WorldWideScience

Sample records for casting molds

  1. Microstructured metal molds fabricated via investment casting

    International Nuclear Information System (INIS)

    Cannon, Andrew H; King, William P

    2010-01-01

    This paper describes an investment casting process to produce aluminum molds having integrated microstructures. Unlike conventional micromolding tools, the aluminum mold was large and had complex curved surfaces. The aluminum was cast from curved microstructured ceramic molds which were themselves cast from curved microstructured rubber. The aluminum microstructures had an aspect ratio of 1:1 and sizes ranging from 25 to 50 µm. Many structures were successfully cast into the aluminum with excellent replication fidelity, including circular, square and triangular holes. We demonstrate molding of large, curved surfaces having surface microstructures using the aluminum mold.

  2. Mold

    International Nuclear Information System (INIS)

    Kim, Jae Geun; Cheo, Su Cheon

    1988-04-01

    This book consists of three parts, which explains the basic principle of making mold. The first part includes plastic mold with introduction of plastic mold, mold compression, transfer mold, injection mold, heat and cool for mold, runner and gate, making of core and cavity and preparation of mold. The second part indicates die casting mold with zinc die casting mold, aluminum die casting mold, finishing of mold. The third part gives a description of rubber mold with manufacture of rubber mold.

  3. Die Casting Mold Design for Aluminum Alloy Shell of Instrument

    OpenAIRE

    Li Yuanyuan; Wang Meng; Guo Yuchao

    2015-01-01

    This paper is about die casting mold design for aluminum alloy shell of instrument. Three-dimensional model of the casting and mold are designed by using Pro/Engineer and AutoCad which can analyze forming quality. Digital design and theoretical calculation can greatly shorten product development cycle and mold design cycle, improve the accuracy of product design and mold design, and reduce the cost of mold design.

  4. Die Casting Mold Design for Aluminum Alloy Shell of Instrument

    Directory of Open Access Journals (Sweden)

    Li Yuanyuan

    2015-01-01

    Full Text Available This paper is about die casting mold design for aluminum alloy shell of instrument. Three-dimensional model of the casting and mold are designed by using Pro/Engineer and AutoCad which can analyze forming quality. Digital design and theoretical calculation can greatly shorten product development cycle and mold design cycle, improve the accuracy of product design and mold design, and reduce the cost of mold design.

  5. Relationship Between Casting Distortion, Mold Filling, and Interfacial Heat Transfer in Sand Molds

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Parker; K. A. Woodbury; T. S. Piwonka; Y. Owusu

    1999-09-30

    This project sought to determine the relationship between casting dimensions and interfacial heat transfer in aluminum alloy sand castings. The program had four parts; measurement of interfacial heat transfer coefficients in resin bonded and green sand molds, the measurement of gap formation in these molds, the analysis of castings made in varying gatings, orientations and thicknesses, and the measurement of residual stresses in castings in the as-cast and gate removed condition. New values for interfacial heat transfer coefficients were measured, a novel method for gap formation was developed, and the variation of casting dimensions with casting method, gating, and casting orientation in the mold was documented.

  6. Analysis of cracking in glass molds made of cast iron

    Science.gov (United States)

    Leushin, I. O.; Chistyakov, D. G.

    2014-09-01

    The cracking in the parts of cast iron molds intended for glass is considered, and this cracking substantially affects the operation of glass-blowing equipment, maintainability, and the replacement of mold sets. The processes that cause cracking in the parts of glass molds and initiate crack growth are studied.

  7. Development of new model of mold oscillator in continuous casting

    International Nuclear Information System (INIS)

    Kang, G. P.; Shin, G.; Kang, C. G.

    2007-01-01

    To develop the hydraulic mold oscillator in continuous casting machine, the guiding mechanism of mold was studied. The main topics of this study were to design the guiding mechanism of mold which oscillates to prevent the sticking and to reduce the friction resistant force between the solidified shell and mold on casting. We studied many guiding types to analyze the features of worldwide mold oscillator and developed the new model of hydraulic mold oscillator. On the basis of the mold oscillating experiment, the capability of guiding system was proofed by the position error measuring system. The experiment was carried out up to 50∼500 cpm frequencies and 2∼10 mm stroke in the variable waveform and the casting results was analyzed by the oscillation mark of slab surface which was formed unavoidably by oscillation

  8. Study of formation of aluminium billet in casting mold during continuous casting and forging

    International Nuclear Information System (INIS)

    Stulov, V.V.

    1997-01-01

    Aluminium billet formation and solidified skin thickness distribution along casting mold walls at different levels of liquid metal were investigated. The casting mold consisted of two rotating inclined walls in its upper part and two reciprocating vertical walls. The reduction of skin of casting proceeded in the upper part of mold. Based on the experimental results obtained the influence of metal level in a casting mold on billet formation is determined> The reduction degree needed for continuous process of casting and forging is also defined. The change in skin thickness with billet length under various crystallization conditions is established

  9. New materials to manufacture casting molds

    International Nuclear Information System (INIS)

    Luhleich, H.

    1980-01-01

    A report is given on an improved filler-binder mixing method in the manufacture of artificial graphite, the so-called coat-mix process. The individual graphite-filler grains are coated completely with uniform binder coatings (phenol formaldehyde resin) in a continuous process. Methanol is used as solvent for the resin. In a modified further development of the process, the use of organic solvents can be disregarded by dissolving the binder resin in caustic soda and injecting the slurry into water diluted acid. The manufacture of casting molds from coat-mix powders, their properties and industrial application are given. Finally, the advantages of using carbon bodies of coal-mix material for conversion to silicon carbide are indicated. (IHOE) [de

  10. Casting metal microstructures from a flexible and reusable mold

    Science.gov (United States)

    Cannon, Andrew H.; King, William P.

    2009-09-01

    This paper describes casting-based microfabrication of metal microstructures and nanostructures. The metal was cast into flexible silicone molds which were themselves cast from microfabricated silicon templates. Microcasting is demonstrated in two metal alloys of melting temperature 70 °C or 138 °C. Many structures were successfully cast into the metal with excellent replication fidelity, including ridges with periodicity 400 nm and holes or pillars with diameter in the range 10-100 µm and aspect ratio up to 2:1. The flexibility of the silicone mold permits casting of curved surfaces, which we demonstrate by fabricating a cylindrical metal roller of diameter 8 mm covered with microstructures. The metal microstructures can be in turn used as a reusable molding tool.

  11. Precision casting into disposable ceramic mold – a high efficiency method of production of castings of irregular shape

    OpenAIRE

    Уваров, Б. И.; Лущик, П. Е.; Андриц, А. А.; Долгий, Л. П.; Заблоцкий, А. В.

    2016-01-01

    The article shows the advantages and disadvantages of precision casting into disposable ceramic molds. The high quality shaped castings produced by modernized ceramic molding process are proved the reliability and prospects of this advanced technology.

  12. PRECISION CASTING INTO DISPOSABLE CERAMIC MOLD – A HIGH EFFICIENCY METHOD OF PRODUCTION OF CASTINGS OF IRREGULAR SHAPE

    Directory of Open Access Journals (Sweden)

    B. I. Uvarov

    2016-01-01

    Full Text Available The article shows the advantages and disadvantages of precision casting into disposable ceramic molds. The high quality shaped castings produced by modernized ceramic molding process are proved the reliability and prospects of this advanced technology.

  13. Grain Refinement of Permanent Mold Cast Copper Base Alloys

    Energy Technology Data Exchange (ETDEWEB)

    M.Sadayappan; J.P.Thomson; M.Elboujdaini; G.Ping Gu; M. Sahoo

    2005-04-01

    Grain refinement is a well established process for many cast and wrought alloys. The mechanical properties of various alloys could be enhanced by reducing the grain size. Refinement is also known to improve casting characteristics such as fluidity and hot tearing. Grain refinement of copper-base alloys is not widely used, especially in sand casting process. However, in permanent mold casting of copper alloys it is now common to use grain refinement to counteract the problem of severe hot tearing which also improves the pressure tightness of plumbing components. The mechanism of grain refinement in copper-base alloys is not well understood. The issues to be studied include the effect of minor alloy additions on the microstructure, their interaction with the grain refiner, effect of cooling rate, and loss of grain refinement (fading). In this investigation, efforts were made to explore and understand grain refinement of copper alloys, especially in permanent mold casting conditions.

  14. Casting of electron field defining apertures: Casting with the metal mold kits

    International Nuclear Information System (INIS)

    Dea, D.; San Luis, E.

    1988-01-01

    Cerrobend alloy casts are made to define the desired electron field shapes. These custom casts are fabricated for the selected electron applicator size that has been chosen for the patient. When the cast is placed into that selected electron applicator, it will block out areas that are not to be treated. When an all metal mold assembly was used for the fabrication of these casts, the lip region of the cast which is used to accurately align the cast in the actual treatment applicator, had an irregular edge that prevented an accurate alignment of the cast. To eliminate the irregular edges on the lip region of the cast, the metal mold assembly was heated to approximately 80-85 degrees C before the molten cerrobend alloy was poured into it. The heating of the metal mold assembly helps eliminate the irregular edges on the lip region of the cast. Unfortunately it also created new flaws such as holes, dents, cracks and/or crystallization of the cast as it solidified. These flaws were controlled by cooling the metal mold assembly and the cast immediately after the pouring of the molten cerrobend alloy, evenly with water

  15. Low-cycle fatigue behavior of permanent mold cast and die-cast

    Directory of Open Access Journals (Sweden)

    Che Xin

    2012-02-01

    Full Text Available Fatigue failure is one of the main failure forms of Al-Si-Cu-Mg aluminum alloys. To feature their mechanical aspect of fatigue behavior, the low-cycle fatigue behavior of permanent mold cast and die-cast Al-Si-Cu-Mg alloys at room temperature was investigated. The experimental results show that both permanent mold cast and die-cast Al-Si-Cu-Mg alloys mainly exhibit cyclic strain hardening. At the same total strain amplitude, the die-cast Al-Si-Cu-Mg alloy shows higher cyclic deformation resistance and longer fatigue life than does the permanent mold cast Al-Si-Cu-Mg alloy. The relationship between both elastic and plastic strain amplitudes with reversals to failure shows a monotonic linear behavior, and can be described by the Basquin and Coffin-Manson equations, respectively.

  16. ''Heat Transfer at the Mold-Metal Interface in Permanent Mold Casting of Aluminum Alloys'' Final Project Report; FINAL

    International Nuclear Information System (INIS)

    Pehlke, R. D.; Cookson, John M.; Shouwei Hao; Prasad Krishna; Bilkey, Kevin T.

    2001-01-01

    This project on heat transfer coefficients in metal permanent mold casting has been conducted in three areas. They are the theoretical study at the University of Michigan, the experimental investigation of squeeze casting at CMI-Tech Center (Now Hayes-Lemmerz Technical Center) and the experimental investigation of low pressure permanent mold casting at Amcast Automotive

  17. System for control of electroslag casting in a collar mold

    International Nuclear Information System (INIS)

    McEnerney , J.W.; Dewey, B.R.; Hutton, J.T.; David, S.A.

    1980-01-01

    This report describes the initial development of an electroslag casting control system. The main emphasis of our work and the results reported herein deal with the attempts to develop techniques for locating and controlling the liquid slag-metal interface. Thermocouples embedded in the mold wall provide a simple but accurate means for locating the interface

  18. Application of statistical methods for analyzing the relationship between casting distortion, mold filling, and interfacial heat transfer in sand molds

    Energy Technology Data Exchange (ETDEWEB)

    Y. A. Owusu

    1999-03-31

    This report presents a statistical method of evaluating geometric tolerances of casting products using point cloud data generated by coordinate measuring machine (CMM) process. The focus of this report is to present a statistical-based approach to evaluate the differences in dimensional and form variations or tolerances of casting products as affected by casting gating system, molding material, casting thickness, and casting orientation at the mold-metal interface. Form parameters such as flatness, parallelism, and other geometric profiles such as angularity, casting length, and height of casting products were obtained and analyzed from CMM point cloud data. In order to relate the dimensional and form errors to the factors under consideration such as flatness and parallelism, a factorial analysis of variance and statistical test means methods were performed to identify the factors that contributed to the casting distortion at the mold-metal interface.

  19. Triple Plate Mold Final Report: Optimization of the Mold Design and Casting Parameters for a Thin U-10mo Fuel Casting

    Energy Technology Data Exchange (ETDEWEB)

    Aikin, Jr., Robert M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-04

    This work describes the experiments and modeling that have been performed to improve and try to optimize the simultaneous casting of three plates of U-10wt%Mo in a single coil vacuum induction melting (VIM) furnace. The plates of interest are 280 mm wide by 203 mm tall by 5 mm thick (11" x 8" x 0.2"). The initial mold design and processing parameters were supplied by Y-12. The mold and casting cavity were instrumented with a number of thermocouples, and the casting performed to determine the thermal history of the mold and casting. The resulting cast plates were radiographed and numerous defects identified. Metallography was performed to help identify the nature of the radiographically observed defects. This information was then used to validate a mold filling and solidification model of that casting. Based on the initial casting, good casting design practice, and process simulation of several design alternatives, a revised design was developed with the goal of minimizing casting defects such as porosity. The redesigned mold had a larger hot-top and had its long axis along the horizontal direction. These changes were to try to develop a strong thermal gradient conducive to good feeding and minimization of micro- and macroporosity in the cast plates. An instrumented casting was then performed with the revised mold design and a linear distributor. This design yielded cast plates with significantly less radiographically identified defects. Unfortunately, there was significant variation in plate weight and metal content in their hot-tops. Fluid flow simulations were then performed on this mold/distributor design. This helped identify the issue with this linear distributor design. Additional simulations were then performed on candidate distributor redesigns and a preferred distributor annular design was identified. This improved annular design was used to produce a third instrumented casting with favorable results. These refined designs and their radiographic

  20. Measurement of casting parameters in ZnAlCu3 molds created by additive technology

    Directory of Open Access Journals (Sweden)

    S. Medić

    2016-10-01

    Full Text Available This paper examines the parameters of casting ZnAl4Cu3 alloy (volume, castability, density and occupancy of the mold in mold made additive technology. Molds made by additive technology are: cheaper in production of a small number of castings, geometrically more accurate and faster made. From obtained results of this paper it is clearly seen that printed mold must be protected with thermal coating because liquid adhesive of powder otherwise evaporates during casting and creates additional moisture in the mold, as it was noted.

  1. Reusable molds for casting U-Zr alloys

    International Nuclear Information System (INIS)

    Chen, P.S.; Stevens, W.C.; Trybus, C.L.

    1992-09-01

    Refractory oxides, carbides, nitrides and sulfides were examined as mold coating materials for use in casting nuclear fuel. The molds require excellent high temperature chemical and mechanical stability combined with reasonable room temperature ductility to allow for fuel removal. Coatings were applied onto quartz and refractory metal coupons using various techniques. Sessile drop tests employing molten U-10%Zr (by weight) at 1550 degrees C were used to characterize coating performance. Results indicate that NbC, TiN, and Y 2 O 3 were non-wetting with U-10%Zr. However, only the Y 2 O 3 coating completely prevented adhesion of the fuel. The paper describes coating methods and details of the sessile drop experiments

  2. Heat Transfer Coefficient at Cast-Mold Interface During Centrifugal Casting: Calculation of Air Gap

    Science.gov (United States)

    Bohacek, Jan; Kharicha, Abdellah; Ludwig, Andreas; Wu, Menghuai; Karimi-Sibaki, Ebrahim

    2018-03-01

    During centrifugal casting, the thermal resistance at the cast-mold interface represents a main blockage mechanism for heat transfer. In addition to the refractory coating, an air gap begins to form due to the shrinkage of the casting and the mold expansion, under the continuous influence of strong centrifugal forces. Here, the heat transfer coefficient at the cast-mold interface h has been determined from calculations of the air gap thickness d a based on a plane stress model taking into account thermoelastic stresses, centrifugal forces, plastic deformations, and a temperature-dependent Young's modulus. The numerical approach proposed here is rather novel and tries to offer an alternative to the empirical formulas usually used in numerical simulations for a description of a time-dependent heat transfer coefficient h. Several numerical tests were performed for different coating thicknesses d C, rotation rates Ω, and temperatures of solidus T sol. Results demonstrated that the scenario at the interface is unique for each set of parameters, hindering the possibility of employing empirical formulas without a preceding experiment being performed. Initial values of h are simply equivalent to the ratio of the coating thermal conductivity and its thickness ( 1000 Wm-2 K-1). Later, when the air gap is formed, h drops exponentially to values at least one order of magnitude smaller ( 100 Wm-2 K-1).

  3. Development of heat pipe technology for permanent mold casting of magnesium alloys

    International Nuclear Information System (INIS)

    Elalem, K.; Mucciardi, F.; Gruzleski, J.E.; Carbonneau, Y.

    2002-01-01

    One of the key techniques for producing sound permanent mold castings is to use controlled mold cooling such as air cooling, water cooling and heat pipe cooling. Air-cooling has limited applications in permanent mold casting due to its low cooling capability and high cost. Water-cooling is widely used in permanent mold casting, but has some disadvantages such as safety issues and the facilities required. The early applications of heat pipes in permanent mold casting have shown tremendous results due to their high cooling rates, low cost and safety. In this work, a permanent mold for magnesium casting has been designed with the intention of producing shrinkage defects in the castings. Novel heat pipes that can generate high cooling rates have been constructed and used to direct the solidification in order to reduce the shrinkage. In this paper, the design of the mold and that of the heat pipes are presented. The results of some of the computer simulations that were conducted to determine casting conditions along with the potential of using heat pipes to direct the solidification are also presented. Moreover, a preliminary evaluation of the performance of heat pipes in the permanent mold casting of magnesium will also be discussed. (author)

  4. Study on Type C Coal Fly ash as an Additive to Molding Sand for Steel Casting

    Science.gov (United States)

    Palaniappan, Jayanthi

    2017-04-01

    Study of physio-chemical properties studies such as granulometric analysis, moisture, X ray fluorescence etc. were performed with Type C coal—combustion fly ash to investigate their potential as a distinct option for molding sand in foundry, thereby reducing the dependency on latter. Technological properties study such as compressive strength, tensile strength, permeability and compaction of various compositions of fly ash molding sand (10, 20 and 30 % fly ash substitute to chemically bonded sand) were performed and compared with silica molding sand. Steel casting production using this fly ash molding sand was done and the casting surface finish and typical casting parameters were assessed. It was noted that a good quality steel casting could be produced using type C fly ash molding sand, which effectively replaced 20 % of traditional molding sand and binders thereby providing greater financial profits to the foundry and an effective way of fly ash utilization (waste management).

  5. Characterization of Ni–Cr alloys using different casting techniques and molds

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wen-Cheng, E-mail: wencchen@fcu.edu.tw [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Teng, Fu-Yuan [Department of Dentistry, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan (China); School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Hung, Chun-Cheng [School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China)

    2014-02-01

    This study differentiated the mechanical properties of nickel–chromium (Ni–Cr) alloys under various casting techniques (different casting molds and casting atmospheres). These techniques were sampled by a sand mold using a centrifugal machine in ambient air (group I) and electromagnetic induction in an automatic argon castimatic casting machine (group II). The specimen casting used a graphite mold by a castimatic casting machine (group III). The characteristics of the Ni–Cr alloys, yield and ultimate tensile strength, bending modulus, microhardness, diffraction phase, grindability, ability to spring back, as well as ground microstructure and pattern under different casting conditions were evaluated. The group III specimens exhibited the highest values in terms of strength, modulus, hardness, and grindability at a grind rate of 500 rpm. Moreover, group III alloys exhibited smaller grain sizes, higher ability to spring back, and greater ductility than those casted by sand investment (groups I and II). The main factor, “casting mold,” significantly influenced all mechanical properties. The graphite mold casting of the Ni–Cr dental alloys in a controlled atmosphere argon casting system provided an excellent combination of high mechanical properties and good ability to spring back, and preserved the ductile properties for application in Ni–Cr porcelain-fused system. The results can offer recommendations to assist a prosthetic technician in selecting the appropriate casting techniques to obtain the desired alloy properties. - Highlights: • Properties of Ni–Cr alloys using various casting techniques are characterized. • Alloys cast by graphite mold exhibited higher recovery angle and more ductility. • Alloys cast by graphite mold exhibited higher strength and grinding rate. • Alloys in this study increase operative room to adjust the precision for prosthesis.

  6. Characterization of Ni–Cr alloys using different casting techniques and molds

    International Nuclear Information System (INIS)

    Chen, Wen-Cheng; Teng, Fu-Yuan; Hung, Chun-Cheng

    2014-01-01

    This study differentiated the mechanical properties of nickel–chromium (Ni–Cr) alloys under various casting techniques (different casting molds and casting atmospheres). These techniques were sampled by a sand mold using a centrifugal machine in ambient air (group I) and electromagnetic induction in an automatic argon castimatic casting machine (group II). The specimen casting used a graphite mold by a castimatic casting machine (group III). The characteristics of the Ni–Cr alloys, yield and ultimate tensile strength, bending modulus, microhardness, diffraction phase, grindability, ability to spring back, as well as ground microstructure and pattern under different casting conditions were evaluated. The group III specimens exhibited the highest values in terms of strength, modulus, hardness, and grindability at a grind rate of 500 rpm. Moreover, group III alloys exhibited smaller grain sizes, higher ability to spring back, and greater ductility than those casted by sand investment (groups I and II). The main factor, “casting mold,” significantly influenced all mechanical properties. The graphite mold casting of the Ni–Cr dental alloys in a controlled atmosphere argon casting system provided an excellent combination of high mechanical properties and good ability to spring back, and preserved the ductile properties for application in Ni–Cr porcelain-fused system. The results can offer recommendations to assist a prosthetic technician in selecting the appropriate casting techniques to obtain the desired alloy properties. - Highlights: • Properties of Ni–Cr alloys using various casting techniques are characterized. • Alloys cast by graphite mold exhibited higher recovery angle and more ductility. • Alloys cast by graphite mold exhibited higher strength and grinding rate. • Alloys in this study increase operative room to adjust the precision for prosthesis

  7. Characterization of Ni-Cr alloys using different casting techniques and molds.

    Science.gov (United States)

    Chen, Wen-Cheng; Teng, Fu-Yuan; Hung, Chun-Cheng

    2014-02-01

    This study differentiated the mechanical properties of nickel-chromium (Ni-Cr) alloys under various casting techniques (different casting molds and casting atmospheres). These techniques were sampled by a sand mold using a centrifugal machine in ambient air (group I) and electromagnetic induction in an automatic argon castimatic casting machine (group II). The specimen casting used a graphite mold by a castimatic casting machine (group III). The characteristics of the Ni-Cr alloys, yield and ultimate tensile strength, bending modulus, microhardness, diffraction phase, grindability, ability to spring back, as well as ground microstructure and pattern under different casting conditions were evaluated. The group III specimens exhibited the highest values in terms of strength, modulus, hardness, and grindability at a grind rate of 500 rpm. Moreover, group III alloys exhibited smaller grain sizes, higher ability to spring back, and greater ductility than those casted by sand investment (groups I and II). The main factor, "casting mold," significantly influenced all mechanical properties. The graphite mold casting of the Ni-Cr dental alloys in a controlled atmosphere argon casting system provided an excellent combination of high mechanical properties and good ability to spring back, and preserved the ductile properties for application in Ni-Cr porcelain-fused system. The results can offer recommendations to assist a prosthetic technician in selecting the appropriate casting techniques to obtain the desired alloy properties. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Permanent Mold Casting of JIS-AC4C Aluminum Alloy Using a Low-Temperature Mold

    International Nuclear Information System (INIS)

    Yamagata, Hiroshi; Nikawa, Makoto

    2011-01-01

    Permanent mold casting using mold temperatures below 200 deg. C was conducted to obtain a high-strength, thin-walled casting. Al-7.36 mass% Si -0.18 Cu- 0.27Mg-0.34Fe alloy JIS-AC4C was cast using a bottom pouring cast plan. The product had a rectangular tube shape (70 mm W x 68 mm D x 180 mm H) with wall thicknesses of 1, 3 and 5 mm. The effect of heat insulation at the melt path was compared when using a sand runner insert and when using a steel runner insert as well as a powder mold release agent. Fine microstructures were observed in the casting. The smaller the thickness, the higher the hardness with smaller secondary dendrite arm spacing (SDAS). However, the hardness and the SDAS were unaffected by the mold temperature. It was proposed that the avoidance of the formation of primary α dendrite at the melt path generates a higher strength casting with adequate mold filling.

  9. Structural and compositional analysis of a casting mold sherd from ancient China.

    Science.gov (United States)

    Zong, Yunbing; Yao, Shengkun; Lang, Jianfeng; Chen, Xuexiang; Fan, Jiadong; Sun, Zhibin; Duan, Xiulan; Li, Nannan; Fang, Hui; Zhou, Guangzhao; Xiao, Tiqiao; Li, Aiguo; Jiang, Huaidong

    2017-01-01

    Casting had symbolic significance and was strictly controlled in the Shang dynasty of ancient China. Vessel casting was mainly distributed around the Shang capital, Yin Ruins, which indicates a rigorous centralization of authority. Thus, for a casting mold to be excavated far from the capital region is rare. In addition to some bronze vessel molds excavated at the Buyao Village site, another key discovery of a bronze vessel mold occurred at Daxinzhuang. The Daxinzhuang site was a core area in the east of Shang state and is an important site to study the eastward expansion of the Shang. Here, combining synchrotron X-rays and other physicochemical analysis methods, nondestructive three-dimensional structure imaging and different elemental analyses were conducted on this mold sherd. Through high penetration X-ray tomography, we obtained insights on the internal structure and discovered some pores. We infer that the generation of pores inside the casting mold sherd was used to enhance air permeability during casting. Furthermore, we suppose that the decorative patterns on the surface were carved and not pasted onto it. Considering the previous compositional studies of bronze vessels, the copper and iron elements were analyzed by different methods. Unexpectedly, a larger amount of iron than of copper was detected on the surface. According to the data analysis and archaeological context, the source of iron on the casting mold sherd could be attributed to local soil contamination. A refined compositional analysis confirms that this casting mold was fabricated locally and used for bronze casting.

  10. Performance of U-Pu-Zr fuel cast into zirconium molds

    International Nuclear Information System (INIS)

    Crawford, D.C.; Lahm, C.E.; Tsai, H.

    1992-01-01

    Current fabrication techniques for the integral fast reactor (IFR) fuel utilize injection casting into quartz molds after reprocessing in the IFR fuel cycle facility. The quartz molds are destroyed during the fuel demolding process, and the quartz residue must therefore be treated as contaminated waste. Alternatively, if the fuel can be cast into molds that remain as part of the fuel slugs (i.e., if the fuel can be left inside the molds for irradiation), then the quartz mold contribution to the waste stream can be eliminated. This possibility is being addresssed in an ongoing effort to evaluate the irradiation performance of fuel cast into zirconium sheaths rather than quartz molds. Zirconium was chosen as the sheath material because it is the component of the U-Pu-Zr fuel alloy that raises the alloy solidus temperatures and provides resistance to fuel-cladding chemical interaction (FCCI)

  11. Investigation of Heat Transfer at the Mold/Metal Interface in Permanent Mold Casting of Light Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Robert D. Pehlke; John T. Berry

    2005-12-16

    Accurate modeling of the metal casting process prior to creating a mold design demands reliable knowledge of the interfacial heat transfer coefficient at the mold metal interface as a function of both time and location. The phenomena concerned with the gap forming between the mold and the solidifying metal are complex but need to be understood before any modeling is attempted. The presence of mold coatings further complicates the situation. A commercial casting was chosen and studied in a gravity permanent mold casting process. The metal/mold interfacial heat transfer coefficient (IHTC) was the focus of the research. A simple, direct method has been used to evaluate the IHTC. Both the simulation and experiments have shown that a reasonably good estimate of the heat transfer coefficient could be made in the case studied. It has been found that there is a good agreement between experiments and simulations in the temperature profiles during the solidification process, given that the primary mechanism of heat transfer across the gap in permanent mold casting of light alloys is by conduction across the gap. The procedure utilized to determine the interfacial heat transfer coefficient can be applied to other casting processes. A recently completed project involving The University of Michigan and Mississippi State University, together with several industrial partners, which was supported by the USDOE through the Cast Metals Coalition, examined a number of cases of thermal contact. In an investigation which gave special consideration to the techniques of measurement, several mold coatings were employed and results presented as a function of time. Realistic conditions of coating thickness and type together with an appropriate combination of mold preheat and metal pouring temperature were strictly maintained throughout the investigation. Temperature sensors, in particular thermocouples, play an important part in validating the predictions of solidification models. Cooling

  12. Effects of heat pipe cooling on permanent mold castings of aluminum alloys

    International Nuclear Information System (INIS)

    Zhang, C.; Mucciardi, F.; Gruzleski, J.E.

    2002-01-01

    The temperature distribution within molds is a critical parameter in determining the ultimate casting quality in permanent mold casting processes, so there is a considerable incentive to develop a more effective method of mold cooling. Based on this consideration, a novel, effective and controllable heat pipe has been successfully developed and used as a new method of permanent mold cooling. Symmetric step casting of A356 alloy have been produced in an experimental permanent mold made of H13 tool steel, which is cooled by such heat pipes. The experimental results show that heat pipes can provide extremely high cooling rates in permanent mold castings of aluminum. The dendrite arm spacing of A356 alloy is refined considerably, and porosity and shrinkage of the castings are redistributed by the heat pipe cooling. Moreover, the heat pipe can be used to determine the time when the air gap forms at the interface between the mold and the casting. The effect of heat pipe cooling on solidification time of castings of A356 alloy with different coating types is also discussed in this paper. (author)

  13. ''Heat Transfer at the Mold-Metal Interface in Permanent Mold Casting of Aluminum Alloys'' Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Professor R. D. Pehlke, Principal Investigator, Dr. John M. Cookson, Dr. Shouwei Hao, Dr. Prasad Krishna, Kevin T. Bilkey

    2001-12-14

    This project on heat transfer coefficients in metal permanent mold casting has been conducted in three areas. They are the theoretical study at the University of Michigan, the experimental investigation of squeeze casting at CMI-Tech Center (Now Hayes-Lemmerz Technical Center) and the experimental investigation of low pressure permanent mold casting at Amcast Automotive.

  14. Effect of Binder and Mold parameters on Collapsibility and Surface Finish of Gray Cast Iron No-bake Sand Molds

    Science.gov (United States)

    Srinivasulu Reddy, K.; Venkata Reddy, Vajrala; Mandava, Ravi Kumar

    2017-08-01

    Chemically bonded no-bake molds and cores have good mechanical properties and produce dimensionally accurate castings compared to green sand molds. Poor collapsibility property of CO2 hardened sodium silicate bonded sand mold and phenolic urethane no-bake (PUN) binder system, made the reclamation of the sands more important. In the present work fine silica sand is mixed with phenolic urethane no-bake binder and the sand sets in a very short time within few minutes. In this paper it is focused on optimizing the process parameters of PUN binder based sand castings for better collapsibility and surface finish of gray cast iron using Taguchi design. The findings were successfully verified through experiments.

  15. Application of High-Temperature Mold Materials to Die Cast Copper Motor Rotor for Improved Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    John G. Cowie; Edwin F. Brush, Jr.; Dale T. Peters; Stephen P. Midson; Darryl J. Van Son

    2003-05-01

    The objective of the study, Application of High-Temperature Mold Materials to Die Cast Copper Motor Rotor for Improved Efficiency, was to support the Copper Development Association (CDA) in its effort to design, fabricate and demonstrate mold technologies designed to withstand the copper motor rotor die casting environment for an economically acceptable life. The anticipated result from the compiled data and tests were to: (1) identify materials suitable for die casting copper, (2) fabricate motor rotor molds and (3) supply copper rotor motors for testing in actual compressor systems. Compressor manufacturers can apply the results to assess the technical and economical viability of copper rotor motors.

  16. 3D scanning based mold correction for planar and cylindrical parts in aluminum die casting

    Directory of Open Access Journals (Sweden)

    Takashi Seno

    2015-04-01

    Full Text Available Aluminum die casting is an important manufacturing process for mechanical components. Die casting is known to be more accurate than other types of casting; however, post-machining is usually necessary to achieve the required accuracy. The goal of this investigation is to develop machining- free aluminum die casting. Improvement of the accuracy of planar and cylindrical parts is expected by correcting metal molds. In the proposed method, the shape of cast aluminum made with the initial metal molds is measured by 3D scanning. The 3D scan data includes information about deformations that occur during casting. Therefore, it is possible to estimate the deformation and correction amounts by comparing 3D scan data with product computer-aided design (CAD data. We corrected planar and cylindrical parts of the CAD data for the mold. In addition, we corrected the planar part of the metal mold using the corrected mold data. The effectiveness of the proposed method is demonstrated by evaluating the accuracy improvement of the cast aluminum made with the corrected mold.

  17. Self-supported ceramic substrates with directional porosity by mold freeze casting

    DEFF Research Database (Denmark)

    Gurauskis, Jonas; Graves, Christopher R.; Moreno, R.

    2016-01-01

    in a mold and applying directional freeze casting. Use of optimized suspension, cryoprotector additive and mold proved to deliver defect free ceramic films with high dimensional control. Microstructure analysis demonstrated the formation of desirable aligned porosity at macro-structural scale and resulted...

  18. Effect of Reclamation on the Skin Layer of Ductile Iron Cast in Furan Molds

    Science.gov (United States)

    Dańko, R.; Holtzer, M.; Górny, M.; Żymankowska-Kumon, S.

    2013-11-01

    The paper presents the results of investigations of the influence of the quality of molding sand with furan resin hardened by paratoluenesulfonic acid, on the formation of microstructure and surface quality of ductile iron castings. Within the studies different molding sands were used: molding sand prepared with fresh sand and molding sands prepared with reclaimed sands of a different purification degree, determined by the ignition loss value. Various concentrations of sulfur and nitrogen in the sand molds as a function of the ignition loss were shown in the paper. A series of experimental melts of ductile iron in molds made of molding sand characterized by different levels of surface-active elements (e.g., sulfur) and different gas evolution rates were performed. It was shown that there exists a significant effect of the quality of the sand on the formation of the graphite degeneration layer.

  19. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Light Metals Permanent Mold Casting

    Energy Technology Data Exchange (ETDEWEB)

    Fasoyinu, Yemi [CanmetMATERIALS

    2014-03-31

    Current vehicles use mostly ferrous components for structural applications. It is possible to reduce the weight of the vehicle by substituting these parts with those made from light metals such as aluminum and magnesium. Many alloys and manufacturing processes can be used to produce these light metal components and casting is known to be most economical. One of the high integrity casting processes is permanent mold casting which is the focus of this research report. Many aluminum alloy castings used in automotive applications are produced by the sand casting process. Also, aluminum-silicon (Al-Si) alloys are the most widely used alloy systems for automotive applications. It is possible that by using high strength aluminum alloys based on an aluminum-copper (Al-Cu) system and permanent mold casting, the performance of these components can be enhanced significantly. This will also help to further reduce the weight. However, many technological obstacles need to be overcome before using these alloys in automotive applications in an economical way. There is very limited information in the open literature on gravity and low-pressure permanent mold casting of high strength aluminum alloys. This report summarizes the results and issues encountered during the casting trials of high strength aluminum alloy 206.0 (Al-Cu alloy) and moderate strength alloy 535.0 (Al-Mg alloy). Five engineering components were cast by gravity tilt-pour or low pressure permanent mold casting processes at CanmetMATERIALS (CMAT) and two production foundries. The results of the casting trials show that high integrity engineering components can be produced successfully from both alloys if specific processing parameters are used. It was shown that a combination of melt processing and mold temperature is necessary for the elimination of hot tears in both alloys.

  20. Effect of mold designs on molten metal behaviour in high-pressure die casting

    Science.gov (United States)

    Ibrahim, M. D.; Rahman, M. R. A.; Khan, A. A.; Mohamad, M. R.; Suffian, M. S. Z. M.; Yunos, Y. S.; Wong, L. K.; Mohtar, M. Z.

    2017-04-01

    This paper presents a research study conducted in a local automotive component manufacturer that produces aluminium alloy steering housing local and global markets. This study is to investigate the effect of design modification of mold in die casting as to improve the production rate. Design modification is carried out on the casting shot of the mold. Computer flow simulation was carried out to study the flow of molten metal in the mold with respect to the mold design modification. The design parameters of injection speed, die temperature and clamping force has been included in the study. The result of the simulation showed that modifications of casting shot give significant impact towards the molten flow behaviour in casting process. The capabilities and limitations of die casting process simulation to conduct defect analysis had been optimized. This research will enhance the efficiency of the mass production of the industry of die casting with the understanding of defect analysis, which lies on the modification of the mold design, a way early in its stages of production.

  1. Surface Crystallization in Mg-Based Bulk Metallic Glass during Copper Mold Casting

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2014-01-01

    Full Text Available The localized crystallization of Mg54Cu28Ag7Y11 bulk metallic glass (BMG in the injection casting process using a copper mold was investigated. It has been found that several crystalline phases were formed close to the as-cast surface but did not exist in the internal part of the BMG plate. It is abnormal that the as-cast surface is partially crystallized with higher cooling rate than that of inside. Overheating of the melt and nucleation induced by the surface of copper mold play key roles in the abnormal crystallization. It is suggested that the function of copper mold to trigger heterogeneous nucleation cannot be totally ignored, although it provides the high cooling rate for the glass formation during casting.

  2. Material Properties of Various Cast Aluminum Alloys Made Using a Heated Mold Continuous Casting Technique with and without Ultrasonic Vibration

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Okayasu

    2015-08-01

    Full Text Available This work was carried out to develop high-quality cast aluminum alloys using a new casting technology. For this purpose, commercial Al alloys were created by heated mold continuous casting (HMC with ultrasonic vibration (UV. With the HMC process, the grain size and the crystal orientation of the Al alloys were controlled, i.e., fine grains with a uniformly organized lattice formation. In addition, an attempt was made to modify the microstructural formation by cavitation. These microstructural characteristics made excellent mechanical properties. Using UV in the continuous casting process, more fine and spherical grains were slightly disordered, which was detected using electron backscattered diffraction. The mechanical properties of the UV HMC Al alloys were slightly higher than those for the related cast Al alloys without UV. Moreover, the severe vibration caused higher mechanical properties. The lattice and dislocation characteristics of the cast samples made with and without UV processes were analyzed systematically using electron backscattered diffraction.

  3. The Design of 3D-Printed Lattice-Reinforced Thickness-Varying Shell Molds for Castings.

    Science.gov (United States)

    Shangguan, Haolong; Kang, Jinwu; Yi, Jihao; Zhang, Xiaochuan; Wang, Xiang; Wang, Haibin; Huang, Tao

    2018-03-30

    3D printing technologies have been used gradually for the fabrication of sand molds and cores for castings, even though these molds and cores are dense structures. In this paper, a generation method for lattice-reinforced thickness-varying shell molds is proposed and presented. The first step is the discretization of the STL (Stereo Lithography) model of a casting into finite difference meshes. After this, a shell is formed by surrounding the casting with varying thickness, which is roughly proportional to the surface temperature distribution of the casting that is acquired by virtually cooling it in the environment. A regular lattice is subsequently constructed to support the shell. The outside surface of the shell and lattice in the cubic mesh format is then converted to STL format to serve as the external surface of the new shell mold. The internal surface of the new mold is the casting's surface with the normals of all of the triangles in STL format reversed. Experimental verification was performed on an Al alloy wheel hub casting. Its lattice-reinforced thickness-varying shell mold was generated by the proposed method and fabricated by the binder jetting 3D printing. The poured wheel hub casting was sound and of good surface smoothness. The cooling rate of the wheel hub casting was greatly increased due to the shell mold structure. This lattice-reinforced thickness-varying shell mold generation method is of great significance for mold design for castings to achieve cooling control.

  4. Interim Report on Mixing During the Casting of LEU-10Mo Plates in the Triple Plate Molds

    Energy Technology Data Exchange (ETDEWEB)

    Aikin, Jr., Robert M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-04-12

    LEU-10%Mo castings are commonly produced by down blending unalloyed HEU with a DU-12.7%Mo master-alloy. This work uses process modeling to provide insight into the mixing of the unalloyed uranium and U-Mo master alloy during melting and mold filling of a triple plate casting. Two different sets of situations are considered: (1) mixing during mold filling from a compositionally stratified crucible and (2) convective mixing of a compositionally stratified crucible during mold heating. The mold filling simulations are performed on the original Y-12 triple plate mold and the horizontal triple plate mold.

  5. Analysis of Mold Friction in a Continuous Casting Using Wavelet Transform

    Science.gov (United States)

    Ma, Yong; Fang, Bohan; Ding, Qiqi; Wang, Fangyin

    2018-04-01

    Mold friction (MDF) is an important parameter reflecting the lubrication condition between the initial shell and the mold during continuous casting. In this article, based on practical MDF from the slab continuous casting driven by a mechanical vibration device, the characteristics of friction were analyzed by continuous wavelet transform (CWT) and discrete wavelet transform (DWT) in different casting conditions, such as normal casting, level fluctuation, and alarming of the temperature measurement system. The results show that the CWT of friction accurately captures the subtle changes in friction force, such as the periodic characteristic of MDF during normal casting and the disordered feature of MDF during level fluctuation. Most important, the results capture the occurrence of abnormal casting and display the friction frequency characteristics at this abnormal time. In addition, in this article, there are some abnormal casting conditions, and the friction signal is stable until there is a sudden large change when abnormal casting, such as split breakout and submerged entry nozzle breakage, occurs. The DWT has a good ability to capture the friction characteristics for such abnormal situations. In particular, the potential abnormal features of MDF were presented in advance, which provides strong support for identifying abnormal casting and even preventing abnormal casting.

  6. Application of digital pattern-less molding technology to produce art casting

    Directory of Open Access Journals (Sweden)

    Chen Li1

    2014-11-01

    Full Text Available Compared with the conventional casting process, digital pattern-less casting technology has many advantages such as good machining accuracy, a short processing cycle, and low production cost. It is a new rapid manufacturing technology for castings, integrated with CAD/CAM, casting, CNC machining and many other advanced technologies. With this digital casting technology, no pattern is needed for making molds; it is precise, flexible, and green. Usually, art castings have complex structures and are made in small batches or even made in a single-piece, especially for large-sized art castings. So it has the shortcomings of high cost, low efficiency and long time for making a pattern to produce art castings with the conventional casting processes. However, the digital pattern-less casting technology can be applied to fabricate art castings, since it can greatly shorten the manufacturing cycle and lower the production cost, thus having a very good prospect. In this study, based on the digital pattern-less casting technology, a plaque casting with artistic Chinese characters (a Chinese poem was designed and manufactured, and the production process was demonstrated in detail.

  7. Simulation for grinding balls production using sand mold-gravity casting

    Science.gov (United States)

    Nurjaman, F.; Shofi, A.; Herlina, U.; Prilitasari, N. M.; Triapriani, Y.

    2018-01-01

    In this present work, the grinding balls from high chromium white cast iron (ASTM A-532) were produced by using sand mold-gravity casting. The simulation casting process was conducted before making these grinding balls by using SOLIDCast™ version 8.2.0. The gating system design and the pouring temperature of hot metal were investigated clearly to obtain grinding balls with no-defect. The sound casting of grinding balls was resulted by using the proper gating system with the addition of vent air on the top of each grinding ball’s mold. The dimension of vent air was reduced by the increasing of pouring temperature, thus it resulted on the increasing of the yield production of grinding balls.

  8. Solubility of Hydrogen and Nitrogen in liquid cast iron during melting and mold filling

    OpenAIRE

    Diószegi, Attila; Elfsberg, Jessica; Diószegi, Zoltán

    2016-01-01

    Defect formation like gas- and shrinkage porosity at cast iron component production is related to the content of gaseous elements in the liquid metal. The present work investigate the solubility of hydrogen and nitrogen in liquid iron aimed for production of lamellar and compacted graphite cast iron. The used methods and instruments are a combination of commercial measuring devices and novel experimental assemblies for measuring solubility of hydrogen and nitrogen during melting and mold fill...

  9. Material Properties of Various Light Metals Produced by Heated Mold Continuous Casting

    Directory of Open Access Journals (Sweden)

    Yuta Miyamoto

    2017-03-01

    Full Text Available In the present work, an attempt was made to develop high quality cast aluminum alloys via a new casting technology, e.g., the heated mold continuous casting (HMC with ultrasonic vibration (UV process. With the UV process in the continuous casting process, fine and spherical grains were obtained, where the lattice structure is formed similarly before the UV process while dislocation density increases. The mechanical properties of the UV-HMC Al alloys are higher than those for the related cast Al alloys without UV although still high material ductility is obtained. The lattice and dislocation characteristics of the continuous cast samples made with and without the UV processes were analyzed systematically by the EBSD observations to interrupt clearly their mechanical properties.

  10. Effect of Flow Rate Controller on Liquid Steel Flow in Continuous Casting Mold using Numerical Modeling

    Science.gov (United States)

    Gursoy, Kadir Ali; Yavuz, Mehmet Metin

    2014-11-01

    In continuous casting operation of steel, the flow through tundish to the mold can be controlled by different flow rate control systems including stopper rod and slide-gate. Ladle changes in continuous casting machines result in liquid steel level changes in tundishes. During this transient event of production, the flow rate controller opening is increased to reduce the pressure drop across the opening which helps to keep the mass flow rate at the desired level for the reduced liquid steel level in tundish. In the present study, computational fluid dynamic (CFD) models are developed to investigate the effect of flow rate controller on mold flow structure, and particularly to understand the effect of flow controller opening on meniscus flow. First, a detailed validation of the CFD models is conducted using available experimental data and the performances of different turbulence models are compared. Then, the constant throughput casting operations for different flow rate controller openings are simulated to quantify the opening effect on meniscus region. The results indicate that the meniscus velocities are significantly affected by the flow rate controller and its opening level. The steady state operations, specified as constant throughput casting, do not provide the same mold flow if the controller opening is altered. Thus, for quality and castability purposes, adjusting the flow controller opening to obtain the fixed mold flow structure is proposed. Supported by Middle East Technical University (METU) BAP (Scientific Research Projects) Coordination.

  11. Improvements in Sand Mold/Core Technology: Effects on Casting Finish

    Energy Technology Data Exchange (ETDEWEB)

    Prof. John J. Lannutti; Prof. Carroll E. Mobley

    2005-08-30

    In this study, the development and impact of density gradients on metal castings were investigated using sand molds/cores from both industry and from in-house production. In spite of the size of the castings market, almost no quantitative information about density variation within the molds/cores themselves is available. In particular, a predictive understanding of how structure and binder content/chemistry/mixing contribute to the final surface finish of these products does not exist. In this program we attempted to bridge this gap by working directly with domestic companies in examining the issues of surface finish and thermal reclamation costs resulting from the use of sand molds/cores. We show that these can be substantially reduced by the development of an in-depth understanding of density variations that correlate to surface finish. Our experimental tools and our experience with them made us uniquely qualified to achieve technical progress.

  12. Analysis of Meniscus Fluctuation in a Continuous Casting Slab Mold

    Science.gov (United States)

    Zhang, Kaitian; Liu, Jianhua; Cui, Heng; Xiao, Chao

    2018-03-01

    A water model of slab mold was established to analyze the microscopic and macroscopic fluctuation of meniscus. The fast Fourier transform and wavelet entropy were adopted to analyze the wave amplitude, frequency, and components of fluctuation. The flow patterns under the meniscus were measured by using particle image velocimetry measurement and then the mechanisms of meniscus fluctuation were discussed. The results reflected that wavelet entropy had multi-scale and statistical properties, and it was suitable for the study of meniscus fluctuation details both in time and frequency domain. The basic wave, frequency of which exceeding 1 Hz in the condition of no mold oscillation, was demonstrated in this work. In fact, three basic waves were found: long-wave with low frequency, middle-wave with middle frequency, and short-wave with high frequency. In addition, the upper roll flow in mold had significant effect on meniscus fluctuation. When the position of flow impinged was far from the meniscus, long-wave dominated the fluctuation and the stability of meniscus was enhanced. However, when the velocity of flow was increased, the short-wave dominated the meniscus fluctuation and the meniscus stability was decreased.

  13. Heat-Transfer Behavior of Mold Fluxes for Continuous Casting of Invar Alloy

    Science.gov (United States)

    Yan, Wei; Chen, Weiqing; Lippold, Carsten; Xu, Hongcheng

    2013-12-01

    The heat-transfer behavior across mold fluxes for Invar alloy Fe-36Ni would introduce significant influence on the slab surface quality. A study on the heat-transfer property of mold flux film for Invar alloy Fe-36Ni was carried out by an interaction between laboratory simulation and field trial. The study results indicate that great effect on heat transfer across flux film is caused by chemical compositions of mold fluxes. An increase of basicity and CaF2 content suppresses heat transfer across flux film; heat transfer across flux film increases when the Al2O3 content increases from 4 pct to 8 pct but decreases when Al2O3 content is above 8 pct. The crystalline phases of both the conventional mold fluxes and the improved mold fluxes are all cuspidine phases. However, crystallization capability of the improved mold fluxes decreases as the result of the increase of basicity and CaF2 content as well as the decrease of Al2O3 content. The average thickness of flux film taken from mold is about 1.6 mm, and the crystalline fraction is only 21.4 pct. All these promote heat transfer across the flux film. The field trial of the improved mold fluxes shows that the properties of liquid slag are steady during continuous casting; comprehensive heat transfer across flux film meets the needs of continuous casting of Fe-36Ni. Border solidification structures of solidified shell are refined remarkably, and hot cracking gets avoidance eventually.

  14. LES‐VOF simulation of turbulent interfacial flow in the continuous casting mold

    OpenAIRE

    Saeedipour, Mahdi; Puttinger, Stefan; Pirker, Stefan

    2017-01-01

    Slag entrainment during continuous casting process is a multiscale problem strongly dependent on the molten metal flow in the mold. Large-scale flow structures in the mold interact with the slag layer at the top of the meniscus, and small-scale liquid structures in the form of slag droplets may be entrained into the solidifying metal. In this work a large eddy simulation - volume of fluid (LES-VOF) approach is applied to investigate the unsteady flow interaction with the metal-slag-air interf...

  15. State of Spent Molding Sands in the Mold Large-Size Cast

    Directory of Open Access Journals (Sweden)

    Łucarz M.

    2016-12-01

    Full Text Available The results of investigations of spent moulding sands taken from the mould at various distances from the surface of the produced casting, are presented in the paper. The casting mould was made with an application of the cooling system of the metal core in order to increase the cooling rate of the ladle casting. As temperature measurements in the mould indicated the heat flow from the metal did not create conditions for the complete burning of a moulding sand. The analysis was performed to find out changes of spent moulding sands caused by degradation and destruction processes of organic binders. Conditions occurring in the casting mould were discussed on the bases of testing: ignition losses, dusts contents, pH reactions and the surface morphology of the moulding sand samples. Factors limiting the effective mould degassing were pointed out. Operations, possible for realization, which can limit the reasons of a periodical occurrence of increased amounts of casting defects due to changing gas evolution rates being the result of the technological process, were also indicated.

  16. Pure titanium casting into zirconia-modified magnesia-based investment molds.

    Science.gov (United States)

    Hung, Chun-Cheng; Hou, Guey-Lin; Tsai, Chi-Cheng; Huang, Cheng-Ching

    2004-11-01

    Molten titanium is highly reactive with common mold materials at elevated temperatures. The aim of this investigation was to improve the accuracy of pure titanium casting by adding unreactive zirconia into magnesia-based investment material. An automatic thermal expansion laser-recording machine (TEM-1000/Pantos, Nippon Co.) was used to measure thermal expansion of investment materials. An automatic argon-casting machine (Castmatic-S, Iwatani Co.) was used to cast pure titanium samples. A stereomicroscope was used (Nikon SM-2T, Japan) to measure marginal discrepancy on a metal die. A Vickers microhardness indenter (MXT-50, Matsuzawa Seiki Co.) determined the Vickers hardness (VH) of the titanium samples. Interfacial reactivity of the titanium was evaluated with an X-ray diffractometer (Rigaku D/max VIII, Tokyo, Japan). A dental X-ray machine was used to examine internal porosity of the castings. Data was analysed with paired t-test (p zirconia to a magnesia-based investment material significantly increased its thermal expansion value (p zirconia-added group (p zirconia decreased interfacial reactivity and the VH of titanium. Under appropriately adjusted conditions, the addition of zirconia to magnesia-based mold materials may be used to produce high quality pure titanium castings.

  17. An adaptive neuro-fuzzy controller for mold level control in continuous casting

    International Nuclear Information System (INIS)

    Zolghadri Jahromi, M.; Abolhassan Tash, F.

    2001-01-01

    Mold variations in continuous casting are believed to be the main cause of surface defects in the final product. Although a Pid controller is well capable of controlling the level under normal conditions, it cannot prevent large variations of mold level when a disturbance occurs in the form of nozzle unclogging. In this paper, dual controller architecture is presented, a Pid controller is used as the main controller of the plant and an adaptive neuro-fuzzy controller is used as an auxiliary controller to help the Pid during disturbed phases. The control is passed back to the Pid controller after the disturbance is being dealt with. Simulation results prove the effectiveness of this control strategy in reducing mold level variations during the unclogging period

  18. Mold flux characterization for thin slab casting of steel

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Ramirez, A.; Vargas-Ramirez, M.; Hernandez-Perez, M. A.; Palacios-Beas, E.; Chavez-Alcala, J. E.

    2012-11-01

    The mineralogical constitution and the melting-solidification behavior of two commercial fluxes for thin slab casting of steel were determined. The characterization of the commercial fluxes as received show the presence of wollastonite (CaO . SiO{sub 2}), a sodium carbonate (Na{sub 2}CO{sub 3}), calcite (CaCO{sub 3}), fluorite (CaF{sub 2}) and carbon as the main components by X ray powder diffraction (XRD) and microscopic techniques. When fluxes were heated to 1573 K and further solidification, there was almost a whole transformation from the original compounds to cuspidine (3CaO. 2SiO{sub 2}.CaF{sub 2}) and nepheline (Na{sub 2}O . Al{sub 2}O{sub 3}. 2SiO{sub 2}) phases. The thermal gravimetrical analysis showed an important weight reduction in both fluxes due to the thermal decompositions of calcite and sodium carbonate. The characterization reveals that fluxes are produced by an agglomeration process. (Author) 15 refs.

  19. Mold flux characterization for thin slab casting of steel

    Directory of Open Access Journals (Sweden)

    Cruz-Ramírez, A.

    2012-08-01

    Full Text Available The mineralogical constitution and the melting-solidification behavior of two commercial fluxes for thin slab casting of steel were determined. The characterization of the commercial fluxes as received show the presence of wollastonite (CaO. SiO2, a sodium carbonate (Na2CO3, calcite (CaCO3, fluorite (CaF2 and carbon as the main components by X ray powder diffraction (XRD and microscopic techniques. When fluxes were heated to 1573 K and further solidification, there was almost a whole transformation from the original compounds to cuspidine (3CaO - 2SiO2 - CaF2 and nepheline (Na2O - Al2O3 - 2SiO2 phases. The thermal gravimetrical analysis showed an important weight reduction in both fluxes due to the thermal decompositions of calcite and sodium carbonate. The characterization reveals that fluxes are produced by an agglomeration process.

    Se determinó la composición mineralógica y el comportamiento de fusión-solidificación de dos fundentes comerciales para la colada de planchón delgado de acero. La caracterización de los fundentes comerciales por difracción de rayos X (XRD y técnicas de microscopía muestra la presencia de wollastonita (CaO - SiO2, un carbonato de sodio (Na2CO3, calcita (CaCO3, fluorita (CaF2 y carbono como los principales componentes. Cuando los fundentes se calentaron a 1.573 K y después de la solidificación, hubo una transformación casi total de los compuestos originales a las fases cuspidina (3CaO - 2SiO2 - CaF2 y nefelina (Na2O - Al2O3 - 2SiO2. El análisis termogravimétrico muestra una importante reducción de peso en los fundentes debido a la descomposición térmica de la calcita y el carbonato de sodio. La caracterización indica que los fundentes son producidos por

  20. The Effect Of Mechanical Interactions Between The Casting And The Mold On The Conditions Of Heat Dissipation: A Numerical Model

    Directory of Open Access Journals (Sweden)

    Dyja R.

