WorldWideScience

Sample records for cast copper base

  1. Grain Refinement of Permanent Mold Cast Copper Base Alloys

    Energy Technology Data Exchange (ETDEWEB)

    M.Sadayappan; J.P.Thomson; M.Elboujdaini; G.Ping Gu; M. Sahoo

    2005-04-01

    Grain refinement is a well established process for many cast and wrought alloys. The mechanical properties of various alloys could be enhanced by reducing the grain size. Refinement is also known to improve casting characteristics such as fluidity and hot tearing. Grain refinement of copper-base alloys is not widely used, especially in sand casting process. However, in permanent mold casting of copper alloys it is now common to use grain refinement to counteract the problem of severe hot tearing which also improves the pressure tightness of plumbing components. The mechanism of grain refinement in copper-base alloys is not well understood. The issues to be studied include the effect of minor alloy additions on the microstructure, their interaction with the grain refiner, effect of cooling rate, and loss of grain refinement (fading). In this investigation, efforts were made to explore and understand grain refinement of copper alloys, especially in permanent mold casting conditions.

  2. Refining processes in the copper casting technology

    OpenAIRE

    Rzadkosz, S.; Kranc, M.; Garbacz-Klempka, A.; Kozana, J.; Piękoś, M.

    2015-01-01

    The paper presents the analysis of technology of copper and alloyed copper destined for power engineering casts. The casts quality was assessed based on microstructure, chemical content analysis and strength properties tests. Characteristic deoxidising (Logas, Cup) and modifying (ODM2, Kupmod2) formulas were used for the copper where high electrical conductivity was required. Chosen examples of alloyed copper with varied Cr and Zr content were studied, and the optimal heat treatment parameter...

  3. Galvanic corrosion of copper-cast iron couples

    International Nuclear Information System (INIS)

    Smart, N.R.; Rance, A.P.; Fennell, P.A.H.

    2005-01-01

    To ensure the safe encapsulation of spent nuclear fuel rods for geological disposal, SKB are considering using the Copper-Cast Iron Canister, which consists of an outer copper canister and an inner cast iron container. The canister will be placed into boreholes in the bedrock of a geologic repository and surrounded by bentonite clay. In the unlikely event of the outer copper canister being breached, water would enter the annulus between the inner and outer canister and at points of contact between the two metals there would be the possibility of galvanic interactions. Although this subject has been considered previously from both a theoretical standpoint and by experimental investigations there was a need for further experimental studies in support of information provided by SKB to the Swedish regulators (SKI). In the work reported here copper-cast iron galvanic couples were set up in a number of different environments representing possible conditions in the SKB repository. The tests investigated two artificial porewaters at 30 deg C and 50 deg C, under aerated and deaerated conditions. Tests were also carried out in a 30 wt% bentonite slurry made up in artificial groundwater. The potential of the couples and the currents passing between the coupled electrodes were monitored for several months. The effect of growing an oxide film on the surface of the cast iron prior to coupling it with copper was investigated. In addition, some crevice specimens based on the multi-crevice assembly (MCA) design were used to simulate the situation where the copper canister will be in direct contact with the cast iron inner vessel. The electrochemical results are presented graphically in the form of electrode potentials and galvanic corrosion currents as a function of time. The galvanic currents in aerated conditions were much higher than in deaerated conditions. For example, at 30 deg C, galvanic corrosion rates as low as 0.02 μm/year for iron were observed after deaeration, but

  4. Modelling of solidification processing and continuous strip casting for copper-base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoudi, Jafar [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Materials Processing

    2000-04-01

    An experimental and numerical study was carried out to investigate the solidification process in a copper continuous strip casting process. Heat flow and solidification process has been experimentally studied. Cooling curves during solidification were registered using a thermocouple of type K connected to a data acquisition system. Temperature measurements in the mould and cooling water were also performed. The numerical model considers a generalized set of mass, momentum and heat equations that is valid for the solid, liquid and solidification interval in the cast. A k-{epsilon} turbulence model, produced with the commercial program CFX, is used to analyse the solidification process of pure copper in the mould region of the caster. The fluid flow, temperature and heat flux distributions in the mould region of the caster were computed. The shape and location of the solidification front were also determined. The effects of the parameters such as heat transfer coefficient, casting speed, casting temperature, heat of fusion and specific heat on the shape and location of the solidification front and the heat transport at the mould-cast interface were investigated. The predicted temperature and heat flux distributions were compared with experimental measurements, and reasonable agreement was obtained. The solidification behaviour of pure copper and different copper base alloys has been studied. A series of solidification experiments using DTA furnace, mirror furnace and levitation technique were performed on different copper-base alloys. The undercooling, cooling rates of the liquid and the solid states, solidification times and temperatures were evaluated from the curves. The cooling curves for different samples were simulated using a FEM solidification program. It was found that the calculated values of the heat of fusion were much lower than the tabulated ones. The fraction of solid formed before quenching, in the DTA experiments, has been observed to be much higher

  5. 40 CFR 464.20 - Applicability; description of the copper casting subcategory.

    Science.gov (United States)

    2010-07-01

    ... copper casting subcategory. 464.20 Section 464.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS METAL MOLDING AND CASTING POINT SOURCE CATEGORY Copper Casting Subcategory § 464.20 Applicability; description of the copper casting subcategory. The...

  6. FEATURES OF SPHEROIDIZING MODIFICATION OF HIGH-STRENGTH CAST IRON WITH MASTER ALLOYS BASED ON COPPER

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2016-01-01

    Full Text Available The increase of efficiency of modification process for ductile iron is topically, thereby increasing its mechanical and operational properties. For these purposes, in practice, various magnesium containing alloys are used, including «heavy» ones on the basis of Copper and Nickel. The analysis has shown that the application of bulk inoculating alloys based on copper basis were not effectively due to long dissolution period. From this point of view, the interest is high-speed casting, allowing the production of inoculating alloys in the form of strips – chips that are characterized by a low dissolution time and low piroeffekt. The aim of this work is to study the features of structure formation in nodular cast iron using different spheroidizing alloys based on copper. Studies have shown that the transition from the use of briquetted form alloys based on copper and magnesium to the «chips-inoculating alloys» allowed increasing the efficiency of the spheroidizing process. Further improvement in the quality of ductile iron can be achieved by the use in «chip-inoculating alloys» additives of nanosized yttrium oxide powder. 

  7. Die casting copper motor rotors: mold materials and processing for cost-effective manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Peters, D.T.; Cowie, J.G.; Brush, E.F. Jr.

    2000-07-01

    This project seeks to demonstrate mold materials for copper pressure die-casting that are cost-effective and practical for production use in die-casting copper motor rotors. The incorporation of die-cast copper for conductor bars and end rings of the induction motor in place of aluminum would result in attractive improvements in motor energy efficiency through reductions in motor losses ranging from 15% to 20%. Die-cast motor rotors are produced in aluminum today because rotor fabrication by pressure die-casting is an established practice. Lack of a durable and cost-effective mold material has been the technical barrier preventing manufacture of the die-cast copper rotor. This project tested H-13 steel die inserts that establish the baseline. Nickel-, tungsten-, and molybdenum-based high temperature alloys were extensively tested. Results indicate that substantially extended die life is possible using high temperature die materials, pre-heated and operated at elevated temperatures. Pre-heating and high operating temperatures were shown to be critical in extending the die life by decreasing the cyclic stresses associated with thermal expansion. Extended die life provides the opportunity for economically viable copper motor rotor die-casting. (orig.)

  8. Grain refinement of permanent mold cast copper base alloys. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sadayappan, M.; Thomson, J. P.; Elboujdaini, M.; Gu, G. Ping; Sahoo, M.

    2004-04-29

    Grain refinement behavior of copper alloys cast in permanent molds was investigated. This is one of the least studied subjects in copper alloy castings. Grain refinement is not widely practiced for leaded copper alloys cast in sand molds. Aluminum bronzes and high strength yellow brasses, cast in sand and permanent molds, were usually fine grained due to the presence of more than 2% iron. Grain refinement of the most common permanent mold casting alloys, leaded yellow brass and its lead-free replacement EnviroBrass III, is not universally accepted due to the perceived problem of hard spots in finished castings and for the same reason these alloys contain very low amounts of iron. The yellow brasses and Cu-Si alloys are gaining popularity in North America due to their low lead content and amenability for permanent mold casting. These alloys are prone to hot tearing in permanent mold casting. Grain refinement is one of the solutions for reducing this problem. However, to use this technique it is necessary to understand the mechanism of grain refinement and other issues involved in the process. The following issues were studied during this three year project funded by the US Department of Energy and the copper casting industry: (1) Effect of alloying additions on the grain size of Cu-Zn alloys and their interaction with grain refiners; (2) Effect of two grain refining elements, boron and zirconium, on the grain size of four copper alloys, yellow brass, EnviroBrass II, silicon brass and silicon bronze and the duration of their effect (fading); (3) Prediction of grain refinement using cooling curve analysis and use of this method as an on-line quality control tool; (4) Hard spot formation in yellow brass and EnviroBrass due to grain refinement; (5) Corrosion resistance of the grain refined alloys; (6) Transfer the technology to permanent mold casting foundries; It was found that alloying elements such as tin and zinc do not change the grain size of Cu-Zn alloys

  9. Galvanic corrosion of copper-cast iron couples in relation to the Swedish radioactive waste canister concept

    International Nuclear Information System (INIS)

    Smart, N.R.; Fennell, P.A.H.; Rance, A.P.; Werme, L.O.

    2004-01-01

    To ensure the safe encapsulation of spent nuclear fuel rods for geological disposal, SKB are considering using the Copper-Iron Canister, which consists of an outer copper canister and an inner cast iron container. The canister will be placed into boreholes in the bedrock of a geologic repository and surrounded by bentonite clay. In the unlikely event of the outer copper canister being breached, water could enter the annulus between the inner and outer canister and at points of contact between the two metals there would be a possibility of galvanic interactions. To study this effect, copper-cast iron galvanic couples were set up in a number of different environments representing possible conditions in the SKB repository. The tests investigated two artificial pore-waters and a bentonite slurry, under aerated and deaerated conditions, at 30 deg. C and 50 deg. C. The currents passing between the coupled electrodes and the potential of the couples were monitored for several months. In addition, some bimetallic crevice specimens based on the multi-crevice assembly (MCA) design were used to simulate the situation where the copper canister will be in direct contact with the cast iron inner vessel. The effect of growing an oxide film on the surface of the cast iron prior to coupling it with copper was also investigated. The electrochemical results are presented graphically in the form of electrode potentials and galvanic corrosion currents as a function of time. The galvanic currents in aerated conditions were much higher than in deaerated conditions. For example, at 30 deg. C, galvanic corrosion rates as low as 0.02 μm/year were observed for iron in groundwater after de-aeration, but of the order of 100 μm/year for the cast iron at 50 deg. C in the presence of oxygen. The galvanic currents were generally higher at 50 deg. C than at 30 deg. C. None of the MCA specimens exhibited any signs of crevice corrosion under deaerated conditions. It will be shown that in deaerated

  10. Effect of copper addition and section thickness on the mechanical and physical properties of grey cast iron

    International Nuclear Information System (INIS)

    Malik, F.A.; Zahid, M.; Hassan, M.A.; Sheikh, M.A.; Alam, S.; Qazi, M.A.

    1995-01-01

    Copper is a graphitizer at the stage of solidification and it acts as antiferritizer during transformation cooling range. Due to this, copper additions to grey cast iron prevent at formation of free ferrite in heavy sections. It also reduces the chilling in thin sections, therefore uniform structure is imparted to grey iron by the copper addition. This gives the appropriate strength and hardness properties to grey iron. Thus copper addition gives certain advantages in relation to the machinability and wear resistance which are important for many engineering properties requires by high duty cast iron. The application of copper as allying element is acceptable due to its price and availability as compared to other alloying elements. (author)

  11. Development of fabrication technology for copper canisters with cast inserts. Status report in August 2001

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Claes-Goeran

    2002-04-01

    This report contains an account of the results of trial fabrication of copper canisters with cast inserts carried out during the period 1998 - 2001. The work of testing of fabrication methods is being focused on a copper thickness of 50 mm. Occasional canisters with 30 mm copper thickness are being fabricated for the purpose of gaining experience and evaluating fabrication and inspection methods for such canisters. For the fabrication of copper tubes, SKB has concentrated its efforts on seamless tubes made by extrusion and pierce and draw processing. Five tubes have been extruded and two have been pierced and drawn during the period. Materials testing has shown that the resultant structure and mechanical properties of these tubes are good. Despite certain problems with dimensional accuracy, it can be concluded that both of these methods can be developed for use in the serial production of SKB' copper tubes. No new trial fabrication with roll forming of copper plate and longitudinal welding has been done. This method is nevertheless regarded as a potential alternative. Copper lids and bottoms are made by forging of continuous-cast bars. The forged blanks are machined to the desired dimensions. Due to the Canister Laboratory's need for lids to develop the technique for sealing welding, a relatively large number of forged blanks have been fabricated. It is noted in the report that the grain size obtained in lids and bottoms is much coarser than in fabricated copper tubes. Development work has been commenced for the purpose of optimizing the forging process. Nine cast inserts have been cast during the three-year period. The results of completed material testing of test pieces taken at different places along the length of the inserts have in several cases shown an unacceptable range of variation in strength properties and structure. In the continued work, insert fabrication will be developed in terms of both casting technique and iron composition. Development

  12. Development of fabrication technology for copper canisters with cast inserts. Status report in August 2001

    International Nuclear Information System (INIS)

    Andersson, Claes-Goeran

    2002-04-01

    This report contains an account of the results of trial fabrication of copper canisters with cast inserts carried out during the period 1998 - 2001. The work of testing of fabrication methods is being focused on a copper thickness of 50 mm. Occasional canisters with 30 mm copper thickness are being fabricated for the purpose of gaining experience and evaluating fabrication and inspection methods for such canisters. For the fabrication of copper tubes, SKB has concentrated its efforts on seamless tubes made by extrusion and pierce and draw processing. Five tubes have been extruded and two have been pierced and drawn during the period. Materials testing has shown that the resultant structure and mechanical properties of these tubes are good. Despite certain problems with dimensional accuracy, it can be concluded that both of these methods can be developed for use in the serial production of SKB' copper tubes. No new trial fabrication with roll forming of copper plate and longitudinal welding has been done. This method is nevertheless regarded as a potential alternative. Copper lids and bottoms are made by forging of continuous-cast bars. The forged blanks are machined to the desired dimensions. Due to the Canister Laboratory's need for lids to develop the technique for sealing welding, a relatively large number of forged blanks have been fabricated. It is noted in the report that the grain size obtained in lids and bottoms is much coarser than in fabricated copper tubes. Development work has been commenced for the purpose of optimizing the forging process. Nine cast inserts have been cast during the three-year period. The results of completed material testing of test pieces taken at different places along the length of the inserts have in several cases shown an unacceptable range of variation in strength properties and structure. In the continued work, insert fabrication will be developed in terms of both casting technique and iron composition. Development work on

  13. APPLICATION OF SPHEROIDIZING «CHIPS»-MASTER ALLOY ON COPPER BASE CONTAINING NANOSCALE PARTICLES OF YTTRIUM OXIDE FOR HIGH-STRENGTH CAST IRON

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2016-01-01

    Full Text Available The peculiarity of the technology of obtaining high-strength cast iron is application in out-furnace treatment various inoculants containing magnesium. In practice of foundry production spheroidizing master alloys based on ferrosilicon (Fe-Si-Mg type and «heavy» alloying alloys on copper and nickel base are widespread. The urgent issue is to improve their efficiency by increasing the degree of magnesium assimilation, reduction of specific consumption of additives, and minimizing dust and gas emissions during the process of spheroidizing treatment of liquid iron. One method of solving this problem is the use of inoculants in a compact form in which the process of dissolution proceeds more efficiently. For example, rapidly quenched granules or «chip»-inoculants are interesting to apply.The aim of present work was to study the peculiarities of production and application of «Chips»-inoculants on copper and magnesium base with additions of yttrium oxide. The principle of mechatronics was used, including the briquetting inoculants’ components after their mixing with the subsequent high-speed mechanical impact and obtaining plates with a thickness of 1–2 mm.Spheroidizing treatment of molten metal has been produced by ladle method using «Chips»-inoculants in the amount of 0.8%. Secondary graphitization inoculation was not performed. Studies have shown that when the spheroidizing treatment of ductile iron was performed with inoculants developed, the process of interaction of magnesium with the liquid melt runs steadily without significant pyroeffect and emissions of metal outside of the ladle.This generates a structure of spheroidal graphite of regular shape (SGf5. The presence in the inoculant of yttrium oxide has a positive impact on the spheroidal graphite counts and the tendency of high-strength cast iron to form «white» cast iron structure. Mechanical properties of the obtained alloy correspond to high-strength cast iron HSCI60.

  14. Mechanical and corrosion behaviors of developed copper-based metal matrix composites

    Science.gov (United States)

    Singh, Manvandra Kumar; Gautam, Rakesh Kumar; Prakash, Rajiv; Ji, Gopal

    2018-03-01

    This work investigates mechanical properties and corrosion resistances of cast copper-tungsten carbide (WC) metal matrix composites (MMCs). Copper matrix composites have been developed by stir casting technique. Different sizes of micro and nano particles of WC particles are utilized as reinforcement to prepare two copper-based composites, however, nano size of WC particles are prepared by high-energy ball milling. XRD (X-rays diffraction) characterize the materials for involvement of different phases. The mechanical behavior of composites has been studied by Vickers hardness test and compression test; while the corrosion behavior of developed composites is investigated by electrochemical impedance spectroscopy in 0.5 M H2SO4 solutions. The results show that hardness, compressive strength and corrosion resistance of copper matrix composites are very high in comparison to that of copper matrix, which attributed to the microstructural changes occurred during composite formation. SEM (Scanning electron microscopy) reveals the morphology of the corroded surfaces.

  15. The effect of silver (Ag) addition to mechanical and electrical properties of copper alloy (Cu) casting product

    Science.gov (United States)

    Felicia, Dian M.; Rochiem, R.; Laia, Standley M.

    2018-04-01

    Copper have good mechanical properties and good electrical conductivities. Therefore, copper usually used as electrical components. Silver have better electrical conductivities than copper. Female contact resistor is one of the electrical component used in circuit breaker. This study aims to analyze the effect of silver addition to hardness, strength, and electric conductivity properties of copper alloy. This study uses variation of 0; 0.035; 0.07; 0.1 wt. % Ag (silver) addition to determine the effect on mechanical properties and electrical properties of copper alloy through sand casting process. Modelling of thermal analysis and structural analysis was calculated to find the best design for the sand casting experiments. The result of Cu-Ag alloy as cast will be characterized by OES test, metallography test, Brinell hardness test, tensile test, and LCR meter test. The result of this study showed that the addition of silver increase mechanical properties of Cu-Ag. The maximum hardness value of this alloy is 83.1 HRB which is Cu-0.01 Ag and the lowest is 52.26 HRB which is pure Cu. The maximum strength value is 153.2 MPa which is Cu-0.07 Ag and the lowest is 94.6 MPa which is pure Cu. Silver addition decrease electrical properties of this alloy. The highest electric conductivity is 438.98 S/m which is pure Cu and the lowest is 52.61 S.m which is Cu-0.1 Ag.

  16. MATH MODELING OF CAST FINE-GRAINED CONCRETE WITH INDUSTRIAL WASTES OF COPPER PRODUCTION

    Directory of Open Access Journals (Sweden)

    Tsybakin Sergey Valerievich

    2017-10-01

    Full Text Available Subject: applying mineral microfillers on the basis of technogenic wastes of non-ferrous metallurgy in the technology of cast and self-compacting concrete. The results of experiments of scientists from Russia, Kazakhstan, Poland and India show that copper smelting granulated slag can be used when grinding construction cements as a mineral additive up to 30 % without significantly reducing activity of the cements. However, there are no results of a comprehensive study of influence of the slag on plastic concrete mixtures. Research objectives: establishment of mathematical relationship of the influence of copper slag on the compressive strength and density of concrete after 28 days of hardening in normal conditions using the method of mathematical design of experiments; statistical processing of the results and verification of adequacy of the developed model. Materials and methods: mathematical experimental design was carried out as a full 4-factor experiment using rotatable central composite design. The mathematical model is selected in the form of a polynomial of the second degree using four factors of the response function. Results: 4-factor mathematical model of concrete strength and density after curing is created, regression equation is derived for dependence of the 28-days strength function and density on concentration of the cement stone, true water-cement ratio, dosage of fine copper slag and superplasticizer on the basis of ether polycarboxylates. Statistical processing of the results of mathematical design of experiments is carried out, estimate of adequacy of the constructed mathematical model is obtained. Conclusions: it is established that introduction of copper smelting slag in the range of 30…50 % by weight of cement positively affects the strength of concrete when used together with the superplasticizer. Increasing the dosage of superplasticizer in excess of 0.16 % of the dry component leads to a decrease in the strength of cast

  17. Casting Characteristics of High Cerium Content Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, D; Rios, O R; Sims, Z C; McCall, S K; Ott, R T

    2017-09-05

    This paper compares the castability of the near eutectic aluminum-cerium alloy system to the aluminum-silicon and aluminum-copper systems. The alloys are compared based on die filling capability, feeding characteristics and tendency to hot tear in both sand cast and permanent mold applications. The castability ranking of the binary Al–Ce systems is as good as the aluminum-silicon system with some deterioration as additional alloying elements are added. In alloy systems that use cerium in combination with common aluminum alloying elements such as silicon, magnesium and/or copper, the casting characteristics are generally better than the aluminum-copper system. In general, production systems for melting, de-gassing and other processing of aluminum-silicon or aluminum-copper alloys can be used without modification for conventional casting of aluminum-cerium alloys.

  18. TECHNOLOGIES OF DOPING OF CAST IRON THROUGH THE SLAG PHASE WITH USING OF THE SPENT NICKEL- AND COPPER-CONTAINING CATALYSTS

    Directory of Open Access Journals (Sweden)

    I. B. Provorova

    2015-01-01

    Full Text Available We have defined the regularities of the doping of cast iron through the slag phase of nickel and copper due to the waste catalysts using a carbonaceous reducing agent. We have justified the need to use the cast iron chips as a seed in the composition of the slag mixture. We have defined the dependence of the degree of extraction of nickel or copper from spent catalyst on the amount of the catalyst, on the basicity of the slag mixture, on the temperature and time of melting.

  19. Microstructure and properties of TP2 copper tube with La microalloying by horizontal continuous casting

    Directory of Open Access Journals (Sweden)

    Jin-hu Wu

    2018-01-01

    Full Text Available The TP2 copper tube was prepared with La microalloying by horizontal continuous casting (HCC. The absorptivity of La and its effects on microstructure, tensile and corrosion properties of HCC TP2 copper tube were studied by means of the inductively coupled plasma optical emission spectrometer (ICP-OES, optical microscope (OM, scanning electron microscope (SEM and potentiodynamic polarization measurements. The results show that the absorptivity of La in the HCC TP2 copper tube is about 15% under antivacuum conditions due to the good chemical activities of La. The impurity elements in copper tube such as O, S, Pb and Si can be significantly reduced, and the average columnar dendrite spacing of the copper tube can also be reduced from 2.21 mm to 0.93 mm by adding La. The ultimate tensile strength and the elongation with and without La addition are almost unchanged. However, the annual corrosion rate of the HCC TP2 copper tube is reduced from 10.18 mm•a-1 to 9.37 mm•a-1 by the purification effect of trace La.

  20. Melting and casting of FeAl-based cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K. [Oak Ridge National Lab., TN (United States); Wilkening, D. [Columbia Falls Aluminum Co., Columbia Falls, MT (United States); Liebetrau, J.; Mackey, B. [AFFCO, L.L.C., Anaconda, MT (United States)

    1998-11-01

    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{trademark} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast.

  1. The effect of zinc on the microstructure and phase transformations of casting Al-Cu alloys

    OpenAIRE

    Manasijević Ivana I.; Štrbac Nada D.; Živković Dragana T.; Balanović Ljubiša T.; Minić Duško M.; Manasijević Dragan M.

    2016-01-01

    Copper is one of the main alloying elements for aluminum casting alloys. As an alloying element, copper significantly increases the tensile strength and toughness of alloys based on aluminum. The copper content in the industrial casting aluminum alloys ranges from 3,5 to 11 wt.%. However, despite the positive effect on the mechanical properties, copper has a negative influence on the corrosion resistance of aluminum and its alloys. In order to further improve the properties of Al-Cu alloys th...

  2. Test manufacturing of copper canisters with cast inserts. Assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, C.G

    1998-08-01

    The current design of canisters for the deep repository for spent nuclear fuel consists of an outer corrosion-protective copper casing in the form of a tubular section with lid and bottom and an inner pressure-resistant insert. The insert is designed to be manufactured by casting and inside are channels in which the fuel assemblies are to be placed. Over the last years, a number of full-scale manufacturing tests of all canister components have been carried out. The purpose has been to determine and develop the best manufacturing technique and to establish long-term contacts with the best suppliers of material and technology. Part of the work has involved the developing and implementing of a quality assurance system in accordance with ISO 9001, covering the whole chain from suppliers of material up to and including the delivery of assembled canisters. This report consists of a description of the design of the canister together with current drawings and complementary technical specifications stipulating, among other things, requirements placed on different materials. The different manufacturing methods that have been used are also described and commented on in both text and illustrations. For the manufacturing of copper tubes, the roll-forming of rolled plate to tube halves and longitudinal welding is a method that has been tested on a relatively large number of tubes by now, and that probably can be developed into a functioning production method. However, the very promising outcome of performed tests on seamless tube manufacturing, has resulted in a change in direction in tube manufacturing, focusing on continued testing of extrusion as well as pierce and draw processing in the immediate future. In connection with ongoing operations, new manufacturing tests of tubes with less material thickness will be carried out. Test manufacturing of cast inserts has resulted in the choice of nodular iron as material in the continued work. This improvement in design has resulted

  3. Test manufacturing of copper canisters with cast inserts. Assessment report

    International Nuclear Information System (INIS)

    Andersson, C.G.

    1998-08-01

    The current design of canisters for the deep repository for spent nuclear fuel consists of an outer corrosion-protective copper casing in the form of a tubular section with lid and bottom and an inner pressure-resistant insert. The insert is designed to be manufactured by casting and inside are channels in which the fuel assemblies are to be placed. Over the last years, a number of full-scale manufacturing tests of all canister components have been carried out. The purpose has been to determine and develop the best manufacturing technique and to establish long-term contacts with the best suppliers of material and technology. Part of the work has involved the developing and implementing of a quality assurance system in accordance with ISO 9001, covering the whole chain from suppliers of material up to and including the delivery of assembled canisters. This report consists of a description of the design of the canister together with current drawings and complementary technical specifications stipulating, among other things, requirements placed on different materials. The different manufacturing methods that have been used are also described and commented on in both text and illustrations. For the manufacturing of copper tubes, the roll-forming of rolled plate to tube halves and longitudinal welding is a method that has been tested on a relatively large number of tubes by now, and that probably can be developed into a functioning production method. However, the very promising outcome of performed tests on seamless tube manufacturing, has resulted in a change in direction in tube manufacturing, focusing on continued testing of extrusion as well as pierce and draw processing in the immediate future. In connection with ongoing operations, new manufacturing tests of tubes with less material thickness will be carried out. Test manufacturing of cast inserts has resulted in the choice of nodular iron as material in the continued work. This improvement in design has resulted

  4. Cast thermally stable high temperature nickel-base alloys and casting made therefrom

    International Nuclear Information System (INIS)

    Acuncius, D.A.; Herchenroeder, R.B.; Kirchner, R.W.; Silence, W.L.

    1977-01-01

    A cast thermally stable high temperature nickel-base alloy characterized by superior oxidation resistance, sustainable hot strength and retention of ductility on aging is provided by maintaining the alloy chemistry within the composition molybdenum 13.7% to 15.5%; chromium 14.7% to 16.5%; carbon up to 0.1%, lanthanum in an effective amount to provide oxidation resistance up to 0.08%; boron up to 0.015%; manganese 0.3% to 1.0%; silicon 0.2% to 0.8%; cobalt up to 2.0%; iron up to 3.0%; tungsten up to 1.0%; copper up to 0.4%; phosphorous up to 0.02%; sulfur up to 0.015%; aluminum 0.1% to 0.5% and the balance nickel while maintaining the Nv number less than 2.31

  5. RECYCLING OF SCRAP AND WASTE OF COPPER AND COPPER ALLOYS IN BELARUS

    Directory of Open Access Journals (Sweden)

    S. L. Rovin

    2017-01-01

    Full Text Available The construction of a new casting and mechanical shop of unitary enterprise «Tsvetmet» in December 2015 has allowed to solve the complex problem of processing and utilization of scrap and wastes of copper and copper alloys in the Republic of Belarus. The technological processes of fire refinement of copper and manufacturing of copper rod from scrap and production of brass rod by hot pressing (extrusion of the continuously casted round billet have been mastered for the first time in the Republic of Belarus.

  6. Combined Effects of Copper and Tin at Intermediate Level of Manganese on the Structure and Properties of As-Cast Nodular Graphite Cast Iron

    Directory of Open Access Journals (Sweden)

    Lacaze J.

    2017-06-01

    Full Text Available Copper, manganese and tin are commonly used as pearlite promoter elements in cast irons. A number of studies have been aimed at quantitatively evaluate the effect of each of these elements, individually or at given levels of the others. As a matter of fact, while tin may be necessary for achieving a fully pearlitic matrix, it is known that when in excess it is detrimental for mechanical properties. As the pearlite promoting effect of each of those elements is totally different, it is of real interest to know the optimum combination of them for a given cooling rate. The present report is a first part of a work dedicated at characterizing the best alloying levels in terms of room temperature mechanical properties of as-cast pearlitic materials.

