated with a combined therapy and in five of seven treated solely with azoles. Malassezia spp. overgrowth may represent a secondary cutaneous problem in allergic cats particularly in those presented for dermatological examination displaying greasy adherent brownish scales. The favourable response to treatment with antifungal treatments alone suggests that, as in dogs, Malassezia spp. may be partly responsible for both pruritus and cutaneous lesions in allergic cats.

  20. Criptococose em felino Cryptococcosis in cat

    Directory of Open Access Journals (Sweden)

    F.J.F. Sant’Ana

    1999-08-01

    Full Text Available A case of cryptococcosis in a cat refferred to the Hospital Veterinário da Universidade Federal Rural de Pernambuco is described. The cat was euthanized and the microscopic examination of a firm mass observed in the nasal cavity was accomplished. Cryptococcus sp. and a chronic inflammatory process was observed throughout the tissue.

  1. Intestinal obstruction by trichobezoars in five cats.

    Science.gov (United States)

    Barrs, V R; Beatty, J A; Tisdall, P L; Hunt, G B; Gunew, M; Nicoll, R G; Malik, R

    1999-12-01

    Between 1997 and 1999, five domestic crossbred cats (four long haired, one short haired) presented with a palpable abdominal mass and were shown to have small intestinal trichobezoars at laparotomy or necropsy. Hair balls were associated with partial or complete intestinal obstruction and were situated in the proximal jejunum to distal ileum. In four cats obstructions were simple, while the remaining cat had a strangulating obstruction. Three of the cats were 10 years or older, and two were less than 4 years. In the three older cats abdominal neoplasia was suspected and investigations were delayed or declined in two of these cats because of a perceived poor prognosis. Predisposing factors identified in this series of cats included a long-hair coat, flea allergy dermatitis, inflammatory bowel disease and ingestion of non-digestible plant material. This report shows that the ingestion of hair is not always innocuous and that intestinal trichobezoars should be considered in the differential diagnoses of intestinal obstruction and intra-abdominal mass lesions, particularly in long-haired cats.

  2. A cross-species alignment tool (CAT)

    DEFF Research Database (Denmark)

    Li, Heng; Guan, Liang; Liu, Tao;

    2007-01-01

    sensitive methods which are usually applied in aligning inter-species sequences. RESULTS: Here we present a new algorithm called CAT (for Cross-species Alignment Tool). It is designed to align mRNA sequences to mammalian-sized genomes. CAT is implemented using C scripts and is freely available on the web...

  3. Cool Cats: Feline Fun with Abstract Art.

    Science.gov (United States)

    Lambert, Phyllis Gilchrist

    2002-01-01

    Presents a lesson that teaches students about abstract art in a fun way. Explains that students draw cats, learn about the work of Pablo Picasso, and, in the style of Picasso, combine the parts of the cats (tail, legs, head, body) together in unconventional ways. (CMK)

  4. Getting a CAT Scan (For Kids)

    Science.gov (United States)

    ... A Kid's Guide to Fever Getting a CAT Scan (Video) KidsHealth > For Kids > Getting a CAT Scan (Video) A A A en español Obtención de ... of what's going on inside your body. The scan itself is painless. All you'll need to ...

  5. Population ecology of free-roaming cats and interference competition by coyotes in urban parks.

    Science.gov (United States)

    Gehrt, Stanley D; Wilson, Evan C; Brown, Justin L; Anchor, Chris

    2013-01-01

    Free-roaming cats are a common element of urban landscapes worldwide, often causing controversy regarding their impacts on ecological systems and public health. We monitored cats within natural habitat fragments in the Chicago metropolitan area to characterize population demographics, disease prevalence, movement patterns and habitat selection, in addition to assessing the possible influence of coyotes on cats. The population was dominated by adults of both sexes, and 24% of adults were in reproductive condition. Annual survival rate was relatively high (S=0.70, SE=0.10), with vehicles and predation the primary causes of death. Size of annual home range varied by sex, but not reproductive status or body weight. We observed partitioning of the landscape by cats and coyotes, with little interspecific overlap between core areas of activity. Coyotes selected for natural habitats whereas cats selected for developed areas such as residences. Free-roaming cats were in better condition than we predicted, but their use of natural habitat fragments, and presumably their ecological impact, appeared to be limited by coyotes through intraguild competition.

  6. Speech Evoked Auditory Brainstem Response in Stuttering

    Directory of Open Access Journals (Sweden)

    Ali Akbar Tahaei

    2014-01-01

    Full Text Available Auditory processing deficits have been hypothesized as an underlying mechanism for stuttering. Previous studies have demonstrated abnormal responses in subjects with persistent developmental stuttering (PDS at the higher level of the central auditory system using speech stimuli. Recently, the potential usefulness of speech evoked auditory brainstem responses in central auditory processing disorders has been emphasized. The current study used the speech evoked ABR to investigate the hypothesis that subjects with PDS have specific auditory perceptual dysfunction. Objectives. To determine whether brainstem responses to speech stimuli differ between PDS subjects and normal fluent speakers. Methods. Twenty-five subjects with PDS participated in this study. The speech-ABRs were elicited by the 5-formant synthesized syllable/da/, with duration of 40 ms. Results. There were significant group differences for the onset and offset transient peaks. Subjects with PDS had longer latencies for the onset and offset peaks relative to the control group. Conclusions. Subjects with PDS showed a deficient neural timing in the early stages of the auditory pathway consistent with temporal processing deficits and their abnormal timing may underlie to their disfluency.

  7. Auditory model inversion and its application

    Institute of Scientific and Technical Information of China (English)

    ZHAO Heming; WANG Yongqi; CHEN Xueqin

    2005-01-01

    Auditory model has been applied to several aspects of speech signal processing field, and appears to be effective in performance. This paper presents the inverse transform of each stage of one widely used auditory model. First of all it is necessary to invert correlogram and reconstruct phase information by repetitious iterations in order to get auditory-nerve firing rate. The next step is to obtain the negative parts of the signal via the reverse process of the HWR (Half Wave Rectification). Finally the functions of inner hair cell/synapse model and Gammatone filters have to be inverted. Thus the whole auditory model inversion has been achieved. An application of noisy speech enhancement based on auditory model inversion algorithm is proposed. Many experiments show that this method is effective in reducing noise.Especially when SNR of noisy speech is low it is more effective than other methods. Thus this auditory model inversion method given in this paper is applicable to speech enhancement field.

  8. Auditory dysfunction associated with solvent exposure

    Directory of Open Access Journals (Sweden)

    Fuente Adrian

    2013-01-01

    Full Text Available Abstract Background A number of studies have demonstrated that solvents may induce auditory dysfunction. However, there is still little knowledge regarding the main signs and symptoms of solvent-induced hearing loss (SIHL. The aim of this research was to investigate the association between solvent exposure and adverse effects on peripheral and central auditory functioning with a comprehensive audiological test battery. Methods Seventy-two solvent-exposed workers and 72 non-exposed workers were selected to participate in the study. The test battery comprised pure-tone audiometry (PTA, transient evoked otoacoustic emissions (TEOAE, Random Gap Detection (RGD and Hearing-in-Noise test (HINT. Results Solvent-exposed subjects presented with poorer mean test results than non-exposed subjects. A bivariate and multivariate linear regression model analysis was performed. One model for each auditory outcome (PTA, TEOAE, RGD and HINT was independently constructed. For all of the models solvent exposure was significantly associated with the auditory outcome. Age also appeared significantly associated with some auditory outcomes. Conclusions This study provides further evidence of the possible adverse effect of solvents on the peripheral and central auditory functioning. A discussion of these effects and the utility of selected hearing tests to assess SIHL is addressed.

  9. Long Latency Auditory Evoked Potentials during Meditation.

    Science.gov (United States)

    Telles, Shirley; Deepeshwar, Singh; Naveen, Kalkuni Visweswaraiah; Pailoor, Subramanya

    2015-10-01

    The auditory sensory pathway has been studied in meditators, using midlatency and short latency auditory evoked potentials. The present study evaluated long latency auditory evoked potentials (LLAEPs) during meditation. Sixty male participants, aged between 18 and 31 years (group mean±SD, 20.5±3.8 years), were assessed in 4 mental states based on descriptions in the traditional texts. They were (a) random thinking, (b) nonmeditative focusing, (c) meditative focusing, and (d) meditation. The order of the sessions was randomly assigned. The LLAEP components studied were P1 (40-60 ms), N1 (75-115 ms), P2 (120-180 ms), and N2 (180-280 ms). For each component, the peak amplitude and peak latency were measured from the prestimulus baseline. There was significant decrease in the peak latency of the P2 component during and after meditation (Pmeditation facilitates the processing of information in the auditory association cortex, whereas the number of neurons recruited was smaller in random thinking and non-meditative focused thinking, at the level of the secondary auditory cortex, auditory association cortex and anterior cingulate cortex.

  10. Polycystic kidney disease in a Chartreux cat.

    Science.gov (United States)

    Volta, Antonella; Manfredi, Sabrina; Gnudi, Giacomo; Gelati, Aldo; Bertoni, Giorgio

    2010-02-01

    Polycystic kidney disease (PKD) is one of the most common genetic diseases in cats. It has been widely described in Persians and Persian-related cats and sporadically in other breeds. The purpose of the present paper is to describe the first reported case of PKD in a 12-year-old female Chartreux cat. The cat was referred with polyuria and polydipsia and enlarged and irregular kidneys at palpation. Multiple renal cysts and a single liver cyst were identified by ultrasound and the inherited pattern was confirmed by genetic test (polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) assay). Chartreux cats should be included in the screening programme of PKD, and PKD should be always considered as a possible cause of chronic renal failure in this breed.

  11. The Near Eastern origin of cat domestication.

    Science.gov (United States)

    Driscoll, Carlos A; Menotti-Raymond, Marilyn; Roca, Alfred L; Hupe, Karsten; Johnson, Warren E; Geffen, Eli; Harley, Eric H; Delibes, Miguel; Pontier, Dominique; Kitchener, Andrew C; Yamaguchi, Nobuyuki; O'brien, Stephen J; Macdonald, David W

    2007-07-27

    The world's domestic cats carry patterns of sequence variation in their genome that reflect a history of domestication and breed development. A genetic assessment of 979 domestic cats and their wild progenitors-Felis silvestris silvestris (European wildcat), F. s. lybica (Near Eastern wildcat), F. s. ornata (central Asian wildcat), F. s. cafra (southern African wildcat), and F. s. bieti (Chinese desert cat)-indicated that each wild group represents a distinctive subspecies of Felis silvestris. Further analysis revealed that cats were domesticated in the Near East, probably coincident with agricultural village development in the Fertile Crescent. Domestic cats derive from at least five founders from across this region, whose descendants were transported across the world by human assistance.

  12. Feline Epitheliotropic Mastocytic Conjunctivitis in 15 Cats.

    Science.gov (United States)

    Beckwith-Cohen, B; Dubielzig, R R; Maggs, D J; Teixeira, L B C

    2017-01-01

    Mast cell infiltration occurs in malignant, inflammatory (eg, allergic, infectious), and idiopathic disease processes in humans and animals. Here, we describe the clinical and histological features of a unique proliferative conjunctivitis occurring in 15 cats. Ocular specimens were examined histologically, and polymerase chain reaction (PCR) for feline herpesvirus 1 (FHV-1) was performed on ocular tissues obtained from 10 cats. Cats had a median age of 8 years (range: 7 months-17.5 years). The known median duration of ocular lesions prior to biopsy was 4 months (range: 1 week-3 years). Ocular disease was unilateral in 12 cats, and 9 cats had coexisting corneal disease. Clinically and histologically, proliferative or nodular conjunctival lesions were noted in 13 cats. The nictitating membrane was affected in 10 cats. Histologically, lesions were characterized by mixed inflammatory infiltrates with an abundance of Giemsa-positive and toluidine blue-positive intraepithelial and subepithelial mast cells, marked edema, and papillary epithelial hyperplasia. Feline herpesvirus 1 was demonstrated by PCR in 1 of 10 cats tested. Follow-up information was available for 14 cats: 8 had no recurrence during a median follow-up period of 17.5 months (range: 4.5-30 months), 2 underwent orbital exenteration, 3 had recurrence that was medically managed, and 1 cat had diffuse conjunctivitis at the time of biopsy and recurrence was deemed irrelevant. Various ocular medications were administered before and after surgical biopsy. This condition was designated as feline epitheliotropic mastocytic conjunctivitis, with intraepithelial mast cells being an essential feature and papillary epithelial proliferation being characteristic but not diagnostic alone. The condition appears to be uncommon and benign. Although the cause is unknown, an allergic component is possible.

  13. A review of histiocytic diseases of dogs and cats.

    Science.gov (United States)

    Moore, P F

    2014-01-01

    Histiocytic proliferative disorders are commonly observed in dogs and less often cats. Histiocytic disorders occur in most of the dendritic cell (DC) lineages. Canine cutaneous histiocytoma originates from Langerhans cells (LCs) indicated by expression of CD1a, CD11c/CD18, and E-cadherin. When histiocytomas occur as multiple lesions in skin with optional metastasis to lymph nodes and internal organs, the disease resembles cutaneous Langerhans cell histiocytosis of humans. Langerhans cell disorders do not occur in feline skin. Feline pulmonary LCH has been recognized as a cause of respiratory failure due to diffuse pulmonary infiltration by histiocytes, which express CD18 and E-cadherin and contain Birbeck's granules. In dogs and cats, histiocytic sarcomas (HS) arise from interstitial DCs that occur in most tissues of the body. Histiocytic sarcomas begin as localized lesions, which rapidly disseminate to many organs. Primary sites include spleen, lung, skin, brain (meninges), lymph node, bone marrow, and synovial tissues of limbs. An indolent form of localized HS, progressive histiocytosis, originates in the skin of cats. Hemophagocytic HS originates in splenic red pulp and bone marrow macrophages in dogs and cats. In dogs, histiocytes in hemophagocytic HS express CD11d/CD18, which is a leuko-integrin highly expressed by macrophages in splenic red pulp and bone marrow. Canine reactive histiocytic diseases, systemic histiocytosis (SH) and cutaneous histiocytosis, are complex inflammatory diseases with underlying immune dysregulation. The lesions are dominated by activated interstitial DCs and lymphocytes, which invade vessel walls and extend as vasocentric infiltrates in skin, lymph nodes, and internal organs (SH).

  14. Multimodal Diffusion-MRI and MEG Assessment of Auditory and Language System Development in Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Jeffrey I Berman

    2016-03-01

    development of primary auditory as well as auditory language systems in ASD. Findings demonstrate the need for additional multimodal studies to better characterize the different structural features (white matter, gray matter, neurochemical concentration that contribute to brain activity, both in typical development and in ASD. Finally, the neural latency measures were found to be of clinical significance, with M100 associated with overall ASD severity, and with MMF latency associated with language performance.

  15. FUSIMOTOR EFFECTS OF MIDBRAIN STIMULATION ON JAW MUSCLE-SPINDLES OF THE ANESTHETIZED CAT

    NARCIS (Netherlands)

    TAYLOR, A; JUCH, PJW

    1993-01-01

    The effects of electrical stimulation within the midbrain on fusimotor output to the jaw elevator muscles were studied in anaesthetized cats. Muscle spindle afferents recorded in the mesencephalic trigeminal nucleus were categorised as primary or secondary by their responses to succinylcholine durin

  16. Global Collective Resources: A Study of Monographic Bibliographic Records in WorldCat.

    Science.gov (United States)

    Perrault, Anna H.

    In 2001, WorldCat, the primary international bibliographic utility, contained 45 million records with over 750 million library location listings. These records span over 4,000 years of recorded knowledge in 377 languages. Under the auspices of an OCLC/ALISE (Online Computer Library Center/Association of Library and Information Science Educators)…

  17. Lesions of structures showing FOS expression to cat presentation: effects on responsivity to a Cat, Cat odor, and nonpredator threat.

    Science.gov (United States)

    Blanchard, D Caroline; Canteras, Newton S; Markham, Chris M; Pentkowski, Nathan S; Blanchard, Robert J

    2005-01-01

    Exposure of rats to a cat elicits Fos activity in a number of brain areas or structures. Based on hodological relationships of these, Canteras has proposed a medial hypothalamic defense system, with input from several forebrain sites. Both electrolytic and neurotoxic lesions of the dorsal premammillary nucleus, which shows the strongest Fos response to cat exposure, produce striking decrements in a number of defensive behaviors to a cat or to cat odor stimuli, but do not have a major effect on either postshock freezing, or responsivity to the odor of a female in estrus. Neurotoxic lesions of the medial amygdala produce decrements in defensiveness to predator stimuli, particularly odor stimuli, that are consistent with a view of this structure as involved with allomonal cues. While dorsal hippocampal lesions had little effect on responsivity to predator stimuli, neurotoxic lesions of the ventral hippocampus reduced freezing and enhanced a variety of nondefensive behaviors to both cat odor and footshock, with similar reductions in defensiveness during context conditioning tests for cat odor, cat exposure and footshock. These results support the view that the dorsal premammillary nucleus is strongly and selectively involved in control of responsivity to predator stimuli. Structures with important input into the medial hypothalamic defense system appear also to be functionally involved with antipredator defensive behaviors, and these lesion studies may suggest specific hypotheses as to the particular defense functions of different areas.

  18. Analogues of simple and complex cells in rhesus monkey auditory cortex.

    Science.gov (United States)

    Tian, Biao; Kuśmierek, Paweł; Rauschecker, Josef P

    2013-05-01

    Receptive fields (RFs) of neurons in primary visual cortex have traditionally been subdivided into two major classes: "simple" and "complex" cells. Simple cells were originally defined by the existence of segregated subregions within their RF that respond to either the on- or offset of a light bar and by spatial summation within each of these regions, whereas complex cells had ON and OFF regions that were coextensive in space [Hubel DH, et al. (1962) J Physiol 160:106-154]. Although other definitions based on the linearity of response modulation have been proposed later [Movshon JA, et al. (1978) J Physiol 283:53-77; Skottun BC, et al. (1991) Vision Res 31(7-8):1079-1086], the segregation of ON and OFF subregions has remained an important criterion for the distinction between simple and complex cells. Here we report that response profiles of neurons in primary auditory cortex of monkeys show a similar distinction: one group of cells has segregated ON and OFF subregions in frequency space; and another group shows ON and OFF responses within largely overlapping response profiles. This observation is intriguing for two reasons: (i) spectrotemporal dissociation in the auditory domain provides a basic neural mechanism for the segregation of sounds, a fundamental prerequisite for auditory figure-ground discrimination; and (ii) the existence of similar types of RF organization in visual and auditory cortex would support the existence of a common canonical processing algorithm within cortical columns.

  19. CAT — EDRN Public Portal

    Science.gov (United States)

    The CAT gene product, catalase, occurs in the peroxisome of almost all respiring organismÃÆ'¢â‚¬â„¢s cells. Catalase is a heme enzyme that converts the reactive oxygen species hydrogen peroxide to water and oxygen, diminishing the toxic effects of hydrogen peroxide on the cell. Catalase promotes growth of cells including T-cells, B-cells, myeloid leukemia cells, melanoma cells, mastocytoma cells and normal and transformed fibroblast cells. Polymorphisms in this gene have been associated with decreases in catalase activity but, to date, acatalasemia is the only disease known to be caused by this gene.

  20. Auditory function in vestibular migraine

    Directory of Open Access Journals (Sweden)

    John Mathew

    2016-01-01

    Full Text Available Introduction: Vestibular migraine (VM is a vestibular syndrome seen in patients with migraine and is characterized by short spells of spontaneous or positional vertigo which lasts between a few seconds to weeks. Migraine and VM are considered to be a result of chemical abnormalities in the serotonin pathway. Neuhauser′s diagnostic criteria for vestibular migraine is widely accepted. Research on VM is still limited and there are few studies which have been published on this topic. Materials and Methods: This study has two parts. In the first part, we did a retrospective chart review of eighty consecutive patients who were diagnosed with vestibular migraine and determined the frequency of auditory dysfunction in these patients. The second part was a prospective case control study in which we compared the audiological parameters of thirty patients diagnosed with VM with thirty normal controls to look for any significant differences. Results: The frequency of vestibular migraine in our population is 22%. The frequency of hearing loss in VM is 33%. Conclusion: There is a significant difference between cases and controls with regards to the presence of distortion product otoacoustic emissions in both ears. This finding suggests that the hearing loss in VM is cochlear in origin.

  1. Environmental Aspects of Domestic Cat Care and Management: Implications for Cat Welfare

    Science.gov (United States)

    Stella, Judith L.

    2016-01-01

    Domestic cats (Felis silvestris catus) are the most commonly kept companion animals in the US with large populations of owned (86 million), free-roaming (70 million), research (13,000), and shelter (2-3 million) cats. Vast numbers of cats are maintained in homes and other facilities each year and are reliant on humans for all of their care. Understanding cat behavior and providing the highest quality environments possible, including positive human-cat interactions, based on research could help improve the outcomes of biomedical research, shelter adoptions, and veterinary care, as well as overall cat welfare. Often, however, cats' needs are inadequately met in homes and some aspects may also not be well met in research colonies and shelters, despite the fact that similar problems are likely to be encountered in all of these environments. This paper provides a brief overview of common welfare challenges associated with indoor housing of domestic cats. Essential considerations for cage confinement are reviewed, along with implications of poor cat coping, such as weakening of the human-animal bond and relinquishment to shelters. The important role that environmental management plays in cat behavior and welfare outcomes is explored along with the need for additional research in key areas.

