WorldWideScience

Sample records for cast iron

  1. Cast irons

    CERN Document Server

    1996-01-01

    Cast iron offers the design engineer a low-cost, high-strength material that can be easily melted and poured into a wide variety of useful, and sometimes complex, shapes. This latest handbook from ASM covers the entire spectrum of one of the most widely used and versatile of all engineered materials. The reader will find the basic, but vital, information on metallurgy, solidification characteristics, and properties. Extensive reviews are presented on the low-alloy gray, ductile, compacted graphite, and malleable irons. New and expanded material has been added covering high-alloy white irons used for abrasion resistance and high-alloy graphitic irons for heat and corrosion resistance. Also discussed are melting furnaces and foundry practices such as melting, inoculation, alloying, pouring, gating and rising, and molding. Heat treating practices including stress relieving, annealing, normalizing, hardening and tempering, autempering (of ductile irons), and surface-hardening treatments are covered, too. ASM Spec...

  2. Special thermite cast irons

    OpenAIRE

    Yu. Zhiguts; I. Kurytnik

    2008-01-01

    The given paper deals with the problems of the synthesis of cast iron by metallothermy synthesis. On the basis of investigated method of calculations structures of charges have been arranged and cast iron has been synthesized further. Peculiarities metallothermic smelting were found, mechanical properties and structure of received cast iron were investigated and different technologies for cast iron receiving were worked out.

  3. Wear resistance of cast iron

    OpenAIRE

    S. Pietrowski; G. Gumienny

    2008-01-01

    In this paper investigations of abrasive and adhesive wear resistance of different cast iron grades have been presented. Examinations showed, that the most advantageous pair of materials is the cast iron – the hardened steel with low-tempered martensite. It was found, that martensitic nodular cast iron with carbides is the most resistant material.

  4. Colour Metallography of Cast Iron - White Cast Iron (Ⅱ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2011-11-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  5. Cast iron - a predictable material

    Directory of Open Access Journals (Sweden)

    Jorg C. Sturm

    2011-02-01

    Full Text Available High strength compacted graphite iron (CGI or alloyed cast iron components are substituting previously used non-ferrous castings in automotive power train applications. The mechanical engineering industry has recognized the value in substituting forged or welded structures with stiff and light-weight cast iron castings. New products such as wind turbines have opened new markets for an entire suite of highly reliable ductile iron cast components. During the last 20 years, casting process simulation has developed from predicting hot spots and solidification to an integral assessment tool for foundries for the entire manufacturing route of castings. The support of the feeding related layout of the casting is still one of the most important duties for casting process simulation. Depending on the alloy poured, different feeding behaviors and self-feeding capabilities need to be considered to provide a defect free casting. Therefore, it is not enough to base the prediction of shrinkage defects solely on hot spots derived from temperature fields. To be able to quantitatively predict these defects, solidification simulation had to be combined with density and mass transport calculations, in order to evaluate the impact of the solidification morphology on the feeding behavior as well as to consider alloy dependent feeding ranges. For cast iron foundries, the use of casting process simulation has become an important instrument to predict the robustness and reliability of their processes, especially since the influence of alloying elements, melting practice and metallurgy need to be considered to quantify the special shrinkage and solidification behavior of cast iron. This allows the prediction of local structures, phases and ultimately the local mechanical properties of cast irons, to asses casting quality in the foundry but also to make use of this quantitative information during design of the casting. Casting quality issues related to thermally driven

  6. Colour Metallography of Cast Iron

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2009-05-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron.Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron , uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditionalmaterials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  7. Inoculation Effects of Cast Iron

    Directory of Open Access Journals (Sweden)

    E. Fraś

    2012-12-01

    Full Text Available The paper presents a solidification sequence of graphite eutectic cells of A and D types, as well as globular and cementite eutectics. The morphology of eutectic cells in cast iron, the equations for their growth and the distances between the graphite precipitations in A and D eutectic types were analyzed. It is observed a critical eutectic growth rate at which one type of eutectic transformed into another. A mathematical formula was derived that combined the maximum degree of undercooling, the cooling rate of cast iron, eutectic cell count and the eutectic growth rate. One type of eutectic structure turned smoothly into the other at a particular transition rate, transformation temperature and transformational eutectic cell count. Inoculation of cast iron increased the number of eutectic cells with flake graphite and the graphite nodule count in ductile iron, while reducing the undercooling. An increase in intensity of inoculation caused a smooth transition from a cementite eutectic structure to a mixture of cementite and D type eutectic structure, then to a mixture of D and A types of eutectics up to the presence of only the A type of eutectic structure. Moreover, the mechanism of inoculation of cast iron was studied.

  8. Graphite Formation in Cast Iron

    Science.gov (United States)

    Stefanescu, D. M.

    1985-01-01

    In the first phase of the project it was proven that by changing the ratio between the thermal gradient and the growth rate for commercial cast iron samples solidifying in a Bridgman type furnace, it is possible to produce all types of graphite structures, from flake to spheroidal, and all types of matrices, from ferritic to white at a certain given level of cerium. KC-135 flight experiments have shown that in a low-gravity environment, no flotation occurs even in spheroidal graphite cast irons with carbon equivalent as high as 5%, while extensive graphite flotation occurred in both flake and spheroidal graphite cast irons, in high carbon samples solidified in a high gravity environment. This opens the way for production of iron-carbon composite materials, with high carbon content (e.g., 10%) in a low gravity environment. By using KC-135 flights, the influence of some basic elements on the solidification of cast iron will be studied. The mechanism of flake to spheroidal graphite transition will be studied, by using quenching experiments at both low and one gravity for different G/R ratios.

  9. Inoculation of chromium white cast iron

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2009-01-01

    Full Text Available It has been proved that an addition of boron carbide introduced as an inoculant to the chromium white cast iron changes the structureof castings. Castings after inoculation revealed a different structure with numerous grains. Primary precipitates of chromium carbide also appeared, reducing the mechanical properties of as-cast parts. Properly established heat treatment regime makes chromium iron castings regain their, originally high, mechanical properties.

  10. CAST-IRONS AT HIGH TEMPERATURES

    Directory of Open Access Journals (Sweden)

    A. N. Krutilin

    2008-01-01

    Full Text Available The results of investigations of physical-mechanical characteristics of cast iron slugs, received by semicontinuos way of casting, at temperatures from 850 up to 1100^ С are given. 

  11. Delamination wear mechanism in gray cast irons

    International Nuclear Information System (INIS)

    Salehi, M.

    2000-01-01

    An investigation of the friction and sliding wear of gray cast iron against chromium plated cast irons was carried out on a newly constructed reciprocating friction and wear tester. The tests were the first to be done on the test rig under dry conditions and at the speed of 170 cm/min, and variable loads of 20-260 N for a duration of 15 min. to 3 hours. The gray cast iron surfaces worn by a process of plastic deformation at the subsurface, crack nucleation, and crack growth leading to formation of plate like debris and therefore the delamination theory applies. No evidence of adhesion was observed. This could be due to formation of oxides on the wear surface which prevent adhesion. channel type chromium plating ''picked'' up cast iron from the counter-body surfaces by mechanically trapping cast iron debris on and within the cracks. The removal of the plated chromium left a pitted surface on the cast iron

  12. Directional Solidification of Nodular Cast Iron

    Science.gov (United States)

    Curreri, P. A.; Stefanescu, D. M.; Hendrix, J. C.

    1987-01-01

    Cerium enhances formation of graphite nodules. Preliminary experiments in directional solidification of cast iron shows quantitative correlation of graphite microstructure with growth rate and thermal gradient, with sufficient spheroidizing element to form spheroidal graphite under proper thermal conditions. Experimental approach enables use of directional solidification to study solidification of spheriodal-graphite cast iron in low gravity. Possible to form new structural materials from nodular cast iron.

  13. Control of Cast Iron Microstructure

    Science.gov (United States)

    Graham, J.; Lillybeck, N.; Franco, N.; Stefanescu, D. M.

    1985-01-01

    The use of microgravity for industrial research in the processing of cast iron was investigated. Solidification experiments were conducted using the KC-135 and F-104 aircraft, and an experiment plan was developed for follow-on experiments using the Shuttle. Three areas of interest are identified: (1) measurement of thermophysical properties in the melt; (2) understanding of the relative roles of homogeneous nucleation, grain multiplication, and innocultants in forming the microstructure; and (3) exploring the possibility of obtaining an aligned graphite structure in hypereutectic Fe, Ni, and Co.

  14. WEAR-RESISTANCE OF CHROMIC CAST IRONS OF EUTECTIC COMPOSITION

    Directory of Open Access Journals (Sweden)

    K. E. Baranovskij

    2009-01-01

    Full Text Available Casting of wear-resistant chrome cast irons in combined molds and iron chills is studied. Application of these ways of casting results in blending of carbides and increasing of hardness of castings.

  15. Colour Metallography of Cast Iron - Chapter 2: Grey Iron (Ⅲ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2009-11-01

    Full Text Available The book, Colour Metallography of Cast Iron , uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour metallographic photos. This book consists of five sections: Chapter 1 Introduction, Chapter 2 Grey Iron, Chapter 3 Ductile Iron, Chapter 4 Vermicular Cast Iron, and Chapter 5 White Cast Iron. CHINA FOUNDRY publishs this book in several parts serially,starting from the first issue of 2009.

  16. Quantitative NDT structuroscopy of cast iron castings for vehicles

    Czech Academy of Sciences Publication Activity Database

    Skrbek, B.; Tomáš, Ivan

    2011-01-01

    Roč. 6, 3-4 (2011), s. 293-305 ISSN 1741-8410 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic method * structuroscopy * cast iron * clutch disks Subject RIV: BM - Solid Matter Physics ; Magnetism

  17. 49 CFR 192.373 - Service lines: Cast iron and ductile iron.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Service lines: Cast iron and ductile iron. 192.373... Regulators, and Service Lines § 192.373 Service lines: Cast iron and ductile iron. (a) Cast or ductile iron... cast iron pipe or ductile iron pipe is installed for use as a service line, the part of the service...

  18. Colour Metallography of Cast Iron - Chapter 2: Grey Iron (Ⅱ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2009-08-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  19. Vermicular graphite cast iron current state of the art

    OpenAIRE

    Murthy, VSR; Seshan, S; Seshan, K

    1985-01-01

    Vermicular graphite cast iron is a new addition to the family of cast irons. Various methods for producing vermicular graphite cast iron are briefly discussed in this paper. The mechanical and physical properties of cast irons with vermicular graphite have been found to be intermediate between those of gray and ductile irons. Other properties such as casting characteristics, scaling resistance, damping capacity and machinability have been compared with those of gray and ductile irons. Probabl...

  20. 49 CFR 192.275 - Cast iron pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Cast iron pipe. 192.275 Section 192.275... Cast iron pipe. (a) Each caulked bell and spigot joint in cast iron pipe must be sealed with mechanical leak clamps. (b) Each mechanical joint in cast iron pipe must have a gasket made of a resilient...

  1. Cast iron repair method of stitching pin

    International Nuclear Information System (INIS)

    Yun, In Sik; Yu, Yeong Chul; Kim, Steve S.; Reed, Gary J.

    2003-01-01

    Many cast iron parts are welded and suffer from improper pre-heating and poor welding skills which destroy the castings due to new cracks, deformations etc. This is due mainly to the lack of understanding of the properties of cast iron. Welding, however impractical, was the only alternative for many years. Locks are used to add strength across a crack. Special drilling jigs are used to create a precise hole pattern that locks are driven into. Our locks have a unique ability to pull the sides of a crack together. Bottom locks are stacked or laminated to a depth of 80% of the casting thickness. Thicker surface locks finish off lock installation, allowing repairs in irregular shapes and contours. Installing products can be done quickly with pneumatic tools. Up to one inch of repair can be done in 5 minutes in 1/4 inch thick cast iron.

  2. Cast iron repair method of stitching pin

    International Nuclear Information System (INIS)

    Yun, In Sik; Yu, Yeong Chul; Kim, Steve S.; Reed, Gary J.

    2003-01-01

    Many cast iron parts are welded and suffer from improper pre-heating and poor welding skills which destroy the casting due to new cracks, deformations etc. This is due mainly to the lack of understanding of the properties of cast iron. Welding, however impractical, was the only alternative for many years. Locks are used to add strength across a crack. Special drilling jigs are used to create a precise hole pattern that locks are driven into. Our locks have a unique ability to pull the sides of a crack together. Bottom locks are stacked or laminated to a depth of 80% of the casting thickness. Thicker surface locks finish off lock installation, allowing repairs in irregular shapes and contours. Installing products can be done quickly with pneumatic tools. Up to one inch of repair can be done in 5 minutes in 1/4 inches thick cast iron.

  3. Fatigue behaviour of synthetic nodular cast irons

    Directory of Open Access Journals (Sweden)

    A. Vaško

    2015-01-01

    Full Text Available The paper shows the influence of charge composition on microstructure, fatigue properties and failure micromechanisms of nodular cast irons. The additive of metallurgical silicon carbide (SiC in analysed specimens increases the content of ferrite in the matrix, decreases the size of graphite and increases the average count of graphitic nodules per unit of area. Consequently, the mechanical and fatigue properties of nodular cast iron are improved. The best fatigue properties (fatigue strength were reached in the melt which was created by 60 % of steel scrap and 40 % of pig iron in the basic charge with SiC additive.

  4. Thin wall ductile and austempered iron castings

    Directory of Open Access Journals (Sweden)

    E. Fraś

    2010-07-01

    Full Text Available It has been shown that it is possible to produce thin wall castings made of ductile iron with wall thickness in the range of 1.2 to 2.9 mm(without chills, cold laps and misruns. Thin wall ductile iron castings can be lighter (380 g than their substitutes made of aluminium alloys (580g. The kinetics of austenitising transformation was studied in unalloyed ductile iron. The advance of transformations during austenitising was monitored by measurement the fraction of martensite and also by dilatometic studies. It has been shown that in thin wall ductile iron castings austenitising at 880 oC for 20 minutes is adequate to obtain the austenite matrix at the end of the first stage of austempering heat treatment cycle.

  5. Colour Metallography of Cast Iron - Chapter 3: Spheroidal Graphite Cast Iron (Ⅲ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2010-08-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  6. Colour Metallography of Cast Iron - Chapter 5: White Cast Iron (Ⅰ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2011-08-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  7. Colour Metallography of Cast Iron - Chapter 3: Spheroidal Graphite Cast Iron (Ⅱ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2010-05-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  8. Colour Metallography of Cast Iron - Chapter 4: Vermicular Graphite Cast Iron (Ⅰ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2011-02-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  9. Colour Metallography of Cast Iron - Chapter 3: Spheroidal Graphite Cast Iron (Ⅳ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2010-11-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  10. Colour Metallography of Cast Iron - Chapter 4: Vermicular Graphite Cast Iron (Ⅱ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2011-05-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  11. Colour Metallography of Cast Iron - Chapter 3: Spheroidal Graphite Cast Iron (Ⅰ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2010-02-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  12. Study of pinholes genesis in iron castings

    Directory of Open Access Journals (Sweden)

    T. Elbel

    2011-01-01

    Full Text Available Purpose: The study concerns the formation of pinholes in castings formed by reaction between a green foundry mould and lamellargraphite cast iron. Great numbers of works have been aimed at clarifying the causes of pinholes formation in iron castings. In spite of thisthere exists no united opinion on the pinholes formation (genesis and the authors of this contribution having studied this phenomenon incompacted graphite and spheroidal graphite iron castings were also aimed at lamellar graphite cast iron and they applied for it theirknowledge gained in study of reoxidation processes during casting of ferrous alloys.Methodology: Experiments were done on castings of stepped bars moulded in green bentonite mixtures with s graduated moisture and withuse of two types of carbonaceous matters. Metal was melted in a 100 kg induction furnace from the same charge. Inoculation was done ina ladle after pouring out from the furnace. Aluminium was dosed in the ladle in some cases and the inoculator kind was changed too.Results: Pinholes were present on castings as small flat pits; on horizontal surfaces sooner singly, on casting edges in clusters. Theformation of pinholes wasn’t caused by high moisture of moulds but the defect was sensitive to aluminium content in metal. In castingswith high aluminium content > 0.01 % the pinholes were present in great numbers, and namely both under low, and also high moi stures ofmoulding mixtures. In melts with low content of Al < 0.01 % the pinholes occurred less extensively only.Practical implications: Conclusions from literature about influence of Al on pinholes occurrence were confirmed in such a way. Study ofthe defect morphology has shown that the question is a oxidation reaction type of pinholes caused by oxidation of the residual meltbetween dendrites with formation of CO.

  13. Spatial Bimetallic Castings Manufactured from Iron Alloys

    Directory of Open Access Journals (Sweden)

    M. Cholewa

    2007-07-01

    Full Text Available In this paper a conception for manufacturing method of skeleton castings with composite features was shown. Main application of such castings are the working organs of machines subjected to intensive abrasive and erosive wear. Skeleton geometry was based on three-dimensional cubic net consisting of circular connectors and nodes joining 6 connectors according to Cartesian co-ordinate system. Dimension of an elementary cell was equal to 10 mm and diameter of single connector was equal to 5 mm. For bimetallic castings preparation two Fe based alloys were used: L25SHMN cast steel for skeleton substrate and ZlCr15NiMo cast iron for working part of the casting. In presented work obtained structure was analyzed with indication of characteristic regions. Authors described phenomena occurring at the alloys interface and phases in transition zone. A thesis was formulated concerning localization of transition zone at the cast iron matrix – cast steel reinforcement interface. Direction of further studies were indicated.

  14. 46 CFR 56.60-10 - Cast iron and malleable iron.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Cast iron and malleable iron. 56.60-10 Section 56.60-10... APPURTENANCES Materials § 56.60-10 Cast iron and malleable iron. (a) The low ductility of cast iron and malleable iron should be recognized and the use of these metals where shock loading may occur should be...

  15. 49 CFR 192.489 - Remedial measures: Cast iron and ductile iron pipelines.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Remedial measures: Cast iron and ductile iron... for Corrosion Control § 192.489 Remedial measures: Cast iron and ductile iron pipelines. (a) General graphitization. Each segment of cast iron or ductile iron pipe on which general graphitization is found to a...

  16. IMPROVEMENT OF TECHNOLOGY OF CAST IRON MELTING IN CUPOLA

    Directory of Open Access Journals (Sweden)

    S. F. Lukashevich

    2006-01-01

    Full Text Available The way of cast iron production in cupola-furnace using coke and anthracite in composition of fuel bed is examined. Using of anthracite provides raise of temperature of cast iron and economy of coke.

  17. Solidifying Cast Iron in Low Gravity

    Science.gov (United States)

    Hendrix, J. C.; Curreri, P. A.; Stefanescu, D. M.

    1986-01-01

    Report describes study of solidification of cast iron in low and normal gravity. Because flotation, sedimentation, and convection suppressed, alloys that solidify at nearly zero gravity have unusual and potentially useful characteristics. Study conducted in airplane that repeatedly flew along parabolic trajectories. Appears iron/carbon alloys made at low gravity have greater carbon content (as high as 5 to 10 percent) than those made of Earth gravity because carbon particles do not float to top of melt.

  18. Repair welding of cast iron coated electrodes

    Science.gov (United States)

    Żuk, M.; Górka, J.; Dojka, R.; Czupryński, A.

    2017-08-01

    Welding cast iron is a complex production procedure. Repair welding was used to repair damaged or poorly made castings. This is due to a tendency to cracking of the material during welding as well as after it. Welding cast iron can be carried out on hot or on cold. Hot welding requires high heat material and the use of welding material in the form of cast iron. In the case of cold welding, it is possible to use different materials. Mostly used filler metals are nickel and copper based. The work shows the course of research concerning repairmen of ductile iron with arc welding method. For the reparation process four types of ESAB company coated electrodes dedicated for cast iron were used with diameter 3.2 and 4 mm: ES 18-8-6B (4mm), EB 150 (4mm), OK NiCl, EŻM. In the cast iron examined during the testing grooves were made using plasma methods, in order to simulate the removed casting flaws. Then the welding process with coated electrodes was executed. The process utilized low welding current row of 100A, so there would only be a small amount of heat delivered to the heat affected zone (HAZ). Short stitches were made, after welding it was hammered, in order to remove stresses. After the repair welding the part of studies commenced which purpose was finding surface defects using visual testing (VT) and penetration testing (PT). In the second part, a series of macro and microscopic studies were executed witch the purpose of disclosuring the structure. Then the hardness tests for welds cross sections were performed. An important aspect of welding cast iron is the colour of the padding weld after welding, more precisely the difference between the base material and padding weld, the use of different materials extra gives the extra ability to select the best variant. The research of four types of coated electrode was executed, based on the demands the best option in terms of aesthetic, strength and hardness.

  19. Recent development of ductile cast iron production technology in China

    Directory of Open Access Journals (Sweden)

    Cai Qizhou

    2008-05-01

    Full Text Available Recent progress in the production and technology of ductile cast iron castings in China is reviewed. The manufacture and process control of as-cast ductile iron are discussed. The microstructure, properties and application of partial austenitization normalizing ductile iron and austempered ductile iron (ADI are briefl y depicted. The new development of ductile iron production techniques, such as cored-wire injection (wire-feeding nodularization process, tundish cover ladle nodularizing process, horizontal continuous casting, and EPC process (lost foam for ductile iron castings, etc., are summarized.

  20. Graphite formation in cast iron, phase 2

    Science.gov (United States)

    Stefanescu, D. M.; Fiske, M. R.

    1985-01-01

    Several types of cast irons are directionally solidified aboard the KC-135 aircraft. Also, control samples are run on Earth for comparison. Some of these samples are unusable because of various mechanical problems; the analysis and the interpretation of results on the samples that are run successfully is discussed.

  1. Cast Iron With High Carbon Content

    Science.gov (United States)

    Curreri, P. A.; Hendrix, J. C.; Stefanescu, D. M.

    1986-01-01

    Method proposed for solidifying high-carbon cast iron without carbon particles segregating at upper surface. Solidification carried out in low gravity, for example on airplane flying free-fall parabolic trajectory. Many different microstructures obtained by proposed technique, and percentage by weight of carbon retained in melt much higher than at present.

  2. 46 CFR 153.239 - Use of cast iron.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Use of cast iron. 153.239 Section 153.239 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK... Systems § 153.239 Use of cast iron. (a) Cast iron used in a cargo containment system must meet the...

  3. 49 CFR 192.755 - Protecting cast-iron pipelines.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Protecting cast-iron pipelines. 192.755 Section... NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Maintenance § 192.755 Protecting cast-iron pipelines. When an operator has knowledge that the support for a segment of a buried cast-iron...

  4. 49 CFR 192.369 - Service lines: Connections to cast iron or ductile iron mains.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Service lines: Connections to cast iron or ductile... Customer Meters, Service Regulators, and Service Lines § 192.369 Service lines: Connections to cast iron or ductile iron mains. (a) Each service line connected to a cast iron or ductile iron main must be connected...

  5. Colour Metallography of Cast Iron - Chapter 4: Vermicular Graphite Cast Iron (Ⅱ)

    OpenAIRE

    Zhou Jiyang

    2011-01-01

    Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application ...

  6. Manufacturing of thin walled near net shape iron castings

    DEFF Research Database (Denmark)

    Larsen, Per Leif

    2003-01-01

    to be substituting iron casings with aluminum castings. Substituting iron castings with aluminum castings is not as easy as first believed, and hence the substitution is very slow. This combined with the lack of fully exploiting the potential in iron castings, makes research in iron castings interesting. The 60......The demand for near net shape thin walled iron castings is growing. This has several reasons, the main one is the need for lowering the fuel consumption of cars; the easiest way to do that is to lower the weight of the cars. The best way to do this was for a period of time believed.......000.000 cars produced world wide each year consumes enormous amounts of cast parts ! The aim of the project is to develop the green sand molding method on DISAMATIC to be able to deal with the new demands for thin walled near net shape castings in iron....

  7. Maintenance system improvement in cast iron foundry

    Directory of Open Access Journals (Sweden)

    S. Kukla

    2011-07-01

    Full Text Available The work presents the issue of technical equipment management in an iron foundry basing on the assumptions of the TPM system (Total Productive Maintenance. Exploitation analysis of automatic casting lines has been carried out and their work’s influence on the whole production system’s functioning has been researched. Within maintenance system improvement, implementation of autonomic service and planned lines’ review have been proposed in order to minimize the time of breakdown stoppages. The SMED method was used to optimize changeover time, and the OEE (Overall Equipment Effectiveness was applied to evaluate the level of resources usage before and after implementing changes. Further, the influence of the maintenance strategy of casting devices’ efficiency on own costs of casting manufac- ture was estimated.

  8. Inoculated Slightly Hypereutectic Gray Cast Irons

    Science.gov (United States)

    Chisamera, Mihai; Riposan, Iulian; Stan, Stelian; Militaru, Cristina; Anton, Irina; Barstow, Michael

    2012-03-01

    The current experimental investigation in this article was designed to characterize the structure of mold (M) and ladle (L) inoculated, low-S (0.025 wt.% S), low-Al (0.003 wt.% Al), slightly hypereutectic (CE = 4.4-4.5 wt.%) electric melted gray irons, typical for high performance thin-wall castings. It describes the effect of a Ca, Al, Zr-FeSi inoculant addition of 0-0.25 wt.% on structure characteristics, and compares to similar treatments with hypoeutectic irons (3.5-3.6 wt.% CE, 0.025 wt.% S, and 0.003 wt.% Al). A complex structure including primary graphite, austenite dendrites, and eutectic cells is obtained in hypereutectic irons, as the result of nonequilibrium solidification following the concept of a coexisting region. Dendrites appear to be distributed between eutectic cells at higher eutectic undercooling, while in inoculated irons and for lower undercooling, the eutectic cells are "reinforced" by eutectic austenite dendrites. A Zr, Ca, Al-FeSi alloy appears to be an effective inoculant in low S, low Al, gray cast irons, especially for a late inoculation technique, with beneficial effects on both graphite and austenite phases. First, inoculation influenced the nucleation of graphite/eutectic cell, and then their characteristics. A further role of these active elements directly contributed to form nucleation sites for austenite, as complex (Mn,X)S particles.

  9. Automatic classification of graphite in cast iron.

    Science.gov (United States)

    Gomes, Otávio da F M; Paciornik, Sidnei

    2005-08-01

    A method for automatic classification of the shape of graphite particles in cast iron is proposed. In a typical supervised classification procedure, the standard charts from the ISO-945 standard are used as a training and validation population. Several shape and size parameters are described and used as discriminants. A new parameter, the average internal angle, is proposed and is shown to be relevant for accurate classification. The ideal parameter sets are determined, leading to validation success rates above 90%. The classifier is then applied to real cast iron samples and provides results that are consistent with visual examination. The method provides classification results per particle, different from the traditional per field chart comparison methods. The full procedure can run automatically without user interference.

  10. Structure Distribution in Precise Cast Iron Moulded on Meltable Model

    Directory of Open Access Journals (Sweden)

    Skrbek B.

    2015-12-01

    Full Text Available Topic of this work is to compare metalurgy of cast irons poured into sand moulds and into shell molds at IEG Jihlava company and from it following differencies in structures of thin- and thick-walled castings. This work is dealing with investigation and experimental measurement on surfaces and sections suitable thin- and thick-walled investment castings at IEG Jihlava. Cast irons with flake graphite (grey cast iron and cast irons with spheroidal graphite (ductile cast iron. Both mechanical and physical properties are determined using calculations from as measured values of wall thicknesses L and Lu, Vickers hardness and remanent magnetism. Measurement results are discussed, findings are formulated and methods for castings metallurgical quality improvement are recommended finally.

  11. Seal welded cast iron nuclear waste container

    Science.gov (United States)

    Filippi, Arthur M.; Sprecace, Richard P.

    1987-01-01

    This invention identifies methods and articles designed to circumvent metallurgical problems associated with hermetically closing an all cast iron nuclear waste package by welding. It involves welding nickel-carbon alloy inserts which are bonded to the mating plug and main body components of the package. The welding inserts might be bonded in place during casting of the package components. When the waste package closure weld is made, the most severe thermal effects of the process are restricted to the nickel-carbon insert material which is far better able to accommodate them than is cast iron. Use of nickel-carbon weld inserts should eliminate any need for pre-weld and post-weld heat treatments which are a problem to apply to nuclear waste packages. Although the waste package closure weld approach described results in a dissimilar metal combination, the relative surface area of nickel-to-iron, their electrochemical relationship, and the presence of graphite in both materials will act to prevent any galvanic corrosion problem.

  12. Briquettes with nanostructured materials used to modify of cast iron

    Science.gov (United States)

    Znamenskii, L. G.; Ivochkina, O. V.; Varlamov, A. S.; Petrova, N. I.

    2016-05-01

    A method is developed to fabricate briquettes with nanostructured materials aimed at modification of cast iron resulting in the improvement of the physicochemical properties of cast iron and its castings. This improvement is achieved by grain refinement, stable modification, the elimination of pyroelectric effect upon modification, and a decrease in the sensitivity to chilling upon melt solidification.

  13. Effect of Melting Techniques on Ductile Iron castings Properties

    Directory of Open Access Journals (Sweden)

    Bockus, S.

    2006-01-01

    Full Text Available The study was designed to investigate the effects of the charge, melting conditions, nodularizing and inoculation on the ductile iron castings properties. Results showed that the temperature and holding time of the melt in an induction furnace and the intensity of spheroidizing effect on the carbon and residual magnesium contents in the ductile iron castings. The same grade of ductile iron may be obtained using different chemical compositions. The castings of ductile iron will be ferritic as-cast only when large amount of pig iron in the charge and in addition some-steps inoculating treatment are used.

  14. The temperature gradient on section of casting in process of primary crystallization of chromium cast iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2008-08-01

    Full Text Available The methodology of defining in article was introduced the temperature gradient in process of primary crystallization during cooling the casting from chromium cast iron on basis of measurements of thermal field in test DTA-K3. Insert also the preliminary results of investigations of influence temperature gradient on structure of studied wear resistance chromium cast iron.

  15. 49 CFR 192.487 - Remedial measures: Distribution lines other than cast iron or ductile iron lines.

    Science.gov (United States)

    2010-10-01

    ... cast iron or ductile iron lines. 192.487 Section 192.487 Transportation Other Regulations Relating to... iron or ductile iron lines. (a) General corrosion. Except for cast iron or ductile iron pipe, each... the purpose of this paragraph. (b) Localized corrosion pitting. Except for cast iron or ductile iron...

  16. THE WEAR RESISTANCE INCREASE OF CHROMIUM CAST IRON

    Directory of Open Access Journals (Sweden)

    V. M. Ilyushenko

    2016-01-01

    Full Text Available The article presents the results of the tests on the wear resistance of chromium cast irons of different compositions obtained in sand forms. It has been shown that increase of the wear resistance and mechanical properties of the cast iron is possible to obtain using the casting in metal molds. A further increase in wear resistance of parts produced in metal molds is possible by changing the technological parameters of casting and alloying by titanium.

  17. Costs Analysis of Iron Casts Manufacturing

    Directory of Open Access Journals (Sweden)

    S. Kukla

    2012-04-01

    Full Text Available The article presents the issues of costs analysis of iron casts manufacturing using automated foundry lines. Particular attention was paid to departmental costs, conversion costs and costs of in-plant transport. After the Pareto analysis had been carried out, it was possible to set the model area of the process and focus on improving activities related to finishing of a chosen group of casts. In order to eliminate losses, the activities realised in this domain were divided into activities with added value, activities with partially added value and activities without added value. To streamline the production flow, it was proposed to change the location of workstations related to grinding, control and machining of casts. Within the process of constant improvement of manufacturing processes, the aspect of work ergonomics at a workstation was taken into account. As a result of the undertaken actions, some activities without added value were eliminated, efficiency was increased and prime costs of manufacturing casts with regard to finishing treatment were lowered.

  18. Experimental Investigation on Corrosion of Cast Iron Pipes

    Directory of Open Access Journals (Sweden)

    H. Mohebbi

    2011-01-01

    Full Text Available It is well known that corrosion is the predominant mechanism for the deterioration of cast iron pipes, leading to the reduction of pipe capacity and ultimate collapse of the pipes. In order to assess the remaining service life of corroded cast iron pipes, it is imperative to understand the mechanisms of corrosion over a long term and to develop models for pipe deterioration. Although many studies have been carried out to determine the corrosion behavior of cast iron, little research has been undertaken to understand how cast iron pipes behave over a longer time scale than hours, days, or weeks. The present paper intends to fill the gap regarding the long-term corrosion behaviour of cast iron pipes in the absence of historical data. In this paper, a comprehensive experimental program is presented in which the corrosion behaviour of three exservice pipes was thoroughly examined in three simulated service environments. It has been found in the paper that localised corrosion is the primary form of corrosion of cast iron water pipes. It has also been found that the microstructure of cast irons is a key factor that affects the corrosion behaviour of cast iron pipes. The paper concludes that long-term tests on corrosion behaviour of cast iron pipes can help develop models for corrosion-induced deterioration of the pipes for use in predicting the remaining service life of the pipes.

  19. Analysis of nucleation modelling in ductile cast iron

    DEFF Research Database (Denmark)

    Moumeni, Elham; Tutum, Cem Celal; Tiedje, Niels Skat

    2012-01-01

    Heterogeneous nucleation of nodular graphite at inclusions in ductile iron during eutectic solidification has been investigated. The experimental part of this work deals with casting of ductile iron samples with two different inoculants in four different thicknesses. Chemical analysis, metallogra...

  20. EXPERIMENTAL INVESTIGATION OF EFFECTS OF CHEMICAL VARIABLES ON IRON CASTING

    OpenAIRE

    Pradeep Kumar*, Dr Lokendra Pal Singh and Romiyo Mclin Jojowar

    2017-01-01

    Cast iron is an alloy of iron containing more than 2% carbon as an alloying element. It has almost no ductility and must be formed by casting. Ductile iron structure is developed from the melt of cast iron. The presence of silicon in higher amount promotes the graphitization, inhibiting carbon to form carbides with carbide forming elements present. The carbon forms into spheres when Ce & Mg are added to the melt of iron with very low sulphur content. Due to this special microstructure contain...

  1. Abrasive wear behaviour of as cast and austempered ductile irons

    Energy Technology Data Exchange (ETDEWEB)

    Baydogan, M.; Koekden, M.U.; Cimenoglu, H. [Istanbul Technical Univ., Dept. of Metallurgy and Materials Science Engineering Istanbul (Turkey)

    2000-07-01

    In this study, abrasive wear behaviour of as cast and austempered GGG 50 and GGG 80 quality ductile irons was investigated. In the as cast condition, GGG 50 and GGG 80 quality ductile irons were having ferritic and pearlitic matrix structures, respectively. Austempering at 250 C after austenitisation at 900 C for 100 minutes produced bainitic matrix structure in both of the investigated ductile irons. Abrasive wear tests performed by rubbing the as cast and austempered specimens on Al{sub 2}O{sub 3} abrasive bands, revealed that austempering treatment improves abrasion resistance about 10-70% depending on the abrasive particle size and composition of the base iron. In the as cast condition, pearlitic GGG 80 grade ductile iron, has higher wear resistance than ferritic GGG 50 grade ductile iron. In the austempered condition GGG 50 and GGG 80 grade ductile irons which have bainitic matrix structure, exhibit almost similar wear resistance. (orig.)

  2. Colour Metallography of Cast Iron - Chapter 1: Introduction (Ⅰ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2009-02-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  3. Eutectic solidification mode of spheroidal graphite cast iron and graphitization

    Directory of Open Access Journals (Sweden)

    Hideo Nakae

    2007-02-01

    Full Text Available The shrinkage and chilling tendency of spheroidal graphite (abbreviated SG cast iron is much greater than that of the flake graphite cast iron in spite of its higher amount of C and Si contents. Why? The main reason should be the difference in their graphitization during the eutectic solidification. In this paper, we discuss the difference in the solidification mechanism of both cast irons for solving these problems using unidirectional solidification and the cooling curves of the spheroidal graphite cast iron. The eutectic solidification rate of the SG cast iron is controlled by the diffusion of carbon through the austenite shell, and the final thickness is 1.4 times the radius of the SG, therefore, the reduction of the SG size, namely, the increase in the number, is the main solution of these problems.

  4. Bainitic high-strength cast iron with globular graphite

    Science.gov (United States)

    Silman, G. I.; Makarenko, K. V.; Kamynin, V. V.; Zentsova, E. A.

    2013-07-01

    Special features of formation of bainitic structures in grayed cast irons are considered. The influence of the graphite phase and of the special features of chemical composition of the iron on the intermediate transformation in high-carbon alloys is allowed for. The range of application of high-strength cast irons with bainitic structure is determined. The paper is the last and unfinished work of G. I. Silman completed by his disciples as a tribute to their teacher.

  5. Studying and improving blast furnace cast iron quality

    Directory of Open Access Journals (Sweden)

    Т. К. Balgabekov

    2014-10-01

    Full Text Available In the article there are presented the results of studies to improve the quality of blast furnace cast iron. It was established that using fire clay suspension for increasing the mould covering heat conductivity improves significantly pig iron salable condition and filtration refining method decreases iron contamination by nonmetallic inclusions by 50 – 70 %.

  6. Identification of cast iron type with using of NDT methods

    Directory of Open Access Journals (Sweden)

    J. Belan

    2010-01-01

    Full Text Available The aim of this paper is to demonstrate the capability of ultrasonic techniques in the assessment of the structure and properties of cast irons, and also contribute to the database concerning the use of ultrasonic velocity and attenuation measurements for quality control. In the experiments, cast iron specimens with different graphite shape (lamellar, vermicular and nodular shape and different matrix composition were cast. Ultrasonic velocity measurements were carried out on the as-cast specimens with STARMANS DiO 562 – 2CH ultrasonic flaw detector. Then, the results of ultrasonic measurements were correlated with the microstructural investigations on the specimens.

  7. Materials processing threshold report: 2. Use of low gravity for cast iron process development

    Science.gov (United States)

    Frankhouser, W. L.

    1980-01-01

    Potential applications of a low gravity environment of interest to the commercial producers of cast iron were assessed to determine whether low gravity conditions offer potential opportunities to producers for improving cast iron properties and expanding the use of cast irons. The assessment is limited to the gray and nodular types of iron, however, the findings are applicable to all cast irons. The potential advantages accrued through low gravity experiments with cast irons are described.

  8. Microstructure Control of High-alloyed White Cast Iron

    Directory of Open Access Journals (Sweden)

    Kawalec M.

    2014-03-01

    Full Text Available This paper presents the results of studies of high-alloyed white cast iron modified with lanthanum, titanium, and aluminium-strontium. The samples were taken from four melts of high-vanadium cast iron with constant carbon and vanadium content and near-eutectic microstructure into which the tested inoculants were introduced in an amount of 1 wt% respective of the charge weight. The study included a metallographic examinations, mechanical testing, as well as hardness and impact resistance measurements taken on the obtained alloys. Studies have shown that different additives affect both the microstructure and mechanical properties of high-vanadium cast iron.

  9. CASTING OF DETAILS OF WEAR-RESISTANT CHROME CAST IRONS FOR CHROMIC MILLS IN COMBINED MOLDS AND CHILLS

    Directory of Open Access Journals (Sweden)

    K. E. Baranovskij

    2009-01-01

    Full Text Available Relative wear resistance of chrome cast irons of eutectic composition is determined in laboratory and industry conditions. Complex alloyed eutectic cast iron with increased wear resistance and mechanical characteristics is developed.

  10. Examination and Elimination of Defects in Cone Casting Made of Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    Guzik E.

    2013-12-01

    Full Text Available In the scope of existing cooperation with the Foundry of Cast Iron ZM “WSK Rzeszów” Ltd. there was carried out research work of microstructure and mechanical properties in the walls of a cone casting made of ductile cast iron. The particular attention was being put to the search of the potential brittle phases which have deleterious effect on ductility and dynamic properties of highly strained use of the casting prone to the potential risk of cracks during the highly strained use.

  11. The Abrasive Wear Resistance of Chromium Cast Iron

    Directory of Open Access Journals (Sweden)

    Kopyciński D.

    2014-03-01

    Full Text Available The resistance of cast iron to abrasive wear depends on the metal abrasive hardness ratio. For example, hardness of the structural constituents of the cast iron metal matrix is lower than the hardness of ordinary silica sand. Also cementite, the basic component of unalloyed white cast iron, has hardness lower than the hardness of silica. Some resistance to the abrasive effect of the aforementioned silica sand can provide the chromium white cast iron containing in its structure a large amount of (Cr, Fe7C3 carbides characterised by hardness higher than the hardness of the silica sand in question. In the present study, it has been anticipated that the white cast iron structure will be changed by changing the type of metal matrix and the type of carbides present in this matrix, which will greatly expand the application area of castings under the harsh operating conditions of abrasive wear. Moreover, the study compares the results of abrasive wear resistance tests performed on the examined types of cast iron. Tests of abrasive wear resistance were carried out on a Miller machine. Samples of standard dimensions were exposed to abrasion in a double to-and-fro movement, sliding against the bottom of a trough filled with an aqueous abrasive mixture containing SiC + distilled water. The obtained results of changes in the sample weight were approximated with a power curve and shown further in the study.

  12. 75 FR 23295 - Iron Construction Castings From Brazil, Canada, and China

    Science.gov (United States)

    2010-05-03

    ... castings from Brazil, the antidumping duty order on ``heavy'' iron construction castings from Canada, and the antidumping duty orders on iron construction castings from Brazil and China. SUMMARY: The... ``heavy'' iron construction castings from Brazil, the antidumping duty order on ``heavy'' iron...

  13. 75 FR 67395 - Iron Construction Castings From Brazil, Canada, and China; Determinations

    Science.gov (United States)

    2010-11-02

    ... countervailing duty order on heavy iron construction castings from Brazil, the antidumping duty order on heavy iron construction castings from Canada, and the antidumping duty orders on iron construction castings...), entitled Iron Construction Castings from Brazil, Canada, and China: Investigation Nos. 701-TA-249 and 731...

  14. Solidification and microstructure of thin walled ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin

    2006-01-01

    In the recent years there has been an increasing interest in light constructions in order to save weight in e.g. cars. Ductile cast iron has good mechanical properties but it is necessary to re­duce the wall thicknesses of the castings in order to reduce the weight. Reducing the wall thicknesses...... of the casting will increase the cooling rates and by that change the conditions for nucleation and growth during solidification....

  15. THERMODYNAMIC ANALYSIS OF THE CAST IRON AND STEEL MODIFYING PROCESSES

    Directory of Open Access Journals (Sweden)

    E. I. Marukovich

    2006-01-01

    Full Text Available Mechanisms of modification of cast iron and steel\\^ were analyzed and thermodinamic performance criterion of modifiers was defined. It is shown that in cast irons, Mg, Ca and P3M mostly act like refining modifiers. In steel they act as refining and surfactant species. Effectiveness of modifiers for steel is determined by their high degassing and surface activity, low distribution coefficient, weak interaction with Ъ-Ре, low activity in liquid metal.

  16. The surface layer of austempered ductile iron investment castings properties

    Directory of Open Access Journals (Sweden)

    D. Myszka

    2009-01-01

    Full Text Available The article presents a unique process of carbonnitriding and nitriding the precision casting surfaces of austempered ductile iron. The results of the research are pointing that adequate process parameters allow to obtain multiple increase of wear resistance and a significant increase of corrosion resistance. Also, changes of cast microstructure and hardness are presented.

  17. Laser surface treatment of grey cast iron for automotive applications

    NARCIS (Netherlands)

    Ocelik, V.; Tang, P.N.; de Boer, M.C.; de Oliveira, U.; de Hosson, J.T.M.; DeHosson, JTM; Brebbia, CA; Nishida, SI

    2005-01-01

    The surface of pearlitic grey cast iron was treated using a 2 kW Nd:YAG laser beam with the final aim to improve its surface properties, mainly for automotive applications. Two kinds of laser surface treatments were experimentally applied. In the laser surface hardening approach the surface of cast

  18. NEW POSSIBILITIES OF THE METHOD OF FROSTING AT IRONS CASTING

    Directory of Open Access Journals (Sweden)

    A. M. Bodjako

    2009-01-01

    Full Text Available Efficiency of use of plugs from grey and high-strength cast irons, received by a «Freezing-uр» technology of continuous- iterative casting, as sliding friction bearings in the various hard loaded knots is shown

  19. The structure of high-quality aluminium cast iron

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2012-01-01

    Full Text Available In this study presents the analyse of aluminium iron cast structure (as-cast condition which are used in high temperature. While producing the casts of aluminium iron major influence has been preserve the structure of technological process parameters. The addition to Fe-C-Al alloy V, Ti, Cr leads to the improvement of functional and mechanical cast qualities. In this study, a method was investigated to eliminate the presence of undesirable Al4C3 phases in a aluminium cast iron structure and thus improve the production process. V and Ti additions in aluminium cast iron allows to development of FeAl - VC or TiC alloys. In particular, V or Ti contents above 5 wt.% were found to totally eliminate the presence of Al4C3. In addition, preliminary work indicates that the alloy with the FeAl - VC or TiC structure reveals high oxidation resistance. The introduction of 5 wt.% chromium to aluminium cast iron strengthened Al4C3 precipitate. Thus, the resultant alloy can be considered an intermetallic FeAl matrix strengthened by VC and TiC or modified Al4C3 reinforcements.

  20. Ultrasonic inspection of nodular cast iron

    International Nuclear Information System (INIS)

    Hersh, S.; Zhang, Yingda

    1990-01-01

    On the basis of experimental results collected from several nodular cast iron (NCI) specimens, Amdata, Inc., has developed a tentative procedure for performing ultrasonic testing (UT) preservice inspection of NCI casks and qualifying personnel and equipment. The authors anticipate that this procedure will be a component in a comprehensive program to certify that casks are free from critical flaws prior to their introduction into service, with testing being performed on a production line basis by UT inspection personnel. The tentative procedure was applied to inspection of NCI block SGR-483-001 manufactured by Siempelkamp Giesserei GmbH and Co. of West Germany. This block is 59 by 39.5 by 13.8 inches and weighs 5.2 tons. Several indications were detected with the I/98, in accordance with the tentative procedure, and they were analyzed using two-dimensional synthetic aperture technique (Line-SAFT). When compared with conventional sizing methods that may confound the effects of beam spread with flaw size, Line-SAFT significantly improved sizing accuracy. SAFT is an electronic simulation of a lens and has the property of reducing the effect of beam spread on the resultant indication sizes. Although a higher-precision 3-D SAFT option was also available, it would necessitate data transfer to a separate VAX computer and lengthy calculations. As an alternative, Line-SAFT, a faster but less precise 2-D simplification, was implemented on the I/98 data acquisition system

  1. Analysis of the structure of castings made from chromium white cast iron resistant to abrasive wear

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2009-10-01

    Full Text Available It has been proved that an addition of boron carbide and disintegrated steel scrap introduced as an inoculant to the chromium white cast iron changes the structure of castings. The said operation increases the number of crystallization nuclei for dendrites of the primary austenite. In this case, the iron particles act as substrates for the nucleation of primary austenite due to a similar crystallographic lattice. The more numerous are the dendrites of primary austenite and the structure more refined and the mechanical properties higher. Castings after B4C inoculation revealed a different structure of fine grained fracture. Primary precipitates of chromium carbide also appeared, reducing the mechanical properties of as-cast parts. Properly established heat treatment regime makes chromium iron castings regain their, originally high, mechanical properties.

  2. RESOURCES-ECONOMY TECHNOLOGY OF CASTINGS PRODUCTION OF NICKEL-CONTAINING CAST-IRONS

    Directory of Open Access Journals (Sweden)

    O. S. Komarov

    2008-01-01

    Full Text Available The technological process of the cast-iron IChH28H2 alloying by means of insertion into burden composition of briquettes of dead nickel-chromic catalysts is developed. This technology allows to carry out recycling of expensive metals such as nickel, and in that way to decrease the cost price of castings

  3. Residual stresses in a cast iron automotive brake disc rotor

    Science.gov (United States)

    Ripley, Maurice I.; Kirstein, Oliver

    2006-11-01

    Runout, and consequent juddering and pulsation through the brake pedal, is a multi-million dollar per year warranty problem for car manufacturers. There is some suspicion that the runout can be caused by relaxation of residual casting stresses when the disc is overheated during severe-braking episodes. We report here neutron-diffraction measurements of the levels and distribution of residual strains in a used cast iron brake disc rotor. The difficulties of measuring stresses in grey cast iron are outlined and three-dimensional residual-strain distributions are presented and their possible effects discussed.

  4. Residual stresses in a cast iron automotive brake disc rotor

    International Nuclear Information System (INIS)

    Ripley, Maurice I.; Kirstein, Oliver

    2006-01-01

    Runout, and consequent juddering and pulsation through the brake pedal, is a multi-million dollar per year warranty problem for car manufacturers. There is some suspicion that the runout can be caused by relaxation of residual casting stresses when the disc is overheated during severe-braking episodes. We report here neutron-diffraction measurements of the levels and distribution of residual strains in a used cast iron brake disc rotor. The difficulties of measuring stresses in grey cast iron are outlined and three-dimensional residual-strain distributions are presented and their possible effects discussed

  5. Friction welding of ductile cast iron using interlayers

    International Nuclear Information System (INIS)

    Winiczenko, Radoslaw; Kaczorowski, Mieczyslaw

    2012-01-01

    Highlights: → The results of the study of the friction welding of ductile cast iron using interlayers are presented. → The results of the analysis shows that the joint has the tensile strength compared to that of basic material. → In case of ductile cast iron, it is possible to reach the tensile strength equals even 700 MPa. → The process of friction welding was accompanied with diffusion of Cr, Ni and C atoms across the interface. -- Abstract: In this paper, ductile cast iron-austenitic stainless steel, ductile cast iron-pure Armco iron and ductile cast iron-low carbon steel interlayers were welded, using the friction welding method. The tensile strength of the joints was determined, using a conventional tensile test machine. Moreover, the hardness across the interface of materials was measured on metallographic specimens. The fracture surface and microstructure of the joints was examined using either light stereoscope microscopy as well as electron microscopy. In this case, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were applied. The results of the analysis shows that the joint has the tensile strength compared to that of basic material. In case of ductile cast iron, it is possible to reach the tensile strength equals even 700 MPa. It was concluded that the process of friction welding was accompanied with diffusion of Cr, Ni and C atoms across the ductile cast iron-stainless steel interface. This leads to increase in carbon concentration in stainless steel where chromium carbides were formed, the size and distribution of which was dependent on the distance from the interface.

  6. EFFICIENCY CHARACTERISTICS OF MICROALLOYED AND MODIFIED WHITE CAST IRONS

    Directory of Open Access Journals (Sweden)

    M. M. Jamshinskiy

    2013-01-01

    Full Text Available Influencing of chrome and manganese in the wide range of their concentrations on wear proof of white cast-irons for making of the poured details working in the conditions of intensive abrasive and hydroabrasive wear is studied. It is set that at optimum correlation of these elements cast-irons have high hardness, wearproof and satisfactory casting properties, allowing to make the poured details of different mass, geometry and overall sizes. Influence of processes of микролегирования and modification is explored on operating properties of the recommended Cr-Mn cast-iron 290Х19Г4 and expedience of the use of these processes is set at production of the wearproof foundings taking into account concrete external environments.

  7. Fatigue behaviour of cast iron with globular graphite

    Energy Technology Data Exchange (ETDEWEB)

    Huebner, P.; Pusch, G.; Krodel, L. [Institut fuer Werkstofftechnik, TU Bergakademie Freiberg, Gustav-Zeuner-Strasse 5, 09599 Freiberg (Germany)

    2004-07-01

    Cast iron with bainitic matrix and globular graphite, so called austempered ductile iron (ADI), allows the substitution of heat-treatable steels. The use of ADI in safety-relevant components requires knowledge of the fracture and fatigue behaviour. Cyclic stress strain behaviour and fatigue life at total strain control and random loading have been investigated at ADI (EN-GJS-1000-5) and pearlitic cast iron (EN-GJS-600-3). In addition fracture mechanic tests at cyclic loading at various stress ratios were carried out. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  8. Solidification, processing and properties of ductile cast iron

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat

    2010-01-01

    Ductile cast iron has been an important engineering material in the past 50 years. In that time, it has evolved from a complicated material that required the foundry metallurgist's highest skill and strict process control to being a commonly used material that can easily be produced with modern...... of the latest years of research indicate that ductile cast iron in the future will become a highly engineered material in which strict control of a range of alloy elements combined with intelligent design and highly advanced processing allows us to target properties to specific applications to a much higher...... and to illustrate how ductile iron's properties are optimised, the essentials of heat treatment are described too. It is the hope that researchers will find a comprehensive treatment of ductile cast iron metallurgy and that engineers and designers will be presented with the latest information on, and references to...

  9. 75 FR 70900 - Certain Iron Construction Castings From Brazil, Canada, and the People's Republic of China...

    Science.gov (United States)

    2010-11-19

    ... International Trade Administration Certain Iron Construction Castings From Brazil, Canada, and the People's... certain iron construction castings (``castings'') from Brazil, Canada, and the People's Republic of China... were the orders to be revoked. See Certain Iron Construction Castings From Brazil, Canada, and the...

  10. 40 CFR 466.20 - Applicability; description of the cast iron basis material subcategory.

    Science.gov (United States)

    2010-07-01

    ... Cast Iron Basis Material Subcategory § 466.20 Applicability; description of the cast iron basis... of pollutants into publicly owned treatment works from porcelain enameling of cast iron basis... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability; description of the cast...

  11. Bainitic nodular cast iron with carbides obtaining with use of Inmold method

    OpenAIRE

    G. Gumienny

    2009-01-01

    In these paper bainitic nodular cast iron with carbides as-cast obtaining has been presented. This cast iron has been obtained with use of Inmold method. It was shown, that there is the possibility of bainite and carbides obtaining in cast iron with Mo and Ni for studied chemical composition.

  12. The new technological versions of cast iron spheroidizing modification in mould

    OpenAIRE

    Chernega, D.; Cosyachkov, V.; Fesenko, T.

    2006-01-01

    A brief overview of works on producing and using of nodular cast iron during last 60 years is presented. The new methods of cast iron modification in mould are discribed. These methods allow to obtain bimetallic castings, one part of which is white cast iron and another is ferritic nodular one.

  13. OPTIMIZATION OF THE COMPOSITION AND TECHNOLOGY OF THE ABRASION-RESISTANT CAST-IRONS MELTING

    Directory of Open Access Journals (Sweden)

    A. I. Garost

    2004-01-01

    Full Text Available Тhе methods of the service durability increase of wear resistant cast irons are analyzed. There are developed the compositions of economically-alloyed cast irons with low content of nickel and other deficient elements, being exploited both in cast and in thermotreated state. The composition of antifriction gray cast iron with increased exploitation characteristics is offered.

  14. Abrasion Resistance of as-Cast High-Chromium Cast Iron

    Directory of Open Access Journals (Sweden)

    Pokusová Marcela

    2014-12-01

    Full Text Available High chromium cast irons are widely used as abrasion resistant materials. Their properties and wear resistance depend on carbides and on the nature of the matrix supporting these carbides. The paper presents test results of irons which contain (in wt.% 18-22 Cr and 2-5 C, and is alloyed by 1.7 Mo + 5 Ni + 2 Mn to improve the toughness. Tests showed as-cast irons with mostly austenitic matrix achieved hardness 36-53 HRC but their relative abrasion-resistance was higher than the tool steel STN 19436 heat treated on hardness 60 HRC.