  7. Grindability of cast Ti-6Al-4V alloyed with copper.

    Science.gov (United States)

    Watanabe, Ikuya; Aoki, Takayuki; Okabe, Toru

    2009-02-01

    This study investigated the grindability of cast Ti-6Al-4V alloyed with copper. The metals tested were commercially pure titanium (CP Ti), Ti-6Al-4V, experimental Ti-6Al-4V-Cu (1, 4, and 10 wt% Cu), and Co-Cr alloy. Each metal was cast into five blocks (3.0 x 8.0 x 30.0 mm(3)). The 3.0-mm wide surface of each block was ground using a hand-piece engine with an SiC wheel at four circumferential speeds (500, 750, 1000, and 1250 m/min) at a grinding force of 100 g. The grindability index (G-index) was determined as volume loss (mm(3)) calculated from the weight loss after 1 minute of grinding and the density of each metal. The ratio of the metal volume loss and the wheel volume loss was also calculated (G-ratio, %). Data (n = 5) were statistically analyzed using ANOVA (alpha= 0.05). Ti-6Al-4V and the experimental Ti-6Al-4V-Cu alloys exhibited significantly (p grindability of some of the resultant Ti-6Al-4V-Cu alloys.

  8. Effects of aluminum and copper chill on mechanical properties and microstructures of Cu-Zn-Al alloys with sand casting

    Science.gov (United States)

    Ardhyananta, Hosta; Wibisono, Alvian Toto; Ramadhani, Mavindra; Widyastuti, Farid, Muhammad; Gumilang, Muhammad Shena

    2018-04-01

    Cu-Zn-Al alloy is one type of brass, which has high strength and high corrosion resistant. It has been applied on ship propellers and marine equipment. In this research, the addition of aluminum (Al) with variation of 1, 2, 3, 4% aluminum to know the effect on mechanical properties and micro structure at casting process using a copper chill and without copper chill. This alloy is melted using furnace in 1100°C without holding. Then, the molten metal is poured into the mold with copper chill and without copper chill. The speciment of Cu-Zn-Al alloy were chracterized by using Optical Emission Spectroscopy (OES), Metallography Test, X-Ray Diffraction (XRD), Hardness Test of Rockwell B and Charpy Impact Test. The result is the addition of aluminum and the use of copper chill on the molds can reduce the grain size, increases the value of hardness and impact.

  9. PRODUCTION OF ELECTROTECHNICAL WIRE OF SCRAP AND COPPER WASTES

    Directory of Open Access Journals (Sweden)

    I. P. Volchok

    2006-01-01

    Full Text Available Chemical composition, structure and properties of copper upon base steps of wire production technology (melting of anode copper with using of scrap and waste, electrolitical refining, producing of rod by continuous casting, manufacture of electrotechnical wire and fibres is described.

  10. Characteristics of copper-clad aluminum rods prepared by horizontal continuous casting

    Science.gov (United States)

    Zhang, Yubo; Fu, Ying; Jie, Jinchuan; Wu, Li; Svynarenko, Kateryna; Guo, Qingtao; Li, Tingju; Wang, Tongmin

    2017-11-01

    An innovative horizontal continuous casting method was developed and successfully used to prepare copper-clad aluminum (CCA) rods with a diameter of 85 mm and a sheath thickness of 16 mm. The solidification structure and element distribution near the interface of the CCA ingots were investigated by means of a scanning electron microscope, an energy dispersive spectrometer, and an electron probe X-ray microanalyzer. The results showed that the proposed process can lead to a good metallurgical bond between Cu and Al. The interface between Cu and Al was a multilayered structure with a thickness of 200 μm, consisting of Cu9Al4, CuAl2, α-Al/CuAl2 eutectic, and α-Al + α-Al/CuAl2 eutectic layers from the Cu side to the Al side. The mean tensile-shear strength of the CCA sample was 45 MPa, which fulfills the requirements for the further extrusion process. The bonding and diffusion mechanisms are also discussed in this paper.

  11. Neutron irradiation test of copper alloy/stainless steel joint materials

    International Nuclear Information System (INIS)

    Yamada, Hirokazu; Kawamura, Hiroshi

    2006-01-01

    As a study about the joint technology of copper alloy and stainless steel for utilization as cooling piping in International Thermonuclear Experimental Reactor (ITER), Al 2 O 3 -dispersed strengthened copper or CuCrZr was jointed to stainless steel by three kinds of joint methods (casting joint, brazing joint and friction welding method) for the evaluation of the neutron irradiation effect on joints. A neutron irradiation test was performed to three types of joints and each copper alloy. The average value of fast neutron fluence in this irradiation test was about 2 x 10 24 n/m 2 (E>1 MeV), and the irradiation temperature was about 130degC. As post-irradiation examinations, tensile tests, hardness tests and observation of fracture surface after the tensile tests were performed. All type joints changed to be brittle by the neutron irradiation effect like each copper alloy material, and no particular neutron irradiation effect due to the effect of joint process was observed. On the casting and friction welding, hardness of copper alloy near the joint boundary changed to be lower than that of each copper alloy by the effect of joint procedure. However, tensile strength of joints was almost the same as that of each copper alloy before/after neutron irradiation. On the other hand, tensile strength of joints by brazing changed to be much lower than CuAl-25 base material by the effect of joint process before/after neutron irradiation. Results in this study showed that the friction welding method and the casting would be able to apply to the joint method of piping in ITER. This report is based on the final report of the ITER Engineering Design Activities (EDA). (author)

  12. Cr13Ni5Si2-Based Composite Coating on Copper Deposited Using Pulse Laser Induction Cladding

    Directory of Open Access Journals (Sweden)

    Ke Wang

    2017-02-01

    Full Text Available A Cr13Ni5Si2-based composite coating was successfully deposited on copper by pulse laser induction hybrid cladding (PLIC, and its high-temperature wear behavior was investigated. Temperature evolutions associated with crack behaviors in PLIC were analyzed and compared with pulse laser cladding (PLC using the finite element method. The microstructure and present phases were analyzed using scanning electron microscopy and X-ray diffraction. Compared with continuous laser induction cladding, the higher peak power offered by PLIC ensures metallurgical bonding between highly reflective copper substrate and coating. Compared with a wear test at room temperature, at 500 °C the wear volume of the Cr13Ni5Si2-based composite coating increased by 21%, and increased by 225% for a NiCr/Cr3C2 coating deposited by plasma spray. This novel technology has good prospects for application with respect to the extended service life of copper mold plates for slab continuous casting.

  13. Cr13Ni5Si2-Based Composite Coating on Copper Deposited Using Pulse Laser Induction Cladding.

    Science.gov (United States)

    Wang, Ke; Wang, Hailin; Zhu, Guangzhi; Zhu, Xiao

    2017-02-10

    A Cr13Ni5Si2-based composite coating was successfully deposited on copper by pulse laser induction hybrid cladding (PLIC), and its high-temperature wear behavior was investigated. Temperature evolutions associated with crack behaviors in PLIC were analyzed and compared with pulse laser cladding (PLC) using the finite element method. The microstructure and present phases were analyzed using scanning electron microscopy and X-ray diffraction. Compared with continuous laser induction cladding, the higher peak power offered by PLIC ensures metallurgical bonding between highly reflective copper substrate and coating. Compared with a wear test at room temperature, at 500 °C the wear volume of the Cr13Ni5Si2-based composite coating increased by 21%, and increased by 225% for a NiCr/Cr3C2 coating deposited by plasma spray. This novel technology has good prospects for application with respect to the extended service life of copper mold plates for slab continuous casting.

  14. Rough case-based reasoning system for continues casting

    Science.gov (United States)

    Su, Wenbin; Lei, Zhufeng

    2018-04-01

    The continuous casting occupies a pivotal position in the iron and steel industry. The rough set theory and the CBR (case based reasoning, CBR) were combined in the research and implementation for the quality assurance of continuous casting billet to improve the efficiency and accuracy in determining the processing parameters. According to the continuous casting case, the object-oriented method was applied to express the continuous casting cases. The weights of the attributes were calculated by the algorithm which was based on the rough set theory and the retrieval mechanism for the continuous casting cases was designed. Some cases were adopted to test the retrieval mechanism, by analyzing the results, the law of the influence of the retrieval attributes on determining the processing parameters was revealed. A comprehensive evaluation model was established by using the attribute recognition theory. According to the features of the defects, different methods were adopted to describe the quality condition of the continuous casting billet. By using the system, the knowledge was not only inherited but also applied to adjust the processing parameters through the case based reasoning method as to assure the quality of the continuous casting and improve the intelligent level of the continuous casting.

  15. Fabrication of hierarchically structured superhydrophobic PDMS surfaces by Cu and CuO casting

    Science.gov (United States)

    Migliaccio, Christopher P.; Lazarus, Nathan

    2015-10-01

    Poly(dimethylsiloxane) (PDMS) films decorated with hierarchically structured pillars are cast from large area copper and copper oxide negative molds. The molds are fabricated using a single patterning step and electroplating. The process of casting structured PDMS films is simpler and cheaper than alternatives based on deep reactive ion etching or laser roughening of bulk silicone. Texture imparted to the pillars from the mold walls renders the PDMS films superhydrophobic, with the contact angle/hysteresis of the most non-wetting surfaces measuring 164°/9° and 158°/10° for surfaces with and without application of a low surface energy coating. The usefulness of patterned PDMS films as a "self-cleaning" solar cell module covering is demonstrated and other applications are discussed.

  16. Corrosion behavior of cast Ti-6Al-4V alloyed with Cu.

    Science.gov (United States)

    Koike, Marie; Cai, Zhuo; Oda, Yutaka; Hattori, Masayuki; Fujii, Hiroyuki; Okabe, Toru

    2005-05-01

    It has recently been found that alloying with copper improved the inherently poor grindability and wear resistance of titanium. This study characterized the corrosion behavior of cast Ti-6Al-4V alloyed with copper. Alloys (0.9 or 3.5 mass % Cu) were cast with the use of a magnesia-based investment in a centrifugal casting machine. Three specimen surfaces were tested: ground, sandblasted, and as cast. Commercially pure titanium and Ti-6Al-4V served as controls. Open-circuit potential measurement, linear polarization, and potentiodynamic cathodic polarization were performed in aerated (air + 10% CO(2)) modified Tani-Zucchi synthetic saliva at 37 degrees C. Potentiodynamic anodic polarization was conducted in the same medium deaerated by N(2) + 10% CO(2). Polarization resistance (R(p)), Tafel slopes, and corrosion current density (I(corr)) were determined. A passive region occurred for the alloy specimens with ground and sandblasted surfaces, as for CP Ti. However, no passivation was observed on the as-cast alloys or on CP Ti. There were significant differences among all metals tested for R(p) and I(corr) and significantly higher R(p) and lower I(corr) values for CP Ti compared to Ti-6Al-4V or the alloys with Cu. Alloying up to 3.5 mass % Cu to Ti-6Al-4V did not change the corrosion behavior. Specimens with ground or sandblasted surfaces were superior to specimens with as-cast surfaces. (c) 2005 Wiley Periodicals, Inc.

  17. The development of joining doped graphite to copper for first wall application in HT-7 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Zhangjian, E-mail: zhouzhj@mater.ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhong Zhihong [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Chen Junling [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Ge Changchun [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2010-12-15

    Two joining methods have been developed for joining carbon based plasma facing material to copper based heat sink material for the potential application in HT-7 and EAST tokamak. The first joining method is based on brazing technique by using a rapidly solidified foil-type Ti-Zr based amorphous filler with a melting temperature of 850 deg. C. The other joining method is direct active metal casting-casting the premixed powders of copper and active transition metals on the mechanical machined carbon surface directly. SEM observations demonstrate high quality of joining surface for both joints. The brazing technique is more promising for fabrication joint with larger size compared with the direct active alloy casting method. High heat flux test using an e-beam device was performed on the actively cooled C/Cu joint fabricated by brazing method. There has no damage occurred on the joint after heat loading at 6 MW/m{sup 2}.

  18. The effect of zinc on the microstructure and phase transformations of casting Al-Cu alloys

    Directory of Open Access Journals (Sweden)

    Manasijević Ivana I.

    2016-01-01

    Full Text Available Copper is one of the main alloying elements for aluminum casting alloys. As an alloying element, copper significantly increases the tensile strength and toughness of alloys based on aluminum. The copper content in the industrial casting aluminum alloys ranges from 3,5 to 11 wt.%. However, despite the positive effect on the mechanical properties, copper has a negative influence on the corrosion resistance of aluminum and its alloys. In order to further improve the properties of Al-Cu alloys they are additional alloyed with elements such as zinc, magnesium and others. In this work experimental and analytical examination of the impact of zinc on the microstructure and phase transformations of Al-Cu alloys was carried out. In order to determine the effect of the addition of zinc to the structure and phase transformations of Al-Cu alloys two alloys of Al-Cu-Zn system with selected compositions were prepared and then examined using scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDX. The experimental results were compared with the results of thermodynamic calculations of phase equilibria.

  19. Fiber laser cladding of nickel-based alloy on cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Arias-González, F., E-mail: felipeag@uvigo.es [Applied Physics Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo E-36310 (Spain); Val, J. del [Applied Physics Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo E-36310 (Spain); Comesaña, R. [Materials Engineering, Applied Mechanics and Construction Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo E-36310 (Spain); Penide, J.; Lusquiños, F.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pou, J. [Applied Physics Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo E-36310 (Spain)

    2016-06-30

    Highlights: • Fiber laser cladding of Ni-based alloy on cast iron was experimentally studied. • Two different types of cast iron have been analyzed: gray and ductile cast iron. • Suitable processing parameters to generate a Ni-based coating were determined. • Dilution is higher in gray cast iron samples than in ductile cast iron. • Ni-based coating presents higher hardness than cast iron but similar Young's modulus. - Abstract: Gray cast iron is a ferrous alloy characterized by a carbon-rich phase in form of lamellar graphite in an iron matrix while ductile cast iron presents a carbon-rich phase in form of spheroidal graphite. Graphite presents a higher laser beam absorption than iron matrix and its morphology has also a strong influence on thermal conductivity of the material. The laser cladding process of cast iron is complicated by its heterogeneous microstructure which generates non-homogeneous thermal fields. In this research work, a comparison between different types of cast iron substrates (with different graphite morphology) has been carried out to analyze its impact on the process results. A fiber laser was used to generate a NiCrBSi coating over flat substrates of gray cast iron (EN-GJL-250) and nodular cast iron (EN-GJS-400-15). The relationship between processing parameters (laser irradiance and scanning speed) and geometry of a single laser track was examined. Moreover, microstructure and composition were studied by Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-Ray Diffraction (XRD). The hardness and elastic modulus were analyzed by means of micro- and nanoindentation. A hardfacing coating was generated by fiber laser cladding. Suitable processing parameters to generate the Ni-based alloy coating were determined. For the same processing parameters, gray cast iron samples present higher dilution than cast iron samples. The elastic modulus is similar for the coating and the substrate, while the Ni-based

  20. Structure and mechanical properties of improved cast stainless steels for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Kenik, E.A.; Busby, J.T. [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6064 (United States); Gussev, M.N., E-mail: gussevmn@ornl.gov [Nuclear Fuel & Isotopes Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6136 (United States); Maziasz, P.J.; Hoelzer, D.T.; Rowcliffe, A.F.; Vitek, J.M. [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6064 (United States)

    2017-01-15

    Casting of stainless steels is a promising and cost saving way of directly producing large and complex structures, such a shield modules or divertors for the ITER. In the present work, a series of modified high-nitrogen cast stainless steels has been developed and characterized. The steels, based on the cast equivalent of the composition of 316 stainless steel, have increased N (0.14–0.36%) and Mn (2–5.1%) content; copper was added to one of the heats. Mechanical tests were conducted with non-irradiated and 0.7 dpa neutron irradiated specimens. It was established that alloying by nitrogen significantly improves the yield stress of non-irradiated steels and the deformation hardening rate. Manganese tended to decrease yield stress but increased radiation hardening. The role of copper on mechanical properties was negligibly small. Analysis of structure was conducted using SEM-EDS and the nature and compositions of the second phases and inclusions were analyzed in detail. No ferrite formation or significant precipitation were observed in the modified steels. It was shown that the modified steels, compared to reference material (commercial cast 316L steel), had better strength level, exhibit significantly reduced elemental inhomogeneity and only minor second phase formation.

  1. THE EFFECT OF PREPARATION CONDITIONS OF RAPIDLY SOLIDIFIED IRON BASED GRANULES ON PROPERTIES OF COMPOSITE MATERIAL FORMED BY CASTING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2017-01-01

    Full Text Available The variety of requirements for friction pairs requires the development of different technologies for the production of tribological materials with reference to the operation modes. Composite materials obtained by the casting technology have been successfully applied for the normalization of the thermomechanical state of the steam turbines. These composites consist of the matrix based on copper alloys reinforced with cast iron granules. Because the structure and properties of cast iron are determined by the conditions of their production studies have been conducted on determination of preparation conditions on grain structure and properties of the synthesized composite material. Using an upgraded unit for production of granules technological regimes were determined providing narrow fractional composition. It has been found that granules formed are characterized with typical microstructure of white cast iron containing perlite and ledeburite. Microhardness of pilot cast iron granules is characterized by high values (from 7450 up to 9450 MPa and depends on the size of the fraction. Composite materials obtained using experimental granules had a microhardness of the reinforcing cast iron granules about 3500 MPa, and a bronze matrix – 1220 MPa, which is higher than the hardness of the composite material obtained by using the annealed DCL-1granules (2250 MPa. Metal base of experimental granules in the composite material has the structure of perlitic ductile iron with inclusions of ferrite not exceeding 10–15% and set around a flocculent graphite. As a result, the increase of physical-mechanical properties of finished products made of composite material is observed. 

  2. Tribological properties of copper-based composites with copper coated NbSe2 and CNT

    International Nuclear Information System (INIS)

    Chen, Beibei; Yang, Jin; Zhang, Qing; Huang, Hong; Li, Hongping; Tang, Hua; Li, Changsheng

    2015-01-01

    Graphical abstract: Morphology of copper coated NbSe 2 and CNT; friction coefficient and wear rate of copper-based composites. - Highlights: • NbSe 2 and CNT were coated with copper layers by the means of electroless plating. • The mechanical and tribological properties of copper composites were studied. • The enhancement mechanisms of copper coated NbSe 2 and CNT were proposed. • Copper–copper coated (12 wt.%NbSe 2 –3 wt.%CNT) composite had the best wear resistance. - Abstract: Copper-based composites with copper coated NbSe 2 and/or CNT were fabricated by the powder metallurgy technique. The morphology and phase composition of copper coated NbSe 2 and carbon nanotube (CNT) were observed using high solution transmission electronic microscope (HRTEM), scanning electronic microscope (SEM equipped with EDS) and X-ray diffraction (XRD). The density, hardness, and bending strength of as-prepared copper-based composites were measured, and their tribological properties were investigated using UMT-2 tester. Results indicated that all copper-based composites showed decreased density and bending strength, but increased hardness in comparison with copper matrix. Besides, the incorporation of copper coated NbSe 2 improved the friction-reducing and anti-wear properties of copper matrix. Addition of copper coated CNT greatly enhanced the mechanical and tribological properties. In particular, when the content of copper coated CNT was 3 wt.%, the corresponding composite exhibited the best tribological properties. This was because NbSe 2 was distributed chaotically in matrix, which greatly improved the friction-reducing property of copper, while CNT with superior mechanical strength enhanced the wear resistance by increasing the load-carrying capacity. More importantly, copper layers coated on NbSe 2 and CNT favored the good interfacial combination between fillers and copper matrix showing beneficial effect for the stresses transferring from matrix to fillers

  3. Repair welding of cast iron coated electrodes

    Science.gov (United States)

    Żuk, M.; Górka, J.; Dojka, R.; Czupryński, A.

    2017-08-01

    Welding cast iron is a complex production procedure. Repair welding was used to repair damaged or poorly made castings. This is due to a tendency to cracking of the material during welding as well as after it. Welding cast iron can be carried out on hot or on cold. Hot welding requires high heat material and the use of welding material in the form of cast iron. In the case of cold welding, it is possible to use different materials. Mostly used filler metals are nickel and copper based. The work shows the course of research concerning repairmen of ductile iron with arc welding method. For the reparation process four types of ESAB company coated electrodes dedicated for cast iron were used with diameter 3.2 and 4 mm: ES 18-8-6B (4mm), EB 150 (4mm), OK NiCl, EŻM. In the cast iron examined during the testing grooves were made using plasma methods, in order to simulate the removed casting flaws. Then the welding process with coated electrodes was executed. The process utilized low welding current row of 100A, so there would only be a small amount of heat delivered to the heat affected zone (HAZ). Short stitches were made, after welding it was hammered, in order to remove stresses. After the repair welding the part of studies commenced which purpose was finding surface defects using visual testing (VT) and penetration testing (PT). In the second part, a series of macro and microscopic studies were executed witch the purpose of disclosuring the structure. Then the hardness tests for welds cross sections were performed. An important aspect of welding cast iron is the colour of the padding weld after welding, more precisely the difference between the base material and padding weld, the use of different materials extra gives the extra ability to select the best variant. The research of four types of coated electrode was executed, based on the demands the best option in terms of aesthetic, strength and hardness.

  4. Investigation of the susceptibility to solidification cracking in copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Richard [Avesta Sheffield R and D, Avesta (Sweden)

    2000-04-01

    A test procedure has been developed at LuTH for investigating the susceptibility to cracking at high temperatures in weldments. It has been proposed to adapt this testing procedure to investigate the cracking susceptibility at high temperatures during strip casting of certain copper alloys. Six different materials were selected for investigation - OFHC copper, tellurium containing copper, 4% tin bronze, 6% tin bronze, 30% zinc brass and 35% zinc brass. The aim of the investigation was to characterize the cracking susceptibility of the candidate materials so as to be able to rank and compare them in a quantitative manner. A further aim of the work was to study the suitability of using the data on the cracking indices generated in the present work in thermomechanical models of the casting process to optimize the casting parameters for each of the materials.

  5. Influence of S. mutans on base-metal dental casting alloy toxicity.

    Science.gov (United States)

    McGinley, E L; Dowling, A H; Moran, G P; Fleming, G J P

    2013-01-01

    We have highlighted that exposure of base-metal dental casting alloys to the acidogenic bacterium Streptococcus mutans significantly increases cellular toxicity following exposure to immortalized human TR146 oral keratinocytes. With Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), S. mutans-treated nickel-based (Ni-based) and cobalt-chromium-based (Co-Cr-based) dental casting alloys were shown to leach elevated levels of metal ions compared with untreated dental casting alloys. We targeted several biological parameters: cell morphology, viable cell counts, cell metabolic activity, cell toxicity, and inflammatory cytokine expression. S. mutans-treated dental casting alloys disrupted cell morphology, elicited significantly decreased viable cell counts (p casting alloys induced elevated levels of cellular toxicity compared with S. mutans-treated Co-Cr-based dental casting alloys. While our findings indicated that the exacerbated release of metal ions from S. mutans-treated base-metal dental casting alloys was the likely result of the pH reduction during S. mutans growth, the exact nature of mechanisms leading to accelerated dissolution of alloy-discs is not yet fully understood. Given the predominance of S. mutans oral carriage and the exacerbated cytotoxicity observed in TR146 cells following exposure to S. mutans-treated base-metal dental casting alloys, the implications for the long-term stability of base-metal dental restorations in the oral cavity are a cause for concern.

  6. Numerical Modelling of Mechanical Integrity of the Copper-Cast Iron Canister. A Literature Review

    International Nuclear Information System (INIS)

    Lanru Jing

    2004-04-01

    This review article presents a summary of the research works on the numerical modelling of the mechanical integrity of the composite copper-cast iron canisters for the final disposal of Swedish nuclear wastes, conducted by SKB and SKI since 1992. The objective of the review is to evaluate the outstanding issues existing today about the basic design concepts and premises, fundamental issues on processes, properties and parameters considered for the functions and requirements of canisters under the conditions of a deep geological repository. The focus is placed on the adequacy of numerical modelling approaches adopted in regards to the overall mechanical integrity of the canisters, especially the initial state of canisters regarding defects and the consequences of their evolution under external and internal loading mechanisms adopted in the design premises. The emphasis is the stress-strain behaviour and failure/strength, with creep and plasticity involved. Corrosion, although one of the major concerns in the field of canister safety, was not included

  7. Development of thermophysical calculator for stainless steel casting alloys by using CALPHAD approach

    Directory of Open Access Journals (Sweden)

    In-Sung Cho

    2017-11-01

    Full Text Available The calculation of thermophysical properties of stainless steel castings and its application to casting simulation is discussed. It is considered that accurate thermophysical properties of the casting alloys are necessary for the valid simulation of the casting processes. Although previous thermophysical calculation software requires a specific knowledge of thermodynamics, the calculation method proposed in the present study does not require any special knowledge of thermodynamics, but only the information of compositions of the alloy. The proposed calculator is based on the CALPHAD approach for modeling of multi-component alloys, especially in stainless steels. The calculator proposed in the present study can calculate thermophysical properties of eight-component systems on an iron base alloy (Fe-C-Si-Cr-Mn-Ni-Cu-Mo, and several Korean standard stainless steel alloys were calculated and discussed. The calculator can evaluate the thermophysical properties of the alloys such as density, heat capacity, enthalpy, latent heat, etc, based on full Gibbs energy for each phase. It is expected the proposed method can help casting experts to devise the casting design and its process easily in the field of not only stainless steels but also other alloy systems such as aluminum, copper, zinc, etc.

  8. ANALYSIS OF KINETICS OF CAST IRON ALLOYING THROUGH SLAG PHASE

    Directory of Open Access Journals (Sweden)

    O. S. Komarov

    2012-01-01

    Full Text Available The mechanism of cast iron alloying through slag phase due to use of nickel and copper oxides is considered and the analysis of kinetics regularity of alloying in case of absence of fuse in the form of milled cast-iron chips in slag and at their presence in it is carried out.

  9. Numerical simulation and optimization of Al alloy cylinder body by low pressure die casting

    Directory of Open Access Journals (Sweden)

    Mi Guofa

    2008-05-01

    Full Text Available Shrinkage defects can be formed easily at Critical location during low pressure die casting (LPDC of aluminum alloy cylinder body. It has harmful effect on the products. Mold fi lling and solidifi cation process of a cylinder body was simulated by using of Z-CAST software. The casting method was improved based on the simulation results. In order to create effective feeding passage, the structure of casting was modifi ed by changing the location of strengthening ribs at the bottom, without causing any adverse effect on the part’s performance. Inserting copper billet at suitable location of the die is a valid way to create suitable solidifi cation sequence that is benefi cial to the feeding. Using these methods, the shrinkage defect was completely eliminated at the critical location.

  10. Comparison in processing routes by copper mold casting injection and suction in the Cu46Zr42Al7Y5 vitreous alloy

    International Nuclear Information System (INIS)

    Batalha, W.; Aliaga, L.C.R.; Bolfarini, C.; Botta, W.J.; Kiminami, C.S.

    2014-01-01

    To expand the application of glassy metals, the development of processing routes and compositions that allow the production of parts with dimensions of millimeters or even centimeters, is very important. The present work aims the contribution to the technological development of processing routes for the production of Cu-based bulk metallic glasses. Wedge-shaped samples of Cu 46 Zr 42 Al 7 Y 5 (atom percent) chemical composition were processed using copper mold casting by suction and injection. Characterization was made combining scanning electron microscopy, x-ray diffraction and differential scanning calorimetry. The critical amorphous thickness obtained by those two different routes was carefully observed. The suction route allow obtaining the best results with critical amorphous thickness about 8 mm. This result was analyzed considering the different extrinsic parameters to the glass forming ability of the alloy. (author)

  11. Effect of Microstructures on Working Properties of Nickel-Manganese-Copper Cast Iron

    Directory of Open Access Journals (Sweden)

    Daniel Medyński

    2018-05-01

    Full Text Available In the paper, the effects, on basic usable properties (abrasive wear and corrosion resistance, of solidification (acc. to the stable and non-stable equilibrium system and transformations occurring in the matrix during the cooling of castings of Ni-Mn-Cu cast iron were determined. Abrasive wear resistance was mainly determined by the types and arrangements of high-carbon phases (indicated by eutectic saturation degree, and the kinds of matrices (indicated by the nickel equivalent value, calculated from chemical composition. The highest abrasive wear resistance was found for white cast iron, with the highest degree of austenite to martensite transformation occurring in its matrix. Irrespective of solidification, a decrease of the equivalent value below a limit value resulted in increased austenite transformation, and thus, to a significant rise in hardness and abrasive wear resistance for the castings. At the same time, corrosion resistance of the alloy was slightly reduced. The examinations showed that corrosion resistance of Ni-Mn-Cu cast iron is, too a much lesser degree, decided by the means of solidification of the castings, rather than transformations occurring in the matrix, as controlled by nickel equivalent value (especially elements with high electrochemical potential.

  12. Effect of Y additions on the solidification behavior of a copper mold cast CuZrAl alloy with high oxygen content

    International Nuclear Information System (INIS)

    Coury, F.G.; Batalha, W.; Botta, W.J.; Bolfarini, C.; Kiminami, C.S.