  2. Auditory sustained field responses to periodic noise

    Directory of Open Access Journals (Sweden)

    Keceli Sumru

    2012-01-01

    Full Text Available Abstract Background Auditory sustained responses have been recently suggested to reflect neural processing of speech sounds in the auditory cortex. As periodic fluctuations below the pitch range are important for speech perception, it is necessary to investigate how low frequency periodic sounds are processed in the human auditory cortex. Auditory sustained responses have been shown to be sensitive to temporal regularity but the relationship between the amplitudes of auditory evoked sustained responses and the repetitive rates of auditory inputs remains elusive. As the temporal and spectral features of sounds enhance different components of sustained responses, previous studies with click trains and vowel stimuli presented diverging results. In order to investigate the effect of repetition rate on cortical responses, we analyzed the auditory sustained fields evoked by periodic and aperiodic noises using magnetoencephalography. Results Sustained fields were elicited by white noise and repeating frozen noise stimuli with repetition rates of 5-, 10-, 50-, 200- and 500 Hz. The sustained field amplitudes were significantly larger for all the periodic stimuli than for white noise. Although the sustained field amplitudes showed a rising and falling pattern within the repetition rate range, the response amplitudes to 5 Hz repetition rate were significantly larger than to 500 Hz. Conclusions The enhanced sustained field responses to periodic noises show that cortical sensitivity to periodic sounds is maintained for a wide range of repetition rates. Persistence of periodicity sensitivity below the pitch range suggests that in addition to processing the fundamental frequency of voice, sustained field generators can also resolve low frequency temporal modulations in speech envelope.

  3. The CATS Service: An Astrophysical Research Tool

    Directory of Open Access Journals (Sweden)

    O V Verkhodanov

    2009-03-01

    Full Text Available We describe the current status of CATS (astrophysical CATalogs Support system, a publicly accessible tool maintained at Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS (http://cats.sao.ru allowing one to search hundreds of catalogs of astronomical objects discovered all along the electromagnetic spectrum. Our emphasis is mainly on catalogs of radio continuum sources observed from 10 MHz to 245 GHz, and secondly on catalogs of objects such as radio and active stars, X-ray binaries, planetary nebulae, HII regions, supernova remnants, pulsars, nearby and radio galaxies, AGN and quasars. CATS also includes the catalogs from the largest extragalactic surveys with non-radio waves. In 2008 CATS comprised a total of about 109 records from over 400 catalogs in the radio, IR, optical and X-ray windows, including most source catalogs deriving from observations with the Russian radio telescope RATAN-600. CATS offers several search tools through different ways of access, e.g. via Web-interface and e-mail. Since its creation in 1997 CATS has managed about 105requests. Currently CATS is used by external users about 1500 times per day and since its opening to the public in 1997 has received about 4000 requests for its selection and matching tasks.

  4. Exocrine Pancreas in Cats With Diabetes Mellitus.

    Science.gov (United States)

    Zini, E; Ferro, S; Lunardi, F; Zanetti, R; Heller, R S; Coppola, L M; Guscetti, F; Osto, M; Lutz, T A; Cavicchioli, L; Reusch, C E

    2016-01-01

    Pancreatitis has been described in cats with diabetes mellitus, although the number of studies currently available is very limited. In addition, ketoacidosis has been hypothesized to be associated with pancreatitis in diabetic cats. The aims of the present study were to investigate whether diabetic cats have pancreatitis and to determine if pancreatitis is more frequent with ketoacidosis. Samples of pancreas were collected postmortem from 37 diabetic cats, including 15 with ketoacidosis, and 20 control cats matched for age, sex, breed, and body weight. Sections were stained with hematoxylin and eosin, double-labeled for insulin/CD3, insulin/CD20, insulin/myeloperoxidase, insulin/PCNA, and glucagon/Ki67, and single-labeled for Iba1. A previously proposed semiquantitative score was used to characterize pancreatitis, along with counts of inflammatory cells. Scores of pancreatitis and the number of neutrophils, macrophages, and lymphocytes in the exocrine pancreas did not differ between diabetic and control cats or between diabetic cats with and without ketoacidosis. Of note, PCNA-positive acinar cells were increased (P = .002) in diabetic cats, particularly near islets (P < .001). Ki67-positive acinar cells were increased only near islets (P = .038). Ketoacidosis was not linked to proliferation. The results suggest that histopathologic evidence of pancreatitis may not be more frequent in diabetic cats and that ketoacidosis may not be associated with it at the time of death. Augmented PCNA-positive acinar cells might indicate increased proliferation due to chronic pancreatitis. The reason behind the prevalent proliferation of acinar cells surrounding pancreatic islets deserves further investigation.

  5. Endocrine Pancreas in Cats With Diabetes Mellitus.

    Science.gov (United States)

    Zini, E; Lunardi, F; Zanetti, R; Heller, R S; Coppola, L M; Ferro, S; Guscetti, F; Osto, M; Lutz, T A; Reusch, C E; Cavicchioli, L

    2016-01-01

    Pancreatic amyloidosis and loss of α and β cells have been shown to occur in cats with diabetes mellitus, although the number of studies currently available is very limited. Furthermore, it is not known whether pancreatic islet inflammation is a common feature. The aims of the present study were to characterize islet lesions and to investigate whether diabetic cats have inflammation of the pancreatic islets. Samples of pancreas were collected postmortem from 37 diabetic and 20 control cats matched for age, sex, breed, and body weight. Histologic sections were stained with hematoxylin and eosin and Congo red; double labeled for insulin/CD3, insulin/CD20, insulin/myeloperoxidase, insulin/proliferating cell nuclear antigen, and glucagon/Ki67; and single labeled for amylin and Iba1. Mean insulin-positive cross-sectional area was approximately 65% lower in diabetic than control cats (P = .009), while that of amylin and glucagon was similar. Surprisingly, amyloid deposition was similar between groups (P = .408). Proliferation of insulin- and glucagon-positive cells and the number of neutrophils, macrophages, and T (CD3) and B (CD20) lymphocytes in the islets did not differ. The presence of T and B lymphocytes combined tended to be more frequent in diabetic cats (n = 8 of 37; 21.6%) than control cats (n = 1 of 20; 5.0%). The results confirm previous observations that loss of β cells but not α cells occurs in diabetic cats. Islet amyloidosis was present in diabetic cats but was not greater than in controls. A subset of diabetic cats had lymphocytic infiltration of the islets, which might be associated with β-cell loss.

  6. Right anterior superior temporal activation predicts auditory sentence comprehension following aphasic stroke.

    Science.gov (United States)

    Crinion, Jenny; Price, Cathy J

    2005-12-01

    Previous studies have suggested that recovery of speech comprehension after left hemisphere infarction may depend on a mechanism in the right hemisphere. However, the role that distinct right hemisphere regions play in speech comprehension following left hemisphere stroke has not been established. Here, we used functional magnetic resonance imaging (fMRI) to investigate narrative speech activation in 18 neurologically normal subjects and 17 patients with left hemisphere stroke and a history of aphasia. Activation for listening to meaningful stories relative to meaningless reversed speech was identified in the normal subjects and in each patient. Second level analyses were then used to investigate how story activation changed with the patients' auditory sentence comprehension skills and surprise story recognition memory tests post-scanning. Irrespective of lesion site, performance on tests of auditory sentence comprehension was positively correlated with activation in the right lateral superior temporal region, anterior to primary auditory cortex. In addition, when the stroke spared the left temporal cortex, good performance on tests of auditory sentence comprehension was also correlated with the left posterior superior temporal cortex (Wernicke's area). In distinct contrast to this, good story recognition memory predicted left inferior frontal and right cerebellar activation. The implication of this double dissociation in the effects of auditory sentence comprehension and story recognition memory is that left frontal and left temporal activations are dissociable. Our findings strongly support the role of the right temporal lobe in processing narrative speech and, in particular, auditory sentence comprehension following left hemisphere aphasic stroke. In addition, they highlight the importance of the right anterior superior temporal cortex where the response was dissociated from that in the left posterior temporal lobe.

  7. Neural correlates of short-term memory in primate auditory cortex

    Directory of Open Access Journals (Sweden)

    James eBigelow

    2014-08-01

    Full Text Available Behaviorally-relevant sounds such as conspecific vocalizations are often available for only a brief amount of time; thus, goal-directed behavior frequently depends on auditory short-term memory (STM. Despite its ecological significance, the neural processes underlying auditory STM remain poorly understood. To investigate the role of the auditory cortex in STM, single- and multi-unit activity was recorded from the primary auditory cortex (A1 of two monkeys performing an auditory STM task using simple and complex sounds. Each trial consisted of a sample and test stimulus separated by a 5-s retention interval. A brief wait period followed the test stimulus, after which subjects pressed a button if the sounds were identical (match trials or withheld button presses if they were different (nonmatch trials. A number of units exhibited significant changes in firing rate for portions of the retention interval, although these changes were rarely sustained. Instead, they were most frequently observed during the early and late portions of the retention interval, with inhibition being observed more frequently than excitation. At the population level, responses elicited on match trials were briefly suppressed early in the sound period relative to nonmatch trials. However, during the latter portion of the sound, firing rates increased significantly for match trials and remained elevated throughout the wait period. Related patterns of activity were observed in prior experiments from our lab in the dorsal temporal pole (dTP and prefrontal cortex (PFC of the same animals. The data suggest that early match suppression occurs in both A1 and the dTP, whereas later match enhancement occurs first in the PFC, followed by A1 and later in dTP. Because match enhancement occurs first in the PFC, we speculate that enhancement observed in A1 and dTP may reflect top-down feedback. Overall, our findings suggest that A1 forms part of the larger neural system recruited during

  8. Aspergillus species cystitis in a cat.

    Science.gov (United States)

    Adamama-Moraitou, K K; Paitaki, C G; Rallis, T S; Tontis, D

    2001-03-01

    A Persian male cat with a history of lower urinary tract disease was presented because of polydipsia, polyuria, constipation and nasal discharge. Ten weeks before admission, the cat had been treated for lower urinary tract disease by catheterisation and flushing of the bladder. The animal was thin, dehydrated, anaemic and azotaemic. Urine culture revealed Aspergillus species cystitis. Antibodies against Aspergillus nidulans were identified in serum. Fluconazole was administered orally (7.5 mg/kg, q 12 h) for 10 consecutive weeks. The azotaemia was resolved, the kidney concentrating ability was recovered and the cat has remained healthy without similar problems.

  9. Current status of auditory aging and anti-aging research.

    Science.gov (United States)

    Ruan, Qingwei; Ma, Cheng; Zhang, Ruxin; Yu, Zhuowei

    2014-01-01

    The development of presbycusis, or age-related hearing loss, is determined by a combination of genetic and environmental factors. The auditory periphery exhibits a progressive bilateral, symmetrical reduction of auditory sensitivity to sound from high to low frequencies. The central auditory nervous system shows symptoms of decline in age-related cognitive abilities, including difficulties in speech discrimination and reduced central auditory processing, ultimately resulting in auditory perceptual abnormalities. The pathophysiological mechanisms of presbycusis include excitotoxicity, oxidative stress, inflammation, aging and oxidative stress-induced DNA damage that results in apoptosis in the auditory pathway. However, the originating signals that trigger these mechanisms remain unclear. For instance, it is still unknown whether insulin is involved in auditory aging. Auditory aging has preclinical lesions, which manifest as asymptomatic loss of periphery auditory nerves and changes in the plasticity of the central auditory nervous system. Currently, the diagnosis of preclinical, reversible lesions depends on the detection of auditory impairment by functional imaging, and the identification of physiological and molecular biological markers. However, despite recent improvements in the application of these markers, they remain under-utilized in clinical practice. The application of antisenescent approaches to the prevention of auditory aging has produced inconsistent results. Future research will focus on the identification of markers for the diagnosis of preclinical auditory aging and the development of effective interventions.

  10. Experience and information loss in auditory and visual memory.

    Science.gov (United States)

    Gloede, Michele E; Paulauskas, Emily E; Gregg, Melissa K

    2017-07-01

    Recent studies show that recognition memory for sounds is inferior to memory for pictures. Four experiments were conducted to examine the nature of auditory and visual memory. Experiments 1-3 were conducted to evaluate the role of experience in auditory and visual memory. Participants received a study phase with pictures/sounds, followed by a recognition memory test. Participants then completed auditory training with each of the sounds, followed by a second memory test. Despite auditory training in Experiments 1 and 2, visual memory was superior to auditory memory. In Experiment 3, we found that it is possible to improve auditory memory, but only after 3 days of specific auditory training and 3 days of visual memory decay. We examined the time course of information loss in auditory and visual memory in Experiment 4 and found a trade-off between visual and auditory recognition memory: Visual memory appears to have a larger capacity, while auditory memory is more enduring. Our results indicate that visual and auditory memory are inherently different memory systems and that differences in visual and auditory recognition memory performance may be due to the different amounts of experience with visual and auditory information, as well as structurally different neural circuitry specialized for information retention.

  11. Frequency Transformation in the Auditory Lemniscal Thalamocortical System.

    Directory of Open Access Journals (Sweden)

    Kazuo eImaizumi

    2014-07-01

    Full Text Available The auditory lemniscal thalamocortical (TC pathway conveys information from the ventral division of the medial geniculate body to the primary auditory cortex (A1. Although their general topographic organization has been well characterized, functional transformations at the lemniscal TC synapse still remain incompletely codified, largely due to the need for integration of functional anatomical results with the variability observed with various animal models and experimental techniques. In this review, we discuss these issues with classical approaches, such as in vivo extracellular recordings and tracer injections to physiologically identified areas in A1, and then compare these studies with modern approaches, such as in vivo two-photon calcium imaging, in vivo whole-cell recordings, optogenetic methods, and in vitro methods using slice preparations. A surprising finding from a comparison of classical and modern approaches is the similar degree of convergence from thalamic neurons to single A1 neurons and clusters of A1 neurons, although, thalamic convergence to single A1 neurons is more restricted areas within putative thalamic frequency lamina. These comparisons suggest that frequency convergence from thalamic input to A1 is functionally limited. Finally, we consider synaptic organization of TC projections and future directions for research.

  12. Effects of Caffeine on Auditory Brainstem Response

    Directory of Open Access Journals (Sweden)

    Saleheh Soleimanian

    2008-06-01

    Full Text Available Background and Aim: Blocking of the adenosine receptor in central nervous system by caffeine can lead to increasing the level of neurotransmitters like glutamate. As the adenosine receptors are present in almost all brain areas like central auditory pathway, it seems caffeine can change conduction in this way. The purpose of this study was to evaluate the effects of caffeine on latency and amplitude of auditory brainstem response(ABR.Materials and Methods: In this clinical trial study 43 normal 18-25 years old male students were participated. The subjects consumed 0, 2 and 3 mg/kg BW caffeine in three different sessions. Auditory brainstem responses were recorded before and 30 minute after caffeine consumption. The results were analyzed by Friedman and Wilcoxone test to assess the effects of caffeine on auditory brainstem response.Results: Compared to control group the latencies of waves III,V and I-V interpeak interval of the cases decreased significantly after 2 and 3mg/kg BW caffeine consumption. Wave I latency significantly decreased after 3mg/kg BW caffeine consumption(p<0.01. Conclusion: Increasing of the glutamate level resulted from the adenosine receptor blocking brings about changes in conduction in the central auditory pathway.

  13. Facilitated auditory detection for speech sounds.

    Science.gov (United States)

    Signoret, Carine; Gaudrain, Etienne; Tillmann, Barbara; Grimault, Nicolas; Perrin, Fabien

    2011-01-01

    If it is well known that knowledge facilitates higher cognitive functions, such as visual and auditory word recognition, little is known about the influence of knowledge on detection, particularly in the auditory modality. Our study tested the influence of phonological and lexical knowledge on auditory detection. Words, pseudo-words, and complex non-phonological sounds, energetically matched as closely as possible, were presented at a range of presentation levels from sub-threshold to clearly audible. The participants performed a detection task (Experiments 1 and 2) that was followed by a two alternative forced-choice recognition task in Experiment 2. The results of this second task in Experiment 2 suggest a correct recognition of words in the absence of detection with a subjective threshold approach. In the detection task of both experiments, phonological stimuli (words and pseudo-words) were better detected than non-phonological stimuli (complex sounds), presented close to the auditory threshold. This finding suggests an advantage of speech for signal detection. An additional advantage of words over pseudo-words was observed in Experiment 2, suggesting that lexical knowledge could also improve auditory detection when listeners had to recognize the stimulus in a subsequent task. Two simulations of detection performance performed on the sound signals confirmed that the advantage of speech over non-speech processing could not be attributed to energetic differences in the stimuli.

  14. Facilitated auditory detection for speech sounds

    Directory of Open Access Journals (Sweden)

    Carine eSignoret

    2011-07-01

    Full Text Available If it is well known that knowledge facilitates higher cognitive functions, such as visual and auditory word recognition, little is known about the influence of knowledge on detection, particularly in the auditory modality. Our study tested the influence of phonological and lexical knowledge on auditory detection. Words, pseudo words and complex non phonological sounds, energetically matched as closely as possible, were presented at a range of presentation levels from sub threshold to clearly audible. The participants performed a detection task (Experiments 1 and 2 that was followed by a two alternative forced choice recognition task in Experiment 2. The results of this second task in Experiment 2 suggest a correct recognition of words in the absence of detection with a subjective threshold approach. In the detection task of both experiments, phonological stimuli (words and pseudo words were better detected than non phonological stimuli (complex sounds, presented close to the auditory threshold. This finding suggests an advantage of speech for signal detection. An additional advantage of words over pseudo words was observed in Experiment 2, suggesting that lexical knowledge could also improve auditory detection when listeners had to recognize the stimulus in a subsequent task. Two simulations of detection performance performed on the sound signals confirmed that the advantage of speech over non speech processing could not be attributed to energetic differences in the stimuli.

  15. Absence of auditory 'global interference' in autism.

    Science.gov (United States)

    Foxton, Jessica M; Stewart, Mary E; Barnard, Louise; Rodgers, Jacqui; Young, Allan H; O'Brien, Gregory; Griffiths, Timothy D

    2003-12-01

    There has been considerable recent interest in the cognitive style of individuals with Autism Spectrum Disorder (ASD). One theory, that of weak central coherence, concerns an inability to combine stimulus details into a coherent whole. Here we test this theory in the case of sound patterns, using a new definition of the details (local structure) and the coherent whole (global structure). Thirteen individuals with a diagnosis of autism or Asperger's syndrome and 15 control participants were administered auditory tests, where they were required to match local pitch direction changes between two auditory sequences. When the other local features of the sequence pairs were altered (the actual pitches and relative time points of pitch direction change), the control participants obtained lower scores compared with when these details were left unchanged. This can be attributed to interference from the global structure, defined as the combination of the local auditory details. In contrast, the participants with ASD did not obtain lower scores in the presence of such mismatches. This was attributed to the absence of interference from an auditory coherent whole. The results are consistent with the presence of abnormal interactions between local and global auditory perception in ASD.

  16. Salinomycin-induced polyneuropathy in cats: Morphologic and epidemiologic data

    NARCIS (Netherlands)

    Linde-Sipman, J.S. van der; Inch, T.S.G.A.M. van den; Nes, J.J. van; Verhagen, H.; Kersten, J.G.T.M.; Beynen, A.C.; Plekkringa, R.

    1999-01-01

    In April 1996, an outbreak of toxic polyneuropathy in cats occurred in the Netherlands. All cats had been fed one of two brands of dry cat food from one manufacturer. Chemical analyses of these foods, stomach contents, and liver and kidney of affected cats revealed contamination with the ionophor sa

  17. The effect of background music in auditory health persuasion

    NARCIS (Netherlands)

    Elbert, Sarah; Dijkstra, Arie

    2013-01-01

    In auditory health persuasion, threatening information regarding health is communicated by voice only. One relevant context of auditory persuasion is the addition of background music. There are different mechanisms through which background music might influence persuasion, for example through mood (

  18. The role of temporal coherence in auditory stream segregation

    DEFF Research Database (Denmark)

    Christiansen, Simon Krogholt

    The ability to perceptually segregate concurrent sound sources and focus one’s attention on a single source at a time is essential for the ability to use acoustic information. While perceptual experiments have determined a range of acoustic cues that help facilitate auditory stream segregation......, it is not clear how the auditory system realizes the task. This thesis presents a study of the mechanisms involved in auditory stream segregation. Through a combination of psychoacoustic experiments, designed to characterize the influence of acoustic cues on auditory stream formation, and computational models...... of auditory processing, the role of auditory preprocessing and temporal coherence in auditory stream formation was evaluated. The computational model presented in this study assumes that auditory stream segregation occurs when sounds stimulate non-overlapping neural populations in a temporally incoherent...