    2015-09-01

    Full Text Available We present a description of the effects of thermal interactions, which take into account formation of a shrinkage gap, that affect the level of stresses in a system castingmold. Calculations were carried out in our own computer program which is an implementation of the finite element method used to solve the equations describing a thermo-elastic-plastic model of material and the heat conduction, including solidification. In the computing algorithm we use our own criteria for mechanical interaction between the casting and mold domains. Our model of mechanical interactions between the casting and the mold allows efficient modeling of stresses occurring in the casting and an impact of development of the shrinkage gap on cooling course.

  1. Casting dimensional control and fatigue life prediction for permanent mold casting dies. Technical progress report, September 29, 1993-- September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-11-01

    First year efforts as part of a three year program to address metal casting dimensional control and fatigue life prediction for permanent mold casting dies are described. Procedures have been developed and implemented to collect dimensional variability data from production steel castings. The influence of process variation and casting geometry variables on dimensional tolerances have been investigated. Preliminary results have shown that these factors have a significant influence on dimensional variability, although this variability is considerably less than the variability indicated in current tolerance standards. Gage repeatability and reproducibility testing must precede dimensional studies to insure that measurement system errors are acceptably small. Also initial efforts leading to the development and validation of a CAD/CAE model to predict the thermal fatigue life of permanent molds for aluminum castings are described. An appropriate thermomechanical property database for metal, mold and coating materials has been constructed. A finite element model has been developed to simulate the mold temperature distribution during repeated casting cycles. Initial validation trials have indicated the validity of the temperature distribution model developed.

  2. Mold

    Science.gov (United States)

    ... are we studying mold? Mold is everywhere and people are concerned about potential health effects, especially effects on respiratory health. People who already have asthma or a respiratory condition ...

  3. Effect of preparation variables of plaster molds for slip casting of sanitary ware

    Directory of Open Access Journals (Sweden)

    Rafael E. Ochoa

    2017-11-01

    Full Text Available A full factorial design was used to evaluate the effect of various preparation conditions for making plaster molds for slip casting of sanitary ware. We investigated the relationships between the processing conditions, microstructure, and final properties of the plaster molds. The results showed that the rheological behavior, and hence, the time during which the plaster suspension is pourable for making the plaster molds (before an important increase in viscosity due to the precipitation of gypsum crystals were dependent on the preparation conditions. Variations in the chemical composition, pore size distribution, and microstructure explained the statistically significant effect of preparation variables (including the mixing time, water temperature, and water quality. Preparation conditions that promoted high initial viscosity of the plaster suspension (accelerative effect of the setting time developed less porous structure in the mold that principally increased the compressive strength (16%, deionized water instead of tap water and the casting rate (9%, water at 25 °C instead of 38 °C. According to the results are proposed optimum conditions to make the molds while avoiding unnecessary energy use. Resumen: Mediante un diseño factorial completo se evaluaron diferentes condiciones de preparación de moldes de yeso para colado tradicional de muebles sanitarios. Se investigó la relación entre procesamiento, microestructura y propiedades del molde. Los resultados mostraron que el comportamiento reológico y por lo tanto el tiempo durante el cual la suspensión de yeso se puede verter para conformar los moldes (antes de un incremento importante de viscosidad debido a la formación de cristales de yeso fueron dependientes de las condiciones de preparación. Variaciones en composición química, distribución de tamaño de poro y microestructura explicaron el efecto estadísticamente significativo de las variables de preparación (que incluyeron

  4. Modeling interfacial slag layer phenomena in the shell/mold gap in continuous casting of steel

    Science.gov (United States)

    Meng, Ya

    A new lubrication and friction model of slag in the interfacial gap was combined into an existing 1-D heat transfer model, CON1D. Analytical transient models of liquid slag flow and solid slag stress have been coupled with a finite-difference model of heat transfer in the mold, gap and steel shell to predict transient shear stress, friction, slip and fracture of the slag layers. Experimental work was conducted to measure the properties of slag powder, including the friction coefficient at elevated temperatures and viscosity near solidification temperature. Tests with wide cooling rates range were conducted to construct CCT curves and to predict critical cooling rates of two slags with different crystallization tendencies. Slag composition and microstructure were analyzed by XRD and SEM. The CON1D model predicts shell thickness, temperature distributions in the mold and shell, slag layers thickness, heat flux profiles down the mold, cooling water temperature rise, ideal taper of the mold walls, and other related phenomena. Plants measurements from operating casters were collected to calibrate the model. The model was then applied to study the effect of casting speed and powder viscosity properties on slag layer behavior. The study finds that liquid slag lubrication would produce negligible stresses. Lower mold slag consumption rate leads to higher solid friction and results in solid slag layer fracture and movement if it falls below a critical value. Mold friction and fracture are governed by lubrication consumption rate. The high measured friction force in operating casters could be due to three sources: an intermittent moving solid slag layer, excessive mold taper or mold misalignment. The model was also applied to interpret the crystallization behavior of slag. A mechanism for the formation of this crystalline layer was proposed that combined the effects of a shift in the viscosity curve, a decrease in the liquid slag conductivity due to partial crystallization

  5. Hot-tearing of multicomponent Al-Cu alloys based on casting load measurements in a constrained permanent mold

    Energy Technology Data Exchange (ETDEWEB)

    Sabau, Adrian S [ORNL; Mirmiran, Seyed [Fiat Chrysler Automobiles North America; Glaspie, Christopher [Fiat Chrysler Automobiles North America; Li, Shimin [Worcester Polytechnic Institute (WPI), MA; Apelian, Diran [Worcester Polytechnic Institute (WPI), MA; Shyam, Amit [ORNL; Haynes, James A [ORNL; Rodriguez, Andres [Nemak, Garza Garcia, N.L., Mexico

    2017-01-01

    Hot-tearing is a major casting defect that is often difficult to characterize, especially for multicomponent Al alloys used for cylinder head castings. The susceptibility of multicomponent Al-Cu alloys to hot-tearing during permanent mold casting was investigated using a constrained permanent mold in which the load and displacement was measured. The experimental results for hot tearing susceptibility are compared with those obtained from a hot-tearing criterion based temperature range evaluated at fraction solids of 0.87 and 0.94. The Cu composition was varied from approximately 5 to 8 pct. (weight). Casting experiments were conducted without grain refining. The measured load during casting can be used to indicate the severity of hot tearing. However, when small hot-tears are present, the load variation cannot be used to detect and assess hot-tearing susceptibility.

  6. Grain refinement of permanent mold cast copper base alloys. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sadayappan, M.; Thomson, J. P.; Elboujdaini, M.; Gu, G. Ping; Sahoo, M.

    2004-04-29

    Grain refinement behavior of copper alloys cast in permanent molds was investigated. This is one of the least studied subjects in copper alloy castings. Grain refinement is not widely practiced for leaded copper alloys cast in sand molds. Aluminum bronzes and high strength yellow brasses, cast in sand and permanent molds, were usually fine grained due to the presence of more than 2% iron. Grain refinement of the most common permanent mold casting alloys, leaded yellow brass and its lead-free replacement EnviroBrass III, is not universally accepted due to the perceived problem of hard spots in finished castings and for the same reason these alloys contain very low amounts of iron. The yellow brasses and Cu-Si alloys are gaining popularity in North America due to their low lead content and amenability for permanent mold casting. These alloys are prone to hot tearing in permanent mold casting. Grain refinement is one of the solutions for reducing this problem. However, to use this technique it is necessary to understand the mechanism of grain refinement and other issues involved in the process. The following issues were studied during this three year project funded by the US Department of Energy and the copper casting industry: (1) Effect of alloying additions on the grain size of Cu-Zn alloys and their interaction with grain refiners; (2) Effect of two grain refining elements, boron and zirconium, on the grain size of four copper alloys, yellow brass, EnviroBrass II, silicon brass and silicon bronze and the duration of their effect (fading); (3) Prediction of grain refinement using cooling curve analysis and use of this method as an on-line quality control tool; (4) Hard spot formation in yellow brass and EnviroBrass due to grain refinement; (5) Corrosion resistance of the grain refined alloys; (6) Transfer the technology to permanent mold casting foundries; It was found that alloying elements such as tin and zinc do not change the grain size of Cu-Zn alloys

  7. Designing a combined casting mold for manufacture of a gasoline centrifugal pump body using CAD/CAM-systems

    Science.gov (United States)

    Galin, N. E.; Ogol, I. I.; Chervach, Yu B.; Dammer, V. Kh; Ru, Jia Hong

    2017-02-01

    The present paper examines designing of a combined casting mold for manufacture of a gasoline centrifugal pump body. The paper offers technological solutions for obtaining high quality castings at the testing stage of the finished mold. The paper is intended for practical use and prepared by order of JSC ‘Tomsk Electrical Engineering Plant’ using software and equipment of the department ‘Technologies of Computer-Aided Machinery Manufacturing’ of the Tomsk Polytechnic University (TPU) under the economic contract within state import substitution program. In preparing the paper, CAD/CAM-systems KOMPAS-3D and PowerMILL were used. In 2015, the designed casting mold was introduced into the production process at JSC ‘Tomsk Electrical Engineering Plant’.

  8. Numerical and Physical Parametric Analysis of a SEN with Flow Conditioners in Slab Continuous Casting Mold

    Directory of Open Access Journals (Sweden)

    Gonzalez-Trejo J.

    2017-06-01

    Full Text Available Some of the most recent technologies that improves the performance in continuous casting process has installed infrastructure outside the mold to modify the natural fluid flow pattern to obtain a quasi-steady condition and promote a uniform solidified shell of steel. The submerged entry nozzle distributes the liquid steel in the mold and can be used to obtain the flow symmetry condition with external geometry improvements. The fluid flow conditioners were located near the outlet ports of the nozzle. The aim of the modifiers is to impose a pseudo symmetric pattern in the upper zone of the mold by inhibiting the fluid exchange between the zones created by conditioners. This work evaluates the effect of the thickness and length of the fluid-flow modifiers on the overall performance of the submerged nozzle. These properties of the fluid-flow modifiers were normalized based on two of the geometric dimensions of the standard equipment. Numerical and physical simulations suggest that the flow modifier should be as thin as possible.

  9. Characteristics of mold filling and entrainment of oxide film in low pressure casting of A356 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shan-Guang; Cao, Fu-Yang; Zhao, Xin-Yi; Jia, Yan-Dong; Ning, Zhi-Liang; Sun, Jian-Fei, E-mail: jfsun_hit@263.net

    2015-02-25

    The effect of pressurizing speed of low pressure casting on mold filling and mechanical properties of A356 alloy was studied. The mold filling behavior was calculated by two phase flow model using VOF (Volume of Fluid) method. In order to evaluate the accuracy of simulated results, the real mold filling process observed by X-ray radiography was compared. The results show that during mold filling the gate velocity first increased dramatically, then kept unchanged under relatively low pressurizing speed, or increased slowly under relatively high pressurizing speed. High gate velocity causes melt falling back under gravity with high speed. The falling velocity and the resultant relative rotating vortex are the main causes of oxide film entrainment in low pressure casting. The mechanical properties of the as-cast A356 alloy were measured by four-point bend test. Weibull probability plots were used to assess the fracture mechanisms under different pressurizing speeds. The results obtained in this paper illuminate on designing suitable pressurizing speed for mold filling in low pressure casting.

  10. Tool Steels in Die-Casting Utilization and Increased Mold Life

    Directory of Open Access Journals (Sweden)

    Sepanta Naimi

    2015-01-01

    Full Text Available In die-casting molds, heat-checking is the typical failure mechanism. Optimizing the parameters that decrease this failure venture should be considered when designing and heat treating steels. The quality of die steels and their treatment continue to improve. This research investigated properties of the traditional materials 1.2343 and 1.2344 and the new steels (Dievar and TOOLOX 44 when applied to the die-casting mold specimens, after different experimental cycles. Also microstructures of the mentioned materials were analyzed by scanning electron microscopy (SEM test. Chrome-molybdenum-silicon-vanadium steels have good hardening ability in oil and in air. Therefore, the hot-work steels have considerable toughness and plastic attributes through both regular and higher temperatures. So, it is a good traditional die-casting material. However, another special die steel, such as Dievar, is a particularly developed steel grade; its exclusivity profile is exceptional due to its chemical composition and the use of the latest production techniques. Dievar has good heat-checking and gross-cracking resistance as a result of both high toughness and good hot strength. An additional material, a new prehardened tool steel known as TOOLOX 44, exhibits control of the failure described above by optimizing the parameters of impact toughness that could reduce the heat-checking failures. A variety of heat treatment parameters exist for various reasons because the heat treatment operation is performed by a variety of companies. This issue of the diversity in heat treatments is resolved by TOOLOX 44; this steel is quenched and tempered in delivered state.

  11. Premature melt solidification during mold filling and its influence on the as-cast structure

    Science.gov (United States)

    Wu, M.; Ahmadein, M.; Ludwig, A.

    2018-03-01

    Premature melt solidification is the solidification of a melt during mold filling. In this study, a numerical model is used to analyze the influence of the pouring process on the premature solidification. The numerical model considers three phases, namely, air, melt, and equiaxed crystals. The crystals are assumed to have originated from the heterogeneous nucleation in the undercooled melt resulting from the first contact of the melt with the cold mold during pouring. The transport of the crystals by the melt flow, in accordance with the socalled "big bang" theory, is considered. The crystals are assumed globular in morphology and capable of growing according to the local constitutional undercooling. These crystals can also be remelted by mixing with the superheated melt. As the modeling results, the evolutionary trends of the number density of the crystals and the volume fraction of the solid crystals in the melt during pouring are presented. The calculated number density of the crystals and the volume fraction of the solid crystals in the melt at the end of pouring are used as the initial conditions for the subsequent solidification simulation of the evolution of the as-cast structure. A five-phase volume-average model for mixed columnar-equiaxed solidification is used for the solidification simulation. An improved agreement between the simulation and experimental results is achieved by considering the effect of premature melt solidification during mold filling. Finally, the influences of pouring parameters, namely, pouring temperature, initial mold temperature, and pouring rate, on the premature melt solidification are discussed.

  12. Fabrication of a zirconia MEMS-based microthruster by gel casting on PDMS soft molds

    International Nuclear Information System (INIS)

    Cheah, K H; Khiew, P S; Chin, J K

    2012-01-01

    A zirconia microelectromechanical-system-based microthruster was fabricated through a newly developed fabrication route. Gel casting of homogenously dispersed zirconia suspension on polydimethylsiloxane soft mold was utilized to replicate the geometries of microthruster design onto a ceramic layer of about 1.2 mm thick. Lamination of the patterned ceramic layer to another flat ceramic layer and subsequent sintering produced the microthruster. Characterizations on the fabricated prototype showed good shape retention on the replicated geometries and good quality of lamination. Shrinkage of about 10–15% was noted after sintering. The current fabrication route is particularly promising for the development of high-performance micropropulsion systems which require their structural material to survive in an extreme environment which is corrosive, of high temperature and highly oxidative. (paper)

  13. Large Eddy Simulation of Transient Flow, Solidification, and Particle Transport Processes in Continuous-Casting Mold

    Science.gov (United States)

    Liu, Zhongqiu; Li, Linmin; Li, Baokuan; Jiang, Maofa

    2014-07-01

    The current study developed a coupled computational model to simulate the transient fluid flow, solidification, and particle transport processes in a slab continuous-casting mold. Transient flow of molten steel in the mold is calculated using the large eddy simulation. An enthalpy-porosity approach is used for the analysis of solidification processes. The transport of bubble and non-metallic inclusion inside the liquid pool is calculated using the Lagrangian approach based on the transient flow field. A criterion of particle entrapment in the solidified shell is developed using the user-defined functions of FLUENT software (ANSYS, Inc., Canonsburg, PA). The predicted results of this model are compared with the measurements of the ultrasonic testing of the rolled steel plates and the water model experiments. The transient asymmetrical flow pattern inside the liquid pool exhibits quite satisfactory agreement with the corresponding measurements. The predicted complex instantaneous velocity field is composed of various small recirculation zones and multiple vortices. The transport of particles inside the liquid pool and the entrapment of particles in the solidified shell are not symmetric. The Magnus force can reduce the entrapment ratio of particles in the solidified shell, especially for smaller particles, but the effect is not obvious. The Marangoni force can play an important role in controlling the motion of particles, which increases the entrapment ratio of particles in the solidified shell obviously.

  14. Simulation of transient fluid flow in mold region during steel continuous casting

    International Nuclear Information System (INIS)

    Liu, R; Thomas, B G; Sengupta, J

    2012-01-01

    A system of models has been developed to study transient flow during continuous casting and applied to simulate an event of multiple stopper-rod movements. It includes four sub-models to incorporate different aspects in this transient event. A three-dimensional (3-D) porous-flow model of the nozzle wall calculates the rate argon gas flow into the liquid steel, and the initial mean bubble size is estimated. Transient CFD models simulate multiphase flow of steel and gas bubbles in the Submerged Entry Nozzle (SEN) and mold and have been validated with experimental data from both nail dipping and Sub-meniscus Velocity Control (SVC) measurements. To obtain the transient inlet boundary conditions for the simulation, two semi-empirical models, a stopper-rod-position based model and a metal-level-based model, predict the liquid steel flow rate through the SEN based on recorded plant data. Finally the model system was applied to study the effects of stopper rod movements on SEN/mold flow patterns. Meniscus level fluctuations were calculated using a simple pressure method and compared well with plant measurements. Insights were gained from the simulation results to explain the cause of meniscus level fluctuations and the formation of sliver defects during stopper rod movements.

  15. [Research on investing methods and mold cooling methods of the self-made investment for pure titanium castings].

    Science.gov (United States)

    Zhao, Juan; Huang, Xu; Zhao, Yun-Feng; Xiao, Mao-Chun; Li, Yong

    2006-10-01

    To observe the influence of different investing methods and mold cooling methods on pure titanium castings invested in the self-made investment, and to provide theoretic base for the development for the investment. The influence of investing methods (one-step investing method and two-step investing method) on castability and crown fit of titanium castings were investigated, and the influence of cooling methods on reaction layers, mechanical properties and crown fit of titanium castings were investigated. Both the investing methods exhibited good castability, but only the titanium full crowns by one-step investing method showed clinically acceptable fit. Although the quenching group showed thinner reaction layer(100 microm), lower strength and similar elongation rate, the titanium castings by bench cooling showed clinically acceptable full crown fit with 115 microm thick reaction layer as cast. The one-step investing method and the bench cooling are recommended for the self-made investment.

  16. Mold

    Centers for Disease Control (CDC) Podcasts

    2011-05-02

    This podcast answers a listener's question about the risks associated with mold after a natural disaster or severe weather.  Created: 5/2/2011 by National Center for Environmental Health (NCEH).   Date Released: 5/2/2011.

  17. Analysis of the effects of an electromagnetic brake (EMBR on flow behaviors in the large slab continuous casting mold

    Directory of Open Access Journals (Sweden)

    C. J. Xu

    2016-07-01

    Full Text Available In the present paper, molten steel flow in the submerged entry nozzle (SEN and mold cavity of large slab continuous caster in both environments (with EMBR and without EMBR were investigated with the method of numerical simulation. In addition, the impacts of electromagnetic brake (EMBR on mol ten steel flow and meniscus fluctuation were discussed while the bath meniscus fluctuation was monitored in a steel plant. Computation results were compared with experimental findings of the factory and it is verified that EMBR can be an efficient technology to control liquid steel flow behaviors in the large slab continuous casting mold.

  18. CASTING OF DETAILS OF WEAR-RESISTANT CHROME CAST IRONS FOR CHROMIC MILLS IN COMBINED MOLDS AND CHILLS

    Directory of Open Access Journals (Sweden)

    K. E. Baranovskij

    2009-01-01

    Full Text Available Relative wear resistance of chrome cast irons of eutectic composition is determined in laboratory and industry conditions. Complex alloyed eutectic cast iron with increased wear resistance and mechanical characteristics is developed.

  19. The Effect Of Mechanical Interactions Between The Casting And The Mold On The Conditions Of Heat Dissipation: A Numerical Model

    OpenAIRE

    Dyja R.; Gawrońska E.; Sczygiol N.

    2015-01-01

    We present a description of the effects of thermal interactions, which take into account formation of a shrinkage gap, that affect the level of stresses in a system castingmold. Calculations were carried out in our own computer program which is an implementation of the finite element method used to solve the equations describing a thermo-elastic-plastic model of material and the heat conduction, including solidification. In the computing algorithm we use our own criteria for mechanical int...

  20. Numerical Investigation of Shell Formation in Thin Slab Casting of Funnel-Type Mold

    Science.gov (United States)

    Vakhrushev, A.; Wu, M.; Ludwig, A.; Tang, Y.; Hackl, G.; Nitzl, G.

    2014-06-01

    The key issue for modeling thin slab casting (TSC) process is to consider the evolution of the solid shell including fully solidified strand and partially solidified dendritic mushy zone, which strongly interacts with the turbulent flow and in the meantime is subject to continuous deformation due to the funnel-type mold. Here an enthalpy-based mixture solidification model that considers turbulent flow [Prescott and Incropera, ASME HTD, 1994, vol. 280, pp. 59-69] is employed and further enhanced by including the motion of the solidifying and deforming solid shell. The motion of the solid phase is calculated with an incompressible rigid viscoplastic model on the basis of an assumed moving boundary velocity condition. In the first part, a 2D benchmark is simulated to mimic the solidification and motion of the solid shell. The importance of numerical treatment of the advection of latent heat in the deforming solid shell (mushy zone) is specially addressed, and some interesting phenomena of interaction between the turbulent flow and the growing mushy zone are presented. In the second part, an example of 3D TSC is presented to demonstrate the model suitability. Finally, techniques for the improvement of calculation accuracy and computation efficiency as well as experimental evaluations are also discussed.

  1. INFLUENCE OF DIVIDING COVERINGS ON QUALITY OF CASTINGS AT MOLDING OF ALUMINUM ALLOYS UNDER PRESSURE

    Directory of Open Access Journals (Sweden)

    A. A. Pivovarchik

    2014-01-01

    Full Text Available The results of researches on influence of separating coverings on such properties of castings as corrosion resistance, roughness of cast surface, casting density are given in article.

  2. Based on database and asp.net technologies, a web platform of scientific data in the casting forces on the mold-fi lling behavior of titanium melts in vertically rotating molds

    Directory of Open Access Journals (Sweden)

    Xu Daming

    2008-11-01

    Full Text Available The vertical centrifugal-casting technique is widely used in the manufacture of various irregularlyshaped castings of advanced structural alloys with thin walls, complex shapes and/or large sizes. These castings are used in the increasing applications in aero-space/aviation industries, human teeth/bone repairs with nearnet shaped components, etc. In a vertically rotating casting system, the mold-filling processes of alloy melts, coupled with solidifi cation-heat transfer, may be much more complicated, because they are driven simultaneously by gravity, centrifugal and Coriolis forces. In the present work, an N-S/VOF-equations-based model, solved using a SOLA-VOF algorithm, under a rotating coordinate system was applied to numerically investigate the impacts of centrifugal and Coriolis forces on metallic melt mold-fi lling processes in different vertical centrifugal-casting configurations with different mold-rotation rates using an authors’ computer-codes system. The computational results show that the Coriolis force may cause remarkable variations in the fl ow patterns in the casting-part-cavities of a large horizontal-section area and directly connected to the sprue via a short ingate in a vertical centrifugalcasting process. A “turn-back” mold-filling technique, which only takes advantage of the centrifugal force in a transient rotating melt system, has been confi rmed to be a rational centrifugal-casting process in order to achieve smooth and layer-by-layer casting-cavities-fi lling control. The simulated mold-fi lling processes of Ti-6Al-4V alloy melt, in a vertical centrifugal-casting system with horizontally-connected plate-casting cavities, show reasonable agreement with experimental results from the literature.

  3. Rapid prototyping of a complex model for the manufacture of plaster molds for slip casting ceramic

    Directory of Open Access Journals (Sweden)

    D. P. C. Velazco

    2014-12-01

    Full Text Available Computer assisted designing (CAD is well known for several decades and employed for ceramic manufacturing almost since the beginning, but usually employed in the first part of the projectual ideation processes, neither in the prototyping nor in the manufacturing stages. The rapid prototyping machines, also known as 3D printers, have the capacity to produce in a few hours real pieces using plastic materials of high resistance, with great precision and similarity with respect to the original, based on unprecedented digital models produced by means of modeling with specific design software or from the digitalization of existing parts using the so-called 3D scanners. The main objective of the work is to develop the methodology used in the entire process of building a part in ceramics from the interrelationship between traditional techniques and new technologies for the manufacture of prototypes. And to take advantage of the benefits that allow us this new reproduction technology. The experience was based on the generation of a complex piece, in digital format, which served as the model. A regular 15 cm icosahedron presented features complex enough not to advise the production of the model by means of the traditional techniques of ceramics (manual or mechanical. From this digital model, a plaster mold was made in the traditional way in order to slip cast clay based slurries, freely dried in air and fired and glazed in the traditional way. This experience has shown the working hypothesis and opens up the possibility of new lines of work to academic and technological levels that will be explored in the near future. This technology provides a wide range of options to address the formal aspect of a part to be performed for the field of design, architecture, industrial design, the traditional pottery, ceramic art, etc., which allow you to amplify the formal possibilities, save time and therefore costs when drafting the necessary and appropriate matrixes

  4. A New Direct-Pour In-Mold (DPI) Technology for Producing Ductile and Compacted Graphite Iron Castings.

    Energy Technology Data Exchange (ETDEWEB)

    Jason Hitchings; Jay R. Hitchings

    2007-07-20

    A new "Direct Pour In-Mold" (DPI) Magnesium treatment technology has been developed that can produce both Nodular and Compacted Graphite iron. The DPI technology converts the standard horizontal runner system into a vertical one, by placing a Magnesium Ferrosilicon treatment alloy and molten metal filter into a specially designed container. The DPI container is easily placed into either vertically or horizontally parted molds, and then a base metal can be poured directly into it. The metal is treated and filtered as it passes through, and then proceeds directly into a runner or casting cavity. Various sizes of containers provide all of the necessary components required to deliver a range of weights of treated and filtered metal at accurate and consistent flow rates. The DPI containers provide energy savings over competing techniques, increased mold yields, very high Magnesium recovery, zero Magnesium fume, and no post inoculation is required. By treating the metal just prior to it entering a casting cavity many other benefits and advantages are also realized.

  5. 40 CFR Appendix - Alternative Organic HAP Emissions Limits for Open Molding, Centrifugal Casting, and SMC...

    Science.gov (United States)

    2010-07-01

    ... casting—CR/HS 3,4 A vent system that moves heated air through the mold 27 lb/ton. 8. Centrifugal casting—non-CR/HS 3,4 A vent system that moves heated air through the mold 21 lb/ton. 7. Centrifugal casting—CR/HS 3,4 A vent system that moves ambient air through the mold 2 lb/ton. 8. Centrifugal casting—non...

  6. The Control of Solidification Kinetics of the Vacuum-cast Thin-wall Nickel-based Superalloys by Changing the Geometrical Characteristics of the Ceramic Mold

    Directory of Open Access Journals (Sweden)

    Cygan R.

    2013-12-01

    Full Text Available This paper provides an analysis of experimental research and results of investment casting process. Temperature field in a ceramic mold is one of the problems during numerical simulation. Reducing the costs of production in precision casting involves the reduction of scraps, which is one of the fundamental problems of the foundry industry. Reducing these costs is associated with optimization of precision casting technology of aircraft engines critical parts, including control of the solidification front in thin-walled castings of nickel super alloys cast in a vacuum. It is achieved by changing the geometrical characteristics of the ceramic mold. The results of the tests were used to optimize the industrial production of aircraft components in Precision Foundry of WSK Rzeszów. Temperature distribution gained in the conducted tests allowed verification and optimization of computer simulations.

  7. Heat transfer at the mold-metal interface in permanent mold casting of aluminum alloys project. Annual project status report for the period October 1, 1997 to September 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Pehlke, R.D.; Hao, S.W.

    1998-09-30

    In the first year of this three-year project, substantial progress has been achieved. This project on heat transfer coefficients in metal permanent mold casting is being conducted in three areas. They are the theoretical study at the University of Michigan, the experimental investigations of squeeze casting and semi-solid casting at CMI-Tech Center, and the experimental investigation of low pressure permanent mold casting at Amcast Automotive. U-M did an initial geometry which was defined for ProCAST to solve, and then a geometry half the size was defined and solved using the same boundary conditions. A conceptual mold geometry was examined and is represented as an axisymmetric element.Furthermore, the influences of the localized heat transfer coefficients on the casting process were carefully studied. The HTC Evaluator has been proposed and initially developed by the U-M team. The Reference and the Database Modules of the HTC Evaluator have been developed, and extensively tested. A series of technical barriers have been cited and potential solutions have been surveyed. At the CMI-Tech Center, the Kistler direct cavity pressure measurement system has been purchased and tested. The calibrations has been evaluated. The probe is capable of sensing a light finger pressure. The experimental mold has been designed and modified. The experimental mold has been designed and modified. The first experiment is scheduled for October 14, 1998. The geometry of the experimental hockey-puck casting has been given to the U-M team for numerical analysis.

  8. Effect of Al2O3 on the Crystallization of Mold Flux for Casting High Al Steel

    Science.gov (United States)

    Zhou, Lejun; Wang, Wanlin; Zhou, Kechao

    2015-06-01

    In order to lower the weight of automotive bodies for better fuel-efficiency and occupant safety, the demand for high Al-containing advanced high strength steel, such as transformation-induced plasticity and twinning-induced plasticity steel, is increasing. However, high aluminum content in steels would tend to significantly affect the properties of mold flux during the continuous casting process. In this paper, a kinetic study of the effect of Al2O3 content on the crystallization behavior of mold flux was conducted by using the single hot thermocouple technique and the Johnson-Mehl-Avrami model combined with the Arrhenius Equation. The results suggested that Al2O3 behaves as an amphoteric oxide in the crystallization process of mold flux. The precipitated phases of mold flux change from cuspidine (Ca4Si2O7F2) into nepheline (NaAlSiO4) and CaF2, and then into gehlenite (Ca2Al2SiO7) with the increase of Al2O3 content. The kinetics study of the isothermal crystallization process indicated that the effective crystallization rate ( k) and Avrami exponent ( n) also first increased and then decreased with the increase of Al2O3 content. The values for the crystallization activation energy of mold flux with different Al2O3 contents were E R0.8A7 = 150.76 ± 17.89 kJ/mol, E R0.8A20 = 136.43 ± 6.48 kJ/mol, E R0.8A30 = 108.63 ± 12.25 kJ/mol and E R0.8A40 = 116.15 ± 8.17 kJ/mol.

  9. Stress and Friction Distribution around Slab Corner in Continuous Casting Mold with Different Corner Structures

    Science.gov (United States)

    Yu, Sheng; Long, Mujun; Chen, Huabiao; Chen, Dengfu; Liu, Tao; Duan, Huamei; Cao, Junsheng

    2018-02-01

    The non-uniform friction and thermal stress in the mold are important as causes of the transverse cracks around strand corner. To analyze the stress distribution features around strand corner, a three-dimensional thermo-elastoplastic finite-element mold model with different corner structures (right-angle, big-chamfer, multi-chamfer, and fillet) was established. The temperature field in the mold was indirectly coupled through a three-dimensional fluid flow and heat transfer model. In addition, the non-uniform mold friction stress loaded on the strand surface was calculated through a friction model. The results show that the stress distribution on the shell is similar to the temperature distribution. The stress concentration appears in the strand corner and the lower part of wide face. The friction stress enhances the corner stress around the edge of the air-gap. For chamfered molds, the stress around the corner between the wide face and chamfer face is larger than that between the narrow face and chamfer face. Around the corner region, both the stress peak and the area of the large stress zone of the right-angle strand are the largest, while those of big-chamfered, multi-chamfered, and fillet strands decrease in that order. The stress peak position of the chamfered strands is closer to the mold exit than that of the right-angle strand. Compared with the use of the right-angle mold, the application of chamfered molds is able to reduce the stress concentration around the strand corner.

  10. Mechanical Strength and Failure Characteristics of Cast Mg-9 pctAl-1 pctZn Alloys Produced by a Heated-Mold Continuous Casting Process: Tensile Properties

    Science.gov (United States)

    Okayasu, Mitsuhiro; Takeuchi, Shuhei; Ohfuji, Hiroaki

    2014-11-01

    The mechanical properties and failure characteristics of a cast Mg alloy (AZ91: Mg-Al8.9-Zn0.6-Mn0.2) produced by a heated-mold continuous casting process (HMC) are investigated. In a modification of the original HMC process, the cooling of the liquid alloy by direct water spray is carried out in an atmosphere of high-purity argon gas. The HMC-AZ91 alloy exhibits excellent mechanical properties (high strength and high ductility) that are about twice as high as those for the same alloy produced by conventional gravity casting. The increased material strength and ductility of the HMC sample are attributed to nanoscale and microscale microstructural characteristics. The fine grains and tiny spherical eutectic structures ( e.g., Mg17Al12 and Al6Mn) distributed randomly in the matrix of the HMC alloy result in resistance to dislocation movement, leading to high tensile strength. Basal slip on (0001) planes in the relatively organized crystal orientation of the HMC alloy, as well as grain boundary sliding through tiny spherical eutectic structures, results in high ductility. Details of the failure mechanism under static loading in the HMC alloy are also discussed using failure models.

  11. Study on the Surface Microstructure of a Modified STD61 Steel Mold Used for the Die Casting Process

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ha-Young; Lee, Seung-Joon; Kang, Minwoo; Lee, Suk-Jin; Lee, Young-Kook [Yonsei University, Seoul (Korea, Republic of); Yang, Won Jon [Korea Institute of Materials Science, Changwon (Korea, Republic of); Jeong, Jae Suk; Kim, Byung-Hoon [Doosan Heavy Industries and Construction, Changwon (Korea, Republic of)

    2016-09-15

    The surface microstructure and crack formation of an aluminum die-casting mold were investigated. The mold was made of a modified STD61 steel, and was used for more than 165,000 cycles. The mold surface consisted of four layers; an oxidized layer, a decarburized layer, a network carbide layer and a tempered martensite matrix. The depth down to the hardest network carbide layer was ⁓200 μm. Inside the matrix, M{sub 3}C transition carbides were dissolved so that solute C joined pre-existing M{sub 2}3C{sub 6} and MC carbides to make them coarse. About 60% of thermal fatigue cracks had a depth less than 200 μm due to the hard network carbide layer, which obstructed the propagation of cracks. Cracks of over 200 μm were filled with oxide wedges of Al and Si which was which flown from the molten alloy as well as the Fe oxide.

  12. Molding and casting process of a depleted uranium shield for a multipurpose type B (U) transport package of radioactive substances

    International Nuclear Information System (INIS)

    Raffaeli, Hector A.; Acosta, Mario; Ilarri, Sergio; Alonso, Paula R.; Gargano, Pablo H.; Rubiolo, Gerardo H.

    2009-01-01

    Anticipating future demand for transport of radioisotopes, a high performance transport package (BU-MAN) with a gamma barrier built in depleted uranium (DU) has been designed by the Radioisotope and Radiation Program (P4) of CNEA in 2003. The shield is a hollow cylinder of approximately 173 mm outside diameter, 223 mm in height, a cylindrical hollow interior 63 mm diameter and 166 mm in height, and a cylindrical plug 58 mm diameter and 57 mm height. Its total weight is 84 Kg. In the period 2004-2006 the Special Alloys Group (DM-GIDAT-GAEN-CNEA) has conducted several developments in order to obtain the mentioned shield, including a manufacturing test casting SAE 1010 in a sand mold. The confirmation of its properties, mechanical and gamma shield are being evaluated by licensing tests of the whole package. In this paper we show all metallurgical processes involved to get the shield in metallic DU. (author)

  13. Modeling of Quasi-Four-Phase Flow in Continuous Casting Mold Using Hybrid Eulerian and Lagrangian Approach

    Science.gov (United States)

    Liu, Zhongqiu; Sun, Zhenbang; Li, Baokuan

    2017-04-01

    Lagrangian tracking model combined with Eulerian multi-phase model is employed to predict the time-dependent argon-steel-slag-air quasi-four-phase flow inside a slab continuous casting mold. The Eulerian approach is used for the description of three phases (molten steel, liquid slag, and air at the top of liquid slag layer). The dispersed argon bubble injected from the SEN is treated in the Lagrangian way. The complex interfacial momentum transfers between various phases are considered. Validation is supported by the measurement data of cold model experiments and industrial practice. Close agreements were achieved for the gas volume fraction, liquid flow pattern, level fluctuation, and exposed slag eye phenomena. Many known phenomena and new predictions were successfully reproduced using this model. The vortex slag entrapment phenomenon at the slag-steel interface was obtained using this model, some small slag drops are sucked deep into the liquid pool of molten steel. Varying gas flow rates have a large effect on the steel flow pattern in the upper recirculation zone. Three typical flow patterns inside the mold with different argon gas flow rates have been obtained: double roll, three roll, and single roll. Effects of argon gas flow rate, casting speed, and slag layer thickness on the exposed slag eye and level fluctuation at the slag-steel interface were studied. A dimensionless value of H ave/ h was proposed to describe the time-averaged level fluctuation of slag-steel interface. The exposed slag eye near the SEN would be formed when the value of H ave/ h is larger than 0.4.

  14. Four-phase fully-coupled mold-filling and solidification simulation for gas porosity prediction in aluminum sand casting

    Science.gov (United States)

    Jakumeit, J.; Jana, S.; Waclawczyk, T.; Mehdizadeh, A.; Sadiki, A.; Jouani, J.

    2012-07-01

    The impact of mold-filling and oxide film enclosure on gas porosity in A356 was investigated using a three-phase, fully-coupled, mold-filling and solidification simulation. For the prediction of gas porosity, a fourth hydrogen phase was added. At the solidification front hydrogen is rejected from the solid and accumulates in the melt. Pores nucleate if the solute gas exceeds the solubility limit. Air and melt are separated by a volume of fluid interface and special treatment of the hydrogen phase convection was necessary to limit the hydrogen to the melt. Folding of the melt surface was used as a source for oxide film entrainment. These oxide films were transported with the melt and used as nucleation sites for gas porosity formation. The influence of melt flow due to filling and oxide film distribution was analyzed using a simple 3-block test geometry. The test geometry was cast in A356 and analyzed by computer tomography to validate the porosity prediction.

  15. Algorithm for prevention of molten steel sticking onto mold in continous casting process

    Directory of Open Access Journals (Sweden)

    Blažević, D.

    2008-01-01

    Full Text Available In continuous casting steel production a significant loss reduction – in terms of scrap material, time and money – can be achieved by developing an appropriate algorithm for the prevention of molten steel sticking onto mould. The logic of such algorithm should be simple and manageable to ensure its practical implementation on a computer system via the usage of thermo sensors. This suggests that both the algorithm and the automated data collection can be implemented by means of applicative software. Despite its simplicity, the algorithm should accurately trace physical phenomena in molten steel.

  16. The influence of mold temperature on the fit of cast crowns with commercially pure titanium Influência de temperaturas do molde na adaptação de coroas fundidas em titânio comercialmente puro

    Directory of Open Access Journals (Sweden)

    Wagner Sotero Fragoso

    2005-06-01

    Full Text Available Commercially pure titanium (CP Ti has been widely applied to fabricate cast devices because of its favorable properties. However, the mold temperature recommended for the manufacture of casts has been considered relatively low, causing inadequate castability and poor marginal fit of cast crowns. This study evaluated and compared the influence of mold temperature (430°C - as control, 550°C, 670°C on the marginal discrepancies of cast CP Ti crowns. Eight bovine teeth were prepared on a mechanical grinding device and impressions were used to duplicate each tooth and produce eight master dies. Twenty-four crowns were fabricated using CP Ti in three different groups of mold temperature (n = 8: 430°C (as control, 550°C and 670°C. The gap between the crown and the bovine tooth was measured at 50 X magnification with a traveling microscope. The marginal fit values of the cast CP Ti crowns were submitted to the Kruskal-Wallis test (p = 0.03. The 550°C group (95.0 µm showed significantly better marginal fit than the crowns of the 430°C group (203.4 µm and 670°C group (213.8 µm. Better marginal fit for cast CP Ti crowns was observed with the mold temperature of 550°C, differing from the 430°C recommended by the manufacturer.O titânio comercialmente puro (Ti c.p. tem sido largamente empregado na elaboração de estruturas protéticas fundidas devido às suas propriedades favoráveis. Entretanto, a temperatura do molde recomendada pelo fabricante tem sido considerada baixa, causando inadequada fundibilidade e precária adaptação marginal de coroas fundidas. Este estudo avaliou e comparou a influência de temperaturas do molde (430°C - como controle, 550°C, 670°C na discrepância marginal de coroas fundidas em Ti c.p. Oito dentes bovinos foram preparados em um torno mecânico e moldados para produzirem oito modelos-mestre. Vinte e quatro coroas foram confeccionadas em Ti c.p. para três grupos de temperatura do molde (n = 8: 430°C (como

  17. Solidification and casting

    CERN Document Server

    Cantor, Brian

    2002-01-01

    INDUSTRIAL PERSPECTIVEDirect chillcasting of aluminium alloysContinuous casting of aluminium alloysContinuous casting of steelsCastings in the automotive industryCast aluminium-silicon piston alloysMODELLING AND SIMULATIONModelling direct chill castingMold filling simulation of die castingThe ten casting rulesGrain selection in single crystal superalloy castingsDefects in aluminium shape castingPattern formation during solidificationPeritectic solidificationSTRUCTURE AND DEFECTSHetergeneous nucleation in aluminium alloysCo

  18. The Structure and Properties of Inductively Coupled Plasma Assisted Magnetron Sputtered Nanocrystalline CrN Coatings in Corrosion Protective Die Casting Molds.

    Science.gov (United States)

    Chun, Sung-Yong

    2015-07-01

    Chromium nitride coatings for the surface modified die casting molds with various ICP powers have been prepared using ICP assisted magnetron sputtering. The applied ICP power was varied from 0 to 300 W. The deposited coatings were characterized post-deposition using X-ray diffractometry (XRD) and atomic force microscopy (AFM). Single CrN phased coatings with nano-grain sized (< 20 nm) were identified. The corrosion resistance and hardness of each coating were evaluated from potentiost at and nanoindentator. Superior corrosion protective coatings in excess of 20 GPa were deposited with assistance of ICP plasma during sputtering.

  19. The Structure and Properties of Inductively Coupled Plasma Assisted Magnetron Sputtered Nanocrystalline NbN Coatings in Corrosion Protective Die Casting Molds.

    Science.gov (United States)

    Chun, Sung-Yong

    2016-02-01

    Niobium nitride coatings for the surface modified die casting molds with various ICP powers have been prepared using ICP assisted magnetron sputtering. The applied ICP power was varied from 0 to 200 W. The deposited coatings were characterized post-deposition using X-ray diffractometry (XRD) and atomic force microscopy (AFM). Single NbN phased coatings with nano-grain sized (<7.6 nm) were identified. The corrosion resistance and hardness of each coating were evaluated from potentiostat and nanoindentator. Superior corrosion protective coatings in excess of 13.9 GPa were deposited with assistance of ICP plasma during sputtering.

  20. Numerical simulation for mold-filling of thin-walled aluminum alloy castings in traveling magnetic field

    Directory of Open Access Journals (Sweden)

    Shiping WU

    2004-11-01

    Full Text Available The numeical simulation for mold-filling of thin-walled aluminum alloy castins in horizontal traveling magnetic field is performed. A force model of Al alloy melt in the traveling magnetic field is founded by analyzing traveling magnetic field carefully. Numerical model of Al alloy mold-filling is founded based on N-S equation, which was suitable for traveling magnetic field. By using acryl glass mold with indium as alloy melt, the experiment testiied the filling state of alloy in traveling magnetic field. The results of numerical simulation indicate that the mold-filling ability of gallium melt increases continually with the incease of the input ampere turns.

  1. Relationship between casting distortion, mold filling, and interfacial heat transfer. Annual technical report, September 1997 - September 1998

    Energy Technology Data Exchange (ETDEWEB)

    Woodbury, K.A.; Parker, J.K.; Piwonka, T.S.; Owusu, Y.

    1998-10-22

    In the third year of this program, the final castings necessary to evaluate the effect of casting orientation and gating in silica sand lost foam were poured and measured using a CMM machine. Interfacial heat transfer and gap formation measurements continued. However, significant problems were encountered in making accurate measurements. No consistent evidence of gap formation was found in aluminum sand casting. Initial analysis yields heat transfer values below those previously reported in the literature. The program in continuing.

  2. Strength of the Bond of Structural Steel S235JR to Bronze SAE660 Produced by Casting in Pre-Mold

    Directory of Open Access Journals (Sweden)

    Zaheri M.

    2017-09-01

    Full Text Available Different methods are used for production of bronze bearings. In terms of technical specifications, the success of each of these methods depends on the bond’s strength and in terms of economic, the production method is important. In this study, the aim is to study the strength and microstructure of steel-bronze thrust bearing bond that has been produced through the casting using pre-mold. In this study, in order to bond, the raw metals are chemically washed with sulfuric acid solution for five minutes at first. Then, the molten bronze SAE660 is cast in a structural steel S235JR pre-mold. The bond’s strength has been measured using the shear test three times; the measurement of bond’s length has been done using field emission scanning electron microscope (FESEM. The results indicate that the strength of the bond is at least 94.8 MPa and bond’s length is 0.45 micrometers. Therefore, this method was successful for trust bearing application.

  3. Casting materials

    Science.gov (United States)

    Chaudhry, Anil R [Xenia, OH; Dzugan, Robert [Cincinnati, OH; Harrington, Richard M [Cincinnati, OH; Neece, Faurice D [Lyndurst, OH; Singh, Nipendra P [Pepper Pike, OH

    2011-06-14

    A foam material comprises a liquid polymer and a liquid isocyanate which is mixed to make a solution that is poured, injected or otherwise deposited into a corresponding mold. A reaction from the mixture of the liquid polymer and liquid isocyanate inside the mold forms a thermally collapsible foam structure having a shape that corresponds to the inside surface configuration of the mold and a skin that is continuous and unbroken. Once the reaction is complete, the foam pattern is removed from the mold and may be used as a pattern in any number of conventional casting processes.

  4. Heat transfer at the mold-metal interface in permanent mold casting of aluminum alloys project. Quarterly project status report, October 1--December 31, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Pehlke, R.D.; Hao, S.W.

    1998-12-31

    The first series of experiments at the CMI-Tech Center was successfully conducted on October 14 and 15 with the participation of the University of Michigan team. The preliminary experimental results indicate that the die surface temperatures (or near the surface) have a close correlation with the metal pressure profiles. Considering the difference in timing of the peak die temperatures, the high melt temperature and hotter die temperature for Inter 54 might cause a longer solidification time, and the pressure would decrease more slowly than for Inter 12. The slopes of the metal pressure profiles at the low pressure setting are almost linear. This may mean that the low metal pressure couldn`t effectively keep a pressure channel opened. In other words, as temperature decreased, the solid fraction increased and the solidified shell strengthened, and the pressure, which couldn`t overcome the resistance, would drop linearly. However, at the high pressure, there are inflection points in the pressure profiles. The inflection points are at about 8,500 psi for both the low and the high melt temperature settings. This suggests that the metal pressure was sufficient enough to overcome the resistance of the solidified shell before the inflection point was reached. A preliminary microstructure analysis shows that the dendrite arms at the location near the gate are much coarser than that at the top of the casting. The influence of intensification pressure on microstructure needs further verification and study.

  5. DEVELOPMENT OF COMPLEX OILING COMPONENT ON THE BASIS OF SILICONE POLYMERS FOR MOLDS FOR CASTING UNDER PRESSURE

    Directory of Open Access Journals (Sweden)

    A. M. Mihaltsov

    2008-01-01

    Full Text Available The receipt of complex oiling component, used for greasing of moulds for casting under pressure of aluminiun alloys on the basis of high-molecular organosilicon polymers with addition of soap stocks of light vegetable oils as filling agent and stabilizer of emulsion is examined.

  6. High coercivity microcrystalline Nd-rich Nd–Fe–Co–Al–B bulk magnets prepared by direct copper mold casting

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.Z.; Hong, Y. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Fang, X.G. [Institute for Advanced Materials and Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510640 (China); Qiu, Z.G.; Zhong, X.C. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Gao, X.S. [Institute for Advanced Materials and Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510640 (China); Liu, Z.W., E-mail: zwliu@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China)

    2016-06-15

    High coercivity Nd{sub 25}Fe{sub 40}Co{sub 20}Al{sub 15−x}B{sub x} (x=7–15) hard magnets were prepared by a simple process of injection casting. Different from many previous investigations on nanocomposite compositions, the magnets in this work contain hard magnetic Nd{sub 2}(FeCoAl){sub 14}B, Nd-rich, and Nd{sub 1+ε}(FeCo){sub 4}B{sub 4} phases. The magnetic properties, phase evolution, and microstructure of the as-cast and annealed magnets were investigated. As the boron content increased from 7 to 11 at%, the intrinsic coercivity H{sub cj} of the as-cast magnet increased from 816 to 1140 kA/m. The magnets annealed at 750 °C have shown more regular and smaller grains than the as-cast alloys, especially for the x=11 alloy. The high intrinsic coercivities for the annealed alloys with x=8~11 result from the presence of small-sized grains in the microstructure. The highest H{sub cj} of 1427 kA/m was obtained for the heat treated alloy with x=10. This work provides an alternative approach for preparing fully dense Nd-rich bulk hard magnets with relatively good properties. - Highlights: • 2 mm hard magnetic Nd{sub 25}Fe{sub 40}Co{sub 20}Al{sub 15−x}B{sub x} rods were prepared by direct casting. • High coercivity of 1.78 T was achieved in x=11 sample after heat treatment. • Small grains are responsible for the significant increase in H{sub C} after annealing. • Nd{sub 2}Fe{sub 14}B grains with two different sizes lead to two-step demagnetization process.

  7. Plastic molds reduce cost of encapsulating electric cable connectors

    Science.gov (United States)

    Knott, D.

    1964-01-01

    Resin casting of the aluminum master pattern forms a plastic mold for encapsulating a cable connector. An elastomer is injected into the mold and cured. The mold is disassembled leaving an elastomeric encapsulation around the connector.

  8. Large Eddy Simulations of Electromagnetic Braking Effects on Argon Bubble Transport and Capture in a Steel Continuous Casting Mold

    Science.gov (United States)

    Jin, Kai; Vanka, Surya P.; Thomas, Brian G.

    2018-02-01

    In continuous casting of steel, argon gas is often injected to prevent clogging of the nozzle, but the bubbles affect the flow pattern, and may become entrapped to form defects in the final product. Further, an electromagnetic field is frequently applied to induce a braking effect on the flow field and modify the inclusion transport. In this study, a previously validated GPU-based in-house code CUFLOW is used to investigate the effect of electromagnetic braking on turbulent flow, bubble transport, and capture. Well-resolved large eddy simulations are combined with two-way coupled Lagrangian computations of the bubbles. The drag coefficient on the bubbles is modified to account for the effects of the magnetic field. The distribution of the argon bubbles, capture, and escape rates, are presented and compared with and without the magnetic field. The bubble capture patterns are also compared with results of a previous RANS model as well as with plant measurements.

  9. Mold Flux Crystallization and Mold Thermal Behavior

    Science.gov (United States)

    Peterson, Elizabeth Irene

    Mold flux plays a small but critical role in the continuous casting of steel. The carbon-coated powder is added at the top of the water-cooled copper mold, over time it melts and infiltrates the gap between the copper mold and the solidifying steel strand. Mold powders serve five primary functions: (1) chemical insulation, (2) thermal insulation, (3) lubrication between the steel strand and mold, (4) absorption of inclusions, and (5) promotion of even heat flux. All five functions are critical to slab casting, but surface defect prevention is primarily controlled through even heat flux. Glassy fluxes have high heat transfer and result in a thicker steel shell. Steels with large volumetric shrinkage on cooling must have a crystalline flux to reduce the radiative heat transfer and avoid the formation of cracks in the shell. Crystallinity plays a critical role in steel shell formation, therefore it is important to study the thermal conditions that promote each phase and its morphology. Laboratory tests were performed to generate continuous cooling transformation (CCT) and time-temperature-transformation (TTT) diagrams. Continuous cooling transformation tests were performed in an instrumented eight cell step chill mold. Results showed that cuspidine was the only phase formed in conventional fluxes and all observed structures were dendritic. An isothermal tin bath quench method was also developed to isothermally age glassy samples. Isothermal tests yielded different microstructures and different phases than those observed by continuous cooling. Comparison of aged tests with industrial flux films indicates similar faceted structures along the mold wall, suggesting that mold flux first solidifies as a glass along the mold wall, but the elevated temperature devitrifies the glassy structure forming crystals that cannot form by continuous cooling.

  10. A Comparative Study on Permanent Mold Cast and Powder Thixoforming 6061 Aluminum Alloy and Sicp/6061Al Composite: Microstructures and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Xuezheng Zhang

    2016-05-01

    Full Text Available Microstructural and mechanical characterization of 10 vol% SiC particles (SiCp reinforced 6061 Al-based composite fabricated by powder thixoforming (PTF was investigated in comparison with the PTF and permanent mold cast (PMC 6061 monolithic alloys. The results reveal that the microstructure of the PMC alloy consists of coarse and equiaxed α dendrites and interdendritic net-like eutectic phases. However, the microstructure of the PTF composite, similar to that of the PTF alloy, consists of near-spheroidal primary particles and intergranular secondarily solidified structures except SiCp, which are distributed in the secondarily solidified structures. The eutectics amount in the PTF materials is distinctly lower than that in the PMC alloy, and the microstructures of the former materials are quite compact while that of the latter alloy is porous. Therefore, the PTF alloy shows better tensile properties than the PMC alloy. Owing to the existence of the SiC reinforcing particles, the PTF composite attains an ultimate tensile strength and yield strength of 230 MPa and 128 MPa, representing an enhancement of 27.8% and 29.3% than those (180 MPa and 99 MPa of the PTF alloy. A modified model based on three strengthening mechanisms was proposed to calculate the yield strength of the PTF composite. The obtained theoretical results were quite consistent with the experimental data.

  11. A cast-mold approach to iron oxide and Pt/iron oxide nanocontainers and nanoparticles with a reactive concave surface.

    Science.gov (United States)

    George, Chandramohan; Dorfs, Dirk; Bertoni, Giovanni; Falqui, Andrea; Genovese, Alessandro; Pellegrino, Teresa; Roig, Anna; Quarta, Alessandra; Comparelli, Roberto; Curri, M Lucia; Cingolani, Roberto; Manna, Liberato

    2011-02-23

    We report the synthesis of various iron oxide nanocontainers and Pt-iron oxide nanoparticles based on a cast-mold approach, starting from nanoparticles having a metal core (either Au or AuPt) and an iron oxide shell. Upon annealing, the particles evolve to asymmetric core-shells and then to heterodimers. If iodine is used to leach Au out of these structures, asymmetric core-shells evolve into "nanocontainers", that is, iron oxide nanoparticles enclosing a cavity accessible through nanometer-sized pores, while heterodimers evolve into particles with a concave region. When starting from a metal domain made of AuPt, selective leaching of the Au atoms yields the same iron oxide nanoparticle morphologies but now encasing Pt domains (in their concave region or in their cavity). We found that the concave nanoparticles are capable of destabilizing Au nanocrystals of sizes matching that of the concave region. In addition, for the nanocontainers, we propose two different applications: (i) we demonstrate loading of the cavity region of the nanocontainers with the antitumoral drug cis-platin; and (ii) we show that nanocontainers encasing Pt domains can act as recoverable photocatalysts for the reduction of a model dye.

  12. Laparoscopic Partial Nephrectomy Supported by Training Involving Personalized Silicone Replica Poured in Three-Dimensional Printed Casting Mold.