    2014-01-01

    Bulk glassy samples of the CuAlZr system were produced by copper mold casting in the form of wedges with different amounts of yttrium (0 , 0.3 and 2 at%) , the processing conditions led to high oxygen contents on the samples (1000ppm). A reportedly good glass-former composition was chosen as the base alloy, it’s nominal composition is Cu47Zr45Al8. This study aimed to understand the influence of oxygen and yttrium in the solidification of these alloys. The samples were analyzed by scanning and transmission electron microscopy, differential scanning calorimetry and X-Ray diffraction. The sequence of formation of crystalline phases in these alloys was determined as a function of the different cooling rates inherent in the process. It was observed that the formation of CuZr2 phase was inhibited in samples with Y allowing the production of a fully glassy 8mm. (author)

  13. Grain boundary corrosion of copper canister weld material

    International Nuclear Information System (INIS)

    Gubner, Rolf; Andersson, Urban; Linder, Mats; Nazarov, Andrej; Taxen, Claes

    2006-01-01

    The proposed design for a final repository for spent fuel and other long-lived residues in Sweden is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will then be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast inner container fitted inside a corrosion-resistant copper canister. During fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow, they will tend to concentrate impurities within the copper at the new grain boundaries. The work described in this report was undertaken to determine whether there is any possibility of enhanced corrosion at grain boundaries within the copper canister, based on the recommendations of the report SKB-TR--01-09 (INIS ref. 32025363). Grain boundary corrosion of copper is not expected to be a problem for the copper canisters in a repository. However, as one step in the experimental verification it is necessary to study grain boundary corrosion of copper in an environment where it may occur. A literature study aimed to find one or several solutions that are aggressive with respect to grain boundary corrosion of copper. Copper specimens cut from welds of real copper canisters where exposed to aerated ammonium hydroxide solution for a period of 14 days at 80 degrees C and 10 bar pressure. The samples were investigated prior to exposure using the scanning Kelvin probe technique to characterize anodic and cathodic areas on the samples. The degree of corrosion was determined by optical microscopy. No grain boundary corrosion could be observed in the autoclave experiments, however, a higher rate of corrosion was observed for the weld material compared to the base material. The work suggests that grain boundary corrosion of copper weld material is most unlikely to adversely affect SKB's copper canisters under the conditions in the repository

  14. Grain boundary corrosion of copper canister weld material

    Energy Technology Data Exchange (ETDEWEB)

    Gubner, Rolf; Andersson, Urban; Linder, Mats; Nazarov, Andrej; Taxen, Claes [Corrosion and Metals Research Inst. (KIMAB), Stockholm (Sweden)

    2006-01-15

    The proposed design for a final repository for spent fuel and other long-lived residues in Sweden is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will then be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast inner container fitted inside a corrosion-resistant copper canister. During fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow, they will tend to concentrate impurities within the copper at the new grain boundaries. The work described in this report was undertaken to determine whether there is any possibility of enhanced corrosion at grain boundaries within the copper canister, based on the recommendations of the report SKB-TR--01-09 (INIS ref. 32025363). Grain boundary corrosion of copper is not expected to be a problem for the copper canisters in a repository. However, as one step in the experimental verification it is necessary to study grain boundary corrosion of copper in an environment where it may occur. A literature study aimed to find one or several solutions that are aggressive with respect to grain boundary corrosion of copper. Copper specimens cut from welds of real copper canisters where exposed to aerated ammonium hydroxide solution for a period of 14 days at 80 degrees C and 10 bar pressure. The samples were investigated prior to exposure using the scanning Kelvin probe technique to characterize anodic and cathodic areas on the samples. The degree of corrosion was determined by optical microscopy. No grain boundary corrosion could be observed in the autoclave experiments, however, a higher rate of corrosion was observed for the weld material compared to the base material. The work suggests that grain boundary corrosion of copper weld material is most unlikely to adversely affect SKB's copper canisters under the conditions in the repository.

  15. Structural and compositional analysis of a casting mold sherd from ancient China.

    Science.gov (United States)

    Zong, Yunbing; Yao, Shengkun; Lang, Jianfeng; Chen, Xuexiang; Fan, Jiadong; Sun, Zhibin; Duan, Xiulan; Li, Nannan; Fang, Hui; Zhou, Guangzhao; Xiao, Tiqiao; Li, Aiguo; Jiang, Huaidong

    2017-01-01

    Casting had symbolic significance and was strictly controlled in the Shang dynasty of ancient China. Vessel casting was mainly distributed around the Shang capital, Yin Ruins, which indicates a rigorous centralization of authority. Thus, for a casting mold to be excavated far from the capital region is rare. In addition to some bronze vessel molds excavated at the Buyao Village site, another key discovery of a bronze vessel mold occurred at Daxinzhuang. The Daxinzhuang site was a core area in the east of Shang state and is an important site to study the eastward expansion of the Shang. Here, combining synchrotron X-rays and other physicochemical analysis methods, nondestructive three-dimensional structure imaging and different elemental analyses were conducted on this mold sherd. Through high penetration X-ray tomography, we obtained insights on the internal structure and discovered some pores. We infer that the generation of pores inside the casting mold sherd was used to enhance air permeability during casting. Furthermore, we suppose that the decorative patterns on the surface were carved and not pasted onto it. Considering the previous compositional studies of bronze vessels, the copper and iron elements were analyzed by different methods. Unexpectedly, a larger amount of iron than of copper was detected on the surface. According to the data analysis and archaeological context, the source of iron on the casting mold sherd could be attributed to local soil contamination. A refined compositional analysis confirms that this casting mold was fabricated locally and used for bronze casting.

  16. Structural and compositional analysis of a casting mold sherd from ancient China.

    Directory of Open Access Journals (Sweden)

    Yunbing Zong

    Full Text Available Casting had symbolic significance and was strictly controlled in the Shang dynasty of ancient China. Vessel casting was mainly distributed around the Shang capital, Yin Ruins, which indicates a rigorous centralization of authority. Thus, for a casting mold to be excavated far from the capital region is rare. In addition to some bronze vessel molds excavated at the Buyao Village site, another key discovery of a bronze vessel mold occurred at Daxinzhuang. The Daxinzhuang site was a core area in the east of Shang state and is an important site to study the eastward expansion of the Shang. Here, combining synchrotron X-rays and other physicochemical analysis methods, nondestructive three-dimensional structure imaging and different elemental analyses were conducted on this mold sherd. Through high penetration X-ray tomography, we obtained insights on the internal structure and discovered some pores. We infer that the generation of pores inside the casting mold sherd was used to enhance air permeability during casting. Furthermore, we suppose that the decorative patterns on the surface were carved and not pasted onto it. Considering the previous compositional studies of bronze vessels, the copper and iron elements were analyzed by different methods. Unexpectedly, a larger amount of iron than of copper was detected on the surface. According to the data analysis and archaeological context, the source of iron on the casting mold sherd could be attributed to local soil contamination. A refined compositional analysis confirms that this casting mold was fabricated locally and used for bronze casting.

  17. Grain boundary corrosion of copper canister material

    International Nuclear Information System (INIS)

    Fennell, P.A.H.; Graham, A.J.; Smart, N.R.; Sofield, C.J.

    2001-03-01

    The proposed design for a final repository for spent fuel and other long-lived residues in Sweden is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will then be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast inner container fitted inside a corrosion-resistant copper canister. During fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow they will tend to concentrate impurities within the copper at the new grain boundaries. The work described in this report was undertaken to determine whether there is any possibility of enhanced corrosion at grain boundaries within the copper canister. The potential for grain boundary corrosion was investigated by exposing copper specimens, which had undergone different heat treatments and hence had different grain sizes, to aerated artificial bentonite-equilibrated groundwater with two concentrations of chloride, for increasing periods of time. The degree of grain boundary corrosion was determined by atomic force microscopy (AFM) and optical microscopy. AFM showed no increase in grain boundary 'ditching' for low chloride groundwater. In high chloride groundwater the surface was covered uniformly with a fine-grained oxide. No increases in oxide thickness were observed. No significant grain boundary attack was observed using optical microscopy either. The work suggests that in aerated artificial groundwaters containing chloride ions, grain boundary corrosion of copper is unlikely to adversely affect SKB's copper canisters

  18. Awareness programs and change in taste-based caste prejudice.

    Directory of Open Access Journals (Sweden)

    Ritwik Banerjee

    Full Text Available Becker's theory of taste-based discrimination predicts that relative employment of the discriminated social group will improve if there is a decrease in the level of prejudice for the marginally discriminating employer. In this paper we experimentally test this prediction offered by Garry Becker in his seminal work on taste based discrimination, in the context of caste in India, with management students (potential employers in the near future as subjects. First, we measure caste prejudice and show that awareness through a TV social program reduces implicit prejudice against the lower caste and the reduction is sustained over time. Second, we find that the treatment reduces the prejudice levels of those in the left tail of the prejudice distribution--the group which can potentially affect real outcomes as predicted by the theory. And finally, a larger share of the treatment group subjects exhibit favorable opinion about reservation in jobs for the lower caste.

  19. Awareness programs and change in taste-based caste prejudice.

    Science.gov (United States)

    Banerjee, Ritwik; Datta Gupta, Nabanita

    2015-01-01

    Becker's theory of taste-based discrimination predicts that relative employment of the discriminated social group will improve if there is a decrease in the level of prejudice for the marginally discriminating employer. In this paper we experimentally test this prediction offered by Garry Becker in his seminal work on taste based discrimination, in the context of caste in India, with management students (potential employers in the near future) as subjects. First, we measure caste prejudice and show that awareness through a TV social program reduces implicit prejudice against the lower caste and the reduction is sustained over time. Second, we find that the treatment reduces the prejudice levels of those in the left tail of the prejudice distribution--the group which can potentially affect real outcomes as predicted by the theory. And finally, a larger share of the treatment group subjects exhibit favorable opinion about reservation in jobs for the lower caste.

  20. A thiourea derivative as potential ionophore for copper sensing

    Science.gov (United States)

    Ying, Kook Shih; Heng, Lee Yook; Hassan, Nurul Izzaty; Hasbullah, Siti Aishah

    2018-04-01

    A new thiourea derivative, N1,N3-bis[[3,5-bis(trifluoromethyl)phenyl]carbamothioyl]isophthalamide (TPC), as a potential copper ionophore was investigated. TPC was immobilized via drop casting method into poly(n-butyl acrylate) pBA membrane and the sensor was characterized by potentiometric method. The sensor fabricated based on TPC showed a Nernstian response towards copper ion with the slope of 27.07±2.84 mV/decade in the range of 1.0×10-6 - 1.0-10-4 M and limit of detection of 6.24 × 10-7 M. In addition, based on the separate solution method (SSM), the logarithm selectivity coefficients were less than -3.00 for monovalent, divalent and trivalent cations that are present in the environmental water samples such as K+, Ca2+, Mg2+ and Fe3+. This confirmed that the sensor fabricated with TPC exhibited good sensitivity and selectivity towards copper ion.

  1. Filler metal alloy for welding cast nickel aluminide alloys

    Science.gov (United States)

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  2. Exploring As-Cast PbCaSn-Mg Anodes for Improved Performance in Copper Electrowinning

    Science.gov (United States)

    Yuwono, Jodie A.; Clancy, Marie; Chen, Xiaobo; Birbilis, Nick

    2018-06-01

    Lead calcium tin (PbCaSn) alloys are the common anodes used in copper electrowinning (Cu EW). Given a large amount of energy consumed in Cu EW process, anodes with controlled oxygen evolution reaction (OER) kinetics and a lower OER overpotential are advantageous for reducing the energy consumption. To date, magnesium (Mg) has never been studied as an alloying element for EW anodes. As-cast PbCaSn anodes with the addition of Mg were examined herein, revealing an improved performance compared to that of the industrial standard PbCaSn anode. The alloy performances in the early stages of anode life and passivation were established from electrochemical studies which were designed to simulate industrial Cu EW process. The 24-hour polarization testing revealed that the Mg alloying depolarizes the anode potential up to 80 mV; thus, resulting in a higher Cu EW efficiency. In addition, scanning electron microscopy and X-ray photoelectron spectroscopy revealed that the alteration of the alloy microstructure and the corresponding interfacial reactions contribute to the changes of the anode electrochemical performances. The present study reveals for the first time the potency of Mg alloying in reducing the overpotential of PbCaSn anode.

  3. Awareness programs and change in taste-based caste prejudice

    DEFF Research Database (Denmark)

    Banerjee, Ritwik; Datta Gupta, Nabanita

    ) in the context of caste in India, with management students (potential employers in the near future) as subjects. First, we measure caste prejudice and show that awareness through a TV social program reduces implicit prejudice against the lower caste and the reduction is sustained over time. Second, we find......Becker's theory of taste-based discrimination predicts that relative employment of the discriminated social group will improve if there is a decrease in the level of prejudice for the marginally discriminating employer. In this paper we experimentally test this prediction offered by Becker (1971...

  4. U.S. Geological Survey's ShakeCast: A cloud-based future

    Science.gov (United States)

    Wald, David J.; Lin, Kuo-Wan; Turner, Loren; Bekiri, Nebi

    2014-01-01

    When an earthquake occurs, the U. S. Geological Survey (USGS) ShakeMap portrays the extent of potentially damaging shaking. In turn, the ShakeCast system, a freely-available, post-earthquake situational awareness application, automatically retrieves earthquake shaking data from ShakeMap, compares intensity measures against users’ facilities, sends notifications of potential damage to responsible parties, and generates facility damage assessment maps and other web-based products for emergency managers and responders. ShakeCast is particularly suitable for earthquake planning and response purposes by Departments of Transportation (DOTs), critical facility and lifeline utilities, large businesses, engineering and financial services, and loss and risk modelers. Recent important developments to the ShakeCast system and its user base are described. The newly-released Version 3 of the ShakeCast system encompasses advancements in seismology, earthquake engineering, and information technology applicable to the legacy ShakeCast installation (Version 2). In particular, this upgrade includes a full statistical fragility analysis framework for general assessment of structures as part of the near real-time system, direct access to additional earthquake-specific USGS products besides ShakeMap (PAGER, DYFI?, tectonic summary, etc.), significant improvements in the graphical user interface, including a console view for operations centers, and custom, user-defined hazard and loss modules. The release also introduces a new adaption option to port ShakeCast to the "cloud". Employing Amazon Web Services (AWS), users now have a low-cost alternative to local hosting, by fully offloading hardware, software, and communication obligations to the cloud. Other advantages of the "ShakeCast Cloud" strategy include (1) Reliability and robustness of offsite operations, (2) Scalability naturally accommodated, (3), Serviceability, problems reduced due to software and hardware uniformity, (4

  5. Design basis for the copper/steel canister

    International Nuclear Information System (INIS)

    Bowyer, W.H.

    1996-02-01

    The development of the copper/iron canister which has been proposed by SKB for the containment of high level nuclear waste has been studied from the point of view of choice of materials, manufacturing technology and quality assurance. This report describes the observations on progress which have been made between March 1995 and Feb 1996 and the result of further literature studies. A first trial canister has been produced using a fabricated steel liner and an extruded copper tubular, a second one using a fabricated tubular is at an advanced stage. A change from a fabricated steel inner canister to a proposed cast canister has been justified by a criticality argument but the technology for producing a cast canister is at present untried. The microstructure achieved in the extruded copper tubular for the first canister is unacceptable. Similar problems exist with plate used for the fabricated tubular, but some more favourable structures have been achieved already by this route. Seam welding of the first tubular failed through a suspected material problem. The second fabricated tubular welded without difficulty. Welding of lids and bottoms to the copper canister is problematical.There is as yet no satisfactory non destructive test procedures for the parent metal or the welds in the copper canister material, partly due to the coarse grain size which arise in the proposed material processed by the proposed routes. Further studies are also required on crevice corrosion, galvanic attack and stress corrosion cracking in the copper 50 ppm phosphorus alloy. 28 refs

  6. Corrosion behaviour of powder metallurgical and cast Al-Zn-Mg base alloys

    International Nuclear Information System (INIS)

    Sameljuk, A.V.; Neikov, O.D.; Krajnikov, A.V.; Milman, Yu.V.; Thompson, G.E.

    2004-01-01

    The behaviour of Al-Zn-Mg base alloys produced by powder metallurgy and casting has been studied using potentiodynamic polarisation in 0.3% and 3% NaCl solutions. The influence of alloy production route on microstructure has been examined by scanning electron microscopy, Auger electron spectroscopy and secondary ion mass spectrometry. An improvement in performance of powder metallurgy (PM) materials, compared with the cast alloy, was evident in solutions of low chloride concentration; less striking differences were revealed in high chloride concentration. Both powder metallurgy and cast alloys show two main types of precipitates, which were identified as Zn-Mg and Zr-Sc base intermetallic phases. The microstructure of the PM alloys is refined compared with the cast material, which assists understanding of the corrosion performance. The corrosion process commences with dissolution of the Zn-Mg base phases, with the relatively coarse phases present in the cast alloy showing ready development of corrosion

  7. Oxalic acid overproduction by copper-tolerant brown-rot basidiomycetes on southern yellow pine treated with copper-based preservatives

    Science.gov (United States)

    Carol A. Clausen; Frederick Green

    2003-01-01

    Accumulation of oxalic acid (OA) by brown-rot fungi and precipitation of copper oxalate crystals in wood decayed by copper-tolerant decay fungi has implicated OA in the mechanism of copper tolerance. Understanding the role of OA in copper tolerance is important due to an increasing reliance on copper-based wood preservatives. In this study, four copper-tolerant brown-...

  8. Performance of copper-based wood preservatives in soil bed exposures

    Science.gov (United States)

    Stan T. Lebow; Thomas Nilsson; Jeffrey J. Morrell

    Copper-based biocides are widely used to protect wood from biological attack in a variety of environments. Chromated copper arsenate (CCA) is the dominant copper-based preservative for wood protection (J. T. MICKLEWRIGHT, 1989). First developed in India in the 1930s, CCA contains a very effective combination of materials. Copper provides protection against most...

  9. Awareness Programs and Change in Taste-based Caste Prejudice

    DEFF Research Database (Denmark)

    Banerjee, Ritwik; Gupta, Nabanita Datta

    2015-01-01

    Becker's theory of taste-based discrimination predicts that relative employment of the discriminated social group will improve if there is a decrease in the level of prejudice for the marginally discriminating employer. In this paper we experimentally test this prediction offered by Garry Becker...... in his seminal work on taste based discrimination, in the context of caste in India, with management students (potential employers in the near future) as subjects. First, we measure caste prejudice and show that awareness through a TV social program reduces implicit prejudice against the lower caste...... and the reduction is sustained over time. Second, we find that the treatment reduces the prejudice levels of those in the left tail of the prejudice distribution - the group which can potentially affect real outcomes as predicted by the theory. And finally, a larger share of the treatment group subjects exhibit...

  10. The future of copper in China--A perspective based on analysis of copper flows and stocks.

    Science.gov (United States)

    Zhang, Ling; Cai, Zhijian; Yang, Jiameng; Yuan, Zengwei; Chen, Yan

    2015-12-01

    This study attempts to speculate on the future of copper metabolism in China based on dynamic substance flow analysis. Based on tremendous growth of copper consumption over the past 63 years, China will depict a substantially increasing trend of copper in-use stocks for the next 30 years. The highest peak will be possibly achieved in 2050, with the maximum ranging between 163 Mt and 171 Mt. After that, total stocks are expected to slowly decline 147-154 Mt by the year 2080. Owing to the increasing demand of in-use stocks, China will continue to have a profound impact on global copper consumption with its high import dependence until around 2020, and the peak demand for imported copper are expected to approach 5.5 Mt/year. Thereafter, old scrap generated by domestic society will occupy an increasingly important role in copper supply. In around 2060, approximately 80% of copper resources could come from domestic recycling of old scrap, implying a major shift from primary production to secondary production. With regard to the effect of lifetime distribution uncertainties in different end-use sectors of copper stocks on the predict results, uncertainty evaluation was performed and found the model was relatively robust to these changes. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Obtention of copper-magnesium alloys wires used in electrical transmission lines

    International Nuclear Information System (INIS)

    Fernandes, Marcos Gonzales

    2010-01-01

    The aim of this work was to obtain copper wires in three different chemical compositions starting from electrolytic copper and magnesium. The mains steps were evaluated, starting from the melting of small eutectic cooper-magnesium specimens in an electric arc furnace, followed by further dilution of this buttons in a resistive furnace and casting it in a copper mould. The as cast billets were homogenized in a resistive furnace at 910 degree C for 2 h. The billets were mechanically cold worked by swaging and a final drawing step to attain a round shape and a reasonable surface quality. The cast ingots chemical analysis indicated that the processing route showed to be adequate, in laboratory scale, to obtain wires with cross sectional area of 4 mm2 and 10 m in length. The wires in both conditions - as cold worked and after a recovering heat treatment at 510 degree C for 1 h, were mechanically characterized by tensile testing and hardness. The wires had also the electric conductivity assessed in the recovered heat-treated state and the results were compared to the literature data. The obtained material showed to be adequate to be used as electric conductor. The yield strain and ultimate tensile strength were improved with the increasing amount of Mg in the alloy, 11 % and 24 %, respectively, while the electric conductivity decreased to 60 % IACS (International Annealed Copper Standard). (author)

  12. Contribute to quantitative identification of casting defects based on computer analysis of X-ray images

    Directory of Open Access Journals (Sweden)

    Z. Ignaszak

    2007-12-01

    Full Text Available The forecast of structure and properties of casting is based on results of computer simulation of physical processes which are carried out during the casting processes. For the effective using of simulation system it is necessary to validate mathematica-physical models describing process of casting formation and the creation of local discontinues, witch determinate the casting properties.In the paper the proposition for quantitative validation of VP system using solidification casting defects by information sources of II group (methods of NDT was introduced. It was named the VP/RT validation (virtual prototyping/radiographic testing validation. Nowadays identification of casting defects noticeable on X-ray images bases on comparison of X-ray image of casting with relates to the ASTM. The results of this comparison are often not conclusive because based on operator’s subjective assessment. In the paper the system of quantitative identification of iron casting defects on X-ray images and classification this defects to ASTM class is presented. The methods of pattern recognition and machine learning were applied.

  13. Micronized copper wood preservatives: An efficiency and potential health risk assessment for copper-based nanoparticles

    International Nuclear Information System (INIS)

    Civardi, Chiara; Schwarze, Francis W.M.R.; Wick, Peter

    2015-01-01

    Copper (Cu) is an essential biocide for wood protection, but fails to protect wood against Cu-tolerant wood-destroying fungi. Recently Cu particles (size range: 1 nm–25 μm) were introduced to the wood preservation market. The new generation of preservatives with Cu-based nanoparticles (Cu-based NPs) is reputedly more efficient against wood-destroying fungi than conventional formulations. Therefore, it has the potential to become one of the largest end uses for wood products worldwide. However, during decomposition of treated wood Cu-based NPs and/or their derivate may accumulate in the mycelium of Cu-tolerant fungi and end up in their spores that are dispersed into the environment. Inhaled Cu-loaded spores can cause harm and could become a potential risk for human health. We collected evidence and discuss the implications of the release of Cu-based NPs by wood-destroying fungi and highlight the exposure pathways and subsequent magnitude of health impact. - Highlights: • We compared copper particulate wood preservatives with conventional ones. • We assessed the fungicidal activity of particulate copper wood preservatives. • We reviewed the Cu-tolerance mechanisms of some wood-destroying fungi. • Fungi colonizing wood treated with particulate copper may release Cu-loaded spores. - We assess the fungicidal activity of particulate copper wood preservatives and their possible release in the air by Cu-tolerant wood-destroying fungi

  14. Applying network analysis and Nebula (neighbor-edges based and unbiased leverage algorithm) to ToxCast data.

    Science.gov (United States)

    Ye, Hao; Luo, Heng; Ng, Hui Wen; Meehan, Joe; Ge, Weigong; Tong, Weida; Hong, Huixiao

    2016-01-01

    ToxCast data have been used to develop models for predicting in vivo toxicity. To predict the in vivo toxicity of a new chemical using a ToxCast data based model, its ToxCast bioactivity data are needed but not normally available. The capability of predicting ToxCast bioactivity data is necessary to fully utilize ToxCast data in the risk assessment of chemicals. We aimed to understand and elucidate the relationships between the chemicals and bioactivity data of the assays in ToxCast and to develop a network analysis based method for predicting ToxCast bioactivity data. We conducted modularity analysis on a quantitative network constructed from ToxCast data to explore the relationships between the assays and chemicals. We further developed Nebula (neighbor-edges based and unbiased leverage algorithm) for predicting ToxCast bioactivity data. Modularity analysis on the network constructed from ToxCast data yielded seven modules. Assays and chemicals in the seven modules were distinct. Leave-one-out cross-validation yielded a Q(2) of 0.5416, indicating ToxCast bioactivity data can be predicted by Nebula. Prediction domain analysis showed some types of ToxCast assay data could be more reliably predicted by Nebula than others. Network analysis is a promising approach to understand ToxCast data. Nebula is an effective algorithm for predicting ToxCast bioactivity data, helping fully utilize ToxCast data in the risk assessment of chemicals. Published by Elsevier Ltd.

  15. Interfacial Effects on the Thermal and Mechanical Properties of Graphite/Copper Composites. Final Contractor Report Ph.D. Thesis

    Science.gov (United States)

    Devincent, Sandra Marie

    1995-01-01

    Graphite surfaces are not wet by pure copper. This lack of wetting has been responsible for a debonding phenomenon that has been found in continuous graphite fiber reinforced copper matrix composites subjected to elevated temperatures. By suitably alloying copper, its ability to wet graphite surfaces can be enhanced. Information obtained during sessile drop testing has led to the development of a copper-chromium alloy that suitably wets graphite. Unidirectionally reinforced graphite/copper composites have been fabricated using a pressure infiltration casting procedure. P100 pitch-based fibers have been used to reinforce copper and copper-chromium alloys. X-ray radiography and optical microscopy have been used to assess the fiber distribution in the cast composites. Scanning electron microscopy and Auger electron spectroscopy analyses were conducted to study the distribution and continuity of the chromium carbide reaction phase that forms at the fiber/matrix interface in the alloyed matrix composites. The effects of the chromium in the copper matrix on the mechanical and thermal properties of P100Gr/Cu composites have been evaluated through tensile testing, three-point bend testing, thermal cycling and thermal conductivity calculations. The addition of chromium has resulted in an increased shear modulus and essentially zero thermal expansion in the P100Gr/Cu-xCr composites through enhanced fiber/matrix bonding. The composites have longitudinal tensile strengths in excess of 700 MPa with elastic moduli of 393 GPa. After 100 hr at 760 deg C 84 percent of the as-cast strength is retained in the alloyed matrix composites. The elastic moduli are unchanged by the thermal exposure. It has been found that problems with spreading of the fiber tows strongly affect the long transverse tensile properties and the short transverse thermal conductivity of the P100Gr/Cu-xCr composites. The long transverse tensile strength is limited by rows of touching fibers which are paths of

  16. Travelling Through Caste

    OpenAIRE

    Kumar, Raj

    2016-01-01

    With its peculiar caste system, India is considered the most stratified of all known societies in human history. This system is ‘peculiar’ as it divides human beings into higher and lower castes and this division is backed by certain religious sanctions based on the sociological concepts of ‘purity’ and ‘pollution’. While the higher caste is associated with ‘purity’, the lower caste is associated with ‘pollution’. The people of the lower castes are not allowed to undertake religious journeys ...

  17. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Light Metals Permanent Mold Casting

    Energy Technology Data Exchange (ETDEWEB)

    Fasoyinu, Yemi [CanmetMATERIALS

    2014-03-31

    Current vehicles use mostly ferrous components for structural applications. It is possible to reduce the weight of the vehicle by substituting these parts with those made from light metals such as aluminum and magnesium. Many alloys and manufacturing processes can be used to produce these light metal components and casting is known to be most economical. One of the high integrity casting processes is permanent mold casting which is the focus of this research report. Many aluminum alloy castings used in automotive applications are produced by the sand casting process. Also, aluminum-silicon (Al-Si) alloys are the most widely used alloy systems for automotive applications. It is possible that by using high strength aluminum alloys based on an aluminum-copper (Al-Cu) system and permanent mold casting, the performance of these components can be enhanced significantly. This will also help to further reduce the weight. However, many technological obstacles need to be overcome before using these alloys in automotive applications in an economical way. There is very limited information in the open literature on gravity and low-pressure permanent mold casting of high strength aluminum alloys. This report summarizes the results and issues encountered during the casting trials of high strength aluminum alloy 206.0 (Al-Cu alloy) and moderate strength alloy 535.0 (Al-Mg alloy). Five engineering components were cast by gravity tilt-pour or low pressure permanent mold casting processes at CanmetMATERIALS (CMAT) and two production foundries. The results of the casting trials show that high integrity engineering components can be produced successfully from both alloys if specific processing parameters are used. It was shown that a combination of melt processing and mold temperature is necessary for the elimination of hot tears in both alloys.

  18. Towards an all-copper redox flow battery based on a copper-containing ionic liquid.

    Science.gov (United States)

    Schaltin, Stijn; Li, Yun; Brooks, Neil R; Sniekers, Jeroen; Vankelecom, Ivo F J; Binnemans, Koen; Fransaer, Jan

    2016-01-07

    The first redox flow battery (RFB), based on the all-copper liquid metal salt [Cu(MeCN)4][Tf2N], is presented. Liquid metal salts (LMS) are a new type of ionic liquid that functions both as solvent and electrolyte. Non-aqueous electrolytes have advantages over water-based solutions, such as a larger electrochemical window and large thermal stability. The proof-of-concept is given that LMSs can be used as the electrolyte in RFBs. The main advantage of [Cu(MeCN)4][Tf2N] is the high copper concentration, and thus high charge and energy densities of 300 kC l(-1) and 75 W h l(-1) respectively, since the copper(i) ions form an integral part of the electrolyte. A Coulombic efficiency up to 85% could be reached.

  19. The development and mechanical characterization of aluminium copper-carbon fiber metal matrix hybrid composite

    Science.gov (United States)

    Manzoor, M. U.; Feroze, M.; Ahmad, T.; Kamran, M.; Butt, M. T. Z.

    2018-04-01

    Metal matrix composites (MMCs) come under advanced materials that can be used for a wide range of industrial applications. MMCs contain a non-metallic reinforcement incorporated into a metallic matrix which can enhance properties over base metal alloys. Copper-Carbon fiber reinforced aluminium based hybrid composites were prepared by compo casting method. 4 weight % copper was used as alloying element with Al because of its precipitation hardened properties. Different weight compositions of composites were developed and characterized by mechanical testing. A significant improvement in tensile strength and micro hardness were found, before and after heat treatment of the composite. The SEM analysis of the fractured surfaces showed dispersed and embedded Carbon fibers within the network leading to the enhanced strength.

