WorldWideScience

Sample records for cast iron

  1. Special thermite cast irons

    OpenAIRE

    Yu. Zhiguts; I. Kurytnik

    2008-01-01

    The given paper deals with the problems of the synthesis of cast iron by metallothermy synthesis. On the basis of investigated method of calculations structures of charges have been arranged and cast iron has been synthesized further. Peculiarities metallothermic smelting were found, mechanical properties and structure of received cast iron were investigated and different technologies for cast iron receiving were worked out.

  2. Special thermite cast irons

    Directory of Open Access Journals (Sweden)

    Yu. Zhiguts

    2008-07-01

    Full Text Available The given paper deals with the problems of the synthesis of cast iron by metallothermy synthesis. On the basis of investigated method of calculations structures of charges have been arranged and cast iron has been synthesized further. Peculiarities metallothermic smelting were found, mechanical properties and structure of received cast iron were investigated and different technologies for cast iron receiving were worked out.

  3. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang; Liu Jincheng

    2011-01-01

    White Cast Iron (Ⅰ) White cast iron or ‘white iron' refers to the type of cast iron in which all of the carbon exists as carbide;there is no graphite in the as-cast structure and the fractured surface shows a white colour.White cast iron can be divided in three classes:· Normal white cast iron — this iron contains only C,Si,Mn,P and S,with no other alloying elements.· Low-alloy white cast iron — the total mass fraction of alloying elements is less than 5%.

  4. Cast iron - a predictable material

    OpenAIRE

    Jorg C. Sturm; Guido Busch

    2011-01-01

    High strength compacted graphite iron (CGI) or alloyed cast iron components are substituting previously used non-ferrous castings in automotive power train applications. The mechanical engineering industry has recognized the value in substituting forged or welded structures with stiff and light-weight cast iron castings. New products such as wind turbines have opened new markets for an entire suite of highly reliable ductile iron cast components. During the last 20 years, casting process s...

  5. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang; Liu Jincheng

    2010-01-01

    @@ Chapter 3 Spheroidal Graphite Cast Iron(I) Spheroidal Graphite Cast Iron, SG iron in short, refers to the cast iron in which graphite precipitates as spheroidal shape during solidification of liquid iron. The graphite in common commercial cast iron can only be changed from flake to spheroidal shape by spheroidising treatment. Since spheroidal graphite reduces the cutting effect of stress concentration, the metal matrix strength of SG iron can be applied around 70%-90%, thus the mechanical property of SG iron is significantly superior to other cast irons;even the tensile strength of SG iron is higher than that carbon steel.

  6. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang; Ph.D Liu Jincheng

    2010-01-01

    @@ Note: This book consists of five sections: Chapter 1 Introduction, Chapter 2 Grey Iron, Chapter 3 Spheroidal Graphite Cast Iron, Chapter 4 Vermicular Cast Iron, and Chapter 5 White Cast Iron. CHINA FOUNDRY publishes this book in several parts serially, starting from the first issue of 2009.

  7. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang; Liu Jincheng

    2009-01-01

    @@ This book consists of five sections:Chapter 1 Introduction,Chapter 2 Grey Iron,Chapter 3 Ductile Iron,Chapter 4Vermicular Cast Iron,and Chapter 5 White Cast Iron. CHINA FOUNDRY publishs this book in several parts serially,starting from the first issue of 2009.

  8. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang; Liu Jincheng

    2011-01-01

    @@ Vermicular graphite cast iron(VG iron for short in the following sections)is a type of cast iron in which the graphite is intermediate in shape between flake and spheroidal.Compared with the normal flake graphite in grey iron, the graphite in VG iron is shorter and thicker and shows a curved, more rounded shape.Because its outer contour is exactly like a worm, hence it is called vermicular graphite.

  9. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang; Liu Jincheng

    2010-01-01

    @@ Spheroidal Graphite Cast Iron(Ⅳ) 3.7 Segregation of SG iron The non-uniform distribution of solute elements during solidification results in the micro segregation of SG iron.As for the redistribution of elements in the phases of the solidification structure,there is no intrinsic difference between SG iron and grey iron[132].

  10. Cast iron - a predictable material

    Directory of Open Access Journals (Sweden)

    Jorg C. Sturm

    2011-02-01

    Full Text Available High strength compacted graphite iron (CGI or alloyed cast iron components are substituting previously used non-ferrous castings in automotive power train applications. The mechanical engineering industry has recognized the value in substituting forged or welded structures with stiff and light-weight cast iron castings. New products such as wind turbines have opened new markets for an entire suite of highly reliable ductile iron cast components. During the last 20 years, casting process simulation has developed from predicting hot spots and solidification to an integral assessment tool for foundries for the entire manufacturing route of castings. The support of the feeding related layout of the casting is still one of the most important duties for casting process simulation. Depending on the alloy poured, different feeding behaviors and self-feeding capabilities need to be considered to provide a defect free casting. Therefore, it is not enough to base the prediction of shrinkage defects solely on hot spots derived from temperature fields. To be able to quantitatively predict these defects, solidification simulation had to be combined with density and mass transport calculations, in order to evaluate the impact of the solidification morphology on the feeding behavior as well as to consider alloy dependent feeding ranges. For cast iron foundries, the use of casting process simulation has become an important instrument to predict the robustness and reliability of their processes, especially since the influence of alloying elements, melting practice and metallurgy need to be considered to quantify the special shrinkage and solidification behavior of cast iron. This allows the prediction of local structures, phases and ultimately the local mechanical properties of cast irons, to asses casting quality in the foundry but also to make use of this quantitative information during design of the casting. Casting quality issues related to thermally driven

  11. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang

    2009-01-01

    @@ Preface Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc.

  12. Niobium in gray cast iron

    International Nuclear Information System (INIS)

    The potential for utilization of niobium in gray cast iron is appraised and reviewed. Experiments described in literature indicate that niobium provides structural refinement of the eutectic cells and also promotes pearlite formation. (Author)

  13. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang; Liu Jincheng

    2010-01-01

    @@ Spheroidal Graphite Cast Iron(Ⅲ) 3.6 Solidification morphology of SG iron Solidification morphology refers to the description of change,distribution and interrelationship of the solidification structures such as graphite spheroids,austenite,eutectic cells,etc.[99

  14. Inoculation Effects of Cast Iron

    Directory of Open Access Journals (Sweden)

    E. Fraś

    2012-12-01

    Full Text Available The paper presents a solidification sequence of graphite eutectic cells of A and D types, as well as globular and cementite eutectics. The morphology of eutectic cells in cast iron, the equations for their growth and the distances between the graphite precipitations in A and D eutectic types were analyzed. It is observed a critical eutectic growth rate at which one type of eutectic transformed into another. A mathematical formula was derived that combined the maximum degree of undercooling, the cooling rate of cast iron, eutectic cell count and the eutectic growth rate. One type of eutectic structure turned smoothly into the other at a particular transition rate, transformation temperature and transformational eutectic cell count. Inoculation of cast iron increased the number of eutectic cells with flake graphite and the graphite nodule count in ductile iron, while reducing the undercooling. An increase in intensity of inoculation caused a smooth transition from a cementite eutectic structure to a mixture of cementite and D type eutectic structure, then to a mixture of D and A types of eutectics up to the presence of only the A type of eutectic structure. Moreover, the mechanism of inoculation of cast iron was studied.

  15. Cementite Solidification in Cast Iron

    Science.gov (United States)

    Coronado, J. J.; Sinatora, A.; Albertin, E.

    2014-06-01

    Two hypereutectic cast irons (5.01 pct Cr and 5.19 pct V) were cast and the polished surfaces of test pieces were deep-etched and analyzed via scanning electron microscopy. The results show that graphite lamellae intersect the cementite and a thin austenite film nucleates and grows on the cementite plates. For both compositions, graphite and cementite can coexist as equilibrium phases, with the former always nucleating and growing first. The eutectic carbides grow from the austenite dendrites in a direction perpendicular to the primary plates.

  16. Inoculation of chromium white cast iron

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2009-01-01

    Full Text Available It has been proved that an addition of boron carbide introduced as an inoculant to the chromium white cast iron changes the structureof castings. Castings after inoculation revealed a different structure with numerous grains. Primary precipitates of chromium carbide also appeared, reducing the mechanical properties of as-cast parts. Properly established heat treatment regime makes chromium iron castings regain their, originally high, mechanical properties.

  17. Control of Cast Iron Microstructure

    Science.gov (United States)

    Graham, J.; Lillybeck, N.; Franco, N.; Stefanescu, D. M.

    1985-01-01

    The use of microgravity for industrial research in the processing of cast iron was investigated. Solidification experiments were conducted using the KC-135 and F-104 aircraft, and an experiment plan was developed for follow-on experiments using the Shuttle. Three areas of interest are identified: (1) measurement of thermophysical properties in the melt; (2) understanding of the relative roles of homogeneous nucleation, grain multiplication, and innocultants in forming the microstructure; and (3) exploring the possibility of obtaining an aligned graphite structure in hypereutectic Fe, Ni, and Co.

  18. Chilling Tendency and Chill of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    E. Fra(s); M. Górny; W. Kapturkiewicz; H. López

    2008-01-01

    An analytical expression is presented for the susceptibility of liquid cast iron to solidify according tothe Fe-C-X metastable system (also known as the chilling tendency of cast iron, CT). The analysis incorpo-rates the nucleation and growth processes associated with the eutectic transformation. The CT is related tothe physicochemical state of the liquid, the eutectic cells in the flake graphite, and the number of nodules innodular cast iron. In particular, the CT can be related to the critical wall thickness, Scr, or the chill width, Wcr,in wedge shaped castings. Finally, this work serves as a guide for understanding the effect of technical fac-tors such as the melt chemistry, the spheroidizing and inoculation practice, and the holding time and tam-perature on the resultant CT and chill of the cast iron. Theoretical calculations of Scr and Wcr compare wellwith experimental data for flake graphite and nodular cast iron.

  19. WEAR-RESISTANCE OF CHROMIC CAST IRONS OF EUTECTIC COMPOSITION

    Directory of Open Access Journals (Sweden)

    K. E. Baranovskij

    2009-01-01

    Full Text Available Casting of wear-resistant chrome cast irons in combined molds and iron chills is studied. Application of these ways of casting results in blending of carbides and increasing of hardness of castings.

  20. 49 CFR 192.373 - Service lines: Cast iron and ductile iron.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Service lines: Cast iron and ductile iron. 192.373... Regulators, and Service Lines § 192.373 Service lines: Cast iron and ductile iron. (a) Cast or ductile iron... cast iron pipe or ductile iron pipe is installed for use as a service line, the part of the...

  1. As-Cast Acicular Ductile Aluminum Cast Iron

    Institute of Scientific and Technical Information of China (English)

    S M Mostafavi Kashani; S M A Boutorabi

    2009-01-01

    The effects of nickel (2.2%)and molybdenum (0.6%)additions on the kinetics, microstructure, and me-chanical properties of ductile aluminum cast iron were studied under the as-cast and tempered conditions. Test bars machined from cast to size samples were used for mechanical and metallurgical studies. The results showed that adding nickel and molybdenum to the base iron produced an upper bainitic structure, resulting in an increase in strength and hardness. The same trend was shown when the test bars were tempered at 300 ℃ in the range of 300℃ to 400 ℃. The elongation increased with increasing the temperature from 300 ℃ to 400 ℃. The carbon content of the retained austenite also increased with increasing the temperature. The results also showed that the kinetics, mi-crostructure, and mechanical properties of this iron were similar to those of Ni-Mo alloyed silicon ductile iron.

  2. 49 CFR 192.275 - Cast iron pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Cast iron pipe. 192.275 Section 192.275... Cast iron pipe. (a) Each caulked bell and spigot joint in cast iron pipe must be sealed with mechanical leak clamps. (b) Each mechanical joint in cast iron pipe must have a gasket made of a...

  3. Thin Wall Ductile Iron Castings: Technological Aspects

    Directory of Open Access Journals (Sweden)

    E Fraś

    2013-01-01

    Full Text Available The paper discusses the reasons for the current trend of substituting ductile iron castings by aluminum alloys castings.However, it has been shown that ductile iron is superior to aluminum alloys in many applications. In particular it has beendemonstrated that is possible to produce thin wall wheel rim made of ductile iron without the development of chills, coldlaps or misruns. In addition it has been shown that thin wall wheel rim made of ductile iron can have the same weight, andbetter mechanical properties, than their substitutes made of aluminum alloys.

  4. Thin wall ductile and austempered iron castings

    Directory of Open Access Journals (Sweden)

    E. Fraś

    2010-07-01

    Full Text Available It has been shown that it is possible to produce thin wall castings made of ductile iron with wall thickness in the range of 1.2 to 2.9 mm(without chills, cold laps and misruns. Thin wall ductile iron castings can be lighter (380 g than their substitutes made of aluminium alloys (580g. The kinetics of austenitising transformation was studied in unalloyed ductile iron. The advance of transformations during austenitising was monitored by measurement the fraction of martensite and also by dilatometic studies. It has been shown that in thin wall ductile iron castings austenitising at 880 oC for 20 minutes is adequate to obtain the austenite matrix at the end of the first stage of austempering heat treatment cycle.

  5. Colour Metallography of Cast Iron - Chapter 3: Spheroidal Graphite Cast Iron (Ⅰ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2010-02-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  6. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang

    2009-01-01

    @@ Grey Iron(Ⅲ) 2.5 Crystallization of the LTF during final stage of eutectic solidification of grey iron In the final stage of eutectic solidification, eutectic cells grow gradually into large sizes; the liquid iron between the cells enters the last stage of solidification. At this time, the region of the remaining liquid iron is called last to freeze volume, LTF in short, as shown in Fig.2-39.

  7. Dynamic fracture behavior of nodular cast iron

    International Nuclear Information System (INIS)

    Ferritic nodular cast iron has been found to be a much tougher material than previously believed based on Charpy impact test results. As a result this material is being considered as a substitute for Stainless Steel in nuclear waste transport containers. We have determined Klc and Kld values for nodular cast iron with varying values of silicon and percentage of pearlite in the matrix. Regular V-notch charpy bars and fatigue precracked charpy bars have been tested to determine the initiation and propagation energy and the effect of notch acuity on transition temperature. (author)

  8. Recent development of ductile cast iron production technology in China

    Institute of Scientific and Technical Information of China (English)

    Cai Qizhou; Wei Bokang

    2008-01-01

    Recent progress in the production and technology of ductile cast iron castings in China is reviewed.The manufacture and process control of as-cast ductile iron are discussed.The microstructure.properties and application of partial austenitization normalizing ductile iron and austempered duclile iron(ADI)are briefly depicted.The new development of duclile iron production techniques,such as cored-wire injection(wire-feeding nodularization)process,tundish cover ladle nodularizing process,horizontal continuous casting,and EPC process (lost foam)for ductile iron castings,etc.,are summarized.

  9. 46 CFR 153.239 - Use of cast iron.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Use of cast iron. 153.239 Section 153.239 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK... Systems § 153.239 Use of cast iron. (a) Cast iron used in a cargo containment system must meet...

  10. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    By Zhou Jiyang; Professor

    2011-01-01

    5.5 Eutectic crystallisation of white iron When undercooled below the eutectic line ECF in the Fe-C phase diagram,liquid iron will start eutectic transformation (crystallization):eutectic liquid → cementite + austenite.Eutectic crystallisation is an important stage during the crystallization of white iron.At this stage,the nucleation and growth of eutectic cells (consisting of carbide or cementite + austenite) occur.The carbide in eutectic cells (or eutectic carbide) is the main hard and brittle phase structure which has an important effect on the properties of white iron.If there is no primary carbide in the structure,the effect of eutectic carbide is more prominent.5.5.1 Thermodynamics and kinetics of eutectic crystallisationWhether a eutectic melt follows the meta-stable system to crystallise as carbide + austenite,or follows the stable system to crystallise as graphite + austenite eutectic,is dependent on the nucleation and growth of the two high carbon phases (carbide and graphite),namely,on thermodynamic and kinetic conditions.Figure 5-23 shows the comparison of thermodynamic driving forces of the two eutectics.The two lines in the lower section of the figure represent the free energy of the two eutectics respectively and GL is the free energy of the undercooled iron melt.It is easy to see that the iron melt has the highest free energy and the graphiteaustenite has the lowest free energy;so,following a stable system,the thermodynamic condition favours the crystallisation of graphite-austenite eutectic from the iron melt.

  11. Graphitization in chromium cast iron

    OpenAIRE

    LECOMTE-BECKERS, Jacqueline; Terziev, L.; Breyer, J. P.

    1998-01-01

    Some trials with graphite Hi-Cr iron rolls have been done mainly in Japan, for the rolling of stainless steel. This material could lead to good compromise between oxidation, wear and thermal behaviour. By using thermal analysis and resistometry, the conditions for secondary graphite formation have been studied. The amount and volume of free graphite may be strongly increased by a suitable heat treatment, allowing a good thermal conductivity as well as high wear and mechanical properties.

  12. Maintenance system improvement in cast iron foundry

    Directory of Open Access Journals (Sweden)

    S. Kukla

    2011-07-01

    Full Text Available The work presents the issue of technical equipment management in an iron foundry basing on the assumptions of the TPM system (Total Productive Maintenance. Exploitation analysis of automatic casting lines has been carried out and their work’s influence on the whole production system’s functioning has been researched. Within maintenance system improvement, implementation of autonomic service and planned lines’ review have been proposed in order to minimize the time of breakdown stoppages. The SMED method was used to optimize changeover time, and the OEE (Overall Equipment Effectiveness was applied to evaluate the level of resources usage before and after implementing changes. Further, the influence of the maintenance strategy of casting devices’ efficiency on own costs of casting manufac- ture was estimated.

  13. Inoculated Slightly Hypereutectic Gray Cast Irons

    Science.gov (United States)

    Chisamera, Mihai; Riposan, Iulian; Stan, Stelian; Militaru, Cristina; Anton, Irina; Barstow, Michael

    2012-03-01

    The current experimental investigation in this article was designed to characterize the structure of mold (M) and ladle (L) inoculated, low-S (0.025 wt.% S), low-Al (0.003 wt.% Al), slightly hypereutectic (CE = 4.4-4.5 wt.%) electric melted gray irons, typical for high performance thin-wall castings. It describes the effect of a Ca, Al, Zr-FeSi inoculant addition of 0-0.25 wt.% on structure characteristics, and compares to similar treatments with hypoeutectic irons (3.5-3.6 wt.% CE, 0.025 wt.% S, and 0.003 wt.% Al). A complex structure including primary graphite, austenite dendrites, and eutectic cells is obtained in hypereutectic irons, as the result of nonequilibrium solidification following the concept of a coexisting region. Dendrites appear to be distributed between eutectic cells at higher eutectic undercooling, while in inoculated irons and for lower undercooling, the eutectic cells are "reinforced" by eutectic austenite dendrites. A Zr, Ca, Al-FeSi alloy appears to be an effective inoculant in low S, low Al, gray cast irons, especially for a late inoculation technique, with beneficial effects on both graphite and austenite phases. First, inoculation influenced the nucleation of graphite/eutectic cell, and then their characteristics. A further role of these active elements directly contributed to form nucleation sites for austenite, as complex (Mn,X)S particles.

  14. Thin Wall Cast Iron: Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Doru M. Stefanescu

    2005-07-21

    The development of thin-wall technology allows the designers of energy consuming equipment to select the most appropriate material based on cost/material properties considerations, and not solely on density. The technology developed in this research project will permit the designers working for the automotive industry to make a better informed choice between competing materials and thin wall cast iron, thus decreasing the overall cost of the automobile.

  15. Maintenance system improvement in cast iron foundry

    OpenAIRE

    S. Kukla

    2011-01-01

    The work presents the issue of technical equipment management in an iron foundry basing on the assumptions of the TPM system (Total Productive Maintenance). Exploitation analysis of automatic casting lines has been carried out and their work’s influence on the whole production system’s functioning has been researched. Within maintenance system improvement, implementation of autonomic service and planned lines’ review have been proposed in order to minimize the time of breakdown stoppages. The...

  16. The temperature gradient on section of casting in process of primary crystallization of chromium cast iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2008-08-01

    Full Text Available The methodology of defining in article was introduced the temperature gradient in process of primary crystallization during cooling the casting from chromium cast iron on basis of measurements of thermal field in test DTA-K3. Insert also the preliminary results of investigations of influence temperature gradient on structure of studied wear resistance chromium cast iron.

  17. CONTINUOUSLY-CYCLIC CASTING OF HOLLOW CYLINDER SLUGS OF HIGH-CHROMIUM CAST IRON

    Directory of Open Access Journals (Sweden)

    E. I. Marukovich

    2009-01-01

    Full Text Available The analysis of castings formation is presented and the package of measures dircted on increase of stability of casting process is developed. Parametres of casting of hollow cylindrical billets by the method of directional solidification out of white high-chromium cast iron are defined.

  18. Influence of Technological Parameters of Furane Mixtures on Shrinkage Creation in Ductile Cast Iron Castings

    Directory of Open Access Journals (Sweden)

    Vasková I.

    2014-10-01

    Full Text Available Ductile cast iron (GS has noticed great development in last decades and its boom has no analogue in history humankind. Ductile iron has broaden the use of castings from cast iron into areas, which where exclusively domains for steel castings. Mainly by castings, which weight is very high, is the propensity to shrinkage creation even higher. Shrinkage creation influences mainly material, construction of casting, gating system and mould. Therefore, the main realized experiment was to ascertain the influence of technological parameters of furane mixture on shrinkage creation in castings from ductile iron. Together was poured 12 testing items in 3 moulds forto determine and compare the impact of various technological parameters forms the propensity for shrinkage in the casting of LGG.

  19. RESEARCH AND APPLICATION OF AS-CAST WEAR RESISTANCE HIGH CHROMIUM CAST IRON

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The influence of alloy elements, such as boron and silicon, on the microstructure and properties of as-cast high chromium cast iron is studied. The results show that boron and silicon have a great effect on the mechanical properties and the wear resistance. Through proper addition of boron and silicon, the properties of as-cast high chromium cast iron can be improved effectively. Through analyzing the distribution of elements by scanning electron microscope, it has been shown that the addition of boron and silicon lowers the mass fraction of chromium saturated in as-cast austenite, and makes it unstable and liable to be transformed into martensite. The as-cast high chromium cast iron with proper content of boron and silicon is suitable for the manufacture of lining for asphalt concrete mixer and its wear resistance is 14 times that of lining made of low alloy white cast iron.

  20. Eutectic solidification mode of spheroidal graphite cast iron and graphitization

    OpenAIRE

    Hideo Nakae; Sanghoon Jung; Takayuki Kitazawa

    2007-01-01

    The shrinkage and chilling tendency of spheroidal graphite (abbreviated SG) cast iron is much greater than that of the flake graphite cast iron in spite of its higher amount of C and Si contents. Why? The main reason should be the difference in their graphitization during the eutectic solidification. In this paper, we discuss the difference in the solidification mechanism of both cast irons for solving these problems using unidirectional solidification and the cooling curves of the spheroidal...

  1. Costs Analysis of Iron Casts Manufacturing

    Directory of Open Access Journals (Sweden)

    S. Kukla

    2012-04-01

    Full Text Available The article presents the issues of costs analysis of iron casts manufacturing using automated foundry lines. Particular attention was paid to departmental costs, conversion costs and costs of in-plant transport. After the Pareto analysis had been carried out, it was possible to set the model area of the process and focus on improving activities related to finishing of a chosen group of casts. In order to eliminate losses, the activities realised in this domain were divided into activities with added value, activities with partially added value and activities without added value. To streamline the production flow, it was proposed to change the location of workstations related to grinding, control and machining of casts. Within the process of constant improvement of manufacturing processes, the aspect of work ergonomics at a workstation was taken into account. As a result of the undertaken actions, some activities without added value were eliminated, efficiency was increased and prime costs of manufacturing casts with regard to finishing treatment were lowered.

  2. Colour Metallography of Cast Iron Chapter 2 Introduction (Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang; Liu Jincheng

    2009-01-01

    @@ Grey iron is type of cast iron with grey color fracture and carbon precipitated as flake graphite.According to its chemical compostion in Fe-C phase diagram,grey iron is categorised into three types:hypoeutectic,eutecitic,hypereutecitic irons are hypoeutecic compostion.

  3. Eutectic solidification mode of spheroidal graphite cast iron and graphitization

    Directory of Open Access Journals (Sweden)

    Hideo Nakae

    2007-02-01

    Full Text Available The shrinkage and chilling tendency of spheroidal graphite (abbreviated SG cast iron is much greater than that of the flake graphite cast iron in spite of its higher amount of C and Si contents. Why? The main reason should be the difference in their graphitization during the eutectic solidification. In this paper, we discuss the difference in the solidification mechanism of both cast irons for solving these problems using unidirectional solidification and the cooling curves of the spheroidal graphite cast iron. The eutectic solidification rate of the SG cast iron is controlled by the diffusion of carbon through the austenite shell, and the final thickness is 1.4 times the radius of the SG, therefore, the reduction of the SG size, namely, the increase in the number, is the main solution of these problems.

  4. Solidification of cast iron - A study on the effect of microalloy elements on cast iron

    DEFF Research Database (Denmark)

    Moumeni, Elham

    in the fraction of primary austenite and formation of superfine interdendritic graphite have been investigated using Thermocalc simulations and metallographic studies. TiC did not appear to be a nucleation site for the primary austenite as it was found mostly at the periphery of the secondary arms......The present thesis deals with the heat transfer and solidification of ductile and microalloyed grey cast iron. Heterogeneous nucleation of nodular graphite at inclusions in ductile iron during eutectic solidification has been investigated. A series of ductile iron samples with two different...... the unetched, colour-etched and deep-etched samples. It was confirmed that in irons with high sulphur content (0.12 wt%) nucleation of type-A and type-D graphite occurs on Mn sulphides that have a core of complex Al, Ca, Mg oxide. An increased titanium level of 0.35% produced superfine interdendritic graphite...

  5. Tribological Aspects of Cast Iron Investigated Via Fracture Toughness

    OpenAIRE

    C. Fragassa; Minak, G; A. Pavlovic

    2016-01-01

    Linear-elastic plane-strain fracture toughness of metallic materials is a method which covers the determination of the strain fracture toughness (KIC) of metallic materials by increasing-force test of fatigue precracked specimens. This method has been applied for investigating the fracture behaviour of cast iron. Two groups of cast alloys, Compacted Graphite Iron (CGI) and Spheroidal Graphite Iron (SGI) have been investigated. While SGI benefits of a wide scientific literature, CGI is a relat...

  6. Fracture analysis of chilled cast iron camshaft

    Institute of Scientific and Technical Information of China (English)

    Li Ping; Li Fengjun; Cai Anke; Wei Bokang

    2009-01-01

    The fracture of a camshaft made of chilled cast iron, installed in a home-made Fukang car, happened only after running over a distance of 6,200 km. The fractured camshaft was received to conduct a series of failure analyses using visual inspection, SEM observation of fracture section, microstructure analysis, chemical composition analysis and hardness examination and so on, while those of CKD camshaft made by Citroen Company in France was also simultaneously analyzed to compare the difference between them. The results showed that the fracture of the camshaft mainly results from white section in macrostructure and Ledeburite in microstructure; the crack in the fractured camshaft should be recognized to initiate at the boundary of coarser needle-like carbide and matrix, and then propagate through the transverse section. At the same time, the casting defects such as dendritic shrinkage, accumulated inclusion and initiated crack and abnormal external force might stimulate the fracture of camshaft as well. Based on failure analysis, some measures have been employed, and as a result, the fracture of home-made camshafts has been effectively prevented.

  7. Properties shaping and repair of selected types of cast iron

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2007-04-01

    Full Text Available The paper presents research results of twofold use of TIG - Tungsten Inert Gas also known as GTA - Gas Tungsten Arc. First is surfacing by welding on cold and hot-cold to repair chromium cast iron with chromium content about 15%. Second is remelting with electric arc of selected gray (with pearlitic matrix and ductile (with ferritic-pearlitic matrix cast iron. Repair of cast iron elements was realized in order to cut out a casting defects. Defects decrease a usability of castings for constructional application and increase a manufacturing costs. Application of surface heat treatment guarantees mechanical properties i.e. hardness and wear resistance improvement. The result of investigations show possibility of castings repair by put on defects a good quality padding welds, which have comparable properties with base material. Use of electric arc surface heat treatment resulted in increase of hardness and wear resistance, which was measured on the basis of ASTM G 65 - 00 standard.

  8. Eutectic solidification mode of spheroidal graphite cast iron and graphitization

    Institute of Scientific and Technical Information of China (English)

    Hideo Nakae; Sanghoon Jung; Takayuki Kitazawa

    2007-01-01

    The shrinkage and chilling tendency of spheroidal graphite (abbreviated SG) east iron is much greater than that of the flake graphite cast iron in spite of its higher amount of C and Si contents. Why? The main reason should be the difference in their graphitization during the eutectic solidification. In this paper, we discuss the difference in the solidification mechanism of both cast irons for solving these problems using unidirectional solidification and the cooling curves of the spheroidal graphite cast iron. The eutectic solidification rate of the SG cast iron is controlled by the diffusion of carbon through the austenite shell, and the final thickness is 1.4 times the radius of the SG, therefore, the reduction of the SG size, namely, the increase in the number, is the main solution of these problems.

  9. Optimization of the Chemical Composition of Cast Iron Used for Casting Ball Bearing Grinding Disks

    Institute of Scientific and Technical Information of China (English)

    Aurel Crisan; Sorin Ion; Munteanu; Ioan Ciobanu; Iulian Riposan

    2008-01-01

    The chemical composition of cast iron used for casting ball bearing machining disks was varied to optimize the properties such as castability, hardenability, and durability in ball machining. The cast iron characteristics were most strongly dependent on the Ni content and the carbon saturation degree, So. This paper describes the types of test specimens, the working conditions, and the experimental results. The in-crease of the degree of carbon saturation reduces the tendency to form shrinkholes in the castings. The de-crease in the Ni content negatively affects the final hardening treatment. A way to control solidification de-fects in cast iron, by reducing the Ni content, has been verified on cast disks.

  10. Interaction between alloying and hardening of cast iron surface

    Institute of Scientific and Technical Information of China (English)

    刘政军; 郝雪枫; 傅迎庆; 牟力军

    2002-01-01

    To improve wear resistance of surface will increase the service life of gray cast iron directly. This paper presents that gray cast iron surface coated with alloy powder is locally remelted by TIG arc to increase the wear resistance. The influences of arc current and scanning rate etc on surface properties are found. Under different conditions, the microstructure, hardness and wear resistance of remelted layer are analyzed and measured. The results indicate that the gray cast iron surface can be strengthened by TIG arc local remelting treatment. Especially, surface alloying hardening effect is best and surface properties are improved remarkably.

  11. CASTING OF DETAILS OF WEAR-RESISTANT CHROME CAST IRONS FOR CHROMIC MILLS IN COMBINED MOLDS AND CHILLS

    Directory of Open Access Journals (Sweden)

    K. E. Baranovskij

    2009-01-01

    Full Text Available Relative wear resistance of chrome cast irons of eutectic composition is determined in laboratory and industry conditions. Complex alloyed eutectic cast iron with increased wear resistance and mechanical characteristics is developed.

  12. INCREASE OF EFFICIENCY OF MODIFIERS FOR GRAY CAST-IRON

    Directory of Open Access Journals (Sweden)

    O. S. Komarov

    2012-01-01

    Full Text Available It is established that for the purpose of increase of modifying efficiency of the melt from gray cast iron it is possible to use mechanically alloyed aluminum powder with superdispersed particles of aluminum and graphite oxide.

  13. Laser surface treatment of grey cast iron for automotive applications

    NARCIS (Netherlands)

    Ocelik, V.; Tang, P.N.; de Boer, M.C.; de Oliveira, U.; de Hosson, J.T.M.; DeHosson, JTM; Brebbia, CA; Nishida, SI

    2005-01-01

    The surface of pearlitic grey cast iron was treated using a 2 kW Nd:YAG laser beam with the final aim to improve its surface properties, mainly for automotive applications. Two kinds of laser surface treatments were experimentally applied. In the laser surface hardening approach the surface of cast

  14. Solidification and microstructure of thin walled ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin

    2006-01-01

    In the recent years there has been an increasing interest in light constructions in order to save weight in e.g. cars. Ductile cast iron has good mechanical properties but it is necessary to re­duce the wall thicknesses of the castings in order to reduce the weight. Reducing the wall thicknesses ...

  15. The surface layer of austempered ductile iron investment castings properties

    Directory of Open Access Journals (Sweden)

    D. Myszka

    2009-01-01

    Full Text Available The article presents a unique process of carbonnitriding and nitriding the precision casting surfaces of austempered ductile iron. The results of the research are pointing that adequate process parameters allow to obtain multiple increase of wear resistance and a significant increase of corrosion resistance. Also, changes of cast microstructure and hardness are presented.

  16. Analysis of the structure of castings made from chromium white cast iron resistant to abrasive wear

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2009-10-01

    Full Text Available It has been proved that an addition of boron carbide and disintegrated steel scrap introduced as an inoculant to the chromium white cast iron changes the structure of castings. The said operation increases the number of crystallization nuclei for dendrites of the primary austenite. In this case, the iron particles act as substrates for the nucleation of primary austenite due to a similar crystallographic lattice. The more numerous are the dendrites of primary austenite and the structure more refined and the mechanical properties higher. Castings after B4C inoculation revealed a different structure of fine grained fracture. Primary precipitates of chromium carbide also appeared, reducing the mechanical properties of as-cast parts. Properly established heat treatment regime makes chromium iron castings regain their, originally high, mechanical properties.

  17. The change of temperature gradient in solidification of hypereutectic chromium cast iron casting

    OpenAIRE

    A. Studnicki

    2010-01-01

    In article the analysis of temperature gradient of solidification in section of hypereutectic chromium cast iron model casting was introduced. On this example was presented the method (DTGA – derivative and thermal gradient analysis), which was worked out in Department of Foundry Silesian University of Technology enabling the record of indispensable data to execution of analysis the temperature gradient and its derivative after time on section of model casting. It multichanneled apparatus to ...

  18. The change of temperature gradient in solidification of hypereutectic chromium cast iron casting

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2010-01-01

    Full Text Available In article the analysis of temperature gradient of solidification in section of hypereutectic chromium cast iron model casting was introduced. On this example was presented the method (DTGA – derivative and thermal gradient analysis, which was worked out in Department of Foundry Silesian University of Technology enabling the record of indispensable data to execution of analysis the temperature gradient and its derivative after time on section of model casting. It multichanneled apparatus to registration of data was used Crystaldigraph - PC.

  19. Structure and mechanical properties of vermicular cast iron in cylinder head casting

    OpenAIRE

    Guzik, E.; S. Dzik

    2009-01-01

    The paper discusses the problem of grain density and ferrite content in microstructure of vermicular graphite iron cast in bars of different section diameters and cylinder head casting. The experimental results regarding the section effect demonstrate that the nodule count, grain density and ferrite content are all function of the cast bar diameter in this particular case ranging from 0.6 to 8.0 cm and microstructure and mechanical properties in the cylinder head. The nodule count (or grain d...

  20. FORMATION OF WEAR-RESISTANT CHROMIUM CAST IRON CASTING INTO THE CHILL MOLD

    Directory of Open Access Journals (Sweden)

    E. I. Marukovich

    2013-01-01

    Full Text Available The analysis of thermal processes of formation of castings from wearproof chromic cast irons for replaceable details of centrifugal mills and crushers is carried out. Influence of protective and dividing coverings on intensity of heating of the chill mold is investigated.

  1. Residual stresses in a cast iron automotive brake disc rotor

    Energy Technology Data Exchange (ETDEWEB)

    Ripley, Maurice I. [Australian Nuclear Scinece and Technology Organisation, PMB 1, Menai, NSW 2234 (Australia)]. E-mail: m.ripley@ansto.gov.au; Kirstein, Oliver [Australian Nuclear Scinece and Technology Organisation, PMB 1, Menai, NSW 2234 (Australia)

    2006-11-15

    Runout, and consequent juddering and pulsation through the brake pedal, is a multi-million dollar per year warranty problem for car manufacturers. There is some suspicion that the runout can be caused by relaxation of residual casting stresses when the disc is overheated during severe-braking episodes. We report here neutron-diffraction measurements of the levels and distribution of residual strains in a used cast iron brake disc rotor. The difficulties of measuring stresses in grey cast iron are outlined and three-dimensional residual-strain distributions are presented and their possible effects discussed.

  2. Residual stresses in a cast iron automotive brake disc rotor

    International Nuclear Information System (INIS)

    Runout, and consequent juddering and pulsation through the brake pedal, is a multi-million dollar per year warranty problem for car manufacturers. There is some suspicion that the runout can be caused by relaxation of residual casting stresses when the disc is overheated during severe-braking episodes. We report here neutron-diffraction measurements of the levels and distribution of residual strains in a used cast iron brake disc rotor. The difficulties of measuring stresses in grey cast iron are outlined and three-dimensional residual-strain distributions are presented and their possible effects discussed

  3. Tribological Aspects of Cast Iron Investigated Via Fracture Toughness

    Directory of Open Access Journals (Sweden)

    C. Fragassa

    2016-03-01

    Full Text Available Linear-elastic plane-strain fracture toughness of metallic materials is a method which covers the determination of the strain fracture toughness (KIC of metallic materials by increasing-force test of fatigue precracked specimens. This method has been applied for investigating the fracture behaviour of cast iron. Two groups of cast alloys, Compacted Graphite Iron (CGI and Spheroidal Graphite Iron (SGI have been investigated. While SGI benefits of a wide scientific literature, CGI is a relatively unknown material despite of its large potentialities in industrial applications.

  4. The influence of cooling rate on the hardness of cast iron with nodular and vermicular graphite

    OpenAIRE

    M.S. Soiński; B. Zatoń; A. Skoczylas; A. Derda

    2008-01-01

    The paper presents hardness changes for cast iron with nodular and vermicular graphite, determined within the separately cast test blocks. Investigation has comprised cast irons with similar ferrite and pearlite fractions in the metal matrix. The hardness measurements have been performed by Brinell method for samples taken both from an edge and from the centre of a Y block (for nodular cast iron) or of a reversed U block (in the case of vermicular cast iron). Investigations have pertained bot...

  5. 46 CFR 56.60-10 - Cast iron and malleable iron.

    Science.gov (United States)

    2010-10-01

    ... and malleable iron fittings conforming to the specifications of 46 CFR 56.60-1, Table 56.60-1(a) may...; see 46 CFR 56.01-2) and if their service does not exceed the rating as marked on the valve. (b) Cast... 46 Shipping 2 2010-10-01 2010-10-01 false Cast iron and malleable iron. 56.60-10 Section...

  6. Abrasion Resistance of as-Cast High-Chromium Cast Iron

    Directory of Open Access Journals (Sweden)

    Pokusová Marcela

    2014-12-01

    Full Text Available High chromium cast irons are widely used as abrasion resistant materials. Their properties and wear resistance depend on carbides and on the nature of the matrix supporting these carbides. The paper presents test results of irons which contain (in wt.% 18-22 Cr and 2-5 C, and is alloyed by 1.7 Mo + 5 Ni + 2 Mn to improve the toughness. Tests showed as-cast irons with mostly austenitic matrix achieved hardness 36-53 HRC but their relative abrasion-resistance was higher than the tool steel STN 19436 heat treated on hardness 60 HRC.

  7. Control of microstructure of cast irons Indefinite Chill Double Pour-ICDP

    Directory of Open Access Journals (Sweden)

    T.Válek

    2011-10-01

    Full Text Available ICDP cast irons designated for working layer of centrifugal cylinders of rolling mill must have precisely defined properties. The most closely observed parameters of the ICDP (Indefinite Child Double Pour cast irons are the following: the amount of graphite in a microstructure and hardness of base metal material. Secretion of graphite in cast iron with ledeburitic basic metal compound is a complex process that can be controlled and managed with the use of thermal analysis. On the basis of the evaluation of cooling curve parameters of cast iron there is performed metallurgical adjustment of meltage by adding elements supporting graphite end carbide formation into cast iron. The identified structural and mechanical properties of ICDP cast irons were correlated with recorded KO. Subsequently, a methodology for control of the metallurgical adjustment of cast iron before casting was proposed so as to ensure the desired microstructure and properties the ICDP cast iron.

  8. Composite Materials Processing of Cast Iron and Ceramics Using Compo-Casting Technology

    Science.gov (United States)

    Tomita, Yoshihiro; Sumimoto, Haruyoshi

    The compo-casting technology of ceramics and cast iron is expected to be one of the major casting technologies that can expand the application fields of cast iron. This technique allows the heat energy of the molten metal to be utilized to produce cast iron products which are added with functions of ceramic materials. The largest problem in compo-casting technology is generation of cracks caused by thermal shock. Although this crack generation can be prevented by reducing the thermal stress by means of preheating ceramics, the necessary preheating temperature is considerably high and its precise controlling is difficult at the practical foundry working sites. In this study, we tried to numerically predict the critical preheating temperature of ceramics using the thermal stress analysis in unsteady heat transfer and the Newman's diagram, and found that the preheating of ceramics to reduce thermal stress could be substituted with placing an appropriate cast iron cover around the ceramics. Excellent results were obtained by using a method whereby a ceramic bar was covered with a flake graphite cast iron cover and fixed in a sand mold and then molten metal was poured. Then, two or three ceramics were examined at the same time under the compocasting condition. As a result, three specimens could be done at the same time by adjusting the cover space to 15mm. Moreover, irregular shape ceramics were examined under the compocasting condition. As a result, the compocasting could be done by devising the cover shape. In each condition, it was confirmed that the cover shape made from the analytical result was effective to the compocasting by doing the thermometry of the specimens.

  9. Stereology of carbide phase in modified hypereutectic chromium cast iron

    Directory of Open Access Journals (Sweden)

    J. Suchoń

    2010-04-01

    Full Text Available In paper are presented results of studies of carbide phase stereology modified hypereutectic wear resistance chromium cast iron which contains carbon about 3,5% and chromium about 25%. Three substances were applied to the modification: boron carbide (B4C, ferroniobium (FeNb and mixture of ferroniobium and rare-earth (RE. The measurements of geometrical features of carbides were conducted on microsection taken from castings wich were cooled with various velocities.

  10. Stereology of carbide phase in modified hypereutectic chromium cast iron

    OpenAIRE

    J. Suchoń; A. Studnicki; M. Przybył

    2010-01-01

    In paper are presented results of studies of carbide phase stereology modified hypereutectic wear resistance chromium cast iron which contains carbon about 3,5% and chromium about 25%. Three substances were applied to the modification: boron carbide (B4C), ferroniobium (FeNb) and mixture of ferroniobium and rare-earth (RE). The measurements of geometrical features of carbides were conducted on microsection taken from castings wich were cooled with various velocities.

  11. Thermodynamic stability of austenitic Ni-Mn-Cu cast iron

    Directory of Open Access Journals (Sweden)

    A. Janus

    2014-07-01

    Full Text Available The performed research was aimed at determining thermodynamic stability of structures of Ni-Mn-Cu cast iron castings. Examined were 35 alloys. The castings were tempered at 900 °C for 2 hours. Two cooling speeds were used: furnace-cooling and water-cooling. In the alloys with the nickel equivalent value less than 20,0 %, partial transition of austenite to martensite took place. The austenite decomposition ratio and the related growth of hardness was higher for smaller nickel equivalent value and was clearly larger in annealed castings than in hardened ones. Obtaining thermodynamically stable structure of castings requires larger than 20,0 % value of the nickel equivalent.

  12. Carbides in Nodular Cast Iron with Cr and Mo

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2007-07-01

    Full Text Available In these paper results of elements microsegregation in carbidic nodular cast iron have been presented. A cooling rate in the centre of the cross-section and on the surface of casting and change of moulding sand temperature during casting crystallization and its self-cooling have been investigated. TDA curves have been registered. The linear distribution of elements concentration in an eutectic grain, primary and secondary carbides have been made. It was found, that there are two kinds of carbides: Cr and Mo enriched. A probable composition of primary and secondary carbides have been presented.

  13. Thin wall ductile iron casting as a substitute for aluminum alloy casting in automotive industry

    Directory of Open Access Journals (Sweden)

    M. Górny

    2009-01-01

    Full Text Available In paper it is presented thin wall ductile iron casting (TWDI as a substitute of aluminium alloy casting. Upper control arm made of ductile iron with wall thickness ranging from 2 – 3.7 mm was produced by inmold process. Structure, mechanical properties and computer simulations were investigated. Structural analysis of TWDI shows pearlitic-ferritic matrix free from chills and porosity. Mechanical testing disclose superior ultimate tensile strength (Rm, yield strength (Rp0,2 and slightly lower elongation (E of TWDI in comparison with forged control arm made of aluminium alloy (6061-T6. Moreover results of computer simulation of static loading for tested control arms are presented. Analysis show that the light-weight ductile iron casting can be loaded to similar working conditions as the forged Al alloy without any potential failures.

  14. Improving chill control in iron powder treated slightly hypereutectic grey cast irons

    OpenAIRE

    Iulian Riposan; Mihai Chisamera; Stelian Stan

    2011-01-01

    Recent studies revealed that in eutectic to slightly hypereutectic grey irons (CE = 4.3%-4.5%) the presence of austenite dendrites provides an opportunity to improve the cast iron properties, as a high number of eutectic cells are “reinforced” by austenite dendrites. An iron powder addition proved to be important by promoting dendritic austenite in hypereutectic irons, but was accompanied by adverse effect on the characteristics of potential nuclei for graphite. The purpose of the present pap...

  15. 77 FR 17119 - Pipeline Safety: Cast Iron Pipe (Supplementary Advisory Bulletin)

    Science.gov (United States)

    2012-03-23

    ... operators of natural gas cast iron distribution pipelines and state pipeline safety representatives. Recent... owners and operators of natural gas cast iron distribution pipelines and state pipeline safety...; October 11, 1991 and ALN-92-02; June 26, 1992) covering the continued use of cast iron pipe in natural...

  16. Mechanisms and mechanics of porosity formation in ductile iron castings

    Directory of Open Access Journals (Sweden)

    M. Perzyk

    2007-12-01

    Full Text Available Shrinkage defects in ductile iron castings can be of two basic types: shrinkage cavities associated with the liquid contraction prior to the expansion period of the iron as well as the porosity, which may appear even if the liquid shrinkage is fully compensated. In the present paper two possible mechanisms of the porosity are presented and analyzed. The first one is the Karsay’s mechanism based on the secondary shrinkage concept. The second one is the mechanism acting during the expansion period of the iron, first suggested by Ohnaka and co-authors and essentially modified by the present authors. The mechanical interactions between casting and mould are determined for the both mechanisms. Their analysis leads to the conclusion, that porosity forms during expansion period of the melt. The direct cause is the negative pressure which appears in the central part of the casting due to the differences in expansion coefficients of the fast cooling surface layer and slow cooling inner region. Observations concerning feeding behavior of ductile iron castings, based on this mechanism, agree well with industrial practice. The secondary shrinkage is not only needless to induce the porosity, but the corresponding mechanism of its occurrence, proposed by Karsay, does not seem to be valid.

  17. Development,Application and Problem of Ductile Iron Lost Foam Casting Technology in China

    Institute of Scientific and Technical Information of China (English)

    He Wenhao; Ye Shengping; Han Xiaohong; Tang Suoyun

    2010-01-01

    @@ Lost-foam casting is a 21st century green casting technology.Over the past decade,there has been an extraordinary development in lost-foam casting in China;and ductile iron lost-foam casting has developed even more rapidly in foundry equipment,foundry raw materials,and casting engineers.

  18. Structure and mechanical properties of vermicular cast iron in cylinder head casting

    Directory of Open Access Journals (Sweden)

    E. Guzik

    2009-01-01

    Full Text Available The paper discusses the problem of grain density and ferrite content in microstructure of vermicular graphite iron cast in bars of different section diameters and cylinder head casting. The experimental results regarding the section effect demonstrate that the nodule count, grain density and ferrite content are all function of the cast bar diameter in this particular case ranging from 0.6 to 8.0 cm and microstructure and mechanical properties in the cylinder head. The nodule count (or grain density has been reported to increase, while ferrite content was decreasing with decreasing casting diameter. The density number of the grains Nv has been related (by regression analysis to the undercooling degree

  19. Effect of the Carbides and Matrix on the Wear Resistance of Nodular Cast Iron

    Directory of Open Access Journals (Sweden)

    G. Gumienny

    2013-07-01

    Full Text Available This paper presents the results of the abrasive wear resistance of selected types of nodular cast iron, including ADI, cooperating with quartz sand and 100 grit abrasive paper. It has been shown that carbides in nodular cast iron cause an increase in wear resistance of 6 to 12% depending on the surface fraction of the carbides and type of the matrix. For the same unit pressure the mass loss of the cast iron cooperating with quartz sand is many times larger than the cast iron cooperating with abrasive paper. For both abrasives the highest wear resistance showed nodular cast iron with upper and lower bainite and carbides.

  20. Casting Ductile Iron in Layer Moulds Made from Ecological Sands

    Directory of Open Access Journals (Sweden)

    M. Rączka

    2012-09-01

    Full Text Available The article contains the results of tests performed under the target project in Hardtop Foundry Charsznica.The objective of the tests and studies was to develop a technology of making high-quality ductile iron castings, combined witheffective means of environmental protection. The studies presented in this article related to castings weighing from 1 to 300 kg made from ductile iron of grades 400-15 and 500-7, using two-layer moulds, where the facing and core sand was the sand with an alkaline organic binder, while backing sand was the sand with an inorganic geopolymer binder.A simplified method of sand reclamation was applied with possible reuse of the reclaim as an addition to the backing sand. The castiron spheroidising treatment and inoculation were selected taking into account the specific conditions of Hardtop Foundry. A pilot batch of castings was made, testing the gating and feeding systems and using exothermic sleeves on risers. The study confirmed the validity of the adopted concept of making ductile iron castings in layer moulds, while maintaining the content of sand with an organic binder at a level of maximum 15%.

  1. Manufacturing of thin walled near net shape iron castings

    DEFF Research Database (Denmark)

    Larsen, Per Leif

    2003-01-01

    The demand for near net shape thin walled iron castings is growing. This has several reasons, the main one is the need for lowering the fuel consumption of cars; the easiest way to do that is to lower the weight of the cars. The best way to do this was for a period of time believed to be substitu......The demand for near net shape thin walled iron castings is growing. This has several reasons, the main one is the need for lowering the fuel consumption of cars; the easiest way to do that is to lower the weight of the cars. The best way to do this was for a period of time believed.......000.000 cars produced world wide each year consumes enormous amounts of cast parts ! The aim of the project is to develop the green sand molding method on DISAMATIC to be able to deal with the new demands for thin walled near net shape castings in iron....

  2. THE RESULTS OF MAGNETIC CONTROL OF STRUCTURE OF THE WHITE CAST IRON INGOTS BEFORE ANNEALING FOR MALLEABLE

    Directory of Open Access Journals (Sweden)

    S. G. Sandomirskij

    2009-01-01

    Full Text Available Investigations of dependence of remanent flux in small-sized castings of white cast iron on content of areas with structure of grey cast iron are given. Solution of problem of non- allowance on extraction of castings with structure of grey cast iron is offered. Recommendations on using of control means are given.

  3. Microstructure and properties of cast iron after laser surface hardening

    Directory of Open Access Journals (Sweden)

    Stanislav

    2013-12-01

    Full Text Available Laser surface hardening of cast iron is not trivial due to the material’s heterogeneity and coarse-grained microstructure, particularly in massive castings. Despite that, hardening of heavy moulds for automotive industry is in high demand. The present paper summarises the findings collected over several years of study of materials structure and surface properties. Phase transformations in the vicinity of graphite are described using examples from production of body parts in automotive industry. The description relates to formation of martensite and carbide-based phases, which leads to hardness values above 65 HRC and to excellent abrasion resistance.

  4. Ductile cast iron obtaining by Inmold method with use of LOST FOAM process

    Directory of Open Access Journals (Sweden)

    T. Pacyniak

    2010-01-01

    Full Text Available The possibility of manufacturing of ductile cast iron castings by Inmold method with use of LOST FOAM process was presented in this work. The spheroidization was carried out by magnesium master alloy in amounts of 1% casting mass. Nodulizer was located in the reactive chamber in the gating system made of foamed polystyrene. Pretests showed, that there are technical possibilities of manufacturing of casts from ductile cast iron in the LOST FOAM process with use of spheroidization in mould.

  5. PRINCIPALLY NEW EFFECTIVE CASTING PROCESS OF THE HOLLOW CYLINDRICAL SLUGS OF CAST IRON BY METHOD OF DIRECTIONAL SOLIDIFICATION

    Directory of Open Access Journals (Sweden)

    E. I. Marukovich

    2010-01-01

    Full Text Available The advantages of the new method of the hollow ingots production of cast iron are presented. The thermal state of crystallizer at cyclic temperature influences on its inside face, the ingot hardening and cast iron structure formation in conditions of intensive one-sided heat sink is examined. The comparative data on properties and exploitation characteristics of the parts, produced by different ways of casting is given.

  6. New developments in high quality grey cast irons

    Directory of Open Access Journals (Sweden)

    Iulian Riposan

    2014-07-01

    Full Text Available The paper reviews original data obtained by the present authors, revealed in recent separate publications, describing specific procedures for high quality grey irons, and reflecting the forecast needs of the worldwide iron foundry industry. High power, medium frequency coreless induction furnaces are commonly used in electric melting grey iron foundries. This has resulted in low sulphur (1,500 °C, contributing to unfavourable conditions for graphite nucleation. Thin wall castings are increasingly produced by these electric melt shops with a risk of greater eutectic undercooling during solidification. The paper focused on two groups of grey cast irons and their specific problems: carbides and graphite morphology control in lower carbon equivalent high strength irons (CE=3.4%-3.8%, and austenite dendrite promotion in eutectic and slightly hypereutectic irons (CE=4.1%-4.5%, in order to increase their strength characteristics. There are 3 stages and 3 steps involving graphite formation, iron chemistry and iron processing that appear to be important. The concept in the present paper sustains a threestage model for nucleating flake graphite [(Mn,XS type nuclei]. There are three important groups of elements (deoxidizer, Mn/S, and inoculant and three technological stages in electric melting of iron (superheat, pre-conditioning of base iron, final inoculation. Attention is drawn to a control factor (%Mn x (%S ensuring it equals to 0.03 – 0.06, accompanied by 0.005wt.%–0.010wt.% Al and/or Zr content in inoculated irons. It was found that iron powder addition promotes austenite dendrite formation in eutectic and slightly eutectic, acting as reinforcement for the eutectic cells. But, there is an accompanying possible negative influence on the characteristics of the (Mn,XS type graphite nuclei (change the morphology of nuclei from polygonal compact to irregular polygonal, and therefore promote chill tendency in treated irons. A double addition (iron

  7. New developments in high quality grey cast irons

    Institute of Scientific and Technical Information of China (English)

    Iulian Riposan; Mihai Chisamera; Stelian Stan

    2014-01-01

    The paper reviews original data obtained by the present authors, revealed in recent separate publications, describing speciifc procedures for high quality grey irons, and relfecting the forecast needs of the worldwide iron foundry industry. High power, medium frequency coreless induction furnaces are commonly used in electric melting grey iron foundries. This has resulted in low sulphur (1,500 °C), contributing to unfavourable conditions for graphite nucleation. Thin wall castings are increasingly produced by these electric melt shops with a risk of greater eutectic undercooling during solidiifcation. The paper focused on two groups of grey cast irons and their speciifc problems: carbides and graphite morphology control in lower carbon equivalent high strength irons (CE=3.4%-3.8%), and austenite dendrite promotion in eutectic and slightly hypereutectic irons (CE=4.1%-4.5%), in order to increase their strength characteristics. There are 3 stages and 3 steps involving graphite formation, iron chemistry and iron processing that appear to be important. The concept in the present paper sustains a three-stage model for nucleating flake graphite [(Mn,X)S type nuclei]. There are three important groups of elements (deoxidizer,Mn/S, and inoculant) and three technological stages in electric melting of iron (superheat, pre-conditioning of base iron, ifnal inoculation). Attention is drawn to a control factor (%Mn) x (%S) ensuring it equals to 0.03- 0.06, accompanied by 0.005wt.%-0.010wt.% Al and/or Zr content in inoculated irons. It was found that iron powder addition promotes austenite dendrite formation in eutectic and slightly eutectic, acting as reinforcement for the eutectic cells. But, there is an accompanying possible negative influence on the characteristics of the (Mn,X)S type graphite nuclei (change the morphology of nuclei from polygonal compact to irregular polygonal, and therefore promote chill tendency in treated irons). A double addition (iron powder + inoculant

  8. Effect of potassium on as-cast microstructure of a hypereutectic high chromium cast iron

    OpenAIRE

    Liu Qing; Yang Hua; Ding Haimin

    2011-01-01

    The present work mainly evaluates the effect of potassium (K) on as-cast microstructure of a hypereutectic high chromium cast iron by means of a field emission scanning electron microscope (FESEM) and an X-ray diffractometer using CuKα radiation with a 2θ range of 30-130°. Results showed that, with the addition of K-containing modifier, the large lath-like and/or rod-like primary M7C3 carbides can be modified to the hexagonal prisms, and the eutectic carbides can also be refined. In addition,...

  9. Mechanism of silicon influence on the chill of cast iron

    Directory of Open Access Journals (Sweden)

    E. Fraś

    2007-12-01

    Full Text Available In this work an analytical solution of general validity is used to explain mechanism of the silicon influence on the absolute chill tendency (CT and chill (w of cast iron. It is found that CT can be related to nucleation potential of graphite (Nv, growth parameter (μ of eutectic cells, temperature range (ΔTsc and the pre-eutectic austenite volume fraction (fγ. It has been shown that silicon additions: a impede the growth of graphite eutectic cells, μ, b expands the temperature range ΔTsc, c increases the nucleation potential of graphite Nv, d lowers the pre-eutectic austenite volume fraction, fγ. and in consequence the absolute chilling tendency, CT decreases. The minimum wall thicknesses for chilled castings, or chill widths (w in wedge shaped castings is related to CT and as silcon contents increases, the w value also increases.