    Science.gov (United States)

    Golab, Adam; Smektala, Tomasz; Kaczmarek, Krystian; Stamirowski, Remigiusz; Hrab, Michal; Slojewski, Marcin

    2017-04-01

    Most kidney neoplasms are found incidentally and qualify for nephron-sparing surgery. Laparoscopic approach is beneficial to these patients because of its minimally invasive approach. However, these operations are both difficult and require plenty of experience and extended training. Some stages of the operation are limited by permissible time of transient ischemia. We applied three-dimensional (3D) printing technology to create individual silicone models of kidney to be used for training in laparoscopic procedures before the actual surgeries. Three patients who qualified for laparoscopic partial nephrectomy were selected. Digital models of their kidneys with tumors were designed based on computed tomography scans, followed by creation of silicone models. These were cast into the forms printed in 3D. The proper surgery was preceded by an operation carried out in a silicone model of laparoscopic simulator in which the tumor was excised and lodged after tumorectomy was filled. Average time of the live kidney tumor operation was slightly shorter than that of the silicone model (16 versus 17 minutes). Relatively short period of ischemia did not exceed 9 minutes. One patient underwent surgery without closing the vascular pedicle. Experience gained during training with these silicone models improved the actual surgery and can reduce the need for/duration of intraoperative renal ischemia. We believe this training method can be successfully used in other procedures.

  13. WEAR-RESISTANCE OF CHROMIC CAST IRONS OF EUTECTIC COMPOSITION

    Directory of Open Access Journals (Sweden)

    K. E. Baranovskij

    2009-01-01

    Full Text Available Casting of wear-resistant chrome cast irons in combined molds and iron chills is studied. Application of these ways of casting results in blending of carbides and increasing of hardness of castings.

  14. Mold Materials For Permanent Molding of Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    John F Wallace; David Schwam; Wen Hong dxs11@po.cwru.edu

    2001-09-14

    A test that involves immersion of the potential mod materials for permanent molds has been developed that provides a thermal cycle that is similar to the experienced during casting of aluminum in permanent molds. This test has been employed to determine the relative thermal fatigue resistance of several different types of mold materials. Four commercial mold coatings have been evaluated for their insulating ability, wear resistance and roughness. The results indicate that composition and structure of the mold materials have considerable effect on their thermal fatigue cracking behavior. Irons with a gray iron structure are the most prone to thermal fatigue cracking followed by compacted graphite irons with the least thermal fatigue cracking of the cast irons experienced by ductile iron. The composition of these various irons affects their behavior.

  15. Investigation of gating parameter, temperature and density effects on mold filling in the lost foam casting (LFC process by direct observation method

    Directory of Open Access Journals (Sweden)

    A. Sharifi

    2013-03-01

    Full Text Available Mold filling sequence of A356 aluminum alloy was investigated with the aid of direct observation method (photography method. The results show that increase of the foam density causes decrease of the filling rate and increase of the filling time. Foam density has more pronounced effect on mold filling rate rather than pouring temperature. Gating design also affects the profile of molten metal advancement in the mold. The results show that the higher filling rate was obtained with G2 gating than with other gating system. Regarding the mold filling pattern, G3 gating system has more effective contact interface than G2 gating system and has lower filling time. Filling time in G4 gating and G1 gating system are nearly the same.

  16. Expandable pattern casting research

    Science.gov (United States)

    1993-09-01

    The Expandable Pattern Casting (EPC) Process is a developing foundry technology that allows designers the opportunity to consolidate parts, reduce machining, and minimize assembly operations. An air gauging system was developed for measuring foam patterns; exact shrinkage depended on type and density of the foam. Compaction studies showed that maximum sand densities in cavities and under overhangs are achieved with vibrational amplitudes 0.001-0.004 in., and that sand moved most freely within a few inches of the top free surface. Key to complete mold filling while minimizing casting defects lies in removing the foam decomposition products. The most precise iron castings were made by EPC in four commercial EPC foundries, with attention paid to molding and compaction. EP cast 60-45-12 ductile iron had yield strengths, ultimate strengths, and elastic modulus similar to conventionally cast ductile iron cast from the same ladle.

  17. Interfacial reaction between zirconium alloy and graphite mold/yttrium oxide ceramic mold

    Directory of Open Access Journals (Sweden)

    Xie Huasheng

    2014-03-01

    Full Text Available Zirconium alloys are active in the molten state and tend to react with the mold during casting. The casting technology of zirconium is not yet well established; especially in selecting the mold materials, which are difficult to determine. In the present work, the interfacial reactions between zirconium casting and casting mold were studied. The zirconium alloy was melted in a vacuum arc skull furnace and then cast into the graphite mold and ceramic mold, respectively. The zirconium casting samples were characterized using SEM, EDS and XRD with an emphasis on the chemical diffusion of elements. A reaction layer was observed at the casting surface. Chemical analysis shows that chemical elements C, O and Y from the mold are diffused into the molten zirconium, and new phases, such as ZrC, Zr3O, YO1.335 and Y6ZrO11, are formed at the surface. In addition, an end product of zirconium valve cast in a yttria mold has a compact structure and good surface quality.

  18. HIGH TEMPERATURE REFRACTORY COATING FOR GRAPHITE MOLDS

    Science.gov (United States)

    Stoddard, S.D.

    1958-10-21

    An improved foundry mold coating for use with graphite molds used in the casting of uranium is presented. The refractory mold coating serves to keep the molten uranium from contact with graphite of the mold and thus prevents carbon pickup by the molten metal. The refractory coating is made by dry mixing certain specific amounts of aluminum oxide, bentonite, Tennessee ball clay, and a soluble silicate salt. Water is then added to the mixture and the suspension thus formed is applied by spraying onto the mold.

  19. Developing technological process of obtaining giality casts

    Directory of Open Access Journals (Sweden)

    A. Issagulov

    2014-10-01

    Full Text Available The article considers the process of manufacturing castings using sand-resin forms and alloying furnace. Were the optimal technological parameters of manufacturing shell molds for the manufacture of castings of heating equipment. Using the same upon receipt of castings by casting in shell molds furnace alloying and deoxidation of the metal will provide consumers with quality products and have a positive impact on the economy in general engineering.

  20. Fan Fuel Casting Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Imhoff, Seth D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-28

    LANL was approached to provide material and design guidance for a fan-shaped fuel element. A total of at least three castings were planned. The first casting is a simple billet mold to be made from high carbon DU-10Mo charge material. The second and third castings are for optimization of the actual fuel plate mold. The experimental scope for optimization is only broad enough for a second iteration of the mold design. It is important to note that partway through FY17, this project was cancelled by the sponsor. This report is being written in order to capture the knowledge gained should this project resume at a later date.

  1. Emprego de uma lama com caráter refratário para o processo de fundição odontológica Use of a refractory slurry characteristic in mold casting

    Directory of Open Access Journals (Sweden)

    Heitor PANZERI

    1998-07-01

    Full Text Available A utilização de novos materiais, especialmente aqueles metálicos, tem sido uma constante na odontologia. Graças às necessidades da indústria no desenvolvimento de produtos cada vez com maior resistência, principalmente à corrosão, a prótese tem-se beneficiado com um número elevado de ligas metálicas excelentes. Para atender a necessidade de conformar as ligas em restaurações ou aparelhos próprios à nossa profissão, devem ser desenvolvidos refratários para estas ligas. Este é o caso da proposta de usar uma lama refratária como molde para confecção da fundição. A lama proposta, além de servir aos propósitos, tem-se mostrado capaz de oferecer melhor acabamento da liga.The use of new materials, particularly metal alloys, has been a constant trend in Dentistry. The industrial need to develop products with greater resistance to corrosion has benefited prosthodontics with a large number of excellent metallic alloys. In order to adapt such alloys to dental restorations or devices, refractory materials ought to be developed. That is the aim of using slurry as a mold in the casting process, which also makes it possible to obtain surfaces with improved finish.

  2. Biaxial casting apparatus for isolating radioactive waste

    International Nuclear Information System (INIS)

    Manchale, F. Jr.; Manchak, F. III.

    1992-01-01

    This patent describes apparatus for isolating hazardous radioactive waste for disposal. It comprises: a bifurcated centrifugal casting mold having at least two separable mold parts, the mold being supported for rotation about a first axis; means for supporting a completed monolith in the apparatus with the mold parts removed therefrom; powered drive means for rotating the mold and the monolith about the first axis; mold removal means aligned along a second axis substantially perpendicular to the first axis for removing the separate parts of the bifurcated casting mold from a monolith while leaving the monolith supported in the apparatus for rotation about the first axis; means for injecting a charge of radiation shielding material into a pre-formed shell placed in the mold; and means for heating the interior of the shell during rotation of the mold about the first axis

  3. IMPROVEMENT OF EQUIPMENT FOR EFFECTIVE HARDENING SAND MIXTURE BY VACUUM MOLDING

    Directory of Open Access Journals (Sweden)

    V. S. Doroshenko

    2016-01-01

    Full Text Available The review deals with the design flask tooling and patterns for effective hardening sand mixture in the vacuum molding (V-Process, and molding on a one-off patterns (Lost Foam Casting. Sealing and evacuating sand mixture – two major factors influence the strength of the casting mold and casting quality, management practices which will enable to improve the casting process.

  4. A Physical Model to Study the Effects of Nozzle Design on Dispersed Two-Phase Flows in a Slab Mold Casting Ultra-Low-Carbon Steels

    Science.gov (United States)

    Salazar-Campoy, María M.; Morales, R. D.; Nájera-Bastida, A.; Calderón-Ramos, Ismael; Cedillo-Hernández, Valentín; Delgado-Pureco, J. C.

    2018-02-01

    The effects of nozzle design on dispersed, two-phase flows of the steel-argon system in a slab mold are studied using a water-air model with particle image velocimetry and ultrasound probe velocimetry techniques. Three nozzle designs were tested with the same bore size and different port geometries, including square (S), special bottom design with square ports (U), and circular (C). The meniscus velocities of the liquid increase two- or threefold in two-phase flows regarding one-phase flows using low flow rates of the gas phase. This effect is due to the dragging effects on bubbles by the liquid jets forming two-way coupled flows. Liquid velocities (primary phase) along the narrow face of the mold also are higher for two-phase flows. Flows using nozzle U are less dependent on the effects of the secondary phase (air). The smallest bubble sizes are obtained using nozzle U, which confirms that bubble breakup is dependent on the strain rates of the fluid and dissipation of kinetic energy in the nozzle bottom and port edges. Through dimensionless analysis, it was found that the bubble sizes are inversely proportional to the dissipation rate of the turbulent kinetic energy, ɛ 0.4. A simple expression involving ɛ, surface tension, and density of metal is derived to scale up bubble sizes in water to bubble sizes in steel with different degrees of deoxidation. The validity of water-air models to study steel-argon flows is discussed. Prior works related with experiments to model argon bubbling in steel slab molds under nonwetting conditions are critically reviewed.

  5. A Physical Model to Study the Effects of Nozzle Design on Dispersed Two-Phase Flows in a Slab Mold Casting Ultra-Low-Carbon Steels

    Science.gov (United States)

    Salazar-Campoy, María M.; Morales, R. D.; Nájera-Bastida, A.; Calderón-Ramos, Ismael; Cedillo-Hernández, Valentín; Delgado-Pureco, J. C.

    2018-04-01

    The effects of nozzle design on dispersed, two-phase flows of the steel-argon system in a slab mold are studied using a water-air model with particle image velocimetry and ultrasound probe velocimetry techniques. Three nozzle designs were tested with the same bore size and different port geometries, including square (S), special bottom design with square ports (U), and circular (C). The meniscus velocities of the liquid increase two- or threefold in two-phase flows regarding one-phase flows using low flow rates of the gas phase. This effect is due to the dragging effects on bubbles by the liquid jets forming two-way coupled flows. Liquid velocities (primary phase) along the narrow face of the mold also are higher for two-phase flows. Flows using nozzle U are less dependent on the effects of the secondary phase (air). The smallest bubble sizes are obtained using nozzle U, which confirms that bubble breakup is dependent on the strain rates of the fluid and dissipation of kinetic energy in the nozzle bottom and port edges. Through dimensionless analysis, it was found that the bubble sizes are inversely proportional to the dissipation rate of the turbulent kinetic energy, ɛ 0.4. A simple expression involving ɛ, surface tension, and density of metal is derived to scale up bubble sizes in water to bubble sizes in steel with different degrees of deoxidation. The validity of water-air models to study steel-argon flows is discussed. Prior works related with experiments to model argon bubbling in steel slab molds under nonwetting conditions are critically reviewed.

  6. HFIR Fuel Casting Support

    Energy Technology Data Exchange (ETDEWEB)

    Imhoff, Seth D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gibbs, Paul Jacob [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Solis, Eunice Martinez [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-28

    Process exploration for fuel production for the High Flux Isotope Reactor (HFIR) using cast LEU-10wt.%Mo as an initial processing step has just begun. This project represents the first trials concerned with casting design and quality. The studies carried out over the course of this year and information contained in this report address the initial mold development to be used as a starting point for future operations. In broad terms, the final billet design is that of a solid rolling blank with an irregular octagonal cross section. The work covered here is a comprehensive view of the initial attempts to produce a sound casting. This report covers the efforts to simulate, predict, cast, inspect, and revise the initial mold design.

  7. LOST FOAM CASTING OF MAGNESIUM ALLOYS

    Energy Technology Data Exchange (ETDEWEB)

    Han, Qingyou [ORNL; Dinwiddie, Ralph Barton [ORNL; Sklad, Philip S [ORNL; Currie, Kenneth [Tennessee Technological University; Abdelrahman, Mohamed [Tennessee Technological University; Vondra, Fred [Tennessee Technological University; Walford, Graham [Walford Technologies; Nolan, Dennis J [Foseco-Morval

    2007-01-01

    The lost foam casting process has been successfully used for making aluminum and cast iron thin walled castings of complex geometries. Little work has been carried out on cast magnesium alloys using the lost foam process. The article describes the research activities at Oak Ridge National Laboratory and Tennessee Technological University on lost foam casting of magnesium alloys. The work was focused on castings of simple geometries such as plate castings and window castings. The plate castings were designed to investigate the mold filling characteristics of magnesium and aluminum alloys using an infrared camera. The pate castings were then characterized for porosity distribution. The window castings were made to test the castability of the alloys under lost foam conditions. Significant differences between lost foam aluminum casting and lost foam magnesium casting have been observed.

  8. Cast Aluminum Structures Technology (CAST) Phase VI. Technology Transfer.

    Science.gov (United States)

    1980-04-01

    o Metal preparation o Ladle fill o Pouring 0 Mold shakeout o Casting cleanup o Inspection o Weld correction o Heat treatment and straightening o...presents a summary of foundry data for the 10 Hitchcock cast - ings. Included are the ladle chemistry and the pouring date, temperature, and time for each...properties, and full range stress- strain curves to failure for each specimen d. Chemistry of molten metal in ladle for each casting 3.4.3.2 The foundry

  9. Mold and Health

    Science.gov (United States)

    Molds have the potential to cause health problems. Molds produce allergens (substances that can cause allergic reactions) and irritants. Inhaling or touching mold or mold spores may cause allergic reactions in sensitive individuals.

  10. Mold Testing or Sampling

    Science.gov (United States)

    In most cases, if visible mold growth is present, sampling is unnecessary. Since no EPA or other federal limits have been set for mold or mold spores, sampling cannot be used to check a building's compliance with federal mold standards.

  11. Molds in the Environment

    Science.gov (United States)

    ... on Facebook Tweet Share Compartir Molds in the Environment What are molds? What are some of the ... molds found? Molds are found in virtually every environment and can be detected, both indoors and outdoors, ...

  12. THE WEAR RESISTANCE INCREASE OF CHROMIUM CAST IRON

    Directory of Open Access Journals (Sweden)

    V. M. Ilyushenko

    2016-01-01

    Full Text Available The article presents the results of the tests on the wear resistance of chromium cast irons of different compositions obtained in sand forms. It has been shown that increase of the wear resistance and mechanical properties of the cast iron is possible to obtain using the casting in metal molds. A further increase in wear resistance of parts produced in metal molds is possible by changing the technological parameters of casting and alloying by titanium.

  13. Cast irons

    CERN Document Server

    1996-01-01

    Cast iron offers the design engineer a low-cost, high-strength material that can be easily melted and poured into a wide variety of useful, and sometimes complex, shapes. This latest handbook from ASM covers the entire spectrum of one of the most widely used and versatile of all engineered materials. The reader will find the basic, but vital, information on metallurgy, solidification characteristics, and properties. Extensive reviews are presented on the low-alloy gray, ductile, compacted graphite, and malleable irons. New and expanded material has been added covering high-alloy white irons used for abrasion resistance and high-alloy graphitic irons for heat and corrosion resistance. Also discussed are melting furnaces and foundry practices such as melting, inoculation, alloying, pouring, gating and rising, and molding. Heat treating practices including stress relieving, annealing, normalizing, hardening and tempering, autempering (of ductile irons), and surface-hardening treatments are covered, too. ASM Spec...

  14. JUSTIFICATION OF RATIONAL KINEMATIC CHARACTERISTICS OF MOLDING VIBRATING TABLE

    Directory of Open Access Journals (Sweden)

    P. G. Anofriev

    2016-12-01

    Full Text Available Purpose. One of the efficient ways to obtain castings of complex shape is lost foam casting (LFC in the evacuated molds (containers. Upgrading the quality of this casting method requires improvement of molding techniques. The molding process involves layer-by-layer vibratory compaction of sand in the containers. Most of the lines of LFC sections are equipped with vibrating tables with inertia oscillators driven by induction motors, operating at nominal speed. A promising way of improving the molding technique is the rational setting of the following parameters of vibrating table: vibration displacement, velocity and acceleration. These parameters are determined by the elastic-mass characteristics of the system «vibrating table – mold» and perturbing forces created by inertia oscillators. The aim of the study is to determine the rational range of setting the parameters of oscillators at which the qualitative layer-by-layer compaction of the molding sand in the mold takes place. Methodology. The efficiency criterion for setting characteristics of the vibrating table there were taken the values of averaged accelerations of 6.5 – 7.5 m/s2 corresponding to maximum compaction degree of dry molding sand and the range of acceleration values 9 – 9.5 m/s2 for giving the sand «pseudo-yielding». For the study it was developed a mathematical model of oscillations of the movable part of vibrating table with two types of casting containers for steady and transient operation modes. Findings. In the process of research of the mold oscillations it was calculated the natural frequencies of oscillations at different elastic-mass characteristics of the system using a mathematical model. It was constructed the frequency response of displacements and accelerations of the moving part of the table with container filled with molding sand layer-by-layer. Originality. The author proposes a method of determining the range of frequency setting of inertial

  15. Use of computers in mold design

    International Nuclear Information System (INIS)

    Keenan, R.E.; Erickson, W.C.

    1978-01-01

    A NASA computer code, CINDA-3G, is used in conjunction with a heat mesher code to study the transient thermodynamic cooling of a hemispherical casting. The casting is cooled by a recirculating liquid tin system. The objective is to design a mold and cooling system so that directional solidification of the hemisphere proceeds from equator to pole. The primary means of analyzing the results of the computer simulation is through computer-generated 16 mm color film. After several refinements in design, directional solidification of the hemisphere is attained. In addition, and as a result of this research, a complete system for improving the design of virtually any mold is presented

  16. A molding technique for use in internal dosimetry studies

    International Nuclear Information System (INIS)

    Aissi, A.; Tsakeres, F.S.; Poston, J.W.

    1982-01-01

    A method is described for producing molds which can be used in the construction of volumetric organ dosimeters. These negative organ molds are formed by wrapping quick-setting plaster bandages around a silicon-treated hardwood organ mold. The cast is cut in two and after further setting time is ready to contain the tissue equivalent materials and thermoluminescent powders. Such volumetric dosimeters will be useful for comparing experimental and calculated internal dosimetry results. (U.K.)

  17. Development of vacuum die-casting process

    OpenAIRE

    Masashi Uchida

    2009-01-01

    The vacuum die-casting process, started 25 years ago in Japan, has been widely applied. This technology contributes very much to improvement of castings quality. The main factor causing the defects of die castings is the trapped air in the mold cavity, while the key technology of vacuum die-casting process is to avoid the trapped air effectively by evacuating the cavity before casting. At the same time, due to the shot speed and the casting pressure reduced in half, the service life of the di...

  18. Clean Metal Casting

    Energy Technology Data Exchange (ETDEWEB)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  19. PRODUCTION OF SLIP CAST CALCIA HOLLOWWARE

    Science.gov (United States)

    Stoddard, S.D.; Nuckolls, D.E.; Cowan, R.E.

    1963-12-31

    A method for producing slip cast calcia hollow ware in which a dense calcia grain is suspended in isobutyl acetate or a mixture of tertiary amyl alcohol and o-xylene is presented. A minor amount of triethanolamine and oleic acid is added to the suspension vehicle as viscosity adjusting agents and the suspension is cast in a plaster mold, dried, and fired. (AEC)

  20. Dimensional Precision Research of Wax Molding Rapid Prototyping based on Droplet Injection

    Science.gov (United States)

    Mingji, Huang; Geng, Wu; yan, Shan

    2017-11-01

    The traditional casting process is complex, the mold is essential products, mold quality directly affect the quality of the product. With the method of rapid prototyping 3D printing to produce mold prototype. The utility wax model has the advantages of high speed, low cost and complex structure. Using the orthogonal experiment as the main method, analysis each factors of size precision. The purpose is to obtain the optimal process parameters, to improve the dimensional accuracy of production based on droplet injection molding.

  1. Quality Management and Control of Low Pressure Cast Aluminum Alloy

    Science.gov (United States)

    Zhang, Dianxi; Zhang, Yanbo; Yang, Xiufan; Chen, Zhaosong; Jiang, Zelan

    2018-01-01

    This paper briefly reviews the history of low pressure casting and summarizes the major production processes of low pressure casting. It briefly introduces the quality management and control of low pressure cast aluminum alloy. The main processes include are: preparation of raw materials, Melting, refining, physical and chemical analysis, K-mode inspection, sand core, mold, heat treatment and so on.

  2. APPLICATION OF EXOTHERMIC PLUGS AT PRODUCTION OF STEEL CASTING IS THE WAY TO ECONOMY

    Directory of Open Access Journals (Sweden)

    V. M. Gatsuro

    2008-01-01

    Full Text Available It is shown that application of exothermic plugs allows to decrease steel intensity of casting mold, labor intensiveness for trim, expenses for melting of 1 ton of good casting, material expenses for burden materials.

  3. The Reliability of Ductile Casting Iron Dependent on Runner System Design: An Example of Support Bracket of Brake Caliper

    Science.gov (United States)

    Hsu, Fu-Yuan; Wang, Kuo-Nien; Li, Cheng-Lung

    Two causes of casting defects are the defects developed by solidification and by filling in mold cavity. For the solidification it is easily predicted from observing casting's 3D geometry. For the filling, it is very difficult. Since the mold is opaque the filling condition cannot be observed directly. Many casting defects such as bi-film defect, gas bubbles, loosed sand and etc., are produced by turbulent filling. The defects entrapped and floated within casting result in unreliable casting properties.

  4. Properties of shaped castings made of modern cast VML18 and VML20 magnesium alloys manufactured by new methods

    Science.gov (United States)

    Leonov, A. A.; Duyunova, V. A.; Uridiya, Z. P.; Trofimov, N. V.

    2016-11-01

    The methods of casting of modern magnesium alloys (corrosion-resistant Mg-Al-Zn VML18 alloy and a high-strength Mg-Zn-Zr VML20 alloy) into the temporary molds made of cold-hardening mixtures and the molds produced by 3D printing are considered. The mechanical properties (ultimate tensile strength, yield strength, impact toughness), the corrosion properties, and the microstructure of the ingots are studied. The experimental results are used to choose the molds and the methods of casting of the parts of the control system of advanced aircrafts, which are made of modern cast magnesium alloys VML18 and VML20.

  5. Clean ferrous casting technology research. Final technical report, September 29, 1993--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Piwonka, T.S. [ed.

    1996-01-01

    This report details results of a 30-month program to develop methods of making clean ferrous castings, i.e., castings free of inclusions and surface defects. The program was divided into 3 tasks: techniques for producing clean steel castings, electromagnetic removal of inclusions from ferrous melts, and study of causes of metal penetration in sand molds in cast iron.

  6. Thin section casting program. Volume 2: Horizontal TSC (Thin-Section Casting) approach

    Science.gov (United States)

    1989-01-01

    In horizontal thin-section casting (HTSC), 1-inch-thick steel sections are produced at speeds up to 600 ipm or about 60 tons per hour per foot of width (tphf). Liquid steel is fed from the ladle, and flows through a specially designed tundish, then flows through a refractory feeding tube and nozzle, with approximately the same external dimensions as the cast section, into a near-horizontal rectangular mold whose all four sides are traveling in the same direction and speed as the steel casting. This report is the second of a six volume set on thin section casting. This volume covers the research on horizontal thin section casting (TSC).

  7. Dusts and Molds

    Science.gov (United States)

    ... limit your exposure by taking these general measures. Think about how they apply in your setting. • Prevent dusts and molds from forming, e.g. drying feeds and cleaning animal areas regularly. • Prevent dusts and molds from becoming ...

  8. Floods and Mold Growth

    Science.gov (United States)

    Mold growth may be a problem after flooding. Excess moisture in the home is cause for concern about indoor air quality primarily because it provides breeding conditions for pests, molds and other microorganisms.

  9. Interactive Mold House Tour

    Science.gov (United States)

    Get a quick glimpse of some of the most important ways to protect your home from mold by this interactive tour of the Mold House. Room-by-room, you'll learn about common mold issues and how to address them.

  10. Main directions in casting of turbine and nuclear equipment

    International Nuclear Information System (INIS)

    Pobezhimov, P.I.

    1979-01-01

    The main technological processes of production of big castings of austenitic and pearlitic steels for power engineering, including nuclear power engineering, are shown. It is noted that application of cast parts in the NPP equipment permits to reduce liquid metal consumption, amount of machining and to exclude welding. A great attention is paid to improvement of the reinforced casting method, for example, for the NPP gate valve casings, by way of turning the mold filled with liquid metal by 90 deg. New processes of production of molds and mold rods, and new compositions of molding sand mixtures are considered. Perspective utilization of self-set molding mixtures containing organic and nonorganic binders is noted

  11. Numerical simulation of low pressure die-casting aluminum wheel

    Directory of Open Access Journals (Sweden)

    Mi Guofa

    2009-02-01

    Full Text Available The FDM numerical simulation software, ViewCast system, was employed to simulate the low pressure die casting (LPDC of an aluminum wheel. By analyzing the mold-fi lling and solidifi cation stage of the LPDC process, the distribution of liquid fraction, temperature field and solidification pattern of castings were studied. The potential shrinkage defects were predicted to be formed at the rim/spoke junctions, which is in consistence with the X-ray detection result. The distribution pattern of the defects has also been studied. A solution towards reducing such defects has been presented. The cooling capacity of the mold was improved by installing water pipes both in the side mold and the top mold. Analysis on the shrinkage defects under forced cooling mode proved that adding the cooling system in the mold is an effective method for reduction of shrinkage defects.

  12. Pressure rig for repetitive casting

    Science.gov (United States)

    Vasquez, Peter; Hutto, William R.; Philips, Albert R.

    1989-09-01

    The invention is a pressure rig for repetitive casting of metal. The pressure rig performs like a piston for feeding molten metal into a mold. Pressure is applied to an expandable rubber diaphragm which expands like a balloon to force the metal into the mold. A ceramic cavity which holds molten metal is lined with blanket-type insulating material, necessitating only a relining for subsequent use and eliminating the lengthy cavity preparation inherent in previous rigs. In addition, the expandable rubber diaphragm is protected by the insulating material thereby decreasing its vulnerability to heat damage. As a result of the improved design the life expectancy of the pressure rig contemplated by the present invention is more than doubled. Moreover, the improved heat protection has allowed the casting of brass and other alloys with higher melting temperatures than possible in the conventional pressure rigs.

  13. Programmable and self-demolding microstructured molds fabricated from shape-memory polymers

    International Nuclear Information System (INIS)

    Meier, Tobias; Bur, Julia; Reinhard, Maximilian; Schneider, Marc; Kolew, Alexander; Worgull, Matthias; Hölscher, Hendrik

    2015-01-01

    We introduce shape memory polymers as materials to augment molds with programmable switching between different micro and nanostructures as functional features of the mold and self-demolding properties. These polymer molds can be used for hot embossing (or nanoimprinting) and casting. Furthermore, they enable the replication of nano- and microstructures on curved surfaces as well as embedded structures like on the inside walls of a microfluidic channel. The shape memory polymer molds can be replicated from master molds fabricated by conventional techniques. We tested their durability for microfabrication processes and demonstrated the advantages of shape memory molds for hot embossing and casting by replicating microstructures with high aspect ratios and optical grade surface quality. (paper)

  14. Molding of strength testing samples using modern PDCPD material for purpose of automotive industry

    Science.gov (United States)

    Grabowski, L.; Baier, A.; Sobek, M.

    2017-08-01

    The casting of metal materials is widely known but the molding of composite polymer materials is not well-known method still. The initial choice of method for producing composite bodies was the method of casting of PDCPD material. For purpose of performing casting of polymer composite material, a special mold was made. Firstly, the 3D printed, using PLA material, mold was used. After several attempts of casting PDCPD many problems were encountered. The second step was to use mold milled from a firm and dense isocyanate foam. After several attempts research shown that this solution is more resistant to high-temperature peak, but this material is too fragile to use it several times. This solution also prevents mold from using external heating, which can be necessary for performing correct molding process. The last process was to use the aluminum mold, which is dedicated to PDCPD polymer composite, because of low adhesiveness. This solution leads to perform correct PDCPD polymer composite material injection. After performing casting operation every PDCPD testing samples were tested. These results were compared together. The result of performed work was to archive correct properties of injection of composite material. Research and results were described in detail in this paper.

  15. An easy mold

    International Nuclear Information System (INIS)

    Kim, Nam Hun; Choe, Jong Sun

    1988-04-01

    This book deals with an easy mold, which introduces what is a mold kinds and classification of mold. It gives descriptions of easy theories such as basic knowledge on shearing work, clearance, power for punching and shear angle, basic knowledge for bending such as transform by bending, the minimal bending radius, spring back, the length of material, flexural strength for bending, fundamental knowledge for drawing work with transform of drawing and limitation of drawing.

  16. Graphite nodules in fatigue-tested cast iron characterized in 2D and 3D

    DEFF Research Database (Denmark)

    Mukherjee, Krishnendu; Fæster, Søren; Hansen, Niels

    2017-01-01

    Thick-walled ductile iron casts have been studied by applying (i) cooling rate calculations by FVM, (ii) microstructural characterization by 2D SEM and 3D X-ray tomography techniques and (iii) fatigue testing of samples drawn from components cast in sand molds and metal molds. An analysis has shown...... correlations between cooling rate, structure and fatigue strengths demonstrating the benefit of 3D structural characterization to identify possible causes of premature fatigue failure of ductile cast iron....

  17. Digital modeling of lithium ingot formation in metal mold

    International Nuclear Information System (INIS)

    Cherepanov, A.N.; Popov, V.N.; Tibilov, V.S.; Valov, P.M.

    2004-01-01

    A two-dimensional mathematical model is developed for the process of lithium melt solidification in metal mold with regard to shrinkage phenomena on phase transition. Based on this model a computer program is designed to calculate cooling and crystallization parameters of the metal after filling the mold. Numerical experiments are performed aimed to determine the duration of complete crystallization of the casting, crystallization front velocity and shape as well as the morphology of shrinkage cavity at various parameters of the process: metal heating-up before pouring-in, initial temperature of the mold, the thickness of its wall. When metal solidifying in a thin-wall mold (δ w = 3 mm) the crystallization is of practically unidirectional nature. The surface of solidified casting top end has an insignificant concavity. In a thick-wall mold (δ w = 25 mm) the metal solidifies from both bottom and lateral faces with the result that a narrow but deep enough shrinkage cavity is formed in a head end of the casting [ru

  18. Improved anti-stiction coating of SU-8 molds

    DEFF Research Database (Denmark)

    Lange, Jacob Moresco; Clausen, Casper Hyttel; Svendsen, Winnie Edith

    2010-01-01

    We have developed a simple method for the improved release of embossed poly(methyl methacrylate) (PMMA) as well as casted poly(dimethyl siloxane) (PDMS) from a SU-8 mold using vapor phase deposition of 1H,1H,2H,2H-Perfluorodecyltrichlorosilane (FDTS). We have further investigated if prior breakag...

  19. Nonaqueous slip casting of high temperature ceramic superconductors using an investment casting technique

    Science.gov (United States)

    Hooker, Matthew W. (Inventor); Taylor, Theodore D. (Inventor); Wise, Stephanie A. (Inventor); Buckley, John D. (Inventor); Vasquez, Peter (Inventor); Buck, Gregory M. (Inventor); Hicks, Lana P. (Inventor)

    1993-01-01

    A process for slip casting ceramic articles that does not employ parting agents and affords the casting of complete, detailed, precision articles that do not possess parting lines is presented. This process is especially useful for high temperature superconductors and water-sensitive ceramics. A wax pattern for a shell mold is provided, and an aqueous mixture of a calcium sulfate-bonded investment material is applied as a coating to the wax pattern. The coated wax pattern is then dried, followed by curing to vaporize the wax pattern and leave a shell mold of the calcium sulfate-bonded investment material. The shell mold is cooled to room temperature, and a ceramic slip, created by dispersing a ceramic powder in an organic liquid, is poured therein. After a ceramic shell of desired thickness or a solid article has set up in the shell mold, excess ceramic slip is poured out. The shell mold is misted with water and peeled away from the ceramic article, after which the ceramic is fired to provide a complete, detailed, precision, high temperature superconductive ceramic article without parting lines. The casting technique may take place in the presence of a magnetic field to orient the ceramic powders during the casting process.

  20. Manufacturing Methods for Process Effects on Aluminum Casting Allowables

    Science.gov (United States)

    1985-03-01

    at room temperature using a steel ladle coated with refractory Insulkotz R-20. (4) Clean Up After the casting was shaken out of the mold, the gates...ALUMINUM CASTING ALLOWABLES K.J. OSWALT Y. LII NORTHROP CORPORATION AIRCRAFT DIVISION ONE NORTHROP AVENUE HAWTHORNE, CALIFORNIA 90250 MARCH 1985 FINAL...GR. Aluminum Castings , A357, A201, Mechanical Properties 1~~ j’Airframe Structures, Specifications, Manufacturing Methods 1.A TRACT (Continue on rev

  1. Caste System

    OpenAIRE

    Hoff, Karla

    2016-01-01

    In standard economics, individuals are rational actors and economic forces undermine institutions that impose large inefficiencies. The persistence of the caste system is evidence of the need for psychologically more realistic models of decision-making in economics. The caste system divides South Asian society into hereditary groups whose lowest ranks are represented as innately polluted. ...

  2. Simulation of the injection casting of metallic fuels

    International Nuclear Information System (INIS)

    Nakagawa, Tomokazu; Ogata, Takanari; Tokiwai, Moriyasu.

    1989-01-01

    For the fabrication of metallic fuel pins, injection casting is a preferable process because the simplicity of the process is suitable for remote operation. In this process, the molten metal in the crucible is injected into evacuated molds (suspended above the crucible) by pressurizing the casting furnace. Argonne National Laboratory has already adopted this process in the Integral Fast Reactor program. To obtain fuel pins with good quality, the casting parameters, such as the molten metal temperature, the magnitude of the pressure applied, the pressurizing rate, the cooling time, etc., must be optimized. Otherwise, bad-quality castings (short castings, rough surfaces, shrinkage cavities, mold fracture) may result. Therefore, it is very important in designing the casting equipment and optimizing the operation conditions to be able to predict the fluid and thermal behavior of the castings. This paper describes methods to simulate the heat and mass transfer in the molds and molten metallic fuel during injection casting. The results obtained by simulation are compared with experimental ones. Also, appropriate casting conditions for the uranium-plutonium-zirconium alloy are discussed based on the simulated results

  3. In-Situ Real Time Monitoring and Control of Mold Making and Filling Processes: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed Abdelrahman; Kenneth Currie

    2010-12-22

    This project presents a model for addressing several objectives envisioned by the metal casting industries through the integration of research and educational components. It provides an innovative approach to introduce technologies for real time characterization of sand molds, lost foam patterns and monitoring of the mold filling process. The technology developed will enable better control over the casting process. It is expected to reduce scrap and variance in the casting quality. A strong educational component is integrated into the research plan to utilize increased awareness of the industry professional, the potential benefits of the developed technology, and the potential benefits of cross cutting technologies.

  4. Direct Cast U-6Nb – 2017 Progress on Cylindrical Castings

    Energy Technology Data Exchange (ETDEWEB)

    Aikin, Jr., Robert M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-04

    This report describes work to further develop a sound technical basis and best practices for mold design and process parameters for the Direct Casting of U-6wt%Nb components. One major challenge to the production of U-6Nb components is the propensity for niobium segregation during casting and solidification. This is especially true for cylindrical castings where the vertical side walls allow flotation of Nb resulting in severe inverse macrosegregation. In this work, a small (120 mm diameter by 180 mm tall) and large cylinder (250 mm diameter by 310 mm tall) are examined with a focus on reducing, or eliminating, niobium segregation. It is demonstrated that counter gravity casting (top-to-bottom solidification) can be used to minimize segregation in the small cylinder. Attempts to counter gravity cast the large cylinder were unsuccessful, in large part due to size limitations of the current furnace. A path forward for casting of the large cylinders is discussed.

  5. Manufacturing of thin walled near net shape iron castings

    DEFF Research Database (Denmark)

    Larsen, Per Leif

    2003-01-01

    to be substituting iron casings with aluminum castings. Substituting iron castings with aluminum castings is not as easy as first believed, and hence the substitution is very slow. This combined with the lack of fully exploiting the potential in iron castings, makes research in iron castings interesting. The 60......The demand for near net shape thin walled iron castings is growing. This has several reasons, the main one is the need for lowering the fuel consumption of cars; the easiest way to do that is to lower the weight of the cars. The best way to do this was for a period of time believed.......000.000 cars produced world wide each year consumes enormous amounts of cast parts ! The aim of the project is to develop the green sand molding method on DISAMATIC to be able to deal with the new demands for thin walled near net shape castings in iron....

  6. Structure Distribution in Precise Cast Iron Moulded on Meltable Model

    Directory of Open Access Journals (Sweden)

    Skrbek B.

    2015-12-01

    Full Text Available Topic of this work is to compare metalurgy of cast irons poured into sand moulds and into shell molds at IEG Jihlava company and from it following differencies in structures of thin- and thick-walled castings. This work is dealing with investigation and experimental measurement on surfaces and sections suitable thin- and thick-walled investment castings at IEG Jihlava. Cast irons with flake graphite (grey cast iron and cast irons with spheroidal graphite (ductile cast iron. Both mechanical and physical properties are determined using calculations from as measured values of wall thicknesses L and Lu, Vickers hardness and remanent magnetism. Measurement results are discussed, findings are formulated and methods for castings metallurgical quality improvement are recommended finally.

  7. Casting analysis of the shipping container for medical radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. S.; Kim, H. S

    2003-03-01

    Technology standard for shipping containers of radioactive materials becomes strict by IAEA Regulation 'regulations for the safe transport of radioactive material ST-1' and the domestic regulations. Development of the RI shielding casks having high efficiency is needed. To design a mold for casting the shielding cask, computer simulation was introduced. Purpose of this study is to investigate optimum casting conditions for manufacturing a sound shipping container without defects by the melt filling and solidification analysis using computer code Z-cast. As a result of analysis, although two molds have the same temperature gradient, the mold having higher temperature could reduce the shrinkage defects of a product. When there is no temperature gradient in mold whose riser size is 60mm or 70mm respectively, the shrinkage defects existed in the casting. The temperature gradient of a mold is needed to make a sound product without shrinkage defects. When we are going to reduce the shrinkage defects, the riser size and temperature gradient of the mold is more effective factor than the melting temperature.

  8. Improved ceramic slip casting technique. [application to aircraft model fabrication

    Science.gov (United States)

    Buck, Gregory M. (Inventor); Vasquez, Peter (Inventor)

    1993-01-01

    A primary concern in modern fluid dynamics research is the experimental verification of computational aerothermodynamic codes. This research requires high precision and detail in the test model employed. Ceramic materials are used for these models because of their low heat conductivity and their survivability at high temperatures. To fabricate such models, slip casting techniques were developed to provide net-form, precision casting capability for high-purity ceramic materials in aqueous solutions. In previous slip casting techniques, block, or flask molds made of plaster-of-paris were used to draw liquid from the slip material. Upon setting, parts were removed from the flask mold and cured in a kiln at high temperatures. Casting detail was usually limited with this technique -- detailed parts were frequently damaged upon separation from the flask mold, as the molded parts are extremely delicate in the uncured state, and the flask mold is inflexible. Ceramic surfaces were also marred by 'parting lines' caused by mold separation. This adversely affected the aerodynamic surface quality of the model as well. (Parting lines are invariably necessary on or near the leading edges of wings, nosetips, and fins for mold separation. These areas are also critical for flow boundary layer control.) Parting agents used in the casting process also affected surface quality. These agents eventually soaked into the mold, the model, or flaked off when releasing the case model. Different materials were tried, such as oils, paraffin, and even an algae. The algae released best, but some of it remained on the model and imparted an uneven texture and discoloration on the model surface when cured. According to the present invention, a wax pattern for a shell mold is provided, and an aqueous mixture of a calcium sulfate-bonded investment material is applied as a coating to the wax pattern. The coated wax pattern is then dried, followed by curing to vaporize the wax pattern and leave a shell

  9. Transferability of glass lens molding

    Science.gov (United States)

    Katsuki, Masahide

    2006-02-01

    Sphere lenses have been used for long time. But it is well known that sphere lenses theoretically have spherical aberration, coma and so on. And, aspheric lenses attract attention recently. Plastic lenses are molded easily with injection machines, and are relatively low cost. They are suitable for mass production. On the other hand, glass lenses have several excellent features such as high refractive index, heat resistance and so on. Many aspheric glass lenses came to be used for the latest digital camera and mobile phone camera module. It is very difficult to produce aspheric glass lenses by conventional process of curve generating and polishing. For the solution of this problem, Glass Molding Machine was developed and is spreading through the market. High precision mold is necessary to mold glass lenses with Glass Molding Machine. The mold core is ground or turned by high precision NC aspheric generator. To obtain higher transferability of the mold core, the function of the molding machine and the conditions of molding are very important. But because of high molding temperature, there are factors of thermal expansion and contraction of the mold and glass material. And it is hard to avoid the factors. In this session, I introduce following items. [1] Technology of glass molding and the machine is introduced. [2] The transferability of glass molding is analyzed with some data of glass lenses molded. [3] Compensation of molding shape error is discussed with examples.

  10. Comparative analysis of the retention of maxillary denture base with and without border molding using zinc oxide eugenol impression paste.

    Science.gov (United States)

    Kaur, Simrat; Datta, Kusum; Gupta, S K; Suman, Neelam

    2016-01-01

    The purpose of the study was to determine the effect of border molding on the retention of the maxillary denture base. Two special trays, one with full extensions to the periphery and one 2 mm short from the borders were made on the cast obtained from the preliminary impression. Border molding was done on the tray which was short from borders. On both trays, the final impression was made with zinc oxide eugenol impression paste. Heat cure denture bases were fabricated on the prepared casts and retention was measured using specially designed instrument. Mean force with border molding (2765.0 g) was larger than mean force without border molding (1805.0 g) at P border molding will provide better retentive force than the dentures made without border molding.

  11. Metallic Fuel Casting Development and Parameter Optimization Simulations

    International Nuclear Information System (INIS)

    Fielding, Randall S.; Kennedy, J.R.; Crapps, J.; Unal, C.

    2013-01-01

    Conclusions: • Gravity casting is a feasible process for casting of metallic fuels: – May not be as robust as CGIC, more parameter dependent to find right “sweet spot” for high quality castings; – Fluid flow is very important and is affected by mold design, vent size, super heat, etc.; – Pressure differential assist was found to be detrimental. • Simulation found that vent location was important to allow adequate filling of mold; • Surface tension plays an important role in determining casting quality; • Casting and simulations high light the need for better characterized fluid physical and thermal properties; • Results from simulations will be incorporated in GACS design such as vent location and physical property characterization

  12. Tundish Technology for Casting Clean Steel: A Review

    Science.gov (United States)

    Sahai, Yogeshwar

    2016-08-01

    With increasing demand of high-quality clean steel, cleanliness is of paramount importance in steel production and casting. Tundish plays an important role in controlling the continuously cast steel quality as it links a batch vessel, ladle, to a continuous casting mold. Tundish is also the last vessel in which metal flows before solidifying in mold. For controlling the quality of steel, flow and temperature control of the melt are critical, and these are presented in this paper. Use of proper flux, design of flow control devices, and gas injection in tundish become important factors in casting clean steel. Recycling of hot tundish, centrifugal flow tundish, H-shaped tundish, etc. are some of the developments which were implemented to cast clean steel and these are discussed.

  13. Hair casts

    OpenAIRE

    Sweta S Parmar; Kirti S Parmar; Bela J Shah

    2014-01-01

    Hair casts or pseudonits are circumferential concretions, which cover the hair shaft in such a way that, it could be easily removed. They are thin, cylindrical, and elongated in length. We present an unusual case of an 8-year-old girl presenting with hair casts. Occurrence of these is unusual, and they may have varied associations. This patient was suffering from developmental delay. It is commonly misdiagnosed as and very important to differentiate from pediculosis capitis.

  14. Precision Casting via Advanced Simulation and Manufacturing

    Science.gov (United States)

    1997-01-01

    A two-year program was conducted to develop and commercially implement selected casting manufacturing technologies to enable significant reductions in the costs of castings, increase the complexity and dimensional accuracy of castings, and reduce the development times for delivery of high quality castings. The industry-led R&D project was cost shared with NASA's Aerospace Industry Technology Program (AITP). The Rocketdyne Division of Boeing North American, Inc. served as the team lead with participation from Lockheed Martin, Ford Motor Company, Howmet Corporation, PCC Airfoils, General Electric, UES, Inc., University of Alabama, Auburn University, Robinson, Inc., Aracor, and NASA-LeRC. The technical effort was organized into four distinct tasks. The accomplishments reported herein. Task 1.0 developed advanced simulation technology for core molding. Ford headed up this task. On this program, a specialized core machine was designed and built. Task 2.0 focused on intelligent process control for precision core molding. Howmet led this effort. The primary focus of these experimental efforts was to characterize the process parameters that have a strong impact on dimensional control issues of injection molded cores during their fabrication. Task 3.0 developed and applied rapid prototyping to produce near net shape castings. Rocketdyne was responsible for this task. CAD files were generated using reverse engineering, rapid prototype patterns were fabricated using SLS and SLA, and castings produced and evaluated. Task 4.0 was aimed at developing technology transfer. Rocketdyne coordinated this task. Casting related technology, explored and evaluated in the first three tasks of this program, was implemented into manufacturing processes.

  15. Dynamic of taking out molding parts at injection molding

    Directory of Open Access Journals (Sweden)

    E. Ragan

    2012-10-01

    Full Text Available Most plastic parts used in automobile production are manufactured by injection molding. Their quality depends also on taking out molding and on the manipulators for it. Task of this contribution is to theoretically describe a transport of molding at taking out after injection molding in relation on its regulation. The following quantities are derived at it: the transition characteristic of the taking out system, the blocking diagram of taking out molding regulation, the amplitude and phase characteristic and the transition characteristic of action quantity at taking out molding regulation.

  16. Centrifugal vacuum casting for fuel cladding tube blanks

    International Nuclear Information System (INIS)

    Zelenskii, V.F.; Neklyudov, I.M.; Chernyi, B.P.; Zeidlits, M.P.; Vanzha, A.F.; Rubashko, V.G.; Ryabchikov, L.N.; Smirnov, Y.K.; Bespalova, V.R.; Mashkarova, V.T.; Rybal'chenko, N.D.

    1990-01-01

    An advanced technique for making tube blanks with an acceptable level of nonmetallic inclusions is vacuum induction melting combined with centrifugal casting, as the latter gives a cylindrical casting having an axial hole, while the cast metal has elevated density and contains fewer nonmetallic inclusions than does the metal cast in a stationary mold. The reduction in the nonmetallic inclusions occurs because of increased rates of floating up in the rotating mold on account of the centrifugal force and the rejection to the inner surface. One can choose the parameters such as the pouring speed, rotational speed, mold cooling, and liquid-metal temperature and can introduce a deoxidizer to remove the nonmetallic inclusions or reduce the grain size of them and produce an appropriate cast structure and obtain a metal whose quality is the same as that on vacuum induction melting with secondary arc remelting. For these purposes, the authors have developed centrifugal-casting machines for use under vacuum or in inert gases with horizontal and vertical mold rotation axes

  17. Manufacture of mold of polymeric composite water pipe reinforced charcoal

    Science.gov (United States)

    Zulfikar; Misdawati; Idris, M.; Nasution, F. K.; Harahap, U. N.; Simanjuntak, R. K.; Jufrizal; Pranoto, S.

    2018-03-01

    In general, household wastewater pipelines currently use thermoplastic pipes of Polyvinyl Chloride (PVC). This material is known to be not high heat resistant, contains hazardous chemicals (toxins), relatively inhospitable, and relatively more expensive. Therefore, researchers make innovations utilizing natural materials in the form of wood charcoal as the basic material of making the water pipe. Making this pipe requires a simple mold design that can be worked in the scale of household and intermediate industries. This research aims to produce water pipe mold with simple design, easy to do, and making time relatively short. Some considerations for molding materials are weight of mold, ease of raw material, strong, sturdy, and able to cast. Pipe molds are grouped into 4 (four) main parts, including: outer diameter pipe molding, pipe inside diameter, pipe holder, and pipe alignment control. Some materials have been tested as raw materials for outer diameter of pipes, such as wood, iron / steel, cement, and thermoset. The best results are obtained on thermoset material, where the process of disassembling is easier and the resulting mold weight is relatively lighter. For the inside diameter of the pipe is used stainless steel, because in addition to be resistant to chemical processes that occur, in this part of the mold must hold the press load due to shrinkage of raw materials of the pipe during the process of hardening (polymerization). Therefore, it needs high pressure resistant material and does not blend with the raw material of the pipe. The base of the mold is made of stainless steel material because it must be resistant to corrosion due to chemical processes. As for the adjustment of the pipe is made of ST 37 carbon steel, because its function is only as a regulator of the alignment of the pipe structure.

  18. Predicting Pattern Tooling and Casting Dimensions for Investment Casting - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Sabau, Adrian S [ORNL

    2005-09-01

    The investment casting process allows the production of complex-shape parts and close dimensional tolerances. One of the most important phases in the investment casting process is the design of the pattern die. Pattern dies are used to create wax patterns by injecting wax into dies. The wax patterns are used to create a ceramic shell by the application of a series of ceramic coatings, and the alloy is cast into the dewaxed shell mold (Fig. 1.1). However, the complexity of shape and the close dimensional tolerances required in the final casting make it difficult to determine tooling dimensions. The final linear dimension of the casting depends on the cumulative effects of the linear expansions or contractions in each step of the investment casting process (Fig. 1.2). In most cases, the mold geometry or cores restrict the shrinkage of the pattern or the cast part, and the final casting dimensions may be affected by time-dependent processes such as viscoelastic deformation of the wax, and viscoplastic creep and plastic deformations of the shell and alloy. The pattern die is often reworked several times to produce castings whose dimensions are within acceptable tolerances. To date, investment casting technology has been based on hands-on training and experience. Technical literature is limited to experimental, phenomenological studies aimed at obtaining empirical correlations for quick and easy application in industry. The goal of this project was to predict casting dimensions for investment castings in order to meet blueprint nominal during the first casting run. Several interactions have to be considered in a coupled manner to determine the shrinkage factors: these are the die-wax, wax-shell, and shell-alloy interactions (as illustrated in Fig. 1.3). In this work, the deformations of the die-wax and shell-alloy systems were considered in a coupled manner, while the coupled deformation of the wax-shell system was not considered. Future work is needed in order to

  19. Lost-Wax Casting in Ancient China: New Discussion on Old Debates

    Science.gov (United States)

    Zhou, Weirong; Huang, Wei

    2015-07-01

    The possible use of lost-wax casting in China has long been a matter of controversy. Based on the study of pertinent ancient texts concerning the technical origins of lost-wax casting in China, direct examination of questioned ancient Chinese bronzes as well as definite lost-wax castings from both overseas and China, and modern production of objects using piece-mold casting, the authors point out their own conceptual ideas about ancient lost-wax casting as follows. First, the lost-wax casting technique does not have its earliest origins in ancient China but rather from the Sumerians in Mesopotamia, where it was predominantly used to cast small human and animal figures (statuettes). Next, some essential characteristics of the lost-wax casting technique can be identified from the point of view of a distortable soft starting model. The locally deformed shape of lost-wax castings is found to be variable. Finally, it is improper to consider the ease of extraction from the mold as the criterion for distinguishing lost-wax casting from piece-mold casting. It is therefore incorrect to conclude that the three-dimensional openwork decorations present on Chinese bronzes from the Spring and Autumn Period, and the Warring States Period, are fabricated using lost-wax castings.

  20. Fabricating smooth PDMS microfluidic channels from low-resolution 3D printed molds using an omniphobic lubricant-infused coating.

    Science.gov (United States)

    Villegas, Martin; Cetinic, Zachary; Shakeri, Amid; Didar, Tohid F

    2018-02-13

    The advent of 3D printing has allowed for rapid bench-top fabrication of molds for casting polydimethylsiloxane (PDMS) chips, a widely-used polymer in prototyping microfluidic devices. While fabricating PDMS devices from 3D printed molds is fast and cost-effective, creating smooth surface topology is highly dependent on the printer's quality. To produce smooth PDMS channels from these molds, we propose a novel technique in which a lubricant is tethered to the surface of a 3D printed mold, which results in a smooth interface for casting PDMS. Fabricating the omniphobic-lubricant-infused molds (OLIMs) was accomplished by coating the mold with a fluorinated-silane to produce a high affinity for the lubricant, which tethers it to the mold. PDMS devices cast onto OLIMs produced significantly smoother topology and can be further utilized to fabricate smooth-channeled PDMS devices. Using this method, we reduced the surface roughness of PDMS microfluidic channels from 2 to 0.2 μm (10-fold decrease), as well as demonstrated proper operation of the fabricated devices with superior optical properties compared to the rough devices. Furthermore, a COMSOL simulation was performed to investigate how the distinct surface topographies compare regarding their volumetric velocity profile and the shear rate produced. Simulation results showed that, near the channel's surface, variations in flow regime and shear stress is significantly reduced for the microfluidic channels cast on OLIM compared to the ones cast on uncoated 3D printed molds. The proposed fabrication method produces high surface-quality microfluidic devices, comparable to the ones cast on photolithographically fabricated molds while eliminating its costly and time-consuming fabrication process. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Feeding and Distribution of Porosity in Cast Al-Si Alloys as Function of Alloy Composition and Modification

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat; Taylor, John A.; Easton, Mark A.

    2012-01-01

    Unmodified, Na-modified, and Sr-modified castings of Al-7 pct Si and Al-12.5 pct Si alloys were cast in molds in which it was possible to create different cooling conditions. It is shown how solidification influences the distribution of porosity at the surface and the center of the castings as a ...

  2. Nanopattern insert molding

    International Nuclear Information System (INIS)

    Kim, S H; Youn, J R; Jeong, J H

    2010-01-01

    A new method was investigated to produce nanopatterns on polymeric surfaces with high resolution, good productivity, and low cost. It has certain advantages when compared with such conventional techniques as nanoimprint lithography (NIL), hot embossing, and injection molding. Polyvinyl alcohol (PVA) was utilized for preparation of the stamp with nanopatterns on its surface. The nanoimprinted PVA film was inserted into the cavity and the polymer melt was injected into the mold. Nanopatterns with pillars smaller than 100 nm were produced on the polymeric surface. The water soluble PVA film was used as the inserted template to overcome the difficulties of releasing the nanopatterned film from the substrate.