  15. Research of complex briquetted modifiers influence on cast iron properties

    Directory of Open Access Journals (Sweden)

    Наталя Валеріївна Сусло

    2016-07-01

    Full Text Available Such properties of cast iron as hardness and shock resistance are relevant and have been investigated. Some possible ways to improve these properties have been studied and solutions to the assigned tasks in accordance with modern trends have been found. The use of nano-dispersed modifiers is most promising in modification. The compositions of experimental complex briquetted modifiers have been developed. The technology of cast iron processing with complex briquetted modifiers has been developed. A series of experiments on the effect of a complex briquetted modifier introduced into cast iron on its properties were carried out. The rational content of components in the briquette that makes maximum use of the modifying effect and improves such service characteristics of cast iron as hardness, impact - and wear-resistance has been defined. Ways of a briquette destruction in metal have been explored. The effect of an organic binder amount on the destruction of a briquette and its dissolution in the melt has been investigated. Rational composition of the briquetted modifier that makes it possible to increase hardness and impact resistance of cast iron has been developed

  16. [Growth characteristics and control of iron bacteria on cast iron in drinking water distribution systems].

    Science.gov (United States)

    Wang, Yang; Zhang, Xiao-Jian; Chen, Yu-Qiao; Lu, Pin-Pin; Chen, Chao

    2009-11-01

    This study investigated the growth characteristics of iron bacteria on cast iron and relationship between suspended and attached iron bacteria. The steady-state growth of iron bacteria would need 12 d and iron bacteria level in effluents increased 1 lg. Hydraulics influence on iron bacteria level and detachment rate of steady-state attached iron bacteria was not significant. But it could affect the time of attached iron bacteria on cast-iron coupons reaching to steady state. When the chlorine residual was 0.3 mg/L, the iron bacteria growth could be controlled effectively and suspended and attached iron bacteria levels both decreased 1 lg. When the chlorine residual was more than 1.0 mg/L, it could not inactivate the iron bacteria of internal corrosion scale yet. There was little effect on inhibiting the iron bacteria growth that the chlorine residual was 0.05 mg/L in drinking water quality standard of China. The iron bacteria on coupons reached to steady state without disinfectant and then increased the chlorine residual to 1.25 mg/L, the attached iron bacteria level could decrease 2 lg to 3 lg. Under steady-state, the suspended iron bacteria levels were linearly dependent on the attached iron bacteria. The control of iron bacteria in drinking water distribution systems was advanced: maintaining the chlorine residual (0.3 mg/L), flushing the pipeline with high dosage disinfectant, adopting corrosion-resistant pipe materials and renovating the old pipe loop.

  17. Engineered Cooling Process for High Strength Ductile Iron Castings

    Science.gov (United States)

    Lekakh, Simon N.; Mikhailov, Anthony; Kramer, Joseph

    Professor Stefanescu contributed fundamentally to the science of solidification and microstructural evolutions in ductile irons. In this article, the possibility of development of high strength ductile iron by applying an engineered cooling process after casting early shake out from the sand mold was explored. The structures in industrial ductile iron were experimentally simulated using a computer controlled heating/cooling device. CFD modeling was used for process simulation and an experimental bench scale system was developed. The process concept was experimentally verified by producing cast plates with 25 mm wall thickness. The tensile strength was increased from 550 MPa to 1000 MPa in as-cast condition without the need for alloying and heat treatment. The possible practical applications were discussed.

  18. The micro-mechanisms of failure of nodular cast iron

    Directory of Open Access Journals (Sweden)

    Alan Vaško

    2014-12-01

    Full Text Available The contribution deals with a comparison of the micro-mechanisms of failure of nodular cast irons at static, impact and fatigue stress. Several specimens of ferrite-pearlitic nodular cast irons with different content of ferrite in a matrix were used for metallographic analysis, mechanical tests and micro-fractographic analysis. Mechanical properties were found by static tensile test, impact bending test and fatigue tests. The micro-fractographic analysis was made with use of scanning electron microscope VEGA II LMU on fracture surfaces of the specimens fractured by these mechanical and fatigue tests. Fracture surfaces of analysed specimens are characteristic of mixed mode of fracture. Micro-mechanism of failure of nodular cast irons is dependent on the method of stress.

  19. Stereology of carbide phase in modified hypereutectic chromium cast iron

    Directory of Open Access Journals (Sweden)

    J. Suchoń

    2010-04-01

    Full Text Available In paper are presented results of studies of carbide phase stereology modified hypereutectic wear resistance chromium cast iron which contains carbon about 3,5% and chromium about 25%. Three substances were applied to the modification: boron carbide (B4C, ferroniobium (FeNb and mixture of ferroniobium and rare-earth (RE. The measurements of geometrical features of carbides were conducted on microsection taken from castings wich were cooled with various velocities.

  20. Cast Iron in The 19th Century Building Equipment

    Science.gov (United States)

    Kwasek, Michał; Piwek, Aleksander

    2017-10-01

    Cast iron is a material, characteristics of which enable to receive extremely artistic elements. It maintains good strength properties at the same time. That combination of these seemingly contrary traits makes it a commodity that was widely used in the 19th century industry and architecture. These usages were not only as decorative elements, technical and structural ones. The production of new household utilities started, which made people’s lives more comfortable. Cast iron allowed for fast and cheap production while maintaining high aesthetic qualities. Useful elements, which often were ornamental parts of buildings were created. The aim of the article is to characterise elements of interior equipment of the 19th century building that are made of cast iron. As it appears from performed bibliography, archival and field studies, the ways of exploitation are very broad. Some were mounted into the building; the others were a mobile equipment. As it occurred they were most commonly used as functional items. Cast iron was used to produce the minor elements, which were only parts of the bigger wooden or stone items. Notwithstanding, there were also bigger ones casted as a whole, and frequently ones that were assembled from many elements. Nowadays, elements of an interior feature are one of the subjects of study during the restoration work of the buildings. They can provide important information about the building and the way people lived and are considered as the essential part of historical objects.

  1. Thermodynamic stability of austenitic Ni-Mn-Cu cast iron

    Directory of Open Access Journals (Sweden)

    A. Janus

    2014-07-01

    Full Text Available The performed research was aimed at determining thermodynamic stability of structures of Ni-Mn-Cu cast iron castings. Examined were 35 alloys. The castings were tempered at 900 °C for 2 hours. Two cooling speeds were used: furnace-cooling and water-cooling. In the alloys with the nickel equivalent value less than 20,0 %, partial transition of austenite to martensite took place. The austenite decomposition ratio and the related growth of hardness was higher for smaller nickel equivalent value and was clearly larger in annealed castings than in hardened ones. Obtaining thermodynamically stable structure of castings requires larger than 20,0 % value of the nickel equivalent.

  2. Carbides in Nodular Cast Iron with Cr and Mo

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2007-07-01

    Full Text Available In these paper results of elements microsegregation in carbidic nodular cast iron have been presented. A cooling rate in the centre of the cross-section and on the surface of casting and change of moulding sand temperature during casting crystallization and its self-cooling have been investigated. TDA curves have been registered. The linear distribution of elements concentration in an eutectic grain, primary and secondary carbides have been made. It was found, that there are two kinds of carbides: Cr and Mo enriched. A probable composition of primary and secondary carbides have been presented.

  3. Cavitation Erosion of Nodular Cast Iron − Microstructural Effects

    Directory of Open Access Journals (Sweden)

    Orłowicz A.W.

    2017-12-01

    Full Text Available The paper deals with susceptibility of nodular cast iron with ferritic-pearlitic matrix on cavitation erosion. Cavitation tests were carried out with the use of a cavitation erosion vibratory apparatus employing a vibration exciter operated at frequency of 20 kHz. The study allowed to determine the sequence of subsequent stages in which microstructure of cast iron in superficial regions is subject to degradation. The first features to be damaged are graphite precipitates. The ferritic matrix of the alloy turned out to be definitely less resistant to cavitation erosion compared to the pearlitic matrix component.

  4. Thin wall ductile iron casting as a substitute for aluminum alloy casting in automotive industry

    Directory of Open Access Journals (Sweden)

    M. Górny

    2009-01-01

    Full Text Available In paper it is presented thin wall ductile iron casting (TWDI as a substitute of aluminium alloy casting. Upper control arm made of ductile iron with wall thickness ranging from 2 – 3.7 mm was produced by inmold process. Structure, mechanical properties and computer simulations were investigated. Structural analysis of TWDI shows pearlitic-ferritic matrix free from chills and porosity. Mechanical testing disclose superior ultimate tensile strength (Rm, yield strength (Rp0,2 and slightly lower elongation (E of TWDI in comparison with forged control arm made of aluminium alloy (6061-T6. Moreover results of computer simulation of static loading for tested control arms are presented. Analysis show that the light-weight ductile iron casting can be loaded to similar working conditions as the forged Al alloy without any potential failures.

  5. The influence of solidification speed during heating on allotropic transformations of chromium cast iron casting

    Directory of Open Access Journals (Sweden)

    M. Przybył

    2008-08-01

    Full Text Available The unique stand to founding dilatometric samples ("on ready” which solidify with different cooling speeds was presented. The dilatometric investigations, X-ray, metallographic they disclosed the occurrence in matrix of chromium cast iron of considerable quantity of austenite in dependence from concentration of chromium (18% and 23% and the speed of solidification. Castings these despite large part of austenite mark with high hardness in raw state.

  6. Boron solubility in Fe-Cr-B cast irons

    International Nuclear Information System (INIS)

    Guo Changqing; Kelly, P.M.

    2003-01-01

    Boron solubility in the as-cast and solution treated martensite of Fe-Cr-B cast irons, containing approximately 1.35 wt.% of boron, 12 wt.% of chromium, as well as other alloying elements, has been investigated using conventional microanalysis. The significant microstructural variations after tempering at 750 deg. C for 0.5-4 h, compared with the original as-cast and solution treated microstructures, indicated that the matrix consisted of boron and carbon supersaturated solid solutions. The boron solubility detected by electron microprobe was between 0.185-0.515 wt.% for the as-cast martensite and 0.015-0.0589 wt.% for the solution treated martensite, much higher than the accepted value of 0.005 wt.% in pure iron. These remarkable increases are thought to be associated with some metallic alloying element addition, such as chromium, vanadium and molybdenum, which have atomic diameters larger than iron, and expand the iron lattice to sufficiently allow boron atoms to occupy the interstitial sites in iron lattice

  7. An attempt of assessing the production perspectives concerning malleable iron castings

    Directory of Open Access Journals (Sweden)

    M.S. Soiński

    2009-07-01

    Full Text Available The paper presents a historical outline of production of the malleable cast iron castings on the territory of Poland during the past over a hundred years. There have been also gathered data concerning the total quantity of castings and the quantity of malleable iron and nodular iron castings produced in twelve selected countries over the period from 1993 to 2006. The percentage of malleable iron to total production of castings, and for a purpose of comparison the percentage of nodular cast iron to total production of castings, has been determined for these countries. A distinct decreasing tendency can be seen with respect to the production of malleable iron castings, while an increasing trend exists in production of nodular iron castings.

  8. The Effect of Nodular Cast Iron Metal Matrix on the Wear Resistance

    OpenAIRE

    G. Gumienny

    2012-01-01

    The paper presents results of studies on the effect of the nodular cast iron metal matrix composition on the abrasive and adhesive wear resistance. Nodular cast iron with different metal matrix obtained in the rough state and ADI were tested. To research of abrasive and adhesive wear the pearlitic and bainitic cast iron with carbides and without this component were chosen. The influence of the carbides amount for cast iron wear resistance was examined. It was found, that the highest abrasive ...

  9. Analysis of cracking in glass molds made of cast iron

    Science.gov (United States)

    Leushin, I. O.; Chistyakov, D. G.

    2014-09-01

    The cracking in the parts of cast iron molds intended for glass is considered, and this cracking substantially affects the operation of glass-blowing equipment, maintainability, and the replacement of mold sets. The processes that cause cracking in the parts of glass molds and initiate crack growth are studied.

  10. Cast iron deterioration with time in various aqueous salt solutions

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The changes with time in the corrosion rate and corrosion current density on a cast iron electrode in various aqueous salt solutions have been carried out using total immersion test and potentiostatic polarization curves. The concentration of salts taken is expected to be present in potable water. The relative ...

  11. Application of magnetic adaptive testing to cast iron

    Czech Academy of Sciences Publication Activity Database

    Tomáš, Ivan; Skrbek, B.; Uchimoto, T.; Kadlecová, Jana; Stupakov, Oleksandr; Perevertov, Oleksiy; Dočekal, J.

    2007-01-01

    Roč. 13, - (2007), 129-132 ISSN 1335-1532 R&D Projects: GA AV ČR 1QS100100508 Institutional research plan: CEZ:AV0Z10100520 Keywords : nondestructive testing * ferromagnetic materials * cast iron * metallic matrix * graphite inclusions Subject RIV: BM - Solid Matter Physics ; Magnetism

  12. Solidification of Hypereutectic Thin Wall Ductile Cast Iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2006-01-01

    Hypereutectic ductile iron was cast in green sand moulds with four plates with thickness of 1.5, 2, 3 and 4 mm in each mould. Temperatures were measured in the 3 and 4 mm plate. The temperature curves showed that eutectic solidification was divided into two stages: primary and secondary eutectic...

  13. Low-Gravity Investigations in Cast-Iron Processing

    Science.gov (United States)

    Frankhouser, W. L.

    1982-01-01

    Report on the state of the art in cast-iron processing identifies possible improvements that might result from processing in absence of gravity. Report suggests areas in which the knowledge of gravitational effects could eventually lead to practical improvements in material performance.

  14. Chemical corrosion in cast iron in soil-water medium.

    Science.gov (United States)

    Mukesh, K; Panday, Y D

    2001-02-01

    Grey cast iron metal strips were allowed to rust in varying compositions of soil-water media under the controlled environment. The process of corrosion was monitored by non-electrochemical method. Assessment of the extent of corrosion was carried out, both visually and by the method of weight loss coupons. It was found that a 80:20 weight:volume percent (w/v%) composition caused the most severe case of corrosion over a period of seven days. It was also observed that the corrosion in cast iron obeyed the relation, D = ktn [10]. The value of 'n' increased as corrosion became more severe. Gravimetric analysis and evidence from the Scanning Electron Microscopy (SEM) proved that gamma-FeOOH was one of the intermediates of corrosion in grey cast iron in soil-water media. An attempt has also been made to propose a mechanism for the corrosion in cast iron strips in soil-water media. It was found to be consistent with the one proposed by McEnaney and Smith [11].

  15. Flake graphite cast iron investigated by a magnetic method

    Czech Academy of Sciences Publication Activity Database

    Vértesy, G.; Uchimoto, T.; Takagi, T.; Tomáš, Ivan

    2014-01-01

    Roč. 50, č. 4 (2014), s. 6200404 ISSN 0018-9464 Institutional support: RVO:68378271 Keywords : cast iron * magnetic adaptive testing (MAT) * magnetic nondestructive evaluation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.386, year: 2014

  16. Cast iron deterioration with time in various aqueous salt solutions

    Indian Academy of Sciences (India)

    Unknown

    The concentration of salts taken is expected to be present in potable water. The relative behaviour of these salts ... decreased so as to provide protection towards corrosion have also been calculated. It was found that KCl and. NaCl are ... Cast iron is widely used for water carrying purposes besides mild steel and other ...

  17. Mechanisms and mechanics of porosity formation in ductile iron castings

    Directory of Open Access Journals (Sweden)

    M. Perzyk

    2007-12-01

    Full Text Available Shrinkage defects in ductile iron castings can be of two basic types: shrinkage cavities associated with the liquid contraction prior to the expansion period of the iron as well as the porosity, which may appear even if the liquid shrinkage is fully compensated. In the present paper two possible mechanisms of the porosity are presented and analyzed. The first one is the Karsay’s mechanism based on the secondary shrinkage concept. The second one is the mechanism acting during the expansion period of the iron, first suggested by Ohnaka and co-authors and essentially modified by the present authors. The mechanical interactions between casting and mould are determined for the both mechanisms. Their analysis leads to the conclusion, that porosity forms during expansion period of the melt. The direct cause is the negative pressure which appears in the central part of the casting due to the differences in expansion coefficients of the fast cooling surface layer and slow cooling inner region. Observations concerning feeding behavior of ductile iron castings, based on this mechanism, agree well with industrial practice. The secondary shrinkage is not only needless to induce the porosity, but the corresponding mechanism of its occurrence, proposed by Karsay, does not seem to be valid.

  18. 75 FR 49945 - Iron Construction Castings From Brazil, Canada, and China

    Science.gov (United States)

    2010-08-16

    ... iron construction castings from Brazil, Canada, and China. SUMMARY: The Commission hereby gives notice... antidumping duty orders on iron construction castings from Brazil, Canada, and China would likely lead to... construction castings (D & L Foundry Inc., East Jordan Iron Works Inc., Neenah Foundry Co., and U.S. Foundry...

  19. 75 FR 54596 - Final Results of Expedited Sunset Review: Heavy Iron Construction Castings from Brazil

    Science.gov (United States)

    2010-09-08

    ... International Trade Administration Final Results of Expedited Sunset Review: Heavy Iron Construction Castings... of the countervailing duty order (``CVD'') on heavy iron construction castings from Brazil pursuant... review of the CVD order on iron construction castings from Brazil pursuant to section 751(c) of the Act...

  20. Graphite structure and magnetic parameters of flake graphite cast iron

    Science.gov (United States)

    Vértesy, G.; Uchimoto, T.; Takagi, T.; Tomáš, I.; Kage, H.

    2017-11-01

    Different matrix and graphite morphologies were generated by a special heat treatment in three chemically different series of flake graphite cast iron samples. As cast, furnace cooled and air cooled samples were investigated. The length of graphite particles and the pearlite volume of samples were determined by metallographic examination and these parameters were compared with the nondestructively measured magnetic parameters. Magnetic measurements were performed by the method of Magnetic Adaptive Testing, which is based on systematic measurement and evaluation of minor magnetic hysteresis loops. It was shown that linear correlation existed between the magnetic quantities and the graphite length, and also between the magnetic quantities and the relative pearlite content in the investigated cast iron. A numerical expression was also determined between magnetic descriptors and relative pearlite content, which does not depend on the detailed experimental conditions.

  1. The Tendencies of Piece Casting from Modified Irons

    Directory of Open Access Journals (Sweden)

    Cinca Ionel Lupinca

    2010-10-01

    Full Text Available In this paper we have presented the metalographic studies made on the grey cast irons treated with complex modifying substances, type FeSiMgRE (Mg alloy and their influence on the compactness degree of graphite separations. For research and experiments, a melt of grey iron was produced in an induction furnace of a capacity of 5to, starting with a metallic charge made from 100% synthetic pig iron. We realized eight practical charge made modification, by using different combinations of modifying substance and in different concentrations. The addition of carbon to the melt was performed using electrode graphite powder in the metallic charge.

  2. Development of volume deposition on cast iron by additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Niyanth S, Niyanth [ORNL; Dehoff, Ryan R [ORNL; Jordan, Brian H [ORNL; Babu, Suresh S. [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL)

    2016-11-10

    ORNL partnered with Cummins to demonstrate the feasibility of using additive manufacturing techniques to help develop repair techniques for refurbished cast iron engine blocks. Cummins is interested in the refurbished engine business due to the increased cost savings and reduced emissions. It is expected that by refurbishing engines could help reduce the green house gas emissions by as much as 85%. Though such repair techniques are possible in principle there has been no major industry in the automotive sector that has deployed this technology. Therefore phase-1 would seek to evaluate the feasibility of using the laser directed energy deposition technique to repair cast iron engine blocks. The objective of the phase-1 would be to explore various strategies and understand the challenges involved. During phase-1 deposits were made using Inconel-718, Nickel, Nr-Cr-B braze filler. Inconel 718 builds showed significant cracking in the heat-affected zone in the cast iron. Nickel was used to reduce the cracking in the cast iron substrate, however the Ni builds did not wet the substrate sufficiently resulting in poor dimensional tolerance. In order to increase wetting the Ni was alloyed with the Ni-Cr-B braze to decrease the surface tension of Ni. This however resulted in significant cracks in the build due to shrinkage stresses associated with multiple thermal cycling. Hence to reduce the residual stresses in the builds the DMD-103D equipment was modified and the cast iron block was pre heated using cartridge heaters. Inconel-718 alloyed with Ni was deposited on the engine block. The pre-heated deposits showed a reduced susceptibility to cracking. If awarded the phase-2 of the project would aim to develop process parameters to achieve a crack free deposit engine block.

  3. Study on wear resistance of vanadium alloying compacted/vermicular graphite cast iron

    International Nuclear Information System (INIS)

    Park, Yoon Woo

    1987-01-01

    Wear resistance of the Compacted/Vermicular graphite cast irons was studied by changing the vanadium content in the cast irons. The results obtained in this work are summarized as follows. 1. When the same amount of vanadium was added to the flake graphite cast iron, spheroidal graphitecast iron and Compacted/Vermicular graphite cast iron, spheroidal graphite cast iron and Compacted/Vermicular graphite cast iron wear resistance decreased in following sequence, that is, flake graphite cast iron> spheroidal graphite cast iron>Compacted/Vermicular graphite cast iron. 2. Addition of vanadium to the Compacted/Vermicular cast iron leaded to a remarkable increase in hardness because it made the amount of pearlite in matrix increase. 3. Addition of vanadium to the compacted/Vermicular graphite cast iron significantly enhanced wear resistance and the maximum resistance was achieved at about 0.36% vanadium. 4. The maximum amount of wear apppeared at sliding speed of about 1.4m/sec and wear mode was considered to be oxidation abrasion from the observation of wear tracks. (Author)

  4. ALLOYING OF CUPOLA IRON WITH CAST IRON DUE TO APPLICATION OF USED COPPER-MAGNESIUM CATALYSTS

    Directory of Open Access Journals (Sweden)

    O. S. Komarov

    2011-01-01

    Full Text Available Alloying process of cupola iron by means of input into charge structure of briquettes of the worked-out coppermagnesium catalysts is investigated. This technology allows to carry out recycling of expensive metals, such as copper, and to raise strength properties of cast iron melted in a cupola.

  5. Structure and mechanical properties of vermicular cast iron in cylinder head casting

    Directory of Open Access Journals (Sweden)

    E. Guzik

    2009-01-01

    Full Text Available The paper discusses the problem of grain density and ferrite content in microstructure of vermicular graphite iron cast in bars of different section diameters and cylinder head casting. The experimental results regarding the section effect demonstrate that the nodule count, grain density and ferrite content are all function of the cast bar diameter in this particular case ranging from 0.6 to 8.0 cm and microstructure and mechanical properties in the cylinder head. The nodule count (or grain density has been reported to increase, while ferrite content was decreasing with decreasing casting diameter. The density number of the grains Nv has been related (by regression analysis to the undercooling degree

  6. Effect of carbon content on friction and wear of cast irons

    Science.gov (United States)

    Buckley, D. H.

    1977-01-01

    Friction and wear experiments were conducted with cast irons and wrought steels containing various amounts of carbon in the alloy structure in contact with 52100 steel. Gray cast irons were found to exhibit lower friction and wear characteristics than white cast irons. Further, gray cast iron wear was more sensitive to carbon content than was white. Wear with gray cast iron was linearly related to load, and friction was found to be sensitive to relative humidity and carbon content. The form, in which the carbon is present in the alloy, is more important, as the carbon content and no strong relationship seems to exist between hardness of these ferrous alloys and wear.

  7. Casting Ductile Iron in Layer Moulds Made from Ecological Sands

    Directory of Open Access Journals (Sweden)

    M. Rączka

    2012-09-01

    Full Text Available The article contains the results of tests performed under the target project in Hardtop Foundry Charsznica.The objective of the tests and studies was to develop a technology of making high-quality ductile iron castings, combined witheffective means of environmental protection. The studies presented in this article related to castings weighing from 1 to 300 kg made from ductile iron of grades 400-15 and 500-7, using two-layer moulds, where the facing and core sand was the sand with an alkaline organic binder, while backing sand was the sand with an inorganic geopolymer binder.A simplified method of sand reclamation was applied with possible reuse of the reclaim as an addition to the backing sand. The castiron spheroidising treatment and inoculation were selected taking into account the specific conditions of Hardtop Foundry. A pilot batch of castings was made, testing the gating and feeding systems and using exothermic sleeves on risers. The study confirmed the validity of the adopted concept of making ductile iron castings in layer moulds, while maintaining the content of sand with an organic binder at a level of maximum 15%.

  8. Nodular cast iron fatigue lifetime in cyclic plane bending

    Directory of Open Access Journals (Sweden)

    Marian Kokavec

    2012-05-01

    Full Text Available The fatigue behavior of a component is strongly dependent on the material and its surface condition. Therefore, the manner in which the surface is prepared during component manufacturing (surface roughness, residual stresses etc. has a decisive role in dictating the initiation time for fatigue cracks. The fatigue behavior of the same material, a nodular cast iron, with three different surface conditions (fine ground, sand blast and as-cast has been investigated under cyclic plane bending. The results show differences in fatigue strength, which are associated with the surface conditions. The characteristics of the surface layers of the different test specimens were examined by metallography.

  9. Microstructure and properties of cast iron after laser surface hardening

    Directory of Open Access Journals (Sweden)

    Stanislav

    2013-12-01

    Full Text Available Laser surface hardening of cast iron is not trivial due to the material’s heterogeneity and coarse-grained microstructure, particularly in massive castings. Despite that, hardening of heavy moulds for automotive industry is in high demand. The present paper summarises the findings collected over several years of study of materials structure and surface properties. Phase transformations in the vicinity of graphite are described using examples from production of body parts in automotive industry. The description relates to formation of martensite and carbide-based phases, which leads to hardness values above 65 HRC and to excellent abrasion resistance.

  10. Performance of heavy ductile iron castings for windmills

    Directory of Open Access Journals (Sweden)

    Iulian Riposan

    2010-05-01

    Full Text Available The main objective of the present paper is to review the specific characteristics and performance obtaining conditions of heavy ductile iron (DI castings, typically applied in windmills industry, such as hubs and rotor housings. The requirements for high impact properties in DI at low temperatures are part of the EN-GJS-400-18U-LT (SRN 1563 commonly referred to as GGG 40.3 (DIN 1693. Pearlitic influence factor (Px and antinodularising action factor (K1 were found to have an important influence on the structure and mechanical properties, as did Mn and P content, rare earth (RE addition and inoculation power. The presence of high purity pig iron in the charge is extremely beneficial, not only to control the complex factors Px and K1, but also to improve the ‘metallurgical quality’ of the iron melt. A correlation of C and Si limits with section modulus is very important to limit graphite nodule flotation. Chunky and surface-degenerated graphite are the most controlled graphite morphologies in windmills castings. The paper concluded on the optimum iron chemistry and melting procedure, Mg-alloys and inoculants peculiar systems, as well as on the practical solutions to limit graphite degeneration and to ensure castings of the highest integrity, typically for this field.

  11. Carbon in condensed hydrocarbon phases, steels and cast irons

    Directory of Open Access Journals (Sweden)

    GAFAROVA Victoria Alexandrovna

    2017-11-01

    Full Text Available The article presents a review of studies carried out mainly by the researchers of the Ufa State Petroleum Technological University, which are aimed at detection of new properties of carbon in such condensed media as petroleum and coal pitches, steels and cast irons. Carbon plays an important role in the industry of construction materials being a component of road and roof bitumen and setting the main mechanical properties of steels. It was determined that crystal-like structures appear in classical glass-like substances – pitches which contain several thousands of individual hydrocarbons of various compositions. That significantly extends the concept of crystallinity. In structures of pitches, the control parameter of the staged structuring process is paramagnetism of condensed aromatic hydrocarbons. Fullerenes were detected in steels and cast irons and identified by various methods of spectrometry and microscopy. Fullerene С60, which contains 60 carbon atoms, has diameter of 0,7 nm and is referred to the nanoscale objects, which have a significant influence on the formation of steel and cast iron properties. It was shown that fullerenes appear at all stages of manufacture of cast irons; they are formed during introduction of carbon from the outside, during crystallization of metal in welded joints. Creation of modified fullerene layers in steels makes it possible to improve anticorrosion and tribological properties of structural materials. At the same time, outside diffusion of carbon from the carbon deposits on the metal surface also leads to formation of additional amount of fullerenes. This creates conditions for occurrence of local microdistortions of the structure, which lead to occurrence of cracks. Distribution of fullerenes in iron matrix is difficult to study as the method is labor-intensive, it requires dissolution of the matrix in the hydrofluoric acid and stage fullerene separation with further identification by spectral methods.

  12. Some problems in the production of ductile irons by investment casting

    Directory of Open Access Journals (Sweden)

    Yu Bo

    2008-02-01

    Full Text Available Because of the excellent performance of ductile irons and the unique superiority of investment casting, the preparation of complicated and thin-wall ductile iron castings by investment casting shows a good development prospect. In this present work, combined with the actual product experiments, the characteristics of shell making, spheroidization, inoculation and defect prevention are presented, and some suggestions are given for investment casting of ductile iron.

  13. Ductile cast iron obtaining by Inmold method with use of LOST FOAM process

    Directory of Open Access Journals (Sweden)

    T. Pacyniak

    2010-01-01

    Full Text Available The possibility of manufacturing of ductile cast iron castings by Inmold method with use of LOST FOAM process was presented in this work. The spheroidization was carried out by magnesium master alloy in amounts of 1% casting mass. Nodulizer was located in the reactive chamber in the gating system made of foamed polystyrene. Pretests showed, that there are technical possibilities of manufacturing of casts from ductile cast iron in the LOST FOAM process with use of spheroidization in mould.

  14. New developments in high quality grey cast irons

    Directory of Open Access Journals (Sweden)

    Iulian Riposan

    2014-07-01

    Full Text Available The paper reviews original data obtained by the present authors, revealed in recent separate publications, describing specific procedures for high quality grey irons, and reflecting the forecast needs of the worldwide iron foundry industry. High power, medium frequency coreless induction furnaces are commonly used in electric melting grey iron foundries. This has resulted in low sulphur (1,500 °C, contributing to unfavourable conditions for graphite nucleation. Thin wall castings are increasingly produced by these electric melt shops with a risk of greater eutectic undercooling during solidification. The paper focused on two groups of grey cast irons and their specific problems: carbides and graphite morphology control in lower carbon equivalent high strength irons (CE=3.4%-3.8%, and austenite dendrite promotion in eutectic and slightly hypereutectic irons (CE=4.1%-4.5%, in order to increase their strength characteristics. There are 3 stages and 3 steps involving graphite formation, iron chemistry and iron processing that appear to be important. The concept in the present paper sustains a threestage model for nucleating flake graphite [(Mn,XS type nuclei]. There are three important groups of elements (deoxidizer, Mn/S, and inoculant and three technological stages in electric melting of iron (superheat, pre-conditioning of base iron, final inoculation. Attention is drawn to a control factor (%Mn x (%S ensuring it equals to 0.03 – 0.06, accompanied by 0.005wt.%–0.010wt.% Al and/or Zr content in inoculated irons. It was found that iron powder addition promotes austenite dendrite formation in eutectic and slightly eutectic, acting as reinforcement for the eutectic cells. But, there is an accompanying possible negative influence on the characteristics of the (Mn,XS type graphite nuclei (change the morphology of nuclei from polygonal compact to irregular polygonal, and therefore promote chill tendency in treated irons. A double addition (iron

  15. Characterisation of austempered spheroidal graphite aluminium cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Boutorabi, S.M.A. [Iran Univ. of Science and Technology, Tehran (Iran, Islamic Republic of). Dept. of Metallurgy and Materials

    1997-06-01

    The micro constituents of austempered spheroidal graphite aluminium cast iron were investigated. The heat tinting, special etching and microhardness measurement techniques were used. The results showed that the colour of each micro constituents and the hardness values in austempered ductile iron depend on the carbon content of each phase. The above techniques were supported by using an special etching which showed similar differences in each phase. It was shown that the heat tinting and special etching are reliable tools to characterise the complex matrix of ADI. The microhardness data supported interestingly the colour changes in above technique. (orig.)

  16. Electrochemical oxidation of pharmaceutical effluent using cast iron electrode.

    Science.gov (United States)

    Abhijit, Deshpande; Lokesh, K S; Bejankiwar, R S; Gowda, T P H

    2005-01-01

    Electrochemical oxidation of low (BOD/COD) ratio pharmaceutical wastewater was investigated in this study, using cast iron electrode. The batch experimental results were assessed in terms of COD and BOD concentration while the recalcitrance was monitored in terms of change in the (BOD/COD) ratio during the process. The effects of operating parameters like pH, electrolysis duration and current density were studied on the treatment efficiency and their operating ranges were experimentally determined. The efficiency and energy consumption of anode were estimated. Cast iron electrode has been found to be effective in removing 72% COD after 2hours of electrolysis. In particular, it was found that the (BOD/COD) ratio had improved from 0.18 to 0.3 after 120 min. of electrolysis indicating improvement of biodegradability of wastewater. It has been found, the pharmaceutical wastewater could be effectively pretreated by anodic oxidation.

  17. SURFACE CAST IRON STRENGTHENING USING COMBINED LASER AND ULTRASONIC PROCESSING

    Directory of Open Access Journals (Sweden)

    O. G. Devojno

    2013-01-01

    Full Text Available The paper provides an analysis of ultrasonic surface plastic deformation and subsequent laser thermal strengthening of gray cast iron parts in the regime of hardening from a solid state with the purpose to obtain strengthened surface layers of bigger depth and less roughness of the processed surface. Program complex ANSYS 11.0 has been used for calculation of temperature fields induced by laser exposure.  The appropriate regime of laser processing without surface fusion has been selected on the basis of the applied complex. The possibility of displacement in the bottom boundary of α–γ-transformation temperature  for СЧ20 with 900 °С up to 800 °С is confirmed due to preliminary ultrasonic surface plastic deformation of the surface that allows to expand technological opportunities of laser quenching  of gray  cast iron from a solid state. 

  18. Laser processing of cast iron for enhanced erosion resistance

    International Nuclear Information System (INIS)

    Chen, C.H.; Altstetter, C.J.; Rigsbee, J.M.

    1984-01-01

    The surfaces of nodular and gray cast iron have been modified by CO 2 laser processing for enhanced hardness and erosion resistance. Control of the near-surface microstructure was achieved primarily by controlling resolidification of the laser melted layer through variations in laser beam/target interaction time and beam power density. Typical interaction times and power densities used were 5 msec and 500 kW/cm 2 . Two basic kinds of microstructure can be produced-a feathery microstructure with high hardness (up to 1245 HV) and a dendritic microstructure with a metastable, fully austenitic matrix and lower hardness (600 to 800 HV). Erosion testing was done using slurries of SiO 2 or SiC in water. Weight loss and crater profile measurements were used to evaluate the erosion characteristics of the various microstructures. Both ductile and gray cast iron showed marked improvement in erosion resistance after laser processing

  19. Nondestructive characterization of ductile cast iron by magnetic adaptive testing

    Czech Academy of Sciences Publication Activity Database

    Vértesy, G.; Uchimoto, T.; Tomáš, Ivan; Takagi, T.

    2010-01-01

    Roč. 322, č. 20 (2010), s. 3117-3121 ISSN 0304-8853 R&D Projects: GA ČR GA101/09/1323; GA AV ČR 1QS100100508 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic NDE * magnetic adaptive testing * magnetic hysteresis * cast iron Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.689, year: 2010

  20. Graphite structure and magnetic parameters of flake graphite cast iron

    Czech Academy of Sciences Publication Activity Database

    Vértesy, G.; Uchimoto, T.; Takagi, T.; Tomáš, Ivan; Kage, H.

    2017-01-01

    Roč. 442, Nov (2017), s. 397-402 ISSN 0304-8853 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:68378271 Keywords : magnetic NDE * magnetic adaptive testing * cast iron * graphite structure * pearlite content Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.630, year: 2016

  1. Method of fabricating a prestressed cast iron vessel

    Science.gov (United States)

    Lampe, Robert F.

    1982-01-01

    A method of fabricating a prestressed cast iron vessel wherein double wall cast iron body segments each have an arcuate inner wall and a spaced apart substantially parallel outer wall with a plurality of radially extending webs interconnecting the inner wall and the outer wall, the bottom surface and the two exposed radial side surfaces of each body segment are machined and eight body segments are formed into a ring. The top surfaces and outer surfaces of the outer walls are machined and keyways are provided across the juncture of adjacent end walls of the body segments. A liner segment complementary in shape to a selected inner wall of one of the body segments is mounted to each of the body segments and again formed into a ring. The liner segments of each ring are welded to form unitary liner rings and thereafter the cast iron body segments are prestressed to complete the ring assembly. Ring assemblies are stacked to form the vessel and adjacent unitary liner rings are welded. A top head covers the top ring assembly to close the vessel and axially extending tendons retain the top and bottom heads in place under pressure.

  2. Manufacturing of cast iron using software solution for optimization

    International Nuclear Information System (INIS)

    Jokhio, M.A.; Panhwar, M.I.; Shaikh, G.Y.

    2006-01-01

    Most of the machine parts are produced from cupola furnace through the foundry casting routes. Foundry grade pig Iron as produced by Pakistan Steel is the main source of raw material for the manufacturing of various machine components by large number of local industries in Pakistan. The Cast Iron is one of the main engineering alloy of iron, Carbon and Silicon. It is widely used for manufacturing of various components due to its economical production, good cast ability and damping capability. For this purpose a detailed survey of various foundries was carried out at site area Hyderabad and data collected from the Star Foundry and analyzed. The formulation of the problem was made in order to obtain an optimal solution so as to minimize the cost and increase the productivity. It was noted that the main cause for higher cost of the foundry products was the cost of raw materials imported from out side of the country. Infeasible blending (mixture) of the main raw materials for cupola charge can increase the cost up to the 50% of the total cost of the product. (author)

  3. Quality and Safety Assurance of Iron Casts and Manufacturing Processes

    Directory of Open Access Journals (Sweden)

    Kukla S.

    2016-06-01

    Full Text Available The scope of this work focuses on the aspects of quality and safety assurance of the iron cast manufacturing processes. Special attention was given to the processes of quality control and after-machining of iron casts manufactured on automatic foundry lines. Due to low level of automation and huge work intensity at this stage of the process, a model area was established which underwent reorganization in accordance with the assumptions of the World Class Manufacturing (WCM. An analysis of work intensity was carried out and the costs were divided in order to identify operations with no value added, particularly at individual manufacturing departments. Also an analysis of ergonomics at work stations was carried out to eliminate activities that are uncomfortable and dangerous to the workers' health. Several solutions were proposed in terms of rationalization of work organization at iron cast after-machining work stations. The proposed solutions were assessed with the use of multi-criteria assessment tools and then the best variant was selected based on the assumed optimization criteria. The summary of the obtained results reflects benefits from implementation of the proposed solutions.

  4. Friction wear cast iron casting surface hardened by concentrated source of heat

    Directory of Open Access Journals (Sweden)

    W. Orlowicz

    2009-04-01

    Full Text Available In this study surface fusion by the GTAW (in argon atmosphere surfacing process on plate of cast iron with electric arc advance speedsfrom 200 to 800 mm/min and current range I=300A were performed. The geometry, microstructure, hardness, friction wear intensity weremeasured. A stepwise regression method was used to develop relationships between the electric arc advance speed, parameters of fusion geometry, microhardness and friction wear intensity.

  5. Effect of Chemical Composition on Number of Eutectic Colonies in Ni-Mn-Cu Cast Iron

    Directory of Open Access Journals (Sweden)

    Janus A.

    2013-03-01

    Full Text Available Determined were direction and intensity of influence of alloying additions on the number of eutectic graphite colonies in austenitic cast iron Ni-Mn-Cu. Chemical composition of the cast iron was 1.7 to 3.3% C, 1.4 to 3.1% Si, 2.8 to 9.9% Ni, 0.4 to 7.7% Mn, 0 to 4.6% Cu, 0.14 to 0.16% P and 0.03 to 0.04% S. Analysed were structures of mottled (20 castings and grey (20 castings cast iron. Obtained were regression equations determining influence intensity of individual components on the number of graphite colonies per 1 cm2 (LK. It was found that, in spite of high total content of alloying elements in the examined cast iron, the element that mainly decides the LK value is carbon, like in a plain cast iron.

  6. Testing of heating and cooling process of ADI cast iron with use of ATND method

    Directory of Open Access Journals (Sweden)

    A. Białobrzeski

    2008-10-01

    Full Text Available ADI (Austempered Ductile Iron cast iron, owing to its unique combination of high tensile strength and abrasion resistance with very goodplasticity, founds implementation in many branches of industry as a substitute of alloy cast steel and carburized or heat treated steels. Inspite of its solid position among producers and recipients of castings, there are still undertaken studies aimed at perfection of its propertiesand recognition of mechanisms enabling obtaining such properties.The paper presents implementation of thermal-voltage-derivative (ATND method to registration of heating and cooling course of ADIcast iron with EN-GJS-1200-2 grade. ADI cast iron with EN-GJS-1200-2 grade underwent the study. Heat treatment of the cast iron wasperformed in Foundry Institute with use of LT ADI-350/1000 processing line. Results obtained from the testing illustrate in graphic formregistered heating and cooling curves of investigated cast irons obtained with use of the ATND method.

  7. The use of ultrasound to enhance the degradation of the Basic Green by cast iron.

    Science.gov (United States)

    Shen, Zhuang-zhi; Shen, Jian-zhong

    2006-12-22

    The effect of pH, amount of cast iron and initial concentration on the removal ratio of Basic Green by cast iron combined with ultrasound was investigated. It was shown that the reduction of Basic Green was enhanced by ultrasound. In all combined systems, the decolorization efficiency is more than 95%, but removal ratio of CODcr decreased with the increasing pH or initial dye concentration and increased with the increase of the amount of cast iron.

  8. Identification Trial of Crystallization Parameters of Modified Chromium Cast Iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2007-07-01

    Full Text Available In the paper results of researches of abrasion-resisting chromium cast iron inoculated with boron carbide B4C primary crystallization are presented. The main aim of work was make an attempt to identification of crystallization parameters that changed in reason of inoculation. Essential primary crystallization parameters, with the help of which, will be possible to evaluate the inoculation capacity were searched. It was found that in the result of inoculant actions characteristic temperatures were changed and time of primary crystallization was decreased. For tests the new broadened Derivative Thermal Analysis method, in which three samples with different solidification module were applied, was used. Thanks to this inoculation capacity in casts with significant diversified self-cooling ranges was possible to observe.

  9. Application of evolutionary algorithm for cast iron latent heat identification

    Directory of Open Access Journals (Sweden)

    J. Mendakiewicz

    2008-12-01

    Full Text Available In the paper the cast iron latent heat in the form of two components corresponding to the solidification of austenite and eutectic phases is assumed. The aim of investigations is to estimate the values of austenite and eutectic latent heats on the basis of cooling curve at the central point of the casting domain. This cooling curve has been obtained both on the basis of direct problem solution as well as from the experiment. To solve such inverse problem the evolutionary algorithm (EA has been applied. The numerical computations have been done using the finite element method by means of commercial software MSC MARC/MENTAT. In the final part of the paper the examples of identification are shown.

  10. Cast iron-base alloy for cylinder/regenerator housing

    Science.gov (United States)

    Witter, Stewart L.; Simmons, Harold E.; Woulds, Michael J.

    1985-01-01

    NASACC-1 is a castable iron-base alloy designed to replace the costly and strategic cobalt-base X-40 alloy used in the automotive Stirling engine cylinder/generator housing. Over 40 alloy compositions were evaluated using investment cast test bars for stress-rupture testing. Also, hydrogen compatibility and oxygen corrosion resistance tests were used to determine the optimal alloy. NASACC-1 alloy was characterized using elevated and room temperature tensile, creep-rupture, low cycle fatigue, heat capacity, specific heat, and thermal expansion testing. Furthermore, phase analysis was performed on samples with several heat treated conditions. The properties are very encouraging. NASACC-1 alloy shows stress-rupture and low cycle fatigue properties equivalent to X-40. The oxidation resistance surpassed the program goal while maintaining acceptable resistance to hydrogen exposure. The welding, brazing, and casting characteristics are excellent. Finally, the cost of NASACC-1 is significantly lower than that of X-40.

  11. Effect of chemical composition and superheat on macrostructure of high Cr white iron castings

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, Omer N.

    2005-08-01

    White cast irons are frequently used in applications requiring high wear resistance. High Cr white cast irons have a composite microstructure composed of hard (Fe,Cr)7C3 carbides in a steel matrix. Previous research has indicated that the equiaxed region of these high Cr white iron castings is much more wear resistant under high stress abrasive conditions than the columnar region, when the carbides are oriented perpendicular to the wear surface. In the present study, the effect of both the chemical composition, particularly carbon content, and the pouring superheat of the melt on the macrostructure of high Cr white iron castings is investigated.

  12. Impact Characteristics of Diffusion Bonds of Ferritic Spheroidal Graphite Cast Iron

    OpenAIRE

    Shizuo, MUKAE; Kazumasa, NISHIO; Mitsuaki, KATOH; Norikazu, NAKAMURA; Kyushu Institute of Technology; Kyushu Institute of Technology; Kyushu Institute of Technology; Fukuoka Industrial Technology Center

    1990-01-01

    Impact characteristics of diffusion bonded joints of ferritic spheroidal graphite cast irons and cast iron to mild steel have been investigated using an instrumented Charpy impact test machine. The tests were performed at 0℃ after ferritizing the joints. Main results obtained are as follows : (1) Absorbed energy of the cast iron joints banded without an insert metal was about 5 J, which was much lower than that of the base metal. (2) Absorbed energy of the cast iron joints bonded with Ni foil...

  13. Selective Leaching of Gray Cast Iron: Electrochemical Aspects

    International Nuclear Information System (INIS)

    Na, Kyung Hwan; Yun, Eun Sub; Park, Young Sheop

    2010-01-01

    Currently, to keep step with increases in energy consumption, much attention has been paid to the construction of new nuclear power plants (NPPs) and to the continued operation of NPPs. For continued operation, the selective leaching of materials should be evaluated by visual inspections and hardness measurements as a part of One-Time Inspection Program according to the requirements of the guidelines for continued operation of pressured water reactors (PWRs) in Korea and license renewals in the United States, entitled the 'Generic Aging Lessons Learned (GALL) report.' However, the acceptance criteria for hardness have yet to be provided. Recently, USNRC released a new draft of the GALL report for comment and plans to publish its formal version by the end of 2010. In the new draft, the quantitative acceptance criteria for hardness are given at last: no more than a 20 percent decrease in hardness for gray cast iron and brass containing more than 15 percent zinc. Selective leaching is the preferential removal of one of the alloying elements from a solid alloy by corrosion processes, leaving behind a weakened spongy or porous residual structure. The materials susceptible to selective leaching include gray cast iron and brass, which are mainly used as pump casings and valve bodies in the fire protection systems of NPPs. Since selective leaching proceeds slowly during a long period of time and causes a decrease in strength without changing the overall dimensions of original material, it is difficult to identify. In the present work, the selective leaching of gray cast iron is investigated in terms of its electrochemical aspects as part of an ongoing research project to study the changes in metal properties by selective leaching

  14. Primary and secondary crystallization of modified hypoeutectic chromium cast iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2010-04-01

    Full Text Available The paper presents investigations of crystallization of modified hypoeutectic wear resistant chromium cast iron which contains carbon about 2% and chromium on three levels (12%, 18% and 25%. Three substances were applied to the modification ( boron carbide (B4C, ferroniobium (FeNb and mixture of ferroniobium and mischmetal (RE. The investigations of crystallization were conducted the DTA method in DTA-C and DTA-Is testers. The influence on the course of the process of primary and secondary crystallization was observed.

  15. Solidification of cast iron - A study on the effect of microalloy elements on cast iron

    DEFF Research Database (Denmark)

    Moumeni, Elham

    , nodule count and fraction of solid phases) have shown a good agreement with experimental studies; following this, inoculation parameters in the model have been studied and discussed. The effect of Ti and S on the microstructure of grey iron is studied. Optical and electron microscopy are used to examine...... inoculants in four different thicknesses has been produced and studied; chemical analysis, metallographic investigation and thermal analysis of the specimens have been carried out. A numerical model for solidification of ductile iron has been implemented and the results (i.e. cooling curve, cooling rate...... (~10µm) at low (0.012 wt%) as well as at high S contents. Ti also caused increased segregation in the microstructure of the analysed irons and larger eutectic grains (cells). The inclusions have been identified in an effort to explain the nucleation of the phases of interest. The reasons for increase...

  16. Cast B2-phase iron-aluminum alloys with improved fluidity

    Science.gov (United States)

    Maziasz, Philip J.; Paris, Alan M.; Vought, Joseph D.

    2002-01-01

    Systems and methods are described for iron aluminum alloys. A composition includes iron, aluminum and manganese. A method includes providing an alloy including iron, aluminum and manganese; and processing the alloy. The systems and methods provide advantages because additions of manganese to iron aluminum alloys dramatically increase the fluidity of the alloys prior to solidification during casting.

  17. Comparative Analysis of the Microstructural Features of 28 wt.% Cr Cast Iron Fabricated by Pulsed Plasma Deposition and Conventional Casting

    Science.gov (United States)

    Chabak, Yu. G.; Efremenko, V. G.; Shimizu, K.; Lekatou, A.; Pastukhova, T. V.; Azarkhov, A. Yu.; Zurnadzhy, V. I.

    2018-02-01

    The effect of pulsed plasma deposition (by an electrothermal axial plasma accelerator) followed by post-heat treatment on the structure and microhardness of a 28 wt.% Cr white cast iron is analyzed and discussed with respect to the microstructure of the conventionally cast monolithic counterpart. The cast iron (as deposited on a 14 wt.% Cr cast iron substrate) had a microhardness of 630-750 HV0.05; it had layered light contrast/dark contrast structure where dark contrast layers contain fine carbide network. Pulsed plasma deposition followed by heat treatment resulted in a substantial refinement of the microstructure: eutectic M7C3 coarse acicular plates in the conventional cast iron were replaced by fine M7C3, M3C2, M3C particles (Cr depleted in favor of Fe), while the initial carbide particle of 2-3 μm was reduced to 0.6 μm. Secondary dendrite arm spacing decreased from 15 to 1.3 μm, accordingly. The carbide volume fraction in the post-heat-treated coating remarkably increased with respect to the conventional counterpart resulting in a substantial increase in the coating hardness (1300-1750 HV0.05). The heat-treated coating displayed higher resistance to three-body abrasion than the as-deposited coating and similar resistance with that of the conventionally cast iron.

  18. Influence of rare earths on shrinkage porosity in thin walled ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2009-01-01

    Ductile cast iron has been cast in test bars with thickness from 2 to 10 mm. The rare earth elements La and Ce have been added to some of the castings to evaluate their influence on microstructure and shrinkage tendency. Both La and Ce increased the graphite nodule count, especially for thickness...

  19. 77 FR 17119 - Pipeline Safety: Cast Iron Pipe (Supplementary Advisory Bulletin)

    Science.gov (United States)

    2012-03-23

    ... Pipeline and Hazardous Materials Safety Administration Pipeline Safety: Cast Iron Pipe (Supplementary...; October 11, 1991 and ALN-92-02; June 26, 1992) covering the continued use of cast iron pipe in natural gas... toward finding the cause. On February 9, 2011, five people lost their lives and a number of homes were...

  20. USE OF HIGH-STRENGTH BAINITIC CAST IRON FOR PRODUCING GEAR WHEELS

    Directory of Open Access Journals (Sweden)

    A. I. Pokrovskiy

    2015-01-01

    Full Text Available The advantages and drawbacks of high-strength cast irons with bainitic structure are reviewed basing on the authors’ own experience in the production of critical partsfrom this material and on the analysis of world trends. A possibility of the replacement of alloy steels by bainitic cast iron in manufacturing critical machine parts is discussed.

  1. Feasibility and practice of nodular iron casting feeder-less production

    Directory of Open Access Journals (Sweden)

    ZHOU Gen

    2006-02-01

    Full Text Available The volumetric changes of castings and dimension changes of mould cavity occurring during liquid cooling and solidification of nodular iron castings were described. The feasibility and prerequisites to realize feeder-less production of nodular iron castings was analyzed and proved with practical examples. It was pointed out that the feeder-less foundry method is by no means a feeding-less method, and it was emphasized that adopting high carbon equivalent, high rigidity mould, simultaneous and synchronous solidification, and intensifying cooling capacity of the mould to increase feeding effect of the gating system are important to successfully realize feeder-less production of nodular iron castings.

  2. Statistical fatigue properties of ductile cast irons; Kyujo kokuen chutetsu no hiro kyodo no tokeiteki seishitsu

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, N.; Nishikawa, Y.; Inaba, K. [Gifu University, Gifu (Japan). Faculty of Engineering; Fukuyama, K. [Gifu Prefectural Police Headquarters, Gifu (Japan)

    1995-09-15

    Rotating bending fatigue tests of smooth specimens were carried out at room temperature on a pearlitic ductile cast iron (PDI) and austempered ductile cast iron (ADI). No significant difference due to sampling position from cast blocks in both materials was found in fatigue limit and fatigue life distribution. Then, the statistical fatigue properties of ferritic (FDI), ferritic/pearlitic (FPDI), pearlitic and austempered ductile cast irons were investigated. The fatigue life distributions of all ductile irons were well represented by the three parameter Weibull distribution modified by the saturated probability of failure. The shape parameters of FDI, FPDI and PDI were in proportion to {sigma}/{sigma}w independent on micro structure, while the shape parameters of both stress levels in ADI were smaller than unity. The fatigue strength of ADI was highest, but the scatter of fatigue life was largest among the all cast irons. 13 refs., 15 figs., 7 tabs.

  3. Cast iron as structural material for hot-working reactor vessels (PCIV)

    International Nuclear Information System (INIS)

    Ostendorf, H.; Schmidt, G.; Pittack, W.

    1977-01-01

    Cast iron with lamellar graphite is best suited for prestressed structures, because its compressive strength is nearly 4 times its tensile strength. In comparison to room temperature, cast iron with lamellar graphite shows essentially no loss of strength up to temperatures of 400 0 C. Under the particular aspect to use cast iron for hot-working prestressed reactor pressure vessels (PCIV) (Prestressed cast iron vessel=PCIV) a materials testing program is carried out, which meets the strict certification requirements for materials in the construction of reactor pressure vessels and which completes the presently available knowledge of cast iron. Especially in the following fields an extension and supplement of the present level of knowledge is necessary. - Mechanical properties under compressive stresses. - Material properties at elevated temperatures. - Influence of irradiation on mechanical and physical properties. - Production standards and quality control. The state of the research and the available data of the material testing program are reported. (Auth.)

  4. Graphite nodules in fatigue-tested cast iron characterized in 2D and 3D

    DEFF Research Database (Denmark)

    Mukherjee, Krishnendu; Fæster, Søren; Hansen, Niels

    2017-01-01

    Thick-walled ductile iron casts have been studied by applying (i) cooling rate calculations by FVM, (ii) microstructural characterization by 2D SEM and 3D X-ray tomography techniques and (iii) fatigue testing of samples drawn from components cast in sand molds and metal molds. An analysis has shown...... correlations between cooling rate, structure and fatigue strengths demonstrating the benefit of 3D structural characterization to identify possible causes of premature fatigue failure of ductile cast iron....