  10. Product and process innovation of grey cast iron brake discs

    Energy Technology Data Exchange (ETDEWEB)

    Schorn, M. [Brembo S.P.A. (Italy)

    2006-07-01

    The brake disc out of grey cast iron often seems to be playing the role of the ''underdog'' in the technical examinations of the entire brake system. This is also reflected by the 25 year history of the {mu}-club. In a total of 93 presentations in those 25 years, only 3 were related to the topic of grey cast iron discs. This is not a correct relation to the importance of this component within the brake system. The disc, although per definition with a lower specific load than the pad, has the major task to store and dissipate the heat in which the kinetic energy of the vehicle is transformed. The disc also has a significant effect on NVH behaviour, particularly in the low frequency range. It also has a permanent fight with its weight as an unsprung mass. (orig.)

  11. SURFACE CAST IRON STRENGTHENING USING COMBINED LASER AND ULTRASONIC PROCESSING

    Directory of Open Access Journals (Sweden)

    O. Devojno

    2013-01-01

    Full Text Available The paper provides an analysis of ultrasonic surface plastic deformation and subsequent laser thermal strengthening of gray cast iron parts in the regime of hardening from a solid state with the purpose to obtain strengthened surface layers of bigger depth and less roughness of the processed surface. Program complex ANSYS 11.0 has been used for calculation of temperature fields induced by laser exposure.  The appropriate regime of laser processing without surface fusion has been selected on the basis of the applied complex. The possibility of displacement in the bottom boundary of α–γ-transformation temperature  for СЧ20 with 900 °С up to 800 °С is confirmed due to preliminary ultrasonic surface plastic deformation of the surface that allows to expand technological opportunities of laser quenching  of gray  cast iron from a solid state. 

  12. Role of yttrium in heavy section spheroidal graphite cast iron

    International Nuclear Information System (INIS)

    Magnesium ferrosilicon alloys (Mg = 5-7%) are widely used abroad, while rare earth-magnesium ferrosilicon alloys (Mg = 8-10%, Ce RE = 5-9%) are used predominantly in China. Recently, due to the exploitation of natural resources of yttrium rare earth at home, a new type of alloy--yttrium based-rare earth ferrosilicon (YRE=25-40%, Si=40%) has been developed and put into trail as a substitute for conventional rare earth magnesium ferrosilicon alloy in some of the foundries for manufacturing heavy section spheroidal graphite cast iron. In this paper the effect of yttrium on mechanical properties and microstructures of heavy section spheroidal graphite cast iron are studied. Some simulating experiments were carried out in laboratory

  13. Fracture toughness behaviour of ferritic ductile cast iron

    International Nuclear Information System (INIS)

    The static rate fracture toughness of a series of eight heats of ductile cast iron has been measured. Samples from each heat were tested in a heat treated condition which produced a fully ferritic matrix. The chemical composition and the microstructural feature size has also been measured directly from each specimen tested. A multiple linear regression method was used to establish a simple mathematical relationship between fracture toughness and the composition and microstructure. Fracture toughness was found to be strongly associated with the spacing (or size) of the graphite nodules in these fully ferritic ductile cast irons. Other features, including the composition, the ferrite grain size, or the amount of graphite (over the ranges examined), did not strongly influence the fracture toughness. Fracture toughness also did not correlate with tensile properties (i.e. strength or ductility) in these alloys. (author)

  14. Age Strengthening of Gray Cast Iron Phase III

    Energy Technology Data Exchange (ETDEWEB)

    Von L. Richards; Wayne Nicola

    2003-06-26

    The primary objective of this research is to identify the age strengthening mechanism in gray and ductile cast iron, and to quantify the parameters that control it. It is also to contribute to a new predictive model for gray and ductile iron strength and hardness. This work shows that age strengthening occurs on a sigmoidal-logarithmic scale in gray and ductile cast irons, to a statistically significant extent. This is similar to Avrami-Johnson-Mehl kinetics for phase transformations in metals. It occurs in both cupola-melted iron and induction melted iron. However, it does not happen in all compositions. We have developed some understanding of the process. Data suggests that nitrogen and nitride-forming trace elements have a significant role in the process, but that is yet not fully characterized. Also, the time dependence of the bulk hardness and strength increase, the nano-scale precipitation evidence from neutron scattering, differential scanning calorimetry results and matrix micro-hardness increase in ferrite all indicate that age strengthening occurs by a precipitation or pre-precipitate cluster formation mechanism.

  15. Solidification of Hypereutectic Thin Wall Ductile Cast Iron

    OpenAIRE

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2006-01-01

    Hypereutectic ductile iron was cast in green sand moulds with four plates with thickness of 1.5, 2, 3 and 4 mm in each mould. Temperatures were measured in the 3 and 4 mm plate. The temperature curves showed that eutectic solidification was divided into two stages: primary and secondary eutectic solidification. The first stage, which was relatively short, had none or very little recalescence. Further under cooling, followed by reheating during recalescence, was necessary to initiate the secon...

  16. Niobium alloying effect in high carbon equivalent grey cast iron

    OpenAIRE

    Zhou Wenbin; Zhu Hongbo; Zheng Dengke

    2011-01-01

    The effect of niobium on the formation of NbC phase and solidification structure in high carbon equivalent grey cast iron was investigated. The experimental results indicated that an increase in the niobium content is favorable to refining the graphite and eutectic cell; and the pearlite lamellar spacing is reduced. Based on the thermodynamic calculation the formation of NbC is prior to the eutectic reaction. The reduction in the pearlite lamellar spacing is mainly attributed to the decrease ...

  17. The effect of microstructure of low-alloy spheroidal cast iron on impact strength

    Directory of Open Access Journals (Sweden)

    T. Szykowny

    2010-01-01

    Full Text Available The study presents an evaluation of the effect of microstructure of low-alloy spheroidal cast iron on impact strength within the temperature range from –60 to 100°C. Analyses were conducted on one type of cast iron containing 0.51% Cu and 0.72% Ni. Cast iron was austempered or normalized. Values of KCV and static mechanical properties were determined. Structural and fractographic analyses were based on light and scanning microscopy as well as X-ray diffraction. It was found that thermal processing considerably improves impact strength in relation to cast iron after casting. At the same time static mechanical properties are enhanced.

  18. The influence of cooling rate on the hardness of cast iron with nodular and vermicular graphite

    Directory of Open Access Journals (Sweden)

    M. S. Soiński

    2008-12-01

    Full Text Available The paper presents hardness changes for cast iron with nodular and vermicular graphite, determined within the separately cast test blocks. Investigation has comprised cast irons with similar ferrite and pearlite fractions in the metal matrix. The hardness measurements have been performed by Brinell method for samples taken both from an edge and from the centre of a Y block (for nodular cast iron or of a reversed U block (in the case of vermicular cast iron. Investigations have pertained both to the test parts and to the sinkheads of the test blocks. Hardness measurements have been completed with metallographic examination.

  19. Conventional flow curves of liquid cast iron put on spheroidization

    Directory of Open Access Journals (Sweden)

    B. Borowiecki

    2008-04-01

    Full Text Available The purpose of the investigation was to confirm the hypothesis that the conventional flow curves of liquid cast iron put on sferoidization determined from the rod fluidity test are comparable to flow curves of liquids in environmental temperature. Moreover has been identified, that conventional flow curves for this liquid cast iron are similar to generalized non- Newtonian liquids curves.For rods with the diameters 3-8 mm there are three various curves:1 – the flow curve of liquid cast iron put on spheroidization overheated about 80 K resemble a shape adequately to a curve of densified liquid with shearing. This phenomenon can be caused by high overcooled and creation of crystallization nuclei;2 – metal alloys overheated about 180 K resemble a shape adequately to Newtonian liquid;3 – metal alloys overheated about 210 K resemble a shape of curve adequately to dispersed liquid with shearing. This phenomenon probably depends on influence of gas which creates on boundary of metal-sand mould.

  20. Improving chill control in iron powder treated slightly hypereutectic grey cast irons

    Directory of Open Access Journals (Sweden)

    Iulian Riposan

    2011-05-01

    Full Text Available Recent studies revealed that in eutectic to slightly hypereutectic grey irons (CE = 4.3%-4.5% the presence of austenite dendrites provides an opportunity to improve the cast iron properties, as a high number of eutectic cells are “reinforced” by austenite dendrites. An iron powder addition proved to be important by promoting dendritic austenite in hypereutectic irons, but was accompanied by adverse effect on the characteristics of potential nuclei for graphite. The purpose of the present paper is to investigate the solidification pattern of these irons. Chill wedges with different cooling moduli (CM = 0.11 – 0.43 cm were poured in resin bonded sand and metal moulds. Relative clear / mottled / total chill measurement criteria were applied. Iron powder additions led to a higher chill tendency, while single inoculation showed the strongest graphitizing effect. The various double treatments show an intermediate position, but the inoculant added after iron powder appears to be the most effective in reducing base iron chill tendency, for all cooling moduli and chill evaluation parameters. This performance reflects the improved properties of (Mn,XS polygonal compounds as nucleation sites for graphite, especially in resin bonded sand mould castings. Both austenite and graphite nucleation benefit from a double addition of iron powder + inoculant, with positive effect on the final structure and chill tendency.

  1. Effect of Chemical Composition on Number of Eutectic Colonies in Ni-Mn-Cu Cast Iron

    Directory of Open Access Journals (Sweden)

    A. Janus

    2013-01-01

    Full Text Available Determined were direction and intensity of influence of alloying additions on the number of eutectic graphite colonies in austenitic cast iron Ni-Mn-Cu. Chemical composition of the cast iron was 1.7 to 3.3% C, 1.4 to 3.1% Si, 2.8 to 9.9% Ni, 0.4 to 7.7% Mn, 0 to 4.6% Cu,0.14 to 0.16% P and 0.03 to 0.04% S. Analysed were structures of mottled (20 castings and grey (20 castings cast iron. Obtained wereregression equations determining influence intensity of individual components on the number of graphite colonies per 1 cm2 (LK. It wasfound that, in spite of high total content of alloying elements in the examined cast iron, the element that mainly decides the LK value is carbon, like in a plain cast iron.

  2. Heat Treatment in High Chromium White Cast Iron Ti Alloy

    Directory of Open Access Journals (Sweden)

    Khaled M. Ibrahim

    2014-01-01

    Full Text Available The influence of heat treatment on microstructure and mechanical properties of high chromium white cast iron alloyed with titanium was investigated. The austenitizing temperatures of 980°C and 1150°C for 1 hour each followed by tempering at 260°C for 2 hours have been performed and the effect of these treatments on wear resistance/impact toughness combination is reported. The microstructure of irons austenitized at 1150°C showed a fine precipitate of secondary carbides (M6C23 in a matrix of eutectic austenite and eutectic carbides (M7C3. At 980°C, the structure consisted of spheroidal martensite matrix, small amounts of fine secondary carbides, and eutectic carbides. Titanium carbides (TiC particles with cuboidal morphology were uniformly distributed in both matrices. Irons austenitized at 980°C showed relatively higher tensile strength compared to those austenitized at 1150°C, while the latter showed higher impact toughness. For both cases, optimum tensile strength was reported for the irons alloyed with 1.31% Ti, whereas maximum impact toughness was obtained for the irons without Ti-addition. Higher wear resistance was obtained for the samples austenitized at 980°C compared to the irons treated at 1150°C. For both treatments, optimum wear resistance was obtained with 1.3% Ti.

  3. Testing of heating and cooling process of ADI cast iron with use of ATND method

    Directory of Open Access Journals (Sweden)

    A. Białobrzeski

    2008-10-01

    Full Text Available ADI (Austempered Ductile Iron cast iron, owing to its unique combination of high tensile strength and abrasion resistance with very goodplasticity, founds implementation in many branches of industry as a substitute of alloy cast steel and carburized or heat treated steels. Inspite of its solid position among producers and recipients of castings, there are still undertaken studies aimed at perfection of its propertiesand recognition of mechanisms enabling obtaining such properties.The paper presents implementation of thermal-voltage-derivative (ATND method to registration of heating and cooling course of ADIcast iron with EN-GJS-1200-2 grade. ADI cast iron with EN-GJS-1200-2 grade underwent the study. Heat treatment of the cast iron wasperformed in Foundry Institute with use of LT ADI-350/1000 processing line. Results obtained from the testing illustrate in graphic formregistered heating and cooling curves of investigated cast irons obtained with use of the ATND method.

  4. A Methodology to Predict Uniform Material Fatigue Life of Cast Iron: Law for Cast Iron%A Methodology to Predict Uniform Material Fatigue Life of Cast Iron: Law for Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Sinan Korkmaz

    2011-01-01

    Mechanical, physical and manufacturing properties of east iron make it attractive for many fields of application, such as cranks and cylinder holds. As in design of all metals, fatigue life prediction is an intrinsic part of the design process of structural sections that are made of cast iron. A methodology to predict high-cycle fatigue life of cast iron is proposed. Stress amplitude-strain amplitude, strain amplitude-number of loading cycles relationships of cast iron are investigated. Also, fatigue life prediction in terms of Smith, Watson and Topper parameter is carried out using the proposed method. Results indicate that the analytical outcomes of the proposed methodology are in good accordance with the experimental data for the two studied types of cast iron: EN-GJS-400 and EN-GJS-600.

  5. Fatigue properties of ductile cast iron containing chunky graphite

    Energy Technology Data Exchange (ETDEWEB)

    Ferro, P., E-mail: ferro@gest.unipd.it [Department of Management and Engineering, University of Padova, Stradella S. Nicola 3, I-36100 Vicenza (Italy); Lazzarin, P.; Berto, F. [Department of Management and Engineering, University of Padova, Stradella S. Nicola 3, I-36100 Vicenza (Italy)

    2012-09-30

    Highlights: Black-Right-Pointing-Pointer Experimental determination of high cycle fatigue properties of EN-GJS-400. Black-Right-Pointing-Pointer Evaluation of the influence of chunky graphite morphology on fatigue life. Black-Right-Pointing-Pointer Metallurgical analysis and microstructural parameters determination. Black-Right-Pointing-Pointer Nodule counting and nodularity rating. - Abstract: This work deals with experimental determination of high cycle fatigue properties of EN-GJS-400 ductile cast iron containing chunky graphite. Constant amplitude axial tests were performed at room temperature under a nominal load ratio R = 0. In order to evaluate the influence of chunky graphite morphology on fatigue life, fatigue tests were carried out also on a second set of specimens without this microstructural defect. All samples were taken from the core of a large casting component. Metallurgical analyses were performed on all the samples and some important microstructural parameters (nodule count and nodularity rating, among others) were measured and compared. It was found that a mean content of 40% of chunky graphite in the microstructure (with respect to total graphite content) does not influence significantly the fatigue strength properties of the analysed cast iron. Such result was attributed to the presence of microporosity detected on the surface fracture of the specimens by means of electron scanning microscope.

  6. Thermal analysis of ductile iron in thin walled casting

    Directory of Open Access Journals (Sweden)

    M. Górny

    2007-12-01

    Full Text Available Hypereutectic ductile iron was cast in self hardening moulding sand to produce castings with the shape of Archimedes spirals and with wall thickness of 1, 2 and 3 mm. Inmould technique was used to produce thin wall ductile iron (TWDI. In this work it has been carried out thermal analysis in spiral with 3 mm wall thickness. The present work provides results of thermal analysis, that are initial temperature of metal in mould cavity, velocity of metal stream as well as solidification time. Measurement of temperature shows that there is essential its drop during filling of mould cavity and amounts 230 oC for distance 700 mm from the beginning of spiral. On the basic on first derivative of temperature versus time characteristic solidification points were distinguish, namely solidification of primary graphite, austenite dendrite and eutectic. Experimental measurements of temperature drop during filling of mould cavity along with microscopic examinations of castings structure can be used to verify computer modeling and simulation of fluid flow and thermal field in TWDI.

  7. High Temperature Corrosion of Fe-C-S Cast Irons in Oxidizing and Sulfidizing Atmospheres

    Institute of Scientific and Technical Information of China (English)

    Thuan-Dinh NGUYEN; Dong-Bok LEE

    2008-01-01

    The corrosion behavior of spheroidal graphite and flake graphite cast irons was studied in oxidizing and sulfidizing atmospheres between 600 and 800℃ for 50 h. The corrosion rate in the sulfidizing atmosphere was faster than that in air above 700℃, due to the formation of the Feo.975S sulfide. The corrosion rate of the spheroidal graphite cast iron was similar to that of the flake graphite cast iron.

  8. Multiphysics and multiscale modelling of ductile cast iron solidification

    Directory of Open Access Journals (Sweden)

    D. Gurgul

    2010-01-01

    Full Text Available The presented model of ductile cast iron solidification is a typical sample of multiphysics and multiscale engineering system. This model takes into consideration the different time and spatial scales of accounted phenomenon of microstructure formation: heat diffusion, components mass diffusion in the liquid and solid phases, thermodynamic of phase transformation under the condition of inhomogeneous chemical composition of growing and vanishing phases, phase interface kinetics and grains nucleation.The results of two-dimensional modelling of the microstructure formation in the ductile cast iron (so called - Ductile Iron - DI are pre-sented. The cellular automaton model (CA was used for the simulation. Six states of CA cells were adopted to three phases above men-tioned (liquid, austenite and graphite and to three two-phase interfaces. For the modelling of concentration and temperature fields the numerical solution was used. The parabolic nonlinear differential equa-tions with a source term were solved by using the finite difference method and explicit scheme. The overlapping lattices with the same spatial step were used for the concentration field modelling and for the CA. The time scale of the temperature field for this lattice is about 104 times shorter. Due to above reasons the another lattice was used with a multiple spatial step and the same time step.

  9. Identification Trial of Crystallization Parameters of Modified Chromium Cast Iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2007-07-01

    Full Text Available In the paper results of researches of abrasion-resisting chromium cast iron inoculated with boron carbide B4C primary crystallization are presented. The main aim of work was make an attempt to identification of crystallization parameters that changed in reason of inoculation. Essential primary crystallization parameters, with the help of which, will be possible to evaluate the inoculation capacity were searched. It was found that in the result of inoculant actions characteristic temperatures were changed and time of primary crystallization was decreased. For tests the new broadened Derivative Thermal Analysis method, in which three samples with different solidification module were applied, was used. Thanks to this inoculation capacity in casts with significant diversified self-cooling ranges was possible to observe.

  10. Effect of chemical composition and superheat on macrostructure of high Cr white iron castings

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, Omer N.

    2005-08-01

    White cast irons are frequently used in applications requiring high wear resistance. High Cr white cast irons have a composite microstructure composed of hard (Fe,Cr)7C3 carbides in a steel matrix. Previous research has indicated that the equiaxed region of these high Cr white iron castings is much more wear resistant under high stress abrasive conditions than the columnar region, when the carbides are oriented perpendicular to the wear surface. In the present study, the effect of both the chemical composition, particularly carbon content, and the pouring superheat of the melt on the macrostructure of high Cr white iron castings is investigated.

  11. Effect of Heat Treatment on Mechanical Property of High Cr-W Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Liu Jianping; Li Lixia

    2007-01-01

    The microstructure of high Cr-W cast iron after heat treatment were analyzed, and the effect of various heat treatment temperature and time on mechanical properties of high Cr-W cast iron were studied, and the best process parameter of heat treatment was provided in this paper. The results show that the heat treatment can improve the mechanical property of high Cr-W cast iron, and higher synthetic mechanical property of high Cr-W cast iron can be obtained when treated with normalization at 980℃ for 2h and tempered at 400℃ for 2h.

  12. Primary and secondary crystallization of modified hypoeutectic chromium cast iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2010-04-01

    Full Text Available The paper presents investigations of crystallization of modified hypoeutectic wear resistant chromium cast iron which contains carbon about 2% and chromium on three levels (12%, 18% and 25%. Three substances were applied to the modification ( boron carbide (B4C, ferroniobium (FeNb and mixture of ferroniobium and mischmetal (RE. The investigations of crystallization were conducted the DTA method in DTA-C and DTA-Is testers. The influence on the course of the process of primary and secondary crystallization was observed.

  13. Solidification of Hypereutectic Thin Wall Ductile Cast Iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2006-01-01

    Hypereutectic ductile iron was cast in green sand moulds with four plates with thickness of 1.5, 2, 3 and 4 mm in each mould. Temperatures were measured in the 3 and 4 mm plate. The temperature curves showed that eutectic solidification was divided into two stages: primary and secondary eutectic...... austenite dendrites is too large and new nodules have to nucleate and grow. The larger under cooling for the 3 mm plates compared to the 4 mm indicates that the nucleation of new nodules is governed by kinetics even in very well inoculated melts....

  14. Solidification, processing and properties of ductile cast iron

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat

    2010-01-01

    Ductile cast iron has been an important engineering material in the past 50 years. In that time, it has evolved from a complicated material that required the foundry metallurgist's highest skill and strict process control to being a commonly used material that can easily be produced with modern...... process technology. Yet, for the skilled metallurgist and foundry engineer, it is a material that can be engineered to meet extreme demands with regard to mechanical properties and geometrical complexity. It is therefore a material that has been in growing use since its discovery. And the results...

  15. Model of Primary Austenite Dendrite Structure in Hypoeutectic Cast Iron

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The solidification of primary austenite in hypoeutectic gray cast iron was studied by stepped grinding and quantitative metallography. The dendrite structure of primary austenite can be described by three models: typical dendrite crystal model, metamorphic dendrite crystal model and network dendrite crystal model. The dendrite crystals formed according to 3rd model is much more than those formed according to other models in this experiment. The primary austenites are connected each other, and the primary stems of austenite could be regarded as secondary arms and vice versa.

  16. Effect of potassium on as-cast microstructure of a hypereutectic high chromium cast iron

    Directory of Open Access Journals (Sweden)

    Liu Qing

    2011-05-01

    Full Text Available The present work mainly evaluates the effect of potassium (K on as-cast microstructure of a hypereutectic high chromium cast iron by means of a field emission scanning electron microscope (FESEM and an X-ray diffractometer using CuKα radiation with a 2θ range of 30-130°. Results showed that, with the addition of K-containing modifier, the large lath-like and/or rod-like primary M7C3 carbides can be modified to the hexagonal prisms, and the eutectic carbides can also be refined. In addition, the carbides are distributed much more homogeneously in the matrix. The modification effect of K is due to its aggregation at the liquid-solid interface and the adsorption on the relatively fast growing planes during the solidification, which influence the growth rates of different crystal planes and lead to the modification of the carbides.

  17. Development of a manufacturing technology of compacted graphite iron castings from a cupola furnace

    OpenAIRE

    O. Bouska; J. Heunisch; A. Zadera; K. Nedelova; F. Kobersky

    2012-01-01

    Compacted graphite iron, also known as vermicular cast iron or semiductile cast iron is a modern material, the production of which is increasing globaly. Recently this material has been very often used in automotive industry. This paper reviews some findigs gained during the development of the manufacturing technology of compacted graphite iron under the conditions in Slévárna Heunisch Brno, Ltd. The new technology assumes usage of cupola furnace for melting and is beeing developed for produc...

  18. Optimization of casting defects analysis with supply chain in cast iron foundry process

    Directory of Open Access Journals (Sweden)

    C. Narayanaswamy

    2016-10-01

    Full Text Available Some of the foundries are in need of meeting production targets and due to the urgency they ignore the rejections. The objective of this paper is to analyze the various defects, [1] from molding process in a cast iron foundry. The Failure Mode Effects Analysis (FMEA in quality control [2-6] with suitable supply chain for mold making process considering rejection rates are identified and analyzed in terms of Risk Priority Number (RPN to prioritize the attention for each of the problem. The optimum levels of selected parameters [7] are obtained in this analysis.

  19. Graphite Nodule and Cell Count in Cast Iron

    Directory of Open Access Journals (Sweden)

    E Fraś

    2007-07-01

    Full Text Available In this work, a model is proposed for heterogeneous nucleation on substrates whose size distribution can be described by the Weibull statistics. It is found that the nuclei density, Nnuc can be given in terms of the maximum undercooling, ΔTm by Nnuc = Ns exp(-b/ΔTm; where Ns is the density of nucleation sites in the melt and b is the nucleation coefficient (b > 0 . When nucleation occurs on all the possible substrates, the graphite nodule density, NV,n or eutectic cell density NV after solidification equals Ns. In this work, measurements of NV,n and NV values were carried out on experimental nodular and flake graphite iron castings processed under various inoculation conditions. The volumetric nodule NV,,n or graphite eutectic cell NV count, were estimated from the area nodule count, NA,n or eutectic cell count NA on polished cast iron surface sections by stereological means. In addition, maximum undercoolings, ΔTm were measured using thermal analysis. The experimental outcome indicates that volumetric nodule NV,n or graphite eutectic cell NV count can be properly described by the proposed expression NV,,n = NV = Ns exp(-b/ΔTm. Moreover, the Ns and b values were experimentally determined. In particular, the proposed model suggests that the size distribution of nucleation sites is exponential in nature.

  20. In-situ surface hardening of cast iron by surface layer metallurgy

    International Nuclear Information System (INIS)

    Abrasive wear is a serious problem in many cast iron castings used in industry. To minimize failure and repair of these components, different strategies exist to improve their surface microhardness thus enhancing their wear resistance. However, most of these methods lead to very brittle and/or expensive castings. In the current work a new method for surface hardening is presented which utilizes surface layer metallurgy to generate in-situ a boron-enriched white cast iron surface layer with a high microhardness on a gray cast iron casting. To do this, sand molds are coated with a ferroboron suspension and cast with a cast iron melt. After solidification, a 100–900 µm thick layer of boron-enriched ledeburite is formed on the surface of the casting which produces an increase in the average microhardness from 284 HV0.1±52 HV0.1 to 505 HV0.1±87 HV0.1. Analyses of the samples' core reveal a typical cast iron microstructure which leads to the conclusion that the coating mainly affects the castings' surface. By varying the grain size of the ferroboron powder in the coatings, it is shown that a powder size ≤100 µm is most suitable to create a boron-enriched ledeburite surface layer possessing high hardness values

  1. In-situ surface hardening of cast iron by surface layer metallurgy

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Sebastian F., E-mail: s.fischer@gi.rwth-aachen.de [Foundry Institute, RWTH Aachen University, Intzestraße 5, 52072 Aachen (Germany); Muschna, Stefan, E-mail: smuschna@yahoo.de [Foundry Institute, RWTH Aachen University, Intzestraße 5, 52072 Aachen (Germany); Bührig-Polaczek, Andreas, E-mail: sekretariat@gi.rwth-aachen.de [Foundry Institute, RWTH Aachen University, Intzestraße 5, 52072 Aachen (Germany); Bünck, Matthias, E-mail: m.buenck@access-techcenter.de [Access e.V., Intzestraße 5, 52072 Aachen (Germany)

    2014-10-06

    Abrasive wear is a serious problem in many cast iron castings used in industry. To minimize failure and repair of these components, different strategies exist to improve their surface microhardness thus enhancing their wear resistance. However, most of these methods lead to very brittle and/or expensive castings. In the current work a new method for surface hardening is presented which utilizes surface layer metallurgy to generate in-situ a boron-enriched white cast iron surface layer with a high microhardness on a gray cast iron casting. To do this, sand molds are coated with a ferroboron suspension and cast with a cast iron melt. After solidification, a 100–900 µm thick layer of boron-enriched ledeburite is formed on the surface of the casting which produces an increase in the average microhardness from 284 HV{sub 0.1}±52 HV{sub 0.1} to 505 HV{sub 0.1}±87 HV{sub 0.1}. Analyses of the samples' core reveal a typical cast iron microstructure which leads to the conclusion that the coating mainly affects the castings' surface. By varying the grain size of the ferroboron powder in the coatings, it is shown that a powder size ≤100 µm is most suitable to create a boron-enriched ledeburite surface layer possessing high hardness values.

  2. Microstructure and Property of Hypereutectic High Chromium Cast Iron Prepared by Slope Cooling Body-Centrifugal Casting Method

    Institute of Scientific and Technical Information of China (English)

    Zhifu HUANG; Jiandong XING; Anfeng ZHANG

    2006-01-01

    In this paper, the ring-type ingot of hypereutectic high Cr cast iron was obtained by slope cooling bodycentrifugal casting method (SC-CCM), and its microstructure and impact toughness were investigated, respectively. The results indicated that, first, the primary carbides in the microstructure are prominently finer than those in the hypereutectic high Cr cast iron prepared by conventional casting method. Second, in the ring-type ingot, the primary carbides near radial outer field are finer than those near radial inner field; furthermore, there is dividing field in the microstructure. Finally, the impact toughness values of the specimens impacted on the radial outer face and on the radial inner face are improved respectively about 36% and 138%more than that of the hypereutectic high Cr one prepared by conventional casting method.

  3. Effect of titanium on the as-cast microstructure and impact toughness of hypereutectic high-chromium cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhifu; Xing, Jiandong; Gao, Yimin; Zhi, Xiaohui [Xi' an Jiaotong Univ., Xi' an (China). State Key Lab. for Mechanical Behavior of Materials

    2012-05-15

    The effect of titanium on the as-cast microstructure of a hypereutectic high-chromium cast iron was investigated by means of optical microscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. The results indicate that the primary M{sub 7}C{sub 3} carbides are refined and spheroidized with the addition of a suitable amount of titanium. TiC is found in the primary carbide by energy dispersive spectroscopy analysis. The mechanism of titanium modification on the microstructure of the alloy is also discussed. In addition, the impact test result indicates that, compared with the hypereutectic high-chromium cast iron without titanium addition, the impact toughness value of hypereutectic high-chromium cast iron with titanium additions is improved and approximately reaches 6.4 J . cm{sup -2}. (orig.)

  4. Influence of rare earths on shrinkage porosity in thin walled ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2009-01-01

    Ductile cast iron has been cast in test bars with thickness from 2 to 10 mm. The rare earth elements La and Ce have been added to some of the castings to evaluate their influence on microstructure and shrinkage tendency. Both La and Ce increased the graphite nodule count, especially for thickness...

  5. Modelling the solidification of ductile cast iron parts with varying wall thicknesses

    DEFF Research Database (Denmark)

    Bjerre, Mathias Karsten; Tiedje, Niels Skat; Thorborg, Jesper;

    2015-01-01

    a 2D FE solution of the heat conduction equation is developed in an in-house code and model parameters are calibrated using experimental data from representative castings made of ductile cast iron. The main focus is on the influence of casting thickness and resulting local cooling conditions on the...

  6. The role of graphite morphology and matrix structure on low frequency thermal cycling of cast irons

    Indian Academy of Sciences (India)

    S Y Buni; N Raman; S Seshan

    2004-02-01

    Low frequency thermal cycling tests were carried out on four types of cast iron (viz., austempered ductile iron, pearlitic ductile iron, compacted/vermicular graphite iron and grey cast iron) at predetermined ranges of thermal cycling temperatures. The specimens were unconstrained. Results show that austempered ductile iron has the highest thermal cycling resistance, followed by pearlitic ductile iron and compacted graphite iron, while grey cast iron exhibits the lowest resistance. Microstructural analysis of test specimens subjected to thermal cycling indicates that matrix decomposition and grain growth are responsible for the reduction in hardness while graphite oxidation, de-cohesion and grain boundary separation are responsible for the reduction in the modulus of elasticity upon thermal cycling.

  7. Displaying structural property and inheritance of cast iron surfacing on steel base

    Science.gov (United States)

    Shveev, I. A.

    2016-06-01

    Graphite inclusions heredity in deposited layer from remelted special cast iron billets was established. The possibility of controlling the structural state and the quality of the deposited layer due to technological parameters of welding and heat treatment of parts is shown. Ways of improving cast iron wear resistance durability are proposed.

  8. Influences on Burr Size During Face-Milling of Aluminum Alloys and Cast Iron

    OpenAIRE

    Shefelbine, Wendy; Dornfeld, David

    2004-01-01

    The Exit Order Sequence (EOS) theory discussed by previous LMA students predicts the size of burrs formed during face milling. Other influences are tool geometry, coolant use, and material properties in aluminum silicon alloys and cast iron. Used, worn tools also increase the size of the burr. The effect of speed and feed are also discussed, particularly with regards to cast iron.

  9. Cast iron with spherical graphite is a perspective material for NPP equipment manufacture

    International Nuclear Information System (INIS)

    High-plasticity austenitic and ferritic spheroidal graphite cast irons are designed. The ferritic spheroidal graphite cast iron is shown to have a high fracture toughness after additional recrystallization heat treatment. The nodular cast iron is noted to show promise for components operating under irradiation. Domestic experience of production of ferritic and austenitic nodular cast irons of high fracture toughness permits to cast any complex-shaped components. This fact in combination with good workability gives the possibility of decreasing the number of labour consuming operations in manufacturing as spent fuel storage and shipping casks so other components of NPPs. The nodular irons are recommended to be used instead of steel 00Kh13NDP and 0Kh18N9T forgings

  10. Influence of spheroidal cast iron wall thickness on its microstructure and ultrasonic control index

    OpenAIRE

    W. Orłowicz; M. Tupaj; M. Mróz; E. Guzik; E. Gierut; W. Pilut; A. Zimowski

    2009-01-01

    This work presents results of ultrasonic evaluation of the microstructure of spheroidal cast iron manufactured under production conditions.Evaluation of the ultrasonic control index’s sensitiveness to changes in microstructure (graphite shape index Ss and average number of graphite precipitations NA) of cast iron, was made on modelled stepped castings. A relation between the graphite precipitation shape index Ss and the velocity of longitudinal ultrasonic wave cL has been defined, as well as ...

  11. Development of a manufacturing technology of compacted graphite iron castings from a cupola furnace

    Directory of Open Access Journals (Sweden)

    O. Bouska

    2012-01-01

    Full Text Available Compacted graphite iron, also known as vermicular cast iron or semiductile cast iron is a modern material, the production of which is increasing globaly. Recently this material has been very often used in automotive industry. This paper reviews some findigs gained during the development of the manufacturing technology of compacted graphite iron under the conditions in Slévárna Heunisch Brno, Ltd. The new technology assumes usage of cupola furnace for melting and is beeing developed for production of castings weighing up to 300 kilograms poured into bentonite sand moulds.

  12. Anodic Dissolution of Spheroidal Graphite Cast Iron with Different Pearlite Areas in Sulfuric Acid Solutions

    Directory of Open Access Journals (Sweden)

    Yoshikazu Miyata

    2013-01-01

    Full Text Available The rate equation of anodic dissolution reaction of spheroidal graphite cast iron in sulfuric acid solutions at 298 K has been studied. The cast irons have different areas of pearlite. The anodic Tafel slope of 0.043 V decade−1 and the reaction order with respect to the hydroxyl ion activity of 1 are obtained by the linear potential sweep technique. The anodic current density does not depend on the area of pearlite. There is no difference in the anodic dissolution reaction mechanisms between pure iron and spheroidal graphite cast iron. The anodic current density of the cast iron is higher than that of the pure iron.

  13. Obtaining Martensitic Structures during Thixoforming of Hypoeutectic Gray Cast Iron

    Directory of Open Access Journals (Sweden)

    Lucas Bertolino Ragazzo

    2015-01-01

    Full Text Available The control of parameters such as liquid fraction, holding time, and cooling rate during thixoforming can help control the final microstructure of the thixoformed part, thus improving its mechanical properties. This study intended to investigate conditions required to obtain martensite in hypoeutectic gray cast iron at 3.1% CE (carbon equivalent deformed in the semisolid state. Samples heated up to 1130, 1135, and 1145°C (liquid fractions of 10, 30, and 45% were compressed into platens without any holding time (0 s. If a sample presented a martensitic structure for 0 s holding time, new samples were retested at the same temperature for 30, 60, and 90 s holding times. The die casting process was simulated by allowing the platens to become locked after hot compression. Samples that cooled in the locked platens were submitted to higher cooling rates than samples that cooled with the platens open and presented martensite instead of the conventional ferrite and pearlite. Thus, the factor that had the greatest influence on the formation of martensite was the cooling rate rather than stress. The thixoforming process presented good morphological stability, which is highly desirable for industrial applications.

  14. Chromium and copper influence on the nodular cast iron with carbides microstructure

    Directory of Open Access Journals (Sweden)

    G. Gumienny

    2010-10-01

    Full Text Available In this paper chromium to 1,00% and copper to 1,50% influence at constant molybdenum content of about 1,50% on the nodular cast ironwith carbides microstructure has been presented. It was found, that as a result of synergic addition of above-mentioned elements there isthe possibility obtaining an ausferrite in nodular cast iron with carbides castings. Conditions have been given, when in nodular cast iron with carbides at cooling at first in the form, then air-cooling austenite transformation to upper bainite, its mixture with lower bainite, martensite or ausferrite takes place. Transformations proceed during cooling and the crystallization of cast iron have been determined and the casting hardness has been presented.

  15. Quality improvement through microstructure control for superior machinability of cast irons

    Science.gov (United States)

    Marwanga, Reuben Omwega

    The purpose of this research was to study the influence of microstructure on chip formation and other machinability criteria for cast irons. It is recognized that machinability of cast irons is influenced by a complex interplay of graphite morphology and matrix structure. However, the effect of these microstructural variables on the measures of machinability of cast irons has not been adequately investigated. As a consequence the problem of variability in the machinability of this group of materials is not well understood. In this study, slow speed machining and the quick-stop device method were used to investigate the mechanism by which graphite morphology and the matrix structure influence the machining properties of cast irons. Furthermore, turning tests were used to study machinability as characterized by tool life, machining forces and surface roughness for these materials. Relationships between chip formation and other machinability criteria were then developed and analyzed. Finally, empirical models that relate machinability to microstructures for cast irons were developed. The study showed that chip formation and other machinability parameters for cast irons were influenced by both graphite morphology and matrix structure. In addition, the empirical models revealed that machinability of cast irons was not only influenced by microstructural variables but also by the interaction of the variables with cutting conditions.

  16. Effect of Manganese on As-Cast Microstructure and Hardening Behavior of High Chromium White Cast Iron

    Institute of Scientific and Technical Information of China (English)

    SUN Zhi-ping; SHEN Bao-luo; WANG Jun; LIU Hao-huai; LUO Cheng

    2005-01-01

    The effect of manganese on the as-cast structure and hardening behavior of high chromium white cast iron subjected to sub-critical treatment was studied. The results indicate that the fraction of retained austenite and the manganese distribution in as-cast alloys are controlled by manganese content. The manganese distribution in as-cast alloys is not homogeneous. The manganese content in carbide is higher than that in matrix. Whether the secondary hardening occurs or not and the peak hardness of secondary hardening is controlled by manganese content in retained austenite in as-cast structure. Higher manganese content can cause more retained austenite. The secondary hardening occurs in sub-critical treating process if the fraction of retained austenite is high.

  17. CHANGE OF CONNECTION BETWEEN MAGNETIC PARAMETERS OF CAST IRON IN COMPARISON WITH STEEL UNDER INFLUENCE OF INTERNAL DEMAGNETIZATION

    Directory of Open Access Journals (Sweden)

    S. G. Sandomirsky

    2014-01-01

    Full Text Available Connection of maximum magnetic permeability µm of cast irons with coercive force Нс and residual magnetism Мr is established in all size of changing of the magnetic characteristics of cast iron. Differences of this connection for steels and cast irons are revealed. Formula for calculation µm of steels by Нс and Мr is corrected for calculation µm of cast irons. As a result of correction the calculation error of cast irons µm is diminished. The results can be used in magnetic structural analysis instead of labor-consuming measurement µm.

  18. Analysis of reasons causing riser feeding failure in nodular iron castings production

    Institute of Scientific and Technical Information of China (English)

    ZHOU Gen

    2005-01-01

    In addition to mold rigidity and metallurgical quality of iron melting, the main reasons causing riser feeding failure in nodular iron castings production are: (a) open and cold metal flowing-over risers were adopted; (b) riser location was not proper; (c) riser was too small or/and not enough high; (d) ingates did not freeze up instantly as soon as pouring finished;(e) there're isolated hot spots in the casting which are not connected with feeding channel of the riser; (f) the feeding channel of castings with small size and thin sections is too narrow for feeding liquid to enter casting; and so on.

  19. INVESTIGATION OF EFFICIENCY OF GRAY CAST IRON GRAPHITIZING MODIFICATION BY DISPERSION-FILLED CONSUMABLE PATTERN

    Directory of Open Access Journals (Sweden)

    I. A. Nebozhak

    2016-01-01

    Full Text Available The key criteria of the process of graphitizing modification of matrix melt silicon concentration and silicon assimilation evaluated were on samples of gray cast iron grade СЧ20 State Standard 1412-85. These criteria of evaluation on the structure and properties of casting ingots proved an efficiency of intra-mold modification of molten gray cast iron by dispersed ferrosilicon grade ФС75 State Standard 1415-93 (ISO 5445-80 using lost-foam casting (LFC-process.

  20. Comparative aspects about the studying methods of cast irons machinability, based on the tool wear

    Science.gov (United States)

    Carausu, C.; Pruteanu, O.

    2016-08-01

    The paper presents some considerations of the authors, regarding the studying methods of the cast irons machinability, based on the tools wear on drilling operations. Are described the conditions in which the experimental researches were conducted, intended to offer an overview on drilling machinability of some cast irons categories. It is presented a comparison between long-term methods and short-term methods, for determining the optimal speed chipping of a grey cast iron with lamellar graphite, with average values of tensile strength. Are described: the research methodology, obtained results and conclusions drawn after the results analysis.

  1. Effect of molybdenum, vanadium, boron on mechanical properties of high chromium white cast iron in as-cast condition

    Science.gov (United States)

    Nurjaman, F.; Sumardi, S.; Shofi, A.; Aryati, M.; Suharno, B.

    2016-02-01

    In this experiment, the effect of the addition carbide forming elements on high chromium white cast iron, such as molybdenum, vanadium and boron on its mechanical properties and microstructure was investigated. The high chromium white cast iron was produced by casting process and formed in 50 mm size of grinding balls with several compositions. Characterization of these grinding balls was conducted by using some testing methods, such as: chemical and microstructure analysis, hardness, and impact test. From the results, the addition of molybdenum, vanadium, and boron on high chromium white cast iron provided a significant improvement on its hardness, but reduced its toughness. Molybdenum induced fully austenitic matrix and Mo2C formation among eutectic M7C3 carbide. Vanadium was dissolved in the matrix and carbide. While boron was played a role to form fine eutectic carbide. Grinding balls with 1.89 C-13.1 Cr-1.32 Mo-1.36 V-0.00051 B in as-cast condition had the highest hardness, which was caused by finer structure of eutectic carbide, needle like structure (upper bainite) matrix, and martensite on its carbide boundary.

  2. Role of Titanium in Thin Wall Vermicular Graphite Iron Castings Production

    Directory of Open Access Journals (Sweden)

    M. Górny

    2013-04-01

    Full Text Available In this paper the effects of titanium addition in an amount up to 0.13 wt.% have been investigated to determine their effect on the microstructure and mechanical properties of Thin Wall Vermicular Graphite Iron Castings (TWVGI. The study was performed for thinwalled iron castings with 3-5 mm wall thickness and for the reference casting with 13 mm. Microstructural changes were evaluated by analyzing quantitative data sets obtained by image analyzer and also using scanning electron microscope (SEM. Metallographic examinations show that in thin-walled castings there is a significant impact of titanium addition to vermicular graphite formation. Thinwalled castings with vermicular graphite have a homogeneous structure, free of chills, and good mechanical properties. It may predispose them as a potential use as substitutes for aluminum alloy castings in diverse applications.

  3. APPLICATION OF ALLOYED-DIFFUSED CARBONACEOUS WIRE FOR MODIFYING OF CAST IRON

    Directory of Open Access Journals (Sweden)

    V. M. Konstantinov

    2010-01-01

    Full Text Available The process of modifying of cast iron by diffusingalloyed steel wire is studied. The peculiarities of structure formation of diffused layer at thermal-cyclic treatment of wire are established.

  4. INVESTIGATION OF PHYSICOCHEMICAL AND MECHANICAL CHARACTERISTICS OF STEEL AND CAST IRON CHIPS

    Directory of Open Access Journals (Sweden)

    O. M. Dyakonov

    2009-01-01

    Full Text Available The chemical and phase composition of steel and cast iron chips is studied, quantitative content of phases, including ferric oxides and other chemical elements chips, is determined.

  5. Examination of Cast Iron Material Properties by Means of the Nanoindentation Method

    Directory of Open Access Journals (Sweden)

    A. Trytek

    2012-12-01

    Full Text Available The paper presents results of examination of material parameters of cast iron with structure obtained under rapid resolidification conditions carried out by means of the nanoindentation method.

  6. TDA method application to austenite transformation in nodular cast iron with carbides assessment

    Directory of Open Access Journals (Sweden)

    G. Gumienny

    2011-07-01

    Full Text Available In this paper the possibility of TDA method using to austenite transformation in nodular cast iron with carbides assessment is presented. Studies were conducted on cast iron with about 2% molybdenum and 0,70% to 4,50% nickel. On diagrams, where TDA curves are pre- sented, on time axis a logarithmic scale was applied. It has not been used up to now. It was found, that during cooling and crystallization of cast iron in TDA probe, on the derivative curve there is a slight thermal effect from austenite to upper bainite or martensite transformation. Depending on nickel concentration austeniteupper bainite transformation start temperature changed (Bus, while MS temperature was independent of it. An influence of nickel on eutectic transformation temperature in nodular cast iron with carbides was determined too.

  7. On the weldability of grey cast iron using nickel based filler metal

    International Nuclear Information System (INIS)

    Shielded metal arc welding process using nickel based filler metal was used to join grey cast iron. The effect of post weld heat treatment (PWHT) on the microstructure and hardness was studied. PWHT included heating up to 870 oC, holding for 1 h at 870 oC and then furnace cooling. By using nickel based filler metal, formation of hard brittle phase (e.g. carbides and martensite) in the fusion zone is prevented. Before PWHT, heat affected zone exhibited martensitic structure and partially melted zone exhibited white cast iron structure plus martensite. Applied PWHT resulted in the dissolution of martensite in heat affected zone and graphitization and in turn the reduction of partially melted zone hardness. Results showed that welding of grey cast iron with nickel based filler metal and applying PWHT can serve as a solution for cast iron welding problems.

  8. Wearing Quality of Austenitic, Duplex Cast Steel, Gray and Spheroidal Graphite Iron

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2012-04-01

    Full Text Available The current work presents the research results of abrasion wear and adhesive wear at rubbing and liquid friction of new austenitic, austenitic-ferritic (“duplex” cast steel and gray cast iron EN-GJL-250, spheroidal graphite iron EN-GJS-600-3, pearlitic with ledeburitic carbides and spheroidal graphite iron with ledeburitic carbides with a microstructure of the metal matrix: pearlitic, upper bainite, mixture of upper and lower bainite, martensitic with austenite, pearlitic-martensitic-bainitic-ausferritic obtained in the raw state. The wearing quality test was carried out on a specially designed and made bench. Resistance to abrasion wear was tested using sand paper P40. Resistance to adhesive wear was tested in interaction with steel C55 normalized, hardened and sulfonitrided. The liquid friction was obtained using CASTROL oil. It was stated that austenitic cast steel and “duplex” are characterized by a similar value of abrasion wear and adhesive wear at rubbing friction. The smallest decrease in mass was shown by the cast steel in interaction with the sulfonitrided steel C55. Austenitic cast steel and “duplex��� in different combinations of friction pairs have a higher wear quality than gray cast iron EN-GJL- 250 and spheroidal graphite iron EN-GJS-600-3. Austenitic cast steel and “duplex” are characterized by a lower wearing quality than the spheroidal graphite iron with bainitic-martensitic microstructure. In the adhesive wear test using CASTROL oil the tested cast steels and cast irons showed a small mass decrease within the range of 1÷2 mg.

  9. Numerical modelling of thin-walled hypereutectic ductile cast iron parts

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Hattel, Jesper Henri; Tiedje, Niels Skat

    2006-01-01

    Solidification of hypereutectic thin-walled ductile cast iron has been modelled in one dimension taking into account the precipitation of off-eutectic austenite dendrites during solidification. The simulations have been compared with casting experiments on plate geometries with plate thicknesses...

  10. Influence of selected modifiers on crystallization curve of chromium cast iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2009-07-01

    Full Text Available In article was introduced the results of investigations of modified chromium cast iron crystallization process. It the cast iron about composition of basic elements C = 2,8 % and Cr = 18% was modified with five substances (boron carbide, ferrosilicon, ferrocalciumsilicon, ferroniobium and ferroniobium with ferrovanadium. Influence on course of primary and secondary crystallization process was observed. The investigations of crystallization was conducted DTA method in tester DTA - C.

  11. A new type of antifriction and wear resistant malleable cast iron

    Science.gov (United States)

    Davidov, S. V.; Gorlenko, A. O.

    2016-04-01

    There is developed a technology of malleable cast iron modification on the basis of complex chemical compound of surface-active elements and their solid solutions with other elements. Silicon high content in malleable cast iron helped to develop a power efficient technology of graphitizing annealing which has considerably lower annealing temperature and complete renunciation of the second graphitizing annealing stage at the expense of its change by controlled cooling up to ferrite structure or by air cooling for perlite structure.

  12. Undercooling and nodule count in thin walled ductile iron castings

    OpenAIRE

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2007-01-01

    Casting experiments have been performed with eutectic and hypereutectic castings with plate thicknesses from 2 to 8 mm involving both temperature measurements during solidification and microstructural examination afterwards. The nodule count was the same for the eutectic and hypereutectic castings in the thin plates (≤4.3 mm) while in the 8 mm plate the nodule count was higher in the hypereutectic than in the eutectic castings. The minimum temperature before the eutectic recalescence (Tmin) w...

  13. Cast iron deterioration with time in various aqueous salt solutions

    Indian Academy of Sciences (India)

    Rita Mehra; Aditi Soni

    2002-02-01

    The changes with time in the corrosion rate and corrosion current density on a cast iron electrode in various aqueous salt solutions have been carried out using total immersion test and potentiostatic polarization curves. The concentration of salts taken is expected to be present in potable water. The relative behaviour of these salts towards corrosion has also been studied, which is found to be different from previous studies. The total immersion test parameters viz. weight loss, corrosion rate as well as potentiostatic parameters, open circuit potential, corr, Tafel slopes, corrosion rate, have been calculated by standard methods. Besides these the relative increase in corrosion rate with time as well as the percentage to which corrosion rate should be decreased so as to provide protection towards corrosion have also been calculated. It was found that KCl and NaCl are major contributors than MnSO4, Pb(NO3)2, KI and KBr. The relative increase in corrosion is high in KBr, KI, NaNO3, CaCl2, and less in Pb(NO3)2, NaHCO3 and CaCO3 test solutions. For the reliability of results the data has been statistically analysed.

  14. Influence of New Sol-gel Refractory Coating on the Casting Properties of Cold Box and Furan Cores for Grey Cast iron

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Poulsen, T.; Bischoff, C;

    2010-01-01

    New Sol-Gel coated sand cores made from coldbox and furan binder systems were investigated. The idea of the coating was to improve the surface quality of castings. Grey iron was cast on the cores in a sand casting process. The effect of the high temperature of the melt on the cores was assessed...

  15. Energy Saving Melting and Revert Reduction Technology: Aging of Graphitic Cast Irons and Machinability

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Von L. [Advanced Technology Inst., Virginia Beach, VA (United States)

    2012-09-19

    The objective of this task was to determine whether ductile iron and compacted graphite iron exhibit age strengthening to a statistically significant extent. Further, this effort identified the mechanism by which gray iron age strengthens and the mechanism by which age-strengthening improves the machinability of gray cast iron. These results were then used to determine whether age strengthening improves the machinability of ductile iron and compacted graphite iron alloys in order to develop a predictive model of alloy factor effects on age strengthening. The results of this work will lead to reduced section sizes, and corresponding weight and energy savings. Improved machinability will reduce scrap and enhance casting marketability. Technical Conclusions: Age strengthening was demonstrated to occur in gray iron ductile iron and compacted graphite iron. Machinability was demonstrated to be improved by age strengthening when free ferrite was present in the microstructure, but not in a fully pearlitic microstructure. Age strengthening only occurs when there is residual nitrogen in solid solution in the Ferrite, whether the ferrite is free ferrite or the ferrite lamellae within pearlite. Age strengthening can be accelerated by Mn at about 0.5% in excess of the Mn/S balance Estimated energy savings over ten years is 13.05 trillion BTU, based primarily on yield improvement and size reduction of castings for equivalent service. Also it is estimated that the heavy truck end use of lighter castings for equivalent service requirement will result in a diesel fuel energy savings of 131 trillion BTU over ten years.

  16. An innovative method for nondestructive analysis of cast iron artifacts at Hopewell Furnace National Historic Site, Pennsylvania

    Science.gov (United States)

    Sloto, Ronald A.; Martin f. Helmke,

    2014-01-01

    For this study, we sampled iron ore, cast iron furnace products, slag, soil, groundwater, streamflow, and streambed sediment. It was important for us to determine which trace metals from the smelted ore were incorporated into the cast iron in order to provide a complete picture of the fate of those metals. It was the only missing piece of information after all other media were sampled. Standard techniques were used to sample and analyze all media except cast iron. Standard techniques require collecting samples in the field, shipping them to a laboratory, and performing a destructive analysis. We needed a nonstandard approach for analysis of the cast iron artifacts.

  17. Undercooling and nodule count in thin walled ductile iron castings

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2007-01-01

    Casting experiments have been performed with eutectic and hypereutectic castings with plate thick¬nesses from 2 to 8 mm involving both temperature measurements during solidification and micro¬structural examination afterwards. The nodule count was the same for the eutectic and hypereutectic...... castings in the thin plates ( 4.3 mm) while in the 8 mm plate the nodule count was higher in the hypereutectic than in the eutectic castings. The minimum temperature prior to the eutectic recalescence (Tmin) was 15 to 20C lower for the eutectic than the hypereutectic castings. This is due to nucleation...... of graphite nodules which begins at a lover temperature in the eutectic than in the hypereutectic castings The recalescence (Trec) was however also larger for the eutectic casting and in the thin plates the maximum temperature after recalescence (Tmax) was the same in the eutectic and hypereutectic...

  18. Undercooling and nodule count in thin walled ductile iron castings

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2007-01-01

    Casting experiments have been performed with eutectic and hypereutectic castings with plate thicknesses from 2 to 8 mm involving both temperature measurements during solidification and microstructural examination afterwards. The nodule count was the same for the eutectic and hypereutectic castings...... in the thin plates (≤4.3 mm) while in the 8 mm plate the nodule count was higher in the hypereutectic than in the eutectic castings. The minimum temperature before the eutectic recalescence (Tmin) was 15 to 20ºC lower for the eutectic than for the hypereutectic castings. This is due to nucleation of...... graphite nodules which begins at a lower temperature in the eutectic than in the hypereutectic castings. The recalescence ∆Trec was however also larger for the eutectic casting and in the thin plates the maximum temperature after recalescence (Tmax) was the same in the eutectic and hypereutectic plates...

  19. Investigation of solidification of thin walled ductile cast iron using temperature measurement

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels

    2005-01-01

    Investigation of solidification of thin walled ductile cast iron can be improved using temperature measurement. This article includes some background of the precautions that have to be taken when measuring temperatures in thin walled castings. The aim is to minimize influence of temperature...... measurement on castings and to get sufficient response time of thermocouples. Investigation of thin wall ductile iron has been performed with temperature measurement in plates with thickness between 2,8 and 8mm. The cooling curves achieved are combined with examination of the microstructure in order to reveal...

  20. THE INFLUENCE OF CHEMICAL COMPOSITION OF HIGH-CHROMIUM CAST IRONS ON THE MACHINABILITY

    Directory of Open Access Journals (Sweden)

    V. V. Netrebko

    2016-02-01

    Full Text Available Purpose. This research is aimed to obtain the regression dependence of the machinability on the chemical composition of pig iron (C, Cr, Mn and Ni in cast state. Methodology. The method of active experiment planning was used to build a mathematical model. Cast irons of composition 1.09…3.91 % С; 11.43…25.57 % Cr; 0.6…5.4 % Mn; 0.19…3.01 % Ni were studied. Cutting tools with plates 10х10 mm out of ВК8 according to State Standard 19051-80 were used for turning. Cutting modes: cutting depth – 0.8 mm, longitudinal feed – 0.15 mm/rot., spindle’s rotation frequency during turning – 200…360 rot./min. Lubricating and cooling liquids were not applied. Evaluation of iron workability was produced by determining the linear tool flank wear per unit length of the cutting path. Findings. Mathematically probabilistic equation of the regression dependence of the cutting tool’s wear on the C, Cr, Mn and Ni content in the machined cast iron were obtained. It was established that with the increase of Cr content in the cast iron to 14.8 % the cutting tool’s wear decreased as a result of formation of carbide eutectic which destroyed the doped ledeburite continuous frame. Further increase of chromium content promoted appearing of chromic carbides with high microhardness which considerably increased the tool’s wear. The conducted research shown that the minimum cutting tool’s wear 0,18 mkm/m was observed during the machining of cast iron containing: 1.09 % C, 14.8 % Cr, 2.3 % Mn and 1.2 % Ni; and the maximum wear is 48,96 mkm/m – when the content was: 3.91 % C, 11.43 % Cr, 5.4 % Mn and 0.19 % Ni. The tool’s wear reached 47.61 mkm/m during the treatment of cast iron containing 3.91 % C, 25.57 % Cr, 5.4 % Mn and 0.19 % Ni. Originality. Mathematically probabilistic model of the dependence of the cutting tool’s wear on the C, Cr, Mn and Ni content in the machined cast iron has been elaborated by the author. Practical value. The model

  1. Effect of Nb on Structure and Mechanical Properties of Chilled Cast Iron at Room and Elevated Temperatures

    Institute of Scientific and Technical Information of China (English)

    Qijie ZHAI; Li FU; Huaying ZHAI

    2004-01-01

    Effect of Nb on microstructure and mechanical properties of chilled cast iron at room and elevated temperatures is studied in this research. The results demonstrate that the cast structure and mechanical properties of chilled cast iron at room and elevated temperatures are improved with the addition of trace amount of Nb. However, if Nb was added too much, the cast structure and mechanical properties of chilled cast iron would deteriorate. The suitable content of Nb in chilled cast iron is about 0.05% (mass fraction). Except the dissolution in the matrix of cast iron the excessive Nb will form Nb-rich phases in three morphologies. Those are lumpy NbC, complicated strip-like phase and compound with pearlite structure.

  2. Structure and properties of gray iron casted in the electromagnetic field

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2009-07-01

    Full Text Available In the national [1] and foreign [2] literature the methods of improving the homogeneity of the structure of castings using forced convection of the solidifying metal in the casting mould or the crystallizer are presented. This article presents the influence of chosen parameters of the rotating electromagnetic filed that is forcing the movement of melted metal in the mould on the morphology of graphite and the abrasive wear of the grey cast iron. The effect of this examination is the obtained modification of the flake graphite divisions morphology and a alteration of the abrasive wear resistance of the castings manufactured this way.