  3. Engineering design of centrifugal casting machine

    Science.gov (United States)

    Kusnowo, Roni; Gunara, Sophiadi

    2017-06-01

    Centrifugal casting is a metal casting process in which metal liquid is poured into a rotating mold at a specific temperature. Given round will generate a centrifugal force that will affect the outcome of the casting. Casting method is suitable in the manufacture of the casting cylinder to obtain better results. This research was performed to design a prototype machine by using the concept of centrifugal casting. The design method was a step-by-step systematic approach in the process of thinking to achieve the desired goal of realizing the idea and build bridges between idea and the product. Design process was commenced by the conceptual design phase and followed by the embodiment design stage and detailed design stage. With an engineering design process based on the method developed by G. E. Dieter, draft prototype of centrifugal casting machine with dimension of 550×450×400 mm, ¼ HP motor power, pulley and belt mechanism, diameter of 120-150mm, simultaneously with the characteristics of simple casting product, easy manufacture and maintenance, and relatively inexpensive, was generated.

  4. Process for Molding Nonreinforced (Neat) Resins

    Science.gov (United States)

    Dickerson, G. E.

    1983-01-01

    Void free moldings obtained for neat, condensation, thermosetting resins. Thermally and mechanically treat resin prior to molding to reduce amount of volatiles. With volatiles reduced molding temperature and pressure are applied in way to drive out remaining volatiles during molding.

  5. Meer bekend over Black Mold

    NARCIS (Netherlands)

    Duyvesteijn, R.G.E.; Kohrman, E.

    2008-01-01

    In de vollegrondsrozenteelt zorgde Black Mold in 2007 voor een groot aantal mislukte oculaties. In 2008 waren er aanzienlijk minder problemen. Uit onderzoek is meer bekend over de oorzaak en bestrijding van Black Mold.

  6. Quantification of Feeding Effects of Spot Feeding Ductile Iron Castings made in Vertically Parted Moulds

    DEFF Research Database (Denmark)

    Vedel-Smith, Nikolaj Kjelgaard; Tiedje, Niels Skat; Sällström, J.

    In vertically parted molds it is traditionally difficult to feed heavy sections that cannot be reached by traditional side/top feeders or other conventional methods. This project aims at quantifying the effects of using molded-in ram-up spot feeders as a means of feeding isolated sections in cast...

  7. Mold Image Library

    Science.gov (United States)

    ... away from the foundation. Gutters below grade (below the soil) are protected from damage, while those above grade ... water and mold damage was found on original structure Fix: Area was regraded during construction of an addition so that water drains ... An example of window flashing Applied so ...

  8. Characterization of Injection Molded Structures

    DEFF Research Database (Denmark)

    Sun, Ling; Søgaard, Emil; Andersen, Nis Korsgaard

    and limitations. Therefore, it would be difficult to characterize complex, especially hierarchical structures by using only one method. Here we present a combined optical microscopy, scanning electron microscopy (SEM), and scanning probe microscopy study on injection molded structures. These structures are used......-properties relationship of the injection molded polymer samples. These results are very important in optimizing injection molding parameters....

  9. Low Loss Advanced Metallic Fuel Casting Evaluation

    International Nuclear Information System (INIS)

    Kim, Kihwan; Ko, Youngmo; Kim, Jonghwan; Song, Hoon; Lee Chanbock

    2014-01-01

    The fabrication process for SFR fuel is composed of fuel slug casting, loading and fabrication of the fuel rods, and the fabrication of the final fuel assemblies. Fuel slug casting is the dominant source of fuel losses and recycles streams in the fabrication process. Recycle streams include fuel slug reworks, returned scraps, and fuel casting heels, which are a special concern in the counter gravity injection casting process because of the large masses involved. Large recycle and waste streams result in lowering the productivity and the economic efficiency of fuel production. To increase efficiency the fuel losses in the furnace chamber, crucible, and the mold, after casting a considerable amount of fuel alloy in the casting furnace, will be quantitatively evaluated. After evaluation the losses will be identified and minimized. It is expected that this study will contribute to the minimization of fuel losses and the wastes streams in the fabrication process of the fuel slugs. Also through this study the technical readiness level of the metallic fuel fabrication process will be further enhanced. In this study, U-Zr alloy system fuel slugs were fabricated by a gravity casting method. Metallic fuel slugs were successfully fabricated with 19 slugs/batch with diameter of 5mm and length of 300mm. Fuel losses was quantitatively evaluated in casting process for the fuel slugs. Fuel losses of the fuel slugs were so low, 0.1∼1.0%. Injection casting experiments have been performed to reduce the fuel loss and improve the casting method. U-Zr fuel slug having φ5.4-L250mm was soundly fabricated with 0.1% in fuel loss. The fuel losses could be minimized to 0.1%, which showed that casting technology of fuel slugs can be a feasible approach to reach the goal of the fuel losses of 0.1% or less in commercial scale

  10. Clean cast steel technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bates, C.E.; Griffin, J.A.

    1998-06-01

    This report documents the results obtained from the Clean Cast Steel Technology Program financially supported by the DOE Metal Casting Competitiveness Research Program and industry. The primary objective of this program is to develop technology for delivering steel free of oxide macroinclusions to mold cavities. The overall objective is to improve the quality of cast steel by developing and demonstrating the technology for substantially reducing surface and sub-surface oxide inclusions. Two approaches are discussed here. A total of 23 castings were produced by submerge pouring along with sixty conventionally poured castings. The submerged poured castings contained, on average, 96% fewer observable surface inclusions (11.9 vs 0.4) compared to the conventionally poured cast parts. The variation in the population of surface inclusions also decreased by 88% from 5.5 to 0.7. The machinability of the casting was also improved by submerged pouring. The submerge poured castings required fewer cutting tool changes and less operator intervention during machining. Subsequent to these trials, the foundry has decided to purchase more shrouds for continued experimentation on other problem castings where submerge pouring is possible. An examination of melting and pouring practices in four foundries has been carried out. Three of the four foundries showed significant improvement in casting quality by manipulating the melting practice. These melting practice variables can be grouped into two separate categories. The first category is the pouring and filling practice. The second category concerns the concentration of oxidizable elements contained in the steel. Silicon, manganese, and aluminum concentrations were important factors in all four foundries. Clean heats can consistently be produced through improved melting practice and reducing exposure of the steel to atmospheric oxygen during pouring and filling.

  11. Neutron radiography inspection of investment castings

    International Nuclear Information System (INIS)

    Richards, W.J.; Barrett, J.R.; Springgate, M.E.; Shields, K.C.

    2004-01-01

    Investment casting, also known as the lost wax process, is a manufacturing method employed to produce near net shape metal articles. Traditionally, investment casting has been used to produce structural titanium castings for aero-engine applications with wall thickness less than 1 in (2.54 cm). Recently, airframe manufacturers have been exploring the use of titanium investment casting to replace components traditionally produced from forgings. Use of titanium investment castings for these applications reduces weight, cost, lead time, and part count. Recently, the investment casting process has been selected to produce fracture critical structural titanium airframe components. These airframe components have pushed the traditional inspection techniques to their physical limits due to cross sections on the order of 3 in (7.6 cm). To overcome these inspection limitations, a process incorporating neutron radiography (n-ray) has been developed. In this process, the facecoat of the investment casting mold material contains a cocalcined mixture of yttrium oxide and gadolinium oxide. The presence of the gadolinium oxide, allows for neutron radiographic imaging (and eventual removal and repair) of mold facecoat inclusions that remain within these thick cross sectional castings. Probability of detection (POD) studies have shown a 3x improvement of detecting a 0.050x0.007 in 2 (1.270x0.178 mm 2 ) inclusion of this cocalcined material using n-ray techniques when compared to the POD using traditional X-ray techniques. Further, it has been shown that this n-ray compatible mold facecoat material produces titanium castings of equal metallurgical quality when compared to the traditional materials. Since investment castings can be very large and heavy, the neutron radiography facilities at the University of California, Davis McClellan Nuclear Radiation Center (UCD/MNRC) were used to develop the inspection techniques. The UCD/MNRC has very unique facilities that can handle large parts

  12. Process and mold for molding foamed plastic articles

    International Nuclear Information System (INIS)

    Baumrucker, E.J.

    1984-01-01

    A method for forming foamed plastic articles which includes the steps of closing a mold; prepressurizing the mold cavity with gas to prevent premature diffusion of blowing gas from the material injected into the cavity; injecting a short shot of molten synthetic resin material containing a blowing agent into the cavity; venting a portion of the prepressurization gas during the injection step; and venting the remaining prepressurization gas from the mold cavity to a vacuum chamber means to allow expansion of the injected foamable resin material within the mold cavity, the vacuum drawing the resin material throughout the mold cavity. In addition, the vacuum chamber is coupled to the mold cavity through plural spaced passageways so that the vacuum is drawn at various locations throughout the cavity to thereby enhance the complete filling of the cavity with the injected material as it expands. The mold is vented following the injection step automatically at the expiration of a predetermined time following the closing of a nozzle of the injection apparatus. A mold for carrying out the process includes improved gas flow means for delivering gas to and venting gas from the mold cavity. The mold also includes improved sealing means for sealing the mold to maintain it in a pressurized state as desired

  13. High Cost/High Risk Components to Chalcogenide Molded Lens Model: Molding Preforms and Mold Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bernacki, Bruce E.

    2012-10-05

    This brief report contains a critique of two key components of FiveFocal's cost model for glass compression molding of chalcogenide lenses for infrared applications. Molding preforms and mold technology have the greatest influence on the ultimate cost of the product and help determine the volumes needed to select glass molding over conventional single-point diamond turning or grinding and polishing. This brief report highlights key areas of both technologies with recommendations for further study.

  14. Materials for Advanced Ultrasupercritical Steam Turbines Task 4: Cast Superalloy Development

    Energy Technology Data Exchange (ETDEWEB)

    Thangirala, Mani

    2015-09-30

    demonstrated the importance of proper heat treat cycles for Homogenization, and Solutionizing parameters selection and implementation. 3) Step blocks casting of Nimonic 263: Carried out casting solidification simulation analysis, NDT inspection methods evaluation, detailed test matrix for Chemical, Tensile, LCF, stress rupture, CVN impact, hardness and J1C Fracture toughness section sensitivity data and were reported. 4) Centrifugal Casting of Haynes 282, weighing 1400 lbs. with hybrid mold (half Graphite and half Chromite sand) mold assembly was cast using compressor casing production tooling. This test provided Mold cooling rates influence on centrifugally cast microstructure and mechanical properties. Graphite mold section out performs sand mold across all temperatures for 0.2% YS; %Elongation, %RA, UTS at 1400°F. Both Stress-LMP and conditional Fracture toughness plots data were in the scatter band of the wrought alloy. 5) Fundamental Studies on Cooling rates and SDAS test program. Evaluated the influence of 6 mold materials Silica, Chromite, Alumina, Silica with Indirect Chills, Zircon and Graphite on casting solidification cooling rates. Actual Casting cooling rates through Liquidus to Solidus phase transition were measured with 3 different locations based thermocouples placed in each mold. Compared with solidification simulation cooling rates and measurement of SDAS, microstructure features were reported. The test results provided engineered casting potential methods, applicable for heavy section Haynes 282 castings for optimal properties, with foundry process methods and tools. 6) Large casting of Haynes 282 Drawings and Engineering FEM models and supplemental requirements with applicable specifications were provided to suppliers for the steam turbine proto type feature valve casing casting. Molding, melting and casting pouring completed per approved Manufacturing Process Plan during 2014 Q4. The partial valve casing was successfully cast after casting methods were

  15. Challenges in lost foam casting of AZ91 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Bichler, L.; Ravindran, C.; Machin, A. [Center for Near-net-shape Casting of Materials, Ryerson Univ., Toronto, ON (Canada)

    2003-07-01

    There is an enhanced interest in magnesium alloy castings for automotive and aerospace applications, often with a view to replacing aluminum alloy castings. Lost foam casting (LFC) is a favored process mainly due to its near-net-shape capability. However, LFC of magnesium alloys poses unique challenge mainly because of the endothermic nature of the process, and hence the tendency of the magnesium alloy to 'freeze' before filling the pattern assembly. In this pioneering research, magnesium alloy AZ91-E was cast to study the effects of melt superheat, mold medium preheating, foam density and coating permeability on freezing range, mold filling and metal flow. Image analysis of microstructural features was carried out. (orig.)

  16. Molded optics design and manufacture

    CERN Document Server

    Schaub, Michael

    2007-01-01

    While several available texts discuss molded plastic optics, none provide information on all classes of molded optics. Filling this gap, Molded Optics: Design and Manufacture presents detailed descriptions of molded plastic, glass, and infrared optics. Since an understanding of the manufacturing process is necessary to develop cost-effective, producible designs, the book extensively covers various manufacturing methods, design guidelines, trade-offs, best practices, and testing of critical parameters. It also discusses topics that often arise when designing systems with molded optics, such as

  17. Pressing Speed, Specific Pressure and Mechanical Properties of Aluminium Cast

    Directory of Open Access Journals (Sweden)

    Gaspar S.

    2016-06-01

    Full Text Available Recent research in the process of aluminum alloy die castings production, which is nowadays deeply implemented into the rapidly growing automobile, shipping and aircraft industries, is aimed at increasing the useful qualitative properties of the die casting in order to obtain its high mechanical properties at acceptable economic cost. Problem of technological factors of high pressure die casting has been a subject of worldwide research (EU, US, Japan, etc.. The final performance properties of die castings are subjected to a large number of technological factors. The main technological factors of high pressure die casting are as follows: plunger pressing speed, specific (increase pressure, mold temperature as well as alloy temperature. The contribution discusses the impact of the plunger pressing speed and specific (increase pressure on the mechanical properties of the casting aluminum alloy.

  18. Atomic layer deposition as pore diameter adjustment tool for nanoporous aluminum oxide injection molding masks.

    Science.gov (United States)

    Miikkulainen, Ville; Rasilainen, Tiina; Puukilainen, Esa; Suvanto, Mika; Pakkanen, Tapani A

    2008-05-06

    The wetting properties of polypropylene (PP) surfaces were modified by adjusting the dimensions of the surface nanostructure. The nanostructures were generated by injection molding with nanoporous anodized aluminum oxide (AAO) as the mold insert. Atomic layer deposition (ALD) of molybdenum nitride film was used to control the pore diameters of the AAO inserts. The original 50-nm pore diameter of AAO was adjusted by depositing films of thickness 5, 10, and 15 nm on AAO. Bis(tert-butylimido)-bis(dimethylamido)molybdenum and ammonia were used as precursors in deposition. The resulting pore diameters in the nitride-coated AAO inserts were 40, 30, and 20 nm, respectively. Injection molding of PP was conducted with the coated inserts, as well as with the non-coated insert. Besides the pore diameter, the injection mold temperature was varied with temperatures of 50, 70, and 90 degrees C tested. Water contact angles of PP casts were measured and compared with theoretical contact angles calculated from Wenzel and Cassie-Baxter theories. The highest contact angle, 140 degrees , was observed for PP molded with the AAO mold insert with 30-nm pore diameter. The Cassie-Baxter theory showed better fit than the Wenzel theory to the experimental values. With the optimal AAO mask, the nanofeatures in the molded PP pieces were 100 nm high. In explanation of this finding, it is suggested that some sticking and stretching of the nanofeatures occurs during the molding. Increase in the mold temperature increased the contact angle.

  19. Expandable pattern casting research. Phase 2, Final report, October 1, 1990--March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    The Expandable Pattern Casting (EPC) Process is a developing foundry technology that allows designers the opportunity to consolidate parts, reduce machining, and minimize assembly operations. An air gauging system was developed for measuring foam patterns; exact shrinkage depended on type and density of the foam. Compaction studies showed that maximum sand densities in cavities and under overhangs are achieved with vibrational amplitudes 0.001--0.004 in., and that sand moved most freely within a few inches of the top free surface. Key to complete mold filling while minimizing casting defects lies in removing the foam decomposition products. The most precise iron castings were made by EPC in four commercial EPC foundries, with attention paid to molding and compaction. EP cast 60-45-12 ductile iron had yield strengths, ultimate strengths, and elastic modulus similar to conventionally cast ductile iron cast from the same ladle.

  20. Manufacture of tube billets for fuel cans by vacuum centrifugal casting

    International Nuclear Information System (INIS)

    Zelenskij, V.F.; Neklyudov, I.M.; Chernyj, B.P.

    1989-01-01

    Vacuum device for induction melting with centrifugal casting in the ingot mold with rotation vertical or horisontal axis is presented. Removing and grinding of nonmetallic inclusions are realized by selection of casting conditions and of chemically active reducer, sound metal with high ductility is obtained. Data on micro- and macrostructure of casted tube billets made of 08Kh18N10T and 06Kh16H15M3B stainless steels, designed for manufacture of fuel cans are presented

  1. Energy Saving Through the Control of Initial Solidification During Continuous Casting

    Science.gov (United States)

    Zhou, Lejun; Wang, Wanlin

    2014-09-01

    With the development of advanced continuous-casting technology, saving energy and reducing greenhouse gas emissions are crucial for its future development. Controlling the initial solidification of molten steel in the mold to improve the quality of casting products would tend to minimize extra postcast treatment like scarfing, etc., which leads to a large amount of energy savings in the continuous-casting process through the minimization of the extra labor and energy consumption. In this article, factors such as mold flux, mold oscillation, cooling potential conditions, and fluid flow in the vicinity of meniscus that correlate with the molten steel initial solidification are discussed with the aim to provide strategy and guidelines for the optimization of molten steel solidification and energy savings in continuous casting.

  2. Molding device and method for nuclear fuel molding product

    International Nuclear Information System (INIS)

    Nomata, Terumitsu; Masubuchi, Yukio; Kawasaki, Etsuko; Shimizu, Sayoko.

    1993-01-01

    A large diameter through hole and a small diameter through hole are formed in a stepped shape passing through the central portion of a die. The die is attached to a press molding device. A lower small diameter punch is inserted into the smaller diameter through hole of the die, and nuclear fuel powders are filled in the small diameter through hole. Then, nuclear fuel powders are pressurized and compressed by an upper small diameter punch and the lower small diameter punch to mold a center molding product having a small diameter. Then, the lower small diameter punch is caused to slide upwardly to raise the center molding product in the large diameter through hole. Nuclear fuel powders are filled in the gap of the large diameter through hole in this state and pressed by a punch to mold them. With such procedures, a nuclear fuel molding product having a predetermined shape having the center molding product as a center can be obtained. The density distribution of the obtained nuclear fuel molding product is uniform. Accordingly, the nuclear fuel pellet after sintering is prevented from saddle-shaped deformation. (I.N.)

  3. Injection Compression Molding of Replica Molds for Nanoimprint Lithography

    Directory of Open Access Journals (Sweden)

    Keisuke Nagato

    2014-03-01

    Full Text Available As a breakthrough in the cost and durability of molds for nanoimprint lithography (NIL, replica molds are fabricated by injection compression molding (ICM. ICM is commonly used for optical disks such as DVDs or Blu-ray disks and is also a practical fabrication method for nanostructures. In this paper, I successfully demonstrated the fabrication of cycloolefin polymer replica molds with structures smaller than 60 nm by ICM. Furthermore, ultraviolet (UV-NIL using these replica molds was demonstrated. UV-cured resist was replicated over an area of 60 mm diameter. The degree of replication by UV-NIL in the first usage of each replica mold had good repeatability. Because ICM is a high-throughput, low-cost process, the replica mold can be disposed of after a certain time for UV-NIL. This method leads to a high-integrity UV-NIL process of patterned media because multiple large-area replica molds can be fabricated simultaneously.

  4. Enhanced Injection Molding Simulation of Advanced Injection Molds

    Directory of Open Access Journals (Sweden)

    Béla Zink

    2017-02-01

    Full Text Available The most time-consuming phase of the injection molding cycle is cooling. Cooling efficiency can be enhanced with the application of conformal cooling systems or high thermal conductivity copper molds. The conformal cooling channels are placed along the geometry of the injection-molded product, and thus they can extract more heat and heat removal is more uniform than in the case of conventional cooling systems. In the case of copper mold inserts, cooling channels are made by drilling and heat removal is facilitated by the high thermal conductivity coefficient of copper, which is several times that of steel. Designing optimal cooling systems is a complex process; a proper design requires injection molding simulations, but the accuracy of calculations depends on how precise the input parameters and boundary conditions are. In this study, three cooling circuit designs and three mold materials (Ampcoloy 940, 1.2311 (P20 steel, and MS1 steel were used and compared using numerical methods. The effect of different mold designs and materials on cooling efficiency were examined using calculated and measured results. The simulation model was adjusted to the measurement results by considering the joint gap between the mold inserts.

  5. Low Cost Injection Mold Creation via Hybrid Additive and Conventional Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Dehoff, Ryan R [ORNL; Watkins, Thomas R [ORNL; List III, Frederick Alyious [ORNL; Carver, Keith [ORNL; England, Roger [Cummins, Inc

    2015-12-01

    The purpose of the proposed project between Cummins and ORNL is to significantly reduce the cost of the tooling (machining and materials) required to create injection molds to make plastic components. Presently, the high cost of this tooling forces the design decision to make cast aluminum parts because Cummins typical production volumes are too low to allow injection molded plastic parts to be cost effective with the amortized cost of the injection molding tooling. In addition to reducing the weight of components, polymer injection molding allows the opportunity for the alternative cooling methods, via nitrogen gas. Nitrogen gas cooling offers an environmentally and economically attractive cooling option, if the mold can be manufactured economically. In this project, a current injection molding design was optimized for cooling using nitrogen gas. The various components of the injection mold tooling were fabricated using the Renishaw powder bed laser additive manufacturing technology. Subsequent machining was performed on the as deposited components to form a working assembly. The injection mold is scheduled to be tested in a projection setting at a commercial vendor selected by Cummins.

  6. Evaluation of nano ceramic coating on radiographic defects of thin-walled AL4-4 aluminum alloy sand casting

    Directory of Open Access Journals (Sweden)

    Mansour Borouni

    2016-10-01

    Full Text Available Internal defects are among the problems in gravity casting of aluminum parts. The main internal volumetric defects are gas and shrinkage defects which form during solidification of the melt and drastically reduce the quality of the produced parts. These defects adversely affect the mechanical properties of thin walled castings parts. In this study, ceramic nanoparticles coatings were applied on the sand mold and the effect of mold coatings on the reduction of defects were investigated. X-ray radiography was used to detect defects in sand molds with ceramic nanoparticles coatings. For comparison, this test was performed on molds with micro-ceramic and graffiti coatings and uncoated sand mold. The results showed that the maximum amount of gas and shrinkage defects was observed in casting parts from AL4-1 alloy in uncoated molds. On the other hand, the minimum defects were found in molds coated with ceramic nanoparticles. It seems that the reduced defects in casting parts in molds coated with ceramic nanoparticles may be due to high thermal and chemical stability and higher heat transfer rate of the coating. These results can facilitate the production of high quality aluminum alloys parts using nanotechnology.

  7. Mold and Indoor Air Quality in Schools

    Science.gov (United States)

    ... Us Share Mold and Indoor Air Quality in Schools Mold and Moisture in Schools Webinar Mold and Moisture: Double Trouble for Schools ... An excerpt follows: Common Moisture Sources Found in Schools Moisture problems in school buildings can be caused ...

  8. Microcellular nanocomposite injection molding process

    Science.gov (United States)

    Mingjun Yuan; Lih-Sheng Turng; Rick Spindler; Daniel Caulfield; Chris Hunt

    2003-01-01

    This study aims to explore the processing benefits and property improvements of combining nanocomposites with microcellular injection molding. The molded parts produced based on the Design of Experiments (DOE) matrices were subjected to tensile testing, impact testing, and Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Dynamic Mechanical...

  9. Performance of molded plastic scintillators

    International Nuclear Information System (INIS)

    Gen, N.S.; Leman, V.E.; Solomonov, V.M.

    1989-01-01

    The performance of molded plastic scintillators is studied. The plastic scintillators studied were formed by transfer molding and intrusion from a scintillation composition consisting of polystyrene and a standard system of luminescent additives: 2 mass % of paraterphenyl + 0.06 mass % 1,4-di-/2-[5-phenyloxazoyly]/benzene and a plasticizer. The combined effect of mechanical load and temperature was studied. The effect of radiation on molded plastic scintillators was studied using gamma radiation from a 60 Co source. The studies show that the main operating characteristics of molded plastic scintillators are on a par with those of polymerized plastic scintillators. At the same time, molded plastic scintillators are superior in thermal stability at temperatures below the glass transition temperature and with respect to their working temperature range

  10. Development of low-temperature high-strength integral steel castings for offshore construction by casting process engineering

    Directory of Open Access Journals (Sweden)

    Sang-Sub Lim

    2014-12-01

    Full Text Available In casting steels for offshore construction, manufacturing integral casted structures to prevent fatigue cracks in the stress raisers is superior to using welded structures. Here, mold design and casting analysis were conducted for integral casting steel. The laminar flow of molten metal was analyzed and distributions of hot spots and porosities were studied. A prototype was subsequently produced, and air vents were designed to improve the surface defects caused by the release of gas. A radiographic test revealed no internal defects inside the casted steel. Evaluating the chemical and mechanical properties of specimens sampled from the product revealed that target values were quantitatively satisfied. To assess weldability in consideration of repair welding, the product was machined with grooves and welded, after which the mechanical properties of hardness as well as tensile, impact, and bending strengths were evaluated. No substantive differences were found in the mechanical properties before and after welding.

  11. Three-Dimensional Molding Based on Microstereolithography Using Beta-Tricalcium Phosphate Slurry for the Production of Bioceramic Scaffolds

    Science.gov (United States)

    Torii, Takashi; Inada, Makoto; Maruo, Shoji

    2011-06-01

    We report on a three-dimensional (3D) molding technique of fabricating bioceramic scaffolds. In this method, ceramic slurry is cast into a 3D polymer master mold, which is fabricated via microstereolithography, by a centrifugal casting method. The polymer master mold is thermally decomposed, so that a complex 3D bioceramic scaffold can be produced. In experiments, the decomposition process of the polymer model was optimized by the master decomposition curve theory to reduce harmful cracks in a green body. As a result, we could produce not only precise lattice models but also a sophisticated porous scaffold using beta-tricalcium phosphate (β-TCP) slurry. This bioceramic 3D molding technique based on microstereolithography will be useful for tailor-made tissue engineering and regeneration medicine.

  12. The ancient Chinese casting techniques

    OpenAIRE

    Tan Derui; Lian Haiping

    2011-01-01

    In the course of Chinese civilization, which lasted more than 5,000 years, casting production has made a huge contribution. In this paper, some representative metal castings were presented. According to their forming techniques, they can be grouped into stone mould casting, clay mould casting, ablation casting, lost wax casting, stack casting, permanent mould casting, sand casting, etc. According to their materials, they can be categorized into tin bronze, bimetallic bronze, malleable cast ir...

  13. Study on Effects of Mold Temperature on the Injection Molded Article

    OpenAIRE

    Han J.-H.; Kim Y.-C.

    2017-01-01

    This is a study of the effects of temperature of injection mold on the injection molded article. By supplying water of the proper temperature in the cooling line of mold in the cooling process, the mold was the appropriate temperature, and the deformation of the injection molded article was examined according to the mold temperature. In this study, we conducted simulation analysis and experiments, and the results were analyzed. The minimum deformation of the injection molded article model obt...

  14. Special thermite cast irons

    OpenAIRE

    Yu. Zhiguts; I. Kurytnik

    2008-01-01

    The given paper deals with the problems of the synthesis of cast iron by metallothermy synthesis. On the basis of investigated method of calculations structures of charges have been arranged and cast iron has been synthesized further. Peculiarities metallothermic smelting were found, mechanical properties and structure of received cast iron were investigated and different technologies for cast iron receiving were worked out.

  15. Predicting Pattern Tooling and Casting Dimensions for Investment Casting, Phase III

    Energy Technology Data Exchange (ETDEWEB)

    Sabau, Adrian S [ORNL

    2008-04-01

    Efforts during Phase III focused mainly on the shell-alloy systems. A high melting point alloy, 17-4PH stainless steel, was considered. The experimental part of the program was conducted at ORNL and commercial foundries, where wax patterns were injected, molds were invested, and alloys were poured. Shell molds made of fused-silica and alumino-silicates were considered. A literature review was conducted on thermophysical and thermomechanical properties alumino-silicates. Material property data, which were not available from material suppliers, was obtained. For all the properties of 17-4PH stainless steel, the experimental data available in the literature did not cover the entire temperature range necessary for process simulation. Thus, some material properties were evaluated using ProCAST, based on CompuTherm database. A comparison between the predicted material property data and measured property data was made. It was found that most material properties were accurately predicted only over several temperature ranges. No experimental data for plastic modulus were found. Thus, several assumptions were made and ProCAST recommendations were followed in order to obtain a complete set of mechanical property data at high temperatures. Thermal expansion measurements for the 17-4PH alloy were conducted during heating and cooling. As a function of temperature, the thermal expansion for both the alloy and shell mold materials showed different evolution on heating and cooling. Numerical simulations were performed using ProCAST for the investment casting of 17-4PH stainless steel parts in fused silica molds using the thermal expansion obtained on heating and another one with thermal expansion obtained on cooling. Since the fused silica shells had the lowest thermal expansion properties in the industry, the dewaxing phase, including the coupling between wax-shell systems, was neglected. The shell mold was considered to be a pure elastic material. The alloy dimensions were

  16. Study of Thermal Stress Influence on Dimensional Stability of Silicone Molds

    Science.gov (United States)

    Bajčičák, Martin; Šuba, Roland

    2014-06-01

    The paper is focused on the study of temperature influence on dimensional stability of silicone molds used for spin casting of the low melting points alloys. The silicone material denoted as TEKSIL Silicone-GP-S was used to produce samples during experiments. The samples were heated to temperatures in the range from 100 up to 250oC for 30 up to 120 min. Dimensional changes of the samples in the radial and axial directions aa well as their change of weight were evaluated. The results of experiments proved that thermal stress of silicone molds can influence the size and shape of mold cavities. These results can also explain the possible mechanism of degradation process of silicone molds under thermal stress.

  17. Study of Thermal Stress Influence on Dimensional Stability of Silicone Molds

    Directory of Open Access Journals (Sweden)

    Bajčičák Martin

    2014-06-01

    Full Text Available The paper is focused on the study of temperature influence on dimensional stability of silicone molds used for spin casting of the low melting points alloys. The silicone material denoted as TEKSIL Silicone-GP-S was used to produce samples during experiments. The samples were heated to temperatures in the range from 100 up to 250oC for 30 up to 120 min. Dimensional changes of the samples in the radial and axial directions aa well as their change of weight were evaluated. The results of experiments proved that thermal stress of silicone molds can influence the size and shape of mold cavities. These results can also explain the possible mechanism of degradation process of silicone molds under thermal stress.

  18. Predicting Pattern Tooling and Casting Dimensions for Investment Casting, Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Nick Cannell (EMTEC); Adrian S. Sabau (ORNL)

    2005-09-30

    The investment casting process allows the production of complex-shape parts and close dimensional tolerances. One of the most important phases in the investment casting process is the design of the pattern die. Pattern dies are used to create wax patterns by injecting wax into dies. The first part of the project involved preparation of reports on the state of the art at that time for all the areas under consideration (die-wax, wax-shell, and shell-alloy). The primary R&D focus during Phase I was on the wax material since the least was known about it. The main R&D accomplishments during this phase were determination of procedures for obtaining the thermal conductivity and viscoelastic properties of an unfilled wax and validating those procedures. Phase II focused on die-wax and shell-alloy systems. A wax material model was developed based on results obtained during the previous R&D phase, and a die-wax model was successfully incorporated into and used in commercial computer programs. Current computer simulation programs have complementary features. A viscoelastic module was available in ABAQUS but unavailable in ProCAST, while the mold-filling module was available in ProCAST but unavailable in ABAQUS. Thus, the numerical simulation results were only in good qualitative agreement with experimental results, the predicted shrinkage factors being approximately 2.5 times larger than those measured. Significant progress was made, and results showed that the testing and modeling of wax material had great potential for industrial applications. Additional R&D focus was placed on one shell-alloy system. The fused-silica shell mold and A356 aluminum alloy were considered. The experimental part of the program was conducted at ORNL and commercial foundries, where wax patterns were injected, molds were invested, and alloys were poured. It was very important to obtain accurate temperature data from actual castings, and significant effort was made to obtain temperature profiles in

  19. Effect of Selected Parameters of Pressure Die Casting on Quality of AlSi9Cu3 Castings

    Directory of Open Access Journals (Sweden)

    Pałyga Ł.

    2015-06-01

    Full Text Available This paper presents the results on the effects of die-casting process on the strength parameters of castings of the aluminium AlSi9Cu3 alloy belonging to the group of EN AB-46000, made on renovated high pressure die-casting machine. Specimens for quality testing were taken from the places of the casting most loaded during the service. The aim of a research was to prove how the new die-casting process control capabilities influence on the tensile strength of the cast material defined as a value of the breaking force of the specimens. It has been found that it is possible to specify a set of recommended settings valves of second (II and third (III phase, which are responsible for filling the metal mould on die-casting pressure machine. From the point of view of the finished cast element, it was noticed that exceeding the prescribed values of valve settings does not bring further benefits and even causes unnecessary overload and reduce the durability of the mold. Moreover, it was noticed that reduction of the predetermined setting of the second phase (II valve leads to the formation of casting defects again.

  20. A facile and simple high-performance polydimethylsiloxane casting based on self-polymerization dopamine

    International Nuclear Information System (INIS)

    Chen, Xing; Zhang, Lu-lu; Sun, Jian-hai; Li, Hui; Cui, Da-fu

    2014-01-01

    We present a new and facile method for polydimethylsiloxane (PDMS) casting by dip-coating the master molds in an aqueous solution of dopamine. A poly(dopamine) film formed by self-polymerization of dopamine is used as the surface anti-adhesion coating for PDMS de-molding. Different master molds, such as metal, silicon and PDMS replica, were used to verify the feasibility of this proposed PDMS casting method. The poly(dopamine) coatings at various fabrication conditions were studied by using surface plasmon resonance technology. We found that it is very easy to form repeated poly(dopamine) coatings with similar thicknesses and density at fairly flexible conditions of self-polymerization. The water contact angles of the PDMS master molds and the positive PDMS replicas were studied after the PDMS master molds were immersed in the dopamine coating solution for different times. The de-molding process was then measured by surface plasmon resonance technology. The surface morphology of the master molds and the PDMS replicas were characterized by using scanning electron microscopy and atomic force microscopy. Results demonstrate that the poly(dopamine) coating exhibits a strong release property in the PDMS de-molding process and has good stickiness after PDMS de-molding a dozen times. The package performances of the PDMS replicas were detected and compared by bonding experiments. PDMS replicas after a second round of de-molding present a little higher package performance than that of the PDMS replicas with an anti-sticking agent of silane. The biochemical properties of PDMS replicas were studied through fluorescence immunoassay experiments. The PDMS replicas present similar biochemical properties to the bare PDMS. This biomimetic surface modification method of dopamine for PDMS casting has a great potential for preparing microdevices for various biological and clinical applications. (paper)

  1. Research in manufacturing of micro-structured injection molded polymer parts

    Science.gov (United States)

    Lucyshyn, Thomas; Struklec, Tobias; Burgsteiner, Martin; Graninger, Georg; Holzer, Clemens

    2015-12-01

    An overview of current research results is given for the topic of injection molding of micro-structured polymer parts regarding filling behavior and demolding process of micro-structures as well as the production of micro-structures on curved surfaces. In order to better understand how micro-structures are formed during the filling stage of injection molding, a study was performed on a test part with micro-channels placed parallely and perpendicularly to flow direction. Short shots with a highly fluent Polypropylene grade were injection molded with the melt front stopping in the structure fields. The melt and mold temperature, the injection rate as well as the use of a variotherm heating system were varied in a systematic Design of Experiments. The shape of the flow front was investigated with the optical measurement system Alicona InfiniteFocus. The data gained was analyzed with Matlab scripts and provided the needed distance to completely fill the structures as a reference value. The next topic covers the demolding step, which is a crucial process step in injection molding of micro-structured parts as the successfully replicated structures often get destroyed in the following demolding step. In order to evaluate the influence of the four aspects polymer, mold surface (coatings), structure (geometry and placement) and process settings on the demolding behavior, an injection mold with integrated measurement system was built, which makes it possible to measure the demolding force respectively a demolding energy under process conditions. These values can be used to quantitatively compare the impact of the above mentioned influencing factors on demolding. Finally, a concept to produce micro-structures on curved surfaces with injection molding is shown: A flat metal premaster structure is used to produce an elastomeric polymer (dimethylsiloxane) master in a casting process. This master is fixed in a conventional injection mold and a thermoplastic polymer is replicated

  2. Functional nanostructures on injection molded plastic

    DEFF Research Database (Denmark)

    Johansson, Alicia Charlotte; Søgaard, Emil; Andersen, Nis Korsgaard

    Nanotechnology can be used to make inexpensive plastic parts with functional surfaces. The plastic parts can be molded using a standard injection molding process. The nanostructures are directly transferred from the surface of the molding tool to the surface of the molded plastic part during...

  3. Injection Molding of High Aspect Ratio Nanostructures

    DEFF Research Database (Denmark)

    Matschuk, Maria; Larsen, Niels Bent

    We present a process for injection molding of 40 nm wide and >100 nm high pillars (pitch: 200 nm). We explored the effects of mold coatings and injection molding conditions on the replication quality of nanostructures in cyclic olefin copolymer. We found that optimization of molding parameters...

  4. Microcellular Injection Molding Using Helium

    International Nuclear Information System (INIS)

    Jeon, Byung Joo; Kim, Hak Bin; Cha, Sung Woon

    2007-01-01

    In comparison with conventional foaming process microcellular injection molding process has advantages such as small bubble size, the removal of sink mark, scale reliability, and weight lightening. So microcellular injection molded parts are applied to electrical product and automobile part. Conventional microcellular foaming process used carbon dioxide and nitrogen as a foaming agent. And it has been never researched and applied about microcellular injection molding process using helium. In this paper, we did a microcellular injection molding process using helium based on previous research result and made samples. From this we can certificate the possibility of microcellular continuous process using helium. Helium is lighter and faster in diffusion than carbon dioxide or nitrogen so through this technique, it can be solved the problem such as spray or labeling

  5. Mold Cleanup in Your Home

    Science.gov (United States)

    If you found mold in your household, you will want to clean it up. Some considerations on how you will clean it up depend on the size of the area, the contaminated materials, and any additional health concerns.

  6. Numerical simulation and fabrication of silicon sheet via spin casting.

    Science.gov (United States)

    Lee, Jaewoo; Kim, Hyunhui; Lee, Changbum; Kim, Joonsoo; Jang, Bo-Yun; Lee, Jinseok; Ahn, Youngsoo; Yoon, Wooyoung

    2013-05-01

    A spin-casting process for fabricating polycrystalline silicon sheets for use as solar cell wafers is proposed, and the parameters that control the sheet thickness are investigated. A numerical study of the fluidity of molten silicon indicates that the formation of thin silicon sheets without a mold and via spin casting is feasible. The faster the rotation speed of graphite mold, the thinner the thickness of sheet. After the spread of the molten silicon to cover the graphite mold with rotation speed of above 500 rpm, the solidification has to start. Silicon sheets can be produced by using the centrifugal force under appropriate experimental conditions. The spin-cast sheet had a vertical columnar microstructure due to the normal heat extraction to the substrate, and the sheet lifetime varied from 0.1 microS to 0.3 microS measured by using the microwave photoconductance decay (MW-PCD) to confirm that the spin-cast silicon sheet is applicable to photovoltaics.

  7. Molded polymer solar water heater

    Science.gov (United States)

    Bourne, Richard C.; Lee, Brian E.

    2004-11-09

    A solar water heater has a rotationally-molded water box and a glazing subassembly disposed over the water box that enhances solar gain and provides an insulating air space between the outside environment and the water box. When used with a pressurized water system, an internal heat exchanger is integrally molded within the water box. Mounting and connection hardware is included to provide a rapid and secure method of installation.

  8. Application of 3-D numerical simulation software SRIFCAST to produce ductile iron castings

    Directory of Open Access Journals (Sweden)

    Junqing WANG

    2005-08-01

    Full Text Available Based on a method using numerical simulation equations and their solution schemes for liquid metal flows and heat transfer during mold filling and the solidification process of casting, 3-D numerical simulation software SRIFCAST was created. This includes enmeshment of casting; velocity and temperature fields calculation; displaying iso-temperature lines; velocity vectors and 3-D temperature fields on a Windows 9x operating system. SRIFCAST was applied to produce sound castings of automobile and diesel engines, and also to connect with microstructure simulation for ductile iron castings.

  9. INVESTIGATION OF EFFICIENCY OF GRAY CAST IRON GRAPHITIZING MODIFICATION BY DISPERSION-FILLED CONSUMABLE PATTERN

    Directory of Open Access Journals (Sweden)

    I. A. Nebozhak

    2015-01-01

    Full Text Available The key criteria of the process of graphitizing modification of matrix melt silicon concentration and silicon assimilation evaluated were on samples of gray cast iron grade СЧ20 State Standard 1412-85. These criteria of evaluation on the structure and properties of casting ingots proved an efficiency of intra-mold modification of molten gray cast iron by dispersed ferrosilicon grade ФС75 State Standard 1415-93 (ISO 5445-80 using lost-foam casting (LFC-process.

  10. A 1-D Analytical Model for the Thermally Induced Stresses in the Mould Surface During Die Casting

    DEFF Research Database (Denmark)

    Hattel, Jesper; Hansen, Preben

    1994-01-01

    This paper presents an anlytically based method for predicting the normal stresses in a die mold surface exposed to a thermal load. A example of application of the method is the high-pressure di casting process where the surface stresses in critical cases lead to cracks. Expressions for the normal...... stresses as afunction of the thermal and mechanical properties have been developed for a casting both without and with a coating. Finally, the resulting relationships are derived and evaluated, with particular emphasis on the effect of the heat transfer coefficient between the casting and the mold....

  11. Effect of Casting Die Cooling on Solidification Process and Microstructure of Hypereutectic Al-Si Alloy

    Directory of Open Access Journals (Sweden)

    Władysiak R.

    2016-12-01

    Full Text Available The work is a continuation of research concerning the influence of intensive cooling of permanent mold in order to increase the casting efficiency of aluminium alloys using the multipoint water mist cooling system. The paper presents results of investigation of crystallization process and microstructure of synthetic hypereutectic alloys: AlSi15 and AlSi19. Casts were made in permanent mold cooled with water mist stream. The study was conducted for unmodified silumins on the research station allowing the cooling of the special permanent probe using a program of computer control. Furthermore the study used a thermal imaging camera to analyze the solidification process of hypereutectic silumins. The study demonstrated that the use of mold cooled with water mist stream allows in wide range the formation of the microstructure of hypereutectic silumins. It leads to higher homogeneity of microstructure and refinement of crystallizing phases and also it increases subsequently the mechanical properties of casting.

  12. Insulation effect of air cavity in sand mold using 3D printing technology

    Directory of Open Access Journals (Sweden)

    Cheng-yang Deng

    2018-01-01

    Full Text Available The insulation effect of the air cavity surrounding the riser in a 3D printed sand mold was studied. The influence of the air cavity on heat flux was theoretically analyzed. The results demonstrated that the heat flux of the air cavity in the 3D printed sand mold was significantly less than that of resin-bonded sand. The insulation effect of the air cavity in sand molds for a cylinder casting and a stress-frame casting were simulated using software COMSOL. The results illustrated that the air cavity could be used to insulate the riser and it was more suitable for a lower melting point metal casting. An air cavity with 10-15 mm width and 5-10 mm away from the riser can significantly prolong the solidification of the riser by over 10%. Meanwhile, the sand mold for the stress-frame was made by 3D printing technology and poured with aluminum alloy A356 melt. The experiment results showed that the presence of the air cavity led to a 12.5% increase of the solidification time of its riser.

  13. Deep UV patterning of acrylic masters for molding biomimetic dry adhesives

    Science.gov (United States)

    Sameoto, D.; Menon, C.

    2010-11-01

    We present a novel fabrication method for the production of biomimetic dry adhesives that allows enormous variation in fiber shapes and sizes. The technology is based on deep-UV patterning of commercial acrylic with semi-collimated light available from germicidal lamps, and combined careful processing conditions, material selection and novel developer choices to produce relatively high-aspect-ratio fibers with overhanging caps on large areas. These acrylic fibers are used as a master mold for subsequent silicone rubber negative mold casting. Because the bulk acrylic demonstrates little inherent adhesion to silicone rubbers, the master molds created in this process do not require any surface treatments to achieve high-yield demolding of interlocked structures. Multiple polymers can be cast from silicone rubber negative molds and this process could be used to structure smart materials on areas over multiple square feet. Using direct photopatterning of acrylic allows many of the desired structures for biomimetic dry adhesives to be produced with relative ease compared to silicon-based molding processes, including angled fibers and hierarchical structures. Optimized fiber shapes for a variety of polymers can be produced using this process, and adhesion measurements on a well-characterized polyurethane, ST-1060, are used to determine the effect of fiber geometry on adhesion performance.

  14. Rapid prototyping of biodegradable microneedle arrays by integrating CO2 laser processing and polymer molding

    International Nuclear Information System (INIS)

    Tu, K T; Chung, C K

    2016-01-01

    An integrated technology of CO 2 laser processing and polymer molding has been demonstrated for the rapid prototyping of biodegradable poly-lactic-co-glycolic acid (PLGA) microneedle arrays. Rapid and low-cost CO 2 laser processing was used for the fabrication of a high-aspect-ratio microneedle master mold instead of conventional time-consuming and expensive photolithography and etching processes. It is crucial to use flexible polydimethylsiloxane (PDMS) to detach PLGA. However, the direct CO 2 laser-ablated PDMS could generate poor surfaces with bulges, scorches, re-solidification and shrinkage. Here, we have combined the polymethyl methacrylate (PMMA) ablation and two-step PDMS casting process to form a PDMS female microneedle mold to eliminate the problem of direct ablation. A self-assembled monolayer polyethylene glycol was coated to prevent stiction between the two PDMS layers during the peeling-off step in the PDMS-to-PDMS replication. Then the PLGA microneedle array was successfully released by bending the second-cast PDMS mold with flexibility and hydrophobic property. The depth of the polymer microneedles can range from hundreds of micrometers to millimeters. It is linked to the PMMA pattern profile and can be adjusted by CO 2 laser power and scanning speed. The proposed integration process is maskless, simple and low-cost for rapid prototyping with a reusable mold. (paper)

  15. Rapid prototyping of biodegradable microneedle arrays by integrating CO2 laser processing and polymer molding

    Science.gov (United States)

    Tu, K. T.; Chung, C. K.

    2016-06-01

    An integrated technology of CO2 laser processing and polymer molding has been demonstrated for the rapid prototyping of biodegradable poly-lactic-co-glycolic acid (PLGA) microneedle arrays. Rapid and low-cost CO2 laser processing was used for the fabrication of a high-aspect-ratio microneedle master mold instead of conventional time-consuming and expensive photolithography and etching processes. It is crucial to use flexible polydimethylsiloxane (PDMS) to detach PLGA. However, the direct CO2 laser-ablated PDMS could generate poor surfaces with bulges, scorches, re-solidification and shrinkage. Here, we have combined the polymethyl methacrylate (PMMA) ablation and two-step PDMS casting process to form a PDMS female microneedle mold to eliminate the problem of direct ablation. A self-assembled monolayer polyethylene glycol was coated to prevent stiction between the two PDMS layers during the peeling-off step in the PDMS-to-PDMS replication. Then the PLGA microneedle array was successfully released by bending the second-cast PDMS mold with flexibility and hydrophobic property. The depth of the polymer microneedles can range from hundreds of micrometers to millimeters. It is linked to the PMMA pattern profile and can be adjusted by CO2 laser power and scanning speed. The proposed integration process is maskless, simple and low-cost for rapid prototyping with a reusable mold.

  16. Deep UV patterning of acrylic masters for molding biomimetic dry adhesives

    International Nuclear Information System (INIS)

    Sameoto, D; Menon, C

    2010-01-01

    We present a novel fabrication method for the production of biomimetic dry adhesives that allows enormous variation in fiber shapes and sizes. The technology is based on deep-UV patterning of commercial acrylic with semi-collimated light available from germicidal lamps, and combined careful processing conditions, material selection and novel developer choices to produce relatively high-aspect-ratio fibers with overhanging caps on large areas. These acrylic fibers are used as a master mold for subsequent silicone rubber negative mold casting. Because the bulk acrylic demonstrates little inherent adhesion to silicone rubbers, the master molds created in this process do not require any surface treatments to achieve high-yield demolding of interlocked structures. Multiple polymers can be cast from silicone rubber negative molds and this process could be used to structure smart materials on areas over multiple square feet. Using direct photopatterning of acrylic allows many of the desired structures for biomimetic dry adhesives to be produced with relative ease compared to silicon-based molding processes, including angled fibers and hierarchical structures. Optimized fiber shapes for a variety of polymers can be produced using this process, and adhesion measurements on a well-characterized polyurethane, ST-1060, are used to determine the effect of fiber geometry on adhesion performance

  17. Hydrogen silsesquioxane mold coatings for improved replication of nanopatterns by injection molding

    DEFF Research Database (Denmark)

    Hobæk, Thor Christian; Matschuk, Maria; Kafka, Jan

    2015-01-01

    We demonstrate the replication of nanosized pillars in polymer (cyclic olefin copolymer) by injection molding using nanostructured thermally cured hydrogen silsesquioxane (HSQ) ceramic coatings on stainless steel mold inserts with mold nanostructures produced by a simple embossing process...

  18. The development of lab-on-a-chip fabricated from two molds

    Science.gov (United States)

    Pramuanjaroenkij, A.; Bunta, J.; Thiangpadung, J.; Sansaradee, S.; Kamsopa, P.; Sodsai, S.; Vichainsan, S.; Wongpanit, K.; Maturos, T.; Lomas, T.; Tuantranont, A.; Cetin, B.; Phankhoksoong, S.; Tongkratoke, A.

    2018-01-01

    Development of diagnostic technique of microfluidic or lab-on-a-chip (LOCs) is currently of great interest for researchers and inventors for their many advantages. It can be used as a real laboratory was many ways to help to the diagnosis faster. This research aims to develop Polydimethylsiloxane (PDMS) lab-on-a-chip (LOCs) which were produced from different molds; the silicon wafer mold and the stainless mold to investigate the flow of the biological sample as the flow in nanochannels. In addition, this research proposes a means to leakage and the blockage of the channel flow. The experimental results were found that the LOCs casted from the silicon wafer mold sandwiched by both the plasma cleaner machine and H shaped acrylic sheets showed leakages around the electrode areas because the first new electrodes were too thick, the proper thickness of the nickel electrode was at 0.05 millimeters. The LOCs casted from the stainless mold were inserted by the nickel electrodes produced by the from the prototype shaped electroplating process; this LOCs using nickel plated electrodes 2 times to make a groove on the nickel electrode backsides when pouring the PDMS into the LOCs casted from the stainless mold. It was found that PDMS was able to flow under the nickel electrode and the PDMS sheet could stick with the glass slide smoothly. In conclusion, it was possible to develop these LOC designs and new electrode fabrications continually under helps from Micro-Electro-Mechanical system, Thailand National Electronics and Computer Technology Center, since causes of the LOC problems were found, and demonstrated the feasibility of developing the LOCs for chemical detection and disease diagnostics.

  19. Casting Simulation of an Austrian Bronze Age Sword Hilt

    Science.gov (United States)

    Pola, Annalisa; Mödlinger, Marianne; Piccardo, Paolo; Montesano, Lorenzo

    2015-07-01

    Bronze Age swords with a metal hilt can be considered the peak of Bronze Age casting technologies. To reconstruct the casting techniques used more than 3000 years ago, a metal hilted sword of the Schalenknauf type from Lower Austria was studied with the aid of macroscopic analyses and simulation of mold filling and casting solidification. A three-dimensional model of the hilt was created based on optical scanner measurements performed on a hilt recently discovered during archaeological excavations. Three different configurations of the gating system were considered, two on the pommel disk and one on the knob, and the effect of its location on the formation of casting defects was investigated. Three-dimensional computed tomography was used to detect internal defects, such as gas and shrinkage porosity, which were then compared with those calculated by simulation. The best match between actual and predicted hilt quality demonstrated the location of the gating system, which turned out to be on the pommel disk.

  20. Electromagnetic augmentation for casting of thin metal sheets

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL)

    1989-01-01

    Thin metal sheets are cast by magnetically levitating molten metal deposited in a mold within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled by the water-cooled walls of the mold to form a solid metal sheet. A conducting shield is electrically coupled to the molten metal sheet to provide a return path for eddy currents induced in the metal sheet by the current in the AC conducting coils. In another embodiment, a DC conducting coil is coupled to the metal sheet for providing a direct current therein which interacts with the magnetic field to levitate the moving metal sheet. Levitation of the metal sheet in both molten and solid forms reduces its contact pressure with the mold walls while maintaining sufficient engagement therebetween to permit efficient conductive cooling by the mold through which a coolant fluid may be circulated. The magnetic fields associated with the currents in the aforementioned coils levitate the molten metal sheet while the mold provides for its lateral and vertical confinement. A leader sheet having electromagnetic characteristics similar to those of the molten metal sheet is used to start the casing process and precedes the molten metal sheet through the yoke/coil arrangement and mold and forms a continuous sheet therewith. The yoke/coil arrangement may be either U-shaped with a single racetrack coil or may be rectangular with a pair of spaced, facing bedstead coils.

  1. Plastic casting resin poisoning

    Science.gov (United States)

    Epoxy poisoning; Resin poisoning ... Epoxy and resin can be poisonous if they are swallowed or their fumes are breathed in. ... Plastic casting resins are found in various plastic casting resin products.

  2. Twin-belt continuous caster with containment and cooling of the exiting cast product for enabling high-speed casting of molten-center product

    Science.gov (United States)

    Dykes, Charles D.; Daniel, Sabah S.; Wood, J. F. Barry

    1990-02-20

    In continuously casting molten metal into cast product by a twin-belt machine, it is desirable to achieve dramatic increases in speed (linear feet per minute) at which cast product exits the machine, particularly in installations where steel cast product is intended to feed a downstream regular rolling mill (as distinct from a planetary mill) operating in tandem with the twin-belt caster. Such high-speed casting produces product with a relatively thin shell and molten interior, and the shell tends to bulge outwardly due to metallostatic head pressure of the molten center. A number of cooperative features enable high-speed, twin-belt casting: (1) Each casting belt is slidably supported adjacent to the caster exit pulley for bulge control and enhanced cooling of cast product. (2) Lateral skew steering of each belt provides an effective increase in moving mold length plus a continuity of heat transfer not obtained with prior art belt steering apparatus. (3) The exiting slab is contained and supported downstream from the casting machine to prevent bulging of the shell of the cast product, and (4) spray cooling is incorporated in the exit containment apparatus for secondary cooling of cast product.

  3. Initial solidification phenomena: Factors affecting heat transfer in strip casting

    Science.gov (United States)

    Nolli, Paolo

    In the last few years a few companies have announced the final stage of the commercial development of strip casting of steels. In strip casting heat extraction and productivity are limited by the thermal resistance at the interface between processed material and moving mold (rolls for twin-roll strip casters). Among many factors influencing interfacial heat transfer, films of various composition, either formed during casting or deposited before casting on the surface of the rolls, melt superheat and gas atmosphere composition can have a significantly positive or negative effect on the achieved heat transfer rate. From an industrial point view, methods to improve interfacial heat transfer rates must be found, in order to increase productivity. The objective of this research project is to assess if it is feasible to improve heat transfer rates during solidification of steel in direct contact with a copper mold: (1) by the application of thin coatings on the mold surface; (2) by adding a reactive gas species containing sulfur in the gas shrouding where casting is performed. To address the former, solidification experiments were performed with the mold surface either kept uncoated or coated with coatings of different compositions. To address the latter, the experiments were performed in gas shrouding atmospheres with or without sulphydric acid. It was observed that the resulting heat extraction rates were improved by the application of certain coatings and by the addition of H2S to the gas atmosphere. These findings prove that the application of coatings and the use of small amounts of reactive gaseous species containing sulfur may be methods to increase productivity in strip casting. The effect of superheat and the effect of naturally deposited oxides (Mn-oxide) were also evaluated experimentally. A numerical study of the effect of the critical undercooling on the productivity of a twin-roll strip caster showed that the maximum allowable casting speed can be increased

  4. Casting and Splinting

    Science.gov (United States)

    2017-08-21

    article /80165-technigue Self Evaluation Is injured extremity in desired position? »- Empty can position »- Wrist extension 20° );;>- MCP Oexion...periodically throughout the day If cast feels tight despite elevation seek medical assistance Do not scratch under cast; do not get cast wet Get

  5. Functional nanostructures on injection molded plastic

    DEFF Research Database (Denmark)

    Johansson, Alicia Charlotte; Søgaard, Emil; Andersen, Nis Korsgaard

    Nanotechnology can be used to make inexpensive plastic parts with functional surfaces. The plastic parts can be molded using a standard injection molding process. The nanostructures are directly transferred from the surface of the molding tool to the surface of the molded plastic part during...... the molding process. The main advantage with this method is that surface treatments and chemical additives are avoided, which minimizes health risks and simplifies recycling. Another advantage is that the unique technology enables nanostructuring of free form molded parts. The functional surfaces can have...