  5. Development of a manufacturing technology of compacted graphite iron castings from a cupola furnace

    Directory of Open Access Journals (Sweden)

    O. Bouska

    2012-01-01

    Full Text Available Compacted graphite iron, also known as vermicular cast iron or semiductile cast iron is a modern material, the production of which is increasing globaly. Recently this material has been very often used in automotive industry. This paper reviews some findigs gained during the development of the manufacturing technology of compacted graphite iron under the conditions in Slévárna Heunisch Brno, Ltd. The new technology assumes usage of cupola furnace for melting and is beeing developed for production of castings weighing up to 300 kilograms poured into bentonite sand moulds.

  6. Anodic Dissolution of Spheroidal Graphite Cast Iron with Different Pearlite Areas in Sulfuric Acid Solutions

    Directory of Open Access Journals (Sweden)

    Yoshikazu Miyata

    2013-01-01

    Full Text Available The rate equation of anodic dissolution reaction of spheroidal graphite cast iron in sulfuric acid solutions at 298 K has been studied. The cast irons have different areas of pearlite. The anodic Tafel slope of 0.043 V decade−1 and the reaction order with respect to the hydroxyl ion activity of 1 are obtained by the linear potential sweep technique. The anodic current density does not depend on the area of pearlite. There is no difference in the anodic dissolution reaction mechanisms between pure iron and spheroidal graphite cast iron. The anodic current density of the cast iron is higher than that of the pure iron.

  7. 75 FR 75964 - Non-Malleable Cast Iron Pipe Fittings From the People's Republic of China: Extension of Time...

    Science.gov (United States)

    2010-12-07

    ... International Trade Administration Non-Malleable Cast Iron Pipe Fittings From the People's Republic of China... administrative review of the antidumping duty order on non-malleable cast iron pipe fittings from the People's... the administrative review of non-malleable cast iron pipe fittings from the PRC within the time limits...

  8. 78 FR 72639 - Non-Malleable Cast Iron Pipe Fittings From the People's Republic of China: Final Results of the...

    Science.gov (United States)

    2013-12-03

    ... International Trade Administration Non-Malleable Cast Iron Pipe Fittings From the People's Republic of China... sunset review of the antidumping duty order on non-malleable cast iron pipe fittings from the People's... expedited (120-day) sunset review of the antidumping duty order on non-malleable cast iron pipe fittings...

  9. 75 FR 10216 - Malleable Cast Iron Pipe Fittings from the People's Republic of China: Notice of Rescission of...

    Science.gov (United States)

    2010-03-05

    ... Cast Iron Pipe Fittings from the People's Republic of China: Notice of Rescission of the 2008-2009... review of the antidumping duty order on malleable cast iron pipe fittings from the People's Republic of... antidumping duty order on malleable cast iron pipe fittings from the PRC. See Initiation of Antidumping and...

  10. [Reduction of dust during manual grinding of cast iron].

    Science.gov (United States)

    Gliński, Maciej

    2002-01-01

    The method for determining the emission of dust and the effectiveness of dust removal from machines and devices by local exhaust ventilation to the workplace air is presented. This method consists in determining concentrations of air pollution in the measuring duct through which it is sucked off from the chambers with tested devices. At the same time the volume of air flow rate is measured. A laser dust analyzer is used to measure dust concentrations in the air. Air is sampled with isokinetic sampling heads. It was shown that dust emission at different kinds of manual grinding of cast iron without ventilation was between 24 mg/min and 8131 mg/min, whereas with the use of local exhaust ventilation it decreased below 35 mg/min. The efficiency of the exhaust elements was over 95% at optimum use of local ventilation.

  11. Solubility of Hydrogen and Nitrogen in liquid cast iron during melting and mold filling

    OpenAIRE

    Diószegi, Attila; Elfsberg, Jessica; Diószegi, Zoltán

    2016-01-01

    Defect formation like gas- and shrinkage porosity at cast iron component production is related to the content of gaseous elements in the liquid metal. The present work investigate the solubility of hydrogen and nitrogen in liquid iron aimed for production of lamellar and compacted graphite cast iron. The used methods and instruments are a combination of commercial measuring devices and novel experimental assemblies for measuring solubility of hydrogen and nitrogen during melting and mold fill...

  12. Obtaining Martensitic Structures during Thixoforming of Hypoeutectic Gray Cast Iron

    Directory of Open Access Journals (Sweden)

    Lucas Bertolino Ragazzo

    2015-01-01

    Full Text Available The control of parameters such as liquid fraction, holding time, and cooling rate during thixoforming can help control the final microstructure of the thixoformed part, thus improving its mechanical properties. This study intended to investigate conditions required to obtain martensite in hypoeutectic gray cast iron at 3.1% CE (carbon equivalent deformed in the semisolid state. Samples heated up to 1130, 1135, and 1145°C (liquid fractions of 10, 30, and 45% were compressed into platens without any holding time (0 s. If a sample presented a martensitic structure for 0 s holding time, new samples were retested at the same temperature for 30, 60, and 90 s holding times. The die casting process was simulated by allowing the platens to become locked after hot compression. Samples that cooled in the locked platens were submitted to higher cooling rates than samples that cooled with the platens open and presented martensite instead of the conventional ferrite and pearlite. Thus, the factor that had the greatest influence on the formation of martensite was the cooling rate rather than stress. The thixoforming process presented good morphological stability, which is highly desirable for industrial applications.

  13. THE INFLUENCE OF PRE-HEAT TREATMENT ON WHITE CAST IRONS PLASTICITY

    Directory of Open Access Journals (Sweden)

    T. M. Myronova

    2013-11-01

    Full Text Available Purpose. The development of heat treatment modes of white cast irons for structure changes in their eutectic constituent, namely in disturbing the monolithic structure of ledeburite colonies cementite structure and eutectic net continuity. Also the mentioned heat treatment modes are targeted to the eutectic net shift for the most suitable position from the point of plastic deforming. Methodology. The hypoeutectic white cast irons with 2.92…3.35 % carbon content and additionally alloyed by 3.18 % vanadium have been used as the research materials. The mentioned alloys have been pre-heat treated and hot twist tested. Findings. The research results showed that the carbide net breaking by plastic deforming leads to cast irons mechanical properties increasing but has difficulties in implementation due to the white cast irons low plasticity. The influence of different pre-heat treatment modes on structure and plasticity of white hypoeutectic cast irons have been investigated. They include the isotherm soaking under the different temperatures as well as multiply soakings and thermo-cycling. The influence of eutectic level, as well as pre heat treatment modes on different composition white cast irons hot plasticity have been investigated. Originality. It was determined that the heat treatment, which leads to double α→γ recrystallization under 860 – 950 °С and reperlitization under 720-680 °С results in significant increase of plasticity, as well as in un-alloyed and alloyed by vanadium white cast irons. It takes place due to carbide matrix phase separation in ledeburite colonies by new phase boundaries forming especially due to carbide transformations under vanadium alloying. Practical value. The implementation of pre-heat treatment with phase recrystallization resulted in hypoeutectic white cast irons plasticity increasing. The obtained level of cast iron plasticity corresponds to the one of carbide class steels, which ensures the successful

  14. CHANGE OF CONNECTION BETWEEN MAGNETIC PARAMETERS OF CAST IRON IN COMPARISON WITH STEEL UNDER INFLUENCE OF INTERNAL DEMAGNETIZATION

    Directory of Open Access Journals (Sweden)

    S. G. Sandomirsky

    2014-01-01

    Full Text Available Connection of maximum magnetic permeability µm of cast irons with coercive force Нс and residual magnetism Мr is established in all size of changing of the magnetic characteristics of cast iron. Differences of this connection for steels and cast irons are revealed. Formula for calculation µm of steels by Нс and Мr is corrected for calculation µm of cast irons. As a result of correction the calculation error of cast irons µm is diminished. The results can be used in magnetic structural analysis instead of labor-consuming measurement µm.

  15. INVESTIGATION OF EFFICIENCY OF GRAY CAST IRON GRAPHITIZING MODIFICATION BY DISPERSION-FILLED CONSUMABLE PATTERN

    Directory of Open Access Journals (Sweden)

    I. A. Nebozhak

    2015-01-01

    Full Text Available The key criteria of the process of graphitizing modification of matrix melt silicon concentration and silicon assimilation evaluated were on samples of gray cast iron grade СЧ20 State Standard 1412-85. These criteria of evaluation on the structure and properties of casting ingots proved an efficiency of intra-mold modification of molten gray cast iron by dispersed ferrosilicon grade ФС75 State Standard 1415-93 (ISO 5445-80 using lost-foam casting (LFC-process.

  16. Comparative aspects about the studying methods of cast irons machinability, based on the tool wear

    Science.gov (United States)

    Carausu, C.; Pruteanu, O.

    2016-08-01

    The paper presents some considerations of the authors, regarding the studying methods of the cast irons machinability, based on the tools wear on drilling operations. Are described the conditions in which the experimental researches were conducted, intended to offer an overview on drilling machinability of some cast irons categories. It is presented a comparison between long-term methods and short-term methods, for determining the optimal speed chipping of a grey cast iron with lamellar graphite, with average values of tensile strength. Are described: the research methodology, obtained results and conclusions drawn after the results analysis.

  17. Identification of a cast iron alloy containing nonstrategic elements

    Science.gov (United States)

    Cooper, C. V.; Anton, D. L.; Lemkey, F. D.; Nowotny, H.; Bailey, R. S.; Favrow, L. H.; Smeggil, J. G.; Snow, D. B.

    1989-01-01

    A program was performed to address the mechanical and environmental needs of Stirling engine heater head and regenerator housing components, while reducing the dependence on strategic materials. An alloy was developed which contained no strategic elemental additions per se. The base is iron with additions of manganese, molybdenum, carbon, silicon, niobium, and ferro-chromium. Such an alloy should be producible on a large scale at very low cost. The resulting alloy, designated as NASAUT 4G-Al, contained 15 Mn, 15 Cr, 2 Mo, 1.5 C, 1.0 Si, 1.0 Nb (in weight percent) with a balance of Fe. This alloy was optimized for chemistry, based upon tensile strength, creep-rupture strength, fracture behavior, and fatigue resistance up to 800 C. Alloys were also tested for environmental compatibility. The microstructure and mechanic properties (including hardness) were assessed in the as-cast condition and following several heat treatments, including one designed to simulate a required braze cycle. The alloy was fabricated and characterized in the form of both equiaxed and columnar-grained castings. The columnar grains were produced by directional solidification, and the properties were characterized in both the longitudinal and transverse orientations. The NASAUT 4G-Al alloy was found to be good in cyclic-oxidation resistance and excellent in both hydrogen and hot-corrosion resistance, especially in comparison to the baseline XF-818 alloy. The mechanical properties of yield strength, stress-rupture life, high-cycle-fatigue resistance, and low-cycle-fatigue resistance were good to excellent in comparison to the current alloy for this application, HS-31 (X-40), with precise results depending in a complex manner on grain orientation and temperature. If required, the ductility could be improved by lowering the carbon content.

  18. Quantification and modelling of 2,4-dinitrotoluene reduction with high-purity and cast iron.

    Science.gov (United States)

    Jafarpour, Behnam; Jafarpour, Benham; Imhoff, Paul T; Chiu, Pei C

    2005-01-01

    Cast iron has been used as a reactive material in permeable reactive barriers (PRBs) for site remediation. While reactions are generally believed to occur on the iron (oxide) surface, a recent study by [Oh, S.Y., Cha, D.K., Chiu, P.C., 2002a. Graphite-mediated reduction of 2,4-dinitrotoluene with elemental iron. Environ. Sci. Technol. 36 (10), 2178-2184] showed that graphite inclusions in cast iron can also serve as reaction sites for 2,4-dinitrotoluene (DNT). These authors also found that graphite-mediated reduction of DNT has a regioselectivity that is different from that for iron surface. In this study, we quantified the observations reported by Oh et al. and examined the role of graphite in cast iron through numerical modelling. Models containing one and two reaction sites were developed to evaluate the mass transfer, sorption and reaction rates for DNT reduction in batch systems containing high-purity and cast iron. Our simulations showed that the regioselectivity, defined as the ratio of the ortho- and para-nitro reduction rate constants, was 0.37+/-0.04 S.E. (S.E.=one estimated standard error) for iron surface and 3.59+/-0.76 S.E. for graphite surface. In the cast iron-water system, we estimated that at least 66+/-2% S.E. of the DNT was reduced on graphite surface, despite the low graphite content and the lower DNT reduction rate with graphite than with iron. Graphite played such an important role because of the rapid adsorption of DNT to graphite. In the batch experiments conducted by Oh et al., external mass transfer was not rate limiting. Surface reaction was the rate-limiting step for DNT reduction on the graphite surface in cast iron, whereas internal mass transfer and/or adsorption and surface reaction were important for high-purity iron.

  19. Production of spheroidal graphite cast iron (S. G. Iron) for an automobile brake drum

    International Nuclear Information System (INIS)

    Butt, M.T.Z.; Aziz, S.

    2005-01-01

    The role of automobile industry for any country has a great importance. Break drum is one of the essential parts of automobile car and its local casting is required in order to achieve the target for automobile industry because it has special significance. Break drum being the important constituent of the system of an automobile requires a great degree of accuracy and reliability. S. G. Iron is preferred because of its mechanical properties i.e., higher strength modulus, impact resistance and ductility along with excellent machinability and manufacturing ease. (author)

  20. THE EFFECT OF CHLORIDE AND ORTHOPHOSPHATE ON THE RELEASE OF IRON FROM DRINKING WATER DISTRIBUTION SYSTEM CAST IRON MAIN

    Science.gov (United States)

    “Colored water” resulting from suspended iron particles is a common drinking water consumer complaint which is largely impacted by water chemistry. A bench scale study, performed on a 90 year-old corroded cast-iron pipe section removed from a drinking water distribution system, w...

  1. Effect of molybdenum, vanadium, boron on mechanical properties of high chromium white cast iron in as-cast condition

    Science.gov (United States)

    Nurjaman, F.; Sumardi, S.; Shofi, A.; Aryati, M.; Suharno, B.

    2016-02-01

    In this experiment, the effect of the addition carbide forming elements on high chromium white cast iron, such as molybdenum, vanadium and boron on its mechanical properties and microstructure was investigated. The high chromium white cast iron was produced by casting process and formed in 50 mm size of grinding balls with several compositions. Characterization of these grinding balls was conducted by using some testing methods, such as: chemical and microstructure analysis, hardness, and impact test. From the results, the addition of molybdenum, vanadium, and boron on high chromium white cast iron provided a significant improvement on its hardness, but reduced its toughness. Molybdenum induced fully austenitic matrix and Mo2C formation among eutectic M7C3 carbide. Vanadium was dissolved in the matrix and carbide. While boron was played a role to form fine eutectic carbide. Grinding balls with 1.89 C-13.1 Cr-1.32 Mo-1.36 V-0.00051 B in as-cast condition had the highest hardness, which was caused by finer structure of eutectic carbide, needle like structure (upper bainite) matrix, and martensite on its carbide boundary.

  2. Role of Titanium in Thin Wall Vermicular Graphite Iron Castings Production

    Directory of Open Access Journals (Sweden)

    Górny M.

    2013-06-01

    Full Text Available In this paper the effects of titanium addition in an amount up to 0.13 wt.% have been investigated to determine their effect on the microstructure and mechanical properties of Thin Wall Vermicular Graphite Iron Castings (TWVGI. The study was performed for thinwalled iron castings with 3-5 mm wall thickness and for the reference casting with 13 mm. Microstructural changes were evaluated by analyzing quantitative data sets obtained by image analyzer and also using scanning electron microscope (SEM. Metallographic examinations show that in thin-walled castings there is a significant impact of titanium addition to vermicular graphite formation. Thinwalled castings with vermicular graphite have a homogeneous structure, free of chills, and good mechanical properties. It may predispose them as a potential use as substitutes for aluminum alloy castings in diverse applications.

  3. Examination of Cast Iron Material Properties by Means of the Nanoindentation Method

    Directory of Open Access Journals (Sweden)

    Trytek A.

    2012-12-01

    Full Text Available The paper presents results of examination of material parameters of cast iron with structure obtained under rapid resolidification conditions carried out by means of the nanoindentation method.

  4. INVESTIGATION OF PHYSICOCHEMICAL AND MECHANICAL CHARACTERISTICS OF STEEL AND CAST IRON CHIPS

    Directory of Open Access Journals (Sweden)

    O. M. Dyakonov

    2009-01-01

    Full Text Available The chemical and phase composition of steel and cast iron chips is studied, quantitative content of phases, including ferric oxides and other chemical elements chips, is determined.

  5. Upgrade Recycling of Cast Iron Scrap Chips towards β-FeSi2 Thermoelectric Materials

    Science.gov (United States)

    Laila, Assayidatul; Nanko, Makoto; Takeda, Masatoshi

    2014-01-01

    The upgrade recycling of cast-iron scrap chips towards β-FeSi2 thermoelectric materials is proposed as an eco-friendly and cost-effective production process. By using scrap waste from the machining process of cast-iron components, the material cost to fabricate β-FeSi2 is reduced and the industrial waste is recycled. In this study, β-FeSi2 specimens obtained from cast iron scrap chips were prepared both in the undoped form and doped with Al and Co elements. The maximum figure of merit (ZT) indicated a thermoelectric performance of approximately 70% in p-type samples and nearly 90% in n-type samples compared to β-FeSi2 prepared from pure Fe and other published studies. The use of cast iron scrap chips to produce β-FeSi2 shows promise as an eco-friendly and cost-effective production process for thermoelectric materials. PMID:28788193

  6. Upgrade Recycling of Cast Iron Scrap Chips towards β-FeSi₂ Thermoelectric Materials.

    Science.gov (United States)

    Laila, Assayidatul; Nanko, Makoto; Takeda, Masatoshi

    2014-09-04

    The upgrade recycling of cast-iron scrap chips towards β-FeSi₂ thermoelectric materials is proposed as an eco-friendly and cost-effective production process. By using scrap waste from the machining process of cast-iron components, the material cost to fabricate β-FeSi₂ is reduced and the industrial waste is recycled. In this study, β-FeSi₂ specimens obtained from cast iron scrap chips were prepared both in the undoped form and doped with Al and Co elements. The maximum figure of merit ( ZT ) indicated a thermoelectric performance of approximately 70% in p-type samples and nearly 90% in n-type samples compared to β-FeSi₂ prepared from pure Fe and other published studies. The use of cast iron scrap chips to produce β-FeSi₂ shows promise as an eco-friendly and cost-effective production process for thermoelectric materials.

  7. IMPROVEMENT OF EFFICIENCY OF GREY CAST IRON MODIFICATION DUE TO INTRODUCTION OF CARBON MODIFIER INTO COMPOSITION

    Directory of Open Access Journals (Sweden)

    G. F. Lovshenko

    2010-01-01

    Full Text Available It is shown that introduction carbon into modifier composition and increase of its dispersion degree due to spatter on high-melting particles or due to mechanical alloying increases modifier efficiency for grey cast iron.

  8. Wearing Quality of Austenitic, Duplex Cast Steel, Gray and Spheroidal Graphite Iron

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2012-04-01

    Full Text Available The current work presents the research results of abrasion wear and adhesive wear at rubbing and liquid friction of new austenitic, austenitic-ferritic (“duplex” cast steel and gray cast iron EN-GJL-250, spheroidal graphite iron EN-GJS-600-3, pearlitic with ledeburitic carbides and spheroidal graphite iron with ledeburitic carbides with a microstructure of the metal matrix: pearlitic, upper bainite, mixture of upper and lower bainite, martensitic with austenite, pearlitic-martensitic-bainitic-ausferritic obtained in the raw state. The wearing quality test was carried out on a specially designed and made bench. Resistance to abrasion wear was tested using sand paper P40. Resistance to adhesive wear was tested in interaction with steel C55 normalized, hardened and sulfonitrided. The liquid friction was obtained using CASTROL oil. It was stated that austenitic cast steel and “duplex” are characterized by a similar value of abrasion wear and adhesive wear at rubbing friction. The smallest decrease in mass was shown by the cast steel in interaction with the sulfonitrided steel C55. Austenitic cast steel and “duplex��� in different combinations of friction pairs have a higher wear quality than gray cast iron EN-GJL- 250 and spheroidal graphite iron EN-GJS-600-3. Austenitic cast steel and “duplex” are characterized by a lower wearing quality than the spheroidal graphite iron with bainitic-martensitic microstructure. In the adhesive wear test using CASTROL oil the tested cast steels and cast irons showed a small mass decrease within the range of 1÷2 mg.

  9. Influence of selected modifiers on crystallization curve of chromium cast iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2009-07-01

    Full Text Available In article was introduced the results of investigations of modified chromium cast iron crystallization process. It the cast iron about composition of basic elements C = 2,8 % and Cr = 18% was modified with five substances (boron carbide, ferrosilicon, ferrocalciumsilicon, ferroniobium and ferroniobium with ferrovanadium. Influence on course of primary and secondary crystallization process was observed. The investigations of crystallization was conducted DTA method in tester DTA - C.

  10. PLASTIC FLOW OF CEMENTITE AND GRAPHITE IMPURITIES AT PROCESSING BY CAST IRON PRESSURE

    Directory of Open Access Journals (Sweden)

    A. I. Pokrovskiy

    2013-01-01

    Full Text Available It is shown that the plastic deformation of cast irons with impurities of fragile phases of cement and graphite is an example of the general case of deformation of heterogeneous materials, in which fragile phase is located inside of the plastic base. It is confirmed that the most important factor is application of the deformation schemes close to uniform compression, what enables to deform plastically the fragile phases in the cast iron structure.

  11. Undercooling, nodule count and carbides in thin walled ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    Ductile cast iron has been cast in plate thicknesses between 2 to 8 mm. The temperature has been measured during the solidification and the graphite nodule count and size distribution together with the type and amount of carbides have been analysed afterwards. Low nodule count gives higher...

  12. Numerical modelling of thin-walled hypereutectic ductile cast iron parts

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Hattel, Jesper Henri; Tiedje, Niels Skat

    2006-01-01

    Solidification of hypereutectic thin-walled ductile cast iron has been modelled in one dimension taking into account the precipitation of off-eutectic austenite dendrites during solidification. The simulations have been compared with casting experiments on plate geometries with plate thicknesses...

  13. Modelling the solidification of ductile cast iron parts with varying wall thicknesses

    DEFF Research Database (Denmark)

    Bjerre, Mathias Karsten; Tiedje, Niels Skat; Thorborg, Jesper

    2015-01-01

    In the present paper modelling the solidification of cast iron parts is considered. Common for previous efforts in this field is that they have mainly considered thin walled to medium thickness castings. Hence, a numerical model combining the solidification model presented by Lesoultet al. [1] wi...

  14. Pearlitic ductile cast iron: damaging micromechanisms at crack tip

    Directory of Open Access Journals (Sweden)

    F. Iacoviello

    2013-07-01

    Full Text Available Ductile cast irons (DCIs are characterized by a wide range of mechanical properties, mainly depending on microstructural factors, as matrix microstructure (characterized by phases volume fraction, grains size and grain distribution, graphite nodules (characterized by size, shape, density and distribution and defects presence (e.g., porosity, inclusions, etc.. Versatility and higher performances at lower cost if compared to steels with analogous performances are the main DCIs advantages. In the last years, the role played by graphite nodules was deeply investigated by means of tensile and fatigue tests, performing scanning electron microscope (SEM observations of specimens lateral surfaces during the tests (“in situ” tests and identifying different damaging micromechanisms.In this work, a pearlitic DCIs fatigue resistance is investigated considering both fatigue crack propagation (by means of Compact Type specimens and according to ASTM E399 standard and overload effects, focusing the interaction between the crack and the investigated DCI microstructure (pearlitic matrix and graphite nodules. On the basis of experimental results, and considering loading conditions and damaging micromechanisms, the applicability of ASTM E399 standard on the characterization of fatigue crack propagation resistance in ferritic DCIs is critically analyzed, mainly focusing the stress intensity factor amplitude role.

  15. Thermomechanical Fatigue of Ductile Cast Iron and Its Life Prediction

    Science.gov (United States)

    Wu, Xijia; Quan, Guangchun; MacNeil, Ryan; Zhang, Zhong; Liu, Xiaoyang; Sloss, Clayton

    2015-06-01

    Thermomechanical fatigue (TMF) behaviors of ductile cast iron (DCI) were investigated under out-of-phase (OP), in-phase (IP), and constrained strain-control conditions with temperature hold in various temperature ranges: 573 K to 1073 K, 723 K to 1073 K, and 433 K to 873 K (300 °C to 800 °C, 450 °C to 800 °C, and 160 °C to 600 °C). The integrated creep-fatigue theory (ICFT) model was incorporated into the finite element method to simulate the hysteresis behavior and predict the TMF life of DCI under those test conditions. With the consideration of four deformation/damage mechanisms: (i) plasticity-induced fatigue, (ii) intergranular embrittlement, (iii) creep, and (iv) oxidation, as revealed from the previous study on low cycle fatigue of the material, the model delineates the contributions of these physical mechanisms in the asymmetrical hysteresis behavior and the damage accumulation process leading to final TMF failure. This study shows that the ICFT model can simulate the stress-strain response and life of DCI under complex TMF loading profiles (OP and IP, and constrained with temperature hold).

  16. 78 FR 68474 - Non-Malleable Cast Iron Pipe Fittings From China; Scheduling of an Expedited Five-Year Review...

    Science.gov (United States)

    2013-11-14

    ... COMMISSION Non-Malleable Cast Iron Pipe Fittings From China; Scheduling of an Expedited Five-Year Review Concerning the Antidumping Duty Order on Non-Malleable Cast Iron Pipe Fittings From China AGENCY: United...)(3)) (the Act) to determine whether revocation of the antidumping duty order on non-malleable cast...

  17. Aluminium and iron air pollution near an iron casting and aluminium foundry in Turin district (Italy).

    Science.gov (United States)

    Polizzi, Salvatore; Ferrara, Mauro; Bugiani, Massimiliano; Barbero, Domenico; Baccolo, Tiziana

    2007-09-01

    This work reports the results of an environmental survey carried out in an industrial area in the Province of Turin: its main aim is to assess the levels of iron and aluminium in the outside air during the period from July to September to assess the influence of industrial activity (a cast-iron and aluminium foundry) which is interrupted during the month of August, on the level of metals present in the air. Conducting the analysis during this period of time made it possible to avoid the confounding effect of pollution due to domestic central heating. The measurements were taken from nine areas at different distances from the foundry in the area and according to the direction of the prevailing winds, as deduced from the historical data. The results of this survey show a statistically significant difference in iron and aluminium levels in the outside air in the geographic areas between the two main periods examined: during August (no foundry activity) v/s July-September (foundry activity). The values recorded are: Aluminium 0.4+/-0.45 microg/m(3) v/s 1.12+/-1.29 microg/m(3) (pIron 0.95+/-0.56 microg/m(3) v/s 1.6+/-1.0 microg/m(3) (piron tended to be higher in the areas farther away from the foundry site in the areas located along the path of the prevailing winds.

  18. Removal of arsenate and arsenite from aqueous solution by waste cast iron.

    Science.gov (United States)

    Choi, Nag-Choul; Kim, Song-Bae; Kim, Soon-Oh; Lee, Jae-Won; Park, Jun-Boum

    2012-01-01

    The removal of As(III) and As(V) from aqueous solution was investigated using waste cast iron, which is a byproduct of the iron casting process in foundries. Two types of waste cast iron were used in the experiment: grind precipitate dust (GPD) and cast iron shot (CIS). The X-ray diffraction analysis indicated the presence of Feo on GPD and CIS. Batch experiments were performed under different concentrations of As(III) and As(V) and at various initial pH levels. Results showed that waste cast iron was effective in the removal of arsenic. The adsorption isotherm study indicated that the Langmuir isotherm was better than the Freundlich isotherm at describing the experimental result. In the adsorption of both As(IH) and As(V), the adsorption capacity of GPD was greater than CIS, mainly due to the fact that GPD had higher surface area and weight percent of Fe than CIS. Results also indicated the removal of As(III) and As(V) by GPD and CIS was influenced by the initial solution pH, generally decreasing with increasing pH from 3.0 to 10.5. In addition, both GPD and CIS were more effective at the removal of As(III) than As(V) under given experimental conditions. This study demonstrates that waste cast iron has potential as a reactive material to treat wastewater and groundwater containing arsenic.

  19. Effects of Casting Size on Microstructure and Mechanical Properties of Spheroidal and Compacted Graphite Cast Irons: Experimental Results and Comparison with International Standards

    Science.gov (United States)

    Ceschini, L.; Morri, Alessandro; Morri, Andrea

    2017-05-01

    The aim of this research was to investigate the effects of casting size (10-210 mm) on the microstructure and mechanical properties of spheroidal (SGI) and compacted (CGI) graphite cast irons. A comparison of the experimental mechanical data with those specified by ISO standards is presented and discussed. The study highlighted that the microstructure and mechanical properties of SGI (also known as ductile or nodular cast iron) are more sensitive to casting size than CGI (also known as vermicular graphite cast irons). In particular, in both types of cast iron, hardness, yield strength and ultimate tensile strength decreased, with increasing casting size, by 27% in SGI and 17% in CGI. Elongation to failure showed, instead, an opposite trend, decreasing from 5 to 3% in CGI, while increasing from 5 to 11% in SGI. These results were related to different microstructures, the ferritic fraction being more sensitive to the casting size in SGI than CGI. Degeneration of spheroidal graphite was observed at casting size above 120 mm. The microstructural similarities between degenerated SGI and CGI suggested the proposal of a unified empirical constitutional law relating the most important microstructural parameters to the ultimate tensile strength. An outstanding result was also the finding that standard specifications underestimated the mechanical properties of both cast irons (in particular SGI) and, moreover, did not take into account their variation with casting size, at thicknesses over 60 mm.

  20. Energy Saving Melting and Revert Reduction Technology: Aging of Graphitic Cast Irons and Machinability

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Von L. [Advanced Technology Inst., Virginia Beach, VA (United States)

    2012-09-19

    The objective of this task was to determine whether ductile iron and compacted graphite iron exhibit age strengthening to a statistically significant extent. Further, this effort identified the mechanism by which gray iron age strengthens and the mechanism by which age-strengthening improves the machinability of gray cast iron. These results were then used to determine whether age strengthening improves the machinability of ductile iron and compacted graphite iron alloys in order to develop a predictive model of alloy factor effects on age strengthening. The results of this work will lead to reduced section sizes, and corresponding weight and energy savings. Improved machinability will reduce scrap and enhance casting marketability. Technical Conclusions: Age strengthening was demonstrated to occur in gray iron ductile iron and compacted graphite iron. Machinability was demonstrated to be improved by age strengthening when free ferrite was present in the microstructure, but not in a fully pearlitic microstructure. Age strengthening only occurs when there is residual nitrogen in solid solution in the Ferrite, whether the ferrite is free ferrite or the ferrite lamellae within pearlite. Age strengthening can be accelerated by Mn at about 0.5% in excess of the Mn/S balance Estimated energy savings over ten years is 13.05 trillion BTU, based primarily on yield improvement and size reduction of castings for equivalent service. Also it is estimated that the heavy truck end use of lighter castings for equivalent service requirement will result in a diesel fuel energy savings of 131 trillion BTU over ten years.

  1. An innovative method for nondestructive analysis of cast iron artifacts at Hopewell Furnace National Historic Site, Pennsylvania

    Science.gov (United States)

    Sloto, Ronald A.; Martin f. Helmke,

    2014-01-01

    For this study, we sampled iron ore, cast iron furnace products, slag, soil, groundwater, streamflow, and streambed sediment. It was important for us to determine which trace metals from the smelted ore were incorporated into the cast iron in order to provide a complete picture of the fate of those metals. It was the only missing piece of information after all other media were sampled. Standard techniques were used to sample and analyze all media except cast iron. Standard techniques require collecting samples in the field, shipping them to a laboratory, and performing a destructive analysis. We needed a nonstandard approach for analysis of the cast iron artifacts.

  2. Shape Accuracy of Iron Precision Castings in Terms of Ceramic Moulds Physical Properties Anisotropy

    Directory of Open Access Journals (Sweden)

    Biernacki R.

    2014-03-01

    Full Text Available While analyzing shape accuracy of ferroalloy precision castings in terms of ceramic moulds physical anisotropy, low-alloy steel castings ("cover" and cast iron ("plate" were included. The basic parameters in addition to the product linear shape accuracy are flatness deviations, especially due to the expanded flat surface which is cast plate. For mentioned castings surface micro-geometry analysis was also carried, favoring surface load capacity tp50 for Rmax = 50%. Surface load capacity tp50 obtained for the cast cover was compared with machined product, and casting plate surface was compared with wear part of the conveyor belt. The results were referred to anisotropy of ceramic moulds physical properties, which was evaluated by studying ceramic moulds samples in computer tomography equipment Metrotom 800

  3. Melting of Grey Cast Iron Based on Steel Scrap Using Silicon Carbide

    Directory of Open Access Journals (Sweden)

    Stojczew A.

    2014-08-01

    Full Text Available The paper presents the issue of synthetic cast iron production in the electric induction furnace exclusively on the steel scrap base. Silicon carbide and synthetic graphite were used as carburizers. The carburizers were introduced with solid charge or added on the liquid metal surface. The chemical analysis of the produced cast iron, the carburization efficiency and microstructure features were presented in the paper. It was stated that ferrosilicon can be replaced by silicon carbide during the synthetic cast iron melting process. However, due to its chemical composition (30% C and 70% Si which causes significant silicon content in iron increase, the carbon deficit can be partly compensated by the carburizer introduction. Moreover it was shown that the best carbon and silicon assimilation rate is obtained where the silicon carbide is being introduced together with solid charge. When it is thrown onto liquid alloy surface the efficiency of the process is almost two times less and the melting process lasts dozen minutes long. The microstructure of the cast iron produced with the silicon carbide shows more bulky graphite flakes than inside the microstructure of cast iron produced on the pig iron base.

  4. Undercooling and nodule count in thin walled ductile iron castings

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2007-01-01

    Casting experiments have been performed with eutectic and hypereutectic castings with plate thick¬nesses from 2 to 8 mm involving both temperature measurements during solidification and micro¬structural examination afterwards. The nodule count was the same for the eutectic and hypereutectic...... castings in the thin plates ( 4.3 mm) while in the 8 mm plate the nodule count was higher in the hypereutectic than in the eutectic castings. The minimum temperature prior to the eutectic recalescence (Tmin) was 15 to 20C lower for the eutectic than the hypereutectic castings. This is due to nucleation...... of graphite nodules which begins at a lover temperature in the eutectic than in the hypereutectic castings The recalescence (Trec) was however also larger for the eutectic casting and in the thin plates the maximum temperature after recalescence (Tmax) was the same in the eutectic and hypereutectic plates...

  5. Undercooling and nodule count in thin walled ductile iron castings

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2007-01-01

    Casting experiments have been performed with eutectic and hypereutectic castings with plate thicknesses from 2 to 8 mm involving both temperature measurements during solidification and microstructural examination afterwards. The nodule count was the same for the eutectic and hypereutectic castings...... in the thin plates (≤4.3 mm) while in the 8 mm plate the nodule count was higher in the hypereutectic than in the eutectic castings. The minimum temperature before the eutectic recalescence (Tmin) was 15 to 20ºC lower for the eutectic than for the hypereutectic castings. This is due to nucleation of graphite...... nodules which begins at a lower temperature in the eutectic than in the hypereutectic castings. The recalescence ∆Trec was however also larger for the eutectic casting and in the thin plates the maximum temperature after recalescence (Tmax) was the same in the eutectic and hypereutectic plates...

  6. Investigation of solidification of thin walled ductile cast iron using temperature measurement

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels

    2005-01-01

    Investigation of solidification of thin walled ductile cast iron can be improved using temperature measurement. This article includes some background of the precautions that have to be taken when measuring temperatures in thin walled castings. The aim is to minimize influence of temperature...... measurement on castings and to get sufficient response time of thermocouples. Investigation of thin wall ductile iron has been performed with temperature measurement in plates with thickness between 2,8 and 8mm. The cooling curves achieved are combined with examination of the microstructure in order to reveal...

  7. THE INFLUENCE OF CHEMICAL COMPOSITION OF HIGH-CHROMIUM CAST IRONS ON THE MACHINABILITY

    Directory of Open Access Journals (Sweden)

    V. V. Netrebko

    2016-02-01

    Full Text Available Purpose. This research is aimed to obtain the regression dependence of the machinability on the chemical composition of pig iron (C, Cr, Mn and Ni in cast state. Methodology. The method of active experiment planning was used to build a mathematical model. Cast irons of composition 1.09…3.91 % С; 11.43…25.57 % Cr; 0.6…5.4 % Mn; 0.19…3.01 % Ni were studied. Cutting tools with plates 10х10 mm out of ВК8 according to State Standard 19051-80 were used for turning. Cutting modes: cutting depth – 0.8 mm, longitudinal feed – 0.15 mm/rot., spindle’s rotation frequency during turning – 200…360 rot./min. Lubricating and cooling liquids were not applied. Evaluation of iron workability was produced by determining the linear tool flank wear per unit length of the cutting path. Findings. Mathematically probabilistic equation of the regression dependence of the cutting tool’s wear on the C, Cr, Mn and Ni content in the machined cast iron were obtained. It was established that with the increase of Cr content in the cast iron to 14.8 % the cutting tool’s wear decreased as a result of formation of carbide eutectic which destroyed the doped ledeburite continuous frame. Further increase of chromium content promoted appearing of chromic carbides with high microhardness which considerably increased the tool’s wear. The conducted research shown that the minimum cutting tool’s wear 0,18 mkm/m was observed during the machining of cast iron containing: 1.09 % C, 14.8 % Cr, 2.3 % Mn and 1.2 % Ni; and the maximum wear is 48,96 mkm/m – when the content was: 3.91 % C, 11.43 % Cr, 5.4 % Mn and 0.19 % Ni. The tool’s wear reached 47.61 mkm/m during the treatment of cast iron containing 3.91 % C, 25.57 % Cr, 5.4 % Mn and 0.19 % Ni. Originality. Mathematically probabilistic model of the dependence of the cutting tool’s wear on the C, Cr, Mn and Ni content in the machined cast iron has been elaborated by the author. Practical value. The model

  8. TO SELECTION OF TECHNOLOGICAL SCHEME OF SOFTENING HEAT TREATMENT FOR HIGH CHROMIUM CAST IRON

    Directory of Open Access Journals (Sweden)

    V. G. Efremenko

    2014-03-01

    Full Text Available Purpose. High chromium cast irons with austenitic matrix have low machinability. The aim of work is search of new energy-saving modes of preliminary softening heat treatment enhancing the machinability of castings by forming an optimum microstructure. Methodology. Metallographic analysis, hardness testing and machinability testing are applied. Findings. It was found out that high temperature annealing with continuous cooling yields to martensite-austenite matrix in cast iron 270Х15Г2Н1MPhT, which abruptly affects the machinability of cast iron. Significant improvement of machinability is achieved by forming of structure "ferrite + granular carbides" and by decline of hardness to 37-39 HRC in the case of two-stage isothermal annealing in the subcritical temperature range or by the use of quenching and tempering (two-step or cyclic. Originality. It was found that the formation of the optimal structure of the matrix and achievement of desired hardness level needed for improving machinability of high chromium cast iron containing 3 % austenite-forming elements, can be obtained: 1 due to pearlite original austenite followed by spherodization eutectoid carbides, and 2 by getting predominantly martensite structure followed by the decay of martensite and carbides coagulation at high-temperature tempering. Practical value. The new energy-saving schemes of softening heat treatment to ensure the growth of machinability of high chromium cast iron, alloyed by higher quantity of austenite forming elements, are proposed.

  9. ASSESSMENT OF RANGES OF POSSIBLE CHANGE OF TEMPORARY RESISTANCE OF CAST IRON WITH LAMELLAR AND FLAKED GRAPHITE ON THEIR HARDNESS

    Directory of Open Access Journals (Sweden)

    S. G. Sandomirskii

    2017-01-01

    Full Text Available The analysis of ranges of possible change of temporary resistance of sB of castings from ductile and gray cast iron is carried out. The analytical description of ranges of change of sВ depending on casting BH hardness is developed. It is shown that the range of change of sВ of pig-iron castings, wider in comparison with steel, with the measured hardness of BH is caused variations of forms and the amount of graphite inclusions at the considered classes of cast iron and influence of thickness of a wall of casting from gray cast iron on dependence of sВ (HB. The result is intended for determination of the guaranteed casting size sВ without her destruction, when there is no information on sВ of check test pieces.

  10. 76 FR 31936 - Non-Malleable Cast Iron Pipe Fittings From the People's Republic of China: Final Results of...

    Science.gov (United States)

    2011-06-02

    ... Secretary, Import Administration regarding the Final Scope Ruling on Black Cast Iron Cast, Green Ductile...-Market Economy Treatment The Department considers the PRC to be a non-market economy (``NME'') country.\\3...

  11. Influence of moulding conditions and mould characteristics on the contraction defects appearance in ductile iron castings

    International Nuclear Information System (INIS)

    Sertucha, J.; Suarez, R.; Legazpi, J.; Gacetabeitia, P.

    2007-01-01

    Shrinkage defects appearance in cast iron has traditionally been related to the solidification processes of the metal and the feedings ability among the different sections of castings. Recent studies have demonstrated that sand moulds properties and their thermal behaviour after pouring step have an important influence on these defects formation too. The influence of the moulding process parameters and the mould characteristics on the contraction defects is analysed in this work using test casting designed specifically for this purpose. Additionally the most important parameters are determined in order to control the manufacturing process and minimise the shrinkage appearance in the castings. (Author) 14 refs

  12. Application of 3-D numerical simulation software SRIFCAST to produce ductile iron castings

    Directory of Open Access Journals (Sweden)

    Junqing WANG

    2005-08-01

    Full Text Available Based on a method using numerical simulation equations and their solution schemes for liquid metal flows and heat transfer during mold filling and the solidification process of casting, 3-D numerical simulation software SRIFCAST was created. This includes enmeshment of casting; velocity and temperature fields calculation; displaying iso-temperature lines; velocity vectors and 3-D temperature fields on a Windows 9x operating system. SRIFCAST was applied to produce sound castings of automobile and diesel engines, and also to connect with microstructure simulation for ductile iron castings.

  13. Structure and properties of gray iron casted in the electromagnetic field

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2009-07-01

    Full Text Available In the national [1] and foreign [2] literature the methods of improving the homogeneity of the structure of castings using forced convection of the solidifying metal in the casting mould or the crystallizer are presented. This article presents the influence of chosen parameters of the rotating electromagnetic filed that is forcing the movement of melted metal in the mould on the morphology of graphite and the abrasive wear of the grey cast iron. The effect of this examination is the obtained modification of the flake graphite divisions morphology and a alteration of the abrasive wear resistance of the castings manufactured this way.

  14. On Degradation of Cast Iron Surface-Protective Paint Coat Joint

    Directory of Open Access Journals (Sweden)

    Tupaj M.

    2016-09-01

    Full Text Available The paper is a presentation of a study on issues concerning degradation of protective paint coat having an adverse impact on aesthetic qualities of thin-walled cast-iron castings fabricated in furan resin sand. Microscopic examination and microanalyses of chemistry indicated that under the coat of paint covering the surface of a thin-walled casting, layers of oxides could be found presence of which can be most probably attributed to careless cleaning of the casting surface before the paint application process, as well as corrosion pits evidencing existence of damp residues under the paint layers contributing to creation of corrosion micro-cells

  15. Temperature measurement during solidification of thin wall ductile cast iron. Part 1: Theory and experiment

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    Temperature measurement using thermocouples (TC’s) influence solidification of the casting, especially in thin wall castings. The problems regarding acquisition of detailed cooling curves from thin walled castings is discussed. Experiments were conducted where custom made TC’s were used to acquire...... cooing curves in thin wall ductile iron castings. The experiments show how TC’s of different design interact with the melt and how TC design and surface quality affect the results of the data acquisition. It is discussed which precautions should be taken to ensure reliable acquisition of cooling curves...

  16. Influence of casting size and graphite nodule refinement on fracture toughness of austempered ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.C.; Hsu, C.H.; Chang, C.C.; Feng, H.P. [Tatung Inst. of Tech., Raipei (Taiwan, Province of China). Dept. of Materials Engineering

    1998-10-01

    Casting size affects the solidification cooling rate and microstructure of casting materials. Graphite nodules existing in the structure of ductile iron are an inherent and inert second phase that cannot be modified in subsequent heat-treatment processing. The matrix and the fineness of the second phase undoubtedly have some impact on the fracture toughness of the as-cast material, as does the subsequent heat treatment, as it alters the microstructure. This research applied austempering heat treatment to ductile iron of different section sizes and graphite nodule finenesses. The influence of these variables on the plane strain fracture toughness (K{sub IC}) of the castings so treated was compared to that of the as-cast state. Metallography, scanning electron microscopy (SEM), and X-ray diffraction analysis were performed to correlate the properties attained to the microstructural observation.

  17. Experimental analysis of flow of ductile cast iron in stream lined gating systems

    DEFF Research Database (Denmark)

    Skov-Hansen, Søren; Green, Nick; Tiedje, Niels Skat

    2008-01-01

    Streamlined gating systems have been developed for production of high integrity ductile cast iron parts. Flow of ductile cast iron in streamlined gating systems was studied in glass fronted sand moulds where flow in the gating system and casting was recorded by a digital video camera. These results...... are compared with real time x-ray recordings of melt flow. Results show that flow patterns are the same using both techniques. The glass fronted moulds give global information on flow in the whole gating system and casting while the x-ray analysis gives detailed information on specific areas. The experiments...... show how the quality of pouring, design of ingates, design of bends and flow over cores influence melt flow and act to determine the quality of the castings....

  18. Numerical modelling of solidification of thin walled hypereutectic ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Hattel, Jesper; Tiedje, Niels

    2006-01-01

    Numerical simulation of solidification of ductile cast iron is normally based on a model where graphite nodules are surrounded by an austenite shell. The two phases are then growing as two concentric spheres governed by diffusion of carbon through the austenite shell. Experiments have however shown...... simulation of thin-walled ductile iron castings. Simulations have been performed with a 1-D numerical solidi¬fication model that includes the precipitation of non-eutectic austenite during the eutectic stage. Results from the simulations have been compared with experimental castings with wall thick...... the presence of austenite dendrites even in hypereutectic castings. In thin-walled castings the presence of austenite dendrites is even more pronounced, which increases the risk of shrinkage porosities. This off-eutectic austenite is therefore an important part that should be taken into account during...

  19. The sort of carburization and the quality of obtained cast iron

    Directory of Open Access Journals (Sweden)

    K. Janerka

    2008-12-01

    Full Text Available In the production of cast iron, the pig iron’s amount in charge material is more and more often limited, and replaced by steel scrap. That extorts the necessity of know-how the carburization and one is looking for carburizers, which ensure obtaining big carbon increment as quickly as possible with the high repeatability and the ones which ensure getting the adequate quality of cast iron. The object of presented research was definition of the influence of charge materials’ sort on the structure, course of solidification, and the effectiveness of process. The cast iron melts, which are presented below, are made only on the basis of steel scrap with portion of graphitoidal, coke and anthracite carburizers, which were added to the charge in solid. In the article one compared the carburizers in respect of their structure, chemical constitution and the effectiveness obtained during the carburization of liquid metal. The melting of cast iron, based on the special pig iron, was carried out as well. The course of melts, chemical constitution of obtained cast iron and its structure were presented. The comparison between quality distribution and the volume fraction of graphite in classes of size for the individual melts were achieved and the TDA curves were inserted.

  20. Thermomechanical processing and mechanical properties of hypereutectoid steels and cast irons

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.; Syn, C.K.; Sherby, O.D. (eds.)

    1998-01-01

    Recent advances in metallurgy of hypereutectoid steels and cast irons show that unique properties, such ultrahigh hardness and strength, and superplasticity, are achievable. This book focuses on the mechanical properties of hypereutectoid steels and cast irons as influenced by thermomechanical processing and microstructure. Some topics covered are: (1) Hot workability of hypereutectoid tool steels; (2) Thermomechanical processing of austempered ductile iron: An overview; (3) Mechanical behavior of ultrahigh strength, ultrahigh carbon steel wire and rod; and (4) Tensile elongation behavior of fine-grained Fe-C alloys at elevated temperatures.

  1. RESEARCH OF INFLUENCE OF LIQUID ALUMINUM ON RESISTANCE OF THE STEEL AND CAST-IRON TOOL

    Directory of Open Access Journals (Sweden)

    S. S. Zhizhchenko

    2013-01-01

    Full Text Available The study of the interaction of steel and cast iron with aluminum was performed by immersion, and isothermal holding. By optical and electron microscopy, the microstructure of the reaction zone was investigated. The partial enthalpy of dissolution of iron, steel and cast iron in liquid aluminum has been investigated by high-temperature calorimetry at 1773 K. X-ray analysis and microhardness measurements was used to study the phase composition of the reaction zone. The thermodynamic descriptions of the system Al–Fe and Al–C–Fe are performed within the CALPHAD-method.

  2. The abrasion of austempered cast iron in laboratory and work conditions

    Directory of Open Access Journals (Sweden)

    Roman Březina

    2005-01-01

    Full Text Available Austempered ductile iron (ADI is nowadays used for machine parts, which used to be made of steel. It is suitable for abrasive conditions and cast irons exhibit sufficient strength and toughness. The paper deals with the possibility of manufacturing machine parts working in soil of austempered ductile iron. The authors find out the influence of heat treatment mode of ADI on wear resistance and compare it with formed steel.

  3. Optimization of Master Alloy Amount and Gating System Design for Ductile Cast Iron Obtain in Lost Foam Process

    Directory of Open Access Journals (Sweden)

    Just P.

    2013-09-01

    Full Text Available The paper presents the optimization of master alloy amount for the high nodular graphite yield (80-90% in cast iron obtain in lost foam process. The influence of the gating system configuration and the shape of the reaction chamber, the degree of spheroidisation cast iron was examined. Research has shown that the, optimal of master alloy amount of 1.5% by mass on casting iron. The degree of spheroidisation is also influenced by the gating system configuration. The best spheroidisation effect was obtained for liquid cast iron was fed into the reaction chamber from the bottom and discharged from the top.

  4. Effect of vibration frequency on microstructure and performance of high chromium cast iron prepared by lost foam casting

    Directory of Open Access Journals (Sweden)

    Wen-qi Zou

    2016-07-01

    Full Text Available In the present research, high chromium cast irons (HCCIs were prepared using the lost foam casting (LFC process. To improve the wear resistance of the high chromium cast irons (HCCIs, mechanical vibration was employed during the solidification of the HCCIs. The effects of vibration frequency on the microstructure and performance of the HCCIs under as-cast, as-quenched and as-tempered conditions were investigated. The results indicated that the microstructures of the LFC-produced HCCIs were refined due to the introduction of mechanical vibration, and the hardness was improved compared to that of the alloy without vibration. However, only a slight improvement in hardness was found in spite of the increase of vibration frequency. In contrast, the impact toughness of the as-tempered HCCIs increased with an increase in the vibration frequency. In addition, the wear resistance of the HCCIs was improved as a result of the introduction of vibration and increased with an increase in the vibration frequency.

  5. Laser dressing process of porous cast-iron bonded diamond grinding wheels for machining ceramics

    International Nuclear Information System (INIS)

    Jodan, K.; Funakoshi, H.; Matsumaru, K.; Ishizaki, K.

    2000-01-01

    Dressing using Yttrium Aluminum Garnet-Second Harmonic Generation (YAG-SHG) laser for porous cast-iron bonded diamond grinding wheels is a unique method. Diamond as an abrasive grain shows transparency with the laser, while cast-iron employed as a bonding and bridging material for the present diamond grinding wheels absorbs it. Hence, it is possible for laser to remove cast-iron selectively with a minimal damage on diamond so that dressing can be optimized. In this investigation a newly proposed dressing process using YAG-SHG laser with the wavelength of 532 nm was conducted upon porous cast-iron bonded diamond grinding wheels with fine grains. It revealed that application of laser for dressing evaporates cast-iron and the amount of evaporation increases with laser flux densities, resulting in an increment of protrusion heights. The wheel dressed with laser allows about six times of removal volume rate on ZrO 2 at the maximum rather than the same wheel mechanically dressed. It also achieves 90 times less specific grinding energy. With the increase of laser flux density, the removal volume of ground work pieces can be increased or the specific grinding energy decreased. The laser dressed wheels can also achieve the same surface roughness on ground surfaces as mechanically dressed wheels. Copyright (2000) AD-TECH - International Foundation for the Advancement of Technology Ltd

  6. Strength evaluation of flake and spheroidal graphite cast irons using diametral compression test

    Directory of Open Access Journals (Sweden)

    Sudheer Reddy

    2017-01-01

    Full Text Available The diametral compression test also known as the Brazilian test is an old and unique method of measuring tensile strength of brittle materials owing to simple specimen geometry test conditions and quickness of testing. However, its practice in measuring the strength of the metals is quite limited. This work therefore attempts to apply diametral compression test with specimens of thickness to diameter ratio equal to 0.2, 0.4 and 0.6 in determining the tensile and compressive strengths of Flake Graphite (FG and Spheroidal Graphite (SG types of cast iron. Cracks developed in the FG and SG specimens indicate that the failures were caused by tensile and shear stress respectively. In case of FG cast iron specimens at lower t/d ratio, the stress state becomes biaxial and influence of tensile stress was found to be higher than the compressive stress. Whereas the biaxial stress condition violates in SG cast iron specimens. The present work concludes the suitability of diametral compression test at any t/d ratio of FG cast iron specimens and only at lower t/d ratios of SG cast iron specimens.

  7. [Influencing factors and reaction mechanism of chloroacetic acid reduction by cast iron].

    Science.gov (United States)

    Tang, Shun; Yang, Hong-Wei; Wang, Xiao-Mao; Xie, Yue-Feng

    2014-03-01

    The chloroacetic acids are ubiquitous present as a class of trace chlorinated organic pollutants in surface and drinking water. Most of chloroacetic acids are known or suspected carcinogens and, when at high concentrations, are of great concern to human health. In order to economically remove chloroacetic acids, the degradation of chloroacetic acids by cast iron was investigated. Moreover, the effect of iron style, pretreatment process, shocking mode and dissolved oxygen on chloroacetic acids reduced by cast iron was discussed. Compared to iron source and acid pretreatment, mass transfer was more important to chloroacetic acid removal. Dichloroacetic acid (DCAA) and monochloroacetic acid (MCAA) were the main products of anoxic and oxic degradation of trichloroacetic acid (TCAA) by cast iron during the researched reaction time, respectively. With longtitudinal shock, the reaction kinetics of chloroaectic acid removal by cast iron conformed well to the pseudo first order reaction. The anoxic reaction constants of TCAA, DCAA and MCAA were 0.46 h(-1), 0.03 h(-1) and 0, and their oxic constants were 1.24 h(-1), 0.79 h(-1) and 0.28 h(-1), respectively. The removal mechanisms of chloroacetic acids were different under various oxygen concentrations, including sequential hydrogenolysis for anoxic reaction and sequential hydrogenolysis and direct transformation possible for oxic reaction, respectively.