  3. Application of 3-D numerical simulation software SRIFCAST to produce ductile iron castings

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Based on a method using numerical simulation equations and their solution schemes for liquid metal flows and heat transfer during mold filling and the solidification process of casting, 3-D numerical simulation software SRIFCAST was created. This includes enmeshment of casting; velocity and temperature fields calculation; displaying iso-temperature lines;velocity vectors and 3-D temperature fields on a Windows 9x operating system. SRIFCAST was applied to produce sound castings of automobile and diesel engines, and also to connect with microstructure simulation for ductile iron castings.

  4. Temperature measurement during solidification of thin wall ductile cast iron. Part 1: Theory and experiment

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    Temperature measurement using thermocouples (TC’s) influence solidification of the casting, especially in thin wall castings. The problems regarding acquisition of detailed cooling curves from thin walled castings is discussed. Experiments were conducted where custom made TC’s were used to acquire....... Measurement error depending on TC design and cooling conditions is shown. A method is presented that allows acquisition of cooling curves in thin walled ductile iron castings down to thickness of at least 2.8 mm. The obtained cooling curves can be used to compare nucleation and growth during solidification of...

  5. TO SELECTION OF TECHNOLOGICAL SCHEME OF SOFTENING HEAT TREATMENT FOR HIGH CHROMIUM CAST IRON

    Directory of Open Access Journals (Sweden)

    V. G. Efremenko

    2014-03-01

    Full Text Available Purpose. High chromium cast irons with austenitic matrix have low machinability. The aim of work is search of new energy-saving modes of preliminary softening heat treatment enhancing the machinability of castings by forming an optimum microstructure. Methodology. Metallographic analysis, hardness testing and machinability testing are applied. Findings. It was found out that high temperature annealing with continuous cooling yields to martensite-austenite matrix in cast iron 270Х15Г2Н1MPhT, which abruptly affects the machinability of cast iron. Significant improvement of machinability is achieved by forming of structure "ferrite + granular carbides" and by decline of hardness to 37-39 HRC in the case of two-stage isothermal annealing in the subcritical temperature range or by the use of quenching and tempering (two-step or cyclic. Originality. It was found that the formation of the optimal structure of the matrix and achievement of desired hardness level needed for improving machinability of high chromium cast iron containing 3 % austenite-forming elements, can be obtained: 1 due to pearlite original austenite followed by spherodization eutectoid carbides, and 2 by getting predominantly martensite structure followed by the decay of martensite and carbides coagulation at high-temperature tempering. Practical value. The new energy-saving schemes of softening heat treatment to ensure the growth of machinability of high chromium cast iron, alloyed by higher quantity of austenite forming elements, are proposed.

  6. Microstructure, Impact Fatigue Resistance and Impact Wear Resistance of Wear Resistant Low Cr-Si Cast Iron

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A great amount of iron and steel has been consumed in impact wear resistance parts such as grinding balls and lining plates in tube mills. Under this working conditions, the failure of wear resistant white irons is generally caused by fatigue spalling. The martensitic high chromium cast iron (WCr=15 %) has good wear resistance, but its cost is higher. The impact wear resistance of low chromium cast iron sometimes is not good. In the present paper ,a new wear resistant material-low Cr-Si cast iron was introduced. The influence of microstructure of cast iron on impact fatigue resistance and impact wear resistance was discussed. The ball-on-ball impact fatigue test, the high stress impact wear test and the field test of the grinding balls have been carried out. The results showed that the impact fatigue resistance (IFR) and impact wear resistance (IWR) of low Cr-Si cast iron are superior to typical low chromium cast irons and close to the martensitic high chromium cast iron. The main reasons are: ① The as-cast matrix of the low Cr-Si cast iron with stress released is pearlite with better plasticity and toughness; ② The high Si content improves the morphology of eutectic carbide, and has no secondary carbide resulting in less crack sources. All these factors are beneficial to the improvement of impact fatigue spalling resistance and impact wear resistance.

  7. Strain analysis on ductile cast iron containers at drop tests

    International Nuclear Information System (INIS)

    Ductile cast iron (DCI) containers for transportation and deposition of radioactive waste have to be designed carefully in order to avoid unacceptable damages and leakages in case of an accident. Therefore various calculations and experimental methods are used during development and licensing of the containers. Besides others the container has to suffer severe impacts (e.g. falling from a height of several meters onto a concrete base). The level of strains must not exceed a value which would adversely affect the package in such a way that it would fail to meet the applicable requirements. In practice complex events such as drop tests are very difficult to calculate. Both the position of maximum stress and the time of its occurrence are not easily predicted with the method of FEM. The uncertainty of the material modelling for plastic deformation by dynamic loading rates is the limiting factor. Therefore holography as an integral measuring technique in combination with strain gauge techniques were used to fit the FEM. By using the FEM calculations in the case of licensing, the FE and the material model have to be verified. The verification of the FEmodel has to be done by comparison of the local maxima measured by strain gauges and by comparison of the vibration modes. These vibration modes we take from holographic measurements. In this paper we explain container vibrations after impact analysed with holographic measurements, FEM calculations and the comparison of the results. The comparison of the local maxima (strain gauges/FEM) is reported elsewhere (Schreiber 1993; Voelzer 1997). (orig.)

  8. The sort of carburization and the quality of obtained cast iron

    Directory of Open Access Journals (Sweden)

    K. Janerka

    2008-12-01

    Full Text Available In the production of cast iron, the pig iron’s amount in charge material is more and more often limited, and replaced by steel scrap. That extorts the necessity of know-how the carburization and one is looking for carburizers, which ensure obtaining big carbon increment as quickly as possible with the high repeatability and the ones which ensure getting the adequate quality of cast iron. The object of presented research was definition of the influence of charge materials’ sort on the structure, course of solidification, and the effectiveness of process. The cast iron melts, which are presented below, are made only on the basis of steel scrap with portion of graphitoidal, coke and anthracite carburizers, which were added to the charge in solid. In the article one compared the carburizers in respect of their structure, chemical constitution and the effectiveness obtained during the carburization of liquid metal. The melting of cast iron, based on the special pig iron, was carried out as well. The course of melts, chemical constitution of obtained cast iron and its structure were presented. The comparison between quality distribution and the volume fraction of graphite in classes of size for the individual melts were achieved and the TDA curves were inserted.

  9. Monitoring of Quality of Vermicular Cast Iron from the Front of the Furnace

    Institute of Scientific and Technical Information of China (English)

    LI Dayong; SHI Dequan; WANG Lihua

    2008-01-01

    Verrnicular cast iron is used in certain fields because of its special physical properties. However, it is difficult to control the quality from the front of the furnace owing to the narrow range of vermiculizer and other elements that can be added to the iron. A real time method was developed to monitor the vermioular-graphite ratio of the cast iron based on fast measurements of the melt surface tension. The system includes a detector and a control unit that measure the amplitude and frequency of bubbles rising in the melt. This paper describes the methodology for measuring the surface tension of the melt and test results monitoring the vermicular-graphite ratio of the vermicular cast iron from the front of the furnace. The relationship be-tween surface tension and graphite shape has been established. The results show that this system can quickly evaluate the verrnicular-graphite ratio of the cast iron.Key words: vermicular cast iron; surface tension; graphite shape

  10. Ultrasonic inspection of nodular cast iron insert edge distance using curved linear PA-probe

    Energy Technology Data Exchange (ETDEWEB)

    Lipponen, A.; Sarkimo, M. (VTT Technical Research Centre of Finland, Espoo (Finland)); Pitkaenen, J. (Posiva Oy, Eurajoki (Finland))

    2010-05-15

    Nuclear fuel disposal canisters consist of a copper tube and a cast iron insert. The copper tube is designed for corrosion protection. The design and use of the nodular cast iron insert is based on strength and fracture mechanic aspects and it is the load carrying part of the structure. The preliminary acceptance criteria for the cast iron insert are under study. There are several aspects in accepting the inspection results of nodular cast iron insert for use. One aspect among others is the position of the edge which is nearest to surface. In an earlier study this was stated to have a tolerance of edge position +- 5 mm. There have been studies both on eccentricity and the real position of the nearest edge tolerances. To determine the edge position, different ultrasonic techniques were tested using a curved linear PA-probe. To evaluate whether the distance variation is within the tolerance limit, the real geometrical nominal distance must be computed. Because the tolerances of the cast iron insert and its internal geometry can give a large variation in the edge position, these must be carefully evaluated. The applied ultrasonic system is a 128 element phased array equipment. The used probe is curved and adjusted to curvature of the cast iron insert. The curved probe was designed to inspect the edge of the channel with one long axial line scanning. During line scanning the phased array probe does at the same time electronical scanning. To optimize this electronic scanning, three different ultrasonic techniques were used. This evaluation of edge distance was tested in four inspections of real size cast iron inserts. It was seen that the variation of the edge position is about 1 to 12 mm in radial direction (straightness) and in circumferential direction about 2 to 8 mm (twist) in range of about 4 m. (orig.)

  11. Characteristics of flake graphite in Ni-Mn-Cu cast iron. Part 2.

    Directory of Open Access Journals (Sweden)

    A. Janus

    2010-01-01

    Full Text Available The paper continues the article published by Archives of Foundry Engineering, vol. 9, issue 1/2009, pp. 185-290, that presented influence of chemical composition of hypo- and hypereutectic nickel-manganese-copper alloyed cast iron on properties of the contained flake graphite. In this second part of the research, effect of chemical composition of hypereutectic cast iron containing 3.5÷5.1% C, 1.7÷2.8% Si, 3.5÷10.5 %Ni, 2.0÷8.0% Mn, 0.1÷3.5% Cu, 0.14÷0.17% P and 0.02÷0.04% S on properties of flake graphite is determined. Evolution of graphite properties with changing eutecticity degree of the examined cast iron is presented. For selected castings, histograms of primary and eutectic graphite are presented, showing quantities of graphite precipitates in individual size ranges and their shape determined by the coefficient ξ defined as ratio of a precipitate area to square of its circumference. Moreover, presented are equations obtained by discriminant analysis to determine chemical composition of Ni-Mn-Cu cast iron which guarantee the most favourable distribution of A-type graphite from the point of view of castings properties.

  12. Effect of vibration frequency on microstructure and performance of high chromium cast iron prepared by lost foam casting

    Institute of Scientific and Technical Information of China (English)

    Wen-qi Zou; Zhi-guo Zhang; Hao Yang; Wei Li

    2016-01-01

    In the present research, high chromium cast irons (HCCIs) were prepared using the lost foam casting (LFC) process. To improve the wear resistance of the high chromium cast irons (HCCIs), mechanical vibration was employed during the solidiifcation of the HCCIs. The effects of vibration frequency on the microstructure and performance of the HCCIs under as-cast, as-quenched and as-tempered conditions were investigated. The results indicated that the microstructures of the LFC-produced HCCIs were reifned due to the introduction of mechanical vibration, and the hardness was improved compared to that of the aloy without vibration. However, only a slight improvement in hardness was found in spite of the increase of vibration frequency. In contrast, the impact toughness of the as-tempered HCCIs increased with an increase in the vibration frequency. In addition, the wear resistance of the HCCIs was improved as a result of the introduction of vibration and increased with an increase in the vibration frequency.

  13. Effect of vibration frequency on microstructure and performance of high chromium cast iron prepared by lost foam casting

    Directory of Open Access Journals (Sweden)

    Wen-qi Zou

    2016-07-01

    Full Text Available In the present research, high chromium cast irons (HCCIs were prepared using the lost foam casting (LFC process. To improve the wear resistance of the high chromium cast irons (HCCIs, mechanical vibration was employed during the solidification of the HCCIs. The effects of vibration frequency on the microstructure and performance of the HCCIs under as-cast, as-quenched and as-tempered conditions were investigated. The results indicated that the microstructures of the LFC-produced HCCIs were refined due to the introduction of mechanical vibration, and the hardness was improved compared to that of the alloy without vibration. However, only a slight improvement in hardness was found in spite of the increase of vibration frequency. In contrast, the impact toughness of the as-tempered HCCIs increased with an increase in the vibration frequency. In addition, the wear resistance of the HCCIs was improved as a result of the introduction of vibration and increased with an increase in the vibration frequency.

  14. Fabrication of plain carbon steel/high chromium white cast iron bimetal by a liquid-solid composite casting process

    Institute of Scientific and Technical Information of China (English)

    V Javaheri; H Rastegari; M Naseri

    2015-01-01

    High-chromium white cast iron (HCWCI) is one of the most widely used engineering materials in the mining and cement indus-tries. However, in some components, such as the pulverizer plates of ash mills, the poor machinability of HCWCI creates difficulties. The bimetal casting technique is a suitable method for improving the machinability of HCWCI by joining an easily machined layer of plain car-bon steel (PCS) to its hard part. In this study, the possibility of PCS/HCWCI bimetal casting was investigated using sand casting. The inves-tigation was conducted by optical and electron microscopy and non-destructive, impact toughness, and tensile tests. The hardness and chemical composition profiles on both sides of the interface were plotted in this study. The results indicated that a conventional and low-cost casting technique could be a reliable method for producing PCS/HCWCI bimetal. The interfacial microstructure comprised two distinct lay-ers:a very fine, partially spheroidized pearlite layer and a coarse full pearlite layer. Moreover, characterization of the microstructure revealed that the interface was free of defects.

  15. Automatic quantitative analysis of microstructure of ductile cast iron using digital image processing

    Directory of Open Access Journals (Sweden)

    Abhijit Malage

    2015-09-01

    Full Text Available Ductile cast iron is preferred as nodular iron or spheroidal graphite iron. Ductile cast iron contains graphite in form of discrete nodules and matrix of ferrite and perlite. In order to determine the mechanical properties, one needs to determine volume of phases in matrix and nodularity in the microstructure of metal sample. Manual methods available for this, are time consuming and accuracy depends on expertize. The paper proposes a novel method for automatic quantitative analysis of microstructure of Ferritic Pearlitic Ductile Iron which calculates volume of phases and nodularity of that sample. This gives results within a very short time (approximately 5 sec with 98% accuracy for volume phases of matrices and 90% of accuracy for nodule detection and analysis which are in the range of standard specified for SG 500/7 and validated by metallurgist.

  16. Inverse thermal analysis method to study solidification in cast iron

    DEFF Research Database (Denmark)

    Dioszegi, Atilla; Hattel, Jesper

    2004-01-01

    Solidification modelling of cast metals is widely used to predict final properties in cast components. Accurate models necessitate good knowledge of the solidification behaviour. The present study includes a re-examination of the Fourier thermal analysis method. This involves an inverse numerical...... solution of a 1-dimensional heat transfer problem connected to solidification of cast alloys. In the analysis, the relation between the thermal state and the fraction solid of the metal is evaluated by a numerical method. This method contains an iteration algorithm controlled by an under relaxation term...... inverse thermal analysis was tested on both experimental and simulated data....

  17. STUDY ON THE MECHANISM OF GRAPHITIZATION IN MOLTEN CAST IRON PROMOTED BY ELECTROPULSE DISCHARGE

    Institute of Scientific and Technical Information of China (English)

    G.W. Chang; J.S. Wang; J.Z. Wang; Q.G. Xue; D.Q. Zhou; D.Q. Cang

    2004-01-01

    From the points of both molten cast iron structure and the appearing ratio of electrons in outer-layer of different atoms, analysis on enhancement mechanism of graphitization ability after processing of the iron by pulse electric discharge has been made, and the theory has been proofed by corresponding experiments. The results show that when the molten cast iron is being processed by pulse electric discharge, both the size of crystal embryos that composed by Fe and C atoms as well as the number of clusters can bereduced, even be separated by such discharging; consequently results in the segregation of C atoms in the molten cast iron near the cathode of discharging. The nucleation of graphite in these areas of the iron has been promoted at the discharging temperature; even though such degree has not been reached, the most favorable nucleation conditions of graphite can be at least created. Under the preconditions of not breaking up the graphite crystal embryos, with proper adjustment of discharging frequency, the stronger of the electric field and the longer of the pulsation treatment time are, the more graphitization ability of the molten cast iron is. The theoretical analysis on the above rules consists well with experimental results.

  18. The mutual co-regulation of extracellular polymeric substances and iron ions in biocorrosion of cast iron pipes.

    Science.gov (United States)

    Jin, Juntao; Guan, Yuntao

    2014-10-01

    New insights into the biocorrosion process may be gained through understanding of the interaction between extracellular polymeric substances (EPS) and iron. Herein, the effect of iron ions on the formation of biofilms and production of EPS was investigated. Additionally, the impact of EPS on the corrosion of cast iron coupons was explored. The results showed that a moderate concentration of iron ions (0.06 mg/L) promoted both biofilm formation and EPS production. The presence of EPS accelerated corrosion during the initial stage, while inhibited corrosion at the later stage. The functional groups of EPS acted as electron shuttles to enable the binding of iron ions. Binding of iron ions with EPS led to anodic dissolution and promoted corrosion, while corrosion was later inhibited through oxygen reduction and availability of phosphorus from EPS. The presence of EPS also led to changes in crystalline phases of corrosion products.

  19. Numerical modelling of thin-walled hypereutectic ductile cast iron parts

    OpenAIRE

    Pedersen, Karl Martin; Hattel, Jesper Henri; Tiedje, Niels Skat

    2006-01-01

    Solidification of hypereutectic thin-walled ductile cast iron has been modelled in one dimension taking into account the precipitation of off-eutectic austenite dendrites during solidification. The simulations have been compared with casting experiments on plate geometries with plate thicknesses from 2.8 to 8.0 mm with good agreement for both cooling curves and nodule counts. The experimental results revealed that the eutectic solidification of plates with thicknesses less than 4.3 mm was cha...

  20. Reliability and Sensitivity Analysis of Cast Iron Water Pipes for Agricultural Food Irrigation

    Directory of Open Access Journals (Sweden)

    Yanling Ni

    2014-07-01

    Full Text Available This study aims to investigate the reliability and sensitivity of cast iron water pipes for agricultural food irrigation. The Monte Carlo simulation method is used for fracture assessment and reliability analysis of cast iron pipes for agricultural food irrigation. Fracture toughness is considered as a limit state function for corrosion affected cast iron pipes. Then the influence of failure mode on the probability of pipe failure has been discussed. Sensitivity analysis also is carried out to show the effect of changing basic parameters on the reliability and life time of the pipe. The analysis results show that the applied methodology can consider different random variables for estimating of life time of the pipe and it can also provide scientific guidance for rehabilitation and maintenance plans for agricultural food irrigation. In addition, the results of the failure and reliability analysis in this study can be useful for designing of more reliable new pipeline systems for agricultural food irrigation.

  1. Assessing the effect of copper additions on the corrosion behaviour of grey cast iron

    Directory of Open Access Journals (Sweden)

    Saliu Ojo SEIDU

    2015-05-01

    Full Text Available In this research work, the effect of copper additions on the corrosion behaviour of grey cast iron in 3.5 wt% NaCl, 0.3M H2SO4, and 0.1M NaOH respectively was investigated. Grey cast iron samples containing 3.0%, 2.5%, 2.0%, and 1.5% weight percent of copper were produced. The corrosion behaviour of the grey cast iron samples produced were assessed using mass loss and corrosion rate measurements according to America Society for Testing and Materials standard (ASTM procedures in salt water, basic, and acidic environments. The results reveal that the samples containing 2.0% and 1.5% weight percent of copper show an excellent corrosion resistance while samples containing 3.0% and 2.5% weight percent of copper show good corrosion behaviour all in salt water and basic environments but poorly in acidic environment.

  2. Removal of arsenate and arsenite from aqueous solution by waste cast iron

    Institute of Scientific and Technical Information of China (English)

    Nag-Choul Choi; Song-Bae Kim; Soon-Oh Kim; Jae-Won Lee; Jun-Boum Park

    2012-01-01

    The removal of As(Ⅲ) and As(Ⅴ) from aqueous solution was investigated using waste cast iron,which is a byproduct of the iron casting process in foundries.Two types of waste cast iron were used in the experiment:grind precipitate dust (GPD) and cast iron shot (CIS).The X-ray diffraction analysis indicated the presence of Fe0 on GPD and CIS.Batch experiments were performed under different concentrations of As(Ⅲ) and As(Ⅴ) and at various initial pH levels.Results showed that waste cast iron was effective in the removal of arsenic.The adsorption isotherm study indicated that the Langmuir isotherm was better than the Freundlich isotherm at describing the experimental result.In the adsorption of both As(Ⅲ) and As(Ⅴ),the adsorption capacity of GPD was greater than CIS,mainly due to the fact that GPD had higher surface area and weight percent of Fe than CIS.Results also indicated the removal of As(Ⅲ) and As(Ⅴ)by GPD and CIS was influenced by the initial solution pH,generally decreasing with increasing pH from 3.0 to 10.5.In addition,both GPD and CIS were more effective at the removal of As(Ⅲ) than As(Ⅴ) under given experimental conditions.This study demonstrates that waste cast iron has potential as a reactive material to treat wastewater and groundwater containing arsenic.

  3. Grey cast iron as construction material of bridges from the 18th and 19th century

    Directory of Open Access Journals (Sweden)

    J. Rabiega

    2011-04-01

    Full Text Available Many bridges and railroad viaducts, which have been operated at the western and southern regions of Poland, were erected at the end ofthe 18th or beginning of the 19th century. In recent years they undergo overhauls and renovations requiring familiarity with the construction materials they have been made of. It is necessary for estimation of their load capacity (possible reinforcements and determining their suitability for further utilisation. Among the materials in the old bridges the puddled steels and cast irons predominate. Aim of the work is identification and documentation of microstructure and selected properties of the cast irons used for production of parts for the bridge in Łażany, the Old Mieszczański Bridge in Wrocław, the hanging bridge in Ozimek, as well as the columnar piers of the railroad viaduct in Wrocław. Using the methods of light microscopy and scanning electron microscopy, as well as the results of hardness measurements and chemical analysis, it has been shown that the objects have been built of grey cast iron with flake graphite having the ferritic-pearlitic or pearlitic matrix. The diversification of their chemical analysis resulting from the type, size and geometry of the cast parts was indicated.The tested materials fulfil requirements of the contemporary standards related to grey cast irons of the EN-GJL-100 and EN-GJL-150grades.

  4. Influences of copper on solidification structure and hardening behavior of high chromium cast irons

    Institute of Scientific and Technical Information of China (English)

    WANG Jun; XIONG Ji; FAN Hong-yuan; SHEN Bao-luo; GAO Sheng-ji

    2008-01-01

    The influences of copper on microstructure and the hardening behavior of high chromium cast irons subjected to sub-critical treatment were investigated.The results show that the mierostructure of the as-cast high chromium cast irons consists of retained austenite,martensite and M7 C3 type eutectic carbide.When copper is added into high chromium cast irons,austenite and carbide contents are increased.The increased addition of copper content from 0%to 1.84%leads to the increase of austenite and carbide from 15.9%and 20.0% to 61.0%and 35.5%,respectively.In the process of sub-critical treatment,the retained austenite in the matrix can be precipitated into secondary carbides and then transforms into martensite in cooling process,which causes the secondary hardening of the alloy under sub-critical treatment.High chromium cast irons containing copper in sub-critical treatment appear the second hardening curve peak due to the precipitation of copper from supersaturated matrix.

  5. Influence of electromagnetic field parameters on the morphology of graphite in grey cast iron

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2009-01-01

    Full Text Available One way to improve the unification of the casting structure may be the application of forced convection of liquid metal during thecrystallization in the form or continuous casting mould. This paper presents the results describing the influence of selected parameters of rotating electromagnetic field enforcing the movement of liquid metal in the form on the morphology of graphite in grey cast iron. The results were fragmented graphite flakes in conditions of regulating the rate of cooling in the range of temperature TZAL

  6. Effect of boron carbide on primary crystallization of chromium cast iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2008-04-01

    Full Text Available In the paper results of the influence of boron carbide (B4C as inoculant of abrasion-resisting chromium cast iron (about 2,8% carbon and 18% chromium on primary crystallization researches are presented. Boron carbide dispersion was introduced at the bottom of pouring ladle before tap of liquid cast iron. In this investigations were used three different quantities of inoculant in amounts 0,1%; 0,2% and 0,3% with relation to bath weight. It has been demonstrated that such small additions of boron carbide change primary crystallization parameters, particularly temperature characteristic of process, their time and kinetics.

  7. Draft ASME code case on ductile cast iron for transport packaging

    Energy Technology Data Exchange (ETDEWEB)

    Saegusa, T. [Central Research Inst. of Electric Power Industry, Abiko (Japan); Arai, T. [Central Research Inst. of Electric Power Industry, Yokosuka (Japan); Hirose, M. [Nuclear Fuel Transport Co., Ltd., Tokyo (Japan); Kobayashi, T. [Nippon Chuzo, Kawasaki (Japan); Tezuka, Y. [Mitsubishi Materials Co., Tokyo (Japan); Urabe, N. [Kokan Keisoku K. K., Kawasaki (Japan); Hueggenberg, R. [GNB, Essen (Germany)

    2004-07-01

    The current Rules for Construction of ''Containment Systems for Storage and Transport Packagings of Spent Nuclear Fuel and High Level Radioactive Material and Waste'' of Division 3 in Section III of ASME Code (2001 Edition) does not include ductile cast iron in its list of materials permitted for use. The Rules specify required fracture toughness values of ferritic steel material for nominal wall thickness 5/8 to 12 inches (16 to 305 mm). New rule for ductile cast iron for transport packaging of which wall thickness is greater than 12 inches (305mm) is required.

  8. Directional solidification of flake and spheroidal graphite cast iron in low and normal gravity environment

    Science.gov (United States)

    Hendrix, J. C.; Stefanescu, D. M.; Curreri, P. A.

    1987-01-01

    A NASA KC-135 research aircraft, flying repeated low-g trajectories that yield 20-30 sec of 0.1-0.001 g microgravity, has been used to study microgravity solidification's elimination of sedimentation and convection (with formation of unique and advantageous microstructures) for the case of eutectic-composition cast irons. The solidification interface of hypereutectic flake and spheroidal graphite cast irons has been slowly advanced through a 4 mm-diameter rod sample. Sample solidification rates have been correlated with accelerometer data, while independently controlling thermal gradients and solidification rates.

  9. The low-aluminium cast iron of reduced silicon content treated with cerium mischmetal

    OpenAIRE

    M. S. Soiński; P. Susek; Hübner, K.; P. Mierzwa

    2008-01-01

    The work presents the effect of cerium mischmetal used in quantities of 0.1 and 0.2 wt-% and ferrosilicon used in quantities from 0.5% to 1.5% on the alloy matrix and the shape of graphite precipitates in the low-aluminium cast iron from seven heats, basing on the examination of its structure. The hypereutectic cast iron of the relatively high carbon content (4.0÷4.2%) at the prior-to-treatment silicon and manganese content equal to ca. 0.6% and ca. 0.04%, respectively, has been examined.It h...

  10. Abrasive Wear Behavior of High Chromium Cast Iron and Hadfield Steel-- A Comparison

    Institute of Scientific and Technical Information of China (English)

    Mehdi Mazar Atabaki; Sajjad Jafari; Hassan Abdollah-pour

    2012-01-01

    Wear properties of two different crushers used for grinding raw materials of cement industry are compared using pin-on-disk wear test.The wear test was carried out with different loads on a pin.Abrasive wear behavior of two alloys was evaluated by comparing mass loss,wear resistance,microhardness and friction coefficient.The microstructure of the specimens was detected using optical microscope.The results showed that abrasive wear of high chromium cast iron is lower than that of Hadfield steel.Due to the presence of M7C3 carbides on the high chromium cast iron matrix,impact crushers exhibited higher friction coefficient

  11. New Possibilities of Shaping the Surface Properties in Austempered Ductile Iron Castings

    Directory of Open Access Journals (Sweden)

    D. Myszka

    2013-01-01

    Full Text Available The paper presents recent developments concerning the formation of surface layer in austempered ductile iron castings. It was found thatthe traditional methods used to change the properties of the surface layer, i.e. the effect of protective atmosphere during austenitising or shot peening, are not fully satisfactory to meet the demands of commercial applications. Therefore, new ways to shape the surface layer and the surface properties of austempered ductile iron castings are searched for, to mention only detonation spraying, carbonitriding, CVD methods, etc.

  12. Laser powder surfacing of the Si-Mo spheroidal cast iron with nickel powder

    OpenAIRE

    Klimpel, A; L.A. Dobrzański

    2006-01-01

    Purpose: Investigation results are presented of the effect of main parameters of laser powder surfacing of the Si-Mo spheroidal cast iron with the nickel based powder on quality and shape of padding welds and portion of the substrate material in the padding weld.Design/methodology/approach: It was shown basing on investigation of the process of laser powder surfacing with the nickel based powder onto the spheroidal cast iron substrate that it is feasible to make high quality padding welds in ...

  13. Research on Welding Test of Grey Cast Iron and Low-Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Grey cast iron's welding itself is a complex proble m.So proper welding materials must be selected,complex welding techniques such as preheating before weldingslow cooling after welding etc,should be taken. However the carbon component in low-carbon steel is comparatively low,the carbo n of welded joint will diffuse to the low-carbon steel when it is welded with gr ey cast iron,which will cause the component of carbon greatly increased at the low-carbon steel side in HAZ,high carbon martensite and cracks ...

  14. The Influence of Saturation of Cast Iron Austenite with Carbon on the Ausferrite Transformation

    OpenAIRE

    T. Giętka; T. Szykowny; S. Dymski

    2007-01-01

    Austenitizing during quench hardening of the ductile cast iron influences the content of carbon in austenite depending on the soaking heat. On the other hand, the saturation of austenite impacts its transformation in the ausferritizing process of a metal matrix and forming of microstructure. Ductile cast iron with the ferrite matrix was hardened with isothermal transformation in the range of ausferritizing in temperature tpi = 400 i 300 0C and the range of time τpi = 7,5 �� 240 min. Specimens...

  15. Long term stability analysis of cast iron shaft linings after Coal Mine closure and flooding

    Energy Technology Data Exchange (ETDEWEB)

    Hadj-Hassen, F. [Ecole des Mines de Paris - CGES, 77 - Fontainebleau (France); Bienvenu, Y. [Ecole des Mines de Paris, CM, 91 - Evry (France); Noirel, J.F. [Charbonnages de France, DTN, 57 - Freyming Merlebach (France); Metz, M. [charbonnages de France, ESA, 57 - Freyming Merlebach (France)

    2005-07-01

    This paper presents the results of a study conducted to analyse the long term stability of the cast iron shaft lining after coal mine closure and flooding. The attention is mainly focused on the behaviour during the critical phase of flooding as well as the phase corresponding to the disappearance of the water pressure and the stabilization of the environment. This pluri-disciplinary study was conducted by a team combining specialists in rock mechanics who identified the main risks and the conditions of stability of the lining and specialists in metallurgy who studied the composition of the cast iron and its corrosion behaviour after exposure to mine water. (authors)

  16. The thermal fatigue resistance of vermicular cast iron coupling with H13 steel units by cast-in process

    International Nuclear Information System (INIS)

    This paper focuses on improving the thermal fatigue resistance on the surface of vermicular cast iron coupling with inserted H13 steel blocks that had different cross sections, by cast-in processing. The microstructure of bionic units was examined by scanning electron microscope. Micro-hardness and thermal fatigue resistance of bionic samples with varied cross sections and spacings were investigated, respectively. Results show that a marked metallurgical bonding zone was produced at interface between the inserted H13 steel block and the parent material - a unique feature of the bionic structure in the vermicular cast iron samples. The micro-hardness of the bionic samples has been significantly improved. Thermal resistance of the samples with the circular cross section was the highest and the bionics sample with spacing of 2 mm spacing had a much longer thermal fatigue life, thus resulting in the improvement for the thermal fatigue life of the bionic samples, due to the efficient preclusion for the generation and propagation of crack at the interface of H13 block and the matrix.

  17. Effects of microbial redox cycling of iron on cast iron pipe corrosion in drinking water distribution systems.

    Science.gov (United States)

    Wang, Haibo; Hu, Chun; Zhang, Lili; Li, Xiaoxiao; Zhang, Yu; Yang, Min

    2014-11-15

    Bacterial characteristics in corrosion products and their effect on the formation of dense corrosion scales on cast iron coupons were studied in drinking water, with sterile water acting as a reference. The corrosion process and corrosion scales were characterized by electrochemical and physico-chemical measurements. The results indicated that the corrosion was more rapidly inhibited and iron release was lower due to formation of more dense protective corrosion scales in drinking water than in sterile water. The microbial community and denitrifying functional genes were analyzed by pyrosequencing and quantitative polymerase chain reactions (qPCR), respectively. Principal component analysis (PCA) showed that the bacteria in corrosion products played an important role in the corrosion process in drinking water. Nitrate-reducing bacteria (NRB) Acidovorax and Hydrogenophaga enhanced iron corrosion before 6 days. After 20 days, the dominant bacteria became NRB Dechloromonas (40.08%) with the protective corrosion layer formation. The Dechloromonas exhibited the stronger corrosion inhibition by inducing the redox cycling of iron, to enhance the precipitation of iron oxides and formation of Fe3O4. Subsequently, other minor bacteria appeared in the corrosion scales, including iron-respiring bacteria and Rhizobium which captured iron by the produced siderophores, having a weaker corrosion-inhibition effect. Therefore, the microbially-driven redox cycling of iron with associated microbial capture of iron caused more compact corrosion scales formation and lower iron release. PMID:25150521

  18. Effect of bionic coupling units' forms on wear resistance of gray cast iron under dry linear reciprocating sliding condition

    Science.gov (United States)

    Pang, Zuobo; Zhou, Hong; Xie, Guofeng; Cong, Dalong; Meng, Chao; Ren, Luquan

    2015-07-01

    In order to get close to the wear form of guide rails, the homemade linear reciprocating wear testing machine was used for the wear test. In order to improve the wear-resistance of gray cast iron guide rail, bionic coupling units of different forms were manufactured by a laser. Wear behavior of gray-cast-iron with bionic-coupling units has been studied under dry sliding condition at room temperature using the wear testing machine. The wear resistance was evaluated by means of weight loss measurement and wear morphology. The results indicated that bionic coupling unit could improve the wear resistance of gray cast iron. The wear resistance of gray cast iron with reticulation bionic coupling unit is the best. When the load and speed changed, reticulation bionic coupling unit still has excellent performance in improving the wear resistance of gray cast iron.

  19. Application of cored wire injection method to the producing of vermicular cast iron

    OpenAIRE

    E. Guzik; T. Kleingartner

    2008-01-01

    Thc rcsults of studies on thc use of magnesium alloy in modcrn cod wire injection method tor pmduction of vcrrniculnr ~rsphitcc astirons were described. The injection of Mg corcd wirc lcngth is a trcatmcnt rnczhod which can bc used lo pmcss iron mcltctl in an clcctricinduction fumacc. This paper describes the results of using a high-magnssiurn fcmsilicon alloy in corcd wire (Mg recovcry 45% ) Tor thcproduction OF vcrmicular graphite cast irons at Gicsserci Hcunisch GmbI I Foundry. Thc rcsulrs...

  20. Influencing factors on as-cast and heat treated 400-18 ductile iron grade characteristics

    Directory of Open Access Journals (Sweden)

    I. Riposan

    2007-11-01

    Full Text Available As-cast and heat-treated 400-18 ductile iron (DI grade was obtained in different foundry conditions, as metallic charge, Mg-treatment alloy and inoculation. It was found that the Pearlitic Influence Factor (Px and Antinodulizing Complex Factor (K1 have an important influence on property of DI, depending on the Mn and P level, the metallurgical quality of iron melt, rare earth (RE and inoculation. It was also found that the influence of Mn is depended on the phosphorus and residual elements level in ductile iron. Less than 0.03%P and 0.2%Mn and Px2.0 determines presence of pearlite in as-cast structure, while ferrite structure is obtained after a short annealing heat treatment. Lower level of phosphorus (P1.2. Si has a significant influence on the mechanical properties of heat treated ductile irons: an important decreasing of elongation level and a moderate increasing of yield and tensile strength and their ratio in 150-170 HB typical hardness field. A typical final chemical composition for as-cast 400-18 ductile iron could include 3.5%-3.7%C, 2.4%-2.5%Si, max.0.18%Mn, max.0.025%P, max.0.01%S, 0.04%-0.05%Mgres. for Px<1.5 and K1<1.1. High purity pig iron, RE-bearing FeSiMg and powerful inoculant are also recommended.

  1. Effect of Bi on graphite morphology and mechanical properties of heavy section ductile cast iron

    Directory of Open Access Journals (Sweden)

    Song Liang

    2014-03-01

    Full Text Available To improve the mechanical properties of heavy section ductile cast iron, bismuth (Bi was introduced into the iron. Five castings with different Bi content from 0 to 0.014 wt.% were prepared; and four positions in the casting from the edge to the center, with different solidification cooling rates, were chosen for microstructure observation and mechanical properties test. The effect of the Bi content on the graphite morphology and mechanical properties of heavy section ductile cast iron were investigated. Results show that the tensile strength, elongation and impact toughness at different positions in the five castings decrease with a decrease in cooling rate. With an increase in Bi content, the graphite morphology and the mechanical properties at the same position are improved, and the improvement of mechanical properties is obvious when the Bi content is no higher than 0.011wt.%. But when the Bi content is further increased to 0.014wt.%, the improvement of mechanical properties is not obvious due to the increase of chunky graphite number and the aggregation of chunky graphite. With an increase in Bi content, the tensile fracture mechanism is changed from brittle to mixture ductile-brittle fracture.

  2. 75 FR 54596 - Final Results of Expedited Sunset Review: Heavy Iron Construction Castings from Brazil

    Science.gov (United States)

    2010-09-08

    .... See Initiation of Five-year (``Sunset'') Reviews, 75 FR 23240 (May 3, 2010). The Department received a... from Brazil AGENCY: Import Administration, International Trade Administration, Department of Commerce... of the countervailing duty order (``CVD'') on heavy iron construction castings from Brazil...

  3. Hot Cutting of Real-Time Cast-Forged GS Ductile Iron for Automotive Rods

    Science.gov (United States)

    Fouilland, Laurence; Mansori, Mohamed El

    2011-01-01

    In the global economy context, automotive industry suppliers have to keep a constant advance on products design and manufacturing process. Concerning automotive rods, the substitution of forged steel by spherical graphite iron (SG iron) with high mechanical properties constitutes a valid economic alternative. Such rods are produced using a complex coupled process: casting and forging followed by an austempered heat treatment. The forging operation is capable to shape the cast rod which introduces hot deformation to increase mechanical properties of net-shape SG iron rod. However, the intermediate re-heating between casting and forging must be avoided to keep competitive manufacturing costs. A major concern of this new process development is the cracks produced in rod's surface which are consecutive to hot spruing involved after casting operations. This issue is addressed in this paper which discusses the physical mechanisms involved in the hot ductile damage of SG iron. Hot cutting tests were performed to simulate the spruing operation which shows the close interactions between microstructure, machining parameters and resulting damages. The damage mechanisms in terms of crack initiation and its growth have been studied with respect to the constituent phases (austenite+graphite nodules), the cut surface morphology and the hot cutting performance.

  4. Investigation of jatropha seed oil as austempering quenchant for ductile cast iron

    Directory of Open Access Journals (Sweden)

    Akor Terngu

    2014-06-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Austempering is a multi-step process that includes austenitizing, followed by cooling rapidly enough to avoid the formation of pearlite to a temperature above the martensite start (Ms and then holding until the desired microstructure is formed. It is an isothermal heat treatment process that, when applied to cast iron, produces components that, in many cases, have properties superior to those process by conventional heat treatment. Salt bath has been recognized as the conventional quenching medium for austempering. This study investigates the suitability of jatropha seed oil as quenching medium for asaustempering ductile cast iron. Test samples were austenitized at 9500C; socked for 1hr; austempered for varying periods of 1, 2, 3, 4 and 5hrs. The result showed significant increase in tensile strength and impact energy apart from achieving an appreciable increase in hardness. It also tally with recommended values of ductile cast iron austempered in salt bath, implying that jatropha oil can be used as hot bath for the austempering of ductile cast iron. Keywords: Ausferrite, Austempering, Austenitized, Matrix So, Cked.

  5. Effect of Feeder Configuration on the Microstructure of Ductile Cast Iron

    DEFF Research Database (Denmark)

    Vedel-Smith, Nikolaj Kjelgaard; Tiedje, Niels Skat

    2014-01-01

    iron castings. The goal is to enable metallurgists and foundry engineers to more directly target mushy zone development to prolong the possibility to feed through this section. Keeping smaller section open for an extended period will make it possible to use fewer or smaller feeders, with reduced energy...

  6. Numerical modeling of coupled heat transfer and phase transformation for solidification of the gray cast iron

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Hosseinzadeh, Azin

    2013-01-01

    In the present study the numerical model in 2D is used to study the solidification bahavior of the gray cast iron. The conventional heat transfer is coupled with the proposed micro-model to predict the amount of different phases, i.e. total austenite (c) phase, graphite (G) and cementite (C), in...

  7. Application of ultrasound in testing of heat-treated cast iron

    Directory of Open Access Journals (Sweden)

    Mróz, M.

    2007-01-01

    Full Text Available The paper is an attempt to clarify the effect of heat treatment on the cast iron structure and propagation of ultrasonic waves in it with the objective of showing the usability of this technique for diagnosis of heat treatment effects.

  8. The influence of chosen modifiers on stereological parameters of carbides of chromium cast iron

    OpenAIRE

    A. Studnicki; J. Suchoń

    2011-01-01

    The results of investigations of stereological carbides in the modified wear resistance chromium cast iron resistant were introduced in the article. There were following elements: boron, niobium, vanadium, cerium and lanthanum (RE), nitrogen in the composition of modifiers. The influence of used modifiers on such stereological parameters of carbides as: size, perimeter, shape coefficient and volume fraction was showed in tables and on diagrams.

  9. Tape casting as a fabrication process for iron aluminide (FeAl) thin sheets

    Energy Technology Data Exchange (ETDEWEB)

    Mistler, R.E. [Richard E. Mistler Inc., Morrisville, PA (United States); Sikka, V.K. [ORNL, PO Box 2008, Oak Ridge, TN 37831 (United States); Scorey, C.R.; McKernan, J.E. [Ametek Inc., 21 Toelles Road, Wallingford, CT 06492 (United States); Hajaligol, M.R. [Research and Development Center, Philip Morris USA, PO Box 26581, Richmond, VA 23261 (United States)

    1998-12-31

    The conversion of iron aluminide powder into a slurry followed by tape casting into a green sheet was investigated. Casting parameters affecting green sheet properties were studied. Application of thermo-mechanical processing including sintering, cold rolling, annealing and heat treating resulted in sheets with a fine-grain structure at essentially 100% of theoretical density. The various microstructures developed throughout the process are described, along with tensile property measurements on the fully dense product. Differences in property with sheets made by other processes are explained, and it is demonstrated that tape casting is a viable method of making thin gauge sheets of iron aluminide with a wide range of compositions. (orig.) 9 refs.

  10. Modelling of Eutectic Saturation Influence on Microstructure in Thin Wall Ductile Iron Casting Using Cellular Automata

    Directory of Open Access Journals (Sweden)

    M. Górny

    2012-12-01

    Full Text Available The mathematical model of the globular eutectic solidification in 2D was designed. Proposed model is based on the Cellular AutomatonFinite Differences (CA-FD calculation method. Model has been used for studies of the primary austenite and of globular eutectic grainsgrowth during the ductile iron solidification in the thin wall casting. Model takes into account, among other things, non-uniformtemperature distribution in the casting wall cross-section, kinetics of the austenite and graphite grains nucleation, and non-equilibriumnature of the interphase boundary migration. Calculation of eutectic saturation influence (Sc = 0.9 - 1.1 on microstructure (austenite and graphite fraction, density of austenite and graphite grains and temperature curves in 2 mm wall ductile iron casting has been done.

  11. Numerical modelling of solidification of thin walled hypereutectic ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Hattel, Jesper; Tiedje, Niels

    2006-01-01

    Numerical simulation of solidification of ductile cast iron is normally based on a model where graphite nodules are surrounded by an austenite shell. The two phases are then growing as two concentric spheres governed by diffusion of carbon through the austenite shell. Experiments have however shown...... simulation of thin-walled ductile iron castings. Simulations have been performed with a 1-D numerical solidi¬fication model that includes the precipitation of non-eutectic austenite during the eutectic stage. Results from the simulations have been compared with experimental castings with wall thick...... solidification had only one main stage. The simulations reveal that the first stage of solidification can be explained by precipitation of off-eutectic austenite...

  12. The identification of pouring conditions of cast iron to sand moulds

    Directory of Open Access Journals (Sweden)

    B. Borowiecki

    2008-04-01

    Full Text Available The structure and properties of the castings in cast iron put on spheroidization depend especially on the pouring conditions. Decisive factor of local castings properties can be the flow ability of liquid metal in sand mould, which depends not only on chemical constitutions but also on temperature and velocity of pouring. The parameter, which take into consideration various factors is a substitute rheological parameter θ proposed in early author’s papers [1, 2]. The parameter determined in fluidity test can be used to calculation of thickness of rheological boundary layer metal in gating system channel and in casting. The identification a thermal properties of sand mould material has been require of investigation proposed in literature [3, 4]. In the article presented also the experimental of measurement results of metal levels in piezometers located on the horizontal cross gate.

  13. Fatigue behaviour and energy dissipation of a nodular cast iron in ultrasonic fatigue loading

    Directory of Open Access Journals (Sweden)

    H.Q. Xue

    2006-08-01

    Full Text Available Purpose: In the current research, fatigue tests of cast iron (GS51 have been conducted using the ultrasonicfatigue system and monitored by an advanced infrared imaging system in real time. Fatigue damage processeshas been observed and analyzed. Furthermore, heat condition effect has been to analyze.Design/methodology/approach: Fatigue behaviour in the very high cycle regime of 1010 cycles wereinvestigated with a cast iron (GS51 under ultrasonic fatigue test system in ambient air at room temperaturewith a stress ratio R=-1. The influence of frequency was examined by comparing similar data generated onconventional servo hydraulic test systems. An infrared camera was also used to record specimen temperaturesat various load levels caused by internal damping due to cycling at a very high frequency.Findings: The S-N curves obtained show that fatigue failure occurred beyond 109 cycles, fatigue limit does notexist for the cast iron and there is no evidence of frequency effect on the test results. A detailed study on fatiguespecimens subjected to ultrasonic frequency shows that the temperature evolution of the cast iron specimen isvery evident, the temperature increased just at the beginning of the test, the temperature increased depending onthe maximum stress amplitude.Research limitations/implications: Ultrasonic fatigue test methodology had been applied extensively inexploring fatigue lives at very high cycle regime. However, it is a predominant problem that the thermal energydissipation results in increasing of temperature of specimen at very high frequency fatigue experiment. In orderto investigate the heat dissipation of ultrasonic fatigue specimen and understand the influence of temperatureevolution on the fatigue properties, it is necessary to obtain the temperature response of vibratory specimen.Originality/value: Early stage of damage of the cast iron which lead to crack initiation and micro crack growthare characterized by local microstructure

  14. Casting and stress-strain simulations of a cast ductile iron component using microstructure based mechanical behavior

    International Nuclear Information System (INIS)

    The industrial demand for increased component performance with concurrent reductions in component weight, development times and verifications using physical prototypes drives the need to use the full potential of casting and Finite Element Method (FEM) simulations to correctly predict the mechanical behavior of cast components in service. The mechanical behavior of the component is determined by the casting process, and factors as component geometry and casting process parameters are known to affect solidification and microstructure formation throughout the component and cause local variations in mechanical behavior as well as residual stresses. Though residual stresses are known to be an important factor in the mechanical behavior of the component, the importance of local mechanical behavior is not well established and the material is typically considered homogeneous throughout the component. This paper deals with the influence of solidification and solid state transformation on microstructure formation and the effect of local microstructure variations on the mechanical behavior of the cast component in service. The current work aims to investigate the coupling between simulation of solidification, microstructure and local variations in mechanical behavior and stress-strain simulation. This is done by performing several simulations of a ductile iron component using a recently developed simulation strategy, a closed chain of simulations for cast components, able to predict and describe the local variations in not only elastic but also plastic behavior throughout the component by using microstructural parameters determined by simulations of microstructural evolution in the component during the casting process. In addition the residual stresses are considered. The results show that the FEM simulation results are significantly affected by including microstructure based mechanical behavior. When the applied load is low and the component is subjected to stress levels

  15. Discussion on "proportional solidification technology" for nodular iron casting method

    Institute of Scientific and Technical Information of China (English)

    ZHOU Gen

    2006-01-01

    The Proportional Solidification Technology believes that advancing the expansion of graphite precipitation is favorable for fully utilizing the expansion to offset the contraction and minimizing feeder size. But this author has proved that advancing the expansion is unfavorable for both feeding from the feeder and the self-feeding by expansion. On contrary, advancing the contraction is favorable for both kinds of feeding and favorable for avoiding shrinkage. The feeding efficiency of feeders cannot be increased by advancing the expansion of the casting, but can only be increased by accelerating cooling and contraction of the casting, and (or) by delaying the freezing of the feeders. In order to fully utilize the expansion to offset the contraction, it is a must to ensure that all inlets and outlets of a casting being poured are blocked rapidly at the moment when pouring is finished. It is pointed out that blocking at the earlier frozen feeder neck is unfavorable for both feeding from the feeder and the self-feeding by expansion; whereas blocking at earlier frozen ingates is favorable for both kinds of feeding.

  16. Tensile Properties of Al-Cu 206 Cast Alloys with Various Iron Contents

    Science.gov (United States)

    Liu, K.; Cao, X.; Chen, X.-G.

    2014-05-01

    The Al-Cu 206 cast alloys with varying alloy compositions ( i.e., different levels of Fe, Mn, and Si) were investigated to evaluate the effect of the iron-rich intermetallics on the tensile properties. It is found that the tensile strength decreases with increasing iron content, but its overall loss is less than 10 pct over the range of 0.15 to 0.5 pct Fe at 0.3 pct Mn and 0.3 pct Si. At similar iron contents, the tensile properties of the alloys with dominant Chinese script iron-rich intermetallics are generally higher than those with the dominant platelet phase. In the solution and artificial overaging condition (T7), the tensile strength of the 206 cast alloys with more than 0.15 pct Fe is satisfactory, but the elongation does not sufficiently meet the minimum requirement of ductility (>7 pct) for critical automotive applications. However, it was found that both the required ductility and tensile strength can be reached at high Fe levels of 0.3 to 0.5 pct for the alloys with well-controlled alloy chemistry and microstructure in the solution and natural aging condition (T4), reinforcing the motivation for developing recyclable high-iron Al-Cu 206 cast alloys.

  17. Machinability of clean thin-wall gray and ductile iron castings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bates, C.E.; Littleton, H.E.; Eleftheriou, E.; Griffin, R.D.; Dwyer, Z.B.; DelSorbo, C.; Sprague, J.

    1997-02-01

    First phase was to develop a laboratory technique for evaluating the machinability of gray and ductile iron; longer term goal is to learn how to modify the foundry process to produce castings meeting all specified mechanical properties while providing improved machining behavior. Microcarbides present in the irons were found to dominate the machinability of iron. Pearlitic irons with acceptable machinability contain 8.9 to 10.5 wt% microcarbides. The weight fraction microcarbides in the iron is influenced by carbide forming element concentrations, presence of elements that retard carbon diffusion, and cooling rate from the eutectic through the eutectoid temperature range. Tool wear rate increased at higher surface machining speeds and fraction microcarbides; all irons containing above 11.5% microcarbides had poor machinability. Graphite size, shape, distribution, etc. had a lesser effect on machinability. Reducing the addition of a foundry grade Ca and Al bearing 75% FeSi inoculant from 0.5 to 0.2% increased the tool life 100%. Inoculation test castings were also poured in a class 40 gray iron; laboratory analysis is currently underway. Exploratory studies were conducted to determine if tool force could be used to predict tool life: torque and feed forces were found to correlate with machinability.

  18. Thermal Microstructural Multiscale Simulation of Solidification and Eutectoid Transformation of Hypereutectic Gray Cast Iron

    Science.gov (United States)

    Urrutia, Alejandro; Celentano, Diego J.; Gunasegaram, Dayalan R.; Deeva, Natalia

    2014-08-01

    Although the gray cast iron solidification process has been the subject of several modeling studies, almost all available models appear to deal with only the more widely used hypoeutectic compositions. Models related to hypereutectic gray iron compositions with lamellar (or flake) graphite, and in particular for the proeutectic and eutectoid zones, are hard to find in the open literature. Hence, in the present work, a thermal microstructural multiscale model is proposed to describe the solidification and eutectoid transformation of a slightly hypereutectic composition leading to lamellar graphite gray iron morphology. The main predictions were: (a) temperature evolutions; (b) fractions of graphite, ferrite, and pearlite; (c) density; and (d) size of ferrite, pearlite, and gray eutectic grains; (e) average interlamellar graphite spacing; and (f) its thickness. The predicted cooling curves and fractions for castings with two different compositions and two different pouring temperatures were validated using experimental data. The differences between this model and existing models for hypoeutectic compositions are discussed.

  19. Physicochemical studies of glucose, gellan gum, and hydroxypropyl cellulose--inhibition of cast iron corrosion.

    Science.gov (United States)

    Rajeswari, Velayutham; Kesavan, Devarayan; Gopiraman, Mayakrishnan; Viswanathamurthi, Periasamy

    2013-06-01

    Glucose, gellan gum, and hydroxypropyl cellulose were studied against the acid corrosion of cast iron by means of weight loss, potentiodynamic polarization, and AC impedance spectroscopy techniques. The inhibition efficiency was found to increase with increasing concentration of the inhibitors. The effect of immersion time and temperature were also studied. The addition of potassium iodide to the corrosion-inhibition system showed both antagonism and synergism toward inhibition efficiency. Polarization studies revealed the mixed-type inhibiting nature of the carbohydrates. The adsorption of inhibitors on the cast iron surface obeys Langmuir adsorption isotherm model, both in presence and absence of KI. Physical interaction between the inhibitor molecules and the iron surface was suggested by the thermochemical parameters, rather than chemical interaction.

  20. The anaerobic corrosion of carbon steel and cast iron in artificial groundwaters

    Energy Technology Data Exchange (ETDEWEB)

    Smart, N.R. [AEA Technology plc, Culham Science Centre (United Kingdom); Blackwood, D.J. [National Univ. of Singapore (Singapore); Werme, L. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2001-07-01

    In Sweden, high level radioactive waste will be disposed of in a canister with a copper outer and a cast iron or carbon steel inner. If the iron insert comes into contact with anoxic geological water, anaerobic corrosion leading to the generation of hydrogen will occur. This paper presents a study of the anaerobic corrosion of carbon steel and cast iron in artificial Swedish granitic groundwaters. Electrochemical methods and gas collection techniques were used to assess the mechanisms and rates of corrosion and the associated hydrogen gas production over a range of conditions. The corrosion rate is high initially but is anodically limited by the slow formation of a duplex magnetite film. The effects of key environmental parameters such as temperature and ionic strength on the anaerobic corrosion rate are discussed.

  1. Graphite nodule count and size distribution in thin-walled ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    Graphite nodule count and size distribution have been analysed in thin walled ductile cast iron. The 2D nodule counts have been converted into 3D nodule count by using Finite Difference Method (FDM). Particles having a diameter smaller than 5 µm should be neglected in the nodule count as these ar......Graphite nodule count and size distribution have been analysed in thin walled ductile cast iron. The 2D nodule counts have been converted into 3D nodule count by using Finite Difference Method (FDM). Particles having a diameter smaller than 5 µm should be neglected in the nodule count...... as these are inclusions and micro porosities that do not influence the solidification morphology. If there are many small graphite nodules as in thin walled castings only 3D nodule count calculated by FDM will give reliable results. 2D nodule count and 3D nodule count calculated by simple equations will give too low...... results. The 3D size distribution showed presence of primary graphite nodules in hypereutectic castings. In thin plates the nodule count is similar in eutectic and hypereutectic plates. In thicker plates the hypereutectic casting has the highest nodule count....

  2. INFLUENCE OF ANNEALING ON HARDNESS OF Cr-Mn-Ni CAST IRONS

    Directory of Open Access Journals (Sweden)

    V. V. Netrebko

    2015-01-01

    Full Text Available The necessary level of material’s hardness is determined by the exploitation conditions and presence of technological operations during manufacturing of articles. Mechanical edge cutting machining of wear resistant materials is impeded because of their high hardness. It is recommended to apply annealing in order to decrease hardness and improve machinability. The purpose of the work consisted in obtaining of regression dependences of cast iron’s macrohardness on its chemical content after annealing at 730 °С. With the use of mathematical experimental design the regression dependences of cast iron’s macrohardness and structural components’ microhardness on С, Cr, Mn, Ni content have been established. The minimal hardness of 27,6 HRC after annealing at 730 °С is obtained in the cast iron containing: 3,9% С; 11,4% Cr; 0,6% Mn; 0,2% Ni. The maximal hardness of 70,4 HRC is obtained when the content is as follows: 1,1% С; 25,6% Cr; 5,4% Mn; 3,0% Ni. Annealing at 730 °С decreases the cast irons’ hardness containing the minimal amount of Cr, Mn and Ni. Annealing at 730 °С is recommended for cast irons alloyed by Mn and Ni for increasing of hardness.

  3. Effect of alloying elements on solidification of primary austenite in Ni-Mn-Cu cast iron

    Directory of Open Access Journals (Sweden)

    A. Janus

    2011-04-01

    Full Text Available Within the research, determined were direction and intensity of alloying elements influence on solidification way (directional orvolumetric of primary austenite dendrites in hypoeutectic austenitic cast iron Ni-Mn-Cu. 50 cast shafts dia. 20 mm were analysed.Chemical composition of the alloy was as follows: 1.7 to 3.3 % C, 1.4 to 3.1 % Si, 2.8 to 9.9 % Ni, 0.4 to 7.7 % Mn, 0 to 4.6 % Cu, 0.14 to0.16 % P and 0.03 to 0.04 % S. The discriminant analysis revealed that carbon influences solidification of primary austenite dendrites most intensively. It clearly increases the tendency to volumetric solidification. Influence of the other elements is much weaker. This means that the solidification way of primary austenite dendrites in hypoeutectic austenitic cast iron Ni-Mn-Cu does not differ from that in an unalloyed cast iron.