  6. Systems and Methods for Fabricating Structures Including Metallic Glass-Based Materials Using Low Pressure Casting

    Science.gov (United States)

    Hofmann, Douglas C. (Inventor); Kennett, Andrew (Inventor)

    2018-01-01

    Systems and methods to fabricate objects including metallic glass-based materials using low-pressure casting techniques are described. In one embodiment, a method of fabricating an object that includes a metallic glass-based material includes: introducing molten alloy into a mold cavity defined by a mold using a low enough pressure such that the molten alloy does not conform to features of the mold cavity that are smaller than 100 microns; and cooling the molten alloy such that it solidifies, the solid including a metallic glass-based material.

  7. Design optimization of clutch housing mold by fluid flow and solidification simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Seyedeh Maryam; Utlu, Zafer [Istanbul Aydin Univ., Istanbul (Turkmenistan)

    2016-06-15

    Aluminum die casting is so complex where flow momentum is critical matter in the mould filling process due the high velocity of the liquid metal. Actually, in complex parts the exact calculation of mould filling performance with using experimental knowledge is almost impossible. Aluminum die castings play a definitive role in the manufacturing of lightweight automobile bodies. Hence it is more essential today that these castings be produced with the high quality methods. In this condition the simulation is becoming more important in the designing procedure. This saves time and reduces the cost of the casting system design, which is an advantage of using simulation programs. Also, economical utilization of materials can be obtained when the quantity of test castings is decreased. This paper describes the advantages of the clutch housing die casting mold simulations to achieve better casting system design in High pressure die castings (HPDC). Filling analysis is used to determine the size and location of the gate as well as proper runner system design for ensuring a complete and balanced filling of the clutch housing part.

  8. A foam ablation model for lost foam casting of aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Barone, M.R.; Caulk, D.A. [General Motors Research and Development Center, Warren, MI (United States)

    2005-09-01

    A model is developed for heat transfer, polymer vaporization, and gas diffusion at the interface between the advancing liquid metal and the receding foam pattern during mold filling in lost foam casting of aluminum. Most of the pattern interior decomposes by ablation, but the boundary cells decompose by a collapse mechanism, which creates an undercut in the pattern next to the coating. By regulating how much of the pattern coating is exposed to gas diffusion, the undercut controls the overall filling speed of the metal through the mold. Computed values for the foam decomposition energy from this model compare very well with experimental data on foam pyrolysis, and predicted filling speeds are consistent with observations in published experiments. In addition, the model explains several unusual observations about mold filling that until now have not been understood. (author)

  9. Process to Continuously Melt, Refine and Cast High Quality Steel

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-09-01

    The purpose of this project is to conduct research and development targeted at designing a revolutionary steelmaking process. This process will deliver high quality steel from scrap to the casting mold in one continuous process and will be safer, more productive, and less capital intensive to build and operate than conventional steelmaking. The new process will produce higher quality steel faster than traditional batch processes while consuming less energy and other resources.

  10. Enhancements in Magnesium Die Casting Impact Properties

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam; John F. Wallace; Yulong Zhu; Srinath Viswanathan; Shafik Iskander

    2000-06-30

    The need to produce lighter components in transportation equipment is the main driver in the increasing demand for magnesium castings. In many automotive applications, components can be made of magnesium or aluminum. While being lighter, often times the magnesium parts have lower impact and fatigue properties than the aluminum. The main objective of this study was to identify potential improvements in the impact resistance of magnesium alloys. The most common magnesium alloys in automotive applications are AZ91D, AM50 and AM60. Accordingly, these alloys were selected as the main candidates for the study. Experimental quantities of these alloys were melted in an electrical furnace under a protective atmosphere comprising sulfur hexafluoride, carbon dioxide and dry air. The alloys were cast both in a permanent mold and in a UBE 315 Ton squeeze caster. Extensive evaluation of tensile, impact and fatigue properties was conducted at CWRU on permanent mold and squeeze cast test bars of AZ91, AM60 and AM50. Ultimate tensile strength values between 20ksi and 30ksi were obtained. The respective elongations varied between 25 and 115. the Charpy V-notch impact strength varied between 1.6 ft-lb and 5 ft-lb depending on the alloy and processing conditions. Preliminary bending fatigue evaluation indicates a fatigue limit of 11-12 ksi for AM50 and AM60. This is about 0.4 of the UTS, typical for these alloys. The microstructures of the cast specimens were investigated with optical and scanning electron microscopy. Concomitantly, a study of the fracture toughness in AM60 was conducted at ORNL as part of the study. The results are in line with values published in the literature and are representative of current state of the art in casting magnesium alloys. The experimental results confirm the strong relationship between aluminum content of the alloys and the mechanical properties, in particular the impact strength and the elongation. As the aluminum content increases from about 5

  11. Fluid flow and heat transfer modeling for castings

    International Nuclear Information System (INIS)

    Domanus, H.M.; Liu, Y.Y.; Sha, W.T.

    1986-01-01

    Casting is fundamental to manufacturing of many types of equipment and products. Although casting is a very old technology that has been in existence for hundreds of years, it remains a highly empirical technology, and production of new castings requires an expensive and time-consuming trial-and-error approach. In recent years, mathematical modeling of casting has received increasing attention; however, a majority of the modeling work has been in the area of heat transfer and solidification. Very little work has been done in modeling fluid flow of the liquid melt. This paper presents a model of fluid flow coupled with heat transfer of a liquid melt for casting processes. The model to be described in this paper is an extension of the COMMIX code and is capable of handling castings with any shape, size, and material. A feature of this model is the ability to track the liquid/gas interface and liquid/solid interface. The flow of liquid melt through the sprue and runners and into the mold cavity is calculated as well as three-dimensional temperature and velocity distributions of the liquid melt throughout the casting process. 14 refs., 13 figs

  12. Fabrication of Hierarchically Micro- and Nano-structured Mold Surfaces Using Laser Ablation for Mass Production of Superhydrophobic Surfaces

    Science.gov (United States)

    Noh, Jiwhan; Lee, Jae-Hoon; Na, Suckjoo; Lim, Hyuneui; Jung, Dae-Hwan

    2010-10-01

    Many studies have examined the formation of surfaces with mixed patterns of micro- and nano-sized lotus leaves that have hydrophobic properties. In this study, micro- and nano-shapes such as lotus leaves were fabricated on a metal mold surface using laser ablation and ripple formation. A microstructure on the mold surface was replicated onto poly(dimethylsiloxane) (PDMS) using the polymer casting method to manufacture low-cost hydrophobic surfaces. A PDMS surface with micro- and nano-structures that were the inverse image of a lotus leaf showed hydrophobic characteristics (water contact angle: 157°). From these results, we deduced that portions of the microstructures were wet and that air gaps existed between the microstructures and the water drops. In this paper we suggest the possibility of the mass production of hydrophobic plastic surfaces and the development of a methodology for the hydrophobic texturing of various polymer surfaces, using the polymer casting method with laser-processed molds.

  13. Internal adaptation of cast titanium crowns

    Directory of Open Access Journals (Sweden)

    Sicknan Soares da Rocha

    2007-08-01

    Full Text Available As the adaptation of titanium crowns obtained by Rematitan Plus investment, specific for titanium, is not recognized to be suitable, this study evaluated the effect of the concentration of the specific liquid and the temperature of the mold of investments on the internal misfit of crowns cast on commercially pure titanium. Individual dies of epoxy resin were obtained, representing teeth prepared for full-crown restoration with a 6-degree axial surface convergence angle and shoulder (1.0 mm. For the waxing of each crown, a ring-shaped stainless steel matrix (8.0mm internal diameter; 7.5 mm height was adapted above the individual dies of epoxy resin. The Rematian Plus investment was mixed according to the manufacturer's instructions using two different concentrations of the specific liquid: 100%, 75%. Casting was performed in a Discovery Plasma Ar-arc vacuum-pressure casting machine with molds at temperatures of 430ºC, 515ºC and 600ºC. The crowns were cleaned individually in a solution (1% HF + 13% HNO3 for 10 min using a ultrasonic cleaner, with no internal adaptations, and luted with zinc phosphate cement under a 5 kg static load. The crown and die assemblies were embedded in resin and sectioned longitudinally. The area occupied by cement was observed using stereoscopic lens (10X and measured by the Leica Qwin image analysis system (mm². The data for each experimental condition (n=8 were analyzed by Kruskal-Wallis non-parametric test (á=0.05. The results showed that liquid dilution and the increase in mold temperature did not significantly influence the levels of internal fit of the cast titanium crowns. The lowest means (±SD of internal misfit were obtained for the 430ºC/100%: (7.25 mm² ±1.59 and 600ºC/100% (8.8 mm² ±2.25 groups, which presented statistically similar levels of internal misfit.

  14. Material properties of Al-Si-Cu aluminium alloy produced by the rotational cast technology

    Directory of Open Access Journals (Sweden)

    Muhammad Syahid

    2017-03-01

    Full Text Available The aim of the present study is to explore microstructural and mechanical properties of cast Al-Si-Cu aluminum alloy (ADC12. To obtain excellent material properties, the cast Al alloys were produced by an originally developed mold rotational machine, namely liquid aluminum alloy is solidified during high speed rotating. The casting process was conducted under various casting conditions, in which the following factors were altered, e.g., melt temperature, metal mold temperature and different rotational speed. Microstructural characteristics were examined by direct observation using an optical microscope and a scanning electron microscope (SEM, and the secondary dendrite arm spacing of alpha-Al phase (SDAS and the size of Si eutectic phase were identified. Mechanical properties were investigated by micro-hardness and tensile tests. Rotation speed and melt temperature were directly attributed to the SDAS, and severe shear stress arising from the rotation made fine and complicated grain structure, leading to the high mechanical properties. The extent of the shear stress was altered depending on the area of the sample due to the different shear stress. Furthermore, high melt temperature and high rotational speed decrease the size of Si eutectic phases. The high mechanical properties were detected for the cast samples produced by the casting condition as follows: melt temperature 700oC, mold temperature 400oC and rotation speed 400 rpm

  15. Controlling Radiative Heat Transfer Across the Mold Flux Layer by the Scattering Effect of the Borosilicate Mold Flux System with Metallic Iron

    Science.gov (United States)

    Yoon, Dae-Woo; Cho, Jung-Wook; Kim, Seon-Hyo

    2017-08-01

    The present study proposes a countermeasure for regulating total heat flux through the mold flux layer by designed mold flux with additive metallic iron particles. The heat flux through the B2O3-CaO-SiO2-Na2O-CaF2-Fe system was investigated using the infrared emitter technique to evaluate total flux density across the mold flux film. Both scanning electron microscope (SEM) and X-ray diffraction analysis were employed in order to identify the morphological and compositional changes of the crystalline phase, according to increasing iron contents in the mold flux. It was confirmed that the crystalline layer of studied mold fluxes does not have a meaningful effect on the total heat flux density due to the similar structure and fraction of the crystalline phase. The extinction coefficient was measured for glassy mold fluxes using an ultraviolet/visible and a Fourier transformation-infrared ray spectrometer in the range of 0.5 to 5 μm. For analyzing the scattering behavior of iron particles on the extinction coefficient, the number density and diameter of particles were observed by an automated SEM (auto-SEM). With these data, Mie scattering theory is adopted to define the scattering behavior of dispersed iron droplets in glassy matrix. It was found that the theoretical scattering coefficient demonstrated about 1623 to 3295 m-1, which is in accordance with the experimental results. In doing so, this study successfully achieves the strong scattering behavior that would contribute greatly to the optimization of overall heat flux through the mold flux film during the casting process.

  16. Molded Concrete Center Mine Wall

    Science.gov (United States)

    Lewis, E. V.

    1987-01-01

    Proposed semiautomatic system forms concrete-foam wall along middle of coal-mine passage. Wall helps support roof and divides passage into two conduits needed for ventilation of coal face. Mobile mold and concrete-foam generator form sections of wall in place.

  17. Eerste bevindingen onderzoek Black Mold

    NARCIS (Netherlands)

    Werd, de H.A.E.

    2008-01-01

    In de zomer van 2007 veroorzaakte de ziekte Black Mold grote schade in de rozenteelt. Omdat er weinig bekend is over preventie en bestrijding hebben PPO Bomen en Cultus Agro Advies een onderzoeksproject gestart, waarvan de eerste resultaten inmiddels bekend zijn.

  18. Is Mold the New Asbestos?

    Science.gov (United States)

    Colgan, Craig

    2003-01-01

    Mold and indoor air quality (IAQ) are matters of major concern to architects and their educational clients. The Environmental Protection Agency's Indoor Air Quality Tools for Schools program offers help to districts seeking to tackle IAQ issues. Strengthening community relations is one way to be ready in case of a bad environmental or IAQ report.…

  19. Environmental Sustainability and Mold Hygiene in Buildings

    Directory of Open Access Journals (Sweden)

    Haoxiang Wu

    2018-04-01

    Full Text Available Environmental sustainability is one of the key issues in building management. In Hong Kong, one of the initiatives is to reduce the operation hours of air-conditioning in buildings to cut down energy consumption. In this study, we reported a mold contamination case in a newly refurbished laboratory, in which the air-conditioner was switched from 24- to 18-h mode after refurbishment. In order to prevent mold recurrence, the air-conditioner was switched back to 24-h mode in the laboratory. During the mold investigation, visible mold patches in the laboratory were searched and then cultured, counted and identified. Building and environmental conditions were recorded, and used to deduce different causes of mold contamination. Eight contaminated sites including a wall, a bench, some metal and plastic surfaces and seven types of molds including two Cladosporium spp., two Aspergillus spp., one Rhizopus sp., one Trichoderma sp., and one Tritirachium sp. were identified. Cladosporium spp. were the most abundant and frequently found molds in the laboratory. The contaminated areas could have one to five different species on them. Based on the mold and environmental conditions, several scenarios causing the mold contamination were deduced, and different mold control measures were discussed to compare them with the current solution of using 24-h air-conditioning to control mold growth. This study highlights the importance of mold hygiene in sustainable building management.

  20. Mold inhibition on unseasoned southern pine

    Science.gov (United States)

    Carol A. Clausen; Vina W. Yang

    2003-01-01

    Concerns about indoor air quality due to mold growth have increased dramatically in the United States. In the absence of moisture management, fungicides need to be developed for indoor use to control mold establishment. An ideal fungicide for prevention of indoor mold growth on wood-based materials needs to specifically prevent spore germination and provide long-term...

  1. Injection Molding of Plastics from Agricultural Materials

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, M.; Ruan, R.

    2001-02-22

    The objective of this research was to conduct a systematic study to relate injection molding parameters to properties of blends of starch and synthetic polymer. From this study, we wished to develop a thorough understanding of the injection molding process and gain significant insight into designing molds and aiding in developing products cheaply and efficiently.

  2. Planning an Injection Mold Design Training Program.

    Science.gov (United States)

    Allyn, Edward P.

    With the increased use of plastics worldwide the shortage of trained personnel in moldmaking and design for plastic injection molds is becoming critical. Local schools and community colleges should provide courses in mold design and mold making, since most workers presently learn while working under experienced designers on the job. Following this…

  3. [Measurement of casting shrinkage with U-type tungsten die (author's transl)].

    Science.gov (United States)

    Nakai, A; Nakamura, K; Seki, S; Kakuta, K; Kawashima, J

    1980-04-01

    A simple method was developed for the accurate measurement of casting shrinkage using a U-type tungsten die. A wax pattern was prepared on the die and both were invested together in phosphate bonded investment. Cobalt-chromium alloy, Regalloy shot 2, was cast and its shrinkage was calculated from the distance of the gap created between the die and the cast piece. In order to evaluate the effects of some manipulative variables on the cast shrinkage value of the alloy, mold temperature, kind of liquid for the investment and powder/liquid ratio were varied and shrinkage values were obtained. The results showed that the shrinkage value was not affected by the kind of liquid and the power/liquid ratio, but significantly decreased as the mold temperature raised up to 600 degree C. However, this effect was eliminated by means of substractive correction of the thermal expansion of the tungsten die. Thus, the casting shrinkage of the cobalt-chromium alloy, Regalloy shot 2, was calculated to be 2.08 +/- 0.02%. The casting shrinkage of pure gold was also measured with the same procedure. The casting shrinkage was calculated to be 1.73 +/- 0.04% and highly consistent with the value (1.74%) reported by R. Earnshaw. This suggested that the developed method was sufficiently effective for the accurate measurement of casting shrinkage.

  4. Surface Replication of Molded Products with Microneedle Features in Injection Molding

    Science.gov (United States)

    Uchiumi, Kazuyasu; Takayama, Tetsuo; Ito, Hiroshi; Inou, Akinori

    Micro-molding of microneedle features was conducted using several injection-molding techniques. Injection compression molding and injection molding were performed with supercritical carbon dioxide fluid and with or without vacuum processing inside the mold cavity. Effects of process parameters on processability and surface replication of the molded parts were evaluated. The height replication ratio for microneedles was improved using injection compression molding. At a shorter compression stroke, the needle height was improved, and the influence of compression delay time was also small. Moreover, the effects of vacuum processing inside the mold cavity under the filling process were slight. The height replication ratio for microneedles showed the highest values using injection molding using supercritical carbon dioxide fluid with vacuum inside the mold cavity.

  5. Use of a general-purpose heat-transfer code for casting simulation

    International Nuclear Information System (INIS)

    Erickson, W.C.

    1975-07-01

    The practical use of numerical techniques in simulating casting solidification dictate that a general purpose heat transfer code be used and that results be obtained in an easy-to-analyze format. Color film plotting routines were developed for use with NASA's CINDA-3G heat transfer code; the combination of which meet the above criteria. The subroutine LQSLTR written for SINDA, the successor to CINDA-3G, was verified by comparing calculated results obtained using LQSLTR with those obtained using the specific heat method for handling the heat of fusion. Excellent agreement existed when similar data was used. When the more restrictive requirement of a 1 0 F melting range was used, comparable results were obtained. Uranium and lead rod castings were cast in instrumented graphite molds and the solidification sequence simulated using CINDA-3G. Discrepancies attributed to initial assumptions of instantaneous mold filling, uniform melt temperature, and intimate metal/mold contact were encountered. Further calculations using a model incorporating a gap between the mold and casting showed that the intimate contact assumption could not be used; a three-dimensional model also showed that the thermocouple assemblies used with the platinum--platinum-10 percent rhodium were a significant perturbation to the system. An L-shaped steel casting was simulated and the results compared to those reported in the literature. The experimental data for this casting were reproduced within the accuracy permitted by the thermal conductivity of the sand, thus demonstrating that agreement can be obtained when the mold material does not act as a chill. (U.S.)

  6. Injection-Molded Soft Magnets Prepared from Fe-Based Metallic Glass: Mechanical and Magnetic Properties

    Science.gov (United States)

    Zhong, Tian; Huang, Ran; Huang, Jia; Ouyang, Wei

    2015-10-01

    The injection-molded metallic glass soft magnet is prepared from the powder of melt-spun ribbon of Fe36Co36B20Si4Nb4 glassy alloy and Nylon 6,6 of wt.% from 5 to 20 via the polymer injection molding technology. The product is characterized by the SEM, mechanical, and magnetic test. The results indicate that this type of materials has comparable mechanical properties and morphological feature with the conventional injection-molded NdFeB magnet and exhibits excellent soft magnetic behaviors. The magnetic properties of the injected magnets are compared with the raw metallic glass, solvent-casted resin bonding magnets, and thermal-treated magnets to confirm that the processing temperature of Nylon injection does not affect the magnetism. The injection technology is a practical processing method to be applied on the metallic glass for potential usage.

  7. Metal Injection Molding of Thin-Walled Titanium Glasses Arms: A Case Study

    Science.gov (United States)

    Ye, Shulong; Mo, Wei; Lv, Yonghu; Li, Xia; Kwok, Chi Tat; Yu, Peng

    2018-02-01

    Commercially pure titanium (CP Ti) and Ti-6Al-4V arms for a new brand of augmented reality smart glasses, which are over 170 mm in length, with thin wall structures and extremely complex surfaces, have been successfully fabricated via metal injection molding. After sintering, both the metal injection-molded (MIMed) CP Ti and Ti-6Al-4V can reach relative densities of over 95% with an oxygen content 2200 ppm, thus imparting mechanical properties comparable to cast alloys. The ductility of the MIMed CP Ti and Ti-6Al-4V are about 15% and 8%, respectively. This is a good example of applying metal injection molding to mass production of precise Ti alloy parts with complicated shapes.

  8. Numerical simulation of stress-strain state of electrophoretic shell molds

    Science.gov (United States)

    Sviridov, A. V.; Odinokov, V. I.; Dmitriev, E. A.; Evstigneev, A. I.; Bashkov, O. V.

    2017-10-01

    In the foundry engineering, castings obtained in one-piece non-gas-generating high-refractory electrophoretic shell molds (ShM) by investment patterns (IP) have an increased rejects percentage associated with low deformation resistance and crack resistance of the SM at different stages of their formation and manufacturing. Crack resistance of the ShM based on IP depends mainly on their stress-strain state (SSS) at various stages of mold forming. SSS decrease significantly improves their crack resistance and decreases their rejects percentage of castings occurring due to clogging and surface defects. In addition, the known methods of decreasing the SSS are still poorly understood. Thus, current research trends are to determine SSS at each stage of ShM forming and develop the ways to decrease it. Theoretical predicting of crack formation in multiple-layer axisymmetric shell molds is given in the work [1], and SSS of multiple-layer axisymmetric shell molds is given in the work [2]. Monolayer electrophoretic ShM had a lack of concern in this field, thus it became an argument for the present workMathematical Model of ShM SSS

  9. Implementation of Molding Constraints in Topology Optimization

    DEFF Research Database (Denmark)

    Marx, S.; Kristensen, Anders Schmidt

    2009-01-01

    In many cases the topology optimization method yield inadmissible solutions in respect to a particular manufacturing process, e.g. injection molding. In the present work it is chosen to focus on the most common injection molding parameters/factors determining the quality of the mold geometry, i.......e. uniform thickness, filling of the die and ejection of the molded item, i.e. extrusion. The mentioned injection mold parameters/factors are introduced in the topology optimization by defining a centerline of the initial domain and then penalize elements in respect to the distance to the defined centerline...

  10. Precision injection molding of freeform optics

    Science.gov (United States)

    Fang, Fengzhou; Zhang, Nan; Zhang, Xiaodong

    2016-08-01

    Precision injection molding is the most efficient mass production technology for manufacturing plastic optics. Applications of plastic optics in field of imaging, illumination, and concentration demonstrate a variety of complex surface forms, developing from conventional plano and spherical surfaces to aspheric and freeform surfaces. It requires high optical quality with high form accuracy and lower residual stresses, which challenges both optical tool inserts machining and precision injection molding process. The present paper reviews recent progress in mold tool machining and precision injection molding, with more emphasis on precision injection molding. The challenges and future development trend are also discussed.

  11. Caste and power

    DEFF Research Database (Denmark)

    Roy, Dayabati

    2011-01-01

    This paper explores the institution of caste and its operation in a micro-level village setting of West Bengal, an Indian state, where state politics at grass roots level is vibrant with functioning local self-government and entrenched political parties. This ethnographic study reveals that caste......–ideological field, the concept of caste-hierarchy seems to continue as an influencing factor, even in the operation of leftist politics....

  12. Modeling on Fluid Flow and Inclusion Motion in Centrifugal Continuous Casting Strands

    Science.gov (United States)

    Wang, Qiangqiang; Zhang, Lifeng; Sridhar, Seetharaman

    2016-08-01

    During the centrifugal continuous casting process, unreasonable casting parameters can cause violent level fluctuation, serious gas entrainment, and formation of frozen shell pieces at the meniscus. Thus, in the current study, a three-dimensional multiphase turbulent model was established to study the transport phenomena during centrifugal continuous casting process. The effects of nozzle position, casting and rotational speed on the flow pattern, centrifugal force acting on the molten steel, level fluctuation, gas entrainment, shear stress on mold wall, and motion of inclusions during centrifugal continuous casting process were investigated. Volume of Fluid model was used to simulate the molten steel-air two-phase. The level fluctuation and the gas entrainment during casting were calculated by user-developed subroutines. The trajectory of inclusions in the rotating system was calculated using the Lagrangian approach. The results show that during centrifugal continuous casting, a large amount of gas was entrained into the molten steel, and broken into bubbles of various sizes. The greater the distance to the mold wall, the smaller the centrifugal force. Rotation speed had the most important influence on the centrifugal force distribution at the side region. Angular moving angle of the nozzle with 8° and keeping the rotation speed with 60 revolutions per minute can somehow stabilize the level fluctuation. The increase of angular angle of nozzle from 8 to 18 deg and rotation speed from 40 to 80 revolutions per minute favored to decrease the total volume of entrained bubbles, while the increase of distance of nozzle moving left and casting speed had reverse effects. The trajectories of inclusions in the mold were irregular, and then rotated along the strand length. After penetrating a certain distance, the inclusions gradually moved to the center of billet and gathered there. More work, such as the heat transfer, the solidification, and the inclusions entrapment

  13. Assessment of Computer Simulation Software and Process Data for High Pressure Die Casting of Magnesium

    Energy Technology Data Exchange (ETDEWEB)

    Sabau, Adrian S [ORNL; Hatfield, Edward C [ORNL; Dinwiddie, Ralph Barton [ORNL; Kuwana, Kazunori [University of Kentucky; Viti, Valerio [University of Kentucky, Lexington; Hassan, Mohamed I [University of Kentucky, Lexington; Saito, Kozo [University of Kentucky

    2007-09-01

    Computer software for the numerical simulation of solidification and mold filling is an effective design tool for cast structural automotive magnesium components. A review of commercial software capabilities and their validation procedures was conducted. Aside form the software assessment, the program addressed five main areas: lubricant degradation, lubricant application, gate atomization, and heat transfer at metal mold interfaces. A test stand for lubricant application was designed. A sensor was used for the direct measurement of heat fluxes during lubricant application and casting solidification in graphite molds. Spray experiments were conducted using pure deionized water and commercial die lubricants. The results show that the sensor can be used with confidence for measuring heat fluxes under conditions specific to the die lube application. The data on heat flux was presented in forms suitable for use in HPDC simulation software. Severe jet breakup and atomization phenomena are likely to occur due to high gate velocities in HPDC. As a result of gate atomization, droplet flow affects the mold filling pattern, air entrapment, skin formation, and ensuing defects. Warm water analogue dies were designed for obtaining experimental data on mold filling phenomena. Data on break-up jet length, break-up pattern, velocities, and droplet size distribution were obtained experimentally and was used to develop correlations for jet break-up phenomena specific to die casting gate configurations.

  14. Evolution of halictine castes

    Science.gov (United States)

    Knerer, Gerd

    1980-03-01

    Social halictine bees have female castes that range from species with no size differences to those with a discrete bimodality. Female caste differences are inversely correlated with the number of males produced in the first brood. It is proposed that the sexual dimorphism of solitary forms is being usurped by the female caste system of species in the process of turning social. Thus, caste differences and summer male suppression are greatest in the social species originating from solitary precursors with distinct sexual dimorphism, and are least in species evolving from solitary ancestors with a continuous sexual polymorphism.

  15. Silane based coating of aluminium mold

    DEFF Research Database (Denmark)

    2013-01-01

    A method of preparing an aluminum mold for injection molding is provided, the method comprises the steps of providing an aluminum mold having a least one surface, subjecting the at least one surface to a gas or liquid phase silane to thereby form an anti-stiction coating, the anti-stiction coating...... comprising a chemically bonded monolayer of silane compounds on the at least one surface wherein the silane is a halogenated silane. The at least one surface coated with the anti-stiction coating may be configured to withstand an injection molding process at a pressure above 100 MPa. Furthermore, a mold...... having at least one closed cavity is provided, at least one surface of the at least one cavity being an aluminium surface coated with a silane based coating layer. The silane based anti-stiction coating improves the anti-stiction properties of the mold which may allow for molding and demolding...

  16. Caste in Itself, Caste and Class, or Caste in Class

    OpenAIRE

    Ramkrishna Mukherjee

    2015-01-01

    After the British conquered Bengal and eventually the whole of India,they set out to administer the colony. In this context they encountered two phenomena with which they were not familiar: (1) the relation of people to land for production (and not for revenue receiving, household living, etc.), and (2) the caste system of India, viz. the jati strati?cation of society.

  17. Simulation of the ingot extraction in the continuous casting process

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2011-07-01

    Full Text Available Cast ingot pulling speed is significantly affecting the nature of the resulting structure and the quality of the outer surface of the ingot. By introducing a variable algorithm for extraction of the ingot we may to some extent control the shape and location of the solid / liquid interface and temperature field in the cross-section of the ingot. The shape of the crystallization front, as well as its position relative to mold plays an important role in the process of continuous casting ingots of grey iron and affects the structure of the casting. In order to verify the impact of an algorithm on the shape and the location of solid / liquid interface, a number of simulations in ANSYS Fluent 12 were made, for determining the shape of crystallization front and temperature distribution on the cross-section of the ingot.

  18. Engineered Cooling Process for High Strength Ductile Iron Castings

    Science.gov (United States)

    Lekakh, Simon N.; Mikhailov, Anthony; Kramer, Joseph

    Professor Stefanescu contributed fundamentally to the science of solidification and microstructural evolutions in ductile irons. In this article, the possibility of development of high strength ductile iron by applying an engineered cooling process after casting early shake out from the sand mold was explored. The structures in industrial ductile iron were experimentally simulated using a computer controlled heating/cooling device. CFD modeling was used for process simulation and an experimental bench scale system was developed. The process concept was experimentally verified by producing cast plates with 25 mm wall thickness. The tensile strength was increased from 550 MPa to 1000 MPa in as-cast condition without the need for alloying and heat treatment. The possible practical applications were discussed.

  19. Casting Characteristics of High Cerium Content Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, D; Rios, O R; Sims, Z C; McCall, S K; Ott, R T

    2017-09-05

    This paper compares the castability of the near eutectic aluminum-cerium alloy system to the aluminum-silicon and aluminum-copper systems. The alloys are compared based on die filling capability, feeding characteristics and tendency to hot tear in both sand cast and permanent mold applications. The castability ranking of the binary Al–Ce systems is as good as the aluminum-silicon system with some deterioration as additional alloying elements are added. In alloy systems that use cerium in combination with common aluminum alloying elements such as silicon, magnesium and/or copper, the casting characteristics are generally better than the aluminum-copper system. In general, production systems for melting, de-gassing and other processing of aluminum-silicon or aluminum-copper alloys can be used without modification for conventional casting of aluminum-cerium alloys.

  20. Preliminary study on tensile properties and fractography of the recycled aluminum cast product

    International Nuclear Information System (INIS)

    Hishamuddin Hussain; Mohd Harun; Hafizal Yazid; Shaiful Rizam Shamsudin; Zaiton Selamat; Mohd Shariff Sattar

    2004-01-01

    Among many mechanical properties of materials, tensile properties are probably the most frequently considered, evaluated, and referred by the industry. This paper presents the result of preliminary study regarding the tensile properties and fractography of the recycled aluminum cast product. For this purpose, three sets of specimen were prepared for tensile testing by using permanent mold casting technique. The cast products are in durable shaped tensile specimens with the gauge length of 50mm. The tensile testing was conducted in accordance with BS EN 10002-1 and ISO 6892 standards. Fracture surface analysis was also conducted to understand materials behaviour. (Author)

  1. Fabrication of hierarchically structured superhydrophobic PDMS surfaces by Cu and CuO casting

    Science.gov (United States)

    Migliaccio, Christopher P.; Lazarus, Nathan

    2015-10-01

    Poly(dimethylsiloxane) (PDMS) films decorated with hierarchically structured pillars are cast from large area copper and copper oxide negative molds. The molds are fabricated using a single patterning step and electroplating. The process of casting structured PDMS films is simpler and cheaper than alternatives based on deep reactive ion etching or laser roughening of bulk silicone. Texture imparted to the pillars from the mold walls renders the PDMS films superhydrophobic, with the contact angle/hysteresis of the most non-wetting surfaces measuring 164°/9° and 158°/10° for surfaces with and without application of a low surface energy coating. The usefulness of patterned PDMS films as a "self-cleaning" solar cell module covering is demonstrated and other applications are discussed.

  2. Casting Footprints for Eternity

    Science.gov (United States)

    1999-01-01

    Apollo 11 Astronaut Buzz Aldrin has his footprints casted during the dedication ceremony of the rocket fountain at Building 4200 at Marshall Space Flight Center. The casts of Aldrin's footprints will be placed in the newly constructed Von Braun courtyard representing the accomplishments of the Apollo 11 lunar landing.

  3. Higher Education's Caste System

    Science.gov (United States)

    Iannone, Ron

    2004-01-01

    In this article, the author discusses the history of the present caste system in higher education. He shows how the public's perception of this caste system is based on image and not usually on the quality of teaching and curriculum in colleges and universities. Finally, he discusses a model for accessibility to higher education and how higher…

  4. Cool Cast Facts

    Science.gov (United States)

    ... sleeve to protect it in the bath or shower. A splint does the same thing as a cast: It keeps the broken or injured bone from moving so it can heal. It also usually has a soft layer of cotton inside. A splint can be made from the same materials as a cast or may be a pre- ...

  5. Development and Demonstration of Adanced Tooling Alloys for Molds and Dies

    Energy Technology Data Exchange (ETDEWEB)

    Kevin M. McHugh; Enrique J. Lavernia

    2006-01-01

    This report summarizes research results in the project Development and Demonstration of Advanced Tooling Alloys for Molds and Dies. Molds, dies and related tooling are used to manufacture most of the plastic and metal products we use every day. Conventional fabrication of molds and dies involves a multiplicity of machining, benching and heat treatment unit operations. This approach is very expensive and time consuming. Rapid Solidifcation Process (RSP) Tooling is a spray-forming technology tailored for producing molds and dies. The appraoch combines rapid solidifcation processing and net-shape materials processing in a single step. An atomized spray of a tool-forming alloy, typically a tool steel, is deposited onto an easy-to-form tool pattern to replicate the pattern's shape and surface features. By so doing, the approach eliminates many machining operations in conventional mold making, significantly reducing cost, lead time and energy. Moreover, rapid solidification creates unique microstructural features by suppressing carbide precipitation and growth, and creating metastable phases. This can result in unique material properties following heat treatment. Spray-formed and aged tool steel dies have exhibited extended life compared to conventional dies in many forming operations such as forging, extrusion and die casting. RSP Tooling technolocy was commercialized with the formation of RSP Tooling, LLC in Solon, Oh.

  6. Multi-layers castings

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2010-01-01

    Full Text Available In paper is presented the possibility of making of multi-layers cast steel castings in result of connection of casting and welding coating technologies. First layer was composite surface layer on the basis of Fe-Cr-C alloy, which was put directly in founding process of cast carbon steel 200–450 with use of preparation of mould cavity method. Second layer were padding welds, which were put with use of TIG – Tungsten Inert Gas surfacing by welding technology with filler on Ni matrix, Ni and Co matrix with wolfram carbides WC and on the basis on Fe-Cr-C alloy, which has the same chemical composition with alloy, which was used for making of composite surface layer. Usability for industrial applications of surface layers of castings were estimated by criterion of hardness and abrasive wear resistance of type metal-mineral.

  7. Caste in Itself, Caste and Class, or Caste in Class

    Directory of Open Access Journals (Sweden)

    Ramkrishna Mukherjee

    2015-08-01

    Full Text Available After the British conquered Bengal and eventually the whole of India,they set out to administer the colony. In this context they encountered two phenomena with which they were not familiar: (1 the relation of people to land for production (and not for revenue receiving, household living, etc., and (2 the caste system of India, viz. the jati strati?cation of society.

  8. Hydrogen silsesquioxane mold coatings for improved replication of nanopatterns by injection molding

    International Nuclear Information System (INIS)

    Hobæk, Thor Christian; Larsen, Niels B; Matschuk, Maria; Kafka, Jan; Pranov, Henrik J

    2015-01-01

    We demonstrate the replication of nanosized pillars in polymer (cyclic olefin copolymer) by injection molding using nanostructured thermally cured hydrogen silsesquioxane (HSQ) ceramic coatings on stainless steel mold inserts with mold nanostructures produced by a simple embossing process. At isothermal mold conditions, the average pillar height increases by up to 100% and a more uniform height distribution is observed compared to a traditional metal mold insert. Thermal heat transfer simulations predict that the HSQ film retards the cooling of the polymer melt during the initial stages of replication, thus allowing more time to fill the nanoscale cavities compared to standard metal molds. A monolayer of a fluorinated silane (heptadecafluorotrichlorosilane) deposited on the mold surface reduces the mold/polymer interfacial energy to support demolding of the polymer replica. The mechanical stability of thermally cured HSQ makes it a promising material for nanopattern replication on an industrial scale without the need for slow and energy intensive variotherm processes. (paper)

  9. Progress in Titanium Metal Powder Injection Molding

    OpenAIRE

    German, Randall M.

    2013-01-01

    Metal powder injection molding is a shaping technology that has achieved solid scientific underpinnings. It is from this science base that recent progress has occurred in titanium powder injection molding. Much of the progress awaited development of the required particles with specific characteristics of particle size, particle shape, and purity. The production of titanium components by injection molding is stabilized by a good understanding of how each process variable impacts density and im...

  10. The ancient Chinese casting techniques

    Directory of Open Access Journals (Sweden)

    Tan Derui

    2011-02-01

    Full Text Available In the course of Chinese civilization, which lasted more than 5,000 years, casting production has made a huge contribution. In this paper, some representative metal castings were presented. According to their forming techniques, they can be grouped into stone mould casting, clay mould casting, ablation casting, lost wax casting, stack casting, permanent mould casting, sand casting, etc. According to their materials, they can be categorized into tin bronze, bimetallic bronze, malleable cast iron, ductile cast iron, brass, cupronickel alloy (Packtong, etc. According to their surface decorative techniques they can be devided into gem inlay, gilding, gold and silver inlay, copper inlay, engraved decoration, surface tin-enrichment, mother-of-pearl inlay, burnished works with gold or silver inlay, surface coloring and cloisonné enamel, etc.

  11. Fabrication of silicon molds for polymer optics

    DEFF Research Database (Denmark)

    Nilsson, Daniel; Jensen, Søren; Menon, Aric Kumaran

    2003-01-01

    A silicon mold used for structuring polymer microcavities for optical applications is fabricated, using a combination of DRIE (deep reactive ion etching) and anisotropic chemical wet etching with KOH + IPA. For polymer optical microcavities, low surface roughness and vertical sidewalls are often ...... and KOH + IPA etch have been optimized. To reduce stiction between the silicon mold and the polymers used for molding, the mold is coated with a teflon-like material using the DRIE system. Released polymer microstructures characterized with AFM and SEM are also presented....

  12. Porous media heat transfer for injection molding

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Neil Reginald

    2016-05-31

    The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.

  13. Production of polymer injection molding machine

    OpenAIRE

    Zdaniauskis, Ernestas

    2016-01-01

    Production of Polymer Injection Molding Machine The aim of this work is to build a polymer injection molding machine which would match the set criteria: • Small dimensions of the machine. • Low electricity expenditure. • Automatized production process. • Inexpensive molds. In the process of work double two-stage screw-plunger polymer machine was designed and built. The working of the machine is unique: the mold is being heated, therefore, the cycle of polymer injection can consist of a few sm...

  14. Time for concrete casting: a new paradigm

    Directory of Open Access Journals (Sweden)

    A. B. Rohden

    Full Text Available The Brazilian standard NBR 7212 states that the time of transporting the concrete between the start of mixing should be less than 90 minutes so that by the end of the discharge is a maximum of 150 minutes. Yet often, in construction, concrete is used after this period. In order to investigate the behavior of concrete after setting time of cement was cast six concrete mixtures with two types of cement. The mixtures were produced and kept fresh for six hours, adopting a procedure for maintenance of abatement by superplasticizer and agitation. The results show that of the test piece molded over six hours of maintained or increased the compressive strength average.

  15. Symptomatic stent cast.

    LENUS (Irish Health Repository)

    Keohane, John

    2012-02-03

    Biliary stent occlusion is a major complication of endoscopic stent insertion and results in repeat procedures. Various theories as to the etiology have been proposed, the most frequently studied is the attachment of gram negative bacteria within the stent. Several studies have shown prolongation of stent patency with antibiotic prophylaxis. We report the case of stent occlusion from a cast of a previously inserted straight biliary stent; a "stent cast" in an 86-year-old woman with obstructive jaundice. This was retrieved with the lithotrypter and she made an uneventful recovery. This is the first reported case of a biliary stent cast.

  16. Metal Injection Molding (MIM of Magnesium and Its Alloys

    Directory of Open Access Journals (Sweden)

    Martin Wolff

    2016-05-01

    Full Text Available Current research has highlighted that magnesium and its alloys as biodegradable material are highly suitable for biomedical applications. The new material fully degrades into nontoxic elements and offers material properties matching those of human bone tissue. As biomedical implants are rather small and complex in shape, the metal injection molding (MIM technique seems to be well suited for the near net shape mass production of such parts. Furthermore, MIM of Mg-alloys is of high interest in further technical fields. This study focusses on the performance of MIM-processing of magnesium alloy powders. It includes Mg-specific development of powder blending, feedstock preparation, injection molding, solvent and thermal debinding and final sintering. Even though Mg is a highly oxygen-affine material forming a stable oxide layer on each particle surface, the material can be sintered to nearly dense parts, providing mechanical properties matching those of as cast material. An ultimate tensile strength of 142 MPa, yield strength of 67 MPa, elastic modulus of 40 GPa and 8% elongation at fracture could be achieved using novel organic polymer binders for the feedstock preparation. Thus, first implant demonstrator parts could be successfully produced by the MIM technique.

  17. Analysis of optical properties in injection-molded and compression-molded optical lenses.

    Science.gov (United States)

    Wang, Chung Yen; Wang, Pei Jen

    2014-04-10

    Numerical mold-flow simulations and experimental measurements for injection-molded lenses have been investigated in form accuracy on a two-cavity mold with various process conditions. First, form profiles of the molded lenses have been measured together with the corresponding simulated mold-temperature distribution and displacement distribution of the lens in the z direction. A flow-through type layout of cooling channels has been devised for balance of mold-temperature distribution in mold cavities with various parametric distances for assessments in uniformity of temperature distribution. Finally, a compression-molding process is proposed for the post-process of birefringence relaxation as well as adequate form accuracy of lenses. In conclusion, optimization of process parameters to achieve good form accuracy in a multicavity mold with symmetric geometry but nonuniform cooling conditions is difficult. A good design of cooling channels plus optimized process conditions could provide uniform mold-temperature distribution so that molded lenses of good quality would be possible. Then, the profile deviation of lenses could be further compensated by profile geometry corrections. In conclusion, the post-compression-molding process could make birefringence-free plastic lenses with good form accuracy.

  18. Processing strategies for thin wall injection molding

    Science.gov (United States)

    Tantakom, Patraporn

    1998-12-01

    Thin wall injection molding of a thin wall molding grade of polycarbonate and acrylonitrile butadiene styrene were examined in this research. The work investigated the effect of melt and mold temperature on part weight, orientation, tensile strength, flow front profile and flow instability. The HPM H90-V6 injection molding machine, set at its maximum injection velocity was used in the study. A flow simulation was conducted using a commercially available computer program to verify its reliability for thin wall injection molding. Thermal pulse heating systems for heating the mold cavity surfaces prior to injection of the melt were examined. A data acquisition system was designed to record four pressure and four temperature signals inside the mold cavity. Increasing the melt and mold temperatures showed a positive effect on part weight, and tensile strength. However, when the melt temperature was increased beyond the resin's recommended melt temperature, the tensile strength of the part decreased and a change in color to the molded parts were an indication of polymer degradation. As a result, increasing the mold temperature was found to be a better strategy for improving the thin wall molding process. Two systems for thermal pulse heating were examined. One was a high-flow, low-pressure system while the other was a high-flow, high-pressure system. The high-pressure system yielded results that correlated with the calculation, but it required careful design. The low-pressure system showed positive results for heating the cavity surface. The scale-up possibilities of the low pressure system was very appealing. An unexpected melt flow front profile and a melt flow instability for the thin wall part during filling occurred as a result of high shear on the polymer melt in the cavity. The flow front profile was concave and resembled a fishtail curve. At the edge of the part where the shear rate is the highest, the melt viscosity dropped due to the pseudoplastic effects

  19. Low-cost silicone imaging casts for zebrafish embryos and larvae.

    Science.gov (United States)

    Masselink, Wouter; Wong, Jin Cheng; Liu, Boyin; Fu, Jing; Currie, Peter David

    2014-02-01

    Due to their size and optical clarity, zebrafish embryos have long been appreciated for their usefulness in time-lapse confocal microscopy. Current methods of mounting zebrafish embryos and larvae for imaging consist mainly of mounting in low percentage, low melting temperature agarose in a Petri dish. Whereas imaging methods have advanced greatly over the last two decades, the methods for mounting embryos have not changed significantly. In this article, we describe the development and use of 3D printed plastic molds. These molds can be used to create silicone casts and allow embryos and larvae to be mounted with a consistent and reproducible angle, and position in X, Y, and Z. These molds are made on a 3D printer and can be easily and cheaply reproduced by anyone with access to a 3D printer, making this method accessible to the entire zebrafish community. Molds can be reused to create additional casts, which can be reused after imaging. These casts are compatible with any upright microscope and can be adapted for use on an inverted microscope, taking the working distance of the objective used into account. This technique should prove to be useful to any researcher imaging zebrafish embryos.

  20. Transient Thermo-fluid Model of Meniscus Behavior and Slag Consumption in Steel Continuous Casting

    Science.gov (United States)

    Jonayat, A. S. M.; Thomas, Brian G.

    2014-10-01

    The behavior of the slag layer between the oscillating mold wall, the slag rim, the slag/liquid steel interface, and the solidifying steel shell, is of immense importance for the surface quality of continuous-cast steel. A computational model of the meniscus region has been developed, that includes transient heat transfer, multi-phase fluid flow, solidification of the slag, and movement of the mold during an oscillation cycle. First, the model is applied to a lab experiment done with a "mold simulator" to verify the transient temperature-field predictions. Next, the model is verified by matching with available literature and plant measurements of slag consumption. A reasonable agreement has been observed for both temperature and flow-field. The predictions show that transient temperature behavior depends on the location of the thermocouple during the oscillation relative to the meniscus. During an oscillation cycle, heat transfer variations in a laboratory frame of reference are more severe than experienced by the moving mold thermocouples, and the local heat transfer rate is increased greatly when steel overflows the meniscus. Finally, the model is applied to conduct a parametric study on the effect of casting speed, stroke, frequency, and modification ratio on slag consumption. Slag consumption per unit area increases with increase of stroke and modification ratio, and decreases with increase of casting speed while the relation with frequency is not straightforward. The match between model predictions and literature trends suggests that this methodology can be used for further investigations.

  1. Mathematical model of the crystallizing blank`s thermal state at the horizontal continuous casting machine

    Directory of Open Access Journals (Sweden)

    Kryukov Igor Yu.

    2017-01-01

    Full Text Available Present article is devoted to the development of the mathematical model, which describes thermal state and crystallization process of the rectangular cross-section blank while continious process of extraction from a horysontal continious casting machine (HCCM.The developed model took cue for the heat-transfer properties of non-iron metal teeming; its temperature on entry to the casting mold; cooling conditions of blank in the carbon molds in the presence of a copper water cooler. Besides, has been considered the asymmetry of heat interchange from blank`s head and drag at mold, coming out from fluid contraction and features of the horizontal casting mold. The developed mathematical model allows to determine alterations in crystallizing blank of the following factors with respect to time: temperature pattern of crystallizing blank under different technical working regimes of HCCM; boundaries of solid two-phase field and liquid two-phase filed; blank`s thickness variation under shrinkage of the ingot`s material

  2. Mechanical Properties of Injection Molded and Compression Molded Samples from Nature-Butadiene Rubber

    Directory of Open Access Journals (Sweden)

    Skrobak Adam

    2016-01-01

    Full Text Available The aim of this paper is to show what extent there is an impact on the mechanical properties (tensile strength and tear strength of a standardized testing sample made of rubber compound based on nature rubber and butadiene rubber produced by injection molding in comparison with a sample produced by classic preparation (cutting out a compression molded plate according to the standard ISO 23529. For realization of this study it was necessary to design and produce an injection mold for all types testing samples. Subsequently, mechanical properties such as the tensile stress-strain and tear strenght of compression molded samples and injection molded samples were studied, compared and discussed.

  3. Energy Saving Melting and Revert Reduction (E-SMARRT): Precision Casting of Steel

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Von L. Richards

    2011-09-30

    This project addresses improvements in metal casting processes by reducing scrap and reducing the cost of production, due to scrap reduction from investment casting and yield improvement offered by lost foam casting as compared to no-bake or green sand molding. The objectives for the investment casting portion of the subtask are to improve knowledge of fracture toughness of mold shells and the sources of strength limiting flaws and to understand the effects of wax reclamation procedures on wax properties. Applying 'clean steel' approaches to pouring technology and cleanliness in investment casting of steel are anticipated to improve incoming materials inspection procedures as they affect the microstructure and toughness of the shell. This project focused on two areas of study in the production of steel castings to reduce scrap and save energy: (1) Reducing the amount of shell cracking in investment cast steel production; (2) Investigate the potential of lost foam steel casting The basic findings regarding investment casting shell cracking were: (1) In the case of post pouring cracking, this could be related to phase changes in silica upon cooling and could be delayed by pouring arrangement strategies that maintained the shell surface at temperature for longer time. Employing this delay resulted in less adherent oxidation of castings since the casting was cooler at the time o fair exposure. (2) A model for heat transfer through water saturated shell materials under steam pressure was developed. (3) Initial modeling result of autoclave de-waxing indicated the higher pressure and temperature in the autoclave would impose a steeper temperature gradient on the wax pattern, causing some melt flow prior to bulk expansion and decreasing the stress on the green shell. Basic findings regarding lost foam casting of steel at atmospheric pressure: (1) EPS foam generally decomposes by the collapse mode in steel casting. (2) There is an accumulation of carbon pick-up at

  4. 40 CFR Table 1 to Subpart Wwww of... - Equations To Calculate Organic HAP Emissions Factors for Specific Open Molding and Centrifugal...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Equations To Calculate Organic HAP Emissions Factors for Specific Open Molding and Centrifugal Casting Process Streams 1 Table 1 to Subpart... 1 Table 1 to Subpart WWWW of Part 63—Equations To Calculate Organic HAP Emissions Factors for...

  5. Nano-ceramics and its molding technologies

    International Nuclear Information System (INIS)

    Liu Jian; Xu Yunshu

    2007-01-01

    Nano-ceramics and its related knowledge were introduced. Fabrication of nano-ceramic powder, as well as the molding and sintering technologies of nano-ceramics were reviewed. Features of the present molding technologies were analyzed. The applications of nano-ceramics were prospected. (authors)

  6. Surface microstructure replication in injection molding

    DEFF Research Database (Denmark)

    Theilade, Uffe Arlø; Hansen, Hans Nørgaard

    2006-01-01

    molding of surface microstructures. The fundamental problem of surface microstructure replication has been studied. The research is based on specific microstructures as found in lab-on-a-chip products and on rough surfaces generated from EDM (electro discharge machining) mold cavities. Emphasis is put...

  7. Dynamic Feed Control For Injection Molding

    Science.gov (United States)

    Kazmer, David O.

    1996-09-17

    The invention provides methods and apparatus in which mold material flows through a gate into a mold cavity that defines the shape of a desired part. An adjustable valve is provided that is operable to change dynamically the effective size of the gate to control the flow of mold material through the gate. The valve is adjustable while the mold material is flowing through the gate into the mold cavity. A sensor is provided for sensing a process condition while the part is being molded. During molding, the valve is adjusted based at least in part on information from the sensor. In the preferred embodiment, the adjustable valve is controlled by a digital computer, which includes circuitry for acquiring data from the sensor, processing circuitry for computing a desired position of the valve based on the data from the sensor and a control data file containing target process conditions, and control circuitry for generating signals to control a valve driver to adjust the position of the valve. More complex embodiments include a plurality of gates, sensors, and controllable valves. Each valve is individually controllable so that process conditions corresponding to each gate can be adjusted independently. This allows for great flexibility in the control of injection molding to produce complex, high-quality parts.

  8. Optimization of Casting Design Parameters on Fabrication of Reliable Semi-Solid Aluminum Suspension Control Arm

    Science.gov (United States)

    Ragab, Kh. A.; Bouaicha, A.; Bouazara, M.

    2017-09-01

    The semi-solid casting process has the advantage of providing reliable mechanical aluminum parts that work continuously in dynamic as control arm of the suspension system in automotive vehicles. The quality performance of dynamic control arm is related to casting mold and gating system designs that affect the fluidity of semi-solid metal during filling the mold. Therefore, this study focuses on improvement in mechanical performance, depending on material characterization, and casting design optimization, of suspension control arms made of A357 aluminum semi-solid alloys. Mechanical and design analyses, applied on the suspension arm, showed the occurrence of mechanical failures at unexpected weak points. Metallurgical analysis showed that the main reason lies in the difficult flow of semi-solid paste through the thin thicknesses of a complex geometry. A design modification procedure is applied to the geometry of the suspension arm to avoid this problem and to improve its quality performance. The design modification of parts was carried out by using SolidWorks design software, evaluation of constraints with ABAQUS, and simulation of flow with ProCast software. The proposed designs showed that the modified suspension arm, without ribs and with a central canvas designed as Z, is considered as a perfect casting design showing an increase in the structural strength of the component. In this case, maximum von Mises stress is 199 MPa that is below the yield strength of the material. The modified casting mold design shows a high uniformity and minim turbulence of molten metal flow during semi-solid casting process.

  9. Thermal Stress of Surface of Mold Cavities and Parting Line of Silicone Molds

    Directory of Open Access Journals (Sweden)

    Bajčičák Martin

    2014-06-01

    Full Text Available The paper is focused on the study of thermal stress of surface of mold cavities and parting line of silicone molds after pouring. The silicone mold White SD - THT was thermally stressed by pouring of ZnAl4Cu3 zinc alloy with pouring cycle 20, 30 and 40 seconds. The most thermally stressed part of surface at each pouring cycle is gating system and mold cavities. It could be further concluded that linear increase of the pouring cycle time leads to the exponential increasing of the maximum temperature of mold surface after its cooling. The elongated pouring cycle increases the temperature accumulated on the surface of cavities and the ability of silicone mold to conduct the heat on its surface decreases, because the low thermal conductivity of silicone molds enables the conduction of larger amount of heat into ambient environment.

  10. Thermal Stress of Surface of Mold Cavities and Parting Line of Silicone Molds

    Science.gov (United States)

    Bajčičák, Martin; Šuba, Roland

    2014-06-01

    The paper is focused on the study of thermal stress of surface of mold cavities and parting line of silicone molds after pouring. The silicone mold White SD - THT was thermally stressed by pouring of ZnAl4Cu3 zinc alloy with pouring cycle 20, 30 and 40 seconds. The most thermally stressed part of surface at each pouring cycle is gating system and mold cavities. It could be further concluded that linear increase of the pouring cycle time leads to the exponential increasing of the maximum temperature of mold surface after its cooling. The elongated pouring cycle increases the temperature accumulated on the surface of cavities and the ability of silicone mold to conduct the heat on its surface decreases, because the low thermal conductivity of silicone molds enables the conduction of larger amount of heat into ambient environment.