  19. Auditory imagery and the poor-pitch singer.

    Science.gov (United States)

    Pfordresher, Peter Q; Halpern, Andrea R

    2013-08-01

    The vocal imitation of pitch by singing requires one to plan laryngeal movements on the basis of anticipated target pitch events. This process may rely on auditory imagery, which has been shown to activate motor planning areas. As such, we hypothesized that poor-pitch singing, although not typically associated with deficient pitch perception, may be associated with deficient auditory imagery. Participants vocally imitated simple pitch sequences by singing, discriminated pitch pairs on the basis of pitch height, and completed an auditory imagery self-report questionnaire (the Bucknell Auditory Imagery Scale). The percentage of trials participants sung in tune correlated significantly with self-reports of vividness for auditory imagery, although not with the ability to control auditory imagery. Pitch discrimination was not predicted by auditory imagery scores. The results thus support a link between auditory imagery and vocal imitation.

  20. Intradermal melanocytic nevus of the external auditory canal.

    Science.gov (United States)

    Alves, Renato V; Brandão, Fabiano H; Aquino, José E P; Carvalho, Maria R M S; Giancoli, Suzana M; Younes, Eduado A P

    2005-01-01

    Intradermal nevi are common benign pigmented skin tumors. Their occurrence within the external auditory canal is uncommon. The clinical and pathologic features of an intradermal nevus arising within the external auditory canal are presented, and the literature reviewed.

  1. Parcellation of Human and Monkey Core Auditory Cortex with fMRI Pattern Classification and Objective Detection of Tonotopic Gradient Reversals.

    Science.gov (United States)

    Schönwiesner, Marc; Dechent, Peter; Voit, Dirk; Petkov, Christopher I; Krumbholz, Katrin

    2015-10-01

    Auditory cortex (AC) contains several primary-like, or "core," fields, which receive thalamic input and project to non-primary "belt" fields. In humans, the organization and layout of core and belt auditory fields are still poorly understood, and most auditory neuroimaging studies rely on macroanatomical criteria, rather than functional localization of distinct fields. A myeloarchitectonic method has been suggested recently for distinguishing between core and belt fields in humans (Dick F, Tierney AT, Lutti A, Josephs O, Sereno MI, Weiskopf N. 2012. In vivo functional and myeloarchitectonic mapping of human primary auditory areas. J Neurosci. 32:16095-16105). We propose a marker for core AC based directly on functional magnetic resonance imaging (fMRI) data and pattern classification. We show that a portion of AC in Heschl's gyrus classifies sound frequency more accurately than other regions in AC. Using fMRI data from macaques, we validate that the region where frequency classification performance is significantly above chance overlaps core auditory fields, predominantly A1. Within this region, we measure tonotopic gradients and estimate the locations of the human homologues of the core auditory subfields A1 and R. Our results provide a functional rather than anatomical localizer for core AC. We posit that inter-individual variability in the layout of core AC might explain disagreements between results from previous neuroimaging and cytological studies.

  2. SWMM-CAT User’s Guide

    Science.gov (United States)

    The Storm Water Management Model Climate Adjustment Tool (SWMM-CAT) is a simple to use software utility that allows future climate change projections to be incorporated into the Storm Water Management Model (SWMM).

  3. Notoedres cati in cats and its management.

    Science.gov (United States)

    Sivajothi, S; Sudhakara Reddy, B; Rayulu, V C; Sreedevi, C

    2015-06-01

    Notoedres cati was observed in two domestic cats. Cats exhibited crust formation, hyperkeratosis, alopecia and intense pruritus. Distribution of lesions observed at the ear margins, face, and legs. Owners also had intense pruritus over the hands, small erythematic crusted papules on the wrists and both the legs. Laboratory examination of skin scrapings from the cat revealed the presence of ova, adult mites of N. cati. The infected cats were treated with weekly twice oral administration of ivermectin at 200 μg/kg body weight, oral administration of 2 ml of multi-vitamin and mineral syrup daily. Improvement was noticed by complete clinical recovery along with absence of mites in skin scrapings, after completion of four doses of oral ivermectin along with supportive therapy.

  4. Cat Island NWR Recreational Hunting Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A natural resource management plan describing the regulations and decision processes for sport hunting at Cat Island NWR. This plan has been replaced by a more...

  5. Nutritional secondary hyperparathyroidism in two cats

    DEFF Research Database (Denmark)

    Dimopoulou, Maria; Kirpensteijn, Jolle; Nielsen, Dorte Hald

    2010-01-01

    severely affected cat, postmortem examination revealed changes consistent with nutritional secondary hyperparathyroidism and fibrous osteodystrophy, such as cortical thinning, massive connective tissue invasion in the diaphysis of long bones, and hypertrophy of the chief cells in both parathyroid glands...

  6. Suppression of fertility in adult cats

    DEFF Research Database (Denmark)

    Goericke-Pesch, Sandra Kathrin; Wehrend, A.; Georgiev, P.

    2014-01-01

    Contents: Cats are animals with highly efficient reproduction, clearly pointing to a need for suppression of fertility. Although surgical contraception is highly effective, it is not always the method of choice. This is predominantly because it is cost-intensive, time-consuming and irreversible......, with the latter being of major importance for cat breeders. This article reviews the use of progestins, scleroting agents, immunocontraception, melatonin, GnRH antagonists and finally, GnRH agonists, in adult male and female cats in detail, according to the present state of the art. By now, various scientific...... and clinical options are available for the suppression of fertility in adult cats and the decision as to which should be chosen - independent of the legal registration of any state - depends on different facts: (i) feral or privately owned animal? (ii) temporary or permanent suppression of fertility wanted...

  7. Prevalence of feline haemoplasma in cats in Denmark

    DEFF Research Database (Denmark)

    Rosenqvist, Maja Benedicte; Meilstrup, Ann-Katrine Helene; Larsen, Jesper

    2016-01-01

    cats in different age groups. The presence was detected by a conventional polymerase chain reaction (PCR) assay on blood samples as well as by real-time PCR (RT-PCR). Results The study revealed a prevalence of 14.9% Candidatus Mycoplasma haemominutum positive cats and 1.5% Mycoplasma haemofelis...... positive cats. No cats were found positive for Candidatus Mycoplasma turicensis. The results showed a statistically significant higher prevalence in older (>8 years) cats compared to younger cats and a higher prevalence among domestic cats compared to purebred cats. As part of this study, we developed...... a cloning strategy to obtain Danish positive controls of haemoplasma 16S rRNA. Conclusion From convenience-sampled cats in Denmark, we found that 16.4% were carriers of feline haemotropic mycoplasmas. Haemoplasma was mostly found in older and domestic cats. The prevalence found in Denmark is similar...

  8. What determines auditory distraction? On the roles of local auditory changes and expectation violations.

    Directory of Open Access Journals (Sweden)

    Jan P Röer

    Full Text Available Both the acoustic variability of a distractor sequence and the degree to which it violates expectations are important determinants of auditory distraction. In four experiments we examined the relative contribution of local auditory changes on the one hand and expectation violations on the other hand in the disruption of serial recall by irrelevant sound. We present evidence for a greater disruption by auditory sequences ending in unexpected steady state distractor repetitions compared to auditory sequences with expected changing state endings even though the former contained fewer local changes. This effect was demonstrated with piano melodies (Experiment 1 and speech distractors (Experiment 2. Furthermore, it was replicated when the expectation violation occurred after the encoding of the target items (Experiment 3, indicating that the items' maintenance in short-term memory was disrupted by attentional capture and not their encoding. This seems to be primarily due to the violation of a model of the specific auditory distractor sequences because the effect vanishes and even reverses when the experiment provides no opportunity to build up a specific neural model about the distractor sequence (Experiment 4. Nevertheless, the violation of abstract long-term knowledge about auditory regularities seems to cause a small and transient capture effect: Disruption decreased markedly over the course of the experiments indicating that participants habituated to the unexpected distractor repetitions across trials. The overall pattern of results adds to the growing literature that the degree to which auditory distractors violate situation-specific expectations is a more important determinant of auditory distraction than the degree to which a distractor sequence contains local auditory changes.

  9. ABR and auditory P300 findings inchildren with ADHD

    OpenAIRE

    Schochat Eliane; Scheuer Claudia Ines; Andrade Ênio Roberto de

    2002-01-01

    Auditory processing disorders (APD), also referred as central auditory processing disorders (CAPD) and attention deficit hyperactivity disorders (ADHD) have become popular diagnostic entities for school age children. It has been demonstrated a high incidence of comorbid ADHD with communication disorders and auditory processing disorder. The aim of this study was to investigate ABR and P300 auditory evoked potentials in children with ADHD, in a double-blind study. Twenty-one children, ages bet...

  10. Auditory and motor imagery modulate learning in music performance

    Directory of Open Access Journals (Sweden)

    Rachel M. Brown

    2013-07-01

    Full Text Available Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians’ encoding (during Learning, as they practiced novel melodies, and retrieval (during Recall of those melodies. Pianists learned melodies by listening without performing (auditory learning or performing without sound (motor learning; following Learning, pianists performed the melodies from memory with auditory feedback (Recall. During either Learning (Experiment 1 or Recall (Experiment 2, pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced and temporal regularity (variability of quarter-note interonset intervals were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists’ pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2. Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1: Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2: Higher auditory imagery skill predicted greater temporal regularity during Recall in the

  11. Are auditory percepts determined by experience?

    Science.gov (United States)

    Monson, Brian B; Han, Shui'Er; Purves, Dale

    2013-01-01

    Audition--what listeners hear--is generally studied in terms of the physical properties of sound stimuli and physiological properties of the auditory system. Based on recent work in vision, we here consider an alternative perspective that sensory percepts are based on past experience. In this framework, basic auditory qualities (e.g., loudness and pitch) are based on the frequency of occurrence of stimulus patterns in natural acoustic stimuli. To explore this concept of audition, we examined five well-documented psychophysical functions. The frequency of occurrence of acoustic patterns in a database of natural sound stimuli (speech) predicts some qualitative aspects of these functions, but with substantial quantitative discrepancies. This approach may offer a rationale for auditory phenomena that are difficult to explain in terms of the physical attributes of the stimuli as such.

  12. Are auditory percepts determined by experience?

    Directory of Open Access Journals (Sweden)

    Brian B Monson

    Full Text Available Audition--what listeners hear--is generally studied in terms of the physical properties of sound stimuli and physiological properties of the auditory system. Based on recent work in vision, we here consider an alternative perspective that sensory percepts are based on past experience. In this framework, basic auditory qualities (e.g., loudness and pitch are based on the frequency of occurrence of stimulus patterns in natural acoustic stimuli. To explore this concept of audition, we examined five well-documented psychophysical functions. The frequency of occurrence of acoustic patterns in a database of natural sound stimuli (speech predicts some qualitative aspects of these functions, but with substantial quantitative discrepancies. This approach may offer a rationale for auditory phenomena that are difficult to explain in terms of the physical attributes of the stimuli as such.

  13. Phonetic categorization in auditory word perception.

    Science.gov (United States)

    Ganong, W F

    1980-02-01

    To investigate the interaction in speech perception of auditory information and lexical knowledge (in particular, knowledge of which phonetic sequences are words), acoustic continua varying in voice onset time were constructed so that for each acoustic continuum, one of the two possible phonetic categorizations made a word and the other did not. For example, one continuum ranged between the word dash and the nonword tash; another used the nonword dask and the word task. In two experiments, subjects showed a significant lexical effect--that is, a tendency to make phonetic categorizations that make words. This lexical effect was greater at the phoneme boundary (where auditory information is ambiguous) than at the ends of the condinua. Hence the lexical effect must arise at a stage of processing sensitive to both lexical knowledge and auditory information.

  14. [Functional neuroimaging of auditory hallucinations in schizophrenia].

    Science.gov (United States)

    Font, M; Parellada, E; Fernández-Egea, E; Bernardo, M; Lomeña, F

    2003-01-01

    The neurobiological bases underlying the generation of auditory hallucinations, a distressing and paradigmatic symptom of schizophrenia, are still unknown in spite of in-depth phenomenological descriptions. This work aims to make a critical review of the latest published literature in recent years, focusing on functional neuroimaging studies (PET, SPECT, fMRI) of auditory hallucinations. Thus, the studies are classified according to whether they are sensory activation, trait and state. The two main hypotheses proposed to explain the phenomenon, external speech vs. subvocal or inner speech, are also explained. Finally, the latest unitary theory as well as the limitations the studies published are commented on. The need to continue investigating in this field, that is still underdeveloped, is posed in order to understand better the etiopathogenesis of auditory hallucinations in schizophrenia.

  15. The auditory hallucination: a phenomenological survey.

    Science.gov (United States)

    Nayani, T H; David, A S

    1996-01-01

    A comprehensive semi-structured questionnaire was administered to 100 psychotic patients who had experienced auditory hallucinations. The aim was to extend the phenomenology of the hallucination into areas of both form and content and also to guide future theoretical development. All subjects heard 'voices' talking to or about them. The location of the voice, its characteristics and the nature of address were described. Precipitants and alleviating factors plus the effect of the hallucinations on the sufferer were identified. Other hallucinatory experiences, thought insertion and insight were examined for their inter-relationships. A pattern emerged of increasing complexity of the auditory-verbal hallucination over time by a process of accretion, with the addition of more voices and extended dialogues, and more intimacy between subject and voice. Such evolution seemed to relate to the lessening of distress and improved coping. These findings should inform both neurological and cognitive accounts of the pathogenesis of auditory hallucinations in psychotic disorders.

  16. Cooperative dynamics in auditory brain response

    CERN Document Server

    Kwapien, J; Liu, L C; Ioannides, A A

    1998-01-01

    Simultaneous estimates of the activity in the left and right auditory cortex of five normal human subjects were extracted from Multichannel Magnetoencephalography recordings. Left, right and binaural stimulation were used, in separate runs, for each subject. The resulting time-series of left and right auditory cortex activity were analysed using the concept of mutual information. The analysis constitutes an objective method to address the nature of inter-hemispheric correlations in response to auditory stimulations. The results provide a clear evidence for the occurrence of such correlations mediated by a direct information transport, with clear laterality effects: as a rule, the contralateral hemisphere leads by 10-20ms, as can be seen in the average signal. The strength of the inter-hemispheric coupling, which cannot be extracted from the average data, is found to be highly variable from subject to subject, but remarkably stable for each subject.

  17. Auditory temporal processes in the elderly

    Directory of Open Access Journals (Sweden)

    E. Ben-Artzi

    2011-03-01

    Full Text Available Several studies have reported age-related decline in auditory temporal resolution and in working memory. However, earlier studies did not provide evidence as to whether these declines reflect overall changes in the same mechanisms, or reflect age-related changes in two independent mechanisms. In the current study we examined whether the age-related decline in auditory temporal resolution and in working memory would remain significant even after controlling for their shared variance. Eighty-two participants, aged 21-82 performed the dichotic temporal order judgment task and the backward digit span task. The findings indicate that age-related decline in auditory temporal resolution and in working memory are two independent processes.

  18. A Comparison of Perceptual Motor Skill with Auditory Comprehension as Correlates of Word Recognition, Oral Reading, and Silent Reading.

    Science.gov (United States)

    Tillman, Chester E.

    A study was conducted to examine the relationship of perceptual motor skills as measured by the Bender Visual Motor Gestalt Test to word recognition, oral reading, and silent reading. In addition, perceptual motor skill and auditory comprehension were compared as correlates of the three reading variables. Subjects were 60 primary grade students in…

  19. Cloning, Expression and Bioinformatics Analysis of Porcine CatSperB and CatSperG Genes%猪CatSperB和CatSperG基因的克隆、表达及生物信息学

    Institute of Scientific and Technical Information of China (English)

    宋成义; 周家庆; 冯晓军; 谢雨琇; 李庆平; 吴晗; 高波; 王霄燕

    2012-01-01

    [目的]揭示猪CatSperB和CatSperG基因的存在、蛋白的结构特征、进化关系及时空表达特性.[方法]利用电子和分子克隆技术鉴定猪CatSperB和CatSperG基因全长cDNA,并利用定性RT-PCR和荧光定量RT-PCR进行CatSperB和CatSperG基因的时空表达研究.[结果]①分别获得了3 508 bp CatSperB和3 715 bp CatSperG电子转录子,分别包含3 3 30和3 483 bp开放阅读框,并经TA克隆测序验证,其CDS序列与人、牛、马和狗等的CatSperB和CatSperG基因的序列相似性在80%以上;②CatSperB分子质量为125.79 kD,为稳定蛋白;CatSperG分子质量为133.40 kD,为不稳定蛋白;③CatSperB和CatSperG都包含7个通道蛋白保守的跨膜结构域,CatSperG蛋白C端含一个超螺旋结构,而CatSperB蛋白无明显的超螺旋结构信号;猪CatSperB和CatSperG与牛、狗和马的CatSperB和CatSperG蛋白同源关系较近,与人和小鼠的同源关系较远;④RT-PCR分析表明,CatSperB和CatSperG基因主要在辜丸中表达,但CatSperB在其它组织也有表达信号;⑤CatSperB和CatSperG基因mRNA表达水平在猪性发育的重要阶段,精子发生(60日龄)、初情期(90日龄)和性成熟(150日龄)前后都有显著提高(P< 0.05).[结论]获得了猪CatSperB和CatSperG基因的cDNA克隆及其一系列生物信息学参数,揭示了CatSperB和CatSperG蛋白含7个保守的跨膜结构域及不同物种间的进化关系,证实CatSperB和CatSperG基因主要在睾丸表达,且其mRNA表达变化与公猪的性发育相一致.%[Objective] The aim of the current study is to confirm the existence of porcine CatSperB and CatSperG genes, and investigate the protein structures, evolutionary relationship and the spatial-temporal expression profiles of CatSperB and CatSperG. [Method] The in silico and molecular cloning was used to identify the full length cDNAs of porcine CatSperB and CatSperG, and the spatial-temporal expression profile was investigated by qualitative and

  20. Food hypersensitivity to lamb in a cat.

    Science.gov (United States)

    Reedy, L M

    1994-04-01

    Severe facial pruritus in a cat was caused by food hypersensitivity to lamb. The cat had been fed an exclusive diet of lamb for 2 years after it had been diagnosed to have food hypersensitivity to fish. Signs, including erythema, alopecia, and excoriations of the head and neck, were poorly responsive to corticosteroid administration, but resolved within a few weeks after removal of the suspected allergen.

  1. Auditory hair cell centrioles undergo confined Brownian motion throughout the developmental migration of the kinocilium.

    OpenAIRE

    Lepelletier, Léa; de Monvel, Jacques Boutet; Buisson, Johanna; Desdouets, Chantal; Petit, Christine

    2013-01-01

    Planar polarization of the forming hair bundle, the mechanosensory antenna of auditory hair cells, depends on the poorly characterized center-to-edge displacement of a primary cilium, the kinocilium, at their apical surface. Taking advantage of the gradient of hair cell differentiation along the cochlea, we reconstituted a map of the kinocilia displacements in the mouse embryonic cochlea. We then developed a cochlear organotypic culture and video-microscopy approach to monitor the movements o...

  2. Agonistic Vocalisations in Domestic Cats : A Case Study

    OpenAIRE

    Schötz, Susanne

    2015-01-01

    Introducing a new cat to a home with resident cats may lead to stress, aggression and even fights. In this case study 468 agonistic cat vocalisations were recorded as one cat was introduced to three resident cats in her new home. Six vocalisation types were identified: growl, howl, howl-growl, hiss, spit and snarl. Numerous other intermediate and complex vocalisations were also observed. An acoustic analysis showed differences within and between all types. Future studies include further acous...

  3. Palatability evaluation study of a new oral formulation of marbofloxacin in cats.

    Science.gov (United States)

    Cron, M; Zemirline, C; Beranger, J; Privat, V

    2014-07-26

    At a time when antimicrobial resistance is a global concern in human and animal health, it is of primary importance to draw attention to the problem of compliance with antibiotic therapy in animals hard to medicate such as cats. Resistance may develop because of poor patient compliance with the prescribed course of antibiotic therapy. Increasing palatability might enhance administration compliance. We assessed the acceptability of EFEX tablets, a new oral marbofloxacin formulation for cats. The objective of this study was to compare EFEX to two commercial formulations of marbofloxacin: MARBOCYL P palatable tablets and MARBOCYL Vet tablets. Acceptance tests were run in experimental conditions in 24 cats to compare the spontaneous intake and full consumption of the three pharmaceutical products. The results indicated that EFEX was more palatable than MARBOCYL Vet (0.001

  4. The Swedish P-CAT: modification and exploration of psychometric properties of two different versions.

    Science.gov (United States)

    Selan, Denis; Jakobsson, Ulf; Condelius, Anna

    2016-08-08

    The aim of this study was to further investigate the psychometric properties (with focus on construct validity and scale function) of the Swedish version of the Person-centred Care Assessment Tool (P-CAT) in a sample consisting of staff working in elderly care units (N = 142). The aim was also to further develop and psychometrically test a modified, noncontext-specific version of the instrument (mP-CAT) in a sample consisting of staff working in primary health care or within home care for older people (N = 182). Principal component analysis with varimax rotation initially suggested a three-factor solution for the P-CAT, explaining 55.96% of variance. Item 13 solely represented one factor wherefore this solution was rejected. A final 2-factor solution, without item 13, had a cumulative explained variance of 50.03%. All communalities were satisfactory (>0.3), and alpha values for both first factor (items 1-6, 11) and second factor (items 7-10, 12) were found to be acceptable. Principal component analysis with varimax rotation suggested a final 2-factor solution for the mP-CAT explaining 46.15% of the total variance with communalities ranging from 0.263 to 0.712. Cronbach's α for both factors was found to be acceptable (>0.7). This study suggests a 2-factor structure for the P-CAT and an exclusion of item 13. The results indicated that the modified noncontext-specific version, mP-CAT, seems to be a valid measure. Further psychometric testing of the mP-CAT is however needed in order to establish the instrument's validity and reliability in various contexts.