  4. Effect of Microstructure on Impact Fatigue Resistance and Impact Wear Resistance of Medium Cr-Si Cast Iron

    Institute of Scientific and Technical Information of China (English)

    LI Wei

    2007-01-01

    A great amount of iron grinding balls in tube mills have been consumed. Under this impact abrasive wear working condition, the failure of wear resistant alloying white irons grinding balls is mainly caused by fatigue spalling. The impact wear resistance of martensitic high chromium cast iron (Cr of 15 %) is not high sometimes, but its cost is not low. Thus, medium Cr-Si wear resistant cast iron is recommended. The influence of the iron on impact fatigue resistance and impact wear resistance is pronounced. Ball-on-ball impact fatigue test and high stress impact wear test of the grinding balls have been carried out. The results show that the impact fatigue resistance (IFR) and impact wear resistance (IWR) of medium Cr-Si cast iron are superior to those of martensitic high chromium cast iron (Cr of 15%). The main reasons are that (1) the stress in medium Cr-Si cast iron is released in the as-cast state; (2)the matrix is fine pearlite with better toughness and plasticity; (3) the pearlite is more stable compared with a retained austenite under repeated impact load and less phase transformation can take place; (4) high silicon content improves the morphology of eutectic carbide; (5) there is no secondary carbide which results in less crack sources. All these factors are beneficial to improvement of impact fatigue spalling resistance. The eutectic carbide M7C3 is the main constituent to resist wear.

  5. FEATURES OF CHROMIUM DOPING OF WEAR-RESISTANT CAST IRON

    Directory of Open Access Journals (Sweden)

    V. V. Netrebko

    2013-01-01

    Full Text Available The aim of this work analysis of the influence of chromium on the process of carbide formation, changes in chemical composition of the metal substrate in the areas adjacent to the carbides and at the hardness of iron while economy nickel and manganesealloying.

  6. Graphite nodule count and size distribution in thin-walled ductile cast iron

    OpenAIRE

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    Graphite nodule count and size distribution have been analysed in thin walled ductile cast iron. The 2D nodule counts have been converted into 3D nodule count by using Finite Difference Method (FDM). Particles having a diameter smaller than 5 µm should be neglected in the nodule count as these are inclusions and micro porosities that do not influence the solidification morphology. If there are many small graphite nodules as in thin walled castings only 3D nodule count calculated by FDM will g...

  7. Undercooling, nodule count and carbides in thin walled ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    Ductile cast iron has been cast in plate thicknesses between 2 to 8 mm. The temperature has been measured during the solidification and the graphite nodule count and size distribution together with the type and amount of carbides have been analysed afterwards. Low nodule count gives higher...... undercooling and primary carbides will then be formed in the first part of the solidification. Inverse chill carbides are formed at the final part of the solidification if the undercooling is too high at that point. A high number of graphite nodules nucleated in the last part of the solidification process...

  8. The structure and mechanical properties of pearlitic-ferritic vermicular cast iron

    Directory of Open Access Journals (Sweden)

    E. Guzik

    2012-01-01

    Full Text Available The results of studies on the use of magnesium alloy in modern Tundish + Cored Wire injection method for production of vermicular graphite cast irons were described. The injection of Mg Cored Wire length is a treatment method which can be used to process iron melted in an electric induction furnace. This paper describes the results of using a high-magnesium ferrosilicon alloy in cored wire for the production of vermicular graphite cast irons at the; Tundish + Cored Wire to be injected methods (PE for pearlitic-ferritic matrix GJV with about 25 %ferrite content. The results of calculations and experiments have indicated the length of the Cored Wire to be injected basing on the initial sulfur content and weight of the treated melt. The paper presents a microstructure matrix and vermicular graphite in standard sample and different walled castings. The results of numerous trials have shown that the magnesium Tundish + PE Method process can produce high quality vermicular graphite irons under the specific industrial conditions of the above mentioned foundries.

  9. Shrinkage Behaviour of Spheroidal Graphite Cast Iron in Green and Dry Sand Molds for the Benchmarking of Solidification Simulation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effects of metallurgical and processing parameters on the formation of shrinkage cavities and porosities in spheroidal graphite cast iron have been studied, considering the parameters of carbon equivalent, inoculation, casting modulus, mold type (green or dry) and pouring temperature within specific ranges of these variables. Based on the orthogonal experiments, the metallurgical and processing parameters of the minimum casting shrinkage and the maximum casting shrinkage were obtained, and the effects of metallurgical and processing parameters on the formation of shrinkage cavities and porosities in spheroidal graphite cast iron castings were discussed. Finally,two regression equations relating these variables to the formation of shrinkage porosity were derived based upon the orthogonal experiments conducted.

  10. Effects of carbon content and solidification rate on thermal conductivity of grey cast iron

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The thermal conductivity or diffusivity of pearlitic grey irons with various carbon contents is investigated by the laser flash method. The materials are cast in controlled thermal environments and produced in three dissimilar cooling rates. The cooling rate together with the carbon content largely influence the thermal conductivity of grey iron. Linear relationships exist between the thermal conductivity and the carbon content, the carbon equivalent and the fraction of former primary solidified austenite transformed into pearlite. The work shows that optimal thermal transport properties are obtained at medium cooling rates. Equations describing the thermal conductivity of pearlite,solidified as pre-eutectic austenite, and the eutectic of grey iron are derived. The thermal conductivity of pearlitic grey iron is modeled at both room temperature and elevated temperature with good accuracy.

  11. Effects of Carbon Content and Solidification Rate on the Thermal Conductivity of Grey Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Daniel Holmgren; Attila Diószegi; Ingvar L.Svensson

    2008-01-01

    The thermal conductivity/diffusivity of pearlitic grey irons with various carbon contents was investi- gated by the laser flash method. The materials were cast in controlled thermal environments producing three dissimilar cooling rates. The cooling rates together with the carbon content largely influence the thermal conductivity of grey iron. Linear relationships exist between the thermal conductivity and the carbon content, the carbon equivalent, and the fraction of the former primary solidified austenite transformed into pearlite. The results show that the optimal thermal transport properties are obtained at medium cooling rates. Equa- tions are given for the thermal conductivity of pearlite, solidified as pre-eutectic austenite, and the eutectic of grey iron. The thermal conductivity of pearlitic grey iron is modelled at both room temperature and elevated temperatures with good accuracy.

  12. Effect of Cu and Mn on the Mechanical Properties and Microstructure of Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    A.M.Omran

    2014-06-01

    Full Text Available This paper described the method used for producing ductile cast iron (SGI. The processing parameters affecting the production of SGI were studied. These parameters include chemical composition, castings thickness, mechanical properties, alloying elements and microstructure. The chemical composition of producing SGI was optimized. The nodularity was increased with increasing the percentages of Mg content and with decreasing the castings thickness. The amount of pearlite and mechanical properties were increased sharply with increasing Cu and Mn contents in the produced SGI. Empirical equations were correlated to indicate the relations among nodularity, Mg content and other parameters. The results shown also as the post inoculation increased the metallurgical quality was improved. The suitability of SGI as automotive engine was tested and different empirical correlations were obtained

  13. Study on Bond Ability of Arc-Spraying Coatings with Different Surface Pretreatment on Cast-Iron

    Institute of Scientific and Technical Information of China (English)

    HAO Jian-jun; MA Yue-jin; SHEN Yu-zeng

    2004-01-01

    Arc spraying coatings are widely used in various applications, but uncommon in cast iron substrate. Different surface pretreatment technology is tested on substrates of gray cast iron. Surface roughness and residual stress were measured by TR200 and X-ray diffraction analyzer. Influence of different surface pretreatment methods ( dry blasting and fusebond) on roughness and residual stress was analyzed. The arc-sprayed coatings of wire 3Cr13 (φ2mm) on gray cast iron substrate is studied. The microstructure and interface of bonding layer were observed by SEM. The bond strength was taken by tensile test. Results show that bond strength with grit blasting is higher than fuse-bond; it is feasible to make wire 3Cr13 coating with arc spraying on cast iron substrate roughened by grit blasting.

  14. The forty years of vermicular graphite cast iron development in China (Part Ⅲ

    Directory of Open Access Journals (Sweden)

    QIU han-quan

    2007-11-01

    Full Text Available In China, the research and development of vermicular graphite cast iron (VGCI as a new type of engineering material, were started in the same period as in other developed countries; however, its actual industrial application was even earlier. In China, the deep and intensive studies on VGCI began as early as the 1960s. According to the incomplete statistics to date, more than 600 papers on VGCI have been published by Chinese researchers and scholars at national and international conferences, and in technical journals. More than ten types of production methods and more than thirty types of treatment alloy have been studied. Formulae for calculating the critical addition of treatment alloy required to produce VGCI have been put forward, and mechanisms for explaining the formation of dross during treatment were brought forward. The casting properties, metallographic structure, mechanical and physical properties and machining performance of VGCI, as well as the relationships between them, have all been studied in detail. The Chinese Standards for VGCI and VGCI metallographic structure have been issued. In China, the primary crystallization of VGCI has been studied by many researchers and scholars. The properties of VGCI can be improved by heat treatment and addition of alloying elements enabling its applications to be further expanded. Hundreds of kinds of VGCI castings have been produced and used in vehicles, engines, mining equipment, metallurgical products serviced under alternating thermal load, machinery, hydraulic components, textile machine parts and military applications. The heaviest VGCI casting produced is 38 tons and the lightest is only 1 kg. Currently, the annual production of the VGCI in China is about 200 000 tons. The majority of castings are made from cupola iron without pre-treatment, however, they are also produced from electric furnaces and by duplex melting from cupolaelectric furnaces or blast furnace-electric furnace

  15. The forty years of vermicular graphite cast iron development in China (Part 2

    Directory of Open Access Journals (Sweden)

    CHEN Zheng-de

    2007-08-01

    Full Text Available In China, the research and development of vermicular graphite cast iron (VGCI as a new type of engineering material, were started in the same period as in other developed countries; however, its actual industrial application was even earlier. In China, the deep and intensive studies on VGCI began as early as the 1960s. According to the incomplete statistics to date, more than 600 papers on VGCI have been published by Chinese researchers and scholars at national and international conferences, and in technical journals. More than ten types of production methods and more than thirty types of treatment alloy have been studied. Formulae for calculating the critical addition of treatment alloy required to produce VGCI have been put forward, and mechanisms for explaining the formation of dross during treatment were brought forward. The casting properties, metallographic structure, mechanical and physical properties and machining performance of VGCI, as well as the relationships between them, have all been studied in detail. The Chinese Standards for VGCI and VGCI metallographic structure have been issued. In China, the primary crystallization of VGCI has been studied by many researchers and scholars. The properties of VGCI can be improved by heat treatment and addition of alloying elements enabling its applications to be further expanded. Hundreds of kinds of VGCI castings have been produced and used in vehicles, engines, mining equipment, metallurgical products serviced under alternating thermal load, machinery, hydraulic components, textile machine parts and military applications. The heaviest VGCI casting produced is 38 tons and the lightest is only 1 kg. Currently, the annual production of the VGCI in China is about 200 000 tons. The majority of castings are made from cupola iron without pre-treatment, however, they are also produced from electric furnaces and by duplex melting from cupolaelectric furnaces or blast furnace-electric furnace

  16. The forty years of vermicular graphite cast iron development in China

    Institute of Scientific and Technical Information of China (English)

    QIU han-quan; CHEN Zheng-de

    2007-01-01

    In China, the research and development of vermicular graphite cast iron (VGCI) as a new type of engineering material, were started in the same period as in other developed countries; however, its actual industrial application was even earlier. In China, the deep and intensive studies on VGCI began as early as the 1960s. According to the incomplete statistics to date, more than 600 papers on VGCI have been published by Chinese researchers and scholars at national and international conferences, and in technical journals. More than ten types of production methods and more than thirty types of treatment alloy have been studied. Formulae for calculating the critical addition of treatment alloy required to produce VGCI have been put forward, and mechanisms for explaining the formation of dross during treatment were brought forward. The casting properties, metallographic structure, mechanical and physical properties and machining performance of VGCI, as well as the relationships between them, have all been studied in detail. The Chinese Standards for VGCI and VGCI metallographic structure have been issued. In China, the primary crystallization of VGCI has been studied by many researchers and scholars. The properties of VGCI can be improved by heat treatment and addition of alloying elements enabling its applications to be further expanded. Hundreds of kinds of VGCI castings have been produced and used in vehicles, engines,mining equipment, metallurgical products serviced under alternating thermal load, machinery, hydraulic components, textile machine parts and military applications. The heaviest VGCI casting produced is 38 tons and the lightest is only 1 kg.Currently, the annual production of the VGCI in China is about 200 000 tons. The majority of castings are made from cupola iron without pre-treatment, however, they are also produced from electric furnaces and by duplex melting from cupolaelectric furnaces or blast furnace-electric furnace. Examples of typical

  17. The forty years of vermicular graphite cast iron development in China (PartⅠ

    Directory of Open Access Journals (Sweden)

    CHEN Zheng-de

    2007-05-01

    Full Text Available In China, the research and development of vermicular graphite cast iron (VGCI as a new type of engineering material, were started in the same period as in other developed countries; however, its actual industrial application was even earlier. In China, the deep and intensive studies on VGCI began as early as the 1960s. According to the incomplete statistics to date, more than 600 papers on VGCI have been published by Chinese researchers and scholars at national and international conferences, and in technical journals. More than ten types of production methods and more than thirty types of treatment alloy have been studied. Formulae for calculating the critical addition of treatment alloy required to produce VGCI have been put forward, and mechanisms for explaining the formation of dross during treatment were brought forward. The casting properties, metallographic structure, mechanical and physical properties and machining performance of VGCI, as well as the relationships between them, have all been studied in detail. The Chinese Standards for VGCI and VGCI metallographic structure have been issued. In China, the primary crystallization of VGCI has been studied by many researchers and scholars. The properties of VGCI can be improved by heat treatment and addition of alloying elements enabling its applications to be further expanded. Hundreds of kinds of VGCI castings have been produced and used in vehicles, engines, mining equipment, metallurgical products serviced under alternating thermal load, machinery, hydraulic components, textile machine parts and military applications. The heaviest VGCI casting produced is 38 tons and the lightest is only 1 kg. Currently, the annual production of the VGCI in China is about 200 000 tons. The majority of castings are made from cupola iron without pre-treatment, however, they are also produced from electric furnaces and by duplex melting from cupolaelectric furnaces or blast furnace-electric furnace

  18. Fatigue strength of nodular cast iron with regard to heavy-wall applications

    Energy Technology Data Exchange (ETDEWEB)

    Bleicher, Christoph; Wagener, Rainer; Kaufmann, Heinz [Fraunhofer-Institut fuer Betriebsfestigkeit und Systemzuverlaessigkeit LBF, Darmstadt (Germany); Melz, Tobias [Fraunhofer-Institut fuer Betriebsfestigkeit und Systemzuverlaessigkeit LBF, Darmstadt (Germany); TU Darmstadt (Germany). Faculty of Mechanical Engineering

    2015-11-01

    For a proper estimation of the fatigue life of a heavy-walled cast component made of nodular cast iron, sufficient knowledge regarding the cyclic properties of the material is necessary. Based on the material parameters at hand for component design, different fatigue analysis procedures can be used. Elastic and elastic-plastic approaches can be adopted, with the latter being reserved only for local approaches. The present publication summarizes the cyclic material parameters gained during a research project by extensive material tests under stress and strain controlled cyclic loading at different load ratios for three nodular cast iron grades. In addition to an improved knowledge of the cyclic material behavior, the notch, the size effects and the mean stress sensitivity were of special concern during the investigations in order to provide an entire overview of the tested materials and thus input information for both stress and strain based design approaches. Tests were performed for specimens taken from large cast blocks of the nodular cast iron grades EN-GJS-400-18U-LT and EN-GJS-450-18, both with ferritic matrices, and EN-GJS-700-2 with a pearlitic matrix. For some of these materials, mean stress sensitivities above 0.5 were obtained during the investigations. These values are not covered by the common standards, which calculate lower values for the mean stress sensitivity. Cyclic material parameters for stress and strain controlled tests are given in this paper as well as values for the size effect, based on the concept of the highly stressed volume. The effect of different specimen sizes could be shown not only by stress but also by strain controlled tests.

  19. Characteristics of flake graphite in Ni-Mn-Cu cast iron. Part 2.

    OpenAIRE

    Janus, A.

    2010-01-01

    The paper continues the article published by Archives of Foundry Engineering, vol. 9, issue 1/2009, pp. 185-290, that presented influence of chemical composition of hypo- and hypereutectic nickel-manganese-copper alloyed cast iron on properties of the contained flake graphite. In this second part of the research, effect of chemical composition of hypereutectic cast iron containing 3.5÷5.1% C, 1.7÷2.8% Si, 3.5÷10.5 %Ni, 2.0÷8.0% Mn, 0.1÷3.5% Cu, 0.14÷0.17% P and 0.02÷0.04% S on properties of f...

  20. Corrosion Inhibition of Cast Iron in Arabian Gulf Seawater by Two Different Ionic Liquids

    Directory of Open Access Journals (Sweden)

    El-Sayed M. Sherif

    2015-06-01

    Full Text Available In this paper we report on the corrosion inhibition of cast iron in Arabian Gulf seawater by two different ionic liquids namely, 1-ethyl-3-methylimidazolium chloride ([EMIm]Cl and 1-butyl-1-methylpyrrolidinium chloride ([Py1,4]Cl. The inhibiting influence of the employed ionic liquids was investigated by weight loss, open circuit potential electrochemical impedance spectroscopy, and cyclic potentiodynamic polarization. The results show the corrosion inhibition impact of the employed ionic liquids (ILs. Compared with [Py1,4]Cl, [EMIm]Cl shows a higher inhibition efficiency at a short immersion time, for the examined ILs concentrations. However, [Py1,4]Cl exhibits a higher efficiency upon increasing the immersion time indicating the persistence of the inhibiting influence. The corrosion inhibition of the employed ionic liquids is attributed to the adsorption of the cations of the ionic liquids onto the surface of cast iron forming a corrosion barrier.

  1. Ultrasonic cavitation erosion of nodular cast iron with ferrite-pearlite microstructure.

    Science.gov (United States)

    Mitelea, Ion; Bordeaşu, Ilare; Pelle, Marius; Crăciunescu, Corneliu

    2015-03-01

    The cavitation erosion of ductile cast iron with ferrite-pearlite microstructure was analyzed based on ultrasonic experiments performed according to ASTM G32-2010 and the resistance was compared to the C45 steel with similar hardness. The microstructural observation of the surface for different exposure times to the ultrasonic cavitation reveals the fact that the process initiates at the nodular graphite-ferrite interface and is controlled by micro-galvanic activities and mechanical factors. The cavitation erosion resistance was evaluated based on the evolution of the mean depth erosion and the mean depth erosion rate as a function of the cavitation time. The cavitation erosion rate of the cast iron is up to 1.32 times higher than the one of the C 45 steel with similar hardness. This is explained by the occurrence of stress concentrators due to the expulsion of the graphite from the metallic matrix. PMID:25465881

  2. Study of biofilm influenced corrosion on cast iron pipes in reclaimed water

    Science.gov (United States)

    Zhang, Haiya; Tian, Yimei; Wan, Jianmei; Zhao, Peng

    2015-12-01

    Biofilm influenced corrosion on cast iron pipes in reclaimed water was systemically studied using the weight loss method and electrochemical impedance spectroscopy (EIS). The results demonstrated that compared to sterile water, the existence of the biofilm in reclaimed water promoted the corrosion process significantly. The characteristics of biofilm on cast iron coupons were examined by the surface profiler, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The bacterial counts in the biofilm were determined using the standard plate count method and the most probable number (MPN). The results demonstrated that the corrosion process was influenced by the settled bacteria, EPS, and corrosion products in the biofilm comprehensively. But, the corrosion mechanisms were different with respect to time and could be divided into three stages in our study. Furthermore, several corresponding corrosion mechanisms were proposed for different immersion times.

  3. Changes of gas pressure in sand mould during cast iron pouring

    Directory of Open Access Journals (Sweden)

    J. Mocek

    2011-10-01

    Full Text Available The paper presents a test method developed to measure changes of gas pressure in sand moulds during manufacture of iron castings. The pressure and temperature measurements were taken in the sand mould layers directly adjacent to the metal – mould interface. A test stand was described along with the measurement methodology. The sensors used allowed studying the fast-changing nature of the processes which give rise to the gas-originated casting defects. The study examined the influence of binders, clays and refining additives on the nature of the gas evolution process. The effect of the base sand type - quartz or olivine - on the nature of pressure changes was compared. The test stand design ensured the stability of technological parameters in the examined mould elements, and a repeatable process of making pilot castings. The main outcome was classification of sand mixtures in terms of pressure occurring during pouring of iron castings. The obtained results confirm the usefulness of the described method for testing gas pressure occurrence in a sand mould.

  4. A reliable and consistent production technology for high volume compacted graphite iron castings

    Institute of Scientific and Technical Information of China (English)

    Liu Jincheng

    2014-01-01

    The demands for improved engine performance, fuel economy, durability, and lower emissions provide a continual chalenge for engine designers. The use of Compacted Graphite Iron (CGI) has been established for successful high volume series production in the passenger vehicle, commercial vehicle and industrial power sectors over the last decade. The increased demand for CGI engine components provides new opportunities for the cast iron foundry industry to establish efficient and robust CGI volume production processes, in China and globaly. The production window range for stable CGI is narrow and constantly moving. Therefore, any one step single addition of magnesium aloy and the inoculant cannot ensure a reliable and consistent production process for complicated CGI engine castings. The present paper introduces the SinterCast thermal analysis process control system that provides for the consistent production of CGI with low nodularity and reduced porosity, without risking the formation of lfake graphite. The technology is currently being used in high volume Chinese foundry production. The Chinese foundry industry can develop complicated high demand CGI engine castings with the proper process control technology.

  5. Influence of shrinkage porosity on fatigue performance of iron castings and life estimation method

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2016-01-01

    Full Text Available Shrinkage porosity exists more or less in heavy castings, and it plays an important role in the fatigue behavior of cast materials. In this study, fatigue tests were carried out on the QT400-18 cast iron specimens containing random degrees of shrinkage porosity defect. Experimental results showed that the order of magnitude of life scattered from 103 to 106 cycles when the shrinkage percentage ranged from 0.67% to 5.91%. SEM analyses were carried out on the shrinkage porosity region. The inter-granular discontinuous, micro cracks and inclusions interfered with the fatigue sliding or hindering process. The slip in shrinkage porosity region was not as orderly as the ordinary continuous medium. The shrinkage porosity area on fracture surface (SPAFS and alternating stress intensity factor (ASIF were applied to evaluate the tendency of residual life distribution; their relationship was fitted by negative exponent functions. Based on the intermediate variable of ASIF, a fatigue life prediction model of nodular cast iron containing shrinkage porosity defects was established. The modeling prediction was in agreement with the experimental results.

  6. Effects of Silicon on Mechanical Properties and Fracture Toughness of Heavy-Section Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    Liang Song

    2015-01-01

    Full Text Available The effects of silicon (Si on the mechanical properties and fracture toughness of heavy-section ductile cast iron were investigated to develop material for spent-nuclear-fuel containers. Two castings with different Si contents of 1.78 wt.% and 2.74 wt.% were prepared. Four positions in the castings from the edge to the center, with different solidification cooling rates, were chosen for microstructure observation and mechanical properties’ testing. Results show that the tensile strength, elongation, impact toughness and fracture toughness at different positions of the two castings decrease with the decrease in cooling rate. With an increase in Si content, the graphite morphology and the mechanical properties at the same position deteriorate. Decreasing cooling rate changes the impact fracture morphology from a mixed ductile-brittle fracture to a brittle fracture. The fracture morphology of fracture toughness is changed from ductile to brittle fracture. When the Si content exceeds 1.78 wt.%, the impact and fracture toughness fracture morphology transforms from ductile to brittle fracture. The in-situ scanning electronic microscope (SEM tensile experiments were first used to observe the dynamic tensile process. The influence of the vermicular and temper graphite on fracture formation of heavy section ductile iron was investigated.

  7. 3-D Analysis of Graphite Nodules in Ductile Cast Iron Using FIB-SEM

    DEFF Research Database (Denmark)

    D'Angelo, Luca; Jespersen, Freja N.; MacDonald, A. Nicole;

    Ductile cast iron samples were analysed in a Focused Ion Beam Scanning Electron Microscope, FIB-SEM. The focussed ion beam was used to carefully remove layers of the graphite nodules to reveal internal structures in the nodules. The sample preparation and milling procedure for sectioning graphite...... inside the nodules, their orientation in relation to the graphite and the chemistry of the inclusions is analysed and described. Formation of the structures during solidification and subsequent cooling to room temperature is discussed....

  8. Fatigue analysis-based numerical design of stamping tools made of cast iron

    OpenAIRE

    Ben Slima, Khalil; Penazzi, Luc; Mabru, Catherine; Ronde-Oustau, François

    2013-01-01

    International audience This work concerns stress and fatigue analysis of stamping tools made of cast iron with an essentially pearlitic matrix and containing foundry defects. Our approach consists at first, in coupling the stamping numerical processing simulations and structure analysis in order to improve the tool stiffness geometry for minimizing the stress state and optimizing their fatigue lifetime. The method consists in simulating the stamping process by considering the tool as a per...

  9. Control of Wear-Resistance Properties in Ti-added Hypereutectic High Chromium Cast Iron

    OpenAIRE

    Liu, Qiang

    2012-01-01

    High chromium cast iron (HCCI) is considered as one of the most useful wear resistance materials and their usage are widely spread in industry. The wear resistance and mechanical properties of HCCI mainly depend on type, size, number, morphology of hard carbides and the matrix structure (γ or α). The Hypereutectic HCCI with large volume fractions of hard carbides is preferred to apply in wear applications. However, the coarser and larger primary M7C3 carbides will be precipitated during the s...

  10. Microstructure Evaluation and Wear-Resistant Properties of Ti-alloyed Hypereutectic High Chromium Cast Iron

    OpenAIRE

    Liu, Qiang

    2013-01-01

    High chromium cast iron (HCCI) is considered as one of the most useful wear resistance materials and their usage are widely spread in industry. The mechanical properties of HCCI mainly depend on type, size, number, morphology of hard carbides and the matrix structure (γ or α). The hypereutectic HCCI with large volume fractions of hard carbides is preferred to apply in wear applications. However, the coarser and larger primary M7C3 carbides will be precipitated during the solidification of the...

  11. Numerical modeling and experimental validation of microstructure in gray cast iron

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Davami, Parviz; Varahram, Naser

    2012-01-01

    To predict the amount of different phases in gray cast iron by a finite difference model (FDM) on the basis of cooling rate (R), the volume fractions of total γ phase, graphite, and cementite were calculated. The results of phase composition were evaluated to find a proper correlation with cooling...... to correlate the phase volume fraction to hardness. The results are compared with experimental data and show reasonable agreement....

  12. ELABORATION OF MANAGEMENT PLAN OF SOLID WASTE FROM SMALL CAST IRON FOUNDRIES

    OpenAIRE

    Carlos Alberto Mendes Moraes; Amanda Gonçalves Kieling; Daiane Calheiro; Daniel Canello Pires; Cynthia Fleming Batalha da Silveira; Ana Cristina de Almeida Garcia; Feliciane Andrade Brehm

    2013-01-01

    The foundry industry contributes to society meeting the demand of metal scrap recycling, but, at the same time, it brings a high risk of environmental impact for its many potentially pollutant wastes. Among these, there are slag and used foundry sand (cold cure molding). Through a survey about the production process of a small cast iron company, the collected data was compiled to determine the organizational setting in terms of generation and segregation of waste. From a complete ...

  13. Influence of a matrix on properties of mottled cast iron applied for mill rolls

    Directory of Open Access Journals (Sweden)

    J. Krawczyk

    2010-07-01

    Full Text Available Mill rolls are ones of the most expensive tools applied in plastic working processes and have to satisfy several criteria, which allow them to be used. Cast iron mill rolls, due to their fracture toughness and tribological properties, are the most often applied at hot-rolling in the last rolling stands. This results from the smallest dynamic loads of such rolling stands and the decisive influence of the surface quality of these tools on the surface quality of the rolled product. An improper microstructure of rolls can lead to their premature wearing, e.g. broken flanges, pivots twisting off etc. By means of the heat treatment the matrix microstructure and morphology of carbide precipitationscan be modified and this in-turn can influence cast iron properties.Determination of the influence of microstructure changes, caused by the heat treatment, on the properties of EN-GJN-HV300 low-alloycast iron, after its modification and spheroidization – is the aim of the present paper. Those changes are based on the formation pearlitic or bainitic matrices at the similar morphology of graphite and ledeburitic cementite precipitations. The performed investigations should enable designing the heat treatment of cast iron metallurgical rolls in such a way as to obtain the optimal microstructures for functional parameters of these type of tools. The influence of changing the pearlitic matrix into the bainitic one on such properties as: hardness, impact strength, tensile strength, creep limit, bending strength and a stress intensity factor KIc was investigated in this study. Samples for testing, the listed above mechanical properties, were taken from an industrial casting with care to have pieces of very similar crystallization conditions.

  14. Application of Averaged Voronoi Polyhedron in the Modelling of Crystallisation of Eutectic Nodular Graphite Cast Iron

    OpenAIRE

    A. A. Burbelko; J. Początek; M. Królikowski

    2013-01-01

    The study presents a mathematical model of the crystallisation of nodular graphite cast iron. The proposed model is based on micro- andmacromodels, in which heat flow is analysed at the macro level, while micro level is used for modelling of the diffusion of elements. The use of elementary diffusion field in the shape of an averaged Voronoi polyhedron [AVP] was proposed. To determine the geometry of the averaged Voronoi polyhedron, Kolmogorov statistical theory of crystallisation was applied....

  15. Electrolytic surface hardening of steel,cast iron and aluminium-bronze

    Institute of Scientific and Technical Information of China (English)

    Suhas Keshav Paknikar

    2006-01-01

    Electrolytic hardening process was developed in USSR in the 1950s. The process was developed but was not commercially exploited. There is no evidence of work done on this process in India. The author has done this original work applied to different materials like steel,cast iron and aluminum-bronze. This paper gives details of microstructural transformations along with hardness value achieved. There is vital scope for this process to become viable for surface hardening and selective hardening of small components.

  16. The Influence of Saturation of Cast Iron Austenite with Carbon on the Ausferrite Transformation

    Directory of Open Access Journals (Sweden)

    T. Giętka

    2007-07-01

    Full Text Available Austenitizing during quench hardening of the ductile cast iron influences the content of carbon in austenite depending on the soaking heat. On the other hand, the saturation of austenite impacts its transformation in the ausferritizing process of a metal matrix and forming of microstructure. Ductile cast iron with the ferrite matrix was hardened with isothermal transformation in the range of ausferritizing in temperature tpi = 400 i 300 0C and the range of time τpi = 7,5 �� 240 min. Specimens were gradually austenitized. They were soaked in the nominal temperature tγ = 950 0C, then precooled to the temperature tγ’ = 850 and 800 0C. Microstructure was investigated, there were also defined the proportion of austenite in the matrix of the cast iron and the content of carbon in it and hardness and impact strength in unnotched specimens. It was stated, that the precooling temperature deciding on the content of carbon in austenite influences kinetics of the ausferritic transformation, the content of carbon in the γ phase and impact strength and, in a less degree, hardness. As a result of gradual austenitizing the cast iron after quench hardening, in some conditions of treatment, reached mechanical properties corresponding, according to the ASTM A 897 standard, with high grades of ADI. Chilling in the range of austenitizing in temperature 850 and 800 0C led to the decrease of carbon in austenite what influenced positively on the matrix microstructure and properties of the ADI. Investigations in this range will be continued.

  17. The influence of chosen modifiers on stereological parameters of carbides of chromium cast iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2011-07-01

    Full Text Available The results of investigations of stereological carbides in the modified wear resistance chromium cast iron resistant were introduced in the article. There were following elements: boron, niobium, vanadium, cerium and lanthanum (RE, nitrogen in the composition of modifiers. The influence of used modifiers on such stereological parameters of carbides as: size, perimeter, shape coefficient and volume fraction was showed in tables and on diagrams.

  18. The forty years of vermicular graphite cast iron development in China (PartⅠ)

    OpenAIRE

    QIU Han-quan; CHEN Zheng-de

    2007-01-01

    In China, the research and development of vermicular graphite cast iron (VGCI) as a new type of engineering material, were started in the same period as in other developed countries; however, its actual industrial application was even earlier. In China, the deep and intensive studies on VGCI began as early as the 1960s. According to the incomplete statistics to date, more than 600 papers on VGCI have been published by Chinese researchers and scholars at national and international conferences,...

  19. The forty years of vermicular graphite cast iron development in China (Part 2)

    OpenAIRE

    CHEN Zheng-de; QIU Han-quan

    2007-01-01

    In China, the research and development of vermicular graphite cast iron (VGCI) as a new type of engineering material, were started in the same period as in other developed countries; however, its actual industrial application was even earlier. In China, the deep and intensive studies on VGCI began as early as the 1960s. According to the incomplete statistics to date, more than 600 papers on VGCI have been published by Chinese researchers and scholars at national and international conferences,...

  20. Study on the Thermal Fatigue Behavior of Hot Deformed Wear Resistance Cast Iron and Effect of Carbide

    Institute of Scientific and Technical Information of China (English)

    Dong Litao; Liu Rongchang; Li Xingyuan; Chen Xiuhong

    2007-01-01

    The thermal fatigue behavior of wear resistance cast iron with different quantity of deformation has been investigated. The results show that eutectic carbide is the main location and passage for initiation and extension of thermal fatigue cracks, approving that the more serious, the carbide breaks. The higher thermal fatigue resistance of wear resistance cast iron will be and thermal fatigue fracture belongs mainly to brittleness.

  1. Influencing factors on as-cast and heat treated 400-18 ductile iron grade characteristics

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    As-cast and heat-treated 400-18 ductile iron (DI) grade was obtained in different foundry conditions, as metallic charge, Mg-treatment alloy and inoculation. It was found that the Pearlitic Influence Factor (Px) and Antinodulizing Complex Factor (K1) have an important influence on property of DI, depending on the Mn and P level, the metallurgical quality of iron melt, rare earth (RE) and inoculation. It was also found that the influence of Mn is depended on the phosphorus and residual elements level in ductile iron. Less than 0.03%P and 0.2%Mn and Px<2.0 are the basic conditions to obtain as-cast ferritic structure. At the same lower level of Mn and P, the increasing of residual elements (Px>2.0) determines presence of pearlite in as-cast structure, while ferrite structure is obtained after a short annealing heat treatment. Lower level of phosphorus (P<0.025%) and residual elements (Px<2.0) allow to use relative high Mn content (0.32%-0.38%), in condition of ferritic structure, including in as-cast state. High P (0.04%-0.045%) and Mn (0.25%-0.35%) content stabilized pearlite, especially at lower level of residual elements (Px <2.0). Antinodulizing action of elements was counteracted up to K1=2.0 level, by RE included in Mg-treatment alloy, which are beneficial for K1<1.2 and compulsory for K1>1.2. Si has a significant influence on the mechanical properties of heat treated ductile irons: an important decreasing of elongation level and a moderate increasing of yield and tensile strength and their ratio in 150-170 HB typical hardness field. A typical final chemical composition for as-cast 400-18 ductile iron could include 3.5%-3.7%C, 2.4%-2.5%Si, max.0.18%Mn, max.0.025%P, max.0.01%S, 0.04%-0.05%Mgres.for Px<1.5 and K1<1.1. High purity pig iron, RE-bearing FeSiMg and powerful inoculant are also recommended.

  2. Inlfuence of boron on ferrite formation in copper-added spheroidal graphite cast iron

    Institute of Scientific and Technical Information of China (English)

    Ying Zou; Hideo Nakae

    2014-01-01

    This paper reviews the original work of the authors published recently, describing the inlfuence of B on the matrix of the Cu-added spheroidal graphite cast iron. The effect of Cu has been corrected as a ferrite formation promoter in the matrix of the grey cast iron by the usage of high-purity material. Also, this paper focuses on the ferrite formation and the observation of the Cu distribution in the B-added and B-free Cu-containing spheroidal graphite cast iron. The Cu iflm on the spheroidal graphite can be successfuly observed in the B-free sample using a special etching method. However, in the B-added sample, no Cu iflm could be found, while the secondary graphite was formed on the surface of the spheroidal graphite. The interaction between B and Cu is stressed as a peculiar phenomenon by the employment of a contrast experiment of B and Mn. The heat treatment could make Cu precipitate more signiifcantly in the eutectic cels and in the matrix in the form of large Cu particles because of the limited solubility of Cu.

  3. The low-aluminium cast iron of reduced silicon content treated with cerium mischmetal

    Directory of Open Access Journals (Sweden)

    M. S. Soiński

    2008-07-01

    Full Text Available The work presents the effect of cerium mischmetal used in quantities of 0.1 and 0.2 wt-% and ferrosilicon used in quantities from 0.5% to 1.5% on the alloy matrix and the shape of graphite precipitates in the low-aluminium cast iron from seven heats, basing on the examination of its structure. The hypereutectic cast iron of the relatively high carbon content (4.0÷4.2% at the prior-to-treatment silicon and manganese content equal to ca. 0.6% and ca. 0.04%, respectively, has been examined.It has been found that the performed treatment leads to the change in the alloy matrix from the nearly almost pearlitic to the ferritic-pearlitic one accompanied by changes in the shape of graphite precipitates. Due to applying both of the mentioned substances in the above stated amounts the graphite precipitates in cast iron have taken the shape of nodular and vermicular ones, and no presence of flake graphite has been revealed. A quantitative analysis of the performed treatment i.e. determining the fractions of graphite precipitates of different shapes has been possible by means of a computer image analyser.

  4. Estimation of integrity of cast-iron cask against impact due to free drop test, (1)

    International Nuclear Information System (INIS)

    Ductile cast iron is examined to use for shipping and storage cask from a economic point of view. However, ductile cast iron is considered to be a brittle material in general. Therefore, it is very important to estimate the integrity of cast iron cask against brittle failure due to impact load at 9 m drop test and 1 m derop test on to pin. So, the F.E.M. analysis which takes nonlinearity of materials into account and the estimation against brittle failure by the method which is proposed in this report were carried out. From the analysis, it is made clear that critical flaw depth (the minimum depth to initiate the brittle failure) is 21.1 mm and 13.1 mm in the case of 9 m drop test and 1 m drop test on to pin respectively. These flaw depth can be detected by ultrasonic test. Then, the cask is assured against brittle failure due to impact load at 9 m drop test and 1 m drop test on to pin. (author)

  5. Auto-analysis system for graphite morphology of grey cast iron.

    Science.gov (United States)

    Jiang, Hong; Tan, Yiyong; Lei, Junfeng; Zeng, Libo; Zhang, Zelan; Hu, Jiming

    2003-01-01

    The current method to classify graphite morphology types of grey cast iron is based on traditional subjective observation, and it cannot be used for quantitative analysis. Since microstructures have a great effect on the mechanical properties of grey cast iron and different types have totally different characters, six types of grey cast iron are discussed and an image-processing software subsystem that performs the classification and quantitative analysis automatically based on a kind of composed feature vector and artificial neural network (ANN) is described. There are three kinds of texture features: fractal dimension, roughness and two-dimension autoregression, which are used as an extracted feature input vector of ANN classifier. Compared with using only one, the checkout correct precision increased greatly. On the other hand, to achieve the quantitative analysis and show the different types clearly, the region segmentation idea was applied to the system. The percentages of the regions with different type are reported correctly. Furthermore, this paper tentatively introduces a new empirical method to decide the number of ANN hidden nodes, which are usually considered as a difficulty in ANN structure decision. It was found that the optimum hidden node number of the experimental data was the same as that obtained using the new method.

  6. Laser powder surfacing of the Si-Mo spheroidal cast iron with nickel powder

    Directory of Open Access Journals (Sweden)

    A. Klimpel

    2006-04-01

    Full Text Available Purpose: Investigation results are presented of the effect of main parameters of laser powder surfacing of the Si-Mo spheroidal cast iron with the nickel based powder on quality and shape of padding welds and portion of the substrate material in the padding weld.Design/methodology/approach: It was shown basing on investigation of the process of laser powder surfacing with the nickel based powder onto the spheroidal cast iron substrate that it is feasible to make high quality padding welds in the relatively wide range of parameters.Findings: Investigation results presented in the paper were carried out to determine quality of padding welds applied by laser powder surfacing with the nickel based powder onto the alloy spheroidal cast iron and especially to determine the padding welds adhesion to the substrate.Practical implications: It is possible to control the portion of the substrate material in the padding weld with high accuracy in a wide range from even a few per cent, by the relevant setting of the line energy of the laser beam and the powder feed rate.Originality/value: The developed implant test makes the qualitative and quantitative assessment possible of the adhesion of the padding weld to the substrate, Table 5, Figs. 7 to 11. All padding welds made within the range of the optimum welding parameters demonstrated very good adhesion and the break, depending on the nickel padding weld thickness, occurred in the fusion area or by pulling part of the padding weld out.

  7. Effects of slope plate variable and reheating on semi-solid structure of ductile cast iron

    Institute of Scientific and Technical Information of China (English)

    M. Nili-Ahmadabadi; F. Pahlevani; P. Babaghorbani

    2008-01-01

    Semi-solid metal casting and forming are known as a promising process for a wide range of metal alloys production. In spite of growing application of semi-solid processed light alloys, a few works have been reported about semi-solid processing of iron and steel. In this research inclined plate was used to change dendritic structure of iron to globular one. The effects of length and slope of plate on the casting structure were examined. The results show that the process can effectively change the dendritic structure to globular. In the slope plate angle of 7.5°and length of 560 mm with cooling rate of 67K·s-1 the optimum nodular graphite and solid globular particle were achieved.The results also show that by using slope plate inoculant fading can be prevented more easily since the total time of process is rather short.In addition, the semi-solid ductile cast iron prepared by inclined plate method, was reheated to examine the effect of reheating conditions on the microstructure and coarsening kinetics of the alloy. Solid fraction at different reheating temperatures and holding time was obtained and based on these results the optimum reheating temperature range was determined.

  8. Effect of Titanium on the Mechanical Properties and Microstructure of Gray Cast Iron for Automotive Applications

    Science.gov (United States)

    Gelfi, M.; Gorini, D.; Pola, A.; La Vecchia, G. M.

    2016-07-01

    Lamellar gray cast iron, with a mainly pearlitic microstructure, is widely used in the automotive industry, mostly in the manufacturing of brake disks. This work analyzes in depth the effects of small variations of titanium content on the microstructure and mechanical properties of cast iron brake disks. For this purpose, eight different heats of EN-GJL-250 cast iron were selected, with a similar chemical composition but with different titanium contents, varying from 0.013 to 0.031%. The drops in mechanical strength and hardness values measured on the high-Ti samples were correlated to microstructural variations quantitatively observed by means of optical and scanning electron microscope. It was found that titanium combines to form titanium nitrides, suppressing the beneficial microstructural effects of nitrogen at solidification. Residual nitrogen, if present in sufficient quantity, promotes the nucleation of primary austenite from the liquid and the formation of a fine microstructure, with small eutectic cells and lower graphite content. Such a microstructure provides brake disks with better mechanical properties. The interpretation of results was further supported by thermal analysis and thermodynamic calculations.

  9. Effects of Rare Earths and Al on Structure and Performance of High Chromium Cast Iron Containing Wolfram

    Institute of Scientific and Technical Information of China (English)

    Guo Erjun; Wang Liping; Huang Yongchang; Fu Yuanke

    2006-01-01

    Effects of RE and Al on the structure, impact toughness, hardness, and wear resistance of high chromium cast iron containing wolfram were investigated.The results show that without modification the volume fraction of austenite is high and the carbide appears to be thick lath and the grain size is relatively large;proper modification using RE combined with Al can reduce volume fraction of residual austenite in the as-cast structure obviously, refine grain size of primary austenite notably, and make the morphology of carbide changing from thick lath to thin lath, rosette, and feather-like modification can also increase hardness, wear resistance and impact toughness of cast iron.

  10. Property enhancement of cast iron used for nuclear casks

    Science.gov (United States)

    Behera, R. K.; Mahto, B. P.; Dubey, J. S.; Mishra, S. C.; Sen, S.

    2016-01-01

    Ductile iron (DI) is a preferred material for use in various structural, automotive, and engineering fields because of its excellent combination of strength, toughness, and ductility. In the current investigation, we elucidate the relationship between the morphological and mechanical properties of DI intended for use in safety applications in the nuclear industry. DI specimens with various alloying elements were subjected to annealing and austempering heat treatment processes. A faster cooling rate appeared to increase the nodule count in austempered specimens, compensating for their nodularity value and subsequently decreasing their ductility and impact strength. The ductility and impact energy values of annealed specimens increased with increasing ferrite area fraction and nodularity, whereas an increase in the amounts of Ni and Cr resulted in an increase of hardness via solid solution strengthening. Austempered specimens were observed to be stronger than annealed specimens and failed in a somewhat brittle manner characterized by a river pattern, whereas the ductile failure mode was characterized by the presence of dimples.

  11. Nano-scale orientation mapping of graphite in cast irons

    Energy Technology Data Exchange (ETDEWEB)

    Theuwissen, Koenraad; Lacaze, Jacques [Institut CARNOT CIRIMAT, Université de Toulouse, ENSIACET, CS 44362, 31030 Toulouse Cedex 4 (France); Véron, Muriel [SIMAP, CNRS-Grenoble INP, BP 46 101 rue de la Physique, 38402 Saint Martin d' Hères (France); Laffont, Lydia, E-mail: lydia.laffont@ensiacet.fr [Institut CARNOT CIRIMAT, Université de Toulouse, ENSIACET, CS 44362, 31030 Toulouse Cedex 4 (France)

    2014-09-15

    A diametrical section of a graphite spheroid from a ductile iron sample was prepared using the focused ion beam-lift out technique. Characterization of this section was carried out through automated crystal orientation mapping in a transmission electron microscope. This new technique automatically collects electron diffraction patterns and matches them with precalculated templates. The results of this investigation are crystal orientation and phase maps of the specimen, which bring new light to the understanding of growth mechanisms of this peculiar graphite morphology. This article shows that mapping the orientation of carbon-based materials such as graphite, which is difficult to achieve with conventional techniques, can be performed automatically and at high spatial resolution using automated crystal orientation mapping in a transmission electron microscope. - Highlights: • ACOM/TEM can be used to study the crystal orientation of carbon-based materials. • A spheroid is formed by conical sectors radiating from a central nuclei. • Misorientations exist within the conical sectors, defining various orientation domains.

  12. Nano-scale orientation mapping of graphite in cast irons

    International Nuclear Information System (INIS)

    A diametrical section of a graphite spheroid from a ductile iron sample was prepared using the focused ion beam-lift out technique. Characterization of this section was carried out through automated crystal orientation mapping in a transmission electron microscope. This new technique automatically collects electron diffraction patterns and matches them with precalculated templates. The results of this investigation are crystal orientation and phase maps of the specimen, which bring new light to the understanding of growth mechanisms of this peculiar graphite morphology. This article shows that mapping the orientation of carbon-based materials such as graphite, which is difficult to achieve with conventional techniques, can be performed automatically and at high spatial resolution using automated crystal orientation mapping in a transmission electron microscope. - Highlights: • ACOM/TEM can be used to study the crystal orientation of carbon-based materials. • A spheroid is formed by conical sectors radiating from a central nuclei. • Misorientations exist within the conical sectors, defining various orientation domains

  13. The Role of Silicon in the Solidification of High-Cr Cast Irons

    Science.gov (United States)

    Bedolla-Jacuinde, A.; Rainforth, M. W.; Mejía, I.

    2013-02-01

    This work analyzes the effect of different additions of silicon (0 to 5.0 pct) on the structure of a high-Chromium white cast iron, with chromium content of 16.8 pct and carbon 2.56 pct. The alloys were analyzed in both as-cast and heat-treated conditions. Casting was undertaken in metallic molds that yielded solidification rates faster than in commercial processes. Nevertheless, there was some degree of segregation of silicon; this segregation resulted in a refinement in the microstructure of the alloy. Silicon also generated a greater influence on the structure by destabilizing the austenitic matrix, and promoted greater precipitation of eutectic carbides. Above 3 pct silicon, pearlite formation occurred in preference to martensite. After the destabilization heat treatment, the matrix structure of the irons up to 3 pct Si consisted of secondary carbides in a martensitic matrix with some retained austenite; higher Si additions produced a ferritic matrix. The different as-cast and heat-treated microstructures were correlated with selected mechanical properties such as hardness, matrix microhardness, and fracture toughness. Silicon additions increased matrix microhardness in the as-cast conditions, but the opposite phenomenon occurred in the heat-treated conditions. Microhardness decreased as silicon content was increased. Bulk hardness showed the same behavior. Fracture toughness was observed to increase up to 2 pct Si, and then decreased for higher silicon contents. These results are discussed in terms of the effect of eutectic carbides' size and the resulting matrix due to the silicon additions.

  14. Production and Machining of Thin Wall Gray and Ductile Cast Iron

    Energy Technology Data Exchange (ETDEWEB)

    Fleischman, E.H. (INEEL POC); Li, H.; Griffin, R.; Bates, C.E.; Eleftheriou, E.

    2000-11-03

    The University of Alabama at Birmingham, in cooperation with the American Foundry Society, companies across North America, with support from the U.S. Department of Energy, is conducting a project to develop an understanding of the factors that control the machinability of cast gray and ductile iron. Differences of as much as 500% have been found in machinability have been observed at the same strength. The most machinable irons were those with a high cell counts and few carbonitride inclusions. Additions of tin and copper can be added to both gray and ductile iron to stabilize the pearlite, but excessive additions (above those required to produce the desired pearlite content) degrade the machinability.

  15. Fatigue crack tip damaging micromechanisms in a ferritic-pearlitic ductile cast iron

    Directory of Open Access Journals (Sweden)

    Francesco Iacoviello

    2015-07-01

    Full Text Available Due to the peculiar graphite elements shape, obtained by means of a chemical composition control (mainly small addition of elements like Mg, Ca or Ce, Ductile Cast Irons (DCIs are able to offer the good castability of gray irons with the high mechanical properties of irons (first of all, toughness. This interesting properties combination can be improved both by means of the chemical composition control and by means of different heat treatments(e.g. annealing, normalizing, quenching, austempering etc. In this work, fatigue crack tip damaging micromechanisms in a ferritic-pearlitic DCI were investigated by means of scanning electron microscope observations performed on a lateral surface of Compact Type (CT specimens during the fatigue crack propagation test (step by step procedure, performed according to the “load shedding procedure”. On the basis of the experimental results, different fatigue damaging micromechanisms were identified, both in the graphite nodules and in the ferritic – pearlitic matrix.

  16. Influence of Addition of Briquettes with Dust Content into the Charge of Electric Induction Furnace on Cast Iron Quality

    Directory of Open Access Journals (Sweden)

    A. Pribulová

    2012-09-01

    Full Text Available Foundry dust from blasting and grinding of castings contain a high amount of iron, ergo it is possible its recycling in foundry process.Dust was compacted by briquetting, two kinds of briquettes were prepared (A contained 95% magnetic part of dust from casting blasting+5% bentonite and B contained 95% mixture of dust from casting grinding and magnetic part of dust from casting blasting + 5%bentonite and used as a part of charge into the electric induction furnace. It was found that addition of briquettes has had an influence of a chemical composition of cast iron above all on content of sulphur, phosphorus and silicon. It was not reflected in decrease in tensile strength and in microstructure. Yield of metal from briquettes was not lower then 70%.

  17. Foundry technology and its applications of ductile iron castings produced by water-cooled copper alloy mold

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    The high efficiency mechanized foundry technology of castings produced by using water-cooled copper alloy permanent mold has been systematically studied. Through the researching a Cu-Cr-Mg alloy with high conductivity and good combined mechanical properties used for making permanent mold was developed, and the basic design principles of the water-cooled permanent mold along with the control-range of relevant foundry processing parameters were also established.A cast production line equipped with water-cooled copper alloy mold was designed and fabricated for production of ductile iron automobile gear castings. This production line can consistently make automobile gear castings in QT500-15 and QT600-5 (Chinese Standard) grades of ductile iron with up to 95 % casting success rate.

  18. Eutectic cell and nodule count as the quality factors of cast iron

    Directory of Open Access Journals (Sweden)

    E. Fraś

    2008-10-01

    Full Text Available In this work the predictions based on a theoretical analysis aimed at elucidating of eutectic cell count or nodule counts N wereexperimentally verified. The experimental work was focused on processing flake graphite and ductile iron under various inoculationconditions in order to achieve various physicochemical states of the experimental melts. In addition, plates of various wall thicknesses, s were cast and the resultant eutectic cell or nodule counts were established. Moreover, thermal analysis was used to find out the degree of maximum undercooling for the graphite eutectic, Tm. A relationship was found between the eutectic cell or nodule count and the maximum undercooling Tm.. In addition it was also found that N can be related to the wall thickness of plate shaped castings. Finally, the present work provides a rational for the effect of technological factors such as the melt chemistry, inoculation practice, and holding temperature and time on the resultant cell count or nodule count of cast iron. In particular, good agreement was found between the predictions of the theoretical analysis and the experimental data.

  19. Graphite Nucleation in Cast Iron Melts Based on Solidification Experiments and Microstructure Simulation

    Institute of Scientific and Technical Information of China (English)

    Andreia Sommerfeld; Bernd B(o)ttger; Babette Tonn

    2008-01-01

    Microstructure strongly influences the mechanical properties of cast iron. By inoculating the melt with proper inoculants, foreign substrates are brought into the melt and eventually the graphite can crystallize on them. The elements and substrates that really play a role for nucleation are yet unknown. Until now there is very little knowledge about the fundamentals of nucleation, such as composition and morphology of nuclei[1,2]. In this work we utilized EN-GJL-200 as a base material and examined several produced specimens. The specimens were cast with and without inoculants and quenched at different solidification states. Specimens were also examined with a high and low oxygen concentration, but the results showed that different oxygen contents have no influence on the nucleation in cast iron melts. Our research was focused on the microscopic examination and phase-field simulations. For studying the samples we applied different analytical methods, where SEM-EDS, -WDS were proved to be most effective. The simulations were conducted by using the software MICRESS(R)[3], which is based on a multiphase-field model and has been coupled directly to the TCFE3 thermodynamic database from TCAB. On the basis of the experimental investigations a nucleation mechanism is proposed, which claims MnS precipitates as the preferred site for graphite nucleation. This theory is supported by the results of the phase-field simulations.

  20. CORROSION RESISTANCE OF PEARLITIC AND BAINITIC CAST IRON IN A SYNTHETIC SOLUTION OF CONDENSED GAS FROM COMBUSTION

    Directory of Open Access Journals (Sweden)

    Sandra Matos Cordeiro Costa

    2015-03-01

    Full Text Available The corrosion of engine components of the combustion chamber is usually related to the formation of acids such as sulfuric and nitric. These acids are generated by the condensation of combustion gases that usually occur in vehicle exhaust systems. However, with the development of new technologies to reduce emissions, condensation is also being promoted in vehicle combustion chambers. This fact is associated with high exhaust gas recirculation rates, known as EGR (English term for Exhaust Gas Recirculation. Consequently, corrosion problems in the engine components are increasing, especially in cylinder liners alloy manufactured using cast iron. In this study, the corrosion resistance of two cast iron alloys, one with a pearlitic microstructure and the other with a bainite microstructure in a solution simulating the composition of the condensate obtained from the combustion gases. It was found that the microstructure of the cast iron is an important factor affecting the corrosion behavior. The results showed that none of the two materials investigated is resistant to corrosion in the test medium, and the small difference observed between the behavior of the two cast iron was related to its microstructure, which are dependent on their chemical compositions. The cast iron with a pearlitic microstructure showed less formation of corrosion products than the bainitic cast iron. This result is related to the presence of steadite phase, highly stable and resistant to corrosion in pearlitic microstructure. This phase (steadite anchors the corrosion products formed on the surface and act as a partial barrier slowing the progress of the corrosion process, that was more pronounced in the bainitic cast iron.

  1. Fractomechanical Properties of As-Cast and Austempered SG Cast Iron Between -40 °C and +20 °C

    Directory of Open Access Journals (Sweden)

    V.E. Fierro

    2002-06-01

    Full Text Available The spheroidal graphite (SG cast iron fractomechanical response varies with the test temperature and with the microstructure parameters. In the present paper, we analyze this variation performing fractomechanical tests in a temperature range from -40°C to +20°C, doing also Charpy and tensile tests for material characterization. The tests were carried out on as-cast samples and heat treated samples to obtain an ADI grade 1. In both cases, we studied samples taken from two well differentiated "Y" block sizes. The results obtained show that, for the chemical composition analyzed, both castings have a fractomechanical response decrease as the temperature diminishes. Besides, the block size enlargement produce a deterioration of the mechanical properties (the fracture toughness, mainly, for both castings.

  2. Study of microstructure and silicon segregation in cast iron using color etching and electron microprobe analysis

    International Nuclear Information System (INIS)

    An investigation on silicon segregation of lamellar, compacted and nodular graphite iron was carried out by applying a selective, immersion color etching and a modified electron microprobe to study the microstructure. The color etched micrographs of the investigated cast irons by revealing the austenite phase have provided data about the chronology and mechanism of microstructure formation. Moreover, electron microprobe has provided two dimensional segregation maps of silicon. A good agreement was found between the segregation profile of silicon in the color etched microstructure and the silicon maps achieved by electron microprobe analysis. However, quantitative silicon investigation was found to be more accurate than color etching results to study the size of the eutectic colonies. - Highlights: • Sensitivity of a color etchant to silicon segregation is quantitatively demonstrated. • Si segregation measurement by EMPA approved the results achieved by color etching. • Color etched micrographs provided data about solidification mechanism in cast irons. • Austenite grain boundaries were identified by measuring the local Si concentration

  3. Study of microstructure and silicon segregation in cast iron using color etching and electron microprobe analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vazehrad, S., E-mail: vazehrad@kth.se [Dep. Materials Science and Engineering/Casting of Metals, Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Elfsberg, J., E-mail: jessica.elfsberg@scania.com [Scania CV AB, SE-151 87 Södertälje (Sweden); Diószegi, A., E-mail: attila.dioszegi@jth.hj.se [Dep. Materials Science and Engineering/Casting of Metals, Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Dep. Mechanical Engineering/Materials and Manufacturing-Foundry Technology, Jönköping University, SE-551 11 Jönköping (Sweden)

    2015-06-15

    An investigation on silicon segregation of lamellar, compacted and nodular graphite iron was carried out by applying a selective, immersion color etching and a modified electron microprobe to study the microstructure. The color etched micrographs of the investigated cast irons by revealing the austenite phase have provided data about the chronology and mechanism of microstructure formation. Moreover, electron microprobe has provided two dimensional segregation maps of silicon. A good agreement was found between the segregation profile of silicon in the color etched microstructure and the silicon maps achieved by electron microprobe analysis. However, quantitative silicon investigation was found to be more accurate than color etching results to study the size of the eutectic colonies. - Highlights: • Sensitivity of a color etchant to silicon segregation is quantitatively demonstrated. • Si segregation measurement by EMPA approved the results achieved by color etching. • Color etched micrographs provided data about solidification mechanism in cast irons. • Austenite grain boundaries were identified by measuring the local Si concentration.