  20. Caste- and ethnicity-based inequalities in HIV/AIDS-related knowledge gap: a case of Nepal.

    Science.gov (United States)

    Atteraya, Madhu; Kimm, HeeJin; Song, In Han

    2015-05-01

    Caste- and ethnicity-based inequalities are major obstacles to achieving health equity. The authors investigated whether there is any association between caste- and ethnicity-based inequalities and HIV-related knowledge within caste and ethnic populations. They used the 2011 Nepal Demographic and Health Survey, a nationally represented cross-sectional study data set. The study sample consisted of 11,273 women between 15 and 49 years of age. Univariate and logistic regression models were used to examine the relationship between caste- and ethnicity-based inequalities and HIV-related knowledge. The study sample was divided into high Hindu caste (47.9 percent), "untouchable" caste (18.4 percent), and indigenous populations (33.7 percent). Within the study sample, the high-caste population was found to have the greatest knowledge of the means by which HIV is prevented and transmitted. After controlling for socioeconomic and demographic characteristics, untouchables were the least knowledgeable. The odds ratio for incomplete knowledge about transmission among indigenous populations was 1.27 times higher than that for high Hindu castes, but there was no significant difference in knowledge of preventive measures. The findings suggest the existence of a prevailing HIV knowledge gap. This in turn suggests that appropriate steps need to be implemented to convey complete knowledge to underprivileged populations.

  1. Gibbs energy calculation of electrolytic plasma channel with inclusions of copper and copper oxide with Al-base

    Science.gov (United States)

    Posuvailo, V. M.; Klapkiv, M. D.; Student, M. M.; Sirak, Y. Y.; Pokhmurska, H. V.

    2017-03-01

    The oxide ceramic coating with copper inclusions was synthesized by the method of plasma electrolytic oxidation (PEO). Calculations of the Gibbs energies of reactions between the plasma channel elements with inclusions of copper and copper oxide were carried out. Two methods of forming the oxide-ceramic coatings on aluminum base in electrolytic plasma with copper inclusions were established. The first method - consist in the introduction of copper into the aluminum matrix, the second - copper oxide. During the synthesis of oxide ceramic coatings plasma channel does not react with copper and copper oxide-ceramic included in the coating. In the second case is reduction of copper oxide in interaction with elements of the plasma channel. The content of oxide-ceramic layer was investigated by X-ray and X-ray microelement analysis. The inclusions of copper, CuAl2, Cu9Al4 in the oxide-ceramic coatings were found. It was established that in the spark plasma channels alongside with the oxidation reaction occurs also the reaction aluminothermic reduction of the metal that allows us to dope the oxide-ceramic coating by metal the isobaric-isothermal potential oxidation of which is less negative than the potential of the aluminum oxide.

  2. Melting of Grey Cast Iron Based on Steel Scrap Using Silicon Carbide

    Directory of Open Access Journals (Sweden)

    Stojczew A.

    2014-08-01

    Full Text Available The paper presents the issue of synthetic cast iron production in the electric induction furnace exclusively on the steel scrap base. Silicon carbide and synthetic graphite were used as carburizers. The carburizers were introduced with solid charge or added on the liquid metal surface. The chemical analysis of the produced cast iron, the carburization efficiency and microstructure features were presented in the paper. It was stated that ferrosilicon can be replaced by silicon carbide during the synthetic cast iron melting process. However, due to its chemical composition (30% C and 70% Si which causes significant silicon content in iron increase, the carbon deficit can be partly compensated by the carburizer introduction. Moreover it was shown that the best carbon and silicon assimilation rate is obtained where the silicon carbide is being introduced together with solid charge. When it is thrown onto liquid alloy surface the efficiency of the process is almost two times less and the melting process lasts dozen minutes long. The microstructure of the cast iron produced with the silicon carbide shows more bulky graphite flakes than inside the microstructure of cast iron produced on the pig iron base.

  3. Tolerance of Serpula lacrymans to copper-based wood preservatives

    DEFF Research Database (Denmark)

    Hastrup, Anne Christine Steenkjær; Green, Frederick; Clausen, Carol A.

    2005-01-01

    construction, but some decay fungi are known to be copper tolerant. In this study, soil-block tests were undertaken to clarify the effect of copper, copper citrate, and alkaline copper quaternary-type D (ACQ-D) on the decay capabilities of S. lacrymans compared with an alternative wood preservative......Serpula lacrymans, the dry rot fungus, is considered the most economically important wood decay fungus in certain temperate regions of the world, namely northern Europe, Japan, and Australia. Previously, copper-based wood preservatives were commonly used for pressure treatment of wood for building...... not containing copper. Twelve isolates of the dry rot fungus S. lacrymans and four other brown-rot species were evaluated for weight loss on wood treated with 1.2% copper citrate, 0.5% ACQ-D, and 0.5% naphthaloylhydroxylamine (NHA). Eleven out of 12 isolates of S. lacrymans were shown to be tolerant towards...

  4. Surface properties of copper based cermet materials

    International Nuclear Information System (INIS)

    Voinea, M.; Vladuta, C.; Bogatu, C.; Duta, A.

    2008-01-01

    The paper presents the characterization of the surface properties of copper based cermets obtained by two different techniques: spray pyrolysis deposition (SPD) and electrodeposition. Copper acetate was used as precursor of Cu/CuO x cermet. The surface morphology was tailored by adding copolymers of maleic anhydride with controlled hydrophobia. The films morphology of Cu/CuO x was assessed using contact angle measurements and AFM analysis. The porous structures obtained via SPD lead to higher liquid adsorption rate than the electrodeposited films. A highly polar liquid - water is recommended as testing liquid in contact angle measurements, for estimating the porosity of copper based cermets, while glycerol can be used to distinguish among ionic and metal predominant structures. Thus, contact angle measurements can be used for a primary evaluation of the films morphology and, on the other hand, of the ratio between the cermet components

  5. Upgrading the alloy AlSi6Cu4 (AK64 cast to the ceramic mould

    Directory of Open Access Journals (Sweden)

    M. Dudyk

    2007-12-01

    Full Text Available In this article are presented the results of study on the kinetics of the crystallization processes in the refined, modified and filtered Silumin containing copper and the metallographic analysis of the obtained structures. Impact of the upgrading processes – refining, modification and filtration – of the studied alloy AK64 on changes of the impact strength KCV of the cast samples. Original metallographic analysis of the foam filters cast with the studied alloy was carried out. The efficiency of filtration mechanisms on improvement of quality and usefulness of the cast Silumin was demonstrated.

  6. Development of the continuous casting technology for fabrication of the tubular fuels

    International Nuclear Information System (INIS)

    Kim, H. S.; Lee, Y. S.; Kim, C. K.; Lee, D. B.; Oh, S. J.

    2003-01-01

    In the irradiation test of the U-Mo dispersed nuclear fuel that is used as nuclear fuels for research reactors, it was recognized that the swelling due to reaction between U-Mo particle and Al matrix caused some failures of the fuel claddings. The development of new style nuclear fuel that could minimize the reaction between U-Mo particles and Al matrix was needed. Tube style nuclear fuel was judged to be suitable as new style nuclear fuel. We targeted to make U-Mo tube of diameter 10mm, thinner than 1mm thick, because temperature distribution of tube style nuclear fuel will be expected to have a good performance. We used continuous casting technology to make tube style nuclear fuel. In this research, we have tried to make tube using copper before we make U-Mo tube style nuclear fuel by continuous casting method. As a result of the experiment, we succeeded to make copper tube of diameter 10mm, thickness 1mm

  7. Application of a cold spray technique to the fabrication of a copper canister for the geological disposal of CANDU spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui-Joo, E-mail: hjchoi@kaeri.re.k [Korea Atomic Energy Research Institute, Radioactive Waste Management Technology Development, 150 Dukjin-dong, Yuseong, Daejon, 305-353 (Korea, Republic of); Lee, Minsoo; Lee, Jong Youl [Korea Atomic Energy Research Institute, Radioactive Waste Management Technology Development, 150 Dukjin-dong, Yuseong, Daejon, 305-353 (Korea, Republic of)

    2010-10-15

    A new method was proposed for the manufacture of a copper-cast iron canister for the spent fuel disposal based on the cold spray coating technique. The thickness of a copper shell could be fabricated to be as thin as 10 mm with the new method. Around 6 tons of copper could be saved with a 10 mm thick canister compared with a 50 mm thick canister. The electrochemical properties of the cold sprayed copper layer and forged copper were measured through a polarization test. The two copper layers showed very similar electrochemical properties. The lifetime of a 10 mm copper canister was estimated with a mathematical model based on the mass transport of sulfide ions through the buffer. The results showed that the canister lifetime was more than 140,000 years under the Korean granite groundwater condition. The thermal analysis with a current pre-conceptual design of a CANDU spent fuel canister showed that the maximum temperature between the canister and the saturated buffer was below the thermal criteria, 100 {sup o}C. Finally, the mechanical stability of the copper canister was confirmed with a computer program, ABAQUS, under the rock movement scenario.

  8. Refinement and fracture mechanisms of as-cast QT700-6 alloy by alloying method

    Directory of Open Access Journals (Sweden)

    Min-qiang Gao

    2017-01-01

    Full Text Available The as-cast QT700-6 alloy was synthesized with addition of a certain amount of copper, nickel, niobium and stannum elements by alloying method in a medium frequency induction furnace, aiming at improving its strength and toughness. Microstructures of the as-cast QT700-6 alloy were observed using a scanning-electron microscope (SEM and the mechanical properties were investigated using a universal tensile test machine. Results indicate that the ratio of pearlite/ferrite is about 9:1 and the graphite size is less than 40 μm in diameter in the as-cast QT700-6 alloy. The predominant refinement mechanism is attributed to the formation of niobium carbides, which increases the heterogeneous nucleus and hinders the growth of graphite. Meanwhile, niobium carbides also exist around the grain boundaries, which improve the strength of the ductile iron. The tensile strength and elongation of the as-cast QT700-6 alloy reach over 700 MPa and 6%, respectively, when the addition amount of niobium is 0.8%. The addition of copper and nickel elements contributed to the decrease of eutectoid transformation temperature, resulting in the decrease of pearlite lamellar spacing (about 248 nm, which is also beneficial to enhancing the tensile strength. The main fracture mechanism is cleavage fracture with the appearance of a small amount of dimples.

  9. Casting and stress-strain simulations of a cast ductile iron component using microstructure based mechanical behavior

    International Nuclear Information System (INIS)

    Olofsson, Jakob; Svensson, Ingvar L

    2012-01-01

    The industrial demand for increased component performance with concurrent reductions in component weight, development times and verifications using physical prototypes drives the need to use the full potential of casting and Finite Element Method (FEM) simulations to correctly predict the mechanical behavior of cast components in service. The mechanical behavior of the component is determined by the casting process, and factors as component geometry and casting process parameters are known to affect solidification and microstructure formation throughout the component and cause local variations in mechanical behavior as well as residual stresses. Though residual stresses are known to be an important factor in the mechanical behavior of the component, the importance of local mechanical behavior is not well established and the material is typically considered homogeneous throughout the component. This paper deals with the influence of solidification and solid state transformation on microstructure formation and the effect of local microstructure variations on the mechanical behavior of the cast component in service. The current work aims to investigate the coupling between simulation of solidification, microstructure and local variations in mechanical behavior and stress-strain simulation. This is done by performing several simulations of a ductile iron component using a recently developed simulation strategy, a closed chain of simulations for cast components, able to predict and describe the local variations in not only elastic but also plastic behavior throughout the component by using microstructural parameters determined by simulations of microstructural evolution in the component during the casting process. In addition the residual stresses are considered. The results show that the FEM simulation results are significantly affected by including microstructure based mechanical behavior. When the applied load is low and the component is subjected to stress levels

  10. Grindability of cast Ti-Cu alloys.

    Science.gov (United States)

    Kikuchi, Masafumi; Takada, Yukyo; Kiyosue, Seigo; Yoda, Masanobu; Woldu, Margaret; Cai, Zhuo; Okuno, Osamu; Okabe, Toru

    2003-07-01

    The purpose of the present study was to evaluate the grindability of a series of cast Ti-Cu alloys in order to develop a titanium alloy with better grindability than commercially pure titanium (CP Ti), which is considered to be one of the most difficult metals to machine. Experimental Ti-Cu alloys (0.5, 1.0, 2.0, 5.0, and 10.0 mass% Cu) were made in an argon-arc melting furnace. Each alloy was cast into a magnesia mold using a centrifugal casting machine. Cast alloy slabs (3.5 mm x 8.5 mm x 30.5 mm), from which the hardened surface layer (250 microm) was removed, were ground using a SiC abrasive wheel on an electric handpiece at four circumferential speeds (500, 750, 1000, or 1250 m/min) at 0.98 N (100 gf). Grindability was evaluated by measuring the amount of metal volume removed after grinding for 1min. Data were compared to those for CP Ti and Ti-6Al-4V. For all speeds, Ti-10% Cu alloy exhibited the highest grindability. For the Ti-Cu alloys with a Cu content of 2% or less, the highest grindability corresponded to an intermediate speed. It was observed that the grindability increased with an increase in the Cu concentration compared to CP Ti, particularly for the 5 or 10% Cu alloys at a circumferential speed of 1000 m/min or above. By alloying with copper, the cast titanium exhibited better grindability at high speed. The continuous precipitation of Ti(2)Cu among the alpha-matrix grains made this material less ductile and facilitated more effective grinding because small broken segments more readily formed.

  11. Modelling the Cast Component Weight in Hot Chamber Die Casting using Combined Taguchi and Buckingham's π Approach

    Science.gov (United States)

    Singh, Rupinder

    2018-02-01

    Hot chamber (HC) die casting process is one of the most widely used commercial processes for the casting of low temperature metals and alloys. This process gives near-net shape product with high dimensional accuracy. However in actual field environment the best settings of input parameters is often conflicting as the shape and size of the casting changes and one have to trade off among various output parameters like hardness, dimensional accuracy, casting defects, microstructure etc. So for online inspection of the cast components properties (without affecting the production line) the weight measurement has been established as one of the cost effective method (as the difference in weight of sound and unsound casting reflects the possible casting defects) in field environment. In the present work at first stage the effect of three input process parameters (namely: pressure at 2nd phase in HC die casting; metal pouring temperature and die opening time) has been studied for optimizing the cast component weight `W' as output parameter in form of macro model based upon Taguchi L9 OA. After this Buckingham's π approach has been applied on Taguchi based macro model for the development of micro model. This study highlights the Taguchi-Buckingham based combined approach as a case study (for conversion of macro model into micro model) by identification of optimum levels of input parameters (based on Taguchi approach) and development of mathematical model (based on Buckingham's π approach). Finally developed mathematical model can be used for predicting W in HC die casting process with more flexibility. The results of study highlights second degree polynomial equation for predicting cast component weight in HC die casting and suggest that pressure at 2nd stage is one of the most contributing factors for controlling the casting defect/weight of casting.

  12. Flop casting of nuclear materials for advanced fuel cycle research - 5247

    International Nuclear Information System (INIS)

    Swift, A.J.; Koury, D.J.; Czerwinski, K.R.; Vollmer, J.M.

    2015-01-01

    Full text of publication follows. Next generation fast reactor designs of nuclear reactors utilizing metallic fuel are being developed as an alternative fuel cycle option in an effort to reduce carbon emissions. Metallic fuel systems are attractive because of their high thermal conductivity, fissile atom density, and inherent safety. Metallic fuel systems are also being investigated because of their potential to reach high burnups. The increased targeted burnups for metallic fuels lead to higher concentrations of actinides, lanthanides, and other fission products, which alter the fuel properties and impact the performance of the fuel. Before designs can be implemented, the fission product concentrations must be studied at variable fuel geometries and stages of fuel burnup. Arc flop casting serves as a viable option for casting alloys as the molds can be tailored to fit design specific requirements while cutting costs in time-consuming machining. Arc casting is done as the final preparation step in a small arc furnace with an argon or 5% hydrogen-argon atmosphere after the sample has been subsequently melted, overturned, and re-melted. The flop casting mold is then fitted to the chamber as needed and the previously prepared sample is quickly hit with a high current arc causing the molten metal to fill the copper mold. The U-Zr-Pu system will serve as the basis for this research as it has been extensively studied since the 1950 years, although flop casting can be adapted to any metallic fuel system. Multiple U-Zr-Pu with varying fission product concentrations alloys, Technetium metal, and Plutonium alloys have been flop cast based on burnup calculations. Prepared samples were cast using different molds and dimensions, then characterized by Scanning Electron Microscopy, X-ray diffraction, and Thermogravimetric Analysis. The goal of this research is to test and develop flop casting techniques for the production of metallic fuel alloys applicable for various stages and

  13. Streaming Model Based Volume Ray Casting Implementation for Cell Broadband Engine

    Directory of Open Access Journals (Sweden)

    Jusub Kim

    2009-01-01

    Full Text Available Interactive high quality volume rendering is becoming increasingly more important as the amount of more complex volumetric data steadily grows. While a number of volumetric rendering techniques have been widely used, ray casting has been recognized as an effective approach for generating high quality visualization. However, for most users, the use of ray casting has been limited to datasets that are very small because of its high demands on computational power and memory bandwidth. However the recent introduction of the Cell Broadband Engine (Cell B.E. processor, which consists of 9 heterogeneous cores designed to handle extremely demanding computations with large streams of data, provides an opportunity to put the ray casting into practical use. In this paper, we introduce an efficient parallel implementation of volume ray casting on the Cell B.E. The implementation is designed to take full advantage of the computational power and memory bandwidth of the Cell B.E. using an intricate orchestration of the ray casting computation on the available heterogeneous resources. Specifically, we introduce streaming model based schemes and techniques to efficiently implement acceleration techniques for ray casting on Cell B.E. In addition to ensuring effective SIMD utilization, our method provides two key benefits: there is no cost for empty space skipping and there is no memory bottleneck on moving volumetric data for processing. Our experimental results show that we can interactively render practical datasets on a single Cell B.E. processor.

  14. Electrometallurgy of copper refinery anode slimes

    Science.gov (United States)

    Scott, J. D.

    1990-08-01

    High-selenium copper refinery anode slimes form two separate and dynamically evolving series of compounds with increasing electrolysis time. In one, silver is progressively added to non-stoichiometric copper selenides, both those originally present in the anode and those formed subsequently in the slime layer, and in the other, silver-poor copper selenides undergo a dis-continuous crystallographic sequence of anodic-oxidative transformations. The silver-to-selenium molar ratio in the as-cast anode and the current density of electrorefining can be used to construct predominance diagrams for both series and, thus, to predict the final bulk “mineralogy” of the slimes. Although totally incorrect in detail, these bulk data are sufficiently accurate to provide explanations for several processing problems which have been experienced by Kidd Creek Division, Falconbridge Ltd., in its commercial tankhouse. They form the basis for a computer model which predicts final cathode quality from chemical analyses of smelter feed.

  15. Surface films and corrosion of copper

    International Nuclear Information System (INIS)

    Hilden, J.; Laitinen, T.; Maekelae, K.; Saario, T.; Bojinov, M.

    1999-03-01

    In Sweden and Finland the spent nuclear fuel is planned to be encapsulated in cast iron canisters that have an outer shield made of copper. The copper shield is responsible for the corrosion protection of the canister construction. General corrosion of the copper is not expected to be the limiting factor in the waste repository environment when estimating the life-time of the canister construction. However, different forms of localised corrosion, i.e. pitting, stress corrosion cracking, or environmentally assisted creep fracture may cause premature failure of the copper shield. Of the probable constituents in the groundwater, nitrites, chlorides, sulphides and carbonates have been suggested to promote localised corrosion of copper. The main assumption made in planning this research program is that the surface films forming on copper in the repository environment largely determine the susceptibility of copper to the different forms of localised corrosion. The availability of reactants, which also may become corrosion rate limiting, is investigated in several other research programs. This research program consists of a set of successive projects targeted at characterising the properties of surface films on copper in repository environment containing different detrimental anions. A further aim was to assess the significance of the anion-induced changes in the stability of the oxide films with regard to localised corrosion of copper. This report summarises the results from a series of investigations on properties of surface films forming on copper in water of pH = 8.9 at temperature of 80 deg C and pressure of 2 MPa. The main results gained so far in this research program are as follows: The surface films forming on copper in the thermodynamic stability region of monovalent copper at 80 deg C consist of a bulk part (about 1 mm thick) which is a good ionic and electronic conductor, and an outer, interfacial layer (0.001 - 0.005 mm thick) which shows p-type semiconductor

  16. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    Science.gov (United States)

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  17. Characterization of 14th century bell-casting pit in the Old Town of Sibiu

    International Nuclear Information System (INIS)

    Olariu, Agata; Badica, T.; Popescu, I.V.; Besliu, P.; Besliu, C.

    1997-01-01

    In this work we have made an analytical investigation by neutron activation analysis and X-ray fluorescence of a number of pieces found on the two hearths for smelting copper-alloys discovered at the Old Town Hall in Sibiu and of material extracted from some bells in the surrounding region of Sibiu to find whether there is a relationship between the two hearths. The elemental analyses of this study suggest a relationship between the two hearths and revealed by the traces preserved that the hearths developed an activity of allowing copper with tin. It was found that the copper-tin alloy for casting bells has the same composition with the alloys used in the analyzed Transylvanian bells

  18. Tolerance of Serpula lacrymans to copper-based wood preservatives

    Science.gov (United States)

    Anne Christine Steenkjaer Hastrup; Frederick Green; Carol A. Clausen; Bo Jensen

    2005-01-01

    Serpula lacrymans, the dry rot fungus, is considered the most economically important wood decay fungus in certain temperate regions of the world, namely northern Europe, Japan, and Australia. Previously, copper-based wood preservatives were commonly used for pressure treatment of wood for building construction, but some decay fungi are known to be copper tolerant. In...

  19. Influence of boron on ferrite formation in copper-added spheroidal graphite cast iron

    Directory of Open Access Journals (Sweden)

    Ying Zou

    2014-07-01

    Full Text Available This paper reviews the original work of the authors published recently, describing the influence of B on the matrix of the Cuadded spheroidal graphite cast iron. The effect of Cu has been corrected as a ferrite formation promoter in the matrix of the grey cast iron by the usage of high-purity material. Also, this paper focuses on the ferrite formation and the observation of the Cu distribution in the B-added and B-free Cu-containing spheroidal graphite cast iron. The Cu film on the spheroidal graphite can be successfully observed in the B-free sample using a special etching method. However, in the B-added sample, no Cu film could be found, while the secondary graphite was formed on the surface of the spheroidal graphite. The interaction between B and Cu is stressed as a peculiar phenomenon by the employment of a contrast experiment of B and Mn. The heat treatment could make Cu precipitate more significantly in the eutectic cells and in the matrix in the form of large Cu particles because of the limited solubility of Cu.

  20. The Effect of Temperature and Rotational Speed on Structure and Mechanical Properties of Cast Cu Base Alloy (Cu-Al-Si-Fe) Welded by Semisolid Stir Joining Method

    Science.gov (United States)

    Ferasat, Keyvan; Aashuri, Hossein; Kokabi, Amir Hossein; Shafizadeh, Mahdi; Nikzad, Siamak

    2015-12-01

    Semisolid stir joining has been under deliberation as a possible method for joining of copper alloys. In this study, the effect of temperature and rotational speed of stirrer on macrostructure evaluation and mechanical properties of samples were investigated. Optical microscopy and X-ray diffraction were performed for macro and microstructural analysis. A uniform micro-hardness profile was attained by semisolid stir joining method. The ultimate shear strength and bending strength of welded samples were improved in comparison with the cast sample. There is also lower area porosity in welded samples than the cast metal. The mechanical properties were improved by increasing temperature and rotational speed of the joining process.

  1. Void-free epoxy castings for cryogenic insulators and seals

    International Nuclear Information System (INIS)

    Quirk, J.F.

    1983-01-01

    The design of the Westinghouse Magnet for the Oak Ridge National Laboratory's Large Coil Program (LCP) incorporates a main lead bushing which transmits heat-leak loads by conduction to the supercritical helium stream. The bushing, which consists of epoxy resin cast about a copper conductor, must be electrically insulated, vacuum tight and be capable of withstanding the stresses encountered in cryognic service. The seal design of the bushing is especially important; leakage from either the helium system or the external environment into the vacuum will cause the magnet to quench. Additionally, the epoxy-resin casting must resist mechanical loads caused by the weight of leads attached to the bushing and thermal stresses transmitted to the epoxy via the conductor. The epoxy resin is cast about the conductor in such a way as to provide the required vacuum tight seal. The technique by which this is accomplished is reviewed. Equally important is the elimination of voids in the epoxy which will act as stress-concentrating discontinuities during cooling to or warming from 4K. The types of voids that could be expected and their causes are described. The paper reviews techniques employed to eliminate voids within the cast-resin portion of the bushing

  2. Effect of cold work on creep properties of oxygen-free copper

    International Nuclear Information System (INIS)

    Martinsson, Aasa; Andersson-Oestling, Henrik C.M.

    2009-03-01

    Spent nuclear fuel is in Sweden planned to be disposed by encapsulating in waste packages consisting of a cast iron insert surrounded by a copper canister. The cast iron is load bearing and the copper canister gives corrosion protection. The waste package is heavy. Throughout the manufacturing process from the extrusion/pierce-and-draw manufacturing to the final placement in the repository, the copper is subjected to handling which could introduce cold work in the material. It is well known that the creep properties of engineering materials at higher temperatures are affected by cold working. The study includes creep testing of four series of cold worked, oxygen-free, phosphorus doped copper (Cu-OFP) at 75 deg C. The results are compared to reference series for as series of copper cold worked in tension (12 and 24 %) and two series cold worked in compression (12 % parallel to creep load axis and 15 % perpendicular to creep load axis) were tested. The results show that pre-straining in tension of copper leads to prolonged creep life at 75 deg C. The creep rate and ductility are reduced. The influence on the creep properties increases with the amount of cold work. Cold work in compression applied along the creep load axis has no effect on the creep life or the creep rate. Nonetheless the ductility is still impaired. However, cold work in compression applied perpendicular to the creep load direction has a positive effect on the creep life. Cold work in both tension and compression results in a pronounced reduction of the initial creep strain, which is the strain obtained from the beginning of the loading until full creep load is achieved. Yet the area reduction is unaffected by the degree of cold work

  3. Improved Safety and Cost Savings from Reductions in Cast-Saw Burns After Simulation-Based Education for Orthopaedic Surgery Residents.

    Science.gov (United States)

    Bae, Donald S; Lynch, Hayley; Jamieson, Katherine; Yu-Moe, C Winnie; Roussin, Christopher

    2017-09-06

    The purpose of this investigation was to characterize the clinical efficacy and cost-effectiveness of simulation training aimed at reducing cast-saw injuries. Third-year orthopaedic residents underwent simulation-based instruction on distal radial fracture reduction, casting, and cast removal using an oscillating saw. The analysis compared incidences of cast-saw injuries and associated costs before and after the implementation of the simulation curriculum. Actual and potential costs associated with cast-saw injuries included wound care, extra clinical visits, and potential total payment (indemnity and expense payments). Curriculum costs were calculated through time-derived, activity-based accounting methods. The researchers compared the costs of cast-saw injuries and the simulation curriculum to determine overall savings and return on investment. In the 2.5 years prior to simulation, cast-saw injuries occurred in approximately 4.3 per 100 casts cut by orthopaedic residents. For the 2.5-year period post-simulation, the injury rate decreased significantly to approximately 0.7 per 100 casts cut (p = 0.002). The total cost to implement the casting simulation was $2,465.31 per 6-month resident rotation. On the basis of historical data related to cast-saw burns (n = 6), total payments ranged from $2,995 to $25,000 per claim. The anticipated savings from averted cast-saw injuries and associated medicolegal payments in the 2.5 years post-simulation was $27,131, representing an 11-to-1 return on investment. Simulation-based training for orthopaedic surgical residents was effective in reducing cast-saw injuries and had a high theoretical return on investment. These results support further investment in simulation-based training as cost-effective means of improving patient safety and clinical outcomes. Therapeutic Level III. See Instructions for Authors for a complete description of levels of evidence.

  4. Single underwater image enhancement based on color cast removal and visibility restoration

    Science.gov (United States)

    Li, Chongyi; Guo, Jichang; Wang, Bo; Cong, Runmin; Zhang, Yan; Wang, Jian

    2016-05-01

    Images taken under underwater condition usually have color cast and serious loss of contrast and visibility. Degraded underwater images are inconvenient for observation and analysis. In order to address these problems, an underwater image-enhancement method is proposed. A simple yet effective underwater image color cast removal algorithm is first presented based on the optimization theory. Then, based on the minimum information loss principle and inherent relationship of medium transmission maps of three color channels in an underwater image, an effective visibility restoration algorithm is proposed to recover visibility, contrast, and natural appearance of degraded underwater images. To evaluate the performance of the proposed method, qualitative comparison, quantitative comparison, and color accuracy test are conducted. Experimental results demonstrate that the proposed method can effectively remove color cast, improve contrast and visibility, and recover natural appearance of degraded underwater images. Additionally, the proposed method is comparable to and even better than several state-of-the-art methods.