  5. Modelling landscape-level numerical responses of predators to prey: the case of cats and rabbits.

    Directory of Open Access Journals (Sweden)

    Jennyffer Cruz

    Full Text Available Predator-prey systems can extend over large geographical areas but empirical modelling of predator-prey dynamics has been largely limited to localised scales. This is due partly to difficulties in estimating predator and prey abundances over large areas. Collection of data at suitably large scales has been a major problem in previous studies of European rabbits (Oryctolagus cuniculus and their predators. This applies in Western Europe, where conserving rabbits and predators such as Iberian lynx (Lynx pardinus is important, and in other parts of the world where rabbits are an invasive species supporting populations of introduced, and sometimes native, predators. In pastoral regions of New Zealand, rabbits are the primary prey of feral cats (Felis catus that threaten native fauna. We estimate the seasonal numerical response of cats to fluctuations in rabbit numbers in grassland-shrubland habitat across the Otago and Mackenzie regions of the South Island of New Zealand. We use spotlight counts over 1645 km of transects to estimate rabbit and cat abundances with a novel modelling approach that accounts simultaneously for environmental stochasticity, density dependence and varying detection probability. Our model suggests that cat abundance is related consistently to rabbit abundance in spring and summer, possibly through increased rabbit numbers improving the fecundity and juvenile survival of cats. Maintaining rabbits at low abundance should therefore suppress cat numbers, relieving predation pressure on native prey. Our approach provided estimates of the abundance of cats and rabbits over a large geographical area. This was made possible by repeated sampling within each season, which allows estimation of detection probabilities. A similar approach could be applied to predator-prey systems elsewhere, and could be adapted to any method of direct observation in which there is no double-counting of individuals. Reliable estimates of numerical

  6. Non-ocular melanomas in cats: a retrospective study of 30 cases.

    Science.gov (United States)

    Chamel, Gabriel; Abadie, Jérôme; Albaric, Olivier; Labrut, Sophie; Ponce, Frédérique; Ibisch, Catherine

    2017-04-01

    Objectives The aim of the study was to describe the clinical outcome of 30 cats with non-ocular melanomas and to evaluate the association between clinical or pathological parameters and overall survival time. Methods The database of the animal histopathological laboratory of the National Veterinary School of Nantes (Oniris, Nantes, France) was retrospectively searched to identify cases of feline non-ocular melanomas between December 2009 and April 2014. For each case, clinical data, including signalment, location of the primary tumour, staging, treatment and outcome, were collected from the medical records or via interviews with referring veterinarians. Histological and immunohistochemical evaluation included mitotic index, cytonuclear atypias, junctional activity, Melan A and S100 immunostaining, and surgical margins. Univariate analysis to test the prognostic value of the different variables was performed by the Kaplan-Meier product limit method using the log-rank test of significance. Results Thirty cats were included in the study. Eleven had a cutaneous non-auricular melanoma, six had a tumour located on the pinna and 13 had a tumour in the oral cavity. Cats with auricular melanomas were significantly younger than cats with tumours in other locations. Location and presence of clinical signs were not of prognostic significance, but the achromic phenotype was significantly associated with a poorer prognosis. Twenty cats were treated with surgery and survived significantly longer than cats that received only medical treatment or that did not receive any treatment. According to our data, mitotic index, cytonuclear atypias, junctional activity, Melan A or S100 expression, and surgical margins were not associated with survival. Conclusions and relevance We show for the first time, in a large series, that the auricular form of melanoma affected significantly younger cats than other extraocular forms. Most feline non-ocular melanomas are malignant and achromic tumours

  7. Do dyslexics have auditory input processing difficulties?

    DEFF Research Database (Denmark)

    Poulsen, Mads

    2011-01-01

    Word production difficulties are well documented in dyslexia, whereas the results are mixed for receptive phonological processing. This asymmetry raises the possibility that the core phonological deficit of dyslexia is restricted to output processing stages. The present study investigated whether...... a group of dyslexics had word level receptive difficulties using an auditory lexical decision task with long words and nonsense words. The dyslexics were slower and less accurate than chronological age controls in an auditory lexical decision task, with disproportionate low performance on nonsense words...

  8. The many facets of auditory display

    Science.gov (United States)

    Blattner, Meera M.

    1995-01-01

    In this presentation we will examine some of the ways sound can be used in a virtual world. We make the case that many different types of audio experience are available to us. A full range of audio experiences include: music, speech, real-world sounds, auditory displays, and auditory cues or messages. The technology of recreating real-world sounds through physical modeling has advanced in the past few years allowing better simulation of virtual worlds. Three-dimensional audio has further enriched our sensory experiences.

  9. Transient auditory hallucinations in an adolescent.

    Science.gov (United States)

    Skokauskas, Norbert; Pillay, Devina; Moran, Tom; Kahn, David A

    2010-05-01

    In adolescents, hallucinations can be a transient illness or can be associated with non-psychotic psychopathology, psychosocial adversity, or a physical illness. We present the case of a 15-year-old secondary-school student who presented with a 1-month history of first onset auditory hallucinations, which had been increasing in frequency and severity, and mild paranoid ideation. Over a 10-week period, there was a gradual diminution, followed by a complete resolution, of symptoms. We discuss issues regarding the diagnosis and prognosis of auditory hallucinations in adolescents.

  10. Lateralization of functional magnetic resonance imaging (fMRI) activation in the auditory pathway of patients with lateralized tinnitus

    Energy Technology Data Exchange (ETDEWEB)

    Smits, Marion [Erasmus MC - University Medical Center Rotterdam, Department of Radiology, Hs 224, Rotterdam (Netherlands); Kovacs, Silvia; Peeters, Ronald R.; Hecke, Paul van; Sunaert, Stefan [University Hospitals of the Catholic University Leuven, Department of Radiology, Leuven (Belgium); Ridder, Dirk de [University of Antwerp, Department of Neurosurgery, Edegem (Belgium)

    2007-08-15

    Tinnitus is hypothesized to be an auditory phantom phenomenon resulting from spontaneous neuronal activity somewhere along the auditory pathway. We performed fMRI of the entire auditory pathway, including the inferior colliculus (IC), the medial geniculate body (MGB) and the auditory cortex (AC), in 42 patients with tinnitus and 10 healthy volunteers to assess lateralization of fMRI activation. Subjects were scanned on a 3T MRI scanner. A T2*-weighted EPI silent gap sequence was used during the stimulation paradigm, which consisted of a blocked design of 12 epochs in which music presented binaurally through headphones, which was switched on and off for periods of 50 s. Using SPM2 software, single subject and group statistical parametric maps were calculated. Lateralization of activation was assessed qualitatively and quantitatively. Tinnitus was lateralized in 35 patients (83%, 13 right-sided and 22 left-sided). Significant signal change (P{sub corrected} < 0.05) was found bilaterally in the primary and secondary AC, the IC and the MGB. Signal change was symmetrical in patients with bilateral tinnitus. In patients with lateralized tinnitus, fMRI activation was lateralized towards the side of perceived tinnitus in the primary AC and IC in patients with right-sided tinnitus, and in the MGB in patients with left-sided tinnitus. In healthy volunteers, activation in the primary AC was left-lateralized. Our paradigm adequately visualized the auditory pathways in tinnitus patients. In lateralized tinnitus fMRI activation was also lateralized, supporting the hypothesis that tinnitus is an auditory phantom phenomenon. (orig.)

  11. Auditory cortical areas activated by slow frequency-modulated sounds in mice.

    Directory of Open Access Journals (Sweden)

    Yuusuke Honma

    Full Text Available Species-specific vocalizations in mice have frequency-modulated (FM components slower than the lower limit of FM direction selectivity in the core region of the mouse auditory cortex. To identify cortical areas selective to slow frequency modulation, we investigated tonal responses in the mouse auditory cortex using transcranial flavoprotein fluorescence imaging. For differentiating responses to frequency modulation from those to stimuli at constant frequencies, we focused on transient fluorescence changes after direction reversal of temporally repeated and superimposed FM sweeps. We found that the ultrasonic field (UF in the belt cortical region selectively responded to the direction reversal. The dorsoposterior field (DP also responded weakly to the reversal. Regarding the responses in UF, no apparent tonotopic map was found, and the right UF responses were significantly larger in amplitude than the left UF responses. The half-max latency in responses to FM sweeps was shorter in UF compared with that in the primary auditory cortex (A1 or anterior auditory field (AAF. Tracer injection experiments in the functionally identified UF and DP confirmed that these two areas receive afferent inputs from the dorsal part of the medial geniculate nucleus (MG. Calcium imaging of UF neurons stained with fura-2 were performed using a two-photon microscope, and the presence of UF neurons that were selective to both direction and direction reversal of slow frequency modulation was demonstrated. These results strongly suggest a role for UF, and possibly DP, as cortical areas specialized for processing slow frequency modulation in mice.

  12. Genome-wide association and linkage analyses localize a progressive retinal atrophy locus in Persian cats.

    Science.gov (United States)

    Alhaddad, Hasan; Gandolfi, Barbara; Grahn, Robert A; Rah, Hyung-Chul; Peterson, Carlyn B; Maggs, David J; Good, Kathryn L; Pedersen, Niels C; Lyons, Leslie A

    2014-08-01

    Hereditary eye diseases of animals serve as excellent models of human ocular disorders and assist in the development of gene and drug therapies for inherited forms of blindness. Several primary hereditary eye conditions affecting various ocular tissues and having different rates of progression have been documented in domestic cats. Gene therapy for canine retinopathies has been successful, thus the cat could be a gene therapy candidate for other forms of retinal degenerations. The current study investigates a hereditary, autosomal recessive, retinal degeneration specific to Persian cats. A multi-generational pedigree segregating for this progressive retinal atrophy was genotyped using a 63 K SNP array and analyzed via genome-wide linkage and association methods. A multi-point parametric linkage analysis localized the blindness phenotype to a ~1.75 Mb region with significant LOD scores (Z ≈ 14, θ = 0.00) on cat chromosome E1. Genome-wide TDT, sib-TDT, and case-control analyses also consistently supported significant association within the same region on chromosome E1, which is homologous to human chromosome 17. Using haplotype analysis, a ~1.3 Mb region was identified as highly associated for progressive retinal atrophy in Persian cats. Several candidate genes within the region are reasonable candidates as a potential causative gene and should be considered for molecular analyses.

  13. Feline primary hyperaldosteronism: an emerging endocrine disease

    Directory of Open Access Journals (Sweden)

    Daniel Diola Bento

    2016-04-01

    Full Text Available ABSTRACT: The primary hyperaldosteronism, an endocrine disease increasingly identified in cats, is characterized by adrenal gland dysfunction that interferes with the renin-angiotensin-aldosterone system, triggering the hypersecretion of aldosterone. Pathophysiological consequences of excessive aldosterone secretion are related to increased sodium and water retention, and increased excretion of potassium, which induce hypertension and severe hypokalemia, respectively. The most common clinical findings in cats include: polydipsia, nocturia, polyuria, generalized weakness, neck ventroflexion, syncope, anorexia, weight loss, pendulous abdomen and blindness. Diagnosis is based on the evidence of hormonal hypersecretion with suppression of renin release, imaging and histopathological evaluation of adrenal glands. Treatment may be curative with adrenalectomy, in cases of unilateral disease, or conservative, through administration of aldosterone antagonists, potassium supplementation and antihypertensives. Prognosis varies from fair to good with the appropriate therapy. This article reviews the main aspects of primary aldosteronism in cats, providing the clinician with important information for the diagnosis of this disease.

  14. Prevalence of feline heartworm infections among cats with respiratory and gastrointestinal signs: results of a multicenter study.

    Science.gov (United States)

    Robertson-Plouch, C K; Dillon, A R; Brawner, W R; Guerrero, J

    2000-01-01

    , but negative for both antibody tests. Radiographs were obtained for 10 of these cats and 6/10 had radiographic signs consistent with or suggestive of feline heartworm infection. At necropsy, heartworms were found in one other cat from which blood was not obtained. Additionally, two cats that had positive radiographic signs of heartworm infection converted from antigen-negative to antigen-positive status at recheck examination for a total of 13/215 (6%) DiroCHEK antigen-positive cats. One case that was submitted after acute death was DiroCHEK antigen positive, but interestingly, had relatively low antibody levels for both antibody tests. Initial radiographs were available on 212 of the 215 cases. In 90/212 (42%) cases, initial thoracic radiographs showed signs consistent with or suggestive of heartworm disease. Follow-up radiographs showed varying progression with radiographic signs worsening, improving, or staying the same on individual cats. Feline heartworm disease should be among the primary differential diagnoses in cats with respiratory disease, vomiting, or acute death. Radiography, antibody testing, and antigen testing are all useful tools to aid in making the diagnosis. A confirmed diagnosis may require doing multiple tests and clinical reevaluation. Cats classified by their owners as indoor only cats were found to be heartworm infected, thus lifestyle of the cat cannot rule out the disease. Actual antibody levels (high or low) may not correspond to severity of disease.

  15. Neurodynamics, tonality, and the auditory brainstem response.

    Science.gov (United States)

    Large, Edward W; Almonte, Felix V

    2012-04-01

    Tonal relationships are foundational in music, providing the basis upon which musical structures, such as melodies, are constructed and perceived. A recent dynamic theory of musical tonality predicts that networks of auditory neurons resonate nonlinearly to musical stimuli. Nonlinear resonance leads to stability and attraction relationships among neural frequencies, and these neural dynamics give rise to the perception of relationships among tones that we collectively refer to as tonal cognition. Because this model describes the dynamics of neural populations, it makes specific predictions about human auditory neurophysiology. Here, we show how predictions about the auditory brainstem response (ABR) are derived from the model. To illustrate, we derive a prediction about population responses to musical intervals that has been observed in the human brainstem. Our modeled ABR shows qualitative agreement with important features of the human ABR. This provides a source of evidence that fundamental principles of auditory neurodynamics might underlie the perception of tonal relationships, and forces reevaluation of the role of learning and enculturation in tonal cognition.

  16. Reading adn Auditory-Visual Equivalences

    Science.gov (United States)

    Sidman, Murray

    1971-01-01

    A retarded boy, unable to read orally or with comprehension, was taught to match spoken to printed words and was then capable of reading comprehension (matching printed words to picture) and oral reading (naming printed words aloud), demonstrating that certain learned auditory-visual equivalences are sufficient prerequisites for reading…

  17. Tuning up the developing auditory CNS.

    Science.gov (United States)

    Sanes, Dan H; Bao, Shaowen

    2009-04-01

    Although the auditory system has limited information processing resources, the acoustic environment is infinitely variable. To properly encode the natural environment, the developing central auditory system becomes somewhat specialized through experience-dependent adaptive mechanisms that operate during a sensitive time window. Recent studies have demonstrated that cellular and synaptic plasticity occurs throughout the central auditory pathway. Acoustic-rearing experiments can lead to an over-representation of the exposed sound frequency, and this is associated with specific changes in frequency discrimination. These forms of cellular plasticity are manifest in brain regions, such as midbrain and cortex, which interact through feed-forward and feedback pathways. Hearing loss leads to a profound re-weighting of excitatory and inhibitory synaptic gain throughout the auditory CNS, and this is associated with an over-excitability that is observed in vivo. Further behavioral and computational analyses may provide insights into how theses cellular and systems plasticity effects underlie the development of cognitive functions such as speech perception.

  18. Auditory Integration Training: The Magical Mystery Cure.

    Science.gov (United States)

    Tharpe, Anne Marie

    1999-01-01

    This article notes the enthusiastic reception received by auditory integration training (AIT) for children with a wide variety of disorders including autism but raises concerns about this alternative treatment practice. It offers reasons for cautious evaluation of AIT prior to clinical implementation and summarizes current research findings. (DB)

  19. Integration and segregation in auditory scene analysis

    Science.gov (United States)

    Sussman, Elyse S.

    2005-03-01

    Assessment of the neural correlates of auditory scene analysis, using an index of sound change detection that does not require the listener to attend to the sounds [a component of event-related brain potentials called the mismatch negativity (MMN)], has previously demonstrated that segregation processes can occur without attention focused on the sounds and that within-stream contextual factors influence how sound elements are integrated and represented in auditory memory. The current study investigated the relationship between the segregation and integration processes when they were called upon to function together. The pattern of MMN results showed that the integration of sound elements within a sound stream occurred after the segregation of sounds into independent streams and, further, that the individual streams were subject to contextual effects. These results are consistent with a view of auditory processing that suggests that the auditory scene is rapidly organized into distinct streams and the integration of sequential elements to perceptual units takes place on the already formed streams. This would allow for the flexibility required to identify changing within-stream sound patterns, needed to appreciate music or comprehend speech..

  20. Development of Receiver Stimulator for Auditory Prosthesis

    Directory of Open Access Journals (Sweden)

    K. Raja Kumar

    2010-05-01

    Full Text Available The Auditory Prosthesis (AP is an electronic device that can provide hearing sensations to people who are profoundly deaf by stimulating the auditory nerve via an array of electrodes with an electric current allowing them to understand the speech. The AP system consists of two hardware functional units such as Body Worn Speech Processor (BWSP and Receiver Stimulator. The prototype model of Receiver Stimulator for Auditory Prosthesis (RSAP consists of Speech Data Decoder, DAC, ADC, constant current generator, electrode selection logic, switch matrix and simulated electrode resistance array. The laboratory model of speech processor is designed to implement the Continuous Interleaved Sampling (CIS speech processing algorithm which generates the information required for electrode stimulation based on the speech / audio data. Speech Data Decoder receives the encoded speech data via an inductive RF transcutaneous link from speech processor. Twelve channels of auditory Prosthesis with selectable eight electrodes for stimulation of simulated electrode resistance array are used for testing. The RSAP is validated by using the test data generated by the laboratory prototype of speech processor. The experimental results are obtained from specific speech/sound tests using a high-speed data acquisition system and found satisfactory.

  1. Auditory Processing Disorder: School Psychologist Beware?

    Science.gov (United States)

    Lovett, Benjamin J.

    2011-01-01

    An increasing number of students are being diagnosed with auditory processing disorder (APD), but the school psychology literature has largely neglected this controversial condition. This article reviews research on APD, revealing substantial concerns with assessment tools and diagnostic practices, as well as insufficient research regarding many…

  2. The Goldilocks Effect in Infant Auditory Attention

    Science.gov (United States)

    Kidd, Celeste; Piantadosi, Steven T.; Aslin, Richard N.

    2014-01-01

    Infants must learn about many cognitive domains (e.g., language, music) from auditory statistics, yet capacity limits on their cognitive resources restrict the quantity that they can encode. Previous research has established that infants can attend to only a subset of available acoustic input. Yet few previous studies have directly examined infant…

  3. Auditory Training with Frequent Communication Partners

    Science.gov (United States)

    Tye-Murray, Nancy; Spehar, Brent; Sommers, Mitchell; Barcroft, Joe

    2016-01-01

    Purpose: Individuals with hearing loss engage in auditory training to improve their speech recognition. They typically practice listening to utterances spoken by unfamiliar talkers but never to utterances spoken by their most frequent communication partner (FCP)--speech they most likely desire to recognize--under the assumption that familiarity…

  4. Auditory and visual scene analysis: an overview

    Science.gov (United States)

    2017-01-01

    We perceive the world as stable and composed of discrete objects even though auditory and visual inputs are often ambiguous owing to spatial and temporal occluders and changes in the conditions of observation. This raises important questions regarding where and how ‘scene analysis’ is performed in the brain. Recent advances from both auditory and visual research suggest that the brain does not simply process the incoming scene properties. Rather, top-down processes such as attention, expectations and prior knowledge facilitate scene perception. Thus, scene analysis is linked not only with the extraction of stimulus features and formation and selection of perceptual objects, but also with selective attention, perceptual binding and awareness. This special issue covers novel advances in scene-analysis research obtained using a combination of psychophysics, computational modelling, neuroimaging and neurophysiology, and presents new empirical and theoretical approaches. For integrative understanding of scene analysis beyond and across sensory modalities, we provide a collection of 15 articles that enable comparison and integration of recent findings in auditory and visual scene analysis. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044011

  5. Affective Priming with Auditory Speech Stimuli

    Science.gov (United States)

    Degner, Juliane

    2011-01-01

    Four experiments explored the applicability of auditory stimulus presentation in affective priming tasks. In Experiment 1, it was found that standard affective priming effects occur when prime and target words are presented simultaneously via headphones similar to a dichotic listening procedure. In Experiment 2, stimulus onset asynchrony (SOA) was…

  6. Affective priming with auditory speech stimuli

    NARCIS (Netherlands)

    Degner, J.