  4. Prevention of Porosity Formation and Other Effects of Gaseous Elements in Iron Castings

    Energy Technology Data Exchange (ETDEWEB)

    Albany Research Center

    2005-04-01

    Iron foundries have observed porosity primarily as interdendritic porosity in large freezing range alloys such as Ni-Hard I and hypoeutectic high Cr alloys or pinholes and fissure defects in gray and ductile irons. For most iron foundries, porosity problems occur sporadically, but even occasional outbreaks can be costly since even a very small amount of porosity can significantly reduce the mechanical properties of the castings. As a result when porosity is detected, the castings are scrapped and remelted, or when the porosity is undetected, defective parts are shipped to the consumer. Neither case is desirable. This project was designed to examine various factors contributing to the porosity formation in iron castings. Factors such as solubility of gases in liquid and solid iron alloys, surface tension of liquid iron alloys, and permeability of dendritic structures were investigated in terms of their effect on the porosity formation. A method was developed to predict how much nitrogen the molten alloy picks up from air after a given amount of holding time for a given melting practice. It was shown that small batches of iron melts in an induction furnace can end up with very high concentration of nitrogen (near solubility limit). Surface tension of liquid iron alloys was measured as a function of temperature. Effect of minor additions of S, Ti, and Al on the surface tension of liquid iron alloys was investigated. Up to 18% change in surface tension was detected by minor element additions. This translates to the same amount of change in gas pressure required in a bubble of a given size to keep the bubble stable. A new method was developed to measure the permeability of dendritic structures in situ. The innovative aspect of these experiments, with respect to previous interdendritic permeability measurements, was the fact that the dendritic structure was allowed to form in situ and was not cooled and re-heated for permeability tests. A permeability model was developed

  5. Casting and stress-strain simulations of a cast ductile iron component using microstructure based mechanical behavior

    OpenAIRE

    Olofsson, Jakob; Ingvar L. Svensson

    2012-01-01

    The industrial demand for increased component performance with concurrent reductions in component weight, development times and verifications using physical prototypes drives the need to use the full potential of casting and Finite Element Method (FEM) simulations to correctly predict the mechanical behavior of cast components in service. The mechanical behavior of the component is determined by the casting process, and factors as component geometry and casting process parameters are known to...

  6. Analysis of Graphite Morphology of Gray Cast Iron in Pulse Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    LI Qiu-shu; LIU Li-qiang; ZHAI Qi-jie

    2005-01-01

    By self-made pulse electrical source and strong magnetic field solidification tester,the effect of strong pulse magnetic field on graphite morphology and solidification structure of gray cast iron was studied.The results show that the structure is remarkably refined after treated by pulse magnetic field,and the width of graphite flakes is decreased while the length is increased after a slight decrease.The solidification temperature and eutectic temperature are increased and the undercooling degree of eutectic transformation is decreased by magnetic field.

  7. Valence electron structure of cast iron and graphltization behaviour criterion of elements

    Institute of Scientific and Technical Information of China (English)

    刘志林; 李志林; 孙振国; 杨晓平; 陈敏

    1995-01-01

    The valence electron structure of common alloy elements in phases of cast iron is calculated- The relationship between the electron structure of alloy elements and equilibrium, non-equilibrium solidification and graphitization is revealed by defining the bond energy of the strongest bond in a phase as structure formation factor S. A criterion of graphitization behaviour of elements is advanced with the critical value of the structure formation factor of graphite and the n of the strongest covalent bond in cementite. It is found that this theory conforms to practice very well when the criterion is applied to the common alloy elements.

  8. Three-dimensional local residual stress and orientation gradients near graphite nodules in ductile cast iron

    DEFF Research Database (Denmark)

    Zhang, Yubin; Andriollo, Tito; Fæster, Søren;

    2016-01-01

    A synchrotron technique, differential aperture X-ray microscopy (DAXM), has been applied to characterize the microstructure and analyze the local mesoscale residual elastic strain fields around graphite nodules embedded in ferrite matrix grains in ductile cast iron. Compressive residual elastic...... strains are measured with a maximum strain of ∼6.5–8 × 10−4 near the graphite nodules extending into the matrix about 20 μm, where the elastic strain is near zero. The experimental data are compared with a strain gradient calculated by a finite element model, and good accord has been found...

  9. Study on Cracking Tendency and Mechanism of Gray Cast Iron Laser Cladding

    Institute of Scientific and Technical Information of China (English)

    YE Hong; YAN Zhong-lin; HUANG Qi; YANG Hui

    2004-01-01

    In this paper, NiCrSiB and CoWC35 powder has been used in laser cladding of gray cast iron. The cracking tendency has also been discussed. The cracks have been observed with a scan electron microscopy to analyze the cracking mechanism. The results show that cracks have not appeared in NiCrSiB cladding. Nevertheless, the cracking tendency of CoWC35 cladding is extremely high and there are both cold cracks and hot cracks in the cladding. The cracking tendency of laser cladding depends on physical properties of the cladding material and plasticity and roughness of the cladding.

  10. Study on Cracking Tendency and Mechanism of Gray Cast Iron Laser Cladding

    Institute of Scientific and Technical Information of China (English)

    YEHong; YANZhong-lin; HUANGQi; YANGHui

    2004-01-01

    In this paper, NiCrSiB and COWC35 powder has been used in laser cladding of gray cast iron. The cracking tendency has also been discussed. The cracks have been observed with a scan electron microscopy to analyze the cracking mechanism. The results show that cracks have not appeared in NiCrSiB cladding. Nevertheless, the cracking tendency of CoWC35 cladding is extremely high and there are both cold cracks and hot cracks in the cladding. The cracking tendency of laser cladding depends on physical properties of the cladding material and plasticity and roughness of the cladding.

  11. Properties of Cross-Rolled Low Alloy White Cast Iron Grinding Ball

    Institute of Scientific and Technical Information of China (English)

    CHANG Li-min; LIU Lin; LIU Jian-hua

    2007-01-01

    The low-energy, multi-impact fracture resistance and the abrasiveness of the cross-rolled low alloy white cast iron grinding balls were studied after heat treatments at residual rolling temperature. Moreover, the means by which they are damaged and characters of the wear surface were analyzed. The results show that high resistance to impact fracture and high abrasiveness can be achieved after appropriate heat treatment at residual rolling temperature. This kind of heat treatment technology has several advantages under low impact and hard abrasive. These results are very useful for determining the optimized heat treatment technology at residual rolling temperatures.

  12. Effect of graphite degradation on the LCF properties of nodular cast iron

    Directory of Open Access Journals (Sweden)

    Denk Josef

    2014-06-01

    Full Text Available The effect of degraded microstructure on the tensile and LCF properties was studied on a casing of a turbocharger, which exhibited locally irregular graphite formation. The tensile tests showed that the ductility values of the zone with degraded graphite decreased strongly compared to the zone with normal graphite, while the strength values decreased only slightly. Based on these results and a LCF reference curve for nodular cast iron with normal graphite structure, a synthetic LCF curve was generated for the material condition with degraded graphite structure. LCF tests on specimens with irregular graphite structure confirmed the predicted LCF behaviour quite good.

  13. FASHION THE KITCHEN: CAST IRON STOVES THE PROVINCE OF QUEBEC, 1900-1914

    Directory of Open Access Journals (Sweden)

    Lisa Baillargeon

    2010-01-01

    Full Text Available The role of aesthetics in the marketing strategies of Quebec’s foundries and retailers at the beginning of the 20th century is not well known. This qualitative analysis of published cast iron stove advertisements suggests that the use of aesthetics to market stoves was far more elaborate than the simple alignment with trendy or classic style categories. In fact, aesthetics were the cornerstone of advertising activities aimed at developing and capitalizing on various market segments at a time of burgeoning consumerism.

  14. Effect of silicon content and defects on the lifetime of ductile cast iron

    Directory of Open Access Journals (Sweden)

    Alhussein Akram

    2014-06-01

    Full Text Available In this work, the influence of microstructure on the mechanical properties has been studied for different grades of ferritic ductile cast iron. Mechanical tests were carried out and the effect of silicon on the resistance of material was well noticed. An increasing silicon content increases the strength and decreases the ductility of material. The lifetime and endurance limit of material were affected by the presence of defects in material and microstructure heterogeneity. Metallurgical characterizations showed that the silicon was highly segregated around graphite nodules which leads to the initiation of cracks. The presence of defects causes the stress concentration and leads to the initiation and propagation of cracks.

  15. As cast high silicon ductile irons with optimised mechanical properties and remarkable fatigue properties

    OpenAIRE

    Torre, Urko de la; Loizaga, Aitor; Lacaze, Jacques; Sertucha, Jon

    2014-01-01

    International audience The present work shows a comparative study regarding the mechanical properties of 25 as cast ferritic ductile iron alloys, nine of them with silicon contents higher than 3·00% and carbon contents lower than 3·60%. In a first step, different carbon equivalent values have been used in order to analyse the effect of this parameter on the mechanical properties. After this comparative analysis, the composition ranges C = 3·30–3·40 wt-% and Si = 3·75–3·80 wt-% have been se...

  16. Microstructure and wear resistance of high chromium cast iron containing niobium

    OpenAIRE

    Zhang Zhiguo; Yang Chengkai; Zhang Peng

    2014-01-01

    In the paper, the effect of niobium addition on the microstructure, mechanical properties and wear resistance of high chromium cast iron has been studied. The results show that the microstructure of the heat-treated alloys is composed of M7C3 and M23C6 types primary carbide, eutectic carbide, secondary carbide and a matrix of martensite and retained austenite. NbC particles appear both inside and on the edge of the primary carbides. The hardness of the studied alloys maintains around 66 HRC, ...

  17. Electron theory study on the effect of Mn on as-cast structure of Fe-C-Cr-Mn cast irons

    Institute of Scientific and Technical Information of China (English)

    SUN Zhi-ping; SHEN Bao-luo; WANG Jun; LIU Hao-huai; YANG Hong-shan; HUANG Si-jiu

    2008-01-01

    The valence electron structure of alloying austenite of 3C-15Cr high chromium White cast iron with different Mn contents from 1%to 6% is analyzed by BLD method and EET.Results shoW that the addition of Mn has major influence on the valence electron structure of the alloying austenite,especially on that of Fe-C,Fe-C-Cr and Fe-C-Cr-Mn unit cells of it.The effect becomes weak when Mn content is over 4%.Based on the effect of nA,F Dc,the weighting of each unit cell and the degree of underceoling on phase transition of the austenite,we can calculate the retained austenite content of as-cast structure of the hish chromium white cast iron.The calculation results coincide well with those of the experiment.The phase transition characters of the austenite in high chromium white cast iron can be forecasted through valence electron structure analysis of alloying austenite by BLD method and EET on the basis of Fe-C-Cr equilibrium phase diagram.

  18. Comparison of residual stresses in sand- and chill casting of ductile cast iron wind turbine main shafts

    DEFF Research Database (Denmark)

    Sonne, Mads Rostgaard; Frandsen, J. O.; Hattel, Jesper Henri

    2015-01-01

    In this work, simulations of pouring, solidification and cooling, and residual stress evolution of sand and chill cast wind turbine main shafts is performed. The models are made in the commercial software MAGMAsoft. As expected, the cooling rate of the sand casting is shown to be much lower than...... for the chill casting, resulting in a very course microstructure.From the simulations the nodule count is found to be 17 nodules per mm2 and 159 nodules permm2 for the sand and chill casting, respectively, in the critical region of the main bearing seat.This is verified from nodule counts performed on...... the real cast main shafts. Residual stressevaluations show an overall increase of the maximum principal stress field for the chill casting,which is expected. However, the stresses are found to be in compression on the surface of thechill cast main shaft, which is unforeseen....

  19. A new method of fast measuring surface tension of melt cast iron and its application in graphite shape identification

    OpenAIRE

    Li, Dayong; Dequan SHI; Li, Feng

    2005-01-01

    Surface tension is one of important physical features of melt alloy. Many properties of melt alloy, such as graphite shape of cast iron and modified microstructure of aluminum alloy, can be evaluated by means of surface tension. In order to evaluate and control the melt quality in-situ melting operation, the authors advanced a new method and developed an automatic device for fast measuring surface tension of melt alloy and applied it to the practice of rapid identifying graphite shape of cast...

  20. Effect of Rare Earth Alloy Modification on High Carbon Equivalent Gray Cast Iron of Automotive Brake Drum

    Institute of Scientific and Technical Information of China (English)

    ZHANG Daowen; LI Zhu; HUANG Jie

    2012-01-01

    Effect of rare earth alloy modification on properties and microstructure of high carbon equivalent gray cast iron was investigated.The experimental results show that in the way of mechanical property,when the addition of rare earth alloy is 0.2% and 0.3%,the tensile strength of cast iron increases.In the way of microstructure,the addition of rare earth alloy increases the number of primary austenite dendrites,reduces secondary dendritic arm spacing,and changes the eutectic size and quantity.When rare earth alloy is added into gray cast iron,the morphology and quantity of graphite play a major role on the improvement of tensile strength.

  1. High-Cycle Fatigue Resistance of Si-Mo Ductile Cast Iron as Affected by Temperature and Strain Rate

    Science.gov (United States)

    Matteis, Paolo; Scavino, Giorgio; Castello, Alessandro; Firrao, Donato

    2015-09-01

    Silicon-molybdenum ductile cast irons are used to fabricate exhaust manifolds of internal combustion engines of large series cars, where the maximum pointwise temperature at full engine load may be higher than 973 K (700 °C). In this application, high-temperature oxidation and thermo-mechanical fatigue (the latter being caused by the engine start and stop and by the variation of its power output) have been the subject of several studies and are well known, whereas little attention has been devoted to the high-cycle fatigue, arising from the engine vibration. Therefore, the mechanical behavior of Si-Mo cast iron is studied here by means of stress-life fatigue tests up to 10 million cycles, at temperatures gradually increasing up to 973 K (700 °C). The mechanical characterization is completed by tensile and compressive tests and ensuing fractographic examinations; the mechanical test results are correlated with the cast iron microstructure and heat treatment.

  2. Effective and Economic Offloading of Diabetic Foot Ulcers in India with the Bohler Iron Plaster Cast.

    Science.gov (United States)

    Saikia, Priyanka; Hariharan, Rajalakshmi; Shankar, Nachiket; Gaur, Anil Kumar; Jose, Naveen Matthew

    2016-04-01

    Economic constraints are a major obstacle to the implementation of offloading casts in India. The aim of this study is to monitor the healing and activity limitations related to Bohler iron plaster cast (BIPC) when used for offloading diabetic neuropathic plantar foot ulcers. Thirty patients were cast for 1 month and evaluated for healing using the Pressure Ulcer Scale for Healing (PUSH), and for activity limitation using the Lower Extremity Functional Scale (LEFS). The change in the scores after intervention was the outcome measure. There was good healing as evidenced by a statistical difference in mean PUSH scores. The baseline PUSH score of 9.76-0.41 (T1-SEM) was greater than follow-up PUSH score of 6.32 + 0.41 (T2 + SEM) and the p value ulcer area, exudate, and tissue type. There was no mobility effect as there was no significant difference in LEFS. Significant negative correlation was there between PUSH and LEFS. The r value was less than -0.7 both at baseline and after intervention. The combined benefits of good healing, lack of affect on lower extremity function, the ease of application and dressing, and relative affordability make BIPC a commendable offloading modality for the management of diabetic plantar ulcers.

  3. Observation of Nanometric Silicon Oxide Bifilms in a Water-Atomized Hypereutectic Cast Iron Powder

    Science.gov (United States)

    Boisvert, Mathieu; Christopherson, Denis; L'Espérance, Gilles

    2016-06-01

    This study investigated the reasons for the irregular structure of primary graphite nodules that were formed in a hypereutectic cast iron powder during water atomization. The graphite nodules contain a significant amount of micron-sized pores and multiple nanometric voids that formed from silicon oxide bifilms. The bifilms theory is often used to explain the mechanisms responsible for the presence of pores in castings. However, even if many results presented in the literature tend to corroborate the existence of bifilms, to this date, only indirect evidences of their existence were presented. The observations presented in this paper are the first to show the double-sided nature of these defects. These observations support the bifilms theory and give an explanation for the presence of porosities in castings. The bifilms were used as substrate for graphite growth during solidification. The irregular structure of the graphite nodules is a consequence of the rather random structure of the bifilms that were introduced in the melt as a result of turbulences on the surface of the melt during pouring. The confirmation of the existence of bifilms can contribute to the understanding of the mechanical properties of various metallic parts.

  4. Strength distribution at interface of rotary-friction-welded aluminum to nodular cast iron

    Institute of Scientific and Technical Information of China (English)

    SONG Yu-lai; LIU Yao-hui; ZHU Xian-yong; YU Si-rong; ZHANG Ying-bo

    2008-01-01

    The morphology, size and composition of intermetallic compound at the interface of Al 1050 and nodular cast iron were studied by electron microprobe analysis(EMPA) and scan electron microscopy (SEM), respectively. The bond strength of the interface was measured by the tensile tests and the morphology of the fracture surface was observed by SEM. The observation of the interface reveals that there are two distinct morphologies: no intermetallic compound exists in the central area at the interface; while numbers of intermetallic compounds (FexAly) are formed in the peripheral area due to the overfull heat input. The tensile tests indicate that the distribution of strength in radial direction at the interface is inhomogeneous, and the central area of the interface performs greater bond strength than the peripheral area, which proves directly that the FexAly intermetallic compounds have a negative effect on the integration of interface. The morphology on the fracture surface shows that the facture in the central area at the interface has characteristic of the ductile micro-void facture. So it is important to restrain the form of the intermetallic compound to increase the bond strength of the Al 1050 and nodular cast iron by optimizing welding parameters and the geometry of components.

  5. ELABORATION OF MANAGEMENT PLAN OF SOLID WASTE FROM SMALL CAST IRON FOUNDRIES

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Mendes Moraes

    2013-12-01

    Full Text Available The foundry industry contributes to society meeting the demand of metal scrap recycling, but, at the same time, it brings a high risk of environmental impact for its many potentially pollutant wastes. Among these, there are slag and used foundry sand (cold cure molding. Through a survey about the production process of a small cast iron company, the collected data was compiled to determine the organizational setting in terms of generation and segregation of waste. From a complete environmental diagnosis carried out in eight small cast iron foundries, one of them was chosen to be a basis for the elaboration of an industrial solid waste management plan, which is becoming necessary to know and manage the generation of wastes qualitatively and quantitatively. A data assessment about the production process was carried out and compiled to determine the actual organizational scenario. As a result of that, it is possible to create a favorable environment to develop tools for environmental impacts prevention, which will permit the migration for more complex actions on the direction of more efficient process, cleaner production, and internal and external recycling of exceeding materials.

  6. Nucleation and Growth of Graphite in Eutectic Spheroidal Cast Iron: Modeling and Testing

    Science.gov (United States)

    Carazo, Fernando D.; Dardati, Patricia M.; Celentano, Diego J.; Godoy, Luis A.

    2016-06-01

    A new model of graphite growth during the continuous cooling of eutectic spheroidal cast iron is presented in this paper. The model considers the nucleation and growth of graphite from pouring to room temperature. The microstructural model of solidification accounts for the eutectic as divorced and graphite growth rate as a function of carbon gradient at the liquid in contact with the graphite. In the solid state, the microstructural model takes into account three stages for graphite growth, namely (1) from the end of solidification to the upper bound of intercritical stable eutectoid, (2) during the intercritical stable eutectoid, and (3) from the lower bound of intercritical stable eutectoid to room temperature. The micro- and macrostructural models are coupled using a sequential multiscale approach. Numerical results for graphite fraction and size distribution are compared with experimental results obtained from a cylindrical cup, in which the graphite volumetric fraction and size distribution were obtained using the Schwartz-Saltykov approach. The agreements between the experimental and numerical results for the fraction of graphite and the size distribution of spheroids reveal the importance of numerical models in the prediction of the main aspects of graphite in spheroidal cast iron.

  7. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kiran M. Kothari; Gerard T. Pittard

    2005-07-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. Bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple castiron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs with the pipe in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, minimize excavation, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of old cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct safe repair operations on live mains.

  8. Mechanism of carbon influence on the transition from graphite to cementite eutectic in cast iron

    Directory of Open Access Journals (Sweden)

    E. Fraś

    2010-04-01

    Full Text Available In this work an analytical solution is used to explain mechanism of carbon influence on the transition from graphite to cementite eutectic in cast iron. It is found that this transition can be related to (1 the nucleation potential of graphite (characterized directly by the cell count, N and indirectly by nucleation coefficients Ns and b (2 the growth rate coefficient of graphite eutectic cell, (3 the temperature range, Tsc = Ts - Tc (where Ts and Tc is the equilibrium temperature of the graphite eutectic and formation temperature of the cementite eutectic respectively.and (4 the liquid volume fraction, fl after solidification of the pre-eutectic austenite. Method of estimation of Ns, b and values was presented. It has been shown that the main impact of carbon on the transition from graphite to cementite eutectic consist in increasing the eutectic cell count and growth rate of graphite eutectic cell. Analytical equations were derived to describe the absolute, CT relative chilling tendency, CTr and chill, w of cast iron.

  9. Study of carbon and silicon loss through oxidation in cast iron base metal using rotary furnace for melting

    Directory of Open Access Journals (Sweden)

    Sylvester Olanrewaju OMOLE

    2015-05-01

    Full Text Available The projection of loss of carbon and silicon through oxidation is uncertain phenomenon depending on the furnace used for melting, which affect the carbon equivalent value (CEV of cast iron produced. CEV enhances the fluidity of molten metal as well as having great effects on the mechanical properties of cast products. Study on the way elemental loss takes place during melting with rotary furnace will give idea of approach to minimize the loss. Therefore, the aim of this work is to study the magnitude of the elemental loss with rotary furnace and means to minimize the loss. 60kg of grey cast iron scrap was charged into rotary furnace of 100kg capacity after preheating the furnace for 40 minutes. Graphite and ferrosilicon was added to the charge in order to obtain a theoretical composition of not less than 4.0% carbon and 2.0% silicon. Charges in the furnace were heated to obtain molten metal which was tapped at 1400°C. Tapping was done for casting at three different times. The castings solidified in sand mould and allowed to cool to room temperature in the mould. Castings were denoted as sample 1, 2 and 3. Final compositions of each casting were analyzed with optical light emission spectrometer. Sample 1 has 2.95% carbon and 1.82% silicon. Sample 2 has 2.88% carbon and 1.70% silicon and sample 3 has 2.75% carbon and 1.63% silicon.

  10. Study on quantitative relation between characteristics of striature bionic coupling unit and wear resistance of gray cast iron

    Science.gov (United States)

    Pang, Zuobo; Zhou, Hong; Zhang, Peng; Cong, Dalong; Meng, Chao; Wang, Chuanwei; Ren, Luquan

    2015-03-01

    In order to improve the wear resistance of gray cast iron guide rail, striature bionic coupling units of different characteristics were manufactured by laser surface remelting. Wear behavior of gray cast iron with striature bionic coupling units has been studied under dry sliding condition at room temperature using a homemade linear reciprocating wear testing machine. The wear resistance was evaluated by means of weight loss measurement and wear morphology. The results indicated that there is a relationship between weight loss and the area of striature bionic coupling units and α: Δm = Δm0 - 0.0212S × cos α - 0.0241S × sin α.

  11. Effect of the microhardness difference between base metal and bionic coupling unit on wear resistance of gray cast iron

    Science.gov (United States)

    Pang, Zuobo; Zhou, Hong; Chang, Fang; Zhang, Peng; Cong, Dalong; Meng, Chao; Wang, Chuanwei; Ren, Luquan

    2015-12-01

    In order to improve the wear resistance of gray cast iron guide rail, the samples with different microhardness difference between bionic coupling units and base metal were manufactured by laser surface remelting. Wear behavior of gray cast iron with bionic coupling units has been studied under dry sliding condition at room temperature using a homemade liner reciprocating wear testing machine. The wear resistance was evaluated by means of weight loss measurement and wear morphology. The results indicated that when the microhardness difference is 561 HV0.2, the wear resistance of sample is the best.

  12. Corrosion Inhibiting Mechanism of Nitrite Ion on the Passivation of Carbon Steel and Ductile Cast Iron for Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    K. T. Kim

    2015-01-01

    Full Text Available While NaNO2 addition can greatly inhibit the corrosion of carbon steel and ductile cast iron, in order to improve the similar corrosion resistance, ca. 100 times more NaNO2 addition is needed for ductile cast iron compared to carbon steel. A corrosion and inhibition mechanism is proposed whereby NO2- ion is added to oxidize. The NO2- ion can be reduced to nitrogen compounds and these compounds may be absorbed on the surface of graphite. Therefore, since nitrite ion needs to oxidize the surface of matrix and needs to passivate the galvanic corroded area and since it is absorbed on the surface of graphite, a greater amount of corrosion inhibitor needs to be added to ductile cast iron compared to carbon steel. The passive film of carbon steel and ductile cast iron, formed by NaNO2 addition showed N-type semiconductive properties and its resistance, is increased; the passive current density is thus decreased and the corrosion rate is then lowered. In addition, the film is mainly composed of iron oxide due to the oxidation by NO2- ion; however, regardless of the alloys, nitrogen compounds (not nitrite were detected at the outermost surface but were not incorporated in the inner oxide.

  13. Influence of wall thickness of spheroidal cast iron, manufactured in the foundry METAL-ODLEW Sp.J., on its graphite shape index and ultrasonic control index

    Directory of Open Access Journals (Sweden)

    W. Orłowicz

    2009-07-01

    Full Text Available This work presents the results of ultrasonic evaluation of the microstructure of spheroidal cast iron manufactured under production condi-tions at the foundry of Metal Odlew Sp.J. Evaluation of ultrasonic control index sensitiveness to changes of graphite shape index Ss of spheroidal cast iron (type 500-7, utilized modelled stepped castings. The relationship was determined between the shape index of graphite precipitation Ss and the velocity of longitudinal ultrasonic wave cL.

  14. Influence of wall thickness of spheroidal cast iron, manufactured in the foundry METAL-ODLEW Sp.J., on its graphite shape index and ultrasonic control index

    OpenAIRE

    W. Orłowicz; M. Tupaj; M. Mróz; E. Guzik; J. Nykiel; A. Zając; B. Piotrowski

    2009-01-01

    This work presents the results of ultrasonic evaluation of the microstructure of spheroidal cast iron manufactured under production condi-tions at the foundry of Metal Odlew Sp.J. Evaluation of ultrasonic control index sensitiveness to changes of graphite shape index Ss of spheroidal cast iron (type 500-7), utilized modelled stepped castings. The relationship was determined between the shape index of graphite precipitation Ss and the velocity of longitudinal ultrasonic wave cL.

  15. Effect of austempering parameters on microstructure and mechanical properties of horizontal continuous casting ductile iron dense bars

    OpenAIRE

    Chun-jie Xu; Pan Dai; Zheng-yang Zhang

    2015-01-01

    In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and time) on microstructure and mechanical properties of LZQT500-7 ductile iron dense bars with 172 mm in diameter which were produced by horizontal continuous casting (HCC). The results show that the major factors influencing the hardness of austempered ductile iron (ADI) are austeni...

  16. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kiran M. Kothari; Gerard T. Pittard

    2005-04-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast-iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of old cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1 (Program Management) and Task 2 (Establishment of Detailed Design Specifications) were completed previously. Task 3 (Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves) has progressed to installing prototype sleeves in test cast-iron pipe segments. Efforts in the current quarter continued to be focused on Tasks 4-8. Highly valuable lessons were learned from field tests of the 4-inch gas pipe repair robot in cast-iron pipe at Public Service Electric & Gas. (These field tests were conducted and reported previously.) Several design issues were identified which need to be implemented in both the small- and large-diameter repair

  17. Machinability of Austempered Ductile Iron (ADI) Produced by Integrated Green Technology of Continuous Casting-Heat Treatment Processes

    Science.gov (United States)

    Meena, A.; El Mansori, M.; Ghidossi, P.

    2011-01-01

    This study presents the novel processing technique known as continuous casting-heat treatment processes to produce Austempered Ductile Iron (ADI) which is a new class of ductile iron. ADI is characterized by improved mechanical properties but has low machinability as compared to other cast irons and steel of similar strength. The novel technique is developed by the integration of casting (in die casting) and heat treatment processes in foundry to save cost energy and time. Specimens just after casting were austenitized at 930° C for 90 min and then austempered in fluidized bed at 380° C for 90 and 120 min. Hence, the effect of austempering time on the morphology of retained austenite and mechanical properties of the material were examined and compared with conventionally produced ADI. Drilling tests were then carried out to evaluate the machinability of ADI in terms of cutting forces, chip micro-hardness, chip morphology and surface roughness. The mechanical properties of ADI austempered for 120 min have found to be better as compare to the ADI austempered for 90 min.

  18. 76 FR 5333 - Non-Malleable Cast Iron Pipe Fittings from the People's Republic of China: Preliminary Results of...

    Science.gov (United States)

    2011-01-31

    ... Doing Business 2010: India, by the World Bank. The price list data is contemporaneous with the POR.\\30... Antidumping Duty Order: Non-Malleable Cast Iron Pipe Fittings From the People's Republic of China, 68 FR 16765 (April 7, 2003). \\2\\ See Initiation of Antidumping and Countervailing Duty Administrative Reviews, 75...

  19. Hot Corrosion Behavior of High-Chromium, High-Carbon Cast Irons in NaCl-KCl Molten Salts

    Directory of Open Access Journals (Sweden)

    S. Vuelvas-Rayo

    2012-01-01

    Full Text Available A study on the corrosion behavior of a series of experimental high-chromium (18.53–30.48 wt.%, high-carbon (3.82–5.17% cast irons in NaCl-KCl (1 : 1 M at 670°C has been evaluated by using weight loss technique and compared with a 304-type stainless steel. It was found that all castings had a higher corrosion rate than conventional 304SS and that the addition of Cr increased the degradation rate of the cast irons. Additionally, corrosion rate increased by increasing the C contents up to 4.29%, but it decreased with a further increase in its contents. Results are discussed in terms of consumption of the Cr2O3 layer by the melt.

  20. Laser Surface Remelting of Medium Ni-Cr Infinite Chilling Cast Iron Roll

    Institute of Scientific and Technical Information of China (English)

    YAO Jian-hua; ZHANG Qun-li; XIE Song-jing

    2004-01-01

    Laser surface remelting of medium Ni-Cr infinite chilling cast iron was performed with a continuous wave CO2 laser beam with the power of 7 KW under the argon shielding. The microstructural analysis of the laser remelted layer by optical microscope shows that the laser remelted layer consists of three zones, which is the melting zone, the transition zone and the heat affected zone. The size of the dendrite of the melting zone is only in the 1/10 to 1/30 range of that of the substrate. The distribution of the hardness of the laser remelted layer was detected, and the carrying capacity of rolling steel was also field-tested. The results show that both the hardness of the remelted layer and the carrying capacity all increase,especially, the carrying capacity was 50% increased compared with the substrate.

  1. Laser Surface Remelting of Medium Ni-Cr Infinite Chilling Cast Iron Roll

    Institute of Scientific and Technical Information of China (English)

    YAOJian-hua; ZHANGQun-li; XIESong-jing

    2004-01-01

    Laser surface remelting of medium Ni-Cr infinite chilling cast iron was performed with a continuous wave CO2 laser beam with the power of 7 KW under the argon shielding. The microstructural analysis of the laser remelted layer by optical microscope shows that the laser remelted layer consists of three zones, which is the melting zone, the transition zone and the heat affected zone. The size of the dendrite of the melting zone is only in the 1/10 to 1/30 range of that of the substrate. The distribution of the hardness of the laser remelted layer was detected, and the carrying capacity of rolling steel was also field-tested. The results show that both the hardness of the remelted layer and the carrying capacity all increase, especially, the carrying capacity was 50% increased compared with the substrate.

  2. ANALYSIS OF FORCES, ROUGHNESS, WEAR AND TEMPERATURE IN TURNING CAST IRON USING CRYOTREATED CARBIDE INSERTS

    Directory of Open Access Journals (Sweden)

    B.R. Ramji,

    2010-07-01

    Full Text Available The aim of this research was to examine the effect of cryogenic treatment of the coated carbide inserts on their performance in turning gray cast iron work pieces. The cryogenic treatment cycle consisted of cooling the test samples from room temperature to cryogenic temperature of -178.9 C in three hours, soaking at cryogenictemperature around 24 hours and warming to room temperature in about five hours. Cutting forces, surface roughness, flank wear and tool tip temperature were studied for both coated and coated-treated inserts. ANOVA was performed to identify the effect of the parameters on the response variables. Cryogenically treated inserts proved superior to the non-treated in all the test conditions in terms of lesser flank wear of the inserts and reduced surface roughness of the specimens. The after turned inserts were examined using Scanning Electron Microscopy for studying the flank wear mechanism.

  3. Effect of cerium modification on microstructure and properties of hypereutectic high chromium cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Zhi, Xiaohui, E-mail: mkmkzxh@hotmail.com [School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, Hebei Province (China); Liu, Jinzhi [School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, Hebei Province (China); Xing, Jiandong; Ma, Shengqiang [State Key Laboratory Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an 710049, Shaanxi Province (China)

    2014-05-01

    The effect of cerium modification on the microstructure and properties of hypereutectic high chromium cast iron primarily containing 4.0 wt% C and 20.0 wt% Cr was studied by means of optical microscopy, transmission electron microscope, scanning electron microscope, and energy dispersive X-ray spectrometry. The primary M{sub 7}C{sub 3} carbides were refined obviously when cerium was added in the melt. Ce{sub 2}S{sub 3} was found in the primary M{sub 7}C{sub 3} carbides and acted as the heterogeneous substrate of M{sub 7}C{sub 3} carbides. The impact toughness of the specimen modified with 0.5 wt% cerium increased by 50% compared with the specimen without cerium modification. The hardness of the alloy modified with cerium increased slightly compared with the specimen without cerium modification.

  4. TECHNICAL CONDITION OF HIGH-STRENGTH CAST IRON CRANKSHAFTS FROM AND MATERIAL SELECTION FOR THEIR RESTORATION

    Directory of Open Access Journals (Sweden)

    T. Vigerina

    2013-01-01

    Full Text Available The paper presents data on a technical condition of cast iron crankshafts to be repaired which is characterized by wear of crankshaft necks and connecting rod journals and misalignment of crankshaft  necks of ZMZ-53-engines. Wear and misalignment of crankshaft necks are closely described by the the Weibull's law and 70–75 % of the shafts to be repaired require recovery with deposition of coating. In order to recover crankshaft necks it is proposed to apply plasma spraying with a mixture of powders which includes copper powder. Coating obtained in accordance with the proposed technology is characterized by wear intensity during its normal operation 4,0 · 10–6 g/m, and it is by 3–5 % lower than the wear intensity rate of those shafts that have been recovered with the help of spraying powder mixtures without copper.

  5. Correlation of mechanical properties with the acoustic properties in case of an experimental white cast iron

    Science.gov (United States)

    Gȋrneţ, A.; Stanciu, S.; Chicet, D.; Axinte, M.; Goanţă, V.

    2016-08-01

    The general and traditional opinion regarding the materials used to build bells, musical instruments or sound transmitters is that those materials must be only from the bronze alloyed with tin category. In order to approach this idea from a scientific point of view, the materials with acoustic properties must be analyzed starting from the physical theory and experimental determination that sound travels only through bodies with elastic properties. It has been developed an experimental white cast iron, medium alloyed with Cr and Ni, in order to obtain a material with special acoustic properties. There were determined on specific samples: the vibration damping capacity, the unit energy, the tensile strength and elasticity modulus. These properties were correlated with the properties of other known acoustic materials.

  6. SPHERICAL MICROSTRUCTURE FORMATION OF THE SEMI-SOLID HIGH CHROMIUM CAST IRON Cr20Mo2

    Institute of Scientific and Technical Information of China (English)

    W.M. Mao; A.M. Zhao; X.Y. Zhong

    2004-01-01

    The nondendritic semi-solid slurry preparation of high chromium cast iron Cr20Mo2 has been studied in this paper. The experiments show that the proeutectic austenitic particles are more spherical under a larger stirring power condition, even if the stirring time is shorter, while the proeutectic austenitic particles are not very much spherical under a smaller stirring power condition and some proeutectic austenitic dendrites also exist, even if the stirring time is very long. The experiments also show that when stirred for 5 6 minutes under the test condition, the semi-solid slurry with 40vol. %-50vol. % solid fraction and spherical proeutectic austenite in the size of 50-80μm can be obtained.

  7. Influences of single laser tracks' space on the rolling fatigue contact of gray cast iron

    Science.gov (United States)

    Chen, Zhi-kai; Zhou, Ti; Zhang, Peng; Zhang, Hai-feng; Yang, Wan-shi; Zhou, Hong; Ren, Lu-quan

    2015-09-01

    To improve the fatigue wear resistance of gray cast iron, the surface is modified by Nd:YAG laser to imitate the unique surface of soil creatures (alternative soft and hard phases). After laser treatment, the remelting region is the named unit which is mainly characterized of compact and refinement grains. In the present work, the influence of the unit space on the fatigue wear resistance is experimentally studied. The optimum space is proven to be 2 mm according to the tested results and two kinds of delamination are observed on samples' worn surface. Subsequently, the mechanisms of fatigue wear resistance improvement are suggested: (i) for microscopic behavior, the bionic unit not only delays the initiation of microcracks, but also significantly obstructs the propagation of cracks; (ii) for macroscopic behavior, the hard phase resists the deformation and the soft phase releases the deformation.

  8. Microstructure and wear resistance of high chromium cast iron containing niobium

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhiguo; Yang Chengkai; Zhang Peng; Li Wei

    2014-01-01

    In the paper, the effect of niobium addition on the microstructure, mechanical properties and wear resistance of high chromium cast iron has been studied. The results show that the microstructure of the heat-treated aloys is composed of M7C3 and M23C6 types primary carbide, eutectic carbide, secondary carbide and a matrix of martensite and retained austenite. NbC particles appear both inside and on the edge of the primary carbides. The hardness of the studied alloys maintains around 66 HRC, not significantly affected by the Nb content within the selected range of 0.48%-0.74%. The impact toughness of the aloys increases with increasing niobium content. The wear resistance of the specimens presents little variation in spite of the increase of Nb content under a light load of 40 N. However, when heavier loads of 70 and 100 N are applied, the wear resistance increases with increasing Nb content.

  9. Microstructure and wear resistance of high chromium cast iron containing niobium

    Directory of Open Access Journals (Sweden)

    Zhang Zhiguo

    2014-05-01

    Full Text Available In the paper, the effect of niobium addition on the microstructure, mechanical properties and wear resistance of high chromium cast iron has been studied. The results show that the microstructure of the heat-treated alloys is composed of M7C3 and M23C6 types primary carbide, eutectic carbide, secondary carbide and a matrix of martensite and retained austenite. NbC particles appear both inside and on the edge of the primary carbides. The hardness of the studied alloys maintains around 66 HRC, not significantly affected by the Nb content within the selected range of 0.48%-0.74%. The impact toughness of the alloys increases with increasing niobium content. The wear resistance of the specimens presents little variation in spite of the increase of Nb content under a light load of 40 N. However, when heavier loads of 70 and 100 N are applied, the wear resistance increases with increasing Nb content.

  10. Effects of advanced oxidation on green sand properties via iron casting into green sand molds.

    Science.gov (United States)

    Wang, Yujue; Cannon, Fred S; Voigt, Robert C; Komarneni, Sridhar; Furness, J C

    2006-05-01

    The effects of advanced oxidation (AO) processing on the properties of green sand were studied via pouring cast iron into green sand molds. Upon cooling, the green sand molds were autopsied at various distances from the metal-sand interface. Autopsy green sand samples collected from a mold that incorporated AO water were characterized and compared to controlled samples collected from a similar autopsied mold made with conventional tap water (TAP). It was found that the AO processing removed a coating of coal pyrolysis products from the clay surface that typically accumulated on the clay surface. As a result, the AO-conditioned green sand retained 10-15% more active clay as measured bythe standard ultrasonic methylene blue titration than did the TAP-conditioned green sand. The AO processing also nearly doubled the generation of activated carbon from the normalized amount of coal composition of the green sand during the casting process. The AO-enhanced activated carbon generation and the AO-incurred clay surface cleaning provided the AO-conditioned green sand with higher normalized pore volume, and thus higher normalized m-xylene adsorption capacity, i.e., relative to before-metal-pouring conditions. Furthermore, mathematical analysis indicated that the AO-conditioned green sand better retained its important properties after pouring than did the TAP-conditioned green sand. Effectively, this meant after metal pouring, the AO-conditioned sample offered about the same net properties as the TAP-conditioned sample, even though the AO-conditioned sample contained less clay and coal before metal pouring. These results conformed to the full-scale foundry empirical finding that when AO is used, foundries need less makeup clay and coal addition through each casting cycle, and they release less air emissions. PMID:16719117

  11. Effect of Ti-V-Nb-Mo addition on microstructure of high chromium cast iron

    Directory of Open Access Journals (Sweden)

    Ma Youping

    2012-05-01

    Full Text Available The effects of trace additions of multi-alloying elements (Ti, Nb, V, Mo on carbides precipitation and as-cast microstructure of eutectic high chromium cast iron containing 2.85wt.%C and 31.0wt.%Cr were investigated from thermodynamic and kinetic considerations. The thermodynamic calculations show that Ti and Nb exist in the multi-alloying system in the forms of TiC and NbC. The formation of VC during the solidification is not feasible from the thermodynamic consideration. XRD analysis shows that the V exists in alloy compounds (VCr2C2, VCrFe8. The first precipitated high melting point particles (TiC, NbC can act as the heterogeneous substrate of M7C3 carbides, which results in significant refinement of the M7C3 carbides. After the addition of alloying elements, C atom diffusion is hindered due to the strong affinities of the strong carbide forming elements for carbon, which decreases the growth rate of carbides. The combined roles of the increase of nucleation rate and the decrease of carbides growth rate lead to the finer microstructure.

  12. The effect of heat treatment on the gouging abrasion resistance of alloy white cast irons

    Science.gov (United States)

    Are, I. R. S.; Arnold, B. K.

    1995-02-01

    A series of heat treatments was employed to vary the microstructure of four commercially important alloy white cast irons, the wear resistance of which was then assessed by the ASTM jaw-crusher gouging abrasion test. Compared with the as-cast condition, standard austenitizing treatments produced a substantial increase in hardness, a marked decrease in the retained aus-tenite content in the matrix, and, in general, a significant improvement in gouging abrasion resistance. The gouging abrasion resistance tended to decline with increasing austenitizing tem-perature, although the changes in hardness and retained austenite content varied, depending on alloy composition. Subcritical heat treatment at 500 ° following hardening reduced the retained austenite content to values less than 10 pct, and in three of the alloys it caused a significant fall in both hardness and gouging abrasion resistance. The net result of the heat treatments was the development of optimal gouging abrasion resistance at intermediate levels of retained aus-tenite. The differing responses of the alloys to both high-temperature austenitizing treatments and to subcritical heat treatments at 500 ° were related to the effects of the differing carbon and alloying-element concentrations on changes in the M s temperature and secondary carbide precipitation.

  13. Effect of Different Molding Materials on the Thin-Walled Compacted Graphite Iron Castings

    Science.gov (United States)

    Górny, Marcin; Dańko, Rafał; Lelito, Janusz; Kawalec, Magdalena; Sikora, Gabriela

    2016-10-01

    This article addresses the effects of six mold materials used for obtaining thin-walled compacted graphite iron castings with a wall thickness of 3 mm. During this research, the following materials were analyzed: fine silica sand, coarse silica sand, cerabeads, molohite and also insulated materials in the shape of microspheres, including low-density alumina/silica ceramic sand. Granulometric and SEM observations indicate that the sand matrix used in these studies differs in terms of size, homogeneity and shape. This study shows that molds made with insulating sands (microspheres) possess both: thermal conductivity and material mold ability to absorb heat, on average to be more than five times lower compared to those of silica sand. In addition to that, the resultant peak of heat transfer coefficient at the mold/metal interface for microspheres is more than four times lower in comparison with fine silica sand. This is accompanied by a significant decrease in the cooling rate of metal in the mold cavity which promotes the development of compacted graphite in thin-walled castings as well as ferrite fractions in their microstructure.

  14. Microstructure and properties of Ti–Nb–V–Mo-alloyed high chromium cast iron

    Indian Academy of Sciences (India)

    Youping Ma; Xiulan Li; Yugao Liu; Shuyi Zhou; Xiaoming Dang

    2013-10-01

    The correlations of microstructure, hardness and fracture toughness of high chromium cast iron with the addition of alloys (titanium, vanadium, niobium and molybdenum) were investigated. The results indicated that the as-cast microstructure changed from hypereutectic, eutectic to hypoeutectic with the increase of alloy contents. Mo dissolved in austenite and increased the hardness by solid solution strengthening. TiC and NbC mainly existed in austenite and impeded the austenite dendrite development. V existed in multicomponent systems in forms of V alloy compounds (VCrFe8 and VCr2C2).With the increase of alloy additions, carbides size changed gradually from refinement to coarseness, hardness and impact toughness were increased and then decreased. Compared with the fracture toughness (6 J/cm2) and hardness (50.8HRC) without any alloy addition, the toughness and hardness at 0.60 V–0.60Ti–0.60Nb–0.35Mo (wt%) additions were improved and achieved to 11 J/cm2 and 58.9HRC, respectively. The synergistic roles of Ti, Nb, V and Mo influenced the solidification behaviour of alloy. The refinement of microstructure and improvement of carbides morphologies, size and distribution improved the impact toughness.

  15. Fracture mechanics behaviour of ductile cast iron and martensitic steel at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Udoh, A.; Klenk, A.; Roos, E. [Stuttgart Univ. (Germany). MPA; Sasikala, G. [Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam (India)

    2010-07-01

    Ductile cast iron is employed increasingly due to the advantages regarding foundry practice, design as well as economic advantages in the thermal machinery and power plant construction. It is employed preferably where higher toughness is required, e.g. in valves or thickwalled components of thermal or nuclear power plants. For this reason the safety and availability criteria for fracture mechanics assessment of components are necessary in addition to the conventional strength design. Alloys with silicon and molybdenum are developed for the application at higher temperatures. The increase in the thermal efficiency of fossil fired steam power plant that can be achieved by increasing the steam temperature and pressure has provided the incentive for development of the 9% chromium steels towards improved creep rupture strength. During the last twenty years, three such steels, P91 (9Cr-1Mo-VNb), E911 (9Cr-1Mo-1W-V-Nb) and P92 (9Cr-0,5Mo-1,8W-V-Nb), have been developed for commercial production. For application in piping systems and boiler construction sufficient reliable information concerning the long-term behaviour are necessary as well as knowledge about fracture mechanical behaviour in order to ensure integrity of components. Different methods to characterize fracture behaviour of ductile cast iron and martensitic steel at elevated temperature have been employed. The RBR method is a novel and simple method developed at IGCAR for characterizing the ductile fracture behaviour of materials from tensile tests of cylindrical specimens. Using the data evaluated at both institutes, a fracture mechanics characterisation by determining crack initiation and crack resistance by J{sub R}-curves and RBR parameters is presented. (orig.)

  16. A Journey across Multidirectional Connections: Linda Grant’s The Cast Iron Shore

    Directory of Open Access Journals (Sweden)

    Silvia Pellicer-Ortín

    2015-10-01

    Full Text Available Among the numerous groups that have negotiated their fragmented identities through various literary practices in the last few decades, the Jewish collective has come to symbolize the epitome of diaspora and homelessness. In particular, British-Jewish writers have recently started to reconstruct their fragmented memories through writing. This is an extremely interesting phenomenon in the case of those Jewish women who are fiercely struggling to find some sense of personhood as Jewish, British, female, immigrant subjects. Linda Grant’s novel The Cast Iron Shore will be analyzed so as to unveil the narrative mechanisms through which many of the identity tensions experienced by contemporary Jewish women are exhibited. The different stages in the main character’s journey will be examined by drawing on theories on the construction of Jewish identity and femininity, and by applying the model of multidirectional memory fostered by various contemporary thinkers such as Michael Rothberg, Stef Craps, Max Silverman, and Bryan Cheyette. The main claim to be demonstrated is that this narration links the (histories of oppression and racism endured both by the Jewish and the Black communities in order to make the protagonist encounter the Other, develop her mature political self, and liberate her mind from rigid religious, patriarchal, and racial stereotypes. The Cast Iron Shore becomes, then, a successful attempt to demonstrate that the (histories of displacement endured by divergent communities during the twentieth century are connected, and it is the establishment of these connections that can help contemporary Jewish subjects to claim new notions of their personhood in the public sphere.

  17. High-temperature low cycle fatigue behavior of a gray cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Fan, K.L., E-mail: 12klfan@tongji.edu.cn; He, G.Q.; She, M.; Liu, X.S.; Lu, Q.; Yang, Y.; Tian, D.D.; Shen, Y.

    2014-12-15

    The strain controlled low cycle fatigue properties of the studied gray cast iron for engine cylinder blocks were investigated. At the same total strain amplitude, the low cycle fatigue life of the studied material at 523 K was higher than that at 423 K. The fatigue behavior of the studied material was characterized as cyclic softening at any given total strain amplitude (0.12%–0.24%), which was attributed to fatigue crack initiation and propagation. Moreover, this material exhibited asymmetric hysteresis loops due to the presence of the graphite lamellas. Transmission electron microscopy analysis suggested that cyclic softening was also caused by the interactions of dislocations at 423 K, such as cell structure in ferrite, whereas cyclic softening was related to subgrain boundaries and dislocation climbing at 523 K. Micro-analysis of specimen fracture appearance was conducted in order to obtain the fracture characteristics and crack paths for different strain amplitudes. It showed that the higher the temperature, the rougher the crack face of the examined gray cast iron at the same total strain amplitude. Additionally, the microcracks were readily blunted during growth inside the pearlite matrix at 423 K, whereas the microcracks could easily pass through pearlite matrix along with deflection at 523 K. The results of fatigue experiments consistently showed that fatigue damage for the studied material at 423 K was lower than that at 523 K under any given total strain amplitude. - Highlights: • The low cycle fatigue behavior of the HT250 for engine cylinder blocks was investigated. • TEM investigations were conducted to explain the cyclic deformation response. • The low cycle fatigue cracks of HT250 GCI were studied by SEM. • The fatigue life of the examined material at 523 K is higher than that at 423 K.

  18. High-temperature low cycle fatigue behavior of a gray cast iron

    International Nuclear Information System (INIS)

    The strain controlled low cycle fatigue properties of the studied gray cast iron for engine cylinder blocks were investigated. At the same total strain amplitude, the low cycle fatigue life of the studied material at 523 K was higher than that at 423 K. The fatigue behavior of the studied material was characterized as cyclic softening at any given total strain amplitude (0.12%–0.24%), which was attributed to fatigue crack initiation and propagation. Moreover, this material exhibited asymmetric hysteresis loops due to the presence of the graphite lamellas. Transmission electron microscopy analysis suggested that cyclic softening was also caused by the interactions of dislocations at 423 K, such as cell structure in ferrite, whereas cyclic softening was related to subgrain boundaries and dislocation climbing at 523 K. Micro-analysis of specimen fracture appearance was conducted in order to obtain the fracture characteristics and crack paths for different strain amplitudes. It showed that the higher the temperature, the rougher the crack face of the examined gray cast iron at the same total strain amplitude. Additionally, the microcracks were readily blunted during growth inside the pearlite matrix at 423 K, whereas the microcracks could easily pass through pearlite matrix along with deflection at 523 K. The results of fatigue experiments consistently showed that fatigue damage for the studied material at 423 K was lower than that at 523 K under any given total strain amplitude. - Highlights: • The low cycle fatigue behavior of the HT250 for engine cylinder blocks was investigated. • TEM investigations were conducted to explain the cyclic deformation response. • The low cycle fatigue cracks of HT250 GCI were studied by SEM. • The fatigue life of the examined material at 523 K is higher than that at 423 K

  19. Combination of microscopic model and VoF-multiphase approach for numerical simulation of nodular cast iron solidification

    Science.gov (United States)

    Subasic, E.; Huang, C.; Jakumeit, J.; Hediger, F.

    2015-06-01

    The ongoing increase in the size and capacity of state-of-the-art wind power plants is highlighting the need to reduce the weight of critical components, such as hubs, main shaft bearing housings, gear box housings and support bases. These components are manufactured as nodular iron castings (spheroid graphite iron, or SGI). A weight reduction of up to 20% is achievable by optimizing the geometry to minimize volume, thus enabling significant downsizing of wind power plants. One method for enhancing quality control in the production of thick-walled SGI castings, and thus reducing tolerances and, consequently, enabling castings of smaller volume is via a casting simulation of mould filling and solidification based on a combination of microscopic model and VoF-multiphase approach. Coupled fluid flow with heat transport and phase transformation kinetics during solidification is described by partial differential equations and solved using the finite volume method. The flow of multiple phases is described using a volume of fluid approach. Mass conservation equations are solved separately for both liquid and solid phases. At the micro-level, the diffusion-controlled growth model for grey iron eutectic grains by Wetterfall et al. is combined with a growth model for white iron eutectic grains. The micro-solidification model is coupled with macro-transport equations via source terms in the energy and continuity equations. As a first step the methodology was applied to a simple geometry to investigate the impact of mould-filling on the grey-to-white transition prediction in nodular cast iron.

  20. Nature of Surface Changes in Stamping Tools of Gray and Ductile Cast Iron During Gas and Plasma Nitrocarburizing

    Science.gov (United States)

    Roliński, E.; Konieczny, A.; Sharp, G.

    2009-11-01

    Two cast irons, pearlitic-ferritic gray and ferritic ductile, were plasma and gas nitrocarburized at the same temperature and for the same processing time to produce a compound zone of about 10-14 μm thick. It was demonstrated that both processes caused changes in the surface roughness of the irons, and the most dramatic increase of roughness was observed after gas nitrocarburizing of the gray cast iron. It was shown that the primary reason that the results were not the same is the difference in the nitriding mechanism. Significant penetration of the surface voids and imperfections between the graphite particles and the metallic matrix by ammonia molecules led to the formation of a locally thicker compound zone and a bulging of the metallic matrix above the surface. This phenomenon did not occur in the plasma process and as a result the surface changes were much smaller than in the gas process.

  1. Effect of nanocrystalline TiC powder addition on the hardness and wear resistance of cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Razavi, Mansour [Materials and Energy Research Center, P.O. Box 1455-4777, Tehran (Iran, Islamic Republic of)], E-mail: m-razavi@merc.ac.ir; Rahimipour, Mohammad Reza [Materials and Energy Research Center, P.O. Box 1455-4777, Tehran (Iran, Islamic Republic of); Rajabi-Zamani, Amir Hossein [Materials and Energy Research Center, P.O. Box 1455-4777, Tehran (Iran, Islamic Republic of)

    2007-04-25

    In this research, the feasibility of the addition of nanocrystalline TiC particles - synthesized via mechanical alloying - to iron matrix melt was investigated. For the preparation of TiC, impure titanium chips and carbon black were placed in a high-energy ball mill and sampled after different milling time. XRD studies showed that at milling times more than 15 h, TiC was synthesized. It was observed from the peak broadening of the diffraction patterns that the TiC crystallites were in the scale of nanometer. 0.96 wt.% TiC synthesized after 15 h was added to a 4 wt.% C cast iron melt. It was observed that this small amount of TiC was enough to improve the structure, hardness and wear resistance of the cast iron significantly.

  2. Influence of rare earth nanoparticles and inoculants on performance and microstructure of high chromium cast iron

    Institute of Scientific and Technical Information of China (English)

    HOU Yuncheng; WANG You; PAN Zhaoyi; YU Lili

    2012-01-01

    The high chromium cast irons (HCCIs) with rare earth (RE) nanoparticles or inoculants were fabricated in the casting process.The phase compositions and microstructure were analyzed by X-ray diffraction (XRD) and optical microscopy (OM),respectively.The hardness and impact toughness were tested by Rockwel-hardmeter and impacting test enginery.And then,the morphology of fracture was researched by scanning electron microscopy (SEM).The results demonstrated that the phase compositions of HCCIs with addition of RE nanoparticles or inoculants which were M7C3 carbides + α -Fe did not change obviously.However,the prime M7C3 carbides morphology had great changes with the increase of RE nanoparticles,which changed from long lath to granular or island shape.When the content of RE nanoparticles was 0.4 wt.%,the microstructure of high chromium cast iron was refined greatly.The microstructure of carbides was coarser when the addition of RE nanoparticles was higher than 0.4 wt.%.The hardness and impact toughness of HCCIs were improved by addition of RE nanoparticles or inoculants.The impact toughness of HCCIs was increased 36.4% with RE nanoparticles of 0.4 wt.%,but the hardness changed slightly.In addition,the adding of RE nanoparticles or inoculants could reduce the degree of the brittle fracture.Fracture never seemed regular,instead,containing lots of laminates and dimples with the increase of the RE nanoparticles.The results also indicated that the optimal addition amonnt of the RE nanoparticles was 0.4%,under this composition,the microstructure and mechanical property achieved the best cooperation.In addition,through the study of erosion wear rate,when adding 0.4% RE nanoparticles into the HCCIs,the erosion wear rate got the minimum 0.32×10-3 g/mm2,which could increase 51.5% compared with that without any RE nanoparticles.