  5. A Review of Evidence for Corrosion of Copper by water

    Energy Technology Data Exchange (ETDEWEB)

    Apted, Michael J. (Monitor Scientific LLC (United Kingdom)); Bennett, David G. (TerraSalus Limited (United Kingdom)); Saario, Timo (VTT Materials and Building (Finland))

    2009-09-15

    The planned spent nuclear fuel repository in Sweden relies on a copper cast iron canister as the primary engineered barrier. The corrosion behaviour of copper in the expected environment needs to be thoroughly understood as a basis for the post-closure safety analysis. It has been shown that corrosion may indeed be the primary canister degradation process during the utilised assessment period of 1 million years (this period is the longest time for which risk calculations will be needed according guidelines issued by the Swedish Radiation Safety Authority). Previous analysis work has been based on that copper is corroded during the initial oxic environment as well as by sulphide in groundwater once reducing conditions have been restored. The quantitative analyses of these processes consider upper-bound amounts of atmospheric oxidation as well as representative sulphide concentrations coupled with the transport limitation of the bentonite buffer and of the surrounding bedrock. A group of researchers at the Royal Institute of Technology (KTH), Stockholm, Sweden suggest, based on published experimental results, that disposed canisters will also be corroded by water itself under hydrogen evolution. The purpose of the project is to evaluate the findings of the KTH research group based on an assessment of their experimental methods and chemical analysis work, thermodynamic models, and a discussion of reaction mechanisms as well as comparison with the analogue behaviour of native copper. As a background, the authors also provide a brief overview of other corrosion processes and safety assessment significance. The authors conclude that the KTH researchers have not convincingly demonstrated that copper will indeed be corroded by pure water and that it is in any case very unlikely that this process will be dominant under the reducing chemical conditions that are expected in the repository environment. How-ever, the authors do not completely rule out that copper may corrode

  6. Influence of ecologically friendly cores on surface quality of castings based on magnesium alloys

    Directory of Open Access Journals (Sweden)

    P. Lichý

    2014-07-01

    Full Text Available Constructional materials as Al - alloys can be replaced by other materials with high strength to low mass density ratio, e.g. Mg-alloys. In order to pre-casting of holes and cavities cores based on pure inorganic salt can be applied due to easy cleaning of even geometrically complex pre-cast holes. This technology is applied mainly for gravity and low-pressure casting technology. This contribution is aimed at studying of mutual interaction of the Mg-alloy and the salt core. Experiments were focused on surface quality; macro- and microstructure of testing casting samples determination. Metallographic analysis and scanning electron microscope (SEM with X-ray energy-dispersion superficial and spot microanalysis (EDAX were employed.

  7. “De-Casteing” India: How Dalit Women’s Rights Civil Society Organizations Tackle Caste Based Socio-Political & Religio-Cultural Challenges

    OpenAIRE

    Boateng, Godwin Festival; Matadamas, Erika; Sharma, Reesha; Winkler, Caroline

    2014-01-01

    Untouchability practices and caste based discrimination and injustices are under yet another siege after Ambedkar. In the past 50 years, India has seen tremendous mobilization by the lower caste members, specifically, vibrant women’s movements challenging the Indian caste society with the view of securing social change and abating caste based discrimination, violence and mistreatments. However, just like the era of Ambedkar, the anti-caste movements of today have the socio-political and relig...

  8. Influence of copper content on microstructure development of AlSi9Cu3 alloy

    Directory of Open Access Journals (Sweden)

    Brodarac Zovko Z.

    2014-01-01

    Full Text Available Microstructure development and possible interaction of present elements have been determined in charge material of EN AlSi9Cu3 quality. Literature review enables prediction of solidification sequence. Modelling of equilibrium phase diagram for examined chemical composition has been performed, which enables determination of equilibrium solidification sequence. Microstructural investigation indicated distribution and morphology of particular phase. Metallographic analysis tools enable exact determination of microstructural constituents: matrix αAl, eutectic αAl+βSi, iron base intermetallic phase - Al5FeSi, Alx(Fe,MnyCuuSiw and/or Alx(Fe,MnyMgzCuuSiw and copper base phases in ternary eutectic morphology Al-Al2Cu-Si and in complex intermetallic ramified morphology Alx(Fe,MnyMgzSiuCuw. Microstructure development examination reveals potential differences due to copper content which is prerequisite for high values of final mechanical, physical and technological properties of cast products.

  9. Microcapillary Features in Silicon Alloyed High-Strength Cast Iron

    Directory of Open Access Journals (Sweden)

    R.K. Hasanli

    2017-04-01

    Full Text Available Present study explores features of silicon micro capillary in alloyed high-strength cast iron with nodular graphite (ductile iron produced in metal molds. It identified the nature and mechanism of micro liquation of silicon in a ductile iron alloyed with Nickel and copper, and demonstrated significant change of structural-quality characteristics. It was concluded that the matrix of alloyed ductile iron has a heterogeneous structure with cross reinforcement and high-silicon excrement areas.

  10. Corrosion of copper-based materials in gamma radiation

    International Nuclear Information System (INIS)

    Yunker, W.H.

    1986-06-01

    The corrosion behaviors of pure copper (CDA 101), 7% aluminum-copper bronze (CDA 613) and 30% nickel-copper (CDA 715) are being studied in a gamma radiation field of 1 x 10 5 R/h. These studies are in support of the Nevada Nuclear Waste Storage Investigations (NNWSI) Project, by Lawrence Livermore National Laboratory (LLNL), of copper-based materials for possible use in container systems for the permanent geologic burial of nuclear waste. Weight loss, tear drop (stressed), and crevice specimens of the three materials were exposed to water vapor-air atmospheres at 95 0 C and 150 0 C and to liquid water at 95 0 C for periods of one, three, and six months. Longer exposures are in progress. Measurements include: changes in the chemical composition of the gas and water, specimen weight changes, oxide film weights, evidence of microcracking and crevice corrosion, and chemical composition of the oxide films by Auger electron spectroscopy and x-ray diffraction. Interim results show considerable pit and under-film corrosion of alloys CDA 613 and CDA 715. Uniform corrosion rates range from 0.012 mil/yr (0.30 μm/yr) to 0.22 mil/yr (5.6 μm/yr), based on specimen weight losses during six- and seven-month exposures. The time dependencies will be determined as more data become available

  11. Feasibility assessment of copper-base waste package container materials in a tuff repository

    International Nuclear Information System (INIS)

    Acton, C.F.; McCright, R.D.

    1986-01-01

    This report discussed progress made during the second year of a two-year study on the feasibility of using copper or a copper-base alloy as a container material for a waste package in a potential repository in tuff rock at the Yucca Mountain site in Nevada. Corrosion testing in potentially corrosive irradiated environments received emphasis during the feasibility study. Results of experiments to evaluate the effect of a radiation field on the uniform corrosion rate of the copper-base materials in repository-relevant aqueous environments are given as well as results of an electrochemical study of the copper-base materials in normal and concentrated J-13 water. Results of tests on the irradiation of J-13 water and on the subsequent formation of hydrogen peroxide are given. A theoretical study was initiated to predict the long-term corrosion behavior of copper in the repository. Tests were conducted to determine whether copper would adversely affect release rates of radionuclides to the environment because of degradation of the Zircaloy cladding. A manufacturing survey to determine the feasibility of producing copper containers utilizing existing equipment and processes was completed. The cost and availability of copper was also evaluated and predicted to the year 2000. Results of this feasibility assessment are summarized

  12. Social exclusion, caste & health: a review based on the social determinants framework.

    Science.gov (United States)

    Nayar, K R

    2007-10-01

    Poverty and social exclusion are important socio-economic variables which are often taken for granted while considering ill-health effects. Social exclusion mainly refers to the inability of our society to keep all groups and individuals within reach of what we expect as society to realize their full potential. Marginalization of certain groups or classes occurs in most societies including developed countries and perhaps it is more pronounced in underdeveloped countries. In the Indian context, caste may be considered broadly as a proxy for socio-economic status and poverty. In the identification of the poor, scheduled caste and scheduled tribes and in some cases the other backward castes are considered as socially disadvantaged groups and such groups have a higher probability of living under adverse conditions and poverty. The health status and utilization patterns of such groups give an indication of their social exclusion as well as an idea of the linkages between poverty and health. In this review, we examined broad linkages between caste and some select health/health utilization indicators. We examined data on prevalence of anaemia, treatment of diarrhoea, infant mortality rate, utilization of maternal health care and childhood vaccinations among different caste groups in India. The data based on the National Family Health Survey II (NFHS II) highlight considerable caste differentials in health. The linkages between caste and some health indicators show that poverty is a complex issue which needs to be addressed with a multi-dimensional paradigm. Minimizing the suffering from poverty and ill-health necessitates recognizing the complexity and adopting a perspective such as holistic epidemiology which can challenge pure technocentric approaches to achieve health status.

  13. A New Type of Inscribed Copper Plate from Indus Valley (Harappan Civilisation

    Directory of Open Access Journals (Sweden)

    Vasant Shinde

    2014-10-01

    Full Text Available A group of nine Indus Valley copper plates (c. 2600–2000 BC, discovered from private collections in Pakistan, appear to be of an important type not previously described. The plates are significantly larger and more robust than those comprising the corpus of known copper plates or tablets, and most significantly differ in being inscribed with mirrored characters. One of the plates bears 34 characters, which is the longest known single Indus script inscription. Examination of the plates with x-ray fluorescence (XRF spectrophotometry indicates metal compositions, including arsenical copper, consistent with Indus Valley technology. Microscopy of the metal surface and internal structure reveals detail such as pitting, microcrystalline structure, and corrosion, consistent with ancient cast copper artifacts. Given the relative fineness of the engraving, it is hypothesised that the copper plates were not used as seals, but have characteristics consistent with use in copper plate printing. As such, it is possible that these copper plates are by far the earliest known printing devices, being at least 4000 years old.

  14. Easy route to superhydrophobic copper-based wire-guided droplet microfluidic systems.

    Science.gov (United States)

    Mumm, Florian; van Helvoort, Antonius T J; Sikorski, Pawel

    2009-09-22

    Droplet-based microfluidic systems are an expansion of the lab on a chip concept toward flexible, reconfigurable setups based on the modification and analysis of individual droplets. Superhydrophobic surfaces are one suitable candidate for the realization of droplet-based microfluidic systems as the high mobility of aqueous liquids on such surfaces offers possibilities to use novel or more efficient approaches to droplet movement. Here, copper-based superhydrophobic surfaces were produced either by the etching of polycrystalline copper samples along the grain boundaries using etchants common in the microelectronics industry, by electrodeposition of copper films with subsequent nanowire decoration based on thermal oxidization, or by a combination of both. The surfaces could be easily hydrophobized with thiol-modified fluorocarbons, after which the produced surfaces showed a water contact angle as high as 171 degrees +/- 2 degrees . As copper was chosen as the base material, established patterning techniques adopted from printed circuit board fabrication could be used to fabricate macrostructures on the surfaces with the intention to confine the droplets and, thus, to reduce the system's sensitivity to tilting and vibrations. A simple droplet-based microfluidic chip with inlets, outlets, sample storage, and mixing areas was produced. Wire guidance, a relatively new actuation method applicable to aqueous liquids on superhydrophobic surfaces, was applied to move the droplets.

  15. Laser-Induced, Local Oxidation of Copper Nanoparticle Films During Raman Measurements

    Science.gov (United States)

    Hight Walker, Angela R.; Cheng, Guangjun; Calizo, Irene

    2011-03-01

    The optical properties of gold and silver nanoparticles and their films have been thoroughly investigated as surface enhanced Raman scattering (SERS) substrates and chemical reaction promoters. Similar to gold and silver nanoparticles, copper nanoparticles exhibit distinct plasmon absorptions in the visible region. The work on copper nanoparticles and their films is limited due to their oxidization in air. However, their high reactivity actually provides an opportunity to exploit the laser-induced thermal effect and chemical reactions of these nanoparticles. Here, we present our investigation of the local oxidation of a copper nanoparticle film induced by a visible laser source during Raman spectroscopic measurements. The copper nanoparticle film is prepared by drop-casting chemically synthesized copper colloid onto silicon oxide/silicon substrate. The local oxidation induced by visible lasers in Raman spectroscopy is monitored with the distinct scattering peaks for copper oxides. Optical microscopy and scanning electron microscopy have been used to characterize the laser-induced morphological changes in the film. The results of this oxidation process with different excitation wavelengths and different laser powers will be presented.

  16. Particle size effects in the thermal conductivity enhancement of copper-based nanofluids

    Directory of Open Access Journals (Sweden)

    Sahin Huseyin

    2011-01-01

    Full Text Available Abstract We present an analysis of the dispersion characteristics and thermal conductivity performance of copper-based nanofluids. The copper nanoparticles were prepared using a chemical reduction methodology in the presence of a stabilizing surfactant, oleic acid or cetyl trimethylammonium bromide (CTAB. Nanofluids were prepared using water as the base fluid with copper nanoparticle concentrations of 0.55 and 1.0 vol.%. A dispersing agent, sodium dodecylbenzene sulfonate (SDBS, and subsequent ultrasonication was used to ensure homogenous dispersion of the copper nanopowders in water. Particle size distribution of the copper nanoparticles in the base fluid was determined by dynamic light scattering. We found that the 0.55 vol.% Cu nanofluids exhibited excellent dispersion in the presence of SDBS. In addition, a dynamic thermal conductivity setup was developed and used to measure the thermal conductivity performance of the nanofluids. The 0.55 vol.% Cu nanofluids exhibited a thermal conductivity enhancement of approximately 22%. In the case of the nanofluids prepared from the powders synthesized in the presence of CTAB, the enhancement was approximately 48% over the base fluid for the 1.0 vol.% Cu nanofluids, which is higher than the enhancement values found in the literature. These results can be directly related to the particle/agglomerate size of the copper nanoparticles in water, as determined from dynamic light scattering.

  17. National Metal Casting Research Institute final report. Volume 2, Die casting research

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, D. [University of Northern Iowa, Cedar Falls, IA (United States). Dept. of Industrial Technology] [comp.

    1994-06-01

    Four subprojects were completed: development and evaluation of die coatings, accelerated die life characterization of die materials, evaluation of fluid flow and solidification modeling programs, selection and characterization of Al-based die casting alloys, and influence of die materials and coatings on die casting quality.

  18. The effect of processing techniques on microstructural and tribological properties of copper-based alloys

    International Nuclear Information System (INIS)

    Vencl, Aleksandar; Rajkovic, Viseslava; Zivic, Fatima; Mitrović, Slobodan; Cvijović-Alagić, Ivana; Jovanovic, Milan T.

    2013-01-01

    Three copper-based alloys, i.e. two composites reinforced with Al 2 O 3 particles and fabricated through PM route and Cu–Cr–Zr alloy processed by the vacuum melting and casting technique were the object of this investigation. Light microscope, scanning electron microscope (SEM) equipped with electron X-ray spectrometer (EDS) and transmission electron microscope (TEM) were used for microstructural characterization. The ball-on-disc nanotribometer served for wear and friction tests applying low sliding speeds (6, 8 and 10 mm/s) at constant load (1 N). The objective of the paper was to investigate the effect of different processing techniques on microstructure, thermal stability and the tribological characteristics of composites and copper ingot alloy. Nano-sized Al 2 O 3 particles (less than 100 nm in size) are present not only in the copper matrix of Cu–2.5 wt.% Al composite, obtained by internal oxidation, but they are also formed at the grain boundaries preventing the grain growth and providing very small grain size. During the high temperature annealing (in the range 300–950 o C) composites behaved much better than the ingot alloy. The highest thermal stability showed Cu–2.5 wt.% Al composite. The pinning effect of nano-sized Al 2 O 3 particles prevents the grain growth slowing down recrystallization of this composite up to 900 o C. Micro-sized Al 2 O 3 particles in Cu–5 wt.% Al 2 O 3 composite, processed by mechanical annealing, are not effective in preventing dislocation motion and the grain growth, whereas microstructure of Cu–0.4 wt.% Cr–0.08 wt.% Zr ingot alloy was completely recrystallized around 550 o C. Cu–2.5 wt.% Al composite showed the best wear resistance, approximately 2.5 times higher than that of Cu–5 wt.% Al 2 O 3 composite. High hardness and nano-sized Al 2 O 3 particles size combined with the fine-grain structure are the main parameters leading to the improved wear resistance of the Cu–2.5Al composite.

  19. CASTING IMPROVEMENT BASED ON METAHEURISTIC OPTIMIZATION AND NUMERICAL SIMULATION

    Directory of Open Access Journals (Sweden)

    Radomir Radiša

    2017-12-01

    Full Text Available This paper presents the use of metaheuristic optimization techniques to support the improvement of casting process. Genetic algorithm (GA, Ant Colony Optimization (ACO, Simulated annealing (SA and Particle Swarm Optimization (PSO have been considered as optimization tools to define the geometry of the casting part’s feeder. The proposed methodology has been demonstrated in the design of the feeder for casting Pelton turbine bucket. The results of the optimization are dimensional characteristics of the feeder, and the best result from all the implemented optimization processes has been adopted. Numerical simulation has been used to verify the validity of the presented design methodology and the feeding system optimization in the casting system of the Pelton turbine bucket.

  20. Nodular cast iron and casting monitoring

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-10-01

    Full Text Available In this paper quality monitoring of nodular cast iron and casting made of it is presented. A control system of initial liquid cast iron to spheroidization, after spheroidization and inoculation with using of TDA method was shown. An application of an ultrasonic method to assessment of the graphite form and the metal matrix microstructure of castings was investigated.

  1. Separation of copper-64 from copper phthalocyanine

    International Nuclear Information System (INIS)

    Battaglin, R.I.M.

    1979-01-01

    The separation of copper-64 from irradiated copper phthalocyanine by Szilard-Chalmers effect is studied. Two methods of separation are used: one of them is based on the dissolution of the irradiated dry compound in concentrated sulfuric acid following its precipitation in water. In the other one the compound is irradiated with water in paste form following treatment with water and hydrochloric acid. The influence of the crystal form of the copper phthalocyanine on the separation yield of copper-64 is shown. Preliminary tests using the ionic exchange technique for purification and changing of copper-64 sulfate to chloride form are carried out. The specific activity using the spectrophotometric technique, after the determination of the copper concentration in solution of copper-64, is calculated. (Author) [pt

  2. Modelling of Filling, Microstructure Formation, Local Mechanical Properties and Stress – Strain Development in High-Pressure Die Cast Aluminium Castings

    DEFF Research Database (Denmark)

    Kotas, Petr; Hattel, Jesper Henri; Thorborg, Jesper

    2009-01-01

    .e. whether the casting is based on cast iron- or aluminium-alloys. The distribution of local properties in a casting might vary substantially which makes it complex to optimize the casting with good accuracy. Often, mechanical simulations of the load situation are based on the assumption that the cast...... in an aluminium alloy is considered including simulation of the entire casting process with emphasis on microstructure formation related to mechanical properties such as elastic modulus, yield stress, ultimate strength and elongation as well as residual stresses. Subsequently, the casting is subjected to service...... loads and the results of this analysis are discussed in relation to the predicted local properties as well as the residual stresses originating from the casting simulation....

  3. Determination of low alloying element concentrations in cast iron by laser induced breakdown spectroscopy based on TEA CO2 laser system

    Directory of Open Access Journals (Sweden)

    Savović Jelena J.

    2017-01-01

    Full Text Available The analytical capability of laser-produced plasma for the analysis of low alloying elements in cast iron samples has been investigated. The plasma was induced by irradiation of a sample in air at atmospheric pressure using an infrared CO2 laser. Emission spectra were recorded by time-integrated spatially- resolved measurement technique. A set of ten cast iron samples in a powder or particulate form were provided by BAM (Bundesanstalt für Material Forschung und Prüfung, Deutschland, seven of which were used for calibration, and three were treated as unknowns. Linear calibration curves were obtained for copper, chromium, and nickel, with correlation coefficients above 0.99. Precision and accuracy of the LIBS method was evaluated and compared to those obtained by the inductively coupled plasma (ICP analysis of the same samples. Detection limits for Cu, Cr and Ni were close to those reported in the literature for other comparable iron-based alloys obtained using different LIBS systems. Analytical figures of merit of the studied LIBS system may be considered as satisfying, especially in the light of other advantages of the method, like cost effective and fast analysis with no sample preparation, and with a possibility for real-time on-site analysis. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 172019

  4. Discontinuous precipitation in copper base alloys

    Indian Academy of Sciences (India)

    Discontinuous precipitation (DP) is associated with grain boundary migration in the wake of which alternate plates of the precipitate and the depleted matrix form. Some copper base alloys show DP while others do not. In this paper the misfit strain parameter, , has been calculated and predicted that if 100 > ± 0.1, DP is ...

  5. Tendency of the 18-8 type corrosion-resistant steel to cracking in automatic building-up of copper and copper base alloys in argon

    International Nuclear Information System (INIS)

    Abramovich, V.R.; Andronik, V.A.

    1978-01-01

    Studied was the tendency of the 18-8 type corrosion-resistant steel to cracking during automatic building-up of copper and bronze in argon. The investigation was carried out on the 0kh18n10t steel in argon. It had been established, that the degree of copper penetration into the steel inceases with the increase in the time of the 0Kh18n10t steel contact with liquid copper. Liquid copper and copper base alloys have a detrimental effect on mechanical properties of the steel under external tensile load during intercontant. It is shown that in building-up of copper base alloys on the steel-0Kh18n10t, tendency of the steel to cracking decreases with increase in stiffness of a surfaced weld metal plate and with decrease in building-up energy per unit length. The causes of macrocracking in steel at building-up non-ferrous metals are explained. The technological procedures to avoid cracking are suggested

  6. Copper-based nanomaterials for environmental decontamination - An overview on technical and toxicological aspects.

    Science.gov (United States)

    Khalaj, Mohammadreza; Kamali, Mohammadreza; Khodaparast, Zahra; Jahanshahi, Akram

    2018-02-01

    Synthesis of the various types of engineered nanomaterials has gained a huge attention in recent years for various applications. Copper based nanomaterials are a branch of this category seem to be able to provide an efficient and cost-effective way for the treatment of the persistent effluents. The present work aimed to study the various parameters may involve in the overall performance of the copper based nanomaterials for environmental clean-up purposes. To this end, the related characteristics of copper based nanomaterials and their effects on the nanomaterials reactivity and the environmental and operating parameters have been critically reviewed. Toxicological study of the copper based nanomaterials has been also considered as a factor with high importance for the selection of a typical nanomaterial with optimum performance and minimum environmental and health subsequent effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. An approach for the fatigue estimation of porous cast iron based on non-destructive testing results

    Directory of Open Access Journals (Sweden)

    Heinrietz André

    2014-06-01

    Full Text Available Big cast iron components made of spheroidal cast iron allow constructing big structures such as stone mills, engine blocks or wind mills with acceptable expenses. Thus, in economically optimized cast processes pores cannot be always prevented in thick walled cast iron components and these components are often rejected because of safety reasons. On the one hand the fatigue performance of high loadable spheroidal cast iron components is reduced significantly by the presence of local porosities which has been pointed out in the past. On the other hand concepts for the fatigue estimation based on fracture mechanics which take the size and localization of the defect into account can lead to erroneous estimations because the defect is modelled as a crack. The challenge of an estimation method is to derive a fatigue life without the necessity to perform component tests. In the contribution an estimation method is presented which is able to determine the fatigue strength of a material volume taking the pores into account. The method can be applied based on data from computer tomographic X-ray (CT or Sampling Phased Array (SPA ultrasonic analyses. The method is presented for three spheroidal cast iron types: ferritic GJS-400-18, ferritic GJS-450-15 with high silicon content and perlitic GJS-700-3.

  8. Spatial Bimetallic Castings Manufactured from Iron Alloys

    Directory of Open Access Journals (Sweden)

    M. Cholewa

    2007-07-01

    Full Text Available In this paper a conception for manufacturing method of skeleton castings with composite features was shown. Main application of such castings are the working organs of machines subjected to intensive abrasive and erosive wear. Skeleton geometry was based on three-dimensional cubic net consisting of circular connectors and nodes joining 6 connectors according to Cartesian co-ordinate system. Dimension of an elementary cell was equal to 10 mm and diameter of single connector was equal to 5 mm. For bimetallic castings preparation two Fe based alloys were used: L25SHMN cast steel for skeleton substrate and ZlCr15NiMo cast iron for working part of the casting. In presented work obtained structure was analyzed with indication of characteristic regions. Authors described phenomena occurring at the alloys interface and phases in transition zone. A thesis was formulated concerning localization of transition zone at the cast iron matrix – cast steel reinforcement interface. Direction of further studies were indicated.

  9. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    Science.gov (United States)

    Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; Van Hest, Maikel [Lakewood, CO; Ginley, David S [Evergreen, CO; Nekuda, Jennifer A [Lakewood, CO

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  10. Copper produced from powder by HIP to encapsulate nuclear fuel elements

    International Nuclear Information System (INIS)

    Ekbom, L.B.; Bogegaard, S.

    1989-02-01

    In the Swedish nuclear waste mangement program, nuclear fuel elements are proposed to be encapsulated in copper canisters. To fill the space between the fuel elements two methods have been proposed. Originally lead was proposed to be cast into the canister. According to a second method the space between the fuel rods is filled with copper powder and hot isostatic pressed (HIP) to seal the canister lid and to densify the powder to homogenous copper. This latter method has the advantage that each fuel rod is individually encapsulated in a very corrosion resistant material. This investigation was performed to find out to what extent pure copper powder can be hot isosatic pressed to full density and to achieve properties comparable to that of the oxygen free high conductivity (OFHC) copper of the canister. OFHC copper was molten under helium gas protection and atomized to a fine spherical powder in a pilot plant. The powder was transfered to a glove box with an argon atmosphere. The powder was filled into a steel container, which was evacuated and sealed. HIP was done at 550 degree C and 200 MPa for one hour. The resulting copper was found to have a good ductility and mechanical properties comparable to that of ordinary copper. The constant strainrate stress corrosion test used to test the canister copper showed that the HIP-ed copper has the same good properties as OFHC copper. (authors)

  11. Casting Technology.

    Science.gov (United States)

    Wright, Michael D.; And Others

    1992-01-01

    Three articles discuss (1) casting technology as it relates to industry, with comparisons of shell casting, shell molding, and die casting; (2) evaporative pattern casting for metals; and (3) high technological casting with silicone rubber. (JOW)

  12. The copper losses in the slags from the El Teniente process

    International Nuclear Information System (INIS)

    Imris, I.; Rebolledo, S.; Sanchez, M.; Castro, G.; Achurra, G.; Hernandez, F.

    2000-01-01

    The current El Teniente Pyrometallurgical Process for copper concentrate was commissioned at Caletones Smelter during the period 1988 - 1991 following an intensive research and development program that led to several improvements to the original process developed during the seventies. The Caletones Smelter production capacity is 370,000 tons of cast copper annually related to a concentrate smelting capacity of 1,250,000 tons per year. Several industrial applications of the process, in Chile and abroad, have shown its capability to treat copper concentrates in a wide range of chemical and mineralogical compositions. The main operational parameters that determine the performance of the process are oxygen enriched air flow rate, degree of oxygen enrichment, moisture content of the solid materials processed, molten material levels inside the vessel, frequency of molten materials tapping, bath temperature and copper losses in slags. The copper losses in the slags from the El Teniente Pyrometallurgical Process, predicted by calculation from thermodynamic data, have been compared with those determined by microscopic examination and quantitative electron microprobe analysis of the slag samples and by flotation tests of finely ground slag. (author)

  13. High pressure die casting of Fe-based metallic glass

    Science.gov (United States)

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-01-01

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications. PMID:27725780

  14. High pressure die casting of Fe-based metallic glass.

    Science.gov (United States)

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-10-11

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications.

  15. High pressure die casting of Fe-based metallic glass

    Science.gov (United States)

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-10-01

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications.

  16. COPPER AND COPPER-CONTAINING PESTICIDES: METABOLISM, TOXICITY AND OXIDATIVE STRESS

    Directory of Open Access Journals (Sweden)

    Viktor Husak

    2015-05-01

    Full Text Available The purpose of this paper is to provide a brief review of the current knowledge regarding metabolism and toxicity of copper and copper-based pesticides in living organisms. Copper is an essential trace element in all living organisms (bacteria, fungi, plants, and animals, because it participates in different metabolic processes and maintain functions of organisms. The transport and metabolism of copper in living organisms is currently the subject of many studies. Copper is absorbed, transported, distributed, stored, and excreted in the body via the complex of homeostatic processes, which provide organisms with a needed constant level of this micronutrient and avoid excessive amounts. Many aspects of copper homeostasis were studied at the molecular level. Copper based-pesticides, in particularly fungicides, bacteriocides and herbicides, are widely used in agricultural practice throughout the world. Copper is an integral part of antioxidant enzymes, particularly copper-zinc superoxide dismutase (Cu,Zn-SOD, and plays prominent roles in iron homeostasis. On the other hand, excess of copper in organism has deleterious effect, because it stimulates free radical production in the cell, induces lipid peroxidation, and disturbs the total antioxidant capacity of the body. The mechanisms of copper toxicity are discussed in this review also.

  17. Corrosion behavior of copper-base materials in a gamma-irradiated environment

    International Nuclear Information System (INIS)

    Yunker, W.H.

    1990-09-01

    Specimens of three copper-base materials were corrosion tested with gamma radiation exposure dose rates in the range of 1.9 x 10 3 R/h to 4.9 x 10 5 R/h. Materials used were pure copper, 7% aluminum bronze and 30% copper-nickel. Exposures were performed in moist air at 95 degree C and 150 degree C and liquid Well J-13 water at 95 degree C, for periods of up to 16 months. Specimens were monitored for uniform weight loss, stress-induced corrosion and crevice corrosion. Specimen surfaces were examined visually at 10X magnification as well as by Auger Electron Spectroscopy, x-ray diffraction and metallography. Corrosion was not severe in any of the cases. In general, the pure copper was corroded most uniformly while the copper-nickel was the least reproducibly corroded. 11 refs, 40 figs., 15 tabs

  18. A New Ni-Based Metallic Glass with High Thermal Stability and Hardness

    Directory of Open Access Journals (Sweden)

    Aytekin Hitit

    2015-02-01

    Full Text Available Glass forming ability (GFA, thermal stability and microhardness of Ni51−xCuxW31.6B17.4 (x = 0, 5 metallic glasses have been investigated. For each alloy, thin sheets of samples having thickness of 20 µm and 100 µm were synthesized by piston and anvil method in a vacuum arc furnace. Also, 400 µm thick samples of the alloys were synthesized by suction casting method. The samples were investigated by X-ray diffractometry (XRD and differential scanning calorimetry (DSC. Crystallization temperature of the base alloy, Ni51W31.6B17.4, is found to be 996 K and 5 at.% copper substitution for nickel increases the crystallization temperature to 1063 K, which is the highest value reported for Ni-based metallic glasses up to the present. In addition, critical casting thickness of alloy Ni51W31.6B17.4 is 100 µm and copper substitution does not have any effect on critical casting thickness of the alloys. Also, microhardness of the alloys are found to be around 1200 Hv, which is one of the highest microhardness values reported for a Ni-based metallic glass until now.