  8. The mutual co-regulation of extracellular polymeric substances and iron ions in biocorrosion of cast iron pipes.

    Science.gov (United States)

    Jin, Juntao; Guan, Yuntao

    2014-10-01

    New insights into the biocorrosion process may be gained through understanding of the interaction between extracellular polymeric substances (EPS) and iron. Herein, the effect of iron ions on the formation of biofilms and production of EPS was investigated. Additionally, the impact of EPS on the corrosion of cast iron coupons was explored. The results showed that a moderate concentration of iron ions (0.06 mg/L) promoted both biofilm formation and EPS production. The presence of EPS accelerated corrosion during the initial stage, while inhibited corrosion at the later stage. The functional groups of EPS acted as electron shuttles to enable the binding of iron ions. Binding of iron ions with EPS led to anodic dissolution and promoted corrosion, while corrosion was later inhibited through oxygen reduction and availability of phosphorus from EPS. The presence of EPS also led to changes in crystalline phases of corrosion products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Mapping of mechanical properties of cast iron melts using non-destructive structuroscopy

    Directory of Open Access Journals (Sweden)

    J. Dočekal

    2008-07-01

    Full Text Available The contribution is focused on mapping of mechanical properties using methods of non-destructive structuroscopy of cast irons, which are a result of research at TU of Liberec and Institute of Physics of ASCR. Investigated samples become from melts of FOCAM s.r.o Olomouc Foundry shop. It compares data of mechanical properties obtained using ultrasound method with data from magnetic spot method and MAT. These are interpreted by mathematic models applicable in practice. In the following it concerns to derivation of loading tensile curve method, which can be used to obtain yield and fatigue strength limits even for cast irons with flake graphite. In spite of promising results reported by literature the experiments are bothered with error. This method can be applied to structure checking both before casting and at vendor inspection of castings.

  10. Numerical modeling of coupled heat transfer and phase transformation for solidification of the gray cast iron

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Hosseinzadeh, Azin

    2013-01-01

    In the present study the numerical model in 2D is used to study the solidification bahavior of the gray cast iron. The conventional heat transfer is coupled with the proposed micro-model to predict the amount of different phases, i.e. total austenite (c) phase, graphite (G) and cementite (C......), in gray cast iron based on the cooling rate (R). The results of phase amount are evaluated to find the proper correlation in respect to cooling rate. The semi-empirical formulas are proposed to find a good correlation between mechanical property (hardness Brinell) and different phase amounts...... and the cooling rate. Results show that the hardness of the gray cast iron decreases as the amount of graphite phase increases. It also increases by increased amount of the cementite and the cooling rate. These formulas were developed to correlate the phase fractions to hardness. Results are compared whit...

  11. Ultrasonic testing of large blocks for prestressed cast iron pressure vessels

    International Nuclear Information System (INIS)

    Stelling, H.A.

    1979-01-01

    Ultrasonic tests were made on plate specimen and large blocks of perlit cast iron with lamellar graphite. Aims of the investigations were the control of material porperties, the flaw detection and flaw classification. The material properties were classified by sound velocity and attenuation measurements. Flaw detection and flaw size estimation methods were modified with regard to the acoustic properties, the microstructure and the reflectivity of typical flaws in castings. Special localisation and flaw size estimation techniques are discussed. (orig.)

  12. The effect of pearlite on the hydrogen-induced ductility loss in ductile cast irons

    Science.gov (United States)

    Matsuo, T.

    2017-05-01

    Hydrogen energy systems, such as a hydrogen fuel cell vehicle and a hydrogen station, are rapidly developing to solve global environmental problems and resource problems. The available structural materials used for hydrogen equipments have been limited to only a few relatively expensive metallic materials that are tolerant for hydrogen embrittlement. Therefore, for the realization of a hydrogen society, it is important to expand the range of materials available for hydrogen equipment and thereby to enable the use of inexpensive common materials. Therefore, ductile cast iron was, in this study, focused as a structural material that could contribute to cost reduction of hydrogen equipment, because it is a low-cost material having good mechanical property comparable to carbon steels in addition to good castability and machinability. The strength and ductility of common ductile cast irons with a ferritic-pearlitic matrix can be controlled by the volume fraction of pearlitic phase. In the case of carbon steels, the susceptibility to hydrogen embrittlement increases with increase in the pearlite fraction. Toward the development of ferritic-pearlitic ductile cast iron with reasonable strength for hydrogen equipment, it is necessary to figure out the effect of pearlite on the hydrogen embrittlement of this cast iron. In this study, the tensile tests were conducted using hydrogen-precharged specimens of three kinds of ferritic-pearlitic ductile cast irons, JIS-FCD400, JIS-FCD450 and JIS-FCD700. Based on the results, the role of pearlite in characterizing the hydrogen embrittlement of ductile cast iron was discussed.

  13. Investigations of Ferritic Nodular Cast Iron Containing About 5-6% Aluminium

    Directory of Open Access Journals (Sweden)

    Soiński M.S.

    2016-12-01

    Full Text Available The work presents results of investigations concerning the production of cast iron containing about 5-6% aluminium, with the ferritic matrix in the as-cast state and nodular or vermicular graphite precipitates. The examined cast iron came from six melts produced under the laboratory conditions. It contained aluminium in the amount of 5.15% to 6.02% (carbon in the amount of 2.41% to 2.87%, silicon in the amount of 4.50% to 5.30%, and manganese in the amount of 0.12% to 0.14%. After its treatment with cerium mixture and graphitization with ferrosilicon (75% Si, only nodular and vermicular graphite precipitates were achieved in the examined cast iron. Moreover, it is possible to achieve the alloy of pure ferritic matrix, even after the spheroidizing treatment, when both the aluminium and the silicon occur in cast iron in amounts of about 5.2÷5.3%.

  14. Grey cast iron as construction material of bridges from the 18th and 19th century

    Directory of Open Access Journals (Sweden)

    J. Rabiega

    2011-04-01

    Full Text Available Many bridges and railroad viaducts, which have been operated at the western and southern regions of Poland, were erected at the end ofthe 18th or beginning of the 19th century. In recent years they undergo overhauls and renovations requiring familiarity with the construction materials they have been made of. It is necessary for estimation of their load capacity (possible reinforcements and determining their suitability for further utilisation. Among the materials in the old bridges the puddled steels and cast irons predominate. Aim of the work is identification and documentation of microstructure and selected properties of the cast irons used for production of parts for the bridge in Łażany, the Old Mieszczański Bridge in Wrocław, the hanging bridge in Ozimek, as well as the columnar piers of the railroad viaduct in Wrocław. Using the methods of light microscopy and scanning electron microscopy, as well as the results of hardness measurements and chemical analysis, it has been shown that the objects have been built of grey cast iron with flake graphite having the ferritic-pearlitic or pearlitic matrix. The diversification of their chemical analysis resulting from the type, size and geometry of the cast parts was indicated.The tested materials fulfil requirements of the contemporary standards related to grey cast irons of the EN-GJL-100 and EN-GJL-150grades.

  15. Effect of Feeder Configuration on the Microstructure of Ductile Cast Iron

    DEFF Research Database (Denmark)

    Vedel-Smith, Nikolaj Kjelgaard; Tiedje, Niels Skat

    2014-01-01

    iron castings. The goal is to enable metallurgists and foundry engineers to more directly target mushy zone development to prolong the possibility to feed through this section. Keeping smaller section open for an extended period will make it possible to use fewer or smaller feeders, with reduced energy......Feeding and microstructure of a test casting rigged with different feeder combinations was studied. Castings were examined and classified by soundness and microstructure. Subsequently the casting macro- and microstructure was analyzed to study how differences in solidification and segregation...... influence the soundness of different sections of the castings. Moreover, the microstructural changes due to variations in thermal gradients are classified, and the variations in the mushy zone described. The paper discusses how solidification and segregation influence porosity and microstructure of ductile...

  16. Influence of Al and Ti on microstructure and quality of compacted graphite iron castings

    Directory of Open Access Journals (Sweden)

    T. Elbel

    2009-10-01

    Full Text Available The contribution is aimed at study of influence of chemical composition of compacted graphite cast iron (CGI on microstructure and surface quality of castings, particularly on the occurrence of pinholes. It has been found out that aluminium and titanium in CGI effect the formation of this defect in castings. Aluminium content in the range of 0,02 up to 0,1 % is critical. Increased occurrence of pinholes was also determined with Ti contents above 0,1%. On the same set of experimental castings it has been found out that increased contents of those elements on the other hand support the crystallization of compacted graphite. But the utilization of that method for control of CGI microstructure is limited with a possibility of formation of surface defects in castings – pinholes, but also coldshuts and shrinkage cavities.

  17. Effect of Nanoadditives on the Wear Behavior of Spheroidal Graphite Cast Irons

    Directory of Open Access Journals (Sweden)

    J. Kaleicheva

    2017-09-01

    Full Text Available The tribological characteristics of spheroidal graphite cast irons with and without nanosized additives are investigated. The tests are performed as in cast iron condition as well after austempering. The spheroidal graphite irons are undergone to austempering in the bainite field, including heating at 900 °С for an hour, after that isothermal retention at 280 °С, 2 h and at 380 °C, 2 h. The lower bainitic and upper bainitic structures are formed during the process. Nanosized additives of titanium carbonitride and titanium nitride TiCN+TiN influence on the graphite phase characteristics and on the microstructure of the cast and austempered spheroidal graphite irons. The changes in the micro structure the irons with nanoadditives lead to an abrasive wear resistance increase. The formation of the strain induced martensite from the retained austenite in the friction contact area during wear is determined in the austempered irons. This is the reason for the wear resistance increase of the irons. The experimental testing of the wear is carried out by cinematic scheme tapper-discunder friction on the fixed abrasive. The microstructure of the patterns is observed by optical and quantitative metallography, X-Ray analysis, SEM and EDX analysis. The hardness testing is performed by Brinnel and Vickers methods.

  18. Influence of electromagnetic field parameters on the morphology of graphite in grey cast iron

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2009-01-01

    Full Text Available One way to improve the unification of the casting structure may be the application of forced convection of liquid metal during thecrystallization in the form or continuous casting mould. This paper presents the results describing the influence of selected parameters of rotating electromagnetic field enforcing the movement of liquid metal in the form on the morphology of graphite in grey cast iron. The results were fragmented graphite flakes in conditions of regulating the rate of cooling in the range of temperature TZAL

  19. Long term stability analysis of cast iron shaft linings after Coal Mine closure and flooding

    International Nuclear Information System (INIS)

    Hadj-Hassen, F.; Bienvenu, Y.; Noirel, J.F.; Metz, M.

    2005-01-01

    This paper presents the results of a study conducted to analyse the long term stability of the cast iron shaft lining after coal mine closure and flooding. The attention is mainly focused on the behaviour during the critical phase of flooding as well as the phase corresponding to the disappearance of the water pressure and the stabilization of the environment. This pluri-disciplinary study was conducted by a team combining specialists in rock mechanics who identified the main risks and the conditions of stability of the lining and specialists in metallurgy who studied the composition of the cast iron and its corrosion behaviour after exposure to mine water. (authors)

  20. New Possibilities of Shaping the Surface Properties in Austempered Ductile Iron Castings

    Directory of Open Access Journals (Sweden)

    Myszka D.

    2013-03-01

    Full Text Available The paper presents recent developments concerning the formation of surface layer in austempered ductile iron castings. It was found that the traditional methods used to change the properties of the surface layer, i.e. the effect of protective atmosphere during austenitising or shot peening, are not fully satisfactory to meet the demands of commercial applications. Therefore, new ways to shape the surface layer and the surface properties of austempered ductile iron castings are searched for, to mention only detonation spraying, carbonitriding, CVD methods, etc.

  1. New Possibilities of Shaping the Surface Properties in Austempered Ductile Iron Castings

    Directory of Open Access Journals (Sweden)

    D. Myszka

    2013-01-01

    Full Text Available The paper presents recent developments concerning the formation of surface layer in austempered ductile iron castings. It was found thatthe traditional methods used to change the properties of the surface layer, i.e. the effect of protective atmosphere during austenitising or shot peening, are not fully satisfactory to meet the demands of commercial applications. Therefore, new ways to shape the surface layer and the surface properties of austempered ductile iron castings are searched for, to mention only detonation spraying, carbonitriding, CVD methods, etc.

  2. Effect of boron carbide on primary crystallization of chromium cast iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2008-04-01

    Full Text Available In the paper results of the influence of boron carbide (B4C as inoculant of abrasion-resisting chromium cast iron (about 2,8% carbon and 18% chromium on primary crystallization researches are presented. Boron carbide dispersion was introduced at the bottom of pouring ladle before tap of liquid cast iron. In this investigations were used three different quantities of inoculant in amounts 0,1%; 0,2% and 0,3% with relation to bath weight. It has been demonstrated that such small additions of boron carbide change primary crystallization parameters, particularly temperature characteristic of process, their time and kinetics.

  3. Numerical modeling and experimental validation of microstructure in gray cast iron

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Davami, Parviz; Varahram, Naser

    2012-01-01

    To predict the amount of different phases in gray cast iron by a finite difference model (FDM) on the basis of cooling rate (R), the volume fractions of total γ phase, graphite, and cementite were calculated. The results of phase composition were evaluated to find a proper correlation with cooling...... rate. More trials were carried out to find a good correlation between the hardness and phase composition. New proposed formulas show that the hardness of gray cast iron decreases as the amount of graphite phase increases, and increases as the amount of cementite increases. These formulas are developed...

  4. Corrosion resistance study of grey cast iron implanted with C, N, Cr and Cu ions

    Science.gov (United States)

    Usanova, O. Yu; Maryushin, L. A.; Kazantsev, A. Yu; Dyukova, A. I.

    2017-10-01

    This article deals with the corrosion resistance of gray cast iron implanted with C, N, Cr and Cu ions in sodium chloride solution and sulfuric acid solution. The potentiodynamic research was conducted in atmosphere, simulating corrosion conditions: in 3% sodium chloride solution and in 0,1 N sulfuric acid solution. Potentiodynamic curves were obtained and surfaces of samples were observed. The research proves that the implantation of ions with N and Cr leads to an increase in the corrosion resistance of cast iron in sodium chloride solution, and the implantation of ions with N and Cu leads to increased corrosion resistance in sulfuric acid solution.

  5. Assessment of ductile iron casting process with the use of the DRSA method

    Directory of Open Access Journals (Sweden)

    Kujawińska A.

    2016-01-01

    Full Text Available The paper introduces a concept of assessment of a ductile iron casting process with use of the rule-based approach, known as DRSA (dominance-based rough set approach. The research was conducted in a large Polish foundry. The collected data concern the chemical composition and mechanical properties of the used ductile cast iron. In the paper, a methodology of creating a rule-based moulding model for the tensile strength was proposed. The quality, sensitivity and accuracy of the model extracted from the data were examined. The studies proved its usefulness in the industrial practice and for aiding of the decision making process.

  6. Induction hardening treatment and simulation for a grey cast iron used in engine cylinder liners

    Science.gov (United States)

    Castellanos-Leal, E. L.; Miranda, D. A.; Coy, A. E.; Barrero, J. G.; González, J. A.; Vesga Rueda, O. P.

    2017-01-01

    In this research, a technical study of induction hardening in a grey cast iron used in engine cylinder liners manufactured by LAVCO Ltda., a Colombian foundry company, was carried out. Metallurgical parameters such as austenitization temperature, cooling rate, and quenching severity were determined. These factors are exclusively dependent on chemical composition and initial microstructure of grey cast iron. Simulations of induction heating through finite elements method were performed and, the most appropriate experimental conditions to achieve the critical transformation temperature was evaluated to reach a proper surface hardening on the piece. Preliminary results revealed an excellent approximation between simulation and heating test performed with a full bridge inverter voltage adapted with local technology.

  7. The Optimization of Costs and the Carbon Content in Cast Iron

    Directory of Open Access Journals (Sweden)

    M. Grzybowska

    2007-07-01

    Full Text Available In the article was introduced the conceptions of the optimization of the cast-iron batch near the use the mathematical programmer MATLAB. The results of industrial tests were showed with the use of the batch from sheet metals. It was showed on the possibility of formulating the tasks of optimizing with the use of the programming linear. It was showed on more effective utilization the power of productive foundries and minimalizing losses coming into being in the result of the inappropriate selection of the raw material composition. The conduct of optimizing the intervention of the fusion of cast iron was talked over.

  8. Draft ASME code case on ductile cast iron for transport packaging

    Energy Technology Data Exchange (ETDEWEB)

    Saegusa, T. [Central Research Inst. of Electric Power Industry, Abiko (Japan); Arai, T. [Central Research Inst. of Electric Power Industry, Yokosuka (Japan); Hirose, M. [Nuclear Fuel Transport Co., Ltd., Tokyo (Japan); Kobayashi, T. [Nippon Chuzo, Kawasaki (Japan); Tezuka, Y. [Mitsubishi Materials Co., Tokyo (Japan); Urabe, N. [Kokan Keisoku K. K., Kawasaki (Japan); Hueggenberg, R. [GNB, Essen (Germany)

    2004-07-01

    The current Rules for Construction of ''Containment Systems for Storage and Transport Packagings of Spent Nuclear Fuel and High Level Radioactive Material and Waste'' of Division 3 in Section III of ASME Code (2001 Edition) does not include ductile cast iron in its list of materials permitted for use. The Rules specify required fracture toughness values of ferritic steel material for nominal wall thickness 5/8 to 12 inches (16 to 305 mm). New rule for ductile cast iron for transport packaging of which wall thickness is greater than 12 inches (305mm) is required.

  9. Effects of microbial redox cycling of iron on cast iron pipe corrosion in drinking water distribution systems.

    Science.gov (United States)

    Wang, Haibo; Hu, Chun; Zhang, Lili; Li, Xiaoxiao; Zhang, Yu; Yang, Min

    2014-11-15

    Bacterial characteristics in corrosion products and their effect on the formation of dense corrosion scales on cast iron coupons were studied in drinking water, with sterile water acting as a reference. The corrosion process and corrosion scales were characterized by electrochemical and physico-chemical measurements. The results indicated that the corrosion was more rapidly inhibited and iron release was lower due to formation of more dense protective corrosion scales in drinking water than in sterile water. The microbial community and denitrifying functional genes were analyzed by pyrosequencing and quantitative polymerase chain reactions (qPCR), respectively. Principal component analysis (PCA) showed that the bacteria in corrosion products played an important role in the corrosion process in drinking water. Nitrate-reducing bacteria (NRB) Acidovorax and Hydrogenophaga enhanced iron corrosion before 6 days. After 20 days, the dominant bacteria became NRB Dechloromonas (40.08%) with the protective corrosion layer formation. The Dechloromonas exhibited the stronger corrosion inhibition by inducing the redox cycling of iron, to enhance the precipitation of iron oxides and formation of Fe3O4. Subsequently, other minor bacteria appeared in the corrosion scales, including iron-respiring bacteria and Rhizobium which captured iron by the produced siderophores, having a weaker corrosion-inhibition effect. Therefore, the microbially-driven redox cycling of iron with associated microbial capture of iron caused more compact corrosion scales formation and lower iron release. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The thermal fatigue resistance of vermicular cast iron coupling with H13 steel units by cast-in process

    International Nuclear Information System (INIS)

    Wang, Chengtao; Zhou, Hong; Lin, Peng Yu; Sun, Na; Guo, Qingchun; Zhang, Peng; Yu, Jiaxiang; Liu, Yan; Wang, Mingxing; Ren, Luquan

    2010-01-01

    This paper focuses on improving the thermal fatigue resistance on the surface of vermicular cast iron coupling with inserted H13 steel blocks that had different cross sections, by cast-in processing. The microstructure of bionic units was examined by scanning electron microscope. Micro-hardness and thermal fatigue resistance of bionic samples with varied cross sections and spacings were investigated, respectively. Results show that a marked metallurgical bonding zone was produced at interface between the inserted H13 steel block and the parent material - a unique feature of the bionic structure in the vermicular cast iron samples. The micro-hardness of the bionic samples has been significantly improved. Thermal resistance of the samples with the circular cross section was the highest and the bionics sample with spacing of 2 mm spacing had a much longer thermal fatigue life, thus resulting in the improvement for the thermal fatigue life of the bionic samples, due to the efficient preclusion for the generation and propagation of crack at the interface of H13 block and the matrix.

  11. Application of complex inoculants in improving the process-ability of grey cast iron for cylinder blocks

    Directory of Open Access Journals (Sweden)

    LIU Wei-ming

    2006-05-01

    Full Text Available Effect of several complex inoculants on mechanical properties, process-ability and sensibility of grey cast iron used in cylinder block were investigated. The experimental results showed that the grey cast iron treated with 60%FeSi75+40%RE complex inoculants has tensile strength consistently at about 295 MPa along with good hardness and improved metallurgy quality. While the grey cast iron inoculated with 20%FeSi75+80%Sr compound inoculants has the best process-ability, the lowest cross-section sensibility and the least microhardness difference. The wear amount of the drill increases correspondingly with the increase of the microhardness difference of matrix structure, indicating the great effect of homogeneousness of matrix structure in the grey cast iron on the machinability of the grey cast iron.

  12. The Influence of the Shape of the Reaction Chamber on Spheroidisation of Cast Iron Produced in the Lost Foam Casting Process with use of the Inmold Method

    Directory of Open Access Journals (Sweden)

    P. Just

    2012-04-01

    Full Text Available The article presents the results of the research on the influence of the shape of reaction chamber on spheroidisation of cast iron produced with use of the inmold method. The amounts of nodular graphite precipitates in castings produced with the use of different reaction chambers have been compared.

  13. CLUSTER MECHANISM OF NUCLEUS FORMATION AND CONFORMITIES OF PRIMARY CRYSTALLIZATION OF CAST ALLOYS (AT THE EXAMPLE OF HIGH-CHROMIUM CAST IRONS

    Directory of Open Access Journals (Sweden)

    N. I. Bestuzhev

    2005-01-01

    Full Text Available The theoretical concepts on crystallization of cast alloys on the basis of cluster mechanism of nucleation and growth of initial crystals are given, the technological methods of receiving of fine-grained structure of high-chromium hypercutectic cast irons are outlined.

  14. Tribological behaviour of plasma nitrided cast iron D6510 and cast steel S0050A under the inclined-impact sliding condition with extremely high contact pressure

    Science.gov (United States)

    Zhao, C.; Zhang, J.; Nie, X.

    2017-05-01

    Plasma nitriding as a surface modification was applied on two substrate materials: cast iron D6510 and cast steel S0050A. After measurement of the friction coefficients of the treated samples using a pin-on-disc tribotester, an inclined impact-sliding wear tester was utilized to investigate their tribological behaviour under tilting contact with extremely high contact pressure. While numerous surface fatigue cracks, severe chipping, and peeling of the compound layer were observed for the treated cast steel sample, the treated cast iron sample had far fewer surface fatigue cracks without chipping or peeling of the compound at the same test condition. The governing mechanisms of the treated cast iron sample’s superior resistance to surface fatigue failure were revealed by studying the cross-sectional hardness and nitrogen concentration profile. Energy-dispersive X-ray spectroscopy (EDS) analysis indicated that the treated cast iron sample had a smaller nitrogen concentration gradient, which led to a smaller hardness gradient as measured. The results suggest that a smaller hardness gradient between the compound layer and the diffusion zone and a thicker hardened case was able to improve the wear resistance and surface fatigue cracking resistance against high contact loads. Moreover, the smaller friction coefficient of the treated cast iron sample could also be beneficial for improving the wear resistance.

  15. Influencing factors on as-cast and heat treated 400-18 ductile iron grade characteristics

    Directory of Open Access Journals (Sweden)

    I. Riposan

    2007-11-01

    Full Text Available As-cast and heat-treated 400-18 ductile iron (DI grade was obtained in different foundry conditions, as metallic charge, Mg-treatment alloy and inoculation. It was found that the Pearlitic Influence Factor (Px and Antinodulizing Complex Factor (K1 have an important influence on property of DI, depending on the Mn and P level, the metallurgical quality of iron melt, rare earth (RE and inoculation. It was also found that the influence of Mn is depended on the phosphorus and residual elements level in ductile iron. Less than 0.03%P and 0.2%Mn and Px2.0 determines presence of pearlite in as-cast structure, while ferrite structure is obtained after a short annealing heat treatment. Lower level of phosphorus (P1.2. Si has a significant influence on the mechanical properties of heat treated ductile irons: an important decreasing of elongation level and a moderate increasing of yield and tensile strength and their ratio in 150-170 HB typical hardness field. A typical final chemical composition for as-cast 400-18 ductile iron could include 3.5%-3.7%C, 2.4%-2.5%Si, max.0.18%Mn, max.0.025%P, max.0.01%S, 0.04%-0.05%Mgres. for Px<1.5 and K1<1.1. High purity pig iron, RE-bearing FeSiMg and powerful inoculant are also recommended.

  16. Effect of fully and semi austempering treatment on the fatigue properties of ductile cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Gun; Lim, Bok Kyu; Hwang, Jung Gak [Kangwon National Univ., Chuncheon (Korea, Republic of); Kim, Dong Youl [Samcheok National Univ., Samcheok (Korea, Republic of)

    2005-03-01

    Single phase bainite structure which is obtained by the conventional austempering treatment reduces the ductility of ductile cast iron. Because of the reduction of ductility it is possible to worsen the fatigue properties. Therefore, semi austempered ductile iron which is treated from {alpha}+{gamma} is prepared to investigate the static strength and fatigue properties in comparison with fully austempered ductile iron (is treated from {gamma}). In spite of semi austempered ductile iron shows the 86% increase of ductility. Also, semi austempered ductile iron shows the higher fatigue limit and lower fatigue crack growth rate as compared with fully austempered ductile iron. By the fractographical analysis, it is revealed that the ferrite obtained by semi austempering process brings about the plastic deformation (ductile striation) of crack tip and gives the prior path of crack propagation. The relatively low crack growth rate in semi austempered specimen is caused by above fractographical reasons.

  17. Effect of Bi on graphite morphology and mechanical properties of heavy section ductile cast iron

    Directory of Open Access Journals (Sweden)

    Song Liang

    2014-03-01

    Full Text Available To improve the mechanical properties of heavy section ductile cast iron, bismuth (Bi was introduced into the iron. Five castings with different Bi content from 0 to 0.014 wt.% were prepared; and four positions in the casting from the edge to the center, with different solidification cooling rates, were chosen for microstructure observation and mechanical properties test. The effect of the Bi content on the graphite morphology and mechanical properties of heavy section ductile cast iron were investigated. Results show that the tensile strength, elongation and impact toughness at different positions in the five castings decrease with a decrease in cooling rate. With an increase in Bi content, the graphite morphology and the mechanical properties at the same position are improved, and the improvement of mechanical properties is obvious when the Bi content is no higher than 0.011wt.%. But when the Bi content is further increased to 0.014wt.%, the improvement of mechanical properties is not obvious due to the increase of chunky graphite number and the aggregation of chunky graphite. With an increase in Bi content, the tensile fracture mechanism is changed from brittle to mixture ductile-brittle fracture.

  18. COMPARATIVE RESEARCHES OF THE HIGH-STRENGTH CAST IRON MICROSTRUCTURE OF AFTER LASER AND PLASMA PROCESSING

    Directory of Open Access Journals (Sweden)

    V. I. Gurinovich

    2012-01-01

    Full Text Available The comparative researches of microstructure of highstrength cast iron after laser and plasma processing are carried out. It is shown that the peculiarity of plasma processing is formation of deeper layers with hardness 950010000 MPa. At laser processing the depth of the strengthened layers is less (about 0,5-0,8 mm, and their hardness is higher (to 11000 MPa.

  19. Nondestructive inspection of ductile cast iron by measurement of minor magnetic hysteresis loops

    Czech Academy of Sciences Publication Activity Database

    Vértesy, G.; Uchimoto, T.; Takagi, T.; Tomáš, Ivan

    2010-01-01

    Roč. 659, č. 9 (2010), 355-360 ISSN 0255-5476 R&D Projects: GA ČR GA101/09/1323; GA AV ČR 1QS100100508 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic NDE * magnetic adaptive testing * cast iron * magnetic hysteresis Subject RIV: BM - Solid Matter Physics ; Magnetism

  20. Mapping of mechanical properties of cast iron melts using non-destructive structuroscopy

    Czech Academy of Sciences Publication Activity Database

    Dočekal, J.; Skrbek, B.; Tomáš, Ivan

    2008-01-01

    Roč. 8, č. 2 (2008), s. 155-161 ISSN 1897-3310 R&D Projects: GA AV ČR 1QS100100508 Institutional research plan: CEZ:AV0Z10100520 Keywords : cast iron * nondestructive testing * mechanicasl properties Subject RIV: BM - Solid Matter Physics ; Magnetism

  1. Three-dimensional local residual stress and orientation gradients near graphite nodules in ductile cast iron

    DEFF Research Database (Denmark)

    Zhang, Yubin; Andriollo, Tito; Fæster, Søren

    2016-01-01

    A synchrotron technique, differential aperture X-ray microscopy (DAXM), has been applied to characterize the microstructure and analyze the local mesoscale residual elastic strain fields around graphite nodules embedded in ferrite matrix grains in ductile cast iron. Compressive residual elastic...

  2. Solute segregation to ferrite grain boundaries in nodular cast iron: experiment and prediction

    Czech Academy of Sciences Publication Activity Database

    Lejček, Pavel; Konečná, R.; Janovec, J.

    2008-01-01

    Roč. 40, 3-4 (2008), s. 503-506 ISSN 0142-2421 R&D Projects: GA ČR(CZ) GA202/06/0004 Institutional research plan: CEZ:AV0Z10100521 Keywords : nodular cast iron * concentration heterogeneity * impurity segregation * AES * fracture Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.272, year: 2008

  3. FIELD DEMONSTRATION OF EMERGING PIPE WALL INTEGRITY ASSESSMENT TECHNOLOGIES FOR LARGE CAST IRON WATER MAINS

    Science.gov (United States)

    The U.S. Environmental Protection Agency sponsored a large-scale field demonstration of innovative leak detection/location and condition assessment technologies on a 76-year old, 2,500-ft long, cement-lined, 24-in. cast iron water main in Louisville, KY from July through Septembe...

  4. Field Demonstration of Emerging Pipe Wall Integrity Assessment Technologies for Large Cast Iron Water Mains - Paper

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) sponsored a large-scale field demonstration of innovative leak detection/location and condition assessment technologies on a 76-year old, 2,000-ft long, cement-lined, 24-in. cast-iron water main in Louisville, KY from July through Se...

  5. Formation of Titanium Carbide in the Surface Layer of Cavityless-Cast Iron-Carbon Alloys

    Science.gov (United States)

    Ovcharenko, P. G.; Leshchev, A. Yu.; Makhneva, T. M.

    2018-01-01

    Special features of formation of titanium carbide in the surface layer of castings of iron-carbon alloys obtained with the use of investment patterns and "Ti - C" and "FeTi - C" alloying compositions are considered. The phase composition, the structure, and the hardness of the alloyed layers are determined.

  6. Corrosion Behavior of Cast Iron in Freely Aerated Stagnant Arabian Gulf Seawater

    Science.gov (United States)

    Sherif, El-Sayed M.; Abdo, Hany S.; Almajid, Abdulhakim A.

    2015-01-01

    In this work, the results obtained from studying the corrosion of cast iron in freely aerated stagnant Arabian Gulf seawater (AGS) at room temperature were reported. The study was carried out using weight-loss (WL), cyclic potentiodynamic polarization (CPP), open-circuit potential (OCP), and electrochemical impedance spectroscopy (EIS) measurements and complemented by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) investigations. WL experiments between two and 10 days’ immersion in the test electrolyte indicated that the weight-loss the cast iron increases with increasing the time of immersion. CPP measurements after 1 h and 24 h exposure period showed that the increase of time decreases the corrosion via decreasing the anodic and cathodic currents, as well as decreasing the corrosion current and corrosion rate and increasing the polarization resistance of the cast iron. EIS data confirmed the ones obtained by WL and CPP that the increase of immersion time decreases the corrosion of cast iron by increasing its polarization resistance.

  7. Changes Found on Run-In and Scuffed Surfaces of Steel Chrome Plate, and Cast Iron

    Science.gov (United States)

    Good, J. N.; Godfrey, Douglas

    1947-01-01

    A study was made of run-in and scuffed steel, chrome-plate, and cast-iron surfaces. X-ray and electron diffraction techniques, micro-hardness determinations, and microscopy were used. Surface changes varied and were found to include three classes: chemical reaction, hardening, and crystallite-size alteration. The principal chemical reactions were oxidation and carburization.

  8. In situ observations of graphite formation during solidification of cast iron

    DEFF Research Database (Denmark)

    Bjerre, Mathias Karsten

    , the solidification of cast iron is studied with focus on formation and growth of spheroidal graphite. To this end, an experiment is conducted at the Diamond Light Source synchrotron facility in Harwell, UK: Employing an environmental cell devel-oped at the Manchester X-ray Imaging Facility at the University...

  9. Further fields of application for prestressed cast iron pressure vessels (PCIV)

    International Nuclear Information System (INIS)

    Guelicher, L.; Schilling, F.E.

    1977-01-01

    The redundancy of the prestressing system of prestressed structures as well as the clear separation of sealing and load-carrying functions of prestressed cast iron pressure vessels offer substantial advantages over conventional welded steel pressure vessels. Because of the temperature resistance of cast iron up to 400 0 C it is possible to build prestressed pressure vessels commercially as hot-working structures. The compressive strength of cast iron, which is 25 times as high as that of concrete allows for a very compact design of the PCIV. Further specific properties of the PCIV like pre-fabrication of the vessel in the production plant - made possible by a structure assembled from segments - short assembly periods at the construction site etc., may open more fields of application. - PCIV as pressurized storage tanks for the emergency shut down system in nuclear power stations. - PCIV as high pressure vessel for the chemical industry. - PCIV as energy storage. - PCIV for light water reactors. - PCIV as burst protection. It is concluded that the application of prestressed cast iron promises to be successful where either structures with large volumes and high pressures and/or temperatures are required or where aspects of safety allow for efficient use of prestressed structures. (Auth.)

  10. Upgrade Recycling of Cast Iron Scrap Chips towards β-FeSi2 Thermoelectric Materials

    Directory of Open Access Journals (Sweden)

    Assayidatul Laila

    2014-09-01

    Full Text Available The upgrade recycling of cast-iron scrap chips towards β-FeSi2 thermoelectric materials is proposed as an eco-friendly and cost-effective production process. By using scrap waste from the machining process of cast-iron components, the material cost to fabricate β-FeSi2 is reduced and the industrial waste is recycled. In this study, β-FeSi2 specimens obtained from cast iron scrap chips were prepared both in the undoped form and doped with Al and Co elements. The maximum figure of merit (ZT indicated a thermoelectric performance of approximately 70% in p-type samples and nearly 90% in n-type samples compared to β-FeSi2 prepared from pure Fe and other published studies. The use of cast iron scrap chips to produce β-FeSi2 shows promise as an eco-friendly and cost-effective production process for thermoelectric materials.

  11. Technique Incorporating Cooling & Contraction / Expansion Analysis to Illustrate Shrinkage Tendency in Cast Irons

    Science.gov (United States)

    Stan, S.; Chisamera, M.; Riposan, I.; Neacsu, L.; Cojocaru, A. M.; Stan, I.

    2017-06-01

    With the more widespread adoption of thermal analysis testing, thermal analysis data have become an indicator of cast iron quality. The cooling curve and its first derivative display patterns that can be used to predict the characteristics of a cast iron. An experimental device was developed with a technique to simultaneously evaluate cooling curves and expansion or contraction of cast metals during solidification. Its application is illustrated with results on shrinkage tendency of ductile iron treated with FeSiMgRECa master alloy and inoculated with FeSi based alloys, as affected by mould rigidity (green sand and resin sand moulds). Undercooling at the end of solidification relative to the metastable (carbidic) equilibrium temperature and the expansion within the solidification sequence appear to have a strong influence on the susceptibility to macro - and micro - shrinkage in ductile iron castings. Green sand moulds, as less rigid moulds, encourage the formation of contraction defects, not only because of high initial expansion values, but also because of a higher cooling rate during solidification, and consequently, increased undercooling below the metastable equilibrium temperature up to the end of solidification.

  12. The influence of austenitization temperature on the anizothermal eutectoid transformation of spheroidal cast iron

    Directory of Open Access Journals (Sweden)

    T. Szykowny

    2010-07-01

    Full Text Available In the work one can find the research of anizothermal eutectoid transformation of unalloyed austenitized spheroidal cast iron in thetemperature 875 or 1000oC. By means of the matallographic method one prepered TTT diagrams. On the basis of the quantitativematallographic analysis the influence of austenitization temperature on the mechanism and kinetics of the eutectoid transformation wasinterpreted.

  13. Synthesis of nanoparticles of vanadium carbide in the ferrite of nodular cast iron

    CERN Document Server

    Fras, E; Guzik, E; Lopez, H

    2005-01-01

    The synthesis method of nanoparticles of vanadium carbide in nodular cast iron is presented. After introduction of this method, the nanoparticles with 10-70 nm of diameter was obtained in the ferrite. The diffraction investigations confirmed that these particles are vanadium carbides of type V/sub 3/C/sub 4/.

  14. Synchrotron measurements of local microstructure and residual strains in ductile cast iron

    DEFF Research Database (Denmark)

    Zhang, Yubin; Andriollo, Tito; Fæster, Søren

    2017-01-01

    The local microstructure and distribution of thermally induced residual strains in ferrite matrix grains around an individual spherical graphite nodule in ductile cast iron (DCI) were measured using a synchrotron X-ray micro-diffraction technique. It is found that the matrix grains are deformed, ...

  15. Microstructures and formation mechanism of hypoeutectic white cast iron by isothermal electromagnetic rheocast process

    Directory of Open Access Journals (Sweden)

    Zhang Wanning

    2010-05-01

    Full Text Available An investigation was made on the evolution of microstructures of hypoeutectic white cast iron slurry containing 2.5wt.%C and 1.8wt.%Si produced by rheocasting in which the solidifying alloy was vigorously agitated by electromagnetic stirrer during isothermal cooling processes. The results indicated that under the proper agitating temperatures and speeds applied, the dendrite structures in white cast iron slurry were gradually evolved into spherical structures during a certain agitating time. It also revealed that the bent dendrites were formed by either convection force or by the growth of the dendrites themselves in the bending direction; then, as they were in solidifying, they were gradually being alternated into separated particles and into more spherical structures at the end of the isothermal cooling process. Especially, the dendrites were granulated as the bending process proceeding, which suggested that they were caused by unwanted elements such as sulfur and phosphor usually contained in engineering cast iron. Convective flow of the melt caused corrosion on the dendritic segments where they were weaker in strength and lower in melting temperature because of higher concentration of sulfur or phosphor. And the granulation process for such dendrites formed in the melt became possible under the condition. Certainly, dendrite fragments are another factors considerable to function for spherical particles formation. A new mechanism, regarding to the rheocast structure formation of white cast iron, was suggested based on the structural evolution observed in the study.

  16. Thermal distortion of disc-shaped ductile iron castings in vertically parted moulds

    DEFF Research Database (Denmark)

    Vedel-Smith, Nikolaj Kjelgaard; Rasmussen, Jakob; Tiedje, Niels Skat

    2015-01-01

    A disc-shaped casting with an inner boss and an outer rim, separated by a thin walled section, was examined. This measurable deformation varied with the feeding modulus. The influence of alloy composition, particularly Si content, was examined with a pearlitic ductile iron (EN-GJS-500-7) and a fu...

  17. The assessment of fire safety of cast iron structures in historical buildings: Theory and practice

    NARCIS (Netherlands)

    Twilt, L.; Hunen, M. van

    2000-01-01

    The assessment of structural fire safety of cast iron structures in historical buildings is difficult because the available information on the fire behaviour is limited, whilst the fire design assumptions (if any) often are not well docu-mented. A complicating factor with regard to protective

  18. [Effect of biofilm on the corrosion and fouling of cast iron pipe for water supply].

    Science.gov (United States)

    Teng, Fei; Guan, Yun-Tao; Li, Sha-Sha; Zhu, Wan-Peng

    2009-02-15

    The crystalline phase and the element composition in the scales on cast iron pipe for drinking water was identified with XRD and XPS respectively to investigate the effect of biofilm existence on the corrosion and fouling of cast iron pipe. The total iron concentration in the water phase was measured simultaneously. The results showed that on 0-7 d the total iron concentration was higher in the water phase of the group with biofilm growth, but on 15-30 d it was higher in the water phase of the control without biofilm growth. The major peak of XRD patterns for the scales with biofilm growth was characterized as Fe oxide, while for the scales in the control it was always characterized as CaCO3. As presented by XPS atomic ratio, the Ca atomic percentage in the scales with biofilm growth was lower than that in the scales in the control, which might be contributed to the Ca2+ absorption by extracellular polymeric substances or Ca2+ consumption by microorganism growth. In comparison with that in the scales in the control, the iron atomic percentage in the scales with biofilm growth was higher on 7 d, while lower after 7 d. It can be concluded that on 0-7 d the existence of biofilm could promote the corrosion of cast iron pipe while inhibit corrosion after 7 d. The variance of major peak of XRD pattern and XPS atomic ratio indicated that biofilm had important effect on the configuration and composition of the scales of cast iron pipe. The corrosion inhibition of biofilm thus provided a new pathway to control the corrosion of metal pipes in drinking water distribution system.

  19. Three-body abrasive wear behaviour of metastable spheroidal carbide cast irons with different chromium contents

    International Nuclear Information System (INIS)

    Efremenko, Vasily; Pastukhova, Tatiana; Chabak, Yuliia; Efremenko, Alexey; Shimizu, Kazumichi; Kusumoto, Kenta; Brykov, Michail

    2018-01-01

    The effect of heat treatment and chromium contents (up to 9.1 wt.%) on the wear resistance of spheroidal carbide cast iron (9.5 wt.% V) was studied using optical and scanning electron microscopy, X-ray diffractometry, dilatometry and three-body abrasive testing. It was found that quenching from 760 C and 920 C improved the alloys' wear resistance compared to the as-cast state due to the formation of metastable austenite transforming into martensite under abrasion. The wear characteristics of alloys studied are 1.6 - 2.3 times higher than that of reference cast iron (12 wt.% V) having stable austenitic matrix. Chromium addition decreases surface damage due to the formation of M_7C_3 carbides, while it reduces wear resistance owing to austenite stabilization to abrasion-induced martensite transformation. The superposition of these factors results in decreasing the alloys' wear behaviour with chromium content increase.

  20. Shrinkages in heavy-sized cast components of nodular cast iron – NDT and fatigue

    Directory of Open Access Journals (Sweden)

    Bleicher Christoph

    2014-06-01

    Full Text Available Material defects like shrinkages, dross, pores and chunky graphite are likely to occur in thick-walled castings and are a challenge for the foundries and their customers. These defects are mostly detected with handheld ultrasonic testing (UT or X-ray analysis. Within a research project done at the Fraunhofer Institute for Structural Durability and System Reliability LBF, the fatigue of Dross, shrinkages and chunky graphite in thick-walled cast material GGG-40 was estimated based on X-ray and fatigue tests on bending specimens. High fatigue reductions were received for the different material imperfections. Based on these impressions a further research project was executed at the Fraunhofer LBF to get an estimation of the informational value of UT in relation to fatigue of shrinkages in thick-walled castings of the material EN-GJS-400-18U-LT, EN-GJS-450-18 and EN-GJS-700-2. With the help of X-ray analysis and the UT technique Sampling Phased Array (SPA information about geometry and density were derived for a numerical analysis of shrinkages in thick-walled castings concerning fatigue. The following text summarizes the fatigue results achieved in the two research projects with the help of the X-ray and UT analysis.

  1. Characteristics of ADI Ductile Cast Iron with Single Addition of 1.56% Ni

    Directory of Open Access Journals (Sweden)

    Mrzygłód B.

    2017-12-01

    Full Text Available The results of examinations of microstructure and an analysis of its impact on selected mechanical properties of austempered ductile iron (ADI were presented in the paper. The ADI was produced from the ductile iron containing 1.56% Ni only alloying addition. The effect of the austempering time and temperature on the microstructure and mechanical properties of the examined cast iron was considered. Constant conditions of austenitizing were assumed and six variants of the austempering treatment were adopted. The studyof mechanical properties included a static tensile test, Charpy impact strength test and Brinellhardness measurement.

  2. Graphite nodule count and size distribution in thin-walled ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    Graphite nodule count and size distribution have been analysed in thin walled ductile cast iron. The 2D nodule counts have been converted into 3D nodule count by using Finite Difference Method (FDM). Particles having a diameter smaller than 5 µm should be neglected in the nodule count...... as these are inclusions and micro porosities that do not influence the solidification morphology. If there are many small graphite nodules as in thin walled castings only 3D nodule count calculated by FDM will give reliable results. 2D nodule count and 3D nodule count calculated by simple equations will give too low...... results. The 3D size distribution showed presence of primary graphite nodules in hypereutectic castings. In thin plates the nodule count is similar in eutectic and hypereutectic plates. In thicker plates the hypereutectic casting has the highest nodule count....

  3. Casting and stress-strain simulations of a cast ductile iron component using microstructure based mechanical behavior

    International Nuclear Information System (INIS)

    Olofsson, Jakob; Svensson, Ingvar L

    2012-01-01

    The industrial demand for increased component performance with concurrent reductions in component weight, development times and verifications using physical prototypes drives the need to use the full potential of casting and Finite Element Method (FEM) simulations to correctly predict the mechanical behavior of cast components in service. The mechanical behavior of the component is determined by the casting process, and factors as component geometry and casting process parameters are known to affect solidification and microstructure formation throughout the component and cause local variations in mechanical behavior as well as residual stresses. Though residual stresses are known to be an important factor in the mechanical behavior of the component, the importance of local mechanical behavior is not well established and the material is typically considered homogeneous throughout the component. This paper deals with the influence of solidification and solid state transformation on microstructure formation and the effect of local microstructure variations on the mechanical behavior of the cast component in service. The current work aims to investigate the coupling between simulation of solidification, microstructure and local variations in mechanical behavior and stress-strain simulation. This is done by performing several simulations of a ductile iron component using a recently developed simulation strategy, a closed chain of simulations for cast components, able to predict and describe the local variations in not only elastic but also plastic behavior throughout the component by using microstructural parameters determined by simulations of microstructural evolution in the component during the casting process. In addition the residual stresses are considered. The results show that the FEM simulation results are significantly affected by including microstructure based mechanical behavior. When the applied load is low and the component is subjected to stress levels

  4. Machinability of clean thin-wall gray and ductile iron castings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bates, C.E.; Littleton, H.E.; Eleftheriou, E.; Griffin, R.D.; Dwyer, Z.B.; DelSorbo, C.; Sprague, J.

    1997-02-01

    First phase was to develop a laboratory technique for evaluating the machinability of gray and ductile iron; longer term goal is to learn how to modify the foundry process to produce castings meeting all specified mechanical properties while providing improved machining behavior. Microcarbides present in the irons were found to dominate the machinability of iron. Pearlitic irons with acceptable machinability contain 8.9 to 10.5 wt% microcarbides. The weight fraction microcarbides in the iron is influenced by carbide forming element concentrations, presence of elements that retard carbon diffusion, and cooling rate from the eutectic through the eutectoid temperature range. Tool wear rate increased at higher surface machining speeds and fraction microcarbides; all irons containing above 11.5% microcarbides had poor machinability. Graphite size, shape, distribution, etc. had a lesser effect on machinability. Reducing the addition of a foundry grade Ca and Al bearing 75% FeSi inoculant from 0.5 to 0.2% increased the tool life 100%. Inoculation test castings were also poured in a class 40 gray iron; laboratory analysis is currently underway. Exploratory studies were conducted to determine if tool force could be used to predict tool life: torque and feed forces were found to correlate with machinability.

  5. A study on the effects of artifacts on fatigue limit of ductile cast iron with ferritic structure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Hak [Yeungnam Univ., Gyeongsan (Korea, Republic of); Kim, Min Gun [Kangwon National Univ., Chuncheon (Korea, Republic of)

    2000-10-01

    In this study, fatigue tests were performed to examine the effects of micro drill hole on fatigue limit of as cast and Austempered Ductile cast Iron (ADI) using the rotary bending fatigue tester. As results, micro drill holes (diameter{<=}0.4mm) did not influence the fatigue limit of ADI, compared to annealed ductile cast iron; the critical defect size of crack initiation, in ADI was larger than as cast. If the {radical}areas of micro drill hole and graphite nodule in ADI are comparable, crack initiates at the graphite nodule. When the ruggedness develops through austempering treatment process, microstructure on crack initiation at micro drill hole is tougher than that of as cast ductile cast iron.

  6. Physicochemical studies of glucose, gellan gum, and hydroxypropyl cellulose--inhibition of cast iron corrosion.

    Science.gov (United States)

    Rajeswari, Velayutham; Kesavan, Devarayan; Gopiraman, Mayakrishnan; Viswanathamurthi, Periasamy

    2013-06-05

    Glucose, gellan gum, and hydroxypropyl cellulose were studied against the acid corrosion of cast iron by means of weight loss, potentiodynamic polarization, and AC impedance spectroscopy techniques. The inhibition efficiency was found to increase with increasing concentration of the inhibitors. The effect of immersion time and temperature were also studied. The addition of potassium iodide to the corrosion-inhibition system showed both antagonism and synergism toward inhibition efficiency. Polarization studies revealed the mixed-type inhibiting nature of the carbohydrates. The adsorption of inhibitors on the cast iron surface obeys Langmuir adsorption isotherm model, both in presence and absence of KI. Physical interaction between the inhibitor molecules and the iron surface was suggested by the thermochemical parameters, rather than chemical interaction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. The anaerobic corrosion of carbon steel and cast iron in artificial groundwaters

    International Nuclear Information System (INIS)

    Smart, N.R.; Blackwood, D.J.; Werme, L.

    2001-07-01

    In Sweden, high level radioactive waste will be disposed of in a canister with a copper outer and a cast iron or carbon steel inner. If the iron insert comes into contact with anoxic geological water, anaerobic corrosion leading to the generation of hydrogen will occur. This paper presents a study of the anaerobic corrosion of carbon steel and cast iron in artificial Swedish granitic groundwaters. Electrochemical methods and gas collection techniques were used to assess the mechanisms and rates of corrosion and the associated hydrogen gas production over a range of conditions. The corrosion rate is high initially but is anodically limited by the slow formation of a duplex magnetite film. The effects of key environmental parameters such as temperature and ionic strength on the anaerobic corrosion rate are discussed

  8. Development of a Cast Iron Fatigue Properties Database for use with Modern Design Methods

    Energy Technology Data Exchange (ETDEWEB)

    DeLa' O, James, D.; Gundlach, Richard, B.; Tartaglia, John, M.

    2003-09-18

    A reliable and comprehensive database of design properties for cast iron is key to full and efficient utilization of this versatile family of high production-volume engineering materials. A database of strain-life fatigue properties and supporting data for a wide range of structural cast irons representing industry standard quality was developed in this program. The database primarily covers ASTM/SAE standard structural grades of ADI, CGI, ductile iron and gray iron as well as an austempered gray iron. Twenty-two carefully chosen materials provided by commercial foundries were tested and fifteen additional datasets were contributed by private industry. The test materials are principally distinguished on the basis of grade designation; most grades were tested in a 25 mm section size and in a single material condition common for the particular grade. Selected grades were tested in multiple sections-sizes and/or material conditions to delineate the properties associated with a range of materials for the given grade. The cyclic properties are presented in terms of the conventional strain-life formalism (e.g., SAE J1099). Additionally, cyclic properties for gray iron and CGI are presented in terms of the Downing Model, which was specifically developed to treat the unique stress-strain response associated with gray iron (and to a lesser extent with CGI). The test materials were fully characterized in terms of alloy composition, microstructure and monotonic properties. The CDROM database presents the data in various levels of detail including property summaries for each material, detailed data analyses for each specimen and raw monotonic and cyclic stress-strain data. The CDROM database has been published by the American Foundry Society (AFS) as an AFS Research Publication entitled ''Development of a Cast Iron Fatigue Properties Database for Use in Modern Design Methods'' (ISDN 0-87433-267-2).

  9. Influence of Cast Iron Structure on the Glassmold Equipment Operational Defects

    Directory of Open Access Journals (Sweden)

    I. O. Leushin

    2015-01-01

    Full Text Available The growing demand for glass packaging contributes to the increase in production capacity of glass-container plants. Their equipment (cast iron glass-forming sets operates in continuous mode under complex cyclic thermal loads, which lead to the formation of operational defects on the working surfaces of details: graphite falling, cracks, oxidation, etc. Particular influence on the formation of these defects renders the microstructure of the material at the time of installation of details on the line.The article identifies the causes for formation of operational defects, formulates the ways to remedy them and prevent their occurrence.The authors studied details made from grey cast iron with flake and spherical forms of graphite. It is found that in the process of exploitation of the material is greatly reducing its hardness, strength, resistance to oxidation through of graphitization processes, chemical interaction of glass and iron, shock loads working edges. It is proved that the choice of initial microstructure of cast iron (the metal base, the graphite form, the presence of structural-free cementite exercises a determining influence on the durability of the mold tooling. The article proposes differential (layered arrangement of the graphite phase of cast iron in the alloy matrix (ferrite. This arrangement of high-carbon phase can simultaneously increase the thermal and oxidation resistance of the material. The formation of a layered structure of iron is produced by the intensification of the processes of alloying, modifying and directional freezing the melt.These data can be used to select the material of details by manufacturers glass-molds tooling.

  10. FEATURES OF CHROMIUM DOPING OF WEAR-RESISTANT CAST IRON

    Directory of Open Access Journals (Sweden)

    V. V. Netrebko

    2013-01-01

    Full Text Available The aim of this work analysis of the influence of chromium on the process of carbide formation, changes in chemical composition of the metal substrate in the areas adjacent to the carbides and at the hardness of iron while economy nickel and manganesealloying.

  11. Microstructure, Tensile Strength and Probabilistic Fatigue Life Evaluation of Gray Cast Iron

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Yong Hyeon; Han, Seung-Wook; Choi, Nak-Sam [Hanyang Univ., Seoul (Korea, Republic of)

    2017-08-15

    High-grade gray cast iron (HCI350) was prepared by adding Cr, Mo and Cu to the gray cast iron (GC300). Their microstructure, mechanical properties and fatigue strength were studied. Cast iron was made from round bar and plate-type castings, and was cut and polished to measure the percentage of each microstructure. The size of flake graphite decreased due to additives, while the structure of high density pearlite increased in volume percentage improving the tensile strength and fatigue strength. Based on the fatigue life data obtained from the fatigue test results, the probability - stress - life (P-S-N) curve was calculated using the 2-parameter Weibull distribution to which the maximum likelihood method was applied. The P-S-N curve showed that the fatigue strength of HCI350 was significantly improved and the dispersion of life data was lower than that of GC300. However, the fatigue life according to fatigue stress alleviation increased further. Data for reliability life design was presented by quantitatively showing the allowable stress value for the required life cycle number using the calculated P-S-N curve.