  3. Corrosion inhibition of Eleusine aegyptiaca and Croton rottleri leaf extracts on cast iron surface in 1 M HCl medium

    Energy Technology Data Exchange (ETDEWEB)

    Rajeswari, Velayutham [Department of Chemistry, Periyar University, Salem 636011 (India); Kesavan, Devarayan [Department of Chemistry, Dhirajlal Gandhi College of Technology, Salem 636309 (India); Gopiraman, Mayakrishnan [Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015 (India); Viswanathamurthi, Periasamy, E-mail: viswanathamurthi72@gmail.com [Department of Chemistry, Periyar University, Salem 636011 (India); Poonkuzhali, Kaliyaperumal; Palvannan, Thayumanavan [Department of Bio-Chemistry, Periyar University, Salem 636011 (India)

    2014-09-30

    Graphical abstract: - Highlights: • Eleusine aegyptiaca and Croton rottleri are commonly available, less-toxic and eco-friendly inhibitors for cast iron corrosion. • The active constituents present in extracts adsorbed on the iron surface to inhibit the acidic corrosion. • The higher values of E{sub a} and ΔH{sup *} point out the higher inhibition efficiency noticed for the inhibitors. • Weight loss methods at various temperature and spectral data provides evidence for adsorption mechanism of inhibitors. - Abstract: The adsorption and corrosion inhibition activities of Eleusine aegyptiaca (E. aegyptiaca) and Croton rottleri (C. rottleri) leaf extracts on cast iron corrosion in 1 M hydrochloric acid solution were studied first time by weight loss and electrochemical techniques viz., Tafel polarization and electrochemical impedance spectroscopy. The results obtained from the weight loss and electrochemical methods showed that the inhibition efficiency increased with inhibitor concentrations. It was found that the extracts acted as mixed-type inhibitors. The addition of halide additives (KCl, KBr, and KI) on the inhibition efficiency has also been investigated. The adsorption of the inhibitors on cast iron surface both in the presence and absence of halides follows the Langmuir adsorption isotherm model. The inhibiting nature of the inhibitors was supported by FT-IR, UV–vis, Wide-angle X-ray diffraction and SEM methods.

  4. A study on the structure and mechanical properties of vermicular cast iron with pearlitic-ferritic matrix

    Directory of Open Access Journals (Sweden)

    E. Guzik

    2009-07-01

    Full Text Available The results of studies on the use of magnesium alloy in modern cored wire injection method for production of vermicular graphite cast irons were described. The injection of Mg cored wire length is a treatment method which can be used to process iron melted in an electric induction furnace. This paper describes the results of using a high-magnesium ferrosilicon alloy in cored wire (Mg recovery 45% for the production of vermicular graphite cast irons at Giesserei Heunisch GmbH Foundry with the pearlite matrix with about 20%ferrite content. The results of calculations and experiments have indicated the length of the cored wire to be injected basing on the initial sulfur content and weight of the treated melt. The paper presents a microstructure matrix and vermicular graphite in standard sample and different walled castings. The results of numerous trials have shown that the magnesium cored wire process can produce high quality vermicular graphite irons under the specific industrial conditions of the above mentioned foundries.

  5. Heat Treatment Effect on Microstructure, Hardness and Wear Resistance of Cr26 White Cast Iron

    Institute of Scientific and Technical Information of China (English)

    ZHOU Shaoping; SHEN Yehui; ZHANG Hao; CHEN Dequan

    2015-01-01

    High chromium cast iron(HCCI) is taken as material of coal water slurry pump impeller, but it is susceptible to produce serious abrasive wear and erosion wear because of souring of hard coal particles. The research on optimization of heat treatments to improve abrasive wear properties of HCCI is insufficient, so effect of heat treatments on the microstructure, hardness, toughness, and wear resistance of Cr26 HCCI is investigated to determine the optimal heat treatment process for HCCI. A series of heat treatments are employed. The microstructures of HCCI specimens are examined by using optical microscopy and scanning electron microscopy. The hardness and impact fracture toughness of as-cast and heat treated specimens are measured. The wear tests are assessed by a Type M200 ring-on block wear tester. The results show the following: With increase of the quenching temperature from 950℃ to 1050℃, the hardness of Cr26 HCCI increased to a certain value, kept for a time and then decreased. The optimal heat treatment process is 2 h quenching treatment at 1000℃, followed by a subsequent 2 h tempering at 400℃. The hardness of HCCI is related to the precipitation and redissolution of secondary carbides in the process of heat treatment. The subsequent tempering treatment would result in a slight decrease of hardness but increase of toughness. The wear resistance is much related to the “supporting” effect of the matrix and the“protective” effect of the hard carbide embedded in the matrix, and the wear resistance is further dependent on the hardness and the toughness of the matrix. This research can provide an important insight on developing an optimized heat treatment method to improve the wear resistance of HCCI.

  6. Heat treatment effect on microstructure, hardness and wear resistance of Cr26 white cast iron

    Science.gov (United States)

    Zhou, Shaoping; Shen, Yehui; Zhang, Hao; Chen, Dequan

    2015-01-01

    High chromium cast iron(HCCI) is taken as material of coal water slurry pump impeller, but it is susceptible to produce serious abrasive wear and erosion wear because of souring of hard coal particles. The research on optimization of heat treatments to improve abrasive wear properties of HCCI is insufficient, so effect of heat treatments on the microstructure, hardness, toughness, and wear resistance of Cr26 HCCI is investigated to determine the optimal heat treatment process for HCCI. A series of heat treatments are employed. The microstructures of HCCI specimens are examined by using optical microscopy and scanning electron microscopy. The hardness and impact fracture toughness of as-cast and heat treated specimens are measured. The wear tests are assessed by a Type M200 ring-on block wear tester. The results show the following: With increase of the quenching temperature from 950 °C to 1050 °C, the hardness of Cr26 HCCI increased to a certain value, kept for a time and then decreased. The optimal heat treatment process is 2 h quenching treatment at 1000 °C, followed by a subsequent 2 h tempering at 400 °C. The hardness of HCCI is related to the precipitation and redissolution of secondary carbides in the process of heat treatment. The subsequent tempering treatment would result in a slight decrease of hardness but increase of toughness. The wear resistance is much related to the "supporting" effect of the matrix and the "protective" effect of the hard carbide embedded in the matrix, and the wear resistance is further dependent on the hardness and the toughness of the matrix. This research can provide an important insight on developing an optimized heat treatment method to improve the wear resistance of HCCI.

  7. Modeling of damage in ductile cast iron – The effect of including plasticity in the graphite noduless

    DEFF Research Database (Denmark)

    Andriollo, Tito; Thorborg, Jesper; Tiedje, Niels Skat;

    2015-01-01

    the assumption of infinitesimal strains and plane-stress conditions. Despite the latter being a limitation with respect to full 3D models, it allows a direct comparison with experimental investigations of damage evolution on the surface of ductile cast iron components, where the stress state is biaxial in nature......In the present paper a micro-mechanical model for investigating the stress-strain relation of ductile cast iron subjected to simple loading conditions is presented. The model is based on a unit cell containing a single spherical graphite nodule embedded in a uniform ferritic matrix, under....... In contrast to previous works on the subject, the material behaviour in both matrix and nodule is assumed to be elasto-plastic, described by the classical J2-flow theory of plasticity, and damage evolution in the matrix is taken into account via Lemaitre’s isotropic model. The effects of residual stresses due...

  8. Effect of RE Modification and Heat Treatment on Impact Fatigue Property of a Wear Resistant White Cast Iron

    Institute of Scientific and Technical Information of China (English)

    常立民; 刘建华; 张瑞军; 王继东

    2004-01-01

    The morphology of carbides, as well as the generation and propagation of fatigue cracks in a wear resistant white cast iron after impact fatigue test were observed by means of optical microscope and SEM, and the relationship among the content of RE (rare earths) in the wear resistant white cast iron and the heating temperature as well as the length and propagation speed of the fatigue cracks were determined. Based on the obtained results, the effect of RE modification and heat treatment on the impact fatigue property was further studied. Experimental results show that addition of RE can defer the time required for the generation of fatigue cracks, reduce their propagation speed and increase the impact fatigue resistance. The aforesaid effect is more noticeable in case of combined RE modification with heat treatment, which can be attributed to the variation in morphology and the distribution of the eutectic carbide network.

  9. Corrosion inhibition of Eleusine aegyptiaca and Croton rottleri leaf extracts on cast iron surface in 1 M HCl medium

    Science.gov (United States)

    Rajeswari, Velayutham; Kesavan, Devarayan; Gopiraman, Mayakrishnan; Viswanathamurthi, Periasamy; Poonkuzhali, Kaliyaperumal; Palvannan, Thayumanavan

    2014-09-01

    The adsorption and corrosion inhibition activities of Eleusine aegyptiaca (E. aegyptiaca) and Croton rottleri (C. rottleri) leaf extracts on cast iron corrosion in 1 M hydrochloric acid solution were studied first time by weight loss and electrochemical techniques viz., Tafel polarization and electrochemical impedance spectroscopy. The results obtained from the weight loss and electrochemical methods showed that the inhibition efficiency increased with inhibitor concentrations. It was found that the extracts acted as mixed-type inhibitors. The addition of halide additives (KCl, KBr, and KI) on the inhibition efficiency has also been investigated. The adsorption of the inhibitors on cast iron surface both in the presence and absence of halides follows the Langmuir adsorption isotherm model. The inhibiting nature of the inhibitors was supported by FT-IR, UV-vis, Wide-angle X-ray diffraction and SEM methods.

  10. Effects of striated laser tracks on thermal fatigue resistance of cast iron samples with biomimetic non-smooth surface

    International Nuclear Information System (INIS)

    In order to enhance the thermal fatigue resistance of cast iron materials, the samples with biomimetic non-smooth surface were processed by Neodymium:Yttrium Aluminum Garnet (Nd:YAG) laser. With self-controlled thermal fatigue test method, the thermal fatigue resistance of smooth and non-smooth samples was investigated. The effects of striated laser tracks on thermal fatigue resistance were also studied. The results indicated that biomimetic non-smooth surface was benefit for improving thermal fatigue resistance of cast iron sample. The striated non-smooth units formed by laser tracks which were vertical with thermal cracks had the best propagation resistance. The mechanisms behind these influences were discussed, and some schematic drawings were introduced to describe them.

  11. New Mechanism on Synergistic Effect of Nitrite and Triethanolamine Addition on the Corrosion of Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    K. T. Kim

    2016-01-01

    Full Text Available In general, we compared the different inhibition mechanisms of organic inhibitor with that of anodic inhibitor. When triethanolamine or nitrite was added separately to tap water for inhibiting the corrosion of ductile cast iron, large amounts of inhibitor were needed. This is because the corrosion inhibitors had to overcome the galvanic corrosion that occurs between graphite and matrix. In this work, we investigated the corrosion of ductile cast iron in tap water with/without inhibitors. The corrosion rate was measured using chemical immersion test and electrochemical methods, including anodic polarization test. The inhibited surface was analyzed using EPMA and XPS. Test solutions were analyzed by performing FT-IR measurement. When triethanolamine and nitrite coexisted in tap water, synergistic effect built up, and the inhibition effect was ca. 30 times more effective than witnessed with single addition. This work focused on the synergistic effect brought about by nitrite and triethanolamine and its novel mechanism was also proposed.

  12. Low temperature impact toughness and fracture mechanism of cast QT400-18L ductile iron with different Ni additions

    OpenAIRE

    Zhang Xinning; Qu Yingdong; Yang Hongwang

    2013-01-01

    Different contents of Ni (0.3wt.% to 1.2wt.%) were added to the QT400-18L ductile iron to investigate the effect of Ni addition on the impact toughness of cast ductile irons at low temperatures. The impact toughnesses of the samples at room and low temperatures were tested. The microstructures and fractographs were observed. Results show that with the increase of Ni addition there is a general trend of refinement of the ferrite matrix while the nodule density shows no obvious change. When the...

  13. Improvement in Abrasion Wear Resistance and Microstructural Changes with Deep Cryogenic Treatment of Austempered Ductile Cast Iron (ADI)

    Science.gov (United States)

    Šolić, Sanja; Godec, Matjaž; Schauperl, Zdravko; Donik, Črtomir

    2016-10-01

    The application of a deep cryogenic treatment during the heat-treatment processes for different types of steels has demonstrated a significant influence on their mechanical and tribological properties. A great deal of research was conducted on steels, as well as on other kinds of materials, such as hard metal, gray cast iron, aluminum, aluminum alloys, etc., but not on austempered ductile iron (ADI). In this research the influence of a deep cryogenic treatment on the microstructure and abrasive wear resistance of austempered ductile iron was investigated. The ductile cast iron was austempered at the upper ausferritic temperature, deep cryogenically treated, and afterwards tempered at two different temperatures. The abrasion wear resistance was tested using the standard ASTM G65 method. The microstructure was characterized using optical microscopy, field-emission scanning electron microscopy, electron back-scattered diffraction, and X-ray diffraction in order to define the microstructural changes that influenced the properties of the ADI. The obtained results show that the deep cryogenic treatment, in combination with different tempering temperatures, affects the matrix microstructure of the austempered ductile iron, which leads to an increase in both the abrasion wear resistance and the hardness.

  14. Effects of MC-Type Carbide Forming and Graphitizing Elements on Thermal Fatigue Behavior of Indefinite Chilled Cast Iron Rolls

    Science.gov (United States)

    Ahiale, Godwin Kwame; Choi, Won-Doo; Suh, Yongchan; Lee, Young-Kook; Oh, Yong-Jun

    2015-11-01

    The thermal fatigue behavior of indefinite chilled cast iron rolls with various V+Nb contents and Si/Cr ratios was evaluated. Increasing the ratio of Si/Cr prolonged the life of the rolls by reducing brittle cementites. Higher V+Nb addition also increased the life through the formation of carbides that refined and toughened the martensite matrix and reduced the thermal expansion mismatch in the microstructure.

  15. Effect of partial remelting time on the initial carbide in semisolid structure of hypereutectic hih Cr cast iron

    OpenAIRE

    Huang, Zhifu; Jiandong XING; He, Wei

    2004-01-01

    In order to review the effect of partial remelting time on the morphology of initial carbides, semisolid ingots of hypereutectic high Cr17 cast iron were remelted at 1 270 ℃ for four different times, and the changing characteristics of shape factor an the equivalent diameter of initial carbides were analyzed quantitatively using a Leica image analyzer. The results indicate that firstly, the evolution process of the initial carbides' morphology undergoes melting, sheroidization and refining d...

  16. Perspectives of molibdenum containing materials application for alloying of iron-carbon alloys during manufacturing of critical castings

    OpenAIRE

    A. G. Slutsky; A. S. Kalinichenko; R. E. Trubitsky; V. A. Sheinert

    2015-01-01

    Motor is one of most important part of automobile determine its economical effectiveness of usage. On the other hand, sleeves, pistons and rings are crucible parts as they determine the service life of a motor. These parts are producing in big scale – dozens of millions pieces. Increase of cylinder sleeves physical-mechanical properties results in prolongation of motor service life and improvement of motor’s characteristics. Nowadays low alloyed cast irons with perlite structure are used to m...

  17. Effect of Slope Plate Variable and Reheating on the Semi-Solid Structure of Ductile Cast Iron

    Institute of Scientific and Technical Information of China (English)

    M. Nili-Ahmadabadi; F. Pahlevani; P. Babaghorbani

    2008-01-01

    Semi-solid metal casting and forming is a promising production method for a wide range of metal alloys. In spite of many applications for semi-solid processed light alloys, few works have reported on the semi-solid processing of iron and steel. In this research, an inclined plate was used to change the dendritic structure of iron to globular. The effects of the length and slope of the plate on the casting structure were examined. The results show that the process effectively changes the dendritic structure to globular. A sloped plate angle of 7.5° and length of 560 mm with a cooling rate of 67 K·s-1 gave the optimum graphite nodu-larity and solid particle globularity. The results also show that the sloped plate more easily prevents inocu-lant fading since the total time processing is rather short. In addition the semi-solid ductile cast iron prepared using the inclined plate method was reheated to examine the effect of reheating conditions on the micro-structure and coarsening kinetics of the alloy. The solid fractions at different reheating temperatures and holding times were used to find the optimum reheating temperature range.

  18. Dissimilar joining of nickel aluminide intermetallic compound with spheroidal graphite cast iron by using combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kimata, T.; Uenishi, K.; Kobayashi, K.F. [Dept. of Manufacture Science, Osaka Univ., Osaka (Japan); Ikenaga, A. [Dept. of Metallurgy and Material Science, Osaka Prefecture Univ., Osaka (Japan)

    2004-07-01

    Nickel aluminide based intermetallic compounds were combustion synthesized from a powder mixture of elemental Al, Ni, and Si and were simultaneously bonded with spheroidal graphite cast iron substrate (FCD). Addition of Si to the elemental mixture of Al and Ni was confirmed to be effective both to the densification of combustion synthesized intermetallic compounds and to the joining between compounds and FCD. When the composition of precursor was Ni-69at%Al-9at%Si (Al/Si is the ratio of the eutectic composition), Al{sub 3}Ni and Al{sub 6}Ni{sub 3}Si were mainly combustion synthesized. In the interface between compounds and FCD, reaction layers were formed to the thickness of 10 {mu}m and the constitutent phases were identified as Al{sub 7}Fe{sub 2}Si, FeAl{sub 3} respectively. In the four point bending test of the dissimilar joints prepared by heating at 973 K for 300 s, the brittle fracture did not occurred around the joint interface but mainly in the inside of nickel aluminide coating. The interface of reaction layers with 10 {mu}m were chemically well bonded. The sample with Ni-69at%Al-9at%Si coating exhibited highest bonding strength of about 56 MPa because of the smallest void ratio of the obtained compounds. (orig.)

  19. The Kinetics and Dry-Sliding Wear Properties of Boronized Gray Cast Iron

    Directory of Open Access Journals (Sweden)

    Dong Mu

    2013-01-01

    Full Text Available Some properties of boride formed on gray cast iron (GCI have been investigated. GCI was boronized by powder-pack method using Commercial LSB-II powders at 1123, 1173, and 1223 K for 2, 4, 6, and 8 h, respectively. Scanning electron microscopy showed that boride formed on the surface of boronized GCI had tooth-shaped morphology. The hardness of boride formed on surfaces of GCI ranged from 1619 to 1343 HV0.025, and quenched and tempered GCI ranged from 400 to 610 HV0.025. The boride formed in the coating layer confirmed by X-ray diffraction analysis was Fe2B single phase. Depending on boronizing time and temperature, the thickness of coating layers on boronized GCI ranged from 26 to 105 μm. The activation energy was 209 kJ/mol for boronized GCI. Moreover, the possibility of predicting the iso-thickness of boride layers variation was studied. Dry-sliding wear tests showed that the wear resistance of boronized sample was greater than that of quenched and tempered sample.

  20. Performance Study of Cryogenically Treated HSS Drills in Drillilg Gray Cast Iron Using Orthogonal Array Technique

    Directory of Open Access Journals (Sweden)

    B.R. Ramji

    2010-08-01

    Full Text Available The objective of this research was to study the performance of cryogenically treated HSS drills for drilling gray cast iron. Drilling experiments were conducted with cutting speeds: 560, 710, 900, 1120 rpm, feeds: 0.05, 0.08, 0.12, 0.19 mm/rev and a constant drill diameter: 8 mm. The cryogenic treatment cycle consisted of cooling the test samples from room temperature to cryogenic temperature of -178.9ºC in 3 h, soaking at cryogenic temperature for 24 h and w arming to room temperature in about 5 h. The thrust force and torque were measured using drill tool dynamometer. The surface roughness (Ra, Rz, Rq and R t of the drilled specimens were measured using talysurf. The experimental lay-out was designed using Taguchi’s Orthogonal Array technique. Signal-to-Noise Ratio analysis was performed to identify the effect of the parameters on the response variables. The treated drills were found superior to the non-treated in all the test conditions in terms of lesser thrust force, torque and also superior surface roughness of the specimens. The tool wear was studied using SEM.

  1. Influence of Mg on Solidification of Hypereutectic Cast Iron: X-ray Radiography Study

    Science.gov (United States)

    Yamane, K.; Yasuda, Hideyuki; Sugiyama, A.; Nagira, T.; Yoshiya, M.; Morishita, K.; Uesugi, K.; Takeuchi, A.; Suzuki, Y.

    2015-11-01

    Radiography using a synchrotron radiation X-ray source was performed to examine solidification and melting behaviors in hypereutectic cast iron specimens containing 0.002 and 0.05mass pctMg. The solidification sequence in the alloy containing 0.002mass pctMg was (1) nucleation and growth of graphite particles of which transformed to a flake-like shape, (2) growth of γ-Fe dendrites, (3) nucleation of graphite particles ahead of the interface just prior to the eutectic solidification, and (4) the eutectic solidification. In contrast, (1) and (2) occurred nearly at the same time in the specimen containing 0.05 mass pct Mg. The addition of 0.05mass pctMg significantly reduced the temperature range in which the graphite particles grew as the primary phase. Image-based analysis of melting behavior showed that even 0.05 mass pct addition was sufficient to modify the phase equilibrium of the liquid, γ-Fe, and graphite phases. Thus, the observed influence of Mg on the solidification sequence was attributed to the modification of the phase equilibrium. The influence was consistently explained by considering the shift of the eutectic composition to the carbon side in the pseudo-ternary system. It was also suggested that supersaturation of carbon in the melt increased as the temperature decreased even though the primary graphite particles existed. The supersaturation may cause the nucleation of the graphite particles just before the eutectic solidification.

  2. Numerical Modelling of Mechanical Integrity of the Copper-Cast Iron Canister. A Literature Review

    International Nuclear Information System (INIS)

    This review article presents a summary of the research works on the numerical modelling of the mechanical integrity of the composite copper-cast iron canisters for the final disposal of Swedish nuclear wastes, conducted by SKB and SKI since 1992. The objective of the review is to evaluate the outstanding issues existing today about the basic design concepts and premises, fundamental issues on processes, properties and parameters considered for the functions and requirements of canisters under the conditions of a deep geological repository. The focus is placed on the adequacy of numerical modelling approaches adopted in regards to the overall mechanical integrity of the canisters, especially the initial state of canisters regarding defects and the consequences of their evolution under external and internal loading mechanisms adopted in the design premises. The emphasis is the stress-strain behaviour and failure/strength, with creep and plasticity involved. Corrosion, although one of the major concerns in the field of canister safety, was not included

  3. APPLICATION OF TAGUCHI AND ANOVA IN OPTIMIZATION OF PROCESS PARAMETERS OF LAPPING OPERATION FOR CAST IRON

    Directory of Open Access Journals (Sweden)

    P.R. Parate

    2013-06-01

    Full Text Available Lapping appears like a miraculous process, because it can produce surfaces that are perfectly flat, perfectly round, perfectly smooth, perfectly sharp, or perfectly accurate. Under the correct circumstances, it can impart or improve precise geometry (flatness, roundness, etc., improve surface finish, improve surface quality, achieve high dimensional accuracy (length, diameter, etc., improve angular accuracy (worm gears, couplings, etc., improve fit, and above all, sharpen the tools. This paper presents research on calculating the material removal rate for a machining component by the lapping process. The cast iron sample with an outer diameter of 50 mm and an inner diameter of 45 mm was tested on a single plate tabletop lapping machine. Experiments based on design of experiments were conducted by varying lapping load, lapping time, paste concentration, lapping fluid, and by using different types of abrasives. The Taguchi statistical method has been used in this work. Optimum machining parameters for material removal rate are estimated and verified with experimental results and are found to be in good agreement. The confirmation test exhibits high material removal rate by using Al2O3 abrasive particles together with oil as a carrier fluid under the impression of high load. Further material removal rate increases with an increase in lapping load and time.

  4. Formation of VC- composites surface layers on spheroidized graphite cast iron by laser surface cladding process

    Directory of Open Access Journals (Sweden)

    Essam R.I. Mahmoud

    2015-01-01

    Full Text Available Spheroidal graphite cast iron was laser cladded with VC powder of 44-53 μm particle size using YAG Fiber laser at 500, 1000, and 1500 W processing power and fixed travelling speed of 4 mm/s. The powder was preplaced on the surface of the specimens with 0.5 mm thickness. To prevent the oxidation, argon gas was used as a shielding gas. After the treatment, three zones were resulted: build-up (cladding, fusion, and heat affected zones. The build-up zone was a composite structure consisted of VC particles/dendrites dispersed in a matrix of martensite, carbides and ledeburite structure. At 500 W, most of the VC particles were appeared as their original large size. When the laser power was increased to 1000 W or more, the VC particles were melted and then re-solidified in the form of fine dendrites. The surface hardness of the cladded area was remarkably improved. As the distance from the free surface increases, the hardness decreases. The average hardness value at the surface treated by 500 W was about 710 HV (3 times of the hardness of substrate, while it reached to about 1340 HV and 1520 HV at powers of 1000 W and 1500 W, respectively. The wear resistance of the laser treated samples was improved at all investigated laser processing powers, especially at 1000W and 1500 W.

  5. Application of Time-series Analysis in Control of Chemical Composition of Grey Cast Iron

    Directory of Open Access Journals (Sweden)

    M. Perzyk

    2012-12-01

    Full Text Available The aim of the paper was an attempt at applying the time-series analysis to the control of the melting process of grey cast iron inproduction conditions. The production data were collected in one of Polish foundries in the form of spectrometer printouts. The quality of the alloy was controlled by its chemical composition in about 0.5 hour time intervals. The procedure of preparation of the industrial data is presented, including OCR-based method of transformation to the electronic numerical format as well as generation of records related to particular weekdays. The computations for time-series analysis were made using the author’s own software having a wide range of capabilities, including detection of important periodicity in data as well as regression modeling of the residual data, i.e. the values obtained after subtraction of general trend, trend of variability amplitude and the periodical component. The most interesting results of the analysis include: significant 2-measurements periodicity of percentages of all components, significance 7-day periodicity of silicon content measured at the end of a day and the relatively good prediction accuracy obtained without modeling of residual data for various types ofexpected values. Some practical conclusions have been formulated, related to possible improvements in the melting process controlprocedures as well as more general tips concerning applications of time-series analysis in foundry production.

  6. Thermal energy storage using Prestressed Cast Iron Vessels (PCIV). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gilli, P.V.; Beckmann, G.; Schilling, F.E.

    1977-06-01

    The wide-spread application of thermal energy and high-pressure air storage to electric power generation has so far been hampered by the lack of large high-pressure storage vessels of reasonable cost. Welded steel vessels are too expensive for this purpose. However, the Prestressed Cast Iron Vessel (PCIV), developed as a nuclear reactor pressure vessel by Siempelkamp Giesserei KG of Krefeld, FRG, has the potential of complying with these requirements. Applications of the PCIV include: high-pressure air storage for the quick start-up of open cycle gas turbines; pressurized high-temperature sensible heat storage by means of solids with a gaseous heat transfer medium for closed cycle gas turbines of future solar power stations; and pressurized hot water storage for nuclear, solar, or coal-fired steam power plants, employing either separate peaking turbines or overloadable main turbine sets. A reference PCIV of 8000 m/sup 3/, 275/sup 0/C, with hot going walls and cold going tendons was developed, designed, and stress-analysed. A parametric study showed that pressures between 4 and 8 MPa and L/D ratios larger than 4 should be optimal. Cost of the reference vessel is about $10,000,000 or 33 to 50 $/kWh electric energy stored. Cost of peak power will be from 30 to 100 mills/kWh, depending on many parameters.

  7. A mathematical model for electrochemical chloride removal from marine cast iron artifacts

    Institute of Scientific and Technical Information of China (English)

    Weizhen OUYANG; Xia CAO; Ning WANG

    2009-01-01

    The aim of this article was to theoretically study diffusion and migration of chlo-ride ions during electrochemical chloride removal. The proposed model would enable optimization of its application by predicting the optimal treatment time and current combination. A mathematical model for simulating the transport behavior of chloride ions was developed by consideration of diffusion and migration of chloride ions when a constant DC current density was applied through the marine cast iron artifacts. The corresponding tests were conducted to validate the mathematical model. This model predicted the data of the extraction ratio of the chloride ion that correlated satisfac-torily with the experimental values. An important issue in electrochemical chloride removal was to understand how chloride ions moved, taking account of diffusion and migration of chloride ions and the release of binding chloride ions. The effects of the treatment time, externally applied current density, chloride diffusion coefficient, and rate constant of release of binding chloride ion on chloride removal are studied. The specific quantitative details applied to one-dimensional model were discussed here. This article has proposed a mathematical model for the first time, which was showed to be a useful tool that can reveal the ionic transport mechanism and optimize the application during electrochemical chloride removal.

  8. Application of Averaged Voronoi Polyhedron in the Modelling of Crystallisation of Eutectic Nodular Graphite Cast Iron

    Directory of Open Access Journals (Sweden)

    A.A. Burbelko

    2013-01-01

    Full Text Available The study presents a mathematical model of the crystallisation of nodular graphite cast iron. The proposed model is based on micro- andmacromodels, in which heat flow is analysed at the macro level, while micro level is used for modelling of the diffusion of elements. The use of elementary diffusion field in the shape of an averaged Voronoi polyhedron [AVP] was proposed. To determine the geometry of the averaged Voronoi polyhedron, Kolmogorov statistical theory of crystallisation was applied. The principles of a differential mathematical formulation of this problem were discussed. Application of AVP geometry allows taking into account the reduced volume fraction of the peripheral areas of equiaxial grains by random contacts between adjacent grains.As a result of the simulation, the cooling curves were plotted, and the movement of "graphite-austenite" and "austenite-liquid” phaseboundaries was examined. Data on the microsegregation of carbon in the cross-section of an austenite layer in eutectic grains wereobtained. Calculations were performed for different particle densities and different wall thicknesses. The calculation results were compared with experimental data.

  9. Study on fragmentation and dissolution behavior of carbide in a hot-rolled hypereutectic high chromium cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fei; Jiang, Yehua, E-mail: jiangyehua@kmust.edu.cn; Xiao, Han; Tan, Jun

    2015-01-05

    Highlights: • The method to prepare Carbon steel/High chromium iron is totally new. • High chromium iron can achieve small plastic deformation during hot rolling process. • Carbides in high chromium irons are crushed, refined obviously and becoming isolated, which is benefit to improve the impact toughness. • The carbide fragmentation and dissolution behavior of the hot-rolled HCCI were analyzed. - Abstract: A sandwich-structured composite containing a hypereutectic high chromium cast iron (HCCI) and low carbon steel (LCS) claddings was newly fabricated by centrifugal casting, then the blank was hot-rolled into composite plate. The carbide fragmentation and dissolution behavior of the hot-rolled HCCI were analyzed. During hot rolling, significant refinement of carbides was discovered in hot-rolled HCCI specimens. The carbides were broken and partly dissolved into the austenite matrix. The results show that carbides are firstly dissolved under the action of stress. There are grooves appeared at the boundaries of the carbides. The grooves reduce the cross section of the carbide. When the cross section of the carbide reaches to the required minimum critical cross section, the carbide breaks through the tensile force. After break, carbides continue to dissolve since more interfaces between the matrix and carbides are generated. The secondary carbides precipitated due to the dissolution are index as fcc and stacking faults parallel to the {1 1 1} are observed.

  10. Theoretic and Experimental Studies on the Casting of Large Die-Type Parts Made of Lamellar Graphite Grey Pig Irons by Using the Technology of Polystyrene Moulds Casting from Two Sprue Cups

    Directory of Open Access Journals (Sweden)

    Constantin Marta

    2012-01-01

    Full Text Available This paper presents a comparative analysis between the practical results of pig iron die-type part casting and the results reached by simulation. The insert was made of polystyrene, and the casting was downward vertical. As after the part casting and heat treatment cracks were observed in the part, it became necessary to locate and identify these fissures and to establish some measures for eliminating the casting defects and for locating them. The research method was the comparisons of defects identified through verifications, measurements, and metallographic analyses applied to the cast part with the results of some criteria specific to simulation after simulating the casting process. In order to verify the compatibility between reality and simulation, we then simulated the part casting respecting the real conditions in which it was cast. By visualising certain sections of the cast part during solidification, relevant details occur about the possible evolution of defects. The simulation software was AnyCasting, the measurements were done through nondestructive methods.

  11. Effect of rare earth element on microstructure formation and mechanical properties of thin wall ductile iron castings

    International Nuclear Information System (INIS)

    Ductile iron castings with 2, 3, 4, 6, 8, and 25 mm thickness and various amount of rare earth elements (RE) (from 0 to 0.04%), were cast in sand molds to identify the effects of sample thickness and the content of RE% on microstructural formation and selected mechanical properties. The effects of RE content and sample thickness on microstructural formation, including on graphite nodule count, graphite nodule shape, spherodization, and ferrite amount, were observed. The yield strength of the samples with RE within the range investigated were lower than those of the specimens without RE. The elongation was improved with the addition of RE up to 0.03% in ductile iron castings. The additions of 0.02% RE caused a smaller graphite nodule size and a higher number of graphite nodules than those in the specimen without RE at all levels of RE addition; the nodule count decreased with increase in section size. The chill zones were observed in the 2 mm thick samples, but were absent in the samples from castings which were thicker than 2 mm, irrespective of the addition of RE. The nodularity of graphite nodules improved due to the addition of 0.02-0.04% RE. The specimens with RE content up to 0.03% had a lower tensile strength and hardness, higher elongation than that of the specimens without RE. The ferrite content in all castings increased with additions of 0.02% RE. The tensile strengths of the 2 and 3 mm thick samples were also estimated using the relationship between strength and hardness, obtained from the data on the tensile strength and hardness of the 25 mm thick samples

  12. Development of ELID mirror surface grinding by cast iron bond grinding wheel. Ohkochi memorial technology prize; Chutetsu bond toishi ni yoru denkai inpurosesu doresshingu (ELID) kyomen kensakuho no kaihatsu. Okochi kinen gijutsusho jusho ni yosete

    Energy Technology Data Exchange (ETDEWEB)

    Omori, H.; Takahashi, I. [Institute of Physical and Chemical Research, Tokyo (Japan); Nakagawa, T. [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science; Hagiuda, Y.; Karikome, K. [Tokyo Metropolitan College of Aeronautical Engineering, Tokyo (Japan)

    1997-08-01

    Development was accomplished on the electrolytic in-process dressing (ELID) mirror surface grinding process using a cast iron bonded grinding wheel. This paper describes the history of the development, which may be summarized as follows: a study was begun on powder forging of cutting chips in 1970; a research was started on powder forging of decarburized cast iron powder; developments were made on powder metallurgy of cast irons and cast iron bonded lapping tools in 1980, and cast iron bonded diamond grinding wheels were put on the market; a high-efficiency grinding process using MC and cast iron fiber-bonded grinding wheels were developed in 1985 and the grinding wheels made therefrom were put on the market; and a study was begun on the ELID grinding in 1987, and marketing was started on power supply, grinding liquid and tools for the ELID grinding process in 1990. Discussions on converting raw materials for the powder forging into cutting chips have triggered developing the cast iron bonded grinding wheel. The cast iron bonded diamond grinding wheel improves dressability and sharpness of conventional grinding wheels. The grinding wheel is fabricated by mixing carbonyl iron powder, diamond grinding grains and cast iron powder, pressing the mixture in a die, sintering it at 1140 degC, and assembling and dressing the sinter. The grinding stone can grind high-tech materials. 4 figs.

  13. The efect of cooling rate on the properties of alloyed cast-iron sizing roll

    Directory of Open Access Journals (Sweden)

    P. Jelić

    2010-01-01

    Full Text Available Directional heat transfer was investigated by temperature measurements in the casting and in the mould using thermocouples. Measurements were performed in operating conditions during pouring, solidification, and cooling of the casting. Total measurement time was 35,5 hours. After cutting, specimens were extracted for metallographic and hardness testing. Test results provided confirmation of directional heat transfer (directional cooling that would ensure acquirement of a desired casting structure and mechanical properties.

  14. Effects of heat treatment on mechanical properties and microstructure of tungsten fiber reinforced grey cast iron matrix composites

    Institute of Scientific and Technical Information of China (English)

    Niu Libin; Xu Yunhua; Peng jianHong; Wu Hong

    2009-01-01

    In this study, grey cast iron matrix composites reinforced by different volume fractions of tungsten fibers (Vr=0.95 %, 1.90 %, 2.85 %, 3.80 %) were investigated in as-cast and under the heat treatment temperatures of 1,000℃ and 1,100℃. The microstructure and mechanical properties of the composites were analyzed and tested by means of SEM, micro-hardness tester and three-point bend testing. The results show that with increasing of the volume fraction of tungsten fibers, the composites reinforced by the tungsten fiber have higher flexural strength and modulus than that of cast iron without reinforcement, and the flexural strength increases with the increasing of heat treatment temperatures. Due to diffusion reaction between matrix and reinforcing phases, the process of heat treatment, the number of graphite flakes in the matrix seemingly becomes lower; and some hard carbide particles are formed around the residual tungsten fibers. Not only does the hardness of both matrix and reinforcement change tremendously, but also the region of reinforcement is also extended from the original 0.11 mm to 0.19 mm in radius.

  15. Effect of Ti, Nb, Cr and B on Structure and Mechanical Properties of High Aluminium Cast Iron

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2013-01-01

    Full Text Available In this work, a method was investigated to eliminate the presence of undesirable Al4C3 phases in a high-aluminium alloys, and thusimprove the production process. The melting conditions employed in this work enabled the formation of a Fe-Al-C liquid solution.Moreover, titanium additions into the liquid allowed the precipitation of TiC. According to this reaction, the extent of carbon removal from the melt is strongly influenced by the amount of Ti additions. Hence, proper titanium levels can result in total removal of carbon from the liquid. Notice from this figure that Ti additions above 4.5%, totally eliminate the undesirable Al4C3 precipitates. Making Cr, Ti, B additions reduces size of FeAl alloys grains. In addition, this work indicates that the high-aluminium cast iron posses high oxidation resistance, exceeding that of high-chromium cast iron and chromium cast steels. Finally, the alloy ductility can be enhanced by additions of dopants such as B and Cr. Hence, additions of 0.03% B and 0.03%B-5% Cr combined with a heat treatment were implemented. As a result, the alloy ductility was significantly improved, where the strain of up to 5.3%, (B alone or 15% (B-Cr were obtained.

  16. Effect of alloying elements on branching of primary austenite dendrites in Ni-Mn-Cu cast iron

    Directory of Open Access Journals (Sweden)

    A. Janus

    2011-04-01

    Full Text Available Within the research, determined were direction and intensity of influence of individual alloying elements on branching degree of primary austenite dendrites in austenitic cast iron Ni-Mn-Cu. 30 cast shafts dia. 20 mm were analysed. Chemical composition of the alloywas as follows: 2.0 to 3.3 % C, 1.4 to 3.1 % Si, 2.8 to 9.5 % Ni, 0.4 to 7.7 % Mn, 0 to 4.6 % Cu, 0.14 to 0.16 % P and 0.03 to 0.04 % S.Analysis was performed separately for the dendrites solidifying in directional and volumetric way. The average distance "x" between the2nd order arms was accepted as the criterion of branching degree. It was found that influence of C, Si, Ni, Mn and Cu on the parameter "x"is statistically significant. Intensity of carbon influence is decidedly higher than that of other elements, and the influence is more intensive in the directionally solidifying dendrites. However, in the case of the alloyed cast iron Ni-Mn-Cu, combined influence of the alloying elements on solidification course of primary austenite can be significant.

  17. Effect of Destabilizing Heat Treatment on Solid-State Phase Transformation in High-Chromium Cast Irons

    Science.gov (United States)

    Efremenko, Vasily; Shimizu, Kazumichi; Chabak, Yuliia

    2013-12-01

    This work describes the influence of secondary carbide precipitation at destabilizing heat treatment on kinetics of austenite phase transformation at a subcritical range of temperatures in high-Cr cast irons, alloyed with 4 to 6 wt pct of Mn or by complex Mn-Ni-Mo (Mn-Cu-Mo). The samples were soaked at 1073 K to 1373 K (800 °C to 1100 °C) (destabilization) or at 573 K to 973 K (300 °C to 700 °C) (subcritical treatment); the combination of destabilization and subcritical treatment was also used. The investigation was carried out with application of optical and electron microscopy and bulk hardness measurement. Time-temperature-transformation (TTT) curves of secondary carbide precipitation and pearlite transformation for as-cast austenite and destabilized austenite were built in this work. It was determined that the secondary carbide precipitation significantly inhibited the pearlite transformation rate at 823 K to 973 K (550 °C to 700 °C). The inhibition effect is more evident in cast irons alloyed with complex Mn-Ni-Mo or Mn-Cu-Mo. The possible reasons for transformation decelerating could be austenite chemical composition change (enriching by Ni, Si, and Cu, and depleting by Cr) and stresses induced by secondary carbide precipitation.

  18. Effects of heat treatment on mechanical properties and microstructure of tungsten fi ber reinforced grey cast iron matrix composites

    Directory of Open Access Journals (Sweden)

    Peng jianHong

    2009-11-01

    Full Text Available In this study, grey cast iron matrix composites reinforced by different volume fractions of tungsten fibers (Vr = 0.95 %, 1.90 %, 2.85 %, 3.80 % were investigated in as-cast and under the heat treatment temperatures of 1,000℃ and 1,100℃. The microstructure and mechanical properties of the composites were analyzed and tested by means of SEM, micro-hardness tester and three-point bend testing. The results show that with increasing of the volume fraction of tungsten fibers, the composites reinforced by the tungsten fiber have higher fl exural strength and modulus than that of cast iron without reinforcement, and the fl exural strength increases with the increasing of heat treatment temperatures. Due to diffusion reaction between matrix and reinforcing phases, the process of heat treatment, the number of graphite fl akes in the matrix seemingly becomes lower; and some hard carbide particles are formed around the residual tungsten fi bers. Not only does the hardness of both matrix and reinforcement change tremendously, but also the region of reinforcement is also extended from the original 0.11 mm to 0.19 mm in radius.

  19. Corrosion resistance of cast irons and titanium alloys as reference engineered metal barriers for use in basalt geologic storage: a literature assessment

    Energy Technology Data Exchange (ETDEWEB)

    Charlot, L.A.; Westerman, R.E.

    1981-07-01

    A survey and assessment of the literature on the corrosion resistance of cast irons and low-alloy titanium are presented. Selected engineering properties of cast iron and titanium are briefly described; however, the corrosion resistance of cast iron and titanium in aqueous solutions or in soils and their use in a basalt repository are emphasized. In evaluating the potential use of cast iron and titanium as structural barrier materials for long-lived nuclear waste packages, it is assumed that titanium has the general corrosion resistance to be used in relatively thin cross sections whereas the cost and availability of cast iron allows its use even in very thick cross sections. Based on this assumption, the survey showed that: The uniform corrosion of low-alloy titanium in a basalt environment is expected to be extremely low. A linear extrapolation of general corrosion rates with an added corrosion allowance suggests that a 3.2- to 6.4-mm-thick wall may have a life of 1000 yr. Pitting and crevice corrosion are not likely corrosion modes in basalt ground waters. It is also unlikely that stress corrosion cracking (SCC) will occur in the commercially pure (CP) titanium alloy or in palladiumor molybdenum-alloyed titanium materials. Low-alloy cast irons may be used as barrier metals if the environment surrounding the metal keeps the alloy in the passive range. The solubility of the corrosion product and the semipermeable nature of the oxide film allow significant uniform corrosion over long time periods. A linear extrapolation of high-temperature corrosion rates on carbon steels and corrosion rates of cast irons in soils gives an estimated metal penetration of 51 to 64 mm after 1000 yr. A corrosion allowance of 3 to 5 times that suggests that an acceptable cast iron wall may be from 178 to 305 mm thick. Although they cannot be fully assessed, pitting and crevice corrosion should not affect cast iron due to the ground-water chemistry of basalt.

  20. Corrosion resistance of cast irons and titanium alloys as reference engineered metal barriers for use in basalt geologic storage: a literature assessment

    International Nuclear Information System (INIS)

    A survey and assessment of the literature on the corrosion resistance of cast irons and low-alloy titanium are presented. Selected engineering properties of cast iron and titanium are briefly described; however, the corrosion resistance of cast iron and titanium in aqueous solutions or in soils and their use in a basalt repository are emphasized. In evaluating the potential use of cast iron and titanium as structural barrier materials for long-lived nuclear waste packages, it is assumed that titanium has the general corrosion resistance to be used in relatively thin cross sections whereas the cost and availability of cast iron allows its use even in very thick cross sections. Based on this assumption, the survey showed that: The uniform corrosion of low-alloy titanium in a basalt environment is expected to be extremely low. A linear extrapolation of general corrosion rates with an added corrosion allowance suggests that a 3.2- to 6.4-mm-thick wall may have a life of 1000 yr. Pitting and crevice corrosion are not likely corrosion modes in basalt ground waters. It is also unlikely that stress corrosion cracking (SCC) will occur in the commercially pure (CP) titanium alloy or in palladiumor molybdenum-alloyed titanium materials. Low-alloy cast irons may be used as barrier metals if the environment surrounding the metal keeps the alloy in the passive range. The solubility of the corrosion product and the semipermeable nature of the oxide film allow significant uniform corrosion over long time periods. A linear extrapolation of high-temperature corrosion rates on carbon steels and corrosion rates of cast irons in soils gives an estimated metal penetration of 51 to 64 mm after 1000 yr. A corrosion allowance of 3 to 5 times that suggests that an acceptable cast iron wall may be from 178 to 305 mm thick. Although they cannot be fully assessed, pitting and crevice corrosion should not affect cast iron due to the ground-water chemistry of basalt

  1. The Effect of Homogenization Heat Treatment on Thermal Expansion Coefficient and Dimensional Stability of Low Thermal Expansion Cast Irons

    Science.gov (United States)

    Chen, Li-Hao; Liu, Zong-Pei; Pan, Yung-Ning

    2016-05-01

    In this paper, the effect of homogenization heat treatment on α value [coefficient of thermal expansion (10-6 K-1)] of low thermal expansion cast irons was studied. In addition, constrained thermal cyclic tests were conducted to evaluate the dimensional stability of the low thermal expansion cast irons with various heat treatment conditions. The results indicate that when the alloys were homogenized at a relatively low temperature, e.g., 1023 K (750 °C), the elimination of Ni segregation was not very effective, but the C concentration in the matrix was moderately reduced. On the other hand, if the alloys were homogenized at a relatively high temperature, e.g., 1473 K (1200 °C), opposite results were obtained. Consequently, not much improvement (reduction) in α value was achieved in both cases. Therefore, a compound homogenization heat treatment procedure was designed, namely 1473 K (1200 °C)/4 hours/FC/1023 K (750 °C)/2 hours/WQ, in which a relatively high homogenization temperature of 1473 K (1200 °C) can effectively eliminate the Ni segregation, and a subsequent holding stage at 1023.15 K (750 °C) can reduce the C content in the matrix. As a result, very low α values of around (1 to 2) × 10-6 K-1 were obtained. Regarding the constrained thermal cyclic testing in 303 K to 473 K (30 °C to 200 °C), the results indicate that regardless of heat treatment condition, low thermal expansion cast irons exhibit exceedingly higher dimensional stability than either the regular ductile cast iron or the 304 stainless steel. Furthermore, positive correlation exists between the α 303.15 K to 473.15 K value and the amount of shape change after the thermal cyclic testing. Among the alloys investigated, Heat I-T3B (1473 K (1200 °C)/4 hours/FC/1023 K (750 °C)/2 hours/WQ) exhibits the lowest α 303 K to 473 K value (1.72 × 10-6 K-1), and hence has the least shape change (7.41 μm) or the best dimensional stability.

  2. The Effect of Homogenization Heat Treatment on Thermal Expansion Coefficient and Dimensional Stability of Low Thermal Expansion Cast Irons

    Science.gov (United States)

    Chen, Li-Hao; Liu, Zong-Pei; Pan, Yung-Ning

    2016-08-01

    In this paper, the effect of homogenization heat treatment on α value [coefficient of thermal expansion (10-6 K-1)] of low thermal expansion cast irons was studied. In addition, constrained thermal cyclic tests were conducted to evaluate the dimensional stability of the low thermal expansion cast irons with various heat treatment conditions. The results indicate that when the alloys were homogenized at a relatively low temperature, e.g., 1023 K (750 °C), the elimination of Ni segregation was not very effective, but the C concentration in the matrix was moderately reduced. On the other hand, if the alloys were homogenized at a relatively high temperature, e.g., 1473 K (1200 °C), opposite results were obtained. Consequently, not much improvement (reduction) in α value was achieved in both cases. Therefore, a compound homogenization heat treatment procedure was designed, namely 1473 K (1200 °C)/4 hours/FC/1023 K (750 °C)/2 hours/WQ, in which a relatively high homogenization temperature of 1473 K (1200 °C) can effectively eliminate the Ni segregation, and a subsequent holding stage at 1023.15 K (750 °C) can reduce the C content in the matrix. As a result, very low α values of around (1 to 2) × 10-6 K-1 were obtained. Regarding the constrained thermal cyclic testing in 303 K to 473 K (30 °C to 200 °C), the results indicate that regardless of heat treatment condition, low thermal expansion cast irons exhibit exceedingly higher dimensional stability than either the regular ductile cast iron or the 304 stainless steel. Furthermore, positive correlation exists between the α 303.15 K to 473.15 K value and the amount of shape change after the thermal cyclic testing. Among the alloys investigated, Heat I-T3B (1473 K (1200 °C)/4 hours/FC/1023 K (750 °C)/2 hours/WQ) exhibits the lowest α 303 K to 473 K value (1.72 × 10-6 K-1), and hence has the least shape change (7.41 μm) or the best dimensional stability.

  3. Preliminary science report on the directional solidification of hypereutectic cast iron during KC-135 low-G maneuvers

    Science.gov (United States)

    Curreri, P. A.; Stefanescu, D. M.; Hendrix, J. C.

    1983-01-01

    An ADSS-P directional solidification furnace was reconfigured for operation on the KC-135 low-g aircraft. The system offers many advantages over quench ingot methods for study of the effects of sedimentation and convection on alloy formation. The directional sodification furnace system was first flown during the September 1982 series of flights. The microstructure of the hypereutectic cast iron sample solidified on one of these flights suggests a low-g effect on graphite morphology. Further experiments are needed to ascertain that this effect is due to low-gravity and to deduce which of the possible mechanisms is responsible for it.

  4. Microstructure and Wear Behavior of TiC Coating Deposited on Spheroidized Graphite Cast Iron Using Laser Surfacing

    OpenAIRE

    E. R. I. Mahmoud; H. F. El-Labban

    2014-01-01

    Spheroidal graphite cast iron was laser cladded with TiC powder using a YAG fiber laser at powers of 700, 1000, 1500 and 2000 W. The powder was preplaced on the surface of the specimens with 0.5 mm thickness. Sound cladding and fusion zones were observed at 700, 1000 and 1500 W powers. However, at 2000 W, cracking was observed in the fusion zone.  At 700 W, a build-up zone consisted of fine TiC dendrites inside a matrix composed of martensite, cementite (Fe3C), and some blocks of retaine...

  5. INFLUENCE OF THE METAL MATRIX STRUCTURE OF HIGH-DUTY CAST IRON ON COERCIVELY SENSITIVE MAGNETIC PARAMETER AND SPEED OF SOUND

    OpenAIRE

    S. G. Sandomirsky; V. L. Tsukerman

    2013-01-01

    The analysis of influence of changes in the structure of the metal base of high-duty cast ironcompact castings with a constant form of graphite inclusions on the coercive sensitive magnetic parameters and the speed of sound is held. The efficiency of joint use of the results of magnetic and ultrasonic measurements to control the shape of inclusions in the iron and pearlite content in its metallic matrix is shown.

  6. INFLUENCE OF THE METAL MATRIX STRUCTURE OF HIGH-DUTY CAST IRON ON COERCIVELY SENSITIVE MAGNETIC PARAMETER AND SPEED OF SOUND

    Directory of Open Access Journals (Sweden)

    S. G. Sandomirsky

    2013-01-01

    Full Text Available The analysis of influence of changes in the structure of the metal base of high-duty cast ironcompact castings with a constant form of graphite inclusions on the coercive sensitive magnetic parameters and the speed of sound is held. The efficiency of joint use of the results of magnetic and ultrasonic measurements to control the shape of inclusions in the iron and pearlite content in its metallic matrix is shown.

  7. Active Mg Estimation Using Thermal Analysis: A Rapid Method to Control Nodularity in Ductile Cast Iron Production

    Science.gov (United States)

    Suárez, Ramon; Sertucha, Jon; Larrañaga, Pello; Lacaze, Jacques

    2016-10-01

    Appropriate nodularity in ductile iron castings is strongly associated with the presence of high enough not combined Mg dissolved in the melt to cast. However, the residual Mg which is commonly measured for production control accounts for both dissolved Mg and Mg combined as oxides and sulfides. To account for the uncertainties associated with such a control, it is quite usual to over treat the melt with the risk of porosity appearance. A new methodology based on thermal analysis has been developed in the present work so as to estimate the amount of free Mg dissolved in the melt ready for pouring. A combination of Te mixture and a new "reactive mixture" composed of sulfur plus a commercial inoculant has been prepared for this purpose. This reactive mixture is able to transform the magnesium remaining dissolved in the melt to combined forms of this element. Experiments performed both during start of production (when Mg overtreatment is usual) and during normal mass production indicate that important variations of free Mg occur without relevant changes in residual Mg content as determined by spectrometry. The method developed in the present work has shown to be highly effective to detect those melt batches where active Mg content is not high enough for guaranteeing a correct nodularity of castings. Selection of proper active Mg thresholds and a correct inoculation process are critical to avoid "false"-negative results when using this new method.

  8. Active Mg Estimation Using Thermal Analysis: A Rapid Method to Control Nodularity in Ductile Cast Iron Production

    Science.gov (United States)

    Suárez, Ramon; Sertucha, Jon; Larrañaga, Pello; Lacaze, Jacques

    2016-07-01

    Appropriate nodularity in ductile iron castings is strongly associated with the presence of high enough not combined Mg dissolved in the melt to cast. However, the residual Mg which is commonly measured for production control accounts for both dissolved Mg and Mg combined as oxides and sulfides. To account for the uncertainties associated with such a control, it is quite usual to over treat the melt with the risk of porosity appearance. A new methodology based on thermal analysis has been developed in the present work so as to estimate the amount of free Mg dissolved in the melt ready for pouring. A combination of Te mixture and a new "reactive mixture" composed of sulfur plus a commercial inoculant has been prepared for this purpose. This reactive mixture is able to transform the magnesium remaining dissolved in the melt to combined forms of this element. Experiments performed both during start of production (when Mg overtreatment is usual) and during normal mass production indicate that important variations of free Mg occur without relevant changes in residual Mg content as determined by spectrometry. The method developed in the present work has shown to be highly effective to detect those melt batches where active Mg content is not high enough for guaranteeing a correct nodularity of castings. Selection of proper active Mg thresholds and a correct inoculation process are critical to avoid "false"-negative results when using this new method.

  9. Simulation of Heat Flow in Computational Method and Its Verification on the Structure and Property of Gray Cast Iron

    Directory of Open Access Journals (Sweden)

    S. K. Shaha

    2010-01-01

    Full Text Available Problem statement: The solidification of materials depends on the cooling rate of the materials which is governed by heat flow in the mould and alloy composition. Solidification rate also affects the structure and properties of the materials. Approach: In the present study, the heat flow of cold set resin bonded sand mould was simulated using JL Analyzer FEM analysis software. To verify the model, the gray cast iron was melted at 1350°C temperature and poured into a resin bonded sand mould at 1300°C. Results: It showed that most of the heat-reserve at the junction of the mould which was nearer to the source of liquid metal and the lowest heat-reserve at the end of the mould. So, the solidification rate was very high at the end of the mould wall whereas it was comparatively low near the sprue of the mould. Conclusion: Finally, depending on the heat-flow through the mould, the solidification rate changed the microstructure from chill, mottled and gray cast iron and hardness changed from 95.1 HRB-78.78 HRB.

  10. Corrosion behaviour of some cast stainless steels and high alloy white irons in scrubber solutions of flue gas desulfurization plants

    International Nuclear Information System (INIS)

    Weight loss and electrochemical measurements have been used to determine the ranges of applicability of cast austenitic stainless steel Werkstoff No. 1.4408, of two special cast ferritic-austenitic stainless steels NORIDUR 9.4460 and NORICLOR NC 246 and of two high alloy Cr and CrMo white irons in scrubber solutions of Flue Gas Desulfurization (FGD) plants. Whereas the Werkstoff No. 1.4408 cannot be used due to its insufficient resistance to general and localized corrosion, NORIDUR 9.4460 can be used in scrubber solutions with pH > 2.5 and chloride concentrations up to 80 g/l, NORICLOR NC 246 with 5% Mo even in liquids with pH > 1.5 and chlorides up to 100 g/l. At lower pH-values both duplex stainless steels show active corrosion of either the austenite or the ferrite depending on the contents of hydrochloric acid in the solution. At higher chloride concentrations pitting occurs on the passive materials. The CrMo white iron NORILOY NL 252 with 25% Cr and 2% Mo can be used in scrubber liquids with pH > 3.5. As the ferritic matrix is cathodically protected by the precipitated carbides, there is no sensitivity of this alloy to chlorides. In liquids with pH < 3.5 there is selective corrosion of the ferritic matrix. For practical application of all these cast alloys the limits for purely corrosive attack have to be modified to assure resistance to a superposition of corrosion, erosion/abrasion and cavitation on parts exposed to real flow conditions in FGD scrubbers. (orig.)

  11. 钢和铸铁激光淬硬的工艺原理探讨%Technique Principle of Laser Hardening Steeland Cast Iron

    Institute of Scientific and Technical Information of China (English)

    刘文今; 钟敏霖

    2001-01-01

    讨论了钢和铸铁在激光表面淬硬时的物理冶金学过程,提出了激光淬硬获得优良效果的工艺设计依据,介绍了对钢铁零件激光淬硬表层的检验方法。%This paper discussed the physicalmetallurgical process during laser hardening withsteel and cast iron, Presented the technique designprinciple of laser hardening to achieve good resultsIt also introduced the inspection method for laserhardened surface of steel and cast iron.

  12. Temperature measurement during solidification of thin wall ductile cast iron. Part 2: Numerical simulations

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    of factors influencing temperature measurement in thin walled castings was carried out. The calculations are based on and compared with experiments presented in part 1 of this paper. The analysis shows that the presence of the TC has only a minor influence on the microstructure of the casting. The influence...... is restricted to a volume within 2mm from the TC. Measured cooling curves will have the right shape. In a 2 mm plate the measured temperature was 17 °C below the true temperature in the melt. However, the cooling curve provides important information about nucleation and growth during solidification....

  13. Experimental validation of error in temperature measurements in thin walled ductile iron castings

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2007-01-01

    thicknesses between 2 and 4.3 mm. The thermocouples were accurately placed at the same distance from the surface of the casting for different plate thicknesses. It is shown that when measuring the temperature in plates with thickness between 2 and 4.3 mm the measured temperature will be parallel shifted to a...... level about 20C lower than the actual temperature in the casting. Factors affecting the measurement error (oxide layer on the thermocouple wire, penetration into the ceramic tube and variation in placement of thermocouple) are discussed. Finally, it is shown how useful cooling curve may be obtained in...