  11. The use of IR thermography to show the mold and part temperature evolution in injection molding

    Directory of Open Access Journals (Sweden)

    Bula Karol

    2016-12-01

    Full Text Available This study concerns the application of infrared camera for injection molding analysis by measuring temperatures of both injection molded parts and injection mold cavities in a function of injection cycles. The mold with two cavities, differing in thickness (1 and 3 mm, and a cold direct runner was used. Isotactic polypropylene homopolymer was utilized to produce parts. Mold temperature was set at 22°C and controlled by a water chiller. Five measuring points were determined: SP1, SP2 (placed in the 3 mm cavity, SP3, SP4 (located in the 1 mm cavity and SP5 around an injection molding gate. Our investigations showed that the highest temperature is localized around SP2 point and the lowest at SP4. Also, it was proved that even after 62 injection molding cycles, temperatures of cavities were not stable, revealing their further increase with each cycle.

  12. Fabrication of silicon molds for polymer optics

    DEFF Research Database (Denmark)

    Nilsson, Daniel; Jensen, Søren; Menon, Aric Kumaran

    2003-01-01

    A silicon mold used for structuring polymer microcavities for optical applications is fabricated, using a combination of DRIE (deep reactive ion etching) and anisotropic chemical wet etching with KOH + IPA. For polymer optical microcavities, low surface roughness and vertical sidewalls are often...... needed. This is achieved by aligning the mold precisely to the [110] direction of a silicon (100) wafer and etching very close to the (110) surfaces using a DRIE Bosch process. The surface roughness of the sidewalls is then removed with a short etch in KOH + IPA. To achieve this, the parameters for DRIE...... and KOH + IPA etch have been optimized. To reduce stiction between the silicon mold and the polymers used for molding, the mold is coated with a teflon-like material using the DRIE system. Released polymer microstructures characterized with AFM and SEM are also presented....

  13. Nanostructuring steel for injection molding tools

    DEFF Research Database (Denmark)

    Al-Azawi, A.; Smistrup, Kristian; Kristensen, Anders

    2014-01-01

    The production of nanostructured plastic items by injection molding with ridges down to 400 nm in width, which is the smallest line width replicated from nanostructured steel shims, is presented. Here we detail a micro-fabrication method where electron beam lithography, nano-imprint lithography...... and ion beam etching are combined to nanostructure the planar surface of a steel wafer. Injection molded plastic parts with enhanced surface properties, like anti-reflective, superhydrophobic and structural colors can be achieved by micro-and nanostructuring the surface of the steel molds. We investigate...... has been produced by injection molding with good structure transfer fidelity. Thus we have demonstrated that by utilizing well-established fabrication techniques, nanostructured steel shims that are used in injection molding, a technique that allows low cost mass fabrication of plastic items...

  14. Indirect three-dimensional printing of synthetic polymer scaffold based on thermal molding process

    International Nuclear Information System (INIS)

    Park, Jeong Hun; Jung, Jin Woo; Cho, Dong-Woo; Kang, Hyun-Wook

    2014-01-01

    One of the major issues in tissue engineering has been the development of three-dimensional (3D) scaffolds, which serve as a structural template for cell growth and extracellular matrix formation. In scaffold-based tissue engineering, 3D printing (3DP) technology has been successfully applied for the fabrication of complex 3D scaffolds by using both direct and indirect techniques. In principle, direct 3DP techniques rely on the straightforward utilization of the final scaffold materials during the actual scaffold fabrication process. In contrast, indirect 3DP techniques use a negative mold based on a scaffold design, to which the desired biomaterial is cast and then sacrificed to obtain the final scaffold. Such indirect 3DP techniques generally impose a solvent-based process for scaffold fabrication, resulting in a considerable increase in the fabrication time and poor mechanical properties. In addition, the internal architecture of the resulting scaffold is affected by the properties of the biomaterial solution. In this study, we propose an advanced indirect 3DP technique using projection-based micro-stereolithography and an injection molding system (IMS) in order to address these challenges. The scaffold was fabricated by a thermal molding process using IMS to overcome the limitation of the solvent-based molding process in indirect 3DP techniques. The results indicate that the thermal molding process using an IMS has achieved a substantial reduction in scaffold fabrication time and has also provided the scaffold with higher mechanical modulus and strength. In addition, cell adhesion and proliferation studies have indicated no significant difference in cell activity between the scaffolds prepared by solvent-based and thermal molding processes. (paper)

  15. Effect of reinforcement amount, mold temperature, superheat, and mold thickness on fluidity of in-situ Al-Mg2Si composites

    Directory of Open Access Journals (Sweden)

    Reza Vatankhah Barenji

    2018-01-01

    Full Text Available In the present study, the effects of mold temperature, superheat, mold thickness, and Mg2Si amount on the fluidity of the Al-Mg2Si as-cast in-situ composites were investigated using the mathematical models. Composites with different amounts of Mg2Si were fabricated, and the fluidity and microstructure of each were then analyzed. For this purpose, the experiments were designed using a central composite rotatable design, and the relationship between parameters and fluidity were developed using the response surface method. In addition, optical and scanning electron microscopes were used for microstructural observation. The ANOVA shows that the mathematical models can predict the fluidity accurately. The results show that by increasing the mold temperature from 25 °C to 200 °C, superheat from 50 °C to 250 °C, and thickness from 3 mm to 12 mm, the fluidity of the composites decreases, where the mold thickness is more effective than other factors. In addition, the higher amounts of Mg2Si in the range from 15wt.% to 25wt.% lead to the lower fluidity of the composites. For example, when the mold temperature, superheat, and thickness are respectively 100 °C, 150 °C, and 7 mm, the fluidity length is changed in the range of 11.9 cm to 15.3 cm. By increasing the amount of Mg2Si, the morphology of the primary Mg2Si becomes irregular and the size of primary Mg2Si is increased. Moreover, the change of solidification mode from skin to pasty mode is the most noticeable microstructural effect on the fluidity.

  16. Production and characterization of cast aluminum sponges

    International Nuclear Information System (INIS)

    Rivarola, M.E; Marmo Lupano, J.M; Malachevsky, M.T

    2004-01-01

    Cellular materials have unique physical features that make them particularly appropriate for applications that require high mechanical resistance and low weight. They can be produced in different ways: by powder metallurgy, by infiltration over plastic foams, adding a releasing agent of gas to a fused metal or simply injecting gas into it. Cellular structures can also be formed by casting onto a pore forming material. This work proposes a method that is basically similar to the last one mentioned but that allows the resulting material's porosity and topology to be controlled. Thus, the mechanical or thermal features of the material that is being manufactured can be predicted and/or designed. First the three dimensional print of a mold is made in a 3D printer, which is the negative of the piece that will be produced. Then a vacuum assisted aluminum cast is made. A preliminary study is presented for the applicability of this method and the mechanical properties of the resulting sponges (CW)

  17. Inoculated Slightly Hypereutectic Gray Cast Irons

    Science.gov (United States)

    Chisamera, Mihai; Riposan, Iulian; Stan, Stelian; Militaru, Cristina; Anton, Irina; Barstow, Michael

    2012-03-01

    The current experimental investigation in this article was designed to characterize the structure of mold (M) and ladle (L) inoculated, low-S (0.025 wt.% S), low-Al (0.003 wt.% Al), slightly hypereutectic (CE = 4.4-4.5 wt.%) electric melted gray irons, typical for high performance thin-wall castings. It describes the effect of a Ca, Al, Zr-FeSi inoculant addition of 0-0.25 wt.% on structure characteristics, and compares to similar treatments with hypoeutectic irons (3.5-3.6 wt.% CE, 0.025 wt.% S, and 0.003 wt.% Al). A complex structure including primary graphite, austenite dendrites, and eutectic cells is obtained in hypereutectic irons, as the result of nonequilibrium solidification following the concept of a coexisting region. Dendrites appear to be distributed between eutectic cells at higher eutectic undercooling, while in inoculated irons and for lower undercooling, the eutectic cells are "reinforced" by eutectic austenite dendrites. A Zr, Ca, Al-FeSi alloy appears to be an effective inoculant in low S, low Al, gray cast irons, especially for a late inoculation technique, with beneficial effects on both graphite and austenite phases. First, inoculation influenced the nucleation of graphite/eutectic cell, and then their characteristics. A further role of these active elements directly contributed to form nucleation sites for austenite, as complex (Mn,X)S particles.

  18. Comparing suppository mold variability which can lead to dosage errors for suppositories prepared with the same or different molds.

    Science.gov (United States)

    Alexander, Kenneth S; Baki, Gabriella; Hart, Christine; Hejduk, Courtney; Chillas, Stephanie

    2013-01-01

    Suppository molds must be properly calibrated to ensure accurate dosing. There are often slight differences between molds and even in the cavities within a mold. A method is presented for the calibration of standard aluminum 6-, 12-, 50-, or 100-well suppository molds. Ten different molds were tested using water for volume calibration, and cocoa butter for standardization involving establishing the density factor. This method is shown to be straightforward and appropriate for calibrating suppository molds.

  19. Improvement of the current capacity of Al-Zn-In anode by casting parameters and magnesium addition

    Energy Technology Data Exchange (ETDEWEB)

    Saremi, M.; Keyvani, A.; Sina, H.; Emamy, M. [Metallurgy and Materials Department, University of Tehran, P.O.Box 11365/4563, Tehran (Iran)

    2004-07-01

    In the present work the effects of mold temperature and casting temperature have been studied on the potential and current capacity of Al-Zn-In anodes. Electrochemical polarization and NACE standard methods were used to evaluate the anodic behavior, potential and current capacity of the anodes. It is shown that metallic molds having higher temperatures could provide better condition for obtaining homogenous structures with minor inclusions. The optimum condition of anode operation may be provided where mold and pouring temperatures equal to 400 and 710 deg. C respectively, in which a fine structure, phase distribution and lack of casting faults are obtained. Some alloying elements such as Mg, Mn, Ti, Zr, Sr are added to the base alloy in order to improve its efficiency together with its capacity. In this study the anodic behavior of influence of mold temperature and Al-Zn-In alloy at different concentration of magnesium of 1 to 4 wt. %, is studied. The result of experiments of this anode shows that 2 wt. % Mg, casting and mold temperature at 730 and 350 deg. C are obtained the consumption decrease from about 3.8 to 3.3 Kg.Ay{sup -1}. Anode capacity also increases and potential of this anode stands to about -1045 mV. (author)

  20. Filler metal alloy for welding cast nickel aluminide alloys

    Science.gov (United States)

    Santella, Michael L.; Sikka, Vinod K.

    1998-01-01

    A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

  1. Microstructure And Mechanical Properties Of An Al-Zn-Mg-Cu Alloy Produced By Gravity Casting Process

    Directory of Open Access Journals (Sweden)

    Saikawa S.

    2015-06-01

    Full Text Available High-strength aluminum alloy are widely used for structural components in aerospace, transportation and racing car applications. The objective of this study is to enhance the strength of the Al-Zn-Mg-Cu alloy used for gravity casting process. All alloys cast into stepped-form sand mold (Sand-mold Casting; SC and Y-block shaped metal mold(Permanent mold Casting; PC C and then two –step aged at 398-423 K after solution treated at 743 K for 36 ks. The tensile strength and total elongation of the two-step aged SC alloys were 353-387 MPa and about 0.4% respectively. This low tensile properties of the SC alloys might be caused by remaining of undissolved crystallized phase such as Al2CuM, MgZn2 and Al-Fe-Cu system compounds. However, good tensile properties were obtained from PC alloys, tensile strength and 0.2% proof stress and elongation were 503-537 MPa, 474-519 MPa and 1.3-3.3%.

  2. Study on Effects of Mold Temperature on the Injection Molded Article

    Directory of Open Access Journals (Sweden)

    Han J.-H.

    2017-06-01

    Full Text Available This is a study of the effects of temperature of injection mold on the injection molded article. By supplying water of the proper temperature in the cooling line of mold in the cooling process, the mold was the appropriate temperature, and the deformation of the injection molded article was examined according to the mold temperature. In this study, we conducted simulation analysis and experiments, and the results were analyzed. The minimum deformation of the injection molded article model obtained by supplying 50°C water in the cooling line is 0.003 mm, and the maximum deformation was 0.813 mm. Injection molded article models obtained by supplying 20°C water were found to be a minimum of 0.002 mm, with deformation of up to 0.761 mm. When comparing both conditions, the error rate of injection molded article obtained by supplying 20°C water in the mold cooling line was lower by about 0.18%.

  3. Melt Cast High Explosives

    Directory of Open Access Journals (Sweden)

    Stanisław Cudziło

    2014-12-01

    Full Text Available [b]Abstract[/b]. This paper reviews the current state and future developments of melt-cast high explosives. First the compositions, properties and methods of preparation of trinitrotoluene based (TNT conventional mixtures with aluminum, hexogen (RDX or octogen (HMX are described. In the newer, less sensitive explosive formulations, TNT is replaced with dinitroanisole (DNANDNANDNAN and nitrotriazolone (NTONTONTO, nitroguanidine (NG or ammonium perchlorate (AP are the replacement for RDRDX and HMX. Plasticized wax or polymer-based binder systems for melt castable explosives are also included. Hydroxyl terminated polybutadiene (HPTB is the binder of choice, but polyethylene glycol, and polycaprolactone with energetic plasticizers are also used. The most advanced melt-cast explosives are compositions containing energetic thermoplastic elastomers and novel highly energetic compounds (including nitrogen rich molecules in whose particles are nanosized and practically defect-less.[b]Keywords[/b]: melt-cast explosives, detonation parameters

  4. Evaluation of marginal gap of Ni-Cr copings made with conventional and accelerated casting techniques

    Directory of Open Access Journals (Sweden)

    Pavan Kumar Tannamala

    2013-01-01

    Full Text Available Context: Conventional casting techniques following the manufacturers′ recommendations are time consuming. Accelerated casting techniques have been reported, but their accuracy with base metal alloys has not been adequately studied. Aim: We measured the vertical marginal gap of nickel-chromium copings made by conventional and accelerated casting techniques and determined the clinical acceptability of the cast copings in this study. Settings and Design: Experimental design, in vitro study, lab settings. Materials and Methods: Ten copings each were cast by conventional and accelerated casting techniques. All copings were identical, only their mold preparation schedules differed. Microscopic measurements were recorded at ×80 magnification on the perpendicular to the axial wall at four predetermined sites. The marginal gap values were evaluated by paired t test. Results: The mean marginal gap by conventional technique (34.02 μm is approximately 10 μm lesser than that of accelerated casting technique (44.62 μm. As the P value is less than 0.0001, there is highly significant difference between the two techniques with regard to vertical marginal gap. Conclusion: The accelerated casting technique is time saving and the marginal gap measured was within the clinically acceptable limits and could be an alternative to time-consuming conventional techniques.

  5. Molded ultra-low density microcellular foams

    International Nuclear Information System (INIS)

    Rand, P.B.; Montoya, O.J.

    1986-07-01

    Ultra-low density (< 0.01 g/cc) microcellular foams were required for the NARYA pulsed-power-driven x-ray laser development program. Because of their extreme fragility, molded pieces would be necessary to successfully field these foams in the pulsed power accelerator. All of the foams evaluated were made by the thermally induced phase separation technique from solutions of water soluble polymers. The process involved rapidly freezing the solution to induce the phase separation, and then freeze drying to remove the water without destroying the foam's structure. More than sixty water soluble polymers were evaluated by attempting to make their solutions into foams. The foams were evaluated for shrinkage, density, and microstructure to determine their suitability for molding and meeting the required density and cell size requirements of 5.0 mg/cc and less than twenty μmeters. Several promising water soluble polymers were identified including the polyactylic acids, guar gums, polyactylamide, and polyethylene oxide. Because of thier purity, structure, and low shrinkage, the polyacrylic acids were chosen to develop molding processes. The initial requirements were for 2.0 cm. long molded rods with diameters of 1.0, 2.0. and 3.0 mm. These rods were made by freezing the solution in thin walled silicon rubber molds, extracting the frozen preform from the mold, and then freeze drying. Requirements for half rods and half annuli necessitated using aluminum molds. Again we successfully molded these shapes. Our best efforts to date involve molding annuli with 3.0 mm outside diameters and 2.0 mm inside diameters

  6. Modeling of solidification of MMC composites during gravity casting process

    Directory of Open Access Journals (Sweden)

    R. Zagórski

    2013-04-01

    Full Text Available The paper deals with computer simulation of gravity casting of the metal matrix composites reinforced with ceramics (MMC into sand mold. The subject of our interest is aluminum matrix composite (AlMMC reinforced with ceramic particles i.e. silicon carbide SiC and glass carbon Cg. The created model describes the process taking into account solidification and its influence on the distribution of reinforcement particles. The computer calculation has been carried out in 2D system with the use of Navier-Stokes equations using ANSYS FLUENT 13. The Volume of Fluid approach (VOF and enthalpy method have been used to model the air-fluid free surface (and also volume fraction of particular continuous phases and the solidification of the cast, respectively.

  7. Vacuum Die Casting of Silicon Sheet for Photovoltaic Applications

    Science.gov (United States)

    1979-01-01

    The development of a vacuum die-casting process for producing silicon sheet suitable for photovoltaic cells with a terrestrial efficiency greater than 12 percent and having the potential to be scaled for large quantity production is considered. The initial approach includes: (1) obtaining mechanical design parameters by using boron nitride, which has been shown to non-wetting to silicon; (2) optimizing silicon nitride material composition and coatings by sessile drop experiments; (3) testing effectiveness of fluoride salt interfacial media with a graphite mold; and (4) testing the effect of surface finish using both boron nitride and graphite. When the material and mechanical boundary conditions are established, a finalized version of the prototype assembly will be constructed and the casting variables determined.

  8. Mold contamination of automobile air conditioner systems.

    Science.gov (United States)

    Kumar, P; Lopez, M; Fan, W; Cambre, K; Elston, R C

    1990-02-01

    Eight cars belonging to patients who were found to have exacerbation of allergic rhinitis and bronchial asthma after turning on the air conditioner in their cars were examined. Mold concentrations inside the passenger compartment with the a/c turned off and at different climate control settings were lower than concentrations in the outside air. After turning on the air conditioner to "Max", cultures obtained at various intervals revealed that mold concentrations decreased significantly with time. Furthermore, placement of a filter at the portal of entry of outside air significantly reduced the mold concentration in the passenger compartment.

  9. Scientific paper zircon-based coating for the applications in Lost Foam casting process

    Directory of Open Access Journals (Sweden)

    Prstić Aurel

    2012-01-01

    Full Text Available In this work, a possibility to develop a new zircon-based refractory coating for casting applications was investigated. Optimization of the coating composition with controlled rheological properties was attained by application of different coating components, particularly by application of a new suspension agent and by alteration of coating production procedure. Zircon powder with particle size of 25x10-6 m was used as filler. The zircon sample was investigated by means of the following methods: X-ray diffraction analysis, diffraction thermal analysis and polarized microscope. The shape and grain size were analyzed by means of the PC program package OZARIA 2.5. It was shown that application of this type of water-alcohol-based coating had a positive influence on surface quality, structural and mechanical properties of the castings of cast iron obtained by pouring into sand molds by means of the expandable patterns method (Lost Foam casting process.

  10. Numerical simulation and optimization of Al alloy cylinder body by low pressure die casting

    Directory of Open Access Journals (Sweden)

    Mi Guofa

    2008-05-01

    Full Text Available Shrinkage defects can be formed easily at Critical location during low pressure die casting (LPDC of aluminum alloy cylinder body. It has harmful effect on the products. Mold fi lling and solidifi cation process of a cylinder body was simulated by using of Z-CAST software. The casting method was improved based on the simulation results. In order to create effective feeding passage, the structure of casting was modifi ed by changing the location of strengthening ribs at the bottom, without causing any adverse effect on the part’s performance. Inserting copper billet at suitable location of the die is a valid way to create suitable solidifi cation sequence that is benefi cial to the feeding. Using these methods, the shrinkage defect was completely eliminated at the critical location.

  11. Comparison of marginal accuracy of castings fabricated by conventional casting technique and accelerated casting technique: an in vitro study.

    Science.gov (United States)

    Reddy, S Srikanth; Revathi, Kakkirala; Reddy, S Kranthikumar

    2013-01-01

    Conventional casting technique is time consuming when compared to accelerated casting technique. In this study, marginal accuracy of castings fabricated using accelerated and conventional casting technique was compared. 20 wax patterns were fabricated and the marginal discrepancy between the die and patterns were measured using Optical stereomicroscope. Ten wax patterns were used for Conventional casting and the rest for Accelerated casting. A Nickel-Chromium alloy was used for the casting. The castings were measured for marginal discrepancies and compared. Castings fabricated using Conventional casting technique showed less vertical marginal discrepancy than the castings fabricated by Accelerated casting technique. The values were statistically highly significant. Conventional casting technique produced better marginal accuracy when compared to Accelerated casting. The vertical marginal discrepancy produced by the Accelerated casting technique was well within the maximum clinical tolerance limits. Accelerated casting technique can be used to save lab time to fabricate clinical crowns with acceptable vertical marginal discrepancy.

  12. Influência do desempenho térmico de moldes fabricados com compósito epóxi/alumínio nas propriedades de pp moldado por injeção Thermal behavior of epoxy/aluminum rapid tooling composite during injection molding of polypropylene

    Directory of Open Access Journals (Sweden)

    Gean V. Salmoria

    2008-09-01

    Full Text Available O surgimento das tecnologias de prototipagem rápida (RP e de ferramental rápido (RT tem despertado interesse da indústria de moldes de injeção. O vazamento de termofixos com cargas metálicas possibilita a construção de moldes usando materiais compósitos, os quais apresentam maior resistência que os utilizados por outras técnicas RT. Neste trabalho foi estudado o comportamento térmico de moldes fabricados em epóxi/alumínio durante a injeção de polipropileno através de avaliações da estrutura e de propriedades mecânicas utilizando difração de raio X e ensaios de dureza e de tração. Os corpos-de-prova injetados no molde em compósito epóxi/alumínio apresentaram pequenas diferenças no grau de cristalinidade das superfícies analisadas e propriedades mecânicas semelhantes aos corpos-de-prova injetados em molde de aço. O estudo mostrou um razoável desempenho térmico do molde compósito durante a injeção de polipropileno evidenciando a viabilidade de utilização destes moldes na produção de pequenas séries de protótipos e de produtos neste termoplástico.rapid prototyping (RP and rapid tooling (RT technologies are gaining increasing importance in the injection molding industry. Casting of resin/metal composites allows the construction of molds with greater resistance than those manufactured by other RT techniques such as Stereolithography. In this work, the thermal behavior of molds manufactured in epoxy/aluminum during the injection molding of polypropylene specimens was investigated. Structural and mechanical characterization of the molded specimens included X ray analysis, hardness and tensile testing. The samples presented small differences in the degree of crystallinity and similar mechanical properties in comparison with samples injected into steel molds. This study showed a reasonable thermal performance of the epoxy/aluminum mold during the injection molding of polypropylene, thus demonstrating the

  13. Effects of fast mold temperature evolution on micro features replication quality during injection molding

    DEFF Research Database (Denmark)

    Liparoti, S.; Calaon, M.; Speranza, V.

    2017-01-01

    The growing demand to manufacture, with high accuracy, functional structures in the micro and sub-micrometer range polymer based microsystem products calls for reliable mass production processes. Being injection molding (IM) the preferential technology employed for polymer mass fabrication and mold...... temperature one of the most relevant process parameter to enhance polymer replication at the micro meter scale, the present study investigates effects of fast mold temperature evolution on final replication quality of produced injection molded parts. Micro features master geometries were produced by UV...... effect and let the surface to cool down soon after. This heating device allowed to maintain mold temperature at a constant value for a time that could be equal to the filling time or longer. A fully characterized isotactic polypropylene was used as the polymer material during the injection molding...

  14. Fast Mold Temperature Evolution on Micro Features Replication Quality during Injection Molding

    DEFF Research Database (Denmark)

    Liparoti, S.; Calaon, Matteo; Speranza, V.

    2016-01-01

    The growing demand to manufacture, with high accuracy, functional structures in the micro and sub-micro meterrange polymer based microsystem products calls for reliable mass production processes. Being injection molding (IM) the preferential technology employed for polymer mass fabrication and mold...... temperature one of the most relevant process parameter to enhance polymer replication at the micro meter scale, the present study investigates effects of fast mold temperature evolution on final replication quality of produced injection molded parts. Micro features master geometries were produced by UV...... and let the surface to cool down soon after. This heating device allowed to maintain mold temperature at a constant value for a time that could be equal to the filling time or longer. A fully characterized isotactic polypropylene was used as the polymer material during the injection molding experiments...

  15. Minimization of sink mark defects in injection molding process ...

    African Journals Online (AJOL)

    user

    molding. 1. Introduction. Injection molding is one of the major net shape forming processes for thermoplastic polymers. Over 30% of all the plastic parts manufactured are by injection molding. Injection molding is ideally suited for manufacturing large quantities of mass produced plastic parts of complex shapes and sizes.

  16. Fast prototyping of injection molded polymer microfluidic chips

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; Selmeczi, David; Larsen, Niels Bent

    2010-01-01

    We present fast prototyping of injection molding tools by the definition of microfluidic structures in a light-curable epoxy (SU-8) directly on planar nickel mold inserts. Optimized prototype mold structures could withstand injection molding of more than 300 replicas in cyclic olefin copolymer (COC...

  17. Development of High-Performance Cast Crankshafts. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Mark E [General Motors, Detroit, MI (United States)

    2017-03-31

    simulations with existing materials models to optimize crankshaft cost and performance. Prototype crankshafts of the final design were to be produced and validated using laboratory bench testing and on-engine durability testing. ICME process simulation tools were used to investigate a broad range of processing concepts. These concepts included casting orientation, various mold and core materials, and various filling and feeding strategies. Each crankshaft was first simulated without gating and risers, which is termed natural solidification. The natural solidification results were used as a baseline for strategy development of each concept. Casting process simulations and ICME tools were proven to be reasonable predictors of real world results. Potential alloys were developed that could meet the project material property goals with appropriate normalization and temper treatments. For the alloys considered, post-normalization temper treatments proved to be necessary to achieve the desired yield strengths and elongations and appropriate heat treatments were designed using ICME tools. The experimental data of all the alloys were analyzed in combination with ICME tools to establish chemistry-process-structure relations. Several GM small gas engine (SGE) crankshafts were successfully cast in sand molds using two different sprue, runner, gate, riser, chill designs. These crankshafts were cast in two different steel alloys developed during the project, but casting finishing (e.g. riser removal) remains a cost challenge. A long list of future work was left unfinished when this project was unexpectedly terminated.

  18. Machine Casting of Ferrous Alloys

    Science.gov (United States)

    1974-10-01

    Figure 55 Die casting machine. Shot sleeve at S, melt furnace at M, ladle preheat at L. Figure 56 Aluminum die casting top surface. Risers removed... ladle and transferred to the shot sleeve. Upon pouring the metal, the ram is actuated and the casting made. To test the mechanical operation of...mnui i .MI iiiiiuH ’ -84- Figure 55. Die casting machine. Shot sleeve at S, melt furnace at M, ladle preheat at L. ■ ■ wmmm*mm

  19. Solving depressions formed during production of plastic molding

    Directory of Open Access Journals (Sweden)

    J. Dobránsky

    2015-07-01

    Full Text Available This article deals with improvement of design properties of molded plastic parts. It can be achieved by modifying construction of metal injection mold and optimization of parameters in injection process. The subject of our examination was depressions formed on molded plastic parts which are inacceptable in the process of approval. The problem which has arisen was solved in two phases. The first phase consisted in alteration of injection mold design – enlargement of injection molding gate. In the second phase, we have changed the location of injection molding gate. After performing constructional modifications, new molded plastic parts were manufactured and assessed.

  20. Segregation in cast products

    Indian Academy of Sciences (India)

    Unknown

    are also available (Moore 1984; Ohnaka 1988; Flemings 1990; Roy et al 1992; Ghosh. 1997). In addition, some recent research papers will also be referred to as required. Original references of earlier studies are omitted for the sake of brevity. The basic principles of formation of microsegregation in castings and ingots were.

  1. ToxCast Dashboard

    Science.gov (United States)

    The ToxCast Dashboard helps users examine high-throughput assay data to inform chemical safety decisions. To date, it has data on over 9,000 chemicals and information from more than 1,000 high-throughput assay endpoint components.

  2. Facts about Stachybotrys chartarum and Other Molds

    Science.gov (United States)

    ... leakage may have occurred in roofs, pipes, walls, plant pots, or where there has been flooding, they ... molds. People with immune suppression or underlying lung disease are more susceptible to fungal infections. Top of Page How do you know ...

  3. Injection molded self-cleaning surfaces

    DEFF Research Database (Denmark)

    Søgaard, Emil

    This PhD thesis concerns the development of superhydrophobic surfaces fabricated by injection molding. Today, injection molding is the prevalent production method for consumer plastic products. However, concerns regarding the environmental impact of a plastic production are increasing, especially...... because the use of potentially toxic self-cleaning coatings is used worldwide in a larger and larger scale. In this context, the work in this PhD project could be seen as a scientific effort towards reducing toxic compounds in manufactured plastic parts by developing injecting molded surfaces......° for structured surfaces with a drop roll-off angle of less than 2°. Thereby, it is shown that an extremely water repellant surface can be injection molded directly with clear perspectives for more environmental and healthier plastic consumer products....

  4. Additive Manufacturing of Wind Turbine Molds

    Energy Technology Data Exchange (ETDEWEB)

    Post, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Richardson, Bradley [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lloyd, Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Love, Lonnie [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nolet, Stephen [TPI Composites, Scottsdale, AZ (United States); Hannan, James [TPI Composites, Scottsdale, AZ (United States)

    2017-07-01

    The objective of this project was to explore the utility of Big Area Additive Manufacturing (BAAM) for low cost manufacturing of wind turbine molds. Engineers at Oak Ridge National Laboratory (ORNL) and TPI Composites (TPI) collaborated to design and manufacture a printed mold that can be used for resin infusion of wind turbine components. Specific focus was on required material properties (operating temperatures and pressures, coefficient of thermal expansion (CTE), thermal conductivity), surface finish (accuracy and coatings) and system integration (integrated vacuum ports, and heating element). The project began with a simple proof of principle components, targeting surface coatings and material properties for printing a small section (approximately 4’ x 4’ x 2’) of a mold. Next, the second phase scaled up and integrated with the objective of capturing all of the necessary components (integrated heating to accelerate cure time, and vacuum, sealing) for resin infusion on a mold of significant size (8’ x 20’ x 6’).

  5. National Allergy Bureau Pollen and Mold Report

    Science.gov (United States)

    ... Search AAAAI National Allergy Bureau Pollen and Mold Report Date: May 01, 2018 Location: San Antonio (2), ... 30/2018 ( click here to view ). Our Allergen Report Email Service can automatically email you daily pollen ...

  6. Modelling and monitoring in injection molding

    DEFF Research Database (Denmark)

    Thyregod, Peter

    2001-01-01

    This thesis is concerned with the application of statistical methods in quality improvement of injection molded parts. The methods described are illustrated with data from the manufacturing of parts for a medical device. The emphasis has been on the variation between cavities in multi-cavity molds....... >From analysis of quality measurements from a longer period of manufacturing, it was found that differences in cavities was that source of variation with greatest influence on the lenght of the molded parts. The other large contribution to the lenght varation was the different machine settings. Samples...... taken within the same machine set-point did not cause great variation compared to the two preceding sources of variation. A simple graphical approach is suggested for finding patterns in the cavity differences. Applying this method to data from a 16 cavity mold, a clear connection was found between...

  7. Molds on Food: Are They Dangerous?

    Science.gov (United States)

    ... on forgotten bologna, fuzzy green dots on bread, white dust on Cheddar, coin-size velvety circles on fruits, and furry growth on the surface of jellies. When a food shows heavy mold growth, "root" threads have invaded ...

  8. Stress analysis of biomass fuel molding machine piston type stamping forming cone

    Directory of Open Access Journals (Sweden)

    Wu Gaofeng

    2015-01-01

    Full Text Available It is established the ram biomass straw machine as the analysis object in this paper,the molding machine cones of stress in the forming process of the analysis of the system. We used pottery instead of Wear-resistant cast iron for improving the performance of forming sleeve. The structure of the forming sleeve was analyzed with the mechanical module of a soft named Pro/engineer in this paper. The result indicated that the program was feasible. With the sensitivity analysis we identified the suitable angle for the sleeve.

  9. Study of Thermal Stress Influence on Dimensional Stability of Silicone Molds

    OpenAIRE

    Bajčičák Martin; Šuba Roland

    2014-01-01

    The paper is focused on the study of temperature influence on dimensional stability of silicone molds used for spin casting of the low melting points alloys. The silicone material denoted as TEKSIL Silicone-GP-S was used to produce samples during experiments. The samples were heated to temperatures in the range from 100 up to 250oC for 30 up to 120 min. Dimensional changes of the samples in the radial and axial directions aa well as their change of weight were evaluated. The results of experi...

  10. Thermal Stress of Surface of Mold Cavities and Parting Line of Silicone Molds

    OpenAIRE

    Bajčičák Martin; Šuba Roland

    2014-01-01

    The paper is focused on the study of thermal stress of surface of mold cavities and parting line of silicone molds after pouring. The silicone mold White SD - THT was thermally stressed by pouring of ZnAl4Cu3 zinc alloy with pouring cycle 20, 30 and 40 seconds. The most thermally stressed part of surface at each pouring cycle is gating system and mold cavities. It could be further concluded that linear increase of the pouring cycle time leads to the exponential increasing of the maximum tempe...

  11. A new insight into foaming mechanisms in injection molding via a novel visualization mold

    Directory of Open Access Journals (Sweden)

    V. Shaayegan

    2016-06-01

    Full Text Available The complex mechanisms of bubble nucleation and dynamics in foam injection molding have not been uncovered despite many previous efforts due to the non-steady stop-and-flow nature of injection molding and the non-uniform temperature and pressure distributions in the mold. To this end, a new visualization mold was designed and manufactured for the direct observation of bubble nucleation and growth/collapse in foam injection molding. A reflective prism was incorporated into the stationary part of the injection mold with which the nucleation and growth behaviors of bubbles were successfully observed. The mechanisms of bubble nucleation in low- and high-pressure foam injection molding, with and without the application of gas-counter pressure, was investigated. We identified how the inherently non-uniform cell structure is developed in low-pressure foam injection molding with gate-nucleated bubbles, and when and how cell nucleation occurs in high-pressure foam injection molding with a more uniform pressure drop.

  12. A computational study of low-head direct chill slab casting of aluminum alloy AA2024

    Science.gov (United States)

    Hasan, Mainul; Begum, Latifa

    2016-04-01

    The steady state casting of an industrial-sized AA2024 slab has been modeled for a vertical low-head direct chill caster. The previously verified 3-D CFD code is used to investigate the solidification phenomena of the said long-range alloy by varying the pouring temperature, casting speed and the metal-mold contact heat transfer coefficient from 654 to 702 °C, 60-180 mm/min, and 1.0-4.0 kW/(m2 K), respectively. The important predicted results are presented and thoroughly discussed.

  13. Wear resistance of cast iron

    OpenAIRE

    S. Pietrowski; G. Gumienny

    2008-01-01

    In this paper investigations of abrasive and adhesive wear resistance of different cast iron grades have been presented. Examinations showed, that the most advantageous pair of materials is the cast iron – the hardened steel with low-tempered martensite. It was found, that martensitic nodular cast iron with carbides is the most resistant material.

  14. Indoor Molds and Respiratory Hypersensitivity: A Comparison of Selected Molds and House Dust Mite Induced Responses in a Mouse Model**

    Science.gov (United States)

    Molds are ubiquitous in the environment and exposures to molds contribute to various human diseases. Damp/moldy environments have been associated with asthma exacerbation, but mold's role in allergic asthma induction is less clear. The molds selected for these studies are commonl...

  15. 21 CFR 133.184 - Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk. 133.184 Section 133.184 Food and Drugs FOOD AND DRUG ADMINISTRATION..., sheep's milk blue-mold, and blue-mold cheese from sheep's milk. (a) Description. (1) Roquefort cheese...

  16. Traditional Mold Analysis Compared to a DNA-based Method of Mold Analysis with Applications in Asthmatics' Homes

    Science.gov (United States)

    Traditional environmental mold analysis is based-on microscopic observations and counting of mold structures collected from the air on a sticky surface or culturing of molds on growth media for identification and quantification. A DNA-based method of mold analysis called mol...

  17. Integrated mold/surface-micromachining process

    Energy Technology Data Exchange (ETDEWEB)

    Barron, C.C.; Fleming, J.G.; Montague, S.; Sniegowski, J.J.; Hetherington, D.L.

    1996-03-01

    We detail a new monolithically integrated silicon mold/surface-micromachining process which makes possible the fabrication of stiff, high-aspect-ratio micromachined structures integrated with finely detailed, compliant structures. An important example, which we use here as our process demonstration vehicle, is that of an accelerometer with a large proof mass and compliant suspension. The proof mass is formed by etching a mold into the silicon substrate, lining the mold with oxide, filling it with mechanical polysilicon, and then planarizing back to the level of the substrate. The resulting molded structure is recessed into the substrate, forming a planar surface ideal for subsequent processing. We then add surface-micromachined springs and sense contacts. The principal advantage of this new monolithically integrated mold/surface-micromachining process is that it decouples the design of the different sections of the device: In the case of a sensitive accelerometer, it allows us to optimize independently the proof mass, which needs to be as large, stiff, and heavy as possible, and the suspension, which needs to be as delicate and compliant as possible. The fact that the high-aspect-ratio section of the device is embedded in the substrate enables the monolithic integration of high-aspect-ratio parts with surface-micromachined mechanical parts, and, in the future, also electronics. We anticipate that such an integrated mold/surface micromachining/electronics process will offer versatile high-aspect-ratio micromachined structures that can be batch-fabricated and monolithically integrated into complex microelectromechanical systems.

  18. Mold contamination and air handling units.

    Science.gov (United States)

    Wilson, Stephen C; Palmatier, Robert N; Andriychuk, Larysa A; Martin, Jared M; Jumper, Cynthia A; Holder, Homer W; Straus, David C

    2007-07-01

    An investigation was conducted on selected locations in air handling units (AHUs) to (a) identify common mold species found on these locations, (b) determine whether some locations (and subsets) featured mold growth sites more frequently than others, (c) ascertain whether the operating condition of AHUs is related to mold contamination, and (d) provide a basis for a microbial sampling protocol for AHUs. A total of 566 tape lifts and 570 swab samples were collected from the blower wheel fan blades, insulation, cooling coil fins, and ductwork from 25 AHUs. All AHU conditions were numerically rated using a heating, ventilation and air-conditioning (HVAC) survey. Results showed that Cladosporium sp. fungi were commonly recovered in terms of growth sites and deposited spores, and they were found mainly in the blower wheel fan blades, the ductwork, and the cooling coil fins. Subsections of the fan blades, insulation, and cooling coil fins showed no preferred area for mold growth sites. Other organisms such as Penicillium sp., Aspergillus sp., and Paecilomyces sp. were recovered from the cooling coil fins and insulation. Because of the widespread prevalence of Cladosporium sp., there was no relationship between mold growth and operating condition. However, the presence of different species of molds in locations other than the blower wheel blades may indicate that the AHU condition is not optimal. A suggested microbial sampling protocol including interpretations of sample results is presented.

  19. EFFECTIVENESS OF CELLULAR INJECTION MOLDING PROCESS

    Directory of Open Access Journals (Sweden)

    Tomasz Garbacz

    2013-06-01

    Full Text Available In a study of cellular injection, molding process uses polyvinylchloride PVC. Polymers modified with introducing blowing agents into them in the Laboratory of the Department of Technologies and Materiase of Technical University of Kosice. For technological reasons, blowing agents have a form of granules. In the experiment, the content of the blowing agent (0–2,0 % by mass fed into the processed polymer was adopted as a variable factor. In the studies presented in the article, the chemical blowing agents occurring in the granulated form with a diameter of 1.2 to 1.4 mm were used. The view of the technological line for cellular injection molding and injection mold cavity with injection moldings are shown in Figure 1. The results of the determination of selected properties of injection molded parts for various polymeric materials, obtained with different content of blowing agents, are shown in Figures 4-7. Microscopic examination of cross-sectional structure of the moldings were obtained using the author's position image analysis of porous structure. Based on analysis of photographs taken (Figures 7, 8, 9 it was found that the coating containing 1.0% of blowing agents is a clearly visible solid outer layer and uniform distribution of pores and their sizes are similar.

  20. Factors influencing microinjection molding replication quality

    Science.gov (United States)

    Vera, Julie; Brulez, Anne-Catherine; Contraires, Elise; Larochette, Mathieu; Trannoy-Orban, Nathalie; Pignon, Maxime; Mauclair, Cyril; Valette, Stéphane; Benayoun, Stéphane

    2018-01-01

    In recent years, there has been increased interest in producing and providing high-precision plastic parts that can be manufactured by microinjection molding: gears, pumps, optical grating elements, and so on. For all of these applications, the replication quality is essential. This study has two goals: (1) fabrication of high-precision parts using the conventional injection molding machine; (2) identification of robust parameters that ensure production quality. Thus, different technological solutions have been used: cavity vacuuming and the use of a mold coated with DLC or CrN deposits. AFM and SEM analyses were carried out to characterize the replication profile. The replication quality was studied in terms of the process parameters, coated and uncoated molds and crystallinity of the polymer. Specific studies were processed to quantify the replicability of injection molded parts (ABS, PC and PP). Analysis of the Taguchi experimental designs permits prioritization of the impact of each parameter on the replication quality. A discussion taking into account these new parameters and the thermal and spreading properties on the coatings is proposed. It appeared that, in general, increasing the mold temperature improves the molten polymer fill in submicron features except for the steel insert (for which the presence of a vacuum is the most important factor). Moreover, the DLC coating was the best coating to increase the quality of the replication. This result could be explained by the lower thermal diffusivity of this coating. We noted that the viscosity of the polymers is not a primordial factor of the replication quality.

  1. Elimination or Minimization of Oscillation Marks: A Path To Improved Cast Surface Quality

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Alan W. Cramb

    2007-12-17

    Oscillation marks are the most recognizable feature of continuous casting and can be related to the subsurface defects that can be found on product rolled from continuous cast slabs. The purpose of this work was to develop strategies that can be used on industrial continuous casters to reduce oscillation mark depth and, in particular, to minimize the formation of hook type defects that are prevalent on ultra low carbon grades. The major focus of the work was on developing a technique to allow heat transfer in the meniscus region of the continuous caster to be measured and the effect of mold slag chemistry and chrystallization to be documented. A new experimental technique was developed that allowed the effect of mold flux chemistry and chrystallization on the radiation heat transfer rate to be measured dynamically.

  2. Application of metal oxide refractories for melting and casting reactive metals

    International Nuclear Information System (INIS)

    Jessen, N.C. Jr.; Holcombe, C.E. Jr.; Townsend, A.B.

    1979-01-01

    Extensive investigations have been conducted to develop metal oxide refractories for containment of molten uranium and uranium alloys. Since uranium and uranium alloys are readily susceptable to the formation of complex oxides, carbides, nitrides, intermetallic compounds, and suboxide reactions, severe problems exist for the production of quality castings. These contamination reactions are dependent on temperature, pressure, and molten metal interfacial reactions. The need for high purity metals to meet specification repeatedly has resulted in the development of improved metal oxide refractories and sophisticated furnace controls. Applications of Y 2 O 3 for use as a crucible and mold coating, precision molds and cores, and high temperature castable ceramics are discussed. Experimental results on melt impurity levels, thermal controls during melting, surface interactions and casting quality are presented

  3. Tribological and Wear Performance of Nanocomposite PVD Hard Coatings Deposited on Aluminum Die Casting Tool

    Directory of Open Access Journals (Sweden)

    Jose Mario Paiva

    2018-02-01

    Full Text Available In the aluminum die casting process, erosion, corrosion, soldering, and die sticking have a significant influence on tool life and product quality. A number of coatings such as TiN, CrN, and (Cr,AlN deposited by physical vapor deposition (PVD have been employed to act as protective coatings due to their high hardness and chemical stability. In this study, the wear performance of two nanocomposite AlTiN and AlCrN coatings with different structures were evaluated. These coatings were deposited on aluminum die casting mold tool substrates (AISI H13 hot work steel by PVD using pulsed cathodic arc evaporation, equipped with three lateral arc-rotating cathodes (LARC and one central rotating cathode (CERC. The research was performed in two stages: in the first stage, the outlined coatings were characterized regarding their chemical composition, morphology, and structure using glow discharge optical emission spectroscopy (GDOES, scanning electron microscopy (SEM, and X-ray diffraction (XRD, respectively. Surface morphology and mechanical properties were evaluated by atomic force microscopy (AFM and nanoindentation. The coating adhesion was studied using Mersedes test and scratch testing. During the second stage, industrial tests were carried out for coated die casting molds. In parallel, tribological tests were also performed in order to determine if a correlation between laboratory and industrial tests can be drawn. All of the results were compared with a benchmark monolayer AlCrN coating. The data obtained show that the best performance was achieved for the AlCrN/Si3N4 nanocomposite coating that displays an optimum combination of hardness, adhesion, soldering behavior, oxidation resistance, and stress state. These characteristics are essential for improving the die mold service life. Therefore, this coating emerges as a novelty to be used to protect aluminum die casting molds.

  4. Simulation of Hardening and Cooling Processes for Moving Melts in Special Casting Technologies

    Directory of Open Access Journals (Sweden)

    R. I. Esman

    2008-01-01

    Full Text Available A mathematical model and an algorithm for numerical solution of conjugate problem concerning hydrodynamics and heat transfer of hardening and cooling processes with liquid metal flow is given in the paper.Quantitative relationships between heating and hydrodynamic parameters of moving melts in the channels of metallic molds of special casting technologies have been determined in the paper. The analysis of temperature pattern and velocity field makes it possible to reveal an influence of boundary conditions on melt flow structure.

  5. Tribological and Wear Performance of Nanocomposite PVD Hard Coatings Deposited on Aluminum Die Casting Tool

    Science.gov (United States)

    Fox-Rabinovich, German; Locks Junior, Edinei; Stolf, Pietro; Matos Martins, Marcelo

    2018-01-01

    In the aluminum die casting process, erosion, corrosion, soldering, and die sticking have a significant influence on tool life and product quality. A number of coatings such as TiN, CrN, and (Cr,Al)N deposited by physical vapor deposition (PVD) have been employed to act as protective coatings due to their high hardness and chemical stability. In this study, the wear performance of two nanocomposite AlTiN and AlCrN coatings with different structures were evaluated. These coatings were deposited on aluminum die casting mold tool substrates (AISI H13 hot work steel) by PVD using pulsed cathodic arc evaporation, equipped with three lateral arc-rotating cathodes (LARC) and one central rotating cathode (CERC). The research was performed in two stages: in the first stage, the outlined coatings were characterized regarding their chemical composition, morphology, and structure using glow discharge optical emission spectroscopy (GDOES), scanning electron microscopy (SEM), and X-ray diffraction (XRD), respectively. Surface morphology and mechanical properties were evaluated by atomic force microscopy (AFM) and nanoindentation. The coating adhesion was studied using Mersedes test and scratch testing. During the second stage, industrial tests were carried out for coated die casting molds. In parallel, tribological tests were also performed in order to determine if a correlation between laboratory and industrial tests can be drawn. All of the results were compared with a benchmark monolayer AlCrN coating. The data obtained show that the best performance was achieved for the AlCrN/Si3N4 nanocomposite coating that displays an optimum combination of hardness, adhesion, soldering behavior, oxidation resistance, and stress state. These characteristics are essential for improving the die mold service life. Therefore, this coating emerges as a novelty to be used to protect aluminum die casting molds. PMID:29495620

  6. Vacuum-induction melting, refining, and casting of uranium and its alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, R J

    1989-10-11

    The vacuum-induction melting (VIM), refining, and casting of uranium and its alloys are discussed. Emphasis is placed on historical development, VIM equipment, crucible and mold design, furnace atmospheres, melting parameters, impurity pickup, ingot quality, and economics. The VIM procedures used to produce high-purity, high-quality sound ingots at the US Department of Energy Rocky Flats Plant are discussed in detail.

  7. Tribological and Wear Performance of Nanocomposite PVD Hard Coatings Deposited on Aluminum Die Casting Tool.

    Science.gov (United States)

    Paiva, Jose Mario; Fox-Rabinovich, German; Locks Junior, Edinei; Stolf, Pietro; Seid Ahmed, Yassmin; Matos Martins, Marcelo; Bork, Carlos; Veldhuis, Stephen

    2018-02-28

    In the aluminum die casting process, erosion, corrosion, soldering, and die sticking have a significant influence on tool life and product quality. A number of coatings such as TiN, CrN, and (Cr,Al)N deposited by physical vapor deposition (PVD) have been employed to act as protective coatings due to their high hardness and chemical stability. In this study, the wear performance of two nanocomposite AlTiN and AlCrN coatings with different structures were evaluated. These coatings were deposited on aluminum die casting mold tool substrates (AISI H13 hot work steel) by PVD using pulsed cathodic arc evaporation, equipped with three lateral arc-rotating cathodes (LARC) and one central rotating cathode (CERC). The research was performed in two stages: in the first stage, the outlined coatings were characterized regarding their chemical composition, morphology, and structure using glow discharge optical emission spectroscopy (GDOES), scanning electron microscopy (SEM), and X-ray diffraction (XRD), respectively. Surface morphology and mechanical properties were evaluated by atomic force microscopy (AFM) and nanoindentation. The coating adhesion was studied using Mersedes test and scratch testing. During the second stage, industrial tests were carried out for coated die casting molds. In parallel, tribological tests were also performed in order to determine if a correlation between laboratory and industrial tests can be drawn. All of the results were compared with a benchmark monolayer AlCrN coating. The data obtained show that the best performance was achieved for the AlCrN/Si₃N₄ nanocomposite coating that displays an optimum combination of hardness, adhesion, soldering behavior, oxidation resistance, and stress state. These characteristics are essential for improving the die mold service life. Therefore, this coating emerges as a novelty to be used to protect aluminum die casting molds.

  8. High pressure die casting of Fe-based metallic glass

    Science.gov (United States)

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-10-01

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications.

  9. High pressure die casting of Fe-based metallic glass.

    Science.gov (United States)

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-10-11

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications.

  10. Cast iron - a predictable material

    Directory of Open Access Journals (Sweden)

    Jorg C. Sturm

    2011-02-01

    Full Text Available High strength compacted graphite iron (CGI or alloyed cast iron components are substituting previously used non-ferrous castings in automotive power train applications. The mechanical engineering industry has recognized the value in substituting forged or welded structures with stiff and light-weight cast iron castings. New products such as wind turbines have opened new markets for an entire suite of highly reliable ductile iron cast components. During the last 20 years, casting process simulation has developed from predicting hot spots and solidification to an integral assessment tool for foundries for the entire manufacturing route of castings. The support of the feeding related layout of the casting is still one of the most important duties for casting process simulation. Depending on the alloy poured, different feeding behaviors and self-feeding capabilities need to be considered to provide a defect free casting. Therefore, it is not enough to base the prediction of shrinkage defects solely on hot spots derived from temperature fields. To be able to quantitatively predict these defects, solidification simulation had to be combined with density and mass transport calculations, in order to evaluate the impact of the solidification morphology on the feeding behavior as well as to consider alloy dependent feeding ranges. For cast iron foundries, the use of casting process simulation has become an important instrument to predict the robustness and reliability of their processes, especially since the influence of alloying elements, melting practice and metallurgy need to be considered to quantify the special shrinkage and solidification behavior of cast iron. This allows the prediction of local structures, phases and ultimately the local mechanical properties of cast irons, to asses casting quality in the foundry but also to make use of this quantitative information during design of the casting. Casting quality issues related to thermally driven

  11. Effect of zirconia-modified magnesia investment on the casting of pure titanium.

    Science.gov (United States)

    Hung, Chun-Cheng; Hou, Guey-Lin; Tsai, Chi-Cheng; Huang, Ching-Cheng

    2003-03-01

    Several investigations have examined magnesia-based investments for pure titanium casting. However, the thermal expansion value was insufficient at low casting temperatures and high interfacial reactivity occurred at high casting temperatures. The purpose of this investigation was to modify a magnesia-based investment by adding a heat-resistant mold material, zirconia, in different ratios to produce a more accurate titanium casting. The thermal expansion value was measured using a new precise automatic laser recording machine and pure titanium was cast using an argon casting machine. The marginal accuracy was measured using a stereomicroscope and the interfacial reactivity of the titanium was evaluated using X-ray diffraction analysis. The results indicate that adding different amounts of zirconia to a magnesia-based investment can increase its thermal expansion value and decrease the interfacial reactivity of the titanium. Maximal thermal expansion in the zirconia-modified investments significantly increased by 5-6 weight % (wt%) and peaked at 1.62% expansion. Selevest with 5 wt% zirconia had the smallest mean marginal discrepancy, 21.70 microm at 750 degrees C. Analysis of variance indicates significant differences in marginal discrepancy between zirconia-modified investments (p zirconia can also decrease the interfacial reactivity of the titanium. The data indicated that proper amounts of zirconia (5-6 wt%) added to a magnesia-based investment can produce a more accurate and less interfacial reactive pure titanium casting.

  12. The effect of mold surface topography on plastic parat in-process shrinkage in injection molding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Hansen, Hans Nørgaard; Kjær, Erik Michael

    2003-01-01

    An experimental study of the effect of mold surface roughness on in-process in-flow linear part shrinkage in injection molding has been carried out. The investigation is based on an experimental two-cavity tool, where the cavities have different surface topographies, but are otherwise identical...

  13. 40 CFR Table 3 to Subpart Wwww of... - Organic HAP Emissions Limits for Existing Open Molding Sources, New Open Molding Sources Emitting...

    Science.gov (United States)

    2010-07-01

    ... lb/ton. 522 lb/ton. 7. centrifugal casting—CR/HS a. resin application with the mold closed, and the mold is vented during spinning and cureb. resin application with the mold closed, and the mold is not vented during spinning and cure c. resin application with the mold open, and the mold is vented during...

  14. Melting and casting of FeAl-based cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K. [Oak Ridge National Lab., TN (United States); Wilkening, D. [Columbia Falls Aluminum Co., Columbia Falls, MT (United States); Liebetrau, J.; Mackey, B. [AFFCO, L.L.C., Anaconda, MT (United States)

    1998-11-01

    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{trademark} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast.

  15. Effect of Casting Parameters on the Microstructural and Mechanical Behavior of Magnesium AZ31-B Alloy Strips Cast on a Single Belt Casting Simulator

    Directory of Open Access Journals (Sweden)

    Ahmad Changizi

    2014-01-01

    Full Text Available Strips of magnesium alloy AZ31-B were cast on a simulator of a horizontal single belt caster incorporating a moving mold system. Mixtures of CO2 and sulfur hexafluoride (SF6 gases were used as protective atmosphere during melting and casting. The castability of the AZ31-B strips was investigated for a smooth, low carbon steel substrate, and six copper substrates with various textures and roughnesses. Graphite powder was used to coat the substrates. The correlation between strip thickness and heat flux was investigated. It was found that the heat flux from the forming strip to the copper substrate was higher than that to the steel substrate, while coated substrates registered lower heat fluxes than uncoated substrates. The highest heat flux from the strip was recorded for casting on macrotextured copper substrates with 0.15 mm grooves. As the thickness of the strip decreased, the net heat flux decreased. As the heat flux increased, the grain sizes of the strips were reduced, and the SDAS decreased. The mechanical properties were improved when the heat flux increased. The black layers which formed on the strips’ surfaces were analyzed and identified as nanoscale MgO particles. Nano-Scale particles act as light traps and appeared black.