  12. Effect of alloying elements on solidification of primary austenite in Ni-Mn-Cu cast iron

    Directory of Open Access Journals (Sweden)

    A. Janus

    2011-04-01

    Full Text Available Within the research, determined were direction and intensity of alloying elements influence on solidification way (directional orvolumetric of primary austenite dendrites in hypoeutectic austenitic cast iron Ni-Mn-Cu. 50 cast shafts dia. 20 mm were analysed.Chemical composition of the alloy was as follows: 1.7 to 3.3 % C, 1.4 to 3.1 % Si, 2.8 to 9.9 % Ni, 0.4 to 7.7 % Mn, 0 to 4.6 % Cu, 0.14 to0.16 % P and 0.03 to 0.04 % S. The discriminant analysis revealed that carbon influences solidification of primary austenite dendrites most intensively. It clearly increases the tendency to volumetric solidification. Influence of the other elements is much weaker. This means that the solidification way of primary austenite dendrites in hypoeutectic austenitic cast iron Ni-Mn-Cu does not differ from that in an unalloyed cast iron.

  13. INFLUENCE OF ANNEALING ON HARDNESS OF Cr-Mn-Ni CAST IRONS

    Directory of Open Access Journals (Sweden)

    V. V. Netrebko

    2015-01-01

    Full Text Available The necessary level of material’s hardness is determined by the exploitation conditions and presence of technological operations during manufacturing of articles. Mechanical edge cutting machining of wear resistant materials is impeded because of their high hardness. It is recommended to apply annealing in order to decrease hardness and improve machinability. The purpose of the work consisted in obtaining of regression dependences of cast iron’s macrohardness on its chemical content after annealing at 730 °С. With the use of mathematical experimental design the regression dependences of cast iron’s macrohardness and structural components’ microhardness on С, Cr, Mn, Ni content have been established. The minimal hardness of 27,6 HRC after annealing at 730 °С is obtained in the cast iron containing: 3,9% С; 11,4% Cr; 0,6% Mn; 0,2% Ni. The maximal hardness of 70,4 HRC is obtained when the content is as follows: 1,1% С; 25,6% Cr; 5,4% Mn; 3,0% Ni. Annealing at 730 °С decreases the cast irons’ hardness containing the minimal amount of Cr, Mn and Ni. Annealing at 730 °С is recommended for cast irons alloyed by Mn and Ni for increasing of hardness.

  14. 3D Quantitative Analysis of Graphite Morphology in Ductile Cast Iron by X-ray Microtomography

    Science.gov (United States)

    Yin, Yajun; Tu, Zhixin; Zhou, Jianxin; Zhang, Dongqiao; Wang, Min; Guo, Zhao; Liu, Changchang; Chen, Xiang

    2017-08-01

    In this article, X-ray microtomography and color metallographic techniques have been used to perform three-dimensional quantitative characterization of graphite nodule morphology in a step-shaped ductile cast iron casting. Statistical analyses of the graphite nodule count, diameter, sphericity, and spatial distribution have been processed for three samples in detail. The results reveal that graphite nodules in ductile cast iron can be categorized into two categories. The first types are nodules located in eutectic cells (NIECs), and the other one refers to nodules located between the eutectic cells (NBECs). The NIECs possess a larger average diameter but smaller sphericity compared with the NBECs, and the sphericity decreases along with the increasing of diameter. The increasing casting thickness results in an increasing count and percentage of NBECs. In addition, most nodules are NIECs in thin walls instead of NBECs in thick walls. Nonuniform spatial distributions of graphite nodules caused by the existence of NBECs have been found to become more obvious along with the increase of cast thickness.

  15. Effect of alloying elements on solidification of primary austenite in Ni-Mn-Cu cast iron

    OpenAIRE

    A. Janus; A. Kurzawa

    2011-01-01

    Within the research, determined were direction and intensity of alloying elements influence on solidification way (directional orvolumetric) of primary austenite dendrites in hypoeutectic austenitic cast iron Ni-Mn-Cu. 50 cast shafts dia. 20 mm were analysed.Chemical composition of the alloy was as follows: 1.7 to 3.3 % C, 1.4 to 3.1 % Si, 2.8 to 9.9 % Ni, 0.4 to 7.7 % Mn, 0 to 4.6 % Cu, 0.14 to0.16 % P and 0.03 to 0.04 % S. The discriminant analysis revealed that carbon influences solidifica...

  16. The structure and mechanical properties of pearlitic-ferritic vermicular cast iron

    Directory of Open Access Journals (Sweden)

    E. Guzik

    2012-01-01

    Full Text Available The results of studies on the use of magnesium alloy in modern Tundish + Cored Wire injection method for production of vermicular graphite cast irons were described. The injection of Mg Cored Wire length is a treatment method which can be used to process iron melted in an electric induction furnace. This paper describes the results of using a high-magnesium ferrosilicon alloy in cored wire for the production of vermicular graphite cast irons at the; Tundish + Cored Wire to be injected methods (PE for pearlitic-ferritic matrix GJV with about 25 %ferrite content. The results of calculations and experiments have indicated the length of the Cored Wire to be injected basing on the initial sulfur content and weight of the treated melt. The paper presents a microstructure matrix and vermicular graphite in standard sample and different walled castings. The results of numerous trials have shown that the magnesium Tundish + PE Method process can produce high quality vermicular graphite irons under the specific industrial conditions of the above mentioned foundries.

  17. High-Temperature Low-Cycle Fatigue Property of Heat-Resistant Ductile-Cast Irons

    Science.gov (United States)

    Kim, Yoon-Jun; Jang, Ho; Oh, Yong-Jun

    2009-09-01

    This study examined the high-temperature degradation behavior of two types of heat-resistant Si-Mo ductile cast iron (Fe-3.4C-3.7Si-0.4Mo and Fe-3.1C-4.5Si-1.0Mo) with particular attention paid to the mechanical properties and overall oxidation resistance. Tension and low-cycle fatigue properties were examined at 600 °C and 800 °C. The mechanical tests and metallographic and fractographic analyses showed that cast iron containing higher Si and Mo contents had a higher tensile strength and longer fatigue life at both temperatures than cast iron with lower levels due to the phase transformations of pearlite and carbide. The Coffin-Manson type equation was used to assess the fatigue mechanism suggesting that the higher Si-Mo alloy was stronger but less ductile than the lower Si-Mo alloy at 600 °C. However, similar properties for both alloys were observed at 800 °C because of softening and oxidation effects. Analysis of the isothermal oxidation behavior at those temperatures showed that mixed Fe2SiO4 layers were formed and the resulting scaling kinetics was much faster for low Si-Mo containing iron. With increasing temperature, subsurface degradation such as decarburization, voids, and cracks played a significant role in the overall oxidation resistance.

  18. Melioidosis and idiopathic pulmonary hemosiderosis: a cast-iron case.

    Science.gov (United States)

    Gerhardy, Benjamin; Simpson, Graham

    2013-12-01

    Melioidosis is an infection with clinical importance in northern Australia due to the high associated mortality despite appropriate therapy. This report presents a case of acute pulmonary melioidosis on a background remarkable for the absence of typical risk factors for infection, but the presence of a high iron pulmonary microenvironment consequent to idiopathic pulmonary hemosiderosis. In light of recent genetic analysis of Burkholderia pseudomallei, we postulate that the patient inadvertently provided a high-substrate environment for the iron-scavenging ability of B. pseudomallei's siderophore associated virulence factors, giving her a unique major risk factor for infection. This highlights the importance of considering individual patient factors in addition to population-wide risk factors in the differential diagnosis of a serious illness, and the value of genetic analysis of clinically significant pathogens.

  19. Effects Of 0.25 % Mo (Molybdenum Which Is Contained In The Ductile Cast Iron On Mechanical Properties Of Austempered Ductile Iron (ADI.

    Directory of Open Access Journals (Sweden)

    Nukman Nukman

    2010-10-01

    Full Text Available The aim of this research is to investigate the effects of 0.25 % Mo (Molybdenum which is contained in the ductile cast iron on mechanical properties of Austempered Ductile Iron (ADI. The various temperatures and the holding times are used in the heat treatment processes. Using a given 0.25 % Mo in the ductile iron, ADI's alloyed developes a higher ultimate tensile stress value and decreases the elongation if we compare with the as cast (non alloy ductile iron. The higher impact energy value obtained at 9000 C austenization and 375o C austempering temperatures during 60 minutes holding times. The structure changes into ausferrit.

  20. DEFECT MONITORING IN IRON CASTING USING RESIDUES OF AUTOREGRESSIVE MODELS

    Directory of Open Access Journals (Sweden)

    Vanusa Andrea Casarin

    2013-06-01

    Full Text Available The purpose of this study is to monitor the index of general waste irons forecasting nodular and gray using the residues originated from the methodology Box & Jenkins by means of X-bar and R control charts. Search is to find a general class of model ARIMA (p, d, q but as data have autocorrelation is found to the number of residues which allowed the application of charts. The found model was the model SARIMA (0,1,1(0,1,1 . In step of checking the stability of the model was found that some comments are out of control due to temperature and chemical composition.

  1. Experimental validation of error in temperature measurements in thin walled ductile iron castings

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2007-01-01

    An experimental analysis has been performed to validate the measurement error of cooling curves measured in thin walled ductile cast iron. Specially designed thermocouples with Ø0.2 mm thermocouple wire in Ø1.6 mm ceramic tube was used for the experiments. Temperatures were measured in plates...... with thicknesses between 2 and 4.3 mm. The thermocouples were accurately placed at the same distance from the surface of the casting for different plate thicknesses. It is shown that when measuring the temperature in plates with thickness between 2 and 4.3 mm the measured temperature will be parallel shifted...... to a level about 20C lower than the actual temperature in the casting. Factors affecting the measurement error (oxide layer on the thermocouple wire, penetration into the ceramic tube and variation in placement of thermocouple) are discussed. Finally, it is shown how useful cooling curve may be obtained...

  2. Thermodynamic Analysis of Cast Irons Solidification With Various Types of Graphite

    Directory of Open Access Journals (Sweden)

    Elbel T.

    2012-12-01

    Full Text Available The contribution summarises the results of oxygen activity determinations, which were measured and registered continuously in castings from cast irons with various types of graphite. The results were used to find the relationship between two variables: natural logarithm of oxygen activities and reverse value of thermodynamic temperature 1 /T. Obtained regression lines were used to calculate oxygen activity at different temperatures, to calculate Gibbs free energy ΔG at the different temperatures and to calculate the single ΔG value for significant temperature of the graphite solidification. The results were processed by a statistical analysis of data files for the different types of graphite with flake, vermicular and spheroidal graphite. Each material has its proper typical oxygen activities range and individual temperature function of Gibbs free energy for analysing and governing casting quality.

  3. Structural analysis of cellular blocks for a prestressed cast iron reactor pressure vessel

    International Nuclear Information System (INIS)

    Thomas, R.G.; Head, J.L.

    1979-01-01

    The cast segments from which the prestressed cast iron nuclear reactor pressure vessel may be constructed are not readily amenable to detailed three-dimensional finite element analysis because their complex internal web structure requires a very large number of elements if reasonable aspect ratios are to be retained. A technique has been developed of modelling these blocks using plate bending elements from the ASKA code. By this means it has been possible to study in detail several designs of casting and to identify favourable features. The results of these studies, and others in which assessments are made of the sensitivity of the structure to prestressing load changes and machining errors, are reported. (orig.)

  4. Development of ductile cast iron for spent fuel cask applications using fracture mechanics principles

    International Nuclear Information System (INIS)

    Ray, K.K.; Tiwari, S.; Hemlata Kumari; Mamta Kumari; Kumar, Hemant; Albert, S.K.; Bhaduri, A.K.

    2016-01-01

    The structure-property relations of ductile cast irons (DCIs) with varying Cu content and ~1 wt.% Ni has been investigated with an emphasis on examining their fracture toughness property towards the development of suitable materials for large volume containers for transport of spent fuel. The detailed microstructural characteristics, hardness, tensile and fracture toughness properties of three DCIs were assessed in as-cast and annealed conditions. Fracture toughness values were determined using both ball indentation (K BI ) and J-integral (KJ Ic ) test. The obtained results assist to infer that: (i) the amount of pearlite and nodule count increases with increased amount of Cu, (ii) the hardness and strength values increases whereas fracture toughness values marginally decreases with increased Cu content, and (iii) the magnitudes of K BI estimated using a proposed analysis are in good agreement with KJ Ic values for the as-cast materials. (author)

  5. Influence of Multiple Bionic Unit Coupling on Sliding Wear of Laser-Processed Gray Cast Iron

    Science.gov (United States)

    Zhang, Haifeng; Zhang, Peng; Sui, Qi; Zhao, Kai; Zhou, Hong; Ren, Luquan

    2017-04-01

    In this study, in effort to improve the sliding wear resistance of gray cast iron under wet lubrication conditions, specimens with different bionic units were manufactured and modified according to bionic theory. Inspired by the structure and appearance of biological wear-resistant skin, two kinds of bionic units were processed by laser on the specimen surfaces. We investigated the wear resistance properties of the samples via indentation method and then observed the wear surface morphology of specimens and the stress distributions. The results indicated that coupling the bionic units enhanced the wear resistance of the cast iron considerably compared to the other samples. We also determined the mechanism of wear resistance improvement according to the results.

  6. Implementation Analysis of Cutting Tool Carbide with Cast Iron Material S45 C on Universal Lathe

    Science.gov (United States)

    Junaidi; hestukoro, Soni; yanie, Ahmad; Jumadi; Eddy

    2017-12-01

    Cutting tool is the tools lathe. Cutting process tool CARBIDE with Cast Iron Material Universal Lathe which is commonly found at Analysiscutting Process by some aspects numely Cutting force, Cutting Speed, Cutting Power, Cutting Indication Power, Temperature Zone 1 and Temperatur Zone 2. Purpose of this Study was to determine how big the cutting Speed, Cutting Power, electromotor Power,Temperatur Zone 1 and Temperatur Zone 2 that drives the chisel cutting CARBIDE in the Process of tur ning Cast Iron Material. Cutting force obtained from image analysis relationship between the recommended Component Cuting Force with plane of the cut and Cutting Speed obtained from image analysis of relationships between the recommended Cutting Speed Feed rate.

  7. Corrosion Inhibition of Cast Iron in Arabian Gulf Seawater by Two Different Ionic Liquids.

    Science.gov (United States)

    Sherif, El-Sayed M; Abdo, Hany S; Abedin, Sherif Zein El

    2015-06-26

    In this paper we report on the corrosion inhibition of cast iron in Arabian Gulf seawater by two different ionic liquids namely, 1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) and 1-butyl-1-methylpyrrolidinium chloride ([Py 1,4 ]Cl). The inhibiting influence of the employed ionic liquids was investigated by weight loss, open circuit potential electrochemical impedance spectroscopy, and cyclic potentiodynamic polarization. The results show the corrosion inhibition impact of the employed ionic liquids (ILs). Compared with [Py 1,4 ]Cl, [EMIm]Cl shows a higher inhibition efficiency at a short immersion time, for the examined ILs concentrations. However, [Py 1,4 ]Cl exhibits a higher efficiency upon increasing the immersion time indicating the persistence of the inhibiting influence. The corrosion inhibition of the employed ionic liquids is attributed to the adsorption of the cations of the ionic liquids onto the surface of cast iron forming a corrosion barrier.

  8. Microstructure formation and fracturing characteristics of grey cast iron repaired using laser.

    Science.gov (United States)

    Yi, Peng; Xu, Pengyun; Fan, Changfeng; Yang, Guanghui; Liu, Dan; Shi, Yongjun

    2014-01-01

    The repairing technology based on laser rapid fusion is becoming an important tool for fixing grey cast iron equipment efficiently. A laser repairing protocol was developed using Fe-based alloy powders as material. The microstructure and fracturing feature of the repaired zone (RZ) were analyzed. The results showed that regionally organized RZ with good density and reliable metallurgical bond can be achieved by laser repairing. At the bottom of RZ, dendrites existed in similar direction and extended to the secondary RZ, making the grains grow extensively with inheritance with isometric grains closer to the surface substrate. The strength of the grey cast iron base material was maintained by laser repairing. The base material and RZ were combined with robust strength and fracture resistance. The prevention and deflection of cracking process were analyzed using a cracking process model and showed that the overall crack toughness of the materials increased.

  9. Effect of extracellular polymeric substances on corrosion of cast iron in the reclaimed wastewater.

    Science.gov (United States)

    Jin, Juntao; Wu, Guangxue; Zhang, Zhenhua; Guan, Yuntao

    2014-08-01

    Microorganisms were cultured in the R2A medium with inoculum from biofilm in a reclaimed wastewater distribution system and then extracellular polymeric substances (EPS) were extracted from the culture. Characterization of EPS and their effects on the corrosion of cast iron were examined. EPS extracted from different culturing stages contained different proportions of protein and polysaccharide but with similar functional groups. All types of EPS could inhibit cast iron corrosion and the EPS from the stationary stage had the highest inhibition efficiency. The inhibition efficiency was increased with addition of a small amount of EPS while decreased with excessive amount of EPS. EPS formed a protective film on the metal surface, which retarded the cathodic reduction of oxygen. Excessive amount of EPS promoted anodic dissolution through EPS-Fe binding. The CO and C(O, N) in EPS could be the anodic electrochemical sites with possible products of C(C, H). Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Ultrasonic cavitation erosion of nodular cast iron with ferrite-pearlite microstructure.

    Science.gov (United States)

    Mitelea, Ion; Bordeaşu, Ilare; Pelle, Marius; Crăciunescu, Corneliu

    2015-03-01

    The cavitation erosion of ductile cast iron with ferrite-pearlite microstructure was analyzed based on ultrasonic experiments performed according to ASTM G32-2010 and the resistance was compared to the C45 steel with similar hardness. The microstructural observation of the surface for different exposure times to the ultrasonic cavitation reveals the fact that the process initiates at the nodular graphite-ferrite interface and is controlled by micro-galvanic activities and mechanical factors. The cavitation erosion resistance was evaluated based on the evolution of the mean depth erosion and the mean depth erosion rate as a function of the cavitation time. The cavitation erosion rate of the cast iron is up to 1.32 times higher than the one of the C 45 steel with similar hardness. This is explained by the occurrence of stress concentrators due to the expulsion of the graphite from the metallic matrix.

  11. Effect of Manganese Additions and Wear Parameter on the Tribological Behaviour of NFGrey (8 Cast Iron

    Directory of Open Access Journals (Sweden)

    S. Olatunji

    2012-12-01

    Full Text Available The effect of manganese and wear parameter on the abrasive wear behaviour of NFGREY8 cast iron composition under dry lubrication conditions was investigated. The wear parameters studied are sliding speed, applied load, time and percentage of ferro-manganese additions. The experimental data were taken in a controlled way. Scanning electron microscope was used to examine the morphology of the samples. The results from linear regression equation and analysis of variances (ANOVA shows that manganese additions, load and speed variable are more pronounced on the wear behaviour of the NFGrey (8 cast iron. The result showed that the additions of the 75 % ferro manganese grade decreases the carbon equivalent CE and fortify the matrix with the formation of tough (FeMn3C inter-metallic leading to increased wear resistance of the examined composition.

  12. Corrosion Inhibition of Cast Iron in Arabian Gulf Seawater by Two Different Ionic Liquids

    Directory of Open Access Journals (Sweden)

    El-Sayed M. Sherif

    2015-06-01

    Full Text Available In this paper we report on the corrosion inhibition of cast iron in Arabian Gulf seawater by two different ionic liquids namely, 1-ethyl-3-methylimidazolium chloride ([EMIm]Cl and 1-butyl-1-methylpyrrolidinium chloride ([Py1,4]Cl. The inhibiting influence of the employed ionic liquids was investigated by weight loss, open circuit potential electrochemical impedance spectroscopy, and cyclic potentiodynamic polarization. The results show the corrosion inhibition impact of the employed ionic liquids (ILs. Compared with [Py1,4]Cl, [EMIm]Cl shows a higher inhibition efficiency at a short immersion time, for the examined ILs concentrations. However, [Py1,4]Cl exhibits a higher efficiency upon increasing the immersion time indicating the persistence of the inhibiting influence. The corrosion inhibition of the employed ionic liquids is attributed to the adsorption of the cations of the ionic liquids onto the surface of cast iron forming a corrosion barrier.

  13. 77 FR 31577 - Non-Malleable Cast Iron Pipe Fittings From the People's Republic of China: Final Results of...

    Science.gov (United States)

    2012-05-29

    ... covered by the order are finished and unfinished non- malleable cast iron pipe fittings with an inside...), or push on ends (PO), or flanged ends and produced to the American Water Works Association (AWWA...

  14. The forty years of vermicular graphite cast iron development in China (PartⅠ

    Directory of Open Access Journals (Sweden)

    CHEN Zheng-de

    2007-05-01

    Full Text Available In China, the research and development of vermicular graphite cast iron (VGCI as a new type of engineering material, were started in the same period as in other developed countries; however, its actual industrial application was even earlier. In China, the deep and intensive studies on VGCI began as early as the 1960s. According to the incomplete statistics to date, more than 600 papers on VGCI have been published by Chinese researchers and scholars at national and international conferences, and in technical journals. More than ten types of production methods and more than thirty types of treatment alloy have been studied. Formulae for calculating the critical addition of treatment alloy required to produce VGCI have been put forward, and mechanisms for explaining the formation of dross during treatment were brought forward. The casting properties, metallographic structure, mechanical and physical properties and machining performance of VGCI, as well as the relationships between them, have all been studied in detail. The Chinese Standards for VGCI and VGCI metallographic structure have been issued. In China, the primary crystallization of VGCI has been studied by many researchers and scholars. The properties of VGCI can be improved by heat treatment and addition of alloying elements enabling its applications to be further expanded. Hundreds of kinds of VGCI castings have been produced and used in vehicles, engines, mining equipment, metallurgical products serviced under alternating thermal load, machinery, hydraulic components, textile machine parts and military applications. The heaviest VGCI casting produced is 38 tons and the lightest is only 1 kg. Currently, the annual production of the VGCI in China is about 200 000 tons. The majority of castings are made from cupola iron without pre-treatment, however, they are also produced from electric furnaces and by duplex melting from cupolaelectric furnaces or blast furnace-electric furnace

  15. The forty years of vermicular graphite cast iron development in China (Part Ⅲ

    Directory of Open Access Journals (Sweden)

    QIU han-quan

    2007-11-01

    Full Text Available In China, the research and development of vermicular graphite cast iron (VGCI as a new type of engineering material, were started in the same period as in other developed countries; however, its actual industrial application was even earlier. In China, the deep and intensive studies on VGCI began as early as the 1960s. According to the incomplete statistics to date, more than 600 papers on VGCI have been published by Chinese researchers and scholars at national and international conferences, and in technical journals. More than ten types of production methods and more than thirty types of treatment alloy have been studied. Formulae for calculating the critical addition of treatment alloy required to produce VGCI have been put forward, and mechanisms for explaining the formation of dross during treatment were brought forward. The casting properties, metallographic structure, mechanical and physical properties and machining performance of VGCI, as well as the relationships between them, have all been studied in detail. The Chinese Standards for VGCI and VGCI metallographic structure have been issued. In China, the primary crystallization of VGCI has been studied by many researchers and scholars. The properties of VGCI can be improved by heat treatment and addition of alloying elements enabling its applications to be further expanded. Hundreds of kinds of VGCI castings have been produced and used in vehicles, engines, mining equipment, metallurgical products serviced under alternating thermal load, machinery, hydraulic components, textile machine parts and military applications. The heaviest VGCI casting produced is 38 tons and the lightest is only 1 kg. Currently, the annual production of the VGCI in China is about 200 000 tons. The majority of castings are made from cupola iron without pre-treatment, however, they are also produced from electric furnaces and by duplex melting from cupolaelectric furnaces or blast furnace-electric furnace

  16. The forty years of vermicular graphite cast iron development in China (Part 2

    Directory of Open Access Journals (Sweden)

    CHEN Zheng-de

    2007-08-01

    Full Text Available In China, the research and development of vermicular graphite cast iron (VGCI as a new type of engineering material, were started in the same period as in other developed countries; however, its actual industrial application was even earlier. In China, the deep and intensive studies on VGCI began as early as the 1960s. According to the incomplete statistics to date, more than 600 papers on VGCI have been published by Chinese researchers and scholars at national and international conferences, and in technical journals. More than ten types of production methods and more than thirty types of treatment alloy have been studied. Formulae for calculating the critical addition of treatment alloy required to produce VGCI have been put forward, and mechanisms for explaining the formation of dross during treatment were brought forward. The casting properties, metallographic structure, mechanical and physical properties and machining performance of VGCI, as well as the relationships between them, have all been studied in detail. The Chinese Standards for VGCI and VGCI metallographic structure have been issued. In China, the primary crystallization of VGCI has been studied by many researchers and scholars. The properties of VGCI can be improved by heat treatment and addition of alloying elements enabling its applications to be further expanded. Hundreds of kinds of VGCI castings have been produced and used in vehicles, engines, mining equipment, metallurgical products serviced under alternating thermal load, machinery, hydraulic components, textile machine parts and military applications. The heaviest VGCI casting produced is 38 tons and the lightest is only 1 kg. Currently, the annual production of the VGCI in China is about 200 000 tons. The majority of castings are made from cupola iron without pre-treatment, however, they are also produced from electric furnaces and by duplex melting from cupolaelectric furnaces or blast furnace-electric furnace

  17. Fatigue strength of nodular cast iron with regard to heavy-wall applications

    Energy Technology Data Exchange (ETDEWEB)

    Bleicher, Christoph; Wagener, Rainer; Kaufmann, Heinz [Fraunhofer-Institut fuer Betriebsfestigkeit und Systemzuverlaessigkeit LBF, Darmstadt (Germany); Melz, Tobias [Fraunhofer-Institut fuer Betriebsfestigkeit und Systemzuverlaessigkeit LBF, Darmstadt (Germany); TU Darmstadt (Germany). Faculty of Mechanical Engineering

    2015-11-01

    For a proper estimation of the fatigue life of a heavy-walled cast component made of nodular cast iron, sufficient knowledge regarding the cyclic properties of the material is necessary. Based on the material parameters at hand for component design, different fatigue analysis procedures can be used. Elastic and elastic-plastic approaches can be adopted, with the latter being reserved only for local approaches. The present publication summarizes the cyclic material parameters gained during a research project by extensive material tests under stress and strain controlled cyclic loading at different load ratios for three nodular cast iron grades. In addition to an improved knowledge of the cyclic material behavior, the notch, the size effects and the mean stress sensitivity were of special concern during the investigations in order to provide an entire overview of the tested materials and thus input information for both stress and strain based design approaches. Tests were performed for specimens taken from large cast blocks of the nodular cast iron grades EN-GJS-400-18U-LT and EN-GJS-450-18, both with ferritic matrices, and EN-GJS-700-2 with a pearlitic matrix. For some of these materials, mean stress sensitivities above 0.5 were obtained during the investigations. These values are not covered by the common standards, which calculate lower values for the mean stress sensitivity. Cyclic material parameters for stress and strain controlled tests are given in this paper as well as values for the size effect, based on the concept of the highly stressed volume. The effect of different specimen sizes could be shown not only by stress but also by strain controlled tests.

  18. The Influence of Saturation of Cast Iron Austenite with Carbon on the Ausferrite Transformation

    Directory of Open Access Journals (Sweden)

    T. Giętka

    2007-07-01

    Full Text Available Austenitizing during quench hardening of the ductile cast iron influences the content of carbon in austenite depending on the soaking heat. On the other hand, the saturation of austenite impacts its transformation in the ausferritizing process of a metal matrix and forming of microstructure. Ductile cast iron with the ferrite matrix was hardened with isothermal transformation in the range of ausferritizing in temperature tpi = 400 i 300 0C and the range of time τpi = 7,5 �� 240 min. Specimens were gradually austenitized. They were soaked in the nominal temperature tγ = 950 0C, then precooled to the temperature tγ’ = 850 and 800 0C. Microstructure was investigated, there were also defined the proportion of austenite in the matrix of the cast iron and the content of carbon in it and hardness and impact strength in unnotched specimens. It was stated, that the precooling temperature deciding on the content of carbon in austenite influences kinetics of the ausferritic transformation, the content of carbon in the γ phase and impact strength and, in a less degree, hardness. As a result of gradual austenitizing the cast iron after quench hardening, in some conditions of treatment, reached mechanical properties corresponding, according to the ASTM A 897 standard, with high grades of ADI. Chilling in the range of austenitizing in temperature 850 and 800 0C led to the decrease of carbon in austenite what influenced positively on the matrix microstructure and properties of the ADI. Investigations in this range will be continued.

  19. Effect of water on ductility and fatigue strength of austempered ductile cast iron (ADI)

    OpenAIRE

    Terutoshi, Yakushiji; W. George, Ferguson; Masahiro, Goto

    2006-01-01

    In order to study the mechanism of decreasing the tensile strength and elongation of Austempered Ductile Cast Iron (ADI) in the wet condition, various tension tests and impact test were carried out. And the three point bending fatigue tests were carried out on ADI and annealed 0.55% carbon steel to clarify the influence of water on fatigue strength. The main conclusions areas follows. Embrittlement by water begins when the plastic deformation start in tension test. The fatigue limit of ADI in...

  20. IMPROVEMENT OF THE COMPOSITION AND MECHANICAL CHARACTERISTICS OF CAST IRON AT GRAPHITIZING MODIFICATION

    Directory of Open Access Journals (Sweden)

    A. I. Garost

    2008-01-01

    Full Text Available The results of investigations on improvement of composition, structure and mechanical characteristics of cast iron at realization of resource-saving technology of melting and graphitizing modification of melts using nontraditional approaches at finishing of metals, coinciding possibilities of high-polymeric combinations to receive high reactivity at their high-temperature utilization and to provide the effect of modification and microalloying, are given.

  1. Role of composition heterogeneity on fracture micromechanism of nodular cast iron

    Czech Academy of Sciences Publication Activity Database

    Konečná, R.; Lejček, Pavel; Nicoletto, G.; Bartuška, Pavel

    2006-01-01

    Roč. 22, č. 12 (2006), s. 1415-1421 ISSN 0267-0836 Grant - others:Slovak-Czech projects(SK) 063/117(2002-2003 a 144(2004-2005) Institutional research plan: CEZ:AV0Z1010914; CEZ:AV0Z10100520 Keywords : nodular cast iron * concentration heterogenity * finite element method * deformation heterogenity * fracture micromechanismus Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.677, year: 2006

  2. Simultaneous oxidation and decarburization of cast iron powder during plasma spraying

    Czech Academy of Sciences Publication Activity Database

    Voleník, Karel; Schneeweiss, Oldřich; Chráska, Tomáš; Dubský, Jiří; Písačka, Jan

    2009-01-01

    Roč. 47, č. 1 (2009), s. 19-24 ISSN 0023-432X R&D Projects: GA AV ČR IAA1041404 Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z20410507 Keywords : cast iron powder * plasma spraying * oxidation * decarburization Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.345, year: 2007 http://kovmat.sav.sk/abstract.php?rr=47&cc=1&ss=19

  3. Effect of Cu on the microstructural and mechanical properties of as-cast ductile iron

    International Nuclear Information System (INIS)

    Tiwari, Siddhartha; Das, J.; Ray, K.K.; Kumar, Hemant; Bhaduri, A.

    2012-01-01

    The application of ductile cast iron in the heavy engineering components like, cask for the storage and transportation of radioactive materials, demands high strength with improved fracture toughness in as cast condition. The mechanical properties and fracture toughness of as-cast ductile iron (DI) is directly related to its structure property which can be controlled by proper inoculation, alloying elements and cooling rate during solidification. The aim of the present investigation is to study the effect of varying amount of Cu (0.07%, 0.11%, and 0.16%) with 1% Ni in the microstructural development of as-cast ductile iron with emphasis on its mechanical properties and fracture toughness. Three different ductile irons have been prepared using induction furnace in batches of 300 kg following industrial practice. Microstructural features (amount of phases, morphology, size and count of graphite nodules) and mechanical properties (tensile strength and hardness) of prepared DI were determined using standard methods. Dynamic fracture toughness was measured using instrumented Charpy impact test on pre-cracked specimens following the standard ISO-FDIS-26843. Additionally, fracture surfaces of broken tensile and pre-cracked specimens were observed by SEM to study the micro-mechanism of fracture. The pearlite fraction and the nodule count are found to increase with increasing amount of copper in ferritic-pearlitic matrix. The hardness and strength values are found to increase with increasing amount of pearlite whereas fracture toughness decreases. Fractographs of broken specimens exhibited decohesion of graphite, crack propagation from graphite interface and transgranular fracture of ferrite. (author)

  4. Microstructure Evaluation and Wear-Resistant Properties of Ti-alloyed Hypereutectic High Chromium Cast Iron

    OpenAIRE

    Liu, Qiang

    2013-01-01

    High chromium cast iron (HCCI) is considered as one of the most useful wear resistance materials and their usage are widely spread in industry. The mechanical properties of HCCI mainly depend on type, size, number, morphology of hard carbides and the matrix structure (γ or α). The hypereutectic HCCI with large volume fractions of hard carbides is preferred to apply in wear applications. However, the coarser and larger primary M7C3 carbides will be precipitated during the solidification of the...

  5. Comparison of low cycle fatigue of ductile cast irons with different matrix alloyed with nickel

    Czech Academy of Sciences Publication Activity Database

    Petrenec, Martin; Tesařová, H.; Beran, Přemysl; Šmíd, Miroslav; Roupcová, Pavla

    2010-01-01

    Roč. 2, č. 1 (2010), s. 2307-2316 E-ISSN 1877-7058. [Fatigue 2010. Praha, 06.06.2010-11.06.2010] R&D Projects: GA ČR GAP108/10/2371 Institutional research plan: CEZ:AV0Z20410507; CEZ:AV0Z10480505 Keywords : Low cycle fatigue * ferritic ductile cast iron * ADI * nickel alloying * neutron diffraction Subject RIV: JL - Materials Fatigue, Friction Mechanics

  6. Effects of Silicon on Mechanical Properties and Fracture Toughness of Heavy-Section Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    Liang Song

    2015-01-01

    Full Text Available The effects of silicon (Si on the mechanical properties and fracture toughness of heavy-section ductile cast iron were investigated to develop material for spent-nuclear-fuel containers. Two castings with different Si contents of 1.78 wt.% and 2.74 wt.% were prepared. Four positions in the castings from the edge to the center, with different solidification cooling rates, were chosen for microstructure observation and mechanical properties’ testing. Results show that the tensile strength, elongation, impact toughness and fracture toughness at different positions of the two castings decrease with the decrease in cooling rate. With an increase in Si content, the graphite morphology and the mechanical properties at the same position deteriorate. Decreasing cooling rate changes the impact fracture morphology from a mixed ductile-brittle fracture to a brittle fracture. The fracture morphology of fracture toughness is changed from ductile to brittle fracture. When the Si content exceeds 1.78 wt.%, the impact and fracture toughness fracture morphology transforms from ductile to brittle fracture. The in-situ scanning electronic microscope (SEM tensile experiments were first used to observe the dynamic tensile process. The influence of the vermicular and temper graphite on fracture formation of heavy section ductile iron was investigated.

  7. A reliable and consistent production technology for high volume compacted graphite iron castings

    Directory of Open Access Journals (Sweden)

    Liu Jincheng

    2014-07-01

    Full Text Available The demands for improved engine performance, fuel economy, durability, and lower emissions provide a continual challenge for engine designers. The use of Compacted Graphite Iron (CGI has been established for successful high volume series production in the passenger vehicle, commercial vehicle and industrial power sectors over the last decade. The increased demand for CGI engine components provides new opportunities for the cast iron foundry industry to establish efficient and robust CGI volume production processes, in China and globally. The production window range for stable CGI is narrow and constantly moving. Therefore, any one step single addition of magnesium alloy and the inoculant cannot ensure a reliable and consistent production process for complicated CGI engine castings. The present paper introduces the SinterCast thermal analysis process control system that provides for the consistent production of CGI with low nodularity and reduced porosity, without risking the formation of flake graphite. The technology is currently being used in high volume Chinese foundry production. The Chinese foundry industry can develop complicated high demand CGI engine castings with the proper process control technology.

  8. Evaluation of the Mechanical Properties of Gray Cast Iron Using Electrical Resistivity Measurement

    Directory of Open Access Journals (Sweden)

    Bieroński M.

    2016-12-01

    Full Text Available In this paper an attempt to determine the relationship between the electrical resistivity and the tensile strength and hardness of cast iron of carbon equivalent in the range from 3.93% to 4.48%. Tests were performed on the gray cast iron for 12 different melts with different chemical composition. From one melt poured 6 samples. Based on the study of mechanical and electro-resistive determined variation characteristics of tensile strength, hardness and resistivity as a function of the carbon equivalent. Then, regression equations were developed as power functions describing the relationship between the resistivity of castings and their tensile strength and hardness. It was found a high level of regression equations to measuring points, particularly with regard to the relationship Rm=f(ρ. The obtained preliminary results indicate the possibility of application of the method of the resistance to rapid diagnostic casts on the production line, when we are dealing with repeatable production, in this case non variable geometry of the product for which it has been determinated before a regression equation.

  9. Effect of Heat Treatment on the Impact Toughness of `High-Chromium Cast Iron - Low Alloy Steel' Bimetal Components

    Science.gov (United States)

    Özdemir, Z.

    2017-03-01

    A bimetallic `low-alloy steel - high-chromium cast iron' composite obtained by successive sand casting is studied and shown to have good cohesion on the interface and no casting defects. The hardness and the impact toughness of the bimetal increase simultaneously. The microstructure is more homogeneous after diffusion annealing at 1040°C, rapid cooling, and 3-h tempering at 270°C.

  10. High Cr white cast iron/carbon steel bimetal liner by lost foam casting with liquid-liquid composite process

    Directory of Open Access Journals (Sweden)

    Xiao Xiaofeng

    2012-05-01

    Full Text Available Liners in wet ball mill for mineral processing industry must bear abrasive wear and corrosive wear, and consequently, the service life of the liner made from traditional materials, such as Hadfield steel and alloyed steels, is typically less than ten months. Bimetal liner, made from high Cr white cast iron and carbon steel, has been successfully developed by using liquid-liquid composite lost foam casting process. The microstructure and interface of the composite were analyzed using optical microscope, SEM, EDX and XRD. Micrographs indicate that the boundary of bimetal combination regions is staggered like dogtooth, two liquid metals are not mixed, and the interface presents excellent metallurgical bonding state. After heat treatment, the composite liner specimens have shown excellent properties, including hardness > 61 HRC, fracture toughness αk >16.5 J·cm-2 and bending strength >1,600 MPa. Wear comparison was made between the bimetal composite liner and alloyed steel liner in an industrial hematite ball mill of WISCO, and the results of eight-month test in wet grinding environment have proved that the service life of the bimetal composite liner is three times as long as that of the alloyed steel liner.

  11. The influence of the hardening conditions on the mechanical properties of ductile cast iron

    Directory of Open Access Journals (Sweden)

    T. Giętka

    2010-01-01

    Full Text Available Ductile cast iron has been austempered according to two variants. The first treatment variant was austenitizing at a temperature tγ = 830, 860 and 900 0C and holding at a temperature tpi = 400 and 300 0C for 8 ÷ 64 min. Second variant treatment was two-phase austenitizing. Firstly, it was heated at a temperature tγ = 950 0C and after forecooling and chilling at a temperature tγ’ = 900, 860 and 830 0C isothermal process was conducted in the same conditions as in the first variant. The cast iron with ferritic matrix was austempered. After hardening the mechanical (Rp0,2, Rm and plastic (A5 properties were examined as well as the microstructure of matrix and hardness. It was noticed that the heat treatment carried out according to variants I and II lead to attaining cast iron of grade: ADI EN-GJS-800-8, EN-GJS-1200-2, EN-GJS-1400-1 according to PN–EN 1564 : 2000; in addition, ductility of these grades was 1,5÷4 times bigger than the mini-mum standard material requirements.

  12. The low-aluminium cast iron of reduced silicon content treated with cerium mischmetal

    Directory of Open Access Journals (Sweden)

    M. S. Soiński

    2008-07-01

    Full Text Available The work presents the effect of cerium mischmetal used in quantities of 0.1 and 0.2 wt-% and ferrosilicon used in quantities from 0.5% to 1.5% on the alloy matrix and the shape of graphite precipitates in the low-aluminium cast iron from seven heats, basing on the examination of its structure. The hypereutectic cast iron of the relatively high carbon content (4.0÷4.2% at the prior-to-treatment silicon and manganese content equal to ca. 0.6% and ca. 0.04%, respectively, has been examined.It has been found that the performed treatment leads to the change in the alloy matrix from the nearly almost pearlitic to the ferritic-pearlitic one accompanied by changes in the shape of graphite precipitates. Due to applying both of the mentioned substances in the above stated amounts the graphite precipitates in cast iron have taken the shape of nodular and vermicular ones, and no presence of flake graphite has been revealed. A quantitative analysis of the performed treatment i.e. determining the fractions of graphite precipitates of different shapes has been possible by means of a computer image analyser.

  13. Auto-analysis system for graphite morphology of grey cast iron.

    Science.gov (United States)

    Jiang, Hong; Tan, Yiyong; Lei, Junfeng; Zeng, Libo; Zhang, Zelan; Hu, Jiming

    2003-01-01

    The current method to classify graphite morphology types of grey cast iron is based on traditional subjective observation, and it cannot be used for quantitative analysis. Since microstructures have a great effect on the mechanical properties of grey cast iron and different types have totally different characters, six types of grey cast iron are discussed and an image-processing software subsystem that performs the classification and quantitative analysis automatically based on a kind of composed feature vector and artificial neural network (ANN) is described. There are three kinds of texture features: fractal dimension, roughness and two-dimension autoregression, which are used as an extracted feature input vector of ANN classifier. Compared with using only one, the checkout correct precision increased greatly. On the other hand, to achieve the quantitative analysis and show the different types clearly, the region segmentation idea was applied to the system. The percentages of the regions with different type are reported correctly. Furthermore, this paper tentatively introduces a new empirical method to decide the number of ANN hidden nodes, which are usually considered as a difficulty in ANN structure decision. It was found that the optimum hidden node number of the experimental data was the same as that obtained using the new method.

  14. Influence of boron on ferrite formation in copper-added spheroidal graphite cast iron

    Directory of Open Access Journals (Sweden)

    Ying Zou

    2014-07-01

    Full Text Available This paper reviews the original work of the authors published recently, describing the influence of B on the matrix of the Cuadded spheroidal graphite cast iron. The effect of Cu has been corrected as a ferrite formation promoter in the matrix of the grey cast iron by the usage of high-purity material. Also, this paper focuses on the ferrite formation and the observation of the Cu distribution in the B-added and B-free Cu-containing spheroidal graphite cast iron. The Cu film on the spheroidal graphite can be successfully observed in the B-free sample using a special etching method. However, in the B-added sample, no Cu film could be found, while the secondary graphite was formed on the surface of the spheroidal graphite. The interaction between B and Cu is stressed as a peculiar phenomenon by the employment of a contrast experiment of B and Mn. The heat treatment could make Cu precipitate more significantly in the eutectic cells and in the matrix in the form of large Cu particles because of the limited solubility of Cu.

  15. Energy efficiency opportunities in the production process of cast iron foundries: An experience in Italy

    International Nuclear Information System (INIS)

    Lazzarin, Renato M.; Noro, Marco

    2015-01-01

    Foundry sector is one of the most energy intensive in industry. Energy audits performed in 5 Italian cast iron foundries allowed to identify energy utilization in the various processes that from the melting of the iron arrive at the finishing of the casting. Main equipment was surveyed, evaluating the influence on the overall energy consumption, producing a detailed analysis of energy use per department and energy performance indexes. A separate study was carried out for foundries with induction furnaces and cold or hot blast cupolas. Possibilities of heat recovery was identified particularly in combustion air preheating, but also for building heating or to power direct cycles to produce electricity. Better insulation and new insulating materials can improve the efficiency and the quality of the processes. Suggestions are supplied in the various foundry departments for energy saving. Possible energy saving actions on the service plants will be dealt with in a separate paper. - Highlights: • The Authors performed energy audits in 5 Italian cast iron foundries. • Main equipment was surveyed, evaluating the influence on the overall energy consumption. • An analysis of energy use per department and energy performance indexes was performed. • Possibilities of heat recovery were identified in combustion air preheating and for building heating. • Better and new insulating materials were analyzed to improve the efficiency and process quality.

  16. Health implications of PAH release from coated cast iron drinking water distribution systems in The Netherlands.

    Science.gov (United States)

    Blokker, E J Mirjam; van de Ven, Bianca M; de Jongh, Cindy M; Slaats, P G G Nellie

    2013-05-01

    Coal tar and bitumen have been historically used to coat the insides of cast iron drinking water mains. Polycyclic aromatic hydrocarbons (PAHs) may leach from these coatings into the drinking water and form a potential health risk for humans. We estimated the potential human cancer risk from PAHs in coated cast iron water mains. In a Dutch nationwide study, we collected drinking water samples at 120 locations over a period of 17 days under various operational conditions, such as undisturbed operation, during flushing of pipes, and after a mains repair, and analyzed these samples for PAHs. We then estimated the health risk associated with an exposure scenario over a lifetime. During flushing, PAH levels frequently exceeded drinking water quality standards; after flushing, these levels dropped rapidly. After the repair of cast iron water mains, PAH levels exceeded the drinking water standards for up to 40 days in some locations. The estimated margin of exposure for PAH exposure through drinking water was > 10,000 for all 120 measurement locations, which suggests that PAH exposure through drinking water is of low concern for consumer health. However, factors that differ among water systems, such as the use of chlorination for disinfection, may influence PAH levels in other locations.

  17. Influence of New Sol-gel Refractory Coating on the Casting Properties of Cold Box and Furan Cores for Grey Cast iron

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Poulsen, T.; Bischoff, C

    2010-01-01

    New Sol-Gel coated sand cores made from coldbox and furan binder systems were investigated. The idea of the coating was to improve the surface quality of castings. Grey iron was cast on the cores in a sand casting process. The effect of the high temperature of the melt on the cores was assessed...... by measuring the heating curves. The viscosity of the coating, moisture content and the permeability of the cores were evaluated. The surface quality of the castings was investigated using SEM and OM. The results show that the moisture content of the cores affected the permeability. In furan cores the vapour...... transport zone (VTZ) when in contact with the melt is larger than it is in a coldbox which means the furan cores have higher moisture content. The new sol-gel coating has the potential for improving the surface quality of castings without negative effects on the graphite distribution. The surface...

  18. PECULIARITIES OF PROCESSES OF CARBIDE FORMATION AND DISTRIBUTION OF Cr, Mn AND Ni IN WHITE CAST IRONS

    Directory of Open Access Journals (Sweden)

    V. V. Netrebko

    2015-01-01

    Full Text Available During crystallization of castings from white cast iron, carbides Me3С, Me7С3, Me23С6 were formed depending on chromium and carbon content. Impeded chromium diffusion caused formation of thermodynamically unstable and non-uniform phases (carbides. During heat treatment process stable equilibrium phases were formed as a result of rearrangement of the carbides’ crystal lattice, replacement of iron, manganese, nickel and silicon atoms by chromium atoms. The allocated atoms concentrated, forming inclusions of austenite inside the carbides. Holding during 9 hours at 720 °С and annealing decreased the non-uniformity of chromium distribution in the metallic base of cast iron containing 11,5 % Cr, and increased it in the cast iron containing 21,5 % Cr. Holding during 4.5 hours at 1050 °С and normalization decreased the non-uniformity of chromium distribution in the metallic base of cast iron containing 21,5 % Cr, and increased it in cast iron containing 11,5 % Cr.

  19. Selected aspects of the piece production of iron alloy castings in terms of their environmental impact

    Directory of Open Access Journals (Sweden)

    Z. Maniowski

    2010-07-01

    Full Text Available Problems of environmental protection are nowadays one of the top priorities in a policy programme adopted by the European Community.Reducing the negative impact of the domestic foundry industry on environment should result from complex and long-lasting activities,targeted not only at modernisation of the dust collecting units, but also at searches and implementation of alternative, innovative and more pro-ecology oriented means and techniques of casting manufacture. Reducing to minimum the level of emissions escaping to the environment should be considered at all stages of the casting manufacturing process. In this study, the discussion was restricted to the process of the manufacture of moulds and cores for piece production of the heavy castings. The environmental impact of the technology of making moulds and cores in sands with chemical binders, used most often in piece production of large castings poured from iron alloys, was highlighted. As an alternative technology of mould preparation for the piece production of castings, the ecological and economic aspects of the full mould process were presented.

  20. Construction and analysis of dynamic solidification curves for non-equilibrium solidification process in lost-foam casting hypo-eutectic gray cast iron

    Directory of Open Access Journals (Sweden)

    Ming-guo Xie

    2017-05-01

    Full Text Available Most lost-foam casting processes involve non-equilibrium solidification dominated by kinetic factors, while construction of a common dynamic solidification curve is based on pure thermodynamics, not applicable for analyses and research of non-equilibrium macro-solidification processes, and the construction mode can not be applied to non-equilibrium solidification process. In this study, the construction of the dynamic solidification curve (DSC for the non-equilibrium macro-solidification process included: a modified method to determine the start temperature of primary austenite precipitation (TAL and the start temperature of eutectic solidification (TES; double curves method to determine the temperature of the dendrite coherency point of primary austenite (TAC and the temperature of eutectic cells collision point (TEC; the “technical solidus” method to determine the end temperature of eutectic reaction (TEN. For this purpose, a comparative testing of the non-equilibrium solidification temperature fields in lost-foam casting and green sand mold casting hypoeutectic gray iron was carried out. The thermal analysis results were used to construct the DSCs of both these casting methods under non-equilibrium solidification conditions. The results show that the transformation rate of non-equilibrium solidification in hypoeutectic gray cast iron is greater than that of equilibrium solidification. The eutectic solidification region presents a typical mushy solidification mode. The results also indicate that the primary austenite precipitation zone of lost-foam casting is slightly larger than that of green sand casting. At the same time, the solid fraction (fs of the dendrite coherency points in lost-foam casting is greater than that in the green sand casting. Therefore, from these two points, lost-foam casting is more preferable for reduction of shrinkage and mechanical burnt-in sand tendency of the hypoeutectic gray cast iron. Due to the fact that

  1. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kiran M. Kothari; Gerard T. Pittard

    2004-04-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast-iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1--Program Management and Task 2--were completed in prior quarters while Task 3--Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves has progressed to installing prototype sleeves in cast iron test pipe segments. Efforts in this quarter continued to focus on Tasks 4--8, with significant progress made in each. Task 4 (Design, Fabricate and Test Patch Setting Robotic Train) progressed to the design of the control electronics and pneumatic system to inflate the bladder robotic patch setting module. Task 5 (Design & Fabricate Pipe-Wall Cleaning Robot Train with Pan/Zoom/Tilt Camera) continued with additional in-pipe testing required to

  2. The influence of boron on the abrasion wear resistance of 17%Cr white cast iron

    International Nuclear Information System (INIS)

    Yan, P.; Zhou, Q.

    1987-01-01

    A study of the abrasion wear resistance of the 2.7C-17Cr-0.7Mo white cast irons with different structures alloyed with boron ranging from 0.1% to 1.3% is carried out. Eleven heat treatments were used to find the optimum treatment. Three conditions (as-cast, martensitic and austenitic) are adopted for various tests. The microstructure and three-dimensional morphology of compounds are examined by optical microscope and SEM respectively. X-ray diffractometer is employed to analyze the compound phases. A high-stress abrasive wear tests is performed with loose SiO/sub 2/ and SiC abrasives in a metal track wear tester. Another abrasive wear test is conducted with wet SiO/sub 2/ abrasives in a rubber wheel tester. The hardness and fracture toughness of these alloys was also measured. With increasing boron content fracture toughness decreases. It is noted that if the irons contained about same compound volume, the abrasion wear resistance in present wear systems are much better than the irons without boron against SiO/sub 2/ abrasives, and the toughness is equivalent to 15 Cr irons without boron. Finally, considering the wear resistance and fracture toughness, the test results would provide a basis for optimizing these properties in selecting materials for a given wear component

  3. Slurry Erosion Behavior of Destabilized and Deep Cryogenically Treated Cr-Mn-Cu White Cast Irons

    Directory of Open Access Journals (Sweden)

    S. Gupta

    2016-12-01

    Full Text Available The effects of destabilization treatment and destabilization followed by cryogenic treatment have been evaluated on the microstructural evolution and sand-water slurry erosion behavior of Cr-Mn-Cu white cast irons. The phase transformations after the destabilization and cryotreatment have been characterized by bulk hardness measurement, optical and scanning electron microscopy, x-ray diffraction analysis. The static corrosion rate has been measured in tap water (with pH=7 and the erosion-corrosion behavior has been studied by slurry pot tester using sand-water slurry. The test results indicate that the cryogenic treatment has a significant effect in minimizing the as-cast retained austenite content and transforming into martensitic and bainitic matrix embedded with ultra-fine M7C3 alloy carbides. In contrast, by conventional destabilization treatment retained austenite in the matrix are not fully eliminated. The slurry erosive wear resistance has been compared with reference to destabilized and cryotreated high chromium iron samples which are commonly employed for such applications. The cryotreated Cr-Mn-Cu irons have exhibited a comparable erosive wear performance to those of high chromium irons. Higher hardness combined with improved corrosion resistance result in better slurry erosion resistance.

  4. Fatigue crack tip damaging micromechanisms in a ferritic-pearlitic ductile cast iron

    Directory of Open Access Journals (Sweden)

    Francesco Iacoviello

    2015-07-01

    Full Text Available Due to the peculiar graphite elements shape, obtained by means of a chemical composition control (mainly small addition of elements like Mg, Ca or Ce, Ductile Cast Irons (DCIs are able to offer the good castability of gray irons with the high mechanical properties of irons (first of all, toughness. This interesting properties combination can be improved both by means of the chemical composition control and by means of different heat treatments(e.g. annealing, normalizing, quenching, austempering etc. In this work, fatigue crack tip damaging micromechanisms in a ferritic-pearlitic DCI were investigated by means of scanning electron microscope observations performed on a lateral surface of Compact Type (CT specimens during the fatigue crack propagation test (step by step procedure, performed according to the “load shedding procedure”. On the basis of the experimental results, different fatigue damaging micromechanisms were identified, both in the graphite nodules and in the ferritic – pearlitic matrix.

  5. An approach for the fatigue estimation of porous cast iron based on non-destructive testing results

    Directory of Open Access Journals (Sweden)

    Heinrietz André

    2014-06-01

    Full Text Available Big cast iron components made of spheroidal cast iron allow constructing big structures such as stone mills, engine blocks or wind mills with acceptable expenses. Thus, in economically optimized cast processes pores cannot be always prevented in thick walled cast iron components and these components are often rejected because of safety reasons. On the one hand the fatigue performance of high loadable spheroidal cast iron components is reduced significantly by the presence of local porosities which has been pointed out in the past. On the other hand concepts for the fatigue estimation based on fracture mechanics which take the size and localization of the defect into account can lead to erroneous estimations because the defect is modelled as a crack. The challenge of an estimation method is to derive a fatigue life without the necessity to perform component tests. In the contribution an estimation method is presented which is able to determine the fatigue strength of a material volume taking the pores into account. The method can be applied based on data from computer tomographic X-ray (CT or Sampling Phased Array (SPA ultrasonic analyses. The method is presented for three spheroidal cast iron types: ferritic GJS-400-18, ferritic GJS-450-15 with high silicon content and perlitic GJS-700-3.