  14. SORTING CAPABILITIES OF CASTINGS FROM NODULAR AND GRAY IRON BY THE STRUCTURE BY THE RESULT OF THE MEASUREMENT OF THE MAGNETIC PARAMETERS AND THE SPEED OF SOUND

    Directory of Open Access Journals (Sweden)

    S. G. Sandomirskiy

    2013-01-01

    Full Text Available The results of the analysis of the influence of changes in the structure of the metal substrate and form of graphite inclusions in cast iron on the magnetic coercive sensitive parameter and the speed of sound are given. The efficiency of shared use of the results of magnetic and ultrasonic measurements to control the shape of inclusions in ductile iron and pearlite content in its metal matrix is shown.

  15. SORTING CAPABILITIES OF CASTINGS FROM NODULAR AND GRAY IRON BY THE STRUCTURE BY THE RESULT OF THE MEASUREMENT OF THE MAGNETIC PARAMETERS AND THE SPEED OF SOUND

    OpenAIRE

    S. G. Sandomirskiy; V. L. Zuckerman

    2013-01-01

    The results of the analysis of the influence of changes in the structure of the metal substrate and form of graphite inclusions in cast iron on the magnetic coercive sensitive parameter and the speed of sound are given. The efficiency of shared use of the results of magnetic and ultrasonic measurements to control the shape of inclusions in ductile iron and pearlite content in its metal matrix is shown.

  16. APPLICATION OF SECONDARY MATERIALS AT PRODUCTION OF DETAILS FROM CHROME CAST IRONS

    Directory of Open Access Journals (Sweden)

    E. I. Marukovich

    2012-01-01

    Full Text Available The groups of alloy steel scrap. suitable for wear-resistant synthetic chromium and iron grades ich18VN ich18VM are studied and defined. Found that the number of alloyed steel scrap in the charge for these irons can be more than 85%, and the price of the charge decreases from 30 to 45%.

  17. Corrosion behaviour of water waste on the gray cast iron sanitary pipelines

    International Nuclear Information System (INIS)

    The works of Plato (427-347 B.C.) contained the written description of corrosion. Plato defined rust as the earthy component separating out of the metal. (Georgius Agrico La) held to the same opinion some 2000 years later in his great mineralogical work De Natura Fossilium Iron rust (rat. Ferrug or Rubigo) is, so to speak, assertion of metallic iron. Iron can be protected against this defect by various wrapping, such as red lead, white lead, gypsum, bitumen or tar. Gaius Secundus Pliny also mentioned bitumen, pitch, white lead, and gypsum as protecting iron and bronze against corrosion. He reported that Alexander the Great had constructed Ponton Bridge at Zeugmar on the Euphrates with the aid of an iron chain. Link's that were inserted later suffered rust attacks, While the original ones remained immune. The opinion, sometimes expressed today, that modern iron inferior and more corrosion than old iron, was thus current even in ancient times. The concept of the corrosion process derived from the latin corrodere ( to eat away, to destroy ), first appeared in the philosophical transaction in 1667. It was discussed in German from the Frensh on the manufacture of white lead in 1785 and was mentioned in 1836 in the translation of an English paper by Savy on the cathodic protection of iron in sea water. However, almost unit the present day, the term was indiscriminately for corrosion reaction effects, and corrosion damage

  18. 高硅合金耐热铸铁生产球墨铸铁模具的研制%Research on producing ductile iron mould with high silicon alloy heat resistant cast iron

    Institute of Scientific and Technical Information of China (English)

    梁冰利; 王宏亮; 韩黎

    2012-01-01

    对铸铁模具使用工况进行了分析,采用了高硅合金耐热铸铁为生产球墨铸铁模具的材质,并介绍了高硅合金耐热球墨铸铁模具的消失模铸造工艺、冶炼工艺、热处理工艺以及该材质模具的实际使用效果.实际生产表明:高硅合金耐热球墨铸铁具有优越的综合耐热疲劳性能,大大提高了模具寿命.%The actual operating conditions of cast iron mould were analyzed. The silicon alloy heat resistant cast iron was adopted to produce ductile iron mould, and the lost foam casting process, smelting process, heat treatment process of the high silicon alloy heat resistant ductile iron mould as well as the actual use effect of the mould with this material were introduced. The practical production shows that the high silicon alloy heat resistant cast iron has superior heat-resistant and fatigue properties, which improves the mould life.

  19. Resistance of Cast Iron Unified Module Recuperator of Heating Furnaces with High-Temperature Thermal Technologies at Machine Building, Automotive and Tractor Enterprises

    Directory of Open Access Journals (Sweden)

    A. P. Nesenchouk

    2010-01-01

    Full Text Available The paper contains a stress analysis in the field of elastic and elastic-plastic wall state of a cast iron module industrial recuperator of high-temperature technology furnaces applied in blank and mechanical assembly production at machine building enterprises.

  20. Mechanism of free sulfur influence on the eutectic cell count and transition from graphite to cementite eutectic in cast iron. Part II. Experimental verification

    Directory of Open Access Journals (Sweden)

    E Fraś

    2010-01-01

    Full Text Available In this work the mechanism of free sulfur influence on the transition from graphite to cementite eutectic in cast iron is experimentally verified. It has been shown that the main impact of free sulfur on the transition from graphite to cementite eutectic consist in reducing the growth rate of graphite eutectic cell.

  1. Machinable, Thin-Walled, Gray and Ductile Iron Casting Production, Phase III

    Energy Technology Data Exchange (ETDEWEB)

    Charles Bates; Hanjun Li; Robin Griffin

    2003-12-08

    This report presents the results of research conducted to determine the effects of normal and abnormal processing and compositional variations on machinability (tool wear rate) of gray and ductile iron. The procedures developed allow precise tool wear measurements to be made and interpreted in terms of microstructures and compositions. Accurate data allows the most efficient ways for improving machinability to be determined without sacrificing properties of the irons.

  2. 3D analysis of micro-deformation in VHCF-loaded nodular cast iron by μCT

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, G., E-mail: gottfried.fischer@lqw.mb.uni-dortmund.de [RIF e.V. Institut für Forschung und Transfer, Joseph-von-Fraunhofer-Str. 20, D-44227 Dortmund (Germany); Nellesen, J., E-mail: Jens.Nellesen@rif-ev.de [RIF e.V. Institut für Forschung und Transfer, Joseph-von-Fraunhofer-Str. 20, D-44227 Dortmund (Germany); Anar, N.B., E-mail: nadeembabar.anar@tu-dortmund.de [RIF e.V. Institut für Forschung und Transfer, Joseph-von-Fraunhofer-Str. 20, D-44227 Dortmund (Germany); Ehrig, K., E-mail: Karsten.Ehrig@bam.de [BAM Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, D-12205 Berlin (Germany); Riesemeier, H., E-mail: Heinrich.Riesemeier@bam.de [BAM Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, D-12205 Berlin (Germany); Tillmann, W., E-mail: Wolfgang.Tillmann@udo.edu [Technische Universität Dortmund, Fakultät Maschinenbau, Lehrstuhl für Werkstofftechnologie, D-44221 Dortmund (Germany)

    2013-08-10

    The impact of very high cycle fatigue (VHCF) load conditions on the microstructure of specimens consisting of nodular cast iron is analyzed by means of micro-computed tomography (μCT) utilizing both monochromatic synchrotron radiation and polychromatic X-ray tube radiation. Using 3D μCT, the microstructure in the region of the smallest cross-sections of shouldered round specimens is imaged in different stages of the VHCF loading. By digital image correlation (DIC) of these tomograms strain fields are analyzed three-dimensionally. Strain levels in the range of a few percent were detected. It is proven that a localization of strain allows to predict the site of the crack which precedes and induces the macroscopic failure of the specimens.

  3. Effect of Hot Deformation on Formation and Growth of Thermal Fatigue Crack in Chromium Wear Resistant Cast Iron

    Institute of Scientific and Technical Information of China (English)

    CHANG Li-min; LIU Jian-hua

    2006-01-01

    The formation and growth of thermal fatigue crack in chromium wear resistant cast iron was investigated, and the effect of hot deformation on the crack was analyzed by means of optical microscope and scanning electron microscope and high frequency induction thermal fatigue tester. The results show that eutectic carbide is the main location and passage for initiation and extension of thermal fatigue cracks, hot deformation can improve the eutectic carbide′s morphology and distribution, inhibit the generation and propagation of thermal fatigue cracks. In the experiment, the propagation rate of thermal fatigue crack reduces with the quantity of hot deformation increasing, which was analyzed in the point view of the activation energy of crack propagation.

  4. Constitutive model for flake graphite cast iron automotive brake discs: induced anisotropic damage model under complex loadings

    Science.gov (United States)

    Augustins, L.; Billardon, R.; Hild, F.

    2016-01-01

    The present paper details an elasto-viscoplastic constitutive model for automotive brake discs made of flake graphite cast iron. In a companion paper (Augustins et al. in Contin Mech Thermodyn, 2015), the authors proposed a one-dimensional setting appropriate for representing the complex behavior of the material (i.e., asymmetry between tensile and compressive loadings) under anisothermal conditions. The generalization of this 1D model to 3D cases on a volume element and the associated challenges are addressed. A direct transposition is not possible, and an alternative solution without unilateral conditions is first proposed. Induced anisotropic damage and associated constitutive laws are then introduced. The transition from the volume element to the real structure and the numerical implementation require a specific basis change. Brake disc simulations with this constitutive model show that unilateral conditions are needed for the friction bands. A damage deactivation procedure is therefore defined.

  5. Effect of partial remelting time on the initial carbide in semisolid structure of hypereutectic hih Cr cast iron

    Directory of Open Access Journals (Sweden)

    Zhifu HUANG

    2004-11-01

    Full Text Available In order to review the effect of partial remelting time on the morphology of initial carbides, semisolid ingots of hypereutectic high Cr17 cast iron were remelted at 1 270 ℃ for four different times, and the changing characteristics of shape factor an the equivalent diameter of initial carbides were analyzed quantitatively using a Leica image analyzer. The results indicate that firstly, the evolution process of the initial carbides' morphology undergoes melting, sheroidization and refining during the partial remelting; secondly, the solute diffusion and interface tension take dominant roles at the primary and the middle-final stages respectively in the process of initial carbde evolution; finally, a perfect structure can be obtained by remeltin semisolid ingots at 1 270 ℃ for 15 min.

  6. Development of the white cast iron with niobium alloy, heat treating, to wear of the abrasive resistance

    International Nuclear Information System (INIS)

    This work presents the heat treatment and abrasion tests results of a white cast iron with niobium alloy. The hardening heat treatment were made 950, 1000, 1050 e 110 deg C temperatures cooled by forced air. The tempering treatment were made at 450, 500 e 550 deg C temperatures. The heat treating alloy were compared, in the abrasive tests, with commercial alloys used as hardfacing by welding process in wear pieces. The abrasion tests was realized in pin on disk test. Additional tests were carried out for microstructural characterization to identify the different phases presents in the alloys. In a general way, the alloy studies showed the best wear rate for the heat treatments that results in higher hardness. It performance was superior than that of the commercial alloys. (author)

  7. Constitutive model for flake graphite cast iron automotive brake discs: from macroscopic multiscale models to a 1D rheological description

    Science.gov (United States)

    Augustins, L.; Billardon, R.; Hild, F.

    2016-07-01

    One of the critical points of the thermomechanical fatigue design process is the correct description of the cyclic behavior of the material. This work focuses on the material of automotive brake discs, namely flake graphite cast iron. The specificity of this material is its asymmetric behavior under tensile and compressive loadings, which is due to the shape of graphite that acts as small cracks. Multiscale models inspired from the literature are first presented. They lead to a good description of the material behavior under cyclic loadings. An elastoviscoplastic constitutive model is then proposed in a one-dimensional setting in order to accurately describe cyclic tests from room temperature up to {600^{circ}{C}}.

  8. Constitutive model for flake graphite cast iron automotive brake discs: induced anisotropic damage model under complex loadings

    Science.gov (United States)

    Augustins, L.; Billardon, R.; Hild, F.

    2016-09-01

    The present paper details an elasto-viscoplastic constitutive model for automotive brake discs made of flake graphite cast iron. In a companion paper (Augustins et al. in Contin Mech Thermodyn, 2015), the authors proposed a one-dimensional setting appropriate for representing the complex behavior of the material (i.e., asymmetry between tensile and compressive loadings) under anisothermal conditions. The generalization of this 1D model to 3D cases on a volume element and the associated challenges are addressed. A direct transposition is not possible, and an alternative solution without unilateral conditions is first proposed. Induced anisotropic damage and associated constitutive laws are then introduced. The transition from the volume element to the real structure and the numerical implementation require a specific basis change. Brake disc simulations with this constitutive model show that unilateral conditions are needed for the friction bands. A damage deactivation procedure is therefore defined.

  9. Emission of organic compounds from mould and core binders used for casting iron, aluminium and bronze in sand moulds.

    Science.gov (United States)

    Tiedje, Niels; Crepaz, Rudolf; Eggert, Torben; Bey, Niki

    2010-12-01

    Emissions from mould and core sand binders commonly used in the foundry industry have been investigated. Degradation of three different types of binders was investigated: Furfuryl alcohol (FA), phenolic urethane (PU) and resol-CO2 (RC). In each group of binders, at least two different binder compositions were tested. A test method that provides uniform test conditions is described. The method can be used as a general test method to analyse off gases from binders. Moulds, containing a standard size casting, were produced and the amount and type of organic compounds, resulting from thermal degradation of binders, was monitored when cast iron, bronze and aluminium was poured in the moulds. Binder degradation was measured by collecting off gases in a specially designed ventilation hood at a constant flow rate. Samples were taken from the ventilation system and analysed for hydrocarbons and CO content. It is shown how off-gases vary with time after pouring and shake out. Also the composition of off-gases is analysed and shown. It is further shown how the composition of off-gasses varies between different types of binders and with varying composition of the binders as well as function of the thermal load on the moulding sand. PMID:20954042

  10. A New Direct-Pour In-Mold (DPI) Technology for Producing Ductile and Compacted Graphite Iron Castings.

    Energy Technology Data Exchange (ETDEWEB)

    Jason Hitchings; Jay R. Hitchings

    2007-07-20

    A new "Direct Pour In-Mold" (DPI) Magnesium treatment technology has been developed that can produce both Nodular and Compacted Graphite iron. The DPI technology converts the standard horizontal runner system into a vertical one, by placing a Magnesium Ferrosilicon treatment alloy and molten metal filter into a specially designed container. The DPI container is easily placed into either vertically or horizontally parted molds, and then a base metal can be poured directly into it. The metal is treated and filtered as it passes through, and then proceeds directly into a runner or casting cavity. Various sizes of containers provide all of the necessary components required to deliver a range of weights of treated and filtered metal at accurate and consistent flow rates. The DPI containers provide energy savings over competing techniques, increased mold yields, very high Magnesium recovery, zero Magnesium fume, and no post inoculation is required. By treating the metal just prior to it entering a casting cavity many other benefits and advantages are also realized.

  11. Aluminium composite casting dispersion reinforced with iron-aluminium and silicon carbide phases

    Directory of Open Access Journals (Sweden)

    B. Formanek

    2010-10-01

    Full Text Available Aluminium matrix composite with dispersion-reinforced, made by similar to stircasting process was characterised. The mixture of powders was produced by the process of mechanical agglomeration of powdered FexAly and SiC with aluminium. The chemical composition ofagglomerates was selected in a way such as to obtain 25 wt.% reinforcement of the AlSi9Cu4 silumin matrix. Applying thermal analysis ATD, the alloy solidification process was determined, reading out the typical solidification parameters. The methods of light and scanning microscopy were used to reveal the structure of composite casting. Changes in chemical composition and phase composition of particles of the FeAl intermetallic phase in aluminium matrix were confirmed. The structure of silumin casting with matrix containing microregions of ceramic and intermetallic phases, typical of hybrid reinforcements, was obtained.

  12. Effect of electrical pulse treatment on the thermal fatigue resistance of bionic compacted graphite cast iron processed in water

    International Nuclear Information System (INIS)

    Highlights: ► Electrical pulse treatment can reduce cracks on bionic units before thermal fatigue tests. ► Electrical pulse treatment can reduce crack sources during thermal fatigue tests. ► Thermal fatigue resistance of bionic units processed in water is enhanced. ► Thermal fatigue resistance of bionic CGI processed in water is improved. -- Abstract: In order to further enhance the thermal fatigue resistance of bionic compacted graphite cast iron (CGI) which is processed by laser in water, the electrical pulse treatment is applied to improve the thermal fatigue resistance of bionic units. The results show that the electrical pulse treatment causes the supersaturated carbon atoms located in the lattice of austenite to react with the iron atoms to form the Fe3C. The microstructures of the bionic units processed in water are refined by the electrical pulse treatment. The cracks on the bionic units are reduced by the electrical pulse treatment before the thermal fatigue tests; and during the tests, the thermal fatigue resistance of bionic units is therefore enhanced by reducing the crack sources. By this way, the thermal fatigue resistance of bionic CGI processed in water is improved.

  13. Effect of austempering parameters on microstructure and mechanical properties of horizontal continuous casting ductile iron dense bars

    Directory of Open Access Journals (Sweden)

    Chun-jie Xu

    2015-03-01

    Full Text Available In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and time on microstructure and mechanical properties of LZQT500-7 ductile iron dense bars with 172 mm in diameter which were produced by horizontal continuous casting (HCC. The results show that the major factors influencing the hardness of austempered ductile iron (ADI are austenitizing temperature and austempering temperature. The fraction of retained austenite increases as the austenitizing and austempering temperatures increase. When austenitizing temperature is low, acicular ferrite and retained austenite can be efficiently obtained by appropriately extending the austenitizing time. The proper austmepering time could ensure enough stability of retained austenite and prevent high carbon austenite decomposition. The optimal mechanical properties of ADI can be achieved with the following process parameters: austenitizing temperature and time are 866 °C and 135 min, and austempering temperature and time are 279 °C and 135 min, respectively. The microstructure of ADI under the optimal austempering process consists of fine acicular ferrite and a small amount of retained austenite, and the hardness, tensile strength, yield strength, elongation and impact toughness of the bars are HBW 476, 1670 MPa, 1428 MPa, 2.93% and 25.7 J, respectively.

  14. Low temperature impact toughness and fracture mechanism of cast QT400-18L ductile iron with different Ni additions

    Directory of Open Access Journals (Sweden)

    Zhang Xinning

    2013-09-01

    Full Text Available Different contents of Ni (0.3wt.% to 1.2wt.% were added to the QT400-18L ductile iron to investigate the effect of Ni addition on the impact toughness of cast ductile irons at low temperatures. The impact toughnesses of the samples at room and low temperatures were tested. The microstructures and fractographs were observed. Results show that with the increase of Ni addition there is a general trend of refinement of the ferrite matrix while the nodule density shows no obvious change. When the Ni content is 0.7wt.%, the matrix structure is the refined ferrite with a very small fraction (about 2% of pearlite near the eutectic cell boundaries. When the Ni content is further increased, the fraction of pearlite increases significantly and reaches more than 5% when 1.2wt.% Ni is added. The impact toughness at room temperature increases as the content of Ni increases from 0.3 wt.% to 0.7 wt.%, but decreases as the Ni content further increases to 1.2wt.% due to the increase of pearlite fraction. The maximum value of the impact work is 18.5 J at room temperature with 0.7wt.% Ni addition. The average value of the impact work is still more than 13 J even at -30 ℃. In addition, the fracture mechanism changes from ductile manner to brittleness as the testing temperature decreases from 20 ℃ to -60 ℃.

  15. Microstructure and Wear Behavior of TiC Coating Deposited on Spheroidized Graphite Cast Iron Using Laser Surfacing

    Directory of Open Access Journals (Sweden)

    E. R. I. Mahmoud

    2014-10-01

    Full Text Available Spheroidal graphite cast iron was laser cladded with TiC powder using a YAG fiber laser at powers of 700, 1000, 1500 and 2000 W. The powder was preplaced on the surface of the specimens with 0.5 mm thickness. Sound cladding and fusion zones were observed at 700, 1000 and 1500 W powers. However, at 2000 W, cracking was observed in the fusion zone. At 700 W, a build-up zone consisted of fine TiC dendrites inside a matrix composed of martensite, cementite (Fe3C, and some blocks of retained austenite was observed. In this zone, all graphite nodules were totally melted. In the fusion zone, some undissolved and partially dissolved graphite nodules appeared in a matrix containing bainite, ferrite, martensite and retained austenite. At 1500 W, the fusion zone had more iron carbides and ferrite, and the HAZ consisted of martensitic structure. At 2000 W, the build-up zone was consisted of TiC particles precipitated in a matrix of eutectic carbides, martensite plus an inter-lamellar retained austenite. The hardness of the cladded area was remarkably improved (1330 HV in case of 700 W: 5.5 times of the hardness of substrate

  16. 铸造铝合金叶轮嵌铸铸铁轮芯结构设计及工艺要点%Structural Design and Process Essentials of Inlay Casting Iron Core in Cast Aluminum Impeller

    Institute of Scientific and Technical Information of China (English)

    洪美琴; 尹社新

    2011-01-01

    Inlay casting iron core sometimes looses in axial direction from the running cast aluminum impeller, then the fan will cause fault such as vibration and abnormal voice etc. The effects of the two different configurations of the cast aluminum iron core on the quality of the impeller were analyzed in this paper. Structural design of inlay core and casting technology of impeller were briefly explained.%采用嵌铸铸铁轮芯的铸造铝合金叶轮在运行中有时出现轴向松动的现象,使运转中的风机产生振动、异音等故障.文中对铸造铝合金叶轮中嵌铸铸铁轮芯的两种不同结构对叶轮质量的影响进行了分析,阐述了铸造铝合金叶轮中嵌铸铸铁轮芯的结构设计和工艺要点.

  17. Characterization of Coated Sand Cores from Two Different Binder Systems for Grey Iron Castings

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Tiedje, Niels Skat; Poulsen, Thomas;

    differential expansion of the core during heating. The rapid expansion of silica sand up to 600 oC and especially at 573 oC, where the α – β phase transformation occurs, is the cause of stresses in the core system. These stresses cause crack formation and metal melt flows into these cracks causing finning...... or veining and metal penetration defects. The use of refractory coatings on cores is fundamental to obtaining acceptable casting surface quality and is used on resin bonded cores in production foundries. In this study new sol gel-coated sand cores made from coldbox and furan binder systems were investigated...

  18. Morphological forms of carbon and their utilizations at formation of iron casting surfaces

    Directory of Open Access Journals (Sweden)

    P. Jelínek

    2008-07-01

    Full Text Available Model pyrolysis made possible to identify three solid products of carbonaceous additives. Lustrous carbon is the most important form of the pyrolysis carbon. With its structure and physical and chemical properties it comes near to graphite. Amorphous carbon with turbo-stratic lattice, higher oxireactivity, and lower protective function against liquid metal comes near to carbon black. Semicoke also plays a non-negligible role. All forms of carbon have an important representation in oolitized quartz grain also during forming the casting surface. While amorphous carbon is formed directly from the gaseous phase by homogeneous nucleation, lustrous carbon, with regard to similarity of lattices with quartz, is formed by heterogeneous nucleation on grains. High covering power and low oxireactivity give its highest protecting power of the mould face. New experimental equipment made possible to check a possibility of use of new composite bentonite binders containing „process carbon“(graphite, anthracite, amorphous carbon. The BTEX content in exhalations and in waste sands too was considerably decreased with high smoothness of castings.

  19. Types of greenhouse gas emissions in the production of cast iron and steel

    Science.gov (United States)

    Lisienko, V. G.; Chesnokov, Yu N.; Lapteva, A. V.; Noskov, V. Yu

    2016-09-01

    Types of carbon dioxide emissions in iron and steel production are indicated. Production processes have been classified according to mechanisms of carbon dioxide formation. Mathematical models for calculation of carbon dioxide emissions for each type of process are found. Calculations results of carbon dioxide emissions of coke (BF + EAF) and cokeless processes (Corex, Midrex, HyL-3, Romelt) in combination with EAF are provided.

  20. The shaping of zinc coating on surface steels and ductile iron casting

    OpenAIRE

    D. Kopyciński

    2010-01-01

    The studies aimed at an analysis of the formation and growth kinetics of zinc coating on reactive silicon-killed steels in a zinc bath. The growth kinetics of the produced zinc coatings was evaluated basing on the power-law growth equation. As regards galvanizing of the surface of products, investigation was done for various steel grades and ductile iron (DI) taking into account the quality and thickness of coating. It has been proved that the chemical constitution of basis significantly infl...

  1. Tribology properties of composite layer of CrMoCu alloy cast iron by combined treatment of ion nitrocarburizing and sulphurizing

    Institute of Scientific and Technical Information of China (English)

    MA Shi-ning; HU Chun-hua; LI Xin; QIU Ji

    2004-01-01

    Composite layer with nitrocarbonide and sulfide was made on the surface of CrMoCu alloy cast iron by combined treatment of ion nitrocarburizing and sulphurizing. The composite layer is composed of sulfide layer, nitrocarbonide hypo-surface layer and its diffusing layer, the size of sulfide globular grains distributing equably on the surface is in nano-micron-scale, and the phase structure of the composite layer is composed of FeS, FeS1-x, Fe2C and Fe3N. Under oil lubrication, sulphurized surface shows good scuffing-resistance only under low velocity, and nitrocarburized and sulphurized surface greatly improves the scuffing-resistance and wear-resistance of CrMoCu alloy cast iron, its integrated friction and wear properties are better than those of the plain and sulphurized surfaces under all the velocities.

  2. Characterisation of the fatigue properties of cast irons used in the water industry and the effect on pipe strength and performance

    International Nuclear Information System (INIS)

    As part of an on going programme to characterise the residual properties and understand the failure mechanisms of in-service grey cast iron water pipes, the fatigue crack propagation behaviour of grey cast iron samples has been studied. Specimens were sourced from three ex-service pipes. For each pipe the microstructure and composition were characterised and the fracture toughness was determined. The fatigue behaviour was investigated in terms of the crack growth rate (da/dN) as a function of the applied stress intensity factor range. Clear differences in the fatigue behaviour of the samples from different pipes were observed. The result from these investigations, which indicate that microstructural differences play a role in mechanical behaviour, will support the development of asset management tools for use in the water industry.

  3. Performance evaluation of cast iron pipe for crude oil and salt water transportation; Avaliacao e desempenho de duto de aco fundido no transporte de petroleo com aguas salgadas

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Carlos Alexandre Martins da [PETROBRAS Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil); Mainier, Fernando B. [Universidade Federal Fluminense, Niteroi, RJ (Brazil)

    2005-07-01

    The present paper aims to study and to evaluate the performance of casting iron pipe for transportation of salty and produced waters, presented in the oil industry, where salt contents ranging on very large values. The cast iron above mentioned has an yield strength of 23 kg/mm{sup 2}, tensile strength of de 46 kg/mm{sup 2} (minimum) and an elongation of 15%, and contents of some chemical alloys, such as Cr (0,8 -1,3 %), Mn (1,5 % max) and Si (1,%). Nevertheless it is an exploratory study, the dynamic tests of weight loss carried out in laboratory, with specimens machined from a used pipe piece, with salty solution (3,5 % NaCl) aerated media, has shown very promising results, enabling to qualify, satisfactorily, such material for using in transportation and transferring operations of fluids with a high salty contents, such as crude oil. (author)

  4. Residual Stress, Structure and Other Properties Formation by Combined Thermo-Hardening Processing of Surface Layer of Gray Cast Iron Parts

    Science.gov (United States)

    Rakhimyanov, Kh M.; Nikitin, Yu V.; Semenova, Yu S.; Eremina, A. S.

    2016-04-01

    The proposed combined thermo-hardening processing of gray cast iron enables to control the surface layer structure and mechanical properties formation. The processing includes high-speed heating by low-temperature plasma source and ultrasonic surface plastic deformation. The algorithm of calculation the stress-strain state of a surface layer at combined processing of gray cast iron is developed. This algorithm is based on method of sections. The ultrasonic surface deformation contribution is determined during formation of residual stresses. It is established that the combination of the thermal and deformation effects on the material provides an additional increment of microhardness and increase of surface layer thickness. Experimental results shows that the features of structural and phase transformations in a surface layer are revealed without a surface melting by energy of low-temperature plasma. The top of a layer does not contain inclusions of graphite that testifies to change of structural transformations in conditions of combined processing.

  5. The influence of the graphite mechanical properties on the constitutive response of a ferritic ductile cast iron – A micromechanical FE analysis

    DEFF Research Database (Denmark)

    Andriollo, Tito; Thorborg, Jesper; Hattel, Jesper Henri

    2015-01-01

    In the present paper a micro-mechanical approach is used to investigate the influence of the graphite mechanical properties on the loading response in the early deformation range of ductile cast iron. A periodic unit cell composed by a single graphite nodule embedded in a uniform ferritic matrix...... is considered and elasto-plastic behavior of both constituents is assumed; damage evolution in the ductile matrix is taken into account via Lemaitre’s isotropic model. Full 3D and 2D plane-stress finite element analyses are performed to simulate the loading conditions experienced by nodules located in the bulk...... as well as on the material surface. The effects of residual stresses arising during the manufacturing process are also accounted for. It is shown that the constitutive response of the equivalent composite medium can match ductile cast iron only if the graphite Young’s modulus value lies within a certain...

  6. Mechanochemical reactions and strengthening in epoxy-cast aluminum iron-oxide mixtures

    Science.gov (United States)

    Ferranti, Louis, Jr.

    2007-12-01

    Epoxy-cast Al+Fe2O3 thermite composites are an example of a structural energetic material that can simultaneously release chemical energy while providing structural strength. The structural/mechanical response and chemical reaction behavior are closely interlinked through characteristics of deformation and intermixing of reactants. In this work, the structural and energetic response of composites made from stoichiometric mixtures of nano- and micro-scale aluminum and hematite (Fe2O3) powders dispersed in 47 to 78 vol.% epoxy was investigated by characterizing the mechanical behavior under high-strain rate and shock loading conditions. The main focus of the work was to understand the influence of microstructure on mechanical behavior in epoxy-cast Al+Fe2O3 materials when exposed to high stress, large strain, and high rate loading conditions. The material's Hugoniot at pressures up to approximately 20 GPa for an Al+Fe2O3+78 vol.% epoxy composite and up to approximately 8 GPa for Al+Fe2O3+60 vol.% epoxy composite has been determined. The results reveal an inert pressure-relative volume (P-V) and shock-particle velocity (US-UP) response in the range of the shock-conditions explored, with the Al+Fe2O3+60 vol.% epoxy composite showing a greater shock stiffness. The addition of solid particle inclusions alters the Hugoniot response as compared to pure epoxy behavior. This is attributed to possible induced bulk damage that changes the composite's response as impact stress increases. While the 78 vol.% epoxy composition shows a transition from "undamaged" to "damaged" behavior that approaches pure epoxy response, the 60 vol.% epoxy composition exhibits a gradual toughening behavior. Impact experiments have also been conducted for characterizing the high-strain rate deformation and fracture response obtained from instrumented reverse Taylor tests using high-speed camera and velocity interferometry. The results show that these composite materials exhibit viscoelastic

  7. Atmospheric corrosion rate expressed as a function of time. Effects of atmospheric conditions and alloying elements on corrosion resistance of steels and cast irons

    International Nuclear Information System (INIS)

    On the basis of function describing a change in atmospheric corrosion rate (K) in time (t) the published results of long-standing corrosion tests of a great number of cast irons and steels were statistically processed. The effect of chloride - ions, sulfur dioxide, alloying elements (Cu, Ni, Cr, Mn, Si, V, C) on the rate of initial corrosion on the active surface (K0), passivation properties (α0) of corrosion products and corrosion resistance (α0/K0) of iron-carbonic alloys in different climatic areas was revealed. The data permit further investigation of the mechanism of alloying element effect on atmopsheric corrosion of steels

  8. Complex (Mn, X)S compounds-major sites for graphite nucleation in grey cast iron

    Institute of Scientific and Technical Information of China (English)

    Iulian Riposan; Mihai Chisamera; Stelian Stan; Doug White

    2009-01-01

    Despite the cubic system, the ability of sulphides to nucleate graphite can be enhanced by inoculating elements which transform them in complex compounds with a better lattice matching to graphite, a low coagulation capacity, good stability and adequate interracial energy. (Mn,X)S compounds, usually less than 5.0 μm in size, with an average 0.4-2.0 μm well defined core (nucleus), were found to be important sites for graphite nucleation in grey irons. A three-stage model for the nucleation of graphite in grey irons is proposed: (1) Very small micro-inclusions based on strong deoxidizing elements (Mn, Si, Al, Ti, Zr) are formed in the melt; (2) Nucleation of complex (Mn,X)S compounds at these previously formed micro-inclusions; (3) Graphite nucleates on the sides of the (Mn,X)S compounds with lower crystallographic misfit. Al appears to have a key role in this process, as Al contributes to the formation of oxides in the first stage and favors the presence of Sr and Ca in the sulphides, in the second stage. The 0.005-0.010% Al range was found to be beneficial for lower undercooling solidification, type-A graphite formation and carbides avoidance.

  9. Directional solidification of flake and nodular cast iron during KC-135 low-g maneuvers

    Science.gov (United States)

    Curreri, P. A.; Stefanescu, D. M.; Hendrix, J. C.

    1984-01-01

    Alloys solidified in a low-gravity environment can, due to the elimination of sedimentation and convection, form unique and often desirable microstructures. One method of studying the effects of low-gravity (low-g) on alloy solidification was the use of the NASA KC-135 aircraft flying repetitive low-g maneuvers. Each maneuver gives from 20 to 30 seconds of low-g which is between about 0.1 and 0.001 gravity. A directional solidification furnace was used to study the behavior of off eutectic composition case irons in a low-g environment. The solidification interface of hypereutectic flake and spheroidal graphite case irons was slowly advanced through a rod sample, 5 mm in diameter. Controlled solidification was continued through a number of aircraft parabolas. The known solidification rate of the sample was then correlated with accelerometer data to determine the gravity level during solidification for any location of the sample. The thermal gradient and solidification rate were controlled independently. Samples run on the KC-135 aircraft exhibited bands of coarser graphite or of larger nodules usually corresponding to the regions solidified under low-g. Samples containing high phosphorous (used in order to determine the eutectic cell) exhibited larger eutectic cells in the low-g zone, followed by a band of coarser graphite.

  10. Complex (Mn, XS compounds - major sites for graphite nucleation in grey cast iron

    Directory of Open Access Journals (Sweden)

    Iulian Riposan

    2009-11-01

    Full Text Available Despite the cubic system, the ability of sulphides to nucleate graphite can be enhanced by inoculating elements which transform them in complex compounds with a better lattice matching to graphite, a low coagulation capacity, good stability and adequate interfacial energy. (Mn,XS compounds, usually less than 5.0 μm in size, with an average 0.4-2.0 μm well defi ned core (nucleus, were found to be important sites for graphite nucleation in grey irons. A three-stage model for the nucleation of graphite in grey irons is proposed: (1 Very small microinclusions based on strong deoxidizing elements (Mn, Si, Al, Ti, Zr are formed in the melt; (2 Nucleation of complex (Mn,XS compounds at these previously formed micro-inclusions; (3 Graphite nucleates on the sides of the (Mn,XS compounds with lower crystallographic misfi t. Al appears to have a key role in this process, as Al contributes to the formation of oxides in the fi rst stage and favors the presence of Sr and Ca in the sulphides, in the second stage. The 0.005-0.010% Al range was found to be benefi cial for lower undercooling solidifi cation, type-A graphite formation and carbides avoidance.

  11. 发动机球墨铸铁连杆疲劳强度分析%Analysis on Fatigue Strength of Nodular Cast Iron Connecting Rod in Engi

    Institute of Scientific and Technical Information of China (English)

    包雪鹏; 袁文; 武庆; 吴晓翔

    2001-01-01

    发动机连杆采用高强韧性球墨铸铁制造。介绍了采用小子样升降法试验该种发动机球墨铸铁连杆疲劳强度的方法和结果,预测了不同存活率下连杆的疲劳强度,分析了疲劳断口特征,指出夹渣、气孔和疏松等铸造缺陷是造成连杆失效的主要原因,如不存在铸造缺陷,疲劳裂纹起源于工字筋中心的显微疏松处。%The engine connecting rod is made by a nodular cast iron with high strength and toughness. This paper describes the methods and results of testing the fatigue strength of engine nodular cast iron connecting rod by small subsample lift and drop method, predicts the fatigue strength of connecting rod under different survival rates and analyzes the character of fatigue rupture notch. It is noted that the casting defects like inclusions, gas holes, looseness and etc. are main factors to cause the failure of connecting rods. The fatigue cracks sourced in looseness location in micro - structure of I shape rib center if casting defects do not exist

  12. Mechanical and Tribological Properties of HVOF-Sprayed (Cr3C2-NiCr+Ni) Composite Coating on Ductile Cast Iron

    Science.gov (United States)

    Ksiazek, Marzanna; Boron, Lukasz; Radecka, Marta; Richert, Maria; Tchorz, Adam

    2016-07-01

    The aim of the investigations was to compare the microstructure, mechanical, and wear properties of Cr3C2-NiCr+Ni and Cr3C2-NiCr coatings deposited by HVOF technique (the high-velocity oxygen fuel spray process) on ductile cast iron. The effect of nickel particles added to the chromium carbide coating on mechanical and wear behavior in the system of Cr 3 C 2 -NiCr+Ni/ductile cast iron was analyzed in order to improve the lifetime of coated materials. The structure with particular emphasis of characteristic of the interface in the system of composite coating (Cr 3 C 2 -NiCr+Ni)/ductile cast iron was studied using the optical, scanning, and transmission electron microscopes, as well as the analysis of chemical and phase composition in microareas. Experimental results show that HVOF-sprayed Cr3C2-NiCr+Ni composite coating exhibits low porosity, high hardness, dense structure with large, partially molten Ni particles and very fine Cr3C2 and Cr7C3 particles embedded in NiCr alloy matrix, coming to the size of nanocrystalline. The results were discussed in reference to examination of bending strength considering cracking and delamination in the system of composite coating (Cr 3 C 2 -NiCr+Ni)/ductile cast iron as well as hardness and wear resistance of the coating. The composite structure of the coating provides the relatively good plasticity of the coating, which in turn has a positive effect on the adhesion of coating to the substrate and cohesion of the composite coating (Cr3C2-NiCr+Ni) in wear conditions.

  13. Effects of the Exposure to Corrosive Salts on the Frictional Behavior of Gray Cast Iron and a Titanium-Based Metal Matrix Composite

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL; Truhan, Jr., John J [ORNL; Kenik, Edward A [ORNL

    2007-01-01

    The introduction of increasingly aggressive road-deicing chemicals has created significant and costly corrosion problems for the trucking industry. From a tribological perspective, corrosion of the sliding surfaces of brakes after exposure to road salts can create oxide scales on the surfaces that affect friction. This paper describes experiments on the effects of exposure to sodium chloride and magnesium chloride sprays on the transient frictional behavior of cast iron and a titanium-based composite sliding against a commercial brake lining material. Corrosion scales on cast iron initially act as abrasive third-bodies, then they become crushed, spread out, and behave as a solid lubricant. The composition and subsurface microstructures of the corrosion products on the cast iron were analyzed. Owing to its greater corrosion resistance, the titanium composite remained scale-free and its frictional response was markedly different. No corrosion scales were formed on the titanium composite after aggressive exposure to salts; however, a reduction in friction was still observed. Unlike the crystalline sodium chloride deposits that tended to remain dry, hygroscopic magnesium chloride deposits absorbed ambient moisture from the air, liquefied, and retained a persistent lubricating effect on the titanium surfaces.

  14. Study on Friction and Wear Characteristics and Structure of Compound Layer from Combined Treatment of Ion Nitrocarburizing-Ion Sulphurizing of CrMoCu Alloy Cast Iron

    Institute of Scientific and Technical Information of China (English)

    MA Shi-ning; HU Chun-hua; LI Xin; QIU Ji

    2004-01-01

    The technics of combined treatment of ion nitrocarburizing-ion sulphurizing of CrMoCu alloy cast iron has been investigated and the compound layer with nitrocarbonide and sulphide has been made on the surface of CrMoCu alloy cast iron. The compound layer is composed of sulfide surface layer and the nitrocarbonide hypo-surface layer and its diffusing layer. The size of sulfide globular grains distributing equably on the surface is in nano-micron-scale, and the phase structure of the compound layer is composed of FeS、 FeS2、 Fe2C and Fe3N. Under dry sliding condition, the friction-reducing of sulphurized surface is good, but its function time can't last very long. The nitrocarbonided+sulphurized surface can greatly improve the wear-resistance and the friction-reducing of CrMoCu alloy cast iron, and its integrated friction and wear properties are better than plain and sulphurized surfaces'.

  15. Study on Friction and Wear Characteristics and Structure of Compound Layer from Combined Treatment of Ion Nitrocarburizing-Ion Sulphurizing of CrMoCu Alloy Cast Iron

    Institute of Scientific and Technical Information of China (English)

    MAShi-ning; HUChun-hua; LIXin; QIUJi

    2004-01-01

    The technics of combined treatment of ion nitrocarburizing-ion sulpburizing of CrMoCu alloy cast iron has been investigated and the compound layer with nitrocabonide and sulphide has been made on the surface of CrMoCu alloy cast iron. The compound layer is composed of sulfide surface layer and the nitrocarbonide hypo-surface layer and its diffusing laye. The size of sulfide globular grains distributing equably on the surface is in nano-micmn-scale, and the phase structure of the compound layer is composed of FeS, FeS2, Fe2C and FerN. Under dry sliding condition, the friction-reducing of sulphurized surface is good, but its function time can't last vet3. long, The nitrocarbonided+sulphurized surface can gready improve the wear-resistance and the friction-reducing of CrMoCu alloy cast iron, and its integrated friction and wear properties are better than plain and sulphurized surfaces.

  16. Effects of different inoculants on the microstructural characteristics of gray cast iron gg-25, hardness and useful life of tools

    Directory of Open Access Journals (Sweden)

    Diego Ruben Martin

    2015-10-01

    Full Text Available Current study evaluated the machinability characteristics of parts, microstructure and mechanical properties when three different inoculants (IM-22 with FeSi-Ba/Zr; G-20 and FeSi-Ba; IMSR 75 with FeSi-Sr were added in experiments carried out in a foundry. The research methodology was mailly based on the analysis of the machinability by the milling process of the specimens in gray cast iron GG-25, name according to DIN EN 1561.Evaluation of results is based on a thorough analysis of tool wear, surface finish, microstructural analysis, chemical composition and mechanical properties of the material. Results showed that among the studied inoculants strontium sulfide (SrS was thermodynamically more stable than the others, because it leds towards a more negative free energy change of Gibbs and therefore more favorable to the formation of nuclei having greater critical radius (rc, solidification with heterogeneous nucleation. Its inoculant was also more efficient in forming a more favorable microstructure, greater amounts of eutectic cells and, longer life of the insert when machined.

  17. Wear and Corrosion Resistance of Fe Based Coatings by HVOF Sprayed on Gray Cast-Iron for Automotive Application

    Directory of Open Access Journals (Sweden)

    M.S. Priyan

    2014-12-01

    Full Text Available In this study, commercially available FeSiNiCr and FeBCr alloy powders were designed with suitable compositions, gas atomized and then coated on gray cast-iron substrate. The microstructures of the feed stock Fe based alloy powders and the coatings were investigated by means of optical microscopy (OM, X-Ray diffraction (XRD, Thermogravimetric analysis (TGA and Scanning Electron Microscopy (SEM. In the present study, both the coating materials experienced two-body wear mechanisms. The results showed that for loads of 0.05 N, 0.1 N and 0.2 N, the wear resistance of FeBCr coating was less than FeSiNiCr by 44 %, 40 % and 31 %, respectively. The results indicated that the coated substrates exhibited lower corrosion current densities and lower corrosion rates, when placed in 20 wt.% H2SO4 solutions. In addition, the use of optimal spraying parameters/conditions gave improvements to the corrosion resistance of the substrates that had been treated with the crystalline coating.

  18. Nb在灰铸铁中的存在形态%Existing Morphologies of Niobium in Cast Irons

    Institute of Scientific and Technical Information of China (English)

    朱洪波; 孙小亮; 闫永生; 华勤; 翟启杰

    2011-01-01

    The existing morphologies of niobium in cast irons were mvestigated by using SEM with spectroscopy. The result showed that only a little quantity of niobium dissolved as the atom type in the matrix and formed solid solution.however most of the niobium formed the Nb-rich phase embedding into the matrix;the Nb-rich phase had a lots of morphologies such as the clump shape (including square and triangle shape),abnormal shape (including Ⅹ type and Ⅴ type).and bar shape. TiN could act as the heterogeneous crystal nucleus in the forming process of the Nb-rich phase and,therefore,it had the effect to promote the formation of the Nb-rich phase.%用附带能谱的扫描电镜研究了Nb在灰铸铁中的存在形态,结果显示:少量Nb以原子形式固溶于基体,绝大多数Nb形成富Nb相镶嵌在基体上面;富Nb相形态丰富,有块状(包括方块状和_一角形)、不规则形状(包括X型、Y型)以及条棒状;在富Nb相形成过程中,TiN可能作为异质核心,因而对富Nb相的形成起了促进作用.

  19. EFFECT OF TOOL NOSE RADIUS AND CUTTING PARAMETERS ON TOOL LIFE, SURFACE ROUGHNESS IN TURNING OF GREY CAST IRON

    Directory of Open Access Journals (Sweden)

    Prasanna P Kulkarni

    2014-03-01

    Full Text Available In metal cutting industries peoples are trying to reduce the cost of the production by proper selection of inserts, tool geometry, and cutting conditions to obtain economical benefits. Tool nose radius has significant influence on tool life and surface finish. The aim of this research is to investigate the effect of tool nose radius under different cutting conditions and their effect on tool life, surface roughness. The measurement has been carried out by rough boring operation using grey cast iron cylinder liners at three cutting speed (Vc and feed rate (f. Depth of cut (doc is kept constant at 2.5mm.Cutting tool used in this work is multilayer coated tool of nose radius 0.8mm and 1.2mm nose radius. Tool coated with titanium nitride (TiN + titanium carbo nitride (TiCN +Aluminium oxide (Al2O3 coating. The insert is designated with SNMG 120408. Cutting conditions used is speed (Vc 100m/min, 125m/min and 150m/min. Feed rate (f 0.20mm/rev,0.23mm/rev,0.27mm/rev.Finally results of the present work determine the appropriate parameter for increasing the tool life and surface finish for two different nose radius tools.

  20. EXPERIMENTAL INVESTIGATION OF EROSIVE WEAR ON THE HIGH CHROME CAST IRON IMPELLER OF SLURRY DISPOSAL PUMP USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Jasbir Singh Ratol

    2012-07-01

    Full Text Available Erosive wear occurs on the impeller and volute casing of the slurry disposal pump due to the impact of the ash particles on the impeller with a high velocity. Due to erosive wear, pump life become very short. The service life of centrifugal pump, handling slurry can be increased by reducing the erosive wear. In the present work, the experimental investigation of erosive wear has been carried out on the high speed slurry erosion tester to understand the effects of the ash concentration in slurry, rotational speed of the pump impeller and ash particle size on erosive wear. The erosive wear behaviour of high chrome cast iron was investigated by Response surface methodology (RSM. Analysis of variance (ANOVA was used for statistical analysis and the modeled values for the response were obtained with the help of modeled equation. The result shows that the ash concentration in slurry and kinetic energy of the moving particles highly contributes to erosive wear of pump impeller as compared to the ash particle size.

  1. Experimental Investigation of Erosive Wear on the High Chrome Cast Iron Impeller of Slurry Disposal Pump Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Sunil Kumar

    2012-05-01

    Full Text Available Erosive wear occurs on the impeller and volute casing of the slurry disposal pump due to the impact of the ash particles on the impeller with a high velocity. Due to erosive wear, pump life become very short. The service life of centrifugal pump, handling slurry can be increased by reducing the erosive wear. In the present work, the experimental investigation of erosive wear has been carried out on the high speed slurry erosion tester to understand the effects of the ash concentration in slurry, rotational speed of the pump impeller and ash particle size on erosive wear. The erosive wear behavior of high chrome cast iron was investigated by Response surface methodology (RSM. Analysis of variance (ANOVA was used for statistical analysis and the modeled values for the response were obtained with the help of modeled equation. The result shows that the ash concentration in slurry and kinetic energy of the moving particles highly contributes to erosive wear of pump impeller as compared to the ash particle size.

  2. Control of Carbides and Graphite in Cast Irons Type Alloy’s Microstructures for Hot Strip Mills

    Directory of Open Access Journals (Sweden)

    Sergio Villanueva Bravo

    2012-01-01

    Full Text Available The carbide and graphite formation and redistribution of alloy elements during solidification were investigated on high-speed steel (HS and Ni-hard type cast irons with Nb and V. The crystallization of hypereutectic HSS proceeds in the order of primary MC, γ + MC, γ + M6C, γ + M7C3, and γ +  graphite eutectic, in hypoeutectic alloys proceeds in the order of primary γ, γ + MC, γ + graphite, γ + M6C, and γ + M7C3 eutectic, and in Ni-hard proceeds in the order of primary γ, γ + MC, γ + M3C, and γ +  graphite eutectic. The γ +  graphite eutectic solidifies with the decrease of V, Nb, and Cr and the increase of Si and C contents in residual liquid during solidification. The behavior in graphite forming tendency in the residual liquid is estimated by the parameter ∑CLimi′. The eutectic graphite crystallizes at the solid fraction when ∑CLimi′ takes a minimum value. The amount of graphite increases with the decrease in ∑CLimi′ of initial alloy content in both specimens. Inoculation with ferrosilicon effectively increases the graphite content in both specimens.

  3. Effect of medium on friction and wear properties of compacted graphite cast iron processed by biomimetic coupling laser remelting process

    International Nuclear Information System (INIS)

    Stimulated by the cuticles of soil animals, an attempt to improve the wear resistance of compact graphite cast iron (CGI) with biomimetic units on the surface was made by using a biomimetic coupled laser remelting process in air and various thicknesses water film, respectively. The microstructures of biomimetic units were examined by scanning electron microscope and X-ray diffraction was used to describe the microstructure and identify the phases in the melted zone. Microhardness was measured and the wear behaviors of biomimetic specimens as functions of different mediums as well as various water film thicknesses were investigated under dry sliding condition, respectively. The results indicated that the microstructure zones in the biomimetic specimens processed with water film are refined compared with that processed in air and had better wear resistance increased by 60%, the microhardness of biomimetic units has been improved significantly. The application of water film provided finer microstructures and much more regular grain shape in biomimetic units, which played a key role in improving the friction properties and wear resistance of CGI.

  4. Effect of scanning speed during PTA remelting treatment on the microstructure and wear resistance of nodular cast iron

    Institute of Scientific and Technical Information of China (English)

    Hua-tang Cao; Xuan-pu Dong; Qi-wen Huang; Zhang Pan; Jian-jun Li; Zi-tian Fan

    2014-01-01

    The surface of nodular cast iron (NCI) with a ferrite substrate was rapidly remelted and solidified by plasma transferred arc (PTA) to induce a chilled structure with high hardness and favorable wear resistance. The effect of scanning speed on the microstructure, micro-hardness distribution, and wear properties of PTA-remelted specimens was systematically investigated. Microstructural characterization in-dicated that the PTA remelting treatment could dissolve most graphite nodules and that the crystallized primary austenite dendrites were transformed into cementite, martensite, an interdendritic network of ledeburite eutectic, and certain residual austenite during rapid solidifica-tion. The dimensions of the remelted zone and its dendrites increase with decreased scanning speed. The microhardness of the remelted zone varied in the range of 650 HV0.2 to 820 HV0.2, which is approximately 2.3-3.1 times higher than the hardness of the substrate. The wear re-sistance of NCI was also significantly improved after the PTA remelting treatment.

  5. Damage Analysis of a Ferritic SiMo Ductile Cast Iron Submitted to Tension and Compression Loadings in Temperature

    Directory of Open Access Journals (Sweden)

    Isabel Hervas

    2015-12-01

    Full Text Available Tensile and compression tests were carried out on a ductile cast iron for temperatures up to 1073 K. The damage caused inside and around graphite nodules was evaluated as a function of the local equivalent plastic strain by using microstructural quantifications. The mechanical properties are strongly dependent on a temperature above 773 K. Concerning tensile behavior, an evolutional law issued from the Gurson model representing the void growth as a function of the deformation and temperature was successfully employed. It is demonstrated that the strain state and the temperature have a strong influence on the void growth function. In the case of compression tests, the temperature has a weak influence on the nodule deformation for temperatures lower than 773 K, and the mechanical behavior is driven by the viscoplastic properties of the ferrite. For higher temperatures, the mechanical properties in compression are progressively modified, since graphite nodules tend to remain spherical, and ferrite grains are severely deformed. A synthesis of the damage mechanisms is proposed in the studied range of temperature and plastic strain. It appears that the graphite nodule aspect ratio can be used as an indicator of the deformation under compression loading for temperatures ranging from room temperature to 673 K.

  6. Effect of thermal fatigue on the wear resistance of graphite cast iron with bionic units processed by laser cladding WC

    Science.gov (United States)

    Jing, Zhengjun; Zhou, Hong; Zhang, Peng; Wang, Chuanwei; Meng, Chao; Cong, Dalong

    2013-04-01

    Thermal fatigue and wear exist simultaneously during the service life of brake discs. Previous researchers only studied thermal fatigue resistance or abrasion resistance of compact graphite cast iron (CGI), rather than combining them together. In this paper, wear resistance after thermal fatigue of CGI was investigated basing on the principle of bionics, which was close to actual service condition of the brake discs. In the meanwhile, the effect of thermal fatigue on wear resistance was also discussed. Non-smooth bionic units were fabricated by laser cladding WC powder with different proportions (50 wt.%, 60 wt.%, 70 wt.%). Microstructure and microhardness of the units were investigated, and wear mass losses of the samples were also compared. The results indicate that thermal fatigue has a negative effect on the wear resistance. After the same thermal fatigue cycles times, the wear resistance of laser cladding WC samples is superior to that of laser remelting ones and their wear resistance enhances with the increase of WC content.

  7. Effects of bionic units on the fatigue wear of gray cast iron surface with different shapes and distributions

    Science.gov (United States)

    Chen, Zhi-kai; Lu, Shu-chao; Song, Xi-bin; Zhang, Haifeng; Yang, Wan-shi; Zhou, Hong

    2015-03-01

    To improve the fatigue wear resistance of gray cast iron (GCI), GCI samples were modified by a laser to imitate the unique structure of some soil animals alternating between soft and hard phases; the hard phase resists the deformation and the soft phase releases the deformation. Using the self-controlled fatigue wear test method, the fatigue wear behaviors of treated and untreated samples were investigated and compared experimentally. The results show that the bionic non-smooth surface obtains a beneficial effect on improving the fatigue wear resistance of a sample, and the fatigue wear resistance of the bionic sample assembled with reticulate units (60°+0°), whose mass loss was reduced by 62%, was superior to the others. Meanwhile, a finite element (FE) was used to simulate the compression and the distributions of strain and stress on the non-smooth surface was inferred. From these results, we understood that the functions of the bionic unit such as reducing strain and stress, and also obstructing the closure and propagation of cracks were the main reasons for improving the fatigue wear property of GCI.

  8. Influence of Orientations of Bionic Unit Fabricated by Laser Remelting on Fatigue Wear Resistance of Gray Cast Iron

    Science.gov (United States)

    Chen, Zhi-Kai; Zhou, Ti; Zhang, Hai-feng; Yang, Wan-shi; Zhou, Hong

    2015-06-01

    Fatigue wear resistance improvements were researched by studying experimental samples with gray cast iron fabricated with bionic units in different orientations. Experimental samples were modified by laser surface remelting, including parallel, vertical, and gradient units to the wear direction. The remelting pool was then studied to determine the micro-hardness, microstructure, alteration of phase, and etc. Lab-control fatigue wear test method was applied with the treated and untreated samples tested under the laboratorial conditions. Wear resistance result was considered as the rolling contact fatigue (RCF) resistance and mechanisms of the modified samples were experimentally investigated and discussed. Results suggested that all treated samples demonstrated the beneficial effect on the RCF improvement due to lack of graphite and reinforcement of treated region. Results also indicated the sample with fastigiated units was more effective than that with vertical units or parallel units to the wear direction. Influence of the sample unit's angle which intensely depended on the conditions of actual application, however, was not identified.

  9. Evaluation of Surface Roughness and Power Consumption in Machining FCD 450 Cast Iron using Coated and Uncoated Irregular Milling Tools

    Science.gov (United States)

    Razlan Yusoff, Ahmad; Arsyad, Fitriyanti

    2016-02-01

    In this project, the effects of different cutting parameters on surface roughness and power consumption when machining FCD450 cast iron were studied using coated and uncoated irregular milling tool geometry of variable helix and pitch. Their responses on roughness and power consumption were evaluated based on the spindle speed, feed rate, and depth of cut, machining length and machining time. Results showed that except spindle speed and machining length, other parameters such as feed rate, axial and radial depth of cut and also machining time proportionate with surface roughness. The power consumption proportionately increase for all cutting parameters except feedrate. It is showed that the average decrement 27.92 percent for surface roughness and average decrement 9.32 percent for power consumption by using coated compared to uncoated tool. Optimum cutting parameters for both minimum surface roughness and power consumption can be determined. The coated tools performed better than uncoated milling tools for responses of surface roughness and power consumption to increase machining productivity and profit.

  10. The ancient Chinese casting techniques

    Directory of Open Access Journals (Sweden)

    Tan Derui

    2011-02-01

    Full Text Available In the course of Chinese civilization, which lasted more than 5,000 years, casting production has made a huge contribution. In this paper, some representative metal castings were presented. According to their forming techniques, they can be grouped into stone mould casting, clay mould casting, ablation casting, lost wax casting, stack casting, permanent mould casting, sand casting, etc. According to their materials, they can be categorized into tin bronze, bimetallic bronze, malleable cast iron, ductile cast iron, brass, cupronickel alloy (Packtong, etc. According to their surface decorative techniques they can be devided into gem inlay, gilding, gold and silver inlay, copper inlay, engraved decoration, surface tin-enrichment, mother-of-pearl inlay, burnished works with gold or silver inlay, surface coloring and cloisonné enamel, etc.