    2011-01-01

    Four experiments explored the applicability of auditory stimulus presentation in affective priming tasks. In Experiment 1, it was found that standard affective priming effects occur when prime and target words are presented simultaneously via headphones similar to a dichotic listening procedure. In

  7. Contractile properties of extraocular muscle in Siamese cat.

    Science.gov (United States)

    Lennerstrand, G

    1979-01-01

    Siamese cats are albinos with poor visual resolution and severely impaired binocular vision. Eey muscle phyiology was studied in Siamese cats as a part of a more extensive project on eye muscle properties in cats with deficient binocular vision. Isometric contractions of the inferior oblique muscle were recorded in response to single and repetitive muscle nerve stimulation. Speed of contraction, measured as twitch contraction time, fusion frequency and rate of tetanic tension rise, was lower in Siamese than in normal cats. Eye muscles of Siamese cats fatiqued more easily to continuous activation than normal cat eye mucle. These functional changes have also been found in cats with binocular defects from monocular lid suture, but were much more marked in Siamese cats. It is suggested that the eye muscle changes represent muscular adaptations to genetically caused impairments of binocular vision and visual resolution in Siamese cats.

  8. Risk factors for feline infectious peritonitis in Australian cats.

    Science.gov (United States)

    Worthing, Kate A; Wigney, Denise I; Dhand, Navneet K; Fawcett, Anne; McDonagh, Phillip; Malik, Richard; Norris, Jacqueline M

    2012-06-01

    The objective of this study was to determine whether patient signalment (age, breed, sex and neuter status) is associated with naturally-occurring feline infectious peritonitis (FIP) in cats in Australia. A retrospective comparison of the signalment between cats with confirmed FIP and the general cat population was designed. The patient signalment of 382 FIP confirmed cases were compared with the Companion Animal Register of NSW and the general cat population of Sydney. Younger cats were significantly over-represented among FIP cases. Domestic crossbred, Persian and Himalayan cats were significantly under-represented in the FIP cohort, while several breeds were over-represented, including British Shorthair, Devon Rex and Abyssinian. A significantly higher proportion of male cats had FIP compared with female cats. This study provides further evidence that FIP is a disease primarily of young cats and that significant breed and sex predilections exist in Australia. This opens further avenues to investigate the role of genetic factors in FIP.

  9. Auditory pathology in cri-du-chat (5p-) syndrome: phenotypic evidence for auditory neuropathy.

    Science.gov (United States)

    Swanepoel, D

    2007-10-01

    5p-(cri-du-chat syndrome) is a well-defined clinical entity presenting with phenotypic and cytogenetic variability. Despite recognition that abnormalities in audition are common, limited reports on auditory functioning in affected individuals are available. The current study presents a case illustrating the auditory functioning in a 22-month-old patient diagnosed with 5p- syndrome, karyotype 46,XX,del(5)(p13). Auditory neuropathy was diagnosed based on abnormal auditory evoked potentials with neural components suggesting severe to profound hearing loss in the presence of cochlear microphonic responses and behavioral reactions to sound at mild to moderate hearing levels. The current case and a review of available reports indicate that auditory neuropathy or neural dys-synchrony may be another phenotype of the condition possibly related to abnormal expression of the protein beta-catenin mapped to 5p. Implications are for routine and diagnostic specific assessments of auditory functioning and for employment of non-verbal communication methods in early intervention.

  10. Interhemispheric auditory connectivity: structure and function related to auditory verbal hallucinations.

    Science.gov (United States)

    Steinmann, Saskia; Leicht, Gregor; Mulert, Christoph

    2014-01-01

    Auditory verbal hallucinations (AVH) are one of the most common and most distressing symptoms of schizophrenia. Despite fundamental research, the underlying neurocognitive and neurobiological mechanisms are still a matter of debate. Previous studies suggested that "hearing voices" is associated with a number of factors including local deficits in the left auditory cortex and a disturbed connectivity of frontal and temporoparietal language-related areas. In addition, it is hypothesized that the interhemispheric pathways connecting right and left auditory cortices might be involved in the pathogenesis of AVH. Findings based on Diffusion-Tensor-Imaging (DTI) measurements revealed a remarkable interindividual variability in size and shape of the interhemispheric auditory pathways. Interestingly, schizophrenia patients suffering from AVH exhibited increased fractional anisotropy (FA) in the interhemispheric fibers than non-hallucinating patients. Thus, higher FA-values indicate an increased severity of AVH. Moreover, a dichotic listening (DL) task showed that the interindividual variability in the interhemispheric auditory pathways was reflected in the behavioral outcome: stronger pathways supported a better information transfer and consequently improved speech perception. This detection indicates a specific structure-function relationship, which seems to be interindividually variable. This review focuses on recent findings concerning the structure-function relationship of the interhemispheric pathways in controls, hallucinating and non-hallucinating schizophrenia patients and concludes that changes in the structural and functional connectivity of auditory areas are involved in the pathophysiology of AVH.

  11. Biological impact of auditory expertise across the life span: musicians as a model of auditory learning.

    Science.gov (United States)

    Strait, Dana L; Kraus, Nina

    2014-02-01

    Experience-dependent characteristics of auditory function, especially with regard to speech-evoked auditory neurophysiology, have garnered increasing attention in recent years. This interest stems from both pragmatic and theoretical concerns as it bears implications for the prevention and remediation of language-based learning impairment in addition to providing insight into mechanisms engendering experience-dependent changes in human sensory function. Musicians provide an attractive model for studying the experience-dependency of auditory processing in humans due to their distinctive neural enhancements compared to nonmusicians. We have only recently begun to address whether these enhancements are observable early in life, during the initial years of music training when the auditory system is under rapid development, as well as later in life, after the onset of the aging process. Here we review neural enhancements in musically trained individuals across the life span in the context of cellular mechanisms that underlie learning, identified in animal models. Musicians' subcortical physiologic enhancements are interpreted according to a cognitive framework for auditory learning, providing a model in which to study mechanisms of experience-dependent changes in human auditory function.

  12. Representation of Reward Feedback in Primate Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Michael eBrosch

    2011-02-01

    Full Text Available It is well established that auditory cortex is plastic on different time scales and that this plasticity is driven by the reinforcement that is used to motivate subjects to learn or to perform an auditory task. Motivated by these findings, we study in detail properties of neuronal firing in auditory cortex that is related to reward feedback. We recorded from the auditory cortex of two monkeys while they were performing an auditory categorization task. Monkeys listened to a sequence of tones and had to signal when the frequency of adjacent tones stepped in downward direction, irrespective of the tone frequency and step size. Correct identifications were rewarded with either a large or a small amount of water. The size of reward depended on the monkeys' performance in the previous trial: it was large after a correct trial and small after an incorrect trial. The rewards served to maintain task performance. During task performance we found three successive periods of neuronal firing in auditory cortex that reflected (1 the reward expectancy for each trial, (2 the reward size received and (3 the mismatch between the expected and delivered reward. These results, together with control experiments suggest that auditory cortex receives reward feedback that could be used to adapt auditory cortex to task requirements. Additionally, the results presented here extend previous observations of non-auditory roles of auditory cortex and shows that auditory cortex is even more cognitively influenced than lately recognized.

  13. Representation of reward feedback in primate auditory cortex.

    Science.gov (United States)

    Brosch, Michael; Selezneva, Elena; Scheich, Henning

    2011-01-01

    It is well established that auditory cortex is plastic on different time scales and that this plasticity is driven by the reinforcement that is used to motivate subjects to learn or to perform an auditory task. Motivated by these findings, we study in detail properties of neuronal firing in auditory cortex that is related to reward feedback. We recorded from the auditory cortex of two monkeys while they were performing an auditory categorization task. Monkeys listened to a sequence of tones and had to signal when the frequency of adjacent tones stepped in downward direction, irrespective of the tone frequency and step size. Correct identifications were rewarded with either a large or a small amount of water. The size of reward depended on the monkeys' performance in the previous trial: it was large after a correct trial and small after an incorrect trial. The rewards served to maintain task performance. During task performance we found three successive periods of neuronal firing in auditory cortex that reflected (1) the reward expectancy for each trial, (2) the reward-size received, and (3) the mismatch between the expected and delivered reward. These results, together with control experiments suggest that auditory cortex receives reward feedback that could be used to adapt auditory cortex to task requirements. Additionally, the results presented here extend previous observations of non-auditory roles of auditory cortex and shows that auditory cortex is even more cognitively influenced than lately recognized.

  14. Functional Connectivity of Left Heschl’s Gyrus in Vulnerability to Auditory Hallucinations in Schizophrenia

    Science.gov (United States)

    Shinn, Ann K.; Baker, Justin T.; Cohen, Bruce M.; Öngür, Dost

    2012-01-01

    Background Schizophrenia is a heterogeneous disorder that may consist of multiple etiologies and disease processes. Auditory hallucinations (AH), which are common and often disabling, represent a narrower and more basic dimension of psychosis than schizophrenia. Previous studies suggest that abnormal primary auditory cortex activity is associated with AH pathogenesis. We thus investigated functional connectivity, using a seed in primary auditory cortex, in schizophrenia patients with and without AH and healthy controls, to examine neural circuit abnormalities associated more specifically with AH than the myriad other symptoms that comprise schizophrenia. Methods Using resting-state fMRI (rsfMRI), we investigated functional connectivity of the primary auditory cortex, located on Heschl’s gyrus, in schizophrenia spectrum patients with AH. Participants were patients with schizophrenia, schizoaffective disorder, or schizophreniform disorder with lifetime AH (n=27); patients with the same diagnoses but no lifetime AH (n=14); and healthy controls (n=28). Results Patients with AH vulnerability showed increased left Heschl’s gyrus functional connectivity with left frontoparietal regions and decreased functional connectivity with right hippocampal formation and mediodorsal thalamus compared to patients without lifetime AH. Furthermore, among AH patients, left Heschl’s gyrus functional connectivity covaried positively with AH severity in left inferior frontal gyrus (Broca’s area), left lateral STG, right pre- and postcentral gyri, cingulate cortex, and orbitofrontal cortex. There were no differences between patients with and without lifetime AH in right Heschl’s gyrus seeded functional connectivity. Conclusions Abnormal interactions between left Heschl’s gyrus and regions involved in speech/language, memory, and the monitoring of self-generated events may contribute to AH vulnerability. PMID:23287311

  15. Measuring Auditory Selective Attention using Frequency Tagging

    Directory of Open Access Journals (Sweden)

    Hari M Bharadwaj

    2014-02-01

    Full Text Available Frequency tagging of sensory inputs (presenting stimuli that fluctuate periodically at rates to which the cortex can phase lock has been used to study attentional modulation of neural responses to inputs in different sensory modalities. For visual inputs, the visual steady-state response (VSSR at the frequency modulating an attended object is enhanced, while the VSSR to a distracting object is suppressed. In contrast, the effect of attention on the auditory steady-state response (ASSR is inconsistent across studies. However, most auditory studies analyzed results at the sensor level or used only a small number of equivalent current dipoles to fit cortical responses. In addition, most studies of auditory spatial attention used dichotic stimuli (independent signals at the ears rather than more natural, binaural stimuli. Here, we asked whether these methodological choices help explain discrepant results. Listeners attended to one of two competing speech streams, one simulated from the left and one from the right, that were modulated at different frequencies. Using distributed source modeling of magnetoencephalography results, we estimate how spatially directed attention modulates the ASSR in neural regions across the whole brain. Attention enhances the ASSR power at the frequency of the attended stream in the contralateral auditory cortex. The attended-stream modulation frequency also drives phase-locked responses in the left (but not right precentral sulcus (lPCS, a region implicated in control of eye gaze and visual spatial attention. Importantly, this region shows no phase locking to the distracting stream suggesting that the lPCS in engaged in an attention-specific manner. Modeling results that take account of the geometry and phases of the cortical sources phase locked to the two streams (including hemispheric asymmetry of lPCS activity help partly explain why past ASSR studies of auditory spatial attention yield seemingly contradictory

  16. Comparison of Electrophysiological Auditory Measures in Fishes.

    Science.gov (United States)

    Maruska, Karen P; Sisneros, Joseph A

    2016-01-01

    Sounds provide fishes with important information used to mediate behaviors such as predator avoidance, prey detection, and social communication. How we measure auditory capabilities in fishes, therefore, has crucial implications for interpreting how individual species use acoustic information in their natural habitat. Recent analyses have highlighted differences between behavioral and electrophysiologically determined hearing thresholds, but less is known about how physiological measures at different auditory processing levels compare within a single species. Here we provide one of the first comparisons of auditory threshold curves determined by different recording methods in a single fish species, the soniferous Hawaiian sergeant fish Abudefduf abdominalis, and review past studies on representative fish species with tuning curves determined by different methods. The Hawaiian sergeant is a colonial benthic-spawning damselfish (Pomacentridae) that produces low-frequency, low-intensity sounds associated with reproductive and agonistic behaviors. We compared saccular potentials, auditory evoked potentials (AEP), and single neuron recordings from acoustic nuclei of the hindbrain and midbrain torus semicircularis. We found that hearing thresholds were lowest at low frequencies (~75-300 Hz) for all methods, which matches the spectral components of sounds produced by this species. However, thresholds at best frequency determined via single cell recordings were ~15-25 dB lower than those measured by AEP and saccular potential techniques. While none of these physiological techniques gives us a true measure of the auditory "perceptual" abilities of a naturally behaving fish, this study highlights that different methodologies can reveal similar detectable range of frequencies for a given species, but absolute hearing sensitivity may vary considerably.

  17. At the interface of the auditory and vocal motor systems: NIf and its role in vocal processing, production and learning.

    Science.gov (United States)

    Lewandowski, Brian; Vyssotski, Alexei; Hahnloser, Richard H R; Schmidt, Marc

    2013-06-01

    Communication between auditory and vocal motor nuclei is essential for vocal learning. In songbirds, the nucleus interfacialis of the nidopallium (NIf) is part of a sensorimotor loop, along with auditory nucleus avalanche (Av) and song system nucleus HVC, that links the auditory and song systems. Most of the auditory information comes through this sensorimotor loop, with the projection from NIf to HVC representing the largest single source of auditory information to the song system. In addition to providing the majority of HVC's auditory input, NIf is also the primary driver of spontaneous activity and premotor-like bursting during sleep in HVC. Like HVC and RA, two nuclei critical for song learning and production, NIf exhibits behavioral-state dependent auditory responses and strong motor bursts that precede song output. NIf also exhibits extended periods of fast gamma oscillations following vocal production. Based on the converging evidence from studies of physiology and functional connectivity it would be reasonable to expect NIf to play an important role in the learning, maintenance, and production of song. Surprisingly, however, lesions of NIf in adult zebra finches have no effect on song production or maintenance. Only the plastic song produced by juvenile zebra finches during the sensorimotor phase of song learning is affected by NIf lesions. In this review, we carefully examine what is known about NIf at the anatomical, physiological, and behavioral levels. We reexamine conclusions drawn from previous studies in the light of our current understanding of the song system, and establish what can be said with certainty about NIf's involvement in song learning, maintenance, and production. Finally, we review recent theories of song learning integrating possible roles for NIf within these frameworks and suggest possible parallels between NIf and sensorimotor areas that form part of the neural circuitry for speech processing in humans.

  18. Tetrathyridiosis in a domestic shorthair cat

    Directory of Open Access Journals (Sweden)

    Dorothee Dahlem

    2015-11-01

    Full Text Available Case summary This report describes the clinical and parasitological findings in a domestic shorthair cat with isolated thoracic tetrathyridiosis. The cat was a stray from Malta that had lived in Germany for several years since as an indoor-only cat. Therefore, the process of infection remains very unusual. In this case it must be considered that the cat had been infected years previously while in Malta, and had lived at least 4 years without any clinical signs. It was possible to diagnose this uncommon disease and initiate an effective treatment with fenbendazole, praziquantel and supportive care. Clinical signs, as well as radiographic findings, were regressive with this treatment. Relevance and novel information Tetrathyridiosis is a rare finding in cats, especially in Germany, but it seems to be a potential differential diagnosis of pleural effusion. Mesocestoides corti, which was the causative parasite in this case, has not previously been isolated in Germany. Because tetrathyridiosis is only diagnosed post mortem in most cases, little is known about effective therapeutic options. Furthermore, clinical signs of this disease can be absent for several years and can potentially be triggered by neoplastic conditions or immunosuppression. Tetrathyridiosis seems to be a treatable disease that can be controlled by adequate antiparasitic therapy.

  19. Social referencing and cat-human communication.

    Science.gov (United States)

    Merola, I; Lazzaroni, M; Marshall-Pescini, S; Prato-Previde, E

    2015-05-01

    Cats' (Felis catus) communicative behaviour towards humans was explored using a social referencing paradigm in the presence of a potentially frightening object. One group of cats observed their owner delivering a positive emotional message, whereas another group received a negative emotional message. The aim was to evaluate whether cats use the emotional information provided by their owners about a novel/unfamiliar object to guide their own behaviour towards it. We assessed the presence of social referencing, in terms of referential looking towards the owner (defined as looking to the owner immediately before or after looking at the object), the behavioural regulation based on the owner's emotional (positive vs negative) message (vocal and facial), and the observational conditioning following the owner's actions towards the object. Most cats (79 %) exhibited referential looking between the owner and the object, and also to some extent changed their behaviour in line with the emotional message given by the owner. Results are discussed in relation to social referencing in other species (dogs in particular) and cats' social organization and domestication history.

  20. The CATS Service: an Astrophysical Research Tool

    CERN Document Server

    Verkhodanov, O V; Andernach, H; Chernenkov, V N

    2009-01-01

    We describe the current status of CATS (astrophysical CATalogs Support system), a publicly accessible tool maintained at Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS) (http://cats.sao.ru) allowing one to search hundreds of catalogs of astronomical objects discovered all along the electromagnetic spectrum. Our emphasis is mainly on catalogs of radio continuum sources observed from 10 MHz to 245 GHz, and secondly on catalogs of objects such as radio and active stars, X-ray binaries, planetary nebulae, HII regions, supernova remnants, pulsars, nearby and radio galaxies, AGN and quasars. CATS also includes the catalogs from the largest extragalactic surveys with non-radio waves. In 2008 CATS comprised a total of about 10e9 records from over 400 catalogs in the radio, IR, optical and X-ray windows, including most source catalogs deriving from observations with the Russian radio telescope RATAN-600. CATS offers several search tools through different ways of access, e.g. via web inte...

  1. ParCAT: Parallel Climate Analysis Toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Brian E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Steed, Chad A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shipman, Galen M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ricciuto, Daniel M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Thornton, Peter E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wehner, Michael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-01-01

    Climate science is employing increasingly complex models and simulations to analyze the past and predict the future of Earth s climate. This growth in complexity is creating a widening gap between the data being produced and the ability to analyze the datasets. Parallel computing tools are necessary to analyze, compare, and interpret the simulation data. The Parallel Climate Analysis Toolkit (ParCAT) provides basic tools to efficiently use parallel computing techniques to make analysis of these datasets manageable. The toolkit provides the ability to compute spatio-temporal means, differences between runs or differences between averages of runs, and histograms of the values in a data set. ParCAT is implemented as a command-line utility written in C. This allows for easy integration in other tools and allows for use in scripts. This also makes it possible to run ParCAT on many platforms from laptops to supercomputers. ParCAT outputs NetCDF files so it is compatible with existing utilities such as Panoply and UV-CDAT. This paper describes ParCAT and presents results from some example runs on the Titan system at ORNL.

  2. Impairments of auditory scene analysis in Alzheimer's disease.

    Science.gov (United States)

    Goll, Johanna C; Kim, Lois G; Ridgway, Gerard R; Hailstone, Julia C; Lehmann, Manja; Buckley, Aisling H; Crutch, Sebastian J; Warren, Jason D

    2012-01-01

    Parsing of sound sources in the auditory environment or 'auditory scene analysis' is a computationally demanding cognitive operation that is likely to be vulnerable to the neurodegenerative process in Alzheimer's disease. However, little information is available concerning auditory scene analysis in Alzheimer's disease. Here we undertook a detailed neuropsychological and neuroanatomical characterization of auditory scene analysis in a cohort of 21 patients with clinically typical Alzheimer's disease versus age-matched healthy control subjects. We designed a novel auditory dual stream paradigm based on synthetic sound sequences to assess two key generic operations in auditory scene analysis (object segregation and grouping) in relation to simpler auditory perceptual, task and general neuropsychological factors. In order to assess neuroanatomical associations of performance on auditory scene analysis tasks, structural brain magnetic resonance imaging data from the patient cohort were analysed using voxel-based morphometry. Compared with healthy controls, patients with Alzheimer's disease had impairments of auditory scene analysis, and segregation and grouping operations were comparably affected. Auditory scene analysis impairments in Alzheimer's disease were not wholly attributable to simple auditory perceptual or task factors; however, the between-group difference relative to healthy controls was attenuated after accounting for non-verbal (visuospatial) working memory capacity. These findings demonstrate that clinically typical Alzheimer's disease is associated with a generic deficit of auditory scene analysis. Neuroanatomical associations of auditory scene analysis performance were identified in posterior cortical areas including the posterior superior temporal lobes and posterior cingulate. This work suggests a basis for understanding a class of clinical symptoms in Alzheimer's disease and for delineating cognitive mechanisms that mediate auditory scene analysis

  3. Born to roam? Surveying cat owners in Tasmania, Australia, to identify the drivers and barriers to cat containment.

    Science.gov (United States)

    McLeod, Lynette J; Hine, Donald W; Bengsen, Andrew J

    2015-12-01

    Free-roaming domestic cats, Felis catus, are a major public nuisance in neighbourhoods across the world, and have been linked to biodiversity loss and a host of community health problems. Owners who let their cats roam, also place their cats at risk of serious injury. One management strategy that is gaining considerable support involves encouraging cat owners to contain their pets within their property. Contemporary behaviour change models highlight the importance of identifying drivers and barriers that encourage and discourage target behaviours such as cat containment. Results from a random dial phone survey of 356 cat owners in northern Tasmania identified four distinct cat containment profiles: owners who contained their cat all the time, owners who only contained their cat at night, owners who sporadically contained their cat with no set routine, and owners who made no attempt to contain their pet. Our results indicated that cat-owners' decisions to contain or not contain their cats were guided by a range of factors including owners' beliefs about their ability to implement an effective containment strategy and their views about the physical and psychological needs of their cats. The results are discussed in terms of improving the behavioural effectiveness of cat containment interventions by selecting appropriate behavioural change tools for the identified drivers and barriers, and developing targeted engagement strategies and messaging.