  6. A Contribution to the Understanding of the Combined Effect of Nitrogen and Boron in Grey Cast Iron

    DEFF Research Database (Denmark)

    Strande, Knud; Tiedje, Niels Skat; Chen, Ming

    2017-01-01

    and in practice—to be effective in most cases. But it has the disadvantage that the nucleation effect fades away over time. In particular, in heavy castings (slow cooling) this effect may cause non-uniform and unacceptable material properties in some parts of the casting. Nitrogen is also known to influence grey......Inoculation is an essential part of controlling material properties in grey cast iron. Inoculation practice has for decades been based on the addition to the melt of small amounts of elements with a strong affinity to O (and S) just before casting takes place. This method is proven—both in theory...

  7. Influence of Addition of Briquettes with Dust Content into the Charge of Electric Induction Furnace on Cast Iron Quality

    Directory of Open Access Journals (Sweden)

    A. Pribulová

    2012-09-01

    Full Text Available Foundry dust from blasting and grinding of castings contain a high amount of iron, ergo it is possible its recycling in foundry process.Dust was compacted by briquetting, two kinds of briquettes were prepared (A contained 95% magnetic part of dust from casting blasting+5% bentonite and B contained 95% mixture of dust from casting grinding and magnetic part of dust from casting blasting + 5%bentonite and used as a part of charge into the electric induction furnace. It was found that addition of briquettes has had an influence of a chemical composition of cast iron above all on content of sulphur, phosphorus and silicon. It was not reflected in decrease in tensile strength and in microstructure. Yield of metal from briquettes was not lower then 70%.

  8. An Electron Microscopy Study of Graphite Growth in Nodular Cast Irons

    Science.gov (United States)

    Laffont, L.; Jday, R.; Lacaze, J.

    2018-04-01

    Growth of graphite during solidification and high-temperature solid-state transformation has been investigated in samples cut out from a thin-wall casting which solidified partly in the stable (iron-graphite) and partly in the metastable (iron-cementite) systems. Transmission electron microscopy has been used to characterize graphite nodules in as-cast state and in samples having been fully graphitized at various temperatures in the austenite field. Nodules in the as-cast material show a twofold structure characterized by an inner zone where graphite is disoriented and an outer zone where it is well crystallized. In heat-treated samples, graphite nodules consist of well-crystallized sectors radiating from the nucleus. These observations suggest that the disoriented zone appears because of mechanical deformation when the liquid contracts during its solidification in the metastable system. During heat-treatment, the graphite in this zone recrystallizes. In turn, it can be concluded that nodular graphite growth mechanism is the same during solidification and solid-state transformation.

  9. Cast Iron Inoculation Enhanced by Supplementary Oxy-sulfides Forming Elements

    Science.gov (United States)

    Riposan, Iulian; Stan, Stelian; Uta, Valentin; Stefan, Ion

    2017-09-01

    Inoculation is one of the most important metallurgical treatments applied to the molten cast iron immediately prior to casting, to promote solidification without excessive eutectic undercooling, which favors carbides formation usually with undesirable graphite morphologies. The paper focused on the separate addition of an inoculant enhancer alloy [S, O, oxy-sulfides forming elements] with a conventional Ca-FeSi alloy, in the production of gray and ductile cast irons. Carbides formation tendency decreased with improved graphite characteristics as an effect of the [Ca-FeSi + Enhancer] inoculation combination, when compared to other Ca/Ca, Ba/Ca, RE-FeSi alloy treatments. Adding an inoculant enhancer greatly enhances inoculation, lowers inoculant consumption up to 50% or more and avoids the need to use more costly inoculants, such as a rare earth bearing alloy. The Inoculation Specific Factor [ISF] was developed as a means to more realistically measure inoculant treatment efficiency. It compares the ratio between the improved characteristic level and total inoculant consumption for this effect. Addition of any of the commercial inoculants plus the inoculant enhancer offered outstanding inoculation power [increased ISF] even at higher solidification cooling rates, even though the total enhancer addition was at a small fraction of the amount of commercial inoculant used.

  10. Evaluation of Microstructure and Mechanical Properties of High-Strength Bainitic Cast Iron Using an Electromagnetic Sensor

    Science.gov (United States)

    Kashefi, M.; Nateq, M. H.; Kahrobaee, S.

    2017-09-01

    High-strength bainitic cast iron is studied after isothermal hardening at 340°C for from 0.5 to 5 h with the use of a non-destructive eddy-current method for monitoring the microstructure and mechanical properties. Iron microstructure is studied by optical microscopy and x-ray diffraction analysis. Brinell hardness and the impact energy are determined. Correlation is established between electromagnetic sensor signal, microstructure, and mechanical properties. It is shown that induced voltage and normalized impedance may be used for non-destructive monitoring of the production process and cast iron quality.

  11. Thermal analysis control of in-mould and ladle inoculated grey cast irons

    Directory of Open Access Journals (Sweden)

    Mihai Chisamera

    2009-05-01

    Full Text Available The effect of addition of 0.05wt.% to 0.25 wt.% Ca, Zr, Al-FeSi alloy on in-ladle and in-mould inoculation of grey cast irons was investigated. In the present paper, the conclusions drawn are based on thermal analysis. For the solidification pattern, some specific cooling curves characteristics, such as the degree of undercooling at the beginning of eutectic solidifi cation and at the end of solidifi cation, as well as the recalescence level, are identifi ed to be more infl uenced by the inoculation technique. The degree of eutectic undercooling of the electrically melted base iron having 0.025% S, 0.003% Al and 3.5% Ce is excessively high (39–40℃, generating a relatively high need for inoculation. Under these conditions, the in-mould inoculation has a more signifi cant effect compared to ladle inoculation, especially at lower inoculant usage (less than 0.20 wt.%. Generally, the efficiency of 0.05wt.%–0.15wt.% of alloy for in-mould inoculation is comparable to, or better than, that of 0.15wt.%–0.25wt.% addition in ladle inoculation procedures. In order to secure stable and controlled processes, representative thermal analysis parameters could be used, especially in thin wall grey iron castings production.

  12. Study of microstructure and silicon segregation in cast iron using color etching and electron microprobe analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vazehrad, S., E-mail: vazehrad@kth.se [Dep. Materials Science and Engineering/Casting of Metals, Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Elfsberg, J., E-mail: jessica.elfsberg@scania.com [Scania CV AB, SE-151 87 Södertälje (Sweden); Diószegi, A., E-mail: attila.dioszegi@jth.hj.se [Dep. Materials Science and Engineering/Casting of Metals, Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Dep. Mechanical Engineering/Materials and Manufacturing-Foundry Technology, Jönköping University, SE-551 11 Jönköping (Sweden)

    2015-06-15

    An investigation on silicon segregation of lamellar, compacted and nodular graphite iron was carried out by applying a selective, immersion color etching and a modified electron microprobe to study the microstructure. The color etched micrographs of the investigated cast irons by revealing the austenite phase have provided data about the chronology and mechanism of microstructure formation. Moreover, electron microprobe has provided two dimensional segregation maps of silicon. A good agreement was found between the segregation profile of silicon in the color etched microstructure and the silicon maps achieved by electron microprobe analysis. However, quantitative silicon investigation was found to be more accurate than color etching results to study the size of the eutectic colonies. - Highlights: • Sensitivity of a color etchant to silicon segregation is quantitatively demonstrated. • Si segregation measurement by EMPA approved the results achieved by color etching. • Color etched micrographs provided data about solidification mechanism in cast irons. • Austenite grain boundaries were identified by measuring the local Si concentration.

  13. FEATURES OF SPHEROIDIZING MODIFICATION OF HIGH-STRENGTH CAST IRON WITH MASTER ALLOYS BASED ON COPPER

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2016-01-01

    Full Text Available The increase of efficiency of modification process for ductile iron is topically, thereby increasing its mechanical and operational properties. For these purposes, in practice, various magnesium containing alloys are used, including «heavy» ones on the basis of Copper and Nickel. The analysis has shown that the application of bulk inoculating alloys based on copper basis were not effectively due to long dissolution period. From this point of view, the interest is high-speed casting, allowing the production of inoculating alloys in the form of strips – chips that are characterized by a low dissolution time and low piroeffekt. The aim of this work is to study the features of structure formation in nodular cast iron using different spheroidizing alloys based on copper. Studies have shown that the transition from the use of briquetted form alloys based on copper and magnesium to the «chips-inoculating alloys» allowed increasing the efficiency of the spheroidizing process. Further improvement in the quality of ductile iron can be achieved by the use in «chip-inoculating alloys» additives of nanosized yttrium oxide powder. 

  14. [Mineral migration from stainless steel, cast iron and soapstone (steatite) Brazilian pans to food preparations].

    Science.gov (United States)

    Quintaes, Késia Diego; Farfan, Jaime Amaya; Tomazini, Fernanda Mariana; Morgano, Marcelo Antônio

    2006-09-01

    Culinary utensils may release some inorganic elements during food preparation. Mineral migration can be beneficial for as long as it occurs in amounts adequate to the needs of the consumer or no toxicological implications are involved. In this study, the migrations of Fe, Mg, Mn, Cr, Ni and Ca, along seven cooking cycles were evaluated for two food preparations (polished rice and commercial tomato sauce, the latter as an acid food), performed in unused stainless steel, cast iron and soapstone pans, taking refractory glass as a blank. Minerals were determined by inductively coupled plasma optical emission spectrometry (ICP OES). The utensils studied exhibited different rates, patterns and variability of migration depending on the type of food. Regression analysis of the data revealed that, as a function of the number of cycles, the iron pans released increasing amounts of iron when tomato sauce was cooked (y = 70.76x + 276.75; R2 = 0.77). The soapstone pans released calcium (35 and 26 mg/kg), magnesium (25 and 15 mg/kg) into the tomato sauce and rice preparations, respectively. Additionally, the commercial tomato sauce drew manganese (3.9 and 0.6 mg/kg) and some undesirable nickel (1.0 mg/kg) from the soapstone material, whereas the stainless steel pans released nickel at a lower rate than steatite and in a diminishing fashion with the number o cooking cycles, while still transferring some iron and chromium to the food. We conclude that while cast iron and glass could be best for the consumer's nutritional health, stainless steel and steatite can be used with relatively low risk, provided acid foods are not routinely prepared in those materials.

  15. Study of Distortion on the Example of the Rings from Ductile Iron and Cast Steel

    Directory of Open Access Journals (Sweden)

    Łukasik K.

    2017-12-01

    Full Text Available The paper attempts to analyze distortions of cast iron and cast steel rings, after heat treatment cycles. The factors influencing distortion are: chemical composition of material, sample geometry, manufacturing process, hardenability, temperature and heat treatment method. Standard distortion tests are performed on C-ring samples. We selected a ring-model, which approximate the actual part, so that findings apply to gear rings. Because distortion depends on so many variables, this study followed strictly defined procedures. The research was started by specifying the appropriate geometry of the samples. Then, the heat treatment was conducted and samples were measured again. The obtained results allow to determine the value of the resulting distortion and their admissibility. The research will be used to evaluate the possibility of using the material to produce parts of equipment operated under extreme load conditions.

  16. Study on the Influence of Nano-SiC on the Structure and Properties of Nodular Cast Iron

    Science.gov (United States)

    Zhu, Ruixiang; SU, Yong; Qin, Xinyu

    2017-10-01

    In this paper, the effect of adding Nano-SiC on the structure and mechanical properties of nodular cast iron during inoculation and spheroidizing process is mainly studied. Three sets of samples were set up: one group is without adding Nano-SiC, and the other two groups are adding Nano-SiC in the spheroidizing process and inoculation step. The three groups of castings were sampled from the core and 1/4 respectively and treated by isothermal quenching. The influences of Nano-SiC and heat treatment process on the microstructure and mechanical properties of nodular cast iron were discussed through the observation of impact work, hardness and metallographic structure of Vivtorinox. The experimental results show that with the addition of Nano-SiC, the spheroidization rate, spheroidization degree and graphitization of the graphite in casting structure are improved. In mechanical properties, the impact toughness of the samples with adding Nano-SiC during inoculation is the best, and the hardness of nodular cast iron can be improved. After heat treatment, the impact toughness of nodular cast iron samples increased obviously, but the hardness decreased generally.

  17. Review of current research and application of ductile cast iron quality monitoring technologies in Chinese foundry industry

    Directory of Open Access Journals (Sweden)

    Da-yong Li

    2015-07-01

    Full Text Available There is a long history of studying and making use of ductile cast iron in China. Over the years, the foundrymen in China have carried out a lot of valuable research and development work for measuring parameters and controlling the quality in ductile cast iron production. Many methods, such as rapid metallographic phase, thermal analysis, eutectic expansion ratio, surface tension measurement, melt electrical resistivity, oxygen and sulfur activity measurement, ultrasonic measurement and sound frequency measurement, have been used and have played important roles in Chinese casting production in the past. These methods can be generally classified as liquid testing and solid testing according to the sample state. Based on the analysis of the present situation of these methods applied in the Chinese metal casting industry, the authors consider that there are two difficult technical problems to be currently solved in monitoring ductile iron quality. One is to seek an effective method for quickly evaluating the nodularizing result through on-the-spot sample analysis before the liquid iron is poured into the mould. The other is to find a nondestructive method for accurately identifying casting quality before castings are delivered.

  18. Effect of Titanium Inoculation on Tribological Properties of High Chromium Cast Iron

    Directory of Open Access Journals (Sweden)

    Siekaniec D.

    2017-12-01

    Full Text Available The present investigation focuses on the study of the influence of titanium inoculation on tribological properties of High Chromium Cast Iron. Studies of tribological properties of High Chromium Cast Iron, in particularly the wear resistance are important because of the special application of this material. High Chromium Cast Iron is widely used for parts that require high wear resistance for example the slurry pumps, brick dies, several pieces of mine drilling equipment, rock machining equipment, and similar ones. Presented research described the effects of various amounts of Fe-Ti as an inoculant for wear resistance. The results of wear resistance were collated with microstructural analysis. The melts were conducted in industrial conditions. The inoculation was carried out on the stream of liquid metal. The following amount of inoculants have been used; 0.17% Fe-Ti, 0.33% Fe-Ti and 0.66% Fe-Ti. The tests were performed on the machine type MAN. The assessment of wear resistance was made on the basis of the weight loss. The experimental results indicate that inoculation improve the wear resistance. In every sample after inoculation the wear resistance was at least 20% higher than the reference sample. The best result, thus the smallest wear loss was achieved for inoculation by 0.66% Fe-Ti. There is the correlation between the changing in microstructure and wear resistance. With greater amount of titanium the microstructure is finer. More fine carbides do not crumbling so quickly from the matrix, improving the wear resistance.

  19. Influence of mean stress on fatigue strength of ferritic-pearlite ductile cast iron with small defects

    Science.gov (United States)

    Deguchi, T.; Kim, H. J.; Ikeda, T.; Yanase, K.

    2017-05-01

    Because of their excellent mechanical properties, low cost and good workability, the application of ductile cast iron has been increased in various industries such as the automotive, construction and rail industries. For safety designing of the ductile cast iron component, it is necessary to understand the effect of stress ratio, R, on fatigue limit of ductile cast iron in the presence of small defects. Correspondingly in this study, rotating bending fatigue tests at R = -1 and tension-compression fatigue tests at R = -1 and 0.1 were performed by using a ferritic-pearlitic ductile cast iron. To study the effects of small defects, we introduced a small drilled hole at surface of a specimen. The diameter and depth of a drilled hole were 50, 200 and 500 μm, respectively. The non-propagating cracks emanating from graphite particles and holes edge were observed at fatigue limit, irrespective of the value of stress ratio. From the microscopic observation of crack propagation behavior, it can be concluded that the fatigue limit is determined by the threshold condition for propagation of a small crack. It was found that the effect of stress ratio on the fatigue limit of ductile cast iron with small defects can be successfully predicted based on \\sqrt {area} parameter model. Furthermore, a use of the tensile strength, σ B, instead of the Vickers hardness, HV, is effective for fatigue limit prediction.

  20. FASHION THE KITCHEN: CAST IRON STOVES THE PROVINCE OF QUEBEC, 1900-1914

    Directory of Open Access Journals (Sweden)

    Lisa Baillargeon

    2010-01-01

    Full Text Available The role of aesthetics in the marketing strategies of Quebec’s foundries and retailers at the beginning of the 20th century is not well known. This qualitative analysis of published cast iron stove advertisements suggests that the use of aesthetics to market stoves was far more elaborate than the simple alignment with trendy or classic style categories. In fact, aesthetics were the cornerstone of advertising activities aimed at developing and capitalizing on various market segments at a time of burgeoning consumerism.

  1. Features of Wear-Resistant Cast Iron Coating Formation During Plasma-Powder Surfacing

    Science.gov (United States)

    Vdovin, K. N.; Emelyushin, A. N.; Nefed'ev, S. P.

    2017-09-01

    The structure of coatings deposited on steel 45 by plasma-powder surfacing of white wear-resistant cast iron is studied. The effects of surfacing regime and additional production effects on the welding bath during surfacing produced by current modulation, accelerated cooling of the deposited beads by blowing with air, and accelerated cooling of the substrate with running water on the structure, are determined. A new composition is suggested for powder material for depositing wear-resistant and corrosion-resistant coatings on a carbon steel by the plasma-powder process.

  2. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kiran M. Kothari, Gerard T. Pittard

    2004-01-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1--Program Management and Task 2--were completed in prior quarters while Task 3--Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves has progressed to installing prototype sleeves in cast iron test pipe segments. Efforts in this quarter continued to focus on Tasks 4--8, with significant progress made in each. Task 4 (Design, Fabricate and Test Patch Setting Robotic Train) progressed to the design of the control electronics and pneumatic system to inflate the bladder robotic patch setting module. Task 5 (Design & Fabricate Pipe-Wall Cleaning Robot Train with Pan/Zoom/Tilt Camera) continued with additional in-pipe testing required to

  3. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kiran M Kothari; Gerard T. Pittard

    2004-07-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple castiron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1 (Program Management) and Task 2 (Establishment of Detailed Design Specifications) were completed in prior quarters while Task 3 (Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves) has progressed to installing prototype sleeves in cast iron test pipe segments. Efforts in this quarter continued to focus on Tasks 4-8, with significant progress made in each. Task 4 (Design, Fabricate and Test Patch Setting Robotic Train) progressed to the design of the control electronics and pneumatic system to inflate the bladder robotic patch setting module. Task 5 (Design & Fabricate Pipe-Wall Cleaning Robot Train with Pan/Zoom/Tilt Camera

  4. 3-D Analysis of Graphite Nodules in Ductile Cast Iron Using FIB-SEM

    DEFF Research Database (Denmark)

    D'Angelo, Luca; Jespersen, Freja N.; MacDonald, A. Nicole

    Ductile cast iron samples were analysed in a Focused Ion Beam Scanning Electron Microscope, FIB-SEM. The focussed ion beam was used to carefully remove layers of the graphite nodules to reveal internal structures in the nodules. The sample preparation and milling procedure for sectioning graphite...... nodules is described and ef-fects of preparation methods discussed. It was found that nodules contain different types of inclusions. These were analysed for chemical composition and crystallography using energy dispersive spectrometry (EDS) and electron back-scatter patterns (EBSP). Location of inclusions...

  5. Effects of carbon and molybdenum on the microstructures of high chromium white cast irons

    International Nuclear Information System (INIS)

    Sinatora, Amilton; Ambrosio Filho, Francisco; Goldenstein, Helio; Fuoco, Ricardo; Albertin, Eduardo; Mei, Paulo Roberto

    1992-01-01

    The effects of 3 levels of carbon and 1.5% Mo addition on the solidification structures of a 15% chromium white cast iron were studied. The volume fraction of primary austenite and of eutectic carbides, as well as the number of carbide particles per unit length and the mean secondary dendrite arm spacing were measured. By means of thermal analysis, thermal arrest corresponding to the formation of the primary austenite and of the eutectic were determined. The increase in the carbon content and the addition of Mo led to lowering of the thermal arrests and to coarsening of the particles. (author)

  6. COMPUTER MODELING OF STRAINS ON PHASE BOUNDARIES IN DUCTILE CAST IRON AT HOT EXTRUSION

    Directory of Open Access Journals (Sweden)

    A. I. Pokrovsky

    2017-01-01

    Full Text Available The computer modeling of the strain distribution in the structure of ductile iron with ferrite-pearlite matrix and inclusions of spherical graphite dependence on increasing degree of deformation during direct hot extrusion was researched. Using a software system of finite-element analysis ANSYS the numerical values of the strains at the phase boundaries: ferrite-perlite, graphiteferrite and also inside the graphite inclusions were defined. The analysis of the strain distribution in the investigated structures was performed and local zones of increased strains were discovered. The results of modeling are compared with metallographic analysis and fracture patterns. The obtained results could be used in the prediction of fracture zones in the cast iron products. 

  7. Effect of Reclamation on the Skin Layer of Ductile Iron Cast in Furan Molds

    Science.gov (United States)

    Dańko, R.; Holtzer, M.; Górny, M.; Żymankowska-Kumon, S.

    2013-11-01

    The paper presents the results of investigations of the influence of the quality of molding sand with furan resin hardened by paratoluenesulfonic acid, on the formation of microstructure and surface quality of ductile iron castings. Within the studies different molding sands were used: molding sand prepared with fresh sand and molding sands prepared with reclaimed sands of a different purification degree, determined by the ignition loss value. Various concentrations of sulfur and nitrogen in the sand molds as a function of the ignition loss were shown in the paper. A series of experimental melts of ductile iron in molds made of molding sand characterized by different levels of surface-active elements (e.g., sulfur) and different gas evolution rates were performed. It was shown that there exists a significant effect of the quality of the sand on the formation of the graphite degeneration layer.

  8. Micro Raman Spectroscopy and Electron Probe Microanalysis of Graphite Spherulites and Flakes in Cast Iron

    Science.gov (United States)

    Pradhan, S. K.; Nayak, B. B.; Mohapatra, B. K.; Mishra, B. K.

    2007-10-01

    In this investigation, the evolution and formation of graphitized microstructure of cast iron has been studied by using micro Raman spectroscopy and electron probe microanalysis (EPMA). The samples were prepared by carbothermic reduction of iron ore powder by plasma smelting in an extended arc thermal plasma reactor. Magnesium was added in the ladle to spherodize the graphite. Elemental mapping of the sample across the spherulites and flakes was performed by EPMA. Raman scattering data were collected at different positions across graphite spherulites and flakes. Micro Raman analysis shows graphite peaks at 1350 cm-1 (D), 1580 cm-1 (G), and higher order graphite peaks for both spherulites and flakes. Additional peaks between 200 and 800 cm-1 are found to be present only in the case of spherulites. These extra peaks originate from cementite (Fe3C) present in and around the spherulites. It is inferred from the available experimental data that graphite spherulites are formed in areas richer in cementite.

  9. Effective and Economic Offloading of Diabetic Foot Ulcers in India with the Bohler Iron Plaster Cast.

    Science.gov (United States)

    Saikia, Priyanka; Hariharan, Rajalakshmi; Shankar, Nachiket; Gaur, Anil Kumar; Jose, Naveen Matthew

    2016-04-01

    Economic constraints are a major obstacle to the implementation of offloading casts in India. The aim of this study is to monitor the healing and activity limitations related to Bohler iron plaster cast (BIPC) when used for offloading diabetic neuropathic plantar foot ulcers. Thirty patients were cast for 1 month and evaluated for healing using the Pressure Ulcer Scale for Healing (PUSH), and for activity limitation using the Lower Extremity Functional Scale (LEFS). The change in the scores after intervention was the outcome measure. There was good healing as evidenced by a statistical difference in mean PUSH scores. The baseline PUSH score of 9.76-0.41 (T1-SEM) was greater than follow-up PUSH score of 6.32 + 0.41 (T2 + SEM) and the p value <0.0001. Improvement was seen in ulcer area, exudate, and tissue type. There was no mobility effect as there was no significant difference in LEFS. Significant negative correlation was there between PUSH and LEFS. The r value was less than -0.7 both at baseline and after intervention. The combined benefits of good healing, lack of affect on lower extremity function, the ease of application and dressing, and relative affordability make BIPC a commendable offloading modality for the management of diabetic plantar ulcers.

  10. Calorimetric analysis of heating and cooling process of nodular cast iron

    Directory of Open Access Journals (Sweden)

    Bińczyk F.

    2007-01-01

    Full Text Available The study presents the results of investigations of the thermal effects which take place during heating and cooling of samples of the nodular graphite cast iron taken from the stepped test casting of the wall thicknesses amounting to 5, 10, 15 and 20 mm. For investigations, a differential scanning calorimeter, type Multi HTC S60, was used. During heating, three endothermic effects related with pearlite decomposition, phase transformation α → γ, and carbon dissolution in austenite were observed on a DSC diagram. During cooling, two exothermic effects related with phase transformation γ→ α and pearlite formation were observed to consecutively take place on a DSC diagram. The values of the enthalpy of these processes differ and depend on the initial microstructure of the examined samples. The metallic matrix in 5 mm sample after the process of heating and cooling changes totally in favour of ferrite. The same effect, though less advanced in intensity, takes place in 10 mm sample, while in 15 and 20 mm samples the matrix constitution remains unchanged. The higher is the content of ferrite in samples, the stronger is the endothermic effect of the α → γ transformation and the weaker is the endothermic effect related with carbon dissolution in austenite. The total of the endothermic effects (heating is reduced, while that of the exothermic effects (cooling increases along with the increasing thickness of walls in a stepped test casting, from which samples for the investigations were taken.

  11. OBSERVATION OF FATIGUE CRACK PATHS IN NODULAR CAST IRON AND ADI MICROSTRUCTURES

    Directory of Open Access Journals (Sweden)

    Lukáš Bubenko

    2009-07-01

    Full Text Available When speaking about quality of construction materials, fatigue crack propagation resistance is one of the most important considered properties. That is essentially influenced by character of matrix. Here presented contribution deals with the fatigue crack propagation mode through the matrix of as-cast nodular cast iron (NCI and austempered ductile iron (ADI, whereas influence of microstructure has been considered and discussed. Experimental materials used in presented contribution were pearlitc-ferritic NCI and heat treated ADI 800. Pearlitic-ferritic NCI was used as the base for ADI production. Experiments were performed on mini round compact tension (RCT specimens using an Amsler vibrophore. Fatigue crack paths in both materials were investigated and compared. Light microscopy was used to analyze the microstructure, crack initiation and propagation within broken specimens. In both tested materials fatigue cracks always initiated at graphite-matrix interface, while graphite nodules remained generally unbroken, eventually only surface of nodules was damaged. Though, comparing two materials with different microstructures, the diversity of fatigue crack propagation modes at high deltaK and low deltaK was observed.

  12. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kiran M. Kothari; Gerard T. Pittard

    2005-07-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. Bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple castiron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs with the pipe in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, minimize excavation, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of old cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct safe repair operations on live mains.

  13. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kiran M. Kothari; Gerard T. Pittard

    2005-01-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast-iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1 (Program Management) and Task 2 (Establishment of Detailed Design Specifications) were completed in prior quarters while Task 3 (Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves) has progressed to installing prototype sleeves in cast-iron test pipe segments. Efforts in the current quarter continued to focus on Tasks 4-8. Highly valuable lessons were learned from field tests of the 4-inch gas pipe repair robot in cast-iron pipe at Public Service Electric & Gas. (These field tests were conducted and reported last quarter.) These tests identified several design issues which need to be implemented in both the small- and large

  14. Effect of Ethanolamines on Corrosion Inhibition of Ductile Cast Iron in Nitrite Containing Solutions

    International Nuclear Information System (INIS)

    Kim, K. T.; Kim, Y. S.; Chang, H. Y.; Lim, B. T.; Park, H. B.

    2016-01-01

    In this work, synergistic corrosion inhibition effect of nitrite and 3 kinds of ethanolamines on ductile cast iron using chemical and electrochemical methods was evaluated. This work attempts to clarify the synergistic effect of nitrite and ethanolamines. The effects of single addition of TEA, DEA, and MEA, and mixed addition of nitrite plus TEA, DEA or MEA on the corrosion inhibition of ductile cast iron in a tap water were evaluated. A huge amount of single addition of ethanolamine was needed. However, the synergistic effect by mixed addition was observed regardless of the combination of nitrite and triethanolamines, but their effects increased in a series of MEA + nitrite > DEA + nitrite > TEA + nitrite. This tendency of synergistic effect was attributed to the film properties and polar effect; TEA addition couldn't form the film showing high film resistance and semiconductive properties, but DEA or MEA could build the film having relatively high film resistance and n-type semiconductive properties. Moreover, it can be explained that this behaviour was closely related to electron attractive group within the ethanolamines, and thus corrosion inhibition power depends upon the number of the electron attractive group of MEA, DEA, and TEA.

  15. Effect of Ethanolamines on Corrosion Inhibition of Ductile Cast Iron in Nitrite Containing Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. T.; Kim, Y. S. [Andong National University, Andong (Korea, Republic of); Chang, H. Y.; Lim, B. T.; Park, H. B. [KEPCO Engineering and Construction Company, Gimcheon (Korea, Republic of)

    2016-08-15

    In this work, synergistic corrosion inhibition effect of nitrite and 3 kinds of ethanolamines on ductile cast iron using chemical and electrochemical methods was evaluated. This work attempts to clarify the synergistic effect of nitrite and ethanolamines. The effects of single addition of TEA, DEA, and MEA, and mixed addition of nitrite plus TEA, DEA or MEA on the corrosion inhibition of ductile cast iron in a tap water were evaluated. A huge amount of single addition of ethanolamine was needed. However, the synergistic effect by mixed addition was observed regardless of the combination of nitrite and triethanolamines, but their effects increased in a series of MEA + nitrite > DEA + nitrite > TEA + nitrite. This tendency of synergistic effect was attributed to the film properties and polar effect; TEA addition couldn't form the film showing high film resistance and semiconductive properties, but DEA or MEA could build the film having relatively high film resistance and n-type semiconductive properties. Moreover, it can be explained that this behaviour was closely related to electron attractive group within the ethanolamines, and thus corrosion inhibition power depends upon the number of the electron attractive group of MEA, DEA, and TEA.

  16. Dependency of tensile strength of ductile cast iron on strain rate and temperature

    Science.gov (United States)

    Ikeda, Tomohiro; Umetani, Takuo; Kai, Nobuhiro; Ogi, Keisaku; Noda, Nao-Aki; Sano, Yoshikazu

    2017-05-01

    The dependency of the tensile strength {σ }{{B}}{smooth} and the notch strength {σ }{{B}}{notch} on strain rate and temperature were investigated for conventional ferrite-pearlite type ductile cast iron (JIS-FCD500) to make clear the applicability of ductile cast iron to components for welded steel structures. High speed tensile tests were conducted on notched and smooth specimens with varying strain rate and temperature. Charpy absorbed energy was also evaluated on notched specimen with varying temperature. It is found that the tensile strength is in a good relationship with strain rate-temperature parameter R for the wide range of strain rate and temperature. With decreasing R parameter, both {σ }{{B}}{smooth} and {σ }{{B}}{notch} increase even when Charpy absorbed energy starts decreasing. It should be noted that the notch strength {σ }{{B}}{notch} is always larger than the tensile strength at room temperature {σ }{{B}, {RT}}{smooth} in the range of R parameter required for the welded structures. Therefore, the tensile strength {σ }{{B}, {RT}}{{smooth}} is confirmed to be useful for the structural design.

  17. Effect of Different Inoculants on Impact Toughness in High Chromium Cast Iron

    Directory of Open Access Journals (Sweden)

    Siekaniec D.

    2017-06-01

    Full Text Available The present work, presented the study of effect of different inoculants on impact toughness in High Chromium Cast Iron. The molds were pouring in industrial conditions and samples were tested in laboratory in Faculty of Foundry Engineering at AGH. Seven samples were tested - one reference sample, three with different addition of Fe-Ti, and three with different addition of Al. The samples were subjected to impact toughness on Charpy hammer and the hardness test. The presented investigations indicate that for the each inoculant there is an optimal addition at which the sample obtained the highest value of impact toughness. For the Fe-Ti it is 0.66% and for Al is 0.17%. Of all the examined inoculants best results were obtained at a dose of 0.66% Fe-Ti. Titanium is a well-known as a good modifier but very interesting results gives the aluminum. Comparing the results obtained for the Fe-Ti and Al can be seen that in the case of aluminum hardness is more stable. The hardness of all samples is around 40-45 HRC, which is not high for this type of cast iron. Therefore, in future studies it is planned to carry out the heat treatment procedure that may improves hardness.

  18. Extreme value statistics for pitting corrosion of old underground cast iron pipes

    International Nuclear Information System (INIS)

    Asadi, Zohreh Soltani; Melchers, Robert E.

    2017-01-01

    Many major city water supply distribution networks consist of buried cast iron pipes. In many cases the pipes are internally cement-lined and the predominant corrosion is by external pitting. This may cause leakage and eventual structural failure. It is conventional to use the Gumbel extreme value distribution to represent the statistics of maximum pits depth and to use it to estimate the probability of pipe wall perforation. Herein data obtained for maximum pit depths for large-sized (1–2 m long) samples of 10 pipes exhumed from different, apparently randomly selected, locations after 34–129 years of service are examined for consistency with the Gumbel probability distribution. This was the case for the deepest pits, but the data for less deep pits show a consistent pattern of departure from the Gumbel distribution. Some extreme pit depth data, inconsistent with the rest are interpreted as possibly caused by material imperfections. - Highlights: • A single Gumbel distribution does not describe the complete probability distribution for pits on the old cast iron pipes. • A multi-component probability distribution is required to describe all data. • Some Gumbel plots also show a small number of much deeper pits inconsistent with the other data.

  19. Environmental degradation of mechanical properties of grey cast iron with different copper contents

    International Nuclear Information System (INIS)

    Abdel-Rahman, M.; Abd El-Mageed, A.M.; Abu El-Ainin, H.M.

    1999-01-01

    In this work, different percentages of copper were added to grey cast iron to investigate its effect on microstructures, mechanical properties and corrosion behavior of the tested cast iron. Mechanical testing included hardness, tension, compression and impact, while corrosion testing was conducted by immersing specimens in 1 mol HC1 for different exposure times (120, 240, 360, 480, and 600 hrs). It was found that the copper addition had a remarkable effect on graphite morphology, as well as, pearlite and ferrite existing. Copper content proved to affect mechanical properties, improving these properties up to 2%, after which a decrease was noticed. Copper addition has no noticeable effect on percentage tensile strain to fracture, however, it has an obvious effect on the percentage compressive strain to fracture, especially for 2.0 % copper addition. The alloys containing 0.0 % and 1.0 % copper recorded the lower corrosion resistance, while those containing 2.0 % and 4.0 % copper addition gave the higher corrosion resistance. Also, the corrosion rate decreased with the increase of copper content. A change in the angle of fracture in compression was noticed for corroded specimens from about 55 to 90 degrees as exposure time increases. (author)

  20. ELABORATION OF MANAGEMENT PLAN OF SOLID WASTE FROM SMALL CAST IRON FOUNDRIES

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Mendes Moraes

    2013-12-01

    Full Text Available The foundry industry contributes to society meeting the demand of metal scrap recycling, but, at the same time, it brings a high risk of environmental impact for its many potentially pollutant wastes. Among these, there are slag and used foundry sand (cold cure molding. Through a survey about the production process of a small cast iron company, the collected data was compiled to determine the organizational setting in terms of generation and segregation of waste. From a complete environmental diagnosis carried out in eight small cast iron foundries, one of them was chosen to be a basis for the elaboration of an industrial solid waste management plan, which is becoming necessary to know and manage the generation of wastes qualitatively and quantitatively. A data assessment about the production process was carried out and compiled to determine the actual organizational scenario. As a result of that, it is possible to create a favorable environment to develop tools for environmental impacts prevention, which will permit the migration for more complex actions on the direction of more efficient process, cleaner production, and internal and external recycling of exceeding materials.

  1. Fuzzy rule based classification and quantification of graphite inclusions from microstructure images of cast iron.

    Science.gov (United States)

    Prakash, Pattan; Mytri, V D; Hiremath, P S

    2011-12-01

    The quantification of three classes of graphite inclusions in cast iron, namely, nodular, flake, and irregular, is the most important process in the foundry industry. This classification is based on the ISO 945 proposed morphology of graphite inclusions. This work presents a novel solution for automatic quantitative analysis of graphite inclusions into the three mentioned classes. The proposed work comprises three stages, namely, preprocessing of micrographs, classification of graphite inclusions, and then quantification of inclusions in each class. An effort has been made in this work to propose a minimum set of features to represent graphite inclusion morphology. The method employs just two geometric shape descriptors: the diameter ratio and the area ratio. A fuzzy rule based classifier is built using known feature values that are efficient in the classification of the three classes of graphite inclusions. The proposed method is automatic, fast, and provides the basis for determining many more morphological parameters that can be determined with the least effort. The results obtained by the proposed method are compared with the manual method. It is observed that the results obtained from the proposed method are useful in the optimization of cast iron manufacturing in the foundry industry.

  2. Fracture toughness in the transition region of a carbon steel and a ferritic nodular cast iron

    International Nuclear Information System (INIS)

    Nakano, Keishi; Yasunaka, Takashi

    1995-01-01

    In order to characterize the fracture toughness in the ductile-brittle transition region for thick-walled cylinders of ASME SA350 Gr.LF5 carbon steel and JIS FCD300LT ferritic nodular cast iron, elastic-plastic fracture toughness tests were carried out. The specimens were fatigue precracked compact tension (CT) specimens of 25mm in thickness. The tensile testing machines used were Instron type, electrohydraulic type and drop-weight type ones. In the static fracture toughness test on a FCD300LT cast iron, CT specimens were often fractured at somewhat higher loads after the initiation of pop-in cracks. Although the scatter of pop-in fracture toughness was small, the values of critical J-integral at the unstable brittle fracture scattered largely. In the transition region of SA350 steel, the initiation of pop-in crack was not observed, and fracture toughness scattered largely. At the propagation of the unstable crack near the transition temperature, the Weibull distribution provides good fits for the critical CTOD and the critical J-integral. This distribution can be mainly interpreted by the scatter of the distance between the precrack tip and the origin of unstable brittle fracture. (author)

  3. National Metal Casting Research Institute final report. Development of an automated ultrasonic inspection cell for detecting subsurface discontinuities in cast gray iron. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Burningham, J.S. [University of Northern Iowa, Cedar Falls, IA (United States). Dept. of Industrial Technology

    1995-08-01

    This inspection cell consisted of an ultrasonic flaw detector, transducer, robot, immersion tank, computer, and software. Normal beam pulse-echo ultrasonic nondestructive testing, using the developed automated cell, was performed on 17 bosses on each rough casting. Ultrasonic transducer selection, initial inspection criteria, and ultrasonic flow detector (UFD) setup parameters were developed for the gray iron castings used in this study. The software were developed for control of the robot and UFD in real time. The software performed two main tasks: emulating the manual operation of the UFD, and evaluating the ultrasonic signatures for detecting subsurface discontinuities. A random lot of 105 castings were tested; the 100 castings that passed were returned to the manufacturer for machining into finished parts and then inspection. The other 5 castings had one boss each with ultrasonic signatures consistent with subsurface discontinuities. The cell was successful in quantifying the ultrasonic echo signatures for the existence of signature characteristics consistent with Go/NoGo criteria developed from simulated defects. Manual inspection showed that no defects in the areas inspected by the automated cell avoided detection in the 100 castings machined into finished parts. Of the 5 bosses found to have subsurface discontinuities, two were verified by manual inspection. The cell correctly classified 1782 of the 1785 bosses (99.832%) inspected.

  4. THE EFFECT OF PREPARATION CONDITIONS OF RAPIDLY SOLIDIFIED IRON BASED GRANULES ON PROPERTIES OF COMPOSITE MATERIAL FORMED BY CASTING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2017-01-01

    Full Text Available The variety of requirements for friction pairs requires the development of different technologies for the production of tribological materials with reference to the operation modes. Composite materials obtained by the casting technology have been successfully applied for the normalization of the thermomechanical state of the steam turbines. These composites consist of the matrix based on copper alloys reinforced with cast iron granules. Because the structure and properties of cast iron are determined by the conditions of their production studies have been conducted on determination of preparation conditions on grain structure and properties of the synthesized composite material. Using an upgraded unit for production of granules technological regimes were determined providing narrow fractional composition. It has been found that granules formed are characterized with typical microstructure of white cast iron containing perlite and ledeburite. Microhardness of pilot cast iron granules is characterized by high values (from 7450 up to 9450 MPa and depends on the size of the fraction. Composite materials obtained using experimental granules had a microhardness of the reinforcing cast iron granules about 3500 MPa, and a bronze matrix – 1220 MPa, which is higher than the hardness of the composite material obtained by using the annealed DCL-1granules (2250 MPa. Metal base of experimental granules in the composite material has the structure of perlitic ductile iron with inclusions of ferrite not exceeding 10–15% and set around a flocculent graphite. As a result, the increase of physical-mechanical properties of finished products made of composite material is observed. 

  5. Study of carbon and silicon loss through oxidation in cast iron base metal using rotary furnace for melting

    Directory of Open Access Journals (Sweden)

    Sylvester Olanrewaju OMOLE

    2015-05-01

    Full Text Available The projection of loss of carbon and silicon through oxidation is uncertain phenomenon depending on the furnace used for melting, which affect the carbon equivalent value (CEV of cast iron produced. CEV enhances the fluidity of molten metal as well as having great effects on the mechanical properties of cast products. Study on the way elemental loss takes place during melting with rotary furnace will give idea of approach to minimize the loss. Therefore, the aim of this work is to study the magnitude of the elemental loss with rotary furnace and means to minimize the loss. 60kg of grey cast iron scrap was charged into rotary furnace of 100kg capacity after preheating the furnace for 40 minutes. Graphite and ferrosilicon was added to the charge in order to obtain a theoretical composition of not less than 4.0% carbon and 2.0% silicon. Charges in the furnace were heated to obtain molten metal which was tapped at 1400°C. Tapping was done for casting at three different times. The castings solidified in sand mould and allowed to cool to room temperature in the mould. Castings were denoted as sample 1, 2 and 3. Final compositions of each casting were analyzed with optical light emission spectrometer. Sample 1 has 2.95% carbon and 1.82% silicon. Sample 2 has 2.88% carbon and 1.70% silicon and sample 3 has 2.75% carbon and 1.63% silicon.

  6. UNDERSTANDING CHLORINE AND CHLORAMINE DECAY KINETICS IN OLD CAST IRON PIPES, 2. CONVERSION FROM CONVENTIONAL TREATMENT TO MICROFILTRATION IN A SMALL WATER SYSTEM

    Science.gov (United States)

    This insitu pipe loop study was designed to determine the disinfectant kinetics associated with very old unlined cast iron pipelines with both chlorine and chloramination residuals. An abandoned 90-year-old unlined cast iron pipeline about 2000 ft long was acclimated to conduct a...

  7. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kiran M. Kothari; Gerard T. Pittard

    2005-04-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast-iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of old cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1 (Program Management) and Task 2 (Establishment of Detailed Design Specifications) were completed previously. Task 3 (Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves) has progressed to installing prototype sleeves in test cast-iron pipe segments. Efforts in the current quarter continued to be focused on Tasks 4-8. Highly valuable lessons were learned from field tests of the 4-inch gas pipe repair robot in cast-iron pipe at Public Service Electric & Gas. (These field tests were conducted and reported previously.) Several design issues were identified which need to be implemented in both the small- and large-diameter repair

  8. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kiran M. Kothari; Gerard T. Pittard

    2004-11-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple castiron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1 (Program Management) and Task 2 (Establishment of Detailed Design Specifications) were completed in prior quarters while Task 3 (Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves) has progressed to installing prototype sleeves in cast iron test pipe segments. Efforts in this quarter continued to focus on Tasks 4-8, with significant progress made in each as well as field testing of the 4-inch gas pipe repair robot in cast iron pipe at Public Service Electric & Gas. The field tests were conducted August 23-26, 2004 in Oradell, New Jersey. The field tests identified several design issues which need to be implemented in both the small

  9. Reductive dehalogenation of endosulfan by cast iron: Kinetics, pathways and modeling.

    Science.gov (United States)

    Lama, Yangdup; Sinha, Alok; Singh, Gurdeep; Masto, Reginald E

    2016-05-01

    Cast iron has been a material of choice for in-situ remediation of groundwater. In this study interaction of endosulfan with High Carbon Iron Filings (HCIF) was studied in batch reactors. Decline in total concentration (Ct) could be related to aqueous concentration (Ca) by equation dCt/dt = k1.M.Ca(n), where reaction rate constant (k1) and order (n) were found to be 1.246 × 10(-4) L g(-1) iron h(-1) and 1.47, respectively. Partitioning of endosulfan to HCIF could be explained by Freundlich isotherm. The process of simultaneous reductive dehalogenation and adsorption/desorption was successfully modelled. The reductive dehalogenation of endosulfan resulted in by-products identified as [(3a, alpha,7beta,7a alpha,8s)-4,5,6,7,8 Pentachloro 3a,4,7,7a-tetrahydro] (C9H3Cl5O3) and Benzofuran,4,5,7-trichloro-2,3-dihydro-2-methyl (C9H7Cl3O). Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Effect of graphite on folded metal occurrence in honed surfaces of grey and compacted cast irons

    Science.gov (United States)

    do Vale, João Luiz; da Silva, Carlos Henrique; Pintaúde, Giuseppe

    2017-09-01

    Grey cast iron (GCI) and compacted graphite iron (CGI) are the most employed materials to manufacture cylinder liners. The use of diamond tools to hone the surfaces resulted in an increase of the so-called folded metal occurrence. This irregularity can reduce the performance of engines and investigations to understand it have been made. In this sense, the current study aims to correlate the variation of graphite and the folded metal occurrence. Different samples of GCI and CGI were extracted directly of engine blocks, resulting in four metallurgical conditions. Topographical analysis was conducted in an optical interferometer and a dedicated routine to count the folded metal was developed using 3D images. Folded metal occurrence can be associated to a specific region of topography and to an increase in the graphite area fraction. Experimental evidences were provided revealing cross-sectional images of grooves using a scanning electron microscope. In addition, the present investigation shows that a larger amount of folded metal was related to the microstructure of thicker walls of compact graphite iron.

  11. Comparison of residual stresses in sand- and chill casting of ductile cast iron wind turbine main shafts

    DEFF Research Database (Denmark)

    Sonne, Mads Rostgaard; Frandsen, J. O.; Hattel, Jesper Henri

    2015-01-01

    In this work, simulations of pouring, solidification and cooling, and residual stress evolution of sand and chill cast wind turbine main shafts is performed. The models are made in the commercial software MAGMAsoft. As expected, the cooling rate of the sand casting is shown to be much lower than ...

  12. Neutralization of the negative influence of iron and silicon on the mechanical properties of aluminium casting alloys

    International Nuclear Information System (INIS)

    Zolotorevsky, V.S.; Axenov, A.A.; Belov, N.A.

    1990-01-01

    In most of casting aluminium alloys iron is a harmful impurity due to the appearance of rough particles with needle, plate or sceleton shapes of intermetallic compounds during crystallization. As a result of it the plasticity, fracture toughness and sometimes the strength are decreased

  13. Thick Co-based coating on cast iron by side laser cladding : Analysis of processing conditions and coating properties

    NARCIS (Netherlands)

    Ocelik, V.; de Oliveira, U.; de Boer, M.; de Hosson, J. Th. M.

    2007-01-01

    The objective of this work was to create Co-based coatings (compositionally close to Stellite 6) on compacted graphite and gray cast iron,substrates with a high power laser (2 kW continuous Nd:YAG) cladding process. The relationships between the relevant laser cladding parameters (i.e. laser beam

  14. 75 FR 54595 - Certain Iron Construction Castings From Brazil, Canada, and the People's Republic of China: Final...

    Science.gov (United States)

    2010-09-08

    ... participate in these sunset reviews from the domestic interested parties, East Jordan Iron Works, Inc., Neenah... number 7325.10.0010; and to valve, service, and meter boxes which are placed below ground to encase water, gas, or other valves, or water and gas meters, classifiable as light castings under HTS item number...

  15. Modeling of damage in ductile cast iron – The effect of including plasticity in the graphite noduless

    DEFF Research Database (Denmark)

    Andriollo, Tito; Thorborg, Jesper; Tiedje, Niels Skat

    2015-01-01

    In the present paper a micro-mechanical model for investigating the stress-strain relation of ductile cast iron subjected to simple loading conditions is presented. The model is based on a unit cell containing a single spherical graphite nodule embedded in a uniform ferritic matrix, under the ass...

  16. Imposed Thermal Fatigue and Post-Thermal-Cycle Wear Resistance of Biomimetic Gray Cast Iron by Laser Treatment

    Science.gov (United States)

    Sui, Qi; Zhou, Hong; Zhang, Deping; Chen, Zhikai; Zhang, Peng

    2017-08-01

    The present study aims to create coupling biomimetic units on gray cast iron substrate by laser surface treatment (LST). LSTs for single-step (LST1) and two-step (LST2) processes, were carried out on gray cast iron in different media (air and water). Their effects on microstructure, thermal fatigue, and post-thermal-cycle wear (PTW) resistance on the specimens were studied. The tests were carried out to examine the influence of crack-resistance behavior as well as the biomimetic surface on its post-thermal-cycle wear behavior and different units, with different laser treatments for comparison. Results showed that LST2 enhanced the PTW behaviors of gray cast iron, which then led to an increase in its crack resistance. Among the treated cast irons, the one treated by LST2 in air showed the lowest residual stress, due to the positive effect of the lower steepness of the thermal gradient. Moreover, the same specimen showed the best PTW performance, due to its superior crack resistance and higher hardness as a result of it.

  17. 76 FR 5333 - Non-Malleable Cast Iron Pipe Fittings from the People's Republic of China: Preliminary Results of...

    Science.gov (United States)

    2011-01-31

    ... are finished and unfinished non- malleable cast iron pipe fittings with an inside diameter ranging...), or push on ends (PO), or flanged ends and produced to the American Water Works Association (AWWA..., labor and packing. \\16\\ See Tapered Roller Bearings and Parts Thereof, Finished or Unfinished, From the...

  18. Emission of organic compounds from mould and core binders used for casting iron, aluminium and bronze in sand moulds

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat; Crepaz, Rudolf; Eggert, Torben

    2010-01-01

    of binders was monitored when cast iron, bronze and aluminium was poured in the moulds. Binder degradation was measured by collecting off gasses in a specially designed ventilation hood at a constant flow rate. Samples were taken from the ventilation system and analysed for hydrocarbons and CO content...

  19. Nitride precipitation during high temperature corrosion of ductile cast irons in synthetic exhaust gases

    Science.gov (United States)

    Tholence, F.; Norell, M.

    2005-02-01

    Internal nitrides form in two ductile cast irons (SiMo and Ni-Resist) intended for exhaust systems in vehicles. Samples oxidised at 650 1050 °C for 50 h in modified synthetic exhaust gases were analysed by using AES and FEG-SEM. No nitrides formed in absence of NOx. In dry petrol gas coarse nitrides (resistance of the alloy. In diesel and in normal petrol gases μ-sized MgSiN2 form in SiMo in cell boundaries where Mg segregates. This also occurs in Ni-Resist in both dry and normal petrol whereas no nitrides were observed in Ni-Resist exposed to diesel gases.

  20. Damaging micromechanisms characterization in a ferritic-pearlitic ductile cast iron

    Directory of Open Access Journals (Sweden)

    Vittorio Di Cocco

    2014-10-01

    Full Text Available The analysis of the damaging micromechanisms in Ductile Cast Irons is often focused on ferritic matrix. Up to ten years ago, for this grades of DCIs, the main damaging micromechanism was identified with the graphite elements – ferritic matrix debonding. More recent experimental results showed the presence of an internal gradient of mechanical properties in the graphite elements and the importance of other damaging micromechanisms, with a negligible importance of the graphite elements – ferritic matrix debonding mechanism. In this work, damaging micromechanisms development in a ferritic – pearlitic DCI have been investigated by means of tensile tests performed on mini-tensile specimens and observing the specimens lateral surfaces by means of a scanning electro microscope (SEM during the tests (“in-situ” tests. Experimental results have been compared with the damaging micromechanisms observed in fully ferritic and fully pearlitic DCIs.

  1. Study of the Eutectoid Transformation in Nodular Cast Irons in Relation to Solidification Microsegregation

    Science.gov (United States)

    Freulon, Alexandre; de Parseval, Philippe; Josse, Claudie; Bourdie, Jacques; Lacaze, Jacques

    2016-11-01

    Eutectoid transformation in cast irons may proceed in the stable or the metastable systems giving ferrite and graphite for the former and pearlite for the latter. The present work demonstrates that composition profiles across ferrite/pearlite boundaries are smooth and similar to those issued from the solidification step. No trace of long-range diffusion of substitutional solutes due to austenite decomposition could be observed. In turn, this ascertains that both stable and metastable transformations proceed with the product matrix—either ferrite or pearlite—inheriting the parent austenite content in substitutional solutes. This result sustains a physical model for eutectoid transformation based on the so-called local para-equilibrium which is commonly used for describing solid-state transformation in steels.

  2. Droplet impinging behavior on surfaces: Part II - Water on aluminium and cast iron surfaces

    Science.gov (United States)

    Sangavi, S.; Balaji, S.; Mithran, N.; Venkatesan, M.

    2016-09-01

    Droplet cooling of metal surfaces is an important area of research in industrial applications such as material quenching, nozzle spraying, etc. Fluids (water) act as an excellent agent in heat transfer to remove excess heat in various processes by convection and conduction. Such cooling process varies the material properties. The bubbles formed during droplet impinging on the surface act as heat sink and causes variation of height and spreading radius of the droplet with increase in temperature. In the present work, an experimental study of the droplet impinging behavior on Aluminium and Cast iron surfaces is reported. The water droplets are made to fall on the surface of the specimens from a specific height, which also influences the spreading radius. The effect of temperature on droplet height and droplet spreading radius is detailed.

  3. Microstructure and wear resistance of high chromium cast iron containing niobium

    Directory of Open Access Journals (Sweden)

    Zhang Zhiguo

    2014-05-01

    Full Text Available In the paper, the effect of niobium addition on the microstructure, mechanical properties and wear resistance of high chromium cast iron has been studied. The results show that the microstructure of the heat-treated alloys is composed of M7C3 and M23C6 types primary carbide, eutectic carbide, secondary carbide and a matrix of martensite and retained austenite. NbC particles appear both inside and on the edge of the primary carbides. The hardness of the studied alloys maintains around 66 HRC, not significantly affected by the Nb content within the selected range of 0.48%-0.74%. The impact toughness of the alloys increases with increasing niobium content. The wear resistance of the specimens presents little variation in spite of the increase of Nb content under a light load of 40 N. However, when heavier loads of 70 and 100 N are applied, the wear resistance increases with increasing Nb content.