  19. Silicon Sheet Growth Development for the Large Area Sheet Task of the Low Cost Solar Array Project. Heat Exchanger Method - Ingot Casting Fixed Abrasive Method - Multi-Wire Slicing

    Science.gov (United States)

    Schmid, F.; Khattak, C. P.

    1978-01-01

    Solar cells fabricated from HEM cast silicon yielded up to 15% conversion efficiencies. This was achieved in spite of using unpurified graphite parts in the HEM furnace and without optimization of material or cell processing parameters. Molybdenum retainers prevented SiC formation and reduced carbon content by 50%. The oxygen content of vacuum cast HEM silicon is lower than typical Czochralski grown silicon. Impregnation of 45 micrometers diamonds into 7.5 micrometers copper sheath showed distortion of the copper layer. However, 12.5 micrometers and 15 micrometers copper sheath can be impregnated with 45 micrometers diamonds to a high concentration. Electroless nickel plating of wires impregnated only in the cutting edge showed nickel concentration around the diamonds. This has the possibility of reducing kerf. The high speed slicer fabricated can achieve higher speed and longer stroke with vibration isolation.

  20. Development of Low Density CaMg-A1-Based Bulk Metallic Glasses (Preprint)

    National Research Council Canada - National Science Library

    Senkov, O. N; Scott, J. M; Miracle, D. B

    2006-01-01

    Low density Ca-Mg-Al-based bulk metallic glasses containing additionally Cu and Zn, were produced by a copper mold casting method as wedge-shaped samples with thicknesses varying from 0.5 mm to 10 rom...

  1. Mechanism and application of a newly developed pressure casting process: horizontal squeeze casting

    Directory of Open Access Journals (Sweden)

    Li Peijie

    2014-07-01

    Full Text Available Compared to traditional high-pressure die casting (HPDC, horizontal squeeze casting (HSC is a more promising way to fabricate high-integrity castings, owing to a reduced number of gas and shrinkage porosities produced in the casting. In this paper, the differences between HSC and HPDC are assessed, through which it is shown that the cavity filling velocity and the size of the gating system to be the most notable differences. Equipment development and related applications are also reviewed. Furthermore, numerical simulation is used to analyze the three fundamental characteristics of HSC: slow cavity filling, squeeze feeding and slow sleeve filling. From this, a selection principle is given based on the three related critical casting parameters: cavity filling velocity, gate size and sleeve filling velocity. Finally, two specific applications of HSC are introduced, and the future direction of HSC development is discussed.

  2. Salvaging of service exposed cast alloy 625 cracker tubes of ammonia based Heavy Water Plants

    International Nuclear Information System (INIS)

    Kumar, Niraj; Misra, B.; Mahajan, M.P.; Mittra, J.; Sundararaman, M.; Chakravartty, J.K.

    2006-01-01

    In ammonia based heavy water plants, cracking of ammonia vapour, enriched in deuterium is carried out inside a cracker tube, packed with catalyst. These cracker tubes are made of alloy 625 (either wrought or cast) having dimensions of about 12.5 metres long, 88 mm outer diameter and 7.9 mm wall thickness. Seventy such tubes are housed in a typical ammonia cracker unit. The anticipated design life of such tube is 1,00,000 hrs. when operated at 720 degC based on creep as main degradation mechanism. Presently, these tubes are being operated at 680 degC skin temperature. Alloy 625 tubes are costly and normally not manufactured in India and are being imported. The cast alloy 625 cracker tubes have outlived their design life of 100,000 hrs. Therefore it has been decided to salvage the cast cracker tubes and extend the life further as it had already been done for wrought tubes. Similar to the earlier attempt of resolutionising of wrought alloy 625 tubes, efforts are in progress to salvage these cast tubes. In this study, cast tubes samples were subjected to solution-annealing treatment at two different temperatures, 1100degC and 1160degC respectively for two hrs. Mechanical properties along with the microstructure of the samples, which were resolutionized at 1160degC were comparable with that of virgin material. The 12.5 metres long cast alloy 625 cracker tubes will also be shortly solution-annealed in a specially designed resistance heating furnace after completing some more tests. (author)

  3. Solidification and casting

    CERN Document Server

    Cantor, Brian

    2002-01-01

    INDUSTRIAL PERSPECTIVEDirect chillcasting of aluminium alloysContinuous casting of aluminium alloysContinuous casting of steelsCastings in the automotive industryCast aluminium-silicon piston alloysMODELLING AND SIMULATIONModelling direct chill castingMold filling simulation of die castingThe ten casting rulesGrain selection in single crystal superalloy castingsDefects in aluminium shape castingPattern formation during solidificationPeritectic solidificationSTRUCTURE AND DEFECTSHetergeneous nucleation in aluminium alloysCo

  4. Vacuum brazing of TiAl48Cr2Nb2 casting alloys based on TiAl (γ intermetallic compound

    Directory of Open Access Journals (Sweden)

    Z. Mirski

    2010-01-01

    Full Text Available A growing interest in modern engineering materials characterised by increasingly better operational parameters combined with a necessity to obtain joints of such materials representing good operation properties create important research and technological problems of today. These issues include also titanium joints or joints of titanium alloys based on intermetallic compounds. Brazing is one of the basic and sometimes even the only available welding method used for joining the aforesaid materials in production of various systems, heat exchangers and, in case of titanium alloys based on intermetallic compounds, turbine elements and space shuttle plating etc. This article presents the basic physical and chemical properties as well as the brazability of alloys based on intermetallic compounds. The work also describes the principle and mechanisms of diffusion-brazed joint formation as well as reveals the results of metallographic and strength tests involving diffusion-welded joints of TiAl48Cr3Nb2 casting alloy based on TiAl (γ phase with the use of sandwich-type layers of silver-based parent metal (grade B- Ag72Cu-780 (AG 401 and copper (grade CF032A. Structural examination was performed by means of light microscopy, scanning electron microscope (SEM and energy dispersion spectrometer (EDS. Furthermore, the article reveals the results of shear strength tests involving the aforementioned joints.

  5. Clean Metal Casting

    Energy Technology Data Exchange (ETDEWEB)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  6. PERSPECTIVE SOURCES OF METALS RESOURCES (CU, NI FOR CAST IRON ALLOYING, ARISING ON THE TERRITORY OF THE REPUBLIC OF BELARUS

    Directory of Open Access Journals (Sweden)

    V. L. Tribushevski

    2005-01-01

    Full Text Available The article is dedicated to the practical foundation of combined resources-economy technologies of the alloyed cast iron melting using wastes of galvanic productions, containing sulfates and hydroxides of these metals, instead of metallic nickel and copper.

  7. Optimizing the Gating System for Steel Castings

    Directory of Open Access Journals (Sweden)

    Jan Jezierski

    2018-04-01

    Full Text Available The article presents the attempt to optimize a gating system to produce cast steel castings. It is based on John Campbell’s theory and presents the original results of computer modelling of typical and optimized gating systems for cast steel castings. The current state-of-the-art in cast steel casting foundry was compared with several proposals of optimization. The aim was to find a compromise between the best, theoretically proven gating system version, and a version that would be affordable in industrial conditions. The results show that it is possible to achieve a uniform and slow pouring process even for heavy castings to preserve their internal quality.

  8. An innovative method for nondestructive analysis of cast iron artifacts at Hopewell Furnace National Historic Site, Pennsylvania

    Science.gov (United States)

    Sloto, R.A.; Helmke, M.F.

    2011-01-01

    Iron ore containing elevated concentrations of trace metals was smelted at Hopewell Furnace during its 113 years of operation (1771-1883). For this study, we sampled iron ore, cast iron furnace products, slag, soil, groundwater, streamflow, and streambed sediment to determine the fate of trace metals released into the environment during the iron-smelting process. Standard techniques were used to sample and analyze all media except cast iron. We analyzed the trace-metal content of the cast iron using a portable X-ray fluorescence spectrometer, which provided rapid, on-site, nondestructive analyses for 23 elements. The artifacts analyzed included eight cast iron stoves, a footed pot, and a kettle in the Hopewell Furnace museum. We measured elevated concentrations of arsenic, copper, lead, and zinc in the cast iron. Lead concentrations as great as 3,150 parts per million were measured in the stoves. Cobalt was detectable but not quantifiable because of interference with iron. Our study found that arsenic, cobalt, and lead were not released to soil or slag, which could pose a significant health risk to visitors and employees. Instead, our study demonstrates these heavy metals remained with the cast iron and were removed from the site.

  9. Bainite obtaining in cast iron with carbides castings

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2010-01-01

    Full Text Available In these paper the possibility of upper and lower bainite obtaining in cast iron with carbides castings are presented. Conditions, when in cast iron with carbides castings during continuous free air cooling austenite transformation to upper bainite or its mixture with lower bainte proceeds, have been given. A mechanism of this transformation has been given, Si, Ni, Mn and Mo distribution in the eutectic cell has been tested and hardness of tested castings has been determined.

  10. Comparison of marginal accuracy of castings fabricated by conventional casting technique and accelerated casting technique: an in vitro study.

    Science.gov (United States)

    Reddy, S Srikanth; Revathi, Kakkirala; Reddy, S Kranthikumar

    2013-01-01

    Conventional casting technique is time consuming when compared to accelerated casting technique. In this study, marginal accuracy of castings fabricated using accelerated and conventional casting technique was compared. 20 wax patterns were fabricated and the marginal discrepancy between the die and patterns were measured using Optical stereomicroscope. Ten wax patterns were used for Conventional casting and the rest for Accelerated casting. A Nickel-Chromium alloy was used for the casting. The castings were measured for marginal discrepancies and compared. Castings fabricated using Conventional casting technique showed less vertical marginal discrepancy than the castings fabricated by Accelerated casting technique. The values were statistically highly significant. Conventional casting technique produced better marginal accuracy when compared to Accelerated casting. The vertical marginal discrepancy produced by the Accelerated casting technique was well within the maximum clinical tolerance limits. Accelerated casting technique can be used to save lab time to fabricate clinical crowns with acceptable vertical marginal discrepancy.

  11. Copper-decorated carbon nanotubes-based composite electrodes for nonenzymatic detection of glucose

    NARCIS (Netherlands)

    Pop, A.; Manea, F.; Orha, C.; Motoc, S.; Llinoiu, E.; Vaszilcsin, N.; Schoonman, J.

    2012-01-01

    The aim of this study was to prepare three types of multiwall carbon nanotubes (CNT)-based composite electrodes and to modify their surface by copper electrodeposition for nonenzymatic oxidation and determination of glucose from aqueous solution. Copper-decorated multiwall carbon nanotubes composite

  12. Quality improvement of steel cast-welded constructions

    Directory of Open Access Journals (Sweden)

    Аркадій Васильович Лоза

    2017-06-01

    Full Text Available Among the various types of metallurgical equipment there are structures which are welded compounds of a cast base and additional elements produced by casting or any other means. Such structures are called cast-welded constructions. Besides new working properties such constructions appear to be more efficient and provide better durability as compared to the similar structures produced by other industrial means. Meanwhile the advantages of the technology are not used in full. One reason is low quality of the compound products caused by lack of proper preparation of the elements to be welded and poor quality of the welds themselves. In the article the methods of quality production and the maintenance of steel cast-welded constructions have been considered. A ladle of a blast-furnace slag car is used as the subject of investigation and further testing of the mentioned above technologies. The ladle is a cast product. Under operating conditions, the ladle undergoes mechanical and thermal load, which results in deformation of its sides that deflect inside. To prevent the deflection stiffening ribs are welded onto the outer surface of the ladle. However, there may be casting defects in the base metal that could reduce the durability of the welds. It has been proved that welds on the unprepared cast base of the steel product cannot guarantee the combination’s durability and reliability. To prevent the influence of the casting defects it has been recommended to cover the base metal with one more metal layer before welding the elements on. Two-layer surfacing provides best result as the first layer serves for the weld penetration of the casting defects since this layer has a significant share of base metal therefore it is less malleable; the second layer is necessary for making the layer viscous enough. The viscous layer ensures the absence of sharp transition from the deposited metal to the base metal and increases the crack resistance of the weld. In

  13. Prospects for designing structural cast eutectic alloys on Al-Ce-Ni system base

    International Nuclear Information System (INIS)

    Belov, N.A.; Naumova, E.S.

    1996-01-01

    The phase diagram of Al-Ce-Ni system is built for an aluminium corner at component concentration up to 16 mass %Ce and 8 mass%Ni. A ternary eutectic reaction is established at 12%Ce, 5%Ni and 626 deg C. The ternary eutectic alloy is similar in structure to rapidly cooled Al base alloys with transition metals. The possibility to design new cast alloys based on three-phase (Al)+NiAl 3 +CeAl 4 eutectics is under consideration. Al-Zn-Mg-Cu, Al-Sc and Al-Zr base alloys can be used as (Al) constituent of the eutectics. The new alloys may be considered as heat resistant ones due to the fact that no structural changes are observed in castings on heating up to 350 deg C. 18 refs.; 4 figs.; 2 tabs

  14. Grindability of dental cast Ti-Ag and Ti-Cu alloys.

    Science.gov (United States)

    Kikuchi, Masafumi; Takahashi, Masatoshi; Okabe, Toru; Okuno, Osamu

    2003-06-01

    Experimental Ti-Ag alloys (5, 10, and 20 mass% Ag) and Ti-Cu alloys (2, 5, and 10 mass% Cu) were cast into magnesia molds using a dental casting machine, and their grindability was investigated. At the lowest grinding speed (500 m min(-1)), there were no statistical differences among the grindability values of the titanium and titanium alloys. The grindability of the alloys increased as the grinding speed increased. At the highest grinding speed (1500 m x min(-1)), the grindability of the 20% Ag, 5% Cu, and 10% Cu alloys was significantly higher than that of titanium. It was found that alloying with silver or copper improved the grindability of titanium, particularly at a high speed. It appeared that the decrease in elongation caused by the precipitation of small amounts of intermetallic compounds primarily contributed to the favorable grindability of the experimental alloys.

  15. Copper alloys with improved properties: standard ingot metallurgy vs. powder metallurgy

    Directory of Open Access Journals (Sweden)

    Milan T. Jovanović

    2014-09-01

    Full Text Available Three copper-based alloys: two composites reinforced with Al2O3 particles and processed through powder metallurgy (P/M route, i.e. by internal oxidation (Cu-2.5Al composite and by mechanical alloying (Cu-4.7Al2O3 and Cu-0.4Cr-0.08Zr alloy produced by ingot metallurgy (vacuum melting and casting were the object of this investigation. Light microscope and scanning electron microscope (SEM equipped with electron X-ray spectrometer (EDS were used for microstructural characterization. Microhardness and electrical conductivity were also measured. Compared to composite materials, Cu-0.4Cr-0.08Zr alloy possesses highest electrical conductivity in the range from 20 to 800 ℃, whereas the lowest conductivity shows composite Cu-2.5Al processed by internal oxidation. In spite to somewhat lower electrical conductivity (probably due to inadequate density, Cu-2.5Al composite exhibits thermal stability enabling its application at much higher temperatures than materials processed by mechanical alloying or by vacuum melting and casting.

  16. Effects of thermomechanical processing on titanium aluminide strip cast by the melt overflow process

    Energy Technology Data Exchange (ETDEWEB)

    Gaspar, T.A. (Ribbon Technology Corporation, PO Box 30758, Columbus, OH 43230 (United States)); Hackman, L.E. (Ribbon Technology Corporation, PO Box 30758, Columbus, OH 43230 (United States)); Batawi, E. (Sulzer-Innotec, Division 1511, PO Box 65, Winterthur 8404 (Switzerland)); Peters, J.A. (Sulzer-Innotec, Division 1511, PO Box 65, Winterthur 8404 (Switzerland))

    1994-05-01

    The objective of this research project was to investigate the feasibility of producing titanium aluminide foils from direct cast strip using ribbon technology''s plasma melt overflow process. Niobium-modified Ti[sub 3]Al alloys were melted in a cold copper crucible using a transferred plasma arc and then direct cast into strip on a rotating chill roll.Samples cut from the as-cast Ti[sub 3]Al-Nb ([alpha][sub 2]) titanium aluminide strip were encapsulated into a pack. The packs were heated to the rolling temperature and then hot rolled at low strain rates. Foils 70 [mu]m (0.003 in) thick, having a uniform [alpha][sub 2]-B2 microstructure with oxygen contents as low as 900 wt.ppm were obtained after pack rolling. The strips and foils were characterized in terms of microstructure and chemical composition in the as-received, heat-treated and pack-rolled conditions.The results indicated that it was technically feasible to produce foils from direct cast titanium aluminide strip using pack-rolling technology. The advantage of this technology lies in its cost-effectiveness, since the relatively low cost direct-cast titanium aluminide strip was thermomechanically processed into foil with the desired microstructure without any intermediate processing steps. ((orig.))

  17. The anaerobic corrosion of carbon steel and cast iron in artificial groundwaters

    Energy Technology Data Exchange (ETDEWEB)

    Smart, N.R. [AEA Technology plc, Culham Science Centre (United Kingdom); Blackwood, D.J. [National Univ. of Singapore (Singapore); Werme, L. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2001-07-01

    In Sweden, high level radioactive waste will be disposed of in a canister with a copper outer and a cast iron or carbon steel inner. If the iron insert comes into contact with anoxic geological water, anaerobic corrosion leading to the generation of hydrogen will occur. This paper presents a study of the anaerobic corrosion of carbon steel and cast iron in artificial Swedish granitic groundwaters. Electrochemical methods and gas collection techniques were used to assess the mechanisms and rates of corrosion and the associated hydrogen gas production over a range of conditions. The corrosion rate is high initially but is anodically limited by the slow formation of a duplex magnetite film. The effects of key environmental parameters such as temperature and ionic strength on the anaerobic corrosion rate are discussed.

  18. The anaerobic corrosion of carbon steel and cast iron in artificial groundwaters

    International Nuclear Information System (INIS)

    Smart, N.R.; Blackwood, D.J.; Werme, L.

    2001-07-01

    In Sweden, high level radioactive waste will be disposed of in a canister with a copper outer and a cast iron or carbon steel inner. If the iron insert comes into contact with anoxic geological water, anaerobic corrosion leading to the generation of hydrogen will occur. This paper presents a study of the anaerobic corrosion of carbon steel and cast iron in artificial Swedish granitic groundwaters. Electrochemical methods and gas collection techniques were used to assess the mechanisms and rates of corrosion and the associated hydrogen gas production over a range of conditions. The corrosion rate is high initially but is anodically limited by the slow formation of a duplex magnetite film. The effects of key environmental parameters such as temperature and ionic strength on the anaerobic corrosion rate are discussed

  19. Generation and evaluation of 3D digital casts of maxillary defects based on multisource data registration: A pilot clinical study.

    Science.gov (United States)

    Ye, Hongqiang; Ma, Qijun; Hou, Yuezhong; Li, Man; Zhou, Yongsheng

    2017-12-01

    Digital techniques are not clinically applied for 1-piece maxillary prostheses containing an obturator and removable partial denture retained by the remaining teeth because of the difficulty in obtaining sufficiently accurate 3-dimensional (3D) images. The purpose of this pilot clinical study was to generate 3D digital casts of maxillary defects, including the defective region and the maxillary dentition, based on multisource data registration and to evaluate their effectiveness. Twelve participants with maxillary defects were selected. The maxillofacial region was scanned with spiral computer tomography (CT), and the maxillary arch and palate were scanned using an intraoral optical scanner. The 3D images from the CT and intraoral scanner were registered and merged to form a 3D digital cast of the maxillary defect containing the anatomic structures needed for the maxillary prosthesis. This included the defect cavity, maxillary dentition, and palate. Traditional silicone impressions were also made, and stone casts were poured. The accuracy of the digital cast in comparison with that of the stone cast was evaluated by measuring the distance between 4 anatomic landmarks. Differences and consistencies were assessed using paired Student t tests and the intraclass correlation coefficient (ICC). In 3 participants, physical resin casts were produced by rapid prototyping from digital casts. Based on the resin casts, maxillary prostheses were fabricated by using conventional methods and then evaluated in the participants to assess the clinical applicability of the digital casts. Digital casts of the maxillary defects were generated and contained all the anatomic details needed for the maxillary prosthesis. Comparing the digital and stone casts, a paired Student t test indicated that differences in the linear distances between landmarks were not statistically significant (P>.05). High ICC values (0.977 to 0.998) for the interlandmark distances further indicated the high

  20. Superconducting properties of a copper-ternary alloy

    International Nuclear Information System (INIS)

    Sharma, R.G.; Aleksivskii, N.E.

    1975-01-01

    The superconducting properties of a copper-ternary alloy of the type Cu 93 Nb 5 Sn 2 , subjected to a variety of mechanical and heat treatments, are discussed. The as-cast alloy does not turn superconducting down to 4.5K; but the cold-work and subsequent prescribed heat treatments are found to raise the transition temperature Tsub(c) to values as high as 18.1K and the critical current density Jsub(c) (of the Nb 3 Sn formed during annealing) to a value of 3.6x10 5 Acm -2 (at 4.2K and 30kOe). Various possibilities to improve Jsub(c) of this alloy to still higher values are discussed. The as-cast alloy is ductile, easy to draw, and economical from a technical point of view, and the annealed wires and strips are flexible enough for winding. (author)

  1. [Research on the method of copper converting process determination based on emission spectrum analysis].

    Science.gov (United States)

    Li, Xian-xin; Liu, Wen-qing; Zhang, Yu-jun; Si, Fu-qi; Dou, Ke; Wang, Feng-ping; Huang, Shu-hua; Fang, Wu; Wang, Wei-qiang; Huang, Yong-feng

    2012-05-01

    A method of copper converting process determination based on PbO/PbS emission spectrum analysis was described. According to the known emission spectrum of gas molecules, the existence of PbO and PbS was confirmed in the measured spectrum. Through the field experiment it was determined that the main emission spectrum of the slag stage was from PbS, and the main emission spectrum of the copper stage was from PbO. The relative changes in PbO/PbS emission spectrum provide the method of copper converting process determination. Through using the relative intensity in PbO/PbS emission spectrum the copper smelting process can be divided into two different stages, i.e., the slag stage (S phase) and the copper stage (B phase). In a complete copper smelting cycle, a receiving telescope of appropriate view angle aiming at the converter flame, after noise filtering on the PbO/PbS emission spectrum, the process determination agrees with the actual production. Both the theory and experiment prove that the method of copper converting process determination based on emission spectrum analysis is feasible.

  2. Room temperature deformation of in-situ grown quasicrystals embedded in Al-based cast alloy

    Directory of Open Access Journals (Sweden)

    Boštjan Markoli

    2013-12-01

    Full Text Available An Al-based cast alloy containing Mn, Be and Cu has been chosen to investigate the room temperature deformation behavior of QC particles embedded in Al-matrix. Using LOM, SEM (equipped with EDS, conventional TEM with SAED and controlled tensile and compression tests, the deformation response of AlMn2Be2Cu2 cast alloy at room temperature has been examined. Alloy consisted of Al-based matrix, primary particles and eutectic icosahedral quasicrystalline (QC i-phase and traces of Θ-Al2Cu and Al10Mn3. Tensile and compression specimens were used for evaluation of mechanical response and behavior of QC i-phase articles embedded in Al-cast alloy. It has been established that embedded QC i-phase particles undergo plastic deformation along with the Al-based matrix even under severe deformation and have the response resembling that of the metallic materials by formation of typical cup-and-cone feature prior to failure. So, we can conclude that QC i-phase has the ability to undergo plastic deformation along with the Al-matrix to greater extent contrary to e.g. intermetallics such as Θ-Al2Cu for instance.

  3. Effect of vacuum arc melting/casting parameters on shrinkage cavity/piping of austenitic stainless steel ingot

    International Nuclear Information System (INIS)

    Kamran, J.; Feroz, M.; Sarwar, M.

    2009-01-01

    Shrinkage cavity/piping at the end of the solidified ingot of steels is one of the most common casting problem in 316L austenitic stainless steel ingot, when consumable electrode is melted and cast in a water-cooled copper mould by vacuum arc re-melting furnace. In present study an effort has been made to reduce the size of shrinkage cavity/ piping by establishing the optimum value of hot topping process parameters at the end of the melting process. It is concluded that the shrinkage cavity/piping at the top of the solidified ingot can be reduced to minimum by adjusting the process parameters particularly the melting current density. (author)

  4. Cast iron - a predictable material

    Directory of Open Access Journals (Sweden)

    Jorg C. Sturm

    2011-02-01

    Full Text Available High strength compacted graphite iron (CGI or alloyed cast iron components are substituting previously used non-ferrous castings in automotive power train applications. The mechanical engineering industry has recognized the value in substituting forged or welded structures with stiff and light-weight cast iron castings. New products such as wind turbines have opened new markets for an entire suite of highly reliable ductile iron cast components. During the last 20 years, casting process simulation has developed from predicting hot spots and solidification to an integral assessment tool for foundries for the entire manufacturing route of castings. The support of the feeding related layout of the casting is still one of the most important duties for casting process simulation. Depending on the alloy poured, different feeding behaviors and self-feeding capabilities need to be considered to provide a defect free casting. Therefore, it is not enough to base the prediction of shrinkage defects solely on hot spots derived from temperature fields. To be able to quantitatively predict these defects, solidification simulation had to be combined with density and mass transport calculations, in order to evaluate the impact of the solidification morphology on the feeding behavior as well as to consider alloy dependent feeding ranges. For cast iron foundries, the use of casting process simulation has become an important instrument to predict the robustness and reliability of their processes, especially since the influence of alloying elements, melting practice and metallurgy need to be considered to quantify the special shrinkage and solidification behavior of cast iron. This allows the prediction of local structures, phases and ultimately the local mechanical properties of cast irons, to asses casting quality in the foundry but also to make use of this quantitative information during design of the casting. Casting quality issues related to thermally driven

  5. Brazing of molybdenum- and tungsten based refractory materials with copper and graphite

    International Nuclear Information System (INIS)

    Boutes, J.; Falbriard, P.; Rochette, P.; Nicolas, G.

    1989-01-01

    Molybdenum and Tungsten base refractory metals and alloys have been brazed 1. to copper between 800 0 C and 900 0 C with silver base metal; 2. to graphite, with CVD coatings between 800 0 C and 900 0 C with silver base metal and between 1100 0 C and 1200 0 C with copper base metal; 3. to graphite between 800 0 C and 1100 0 C with silver or nickel base metal. The brazed joints have been characterized by micrographic observations before and after bending tests from room temperature to 800 0 C. 2 tabs., 9 figs. (Author)

  6. Engineering design of centrifugal casting machine

    Science.gov (United States)

    Kusnowo, Roni; Gunara, Sophiadi

    2017-06-01

    Centrifugal casting is a metal casting process in which metal liquid is poured into a rotating mold at a specific temperature. Given round will generate a centrifugal force that will affect the outcome of the casting. Casting method is suitable in the manufacture of the casting cylinder to obtain better results. This research was performed to design a prototype machine by using the concept of centrifugal casting. The design method was a step-by-step systematic approach in the process of thinking to achieve the desired goal of realizing the idea and build bridges between idea and the product. Design process was commenced by the conceptual design phase and followed by the embodiment design stage and detailed design stage. With an engineering design process based on the method developed by G. E. Dieter, draft prototype of centrifugal casting machine with dimension of 550×450×400 mm, ¼ HP motor power, pulley and belt mechanism, diameter of 120-150mm, simultaneously with the characteristics of simple casting product, easy manufacture and maintenance, and relatively inexpensive, was generated.

  7. Hot-tearing of multicomponent Al-Cu alloys based on casting load measurements in a constrained permanent mold

    Energy Technology Data Exchange (ETDEWEB)

    Sabau, Adrian S [ORNL; Mirmiran, Seyed [Fiat Chrysler Automobiles North America; Glaspie, Christopher [Fiat Chrysler Automobiles North America; Li, Shimin [Worcester Polytechnic Institute (WPI), MA; Apelian, Diran [Worcester Polytechnic Institute (WPI), MA; Shyam, Amit [ORNL; Haynes, James A [ORNL; Rodriguez, Andres [Nemak, Garza Garcia, N.L., Mexico

    2017-01-01

    Hot-tearing is a major casting defect that is often difficult to characterize, especially for multicomponent Al alloys used for cylinder head castings. The susceptibility of multicomponent Al-Cu alloys to hot-tearing during permanent mold casting was investigated using a constrained permanent mold in which the load and displacement was measured. The experimental results for hot tearing susceptibility are compared with those obtained from a hot-tearing criterion based temperature range evaluated at fraction solids of 0.87 and 0.94. The Cu composition was varied from approximately 5 to 8 pct. (weight). Casting experiments were conducted without grain refining. The measured load during casting can be used to indicate the severity of hot tearing. However, when small hot-tears are present, the load variation cannot be used to detect and assess hot-tearing susceptibility.

  8. A New Criterion for Prediction of Hot Tearing Susceptibility of Cast Alloys

    Science.gov (United States)

    Nasresfahani, Mohamad Reza; Niroumand, Behzad

    2014-08-01

    A new criterion for prediction of hot tearing susceptibility of cast alloys is suggested which takes into account the effects of both important mechanical and metallurgical factors and is believed to be less sensitive to the presence of volume defects such as bifilms and inclusions. The criterion was validated by studying the hot tearing tendency of Al-Cu alloy. In conformity with the experimental results, the new criterion predicted reduction of hot tearing tendency with increasing the copper content.

  9. Copper Leaching from Copper-ethanolamine Treated Wood: Comparison of Field Test Studies and Laboratory Standard Procedures

    OpenAIRE

    Nejc Thaler; Miha Humar

    2014-01-01

    Copper-based compounds are some of the most important biocides for the protection of wood in heavy duty applications. In the past, copper was combined with chromium compounds to reduce copper leaching, but a recent generation of copper-based preservatives uses ethanolamine as a fixative. To elucidate the leaching of copper biocides from wood, Norway spruce (Picea abies) wood was treated with a commercial copper-ethanolamine solution with two different copper concentrations (cCu = 0.125% and 0...