  4. Sources of subcortical projections to the superior colliculus in the cat.

    Science.gov (United States)

    Edwards, S B; Ginsburgh, C L; Henkel, C K; Stein, B E

    1979-03-15

    A comprehensive search for subcortical projections to the cat superior colliculus was conducted using the retrograde horseradish peroxidase (HRP) method. Over 40 different subcortical structures project to the superior colliculus. The more notable among these are grouped under the following categories. Visual structures: ventral lateral geniculate nucleus, parabigeminal nucleus, pretectal area (nucleus of the optic tract, posterior pretectal nucleus, nuclei of the posterior commissure). Auditory structures: inferior colliculus (external and pericentral nuclei), dorsomedial periolivary nucleus, nuclei of the trapezoid body, ventral nucleus of the lateral lemniscus. Somatosensory structures: sensory trigeminal complex (all divisions, but mainly the gamma division of nucleus oralis), dorsal column nuclei (mostly cuneate nucleus), and the lateral cervical nucleus. Catecholamine nuclei: locus coeruleus, raphe dorsalis, and the parabrachial nuclei. Cerebellum: medial, interposed, and lateral nuclei, and the perihypoglossal nuclei. Reticular areas: zona incerta, substantia nigra, midbrain tegmentum, nucleus paragigantocellularis lateralis, and the hypothalamus. Evidence is presented that only the parabigeminal nucleus, the nucleus of the optic tract, and the posterior pretectal nucleus project to the superficial collicular layers (striatum griseum superficiale and stratum opticum), while all other afferents terminate in the deeper layers of the colliculus. Also presented is information concerning the rostrocaudal distribution of some of these afferent connections. These findings stress the multiplicity and diversity of inputs to the deeper collicular layers, and more specifically, identify multiple sources of the physiologically well-known representations of the somatic and auditory modalities in the colliculus.

  5. Cutaneous xanthomas with concurrent demodicosis and dermatophytosis in a cat.

    Science.gov (United States)

    Vogelnest, L J

    2001-07-01

    Multiple cutaneous xanthomas, associated with fasting hyperlipidaemia, are described in a 9-month-old domestic long-haired cat. A severely pruritic, papular, and crusting dermatitis affecting the head and neck, initially diagnosed as lesions of the eosinophilic granuloma complex, progressively developed on the head and pinnae. Pruritus was controlled with administration of prednisolone and chlorambucil. Repeat histological examination confirmed the diagnosis of cutaneous xanthoma and concurrent mild demodicosis. Marked fasting hypercholesterolaemia, hypertriglyceridaemia and transient hyperglycaemia were subsequently confirmed. Treatment for hyperlipidaemia and xanthomas with a low-fat diet (Hill's Feline r/d) and the previously unreported treatment for feline demodicosis of daily oral milbemycin were commenced. Multiple pink, alopecic plaques and papules gradually regressed, however pruritus recurred if immunosuppressive treatment was reduced, and well-demarcated areas of alopecia developed on the head, limbs and trunk, despite negative skin scrapings for demodex mites. Fungal culture of hair samples yielded Microsporum canis. All cutaneous lesions resolved with the addition of griseofulvin to the treatment regimen. Concurrent corneal ulceration and keratoconjunctivitis sicca ultimately resolved with treatment, including topical cyclosporin. Diabetes mellitus developed 6 months after resolution of skin lesions. No cutaneous or ocular abnormalities were present 6 months later with continued low-fat diet and insulin administration, although transient recurrence of papules and pruritus occurred after inadvertent access to a fatty meal. An underlying primary hyperlipidaemia was suspected, causing pruritic xanthomas. This may represent the first report of concurrent cutaneous xanthomas, demodicosis and dermatophytosis in a cat.

  6. Top-down modulation of the auditory steady-state response in a task-switch paradigm

    Directory of Open Access Journals (Sweden)

    Nadia Müller

    2009-02-01

    Full Text Available Auditory selective attention is an important mechanism for top-down selection of the vast amount of auditory information our perceptual system is exposed to. In the present study, the impact of attention on auditory steady-state responses - previously shown to be generated in primary auditory regions - was investigated. This issue is still a matter of debate and recent findings point to a complex pattern of attentional effects on the aSSR. The present study aimed at shedding light on the involvement of ipsilateral and contralateral activations to the attended sound taking into account hemispheric differences and a possible dependency on modulation frequency. In aid of this, a dichotic listening experiment was designed using amplitude-modulated tones that were presented to the left and right ear simultaneously. Participants had to detect target tones in a cued ear while their brain activity was assessed using MEG. Thereby, a modulation of the aSSR by attention could be revealed, interestingly restricted to the left hemisphere and 20 Hz responses: Contralateral activations were enhanced while ipsilateral activations turned out to be reduced. Thus, our findings support and extend recent findings, showing that auditory attention can influence the aSSR, but only under specific circumstances and in a complex pattern regarding the different effects for ipsilateral and contralateral activations.

  7. The reduced cochlear output and the failure to adapt the central auditory response causes tinnitus in noise exposed rats.

    Directory of Open Access Journals (Sweden)

    Lukas Rüttiger

    Full Text Available Tinnitus is proposed to be caused by decreased central input from the cochlea, followed by increased spontaneous and evoked subcortical activity that is interpreted as compensation for increased responsiveness of central auditory circuits. We compared equally noise exposed rats separated into groups with and without tinnitus for differences in brain responsiveness relative to the degree of deafferentation in the periphery. We analyzed (1 the number of CtBP2/RIBEYE-positive particles in ribbon synapses of the inner hair cell (IHC as a measure for deafferentation; (2 the fine structure of the amplitudes of auditory brainstem responses (ABR reflecting differences in sound responses following decreased auditory nerve activity and (3 the expression of the activity-regulated gene Arc in the auditory cortex (AC to identify long-lasting central activity following sensory deprivation. Following moderate trauma, 30% of animals exhibited tinnitus, similar to the tinnitus prevalence among hearing impaired humans. Although both tinnitus and no-tinnitus animals exhibited a reduced ABR wave I amplitude (generated by primary auditory nerve fibers, IHCs ribbon loss and high-frequency hearing impairment was more severe in tinnitus animals, associated with significantly reduced amplitudes of the more centrally generated wave IV and V and less intense staining of Arc mRNA and protein in the AC. The observed severe IHCs ribbon loss, the minimal restoration of ABR wave size, and reduced cortical Arc expression suggest that tinnitus is linked to a failure to adapt central circuits to reduced cochlear input.

  8. Metaphyseal osteopathy in a British Shorthair cat.

    Science.gov (United States)

    Adagra, Carl; Spielman, Derek; Adagra, Angela; Foster, Darren J

    2015-04-01

    Metaphyseal osteopathy, otherwise known as hypertrophic osteodystrophy, is a disease that causes pyrexia and lethargy accompanied by pain in the thoracic and pelvic limbs of rapidly growing large-breed dogs. While metaphyseal osteopathy has been descibed in association with slipped capital femoral epiphysis in cats, it has not previously been reported as a cause of limb pain and pyrexia in this species. A 7-month-old British Shorthair cat presented with a 1 month history of pyrexia, lethargy and pain in all limbs. Investigation included radiographs of the limbs and chest, abdominal ultrasound, serum biochemical analysis, haematology, bone biopsy, joint fluid aspiration and cytology. Findings were consistent with a diagnosis of metaphyseal osteopathy. The cat's clinical signs resolved following the administration of prednisolone. Symptoms recurred 1 month after the cessation of prednisolone therapy, but resolved when administration was resumed.

  9. Hunting for the Quantum Cheshire Cat

    CERN Document Server

    Di Lorenzo, Antonio

    2012-01-01

    The proposal of Aharonov, Popescu, and Skrzypczyk [arXiv:1202.0631] of disembodying physical properties from particles is analyzed. It is argued that: (1) in order to state that the cat is at one location and the smile at another, one should look at correlations, not mean values; (2) a weak value of one for the presence of the cat describes the average over a large number of trials, where the detector gives in each trial outputs that are not zero nor one, and that are much larger than unity (they can be large and negative as well); (3) once these issues are addressed, the specific model proposed does not provide evidence for disembodiment of physical properties. Here, the exact probability distribution and its characteristic function are derived for arbitrary coupling strength, preparation and post-selection. This allows to successfully hunt down the quantum Cheshire cat.

  10. CATS Aerosol Typing and Future Directions

    Science.gov (United States)

    McGill, Matt; Yorks, John; Scott, Stan; Palm, Stephen; Hlavka, Dennis; Hart, William; Nowottnick, Ed; Selmer, Patrick; Kupchock, Andrew; Midzak, Natalie; Trepte, Chip; Vaughan, Mark; Colarco, Peter; da Silva, Arlindo

    2016-01-01

    The Cloud Aerosol Transport System (CATS), launched in January of 2015, is a lidar remote sensing instrument that will provide range-resolved profile measurements of atmospheric aerosols and clouds from the International Space Station (ISS). CATS is intended to operate on-orbit for at least six months, and up to three years. Status of CATS Level 2 and Plans for the Future:Version. 1. Aerosol Typing (ongoing): Mode 1: L1B data released later this summer; L2 data released shortly after; Identify algorithm biases (ex. striping, FOV (field of view) biases). Mode 2: Processed Released Currently working on correcting algorithm issues. Version 2 Aerosol Typing (Fall, 2016): Implementation of version 1 modifications Integrate GEOS-5 aerosols for typing guidance for non spherical aerosols. Version 3 Aerosol Typing (2017): Implementation of 1-D Var Assimilation into GEOS-5 Dynamic lidar ratio that will evolve in conjunction with simulated aerosol mixtures.

  11. Cognitive activation theory of stress (CATS).

    Science.gov (United States)

    Ursin, Holger; Eriksen, Hege R

    2010-05-01

    The cognitive activation theory of stress (CATS) is based on a long series of experiments on animals and on humans, in the laboratory, and in real life situations. From the common sense coping concept formulated by Seymour Levine; coping is when my "tommy" does not hurt, we have advanced to a systematic theory for what is behind the relaxed and happy coping rat (and cat). We also cover the translational leap to humans, starting with the now classic parachutist study. The bridge is based on formal and symbolic definitions, a theoretical short cut that Levine actually never really accepted. The essential pathophysiological concept is the potential pathological effects of sustained activation, which may occur in the absence of coping (positive response outcome expectancy). We review the current status of CATS in Behavioural Medicine by discussing its potential explanatory power in epidemiology, prevention and treatment of "subjective health complaints".

  12. Effects of location and timing of co-activated neurons in the auditory midbrain on cortical activity: implications for a new central auditory prosthesis

    Science.gov (United States)

    Straka, Małgorzata M.; McMahon, Melissa; Markovitz, Craig D.; Lim, Hubert H.

    2014-08-01

    Objective. An increasing number of deaf individuals are being implanted with central auditory prostheses, but their performance has generally been poorer than for cochlear implant users. The goal of this study is to investigate stimulation strategies for improving hearing performance with a new auditory midbrain implant (AMI). Previous studies have shown that repeated electrical stimulation of a single site in each isofrequency lamina of the central nucleus of the inferior colliculus (ICC) causes strong suppressive effects in elicited responses within the primary auditory cortex (A1). Here we investigate if improved cortical activity can be achieved by co-activating neurons with different timing and locations across an ICC lamina and if this cortical activity varies across A1. Approach. We electrically stimulated two sites at different locations across an isofrequency ICC lamina using varying delays in ketamine-anesthetized guinea pigs. We recorded and analyzed spike activity and local field potentials across different layers and locations of A1. Results. Co-activating two sites within an isofrequency lamina with short inter-pulse intervals (hearing capabilities.

  13. Consonance and dissonance of musical chords: neural correlates in auditory cortex of monkeys and humans.

    Science.gov (United States)

    Fishman, Y I; Volkov, I O; Noh, M D; Garell, P C; Bakken, H; Arezzo, J C; Howard, M A; Steinschneider, M

    2001-12-01

    Some musical chords sound pleasant, or consonant, while others sound unpleasant, or dissonant. Helmholtz's psychoacoustic theory of consonance and dissonance attributes the perception of dissonance to the sensation of "beats" and "roughness" caused by interactions in the auditory periphery between adjacent partials of complex tones comprising a musical chord. Conversely, consonance is characterized by the relative absence of beats and roughness. Physiological studies in monkeys suggest that roughness may be represented in primary auditory cortex (A1) by oscillatory neuronal ensemble responses phase-locked to the amplitude-modulated temporal envelope of complex sounds. However, it remains unknown whether phase-locked responses also underlie the representation of dissonance in auditory cortex. In the present study, responses evoked by musical chords with varying degrees of consonance and dissonance were recorded in A1 of awake macaques and evaluated using auditory-evoked potential (AEP), multiunit activity (MUA), and current-source density (CSD) techniques. In parallel studies, intracranial AEPs evoked by the same musical chords were recorded directly from the auditory cortex of two human subjects undergoing surgical evaluation for medically intractable epilepsy. Chords were composed of two simultaneous harmonic complex tones. The magnitude of oscillatory phase-locked activity in A1 of the monkey correlates with the perceived dissonance of the musical chords. Responses evoked by dissonant chords, such as minor and major seconds, display oscillations phase-locked to the predicted difference frequencies, whereas responses evoked by consonant chords, such as octaves and perfect fifths, display little or no phase-locked activity. AEPs recorded in Heschl's gyrus display strikingly similar oscillatory patterns to those observed in monkey A1, with dissonant chords eliciting greater phase-locked activity than consonant chords. In contrast to recordings in Heschl's gyrus

  14. Development of the cat-owner relationship scale (CORS).

    Science.gov (United States)

    Howell, Tiffani J; Bowen, Jonathan; Fatjó, Jaume; Calvo, Paula; Holloway, Anna; Bennett, Pauleen C

    2017-03-07

    Characteristics of the human-animal bond can be influenced by both owner-related and pet-related factors, which likely differ between species. Three studies adapted the Monash Dog-Owner Relationship Scale (MDORS) to permit assessment of human-cat interactions as perceived by the cat's owner. In Study 1293 female cat owners completed a modified version of the MDORS, where 'dog' was replaced with 'cat' for all items. Responses were compared with a matched sample of female dog owners. A partial least squares discriminant analysis revealed systematic differences between cat and dog owners in the Dog (Cat)-Owner Interaction subscale (MDORS subscale 1), but not for Perceived Emotional Closeness or Perceived Costs (Subscales 2 and 3). Study 2 involved analysis of free-text descriptions of cat-owner interactions provided by 61 female cat owners. Text mining identified key words which were used to create additional questions for a new Cat-Owner Interaction subscale. In Study 3, the resulting cat-owner relationship scale (CORS) was tested in a group of 570 cat owners. The main psychometric properties of the scale, including internal consistency and factor structure, were evaluated. We propose that this scale can be used to accurately assess owner perceptions of their relationship with their cat. A modified scale, combining items from the CORS and MDORS (a C/DORS), is also provided for when researchers would find it desirable to compare human-cat and human-dog interactions.

  15. Lateral bias and temperament in the domestic cat (Felis silvestris).

    Science.gov (United States)

    McDowell, Louise J; Wells, Deborah L; Hepper, Peter G; Dempster, Martin

    2016-11-01

    Research points to a relationship between lateralization and emotional functioning in humans and many species of animal. The present study explored the association between paw preferences and emotional functioning, specifically temperament, in a species thus far overlooked in this area, the domestic cat. Thirty left-pawed, 30 right-pawed, and 30 ambilateral pet cats were recruited following an assessment of their paw preferences using a food-reaching challenge. The animals' temperament was subsequently assessed using the Feline Temperament Profile (FTP). Cats' owners also completed a purpose-designed cat temperament (CAT) scale. Analysis revealed a significant relationship between lateral bias and FTP and CAT scale scores. Ambilateral cats had lower positive (FTP+) scores, and were perceived as less affectionate, obedient, friendly, and more aggressive, than left or right-pawed animals. Left and right pawed cats differed significantly on 1 trait on the CAT scale, namely playfulness. The strength of the cats' paw preferences was related to the animals' FTP and CAT scores. Cats with a greater strength of paw preference had higher FTP+ scores than those with a weaker strength of paw preference. Animals with stronger paw preferences were perceived as more confident, affectionate, active, and friendly than those with weaker paw preferences. Results suggest that motor laterality in the cat is strongly related to temperament and that the presence or absence of lateralization has greater implications for the expression of emotion in this species than the direction of the lateralized bias. (PsycINFO Database Record

  16. Astaxanthin uptake in domestic dogs and cats

    Directory of Open Access Journals (Sweden)

    Massimino Stefan

    2010-06-01

    Full Text Available Abstract Background Research on the uptake and transport of astaxanthin is lacking in most species. We studied the uptake of astaxanthin by plasma, lipoproteins and leukocytes in domestic dogs and cats. Methods Mature female Beagle dogs (18 to 19 mo old; 11 to 14 kg BW were dosed orally with 0, 0.1, 0.5, 2.5, 10 or 40 mg astaxanthin and blood taken at 0, 3, 6, 9, 12, 18 and 24 h post-administration (n = 8/treatment. Similarly, mature domestic short hair cats (12 mo old; 3 to 3.5 kg body weight were fed a single dose of 0, 0.02, 0.08, 0.4, 2, 5, or 10 mg astaxanthin and blood taken (n = 8/treatment at the same interval. Results Both dogs and cats showed similar biokinetic profiles. Maximal astaxanthin concentration in plasma was approximately 0.14 μmol/L in both species, and was observed at 6 h post-dosing. The plasma astaxanthin elimination half-life was 9 to 18 h. Astaxanthin was still detectable by 24 h in both species. In a subsequent study, dogs and cats were fed similar doses of astaxanthin daily for 15 to 16 d and astaxanthin uptake by plasma, lipoproteins, and leukocytes studied. In both species, plasma astaxanthin concentrations generally continued to increase through d 15 or 16 of supplementation. The astaxanthin was mainly associated with high density lipoprotein (HDL. In blood leukocytes, approximately half of the total astaxanthin was found in the mitochondria, with significant amounts also associated with the microsomes and nuclei. Conclusion Dogs and cats absorb astaxanthin from the diet. In the blood, the astaxanthin is mainly associated with HDL, and is taken up by blood leukocytes, where it is distributed to all subcellular organelles. Certain aspects of the biokinetic uptake of astaxanthin in dogs and cats are similar to that in humans.