  4. A Journey across Multidirectional Connections: Linda Grant’s The Cast Iron Shore

    Directory of Open Access Journals (Sweden)

    Silvia Pellicer-Ortín

    2015-10-01

    Full Text Available Among the numerous groups that have negotiated their fragmented identities through various literary practices in the last few decades, the Jewish collective has come to symbolize the epitome of diaspora and homelessness. In particular, British-Jewish writers have recently started to reconstruct their fragmented memories through writing. This is an extremely interesting phenomenon in the case of those Jewish women who are fiercely struggling to find some sense of personhood as Jewish, British, female, immigrant subjects. Linda Grant’s novel The Cast Iron Shore will be analyzed so as to unveil the narrative mechanisms through which many of the identity tensions experienced by contemporary Jewish women are exhibited. The different stages in the main character’s journey will be examined by drawing on theories on the construction of Jewish identity and femininity, and by applying the model of multidirectional memory fostered by various contemporary thinkers such as Michael Rothberg, Stef Craps, Max Silverman, and Bryan Cheyette. The main claim to be demonstrated is that this narration links the (histories of oppression and racism endured both by the Jewish and the Black communities in order to make the protagonist encounter the Other, develop her mature political self, and liberate her mind from rigid religious, patriarchal, and racial stereotypes. The Cast Iron Shore becomes, then, a successful attempt to demonstrate that the (histories of displacement endured by divergent communities during the twentieth century are connected, and it is the establishment of these connections that can help contemporary Jewish subjects to claim new notions of their personhood in the public sphere.

  5. Improving tribological performance of gray cast iron by laser peening in dynamic strain aging temperature regime

    Science.gov (United States)

    Feng, Xu; Zhou, Jianzhong; Mei, Yufen; Huang, Shu; Sheng, Jie; Zhu, Weili

    2015-09-01

    A high and stable brake disc friction coefficient is needed for automobile safety, while the coefficient degrades due to elevated temperature during the braking process. There is no better solution except changes in material composition and shape design optimization. In the dynamic strain aging(DSA) temperature regime of gray cast iron, micro-dimples with different dimple depth over diameter and surface area density are fabricated on the material surface by laser peening(LP) which is an LST method. Friction behavior and wear mechanism are investigated to evaluate the effects of surface texturing on the tribological performance of specimens under dry conditions. Through LP impacts assisted by DSA, the friction coefficients of the LPed specimens increase noticeably both at room temperature and elevated temperature in comparison to untreated specimens. Moreover, the coefficient of specimen with dimple depth over diameter of 0.03 and surface area density of 30% is up to 0.351 at room temperature, which dramatically rises up to 1.33 times that of untextured specimen and the value is still up to 0.3305 at 400°C with an increasing ratio of 35% compared to that of untreated specimen. The surface of textured specimen shows better wear resistance compared to untreated specimen. Wear mechanism includes adhesive wear, abrasive wear and oxidation wear. It is demonstrated that LP assisted by DSA can substantially improve wear resistance, raise the friction coefficient as well as its stability of gray cast iron under elevated temperatures. Heat fade and premature wear can be effectively relieved by this surface modification method.

  6. Production of Selected Key Ductile Iron Castings Used in Large-Scale Windmills

    Science.gov (United States)

    Pan, Yung-Ning; Lin, Hsuan-Te; Lin, Chi-Chia; Chang, Re-Mo

    Both the optimal alloy design and microstructures that conform to the mechanical properties requirements of selected key components used in large-scale windmills have been established in this study. The target specifications in this study are EN-GJS-350-22U-LT, EN-GJS-350-22U-LT and EN-GJS-700-2U. In order to meet the impact requirement of spec. EN-GJS-350-22U-LT, the Si content should be kept below 1.97%, and also the maximum pearlite content shouldn't exceed 7.8%. On the other hand, Si content below 2.15% and pearlite content below 12.5% were registered for specification EN-GJS-400-18U-LT. On the other hand, the optimal alloy designs that can comply with specification EN-GJS-700-2U include 0.25%Mn+0.6%Cu+0.05%Sn, 0.25%Mn+0.8%Cu+0.01%Sn and 0.45%Mn+0.6%Cu+0.01%Sn. Furthermore, based upon the experimental results, multiple regression analyses have been performed to correlate the mechanical properties with chemical compositions and microstructures. The derived regression equations can be used to attain the optimal alloy design for castings with target specifications. Furthermore, by employing these regression equations, the mechanical properties can be predicted based upon the chemical compositions and microstructures of cast irons.

  7. Misorientations in spheroidal graphite: some new insights about spheroidal graphite growth in cast irons

    Science.gov (United States)

    Lacaze, J.; Theuwissen, K.; Laffont, L.; Véron, M.

    2016-03-01

    Local diffraction patterning, orientation mapping and high resolution transmission electron microscopy imaging have been used to characterize misorientations in graphite spheroids of cast irons. Emphasis is put here on bulk graphite, away from the nucleus as well as from the outer surface of the spheroids in order to get information on their growth during solidification. The results show that spheroidal graphite consists in conical sectors made of elementary blocks piled up on each other. These blocks are elongated along the prismatic a direction of graphite with the c axes roughly parallel to the radius of the spheroids. This implies that the orientation of the blocks rotates around the spheroid centre giving low angle tilting misorientations along tangential direction within each sector. Misorientations between neighbouring sectors are of higher values and their interfaces show rippled layers which are characteristic of defects in graphene. Along a radius of the spheroid, clockwise and anticlockwise twisting between blocks is observed. These observations help challenging some of the models proposed to explain spheroidal growth in cast ions.

  8. Development of spheroidized graphite cast iron material for spent fuel transport and storage cask and investigation of its mechanical properties

    International Nuclear Information System (INIS)

    Tsumura, O.; Shimizu, S.; Murata, M.; Tanaka, Y.; Maruoka, M.; Sato, I.; Suzuki, K.

    1993-01-01

    We manufactured a 500mm thick ferrite base, spheroidized graphite cast iron cylindrical casting with a circular bottom (2000mm outside diameter and 2000mm height) for trial purpose. We then investigated the basic quality and performance by sampling specimens from various locations of the product. The results of the study can be summarized as follows. (1) Although there were some casting wrinkles, the overall surface of the casting was found to be good, without blowholes and other defects. (2) The nodularity tended to decline at the center of the interior where solidification occurred slowly. However, the nodularity was more than 75%, and no abnormal graphite was observed. Similarly, the ferrite area ratio had a tendency to decrease at the center, but it remained at more than 95%. (J.P.N.)

  9. Combination of microscopic model and VoF-multiphase approach for numerical simulation of nodular cast iron solidification

    Science.gov (United States)

    Subasic, E.; Huang, C.; Jakumeit, J.; Hediger, F.

    2015-06-01

    The ongoing increase in the size and capacity of state-of-the-art wind power plants is highlighting the need to reduce the weight of critical components, such as hubs, main shaft bearing housings, gear box housings and support bases. These components are manufactured as nodular iron castings (spheroid graphite iron, or SGI). A weight reduction of up to 20% is achievable by optimizing the geometry to minimize volume, thus enabling significant downsizing of wind power plants. One method for enhancing quality control in the production of thick-walled SGI castings, and thus reducing tolerances and, consequently, enabling castings of smaller volume is via a casting simulation of mould filling and solidification based on a combination of microscopic model and VoF-multiphase approach. Coupled fluid flow with heat transport and phase transformation kinetics during solidification is described by partial differential equations and solved using the finite volume method. The flow of multiple phases is described using a volume of fluid approach. Mass conservation equations are solved separately for both liquid and solid phases. At the micro-level, the diffusion-controlled growth model for grey iron eutectic grains by Wetterfall et al. is combined with a growth model for white iron eutectic grains. The micro-solidification model is coupled with macro-transport equations via source terms in the energy and continuity equations. As a first step the methodology was applied to a simple geometry to investigate the impact of mould-filling on the grey-to-white transition prediction in nodular cast iron.

  10. Iron-rich basalt-type waste forms for transuranic and low-level waste containment: evaluation of electromelt castings

    International Nuclear Information System (INIS)

    Flinn, J.E.; Kelsey, P.V. Jr.; Tallman, R.L.; Henslee, S.P.; Seymour, W.C.

    1980-04-01

    Seven castings, 90 kg each, were produced by an electromelt process. The melts were solidified in thin-walled mild or galvanized steel containers. The containers showed no evidence of interaction with the slag. Four of the castings, designated as A-series (average INEL transuranic (TRU)/low-level-waste composition plus soil additions), were subjected to more detailed examinations, including sectioning into half pairs and subsequent evaluation. Examinations showed that bulk defects in castings were crust formation, center cavity porosity, and minor cracking. Specimens removed from the castings at selected locations showed that density and chemical composition were relatively uniform within each casting. Casting microstructure showed a 75 to 90% devitrification. Crystalline-phase types were pyroxene (diopside and hedenbergite) and spinel. The amount of spinel in A-series castings was dependent on both the iron content and Fe 2+ /Fe 3+ ratio. Leach data on slag specimens showed comparable leach rates, based on weight-loss measurements and elemental analyses of spent leachants. Splitting tensile strengths and fracture toughness values from slag specimens used in this study are less than those measured for borosilicate glass

  11. Galvanic corrosion of copper-cast iron couples in relation to the Swedish radioactive waste canister concept

    International Nuclear Information System (INIS)

    Smart, N.R.; Fennell, P.A.H.; Rance, A.P.; Werme, L.O.

    2004-01-01

    To ensure the safe encapsulation of spent nuclear fuel rods for geological disposal, SKB are considering using the Copper-Iron Canister, which consists of an outer copper canister and an inner cast iron container. The canister will be placed into boreholes in the bedrock of a geologic repository and surrounded by bentonite clay. In the unlikely event of the outer copper canister being breached, water could enter the annulus between the inner and outer canister and at points of contact between the two metals there would be a possibility of galvanic interactions. To study this effect, copper-cast iron galvanic couples were set up in a number of different environments representing possible conditions in the SKB repository. The tests investigated two artificial pore-waters and a bentonite slurry, under aerated and deaerated conditions, at 30 deg. C and 50 deg. C. The currents passing between the coupled electrodes and the potential of the couples were monitored for several months. In addition, some bimetallic crevice specimens based on the multi-crevice assembly (MCA) design were used to simulate the situation where the copper canister will be in direct contact with the cast iron inner vessel. The effect of growing an oxide film on the surface of the cast iron prior to coupling it with copper was also investigated. The electrochemical results are presented graphically in the form of electrode potentials and galvanic corrosion currents as a function of time. The galvanic currents in aerated conditions were much higher than in deaerated conditions. For example, at 30 deg. C, galvanic corrosion rates as low as 0.02 μm/year were observed for iron in groundwater after de-aeration, but of the order of 100 μm/year for the cast iron at 50 deg. C in the presence of oxygen. The galvanic currents were generally higher at 50 deg. C than at 30 deg. C. None of the MCA specimens exhibited any signs of crevice corrosion under deaerated conditions. It will be shown that in deaerated

  12. Influence of the Mn content on the kinetics of austempering transformation in compacted graphite cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Desimoni, J.; Gregorutti, R.; Laneri, K.; Sarutti, J.L.; Mercader, R.C.

    1999-11-01

    Moessbauer spectroscopy has been used to monitor the kinetics of austempering transformation in two compacted graphite (CG) cast irons alloyed with 0.11 and 0.58 wt pct of Mn, respectively. The phase relations were analyzed in terms of the Johnson-Mehl's equation, determining the kinetics parameters n (time exponent) and k (constant rate of the transformation). The values obtained were n = 1.4 and k = 7.47 x 10{sup {minus}3} s{sup {minus}1} for the low-Mn alloy, and n = 2.2 and k = 3.9 x 10{sup {minus}3} s{sup {minus}1} for the high-Mn alloy. These results, which reveal a faster kinetics for the low-Mn alloy, are coherent with metallographic observations, and the driving force obtained through the determination of the austenite carbon concentration that was determined from the Moessbauer data using the Genins model for the Fe-C configurations in the fcc lattice. The kinetics parameters are further compared to those obtained in austempered ductile iron (ADI), by analyzing the graphite morphology influence on the austempering transformation.

  13. TiC Reinforcement Composite Coating Produced Using Graphite of the Cast Iron by Laser Cladding.

    Science.gov (United States)

    Liu, Yanhui; Qu, Weicheng; Su, Yu

    2016-09-30

    In this study, a TiC-reinforced composite coating was produced to improve the wear resistance of a pearlite matrix grey iron using a pre-placed Ti powder by laser cladding. Results of scanning electron microscopy (SEM), X-ray diffractometer (XRD), and energy dispersive X-ray spectroscopy (EDS) confirmed that the coating was composed of TiC particles and two kinds of α -Fe phase. The fine TiC particles were only a few microns in size and uniformly distributed on the matrix phase in the composite coating. The microstructure characteristic of the composite coating resulted in the microhardness rising to about 1000 HV0.3 (China GB/T 4342-1991) and the wear resistance significantly increased relative to the substrate. In addition, the fine and homogeneous solidification microstructure without graphite phase in the transition zone led to a good metallurgical bonding and transition between the coating and the substrate. It was of great significance for the cast iron to modify the surface and repair surface defects or surface damage.

  14. Influence of Casting Section Thickness on Fatigue Strength of Austempered Ductile Iron

    Science.gov (United States)

    Olawale, J. O.; Ibitoye, S. A.

    2017-10-01

    The influence of casting section thickness on fatigue strength of austempered ductile iron was investigated in this study. ASTM A536 65-45-12 grade of ductile iron was produced, machined into round samples of 10, 15, 20 and 25 mm diameter, austenitized at a temperature of 820 °C, quenched into an austempering temperature (TA) of 300 and 375 °C and allowed to be isothermally transformed at these temperatures for a fixed period of 2 h. From the samples, fatigue test specimens were machined to conform to ASTM E-466. Scanning electron microscopy (SEM) and x-ray diffraction (XRD) methods were used to characterize microstructural morphology and phase distribution of heat-treated samples. The fatigue strength decreases as the section thickness increases. The SEM image and XRD patterns show a matrix of acicular ferrite and carbon-stabilized austenite with ferrite coarsening and volume fraction of austenite reducing as the section thickness increases. The study concluded that the higher the value of carbon-stabilized austenite the higher the fatigue strength while it decreases as the ausferrite structure becomes coarse.

  15. Microstructure and Hot Oxidation Resistance of SiMo Ductile Cast Irons Containing Si-Mo-Al

    Science.gov (United States)

    Ibrahim, Mervat M.; Nofal, Adel; Mourad, M. M.

    2017-04-01

    SiMo ductile cast irons are used as high-temperature materials in automotive components, because they are microstructurally stable at high operating temperatures. The effect of different amounts of Si and Mo as well as the addition of 3 wt pct Al on the microstructure, high-temperature oxidation, and mechanical properties of SiMo ductile cast iron was studied. Dilatometric measurements of SiMo ductile iron exhibited obvious differences in the transformation temperature A 1 due to presence of Al and the increase of Si. The microstructure of the SiMo alloys without Al addition showed outstanding nodularity and uniform nodule distribution. However, by adding 3 wt pct Al to low Si-SiMo ductile iron, some compacted graphite was observed. The results of oxidation experiments indicated that high Si-SiMo ductile iron containing 4 and 4.9 wt pct Si had superior resistance to lower Si-SiMo and SiMo ductile iron containing 3 wt pct Al. The results showed also that with increasing Si up to 4.9 wt pct or by replacing a part of Si with 3 wt pct Al, tensile strength increased while elongation and impact toughness decreased.

  16. Comparing the Structure and Mechanical Properties of Welds on Ductile Cast Iron (700 MPa under Different Heat Treatment Conditions

    Directory of Open Access Journals (Sweden)

    Ronny M. Gouveia

    2018-01-01

    Full Text Available The weldability of ductile iron, as widely known, is relatively poor, essentially due to its typical carbon equivalent value. The present study was developed surrounding the heat treatability of welded joints made with a high strength ductile cast iron detaining an ultimate tensile strength of 700 MPa, and aims to determine which heat treatment procedures promote the best results, in terms of microstructure and mechanical properties. These types of alloys are suitable for the automotive industry, as they allow engineers to reduce the thickness of parts while maintaining mechanical strength, decreasing the global weight of vehicles and providing a path for more sustainable development. The results allow us to conclude that heat treatment methodology has a large impact on the mechanical properties of welded joints created from the study material. However, the thermal cycles suffered during welding promote the formation of ledeburite areas near the weld joint. This situation could possibly be dealt through the implementation of post-welding heat treatments (PWHT with specific parameters. In contrast to a ductile cast iron tested in a previous work, the bull-eye ductile cast iron with 700 MPa ultimate tensile strength presented better results during the post-welding heat treatment than during preheating.

  17. A study on the structure and mechanical properties of vermicular cast iron with pearlitic-ferritic matrix

    Directory of Open Access Journals (Sweden)

    E. Guzik

    2009-07-01

    Full Text Available The results of studies on the use of magnesium alloy in modern cored wire injection method for production of vermicular graphite cast irons were described. The injection of Mg cored wire length is a treatment method which can be used to process iron melted in an electric induction furnace. This paper describes the results of using a high-magnesium ferrosilicon alloy in cored wire (Mg recovery 45% for the production of vermicular graphite cast irons at Giesserei Heunisch GmbH Foundry with the pearlite matrix with about 20%ferrite content. The results of calculations and experiments have indicated the length of the cored wire to be injected basing on the initial sulfur content and weight of the treated melt. The paper presents a microstructure matrix and vermicular graphite in standard sample and different walled castings. The results of numerous trials have shown that the magnesium cored wire process can produce high quality vermicular graphite irons under the specific industrial conditions of the above mentioned foundries.

  18. Corrosion inhibition of Eleusine aegyptiaca and Croton rottleri leaf extracts on cast iron surface in 1 M HCl medium

    Energy Technology Data Exchange (ETDEWEB)

    Rajeswari, Velayutham [Department of Chemistry, Periyar University, Salem 636011 (India); Kesavan, Devarayan [Department of Chemistry, Dhirajlal Gandhi College of Technology, Salem 636309 (India); Gopiraman, Mayakrishnan [Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015 (India); Viswanathamurthi, Periasamy, E-mail: viswanathamurthi72@gmail.com [Department of Chemistry, Periyar University, Salem 636011 (India); Poonkuzhali, Kaliyaperumal; Palvannan, Thayumanavan [Department of Bio-Chemistry, Periyar University, Salem 636011 (India)

    2014-09-30

    Graphical abstract: - Highlights: • Eleusine aegyptiaca and Croton rottleri are commonly available, less-toxic and eco-friendly inhibitors for cast iron corrosion. • The active constituents present in extracts adsorbed on the iron surface to inhibit the acidic corrosion. • The higher values of E{sub a} and ΔH{sup *} point out the higher inhibition efficiency noticed for the inhibitors. • Weight loss methods at various temperature and spectral data provides evidence for adsorption mechanism of inhibitors. - Abstract: The adsorption and corrosion inhibition activities of Eleusine aegyptiaca (E. aegyptiaca) and Croton rottleri (C. rottleri) leaf extracts on cast iron corrosion in 1 M hydrochloric acid solution were studied first time by weight loss and electrochemical techniques viz., Tafel polarization and electrochemical impedance spectroscopy. The results obtained from the weight loss and electrochemical methods showed that the inhibition efficiency increased with inhibitor concentrations. It was found that the extracts acted as mixed-type inhibitors. The addition of halide additives (KCl, KBr, and KI) on the inhibition efficiency has also been investigated. The adsorption of the inhibitors on cast iron surface both in the presence and absence of halides follows the Langmuir adsorption isotherm model. The inhibiting nature of the inhibitors was supported by FT-IR, UV–vis, Wide-angle X-ray diffraction and SEM methods.

  19. The influence of environment on corrosion of cast iron and carbon steel representing samples of outdoor metal technical heritage

    Science.gov (United States)

    Strzelec, M.; Marczak, J.; Skrzeczanowski, W.; Zatorska, A.; Sarzynski, A.; Czyz, K.; Zasada, D.

    2015-06-01

    This paper presents the results of annual measurements of the corrosion progress at test samples of cast iron and carbon steel placed in different natural environments. Comparative tests were performed in two outdoor stations, one at the Railway Museum in central Warsaw and one at the location of a Railway Museum in the small town of Sochaczew, 50 km west of Warsaw. The influence of surface roughness on the development of corrosion was determined by two kinds of treatment of all sample surfaces - metal brush or grinding. Stratigraphy and composition of corrosion products in quarterly periods were analyzed with laser-induced breakdown spectroscopy (LIBS) and Raman laser spectroscopy. Comparative tests were performed using a scanning electron microscopy (SEM) system equipped with energy dispersive spectrometer (EDS) and micro-chemical analytical methods. The corrosion layers on carbon steel have proven to be thicker on average than on cast iron, and thicker on the brushed parts of both materials. Furthermore, a thicker corrosion layer was found on the cast iron test samples exposed in Sochaczew than in Warsaw. Different iron oxides, namely lepidocrocite, goethite, hematite and magnetite were identified in the surface Raman spectra of corrosion layers, the last compound only in the sample from Sochaczew. SEM EDS measurements of surface elemental concentrations showed a higher concentration of sulfur in all samples from Sochaczew. Registered LIBS spectra have been additionally analyzed with statistical approach, using Factorial Analysis (FA). Results generally confirmed conclusions drawn from SEM/Raman/LIBS results.

  20. Corrosion inhibition of Eleusine aegyptiaca and Croton rottleri leaf extracts on cast iron surface in 1 M HCl medium

    International Nuclear Information System (INIS)

    Rajeswari, Velayutham; Kesavan, Devarayan; Gopiraman, Mayakrishnan; Viswanathamurthi, Periasamy; Poonkuzhali, Kaliyaperumal; Palvannan, Thayumanavan

    2014-01-01

    Graphical abstract: - Highlights: • Eleusine aegyptiaca and Croton rottleri are commonly available, less-toxic and eco-friendly inhibitors for cast iron corrosion. • The active constituents present in extracts adsorbed on the iron surface to inhibit the acidic corrosion. • The higher values of E a and ΔH * point out the higher inhibition efficiency noticed for the inhibitors. • Weight loss methods at various temperature and spectral data provides evidence for adsorption mechanism of inhibitors. - Abstract: The adsorption and corrosion inhibition activities of Eleusine aegyptiaca (E. aegyptiaca) and Croton rottleri (C. rottleri) leaf extracts on cast iron corrosion in 1 M hydrochloric acid solution were studied first time by weight loss and electrochemical techniques viz., Tafel polarization and electrochemical impedance spectroscopy. The results obtained from the weight loss and electrochemical methods showed that the inhibition efficiency increased with inhibitor concentrations. It was found that the extracts acted as mixed-type inhibitors. The addition of halide additives (KCl, KBr, and KI) on the inhibition efficiency has also been investigated. The adsorption of the inhibitors on cast iron surface both in the presence and absence of halides follows the Langmuir adsorption isotherm model. The inhibiting nature of the inhibitors was supported by FT-IR, UV–vis, Wide-angle X-ray diffraction and SEM methods

  1. Impacts of water quality on the corrosion of cast iron pipes for water distribution and proposed source water switch strategy.

    Science.gov (United States)

    Hu, Jun; Dong, Huiyu; Xu, Qiang; Ling, Wencui; Qu, Jiuhui; Qiang, Zhimin

    2018-02-01

    Switch of source water may induce "red water" episodes. This study investigated the impacts of water quality on iron release, dissolved oxygen consumption (ΔDO), corrosion scale evolution and bacterial community succession in cast iron pipes used for drinking water distribution at pilot scale, and proposed a source water switch strategy accordingly. Three sets of old cast iron pipe section (named BP, SP and GP) were excavated on site and assembled in a test base, which had historically transported blended water, surface water and groundwater, respectively. Results indicate that an increasing Cl - or SO 4 2- concentration accelerated iron release, but alkalinity and calcium hardness exhibited an opposite tendency. Disinfectant shift from free chlorine to monochloramine slightly inhibited iron release, while the impact of peroxymonosulfate depended on the source water historically transported in the test pipes. The ΔDO was highly consistent with iron release in all three pipe systems. The mass ratio of magnetite to goethite in the corrosion scales of SP was higher than those of BP and GP and kept almost unchanged over the whole operation period. Siderite and calcite formation confirmed that an increasing alkalinity and hardness inhibited iron release. Iron-reducing bacteria decreased in the BP but increased in the SP and GP; meanwhile, sulfur-oxidizing, sulfate-reducing and iron oxidizing bacteria increased in all three pipe systems. To avoid the occurrence of "red water", a source water switch strategy was proposed based on the difference between local and foreign water qualities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kiran M. Kothari; Gerard T. Pittard

    2003-06-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast-iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and attaching a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service (which results in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1-Program Management was previously completed. Two reports, one describing the program management plan and the other consisting of the technology assessment, were submitted to the DOE COR in the first quarter. Task 2-Establishment of Detailed Design Specifications and Task 3-Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves are now well underway. First-quarter activities included conducting detailed analyses to determine the capabilities of coiled-tubing locomotion for entering and repairing gas mains and the first design iteration of the joint-sealing sleeve. The maximum horizontal reach of coiled tubing inside a pipeline before buckling prevents further access was calculated for a wide

  3. EFFECT OF ALLOYING ON TEMPERATURE OF TRANSFORMATION «PEARLITE – AUSTENITE» IN COMPLEX-ALLOYED WHITE CAST IRONS

    Directory of Open Access Journals (Sweden)

    T. V. Pastukhova

    2014-11-01

    Full Text Available Purpose. Pearlite is not accepted in the microstructure of wear resistant steels and cast irons. To prevent the pearlite by means of appropriate selection of mode of quenching requires the knowledge of the temperature of the critical points Ac1 and Ac3 for various steels and cast irons. Purpose of work is determine the effect of V (5-10% and Cr (up to 9% on the temperature range of the phase-structural transformation "pearlite®austenite in the complex-alloyed V-Cr-Mn-Ni white cast irons with spheroidal vanadium carbides. Methodology. Nine Mg-treated cast irons smelted in laboratory furnace were used for investigation. The metallographic and optical dilatometric analysis methods as well as energy-dispersive spectroscopy were used. Findings. It is shown that in irons studied the critical point Ac1 is in a temperature range from 710-780 °C (lower limit up to 730-850 °C (upper limit. The data on the concentrations of chromium and vanadium in a matrix of iron are presented, the regression equation describing the effect of vanadium and chromium on the temperature limits of the transformation «pearlite ® austenite» are obtained. Originality. It is shown that increase the chromium content leads to growth of lower and upper limits of the temperature interval of transformation "pearlite ® austenite"; vanadium increases only the upper limit of the range. It was found that the effect of chromium on the critical point Ac1 is attributed to its solubility in the metallic matrix (concentration of Cr in the austenite reaches 7%; vanadium, due to its slight dissolution in the matrix (vanadium content does not exceed 1.75%, affects the critical point indirectly by increasing of chromium concentration in the matrix due to enhanced carbon sequestration in VC carbides. Practical value. The temperature ranges of heating for quenching of V-Cr-Mn-Ni cast irons with spheroidal vanadium carbides, which provides the formation of austenitic-martensitic matrix without

  4. Effect of Binder and Mold parameters on Collapsibility and Surface Finish of Gray Cast Iron No-bake Sand Molds

    Science.gov (United States)

    Srinivasulu Reddy, K.; Venkata Reddy, Vajrala; Mandava, Ravi Kumar

    2017-08-01

    Chemically bonded no-bake molds and cores have good mechanical properties and produce dimensionally accurate castings compared to green sand molds. Poor collapsibility property of CO2 hardened sodium silicate bonded sand mold and phenolic urethane no-bake (PUN) binder system, made the reclamation of the sands more important. In the present work fine silica sand is mixed with phenolic urethane no-bake binder and the sand sets in a very short time within few minutes. In this paper it is focused on optimizing the process parameters of PUN binder based sand castings for better collapsibility and surface finish of gray cast iron using Taguchi design. The findings were successfully verified through experiments.

  5. Using Cored Wires Injection 2PE-9 Method in the Production of Ferritic Si-Mo Ductile Iron Castings

    Directory of Open Access Journals (Sweden)

    Guzik E.

    2012-12-01

    Full Text Available The results of studies on the use of modern two cored wires injection method for production of ferritic nodular cast iron (ductile iron with use of unique implementation of drum ladle as a treatment / transport and casting ladle instead vertical treatment ladle was described. The injection of length of Ø 9mm wires, cored: in FeSi + Mg nodulariser mixture and inoculant master alloy is a treatment method which can be used to produce iron melted in coreless induction furnace. This paper describes the results and analysis of using this method for optimal production of ductile iron under specific industrial conditions. It means, that length of nodulariser wire plus treatment and pouring temperatures were optimized. In this case, was taken ductile iron with material designation: EN-GJS-SiMo40-6 Grade according EN 16124:2010 E. Microstructure of great number of trials was controlled on internally used sample which has been correlated with standard sample before. The paper presents typical ferritic metallic matrix and nodular graphite. Additionally, mechanical properties were checked in some experiments. Mean values of magnesium recovery and cost of this new method from optimized process parameters were calculated as well.

  6. Using Cored Wires Injection 2PE-9 Method in the Production of Ferritic Si-Mo Ductile Iron Castings

    Directory of Open Access Journals (Sweden)

    E. Guzik

    2012-12-01

    Full Text Available The results of studies on the use of modern two cored wires injection method for production of ferritic nodular cast iron (ductile iron with use of unique implementation of drum ladle as a treatment / transport and casting ladle instead vertical treatment ladle was described. The injection of length of Ø 9mm wires, cored: in FeSi + Mg nodulariser mixture and inoculant master alloy is a treatment method which can be used to produce iron melted in coreless induction furnace. This paper describes the results and analysis of using this method for optimal production of ductile iron under specific industrial conditions. It means, that length of nodulariser wire plus treatment and pouring temperatures were optimized. In this case, was taken ductile iron with material designation: EN-GJS-SiMo40-6 Grade according EN 16124:2010 E. Microstructure of great number of trials was controlled on internally used sample which has been correlated with standardsample before. The paper presents typical ferritic metallic matrix and nodular graphite. Additionally, mechanical properties were checked in some experiments. Mean values of magnesium recovery and cost of this new method from optimized process parameters werecalculated as well.

  7. New Mechanism on Synergistic Effect of Nitrite and Triethanolamine Addition on the Corrosion of Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    K. T. Kim

    2016-01-01

    Full Text Available In general, we compared the different inhibition mechanisms of organic inhibitor with that of anodic inhibitor. When triethanolamine or nitrite was added separately to tap water for inhibiting the corrosion of ductile cast iron, large amounts of inhibitor were needed. This is because the corrosion inhibitors had to overcome the galvanic corrosion that occurs between graphite and matrix. In this work, we investigated the corrosion of ductile cast iron in tap water with/without inhibitors. The corrosion rate was measured using chemical immersion test and electrochemical methods, including anodic polarization test. The inhibited surface was analyzed using EPMA and XPS. Test solutions were analyzed by performing FT-IR measurement. When triethanolamine and nitrite coexisted in tap water, synergistic effect built up, and the inhibition effect was ca. 30 times more effective than witnessed with single addition. This work focused on the synergistic effect brought about by nitrite and triethanolamine and its novel mechanism was also proposed.

  8. Characterization and hardenability evaluation of gray cast iron used in the manufacture of diesel engine cylinder liners

    Directory of Open Access Journals (Sweden)

    Edgar L. Castellanos-Leal

    2017-09-01

    Full Text Available The increment of the mechanical properties (surface hardness of engine cylinder is one of the principal goals for foundry company, to increase the competitiveness of their products in the local and foreign market. This study focused on the characterization of the gray cast iron used in the production of engine cylinder liners and metallurgical parameters determination in the design of conventional quenching heat treatment. The characterization was performed by material hardenability evaluation using Grossmann method, and Jominy test; the austenitizing temperature and the severity of cooling medium to a proper hardening of material were selected. Results revealed that the excellent hardness value obtained is attributed to the suitable hardenability of the gray cast iron and adequate severity selection for hardening treatment.

  9. Effects of striated laser tracks on thermal fatigue resistance of cast iron samples with biomimetic non-smooth surface

    International Nuclear Information System (INIS)

    Tong, Xin; Zhou, Hong; Liu, Min; Dai, Ming-jiang

    2011-01-01

    In order to enhance the thermal fatigue resistance of cast iron materials, the samples with biomimetic non-smooth surface were processed by Neodymium:Yttrium Aluminum Garnet (Nd:YAG) laser. With self-controlled thermal fatigue test method, the thermal fatigue resistance of smooth and non-smooth samples was investigated. The effects of striated laser tracks on thermal fatigue resistance were also studied. The results indicated that biomimetic non-smooth surface was benefit for improving thermal fatigue resistance of cast iron sample. The striated non-smooth units formed by laser tracks which were vertical with thermal cracks had the best propagation resistance. The mechanisms behind these influences were discussed, and some schematic drawings were introduced to describe them.

  10. Causes of Cracking in Quenching of the Parts Made of Steels and Cast Iron and Recommendations for Their Removal: A Review

    Science.gov (United States)

    Kuznetsov, A. A.; Rudnev, V. I.

    2017-12-01

    The domestic and foreign experience on revealing the causes of quenching cracking and its prevention is generalized. We consider the works performed on the machine parts made of carbon and alloyed pearlitic steel and quenchable cast irons.

  11. Transmission electron microscope studies of the chromium cast iron modified at use of B4C addition

    Directory of Open Access Journals (Sweden)

    K. Labisz

    2010-10-01

    Full Text Available Results of studies of the high alloy chromium cast iron with boron addition in form of the B4C phase powder are presented in this paper.The main field of interest is the identification of phases based on the transmission electron microscope study, occurred in this alloy aftersolidification process. The structure mainly consists of the austenite matrix and M7C3 carbide identified as the Cr7C3 phase.

  12. Comparative Studies on the Wear of ADI Alloy Cast Irons as Well as Selected Steels and Surface-Hardened Alloy Cast Steels in the Presence of Abrasive

    Directory of Open Access Journals (Sweden)

    Wieczorek A. N.

    2017-03-01

    Full Text Available The paper presents the results of wear tests obtained for 4 groups of materials: surface-hardened alloy steels and alloy cast steels for structural applications, hard-wearing surface-hardened alloy cast steels, and austempered alloy cast irons. The wear tests have been performed on a specially designed test rig that allows reproducing the real operating conditions of chain wheels, including the rolling and sliding form of contact between elements. The chain wheels subjected to tests were operated with the use of loose quartz abrasive. This study presents results of measurements of material parameters, micro-structure of a surface subject to wear, as well as the linear wear determined for the materials considered. Based on the results, the following was found: the best wear properties were obtained for surface-hardened alloy steels and wear surface; strengthening of the ADI surface took place - most probably as a result of transformation of austenite into martensite; the uniformity of the structure of the materials affects the surface wear process. The study also indicated a significant degree of graphite deformation in ADI characterized by the upper ausferritic structure and its oblique orientation in relation to the surface, which resulted in a facilitated degradation of the surface caused by the quartz abrasive.

  13. An Assessment of the Derivative Thermal Analysis of Grey Cast Iron

    Directory of Open Access Journals (Sweden)

    F. Binczyk

    2007-07-01

    Full Text Available The study presents a method used for assessment of the consistency of results obtained by measurements and calculated by computer from a graph of Derivative Thermal Analysis (DTA to determine the chemical composition and selected mechanical properties. For an assessment of the degree of consistency obtained between the examined parameters, the analysis of regression and Pearson’s correlation based on a linear model were used. The subject of assessment were 72 melts made in a period from October till December 2006. The best consistency was achieved for carbon and silicon content and for the carbon equivalent liquidus CEL - over 50% consistency of the obtained results. In the case of hardness HB and tensile strength Rm only 6 and 13,8 % of the results obtained by measurement and DTA rendered the same values. Therefore, it has been claimed that in such cases the data obtained from DTA curve analysis cannot serve as a tool valid in forecasting of the above mentioned properties. Since the analysed parameters have been reported to lack the required consistency, some doubts may raise also the evaluation of recalescence, the value of which is used as a starting point in determination of the inoculant level. Consequently, some changes were proposed in the method used so far to evaluate the effectiveness of the cast iron inoculation process.

  14. Electrocoagulation of synthetically prepared waters containing high concentration of NOM using iron cast electrodes.

    Science.gov (United States)

    Yildiz, Yalçin Sevki; Koparal, Ali Savaş; Irdemez, Sahset; Keskinler, Bülent

    2007-01-10

    The aim of this investigation is to evaluate the treatability of synthetically prepared water with high concentration of humic substances by electrocoagulation in batch mode using iron cast electrodes. Effects of applied potential, initial humic substance concentration and supporting electrolyte type on humic substance removal efficiency were investigated. NaNO3, Na2SO4 and NaCl were used as supporting electrolyte. Among these supporting electrolytes, Na2SO4 and NaCl have provided high removal efficiencies, whereas in the experiments using NaNO3 as supporting electrolyte have been observed no flock formation. The highest removal rate is obtainable with NaCl as supporting electrolyte. Removal efficiencies for initial humic substance concentration of 500 mg L-1 with NaCl and Na2SO4 equal to 97.95% for 35 min and 92.69% for 70 min, respectively. This behavior of the system has been derived from oxidation products, available in the bulk solution, of chloride ions. When NaCl is used as supporting electrolyte, there is an advantage of providing the disinfection of water, but humic substances and chloride ions are available in the bulk solution with risk of formation undesirable organo-chlorine compounds, so the Na2SO4 is the most favorable supporting electrolyte.

  15. Effects of Destabilization Temperature on the Microstructure and Mechanical Properties of High Chromium Cast Iron

    Science.gov (United States)

    Lai, J. P.; Pan, Q. L.; Wang, Z. B.; Cui, H. R.; Wang, X. D.; Gao, Z. Z.

    2017-10-01

    The effect of destabilization temperature on the microstructure and impact toughness of high chromium cast iron was investigated. The result showed that the microhardness of matrix decreased from 860 to 332 HV with the increase of destabilization temperature from 950 to 1100 °C. The impact toughness of the alloy increased from 5.3 to 8.1 J/cm2 with the increase of destabilization temperature from 950 to 1050 °C, while it decreased with further increase of destabilization temperature. The former change of impact toughness was found to be due to the increase in volume fraction of retained austenite from 12.6 to 56.5%, whereas the latter was attributed to the increase of carbon content in retained austenite by analysis of fracture morphologies. The wear resistance decreased with the increase of destabilized temperature from 950 to 1050 °C and increased only slightly for the temperature from 1050 to 1100 °C.

  16. Measurement of the thickness of the sprayed nickel coatings on large-sized cast iron products

    Directory of Open Access Journals (Sweden)

    В. А. Сясько

    2016-11-01

    Full Text Available Modern industries increasingly use automatic spraying of heat-resistant Nickel  coating with a thickness  of      T = 1-3 mm for large-size parts made of cast iron with nodular graphite. The process of coating application is characterized by time-dependent behavior of its relative magnetic permeability, μс , that is a function of relaxation time, which can be as long as 24 hours, and by μс deviation from point to point on the surface. Aspects of eddy-current phase method for measuring the T value are considered. The structure of four- winding eddy current transformer transducers is described and results of calculation and optimization of their parameters are presented. The influence of controlled and interfering parameters is considered. Based  on the above results, a two-channel combined transducer is developed  providing measurement  error  of ΔТ ≤ ±(0.03T + 0.02 mm  in the shop environment in the process of coating application and in the final product check. Results of tests on reference specimens and of application in production processes are presented.

  17. Investigation on Microstructure of Heat Treated High Manganese Austenitic Cast Iron

    Directory of Open Access Journals (Sweden)

    Muzafar A.K.

    2016-01-01

    Full Text Available The effect of manganese addition and annealing heat treatment on microstructure of austenitic cast irons with high manganese content (Mn-Ni-resist were investigated. The complex relationship between the development of the solidification microstructures and buildup of microsegregation in Mn-Ni-resist was obtained by using microstructure analysis and EDS analysis. The annealing heat treatment was applied at 700°C up to 1000°C to investigate the effect of the annealing temperature on the microstructure. This experiment describes the characterization of microsegregation in Mn-Ni-reist was made by means of point counting microanalysis along the microstructure. With this method, the differences of silicon, manganese and nickel distribution in alloys solidified in the microstructure were clearly evidenced. The results show microstructure consists of flake graphite embedded in austenitic matrix and carbides. There is segregation of elements in the Late To Freeze (LTF region after solidification from melting. Manganese positively with high concentration detected in the LTF region. As for heat treatment, higher annealing temperature on the Mn-Ni-resist was reduced carbide formation. The higher annealing temperature shows carbide transformed into a smaller size and disperses through the austenitic matrix structure. The size of carbide decreased with increasing annealing temperature as observed in the microstructure.

  18. Synergistic Effect of Molybdate and Monoethanolamine on Corrosion Inhibition of Ductile Cast Iron in Tap Water

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. T.; Kim, Y. S. [Andong National University, Andong (Korea, Republic of); Chang, H. Y.; Lim, B. T.; Park, H. B. [KEPCO Engineering and Construction Company, Gimcheon (Korea, Republic of)

    2017-02-15

    A synergistic effect was observed in the combination of nitrite and ethanolamines. Ethanolamine is one of the representative organic corrosion inhibitors and can be categorized as adsorption type. However, nitrosamines can form when amines mix with sodium nitrite. Since nitrosamine is a carcinogen, the co-addition of nitrite and ethanolamine will be not practical, and thus, a non-toxic combination of inhibitors shall be needed. In order to maximize the effect of monoethanolamine, we focused on the addition of molybdate. Molybdate has been used to alternate the addition of chromate, but it showed insufficient oxidizing power relative to corrosion inhibitors. This work evaluated the synergistic effect of the co-addition of molybdate and monoethanolamine, and its corrosion mechanism was elucidated. A high concentration of molybdate or monoethanolamine was needed to inhibit the corrosion of ductile cast iron in tap water, but in the case of the co-addition of molybdate and monoethanolamine, a synergistic effect was observed. This synergistic effect could be attributed to the molybdate that partly oxidizes the metallic surface and the monoethanolamine that is simultaneously adsorbed on the graphite surface. This adsorbed layer then acts as the barrier layer that mitigates galvanic corrosion between the graphite and the matrix.

  19. Weldability of spheroidal graphite ductile cast iron using Ni / Ni-Fe electrodes

    Directory of Open Access Journals (Sweden)

    Pascual, M.

    2009-10-01

    Full Text Available Weldability of spheroidal graphite ductile cast iron was established using a cheap Ni-Fe and a high purity Ni electrode. A preheating treatment at 350 °C and an annealing treatment at 850 °C were carried out to improve mechanical properties of welded pieces. The pure Ni electrode showed graphite diffusion in the bead with a uniform distribution of phases, improving weldability and decreasing fragility. Preheating and annealing treatments increased ductility and improved weldability.

    Se establece la soldabilidad de funciones dúctiles de grafito según las características mecánicas alcanzadas, utilizando un electrodo puro de Ni mientras se compara con uno más económico de Ni-Fe. Diferentes tratamientos t��rmicos son propuestos y analizados. El electrodo de Ni puro mostró difusión de grafito desde el material original al cordón de soldadura, dando como resultado una fase homogénea que mejoró la soldabilidad y redujo la fragilidad. Un pre tratamiento a 350 °C y un recocido a 850 °C incrementaron la ductilidad y mejoró la soldabilidad.

  20. Numerical Modelling of Mechanical Integrity of the Copper-Cast Iron Canister. A Literature Review

    International Nuclear Information System (INIS)

    Lanru Jing

    2004-04-01

    This review article presents a summary of the research works on the numerical modelling of the mechanical integrity of the composite copper-cast iron canisters for the final disposal of Swedish nuclear wastes, conducted by SKB and SKI since 1992. The objective of the review is to evaluate the outstanding issues existing today about the basic design concepts and premises, fundamental issues on processes, properties and parameters considered for the functions and requirements of canisters under the conditions of a deep geological repository. The focus is placed on the adequacy of numerical modelling approaches adopted in regards to the overall mechanical integrity of the canisters, especially the initial state of canisters regarding defects and the consequences of their evolution under external and internal loading mechanisms adopted in the design premises. The emphasis is the stress-strain behaviour and failure/strength, with creep and plasticity involved. Corrosion, although one of the major concerns in the field of canister safety, was not included

  1. Failure Mechanisms and Damage Model of Ductile Cast Iron Under Low-Cycle Fatigue Conditions

    Science.gov (United States)

    Wu, Xijia; Quan, Guangchun; MacNeil, Ryan; Zhang, Zhong; Sloss, Clayton

    2014-10-01

    Strain-controlled low-cycle fatigue (LCF) tests were conducted on ductile cast iron (DCI) at strain rates of 0.02, 0.002, and 0.0002/s in the temperature range from room temperature to 1073 K (800 °C). A constitutive-damage model was developed within the integrated creep-fatigue theory (ICFT) framework on the premise of strain decomposition into rate-independent plasticity and time-dependent creep. Four major damage mechanisms: (i) plasticity-induced fatigue, (ii) intergranular embrittlement (IE), (iii) creep, and (iv) oxidation were considered in a nonlinear creep-fatigue interaction model which represents the overall damage accumulation process consisting of oxidation-assisted fatigue crack nucleation and propagation in coalescence with internally distributed damage ( e.g., IE and creep), leading to final fracture. The model was found to agree with the experimental observations of the complex DCI-LCF phenomena, for which the linear damage summation rule would fail.

  2. Examination of Electrical Resistance of Carburizers Used for Cast Iron Production

    Directory of Open Access Journals (Sweden)

    Książek D.

    2016-12-01

    Full Text Available The publication presents the results of examination of selected carburizers used for cast iron production with respect to their electric resistance. Both the synthetic graphite carburizers and petroleum coke (petcoke carburizers of various chemical composition were compared. The relationships between electrical resistance of tested carburizers and their quality were found. The graphite carburizers exhibited much better conductivity than the petcoke ones. Resistance characteristics were different for the different types of carburizers. The measurements were performed according to the authors’ own method based on recording the electric current flow through the compressed samples. The samples of the specified diameter were put under pressure of the gradually increased value (10, 20, 50, 60, and finally 70 bar, each time the corresponding value of electric resistance being measured with a gauge of high accuracy, equal to 0.1μΩ. The higher pressure values resulted in the lower values of resistance. The relation between both the thermal conductance and the electrical conductance (or the resistance is well known and mentioned in the professional literature. The results were analysed and presented both in tabular and, additionally, in graphic form.

  3. Molecular analysis of long-term biofilm formation on PVC and cast iron surfaces in drinking water distribution system.

    Science.gov (United States)

    Liu, Ruyin; Zhu, Junge; Yu, Zhisheng; Joshi, DevRaj; Zhang, Hongxun; Lin, Wenfang; Yang, Min

    2014-04-01

    To understand the impacts of different plumbing materials on long-term biofilm formation in water supply system, we analyzed microbial community compositions in the bulk water and biofilms on faucets with two different materials-polyvinyl chloride (PVC) and cast iron, which have been frequently used for more than10 years. Pyrosequencing was employed to describe both bacterial and eukaryotic microbial compositions. Bacterial communities in the bulk water and biofilm samples were significantly different from each other. Specific bacterial populations colonized on the surface of different materials. Hyphomicrobia and corrosion associated bacteria, such as Acidithiobacillus spp., Aquabacterium spp., Limnobacter thiooxidans, and Thiocapsa spp., were the most dominant bacteria identified in the PVC and cast iron biofilms, respectively, suggesting that bacterial colonization on the material surfaces was selective. Mycobacteria and Legionella spp. were common potential pathogenic bacteria occurred in the biofilm samples, but their abundance was different in the two biofilm bacterial communities. In contrast, the biofilm samples showed more similar eukaryotic communities than the bulk water. Notably, potential pathogenic fungi, i.e., Aspergillus spp. and Candida parapsilosis, occurred in similar abundance in both biofilms. These results indicated that microbial community, especially bacterial composition was remarkably affected by the different pipe materials (PVC and cast iron). Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  4. Demerit control chart as a decision support tool in quality control of ductile cast-iron casting process

    Directory of Open Access Journals (Sweden)

    Sika Robert

    2017-01-01

    Full Text Available In many industrial areas the product quality can be unequivocally assigned to classes such as: “good”, “bad” or “to repair”. In case of casting processes, the product is approved to sales considering customer’s requirements. Except for common characteristics, such as structure, compactness and mechanical properties, physical state of the product is also important. This state is assessed by checking occurrence of specific kind of defects. They are often conditionally accepted by a customer if they do not have any influence on functionality of the product (e.g. negative adhesive and cohesive phenomena, fatigue strength, thermal shocks. Authors’ experience shows that current registering of the most frequently occurring defects and comparing them to customers’ requirements can be very useful and help a quality engineer to control the casting process. They suggest using the Demerit Control Chart (DCC, according to authors’ own methodology, in aspect of information about the castings accepted conditionally by a customer (DCC-recognition. DCC-recognition can be used to assess this quality by monitoring the value of just one aggregated measure for all kinds of defects instead of using a single attribute control chart for each of them. The test version of this tool considering severity of defects proved to be useful in one of the European foundries.

  5. Effects of heat treatment on toughness of austempered ductile cast iron with Cu and Ni; Cu-Ni tenka osutenpa chutetsu no jinsei ni oyobosu netsushori no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Aoyama, M.; Takatsu, M.; Takagi, H

    1998-08-25

    The alloying of ductile cast iron with Cu and Ni is effective for the structural control in austemper heat treatment. Use of this type of cast iron is provided to produce cast iron materials with extremely high toughness and strength. In this study, the effects of austempering conditions and the addition of Cu and Ni on toughness of ductile cast iron are investigated. In austemper heat treatment, impact absorbed energy is increased by raising the austempering temperature. However, at high austempering temperatures exceeding 3.6 ks at 673K, the formation of fine pearlite proceeded, resulting in a marked decrease in the impact absorbed energy. Addition of Cu-Ni in the cast iron resulted in greater impact absorbed energy and tensile strength at any temperature during the austempering treatment. It depends on the suppression of precipitation beginning of fine pearlite and the stabilization of retained austenite. Furthermore, this cast iron alloy reduced the change in impact absorbed energy and tensile strength, induced during the austempering time. 15 refs., 12 figs., 1 tab.

  6. Study on fragmentation and dissolution behavior of carbide in a hot-rolled hypereutectic high chromium cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fei; Jiang, Yehua, E-mail: jiangyehua@kmust.edu.cn; Xiao, Han; Tan, Jun

    2015-01-05

    Highlights: • The method to prepare Carbon steel/High chromium iron is totally new. • High chromium iron can achieve small plastic deformation during hot rolling process. • Carbides in high chromium irons are crushed, refined obviously and becoming isolated, which is benefit to improve the impact toughness. • The carbide fragmentation and dissolution behavior of the hot-rolled HCCI were analyzed. - Abstract: A sandwich-structured composite containing a hypereutectic high chromium cast iron (HCCI) and low carbon steel (LCS) claddings was newly fabricated by centrifugal casting, then the blank was hot-rolled into composite plate. The carbide fragmentation and dissolution behavior of the hot-rolled HCCI were analyzed. During hot rolling, significant refinement of carbides was discovered in hot-rolled HCCI specimens. The carbides were broken and partly dissolved into the austenite matrix. The results show that carbides are firstly dissolved under the action of stress. There are grooves appeared at the boundaries of the carbides. The grooves reduce the cross section of the carbide. When the cross section of the carbide reaches to the required minimum critical cross section, the carbide breaks through the tensile force. After break, carbides continue to dissolve since more interfaces between the matrix and carbides are generated. The secondary carbides precipitated due to the dissolution are index as fcc and stacking faults parallel to the {1 1 1} are observed.

  7. The Effect of Hydrogen on the Mechanical Properties of Cast Irons and ADI with Various Carbon Equivalent and Graphite Morphology

    International Nuclear Information System (INIS)

    Cho, Yong Gi; Lee, Kyung Sub

    1989-01-01

    The effect of hydrogen on the mechanical properties of cast irons, flake, CV graphite cast iron ductile iron and ADI have been investigated. The effects of various carbon equivalent, graphite morphology and matrix have been analyzed to determine the predominant factor which influences on the hydrogen embrittlement. The effect of various carbon equivalent on the embrittlement was little in the similar graphite morphology. The embrittlement of ferrite matrix changed by heat treatment was less than that of pearlite matrix. In the case of ADI, the tendency of hydrogen embrittlement of lower bainite matrix was less remarkable than that of upper banite matrix. As the result of hydrogen charging, the tendency of interface decohesion between matrix-graphite was increased in flake G.C.I., and the trend from ductile fracture mode to brittle fracture mode was observed in CV G.C.I and ductile iron. Lower bainite in ADI showed the ductile fracture mode. Hydrogen solubility of lower bainite was higher than that of upper bainite

  8. Operational Determination of Physical and Mechanical Properties of Cast Samples of High-Strength Iron by Means of a Magnetic-Mechanical Method

    Science.gov (United States)

    Slyusarev, Yu. K.; Braga, A. V.; Slyusarev, I. Yu.

    2017-09-01

    The effect of the chemical composition of high-strength cast iron VCh35 on the content, shape and diameter of graphite inclusions and on the presence of structurally-free cementite and defects is studied. A relationship is determined between the structure and metallurgical defects and characteristics of the mechanical and magnetic rigidity of cast samples. Relationships are established in a group of factors and property characteristics: chemical composition - microstructure - mechanical rigidity - magnetic stiffness. The basis of a method is established making it possible to perform operative non-destructive monitoring of the melt quality preparation for high-strength iron casting.

  9. Theoretic and Experimental Studies on the Casting of Large Die-Type Parts Made of Lamellar Graphite Grey Pig Irons by Using the Technology of Polystyrene Moulds Casting from Two Sprue Cups

    Directory of Open Access Journals (Sweden)

    Constantin Marta

    2012-01-01

    Full Text Available This paper presents a comparative analysis between the practical results of pig iron die-type part casting and the results reached by simulation. The insert was made of polystyrene, and the casting was downward vertical. As after the part casting and heat treatment cracks were observed in the part, it became necessary to locate and identify these fissures and to establish some measures for eliminating the casting defects and for locating them. The research method was the comparisons of defects identified through verifications, measurements, and metallographic analyses applied to the cast part with the results of some criteria specific to simulation after simulating the casting process. In order to verify the compatibility between reality and simulation, we then simulated the part casting respecting the real conditions in which it was cast. By visualising certain sections of the cast part during solidification, relevant details occur about the possible evolution of defects. The simulation software was AnyCasting, the measurements were done through nondestructive methods.

  10. Characterization of biofilm and corrosion of cast iron pipes in drinking water distribution system with UV/Cl2 disinfection.