  16. Effects of mold geometry on fiber orientation of powder injection molded metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Faiz, E-mail: faizahmad@petronas.com.my; Aslam, Muhammad, E-mail: klaira73@gmail.com; Altaf, Khurram, E-mail: khurram.altaf@petronas.com.my; Shirazi, Irfan, E-mail: irfanshirazi@hotmail.com [Mechanical Engineering Universiti Teknologi PETRONAS Malaysia (Malaysia)

    2015-07-22

    Fiber orientations in metal matrix composites have significant effect on improving tensile properties. Control of fiber orientations in metal injection molded metal composites is a difficult task. In this study, two mold cavities of dimensions 6x6x90 mm and 10x20x180 mm were used for comparison of fiber orientation in injection molded metal composites test parts. In both mold cavities, convergent and divergent flows were developed by modifying the sprue dimensions. Scanning electron microscope (SEM) was used to examine the fiber orientations within the test samples. The results showed highly aligned fiber in injection molded test bars developed from the convergent melt flow. Random orientation of fibers was noted in the composites test bars produced from divergent melt flow.

  17. Creating mold-free buildings: a key to avoiding health effects of indoor molds.

    Science.gov (United States)

    Small, Bruce M

    2003-08-01

    In view of the high costs of building diagnostics and repair subsequent to water damage--as well as the large medical diagnostic and healthcare costs associated with mold growth in buildings--commitment to a philosophy of proactive preventive maintenance for home, apartment, school, and commercial buildings could result in considerable cost savings and avoidance of major health problems among building occupants. The author identifies common causes of mold growth in buildings and summarizes key building design and construction principles essential for preventing mold contamination indoors. Physicians and healthcare workers must be made aware of conditions within buildings that can give rise to mold growth, and of resulting health problems. Timely advice provided to patients already sensitized by exposure to molds could save these individuals, and their families, from further exposures as a result of inadequate building maintenance or an inappropriate choice of replacement housing.

  18. Mathematical modeling of the process of filling a mold during injection molding of ceramic products

    Science.gov (United States)

    Kulkov, S. N.; Korobenkov, M. V.; Bragin, N. A.

    2015-10-01

    Using the software package Fluent it have been predicted of the filling of a mold in injection molding of ceramic products is of great importance, because the strength of the final product is directly related to the presence of voids in the molding, making possible early prediction of inaccuracies in the mold prior to manufacturing. The calculations were performed in the formulation of mathematical modeling of hydrodynamic turbulent process of filling a predetermined volume of a viscous liquid. The model used to determine the filling forms evaluated the influence of density and viscosity of the feedstock, and the injection pressure on the mold filling process to predict the formation of voids in the area caused by the shape defect geometry.

  19. Injection molding simulation with variothermal mold temperature control of highly filled polyphenylene sulfide

    Science.gov (United States)

    Birkholz, A.; Tschiersky, M.; Wortberg, J.

    2015-05-01

    For the installation of a fuel cell stack to convert chemical energy into electricity it is common to apply bipolar plates to separate and distribute reaction gases and cooling agents. For reducing manufacturing costs of bipolar plates a fully automated injection molding process is examined. The high performance thermoplastic matrix material, polyphenylene sulfide (PPS), defies against the chemical setting and the operation temperature up to 200 °C. To adjust also high electrical and thermal conductivity, PPS is highly filled with various carbon fillers up to an amount of 65 percentage by volume. In the first step two different structural plates (one-sided) with three different gate heights and molds are designed according to the characteristics of a bipolar plate. To cope with the approach that this plate should be producible on standard injection molding machines with variothermal mold temperature control, injection molding simulation is used. Additionally, the simulation should allow to formulate a quality prediction model, which is transferrable to bipolar plates. Obviously, the basis for a precise simulation output is an accurate description of the material properties and behavior of the highly filled compound. This, the design of the structural plate and mold and the optimization via simulation is presented, as well. The influence of the injection molding process parameters, e.g. injection time, cycle times, packing pressure, mold temperature, and melt temperature on the form filling have been simulated to determine optimal process conditions. With the aid of the simulation and the variothermal mold temperature control it was possible to reduce the required melt temperature below the decomposition temperature of PPS. Thereby, hazardous decomposition products as hydrogen sulfide are obviated. Thus, the health of the processor, the longevity of the injection molding machine as well as the material and product properties can be protected.

  20. Environmental impact estimation of mold making process

    Science.gov (United States)

    Kong, Daeyoung

    Increasing concern of environmental sustainability regarding depletion of natural resources and resulting negative environmental impact has triggered various movements to address these issues. Various regulations about product life cycle have been made and applied to industries. As a result, how to evaluate the environmental impact and how to improve current technologies has become an important issue to product developers. Molds and dies are very generally used manufacturing tools and indispensible parts to the production of many products. However, evaluating environmental impact in mold and die manufacturing is not well understood and not much accepted yet. The objective of this thesis is to provide an effective and straightforward way of environmental analysis for mold and die manufacturing practice. For this, current limitations of existing tools were identified. While conventional life cycle assessment tools provide a lot of life cycle inventories, reliable data is not sufficient for the mold and die manufacturer. Even with comprehensive data input, current LCA tools only provide another comprehensive result which is not directly applicable to problem solving. These issues are critical especially to the mold and die manufacturer with limited resource and time. This thesis addresses the issues based on understanding the needs of mold and die manufacturers. Computer aided manufacturing (CAM) is the most frequently used software tool and includes most manufacturing information including the process definition and sometimes geometric modeling. Another important usage of CAM software tools is problem identification by process simulation. Under the virtual environment, possible problems are detected and solved. Environmental impact can be handled in the same manner. To manufacture molds and dies with minimizing the associated environmental impact, possible environmental impact sources must be minimized before the execution in the virtual environment. Molds and dies

  1. Construction and analysis of dynamic solidification curves for non-equilibrium solidification process in lost-foam casting hypo-eutectic gray cast iron

    Directory of Open Access Journals (Sweden)

    Ming-guo Xie

    2017-05-01

    Full Text Available Most lost-foam casting processes involve non-equilibrium solidification dominated by kinetic factors, while construction of a common dynamic solidification curve is based on pure thermodynamics, not applicable for analyses and research of non-equilibrium macro-solidification processes, and the construction mode can not be applied to non-equilibrium solidification process. In this study, the construction of the dynamic solidification curve (DSC for the non-equilibrium macro-solidification process included: a modified method to determine the start temperature of primary austenite precipitation (TAL and the start temperature of eutectic solidification (TES; double curves method to determine the temperature of the dendrite coherency point of primary austenite (TAC and the temperature of eutectic cells collision point (TEC; the “technical solidus” method to determine the end temperature of eutectic reaction (TEN. For this purpose, a comparative testing of the non-equilibrium solidification temperature fields in lost-foam casting and green sand mold casting hypoeutectic gray iron was carried out. The thermal analysis results were used to construct the DSCs of both these casting methods under non-equilibrium solidification conditions. The results show that the transformation rate of non-equilibrium solidification in hypoeutectic gray cast iron is greater than that of equilibrium solidification. The eutectic solidification region presents a typical mushy solidification mode. The results also indicate that the primary austenite precipitation zone of lost-foam casting is slightly larger than that of green sand casting. At the same time, the solid fraction (fs of the dendrite coherency points in lost-foam casting is greater than that in the green sand casting. Therefore, from these two points, lost-foam casting is more preferable for reduction of shrinkage and mechanical burnt-in sand tendency of the hypoeutectic gray cast iron. Due to the fact that

  2. Stability of FDTS monolayer coating on aluminum injection molding tools

    DEFF Research Database (Denmark)

    Cech, Jiri; Taboryski, Rafael J.

    2012-01-01

    The injection molding industry often employs prototype molds and mold inserts from melt spun (rapid solidification processing [1,2]) aluminum, especially for applications in optics [3,4], photonics [5] and microfludics. Prototypes are also used for verification of mold filling. The use of aluminum...... tools has reduced lead time (days instead of weeks) and manufacturing cost (30% of conventional mold). Moreover, for aluminum, a surface roughness (RMS) below 5 nm can be obtained with diamond machining [3,4,6]. Conventional mold coatings add cost and complexity, and coatings with thicknesses of a few...

  3. Fabricación de piezas de fundición con grafito esferoidal en molde metálico

    Directory of Open Access Journals (Sweden)

    Urrestarazu, A.

    2013-10-01

    Full Text Available The features and suitability of high requirements ductile iron castings production using metallic moulds have been studied in the present work. The structural and mechanical properties of the produced castings have been analysed and compared to the corresponding ones but fabricated using green sand moulds according to a conventional production process. The higher cooling rate in the metallic moulds is the main cause for the appearance of the detected structural changes in castings. The mechanical and microstructural properties obtained directly on castings are remarkable due to the higher nodule count among other factors. Finally, the benefits and inconveniences found in this kind of production methodology using metallic moulds are also discussed.En este trabajo se estudia el empleo de moldes metálicos o permanentes para la fabricación de piezas de fundición esferoidal con elevados requerimientos funcionales y se analizan sus propiedades, comparándolas con piezas obtenidas utilizando moldes de arena de sílice, de acuerdo con las metodologías más habituales para este tipo de procesos. La elevada velocidad de solidificación y el posterior enfriamiento rápido de la austenita formada en estado sólido se erigen como los principales factores diferenciadores que originan las modificaciones estructurales detectadas en las piezas. Las propiedades físicas, mecánicas y microestructurales obtenidas directamente sobre pieza son destacables debido, entre otros aspectos, al gran número de esferoides grafíticos obtenidos en las piezas. Se discuten también las ventajas e inconvenientes encontrados en esta metodología de producción que emplea moldes fabricados con una aleación metálica específica.

  4. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Clean Steel Casting Production

    Energy Technology Data Exchange (ETDEWEB)

    Kuyucak, Selcuk [CanmetMATERIALS; Li, Delin [CanmetMATERIALS

    2013-12-31

    Inclusions in steel castings can cause rework, scrap, poor machining, and reduced casting performance, which can obviously result in excess energy consumption. Significant progress in understanding inclusion source, formation and control has been made. Inclusions can be defined as non-metallic materials such as refractory, sand, slag, or coatings, embedded in a metallic matrix. This research project has focused on the mold filling aspects to examine the effects of pouring methods and gating designs on the steel casting cleanliness through water modeling, computer modeling, and melting/casting experiments. Early in the research project, comprehensive studies of bottom-pouring water modeling and low-alloy steel casting experiments were completed. The extent of air entrainment in bottom-poured large castings was demonstrated by water modeling. Current gating systems are designed to prevent air aspiration. However, air entrainment is equally harmful and no prevention measures are in current practice. In this study, new basin designs included a basin dam, submerged nozzle, and nozzle extension. The entrained air and inclusions from the gating system were significantly reduced using the new basin method. Near the end of the project, there has been close collaboration with Wescast Industries Inc., a company manufacturing automotive exhaust components. Both computer modeling using Magma software and melting/casting experiments on thin wall turbo-housing stainless steel castings were completed in this short period of time. Six gating designs were created, including the current gating on the pattern, non-pressurized, partially pressurized, naturally pressurized, naturally pressurized without filter, and radial choke gating without filter, for Magma modeling. The melt filling velocity and temperature were determined from the modeling. Based on the simulation results, three gating designs were chosen for further melting and casting experiments on the same casting pattern using

  5. Double blind placebo controlled exposure to molds

    DEFF Research Database (Denmark)

    Meyer, H W; Jensen, K A; Nielsen, K F

    2005-01-01

    The objective was to develop an experimental setup for human exposure to mold spores, and to study the clinical effect of this exposure in sensitive subjects who had previously experienced potentially building-related symptoms (BRS) at work. From three water-damaged schools eight employees....... In conclusion this is, to our knowledge, the first study to successfully conduct a human exposure to a highly controlled dose of fungal material aerosolized directly from wet building materials. This short-term exposure to high concentrations of two different molds induced no more reactions than exposure...... to placebo in eight sensitive school employees. However, a statistical type II error cannot be excluded because of the small sample size. PRACTICAL IMPLICATIONS: In this double blind, placebo controlled study of mold exposure changes in symptoms, objective measurements and blood samples were small and mostly...

  6. Quality Control of Injection Molded Eyewear by Non-Contact Deflectometry

    Science.gov (United States)

    Speck, A.; Zelzer, B.; Langenbucher, A.; Eppig, T.

    2014-07-01

    Occupational eye wear such as safety spectacles are manufactured by injection molding techniques. Testing of the assembled safety spectacle lenses in transmission is state of the art, but there is a lack of surface measurement systems for occupational safety lenses. The purpose of this work was to validate a deflectometric setup for topography measurement, detection of defects and visualization of the polishing quality, e.g. casting indentations or impressions, for the production process of safety spectacles. The setup is based on a customized stereo phase measuring deflectometer (PMD), equipped with 3 cameras with f'1,2 = 16 mm and f'3 = 8.5 mm and a specified measurement uncertainty of ± 3 μm. Sixteen plastic lenses and 8 corresponding injection molds from 4 parallel cavities were used for validation of the deflectometer. For comparison an interferometric method and a reference standard (injections mold surfaces. With the presented setup we were able to quantify the surface quality. This can be useful and may optimize the quality of the end product, in addition to standardized measuring systems in transmission.

  7. Fracture Mechanisms in Steel Castings

    Directory of Open Access Journals (Sweden)

    Stradomski Z.

    2013-09-01

    Full Text Available The investigations were inspired with the problem of cracking of steel castings during the production process. A single mechanism of decohesion - the intergranular one - occurs in the case of hot cracking, while a variety of structural factors is decisive for hot cracking initiation, depending on chemical composition of the cast steel. The low-carbon and low-alloyed steel castings crack due to the presence of the type II sulphides, the cause of cracking of the high-carbon tool cast steels is the net of secondary cementite and/or ledeburite precipitated along the boundaries of solidified grains. Also the brittle phosphor and carbide eutectics precipitated in the final stage solidification are responsible for cracking of castings made of Hadfield steel. The examination of mechanical properties at 1050°C revealed low or very low strength of high-carbon cast steels.

  8. The Elastic Mold Deformation During the Filling and Packing Stage of the Injection Molding Process

    Directory of Open Access Journals (Sweden)

    Stefan Kleindel

    2014-03-01

    Full Text Available The accurate numerical prediction of the mold filling process of long and thin walled parts is dependent on numerous factors. This paper investigates the effect of various influencing variables on the filling pattern by means of simulation and experimental validation. It was found that mold temperature, process settings and venting conditions have little effect on the predicted filling pattern. However, in the actual case study, the filling behavior observed during the experiments was significantly different compared to the numerical prediction. A structural finite element analysis of the moving mold half showed an unacceptable large deformation of the mold plates under injection pressure. A very good correlation between simulation and experiment was attained after improving the stiffness of the mold. Therefore it can be concluded, that the elasticity of the mold may have a significant influence on the filling pattern when long and thin walled products are considered. Furthermore, it was shown, that even an apparently stiff mold can exhibit a distinct deformation during filling and packing stage.

  9. Finite volume modeling of the solidification of an axial steel cast impeller

    Directory of Open Access Journals (Sweden)

    M. Copur

    2014-04-01

    Full Text Available In the foundry industry, obtaining the solidification contours in cast geometries are extremely important to know the last location(s to solidify in order to define the correct feeding path and the number of risers. This paper presents three-dimensional simulation of transient conduction heat transfer within an axial impeller, made of AISI 1016 steel, poured and solidified in chemically bonded mold and core medium, by using FVM technique and ANSYS CFX. Specific heat, density and thermal conductivity of AISI 1016 steel, mold and Core materials are considered as functions of temperatures. In this transient thermal analysis, the convection heat transfer phenomenon is also considered at the outer surfaces of the mold. In order to shorten the run-time, the nonlinear transient analysis has been made for 600/3600 segment of the impeller, core and mold. The solidification contours of the impeller as well as isothermal lines in core and mold have been obtained in 3-D. The cooling curves of diff erent points are also shown in the result section.

  10. Improved Casting Furnace Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Fielding, Randall Sidney [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tolman, David Donald [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-02-01

    In an attempt to ensure more consistent casting results and remove some schedule variance associated with casting, an improved casting furnace concept has been developed. The improved furnace uses the existing arc melter hardware and glovebox utilities. The furnace concept was designed around physical and operational requirements such as; a charge sized of less than 30 grams, high heating rates and minimal additional footprint. The conceptual model is shown in the report as well as a summary of how the requirements were met.

  11. Birefringence characterization of injection molded microplates

    Science.gov (United States)

    Adhikari, Achyut; Asundi, Anand

    2015-03-01

    Birefringence affects the quality of image analysis in injection molded micro-plates. Depending upon their manufacturing / production processes and the type of material, different plates exhibit varying amounts of birefringence. This birefringence is attributed to residual stress generated during the molding process. Polarimeter is the standard tool for birefringence distribution visualization and quantification. Broad chemical resistance and high mechanical stability of the plates are the desirable properties that can be characterized by birefringence measurement. Birefringence, expressed in nm/cm is light retardance (nm) after passing through a sample with certain thickness (cm). Low or uniform birefringence plates provide high-resolution demonstrating higher performance, hence suitable for bio-chemical analysis.

  12. Steel Casting Requirements for Ordnance.

    Science.gov (United States)

    Steel , *Castings, *Nondestructive testing , * Charpy impact tests , Tensile properties, Loads(Forces), Toughness, Hardness, Etching, Heat treatment, Microstructure, Shells(Structural forms), Economic analysis

  13. Ladle and Continuous Casting Process Models for Reduction of SiO2 in SiO2-Al2O3-CaO Slags by Al in Fe-Al(-Si) Melts

    Science.gov (United States)

    Park, Jiwon; Sridhar, S.; Fruehan, Richard J.

    2015-02-01

    Based on a mixed control or two-phase mass transfer model considering mass transport in the metal and the slag phases, process models for ladle and continuous castor mold were developed to predict the changes in the metal and the slag chemistry and viscosity. In the ladle process model, the rate of reaction is primarily determined by stirring gas flow rate, which greatly alters the mass transports of the metal and the slag phases. In the continuous casting process model, the effects of the Al, Si, and SiO2 contents in the incoming flow of the fluid phases, casting speed, mold flux consumption rate, and depth of the liquid mold flux pool on the steady-state compositions of the metal and the mold flux were assessed.

  14. Effect of Functional Nano Channel Structures Different Widths on Injection Molding and Compression Molding Replication Capabilities

    DEFF Research Database (Denmark)

    Calaon, M.; Tosello, G.; Garnaes, J.

    The present study investigates the capabilities of the two employed processes, injection molding (IM) and injection compression molding (ICM) on replicating different channel cross sections. Statistical design of experiment was adopted to optimize replication quality of produced polymer parts...... with the two different molding technologies. Focus of the experimental work was the assessment of the IM and ICM processes capabilities to replicate different channels widths (240 nm, 440 nm and 1040 nm) at different positions from the gate based on the deviations of their dimensions from the corresponding...

  15. Reduction of Injection Pressure for Thin Walled Molding using the Laser Metal Sintered Mold

    OpenAIRE

    米山, 猛; 内藤, 圭亮; 阿部, 諭; 宮丸, 充

    2010-01-01

    Using milling combined laser metal sintering, porous surface has been fabricated on the thin walled cavity closed by the surrounded thick cavity in the injection mold. Resin flows into the cavity of 2mm thick at first around the thin part and then flows into the thin cavity of 0.2mm thick with 11mm square by packing pressure. The packing pressure for filling the thin part was compared among laser metal sintered mold with or without porous surface, steel mold with or without porous block. The ...

  16. Tool steel quality and surface finishing of plastic molds

    Directory of Open Access Journals (Sweden)

    Rafael Agnelli Mesquita

    2010-01-01

    Full Text Available Plastic industry is today in a constant growth, demanding several products from other segments, which includes the plastic molds, mainly used in the injection molding process. Considering all the requirements of plastic molds, the surface finishing is of special interest, as the injected plastic part is able to reproduce any details (and also defects from the mold surface. Therefore, several aspects on mold finishing are important, mainly related to manufacturing conditions - machining, grinding, polishing and texturing, and also related to the tool steel quality, in relation to microstructure homogeneity and non-metallic inclusions (cleanliness. The present paper is then focused on this interrelationship between steel quality and manufacturing process, which are both related to the final quality of plastic mold surfaces. Examples are discussed in terms of surface finishing of plastic molds and the properties or the microstructure of mold steels.

  17. EPA Scientists Develop Research Methods for Studying Mold Fact Sheet

    Science.gov (United States)

    In 2002, U.S. Environmental Protection Agency researchers developed a DNA-based Mold Specific Quantitative Polymerase Chain Reaction method (MSQPCR) for identifying and quantifying over 100 common molds and fungi.

  18. Molding of Aluminum Foams by Using Hot Powder Extrusion

    Directory of Open Access Journals (Sweden)

    Yoshitaka Tanino

    2012-06-01

    Full Text Available In order to form aluminum foams directly from powder, a combined process of hot powder extrusion and molding is proposed. Aluminum powder mixed with a foaming agent is extruded into the mold through the die heated to a temperature higher than the melting point, and the mold is filled with the aluminum foam. When a stainless steel pipe is used for a simple mold, an aluminum foam bar is obtained of which the relative density varies between 0.2 and 0.3. The molding of aluminum foam by using three types of mold shape shows the influence of gravity and friction. The effect of gravity is significant when a large step exists at the connection between the mold inlet and the die outlet, and friction is dominant in cases where foam is mold in a narrow space.

  19. Research on investment casting of TiAl alloy agitator treated by HIP and HT

    Directory of Open Access Journals (Sweden)

    LI Zhen-xi

    2007-05-01

    Full Text Available Using TiAl alloy to substitute superalloy is a hot topic in aeroengine industry because of its low density,high elevated temperature strength, and anti-oxidization ability. In this research, Ti-47.5AL-2Cr-2Nb-0.2B alloy was used as the test material. By applying a combination process of ceramic shell mold and core making, vacuum arc melting and centrifugal pouring, and heat isostatic pressing (HIP and heat treatment (HT etc., the TiAl vortex agitator casting for aeroengine was successfully made. This paper introduced key techniques in making the TiAl vortex agitator with investment casting process, provided some experimental results including mechanical properties and machinability, and explained some concerns that could affect applications of TiAl castings.

  20. COMPUTER AIDED THREE DIMENSIONAL DESIGN OF MOLD COMPONENTS

    Directory of Open Access Journals (Sweden)

    Kerim ÇETİNKAYA

    2000-02-01

    Full Text Available Sheet metal molding design with classical methods is formed in very long times calculates and drafts. At the molding design, selection and drafting of most of the components requires very long time because of similar repetative processes. In this study, a molding design program has been developed by using AutoLISP which has been adapted AutoCAD packet program. With this study, design of sheet metal molding, dimensioning, assemly drafting has been realized.

  1. Colour Metallography of Cast Iron - White Cast Iron (Ⅱ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2011-11-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  2. Development of precision casting in high speed steel; Seimitsu chuzo haisu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, H.; Fujii, T. [Daido Steel Co. Ltd., Nagoya (Japan)

    1997-07-25

    As to the high speed steel manufactured by precision casting process, effect of decarbonization technology and low temperature casting, and difference between the characteristics of a steel and a high speed steel were examined. The high speed steel was cast by vacuum casing process using a mold manufactured by the lost wax process. Effect of superheating in casting on the product structure and the bending strength was examined. Decarbonization can be prevented by the vacuum casting process. By low temperature casting, the high speed steel structure becomes fine, and the bending strength or toughness is improved; 80% of the T-direction bending strength of the steel can be secured in the high speed steel. The high speed steel exceeds the steel by a little bit in abrasion resistance. When the high speed steel was applied to a spiral cutter, the high speed steel product exceeded 1.2 times the machined steel in the tool life. In the high speed steel, the cutting process is drastically reduced, and reduction of the material cost is also possible compared with the machined steel. The high speed steel is considered to show good results because of excellent abrasion resistance since the tool life depended more on abrasion than on toughness because of the machining conditions. 4 refs., 8 figs., 2 tabs.

  3. Progress in Titanium Metal Powder Injection Molding.

    Science.gov (United States)

    German, Randall M

    2013-08-20

    Metal powder injection molding is a shaping technology that has achieved solid scientific underpinnings. It is from this science base that recent progress has occurred in titanium powder injection molding. Much of the progress awaited development of the required particles with specific characteristics of particle size, particle shape, and purity. The production of titanium components by injection molding is stabilized by a good understanding of how each process variable impacts density and impurity level. As summarized here, recent research has isolated the four critical success factors in titanium metal powder injection molding (Ti-MIM) that must be simultaneously satisfied-density, purity, alloying, and microstructure. The critical role of density and impurities, and the inability to remove impurities with sintering, compels attention to starting Ti-MIM with high quality alloy powders. This article addresses the four critical success factors to rationalize Ti-MIM processing conditions to the requirements for demanding applications in aerospace and medical fields. Based on extensive research, a baseline process is identified and reported here with attention to linking mechanical properties to the four critical success factors.

  4. Progress in Titanium Metal Powder Injection Molding

    Directory of Open Access Journals (Sweden)

    Randall M. German

    2013-08-01

    Full Text Available Metal powder injection molding is a shaping technology that has achieved solid scientific underpinnings. It is from this science base that recent progress has occurred in titanium powder injection molding. Much of the progress awaited development of the required particles with specific characteristics of particle size, particle shape, and purity. The production of titanium components by injection molding is stabilized by a good understanding of how each process variable impacts density and impurity level. As summarized here, recent research has isolated the four critical success factors in titanium metal powder injection molding (Ti-MIM that must be simultaneously satisfied—density, purity, alloying, and microstructure. The critical role of density and impurities, and the inability to remove impurities with sintering, compels attention to starting Ti-MIM with high quality alloy powders. This article addresses the four critical success factors to rationalize Ti-MIM processing conditions to the requirements for demanding applications in aerospace and medical fields. Based on extensive research, a baseline process is identified and reported here with attention to linking mechanical properties to the four critical success factors.

  5. A REVOLUTION IN MOLD IDENTIFICATION AND ENUMERATION

    Science.gov (United States)

    More than 100 assay were developed to identify and quantify indoor molds using quantitiative PCR (QPCR) assays. This technology incorporates fluorigenic 5' nuclease (TaqMan�) chemistry directed at the nuclear ribosomal RNA operon internal transcribed spacer regions (ITS1 or ITS2...

  6. Improved mold release for filled-silicone compounds

    Science.gov (United States)

    Accountius, O. E.

    1973-01-01

    Ceramic and filled-plastic materials used for fabrication of tiles are relatively brittle and easily break as they are being removed from molds. Dusting mold surfaces with commercially available glass microspheres provides mold release superior to existing spray releases. Glass-microsphere dusting also permits removal of uncured tile which has very little strength.

  7. 21 CFR 874.3430 - Middle ear mold.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Middle ear mold. 874.3430 Section 874.3430 Food... DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3430 Middle ear mold. (a) Identification. A middle ear mold is a preformed device that is intended to be implanted to reconstruct the middle ear...

  8. Study of injection molded microcellular polyamide-6 nanocomposites

    Science.gov (United States)

    Mingjun Yuan; Lih-Sheng Turng; Shaoqin Gong; Daniel Caulfield; Chris Hunt; Rick Spindler

    2004-01-01

    This study aims to explore the processing benefits and property improvements of combining nanocomposites with microcellular injection molding. The microcellular nanocomposite processing was performed on an injection-molding machine equipped with a commercially available supercritical fluid (SCF) system. The molded samples produced based on the Design of Experiments (...

  9. Multilevel micro-structuring of glassy carbon molds for precision glass molding

    Science.gov (United States)

    Prater, Karin; Dukwen, Julia; Scharf, Toralf; Herzig, Hans Peter; Plöger, Sven; Hermerschmidt, Andreas

    2015-09-01

    Replication techniques for diffractive optical elements (DOEs) in soft materials such as plastic injection molding are state of the art. For precision glass molding in glasses with high transition temperatures, molds with extreme thermal resistivity, low chemical reactivity and high mechanical strength are needed. Glassy Carbon can be operated up to 2000°C making it possible to mold almost all glasses including Fused Silica with a transition temperatures above 1060°C. For the structuring of Glassy Carbon wafers photolithography and a RIE process is used. We have developed a process using Si as a hard mask material. If the flow rates of the etching gases O2 and SF6 are chosen properly, high selectivity of GC to Si 19:1 can be achieved, which provides excellent conditions to realize high resolution elements with feature size down to 1 micron and fulfills requirements for optical applications. We fabricated several multilevel GC molds with 8 levels of structuring. Two different optical functionalities were implemented: 6x6 array beamsplitter and 1x4 linear beamsplitter. The molds were applied for precision glass molding of a low Tg glass L-BAL 42 (from Ohara) with a transition temperature of 565°C. Their optical performance was measured. A more detailed analysis of the impact of mold fabrication defects on optical performance is done. Rigorous coupled wave analysis simulations are performed, where we included fabrication constrains such as duty cycle, edge depth errors, wall verticality and misalignment errors. We will compare the results with the design specifications and discuss the influence of fabrication errors introduced during the different process steps.

  10. Education and Caste in India

    Science.gov (United States)

    Chauhan, Chandra Pal Singh

    2008-01-01

    This paper analyses the policy of reservation for lower castes in India. This policy is similar to that of affirmative action in the United States. The paper provides a brief overview of the caste system and discusses the types of groups that are eligible for reservation, based on data from government reports. The stance of this paper is that…

  11. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Lost Foam Thin Wall - Feasibility of Producing Lost Foam Castings in Aluminum and Magnesium Based Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fasoyinu, Yemi [CanmetMATERIALS; Griffin, John A. [University of Alabama - Birmingham

    2014-03-31

    With the increased emphasis on vehicle weight reduction, production of near-net shape components by lost foam casting will make significant inroad into the next-generation of engineering component designs. The lost foam casting process is a cost effective method for producing complex castings using an expandable polystyrene pattern and un-bonded sand. The use of un-bonded molding media in the lost foam process will impose less constraint on the solidifying casting, making hot tearing less prevalent. This is especially true in Al-Mg and Al-Cu alloy systems that are prone to hot tearing when poured in rigid molds partially due to their long freezing range. Some of the unique advantages of using the lost foam casting process are closer dimensional tolerance, higher casting yield, and the elimination of sand cores and binders. Most of the aluminum alloys poured using the lost foam process are based on the Al-Si system. Very limited research work has been performed with Al-Mg and Al-Cu type alloys. With the increased emphasis on vehicle weight reduction, and given the high-strength-to-weight-ratio of magnesium, significant weight savings can be achieved by casting thin-wall (≤ 3 mm) engineering components from both aluminum- and magnesium-base alloys.

  12. Hydrophobicity Tuning by the Fast Evolution of Mold Temperature during Injection Molding

    Directory of Open Access Journals (Sweden)

    Sara Liparoti

    2018-03-01

    Full Text Available The surface topography of a molded part strongly affects its functional properties, such as hydrophobicity, cleaning capabilities, adhesion, biological defense and frictional resistance. In this paper, the possibility to tune and increase the hydrophobicity of a molded polymeric part was explored. An isotactic polypropylene was injection molded with fast cavity surface temperature evolutions, obtained adopting a specifically designed heating system layered below the cavity surface. The surface topology was characterized by atomic force microscopy (AFM and, concerning of hydrophobicity, by measuring the water static contact angle. Results show that the hydrophobicity increases with both the temperature level and the time the cavity surface temperature was kept high. In particular, the contact angle of the molded sample was found to increase from 90°, with conventional molding conditions, up to 113° with 160 °C of cavity surface temperature kept for 18 s. This increase was found to be due to the presence of sub-micro and nano-structures characterized by high values of spatial frequencies which could be more accurately replicated by adopting high heating temperatures and times. The surface topography and the hydrophobicity resulted therefore tunable by selecting appropriate injection molding conditions.

  13. Colour Metallography of Cast Iron

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2009-05-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron.Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron , uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditionalmaterials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  14. Caste, social stigma and identity processes

    OpenAIRE

    Jaspal, Rusi

    2011-01-01

    Caste persists as an important socio-psychological phenomenon in many spheres of Indian social life and particularly within village contexts. It is argued that socio-psychological insights into caste identity and caste- based stigma may complement ongoing sociological and anthropological research into caste. Drawing upon identity process theory, this article explores the possible functions performed by caste-based stigma both for the higher caste groups (HCGs) and the ‘Scheduled Caste’ (SC) g...

  15. Indoor Molds and Respiratory Hypersensitivity: A Comparison of Selected Molds and House Dust Mite Induced Responses in a Mouse Model

    Science.gov (United States)

    Introduction/Study Goal Molds are ubiquitous in the environment and exposures to molds contribute to various human diseases including allergic lung diseases. The Institute of Medicine reports and WHO gUidelines concluded that the role of molds in asthma induction is not clear bu...

  16. Casting Molding of PDCPD Material for Purpose of Car’s Power Steering Body

    Science.gov (United States)

    Grabowski, L.; Baier, A.; Sobek, M.

    2018-01-01

    The growing industry of polymer and composite materials is facing new challenges posed by the automotive industry. In this industry, traditional materials such as steel and aluminum are widely replaced with plastic materials, including polymers. In the past, such behavior concerned design and interior elements, but more and more often plastics are used in the case of load-bearing elements, i.e. those that require high strength and durability nowadays. This kind of materials are also often used in safety systems or driver assistance systems. Therefore, the aim of the activities described in this article are to carry out an innovative process of injection of cold polymeric material, PDCPD (Polidicyclopentadiene), polymerizing with the use of Metathesis reaction, which in 2005 was awarded the Nobel Prize. This injection applies to the worm gear components of the system, supports the power steering system of the passenger car. Also the process of selecting the appropriate parameters to carry out this process, guaranteeing the best quality of the obtained elements is necessary. The aim of the activities was to achieve a fully useful power steering support system, using a polymer body, which is replacing the aluminum. These activities were aimed at reducing the costs and weight of the final product. The injection process and the way to achieve the finished product were carried out in an innovative way, never used in industry before.

  17. Microstructures and creep properties of Mg–4Al–(1–4) La alloys produced by different casting techniques

    International Nuclear Information System (INIS)

    Bai Jing; Sun Yangshan; Xue Feng; Qiang Jing

    2012-01-01

    The microstructures, mechanical properties and creep resistance of Mg–4Al–(1–4) La alloys produced by permanent mold casting and high pressure die casting (HPDC) were investigated. In addition to solute atoms in α-Mg matrix, Al element may exist in the form of three different intermetallic phases in the present alloys depending on the experimental conditions. In both casting states, the increase of La addition results in a rise in the volume fraction of Al 11 La 3 eutectic, and simultaneously Mg 17 Al 12 phase, including divorced eutectic in as-cast state and discontinuous precipitation after creep, is suppressed until completely disappears. This leads to a gradual increase in creep resistance. The formation of more Mg 17 Al 12 phase in HPDC alloys is considered a major factor in causing their worse creep properties by comparison with that of the permanent mold casting alloys when La content is in a lower level below 2 wt.%. By contrast, the HPDC alloys show better creep resistance with La content added above 2 wt.% owing to the formation of denser network distribution of Al 11 La 3 phase along grain/dendrite boundaries as a result of more rapid solidification rate and higher solidification pressure. For the alloys studied, grain/dendrite boundary sliding is suggested to be a possible controlling mechanism responsible for creep deformation at elevated temperatures.

  18. Evaluation of stability for monolayer injection molding tools coating

    DEFF Research Database (Denmark)

    Cech, Jiri; Taboryski, Rafael J.

    2012-01-01

    We tested and characterized molecular coating of Aluminium and Nickel prototype molds and mold inserts for polymer replication via injection molding (IM). X-Ray photoelectron spectroscopy (XPS) data, sessile drop contact angles with multiple fluids, surface energy and roughness data have been....... Detectable coating presence was indicated by an increased angle on all post IM samples. To conclude, we present mold coating evaluation method, which is well suited for ultrathin, controlable, covalently bonded coating, that is reasonably durable, affordable, scalable to production, detectable on surface...... and especially suitable for rapid prototyping and mold geometry testing....

  19. Testing single point incremental forming molds for thermoforming operations

    Science.gov (United States)

    Afonso, Daniel; de Sousa, Ricardo Alves; Torcato, Ricardo

    2016-10-01

    Low pressure polymer processing processes as thermoforming or rotational molding use much simpler molds then high pressure processes like injection. However, despite the low forces involved with the process, molds manufacturing for this operations is still a very material, energy and time consuming operation. The goal of the research is to develop and validate a method for manufacturing plastically formed sheets metal molds by single point incremental forming (SPIF) operation for thermoforming operation. Stewart platform based SPIF machines allow the forming of thick metal sheets, granting the required structural stiffness for the mold surface, and keeping the short lead time manufacture and low thermal inertia.

  20. Simulation and Design of a plastic injection mold

    OpenAIRE

    Teklehaimanot, Samson Seged

    2012-01-01

    Injection molding is one of the most important processes in the plastic manufacturing industry. More than one-third of all plastic materials are injection molded, And the mold is one of the main components in the injection molding process. The aim of this engineering thesis is to show detailed steps on how to design a complete mold and using the simulation software to analyze the material flow and defects in the product. The product design for this project is a joint credit card and USB flash...

  1. Development of casting investment preventing blackening of noble metal alloys. Part 4: effect of Mg(OH)2 and Ca(OH)2 as additives.

    Science.gov (United States)

    Nakai, Akira; Ogura, Hideo

    2007-11-01

    The objective of this study was to develop a casting investment that prevents the blackening of the cast surface of noble metal alloys. Experimental investments were prepared using a gypsum-bonded investment in which a hydroxide, namely Mg(OH)2 or Ca(OH)2, was added. An Ag-Pd-Cu-Au alloy was cast into the mold made of the prepared investment. The addition of both hydroxides showed a significant effect on the color of as-cast surfaces, which was improved with increase in additive content. When Mg(OH)2 or Ca(OH)2 was added at more than 4.0 mass% to the investment, it was useful in preventing the blackening of the as-cast surfaces of an Ag-Pd-Cu-Au alloy. As for differences in the effects between Mg(OH)2 and Ca(OH)2, they were not found.

  2. Wavelet Packet Decomposition to Characterize Injection Molding Tool Damage

    Directory of Open Access Journals (Sweden)

    Tomaž Kek

    2016-02-01

    Full Text Available This paper presents measurements of acoustic emission (AE signals during the injection molding of polypropylene with new and damaged mold. The damaged injection mold has cracks induced by laser surface heat treatment. Standard test specimens were injection molded, commonly used for examining the shrinkage behavior of various thermoplastic materials. The measured AE burst signals during injection molding cycle are presented. For injection molding tool integrity prediction, different AE burst signals’ descriptors are defined. To lower computational complexity and increase performance, the feature selection method was implemented to define a feature subset in an appropriate multidimensional space to characterize the integrity of the injection molding tool and the injection molding process steps. The feature subset was used for neural network pattern recognition of AE signals during the full time of the injection molding cycle. The results confirm that acoustic emission measurement during injection molding of polymer materials is a promising technique for characterizing the integrity of molds with respect to damage, even with resonant sensors.

  3. A comparison of molding procedures - Contact, injection and vacuum injection

    Science.gov (United States)

    Cathiard, G.

    1980-06-01

    The technical and economic aspects of the contact, injection and vacuum injection molding of reinforced plastic components are compared for the example of a tractor roof with a gel-coated surface. Consideration is given to the possibility of reinforcement, number of smooth faces, condition of the gel-coated surface, reliability, and labor and workplace requirements of the three processes, and advantages of molding between the mold and a countermold in smooth faces, reliability, labor requirements, working surface and industrial hygiene are pointed out. The times and labor requirements of each step in the molding cycles are examined, and material requirements and yields, investment costs, amortization and product cost prices of the processes are compared. It is concluded that, for the specific component examined, the processes of vacuum injection and injection molding appear very interesting, with injection molding processes resulting in lower cost prices than contact molding for any production volume.

  4. Mold exposure and health effects following hurricanes Katrina and Rita.

    Science.gov (United States)

    Barbeau, Deborah N; Grimsley, L Faye; White, LuAnn E; El-Dahr, Jane M; Lichtveld, Maureen

    2010-01-01

    The extensive flooding in the aftermath of Hurricanes Katrina and Rita created conditions ideal for indoor mold growth, raising concerns about the possible adverse health effects associated with indoor mold exposure. Studies evaluating the levels of indoor and outdoor molds in the months following the hurricanes found high levels of mold growth. Homes with greater flood damage, especially those with >3 feet of indoor flooding, demonstrated higher levels of mold growth compared with homes with little or no flooding. Water intrusion due to roof damage was also associated with mold growth. However, no increase in the occurrence of adverse health outcomes has been observed in published reports to date. This article considers reasons why studies of mold exposure after the hurricane do not show a greater health impact.

  5. Direct molding of pavement tiles made of ground tire rubber

    Science.gov (United States)

    Quadrini, Fabrizio; Gagliardi, Donatella; Tedde, Giovanni Matteo; Santo, Loredana; Musacchi, Ettore

    2016-10-01

    Large rubber products can be molded by using only ground tire rubber (GTR) without any additive or binder due to a new technology called "direct molding". Rubber granules and powders from tire recycling are compression molded at elevated temperatures and pressures. The feasibility of this process was clearly shown in laboratory but the step to the industrial scale was missing. Thanks to an European Project (SMART "Sustainable Molding of Articles from Recycled Tires") this step has been made and some results are reported in this study. The press used for compression molding is described. Some tests were made to measure the energy consumption so as to evaluate costs for production in comparison with conventional technologies for GTR molding (by using binders). Results show that 1 m2 tiles can be easily molded with several thicknesses in a reasonable low time. Energy consumption is higher than conventional technologies but it is lower than the cost for binders.

  6. Stability of FDTS monolayer coating on aluminum injection molding tools

    DEFF Research Database (Denmark)

    Cech, Jiri; Taboryski, Rafael J.

    2012-01-01

    The injection molding industry often employs prototype molds and mold inserts from melt spun (rapid solidification processing [1,2]) aluminum, especially for applications in optics [3,4], photonics [5] and microfludics. Prototypes are also used for verification of mold filling. The use of aluminum...... trichloro-silane based coating deposited on aluminum or its alloys by molecular vapor deposition. We have tested the stability of this coating in challenging conditions of injection molding, an environment with high shear stress from the molten polymer, pressures up to 200 MPa, temperatures up to 250 ◦C...... tools has reduced lead time (days instead of weeks) and manufacturing cost (30% of conventional mold). Moreover, for aluminum, a surface roughness (RMS) below 5 nm can be obtained with diamond machining [3,4,6]. Conventional mold coatings add cost and complexity, and coatings with thicknesses of a few...

  7. Steel castings of valves for nuclear power station

    International Nuclear Information System (INIS)

    Yamasaki, Yutaka

    1975-01-01

    The manufacturing of the steel castings of valves for nuclear power plants is reported. The report is divided in six parts. The first part describes the reliability of the steel castings of valves for nuclear power plants. Particular attention must be paid to larger diameter and lower pressure rating for the valves in nuclear power plants than those in thermal power plants. The second part describes the characteristics of steel casting quality, defects and their cause. The defects that may be produced in steel castings are as follows: (a) cavities caused by the insufficient supply of molten steel, (b) sand bites caused by the mold destruction due to thermal shock, and (c) pinholes caused by the gas absorption of molten steel. The third part describes the clarification of quality level and the measures quality project. Gaseous defects and the indications detected by magnetic powder test are attributed to electric furnace steel making. In particular, the method to minimize gas content is important. The fourth part describes the quality control of manufacturing processes. In practice, thirteen semi-automatic testers using gamma radiation are employed. A full automatic inspection plant having capacity of 20,000 radiographs per month is under design. The fifth part describes a quality warrant system. A check sheet system concerning quality and safety is employed in all work shops. The reliability of all testers and measuring instruments as well as the skill of workmen are examined periodically. The seventh part deals with future problems. The manufacturing plan must be controlled so that non-destructive inspection becomes the main means for quality control. (Iwakiri, K.)

  8. Semi-continuous casting of magnesium alloy AZ91 using a filtered melt delivery system

    Directory of Open Access Journals (Sweden)

    Mainul Hasan

    2015-12-01

    Full Text Available A 3-D numerical simulation of an industrial-sized slab caster for magnesium alloy AZ91 has been carried out for the steady state operational phase of the caster. The simulated model consists of an open-top melt delivery system fitted with a porous filter near the hot-top. The melt flow through the porous filter was modeled on the basis of Brinkmann-Forchimier-Extended non-Darcy model for turbulent flow. An in-house 3-D CFD code was modified to account for the melt flow through the porous filter. Results are obtained for four casting speeds namely, 40, 60, 80, and 100 mm/min. The metal-mold contact region as well as the convective heat transfer coefficient at the mold wall were also varied. In addition to the above, the Darcy number for the porous media was also changed. All parametric studies were performed for a fixed inlet melt superheat of 64 °C. The results are presented pictorially in the form of temperature and velocity fields. The sump depth, mushy region thickness, solid shell thickness at the exit of the mold and axial temperature profiles are also presented and correlated with the casting speed through regression analysis.

  9. Intelligent Machine Vision Based Modeling and Positioning System in Sand Casting Process

    Directory of Open Access Journals (Sweden)

    Shahid Ikramullah Butt

    2017-01-01

    Full Text Available Advanced vision solutions enable manufacturers in the technology sector to reconcile both competitive and regulatory concerns and address the need for immaculate fault detection and quality assurance. The modern manufacturing has completely shifted from the manual inspections to the machine assisted vision inspection methodology. Furthermore, the research outcomes in industrial automation have revolutionized the whole product development strategy. The purpose of this research paper is to introduce a new scheme of automation in the sand casting process by means of machine vision based technology for mold positioning. Automation has been achieved by developing a novel system in which casting molds of different sizes, having different pouring cup location and radius, position themselves in front of the induction furnace such that the center of pouring cup comes directly beneath the pouring point of furnace. The coordinates of the center of pouring cup are found by using computer vision algorithms. The output is then transferred to a microcontroller which controls the alignment mechanism on which the mold is placed at the optimum location.

  10. Formation Mechanism of Surface Crack in Low Pressure Casting of A360 Alloy

    Science.gov (United States)

    Liu, Shan-Guang; Cao, Fu-Yang; Ying, Tao; Zhao, Xin-Yi; Liu, Jing-Shun; Shen, Hong-Xian; Guo, Shu; Sun, Jian-Fei

    2017-12-01

    A surface crack defect is normally found in low pressure castings of Al alloy with a sudden contraction structure. To further understand the formation mechanism of the defect, the mold filling process is simulated by a two-phase flow model. The experimental results indicate that the main reason for the defect deformation is the mismatching between the height of liquid surface in the mold and pressure in the crucible. In the case of filling, a sudden contraction structure with an area ratio smaller than 0.5 is obtained, and the velocity of the liquid front increases dramatically with the influence of inertia. Meanwhile, the pressurizing speed in the crucible remains unchanged, resulting in the pressure not being able to support the height of the liquid level. Then the liquid metal flows back to the crucible and forms a relatively thin layer solidification shell on the mold wall. With the increasing pressure in the crucible, the liquid level rises again, engulfing the shell and leading to a surface crack. As the filling velocity is characterized by the damping oscillations, surface cracks will form at different heights. The results shed light on designing a suitable pressurizing speed for the low pressure casting process.

  11. Quantitative NDT structuroscopy of cast iron castings for vehicles

    Czech Academy of Sciences Publication Activity Database

    Skrbek, B.; Tomáš, Ivan

    2011-01-01

    Roč. 6, 3-4 (2011), s. 293-305 ISSN 1741-8410 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic method * structuroscopy * cast iron * clutch disks Subject RIV: BM - Solid Matter Physics ; Magnetism

  12. Consumable electrode arc casting of copper-refactory metal composites

    International Nuclear Information System (INIS)

    Jones, L.L.; Schmidt, F.A.; Verhoeven, J.D.

    1991-01-01

    This paper reports on consumable electrode arc casting that has been developed as a preparation method for producing high strength/high electrical and thermal conductivity metal-metal matrix composites. Electrode configuration and melting parameters have been studied to improve ingot homogeneity. Alloy ingot impurities have been reduced by a combination of mold material and melting practice. Alloys containing 15 to 20 vol % Cr, Mo, Nb, Ta and V have been prepared with strengths of 150-300 ksi produced in deformation processed Cu-Nb sheet and wire respectively. Significant differences in strengthening behavior are attributed to filament morphology which is related to the deformation mode. Cold axisymmetric deformations of 99.999% reduction in area have been achieved with axisymmetric deformation providing the highest strengthening

  13. Consumable electrode arc casting of copper-refractory metal composites

    International Nuclear Information System (INIS)

    Jones, L.L.; Schmidt, F.A.; Verhoeven, J.D.

    1990-01-01

    This paper reports on consumable electrode arc casting that has been developed as a preparation method for producing high strength/high electrical and thermal conductivity metal-metal matrix composites. Electrode configuration and melting parameters have been studied to improve ingot homogeneity. Alloy ingot impurities have been reduced by a combination of mold material and melting practice. Alloys containing 15 to 20 vol. % Cr, Mo, Nb, Ta and V have been prepared with strengths of 150-300 ksi produced in deformation processed Cu-Nb sheet and wire respectively. Significant differences in strengthening behavior are attributed to filament morphology which is related to the deformation mode. Cold axisymmentric deformations of 99.999% reduction in area have been achieved with axisymmetric deformation providing the highest strengthening

  14. Localized mold heating with the aid of selective induction for injection molding of high aspect ratio micro-features

    International Nuclear Information System (INIS)

    Park, Keun; Lee, Sang-Ik

    2010-01-01

    High-frequency induction is an efficient, non-contact means of heating the surface of an injection mold through electromagnetic induction. Because the procedure allows for the rapid heating and cooling of mold surfaces, it has been recently applied to the injection molding of thin-walled parts or micro/nano-structures. The present study proposes a localized heating method involving the selective use of mold materials to enhance the heating efficiency of high-frequency induction heating. For localized induction heating, a composite injection mold of ferromagnetic material and paramagnetic material is used. The feasibility of the proposed heating method is investigated through numerical analyses in terms of its heating efficiency for localized mold surfaces and in terms of the structural safety of the composite mold. The moldability of high aspect ratio micro-features is then experimentally compared under a variety of induction heating conditions.

  15. Residual stress measurement for injection molded components

    Directory of Open Access Journals (Sweden)

    Achyut Adhikari

    2016-07-01

    Full Text Available Residual stress induced during manufacturing of injection molded components such as polymethyl methacrylate (PMMA affects the mechanical and optical properties of these components. These residual stresses can be visualized and quantified by measuring their birefringence. In this paper, a low birefringence polariscope (LBP is used to measure the whole-field residual stress distribution of these injection molded specimens. Detailed analytical and experimental study is conducted to quantify the residual stress measurement in these materials. A commercial birefringence measurement system was used to validate the results obtained to our measurement system. This study can help in material diagnosis for quality and manufacturing purpose and be useful for understanding of residual stress in imaging or other applications.

  16. Molding of L band niobium superconductor cavity

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Hitoshi; Funahashi, Yoshisato; Saito, Kenji; Noguchi, Shuichi; Koizumi, Susumu [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1995-07-01

    A cavity to produce high accelerating electron field was developed. The L-band (1.3 GHz) niobium superconductor unit cell cavity was ellipsoid with {phi}217.3 mm outer diameter and 2.5 mm thickness and consisted of two pieces of half cell, two beam pipes and flange. A deep drawing process was adapted. In spite of the first trial manufacture, each good cavity was obtained. Characteristic properties of niobium materials, molding method of cavity, extension of sheet after molding, production of beam pipe, accuracy and the cost were explained. Niobium materials. showed tensile strength 15.6 kg/mm{sup 2}, load-carrying capacity 4.1 kg/mm{sup 2}, density 8.57, extension 42.5% and RRR (resistance residual ratio){>=}200. (S.Y.)

  17. NUMERICAL MODELING OF HARDENING OF UNINTERRUPTEDLY-CASTED BRONZE CASTING

    Directory of Open Access Journals (Sweden)

    E. I. Marukovich

    2009-01-01

    Full Text Available The three-dimensional numerical model for calculation of thermal fields during solidification of continuously casted bronze casting is developed. Coefficients of heat transfer on borders of calculation areas on the basis of the solution of inverse heat transfer conduction problem are determined. The analysis of thermal fields, depending on loop variables of drawing and the sizes of not cooled zone of crystallizer is curried out.

  18. Simulation of Distortion and Residual Stress Development During Heat Treatment of Steel Castings

    Energy Technology Data Exchange (ETDEWEB)

    Beckermann, Christoph; Carlson, Kent

    2011-07-22

    of the Navy-C ring (a classical test shape for heat treatment experiments) for several carbon and low alloy steels in order to generate data necessary to validate the code. The predicted distortions were in reasonable agreement with the experimentally measured values. However, the final distortions in the castings were small, making it difficult to determine how accurate the predictions truly are. It is recommended that further validation of the software be performed with the aid of additional experiments with large production steel castings that experience significant heat treatment distortions. It is apparent from this research that the mechanical properties of the bonded sand used for cores and sand molds are key in producing accurate stress simulation results. Because of this, experiments were performed to determine the temperature-dependent elastic modulus of a resin-bonded sand commonly utilized in the steel casting industry. The elastic modulus was seen to vary significantly with heating and cooling rates. Also, the retained room temperature elastic modulus after heating was seen to degrade significantly when the sand was heated above 125°C. The elastic modulus curves developed in this work can readily be utilized in casting simulation software. Additional experiments with higher heating rates are recommended to determine the behavior of the elastic modulus in the sand close to the mold-metal interface. The commercial heat treatment residual stress and distortion code, once fully validated, is expected to result in an estimated energy savings of 2.15 trillion BTU's/year. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology.

  19. Gastroresistant capsular device prepared by injection molding.

    Science.gov (United States)

    Zema, Lucia; Loreti, Giulia; Melocchi, Alice; Maroni, Alessandra; Palugan, Luca; Gazzaniga, Andrea

    2013-01-20

    In the present work, the possibility of manufacturing by injection molding (IM) a gastro-resistant capsular device based on hydroxypropyl methyl cellulose acetate succinate (HPMCAS) was investigated. By performing as an enteric soluble container, such a device may provide a basis for the development of advantageous alternatives to coated dosage forms. Preliminarily, the processability of the selected thermoplastic polymer was evaluated, and the need for a plasticizer (polyethylene glycol 1500) in order to counterbalance the glassy nature of the molded items was assessed. However, some critical issues related to the physical/mechanical stability (shrinkage and warpage) and opening time of the device after the pH change were highlighted. Accordingly, an in-depth formulation study was carried out taking into account differing release modifiers potentially useful for enhancing the dissolution/disintegration rate of the capsular device at intestinal pH values. Capsule prototypes with thickness of 600 and 900 μm containing Kollicoat(®) IR and/or Explotab(®) CLV could be manufactured, and a promising performance was achieved with appropriate gastric resistance in pH 1.2 medium and break-up in pH 6.8 within 1h. These results would support the design of a dedicated mold for the development of a scalable manufacturing process. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Modelling of flow phenomena during DC casting

    NARCIS (Netherlands)

    Zuidema, J.

    2005-01-01

    Modelling of Flow Phenomena during DC Casting Jan Zuidema The production of aluminium ingots, by semi-continuous casting, is a complex process. DC Casting stands for direct chill casting. During this process liquid aluminium transforms to solid aluminium while cooling down. This is not an

  1. Preventing cracks when casting steel slag ladles

    OpenAIRE

    Ivanov, M.; Shvetsov, V.

    2014-01-01

    The paper is dedicated to the improvement of large steel casting technology where slag ladle casting is taken as an example. The temperature measurement of the crystallization process of casting is held. The causes of the formation of cracks are reviewed. To prevent the formation of cracks the recommendations are developed to improve the casting technology.

  2. Guidelines for Selection and Justification of Computeraided Engineering (CAE) Software for Plastic Injection Molding

    OpenAIRE

    Serna Vázquez, Livier

    2004-01-01

    The present research focuses on the use of plastic injection simulation in part design. CAE analysis for injection molding can be used at three different levels: parts design, mold design and molding process troubleshooting. Injection molded plastic parts include the following elements: material, part design, mold design and process. The injection molding process involves many considerations such as part geometry, material, mold design and process variables. The simulation module being consid...