  17. Attention Modulates the Auditory Cortical Processing of Spatial and Category Cues in Naturalistic Auditory Scenes

    Science.gov (United States)

    Renvall, Hanna; Staeren, Noël; Barz, Claudia S.; Ley, Anke; Formisano, Elia

    2016-01-01

    This combined fMRI and MEG study investigated brain activations during listening and attending to natural auditory scenes. We first recorded, using in-ear microphones, vocal non-speech sounds, and environmental sounds that were mixed to construct auditory scenes containing two concurrent sound streams. During the brain measurements, subjects attended to one of the streams while spatial acoustic information of the scene was either preserved (stereophonic sounds) or removed (monophonic sounds). Compared to monophonic sounds, stereophonic sounds evoked larger blood-oxygenation-level-dependent (BOLD) fMRI responses in the bilateral posterior superior temporal areas, independent of which stimulus attribute the subject was attending to. This finding is consistent with the functional role of these regions in the (automatic) processing of auditory spatial cues. Additionally, significant differences in the cortical activation patterns depending on the target of attention were observed. Bilateral planum temporale and inferior frontal gyrus were preferentially activated when attending to stereophonic environmental sounds, whereas when subjects attended to stereophonic voice sounds, the BOLD responses were larger at the bilateral middle superior temporal gyrus and sulcus, previously reported to show voice sensitivity. In contrast, the time-resolved MEG responses were stronger for mono- than stereophonic sounds in the bilateral auditory cortices at ~360 ms after the stimulus onset when attending to the voice excerpts within the combined sounds. The observed effects suggest that during the segregation of auditory objects from the auditory background, spatial sound cues together with other relevant temporal and spectral cues are processed in an attention-dependent manner at the cortical locations generally involved in sound recognition. More synchronous neuronal activation during monophonic than stereophonic sound processing, as well as (local) neuronal inhibitory mechanisms in

  18. Plasticity in the rat posterior auditory field following nucleus basalis stimulation.

    Science.gov (United States)

    Puckett, Amanda C; Pandya, Pritesh K; Moucha, Raluca; Dai, WeiWei; Kilgard, Michael P

    2007-07-01

    Classical conditioning paradigms have been shown to cause frequency-specific plasticity in both primary and secondary cortical areas. Previous research demonstrated that repeated pairing of nucleus basalis (NB) stimulation with a tone results in plasticity in primary auditory cortex (A1), mimicking the changes observed after classical conditioning. However, few studies have documented the effects of similar paradigms in secondary cortical areas. The purpose of this study was to quantify plasticity in the posterior auditory field (PAF) of the rat after NB stimulation paired with a high-frequency tone. NB-tone pairing increased the frequency selectivity of PAF sites activated by the paired tone. This frequency-specific receptive field size narrowing led to a reorganization of PAF such that responses to low- and mid-frequency tones were reduced by 40%. Plasticity in A1 was consistent with previous studies -- pairing a high-frequency tone with NB stimulation expanded the high-frequency region of the frequency map. Receptive field sizes did not change, but characteristic frequencies in A1 were shifted after NB-tone pairing. These results demonstrate that experience-dependent plasticity can take different forms in both A1 and secondary auditory cortex.

  19. Neural substrates related to auditory working memory comparisons in dyslexia: an fMRI study.

    Science.gov (United States)

    Conway, Tim; Heilman, Kenneth M; Gopinath, Kaundinya; Peck, Kyung; Bauer, Russell; Briggs, Richard W; Torgesen, Joseph K; Crosson, Bruce

    2008-07-01

    Adult readers with developmental phonological dyslexia exhibit significant difficulty comparing pseudowords and pure tones in auditory working memory (AWM). This suggests deficient AWM skills for adults diagnosed with dyslexia. Despite behavioral differences, it is unknown whether neural substrates of AWM differ between adults diagnosed with dyslexia and normal readers. Prior neuroimaging of adults diagnosed with dyslexia and normal readers, and post-mortem findings of neural structural anomalies in adults diagnosed with dyslexia support the hypothesis of atypical neural activity in temporoparietal and inferior frontal regions during AWM tasks in adults diagnosed with dyslexia. We used fMRI during two binaural AWM tasks (pseudowords or pure tones comparisons) in adults diagnosed with dyslexia (n = 11) and normal readers (n = 11). For both AWM tasks, adults diagnosed with dyslexia exhibited greater activity in left posterior superior temporal (BA 22) and inferior parietal regions (BA 40) than normal readers. Comparing neural activity between groups and between stimuli contrasts (pseudowords vs. tones), adults diagnosed with dyslexia showed greater primary auditory cortex activity (BA 42; tones > pseudowords) than normal readers. Thus, greater activity in primary auditory, posterior superior temporal, and inferior parietal cortices during linguistic and non-linguistic AWM tasks for adults diagnosed with dyslexia compared to normal readers indicate differences in neural substrates of AWM comparison tasks.

  20. Clinical management of pregnancy in cats.

    Science.gov (United States)

    Root Kustritz, Margaret V

    2006-07-01

    Average gestation length in domestic cats is 65.6 days, with a range of 52-74 days. Average reported litter size is 4.0 kittens per litter; litter size is not correlated with number of matings in a given estrus. Superfecundation is common in domestic cats; superfetation never has been definitively proven to occur. Eclampsia may occur during pregnancy in queens, with non-specific clinical signs. Ectopic pregnancy and uterine torsion have been reported. Pregnancy loss may be due to infectious causes, including bacteria, viruses or protozoa, or non-infectious causes, such as hypoluteoidism and chromosome errors.

  1. Amputation for histiocytic sarcoma in a cat.

    Science.gov (United States)

    Teshima, Takahiro; Hata, Takashi; Nezu, Yoko; Michishita, Masaki; Matsumoto, Hirotaka; Mizutani, Hisashi; Takahashi, Kimimasa; Koyama, Hidekazu

    2012-02-01

    A 9-year-old spayed female domestic shorthair cat presented with a skin lesion of the left tarsus. The lesion was biopsied and, based on the microscopic appearance and immunohistochemical characteristics, histiocytic sarcoma was diagnosed. Amputation was performed with improved demeanor seen postoperatively. However, between 44 and 60 days following the surgery, relapse of skin lesions appeared in multiple locations, including at the previous amputation site, and euthanasia was elected. This is the first report of a histiocytic sarcoma treated with amputation in a cat.

  2. Halal Cat Food for the World Market

    Directory of Open Access Journals (Sweden)

    Amir H.M.S

    2014-01-01

    Full Text Available Currently, University Technology Malaysia (UTM is engaged with a well-known private company in Malaysia to develop halal cat food for the world. A team of scientists from UTM was formed for the development of cat food from preparing palatants to producing canned cat and kibbled cat food formulation on a commercial scale to fulfil the vast market demand, as well as to act as contract manufacturer for this private company. Financial aid is made available by the university and Malaysian government. The promising market potential of cat food is estimated to be over USD27 billion with over 7 million tonnes produced in 2013 (35% of the pet food market. It is expected to grow at 5.5% in value and 2% in volume; and this had driven the project to be initiated by UTM. The idea of halal, itself is a selling point to the Muslim consumers and the world at large.  The world’s Muslim population is estimated to be around 1.6 billion, while the world population is estimated to be at 4.6 billion. The demand for halal products is ever growing with emerging markets in India & China.  In addition, the purchasing power of the Muslims is growing, where between 1990 and 2010, the Growth Domestic Product (GDP per capita for Muslims globally had risen from a Cumulative Annual Growth Rate (CAGR of 6.8% in comparison to global GDP per capita which is only at CAGR of 5.0%. Cat food will come in human contact during feeding, handling, cleaning of feeding utensils under the same washing basin and dishwasher. Many times cat food will engage with human food storage facilities such as in the refrigerator and May to some extent affect the human food chain if it is not halal. Most of the available cat feed produce worldwide is non halal and majority are known to contain residues of porcine, dog materials and blood meal, deem unhealthy and unclean by the Muslims community.

  3. Metabolic Profiling Reveals Effects of Age, Sexual Development and Neutering in Plasma of Young Male Cats

    Science.gov (United States)

    Allaway, David; Gilham, Matthew S.; Colyer, Alison; Jönsson, Thomas J.; Swanson, Kelly S.; Morris, Penelope J.

    2016-01-01

    Neutering is a significant risk factor for obesity in cats. The mechanisms that promote neuter-associated weight gain are not well understood but following neutering, acute changes in energy expenditure and energy consumption have been observed. Metabolic profiling (GC-MS and UHPLC-MS-MS) was used in a longitudinal study to identify changes associated with age, sexual development and neutering in male cats fed a nutritionally-complete dry diet to maintain an ideal body condition score. At eight time points, between 19 and 52 weeks of age, fasted blood samples were taken from kittens neutered at either 19 weeks of age (Early Neuter (EN), n = 8) or at 31 weeks of age (Conventional Neuter (CN), n = 7). Univariate and multivariate analyses were used to compare plasma metabolites (n = 370) from EN and CN cats. Age was the primary driver of variance in the plasma metabolome, including a developmental change independent of neuter group between 19 and 21 weeks in lysolipids and fatty acid amides. Changes associated with sexual development and its subsequent loss were also observed, with differences at some time points observed between EN and CN cats for 45 metabolites (FDR p<0.05). Pathway Enrichment Analysis also identified significant effects in 20 pathways, dominated by amino acid, sterol and fatty acid metabolism. Most changes were interpretable within the context of male sexual development, and changed following neutering in the CN group. Felinine metabolism in CN cats was the most significantly altered pathway, increasing during sexual development and decreasing acutely following neutering. Felinine is a testosterone-regulated, felid-specific glutathione derivative secreted in urine. Alterations in tryptophan, histidine and tocopherol metabolism observed in peripubertal cats may be to support physiological functions of glutathione following diversion of S-amino acids for urinary felinine secretion. PMID:27942045

  4. Evaluation of ALA-induced PpIX as a photosensitizer for PDT in cats

    Science.gov (United States)

    Lucroy, Michael D.; Edwards, Benjamin F.; Peavy, George M.; Krasieva, Tatiana B.; Griffey, Stephen M.; Madewell, Bruce R.

    1998-07-01

    Given exogenously, ALA defeats intrinsic regulatory feedback mechanisms allowing intracellular accumulation of protoporphyrin IX (PpIX), a highly efficient photosensitizer. In vivo, PpIX synthesis in neoplastic mammary tissues averages 20-fold higher than in normal mammary tissues. PpIX is retained intracellularly, unlike perivascular localization of other photosensitizers, and it is then cleared quickly from the body. In vitro, ALA induced PpIX production in our laboratory in 6 cell lines tested, including an established feline kidney cell line and dermal fibroblasts from primary skin biopsy explant, resulting in photosensitization. Fluorescent microscopy confirmed PpIX production in skin adnexae following ALA administration in a normal cat. To evaluate toxicity, three cats were treated with a single i.v. dose of ALA (either 100, 200, of 400 mg/kg) and followed for 7 days. Cats receiving 100 or 200 mg/kg ALA i.v. had elevated liver enzymes and bilirubin within 24 hours. Histopathology revealed hydropic changes in the liver and renal fibrosis. The cat receiving 400 mg/kg ALA intravenously had cutaneous flush, bradycardia and apnea associated with ALA administration; within 24 hours the cat was lethargic, anorectic and icteric. ALT, AST and bilirubin concentrations had increased significantly. At necropsy the liver had a prominent lobular pattern; histopathology revealed severe periportal hepatitis and splenic necrosis. Systemically administered ALA induces PpIX production, but toxicity may preclude its clinical application in the cat. PpIX levels seem to be more time dependent than those dependent at these three ALA doses and they are well beyond the saturation point for adequate PpIX conversion. The literature is scant regarding toxicity associated with parenteral administration of ALA.

  5. Histological Basis of Laminar MRI Patterns in High Resolution Images of Fixed Human Auditory Cortex

    Science.gov (United States)

    Wallace, Mark N.; Cronin, Matthew J.; Bowtell, Richard W.; Scott, Ian S.; Palmer, Alan R.; Gowland, Penny A.

    2016-01-01

    Functional magnetic resonance imaging (fMRI) studies of the auditory region of the temporal lobe would benefit from the availability of image contrast that allowed direct identification of the primary auditory cortex, as this region cannot be accurately located using gyral landmarks alone. Previous work has suggested that the primary area can be identified in magnetic resonance (MR) images because of its relatively high myelin content. However, MR images are also affected by the iron content of the tissue and in this study we sought to confirm that different MR image contrasts did correlate with the myelin content in the gray matter and were not primarily affected by iron content as is the case in the primary visual and somatosensory areas. By imaging blocks of fixed post-mortem cortex in a 7 T scanner and then sectioning them for histological staining we sought to assess the relative contribution of myelin and iron to the gray matter contrast in the auditory region. Evaluating the image contrast in T2*-weighted images and quantitative R2* maps showed a reasonably high correlation between the myelin density of the gray matter and the intensity of the MR images. The correlation with T1-weighted phase sensitive inversion recovery (PSIR) images was better than with the previous two image types, and there were clearly differentiated borders between adjacent cortical areas in these images. A significant amount of iron was present in the auditory region, but did not seem to contribute to the laminar pattern of the cortical gray matter in MR images. Similar levels of iron were present in the gray and white matter and although iron was present in fibers within the gray matter, these fibers were fairly uniformly distributed across the cortex. Thus, we conclude that T1- and T2*-weighted imaging sequences do demonstrate the relatively high myelin levels that are characteristic of the deep layers in primary auditory cortex and allow it and some of the surrounding areas to be

  6. Impaired auditory sampling in dyslexia: Further evidence from combined fMRI and EEG

    Directory of Open Access Journals (Sweden)

    Katia eLehongre

    2013-08-01

    Full Text Available The aim of the present study was to explore auditory cortical oscillation properties in developmental dyslexia. We recorded cortical activity in 17 dyslexic participants and 15 matched controls using simultaneous EEG and fMRI during passive viewing of an audiovisual movie. We compared the distribution of brain oscillations in the delta, theta and gamma ranges over left and right auditory cortices. In controls, our results are consistent with the hypothesis that there is a dominance of gamma oscillations in the left hemisphere and a dominance of delta-theta oscillations in the right hemisphere. In dyslexics, we did not find such an interaction, but similar oscillations in both hemispheres. Thus, our results confirm that the primary cortical disruption in dyslexia lies in a lack of hemispheric specialization for gamma oscillations, which might disrupt the representation of or the access to phonemic units.

  7. Neurochemical correlates of. gamma. -aminobutyrate (GABA) inhibition in cat visual cortex

    Energy Technology Data Exchange (ETDEWEB)

    Balcar, V.J.; Dreher, B. (Univ. of Sydney (Australia))

    1990-01-01

    High affinity binding of ({sup 3}H){gamma}-aminobutyric acid (GABA) to neuronal membranes from different parts of cat visual cortex was tested for sensitivity to GABA{sub A} agonists isoguvacine and THIP, GABA{sub A} antagonist SR95531 and GABA{sub B} agonist baclofen. Some of the GABA{sub A}-binding sites were found to have a very low affinity for THIP, suggesting the presence and, possibly, uneven distribution of non-synaptic GABA{sub A} receptors in cat visual cortex. There were no differences in K{sub m} and V{sub max} values of high affinity uptake of GABA and in the potency of K{sup +}-stimulated release of GABA, between primary and association cortices. Consequently, the present results indicate that despite the anatomical and physiological differences between the primary and association feline visual cortices the neurochemical characteristics of GABAergic inhibition are very similar in the two regions.

  8. Translational cancer vaccine: from mouse to human to cat

    Science.gov (United States)

    Levenson, Richard

    2015-03-01

    Acanthomatous ameloblastoma is a locally invasive tumor arising in the gingiva that can progress rapidly, invade and destroy bone. If the lesion involves the upper jaw, surgical excision may not be possible and while local control is imperative, other therapies have not been fully evaluated. The primary author's personal cat, Gabriella, developed this tumor, with gingival masses around teeth in the upper jaw and evidence of widespread bony destruction of the hard palate. Because of his involvement with Immunophotonics Inc. as an advisor, the author was aware of an in situ autologous cancer vaccine (inCVAX) that is currently under development by the company. One session was performed in a veterinary clinic in Arkansas, and two follow-up sessions at the small animal hospital at the UC Davis veterinary school. No other therapy was provided. As of this writing, 3+ years after first treatment and 3 years, 4 months after presentation, Gabriella is well, with no evidence of disease.

  9. Osteochondroma in a young cat infected by feline leukemia virus

    Directory of Open Access Journals (Sweden)

    Matheus de Oliveira Reis

    Full Text Available ABSTRACT: Osteochondromas are primary bone tumors characterized by cartilage-covered bone projections involving single or multiple masses (osteochondromatosis. This study reports the clinical and pathological findings from a young domestic cat with osteochondroma in the humerus. During the clinical evaluation, the animal had pronounced right forelimb musculature atrophy and an increased distal humeral volume. Histopathological examination of the neoplasm revealed a proliferative lesion characterized mostly by endochondral ossification and peripheral foci of proliferating cartilage tissue. Further testing using immunohistochemical staining and polymerase chain reaction revealed the presence of feline leukemia virus antigens in the hematopoietic cells of the bone marrow and FeLV proviral DNA in the peripheral blood lymphocytes. Clinical and pathological findings are consistent with osteochondroma. This neoplasm occurred in an eight-month-old feline with humeral enlargement that had been present since two months old.

  10. Bird Flu Strain May Have Jumped from Cat to Human

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_162717.html Bird Flu Strain May Have Jumped From Cat to ... would be the first known transmission of this bird flu strain from cat to human, officials said. ...

  11. Cat Scratch Can Sometimes Lead to Serious Illness: CDC

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_161086.html Cat Scratch Can Sometimes Lead to Serious Illness: CDC But ... Fluffy the cat gets out of sorts and scratches you, it's possible you could get a bacterial ...

  12. Keep Your Dogs and Cats Safe From Holiday Hazards

    Science.gov (United States)

    ... For Consumers Consumer Updates Keep Your Dogs and Cats Safe From Holiday Hazards Share Tweet Linkedin Pin ... leave your leftover tinsel, string, and ribbons. “Your cat may find these decorations irresistible because they look ...

  13. Processing of communication calls in Guinea pig auditory cortex.

    Directory of Open Access Journals (Sweden)

    Jasmine M S Grimsley

    Full Text Available Vocal communication is an important aspect of guinea pig behaviour and a large contributor to their acoustic environment. We postulated that some cortical areas have distinctive roles in processing conspecific calls. In order to test this hypothesis we presented exemplars from all ten of their main adult vocalizations to urethane anesthetised animals while recording from each of the eight areas of the auditory cortex. We demonstrate that the primary area (AI and three adjacent auditory belt areas contain many units that give isomorphic responses to vocalizations. These are the ventrorostral belt (VRB, the transitional belt area (T that is ventral to AI and the small area (area S that is rostral to AI. Area VRB has a denser representation of cells that are better at discriminating among calls by using either a rate code or a temporal code than any other area. Furthermore, 10% of VRB cells responded to communication calls but did not respond to stimuli such as clicks, broadband noise or pure tones. Area S has a sparse distribution of call responsive cells that showed excellent temporal locking, 31% of which selectively responded to a single call. AI responded well to all vocalizations and was much more responsive to vocalizations than the adjacent dorsocaudal core area. Areas VRB, AI and S contained units with the highest levels of mutual information about call stimuli. Area T also responded well to some calls but seems to be specialized for low sound levels. The two dorsal belt areas are comparatively unresponsive to vocalizations and contain little information about the calls. AI projects to areas S, VRB and T, so there may be both rostral and ventral pathways for processing vocalizations in the guinea pig.

  14. Determinants of Cat Choice and Outcomes for Adult Cats and Kittens Adopted from an Australian Animal Shelter.

    Science.gov (United States)

    Zito, Sarah; Paterson, Mandy; Vankan, Dianne; Morton, John; Bennett, Pauleen; Phillips, Clive

    2015-04-29

    The percentage of adult cats euthanized in animal shelters is greater than that of kittens because adult cats are less likely to be adopted. This study aimed to provide evidence to inform the design of strategies to encourage adult cat adoptions. One such strategy is to discount adoption prices, but there are concerns that this may result in poor adoption outcomes. We surveyed 382 cat adopters at the time of adoption, to assess potential determinants of adopters' cat age group choice (adult or kitten) and, for adult cat adopters, the price they are willing to pay. The same respondents were surveyed again 6-12 months after the adoption to compare outcomes between cat age groups and between adult cats in two price categories. Most adopters had benevolent motivations for adopting from the shelter and had put considerable thought into the adoption and requirements for responsible ownership. However, adult cat adopters were more likely to have been influenced by price than kitten adopters. Adoption outcomes were generally positive for both adult cats and kittens and for adult cats adopted at low prices. The latter finding alleviates concerns about the outcomes of "low-cost" adoptions in populations, such as the study population, and lends support for the use of "low-cost" adoptions as an option for attempting to increase adoption rates. In addition, the results provide information that can be used to inform future campaigns aimed at increasing the number of adult cat adoptions, particularly in devising marketing strategies for adult cats.

  15. Selective memory retrieval of auditory what and auditory where involves the ventrolateral prefrontal cortex.

    Science.gov (United States)

    Kostopoulos, Penelope; Petrides, Michael

    2016-02-16

    There is evidence from the visual, verbal, and tactile memory domains that the midventrolateral prefrontal cortex plays a critical role in the top-down modulation of activity within posterior cortical areas for the selective retrieval of specific aspects of a memorized experience, a functional process often referred to as active controlled retrieval. In the present functional neuroimaging study, we explore the neural bases of active retrieval for auditory nonverbal information, about which almost nothing is known. Human participants were scanned with functional magnetic resonance imaging (fMRI) in a task in which they were presented with short melodies from different locations in a simulated virtual acoustic environment within the scanner and were then instructed to retrieve selectively either the particular melody presented or its location. There were significant activity increases specifically within the midventrolateral prefrontal region during the selective retrieval of nonverbal auditory information. During the selective retrieval of information from auditory memory, the right midventrolateral prefrontal region increased its interaction with the auditory temporal region and the inferior parietal lobule in the right hemisphere. These findings provide evidence that the midventrolateral prefrontal cortical region interacts with specific posterior cortical areas in the human cerebral cortex for the selective retrieval of object and location features of an auditory memory experience.