    Science.gov (United States)

    Zhu, Ying; Wang, Haibo; Li, Xiaoxiao; Hu, Chun; Yang, Min; Qu, Jiuhui

    2014-09-01

    The effect of UV/Cl2 disinfection on the biofilm and corrosion of cast iron pipes in drinking water distribution system were studied using annular reactors (ARs). Passivation occurred more rapidly in the AR with UV/Cl2 than in the one with Cl2 alone, decreasing iron release for higher corrosivity of water. Based on functional gene, pyrosequencing assays and principal component analysis, UV disinfection not only reduced the required initial chlorine dose, but also enhanced denitrifying functional bacteria advantage in the biofilm of corrosion scales. The nitrate-reducing bacteria (NRB) Dechloromonas exhibited the greatest corrosion inhibition by inducing the redox cycling of iron to enhance the precipitation of iron oxides and formation of Fe3O4 in the AR with UV/Cl2, while the rhizobia Bradyrhizobium and Rhizobium, and the NRB Sphingomonas, Brucella producing siderophores had weaker corrosion-inhibition effect by capturing iron in the AR with Cl2. These results indicated that the microbial redox cycling of iron was possibly responsible for higher corrosion inhibition and lower effect of water Larson-Skold Index (LI) changes on corrosion. This finding could be applied toward the control of water quality in drinking water distribution systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. THE RESULTS OF USING OF INDICATORS OF THE HIGH-TEST CAST IRON OF TYPE ICH STRUCTURE IN CONDITIONS OF PRODUCT

    Directory of Open Access Journals (Sweden)

    A. L. Majorov

    2006-01-01

    Full Text Available The results of development of the indicator of highstrength pig-iron are submitted in the report. The indicator using allows to carry out the testing of the pig-iron structure in conditions of manufacture without additional preparation of the casting surface.

  12. Study on the Microstructure and Liquid Phase Formation in a Semisolid Gray Cast Iron

    Science.gov (United States)

    Benati, Davi Munhoz; Ito, Kazuhiro; Kohama, Kazuyuki; Yamamoto, Hajime; Zoqui, Eugenio José

    2017-10-01

    The development of high-quality semisolid raw materials requires an understanding of the phase transformations that occur as the material is heated up to the semisolid state, i.e., its melting behavior. The microstructure of the material plays a very important role during semisolid processing as it determines the flow behavior of the material when it is formed, making a thorough understanding of the microstructural evolution essential. In this study, the phase transformations and microstructural evolution in Fe2.5C1.5Si gray cast iron specially designed for thixoforming processes as it was heated to the semisolid state were observed using in situ high-temperature confocal laser scanning microscopy. At room temperature, the alloy has a matrix of pearlite and ferrite with fine interdendritic type D flake graphite. During heating, the main transformations observed were graphite precipitation inside the grains and at the austenite grain boundaries; graphite flakes and graphite precipitates growing and becoming coarser with the increasing temperature; and the beginning of melting at around 1413 K to 1423 K (1140 °C to 1150 °C). Melting begins with the eutectic phase ( i.e., the carbon-rich phase) and continues with the primary phase (primary austenite), which is consumed as the temperature increases. Melting of the eutectic phase composed by coarsened interdendritic graphite flakes produced a semi-continuous liquid network homogeneously surrounding and wetting the dendrites of the solid phase, causing grains to detach from each other and producing the intended solid globules immersed in liquid.

  13. The role of manganese and copper in the eutectoid transformation of spheroidal graphite cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Lacaze, J.; Boudot, A.; Gerval, V.; Oquab, D. [Ecole Nationale Superieure de Chimie de Toulouse (France). Equipe Metallurgie Physique; Santos, H. [Univ. do Porto (Portugal). Dept. de Engenharia Metalurgia

    1997-10-01

    The decomposition of austenite to ferrite plus graphite or to pearlite in spheroidal graphite (SG) cast iron is known to depend on a number of factors among which are the nodule count, the cooling rate, and the alloying additions (Si, Mn, Cu, etc.). This study was undertaken in order to deepen the understanding of the effect of alloying with Mn and/or Cu on the eutectoid reaction. For this purpose, differential thermal analyses (DTAs) were carried out in which samples were subjected to a short homogenization treatment designed to smooth out the microsegregations originating from the solidification step. The effect of various additions of copper and manganese and of the cooling rate on the temperature of the onset of the stable and metastable eutectoid reactions was investigated. The experimental results can be explained if the appropriate reference temperature is used. The cooling rate affects the temperature of the onset of the ferrite plus graphite growth in the same way as for the eutectic reaction, with a measured undercooling that can be extrapolated to a zero value when the cooling rate is zero. The growth undercooling of pearlite had values that were in agreement with similar data obtained on silicon steels. The detrimental effect of Mn on the growth kinetics of ferrite during the decomposition of austenite in the stable system is explained in terms of the driving force for diffusion of carbon through the ferrite ring around the graphite nodules. Finally, it is found that copper can have a pearlite promoter role only when combined with a low addition of manganese.

  14. Development of ELID mirror surface grinding by cast iron bond grinding wheel. Ohkochi memorial technology prize; Chutetsu bond toishi ni yoru denkai inpurosesu doresshingu (ELID) kyomen kensakuho no kaihatsu. Okochi kinen gijutsusho jusho ni yosete

    Energy Technology Data Exchange (ETDEWEB)

    Omori, H.; Takahashi, I. [Institute of Physical and Chemical Research, Tokyo (Japan); Nakagawa, T. [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science; Hagiuda, Y.; Karikome, K. [Tokyo Metropolitan College of Aeronautical Engineering, Tokyo (Japan)

    1997-08-01

    Development was accomplished on the electrolytic in-process dressing (ELID) mirror surface grinding process using a cast iron bonded grinding wheel. This paper describes the history of the development, which may be summarized as follows: a study was begun on powder forging of cutting chips in 1970; a research was started on powder forging of decarburized cast iron powder; developments were made on powder metallurgy of cast irons and cast iron bonded lapping tools in 1980, and cast iron bonded diamond grinding wheels were put on the market; a high-efficiency grinding process using MC and cast iron fiber-bonded grinding wheels were developed in 1985 and the grinding wheels made therefrom were put on the market; and a study was begun on the ELID grinding in 1987, and marketing was started on power supply, grinding liquid and tools for the ELID grinding process in 1990. Discussions on converting raw materials for the powder forging into cutting chips have triggered developing the cast iron bonded grinding wheel. The cast iron bonded diamond grinding wheel improves dressability and sharpness of conventional grinding wheels. The grinding wheel is fabricated by mixing carbonyl iron powder, diamond grinding grains and cast iron powder, pressing the mixture in a die, sintering it at 1140 degC, and assembling and dressing the sinter. The grinding stone can grind high-tech materials. 4 figs.

  15. Effects of heat treatment on mechanical properties and microstructure of tungsten fi ber reinforced grey cast iron matrix composites

    Directory of Open Access Journals (Sweden)

    Peng jianHong

    2009-11-01

    Full Text Available In this study, grey cast iron matrix composites reinforced by different volume fractions of tungsten fibers (Vr = 0.95 %, 1.90 %, 2.85 %, 3.80 % were investigated in as-cast and under the heat treatment temperatures of 1,000℃ and 1,100℃. The microstructure and mechanical properties of the composites were analyzed and tested by means of SEM, micro-hardness tester and three-point bend testing. The results show that with increasing of the volume fraction of tungsten fibers, the composites reinforced by the tungsten fiber have higher fl exural strength and modulus than that of cast iron without reinforcement, and the fl exural strength increases with the increasing of heat treatment temperatures. Due to diffusion reaction between matrix and reinforcing phases, the process of heat treatment, the number of graphite fl akes in the matrix seemingly becomes lower; and some hard carbide particles are formed around the residual tungsten fi bers. Not only does the hardness of both matrix and reinforcement change tremendously, but also the region of reinforcement is also extended from the original 0.11 mm to 0.19 mm in radius.

  16. Statistical Study to Evaluate the Effect of Processing Variables on Shrinkage Incidence During Solidification of Nodular Cast Irons

    Science.gov (United States)

    Gutiérrez, J. M.; Natxiondo, A.; Nieves, J.; Zabala, A.; Sertucha, J.

    2017-04-01

    The study of shrinkage incidence variations in nodular cast irons is an important aspect of manufacturing processes. These variations change the feeding requirements on castings and the optimization of risers' size is consequently affected when avoiding the formation of shrinkage defects. The effect of a number of processing variables on the shrinkage size has been studied using a layout specifically designed for this purpose. The β parameter has been defined as the relative volume reduction from the pouring temperature up to the room temperature. It is observed that shrinkage size and β decrease as effective carbon content increases and when inoculant is added in the pouring stream. A similar effect is found when the parameters selected from cooling curves show high graphite nucleation during solidification of cast irons for a given inoculation level. Pearson statistical analysis has been used to analyze the correlations among all involved variables and a group of Bayesian networks have been subsequently built so as to get the best accurate model for predicting β as a function of the input processing variables. The developed models can be used in foundry plants to study the shrinkage incidence variations in the manufacturing process and to optimize the related costs.

  17. Effect of alloying elements on branching of primary austenite dendrites in Ni-Mn-Cu cast iron

    Directory of Open Access Journals (Sweden)

    A. Janus

    2011-04-01

    Full Text Available Within the research, determined were direction and intensity of influence of individual alloying elements on branching degree of primary austenite dendrites in austenitic cast iron Ni-Mn-Cu. 30 cast shafts dia. 20 mm were analysed. Chemical composition of the alloywas as follows: 2.0 to 3.3 % C, 1.4 to 3.1 % Si, 2.8 to 9.5 % Ni, 0.4 to 7.7 % Mn, 0 to 4.6 % Cu, 0.14 to 0.16 % P and 0.03 to 0.04 % S.Analysis was performed separately for the dendrites solidifying in directional and volumetric way. The average distance "x" between the2nd order arms was accepted as the criterion of branching degree. It was found that influence of C, Si, Ni, Mn and Cu on the parameter "x"is statistically significant. Intensity of carbon influence is decidedly higher than that of other elements, and the influence is more intensive in the directionally solidifying dendrites. However, in the case of the alloyed cast iron Ni-Mn-Cu, combined influence of the alloying elements on solidification course of primary austenite can be significant.

  18. The Influence of Corrosion Attack on Grey Cast Iron Brittle‑Fracture Behaviour and Its Impact on the Material Life Cycle

    Directory of Open Access Journals (Sweden)

    Jiří Švarc

    2017-01-01

    Full Text Available The paper is concerned with brittle‑fracture behaviour of grey cast iron attacked by corrosion and its impact on the life cycle of a spare part made of grey cast iron. In a corrosion chamber, outdoor climatic conditions (temperature and relative air humidity were simulated in which degradation processes, induced by material corrosion, degrading mechanical properties of a material and possibly leading to irreversible damage of a machine component, occur in the material of maintenance vehicles that are out of operation for the period of one year. The corrosion degradation of grey cast iron, which the spare parts constituting functional parts of an engine are made of grey cast iron, is described with regard to brittle‑fracture behaviour of the material. For the description of corrosion impact on grey cast iron, an instrumented impact test was employed. A corrosion degradation effect on grey cast iron was identified based on measured values of total energy, macro plastic deformation limit, initiation force of unstable crack propagation and force exerted on unstable crack arrest. In the first part of the experiment, a corrosion test of the material concerned was simulated in a condensation chamber; in the second part of the experiment, research results are provided for the measured quantities describing the material brittle‑fracture behaviour; this part is supplemented with a table of results and figures showing the changes in the values of the measured quantities in relation to test temperatures. In the discussion part, the influence of corrosion on the values of unstable crack initiation and arrest forces is interpreted. In the conclusion, an overview of the most significant research findings concerning the impact of corrosion on the life cycle of grey cast iron material is provided.

  19. A cast-mold approach to iron oxide and Pt/iron oxide nanocontainers and nanoparticles with a reactive concave surface.

    Science.gov (United States)

    George, Chandramohan; Dorfs, Dirk; Bertoni, Giovanni; Falqui, Andrea; Genovese, Alessandro; Pellegrino, Teresa; Roig, Anna; Quarta, Alessandra; Comparelli, Roberto; Curri, M Lucia; Cingolani, Roberto; Manna, Liberato

    2011-02-23

    We report the synthesis of various iron oxide nanocontainers and Pt-iron oxide nanoparticles based on a cast-mold approach, starting from nanoparticles having a metal core (either Au or AuPt) and an iron oxide shell. Upon annealing, the particles evolve to asymmetric core-shells and then to heterodimers. If iodine is used to leach Au out of these structures, asymmetric core-shells evolve into "nanocontainers", that is, iron oxide nanoparticles enclosing a cavity accessible through nanometer-sized pores, while heterodimers evolve into particles with a concave region. When starting from a metal domain made of AuPt, selective leaching of the Au atoms yields the same iron oxide nanoparticle morphologies but now encasing Pt domains (in their concave region or in their cavity). We found that the concave nanoparticles are capable of destabilizing Au nanocrystals of sizes matching that of the concave region. In addition, for the nanocontainers, we propose two different applications: (i) we demonstrate loading of the cavity region of the nanocontainers with the antitumoral drug cis-platin; and (ii) we show that nanocontainers encasing Pt domains can act as recoverable photocatalysts for the reduction of a model dye.

  20. Temperature measurement during solidification of thin wall ductile cast iron. Part 2: Numerical simulations

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    Temperature measurements in castings are carried out with thermocouples (TC’s), which are inserted in the melt. The TC influence solidification of the casting, especially in thin wall castings where the heat content of the melt is small compared to the cooling power of the TC. A numerical analysis...... of factors influencing temperature measurement in thin walled castings was carried out. The calculations are based on and compared with experiments presented in part 1 of this paper. The analysis shows that the presence of the TC has only a minor influence on the microstructure of the casting. The influence...... is restricted to a volume within 2mm from the TC. Measured cooling curves will have the right shape. In a 2 mm plate the measured temperature was 17 °C below the true temperature in the melt. However, the cooling curve provides important information about nucleation and growth during solidification....

  1. Effects of shot peening on fatigue behavior in high speed steel and cast iron with spheroidal vanadium carbides dispersed within martensitic-matrix microstructure

    International Nuclear Information System (INIS)

    Uematsu, Y.; Kakiuchi, T.; Tokaji, K.; Nishigaki, K.; Ogasawara, M.

    2013-01-01

    Four-point bending fatigue tests had been performed using high speed steel and cast iron with vanadium carbides (VCs) dispersed within the martensitic-matrix microstructure. Shot peening or shot blast was applied to both the materials and the effect of surface treatments on fatigue behavior was investigated. The fatigue strengths of the high speed steel were improved by both shot peening and shot blast processes due to the high hardness near the specimen surface and residual compressive stress. Although the hardness of cast iron was enhanced by both treatments, the fatigue strengths were not improved by the shot blast because of the existence of large casting defects. Shot peening with higher shot energy could induce the transition of crack initiation mechanism of cast iron, where crack initiated from the cluster of VCs. However the shot peening had small effect on the fatigue strengths of the cast iron because large casting defects were not removed by the shot peening due to the high hardness of the martensitic matrix.

  2. Corrosion resistance of cast irons and titanium alloys as reference engineered metal barriers for use in basalt geologic storage: a literature assessment

    International Nuclear Information System (INIS)

    Charlot, L.A.; Westerman, R.E.

    1981-07-01

    A survey and assessment of the literature on the corrosion resistance of cast irons and low-alloy titanium are presented. Selected engineering properties of cast iron and titanium are briefly described; however, the corrosion resistance of cast iron and titanium in aqueous solutions or in soils and their use in a basalt repository are emphasized. In evaluating the potential use of cast iron and titanium as structural barrier materials for long-lived nuclear waste packages, it is assumed that titanium has the general corrosion resistance to be used in relatively thin cross sections whereas the cost and availability of cast iron allows its use even in very thick cross sections. Based on this assumption, the survey showed that: The uniform corrosion of low-alloy titanium in a basalt environment is expected to be extremely low. A linear extrapolation of general corrosion rates with an added corrosion allowance suggests that a 3.2- to 6.4-mm-thick wall may have a life of 1000 yr. Pitting and crevice corrosion are not likely corrosion modes in basalt ground waters. It is also unlikely that stress corrosion cracking (SCC) will occur in the commercially pure (CP) titanium alloy or in palladiumor molybdenum-alloyed titanium materials. Low-alloy cast irons may be used as barrier metals if the environment surrounding the metal keeps the alloy in the passive range. The solubility of the corrosion product and the semipermeable nature of the oxide film allow significant uniform corrosion over long time periods. A linear extrapolation of high-temperature corrosion rates on carbon steels and corrosion rates of cast irons in soils gives an estimated metal penetration of 51 to 64 mm after 1000 yr. A corrosion allowance of 3 to 5 times that suggests that an acceptable cast iron wall may be from 178 to 305 mm thick. Although they cannot be fully assessed, pitting and crevice corrosion should not affect cast iron due to the ground-water chemistry of basalt

  3. THE EFFECT OF CHLORIDE AND ORTHOPHOSPHATE ON THE RELEASE OF IRON FROM A DRINKING WATER DISTRIBUTION SYSTEM CAST IRON PIPE

    Science.gov (United States)

    "Colored water" describes the appearance of drinking water that contains suspended particulate iron although the actual suspension color may be light yellow to red depending on water chemistry and particle properties. The release of iron from distribution system materials such a...

  4. Preliminary science report on the directional solidification of hypereutectic cast iron during KC-135 low-G maneuvers

    Science.gov (United States)

    Curreri, P. A.; Stefanescu, D. M.; Hendrix, J. C.

    1983-01-01

    An ADSS-P directional solidification furnace was reconfigured for operation on the KC-135 low-g aircraft. The system offers many advantages over quench ingot methods for study of the effects of sedimentation and convection on alloy formation. The directional sodification furnace system was first flown during the September 1982 series of flights. The microstructure of the hypereutectic cast iron sample solidified on one of these flights suggests a low-g effect on graphite morphology. Further experiments are needed to ascertain that this effect is due to low-gravity and to deduce which of the possible mechanisms is responsible for it.

  5. The Effect of Homogenization Heat Treatment on Thermal Expansion Coefficient and Dimensional Stability of Low Thermal Expansion Cast Irons

    Science.gov (United States)

    Chen, Li-Hao; Liu, Zong-Pei; Pan, Yung-Ning

    2016-08-01

    In this paper, the effect of homogenization heat treatment on α value [coefficient of thermal expansion (10-6 K-1)] of low thermal expansion cast irons was studied. In addition, constrained thermal cyclic tests were conducted to evaluate the dimensional stability of the low thermal expansion cast irons with various heat treatment conditions. The results indicate that when the alloys were homogenized at a relatively low temperature, e.g., 1023 K (750 °C), the elimination of Ni segregation was not very effective, but the C concentration in the matrix was moderately reduced. On the other hand, if the alloys were homogenized at a relatively high temperature, e.g., 1473 K (1200 °C), opposite results were obtained. Consequently, not much improvement (reduction) in α value was achieved in both cases. Therefore, a compound homogenization heat treatment procedure was designed, namely 1473 K (1200 °C)/4 hours/FC/1023 K (750 °C)/2 hours/WQ, in which a relatively high homogenization temperature of 1473 K (1200 °C) can effectively eliminate the Ni segregation, and a subsequent holding stage at 1023.15 K (750 °C) can reduce the C content in the matrix. As a result, very low α values of around (1 to 2) × 10-6 K-1 were obtained. Regarding the constrained thermal cyclic testing in 303 K to 473 K (30 °C to 200 °C), the results indicate that regardless of heat treatment condition, low thermal expansion cast irons exhibit exceedingly higher dimensional stability than either the regular ductile cast iron or the 304 stainless steel. Furthermore, positive correlation exists between the α 303.15 K to 473.15 K value and the amount of shape change after the thermal cyclic testing. Among the alloys investigated, Heat I-T3B (1473 K (1200 °C)/4 hours/FC/1023 K (750 °C)/2 hours/WQ) exhibits the lowest α 303 K to 473 K value (1.72 × 10-6 K-1), and hence has the least shape change (7.41 μm) or the best dimensional stability.

  6. Granular cast iron with boron and its application to the mixing of concrete for protection against nuclear radiation

    International Nuclear Information System (INIS)

    1980-01-01

    The invention aims to propose a concrete additive which, alone, brings together a high density property able to stop the gamma radiations, combined with a large cross section, able to capture the thermal neutrons. With this in view, the first object of the invention is the application of granular cast iron containing around 0.1 to 5% boron by weight. Its further object is the fabrication of this granular material, characterized by a preparation in the cupola furnace into which is injected a boron compound, preferably ore containing boron [fr

  7. Test examing the temperature shift behaviour of cast iron - Pt. II. Interpretation according to materials science and metallphysics

    International Nuclear Information System (INIS)

    Schreyer, G.W.

    1997-01-01

    For pt.I see ibid., vol.28, p.280-6, 1997. The first part of this article discusses the most important influences on temperature shock behaviour of cast iron materials and experimental results of the examinations. The presented second article offers an interpretation of theoretical as well as practical examination results according to materials scientific views. A method will be presented determining the lifetime of thermal shock stressed components using activation-energy-stress diagrams and statisticall significant regression-relationships. (orig.)

  8. Experimental and mechanism research of SO(2) removal by cast iron scraps in a magnetically fixed bed.

    Science.gov (United States)

    Jiang, Ju-Hui; Li, Ya-Hong; Cai, Wei-Min

    2008-05-01

    Sulfur dioxide can be effectively removed by cast iron scraps corrosion process in a DC magnetically fixed bed, and iron sulfate compounds are gained as an available byproduct. At approximate 50 degrees C, when magnetic field intensity was at 15 mT and height of scraps was about 25 mm, the SO(2) removal efficiency can be kept above 80%. As the deposited rusts accumulated, the corrosion rate and desulfurization efficiency gradually decreased. The results show SO(2) removal efficiency depends on corrosion rate, and it can be obviously enhanced by DC magnetic field. With the XRD and SEM research, it can be found that DC magnetic field cannot change the crystal structure of rusts, but can make the surface morphologies on the surface of scraps looser which means easily to be removed. Consequently, the corrosion resistance can be lessened and SO(2) removal efficiency is improved significantly.

  9. Shaping the Microstructure of Cast Iron Automobile Cylinder Liners Aimed at Providing High Service Properties

    Directory of Open Access Journals (Sweden)

    Orłowicz A.W.

    2015-06-01

    Full Text Available The paper presents an analysis of factors affecting the wear of cylinder liners. The effect of the graphite precipitation morphology on the cylinder liner wear mechanism is presented. Materials used to cast cylinder liners mounted in a number of engines have been examined for their conformity with requirements set out in applicable Polish industrial standard. A casting for a prototype cylinder liner has been made with a microstructure guaranteeing good service properties of the part.

  10. Phase transformations by dilatometry: TTT curve of high chromium white cast iron; Transformacoes de fase por dilatometria: curva TTT do ferro fundido branco de alto cromo

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, A.I. [UNESP, Rio Claro, SP (Brazil). Dept. de Fisica; Almeida Rollo, J.M.D. de; Di Lorenzo, P.L. [Sao Paulo Univ., SP (Brazil). Escola Politecnica

    1995-12-31

    The TTT curve of high chromium white cast iron is obtained using high speed quenching dilatometer. Generally, this grade of cast iron is used in abrasive wear resistance component. Thirteen thermal cycles was performed to obtain this curve. The samples were heated up to 1000 deg C whit 15 minutes soaking for homogeneous austenization, and cooling to isothermal temperature. Time transformation was determined for each sample. Metallographic analysis and Vickers hardness measurement were performed to confirm the phase transformation products. Finally, the TTT curve was applied to high chromium white cast iron, with material annealing and quenching performed from 1000 deg C and 60 minutes soaking time in a resistive furnace 8 refs., 4 figs., 1 tab.

  11. Effects of disinfectant and biofilm on the corrosion of cast iron pipes in a reclaimed water distribution system.

    Science.gov (United States)

    Wang, Haibo; Hu, Chun; Hu, Xuexiang; Yang, Min; Qu, Jiuhui

    2012-03-15

    The effects of disinfection and biofilm on the corrosion of cast iron pipe in a model reclaimed water distribution system were studied using annular reactors (ARs). The corrosion scales formed under different conditions were characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and scanning electron microscopy (SEM), while the bacterial characteristics of biofilm on the surface were determined using several molecular methods. The corrosion scales from the ARs with chlorine included predominantly α-FeOOH and Fe2O3, while CaPO3(OH)·2H2O and α-FeOOH were the predominant phases after chloramines replaced chlorine. Studies of the consumption of chlorine and iron release indicated that the formation of dense oxide layers and biofilm inhibited iron corrosion, causing stable lower chlorine decay. It was verified that iron-oxidizing bacteria (IOB) such as Sediminibacterium sp., and iron-reducing bacteria (IRB) such as Shewanella sp., synergistically interacted with the corrosion product to prevent further corrosion. For the ARs without disinfection, α-FeOOH was the predominant phase at the primary stage, while CaCO3 and α-FeOOH were predominant with increasing time. The mixed corrosion-inducing bacteria, including the IRB Shewanella sp., the IOB Sediminibacterium sp., and the sulfur-oxidizing bacteria (SOB) Limnobacter thioxidans strain, promoted iron corrosion by synergistic interactions in the primary period, while anaerobic IRB became the predominant corrosion bacteria, preventing further corrosion via the formation of protective layers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Rolling contact fatigue strength of successive austempered ductile cast iron; Chikuji austemper shori kyujo kokuen chutetsu no korogari hiro kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, T. [Yamaguchi University, Yamaguchi (Japan). Faculty of Engineering; Ogi, K. [Kyushu University, Fukuoka (Japan). Faculty of Engineering; Sawamoto, A. [Yamaguchi Univ., Yamaguchi (Japan). Faculty of Education

    1998-04-25

    The holding time of austempered spheroidal graphite cast iron material is allowed to vary in heat treatment especially at the lower bainite transformation zone during the process for the preparation of specimens different from each other in the amount of {gamma}-pool, and the specimens are tested for their rolling contact fatigue strength. The effects of the amount of {gamma}-pool, roughness of the bainite structure, and work-hardening, on the rolling fatigue strength are also studied. Findings obtained as the result of experiment are stated below. In the case of an austempered ductile cast iron specimen containing a {gamma}-pool amount that occupies a high rate of 6.52%, the rolling fatigue withstanding limit exhibits a relatively high level of 1310MPa, which becomes approximately 1245MPa when the holding time is extended in the lower bainite transformation zone. The limit rises to approximately 1320MPa at a stage where the {gamma}-pool virtually disappears. In a successive austempering treatment process that aims at improving on machinability and at allowing sufficient fatigue strength to be maintained, it is necessary to allow the holding time in the bainite zone to be long enough for the {gamma}-pool to disappear and for the lower bainite structure to grow sufficiently. 5 refs., 10 figs., 4 tabs.

  13. Electrochemical Study of Polymer and Ceramic-Based Nanocomposite Coatings for Corrosion Protection of Cast Iron Pipeline

    Directory of Open Access Journals (Sweden)

    Ameen Uddin Ammar

    2018-02-01

    Full Text Available Coating is one of the most effective measures to protect metallic materials from corrosion. Various types of coatings such as metallic, ceramic and polymer coatings have been investigated in a quest to find durable coatings to resist electrochemical decay of metals in industrial applications. Many polymeric composite coatings have proved to be resistant against aggressive environments. Two major applications of ferrous materials are in marine environments and in the oil and gas industry. Knowing the corroding behavior of ferrous-based materials during exposure to these aggressive applications, an effort has been made to protect the material by using polymeric and ceramic-based coatings reinforced with nano materials. Uncoated and coated cast iron pipeline material was investigated during corrosion resistance by employing EIS (electrochemical impedance spectroscopy and electrochemical DC corrosion testing using the “three electrode system”. Cast iron pipeline samples were coated with Polyvinyl Alcohol/Polyaniline/FLG (Few Layers Graphene and TiO2/GO (graphene oxide nanocomposite by dip-coating. The EIS data indicated better capacitance and higher impedance values for coated samples compared with the bare metal, depicting enhanced corrosion resistance against seawater and “produce water” of a crude oil sample from a local oil rig; Tafel scans confirmed a significant decrease in corrosion rate of coated samples.

  14. Electrochemical Study of Polymer and Ceramic-Based Nanocomposite Coatings for Corrosion Protection of Cast Iron Pipeline

    Science.gov (United States)

    Ammar, Ameen Uddin; Shahid, Muhammad; Ahmed, Muhammad Khitab; Khan, Munawar; Khalid, Amir

    2018-01-01

    Coating is one of the most effective measures to protect metallic materials from corrosion. Various types of coatings such as metallic, ceramic and polymer coatings have been investigated in a quest to find durable coatings to resist electrochemical decay of metals in industrial applications. Many polymeric composite coatings have proved to be resistant against aggressive environments. Two major applications of ferrous materials are in marine environments and in the oil and gas industry. Knowing the corroding behavior of ferrous-based materials during exposure to these aggressive applications, an effort has been made to protect the material by using polymeric and ceramic-based coatings reinforced with nano materials. Uncoated and coated cast iron pipeline material was investigated during corrosion resistance by employing EIS (electrochemical impedance spectroscopy) and electrochemical DC corrosion testing using the “three electrode system”. Cast iron pipeline samples were coated with Polyvinyl Alcohol/Polyaniline/FLG (Few Layers Graphene) and TiO2/GO (graphene oxide) nanocomposite by dip-coating. The EIS data indicated better capacitance and higher impedance values for coated samples compared with the bare metal, depicting enhanced corrosion resistance against seawater and “produce water” of a crude oil sample from a local oil rig; Tafel scans confirmed a significant decrease in corrosion rate of coated samples. PMID:29495339

  15. Abrasive resistance of metastable V-Cr-Mn-Ni spheroidal carbide cast irons using the factorial design method

    Science.gov (United States)

    Efremenko, V. G.; Shimizu, K.; Cheiliakh, A. P.; Pastukhova, T. V.; Chabak, Yu. G.; Kusumoto, K.

    2016-06-01

    Full factorial design was used to evaluate the two-body abrasive resistance of 3wt%C-4wt%Mn-1.5wt%Ni spheroidal carbide cast irons with varying vanadium (5.0wt%-10.0wt%) and chromium (up to 9.0wt%) contents. The alloys were quenched at 920°C. The regression equation of wear rate as a function of V and Cr contents was proposed. This regression equation shows that the wear rate decreases with increasing V content because of the growth of spheroidal VC carbide amount. Cr influences the overall response in a complex manner both by reducing the wear rate owing to eutectic carbides (M7C3) and by increasing the wear rate though stabilizing austenite to deformation-induced martensite transformation. This transformation is recognized as an important factor in increasing the abrasive response of the alloys. By analyzing the regression equation, the optimal content ranges are found to be 7.5wt%-10.0wt% for V and 2.5wt%-4.5wt% for Cr, which corresponds to the alloys containing 9vol%-15vol% spheroidal VC carbides, 8vol%-16vol% M7C3, and a metastable austenite/martensite matrix. The wear resistance is 1.9-2.3 times that of the traditional 12wt% V-13wt% Mn spheroidal carbide cast iron.

  16. Electrochemical Study of Polymer and Ceramic-Based Nanocomposite Coatings for Corrosion Protection of Cast Iron Pipeline.

    Science.gov (United States)

    Ammar, Ameen Uddin; Shahid, Muhammad; Ahmed, Muhammad Khitab; Khan, Munawar; Khalid, Amir; Khan, Zulfiqar Ahmad

    2018-02-25

    Coating is one of the most effective measures to protect metallic materials from corrosion. Various types of coatings such as metallic, ceramic and polymer coatings have been investigated in a quest to find durable coatings to resist electrochemical decay of metals in industrial applications. Many polymeric composite coatings have proved to be resistant against aggressive environments. Two major applications of ferrous materials are in marine environments and in the oil and gas industry. Knowing the corroding behavior of ferrous-based materials during exposure to these aggressive applications, an effort has been made to protect the material by using polymeric and ceramic-based coatings reinforced with nano materials. Uncoated and coated cast iron pipeline material was investigated during corrosion resistance by employing EIS (electrochemical impedance spectroscopy) and electrochemical DC corrosion testing using the "three electrode system". Cast iron pipeline samples were coated with Polyvinyl Alcohol/Polyaniline/FLG (Few Layers Graphene) and TiO₂/GO (graphene oxide) nanocomposite by dip-coating. The EIS data indicated better capacitance and higher impedance values for coated samples compared with the bare metal, depicting enhanced corrosion resistance against seawater and "produce water" of a crude oil sample from a local oil rig; Tafel scans confirmed a significant decrease in corrosion rate of coated samples.

  17. Determining the Mechanism of In-Service Cylinder Distortion in Aluminum Engine Blocks with Cast-In Gray Iron Liners

    Science.gov (United States)

    Lombardi, Anthony; Ravindran, Comondore; Sediako, Dimitry; MacKay, Robert

    2014-12-01

    In recent years, stringent government legislation on vehicle fuel efficiency has pushed the automotive industry to replace steel and cast iron power train components with light weight Al alloys. However, unlike their ferrous-based equivalents, Al-Si alloy engine blocks are prone to permanent dimensional distortion in critical locations such as the cylinder bore regions. Understanding the mechanisms that cause distortion will promote the use of Al alloys over ferrous alloys for power train applications and enable automotive manufacturers to meet emission standards and reduce fuel consumption. In this study, neutron diffraction was used to evaluate residual stress along the Al cylinder bridge and the gray cast iron liners of distorted and undistorted engine blocks. Microstructural analysis was carried out using OM, SEM, and TEM, while mechanical testing was accomplished via ambient and elevated temperature [~453 K (180 °C)] tensile testing. The results suggest that the distorted engine block had high tensile residual stress in the Al cylinder bridge, reaching a maximum of 170 MPa in the hoop direction, which triggered permanent dimensional distortion in the cylinders when exposed to service conditions. In addition, the middle of the cylinder had the highest magnitude of distortion since this region had a combination of high tensile residual stress (hoop stress of 150 MPa) and reduced strength compared with the bottom of the cylinder.

  18. Multivariate research in areas of phosphorus cast-iron brake shoes manufacturing using the statistical analysis and the multiple regression equations

    Science.gov (United States)

    Kiss, I.; Cioată, V. G.; Alexa, V.; Raţiu, S. A.

    2017-05-01

    The braking system is one of the most important and complex subsystems of railway vehicles, especially when it comes for safety. Therefore, installing efficient safe brakes on the modern railway vehicles is essential. Nowadays is devoted attention to solving problems connected with using high performance brake materials and its impact on thermal and mechanical loading of railway wheels. The main factor that influences the selection of a friction material for railway applications is the performance criterion, due to the interaction between the brake block and the wheel produce complex thermos-mechanical phenomena. In this work, the investigated subjects are the cast-iron brake shoes, which are still widely used on freight wagons. Therefore, the cast-iron brake shoes - with lamellar graphite and with a high content of phosphorus (0.8-1.1%) - need a special investigation. In order to establish the optimal condition for the cast-iron brake shoes we proposed a mathematical modelling study by using the statistical analysis and multiple regression equations. Multivariate research is important in areas of cast-iron brake shoes manufacturing, because many variables interact with each other simultaneously. Multivariate visualization comes to the fore when researchers have difficulties in comprehending many dimensions at one time. Technological data (hardness and chemical composition) obtained from cast-iron brake shoes were used for this purpose. In order to settle the multiple correlation between the hardness of the cast-iron brake shoes, and the chemical compositions elements several model of regression equation types has been proposed. Because a three-dimensional surface with variables on three axes is a common way to illustrate multivariate data, in which the maximum and minimum values are easily highlighted, we plotted graphical representation of the regression equations in order to explain interaction of the variables and locate the optimal level of each variable for

  19. Corrosion behaviour of water waste on the gray cast iron sanitary pipelines

    International Nuclear Information System (INIS)

    Fawzy, Y.H.A.H.

    2002-01-01

    The works of Plato (427-347 B.C.) contained the written description of corrosion. Plato defined rust as the earthy component separating out of the metal. (Georgius Agrico La) held to the same opinion some 2000 years later in his great mineralogical work De Natura Fossilium Iron rust (rat. Ferrug or Rubigo) is, so to speak, assertion of metallic iron. Iron can be protected against this defect by various wrapping, such as red lead, white lead, gypsum, bitumen or tar. Gaius Secundus Pliny also mentioned bitumen, pitch, white lead, and gypsum as protecting iron and bronze against corrosion. He reported that Alexander the Great had constructed Ponton Bridge at Zeugmar on the Euphrates with the aid of an iron chain. Link's that were inserted later suffered rust attacks, While the original ones remained immune. The opinion, sometimes expressed today, that modern iron inferior and more corrosion than old iron, was thus current even in ancient times. The concept of the corrosion process derived from the latin corrodere ( to eat away, to destroy ), first appeared in the philosophical transaction in 1667. It was discussed in German from the Frensh on the manufacture of white lead in 1785 and was mentioned in 1836 in the translation of an English paper by Savy on the cathodic protection of iron in sea water. However, almost unit the present day, the term was indiscriminately for corrosion reaction effects, and corrosion damage

  20. APPLICATION OF SECONDARY MATERIALS AT PRODUCTION OF DETAILS FROM CHROME CAST IRONS

    Directory of Open Access Journals (Sweden)

    E. I. Marukovich

    2012-01-01

    Full Text Available The groups of alloy steel scrap. suitable for wear-resistant synthetic chromium and iron grades ich18VN ich18VM are studied and defined. Found that the number of alloyed steel scrap in the charge for these irons can be more than 85%, and the price of the charge decreases from 30 to 45%.

  1. Relationships between microstructure and mechanical properties in ductile cast irons: a review; Relaciones entre la microestructura y las propiedades mecanicas en fundiciones nodulares: revison bibliografica

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, R.; Bermont, V. [Universidad de La Serena. La Serena. Chile (Chile); Martinez, V. [Universidad de Santiago. Santiago Chile (Chile)

    1999-07-01

    The progress achieved in the understanding of the relationships between the microstructure and the mechanical properties of ductile cast iron is reviewed. It is also described the applications of heat treatment of austempered to ductile irons (ADI), which have allowed to improve substantially the mechanical properties of these materials. It is proposed a research program to obtain the crack growth resistance under corrosive atmospheres and to model the mechanical properties. (Author) 83 refs.

  2. SORTING CAPABILITIES OF CASTINGS FROM NODULAR AND GRAY IRON BY THE STRUCTURE BY THE RESULT OF THE MEASUREMENT OF THE MAGNETIC PARAMETERS AND THE SPEED OF SOUND

    Directory of Open Access Journals (Sweden)

    S. G. Sandomirskiy

    2013-01-01

    Full Text Available The results of the analysis of the influence of changes in the structure of the metal substrate and form of graphite inclusions in cast iron on the magnetic coercive sensitive parameter and the speed of sound are given. The efficiency of shared use of the results of magnetic and ultrasonic measurements to control the shape of inclusions in ductile iron and pearlite content in its metal matrix is shown.

  3. Effects of Alloying Elements (Mo, Ni, and Cu on the Austemperability of GGG-60 Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    Erkan Konca

    2017-08-01

    Full Text Available The interest in austempered ductile irons (ADI is continuously increasing due to their various advantageous properties over conventional ductile irons and some steels. This study aimed to determine the roles of alloying elements Ni, Cu, and Mo, on the austemperability of GGG-60 ductile cast iron. Two different sets of GGG-60 (EN-GJS-600-3 samples, one set alloyed with Ni and Cu and the other set alloyed with Mo, Ni, and Cu, were subjected to austempering treatments at 290 °C, 320 °C, and 350 °C. A custom design heat treatment setup, consisting of two units with the top unit (furnace serving for austenitizing and the 200 L capacity bottom unit (stirred NaNO2-KNO3 salt bath serving for isothermal treatment, was used for the experiments. It was found that austempering treatment at 290 °C increased the hardness of the Ni-Cu alloyed GGG-60 sample by about 44% without causing a loss in its ductility. In the case of the Mo-Ni-Cu alloyed sample, the increase in hardness due to austempering reached to almost 80% at the same temperature while some ductility was lost. Here, the microstructural investigation and mechanical testing results of the austempered samples are presented and the role of alloying elements (Mo, Ni, and Cu on the austemperability of GGG-60 is discussed.

  4. Three-dimensional local residual stress and orientation gradients near graphite nodules in ductile cast iron [3D local residual stress and orientation gradients near graphite nodules in ductile cast iron

    International Nuclear Information System (INIS)

    Zhang, Y. B.; Andriollo, T.; Faester, S.; Liu, W.; Hattel, J.; Barabash, R. I.

    2016-01-01

    A synchrotron technique, differential aperture X-ray microscopy (DAXM), has been applied to characterize the microstructure and analyze the local mesoscale residual elastic strain fields around graphite nodules embedded in ferrite matrix grains in ductile cast iron. Compressive residual elastic strains are measured with a maximum strain of ~6.5–8 × 10 –4 near the graphite nodules extending into the matrix about 20 μm, where the elastic strain is near zero. The experimental data are compared with a strain gradient calculated by a finite element model, and good accord has been found but with a significant overprediction of the maximum strain. This is discussed in terms of stress relaxation during cooling or during storage by plastic deformation of the nodule, the matrix or both. Furthermore, relaxation by plastic deformation of the ferrite is demonstrated by the formation of low energy dislocation cell structure also quantified by the DAXM technique.

  5. Quantification of Feeding Effects of Spot Feeding Ductile Iron Castings made in Vertically Parted Moulds

    DEFF Research Database (Denmark)

    Vedel-Smith, Nikolaj Kjelgaard; Tiedje, Niels Skat; Sällström, J.

    In vertically parted molds it is traditionally difficult to feed heavy sections that cannot be reached by traditional side/top feeders or other conventional methods. This project aims at quantifying the effects of using molded-in ram-up spot feeders as a means of feeding isolated sections in cast...

  6. Application of cast iron-platinum keeper to a collapsible denture for a patient with constricted oral opening: a clinical report.

    Science.gov (United States)

    Ohkubo, Chikahiro; Watanabe, Ikuya; Tanaka, Yasuhiro; Hosoi, Toshio

    2003-07-01

    Insertion of a denture is especially difficult for patents with a constricted oral opening. This report describes the fabrication of a collapsible removable partial denture with a cast iron-platinum attachment for a partially edentulous woman with a constricted oral opening resulting from rheumatoid arthritis and a craniotomy for a subarachnoid hemorrhage.

  7. Environmental impacts of the production of cast iron in the Amazonian region; O impacto ambiental da producao de ferro-gusa na Amazonia

    Energy Technology Data Exchange (ETDEWEB)

    Luczynski, Estanislau; Sauer, Ildo L. [Sao Paulo Univ., SP (Brazil). Inst. de Eletrotecnica e Energia

    1996-12-31

    The environmental problems created in the Brazilian Amazonian region by the use of wood fuel in the cast iron production plants are presented.The problems are related to air pollution, deforestation, soil erosion as well as the extinction of noble types of wood 10 refs., 3 figs., 5 tabs.

  8. Effects of casting defects, matrix structures and loading conditions on the fatigue strength of ductile irons

    Directory of Open Access Journals (Sweden)

    Endo Masahiro

    2014-06-01

    Full Text Available A novel method is presented to estimate the lower bound of the scatter in fatigue limit of ductile iron based upon the information of microstructural in homogeneities and loading conditions. The predictive capability of the method was verified by comparing to the experimental data obtained by the rotating-bending, torsion and combined tension-torsion fatigue tests for ductile irons with ferritic, pearlitic and bulls-eye (ferritic/pearlitic microstructures.

  9. Machinable, Thin-Walled, Gray and Ductile Iron Casting Production, Phase III

    Energy Technology Data Exchange (ETDEWEB)

    Charles Bates; Hanjun Li; Robin Griffin

    2003-12-08

    This report presents the results of research conducted to determine the effects of normal and abnormal processing and compositional variations on machinability (tool wear rate) of gray and ductile iron. The procedures developed allow precise tool wear measurements to be made and interpreted in terms of microstructures and compositions. Accurate data allows the most efficient ways for improving machinability to be determined without sacrificing properties of the irons.

  10. Fatigue crack growth in austempered ductile and grey cast irons - stress ratio effects in air and mine water

    Energy Technology Data Exchange (ETDEWEB)

    James, M.N. [Plymouth Univ. (United Kingdom). Dept. of Mech. and Marine Eng.; Li Wenfong [Department of Mechanical Engineering, University of Sydney, Sydney, NSW 2006 (Australia)

    1999-06-15

    A study is presented of the effect of stress ratio on fatigue crack growth in grey (GI) and austempered ductile (ADI) cast irons in laboratory air and, for the ADI, in synthetic mine water. Fatigue crack closure was measured by compliance techniques and factored out of the applied {Delta}K values ({Delta}K=K{sub max}-K{sub min}) to give effective stress intensity values. Crack growth rate modelling was then attempted for the laboratory air data using a two-parameter approach ({Delta}K and K{sub max}). This worked well for the ADI, but not for the GI, probably due to the much larger scatter inherent in the fatigue crack growth rates in the latter alloy. Trends in the observed growth rate and closure data for the two alloys are explained in terms of mechanism changes arising from microstructural/crack tip plastic zone interactions, and K{sub max} effects. (orig.) 9 refs.

  11. Development of the white cast iron with niobium alloy, heat treating, to wear of the abrasive resistance

    International Nuclear Information System (INIS)

    Farah, Alessandro Fraga

    1997-01-01

    This work presents the heat treatment and abrasion tests results of a white cast iron with niobium alloy. The hardening heat treatment were made 950, 1000, 1050 e 110 deg C temperatures cooled by forced air. The tempering treatment were made at 450, 500 e 550 deg C temperatures. The heat treating alloy were compared, in the abrasive tests, with commercial alloys used as hardfacing by welding process in wear pieces. The abrasion tests was realized in pin on disk test. Additional tests were carried out for microstructural characterization to identify the different phases presents in the alloys. In a general way, the alloy studies showed the best wear rate for the heat treatments that results in higher hardness. It performance was superior than that of the commercial alloys. (author)

  12. Influence Of The Triple Spheroidization On Surface Hardness From Drilling Resistance Behavior Of Powder Coated Gray Cast Iron

    Directory of Open Access Journals (Sweden)

    Subhakij Khaonetr

    2015-08-01

    Full Text Available The objective of this study on the influence of the triple spheroidization on surface hardness from drilling resistance Dry drilling of powder coated gray cast iron using universal testing machine Compressive mode the surface hardness in powder coating areas normal hardness and Charpy impact resistance were considered. The spheroidizing temperatures were 300amp61616C 450amp61616C and 600amp61616C the spheroidizing time spanned the range of 6 hours and cooled down in the furnace to room temperature for 24 hours. The drilling resistance test the high-speed twist drill diameter of 3 mm the rotating speed of 1000 revmin and the crosshead speed of 5-25 mmmin were investigated. It was found that the surface hardness from drilling resistance normal hardness and Charpy impact resistance increased as the spheroidizing temperatures increased. The maximum surface hardness was found at the third spheroidization.

  13. Emission of organic compounds from mould and core binders used for casting iron, aluminium and bronze in sand moulds.

    Science.gov (United States)

    Tiedje, Niels; Crepaz, Rudolf; Eggert, Torben; Bey, Niki

    2010-12-01

    Emissions from mould and core sand binders commonly used in the foundry industry have been investigated. Degradation of three different types of binders was investigated: Furfuryl alcohol (FA), phenolic urethane (PU) and resol-CO2 (RC). In each group of binders, at least two different binder compositions were tested. A test method that provides uniform test conditions is described. The method can be used as a general test method to analyse off gases from binders. Moulds, containing a standard size casting, were produced and the amount and type of organic compounds, resulting from thermal degradation of binders, was monitored when cast iron, bronze and aluminium was poured in the moulds. Binder degradation was measured by collecting off gases in a specially designed ventilation hood at a constant flow rate. Samples were taken from the ventilation system and analysed for hydrocarbons and CO content. It is shown how off-gases vary with time after pouring and shake out. Also the composition of off-gases is analysed and shown. It is further shown how the composition of off-gasses varies between different types of binders and with varying composition of the binders as well as function of the thermal load on the moulding sand.

  14. A New Direct-Pour In-Mold (DPI) Technology for Producing Ductile and Compacted Graphite Iron Castings.

    Energy Technology Data Exchange (ETDEWEB)

    Jason Hitchings; Jay R. Hitchings

    2007-07-20

    A new "Direct Pour In-Mold" (DPI) Magnesium treatment technology has been developed that can produce both Nodular and Compacted Graphite iron. The DPI technology converts the standard horizontal runner system into a vertical one, by placing a Magnesium Ferrosilicon treatment alloy and molten metal filter into a specially designed container. The DPI container is easily placed into either vertically or horizontally parted molds, and then a base metal can be poured directly into it. The metal is treated and filtered as it passes through, and then proceeds directly into a runner or casting cavity. Various sizes of containers provide all of the necessary components required to deliver a range of weights of treated and filtered metal at accurate and consistent flow rates. The DPI containers provide energy savings over competing techniques, increased mold yields, very high Magnesium recovery, zero Magnesium fume, and no post inoculation is required. By treating the metal just prior to it entering a casting cavity many other benefits and advantages are also realized.

  15. Comparative study of TIG and SMAW root welding passes on ductile iron cast weldability

    Directory of Open Access Journals (Sweden)

    J. Cárcel-Carrasco

    2017-01-01

    Full Text Available This work compares the weldability of ductile iron when: (I a root weld is applied with a tungsten inert gas (TIG process using an Inconel 625 source rod and filler welds are subsequently applied using coated electrodes with 97,6%Ni; and (II welds on ductile iron exclusively made using the manual shielded metal arc welding technique (SMAW. Both types of welds are performed on ductile iron specimen test plates that are subjected to preheat and post-weld annealing treatments. Samples with TIG root-welding pass shown higher hardness but slightly lower ductility and strength. Both types of welding achieved better ductile and strength properties than ones found in literature.

  16. Effect of austempering parameters on microstructure and mechanical properties of horizontal continuous casting ductile iron dense bars

    Directory of Open Access Journals (Sweden)

    Chun-jie Xu

    2015-03-01

    Full Text Available In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and time on microstructure and mechanical properties of LZQT500-7 ductile iron dense bars with 172 mm in diameter which were produced by horizontal continuous casting (HCC. The results show that the major factors influencing the hardness of austempered ductile iron (ADI are austenitizing temperature and austempering temperature. The fraction of retained austenite increases as the austenitizing and austempering temperatures increase. When austenitizing temperature is low, acicular ferrite and retained austenite can be efficiently obtained by appropriately extending the austenitizing time. The proper austmepering time could ensure enough stability of retained austenite and prevent high carbon austenite decomposition. The optimal mechanical properties of ADI can be achieved with the following process parameters: austenitizing temperature and time are 866 °C and 135 min, and austempering temperature and time are 279 °C and 135 min, respectively. The microstructure of ADI under the optimal austempering process consists of fine acicular ferrite and a small amount of retained austenite, and the hardness, tensile strength, yield strength, elongation and impact toughness of the bars are HBW 476, 1670 MPa, 1428 MPa, 2.93% and 25.7 J, respectively.

  17. Graphene Coating via Chemical Vapor Deposition for Improving Friction and Wear of Gray Cast Iron at Interfaces.

    Science.gov (United States)

    Tripathi, Khagendra; Gyawali, Gobinda; Lee, Soo Wohn

    2017-09-20

    This study reports the influence of CVD-graphene on the tribological performance of gray cast iron (GCI) from the internal combustion engine (ICE) cylinder liners by performing a ball-on-disk friction tests. The graphene-coated specimen exhibited a significant reduction (∼53%) of friction as compared to that of the uncoated specimen, whereas wear resistance increased by 2- and 5-fold regarding the wear of specimen and ball, respectively. Extremely low shear strength and highly lubricating nature of graphene contribute to the formation of a lubricative film between the sliding surfaces and decreases the interaction between surfaces in the dry environment. Under the applied load, a uniform film of iron oxides such as Fe 2 O 3 , Fe 3 O 4 , and FeOOH is found to be formed between the surfaces. It is proposed that the graphene encapsulation with the metal debris and oxides formed between the specimens increases the lubricity and decreases the shear force. The transformation of graphene/graphite into nanocrystalline graphites across the contact interfaces following the amorphization trajectory further increases the lubricity of the film that ultimately reduces friction and wear of the material.

  18. A program to qualify ductile cast iron for use as a containment material for type B transport cask

    International Nuclear Information System (INIS)

    Golliher, K.G.; Sorenson, K.B.; Witt, C.R.

    1990-01-01

    This paper reports on the Department of Energy (DOE) investigations for the use of ductile cast iron (DCI) as a candidate material for radioactive material transportation cask construction. The investigation will include materials testing and full-scale cask testing. The major effort will focus on materials qualification and cask evaluation of the 9 meter and puncture drop test events. Interaction by contract with the private industry, the American Society for Testing and Materials (ASTM) Committee A4.04, and the Electric Power Research Institute (EPRI) will be actively pursued to establish material specification acceptance criteria for ductile iron use as a cask material in the United States of America (USA). All test results will be documented in the safety analysis report for packaging for submission to the U.S. Nuclear Regulatory Commission (NRC). The goal of this program is a certificate of compliance for DCI from the NRC to transport high-level radioactive materials. The acceptance of DCI within the USA cask design community will offer an alternative to present-day materials for cask construction, and its entry has the potential of providing significant cost-savings

  19. Effect of electrical pulse treatment on the thermal fatigue resistance of bionic compacted graphite cast iron processed in water

    International Nuclear Information System (INIS)

    Liu, Yan; Zhou, Hong; Su, Hang; Yang, Chunyan; Cheng, Jingyan; Zhang, Peng; Ren, Luquan

    2012-01-01

    Highlights: ► Electrical pulse treatment can reduce cracks on bionic units before thermal fatigue tests. ► Electrical pulse treatment can reduce crack sources during thermal fatigue tests. ► Thermal fatigue resistance of bionic units processed in water is enhanced. ► Thermal fatigue resistance of bionic CGI processed in water is improved. -- Abstract: In order to further enhance the thermal fatigue resistance of bionic compacted graphite cast iron (CGI) which is processed by laser in water, the electrical pulse treatment is applied to improve the thermal fatigue resistance of bionic units. The results show that the electrical pulse treatment causes the supersaturated carbon atoms located in the lattice of austenite to react with the iron atoms to form the Fe 3 C. The microstructures of the bionic units processed in water are refined by the electrical pulse treatment. The cracks on the bionic units are reduced by the electrical pulse treatment before the thermal fatigue tests; and during the tests, the thermal fatigue resistance of bionic units is therefore enhanced by reducing the crack sources. By this way, the thermal fatigue resistance of bionic CGI processed in water is improved.

  20. Quantitative evaluation of hidden defects in cast iron components using ultrasound activated lock-in vibrothermography.

    Science.gov (United States)

    Montanini, R; Freni, F; Rossi, G L

    2012-09-01

    This paper reports one of the first experimental results on the application of ultrasound activated lock-in vibrothermography for quantitative assessment of buried flaws in complex cast parts. The use of amplitude modulated ultrasonic heat generation allowed selective response of defective areas within the part, as the defect itself is turned into a local thermal wave emitter. Quantitative evaluation of hidden damages was accomplished by estimating independently both the area and the depth extension of the buried flaws, while x-ray 3D computed tomography was used as reference for sizing accuracy assessment. To retrieve flaw's area, a simple yet effective histogram-based phase image segmentation algorithm with automatic pixels classification has been developed. A clear correlation was found between the thermal (phase) signature measured by the infrared camera on the target surface and the actual mean cross-section area of the flaw. Due to the very fast cycle time (<30 s/part), the method could potentially be applied for 100% quality control of casting components.