  3. Fast prototyping of injection molded polymer microfluidic chips

    International Nuclear Information System (INIS)

    Hansen, Thomas Steen; Selmeczi, David; Larsen, Niels B

    2010-01-01

    We present fast prototyping of injection molding tools by the definition of microfluidic structures in a light-curable epoxy (SU-8) directly on planar nickel mold inserts. Optimized prototype mold structures could withstand injection molding of more than 300 replicas in cyclic olefin copolymer (COC) without any signs of failure or release. The key parameters to avoid mold failure are maximum adhesion strength of the epoxy to the nickel insert and minimum interfacial energy of the epoxy pattern to the molded polymer. Optimal molding of microstructures with vertical sidewalls was found for nickel inserts pre-coated by silicon oxide before applying the structured epoxy, followed by coating of the epoxy by a fluorocarbon layer prior to injection molding. Further improvements in the mold stability were observed after homogeneous coating of the patterned epoxy by a second reflowed layer of epoxy, likely due to the resulting reduction in sidewall steepness. We employed the latter method for injection molding bondable polymer microfluidic chips with integrated conducting polymer electrode arrays that permitted the culture and on-chip analysis of cell spreading by impedance spectroscopy

  4. Static Mixer for Heat Transfer Enhancement for Mold Cooling Application

    Science.gov (United States)

    Becerra, Rodolfo; Barbosa, Raul; Lee, Kye-Hwan; Park, Younggil

    Injection molding is the process by which a material is melted in a barrel and then it is injected through a nozzle in the mold cavity. When it cools down, the material solidifies into the shape of the cavity. Typical injection mold has cooling channels to maintain constant mold temperature during injection molding process. Even and constant temperature throughout the mold are very critical for a part quality and productivity. Conformal cooling improves the quality and productivity of injection molding process through the implementation of cooling channels that ``conform'' to the shape of the molded part. Recent years, the use of conformal cooling increases with advance of 3D printing technology such as Selective Laser Melting (SLM). Although it maximizes cooling, material and dimension limitations make SLM methods highly expensive. An alternative is the addition of static mixers in the molds with integrated cooling channels. A static mixer is a motionless mixing device that enhances heat transfer by producing improved flow mixing in the pipeline. In this study, the performance of the cooling channels will be evaluated with and without static mixers, by measuring temperature, pressure drop, and flow rate. The following question is addressed: Can a static mixer effectively enhance heat transfer for mold cooling application processes? This will provide insight on the development of design methods and guidelines that can be used to increase cooling efficiency at a lower cost.

  5. The CAST Time Projection Chamber

    CERN Document Server

    Autiero, D.; Carmona, J.M.; Cebrian, S.; Chesi, E.; Davenport, M.; Delattre, M.; Di Lella, L.; Formenti, F.; Irastorza, I.G.; Gomez, H.; Hasinoff, M.; Lakic, B.; Luzon, G.; Morales, J.; Musa, L.; Ortiz, A.; Placci, A.; Rodriguez, A.; Ruz, J.; Villar, J.A.; Zioutas, K.

    2007-01-01

    One of the three X-ray detectors of the CAST experiment searching for solar axions is a Time Projection Chamber (TPC) with a multi-wire proportional counter (MWPC) as a readout structure. Its design has been optimized to provide high sensitivity to the detection of the low intensity X-ray signal expected in the CAST experiment. A low hardware threshold of 0.8 keV is safely set during normal data taking periods, and the overall efficiency for the detection of photons coming from conversion of solar axions is 62 %. Shielding has been installed around the detector, lowering the background level to 4.10 x 10^-5 counts/cm^2/s/keV between 1 and 10 keV. During phase I of the CAST experiment the TPC has provided robust and stable operation, thus contributing with a competitive result to the overall CAST limit on axion-photon coupling and mass.

  6. Some Theoretical Considerations on Caste

    Directory of Open Access Journals (Sweden)

    Madhusudan Subedi

    2014-05-01

    Full Text Available Caste as a system of social stratification was an encompassing system in the past. There was reciprocal system of exchange goods and services. With time, occupation and mode of generation of livelihood of various caste groups changed, and the traditional form of jajmani system fizzled out. This paper provides an account of changing perspectives of caste relations in social science writing and political discourse. The discourse of caste has been shifted from ritual hierarchy and social discrimination to an instrument to mobilize people for economic and political gain. DOI: http://dx.doi.org/10.3126/dsaj.v7i0.10437 Dhaulagiri Journal of Sociology and Anthropology Vol. 7, 2013; 51-86

  7. Ultra-high vacuum compatible induction-heated rod casting furnace.

    Science.gov (United States)

    Bauer, A; Neubauer, A; Münzer, W; Regnat, A; Benka, G; Meven, M; Pedersen, B; Pfleiderer, C

    2016-06-01

    We report the design of a radio-frequency induction-heated rod casting furnace that permits the preparation of polycrystalline ingots of intermetallic compounds under ultra-high vacuum compatible conditions. The central part of the system is a bespoke water-cooled Hukin crucible supporting a casting mold. Depending on the choice of the mold, typical rods have a diameter between 6 mm and 10 mm and a length up to 90 mm, suitable for single-crystal growth by means of float-zoning. The setup is all-metal sealed and may be baked out. We find that the resulting ultra-high vacuum represents an important precondition for processing compounds with high vapor pressures under a high-purity argon atmosphere up to 3 bars. Using the rod casting furnace, we succeeded to prepare large high-quality single crystals of two half-Heusler compounds, namely, the itinerant antiferromagnet CuMnSb and the half-metallic ferromagnet NiMnSb.

  8. Polymer-melt interactions during casting formation in the lost foam process

    Energy Technology Data Exchange (ETDEWEB)

    Shivkumar, S.; Yao, X.; Makhlouf, M. [Worcester Polytechnic Inst., MA (United States). Dept. of Mechanical Engineering

    1995-07-01

    The lost foam casting process utilizes injection modeled polymeric foam patterns for the production of metallic components. Foamed polymer patterns of the desired shape are coated with a water-based refractory slurry, dried and embedded in unbonded sand. Molten metal is poured directly on the coated polymer. The polymer undergoes thermal degradation and is gradually replaced by the liquid metal to yield the casting after solidification. Expanded polystyrene (EPS) is the most common pattern material used in commercial practice. The use of EPS patterns with ferrous castings may result in the formation of carbonaceous defects in the casting. Consequently, polymethylmethacrylate (PMMA) and copolymers of EPS and PMMA have been developed for ferrous castings. The thermal degradation of the foamed pattern results in the formation of gaseous degradation products and of a partially depolymerized viscous residue. The fraction of viscous residue increased with temperature and is essentially constant above about 650 C. During the filling of EPS patterns, nearly 60% of the polymer is converted to the viscous residue and 40% is transformed to gaseous products. In the case of PMM, almost 60% of the polymer undergoing degradation at the metal front is transformed to gaseous products. The melt flow velocity during the filling of the mold generally increases with temperature.

  9. The simulation of magnesium wheel low pressure die casting based on PAM-CASTTM

    International Nuclear Information System (INIS)

    Peng Yinghong; Wang Yingchun; Li Dayong; Zeng Xiaoqin

    2004-01-01

    Magnesium is the lightest metal commonly used in engineering, with various excellent characteristics such as high strength and electromagnetic interference shielding capability. Particularly, the usage of magnesium in automotive industry can meet better the need to reduce fuel consumption and CO2 emissions. Nowadays, most current magnesium components in automobiles are made by die casting. In this paper, commercial software for die casting, PAM-CAST TM , was utilized to simulate the low pressure die casting process of magnesium wheel. Through calculating temperature field and velocity field during filling and solidification stages, the evolution of temperature distribution and liquid fraction was analyzed. Then, the potential defects including the gas entrapments in the middle of the spokes, shrinkages between the rim and the spokes were forecasted. The analytical results revealed that the mold geometry and die casting parameters should be improved in order to get the sound magnesium wheel. The reasons leading to these defects were also analyzed and the solutions to eliminate them were put forward. Furthermore, through reducing the pouring velocity, the air gas entrapments and partial shrinkages were eliminated effectively

  10. Customized Cranioplasty Implants Using Three-Dimensional Printers and Polymethyl-Methacrylate Casting

    Science.gov (United States)

    Kim, Bum-Joon; Hong, Ki-Sun; Park, Kyung-Jae; Park, Dong-Hyuk; Chung, Yong-Gu

    2012-01-01

    Objective The prefabrication of customized cranioplastic implants has been introduced to overcome the difficulties of intra-operative implant molding. The authors present a new technique, which consists of the prefabrication of implant molds using three-dimensional (3D) printers and polymethyl-methacrylate (PMMA) casting. Methods A total of 16 patients with large skull defects (>100 cm2) underwent cranioplasty between November 2009 and April 2011. For unilateral cranial defects, 3D images of the skull were obtained from preoperative axial 1-mm spiral computed tomography (CT) scans. The image of the implant was generated by a digital subtraction mirror-imaging process using the normal side of the cranium as a model. For bilateral cranial defects, precraniectomy routine spiral CT scan data were merged with postcraniectomy 3D CT images following a smoothing process. Prefabrication of the mold was performed by the 3D printer. Intraoperatively, the PMMA implant was created with the prefabricated mold, and fit into the cranial defect. Results The median operation time was 184.36±26.07 minutes. Postoperative CT scans showed excellent restoration of the symmetrical contours and curvature of the cranium in all cases. The median follow-up period was 23 months (range, 14-28 months). Postoperative infection was developed in one case (6.2%) who had an open wound defect previously. Conclusion Customized cranioplasty PMMA implants using 3D printer may be a useful technique for the reconstruction of various cranial defects. PMID:23346326

  11. Customized cranioplasty implants using three-dimensional printers and polymethyl-methacrylate casting.

    Science.gov (United States)

    Kim, Bum-Joon; Hong, Ki-Sun; Park, Kyung-Jae; Park, Dong-Hyuk; Chung, Yong-Gu; Kang, Shin-Hyuk

    2012-12-01

    The prefabrication of customized cranioplastic implants has been introduced to overcome the difficulties of intra-operative implant molding. The authors present a new technique, which consists of the prefabrication of implant molds using three-dimensional (3D) printers and polymethyl-methacrylate (PMMA) casting. A total of 16 patients with large skull defects (>100 cm(2)) underwent cranioplasty between November 2009 and April 2011. For unilateral cranial defects, 3D images of the skull were obtained from preoperative axial 1-mm spiral computed tomography (CT) scans. The image of the implant was generated by a digital subtraction mirror-imaging process using the normal side of the cranium as a model. For bilateral cranial defects, precraniectomy routine spiral CT scan data were merged with postcraniectomy 3D CT images following a smoothing process. Prefabrication of the mold was performed by the 3D printer. Intraoperatively, the PMMA implant was created with the prefabricated mold, and fit into the cranial defect. The median operation time was 184.36±26.07 minutes. Postoperative CT scans showed excellent restoration of the symmetrical contours and curvature of the cranium in all cases. The median follow-up period was 23 months (range, 14-28 months). Postoperative infection was developed in one case (6.2%) who had an open wound defect previously. Customized cranioplasty PMMA implants using 3D printer may be a useful technique for the reconstruction of various cranial defects.

  12. Microinjection molding of thermoplastic polymers: morphological comparison with conventional injection molding

    International Nuclear Information System (INIS)

    Giboz, Julien; Mélé, Patrice; Copponnex, Thierry

    2009-01-01

    The skin–core crystalline morphology of injection-molded semi-crystalline polymers is well documented in the scientific literature. The thermomechanical environment provokes temperature and shear gradients throughout the entire thickness of the part during molding, thus influencing the polymer crystallization. Crystalline morphologies of a high-density polyethylene (HDPE) micromolded part (μpart) and a classical part (macropart) are compared with optical, thermal and x-ray diffraction analyses. Results show that the crystalline morphologies with regard to thickness vary between the two parts. While a 'skin–core' morphology is present for the macropart, the μpart exhibits a specific 'core-free' morphology, i.e. no spherulite is present at the center of the thickness. This result seems to be generated under the specific conditions used in microinjection molding that lead to the formation of smaller and more oriented crystalline entities

  13. Predicting shrinkage and warpage in injection molding: Towards automatized mold design

    Science.gov (United States)

    Zwicke, Florian; Behr, Marek; Elgeti, Stefanie

    2017-10-01

    It is an inevitable part of any plastics molding process that the material undergoes some shrinkage during solidification. Mainly due to unavoidable inhomogeneities in the cooling process, the overall shrinkage cannot be assumed as homogeneous in all volumetric directions. The direct consequence is warpage. The accurate prediction of such shrinkage and warpage effects has been the subject of a considerable amount of research, but it is important to note that this behavior depends greatly on the type of material that is used as well as the process details. Without limiting ourselves to any specific properties of certain materials or process designs, we aim to develop a method for the automatized design of a mold cavity that will produce correctly shaped moldings after solidification. Essentially, this can be stated as a shape optimization problem, where the cavity shape is optimized to fulfill some objective function that measures defects in the molding shape. In order to be able to develop and evaluate such a method, we first require simulation methods for the diffierent steps involved in the injection molding process that can represent the phenomena responsible for shrinkage and warpage ina sufficiently accurate manner. As a starting point, we consider the solidification of purely amorphous materials. In this case, the material slowly transitions from fluid-like to solid-like behavior as it cools down. This behavior is modeled using adjusted viscoelastic material models. Once the material has passed a certain temperature threshold during cooling, any viscous effects are neglected and the behavior is assumed to be fully elastic. Non-linear elastic laws are used to predict shrinkage and warpage that occur after this point. We will present the current state of these simulation methods and show some first approaches towards optimizing the mold cavity shape based on these methods.

  14. Influence of mold surface temperature on polymer part warpage in rapid heat cycle molding

    Science.gov (United States)

    Berger, G. R.; Pacher, G. A.; Pichler, A.; Friesenbichler, W.; Gruber, D. P.

    2014-05-01

    Dynamic mold surface temperature control was examined for its influence on the warpage. A test mold, featuring two different rapid heat cycle molding (RHCM) technologies was used to manufacture complex plate-shaped parts having different ribs, varying thin-wall regions, and both, circular and rectangular cut-outs. The mold's nozzle side is equipped with the areal heating and cooling technology BFMOLD®, where the heating/cooling channels are replaced by a ball-filled slot near the cavity surface flooded through with hot and cold water sequentially. Two local electrical ceramic heating elements are installed into the mold's ejection side. Based on a 23 full-factorial design of experiments (DoE) plan, varying nozzle temperature (Tnozzle), rapid heat cycle molding temperature (TRHCM) and holding pressure (pn), specimens of POM were manufactured systematically. Five specimens were examined per DoE run. The resulting warpage was measured at 6 surface line scans per part using the non-contact confocal topography system FRT MicroProf®. Two warpage parameters were calculated, the curvature of a 2nd order approximation a, and the vertical deflection at the profile center d. Both, the influence strength and the acting direction of the process parameters and their interactions on a and d were calculated by statistical analysis. Linear mathematical process models were determined for a and d to predict the warpage as a function of the process parameter settings. Finally, an optimum process setting was predicted, based on the process models and Microsoft Excel GRG solver. Clear and significant influences of TRHCM, pn, Tnozzle, and the interaction of TRHCM and pn were determined. While TRHCM was dominant close to the gate, pn became more effective as the flow length increased.

  15. Inoculation of chromium white cast iron

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2009-01-01

    Full Text Available It has been proved that an addition of boron carbide introduced as an inoculant to the chromium white cast iron changes the structureof castings. Castings after inoculation revealed a different structure with numerous grains. Primary precipitates of chromium carbide also appeared, reducing the mechanical properties of as-cast parts. Properly established heat treatment regime makes chromium iron castings regain their, originally high, mechanical properties.

  16. Implications of diamond-turned versus diamond-ground mold fabrication techniques on precision-molded optics

    Science.gov (United States)

    Mertus, Lou; Symmons, Alan

    2012-10-01

    In recent years, the trend within the molded optics community has been an overall advancement in the capability to diamond grind molds using a variety of grinding techniques. Improvements in grinding equipment, materials and tooling have enabled higher quality ceramic and carbide molds and thereby lenses. Diamond turned molds from ductile metals are still used prevalently throughout the molding industry. Each technology presents a unique set of advantages and disadvantages whether used for precision injection molding of plastic optics or precision glass molding. This paper reviews the manufacturing techniques for each approach and applicable molding process. The advantages and disadvantages of each are compared and analyzed. The subtle differences that exist in optics molded from each technique and the impact they have on the performance in various applications is reviewed. Differences stemming from tooling material properties, material-specific minor defects, as well as cutting and grinding process-induced artifacts are described in detail as well as their influence on the roughness, waviness, and form errors present on the molded surface. A comparison with results between similar surfaces for both diamond grinding and diamond turning is presented.

  17. An integrated solution for mold shape modification in precision glass molding to compensate refractive index change and geometric deviation

    Science.gov (United States)

    Su, Lijuan; Wang, Fei; He, Peng; Dambon, Olaf; Klocke, Fritz; Yi, Allen Y.

    2014-02-01

    In precision glass molding, refractive index change and geometric deviation (or curve change as often referred to in industry) occurred during molding process can result in substantial amount of aberrations. Previously, refractive index change and geometric deviation were investigated in separate studies by the authors. However, optical performance of a molded glass lens depends on both refractive index and geometry. In order to mold lenses with optimal performance, both refractive index change and geometric deviation have to be taken into consideration simultaneously and compensated. This paper presented an integrated compensation procedure for modifying molds to compensate both refractive index change and geometric deviation. Group refractive index change predicted by the finite element method simulation was used to provide a modified geometry design for a desired lens. Geometric deviations of molded glass lenses with the modified design were analyzed with a previously developed numerical simulation approach, which is used to modify the mold shape. This procedure was validated by molding a generic aspherical glass lens. Both geometry and optical measurement results confirmed that the molded lens performed as specified by the original design. It also demonstrated that finite element method assisted compensation procedure can be used to predict the final optical performance of compression molded glass components. This research provided an opportunity for optics manufacturers to achieve better performance lens while maintaining lower cost and a shorter cycle time.

  18. Three-Dimensional Modeling of Glass Lens Molding

    DEFF Research Database (Denmark)

    Sarhadi, Ali; Hattel, Jesper Henri; Hansen, Hans Nørgaard

    2015-01-01

    The required accuracy for the final dimensions of the molded lenses in wafer-based precision glass molding as well as the need for elimination of costly experimental trial and error calls for numerical simulations. This study deals with 3D thermo-mechanical modeling of the wafer-based precision...... glass lens molding process. First, a comprehensive 3D thermo-mechanical model of glass is implemented into a FORTRAN user subroutine (UMAT) in the FE program ABAQUS, and the developed FE model is validated with both a well-known sandwich seal test and experimental results of precision molding of several...... glass rings. Afterward, 3D thermo-mechanical modeling of the wafer-based glass lens manufacturing is performed to suggest a proper molding program (i.e., the proper set of process parameters including preset force-time and temperature-time histories) for molding a wafer to a desired dimension...

  19. Residual orientation in injection micro-molded samples

    International Nuclear Information System (INIS)

    Healy, John; Edward, Graham H.; Knott, Robert B.

    2006-01-01

    The orientation of polymer chains after injection molding is usually studied using techniques that measure the average orientation of molecular segments. Small-angle neutron scattering (SANS) is a technique for measuring the overall chain orientation and is very sensitive to molecular anisotropy. In this study, a blend of a commercial general-purpose polystyrene and deuterated polystyrene was injection micro-molded under a variety of molding conditions. SANS was then used to measure the residual orientation of the deuterated chains. As expected, the molecular orientation decreased with increasing mold temperature and increased with decreasing mold thickness. However, for these micro-moldings, the residual orientation decreased with increasing injection velocity. The measured orientation also appears to be Q-dependent indicating that the average residual orientation of short-chain segments may not necessarily reflect the overall chain conformation

  20. Replication of optical microlens arrays using photoresist coated molds

    DEFF Research Database (Denmark)

    Chakrabarti, Maumita; Dam-Hansen, Carsten; Stubager, Jørgen

    2016-01-01

    A cost reduced method of producing injection molding tools is reported and demonstrated for the fabrication of optical microlens arrays. A standard computer-numerical-control (CNC) milling machine was used to make a rough mold in steel. Surface treatment of the steel mold by spray coating...... with photoresist is used to smooth the mold surface providing good optical quality. The tool and process are demonstrated for the fabrication of an ø50 mm beam homogenizer for a color mixing LED light engine. The acceptance angle of the microlens array is optimized, in order to maximize the optical efficiency from...... the light engine. Polymer injection molded microlens arrays were produced from both the rough and coated molds and have been characterized for lenslet parameters, surface quality, light scattering, and acceptance angle. The surface roughness (Ra) is improved approximately by a factor of two after...

  1. Metallic Reinforcement of Direct Squeeze Die Casting Aluminum Alloys for Improved Strength and Fracture Resistance

    Energy Technology Data Exchange (ETDEWEB)

    D. Schwam: J.F. Wallace: Y. Zhu: J.W. Ki

    2004-10-01

    The utilization of aluminum die casting as enclosures where internal equipment is rotating inside of the casting and could fracture requires a strong housing to restrain the fractured parts. A typical example would be a supercharger. In case of a failure, unless adequately contained, fractured parts could injure people operating the equipment. A number of potential reinforcement materials were investigated. The initial work was conducted in sand molds to create experimental conditions that promote prolonged contact of the reinforcing material with molten aluminum. Bonding of Aluminum bronze, Cast iron, and Ni-resist inserts with various electroplated coatings and surface treatments were analyzed. Also toughening of A354 aluminum cast alloy by steel and stainless steel wire mesh with various conditions was analyzed. A practical approach to reinforcement of die cast aluminum components is to use a reinforcing steel preform. Such performs can be fabricated from steel wire mesh or perforated metal sheet by stamping or deep drawing. A hemispherical, dome shaped casting was selected in this investigation. A deep drawing die was used to fabricate the reinforcing performs. The tendency of aluminum cast enclosures to fracture could be significantly reduced by installing a wire mesh of austenitic stainless steel or a punched austenitic stainless steel sheet within the casting. The use of reinforcements made of austenitic stainless steel wire mesh or punched austenitic stainless steel sheet provided marked improvement in reducing the fragmentation of the casting. The best strengthening was obtained with austenitic stainless steel wire and with a punched stainless steel sheet without annealing this material. Somewhat lower results were obtained with the annealed punched stainless steel sheet. When the annealed 1020 steel wire mesh was used, the results were only slightly improved because of the lower mechanical properties of this unalloyed steel. The lowest results were

  2. The Effect of Shell Thickness, Insulation and Casting Temperature on Defects Formation During Investment Casting of Ni-base Turbine Blades

    Directory of Open Access Journals (Sweden)

    Raza M.

    2015-12-01

    Full Text Available Turbine blades have complex geometries with free form surface. Blades have different thickness at the trailing and leading edges as well as sharp bends at the chord-tip shroud junction and sharp fins at the tip shroud. In investment casting of blades, shrinkage at the tip-shroud and cord junction is a common casting problem. Because of high temperature applications, grain structure is also critical in these castings in order to avoid creep. The aim of this work is to evaluate the effect of different process parameters, such as, shell thickness, insulation and casting temperature on shrinkage porosity and grain size. The test geometry used in this study was a thin-walled air-foil structure which is representative of a typical hot-gas-path rotating turbine component. It was observed that, in thin sections, increased shell thickness helps to increase the feeding distance and thus avoid interdendritic shrinkage. It was also observed that grain size is not significantly affected by shell thickness in thin sections. Slower cooling rate due to the added insulation and steeper thermal gradient at metal mold interface induced by the thicker shell not only helps to avoid shrinkage porosity but also increases fill-ability in thinner sections.

  3. Process and part filling control in micro injection molding

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard; Schoth, Andreas

    2008-01-01

    The influence of process parameters on μ-injection molding (μIM) and on μ-injection molded parts has been investigated using Design of Experiments. A mold with a sensor applied at injection location was used to monitor actual injection pressure and to determine the cavity filling time. Flow markers...... that the injection speed in one of the most influencing process parameters on the μIM process and on the μ-parts filling....

  4. Understanding the impact of molds on indoor air quality and ...

    Science.gov (United States)

    Molds are multi-celled, colony forming, eukaryotic microorganisms lacking chlorophyll belonging to the Kingdom Fungi. Furthermore, molds are ubiquitous in both indoor and outdoor environments. There are more than 200 different types of fungi to which people are routinely exposed (NAS. 2000). The growth of molds in homes, schools, offices, and other public buildings has been implicated as the cause of a wide variety of adverse health effects. Headlines resulting from moldy, water-damaged homes, particularly

  5. Untouchable castes of Uttar Pradesh

    Directory of Open Access Journals (Sweden)

    Kharinin Artem Igorevich

    2015-04-01

    Full Text Available The Untouchable Castes of Uttar Pradesh are examined in this article. This region is one of the most populated in India. Also it is one of the most social mixed-composed in whole State. That’s why main conclusions which were made on this material can be extrapolated to all social space of country. The authors choose four ethno-caste groups, which represent the majority in untouchables and the three smallest in jaties. Their positions in regional hierarchy and economic specialization are analyzed in detail. There are a lot of information about their number, social structure, literacy rating, endogamy, day-to-day practices, customs and other features. Special accents were pointed on mind orientation of their elites toward integration in modern society or, conversely, toward the conservation of traditional forms of existence. The issues of origin and social evolution of untouchable castes of Uttar Pradesh are examined. There is assessment of castes’ sanskritization or other forms of social selfdevelopment. The quality of “scheduled” castes social environment is analyzed. As a marks of its positiveness the data about discrimination untouchables from other social groups and degree of political representativeness of “scheduled” castes, accessibility of education and labour were chosen. The conclusions were made about development degree of some castes. The factors that play role in positive changes in contemporary conditions were determined. The authors put forward their own hypothesis of future development of untouchable castes in Uttar Pradesh. Empiric base of this article was established on sources that have Indian origin and historical and social research of outstanding western indologies.

  6. Does 6 Hours of Contact With Alginate Impression Material Affect Dental Cast Properties?

    Science.gov (United States)

    Ibrahim, Amna Adam; Alhajj, Mohammed Nasser; Khalifa, Nadia; Gilada, Magdi Wadie

    2017-06-01

    Alginate impression (irreversible hydrocolloid) material is commonly used in dental practice because it is easy to mix, low in cost, and well tolerated by patients. The material is not dimensionally stable, however; thus, it is necessary to pour the impression immediately after the molding is accomplished, or within 60 minutes if the impression is kept in 100% humidity. Excessive contact of the alginate impression with the cast model over time may affect the model's properties. In this study, the authors tested the effect of contact time between an alginate impression and type III dental stone on cast model properties. Sixty-seven cast models were obtained from a stainless steel cylinder by using irreversible hydrocolloid impression material and type III dental stone. Thirty-seven cast models were separated from the impression after 1 hour (control group) and 30 cast models were separated after 6 hours (study group). The samples were evaluated under light microscope for surface details and measured by digital caliper for dimensional stability. An indentation on the cast was made and the depth of the indentation was then measured with a digital caliper to measure hardness. The dimensional stability of the cast models was not affected when contact time was increased from 1 hour to 6 hours (P = .507). Surface details did not deteriorate when contact time was increased, as all of the samples could reproduce all details after the 1-hour and 6-hour interval periods. However, hardness was greater after 1 hour of contact time (P = .001) than after 6 hours of contact time. In conclusion, contact between alginate impression material and type III dental stone up to 6 hours did not affect the dimensional stability and richness of the surface; hardness, though, was significantly affected.

  7. Characterization of wood-based molding bonded with citric acid

    OpenAIRE

    Umemura, Kenji; Ueda, Tomohide; Kawai, Shuichi

    2012-01-01

    The wood-based moldings were fabricated by using only citric acid as an adhesive. The mechanical properties, water resistances, thermal properties and chemical structure were investigated. Wood powder obtained from Acacia mangium was mixed with citric acid under certain weight ratios (0-40 wt%), and each powder mixture was molded using two types of metal molds at 200 °C and 4MPa for 10 min. The modulus of rupture (MOR) and the modulus of elasticity (MOE) values of the wood-based molding conta...

  8. Injection molding of high aspect ratio sub-100 nm nanostructures

    DEFF Research Database (Denmark)

    Matschuk, Maria; Larsen, Niels B

    2013-01-01

    as described by height, width and uniformity of the nanoscopic features. Use of a mold temperature transiently above the polymer glass transition temperature (Tg) was the most important factor in increasing the replication fidelity. Surface coating of the nickel molds with a fluorocarbon-containing thin film...... with FDTS. Reduced adhesion forces are consistent with lowered friction that reduces the risk of fracturing the nanoscopic pillars during demolding. Optimized mold surface chemistry and associated injection molding conditions permitted the fabrication of square arrays of 40 nm wide and 107 nm high (aspect...

  9. Cavity air flow behavior during filling in microinjection molding

    DEFF Research Database (Denmark)

    Griffiths, C.A.; Dimov, S.S.; Scholz, S.

    2011-01-01

    Process monitoring of microinjection molding (μ-IM) is of crucial importance in understanding the effects of different parameter settings on the process, especially on its performance and consistency with regard to parts' quality. Quality factors related to mold cavity air evacuation can provide...... mounted inside the mold. The influence of four μIM parameters, melt temperature, mold temperature, injection speed, and resistance to air evacuation, on two air flow-related output parameters is investigated by carrying out a design of experiment study. The results provide empirical evidences about...

  10. A hybrid optimization approach in non-isothermal glass molding

    Science.gov (United States)

    Vu, Anh-Tuan; Kreilkamp, Holger; Krishnamoorthi, Bharathwaj Janaki; Dambon, Olaf; Klocke, Fritz

    2016-10-01

    Intensively growing demands on complex yet low-cost precision glass optics from the today's photonic market motivate the development of an efficient and economically viable manufacturing technology for complex shaped optics. Against the state-of-the-art replication-based methods, Non-isothermal Glass Molding turns out to be a promising innovative technology for cost-efficient manufacturing because of increased mold lifetime, less energy consumption and high throughput from a fast process chain. However, the selection of parameters for the molding process usually requires a huge effort to satisfy precious requirements of the molded optics and to avoid negative effects on the expensive tool molds. Therefore, to reduce experimental work at the beginning, a coupling CFD/FEM numerical modeling was developed to study the molding process. This research focuses on the development of a hybrid optimization approach in Non-isothermal glass molding. To this end, an optimal configuration with two optimization stages for multiple quality characteristics of the glass optics is addressed. The hybrid Back-Propagation Neural Network (BPNN)-Genetic Algorithm (GA) is first carried out to realize the optimal process parameters and the stability of the process. The second stage continues with the optimization of glass preform using those optimal parameters to guarantee the accuracy of the molded optics. Experiments are performed to evaluate the effectiveness and feasibility of the model for the process development in Non-isothermal glass molding.

  11. Applying simulation to optimize plastic molded optical parts

    Science.gov (United States)

    Jaworski, Matthew; Bakharev, Alexander; Costa, Franco; Friedl, Chris

    2012-10-01

    Optical injection molded parts are used in many different industries including electronics, consumer, medical and automotive due to their cost and performance advantages compared to alternative materials such as glass. The injection molding process, however, induces elastic (residual stress) and viscoelastic (flow orientation stress) deformation into the molded article which alters the material's refractive index to be anisotropic in different directions. Being able to predict and correct optical performance issues associated with birefringence early in the design phase is a huge competitive advantage. This paper reviews how to apply simulation analysis of the entire molding process to optimize manufacturability and part performance.

  12. Thermal monitoring of the thermoplastic injection molding process with FBGs

    Science.gov (United States)

    Alberto, Nélia J.; Nogueira, Rogério N.; Neto, Victor F.

    2014-08-01

    Injection molding is an important polymer processing method for manufacturing plastic components. In this work, the thermal monitoring of the thermoplastic injection molding is presented, since temperature is a critical parameter that influences the process features. A set of fiber Bragg gratings were multiplexed, aiming a two dimensional monitoring of the mold. The results allowed to identify the different stages of the thermoplastic molding cycle. Additionally, the data provide information about the heat transfer phenomena, an important issue for the thermoplastic injection sector, and thus for an endless number of applications that employ this type of materials.

  13. Additive Manufacturing of Molds for Fabrication of Insulated Concrete Block

    Energy Technology Data Exchange (ETDEWEB)

    Love, Lonnie J. [ORNL; Lloyd, Peter D. [ORNL

    2018-02-01

    ORNL worked with concrete block manufacturer, NRG Insulated Block, to demonstrate additive manufacturing of a multi-component block mold for its line of insulated blocks. Solid models of the mold parts were constructed from existing two-dimensional drawings and the parts were fabricated on a Stratasys Fortus 900 using ULTEM 9085. Block mold parts were delivered to NRG and installed on one of their fabrication lines. While form and fit were acceptable, the molds failed to function during NRG’s testing.

  14. A versatile approach to vacuum injection casting for materials research and development.

    Science.gov (United States)

    Xu, Donghua; Xu, Yifan

    2017-03-01

    Vacuum injection casting (VIC) is important for research and development (R&D) of materials that are prone to oxidation at high temperatures, particularly metals and metallic alloys (e.g., metallic glasses and high entropy alloys). VIC in R&D laboratories often involves initial melting/alloying in a prior step, transporting the sample to a dedicated vacuum chamber, re-melting the sample in a quartz tube, and finally injecting the melt with an inert gas to a dedicated mold. Here we present a new approach to laboratory VIC that requires no sample transfer (for a variety of materials), no dedicated vacuum chamber/space nor dedicated mold, and hence provides more versatility and higher efficiency and yet lowers the capital equipment cost. Our approach takes advantage of the exceptional portability, thermal and chemical stability, and thermoplastic processability of quartz glass and uses quartz tubes for all the melting, re-melting, injection casting, and molding. In addition, our approach includes oxygen gettering to remove residual oxygen for all the steps and allows for slow or fast cooling (e.g., water quenching) upon injection. This paper focuses on the design, the procedures, and the versatile features of this new approach while also demonstrating the practical implementation of this approach and computational modeling of the heat transfer and the cooling rates for two exemplary cases. The new approach is expected to bring notable expedition to sample fabrication and materials discovery, as well as wider adoption of vacuum injection casting in materials science and condensed matter physics research laboratories.

  15. Molding method of buffer material for underground disposal of radiation-contaminated material, and molded buffer material

    International Nuclear Information System (INIS)

    Akasaka, Hidenari; Shimura, Satoshi; Kawakami, Susumu; Ninomiya, Nobuo; Yamagata, Junji; Asano, Eiichi

    1995-01-01

    Upon molding of a buffer material to be used upon burying a vessel containing radiation-contaminated materials in a sealed state, a powdery buffer material to be molded such as bentonite is disposed at the periphery of a mandrel having a cylindrical portion somewhat larger than contaminate container to be subjected to underground disposal. In addition, it is subjected to integration-molding such as cold isotropic press with a plastic film being disposed therearound, to form a molding product at high density. The molding product is released and taken out with the plastic film being disposed thereon. Releasability from an elastic mold is improved by the presence of the plastic film. In addition, if it is stored or transported while having the plastic film being disposed thereon, swelling of the buffer material due to water absorption or moisture absorption can be suppressed. (T.M.)

  16. Geometric study of transparent superhydrophobic surfaces of molded and grid patterned polydimethylsiloxane (PDMS)

    Science.gov (United States)

    Davaasuren, Gaasuren; Ngo, Chi-Vinh; Oh, Hyun-Seok; Chun, Doo-Man

    2014-09-01

    Herein we describe an economical method to fabricate a transparent superhydrophobic surface that uses grid patterning, and we report on the effects of grid geometry in determining the wettability and transparency of the fabricated surfaces. A polymer casting method was utilized because of its applicability to economical manufacturing and mass production; the material polydimethylsiloxane (PDMS) was selected because of its moldability and transparency. PDMS was replicated from a laser textured mold fabricated by a UV nanosecond pulsed laser. Sapphire wafer was used for the mold because it has very low surface roughness (Ra ≤0.3 nm) and adequate mechanical properties. To study geometric effects, grid patterns of a series of step sizes were fabricated. The maximum water droplet contact angle (WDCA) observed was 171°. WDCAs depended on the wetting area and the wetting state. The experimental results of WDCA were analyzed with Wenzel and Cassie-Baxter equations. The designed grid pattern was suitably transparent and structurally stable. Transmittance of the optimal transparent superhydrophobic surface was measured by using a spectrophotometer. Transmittance loss due to the presence of the grid was around 2-4% over the wavelength region measured (300-1000 nm); the minimum transmittance observed was 83.1% at 300 nm. This study also demonstrates the possibility of using a nanosecond pulsed laser for the surface texturing of a superhydrophobic surface.

  17. Instant Casting Movie Theater: The Future Cast System

    Science.gov (United States)

    Maejima, Akinobu; Wemler, Shuhei; Machida, Tamotsu; Takebayashi, Masao; Morishima, Shigeo

    We have developed a visual entertainment system called “Future Cast” which enables anyone to easily participate in a pre-recorded or pre-created film as an instant CG movie star. This system provides audiences with the amazing opportunity to join the cast of a movie in real-time. The Future Cast System can automatically perform all the processes required to make this possible, from capturing participants' facial characteristics to rendering them into the movie. Our system can also be applied to any movie created using the same production process. We conducted our first experimental trial demonstration of the Future Cast System at the Mitsui-Toshiba pavilion at the 2005 World Exposition in Aichi Japan.

  18. Weld line morphology of injection molded polypropylene

    Science.gov (United States)

    Mielewski, Deborah Frances

    One of the main goals of this research was to develop an understanding of the specific cause(s) of mechanical weakness at weld lines in injection molded plastic parts. In this study, a variety of techniques have been used to evaluate polypropylene weld lines: optical microscopy, electron microscopy, x-ray photoelectron microscopy, Fourier transform infrared spectroscopy and mechanical property measurements. Optical microscopy results showed that the weld line penetrates about 10 microns into the sample, and that the crystalline morphology near the weld line was very different than in the polymer further removed. Transmission electron microscopy was used to determine that the material at the weld line was of slightly different density and stained differently than the rest of the polypropylene material. X-ray photoelectron spectroscopy (XPS) determined that the material at the flow front was enriched in elemental sulfur and oxygen, which helped identify it as an antioxidant additive. Finally, FTIR was used to confirm that the flow front tip was enriched in the antioxidant material by comparing spectra of the neat antioxidant. The data cumulatively demonstrate that a low concentration (polypropylene system studied. Other low concentration additives were also found to accumulate at polypropylene weld lines, also making the interface weak. Even an incompatible, higher surface free energy polymer, polystyrene, when added at low concentration to polypropylene, was found to accumulate at the weld line. Therefore, surface free energy was found not to play a role in these accumulations. Homogeneous elongation was found not to reproduce the enrichments observed. The mechanism by which low concentration additives accumulate at flow fronts is speculated to involve incompatible droplets experiencing a stress gradient due to the elongation gradient at the flow front during fountain flow which "pushes" them out toward the free surface. In addition, large concentrations of the heat

  19. Mechanical Properties Distribution within Polypropylene Injection Molded Samples: Effect of Mold Temperature under Uneven Thermal Conditions

    Directory of Open Access Journals (Sweden)

    Sara Liparoti

    2017-11-01

    Full Text Available The quality of the polymer parts produced by injection molding is strongly affected by the processing conditions. Uncontrolled deviations from the proper process parameters could significantly affect both internal structure and final material properties. In this work, to mimic an uneven temperature field, a strong asymmetric heating is applied during the production of injection-molded polypropylene samples. The morphology of the samples is characterized by optical and atomic force microscopy (AFM, whereas the distribution of mechanical modulus at different scales is obtained by Indentation and HarmoniX AFM tests. Results clearly show that the temperature differences between the two mold surfaces significantly affect the morphology distributions of the molded parts. This is due to both the uneven temperature field evolutions and to the asymmetric flow field. The final mechanical property distributions are determined by competition between the local molecular stretch and the local structuring achieved during solidification. The cooling rate changes affect internal structures in terms of relaxation/reorganization levels and give rise to an asymmetric distribution of mechanical properties.

  20. Injection-molded capsular device for oral pulsatile release: development of a novel mold.

    Science.gov (United States)

    Zema, Lucia; Loreti, Giulia; Macchi, Elena; Foppoli, Anastasia; Maroni, Alessandra; Gazzaniga, Andrea

    2013-02-01

    The development of a purposely devised mold and a newly set up injection molding (IM) manufacturing process was undertaken to prepare swellable/erodible hydroxypropyl cellulose-based capsular containers. When orally administered, such devices would be intended to achieve pulsatile and/or colonic time-dependent delivery of drugs. An in-depth evaluation of thermal, rheological, and mechanical characteristics of melt formulations/molded items made of the selected polymer (Klucel® LF) with increasing amounts of plasticizer (polyethylene glycol 1500, 5%-15% by weight) was preliminarily carried out. On the basis of the results obtained, a new mold was designed that allowed, through an automatic manufacturing cycle of 5 s duration, matching cap and body items to be prepared. These were subsequently filled and coupled to give a closed device of constant 600 μm thickness. As compared with previous IM systems having the same composition, such capsules showed improved closure mechanism, technological properties, especially in terms of reproducibility of the shell thickness, and release performance. Moreover, the ability of the capsular container to impart a constant lag phase before the liberation of the contents was demonstrated irrespective of the conveyed formulation. Copyright © 2012 Wiley Periodicals, Inc.

  1. Investigations on injection molded, glass-fiber reinforced polyamide 6 integral foams using breathing mold technology

    Science.gov (United States)

    Roch, A.; Kehret, L.; Huber, T.; Henning, F.; Elsner, P.

    2015-05-01

    Investigations on PA6-GF50 integral foams have been carried out using different material systems: longfiber- and shortfiber-reinforced PA6 as well as unreinforced PA6 as a reference material. Both chemical and physical blowing agents were applied. Breathing mold technology (decompression of the mold) was selected for the foaming process. The integral foam design, which can be conceived as a sandwich structure, helps to save material in the neutral axis area and maintains a distance between load-bearing, unfoamed skin layers. For all test series an initial mold gap of 2.5 mm was chosen and the same amount of material was injected. In order to realize different density reductions, the mold opening stroke was varied. The experiments showed that, at a constant mass per unit area, integral polyamide 6 foams have a significantly higher bending stiffness than compact components, due to their higher area moment of inertia after foaming. At a constant surface weight the bending stiffness in these experiments could be increased by up to 600 %. Both shortfiber- and longfiber-reinforced polyamide 6 showed an increase in energy absorption during foaming.

  2. Evolution of Surface Texture and Cracks During Injection Molding of Fiber-Reinforced, Additively-Manufactured, Injection Molding Inserts

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Mischkot, Michael; Pedersen, David Bue

    2016-01-01

    This paper investigates the lifetime and surfacedeterioration of additively-manufactured, injection-moulding inserts. The inserts were produced using digital light processing and were reinforcedwith oriented short carbon fibers. Theinserts were used during injection molding oflow......-density polyethylene until their failure. The molded products were used to analyse the development of the surface roughness and wear. By enhancing the lifetime of injection-molding inserts,this work contributes to the establishment of additively manufactured inserts in pilot production....

  3. Mold temperature measurement for glass-pressing processes

    International Nuclear Information System (INIS)

    Holman, R.A.

    1985-01-01

    The largest use of radiation thermometers within Corning Glass Works is for mold temperature measurement for the glass-pressing process. Pressing television panels at today's high quality would be very difficult without a mold temperature measurement system and the computer manipulation of the quality control data to supervise the mold temperature control loop. The most critical part of a television panel is the inside surface curvature. The ideal surface is usually defined as a spherical surface. The tolerance for a normal TV panel is +-0.30 mm (+-0.012 in.). High resolution display panels are more critical, having a dimensional tolerance only one half as large as TV panels. Panel curvature is a direct (but negative) function of mold temperature. Every 1 0 C increase in mold temperature results in the panel center being 0.025 mm (0.001 in.) shorter (flatter). Random dimensional variations within a panel take up most of the dimensional tolerance. The result is that each mold is controlled to its own individual temperature set point, +-1 0 C. Hot panel and cold panel curvature measurements are correlated by a process computer and used to update the mold temperature set points. The same computer adjusts the mold cooling air to maintain the required mold temperatures. From the temperature measurement standpoint, the significant problem is the changing emissivity of the mold surface when the mold is new or reconditioned. The selection of a radiation thermometer with a short wavelength was an obvious choice to minimize the effect of emissivity variations

  4. Deformation behavior in 3D molding: experimental and simulation studies

    International Nuclear Information System (INIS)

    Farshchian, Bahador; Amirsadeghi, Alborz; Hurst, Steven M; Park, Sunggook; Kim, Jinsoo

    2012-01-01

    Three-dimensional (3D) molding is a simple and effective technique using a modified hot embossing process to produce large area, hierarchical 3D micro/nanostructures in polymer substrates. However, the use of a thin intermediate polydimethylsiloxane (PDMS) stamp inevitably causes dimensional changes in the 3D molded channel, with respect to those in the brass mold protrusion and the intermediate PDMS stamp structures. Here we investigate the deformation behavior of the 3D molded poly(methyl methacrylate) (PMMA) substrate and the intermediate PDMS stamp in 3D molding through both experimentation and numerical simulation. Depending on the height, period and aspect ratio of the brass mold protrusions and the thickness of the intermediate PDMS stamp, strain contours of the intermediate PDMS stamp layer along the periphery of the 3D molded channels are varying, which leads to a nonuniform elongation of the imprinted structures in the 3D molded channel. Increasing the height and decreasing the period of brass mold protrusions leads to higher total strain of the intermediate PDMS stamp. It was found that for high aspect ratio brass mold protrusions the maximum strain of the intermediate layer occurs in the bottom center of the 3D channels. However, with decreasing aspect ratio of the brass mold protrusion the highest elongation occurs at the bottom corners of the channel causing less elongation of the intermediate PDMS stamp and imprinted structures on the bottom surface of the 3D channel. These experimental results are in good agreement with the results obtained from the numerical simulation performed with a simple 2D model. (paper)

  5. CAST Physics Proposal to SPSC

    CERN Document Server

    CAST, Collaboration

    2011-01-01

    The CAST experiment has the potential to search for solar axions (dark matter particle candidates) or other particles with similar coupling. E.g., paraphtons (Hidden Sector), chameleons (dark energy), while considering the possibility whether CAST could be transformed to an antenna for relic axions with rest mass up to 0.1 to 1meV. While axion searches suggest detectors with lower background, paraphoton and chameleon searches require detectors with sub-keV threshold energy and the use of transparent windows in front of the Micromegas detectors, which cover 3 out of the 4 CAST magnet exits. Ongoing theoretical estimates and experimental investigations will define the priorities of the suggested 4 physics items of this proposal for the period 2012-2014.

  6. Titanium Aluminide Casting Technology Development

    Science.gov (United States)

    Bünck, Matthias; Stoyanov, Todor; Schievenbusch, Jan; Michels, Heiner; Gußfeld, Alexander

    2017-12-01

    Titanium aluminide alloys have been successfully introduced into civil aircraft engine technology in recent years, and a significant order volume increase is expected in the near future. Due to its beneficial buy-to-fly ratio, investment casting bears the highest potential for cost reduction of all competing production technologies for TiAl-LPTB. However, highest mechanical properties can be achieved by TiAl forging. In view of this, Access e.V. has developed technologies for the production of TiAl investment cast parts and TiAl die cast billets for forging purposes. While these parts meet the highest requirements, establishing series production and further optimizing resource and economic efficiency are present challenges. In order to meet these goals, Access has recently been certified according to aircraft standards, aiming at qualifying parts for production on technology readiness level 6. The present work gives an overview of the phases of development and certification.

  7. Lighting molded optics: Design and manufacturing

    Directory of Open Access Journals (Sweden)

    Kočárková H.

    2013-05-01

    Full Text Available Proper design and manufacturing of glass molded lenses need to be performed in several steps. The whole process from customer requirements to f nal functional product is shown on two examples - a lens for street light and a lens for spot light with narrow lighting angle. After discussing customer requirements, optical design is made. Thanks to various commercial softwares with optimization, manufacturer of the lens can work as well as a designer which enables simplif cation and acceleration of lens manufacturing, since limitations of the manufacturing process are considered during creation of the design. When the prototype is made, its functionality needs to be evaluated. This work shows measurement of light distribution for street light lens in a dark room using goniometer and measurement of light intensity for spot lens f xed on an optical bench. These measurements can reveal the root cause in case of lens malfunction, which enables to optimize manufacturing process or modify lens design accordingly. Designing, manufacturing and evaluation of molded optics under one roof enables creation of easily manufacturable design and fast solution of problems.

  8. Composite fabrication via resin transfer molding technology

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, G.M.; Domeier, L.A.

    1996-04-01

    The IMPReS (Integrated Modeling and Processing of Resin-based Structures) Program was funded in FY95 to consolidate, evaluate and enhance Sandia`s capabilities in the design and fabrication of composite structures. A key driver of this and related programs was the need for more agile product development processes and for model based design and fabrication tools across all of Sandia`s material technologies. A team of polymer, composite and modeling personnel was assembled to benchmark Sandia`s existing expertise in this area relative to industrial and academic programs and to initiate the tasks required to meet Sandia`s future needs. RTM (Resin Transfer Molding) was selected as the focus composite fabrication technology due to its versatility and growing use in industry. Modeling efforts focused on the prediction of composite mechanical properties and failure/damage mechanisms and also on the uncured resin flow processes typical of RTM. Appropriate molds and test composites were fabricated and model validation studies begun. This report summarizes and archives the modeling and fabrication studies carried out under IMPReS and evaluates the status of composite technology within Sandia. It should provide a complete and convenient baseline for future composite technology efforts within Sandia.

  9. Production of Liquid Metal Spheres by Molding

    Directory of Open Access Journals (Sweden)

    Mohammed G. Mohammed

    2014-10-01

    Full Text Available This paper demonstrates a molding technique for producing spheres composed of eutectic gallium-indium (EGaIn with diameters ranging from hundreds of microns to a couple millimeters. The technique starts by spreading EGaIn across an elastomeric sheet featuring cylindrical reservoirs defined by replica molding. The metal flows into these features during spreading. The spontaneous formation of a thin oxide layer on the liquid metal keeps the metal flush inside these reservoirs. Subsequent exposure to acid removes the oxide and causes the metal to bead up into a sphere with a size dictated by the volume of the reservoirs. This technique allows for the production and patterning of droplets with a wide range of volumes, from tens of nanoliters up to a few microliters. EGaIn spheres can be embedded or encased subsequently in polymer matrices using this technique. These spheres may be useful as solder bumps, electrodes, thermal contacts or components in microfluidic devices (valves, switches, pumps. The ease of parallel-processing and the ability to control the location of the droplets during their formation distinguishes this technique.

  10. Prevention of leakage of low-melting-point metals from styrofoam molds.

    Science.gov (United States)

    Herman, M W; Robinson, A; Small, R C

    1975-10-01

    Leakage of low-melting-point metals from the underside of polystyrene molds can be prevented by applying a silicone caulking material to the bottom of the mold and pressing the mold on a metal plate before pouring.

  11. Population Balance Modeling of Polydispersed Bubbly Flow in Continuous-Casting Using Multiple-Size-Group Approach

    Science.gov (United States)

    Liu, Zhongqiu; Li, Linmin; Qi, Fengsheng; Li, Baokuan; Jiang, Maofa; Tsukihashi, Fumitaka

    2015-02-01

    A population balance model based on the multiple-size-group (MUSIG) approach has been developed to investigate the polydispersed bubbly flow inside the slab continuous-casting mold and bubble behavior including volume fraction, breakup, coalescence, and size distribution. The Eulerian-Eulerian approach is used to describe the equations of motion of the two-phase flow. All the non-drag forces (lift force, virtual mass force, wall lubrication force, and turbulent dispersion force) and drag force are incorporated in this model. Sato and Sekiguchi model is used to account for the bubble-induced turbulence. Luo and Svendsen model and Prince and Blanch model are used to describe the bubbles breakup and coalescence behavior, respectively. A 1/4th water model of the slab continuous-casting mold was applied to investigate the distribution and size of bubbles by injecting air through a circumferential inlet chamber which was made of the specially-coated samples of mullite porous brick, which is used for the actual upper nozzle. Against experimental data, numerical results showed good agreement for the gas volume fraction and local bubble Sauter mean diameter. The bubble Sauter mean diameter in the upper recirculation zone decreases with increasing water flow rate and increases with increasing gas flow rate. The distribution of bubble Sauter mean diameter along the width direction of the upper mold increases first, and then gradually decreases from the SEN to the narrow wall. Close agreements between the predictions and measurements demonstrate the capability of the MUSIG model in modeling bubbly flow inside the continuous-casting mold.

  12. 21 CFR 177.2410 - Phenolic resins in molded articles.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Phenolic resins in molded articles. 177.2410... as Components of Articles Intended for Repeated Use § 177.2410 Phenolic resins in molded articles... articles intended for repeated use in contact with nonacid food (pH above 5.0), in accordance with the...

  13. METHOD FOR EVALUATING MOLD GROWTH ON CEILING TILE

    Science.gov (United States)

    A method to extract mold spores from porous ceiling tiles was developed using a masticator blender. Ceiling tiles were inoculated and analyzed using four species of mold. Statistical analysis comparing results obtained by masticator extraction and the swab method was performed. T...

  14. Injection molded polymeric hard X-ray lenses

    DEFF Research Database (Denmark)

    Stöhr, Frederik; Simons, Hugh; Jakobsen, Anders Clemen

    2015-01-01

    of the etching profile and were removed after DRIE. By electroplating, an inverse nickel sample was obtained, which was used as a mold insert in a commercial polymer injection molding machine. A prototype lens made of polyethylene with a focal length of 350 mm was tested using synchrotron radiation at photon...

  15. ASTHMATIC HUMAN SERUM IGE-REACTIVITY WITH MOLD EXTRACTS

    Science.gov (United States)

    Although molds have demonstrated the ability to induce allergic asthma-like responses in mouse models, their role in human disease is unclear. This study was undertaken to provide insight into the prevalence of human IgE-reactivity and identify the target mold protein(s). The st...

  16. IGE IN ASTHMATIC HUMAN SERA IS REACTIVE AGAINST MOLD EXTRACTS

    Science.gov (United States)

    Molds have been associated with various health effects including asthma, but their role in induction of asthma is unclear. However, the presence of mold-specific IgE indicates their capacity to induce allergic responses and possibly exacerbate asthma symptoms. This study was und...

  17. Integrated lithographic molding for microneedle-based devices

    NARCIS (Netherlands)

    Lüttge, Regina; Berenschot, Johan W.; de Boer, Meint J.; Altpeter, Dominique M.; Vrouwe, E.X.; Elwenspoek, Michael Curt; van den Berg, Albert

    This paper presents a new fabrication method consisting of lithographically defining multiple layers of high aspect-ratio photoresist onto preprocessed silicon substrates and release of the polymer by the lost mold or sacrificial layer technique, coined by us as lithographic molding. The process

  18. Performance Characteristics of Borate Fatty Acid Formulations as Mold Inhibitors

    Science.gov (United States)

    Robert D. Coleman; Vina Yang; Carol A. Clausen

    2013-01-01

    The combination of boric acid (BA) or disodium octaborate tetrahydrate (DOT) and a fatty acid (FA) such as heptanoic, octanoic, and nonanoic acids (C7–C9) is an effective treatment solution for protecting wood structures against mold. BA or DOT alone have substantial potency against insects and decay fungi, but have negligible or no mold inhibitor activity. However,...

  19. Taxonomic re-evaluation of black koji molds

    NARCIS (Netherlands)

    Hong, S.B.; Yamada, O.; Samson, R.A.

    2013-01-01

    Black koji molds including its albino mutant, the white koji mold, have been widely used for making the distilled spirit shochu in Northeast Asia because they produce citric acid which prevents undesirable contamination from bacteria. Since Inui reported Aspergillus luchuensis from black koji in

  20. Evaluation of Additive Manufacturing for High Volume Composite Part Molds

    Energy Technology Data Exchange (ETDEWEB)

    Duty, Chad E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kunc, Vlastimil [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lokitz, Bradley S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Springfield, Robert M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    ORNL worked with TruDesign, LLC to develop viable coating solutions to enable the use of large scale 3D printing for both low-temperature and high-temperature composite molds. This project resulted in two commercial products and successfully demonstrated the use of printed molds for autoclave processing for the first time.