  16. An Auditory Model with Hearing Loss

    DEFF Research Database (Denmark)

    Nielsen, Lars Bramsløw

    An auditory model based on the psychophysics of hearing has been developed and tested. The model simulates the normal ear or an impaired ear with a given hearing loss. Based on reviews of the current literature, the frequency selectivity and loudness growth as functions of threshold and stimulus...... level have been found and implemented in the model. The auditory model was verified against selected results from the literature, and it was confirmed that the normal spread of masking and loudness growth could be simulated in the model. The effects of hearing loss on these parameters was also...... in qualitative agreement with recent findings. The temporal properties of the ear have currently not been included in the model. As an example of a real-world application of the model, loudness spectrograms for a speech utterance were presented. By introducing hearing loss, the speech sounds became less audible...

  17. Deafness in cochlear and auditory nerve disorders.

    Science.gov (United States)

    Hopkins, Kathryn

    2015-01-01

    Sensorineural hearing loss is the most common type of hearing impairment worldwide. It arises as a consequence of damage to the cochlea or auditory nerve, and several structures are often affected simultaneously. There are many causes, including genetic mutations affecting the structures of the inner ear, and environmental insults such as noise, ototoxic substances, and hypoxia. The prevalence increases dramatically with age. Clinical diagnosis is most commonly accomplished by measuring detection thresholds and comparing these to normative values to determine the degree of hearing loss. In addition to causing insensitivity to weak sounds, sensorineural hearing loss has a number of adverse perceptual consequences, including loudness recruitment, poor perception of pitch and auditory space, and difficulty understanding speech, particularly in the presence of background noise. The condition is usually incurable; treatment focuses on restoring the audibility of sounds made inaudible by hearing loss using either hearing aids or cochlear implants.

  18. Anatomy and Physiology of the Auditory Tracts

    Directory of Open Access Journals (Sweden)

    Mohammad hosein Hekmat Ara

    1999-03-01

    Full Text Available Hearing is one of the excel sense of human being. Sound waves travel through the medium of air and enter the ear canal and then hit the tympanic membrane. Middle ear transfer almost 60-80% of this mechanical energy to the inner ear by means of “impedance matching”. Then, the sound energy changes to traveling wave and is transferred based on its specific frequency and stimulates organ of corti. Receptors in this organ and their synapses transform mechanical waves to the neural waves and transfer them to the brain. The central nervous system tract of conducting the auditory signals in the auditory cortex will be explained here briefly.

  19. Modeling auditory evoked potentials to complex stimuli

    DEFF Research Database (Denmark)

    Rønne, Filip Munch

    The auditory evoked potential (AEP) is an electrical signal that can be recorded from electrodes attached to the scalp of a human subject when a sound is presented. The signal is considered to reflect neural activity in response to the acoustic stimulation and is a well established clinical...... clinically and in research towards using realistic and complex stimuli, such as speech, to electrophysiologically assess the human hearing. However, to interpret the AEP generation to complex sounds, the potential patterns in response to simple stimuli needs to be understood. Therefore, the model was used...... to simulate auditory brainstem responses (ABRs) evoked by classic stimuli like clicks, tone bursts and chirps. The ABRs to these simple stimuli were compared to literature data and the model was shown to predict the frequency dependence of tone-burst ABR wave-V latency and the level-dependence of ABR wave...

  20. Neurophysiological mechanisms involved in auditory perceptual organization

    Directory of Open Access Journals (Sweden)

    Aurélie Bidet-Caulet

    2009-09-01

    Full Text Available In our complex acoustic environment, we are confronted with a mixture of sounds produced by several simultaneous sources. However, we rarely perceive these sounds as incomprehensible noise. Our brain uses perceptual organization processes to independently follow the emission of each sound source over time. If the acoustic properties exploited in these processes are well-established, the neurophysiological mechanisms involved in auditory scene analysis have raised interest only recently. Here, we review the studies investigating these mechanisms using electrophysiological recordings from the cochlear nucleus to the auditory cortex, in animals and humans. Their findings reveal that basic mechanisms such as frequency selectivity, forward suppression and multi-second habituation shape the automatic brain responses to sounds in a way that can account for several important characteristics of perceptual organization of both simultaneous and successive sounds. One challenging question remains unresolved: how are the resulting activity patterns integrated to yield the corresponding conscious perceptsµ

  1. Cognitive mechanisms associated with auditory sensory gating.

    Science.gov (United States)

    Jones, L A; Hills, P J; Dick, K M; Jones, S P; Bright, P

    2016-02-01

    Sensory gating is a neurophysiological measure of inhibition that is characterised by a reduction in the P50 event-related potential to a repeated identical stimulus. The objective of this work was to determine the cognitive mechanisms that relate to the neurological phenomenon of auditory sensory gating. Sixty participants underwent a battery of 10 cognitive tasks, including qualitatively different measures of attentional inhibition, working memory, and fluid intelligence. Participants additionally completed a paired-stimulus paradigm as a measure of auditory sensory gating. A correlational analysis revealed that several tasks correlated significantly with sensory gating. However once fluid intelligence and working memory were accounted for, only a measure of latent inhibition and accuracy scores on the continuous performance task showed significant sensitivity to sensory gating. We conclude that sensory gating reflects the identification of goal-irrelevant information at the encoding (input) stage and the subsequent ability to selectively attend to goal-relevant information based on that previous identification.

  2. [Treatment of systemic hypertension associated with kidney disease in the dog and cat].

    Science.gov (United States)

    Buoncompagni, S; Bowles, M H

    2014-01-01

    Systemic hypertension is an increasingly diagnosed disorder in dogs and cats and frequently occurs secondary to chronic kidney disease. Prevention of damage to organs such as the kidneys, brain, heart, and eyes is one of the primary concerns in the management of veterinary patients with hypertension. This article reviews the guidelines for antihypertensive therapy in patients with, or at risk for, kidney disease, including the initiation of treatment and currently recommended medications.

  3. Lesions in the external auditory canal

    Directory of Open Access Journals (Sweden)

    Priyank S Chatra

    2011-01-01

    Full Text Available The external auditory canal is an S- shaped osseo-cartilaginous structure that extends from the auricle to the tympanic membrane. Congenital, inflammatory, neoplastic, and traumatic lesions can affect the EAC. High-resolution CT is well suited for the evaluation of the temporal bone, which has a complex anatomy with multiple small structures. In this study, we describe the various lesions affecting the EAC.

  4. Midbrain auditory selectivity to natural sounds.

    Science.gov (United States)

    Wohlgemuth, Melville J; Moss, Cynthia F

    2016-03-01

    This study investigated auditory stimulus selectivity in the midbrain superior colliculus (SC) of the echolocating bat, an animal that relies on hearing to guide its orienting behaviors. Multichannel, single-unit recordings were taken across laminae of the midbrain SC of the awake, passively listening big brown bat, Eptesicus fuscus. Species-specific frequency-modulated (FM) echolocation sound sequences with dynamic spectrotemporal features served as acoustic stimuli along with artificial sound sequences matched in bandwidth, amplitude, and duration but differing in spectrotemporal structure. Neurons in dorsal sensory regions of the bat SC responded selectively to elements within the FM sound sequences, whereas neurons in ventral sensorimotor regions showed broad response profiles to natural and artificial stimuli. Moreover, a generalized linear model (GLM) constructed on responses in the dorsal SC to artificial linear FM stimuli failed to predict responses to natural sounds and vice versa, but the GLM produced accurate response predictions in ventral SC neurons. This result suggests that auditory selectivity in the dorsal extent of the bat SC arises through nonlinear mechanisms, which extract species-specific sensory information. Importantly, auditory selectivity appeared only in responses to stimuli containing the natural statistics of acoustic signals used by the bat for spatial orientation-sonar vocalizations-offering support for the hypothesis that sensory selectivity enables rapid species-specific orienting behaviors. The results of this study are the first, to our knowledge, to show auditory spectrotemporal selectivity to natural stimuli in SC neurons and serve to inform a more general understanding of mechanisms guiding sensory selectivity for natural, goal-directed orienting behaviors.

  5. Response recovery in the locust auditory pathway.

    Science.gov (United States)

    Wirtssohn, Sarah; Ronacher, Bernhard

    2016-01-01

    Temporal resolution and the time courses of recovery from acute adaptation of neurons in the auditory pathway of the grasshopper Locusta migratoria were investigated with a response recovery paradigm. We stimulated with a series of single click and click pair stimuli while performing intracellular recordings from neurons at three processing stages: receptors and first and second order interneurons. The response to the second click was expressed relative to the single click response. This allowed the uncovering of the basic temporal resolution in these neurons. The effect of adaptation increased with processing layer. While neurons in the auditory periphery displayed a steady response recovery after a short initial adaptation, many interneurons showed nonlinear effects: most prominent a long-lasting suppression of the response to the second click in a pair, as well as a gain in response if a click was preceded by a click a few milliseconds before. Our results reveal a distributed temporal filtering of input at an early auditory processing stage. This set of specified filters is very likely homologous across grasshopper species and thus forms the neurophysiological basis for extracting relevant information from a variety of different temporal signals. Interestingly, in terms of spike timing precision neurons at all three processing layers recovered very fast, within 20 ms. Spike waveform analysis of several neuron types did not sufficiently explain the response recovery profiles implemented in these neurons, indicating that temporal resolution in neurons located at several processing layers of the auditory pathway is not necessarily limited by the spike duration and refractory period.

  6. Brainstem auditory evoked response: application in neurology

    Directory of Open Access Journals (Sweden)

    Carlos A. M. Guerreiro

    1982-03-01

    Full Text Available The tecnique that we use for eliciting brainstem auditory evoked responses (BAERs is described. BAERs are a non-invasive and reliable clinical test when carefully performed. This test is indicated in the evaluation of disorders which may potentially involve the brainstem such as coma, multiple sclerosis posterior fossa tumors and others. Unsuspected lesions with normal radiologic studies (including CT-scan can be revealed by the BAER.

  7. Cognitive mechanisms associated with auditory sensory gating

    OpenAIRE

    Jones, L. A.; Hills, P.J.; Dick, K.M.; Jones, S. P.; Bright, P

    2015-01-01

    Sensory gating is a neurophysiological measure of inhibition that is characterised by a reduction in the P50 event-related potential to a repeated identical stimulus. The objective of this work was to determine the cognitive mechanisms that relate to the neurological phenomenon of auditory sensory gating. Sixty participants underwent a battery of 10 cognitive tasks, including qualitatively different measures of attentional inhibition, working memory, and fluid intelligence. Participants addit...

  8. Lungworm disease in cats : ABCD guidelines on prevention and management

    NARCIS (Netherlands)

    Pennisi, Maria Grazia; Hartmann, Katrin; Addie, Diane D; Boucraut-Baralon, Corine; Egberink, Herman; Frymus, Tadeusz; Gruffydd-Jones, Tim; Horzinek, Marian C; Hosie, Margaret J; Lloret, Albert; Lutz, Hans; Marsilio, Fulvio; Radford, Alan D; Thiry, Etienne; Truyen, Uwe; Möstl, Karin

    2015-01-01

    OVERVIEW: Cardiopulmonary nematodes are emerging parasites of cats in Europe. A number of helminth parasites may be involved. The most prevalent lungworm in domestic cats is Aelurostrongylus abstrusus. Oslerus rostratus and Troglostrongylus species are found mainly in wild cats. The trichurid Capill

  9. Stroke caused auditory attention deficits in children

    Directory of Open Access Journals (Sweden)

    Karla Maria Ibraim da Freiria Elias

    2013-01-01

    Full Text Available OBJECTIVE: To verify the auditory selective attention in children with stroke. METHODS: Dichotic tests of binaural separation (non-verbal and consonant-vowel and binaural integration - digits and Staggered Spondaic Words Test (SSW - were applied in 13 children (7 boys, from 7 to 16 years, with unilateral stroke confirmed by neurological examination and neuroimaging. RESULTS: The attention performance showed significant differences in comparison to the control group in both kinds of tests. In the non-verbal test, identifications the ear opposite the lesion in the free recall stage was diminished and, in the following stages, a difficulty in directing attention was detected. In the consonant- vowel test, a modification in perceptual asymmetry and difficulty in focusing in the attended stages was found. In the digits and SSW tests, ipsilateral, contralateral and bilateral deficits were detected, depending on the characteristics of the lesions and demand of the task. CONCLUSION: Stroke caused auditory attention deficits when dealing with simultaneous sources of auditory information.

  10. Auditory perception of a human walker.

    Science.gov (United States)

    Cottrell, David; Campbell, Megan E J

    2014-01-01

    When one hears footsteps in the hall, one is able to instantly recognise it as a person: this is an everyday example of auditory biological motion perception. Despite the familiarity of this experience, research into this phenomenon is in its infancy compared with visual biological motion perception. Here, two experiments explored sensitivity to, and recognition of, auditory stimuli of biological and nonbiological origin. We hypothesised that the cadence of a walker gives rise to a temporal pattern of impact sounds that facilitates the recognition of human motion from auditory stimuli alone. First a series of detection tasks compared sensitivity with three carefully matched impact sounds: footsteps, a ball bouncing, and drumbeats. Unexpectedly, participants were no more sensitive to footsteps than to impact sounds of nonbiological origin. In the second experiment participants made discriminations between pairs of the same stimuli, in a series of recognition tasks in which the temporal pattern of impact sounds was manipulated to be either that of a walker or the pattern more typical of the source event (a ball bouncing or a drumbeat). Under these conditions, there was evidence that both temporal and nontemporal cues were important in recognising theses stimuli. It is proposed that the interval between footsteps, which reflects a walker's cadence, is a cue for the recognition of the sounds of a human walking.

  11. Visual speech gestures modulate efferent auditory system.

    Science.gov (United States)

    Namasivayam, Aravind Kumar; Wong, Wing Yiu Stephanie; Sharma, Dinaay; van Lieshout, Pascal

    2015-03-01

    Visual and auditory systems interact at both cortical and subcortical levels. Studies suggest a highly context-specific cross-modal modulation of the auditory system by the visual system. The present study builds on this work by sampling data from 17 young healthy adults to test whether visual speech stimuli evoke different responses in the auditory efferent system compared to visual non-speech stimuli. The descending cortical influences on medial olivocochlear (MOC) activity were indirectly assessed by examining the effects of contralateral suppression of transient-evoked otoacoustic emissions (TEOAEs) at 1, 2, 3 and 4 kHz under three conditions: (a) in the absence of any contralateral noise (Baseline), (b) contralateral noise + observing facial speech gestures related to productions of vowels /a/ and /u/ and (c) contralateral noise + observing facial non-speech gestures related to smiling and frowning. The results are based on 7 individuals whose data met strict recording criteria and indicated a significant difference in TEOAE suppression between observing speech gestures relative to the non-speech gestures, but only at the 1 kHz frequency. These results suggest that observing a speech gesture compared to a non-speech gesture may trigger a difference in MOC activity, possibly to enhance peripheral neural encoding. If such findings can be reproduced in future research, sensory perception models and theories positing the downstream convergence of unisensory streams of information in the cortex may need to be revised.

  12. Song Prompts: I Had a Cat

    Science.gov (United States)

    Kenney, Susan Hobson

    2011-01-01

    This article discusses song prompts as a way to encourage children to sing during exploratory play. A song prompt for "I Had a Cat" is included for educators to try in their own classrooms or preschools. Educators are invited to share ideas they have used that encourage children to sing during free play.

  13. Evaluating "Cat Country": The Humor within Satire

    Science.gov (United States)

    Chang, Chung-chien Karen

    2010-01-01

    Satire, as a mode, is not frequently employed in Chinese narratives. "Cat Country," or "Mao Cheng Ji," written by Lao She (pen name of Shu Qing Chun, 1898--1966) has come under much attack of its literary values. Whereas most critics have no doubt that this work sets out to satirize China through the portrayal of a society of…

  14. COMPUTED TOMOGRAPHY OF TOOTH RESORPTION IN CATS.

    Science.gov (United States)

    Lang, Linda G; Wilkinson, Thomas E; White, Tammy L; Farnsworth, Raelynn K; Potter, Kathleen A

    2016-09-01

    Tooth resorption is the most common dental disease in cats and can be a source of oral pain. The current clinical gold standard for diagnosis includes a combination of oral exam and dental radiography, however early lesions are not always detected. Computed tomography (CT) of the skull, including the dental arches, is a commonly performed diagnostic procedure, however the appearance of tooth resorption on CT and the diagnostic ability of CT to detect tooth resorption have not been evaluated. The purpose of this prospective, descriptive, diagnostic accuracy study was to characterize the CT appearance of tooth resorption in a sample of affected cats and to evaluate the sensitivity and specificity of CT for tooth resorption compared to the clinical gold standard of oral exam and intraoral dental radiography. Twenty-eight cat cadaver specimens were recruited for inclusion. Each specimen was evaluated using oral exam, intraoral dental radiography, and computed tomography (four different slice thicknesses). Each tooth was evaluated for the presence or absence of tooth resorption. Teeth with lesions and a subset of normal teeth were evaluated with histopathology. On CT, tooth resorption appeared as irregularly marginated hypoattenuating defects in the mineral attenuating tooth components, most commonly involving the root or cementoenamel junction. Sensitivity for CT detection of tooth resorption was fair to poor (42.2-57.7%) and specificity was good to excellent (92.8-96.3%). Findings from this study indicated that CT has high specificity but low sensitivity for detection of tooth resorption in cats.

  15. Mammary hypertrophy in an ovariohysterectomized cat.

    Science.gov (United States)

    Pukay, B P; Stevenson, D A

    1983-05-01

    A four year old ovariohysterectomized domestic short-haired cat under treatment for behavioral urine spraying and idiopathic alopecia developed mammary gland hypertrophy following treatment with megestrol acetate. Withdrawal of the progestin and treatment with androgen failed to cause regression of the hypertrophy. The affected mammary gland was surgically excised and recovery was uneventful.

  16. The antihypertensive effect of amlodipine in cats

    Directory of Open Access Journals (Sweden)

    D. Morar,

    2011-06-01

    Full Text Available The purpose of the study was to evaluate the effect of amlodipine on blood pressure and renal function in cats with arterial hypertension secondary to chronic renal failure. The research was conducted on 11 cats, aged between 7 and 14.5 years, diagnosed with arterial hypertension secondary to chronic renal failure. Systolic blood pressure (SBP, diastolic blood pressure (DBP, mean arterial pressure (MBP and pulse rate were determined by oscillometric method, before and after 7, 30 or 120 days of treatment with amlodipine. At the beginning of treatment, all cats were receiving 0.625 mg amlodipine once daily and after 7 days oftreatment, in five cats, the dose was increased to 1.25 mg amlodipine, once daily. Before amlodipine administration the mean values of SBP/DBP were 175 ± 13.2 mmHg/119 ± 7.2 mmHg and after 30 days of treatment, the mean values of the SBP/DBP were reduced by 27.9/25.4 mmHg (p<0,001. After 120 days of treatment with amlodipine mean values of SBP/DBP were lower with 32/31 mmHg compared with baseline values (p<0.001. The treatment with amlodipine did not significantly affect the values of blood biochemical parameters of renal profile.

  17. Effective generation of cat and kitten states

    CERN Document Server

    Stobi'nska, M; Wodkiewicz, K; Stobi\\'nska, Magdalena; W\\'odkiewicz, Krzysztof

    2006-01-01

    We present an effective method of coherent state superposition (cat state) generation using single trapped ion in a Paul trap. The method is experimentally feasible for coherent states with amplitude $\\alpha \\le 2$ using available technology. It works both in and beyond the Lamb-Dicke regime.

  18. Nutrition and oxalate metabolism in cats

    NARCIS (Netherlands)

    Dijcker, J.C.

    2013-01-01

    Over the past 30 years, a progressive increase in calcium oxalate (CaOx) urolith prevalence is reported in cats and dogs diagnosed with urolithiasis. This increase in prevalence appears to have occurred since dietary modifications were introduced to address magnesium ammonium phosphate urolithiasis.

  19. Cat Scratch Disease: The Story Continues

    Directory of Open Access Journals (Sweden)

    Mary Anne Opavsky

    1997-01-01

    Full Text Available OBJECTIVE: To present a perspective on the current state of knowledge of cat scratch disease (CSD, including the evidence for Bartonella henselae as the etiological agent, epidemiological and clinical characteristics of the disease, available diagnostic tests and current therapeutic options.

  20. Inflammatory oral cavity diseases of the cat.

    Science.gov (United States)

    Pedersen, N C

    1992-11-01

    There is a great deal of frustration among veterinarians about the diagnosis and treatment of inflammatory diseases of the oral cavity of the cat. This frustration is due to both the high frequency of feline oral inflammatory lesions and our poor understanding of their causes. This poor understanding can be blamed on several things: (1) a rapidly emerging, but still relatively poor, understanding of feline diseases in general and nutrition in particular; (2) a tendency to lump rather than separate specific oral inflammations; (3) a tendency not to use a thorough and systematic approach to diagnosing oral cavity disease; and (4) the reluctance of veterinarians to apply what is already known about human oral cavity diseases to cats. When problems 2 through 4 are adequately addressed, it becomes apparent that we really know more about oral cavity disease in the cat than we thought we knew and that great progress has been made. The task ahead is to define, in precise medical terms, those remaining disease entities of the oral cavity that pose the greatest health risk to cats, to apply what has been already been discovered from human disease counterparts, and to study them systematically.