  10. Zirconium based bulk metallic glasses

    International Nuclear Information System (INIS)

    Dey, G.K.; Neogy, S.; Savalia, R.T.; Tewari, R.; Srivastava, D.; Banerjee, S.

    2006-01-01

    Metallic glasses have come into prominence in recent times because their nanocrystalline atomic arrangement imparts many useful and unusual properties to these metallic solids. In this study, bulk glasses have been obtained in Zr based multicomponent alloy by induction melting these alloys in silica crucibles and casting these in form of rods 3 and 6 mm in diameter in a copper mould

  11. Modeling and Optimization of Direct Chill Casting to Reduce Ingot Cracking

    Energy Technology Data Exchange (ETDEWEB)

    Das, Subodh K.

    2006-01-09

    reheating-cooling method (RCM), was developed and validated for measuring mechanical properties in the nonequilibrium mushy zones of alloys. The new method captures the brittle nature of aluminum alloys at temperatures close to the nonequilibrium solidus temperature, while specimens tested using the reheating method exhibit significant ductility. The RCM has been used for determining the mechanical properties of alloys at nonequilibrium mushy zone temperatures. Accurate data obtained during this project show that the metal becomes more brittle at high temperatures and high strain rates. (4) The elevated-temperature mechanical properties of the alloy were determined. Constitutive models relating the stress and strain relationship at elevated temperatures were also developed. The experimental data fit the model well. (5) An integrated 3D DC casting model has been used to simulate heat transfer, fluid flow, solidification, and thermally induced stress-strain during casting. A temperature-dependent HTC between the cooling water and the ingot surface, cooling water flow rate, and air gap were coupled in this model. An elasto-viscoplastic model based on high-temperature mechanical testing was used to calculate the stress during casting. The 3D integrated model can be used for the prediction of temperature, fluid flow, stress, and strain distribution in DC cast ingots. (6) The cracking propensity of DC cast ingots can be predicted using the 3D integrated model as well as thermodynamic models. Thus, an ingot cracking index based on the ratio of local stress to local alloy strength was established. Simulation results indicate that cracking propensity increases with increasing casting speed. The composition of the ingots also has a major effect on cracking formation. It was found that copper and zinc increase the cracking propensity of DC cast ingots. The goal of this Aluminum Industry of the Future (IOF) project was to assist the aluminum industry in reducing the incidence of stress

  12. Fibreglass Total Contact Casting, Removable Cast Walkers, and Irremovable Cast Walkers to Treat Diabetic Neuropathic Foot Ulcers: A Health Technology Assessment

    Science.gov (United States)

    Costa, Vania; Tu, Hong Anh; Wells, David; Weir, Mark; Holubowich, Corinne; Walter, Melissa

    2017-01-01

    Background Diabetic neuropathic foot ulcers are a risk factor for lower leg amputation. Many experts recommend offloading with fibreglass total contact casting, removable cast walkers, and irremovable cast walkers as a way to treat these ulcers. Methods We completed a health technology assessment, which included an evaluation of clinical benefits and harms, value for money, and patient preferences for offloading devices. We performed a systematic literature search on August 17, 2016, to identify randomized controlled trials that compared fibreglass total contact casting, removable cast walkers, and irremovable cast walkers with other treatments (offloading or non-offloading) in patients with diabetic neuropathic foot ulcers. We developed a decision-analytic model to assess the cost-effectiveness of fibreglass total contact casting, removable cast walkers, and irremovable cast walkers, and we conducted a 5-year budget impact analysis. Finally, we interviewed people with diabetes who had lived experience with foot ulcers, asking them about the different offloading devices and the factors that influenced their treatment choices. Results We identified 13 randomized controlled trials. The evidence suggests that total contact casting, removable cast walkers, and irremovable cast walkers are beneficial in the treatment of neuropathic, noninfected foot ulcers in patients with diabetes but without severe peripheral arterial disease. Compared to removable cast walkers, ulcer healing was improved with total contact casting (moderate quality evidence; risk difference 0.17 [95% confidence interval 0.00–0.33]) and irremovable cast walkers (low quality evidence; risk difference 0.21 [95% confidence interval 0.01–0.40]). We found no difference in ulcer healing between total contact casting and irremovable cast walkers (low quality evidence; risk difference 0.02 [95% confidence interval −0.11–0.14]). The economic analysis showed that total contact casting and irremovable

  13. Mathematical model of the crystallizing blank`s thermal state at the horizontal continuous casting machine

    Directory of Open Access Journals (Sweden)

    Kryukov Igor Yu.

    2017-01-01

    Full Text Available Present article is devoted to the development of the mathematical model, which describes thermal state and crystallization process of the rectangular cross-section blank while continious process of extraction from a horysontal continious casting machine (HCCM.The developed model took cue for the heat-transfer properties of non-iron metal teeming; its temperature on entry to the casting mold; cooling conditions of blank in the carbon molds in the presence of a copper water cooler. Besides, has been considered the asymmetry of heat interchange from blank`s head and drag at mold, coming out from fluid contraction and features of the horizontal casting mold. The developed mathematical model allows to determine alterations in crystallizing blank of the following factors with respect to time: temperature pattern of crystallizing blank under different technical working regimes of HCCM; boundaries of solid two-phase field and liquid two-phase filed; blank`s thickness variation under shrinkage of the ingot`s material

  14. Optimization of squeeze casting parameters for non symmetrical AC2A aluminium alloy castings through Taguchi method

    International Nuclear Information System (INIS)

    Senthil, P.; Amirthagadeswaran, K. S.

    2012-01-01

    This paper reports a research in which an attempt was made to prepare AC2A aluminium alloy castings of a non symmetrical component through squeeze casting process. The primary objective was to investigate the influence of process parameters on mechanical properties of the castings. Experiments were conducted based on orthogonal array suggested in Taguchi's offline quality control concept. The experimental results showed that squeeze pressure, die preheating temperature and compression holding time were the parameters making significant improvement in mechanical properties. The optimal squeeze casting condition was found and mathematical models were also developed for the process

  15. Study on Compatibility between Converters and Casting Machines for Daily Steelmaking and Continuous Casting Scheduling

    Institute of Scientific and Technical Information of China (English)

    MA Feng-cai; ZHANG Qun

    2009-01-01

    In this paper, daily production scheduling is studied based on the Third Steelmaking Plant of Wuhan Iron and steel corporation (WISCO). To make sure the daily production plan is feasible, method of casting gToup is established, and the compatibility between two converters and three continuous casting devices in the Third Steelmaking Plant of WISCO is analyzed. The process flow chart of daily production scheduling is given in this paper. Then, algorithms and procedures for the simulation of daily production plan is developed. Using the actual data from the Third Steelmaking Plant, the feasible daily steelmaking plan and cast plan are given. The plan contains 7 groups of cast plan, figured out 54 converters, and a- bout 13,500 tons steel.

  16. Clean Metal Casting; FINAL

    International Nuclear Information System (INIS)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-01-01

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components

  17. Design basis for the copper/steel canister. Stage three. Final report

    International Nuclear Information System (INIS)

    Bowyer, W.H.

    1997-02-01

    The development of the copper/iron canister proposed for the containment of high-level waste in the Swedish disposal programme has been studied from the points of view of choice of materials, manufacturing technology and Q A. This report describes the observations on progress which has been made between March 1995 and February 1996 and the results of further literature studies. A first trial canister has been produced by SKB using a fabricated steel liner and an extruded copper tubular, a second one using a fabricated tubular is at an advanced stage. A change from a fabricated steel inner canister to a proposed cast canister has been justified by a criticality argument but the technology for producing a cast canister is at present untried. It is considered that such a change will require a significant development programme. The microstructure achieved in the extruded copper tubular for the first canister is unacceptable. An improved microstructure may be achieved by extruding at a lower temperature but this remains to be demonstrated. Similar problems exist with plate used for the fabricated tubular but some more favourable structures have been achieved already by this route. Seam welding of the first tubular failed through a suspected material problem. The second fabricated tubular welded without difficulty. However it was necessary to constrain it during welding and it subsequently distorted during machining. There was some evidence of hot tearing close to the weld. The distortion problem may be overcome by a stress relieving anneal but this could cause further grain size problems. 19 refs

  18. Fabrication of copper-selective PVC membrane electrode based on newly synthesized copper complex of Schiff base as carrier

    Directory of Open Access Journals (Sweden)

    Sulekh Chandra

    2016-09-01

    Full Text Available The newly synthesized copper(II complex of Schiff base p-hydroxyacetophenone semicarbazone was explored as neutral ionophore for the fabrication of poly(vinylchloride (PVC based membrane electrode selective to Cu(II ions. The electrode shows a Nernstian slope of 29.8 ± 0.3 mV/decade with improved linear range of 1.8 × 10−7 to 1.0 × 10−1 M, comparatively lower detection limit 5.7 × 10−8 M between pH range of 2.0–8.0, giving a relatively fast response within 5s and can be used for at least 16 weeks without any divergence in potential. The selectivity coefficient was calculated using the fixed interference method (FIM. The electrode can also be used in partially non-aqueous media having up to 25% (v/v methanol, ethanol or acetone content with no significant change in the value of slope or working concentration range. It was successfully applied for the direct determination of copper content in water and tea samples with satisfactory results. The electrode has been used in the potentiometric titration of Cu2+ with EDTA.

  19. The evaluation of working casts prepared from digital impressions.

    Science.gov (United States)

    Hwang, Y C; Park, Y S; Kim, H K; Hong, Y S; Ahn, J S; Ryu, J J

    2013-01-01

    The aim of this study is to evaluate the reproducibility of working casts of a digital impression system by comparing them with the original, virtual, and rapid prototyping casts. A total of 54 cast sets in clinically stable occlusion were used. They were scanned by an iTero intraoral scanner and converted into STL format virtual casts. Rapid prototyping casts and polyurethane casts were fabricated from the iTero milling system based on the virtual casts. Several horizontal and vertical measurements were performed from the four types of casts, that is, original stone casts, virtual casts, rapid prototyping casts, and polyurethane casts of iTero. Measurement error, intraclass correlation coefficient (ICC), and differences among the casts were calculated and compared. Casts from iTero milling machines exhibited greater dimensional differences and lower ICC values than did other casts. In addition, many of the measurements of the iTero working casts showed statistically significant differences in comparison to the three other types of casts. In contrast, there were no statistically significant differences between the virtual and original casts. Virtual casts made by the iTero intraoral scanner exhibited excellent reproducibility. However, the casts from the iTero milling machine showed greater dimensional differences and lower reproducibility compared to other types of casts.

  20. Advanced Copper Composites Against Copper-Tolerant Xanthomonas perforans and Tomato Bacterial Spot.

    Science.gov (United States)

    Strayer-Scherer, A; Liao, Y Y; Young, M; Ritchie, L; Vallad, G E; Santra, S; Freeman, J H; Clark, D; Jones, J B; Paret, M L

    2018-02-01

    Bacterial spot, caused by Xanthomonas spp., is a widespread and damaging bacterial disease of tomato (Solanum lycopersicum). For disease management, growers rely on copper bactericides, which are often ineffective due to the presence of copper-tolerant Xanthomonas strains. This study evaluated the antibacterial activity of the new copper composites core-shell copper (CS-Cu), multivalent copper (MV-Cu), and fixed quaternary ammonium copper (FQ-Cu) as potential alternatives to commercially available micron-sized copper bactericides for controlling copper-tolerant Xanthomonas perforans. In vitro, metallic copper from CS-Cu and FQ-Cu at 100 μg/ml killed the copper-tolerant X. perforans strain within 1 h of exposure. In contrast, none of the micron-sized copper rates (100 to 1,000 μg/ml) from Kocide 3000 significantly reduced copper-tolerant X. perforans populations after 48 h of exposure compared with the water control (P copper-based treatments killed the copper-sensitive X. perforans strain within 1 h. Greenhouse studies demonstrated that all copper composites significantly reduced bacterial spot disease severity when compared with copper-mancozeb and water controls (P copper composites significantly reduced disease severity when compared with water controls, using 80% less metallic copper in comparison with copper-mancozeb in field studies (P copper composites have the potential to manage copper-tolerant X. perforans and tomato bacterial spot.

  1. Education and Caste in India

    Science.gov (United States)

    Chauhan, Chandra Pal Singh

    2008-01-01

    This paper analyses the policy of reservation for lower castes in India. This policy is similar to that of affirmative action in the United States. The paper provides a brief overview of the caste system and discusses the types of groups that are eligible for reservation, based on data from government reports. The stance of this paper is that…

  2. Control of cast iron and casts manufacturing by Inmold method

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2009-07-01

    Full Text Available In this paper the usability of cast iron spheroidizing process in mould control by ATD method as well as by ultrasonic method were presented. Structure of instrumentation needed for control form performance of cast iron spheroidizing by Inmold method was illustrated. Author, pointed out that amount of magnesium master alloy should obtain 0,8 ÷ 1,0% of mass in form at all. Such quantity of preliminary alloy assure of obtain of nodular graphite in cast iron. In consequence of this, is reduce the cast iron liquidus temperature and decrease of recalescence temperature of graphite-eutectic crystallization in compare with initial cast iron. Control of casts can be carried out by ultrasonic method. In plain cast iron, ferritic-pearlitic microstructure is obtaining. Additives of 1,5% Cu ensure pearlitic structure.

  3. Mechanical properties of as-cast microalloyed steels produced via investment casting

    International Nuclear Information System (INIS)

    Najafi, H.; Rassizadehghani, J.; Norouzi, S.

    2011-01-01

    Tensile and room temperature Charpy V-notch impact tests were used to evaluate the variations in the as-cast mechanical properties of a low-carbon steel produced via shell mould investment casting and containing combinations of vanadium, niobium and titanium. Tensile results indicate that the yield strength and ultimate tensile strength (UTS) have increased up to respectively 615 MPa and 770 MPa due to the fine-scale microalloy precipitates in the microalloyed samples. Room temperature impact test results show that while addition of vanadium individually has not changed the impact energy, Nb has decreased it considerably. However, examination of fracture surfaces reveals that all microalloyed samples have failed by transgranular cleavage. Based on the transmission electron microscope (TEM) studies, it seems that carbonitrides being greater than 50 nm in size and formed along prior austenite grain boundaries before γ transformation are responsible for the observed reduction in impact energies and brittle fracture. In comparison to sand mould casting, the yield and UTS obtained from investment casting are superior. Furthermore, although the impact energies of Nb-containing alloys are approximately the same as those obtained from sand moulds, the impact energy of the alloy containing only vanadium has improved considerably.

  4. The casting of western sculpture during the XIXth century: sand casting versus lost wax casting

    NARCIS (Netherlands)

    Beentjes, T.P.C.

    2014-01-01

    This paper will discuss research into bronze casting techniques as practiced during the XIXth and early XXth century. Both natural sand casting (fonte au sable naturel) and lost wax casting (fonte à la cire perdue) were employed during this period and sometimes rivalled for commissions. Before the

  5. Residual Stress Measurement of Coarse Crystal Grain in Aluminium Casting Alloy by Neutron Diffraction

    International Nuclear Information System (INIS)

    Nishida, Masayuki; Watanabe, Yoshitaka; Hanabusa, Takao

    2009-01-01

    Full text: Neutron stress measurement can detect strain and stress information in deep region because of large penetration ability of neutron beams. The present paper describes procedure and results in the residual stress measurement of aluminium casting alloy by neutron diffraction. Usually, the aluminium casting alloy includes the large crystal grains. The existence of large crystal grains makes it difficult to estimate the residual stresses in highly accuracy. In this study, the modified three axial method using Hook's equation was employed for neutron stress measurement. These stress measurements were performed under the two kinds of new techniques. One is a rocking curve method to calculate the principal strains in three directions. The peak profiles which appear discretely on rocking curves were translated to principle stresses by the Bragg law and the basic elastic theory. Another is the consideration of measurement positions and the edge effect in the neutron irradiated area (volume gage). The edge effect generates the errors of 2θ-peak position in the neutron stress measurement. In this study, the edge effect was investigated in detail by a small bit of copper single crystal. The copper bit was moved and scanned on three dimensionally within the gage volume. Furthermore, the average strains of symmetrical positions are measure by the sample turning at 180 degrees, because the error distributions of the 2θ-peak position followed to positions inside the gage volume. Form these results of this study, the residual stresses in aluminium casting alloy which includes the large crystal grains were possible to estimate by neutron stress measurement with the rocking curve method and the correction of the edge effect. (author)

  6. Sixty Years of Casting Research

    Science.gov (United States)

    Campbell, John

    2015-11-01

    The 60 years of solidification research since the publication of Chalmer's constitutional undercooling in 1953 has been a dramatic advance of understanding which has and continues to be an inspiration. In contrast, 60 years of casting research has seen mixed fortunes. One of its success stories relates to improvements in inoculation of gray irons, and another to the discovery of spheroidal graphite iron, although both of these can be classified as metallurgical rather than casting advances. It is suggested that true casting advances have dated from the author's lab in 1992 when a critical surface turbulence condition was defined for the first time. These last 20 years have seen the surface entrainment issues of castings developed to a sufficient sophistication to revolutionize the performance of light alloy and steel foundries. However, there is still a long way to go, with large sections of the steel and Ni-base casting industries still in denial that casting defects are important or even exist. The result has been that special ingots are still cast poorly, and shaped casting operations have suffered massive losses. For secondary melted and cast materials, electro-slag remelting has the potential to be much superior to expensive vacuum arc remelting, which has cost our aerospace and defense industries dearly over the years. This failure to address and upgrade our processing of liquid metals is a serious concern, since the principle entrainment defect, the bifilm, is seen as the principle initiator of cracks in metals; in general, bifilms are the Griffith cracks that initiate failures by cracking. A new generation of crack resistant metals and engineering structures can now be envisaged.

  7. CAST with its micromegas detector installed.

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    The CERN Axion Solar Telescope (CAST) uses a prototype LHC dipole magnet to search for very weakly interacting neutral particles called axions, which should originate in the core of the Sun. The magnet converts the solar axions to photons which are then detected by an X-ray detector based on Micromegas technology. CAST's Micromegas detector has now been installed. Photos 01 02: General view of the CAST experiment with the Micromegas detector in place. Photo 03: Close-up of the micromegas set-up.

  8. Pre-brazed casting and hot radial pressing: A reliable process for the manufacturing of CFC and W monoblock mock-ups

    International Nuclear Information System (INIS)

    Visca, Eliseo; Libera, S.; Mancini, A.; Mazzone, G.; Pizzuto, A.; Testani, C.

    2007-01-01

    ENEA is involved in the European International Thermonuclear Experimental Reactor (ITER) R and D activities and, in particular, for the manufacturing of high heat flux plasma-facing components (HHFC), such as the divertor targets, the baffles and the limiters. During last years, ENEA has manufactured actively cooled mock-ups by using different technologies, namely brazing, diffusion bonding and hot isostatic pressing (HIPping). A new manufacturing process has been set up and tested. It was successfully applied for the manufacturing of W armoured monoblock mock-ups. This technique is the HRP (hot radial pressing) based on performing a radial diffusion bonding between the cooling tube and the armour tile by pressurizing only internal tube and by keeping the joining zone in vacuum at the required bonding temperature. The heating is obtained by a standard air furnace. The HRP technique is now used for the manufacturing of CFC armoured monoblock components. For this purpose, some issues have to be faced, like the low CFC tensile strength, the pure copper interlayer between the heat sink and the armour necessary to mitigate the stress at the joint interface, and the low wettability of the pure copper on the CFC matrix. This paper reports the research path followed to manufacture a medium scale vertical target CFC and W armoured mock-up by HRP. A casting of a soft copper interlayer between the tube and the tile was obtained by a new technique: the pre-brazed casting (PBC, ENEA patent). Some preliminary mock-ups with three NB31 CFC tiles were successfully manufactured and tested to thermal fatigue using electron beam facilities. They all reached at least 1000 cycles at 20 MW/m 2 without suffering any damage. The manufactured medium scale vertical target mock-up is now under testing at the FE2000 (France) facility. These activities were performed in the frame of ITER-EFDA contracts

  9. Grey Literature on Caste-based Minority Community in India

    OpenAIRE

    Bhabal, Jyoti (SNDT); GreyNet, Grey Literature Network Service

    2008-01-01

    Problem/Goal: In India, caste system is very strong even in the 21st century. From ages the backward communities were suppressed at many fronts. These backward communities include Scheduled Castes (SC), Scheduled Tribes (ST), Nomadic Tribes (NT), and Other Backward Classes (OBC). Each category is further divided into sub-categories. Amongst all OBCs are better in their socio-economic, socio-cultural position. Earlier the SCs and STs were the most oppressed class. Numbers of studies were under...

  10. Corrosion behavior of copper-base materials in a gamma-irradiated environment; Final report

    Energy Technology Data Exchange (ETDEWEB)

    Yunker, W.H.

    1990-09-01

    Specimens of three copper-base materials were corrosion tested with gamma radiation exposure dose rates in the range of 1.9 {times} 10{sup 3} R/h to 4.9 {times} 10{sup 5} R/h. Materials used were pure copper, 7% aluminum bronze and 30% copper-nickel. Exposures were performed in moist air at 95{degree}C and 150{degree}C and liquid Well J-13 water at 95{degree}C, for periods of up to 16 months. Specimens were monitored for uniform weight loss, stress-induced corrosion and crevice corrosion. Specimen surfaces were examined visually at 10X magnification as well as by Auger Electron Spectroscopy, x-ray diffraction and metallography. Corrosion was not severe in any of the cases. In general, the pure copper was corroded most uniformly while the copper-nickel was the least reproducibly corroded. 11 refs, 40 figs., 15 tabs.

  11. Nucleation of recrystallisation in castings of single crystal Ni-based superalloys

    International Nuclear Information System (INIS)

    Mathur, Harshal N.; Panwisawas, Chinnapat; Jones, C. Neil; Reed, Roger C.; Rae, Catherine M.F.

    2017-01-01

    Recrystallisation in single crystal Ni-based superalloys during solution heat treatment results in a significant cost to the investment casting industry. In this paper two sources of surface nucleation have been identified in the alloy CMSX-4 ® . Firstly, Electron Backscattered Diffraction (EBSD) has revealed micro-grains of γ′, between 2 and 30 μm diameter in the layer of surface eutectic found in the upper part of the casting. These have high angle boundaries with respect to the bulk single crystal and a fraction coarsen during solution heat treatment. Secondly, in the lower regions where surface eutectic does not form, locally deformed regions, 5–20 μm deep, form where the metal adheres to the mould. The local strain causes misorientations up to ≈20° with respect the bulk single crystal, and after heat treatment these regions develop into small grains of similar low-angle misorientations. However, they also form twins to produce further grains which have mobile high-angle boundaries with respect to the bulk single crystal. Experiments have shown that micro-grains at the surface grow to cause full recrystallisation where there is sufficient strain in the bulk material, and by removing these surface defects, recrystallisation can be completely mitigated. Etching of the cast surface is demonstrated to be an effective method of achieving this.

  12. Determining casting defects in near-net shape casting aluminum parts by computed tomography

    Science.gov (United States)

    Li, Jiehua; Oberdorfer, Bernd; Habe, Daniel; Schumacher, Peter

    2018-03-01

    Three types of near-net shape casting aluminum parts were investigated by computed tomography to determine casting defects and evaluate quality. The first, second, and third parts were produced by low-pressure die casting (Al-12Si-0.8Cu-0.5Fe-0.9Mg-0.7Ni-0.2Zn alloy), die casting (A356, Al-7Si-0.3Mg), and semi-solid casting (A356, Al-7Si-0.3Mg), respectively. Unlike die casting (second part), low-pressure die casting (first part) significantly reduced the formation of casting defects (i.e., porosity) due to its smooth filling and solidification under pressure. No significant casting defect was observed in the third part, and this absence of defects indicates that semi-solid casting could produce high-quality near-net shape casting aluminum parts. Moreover, casting defects were mostly distributed along the eutectic grain boundaries. This finding reveals that refinement of eutectic grains is necessary to optimize the distribution of casting defects and reduce their size. This investigation demonstrated that computed tomography is an efficient method to determine casting defects in near-net shape casting aluminum parts.

  13. Comparative analysis of copper and zinc based agrichemical biocide products: materials characteristics, phytotoxicity and in vitro antimicrobial efficacy

    Directory of Open Access Journals (Sweden)

    Harikishan Kannan

    2016-07-01

    Full Text Available In the past few decades, copper based biocides have been extensively used in food crop protection including citrus, small fruits and in all garden vegetable production facilities. Continuous and rampant use of copper based biocides over decades has led to accumulation of this metal in the soil and the surrounding ecosystem. Toxic levels of copper and its derivatives in both the soil and in the run off pose serious environmental and public health concerns. Alternatives to copper are in great need for the agriculture industry to produce food crops with minimal environmental risks. A combination of copper and zinc metal containing biocide such as Nordox 30/30 or an improved version of zinc-only containing biocide would be a good alternative to copper-only products if the efficacy can be maintained. As of yet there is no published literature on the comparative study of the materials characteristics and phyto-compatibility properties of copper and zinc-based commercial products that would allow us to evaluate the advantages and disadvantages of both versions of pesticides. In this report, we compared copper hydroxide and zinc oxide based commercially available biocides along with suitable control materials to assess their efficacy as biocides. We present a detailed material characterization of the biocides including morphological studies involving electron microscopy, molecular structure studies involving X-ray diffraction, phytotoxicity studies in model plant (tomato and antimicrobial studies involving surrogate plant pathogens (Xanthomonas alfalfae subsp. citrumelonis, Pseudomonas syringae pv. syringae and Clavibacter michiganensis subsp. michiganensis. Zinc based compounds were found to possess comparable to superior antimicrobial properties while exhibiting significantly lower phytotoxicity when compared to copper based products thus suggesting their potential as an alternative.

  14. Responses of Lyngbya wollei to exposures of copper-based algaecides: the critical burden concept.

    Science.gov (United States)

    Bishop, W M; Rodgers, J H

    2012-04-01

    The formulation of a specific algaecide can greatly influence the bioavailability, uptake, and consequent control of the targeted alga. In this research, three copper-based algaecide formulations were evaluated in terms of copper sorption to a specific problematic alga and amount of copper required to achieve control. The objectives of this study were (1) to compare the masses of copper required to achieve control of Lyngbya wollei using the algaecide formulations Algimycin-PWF, Clearigate, and copper sulfate pentahydrate in laboratory toxicity experiments; (2) to relate the responses of L. wollei to the masses of copper adsorbed and absorbed (i.e., dose) as well as the concentrations of copper in the exposure water; and (3) to discern the relation between the mass of copper required to achieve control of a certain mass of L. wollei among different algaecide formulations. The critical burden of copper (i.e., threshold algaecide concentration that must be absorbed or adsorbed to achieve control) for L. wollei averaged 3.3 and 1.9 mg Cu/g algae for Algimycin-PWF and Clearigate, respectively, in experiments with a series of aqueous copper concentrations, water volumes, and masses of algae. With reasonable exposures in these experiments, control was not achieved with single applications of copper sulfate despite copper sorption >13 mg Cu/g algae in one experiment. Factors governing the critical burden of copper required for control of problematic cyanobacteria include algaecide formulation and concentration, volume of water, and mass of algae. By measuring the critical burden of copper from an algaecide formulation necessary to achieve control of the targeted algae, selection of an effective product and treatment rate can be calculated at a given field site.

  15. Corrosion of copper-based materials in irradiated moist air systems

    International Nuclear Information System (INIS)

    Reed, D.T.; Van Konynenburg, R.A.

    1991-06-01

    The atmospheric corrosion of oxygen-free copper (CDA-102), 70/30 copper-nickel (CDA-715), and 7% aluminum bronze (CDA-613) in an irradiated moist air environment was investigated. Experiments were performed in both dry and 40% RH (at sign 90 degree C) air at temperatures of 90 and 150 degree C. Initial corrosion rates were determined based on a combination of weight gain and weight loss measurements. Corrosion products observed were identified. These experiments support efforts by the Yucca Mountain Project (YMP) to evaluate possible metallic barrier materials for nuclear waste containers. 8 refs., 1 fig., 2 tabs

  16. PLC and SCADA based automation of injection casting process for casting of uranium-zirconium blanket fuel slugs for metallic fuel fabrication

    International Nuclear Information System (INIS)

    Yathish Kumar, G.; Jagadeeschandran, J.; Avvaru, Prafulla Kumar; Yadaw, Abhishek Kumar; Lavakumar, R.; Prabhu, T.V.; Muralidharan, P.; Anthonysamy, S.