  11. Effect of Mn, Si, and Cooling Rate on the Formation of Iron-Rich Intermetallics in 206 Al-Cu Cast Alloys

    Science.gov (United States)

    Liu, K.; Cao, X.; Chen, X.-G.

    2012-10-01

    The solidification structures of commercial 206 Al-Cu cast alloys with 0.15 pct Fe have been studied using thermal analysis (TA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and electron backscattered diffraction (EBSD). The EBSD results have shown that there are two iron-rich intermetallics: Chinese script α-Fe and platelet-like β-Fe. The addition of either Mn or Si has helped to promote the formation of α-Fe and hinder the precipitate of β-Fe. The combined addition of both Mn and Si is even more effective than the individual addition of either Mn or Si. The full solidification sequence of the 206 cast alloy has been established. The volume percent and formation temperature increase for α-Fe but decrease for β-Fe with increasing cooling rate. The platelet β-Fe can be effectively suppressed in 206 cast alloys by controlling the alloy chemistry and cooling rate. A casting process map is proposed to correlate the Mn and Si contents with cooling rates for the 206 cast alloys.

  12. Constrained/unconstrained solidification within the massive cast steel/iron ingots

    Directory of Open Access Journals (Sweden)

    W. S. Wołczyński

    2010-04-01

    Full Text Available Some properties of the ingot and especially of the steel forging ingots depend on the ratio of a columnar structure area to an equiaxed structure area created during solidification. The C-E transition is fundamental phenomenon that can be applied to characterize massive cast steel ingots produced by the casting house. The mentioned ratio is created spontaneously due to the rate of heat transfer towards the ceramic mould and then to the environment. The ceramic mould operates as an isolator. So that the thickness of the mould together with a growing solid fraction control the heat transfer and finally the ratio of the columnar structure area to the equiaxed structure area. At first the increase of heat accumulation within the ceramic mould is observed. Next the stationary state for heat transfer is created and finally a gentle abatement of the mould temperature associated with the heat output to the environment is expected. The steep thermal gradients correspond to the increase of heat accumulation in the ceramic mould. The steep thermal gradients are required to promote the columnar structure formation. The full heat accumulation in the mould corresponds well with the C-E transformation while the appearance of the moderate thermal gradients is referred to the gentle temperature abatement within the ceramic mould. The equiaxed structure is expected within this period of heat transfer behavior. The steep thermal gradients involve the activity of viscosity gradient in the liquid. As the result a sedimentary cones are formed at the bottom of the ingot. The C-E transformation is associated with competition between columnar and equaixed structure formation. At the end of competition a fully equiaxed structure is formed. The viscosity gradient is replaced by the thermophoresis which is the driving force for the deposition of some equiaxed grain layers onto the surface of C+E zone. The convection together with the gravity allow the layers to be uniform

  13. Expandable pattern casting research

    Science.gov (United States)

    1993-09-01

    The Expandable Pattern Casting (EPC) Process is a developing foundry technology that allows designers the opportunity to consolidate parts, reduce machining, and minimize assembly operations. An air gauging system was developed for measuring foam patterns; exact shrinkage depended on type and density of the foam. Compaction studies showed that maximum sand densities in cavities and under overhangs are achieved with vibrational amplitudes 0.001-0.004 in., and that sand moved most freely within a few inches of the top free surface. Key to complete mold filling while minimizing casting defects lies in removing the foam decomposition products. The most precise iron castings were made by EPC in four commercial EPC foundries, with attention paid to molding and compaction. EP cast 60-45-12 ductile iron had yield strengths, ultimate strengths, and elastic modulus similar to conventionally cast ductile iron cast from the same ladle.

  14. Thermal and structural studies about the solidification process of grey cast irons; Estudio termico y estructural del proceso de solidificacion de funciones de hierro con grafito laminar

    Energy Technology Data Exchange (ETDEWEB)

    Larranaga, P.; Sertucha, J.

    2010-07-01

    The grey iron casting manufacture is an industrial process extendly used today. Therefore, the study of the solidification features obtained from this iron and the factors that have influence on such transition becomes a powerful tool in order to support the technological development of this type of material. In the present work, three inoculated alloys with different chemical compositions (hypo eutectic, eutectic and hyper eutectic) have been selected so as to comparatively analyse the structural characteristics of the irons during the liquid-solid transformation. The behaviour of the samples has been controlled recording the cooling curves and then they have been quenched in order to study the structural characteristics at different stages of the solidification. The selected alloys show different solidification features as a function of the chemical composition and the corresponding nucleation potential. The obtained results have been discussed in terms of a comparative analysis, establishing a solidification model that explains the industrial behaviour of the alloys. (Author)

  15. A fracture mechanics safety concept to assess the impact behavior of ductile cast iron containers for shipping and storage of radioactive materials

    International Nuclear Information System (INIS)

    Within the scope of the German licensing procedures for shipping and storage containers for radioactive materials made of ductile cast iron, BAM performs approval design tests including material tests to ensure the main safety goals of shielding, leaktightness and subcriticality under ''Type B accident conditions''. So far the safety assessment concept of BAM is based essentially on the experimental proof of container strength by prototype testing under most damaging test conditions in connection with complete approval design tests, and has been developed especially for cylindrical casks like CASTOR- and TN-design. In connection with the development of new container constructions such as ''cubic cast containers'', and the fast developments in the area of numerical calculation methods, there is a need for a more flexible safety concept especially considering fracture mechanics aspects.This paper presents the state of work at BAM for such an extended safety concept for ductile cast iron containers, based on a detailed brittle fracture safe design proof. The requirements on stress analysis (experimental or numerical), material properties, material qualification, quality assurance provisions and fracture mechanics safety assessment, including well defined and justified factors of safety, are described. ((orig.))

  16. Effects of HIP and forging on fracture behaviour in cast iron with spheroidal vanadium carbides dispersed within martensitic-matrix microstructure

    International Nuclear Information System (INIS)

    The cast iron with spheroidal vanadium carbides dispersed within martensitic-matrix microstructure was developed as a die material due to its high hardness. In order to achieve high performances of dies, not only the hardness but also the mechanical properties such as fracture toughness and fatigue crack propagation (FCP) resistance should be improved. In this paper, hot isostatic pressing (HIP) or forging was applied to the cast iron to improve mechanical properties, and the fracture behaviour, such as flexural strength, fracture toughness and FCP, was studied. The average flexural strength was reduced by forging because of the enhanced notch sensitivity due to the increase in the hardness. The fracture toughness was not affected by HIP nor forging while its scatter was significantly reduced by both post-treatments. The intrinsic FCP resistance taking account of crack closure was the same regardless of the application of HIP or forging, indicating that a slight change in the microstructure resulting from both treatments and the presence of casting defects exerted little influence on FCP behaviour. It could be concluded that both HIP and forging could improve the hardness of the material, while fracture toughness and FCP resistance were maintained.

  17. Nb在高导热铸铁制动盘中的应用%Application of Niobium to High Thermal Conductivity Cast Iron Brake Disc

    Institute of Scientific and Technical Information of China (English)

    周文彬; 朱洪波

    2011-01-01

    在CE为4.4%~4.5%的高导热铸铁制动盘中加入不同量的铌合金,研究了Nb对其组织和力学性能的影响.结果表明,CE为4.4%、w(Nb)量为0.09%时,高导热铸铁制动盘石墨组织细化,力学性能得到一定的提高,磨损量降低,制动盘的抗热裂性提高.%Different amount of niobium alloy was added into the high thermal conductivity cast iron with CE of 4.4%~4.5% used for brake disc,and the effect of the niohium on the microstructure and mechanical properties of the casting were investigated. The result showed that,when CE was of 4.4%,Nb was of 0.09% .the graphite of the high thermal conductivity cast iron brake disc became finer,its mechanical properties were increased in some degree,its wear loss was reduced,its hot cracking resistance was improved.

  18. Effects of W on microstructure of as-cast 28 wt.%Cr–2.6 wt.%C–(0–10)wt.%W irons

    Energy Technology Data Exchange (ETDEWEB)

    Imurai, S. [Department of Physics and Materials Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thanachayanont, C.; Pearce, J.T.H. [National Metal and Materials Technology Center, Pathumthani 12120 (Thailand); Tsuda, K. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Chairuangsri, T., E-mail: tchairuangsri@gmail.com [Department of Industrial Chemistry, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2015-01-15

    Microstructures of as-cast 28 wt.%Cr–2.6 wt.%C irons containing (0–10)wt.%W with the Cr/C ratio about 10 were studied and related to their hardness. The experimental irons were cast into dry sand molds. Microstructural investigation was performed by light microscopy, X-ray diffractometry, scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectrometry. It was found that the irons with 1 to 10 wt.%W addition was hypereutectic containing large primary M{sub 7}C{sub 3}, whereas the reference iron without W addition was hypoeutectic. The matrix in all irons was austenite, partly transformed to martensite during cooling. The volume fractions of primary M{sub 7}C{sub 3} and the total carbides increased, but that of eutectic carbides decreased with increasing the W content of the irons. W addition promoted the formation of W-rich M{sub 7}C{sub 3}, M{sub 6}C and M{sub 23}C{sub 6}. At about 4 wt.%W, two eutectic carbides including M{sub 7}C{sub 3} and M{sub 6}C were observed together with primary M{sub 7}C{sub 3}. At 10 wt.%W, multiple carbides including primary M{sub 7}C{sub 3}, fish-bone M{sub 23}C{sub 6}, and M{sub 6}C were observed. M{sub x}C where x = 3 or less has not been found due possibly to the high M/C ratio in the studied irons. W distribution to all carbides has been determined increasing from ca. 0.3 to 0.8 in mass fraction as the W content in the irons was increased. W addition led to an increase in Vickers macro-hardness of the irons up to 671 kgf/(mm){sup 2} (HV30/15) obtained from the iron with 10 wt.%W. The formation of primary M{sub 7}C{sub 3} and aggregates of M{sub 6}C and M{sub 23}C{sub 6} were the main reasons for hardness increase, indicating potentially improved wear performance of the as-cast irons with W addition. - Highlights: • W addition at 1 up to 10 wt.%W to Fe–28Cr–2.6C produced “hypereutectic” structure. • W addition promoted the formation of W-rich M{sub 7}C{sub 3}, M{sub 6}C and M

  19. The effects of novel surface treatments on the wear and fatigue properties of steel and chilled cast iron

    Science.gov (United States)

    Carroll, Jason William

    Contact fatigue driven wear is a principal design concern for gear and camshaft engineering of power systems. To better understand how to engineer contact fatigue resistant surfaces, the effects of electroless nickel and hydrogenated diamond-like-carbon (DLC) coatings on the fatigue life at 108 cycles of SAE 52100 steel were studied using ultrasonic fatigue methods. The addition of DLC and electroless nickel coatings to SAE 52100 bearing steel had no effect on the fatigue life. Different inclusion types were found to affect the stress intensity value beyond just the inclusion size, as theorized by Murakami. The difference in stress intensity values necessary to propagate a crack for Ti (C,N) and alumina inclusions was due to the higher driving force for crack extension at the Ti (C,N) inclusions and was attributed to differences in the shape of the inclusion: rhombohedral for the Ti (C,N) versus spherical for the oxides. A correction factor was added to the Murakami equation to account for inclusion type. The wear properties of DLC coated SAE 52100 and chilled cast iron were studied using pin-on-disk tribometry and very high cycle ultrasonic tribometry. A wear model that includes sliding thermal effects as well as thermodynamics consistent with the wear mechanism for DLCs was developed based on empirical results from ultrasonic wear testing to 108 cycles. The model fit both ultrasonic and classic tribometer data for wear of DLCs. Finally, the wear properties of laser hardened steels - SAE 8620, 4140, and 52100 - were studied at high contact pressures and low numbers of cycles. A design of experiments was conducted to understand how the laser processing parameters of power, speed, and beam size, as well as carbon content of the steel, affected surface hardness. A hardness maximum was found at approximately 0.7 wt% carbon most likely resulting from increased amounts of retained austenite. The ratcheting contact fatigue model of Kapoor was found to be useful in

  20. Cast iron promises.

    Science.gov (United States)

    Hawker, Andrew

    2007-01-01

    During the Victorian era, a fiercely competitive industry emerged to build and operate Britain's railways. Many of the design and construction skills required were still fairly rudimentary, and were typically developed through practical experience. The resulting mix of entrepreneurship and new technology reshaped the landscape, but often in ways which proved hazardous for passengers. Minor accidents were commonplace, and a number of major failures occurred, one such being the collapse of the Tay Bridge, in 1879. Events in the ten years prior to this disaster still have some resonance today. Ambitions to exploit new technology are not always matched by foresight in the planning, financing or management of projects. Contracts may be based on wrong assumptions, and prove difficult to enforce. Once a project has gathered momentum, those working on it may fear that any attempt to draw attention to risks or defects will be seen as disloyal. When work is completed, it cannot be assumed that formal inspections will reveal potential flaws, or that those using the technology will appreciate the need to follow the procedures laid down for them. Some possible parallels with recent experiences in NHS computing are noted. PMID:18005560

  1. Cast iron promises

    Directory of Open Access Journals (Sweden)

    Andrew Hawker

    2007-09-01

    Events in the ten years prior to this disaster still have some resonance today. Ambitions to exploit new technology are not always matched by foresight in the planning, financing or management of projects. Contracts may be based on wrong assumptions, and prove difficult to enforce. Once a project has gathered momentum, those working on it may fear that any attempt to draw attention to risks or defects will be seen as disloyal. When work is completed, it cannot be assumed that formal inspections will reveal potential flaws, or that those using the technology will appreciate the need to follow the procedures laid down for them. Some possible parallels with recent experiences in NHS computing are noted.

  2. Iron

    Science.gov (United States)

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  3. Thermal Test and Numerical Simulation of Nodular Cast Iron Cooling Stave%球墨铸铁冷却壁热态实验与数值模拟

    Institute of Scientific and Technical Information of China (English)

    洪军; 左海滨; 张建良; 李峰光; 沈猛; 铁金艳

    2014-01-01

    为测定消失模工艺生产的球墨铸铁冷却壁的实际冷却性能,进行1∶1热态实验.同时建立铸铁冷却壁三维稳态传热模型,模拟铸铁冷却壁的温度场分布.热态实验结果表明:该球墨铸铁冷却壁壁体与冷却水之间的综合换热系数为228W/(m2·℃),与日本新日铁第四代冷却壁相近.炉温变化对冷却壁热面温度的影响大于其对冷却壁冷面温度的影响.提高冷却水速可以降低冷却壁壁体温度,但效果不明显.模型计算结果与热态实验的比较,验证了计算模型的有效性.%To determine the actual performance of nodular cast iron stave produced by lost foam casting,the 1∶1 thermal test was carried out.The 3D steady-state heat transfer model was established to calculate the temperature field of cast iron cooling stave.Thermal test results show that the cast iron cooling stave has good cooling ability,the integrated heat transfer coefficient is 228 W/ (m2· ℃),which is close to Nippon Steel fourth-generation stave.Effect of furnace gas temperature on hot face temperature is greater than effect on cold face temperature.Increasing of cooling water velocity can lower hot face temperature,but the effect is not obvious.The comparison between computational model and thermal test verified the validity of the computational model.

  4. The Structure and Bond Strength of Composite Carbide Coatings (WC-Co + Ni) Deposited on Ductile Cast Iron by Thermal Spraying

    Science.gov (United States)

    Ksiazek, Marzanna; Boron, Lukasz; Radecka, Marta; Richert, Maria; Tchorz, Adam

    2016-02-01

    An investigation was conducted to determine the role of Ni particles in the WC-Co coating produced with the supersonic method on microstructure, mechanical, and wear properties in a system of type: WC-Co coating/ductile cast iron. The microstructure of the thermal-sprayed WC-Co + Ni coating was characterized by scanning electron and transmission electron microscopes as well as the analysis of chemical and phase composition in microareas (EDS, XRD). The microstructure of the WC-Co + Ni coating consisted of large, partially molten Ni particles and very fine grains of WC embedded in cobalt matrix, coming to the size of nanocrystalline. Moreover, the results were discussed in reference to examination of bending strength considering cracking and delamination in the system of (WC-Co + Ni)/ductile cast iron as well as hardness and wear resistance of the coating. It was found that the addition of Ni particles was significantly increase resistance to cracking and wear behavior in the studied system.

  5. 铸铁表面钨极氩弧硬化%Surface hardening of cast iron by tungsten inert gas arc

    Institute of Scientific and Technical Information of China (English)

    杨莉

    2001-01-01

    The wear resistibility of gray cast iron HT200 is improved by employing inert gas tungsten arc remelting and fast solidified, the effect of current and arc moving rate on the chilling layer properties are studied.And it is compared with laser hardening. The results show that Tungsten Inert Gas Arc remelting can improve the resistance to abrasion of cast iron and it is much better and cheaper technique than others.%以HT200为试验材料,用钨极氩孤对其表面进行了局部重熔硬化,得出了相关工艺参数对重熔处理后表层性能的影响,同时与铸铁表面激光硬化进行了对比。结果表明:铸铁表面氩弧硬化是有效提高其耐磨性,发挥自身潜力,降低成本的一项新工艺。

  6. Kinetics of the formation of Fe2B layers in gray cast iron: Effects of boron concentration and boride incubation time

    International Nuclear Information System (INIS)

    The growth kinetics of Fe2B layers formed at the surface of gray cast iron were evaluated in this study. The pack-boriding process was applied to produce the Fe2B phase at the material surface, and the variables included three temperatures (1173, 1223 and 1273 K) and four exposure times (2, 4, 6 and 8 h). Taking into account the growth fronts obtained at the surface of the material and the mass balance equation at the Fe2B/substrate interface, the boron diffusion coefficient on the borided phase was estimated for the range of treatment temperatures. Likewise the parabolic growth constant, the instantaneous velocity of the Fe2B/substrate interface, and the weight gain in the borided samples were established as a function of the parameters τ(t) and α(C), which are related to the boride incubation time (t0(T)) and boron concentration at the Fe2B phase, respectively. Observation of the growth kinetics of the Fe2B layers in gray cast irons suggest an optimum value of boron concentration that is in good agreement with the set of boriding experimental conditions used in this work.

  7. Laser treatment of dual matrix cast iron with presence of WC particles at the surface: Influence of self-annealing on stress fields

    Science.gov (United States)

    Yilbas, B. S.; Akhtar, S. S.; Karatas, C.; Boran, K.

    2016-01-01

    Laser control melting of dual matrix cast iron surface is carried out. A carbon film containing 15% WC particles is formed at the surface prior to the laser treatment and the spiral tracks are adopted for laser scanning at the workpiece surface. Morphological, metallurgical, microhardness, and scratch resistance of the laser treated surface are examined using analytical tools. Temperature and stress fields in the laser irradiated region are predicted incorporating ABAQUS finite element code. Predictions of temperature and residual stress at the laser treated surface are validated with the thermocouple and the X-ray diffraction data. It is found that surface temperature and residual stress predictions agree well with their counterparts corresponding to thermocouple data and findings of X-ray diffraction technique. Laser treated surface is free from asperities including voids and micro-cracks despite the mismatch of thermal expansion coefficients of WC and dual matrix cast iron. This behavior is attributed to the self-annealing effects of recently formed spiral tracks on the previously formed tracks during the laser treatment process; in which case, the self-annealing effect modifies the cooling rates and lowers thermal stress levels in the laser treated layer. Laser treated layer consists of a dense region composing of fine grains and WC particles, dendritic and featherlike structures below the dense layer, and the heat affected zone.

  8. Influence of Niobium on Thermal Fatigue Properties of Gray Cast Irons%Nb对灰铸铁热疲劳性能的影响

    Institute of Scientific and Technical Information of China (English)

    朱洪波; 闫永生; 孙小亮; 华勤; 翟启杰

    2011-01-01

    采用Uddeholm热疲劳方法测定了Nb对灰铸铁热疲劳性能的影响,试验结果表明:(1)Nb的加入能够提高灰铸铁的抗热疲劳性能,随着w(Nb)的增加,试样最大裂纹深度和宽度都逐渐减小;(2)由于Nb细化石墨使裂纹源减少和裂纹扩展途径变细,Nb元素能够改善材料表面经热疲劳处理后恶化的性能.%By adopting Uddeholm thermal fatiguing method , the influence of niobium on the thermal fatigue properties of the gray cast irons was tested. The results showed: ( 1)Niobium addition could improve the thermal fatigue resistance of the gray cast irons. Both the maximum cracking depth and width gradually reduced with increase of the niobium adding amount; (2)Since the niobium could make the graphite finer, reduce the number of cracking sources and make the crack extending tracks narrower, therefore it could reduce the properties worsening of the material after having been thermally fatiguing treated.

  9. 喂线技术在大型球铁铸件生产中的应用实践%Application of wire feeding technology in production of large ductile iron castings

    Institute of Scientific and Technical Information of China (English)

    花建新

    2014-01-01

    Large ductile iron castings has wide application prospect in mining , metallurgy , machine tool, rail transportation, wind power, nuclear power and other fields, and wire feeding technology supplies the necessary technical support for the production of large ductile iron castings .%大型球铁铸件在矿山、冶金、机床、轨道交通、风电、核电等领域具有广阔的应用前景,喂线技术对生产大型球铁铸件提供了必要的技术支撑。

  10. 从铸铁件质量所想到的熔炼技术%Melting Technique Associated with Quality of Iron Castings

    Institute of Scientific and Technical Information of China (English)

    钱立; 王峰

    2011-01-01

    由几个具体生产实例指出获得优质铸件的铁液要求为:足够高的温度、准确而稳定的化学成分、气体和非金属夹杂物少,等.介绍了提高冲天炉熔炼温度的重要性以及350~550℃热风、2%~4%富氧率送风、冷风优质焦三项提高铁液温度的技术.同时,介绍了感应炉熔炼中平衡温度、沸腾温度、临界温度及过热温度的概念和控制原则,以及冲天炉风口喷吹固体粉料的技术.总结认为:铸铁熔炼中温度虽是核心问题,但不是全部;如果要从根本上提高铸铁件质量,须从“人”抓起.%Based on several productive examples, requirements for the iron melt to obtain high quality castings were proposed such as enough high temperature, accurate and stable chemical composition, less gas and nonmetal debris, etc. Three techniques to increase iron melt temperature were introduce) including the usage of hot blast with temperature of 350~550 ℃, 2%~4% oxygen-richen blast, cold blast plus high quality coke. At the same time, the definitions and control principles of the induction furnace melting -related equilibrious temperature, boiling temperature, critical temperature and superheating temperature was described, and the technique of injecting solid powder materials through the tuyeres of cupola was also introduced. By the end, it was pointed out that although temperature is the key problem of cast iron melting, it isn't the all, and the work to thoroughly improve the iron castings quality should be started from the improvement of the personnel intrinsic qualification.

  11. Theoretical basis of Al-Si coat crystallization on gray and nodular cast iron and making the layered items using it

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2011-12-01

    Full Text Available Purpose: The aim of this study was to present studies of crystallization and the construction of the coat consisting of Al-Si alloys, also with alloy additives: Ni, Cu and Mg, deposited on gray and nodular cast iron, and the connection through this coat the layered item. On this basis, a model of creating a coat and layered item was developed.Design/methodology/approach: Studies of coats and layered products were carried out on scanning electron and optical microscopes. The chemical microanalysis and diffraction of backward scattered atoms in the characteristic areas of the coat and substrate material was made.Findings: : In this paper the influence of the most important technological factors on the thickness and phase construction of the silumin coat and connection quality in the layered item was presented.Research limitations/implications: Currently, research of dip application of coats made of silumins containing: Cu, Ni, Mg, Cr, Mo, W and V on non-alloy and alloy steels and the manufacture of layered items to their use are conducted.Practical implications: Dip coats are used as protective coats or intermediate coat of layered item. The paper presents an example of the implementation for the manufacture of the layered items low-alloyed gray cast iron-silumin coat-silumin reciprocating compressor body for room air conditioning.Originality/value: Originality of the paper consists in elaborating of the theoretical model of forming the diffusion layer made of Al-Si-M silumin on iron alloys. Theoretical basis of layers production were elaborated too. They are significant for collar fillings production in high-pressure combustion engines pistons, as anticorrosive layers and for layered items production.

  12. Application of Medium-Frequency Induction Furnace in Iron Casting Foundry%中频感应电炉在铸铁车间的应用

    Institute of Scientific and Technical Information of China (English)

    苏见波; 李晓宾; 徐梦欣

    2012-01-01

    The development situation,main characteristics of the medium frequency induction furnace,as well as some practical examples of its application in the modern iron casting foundries were introduced. A brief description was given to the principles of the safety system of the medium frequency induction furnace such as the cooling water system; hydraulic system, metal leakage monitoring -alarming system and spare iron melt vessel, and as well as, the measures to deal with the environmental problems related with the medium frequency induction furnace melting process such as the dust removing, noise and harmonic wave treatment and the electro-magnetic field treatment etc. It was pointed out that since the price of the coke and other foundry raw materials is continually rising and the environmental protection regulation is becoming more and more strict,the advantage of applying the medium frequency induction furnace in iron casting foundry has become more and more obvious.%介绍了中频感应电炉的发展状况、主要特点及其在现代化铸铁车间的应用实例;概述了中频感应电炉包括冷却水系统、液压系统、漏炉检测报警系统、备用储存槽等在内的安全系统的工作原理,及其除尘、噪声、谐波治理、电磁场处理等环保问题的应对措施;指出:随着焦炭等铸造原材料的涨价和环保要求的严格,中频感应电炉在铸铁车间的应用优势越来越明显.

  13. Progress of Non-Destructive Testing Technique on Cast Iron%铸铁设备无损检测技术进展

    Institute of Scientific and Technical Information of China (English)

    沈功田; 李丽菲; 王珊珊; 香勇

    2011-01-01

    铸铁部件目前在锅炉、压力容器、压力管道、汽车、拖拉机、机床和通用机械中仍得到大量使用,为了提高它们的检测效率和安全性能,对无损检测技术提出了新的需求.综述了国内外铸铁材料的无损检测技术、标准和仪器设备现状,发现目视检测、磁粉检测、渗透检测和射线检测是成熟的和普遍使用的无损检测方法,超声检测在球墨铸铁的球化率测定方面比较成熟,在缺陷的斜探头检测方面还有待于完善.国内外目前尚缺乏成熟的在用铸铁设备裂纹的快速检测方法和技术,声振检测技术、声一超声检测技术和超声导波技术有解决这一技术难题的潜力,但需要深入进行研究.%Cast iron components are widely used in boilers, pressure vessels, pressure piping, automobile,tractor, machine tool and general machinery. In order to advance the testing efficiency and safety capability for them, some new non-destructive testing techniques are required in China. The NDT techniques, standards and instruments in the world are reviewed in this paper. It was found that visual testing, magnetic particle testing, dye penetration testing and radiographic testing methods were mature and widely used. Ultrasonic testing method is mature for the testing of the nodulizing ratio of nodular cast iron. It needs to be consummated for the testing of defects by use of angle beam. There are not mature quick testing techniques and methods for the cracks of in-service cast iron components. The sound vibration testing technique, sound-ultrasonic testing technique and ultrasonic guided wave testing technique possess the potential capability for this problem. But a lot of studies need to be performed.

  14. Iron

    DEFF Research Database (Denmark)

    Hansen, Jakob Bondo; Moen, I W; Mandrup-Poulsen, T

    2014-01-01

    The interest in the role of ferrous iron in diabetes pathophysiology has been revived by recent evidence of iron as an important determinant of pancreatic islet inflammation and as a biomarker of diabetes risk and mortality. The iron metabolism in the β-cell is complex. Excess free iron is toxic......, but at the same time, iron is required for normal β-cell function and thereby glucose homeostasis. In the pathogenesis of diabetes, iron generates reactive oxygen species (ROS) by participating in the Fenton chemistry, which can induce oxidative damage and apoptosis. The aim of this review is to present...... and discuss recent evidence, suggesting that iron is a key pathogenic factor in both type 1 and type 2 diabetes with a focus on inflammatory pathways. Pro-inflammatory cytokine-induced β-cell death is not fully understood, but may include iron-induced ROS formation resulting in dedifferentiation by activation...

  15. Morphologies of Carbides in Nb-Cr White Cast Irons and Their Influence on Properties%铌铬白口铸铁中碳化物的形态及其对性能的影响

    Institute of Scientific and Technical Information of China (English)

    子澍

    2011-01-01

    介绍了铌铬白口铸铁中的碳化物形态及分布规律.认为铌在白口铸铁中以NbC形式与奥氏体形成共晶体,在共晶体内,NbC呈条形放射状;在铌铸铁中加入钛,TiC先于NbC析出,随后NbC围绕TiC结晶,最终形成团块状,使这种白口铸铁具有更高的抗磨性能和更高的韧性.%Morphologies and distribution rule of the carbides in Nb-Cr alloyed white cast irons were introduced. It was considered that the niobium, existing as NbC phase, formed the eutectic with the austenite in the white cast irons and the NbC was of the sprawl shape in the eutectic. When adding Titanium into the niobium cast iron, the TiC precipitated before the NbC, and then the NbC crystallized around the TiC and formed finally a lump-shaped complex carbide that made this type of white cast iron having more higher ahrasion-resistance and more higher toughness.

  16. Measures to Eliminate Shrinkage+Blowhole of Nodular Iron Crankshaft Cast with Resin Sand-Coated Iron Mold%消除覆砂铁型铸造曲轴气缩孔的措施

    Institute of Scientific and Technical Information of China (English)

    张贤虎; 崔卫东; 史传岳

    2013-01-01

    The nodular iron two-cylinder crankshafts produced with former resin sand-coated iron mold designed according former casting method had been rejected due to the shrinkage+blowhole defect. By adopting following measures,the problem has been solved: (1 )enlarging the distance between two crankshafts cast in one mold to increase the cooling effect of the iron mold; (2) improving the design of internal hole of the connecting necks and relevant sand cores to reduce sand layer thickness of the cores and thereby to reduce the gas evolution of the cores and improve the cooling condition of the areas near to the internal cores; (3 )properly adjusting chemical composition and decreasing pouring temperature to reduce liquid contraction.%覆砂铁型铸造二缸球铁曲轴按原工艺生产曾因气缩孔缺陷引起报废,通过采取相应措施,该问题已得到解决:(1)加大铸型内两支曲轴的间距和增大铁型外形尺寸,增强铁型的冷却作用;(2)改进曲轴连杆轴颈内孔形状及其砂芯设计,减薄砂芯砂层厚度,减少砂芯发气量,并改善内孔部位的冷却条件;(3)适当调整化学成分和降低浇注温度,减少液态收缩.

  17. On the isotropic elastic constants of graphite nodules in ductile cast iron: Analytical and numerical micromechanical investigations

    DEFF Research Database (Denmark)

    Andriollo, Tito; Hattel, Jesper

    2016-01-01

    A comprehensive description of the mechanical behavior of nodules in ductile iron is still missing in the published literature. Nevertheless, experimental evidence exists for the importance of such graphite particles during macroscopic material deformation, especially under compressive loading. I...

  18. Influence of closure on the 3D propagation of fatigue cracks in a nodular cast iron investigated by X-ray tomography and 3D volume correlation

    International Nuclear Information System (INIS)

    Synchrotron X-ray tomography was performed during in situ fatigue crack propagation in two small-size specimens made of nodular graphite cast iron. While direct image analysis allows us to retrieve the successive positions of the crack front, and to detect local crack retardation, volume correlation allows for the measurement of displacement fields in the bulk of the specimen. The stress intensity factors (SIFs), which are extracted from the measured displacement fields and the corresponding local crack growth rate all along the front, are in good agreement with published results. In particular, it is possible to link the non-propagation of a crack with crack closure in the crack opening displacement maps or with a local value of the measured SIF range. It is shown that a non-uniform closure process along the crack front induces an asymmetric arrest/growth of the crack.

  19. Crack closure and stress intensity factor measurements in nodular graphite cast iron using three-dimensional correlation of laboratory X-ray microtomography images

    International Nuclear Information System (INIS)

    Three-dimensional (3-D) tomographic images of a nodular graphite cast iron obtained using a laboratory X-ray source were used to analyze the opening of a fatigue crack during in situ mechanical loading. Direct image analysis and digital image correlation are utilized to obtain the 3-D morphology and front location of the crack, as well as the displacement fields in the bulk of the specimen. From digital image correlation results it is possible to extract the crack opening displacement (COD) map in the whole sample cross-section and to compute stress intensity factors (SIFs) all along the crack front, even for COD values that are less than the image resolution. The comparison of COD maps with local values of the SIF enabled for an estimation of the opening SIF (Kop) equal to 6 MPa m1/2.

  20. Mechanical properties dependency on chemical composition of spheroidal graphite cast iron; Dependencia de las propiedades mecanicas y de la composicion quimica en la fundicion de grafito esferoidal

    Energy Technology Data Exchange (ETDEWEB)

    Gonzaga-Cinco, R.; Fernandez-Carrasquilla, J.

    2006-07-01

    With this work, we try to study the chemical composition of four specimens in form of stair of ductile cast iron to determine the influence of the chemical composition of different alloying elements on microstructure and on mechanical properties. The dimensions of each specimens are 200 x 100 x 50 mm. Cooling rate has been considered to be different for each one of the four stairs when determining the mechanical properties, therefore, grain size varies in each case. In this analysis, the different microstructures of the stairs have been considered. Influence of the thickness on hardness of each specimen has been taken into account. Heat treatments are not used. Yield and tensile strength are determined. Charpy tests have been done. Rockwell and Brinell hardness are determined. (Author)

  1. 低温一次搪铸铁搪瓷研究%Study on One- Coat Low Temperature Firing Cast Iron Enamel

    Institute of Scientific and Technical Information of China (English)

    李景学; 钱蕙春; 蒋伟忠

    2011-01-01

    A low temperature fired and one coated cast iron enamel with excellence adherence strength and good surface quality has been developed by introducing complex adherence agents, such as, CoO,NiO,CuO,FeO, into enamel frit, and using B2O3, TiO2 to substitute for SiO2, AI2O3 in enamel frit.%采用CoO、NiO、CuO、FeO等多种密着剂引入到铸铁搪瓷釉配方,采用三氧化二硼、二氧化钛等取代二氧化硅、三氧化二铝,研制出搪瓷烧成温度低,密着性能和搪瓷表面质量优良的一次搪铸铁搪瓷.

  2. Applied Research of Laser Surface Hardening of Cast Iron Hot Roll%铸铁热轧辊激光表面强化应用研究

    Institute of Scientific and Technical Information of China (English)

    许巧玉

    2012-01-01

    运用激光表面强化理论和技术,对NiCrMo半冷硬铸铁热轧辊材料进行激光相变硬化和熔凝处理后,表层分别得到针状马氏体和莱氏体白口组织,硬度由原来的51 HRC提高到70 HRC左右,材料的耐磨性提高.%Applying the theory and technology of laser surface hardening, NiCrMo chilled cast iron hot roll material was processed by laser transformation hardening and surface melting. The results show that the white organizations of acicular martensite and ledeburite are obtained in the surface layer, the hardness is increased from 51 HRC to about 70 HRC, and the wear resistance and other performance of the materials are also improved.

  3. Introduction to ultrasonic thickness of cast iron cylinder%浅谈铸铁烘缸的超声波测厚

    Institute of Scientific and Technical Information of China (English)

    陈帅; 邓传奇; 伍广; 周传健

    2016-01-01

    本文介绍了超声波测厚的原理及其特有优势,说明了超声波测厚的材料选取及准备事项,将各种材料进行了比较。通过此方法,可测得对铸铁烘缸较精确的厚度。最后总结了超声波测厚技术的发展方向。%This paper introduces the principle of ultrasonic thickness and its unique advantages,analyzes the ultrasonic thickness of material selection and preparation matters,and the different materials were compared. Through this method, precise thickness can be measured on cast iron cylinder.Finally ,it summarizes the development direction of ultrasonic thickness measurement technology.

  4. A Predictive Framework for Thermomechanical Fatigue Life of High Silicon Molybdenum Ductile Cast Iron Based on Considerations of Strain Energy Dissipation

    Science.gov (United States)

    Avery, Katherine R.

    Isothermal low cycle fatigue (LCF) and anisothermal thermomechanical fatigue (TMF) tests were conducted on a high silicon molybdenum (HiSiMo) cast iron for temperatures up to 1073K. LCF and out-of-phase (OP) TMF lives were significantly reduced when the temperature was near 673K due to an embrittlement phenomenon which decreases the ductility of HiSiMo at this temperature. In this case, intergranular fracture was predominant, and magnesium was observed at the fracture surface. When the thermal cycle did not include 673K, the failure mode was predominantly transgranular, and magnesium was not present on the fracture surface. The in-phase (IP) TMF lives were unaffected when the thermal cycle included 673K, and the predominant failure mode was found to be transgranular fracture, regardless of the temperature. No magnesium was present on the IP TMF fracture surfaces. Thus, the embrittlement phenomenon was found to contribute to fatigue damage only when the temperature was near 673K and a tensile stress was present. To account for the temperature- and stress-dependence of the embrittlement phenomenon on the TMF life of HiSiMo cast iron, an original model based on the cyclic inelastic energy dissipation is proposed which accounts for temperature-dependent differences in the rate of fatigue damage accumulation in tension and compression. The proposed model has few empirical parameters. Despite the simplicity of the model, the predicted fatigue life shows good agreement with more than 130 uniaxial low cycle and thermomechanical fatigue tests, cyclic creep tests, and tests conducted at slow strain rates and with hold times. The proposed model was implemented in a multiaxial formulation and applied to the fatigue life prediction of an exhaust manifold subjected to severe thermal cycles. The simulation results show good agreement with the failure locations and number of cycles to failure observed in a component-level experiment.

  5. Effect of the concentrated heat flow treatment on the structure and the antiwear properties of cast iron

    Directory of Open Access Journals (Sweden)

    W. Orlowicz

    2009-04-01

    Full Text Available The influence of modes of surface fusion by electric arc plasma (GTAW method on the hardness and wear-resistance of plain cast ironwas studied. A possible mechanism of structural rearrangement in the processed material during the friction was analyzed. This mechanismis determined by specific behaviour of hardened martensitic structure under dynamic load. This martensitic structure forms a metalbasis of cementite eutectic under conditions of fast crystallisation.

  6. Formation Reason and Countermeasures of Non-Metal Inclusions of Cast Irons%铸铁非金属夹杂物的形成原因与应对措施

    Institute of Scientific and Technical Information of China (English)

    张文和; 王峰; 赵鲁生

    2011-01-01

    The composition and source of slag of cast irons melted in cupola and medium frequency furnace was introduced. The measures to reduce non-metal inclusions in cast irons were proposed as follows: ( 1 )improving metallurgical quality of the cast irons; (2 )improving the morphology and distribution of the nonmetal inclusions. The formation reason of the secondary slag was described. It's considered that, by adopting proper measures and iron melt treating technique, the secondary oxidation of the iron melt and its harmful effect can be reduced.%介绍了冲天炉和中频炉熔炼铸铁的炉渣成分及来源,提出减少铸铁内部非金属夹杂物的措施:(1)提高铸铁的冶金质量;(2)改善铸铁中非金属夹杂物的形态及分布.描述了铁液二次渣的形成原因,认为采取适宜的措施及铁液处理技术,可以减轻铁液二次氧化及其不利影响.

  7. 灰铸铁汽车制动盘湿砂型铸造工艺的设计及数值模拟%APPLICATION OF SURGE CASTING SAND MEMBRANE TECHNIQUE FOR GREY CAST IRON BRAKE DISC AND PROCESS NUMERICAL SIMULATION

    Institute of Scientific and Technical Information of China (English)

    孙小亮; 马志英; 裴小虎; 杨弋涛; 华勤; 翟启杰

    2011-01-01

    应用湿砂型铸造工艺制造灰铸铁汽车制动盘,上下型为对称结构,中间用砂芯分隔,一型6件,可以降低生产成本,大大提高生产效率.并用ADSTEFAN模拟软件对铸造过程进行数值模拟,从而优化设计工艺.%Green sand mold casting process was used to manufacture grey cast iron brake disc.The structure of high and low mould parts was symmetrical and sand cores were existed between them.A mold contained 6 pieces of casting, so it could reduce the cost, and greatly improve the production efficiency.ADSTEFAN simulation software was used to simulate the casting process,therefore to optimize the design and process.

  8. 电力机车牵引电机用低温球墨铸铁件的生产%Production of Low Temperature Ductile Iron Casting for Tractor Motor

    Institute of Scientific and Technical Information of China (English)

    朱红军; 时平利

    2011-01-01

    The low-temperature ductile iron casting used for traction motor features complex structure and large difference in wall thickness. The shrinkage and dispersed shrinkage defects easy occur during the production, and the casting is required to have a low temperature impact energy greater than 12 J at -40 ℃. Herein taking the end shield casting for example, the production procedure of low-temperature ductile iron casting was presented from aspects such as the molding process, smelting, selection of raw materials, chemical composition control, heat treatment, etc. The casting's performance arrives at the same level of the similar products abroad, and its localization production is realized.%针对牵引电机用低温球墨铸铁件结构复杂,壁厚差别大,易产生缩孔和缩松缺陷,并要求铸件-40℃的低温冲击功大于12J的这些生产难点.以端盖铸件为例,分别从造型工艺、熔炼、原材料的选择、化学成分的控制、热处理工艺等方面介绍了生产低温球墨铸铁件的生产过程.经检验,铸件性能达到国外同类产品的质量要求,实现了国产化生产.

  9. 球墨铸铁飞轮壳的无冒口铸造工艺实践%Non-Riser Casting Technological Practice of Ductile Iron Flywheel-Casing

    Institute of Scientific and Technical Information of China (English)

    张春明

    2013-01-01

    对某球铁飞轮壳铸件的无冒口铸造工艺进行了分析,采用呋喃树脂自硬砂造型、控制铁液的化学成分、采用中间底注、铁液分散进入型腔的浇注方式以及四角设置出气孔等措施,使球铁飞轮壳的无冒口铸造工艺得到了实现,生产的球铁飞轮壳力学性能符合技术要求,且实现了批量生产.%The non-riser casting technological design of ductile iron flywheel-casing was analyzed, and the casting technology was achieved by no-bake sand molding, controlling composition of iron melt, pouring from bottom center of the casting and dispersing into the mould cavity, and exhausting from four holes around the casting. The mechanical properties of the ductile iron flywheel-casing made by this technology meet the technical standard, and the batch production is achieved.

  10. Effect of carbon content on carbide morphology and mechanical properties of A.R. white cast iron with 10-12% tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Heydari, D. [Department of Materials Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Skandani, A. Alipour [Department of Engineering Science and Mechanics, Virginia Tech, Blacksburg, VA 24061 (United States); Al Haik, M., E-mail: alhaik@vt.edu [Department of Engineering Science and Mechanics, Virginia Tech, Blacksburg, VA 24061 (United States)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer Effect of W and C variation in A.R. white cast iron was studied up to 12 wt% W. It never exceeded 10 wt% in previous investigations. Black-Right-Pointing-Pointer Carbide morphologies with 2.2-3.2 wt% carbon shows that W has dominating effect on carbide morphology. Black-Right-Pointing-Pointer New carbide microstructures (GA and IA) appear in some range of carbon and its volume fraction is function of carbon content. Black-Right-Pointing-Pointer After heat treatment, new carbide morphology turns to continuous chromium carbide. Black-Right-Pointing-Pointer Wear resistance and hardness of the new alloys depends on both IA appearance presence and tungsten carbide precipitation. - Abstract: Carbide morphologies of white cast iron containing 22% Cr and 10-12% tungsten with different carbon contents (2.34-3.20 wt.%) were investigated. Results indicated that for the as-cast alloys with no heat treatments, the addition of carbon changes the morphology of carbides during air-cooling in the presence of tungsten. Light microscopy analysis revealed that for an alloy with 2.3 wt% carbon, chromium carbides possess coarse gray appearance (GA). Increasing the carbon content reduced the coarse GA zones volume fraction while a finer GA zones emerged. The coexistence of coarse and fine GA phases came to an end at 2.8 wt% carbon, at which only fine GA zones spread throughout the chromium carbide phase. Scaling up the carbon content to 3.2 wt% led to the formation of tungsten carbide and austenite in a eutectic reaction. Both fine and coarse GA zones vanished while the tungsten carbides acquired fishbone-like morphology. Upon heat treatment, the coarse GA zones vanished completely and turned into island appearance (IA) of chromium carbide. On the contrary, the finer GA zones remained unchanged after heat treatment and they coexisted with the IA. After heat treatment, the fishbone morphology shattered apart, however, the hyper chromium carbides

  11. Measures to Eliminate Shrinkage Cavity Defects of Nodular Iron Rear Cover Casting%球铁后盖铸件缩孔缺陷的消除措施

    Institute of Scientific and Technical Information of China (English)

    毛进学

    2011-01-01

    分析认为球铁后盖铸件热节部位产生缩孔的原因是:原工艺在热节部位设置冒口,使热节增大;而且由于冒口颈偏小,早于铸件热节凝固封闭,使铸件热节不可能通过冒口颈获得补缩.为此采取如下改进措施:1)使冒口远离铸件热节,避免热节增大;2)在热节处设置厚大冷铁,使热节提早凝固收缩,从而可以通过冒口颈获得补缩.改进工艺后,缩孔问题得到了解决.%The reason causing shrin kage defect in hot spot area of the nodular iron rear cover casting was considered by analysis as that setting nser at the hot spot area in the former casting method caused the hot spot enlarged, however, due to having too smaller section, the riser neck solidified earlier than the hot spot and led to that the hot spot couldn't be fed through the riser neck. Therefore, the following improvements were adopted: 1) moving the riser to a location apart from the hot spot by some distance in order to avoid the hot spot to be enlarged; 2) setting a heavy chill at the hot spot in order to make the hot spot solidify earlier so that it can be fed through the riser neck. After the method having been improved, the shrinkage cavity problem has been solved.

  12. The Role of Niobium in the High Chromium Cast Iron Hardfacing Metal%Nb在高铬铸铁型堆焊金属中的作用

    Institute of Scientific and Technical Information of China (English)

    潘川; 吴智武; 王移山; 柳小坚; 何志勇

    2012-01-01

    在高铬铸铁型堆焊金属中,用7%的铌元素取代相同摩尔数的铬元素,制成含铌的明弧自保护药芯焊丝.运用彩色金相分析、扫描电镜及能谱分析、X射线物相分析、洛氏硬度测试等技术,研究了铌在高铬铸铁型堆焊金属中的作用,分析了线能量对高铬铸铁型堆焊金属组织和硬度的影响.结果表明:铌元素能够优先与碳结合,形成弥散分布的碳化铌结晶核心,阻止初生碳化物的生长,具有明显的细化晶粒作用.不论是否添加铌元素,同种堆焊金属线能量越小,碳化物尺寸越细小;裂纹数量越多,裂纹分布越均匀,且裂缝间隙越小.可以通过控制线能量来控制焊缝的裂纹分布,防止堆焊层脱落.改变线能量以及用7%的铌元素取代相同摩尔数的铬元素,其洛氏硬度值基本保持不变,均在60 HRC左右.%In this paper, self-shielded flux cored wire including niobium for open arc welding was prepared with 7% niobium element to replace the same number of moles of chromium element in the high chromium cast iron hardfacing metal. The role of niobium in the high chromium cast iron hardfacing metal was studied, the effect of heat input on microstructure and hardness of the high chromium cast iron hardfacing metal was analyzed, by means of color metallography, SEM, EDS, XRD and testing Rockwell hardness techniques. The results showed that niobium element can preferentially combined with carbon to form dispersion distribution of NbC crystal core, to prevent the growth of primary carbides, thus plays a significant role of grain refinement. The heat input in the same hardfacing metal is smaller, whether or not to add niobium element, the size of carbides is finer, the number of cracks is greater, its distribution is more homogeneous and its gap was smaller. The crack distribution can be controlled by adjusting heat input in order to prevernt hardfacing layer falling off. No matter changing heat input or

  13. Corrosion behaviour of ductile cast irons partially modified with silicon in 0.03 M NaCl; Comportamiento frente a la corrosion de fundiciones con grafito laminar y esferoidal parcialmente modificadas con silicio en NaCl 0,03 M

    Energy Technology Data Exchange (ETDEWEB)

    Arenas, M. A.; Niklas, A.; Conde, A.; Mendez, S.; Sertucha, J.; Damborenea, J. J. de

    2014-07-01

    NaCl. The increasing demand of ductile cast irons with extensive technological applications leads to enlarge the corrosion resistance of this group of metallic materials. In this sense, the use of different chemical compositions on such cast irons becomes one of the most interesting aspects among the different ways to improve their behaviour against corrosion due to the extra opportunity for increasing the mechanical properties. Additionally such improvements have to be made without any increase of processing costs to keep the interesting competitiveness of developed cast irons. In the present work the preliminary results obtained from corrosion tests made on a group of cast irons with different chemical compositions are presented. Among ductile cast irons, silicon content has been varied in order to investigate the effect of this element on corrosion resistance of the alloys. The obtained results show a slight improvement of this property for the alloys with high silicon content with respect to the conventional ones though such effect was found in the first time period of the corrosion tests. Interestingly this improvement was found for alloys that exhibit better tensile properties than the conventional ductile irons. Thus an important way for developing new ductile cast irons with improved corrosion properties by alloying has been opened. (Author)

  14. 水平连铸灰铁HT250型材的阻尼行为%Damping Behavior of Grey Cast Iron HT250 Dense Bar Fabricated by Horizontal Continuous Casting

    Institute of Scientific and Technical Information of China (English)

    张忠明; 王锦程; 马莹; 李伟明; 徐春杰; 王刚

    2012-01-01

    选用直径为55 mm的水平连铸灰铁HT250棒材,利用动态热机械分析仪测试型材的阻尼性能随振幅、频率和温度的变化关系,探讨灰铸铁型材的阻尼机制.研究表明,灰铸铁型材的阻尼性能随振幅和频率的提高而增加.在40℃附近出现斯诺克温度内耗峰.斯诺克峰的出现,使型材的阻尼性能随温度的变化在高低温时表现出完全不同的趋势.存在一临界应变振幅范围,大应变振幅下的阻尼性能远高于小应变振幅下的阻尼性能.灰铸铁型材的阻尼温度效应主要来源于点缺陷阻尼.位错阻尼在阻尼频率效应和阻尼振幅效应中起了主导作用,决定了型材的阻尼-频率行为和阻尼振幅行为.%The variation of damping behavior with vibration amplitude, frequency and temperature in grey cast iron HT250 dense bar produced by horizontal continuous casting was measured by dynamic mechanical analyzer to understand the damping mechanism of the alloy. The results show that the damping behavior is increased with increasing in amplitude and frequency. An internal friction peak occurs at about 40 "C and is extrapolated by Snoek relaxation. The damping temperature curve shows inverse tendencies at higher temperature range and lower temperature range as a result of the occurrence of Snoek peak. There exists a critical amplitude range, and the damping behavior at higher amplitude is much higher than that at lower amplitude. The temperature-dependent damping capacity mainly is resulted from point-defect damping, while dislocation damping is predominant in the frequency-dependent damping and amplitude-dependent damping, which controls the damping behavior of the alloy.

  15. Comprehensive study of the abrasive wear and slurry erosion behavior of an expanded system of high chromium cast iron and microstructural modification for enhanced wear resistance

    Science.gov (United States)

    Chung, Reinaldo Javier

    High chromium cast irons (HCCIs) have been demonstrated to be an effective material for a wide range of applications in aggressive environments, where resistances to abrasion, erosion and erosion-corrosion are required. For instance, machinery and facilities used in mining and extraction in Alberta's oil sands suffer from erosion and erosion-corrosion caused by silica-containing slurries, which create challenges for the reliability and maintenance of slurry pumping systems as well as other processing and handling equipment. Considerable efforts have been made to determine and understand the relationship between microstructural features of the HCCIs and their wear performance, in order to guide the material selection and development for specific service conditions with optimal performance. The focus was previously put on a narrow group of compositions dictated by ASTM A532. However, with recent advances in casting technology, the HCCI compositional range can be significantly expanded, which potentially brings new alloys that can be superior to those which are currently employed. This work consists of three main aspects of study. The first one is the investigation of an expanded system of white irons with their composition ranging from 1 to 6 wt.% C and 5 to 45 wt.% Cr, covering 53 alloys. This work has generated wear and corrosion maps and established correlation between the performance and microstructural features for the alloys. The work was conducted in collaboration with the Materials Development Center of Weir Minerals in Australia, and the results have been collected in a database that is used by the company to guide materials selection for slurry pump components in Alberta oil sands and in other mining operations throughout the world. The second part consists of three case studies on effects of high chromium and high carbon, respectively, on the performance of the HCCIs. The third aspect is the development of an approach to enhance the wear resistance of

  16. Study of the influence of Cu and Ni on the kinetics of strain-induced martensite in austempered ductile cast iron; Estudio de la influencia del Cu y Ni en la cinetica de transformacion martensitica inducida por deformacion en fundiciones nodulares austemperadas

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, D.; Navea, L.; Garin, J.; Aguilar, C.; Guzman, A.

    2013-09-01

    The objective of this work was to study the influence of copper and nickel on the kinetics of strain-induced martensite in austempered ductile cast iron. The austempered ductile cast irons were obtained from two ductile cast irons with different copper and nickel contents by means of austempering treatment. The deformation was carried out using a rolling mill. The quantification of the phases was obtained by means of X ray diffraction, while the microstructural characterization was carried out using optical and scanning electron microscopy. It was proved that the kinetics of strain-induced martensite in austempered ductile cast iron can be modeled using the equations proposed by Olson- Cohen and Chang et al. Based on the results obtained from these analyses, it is possible to conclude that the nickel and copper complicate the martensite transformation because these elements increase the staking fault energy of the austenite and its thermodynamic stability. (Author)

  17. Effects of operational parameters and common ions on the reduction of 2,4-dinitrotoluene by scrap copper-modified cast iron.

    Science.gov (United States)

    Fan, Jin-Hong; Wang, Hong-Wu

    2015-07-01

    Scrap Cu-modified cast iron (CMCI) is a potent material for the reduction of 2,4-dinitrotoluene (2,4-DNT) by a surface-mediated reaction. However, the effects of operational parameters and common ions on its reduction and final rate are unknown. Results show that the 2,4-DNT reduction was significantly affected by Cu:Fe mass ratio and the optimum m(Cu:Fe) was 0.25%. The slight pH-dependent trend of 2,4-DNT reduction by CMCI was observed at pH 3 to 11, and the maximum end product, 2,4-diaminotoluene (2,4-DAT), was generated at pH 7. Dissolved oxygen (DO) in the water reduced the 2,4-DNT degradation and the formation of 2,4-DAT. CMCI effectively treated high concentrations of 2,4-DNT (60 to 150 mg L(-1)). In addition, varying the concentration of (NH4)2SO4 from 0.001 to 0.1 mol L(-1) improved the efficiency of the reduction process. The green rust-like corrosion products (GR-SO4 (2-)) were also effective for 2,4-DNT reduction, in which Na2CO3 (0.01 to 0.2 mol L(-1)) significantly inhibited this reduction. The repeated-use efficiency of CMCI was also inhibited. Moreover, 2,4-DNT and its products, such as 4A2NT, 2A4NT, and 2,4-DAT, produced mass imbalance (inhibition of CO3 (2-). The 2,4-DNT reduction by CMCI could be described by pseudo-first-order kinetics. The operational conditions and common ions affected the 2,4-DNT reduction and its products by enhancing the corrosion of iron or accumulating a passive oxide film on the reactivity sites. PMID:25663339

  18. Investigation on Surface Hardening of Cast Iron by Tungsten Inert Gas Arc Remelting%铸铁表面钨极氩弧重熔强化的研究

    Institute of Scientific and Technical Information of China (English)

    姚军; 梁文心

    2000-01-01

    为了提高铸铁表面的耐磨性,以HT200为试验材料,用钨极氩弧对其进行了局部重熔强化的系统研究,得出了相关工艺参数对重熔处理后表层组织和性能的影响规律。同时与镍基自熔合金喷焊及铸铁激冷处理表面强化法做了对比试验,结果表明,铸铁钨极氩弧重熔后激冷法是有效提高其耐磨性,发挥自身潜力,降低成本的一项新工艺。%To improve the resistance to abrasion for surface of cast iron,the wear resistibility of grey cast iron HT200 is increased by employing inert gas tungsten arc remelt and fast solidified.The effect of current and arc moving rate on the chilling layer microstructure and some properties are studied.The results are compared with those of spray coating by nickel alloys and cast iron chilled treating and it proved that rapid chilling of A-type cast iron by tungsten inert shielded gas arc melting as an energy source is much better and cheaper technique than others.And also promises to provide a new method for controlling microstructure and properties.

  19. Effect of heat treatment on the wear and corrosion behaviors of a gray cast iron coated with a COLMONOY 88 alloy deposited by high velocity oxygen fuel (HVOF) thermal spray

    OpenAIRE

    ÖZ, A.; R. Samur; Mindivan, H.; Demir, A.; S. Sagiroglu; A. K. Yakut

    2013-01-01

    The present work has been conducted in order to determine the influence of heat treatment on the wear and corrosion behaviours of a gray cast iron substrate coated with a Ni base coating deposited by HVOF thermal spray. The wear resistance of the coatings was obtained using a reciprocating wear tester by rubbing a 10 mm diameter steel ball on the coatings at normal atmospheric conditions. Corrosion tests were performed using potentiodynamic polarization measurements in a 3,5 % NaCl solution. ...

  20. Entropy-Based weighting applied to normal boundary intersection approach: the vertical turning of martensitic gray cast iron piston rings case

    Directory of Open Access Journals (Sweden)

    Luiz Célio Souza Rocha

    2015-10-01

    Full Text Available In practical situations, solving a given problem usually calls for the systematic and simultaneous analysis of more than one objective function. Hence, a worthwhile research question may be posed thus: In multiobjective optimization, what can facilitate the decision maker in choosing the best weighting? Thus, this study attempts to propose a method that can identify the optimal weights involved in a multiobjective formulation. Our method uses functions of Entropy and Global Percentage Error as selection criteria of optimal weights. To demonstrate its applicability, we employed this method to optimize the machining process for vertical turning martensitic gray cast iron piston rings, maximizing the productivity and the life of cutting tool and minimizing the cost, using feed rate and rotation of the cutting tool as the decision variables. The proposed optimization goals were achieved with feed rate = 0.35 mm rev-1 and rotation = 248 rpm. Thus, the main contributions of this study are the proposal of a structured method, differentiated in relation to the techniques found in the literature, of identifying optimal weights for multiobjective problems and the possibility of viewing the optimal result on the Pareto frontier of the problem. This viewing possibility is very relevant information for managing processes more efficiently.