    2016-01-01

    Fabrication of metallic (U-6wt.%Zr) slugs involves melting of binary alloy under vacuum and injection casting into quartz moulds at high pressure. Injection casting system housed inside glove box comprises of high vacuum, induction melting, high pressure control, motion control, mould preheating, chamber cooling, crucible handling and glove box pressure control systems. The technology development for process automation of injection casting system and process optimisation for fabrication of metallic (U-6%Zr) slugs is outlined in this paper. (author)

  17. Hydrogen in oxygen-free, phosphorus-doped copper-Charging techniques, hydrogen contents and modelling of hydrogen diffusion and depth profile

    International Nuclear Information System (INIS)

    Martinsson, Aasa; Sandstroem, Rolf; Lilja, Christina

    2013-01-01

    In Sweden spent nuclear fuel is planned to be disposed of by encapsulating in cast iron inserts protected by a copper shell. The copper can be exposed to hydrogen released during corrosion processes in the inserts. If the hydrogen is taken up by the copper, it could lead to hydrogen embrittlement. Specimens from oxygen-free copper have been hydrogen charged using two different methods. The purpose was to investigate how hydrogen could be introduced into copper in a controlled way. The thermal charging method resulted in a reduction of the initial hydrogen content. After electrochemical charging of cylindrical specimens, the measured hydrogen content was 2.6 wt. ppm which should compared with 0.6 wt. ppm before charging. The retained hydrogen after two weeks was reduced by nearly 40%. Recently the paper 'Hydrogen depth profile in phosphorus-doped, oxygen-free copper after cathodic charging' (Martinsson and Sandstrom, 2012) has been published. The paper describes experimental results for bulk specimens as well as presenting a model. Almost all the hydrogen is found to be located less than 100 μm from the surface. This model is used to interpret the experimental results on foils in the present report. Since the model is fully based on fundamental equations, it can be used to analyse what happens in new situations. In this report the effect of the charging intensity, the grain size, the critical nucleus size for hydrogen bubble formation as well as the charging time are analysed

  18. Hydrogen in oxygen-free, phosphorus-doped copper - Charging techniques, hydrogen contents and modelling of hydrogen diffusion and depth profile

    Energy Technology Data Exchange (ETDEWEB)

    Martinsson, Aasa [Swerea KIMAB, Kista (Sweden); Sandstroem, Rolf [Swerea KIMAB, Kista (Sweden); Div. of Materials Science and Engineering, KTH Royal Institute of Technology, Stockholm (Sweden); Lilja, Christina [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2013-01-15

    In Sweden spent nuclear fuel is planned to be disposed of by encapsulating in cast iron inserts protected by a copper shell. The copper can be exposed to hydrogen released during corrosion processes in the inserts. If the hydrogen is taken up by the copper, it could lead to hydrogen embrittlement. Specimens from oxygen-free copper have been hydrogen charged using two different methods. The purpose was to investigate how hydrogen could be introduced into copper in a controlled way. The thermal charging method resulted in a reduction of the initial hydrogen content. After electrochemical charging of cylindrical specimens, the measured hydrogen content was 2.6 wt. ppm which should compared with 0.6 wt. ppm before charging. The retained hydrogen after two weeks was reduced by nearly 40%. Recently the paper 'Hydrogen depth profile in phosphorus-doped, oxygen-free copper after cathodic charging' (Martinsson and Sandstrom, 2012) has been published. The paper describes experimental results for bulk specimens as well as presenting a model. Almost all the hydrogen is found to be located less than 100 {mu}m from the surface. This model is used to interpret the experimental results on foils in the present report. Since the model is fully based on fundamental equations, it can be used to analyse what happens in new situations. In this report the effect of the charging intensity, the grain size, the critical nucleus size for hydrogen bubble formation as well as the charging time are analysed.

  19. Solidification of cast iron - A study on the effect of microalloy elements on cast iron

    DEFF Research Database (Denmark)

    Moumeni, Elham

    The present thesis deals with the heat transfer and solidification of ductile and microalloyed grey cast iron. Heterogeneous nucleation of nodular graphite at inclusions in ductile iron during eutectic solidification has been investigated. A series of ductile iron samples with two different...... of the austenite, in the last region to solidify. The superfine graphite which forms in this type of irons is short (10-20µm) and stubby. The microstructure of this kind of graphite flakes in titanium alloyed cast iron is studied using electron microscopy techniques. The methods to prepare samples of cast iron...... for comprehensive transmission electron microscopy of graphite and the surrounding iron matrix have been developed and explained. Dual beam microscopes are used for sample preparation. A TEM study has been carried out on graphite flakes in grey cast iron using selected area electron diffraction (SAED). Based...

  20. Marginal Accuracy of Castings Fabricated with Ringless Casting Investment System and Metal Ring Casting Investment System: A Comparative Study.

    Science.gov (United States)

    Kalavathi, M; Sachin, Bhuvana; Prasanna, B G; Shreeharsha, T V; Praveen, B; Ragher, Mallikarjuna

    2016-02-01

    The thermal expansion of the investment can be restricted by the metal casting ring because the thermal expansion of the ring is less than that of the investment. The ringless casting procedure is in use in clinical dentistry, though there is little scientific data to support its use in fixed partial dentures. In this study, marginal discrepancy of castings produced with the ringless casting technique and the conventional technique using the metal rings were compared. A total of 30 wax patterns were fabricated directly on a metal die. Optical stereomicroscope was used to measure the marginal discrepancy between the metal die and wax patterns. A total of 15 castings were invested using Bellavest T phosphate-bonded investment with the ringless technique and 15 were invested with the same investment with a metal ring; 30 castings were produced using a nickel-chromium ceramo-metal alloy. The internal surface of the castings was not modified and seated with finger pressure. The vertical marginal discrepancy was measured using an optical stereomicroscope at a magnification of 100x. The data obtained were statistically analyzed using students t-test (paired t-test and unpaired t-test). The castings of the ringless technique provided less vertical marginal discrepancy (240.56 ± 45.81 μ) than the castings produced with the conventional metal ring technique (281.98± 53.05 μ). The difference was statistically significant. The ringless casting technique had produced better marginal accuracy compared with conventional casting technique. Ringless casting system can be used routinely for clinical purpose.

  1. Upper Bound Performance Estimation for Copper Based Broadband Access

    DEFF Research Database (Denmark)

    Jensen, Michael; Gutierrez Lopez, Jose Manuel

    2012-01-01

    of copper based access connections at a household level by using Geographical Information System data. This can be combined with different configurations of DSLAMs distributions, in order to calculate the required number of active equipment points to guarantee certain QoS levels. This method can be used...

  2. High coercivity microcrystalline Nd-rich Nd–Fe–Co–Al–B bulk magnets prepared by direct copper mold casting

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.Z.; Hong, Y. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Fang, X.G. [Institute for Advanced Materials and Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510640 (China); Qiu, Z.G.; Zhong, X.C. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Gao, X.S. [Institute for Advanced Materials and Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510640 (China); Liu, Z.W., E-mail: zwliu@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China)

    2016-06-15

    High coercivity Nd{sub 25}Fe{sub 40}Co{sub 20}Al{sub 15−x}B{sub x} (x=7–15) hard magnets were prepared by a simple process of injection casting. Different from many previous investigations on nanocomposite compositions, the magnets in this work contain hard magnetic Nd{sub 2}(FeCoAl){sub 14}B, Nd-rich, and Nd{sub 1+ε}(FeCo){sub 4}B{sub 4} phases. The magnetic properties, phase evolution, and microstructure of the as-cast and annealed magnets were investigated. As the boron content increased from 7 to 11 at%, the intrinsic coercivity H{sub cj} of the as-cast magnet increased from 816 to 1140 kA/m. The magnets annealed at 750 °C have shown more regular and smaller grains than the as-cast alloys, especially for the x=11 alloy. The high intrinsic coercivities for the annealed alloys with x=8~11 result from the presence of small-sized grains in the microstructure. The highest H{sub cj} of 1427 kA/m was obtained for the heat treated alloy with x=10. This work provides an alternative approach for preparing fully dense Nd-rich bulk hard magnets with relatively good properties. - Highlights: • 2 mm hard magnetic Nd{sub 25}Fe{sub 40}Co{sub 20}Al{sub 15−x}B{sub x} rods were prepared by direct casting. • High coercivity of 1.78 T was achieved in x=11 sample after heat treatment. • Small grains are responsible for the significant increase in H{sub C} after annealing. • Nd{sub 2}Fe{sub 14}B grains with two different sizes lead to two-step demagnetization process.

  3. Shrinkages in heavy-sized cast components of nodular cast iron – NDT and fatigue

    Directory of Open Access Journals (Sweden)

    Bleicher Christoph

    2014-06-01

    Full Text Available Material defects like shrinkages, dross, pores and chunky graphite are likely to occur in thick-walled castings and are a challenge for the foundries and their customers. These defects are mostly detected with handheld ultrasonic testing (UT or X-ray analysis. Within a research project done at the Fraunhofer Institute for Structural Durability and System Reliability LBF, the fatigue of Dross, shrinkages and chunky graphite in thick-walled cast material GGG-40 was estimated based on X-ray and fatigue tests on bending specimens. High fatigue reductions were received for the different material imperfections. Based on these impressions a further research project was executed at the Fraunhofer LBF to get an estimation of the informational value of UT in relation to fatigue of shrinkages in thick-walled castings of the material EN-GJS-400-18U-LT, EN-GJS-450-18 and EN-GJS-700-2. With the help of X-ray analysis and the UT technique Sampling Phased Array (SPA information about geometry and density were derived for a numerical analysis of shrinkages in thick-walled castings concerning fatigue. The following text summarizes the fatigue results achieved in the two research projects with the help of the X-ray and UT analysis.

  4. SPH based modelling of oxide and oxide film formation in gravity die castings

    International Nuclear Information System (INIS)

    Ellingsen, K; M'Hamdi, M; Coudert, T

    2015-01-01

    Gravity die casting is an important casting process which has the capability of making complicated, high-integrity components for e.g. the automotive industry. Oxides and oxide films formed during filling affect the cast product quality. The Smoothed particle hydrodynamics (SPH) method is particularly suited to follow complex flows. The SPH method has been used to study filling of a gravity die including the formation and transport of oxides and oxide films for two different filling velocities. A low inlet velocity leads to a higher amount of oxides and oxide films in the casting. The study demonstrates the usefulness of the SPH method for an increased understanding of the effect of different filling procedures on the cast quality. (paper)

  5. Simulation of the injection casting of metallic fuels

    International Nuclear Information System (INIS)

    Nakagawa, Tomokazu; Ogata, Takanari; Tokiwai, Moriyasu.

    1989-01-01

    For the fabrication of metallic fuel pins, injection casting is a preferable process because the simplicity of the process is suitable for remote operation. In this process, the molten metal in the crucible is injected into evacuated molds (suspended above the crucible) by pressurizing the casting furnace. Argonne National Laboratory has already adopted this process in the Integral Fast Reactor program. To obtain fuel pins with good quality, the casting parameters, such as the molten metal temperature, the magnitude of the pressure applied, the pressurizing rate, the cooling time, etc., must be optimized. Otherwise, bad-quality castings (short castings, rough surfaces, shrinkage cavities, mold fracture) may result. Therefore, it is very important in designing the casting equipment and optimizing the operation conditions to be able to predict the fluid and thermal behavior of the castings. This paper describes methods to simulate the heat and mass transfer in the molds and molten metallic fuel during injection casting. The results obtained by simulation are compared with experimental ones. Also, appropriate casting conditions for the uranium-plutonium-zirconium alloy are discussed based on the simulated results

  6. Thickness control and interface quality as functions of slurry formulation and casting speed in side-by-side tape casting

    DEFF Research Database (Denmark)

    Bulatova, Regina; Jabbari, Mirmasoud; Kaiser, Andreas

    2014-01-01

    A novel method of co-casting called side-by-side tape casting was developed aiming to form thin functionally graded films with varying properties within a single plane. The standard organic-based recipe was optimized to co-cast slurries into thick graded tapes. Performed numerical simulations...... identified the stable flow beneath the blade with a shear rate profile independent of slurry viscosity as long as the slurry load in the casting tank was low. Thickness and interface shape could be well predicted if the rheological behaviour of slurries is known and the processing parameters are well...

  7. Caste and power

    DEFF Research Database (Denmark)

    Roy, Dayabati

    2011-01-01

    This paper explores the institution of caste and its operation in a micro-level village setting of West Bengal, an Indian state, where state politics at grass roots level is vibrant with functioning local self-government and entrenched political parties. This ethnographic study reveals that caste...... relations and caste identities have overarching dimensions in the day-to-day politics of the study villages. Though caste almost ceases to operate in relation to strict religious strictures, under economic compulsion the division of labour largely coincides with caste division. In the cultural......–ideological field, the concept of caste-hierarchy seems to continue as an influencing factor, even in the operation of leftist politics....

  8. The X-ray Telescope of CAST

    CERN Document Server

    Kuster, M.; Cebrian, S.; Davenport, M.; Elefteriadis, C.; Englhauser, J.; Fischer, H.; Franz, J.; Friedrich, P.; Hartmann, R.; Heinsius, F.H.; Hoffmann, D.H.H.; Hoffmeister, G.; Joux, J.N.; Kang, D.; Konigsmann, Kay; Kotthaus, R.; Papaevangelou, T.; Lasseur, C.; Lippitsch, A.; Lutz, G.; Morales, J.; Rodriguez, A.; Struder, L.; Vogel, J.; Zioutas, K.

    2007-01-01

    The Cern Axion Solar Telescope (CAST) is in operation and taking data since 2003. The main objective of the CAST experiment is to search for a hypothetical pseudoscalar boson, the axion, which might be produced in the core of the sun. The basic physics process CAST is based on is the time inverted Primakoff effect, by which an axion can be converted into a detectable photon in an external electromagnetic field. The resulting X-ray photons are expected to be thermally distributed between 1 and 7 keV. The most sensitive detector system of CAST is a pn-CCD detector combined with a Wolter I type X-ray mirror system. With the X-ray telescope of CAST a background reduction of more than 2 orders off magnitude is achieved, such that for the first time the axion photon coupling constant g_agg can be probed beyond the best astrophysical constraints g_agg < 1 x 10^-10 GeV^-1.

  9. Electrodeposition of copper composites from deep eutectic solvents based on choline chloride.

    Science.gov (United States)

    Abbott, Andrew P; El Ttaib, Khalid; Frisch, Gero; McKenzie, Katy J; Ryder, Karl S

    2009-06-07

    Here we describe for the first time the electrolytic deposition of copper and copper composites from a solution of the metal chloride salt in either urea-choline chloride, or ethylene glycol-choline chloride based eutectics. We show that the deposition kinetics and thermodynamics are quite unlike those in aqueous solution under comparable conditions and that the copper ion complexation is also different. The mechanism of copper nucleation is studied using chronoamperometry and it is shown that progressive nucleation leads to a bright nano-structured deposit. In contrast, instantaneous nucleation, at lower concentrations of copper ions, leads to a dull deposit. This work also pioneers the use of the electrochemical quartz crystal microbalance (EQCM) to monitor both current efficiency and the inclusion of inert particulates into the copper coatings. This technique allows the first in situ quantification or particulate inclusion. It was found that the composition of composite material was strongly dependent on the amount of species suspended in solution. It was also shown that the majority of material was dragged onto the surface rather than settling on to it. The distribution of the composite material was found to be even throughout the coating. This technology is important because it facilitates deposition of bright copper coatings without co-ligands such as cyanide. The incorporation of micron-sized particulates into ionic liquids has resulted, in one case, in a decrease in viscosity. This observation is both unusual and surprising; we explain this here in terms of an increase in the free volume of the liquid and local solvent perturbation.

  10. Technological Aspects of Low-Alloyed Cast Steel Massive Casting Manufacturing

    Directory of Open Access Journals (Sweden)

    Szajnara J.

    2013-12-01

    Full Text Available In the paper authors have undertaken the attempt of explaining the causes of cracks net occurrence on a massive 3-ton cast steel casting with complex geometry. Material used for casting manufacturing was the low-alloyed cast steel with increased wear resistance modified with vanadium and titanium. The studies included the primary and secondary crystallization analysis with use of TDA and the qualitative and quantitative analysis of non-metallic inclusions.

  11. Fresh and mechanical properties of self compacting concrete containing copper slag as fine aggregates

    Directory of Open Access Journals (Sweden)

    Rahul Sharma

    2017-03-01

    Full Text Available An investigation is carried out on the development of Self Compacting Concrete (SCC using copper slag (CS as fine aggregates with partial and full replacement of sand. Six different SCC mixes (60% OPC and 40% Fly Ash with 0% as control mix, 20%, 40%, 60%, 80% and 100% of copper slag substituting sand with constant w/b ratio of 0.45 were cast and tested for fresh properties of SCC. Compressive strength and splitting tensile strength were evaluated at different ages and microstructural analysis was observed at 120 days. It has been observed that the fluidity of SCC mixes was significantly enhanced with the increment of copper slag. The test results showed that the compressive strength increases up to 60% copper slag as replacement of sand, beyond which decrease in strength was observed. The highest compressive strength was obtained at 20% copper slag substitution at different curing ages among all the mixes, except for 7 days curing. The splitting tensile strength of the CS substituted mixes in comparison to control concrete was found to increase at all the curing ages but the remarkable achievement of strength was detected at 60% copper slag replacement. The microscopic view from Scanning electron microscopy (SEM demonstrated more voids, capillary channels, and micro cracks with the increment of copper slag as substitution of sand as compared to the control mix.

  12. Reducing the Incidence of Cast-related Skin Complications in Children Treated With Cast Immobilization.

    Science.gov (United States)

    Difazio, Rachel L; Harris, Marie; Feldman, Lanna; Mahan, Susan T

    2017-12-01

    Cast immobilization remains the mainstay of pediatric orthopaedic care, yet little is known about the incidence of cast-related skin complications in children treated with cast immobilization. The purposes of this quality improvement project were to: (1) establish a baseline rate of cast-related skin complications in children treated with cast immobilization, (2) identify trends in children who experienced cast-related skin complications, (3) design an intervention aimed at decreasing the rate of cast-related skin complications, and (4) determine the effectiveness of the intervention. A prospective interrupted time-series design was used to determine the incidence of cast-related skin complications overtime and compare the rates of skin complications before and after an intervention designed to decrease the incidence of cast-related heel complications. All consecutive patients who were treated with cast immobilization from September 2012 to September 2014 were included. A cast-related skin complications data collection tool was used to capture all cast-related skin complications. A high rate of heel events was noted in our preliminary analysis and an intervention was designed to decrease the rate of cast-related skin complications, including the addition of padding during casting and respective provider education. The estimated cast-related skin events rate for all patients was 8.9 per 1000 casts applied. The rate for the total preintervention sample was 13.6 per 1000 casts which decreased to 6.6 in the postintervention sample. When examining the heel-only group, the rate was 17.1 per 1000 lower extremity casts applied in the preintervention group and 6.8 in the postintervention group. Incorporating padding to the heel of lower extremity cast was an effective intervention in decreasing the incidence of cast-related skin complications in patients treated with cast immobilization. Level II.

  13. High efficiency graphene coated copper based thermocells connected in series

    Science.gov (United States)

    Sindhuja, Mani; Indubala, Emayavaramban; Sudha, Venkatachalam; Harinipriya, Seshadri

    2018-04-01

    Conversion of low-grade waste heat into electricity had been studied employing single thermocell or flowcells so far. Graphene coated copper electrodes based thermocells connected in series displayed relatively high efficiency of thermal energy harvesting. The maximum power output of 49.2W/m2 for normalized cross sectional electrode area is obtained at 60ºC of inter electrode temperature difference. The relative carnot efficiency of 20.2% is obtained from the device. The importance of reducing the mass transfer and ion transfer resistance to improve the efficiency of the device is demonstrated. Degradation studies confirmed mild oxidation of copper foil due to corrosion caused by the electrolyte.

  14. Eco-nano composite films containing copper as potential antimicrobial active packaging

    Energy Technology Data Exchange (ETDEWEB)

    Bruna, Julio E.; Gonzalez, Valeska; Rodriguez, Francisco; Guarda, Abel; Galotto, Maria Jose, E-mail: julio.bruna@usach.cl [Center for the Development of Nanoscience and Nanotechnology, Packaging Laboratory, University of Santiago de Chile. Santiago (Chile)

    2011-07-01

    The antimicrobial efficiency of Cellulose Acetate/MMTCu and Chitosan/MMTCu nano composites against Escherichia Coli 0157:H7 n/t has been studied in the present work. The MMT modified with copper were obtained using cation interchange in solution and the nano composites films were prepared using casting solution technique, being the biodegradable polymer (Cellulose Acetate or Chitosan) the main component and the montmorillonite modified with copper, the minority component. Characterization of MMTCu and the nano composites (CA/MMTCu and Ch/MMTCu), were carried out using XRD, AA, TGA, DSC and microbiological analysis. The nano composites showed to be more stable at higher temperature, resulting from the incorporation of MMTCu into the polymer. On the other hand, the results indicated that the antibacterial effect of nano composite increased with the proportion of MMTCu added. (author)

  15. Eco-nano composite films containing copper as potential antimicrobial active packaging

    International Nuclear Information System (INIS)

    Bruna, Julio E.; Gonzalez, Valeska; Rodriguez, Francisco; Guarda, Abel; Galotto, Maria Jose

    2011-01-01

    The antimicrobial efficiency of Cellulose Acetate/MMTCu and Chitosan/MMTCu nano composites against Escherichia Coli 0157:H7 n/t has been studied in the present work. The MMT modified with copper were obtained using cation interchange in solution and the nano composites films were prepared using casting solution technique, being the biodegradable polymer (Cellulose Acetate or Chitosan) the main component and the montmorillonite modified with copper, the minority component. Characterization of MMTCu and the nano composites (CA/MMTCu and Ch/MMTCu), were carried out using XRD, AA, TGA, DSC and microbiological analysis. The nano composites showed to be more stable at higher temperature, resulting from the incorporation of MMTCu into the polymer. On the other hand, the results indicated that the antibacterial effect of nano composite increased with the proportion of MMTCu added. (author)

  16. Mechanical Integrity of Copper Canister Lid and Cylinder. Sensitivity study

    International Nuclear Information System (INIS)

    Karlsson, Marianne

    2002-08-01

    This report is part of a study of the mechanical integrity of canisters used for disposal of nuclear fuel waste. The overall objective is to determine and ensure the static and long-term strength of the copper canister lid and cylinder casing. The canisters used for disposal nuclear fuel waste of type BWR consists of an inner part (insert) of ductile cast iron and an outer part of copper. The copper canister is to provide a sealed barrier between the contents of the canister and the surroundings. The study in this report complements the finite element analyses performed in an earlier study. The analyses aim to evaluate the sensitivity of the canister to tolerances regarding the gap between the copper cylinder and the cast iron insert. Since great uncertainties regarding the material's long term creep properties prevail, analyses are also performed to evaluate the effect of different creep data on the resulting strain and stress state. The report analyses the mechanical response of the lid and flange of the copper canister when subjected to loads caused by pressure from swelling bentonite and from groundwater at a depth of 500 meter. The loads acting on the canister are somewhat uncertain and the cases investigated in this report are possible cases. Load cases analysed are: Pressure 15 MPa uniformly distributed on lid and 5 MPa uniformly distributed on cylinder; Pressure 5 MPa uniformly distributed on lid and 15 MPa uniformly distributed on cylinder; Pressure 20 MPa uniformly distributed on lid and cylinder; and Side pressures 10 MPa and 20 MPa uniformly distributed on part of the cylinder. Creep analyses are performed for two of the load cases. For all considered designs high principal stresses appear on the outside of the copper cylinder in the region from the weld down to the level of the lid lower edge. Altering the gap between lid and cylinder and/or between cylinder and insert only marginally affects the resulting stress state. Fitting the lid in the cylinder

  17. Remote stabilization of copper paddlewheel based molecular building blocks in metal-organic frameworks

    KAUST Repository

    Gao, Wenyang

    2015-03-24

    Copper paddlewheel based molecular building blocks (MBBs) are ubiquitous and have been widely employed for the construction of highly porous metal-organic frameworks (MOFs). However, most copper paddlewheel based MOFs fail to retain their structural integrity in the presence of water. This instability is directly correlated to the plausible displacement of coordinating carboxylates in the copper paddlewheel MBB, [Cu2(O2C-)4], by the strongly coordinating water molecules. In this comprehensive study, we illustrate the chemical stability control in the rht-MOF platform via strengthening the coordinating bonds within the triangular inorganic MBB, [Cu3O(N4-x(CH)xC-)3] (x = 0, 1, or 2). Remotely, the chemical stabilization propagated into the paddlewheel MBB to afford isoreticular rht-MOFs with remarkably enhanced water/chemical stabilities compared to the prototypal rht-MOF-1. © 2015 American Chemical Society.

  18. Remote stabilization of copper paddlewheel based molecular building blocks in metal-organic frameworks

    KAUST Repository

    Gao, Wenyang; Cai, Rong; Pham, Tony T.; Forrest, Katherine A.; Hogan, Adam; Nugent, Patrick S.; Williams, Kia R.; Wojtas, Łukasz; Luebke, Ryan; Weselinski, Lukasz Jan; Zaworotko, Michael J.; Space, Brian; Chen, Yusheng; Eddaoudi, Mohamed; Shi, Xiaodong; Ma, Shengqian

    2015-01-01

    Copper paddlewheel based molecular building blocks (MBBs) are ubiquitous and have been widely employed for the construction of highly porous metal-organic frameworks (MOFs). However, most copper paddlewheel based MOFs fail to retain their structural integrity in the presence of water. This instability is directly correlated to the plausible displacement of coordinating carboxylates in the copper paddlewheel MBB, [Cu2(O2C-)4], by the strongly coordinating water molecules. In this comprehensive study, we illustrate the chemical stability control in the rht-MOF platform via strengthening the coordinating bonds within the triangular inorganic MBB, [Cu3O(N4-x(CH)xC-)3] (x = 0, 1, or 2). Remotely, the chemical stabilization propagated into the paddlewheel MBB to afford isoreticular rht-MOFs with remarkably enhanced water/chemical stabilities compared to the prototypal rht-MOF-1. © 2015 American Chemical Society.

  19. A Casting Yield Optimization Case Study: Forging Ram

    DEFF Research Database (Denmark)

    Kotas, Petr; Tutum, Cem Celal; Hattel, Jesper Henri

    2010-01-01

    This work summarizes the findings of multi-objective optimization of a gravity sand-cast steel part for which an increase of the casting yield via riser optimization was considered. This was accomplished by coupling a casting simulation software package with an optimization module. The benefits...... of this approach, recently adopted in foundry industry world wide and based on fully automated computer optimization, were demonstrated. First, analyses of filling and solidification of the original casting design were conducted in the standard simulation environment to determine potential flaws and inadequacies...

  20. A process chain for integrating piezoelectric transducers into aluminum die castings to generate smart lightweight structures

    Directory of Open Access Journals (Sweden)

    Stefan Stein

    al., [7]. The modules are made of low temperature cofired ceramic (LTCC tapes with an embedded lead zirconate titanate (PZT plate and are manufactured in multilayer technique. For joining conducting copper (Cu wires with the electrode structure of the LPM, a novel laser drop on demand wire bonding method (LDB is applied, which is based on the melting of a spherical CuSn12 braze preform with a liquidus temperature Tliquid of 989.9 °C (Deutsches Kupfer-Institut Düsseldorf, [8] providing sufficient thermal stability for a subsequent casting process. Keywords: Active noise reduction, Laser assisted wire bonding, Smart structures, Piezoelectric transducers, Die casting, Lightweight design

  1. A process chain for integrating piezoelectric transducers into aluminum die castings to generate smart lightweight structures

    Science.gov (United States)

    Stein, Stefan; Wedler, Jonathan; Rhein, Sebastian; Schmidt, Michael; Körner, Carolin; Michaelis, Alexander; Gebhardt, Sylvia

    modules are made of low temperature cofired ceramic (LTCC) tapes with an embedded lead zirconate titanate (PZT) plate and are manufactured in multilayer technique. For joining conducting copper (Cu) wires with the electrode structure of the LPM, a novel laser drop on demand wire bonding method (LDB) is applied, which is based on the melting of a spherical CuSn12 braze preform with a liquidus temperature Tliquid of 989.9 °C (Deutsches Kupfer-Institut Düsseldorf, [8]) providing sufficient thermal stability for a subsequent casting process.

  2. Perspectives of single cast nanowires technology

    International Nuclear Information System (INIS)

    Ioisher, Anatolii; Badinter, Efim; Postolache, Vitalie; Leporda, Nicolae; Tiginyanu, Ion; Monaico, Eduard

    2011-01-01

    The paper is dedicated to production potential of glass-coated cast nanowire with metal-, semimetal- and semiconductor-based cores by means of Taylor-Ulitovsky method. Criteria of melted core-formative material penetration into a drawing capillary were analyzed. Theoretical preconditions of the reduction of cast microwire diameter up to nano-dimensions of core are reviewed and an improved method of cast nanowire manufacturing is proposed. Correctness of conclusions was experimentally proved and laboratory samples of micro- and nano-wires with core diameter of about 200-300 nanometers were produced, even in case of materials with poor adhesion.

  3. Fabricating Copper Nanotubes by Electrodeposition

    Science.gov (United States)

    Yang, E. H.; Ramsey, Christopher; Bae, Youngsam; Choi, Daniel

    2009-01-01

    Copper tubes having diameters between about 100 and about 200 nm have been fabricated by electrodeposition of copper into the pores of alumina nanopore membranes. Copper nanotubes are under consideration as alternatives to copper nanorods and nanowires for applications involving thermal and/or electrical contacts, wherein the greater specific areas of nanotubes could afford lower effective thermal and/or electrical resistivities. Heretofore, copper nanorods and nanowires have been fabricated by a combination of electrodeposition and a conventional expensive lithographic process. The present electrodeposition-based process for fabricating copper nanotubes costs less and enables production of copper nanotubes at greater rate.

  4. Microstructure and interfacial evaluation of Co-based alloy coating on copper by pulsed Nd:YAG multilayer laser cladding

    International Nuclear Information System (INIS)

    Yan Hua; Wang Aihua; Xu Kaidong; Wang Wenyan; Huang Zaowen

    2010-01-01

    Laser cladding defect-free coatings on copper is rather difficult. The purpose of this study is to fabricate high quality Co-based alloy coating on copper substrate by laser cladding. Powder preplacement with a thickness of 0.7 mm improves the absorptivity of copper substrate to laser effectively and generates defect-free coating. Microstructures, phase constitutions and wear properties are investigated by means of scanning electronic microscopy (SEM) with X-ray energy dispersive microanalysis (EDX), transmission electron microscopy (TEM) and X-ray diffraction (XRD), as well as dry sliding wear test. Experimental results show that α-Co solution, Cr 23 C 6 , Ni 17 W 3 and Cr 4 Ni 15 W are the main phases in the Co-based coating. The Ni-based solid solutions (α-Co, Ni) and (Ni, Cu) are formed at interface, which generate metallurgical bonding by diffusion between Co-based coating and copper substrate. The average microhardness of the coating is 478HV 0.1 . Wear resistance of copper is significantly improved by laser cladding Co-based alloy multilayer coating.

  5. Low cost chemical oxygen demand sensor based on electrodeposited nano-copper film

    Directory of Open Access Journals (Sweden)

    Hamdy H. Hassan

    2018-02-01

    Full Text Available A commercially available copper electrical cable and pure Cu disk were used as substrates for the electrodeposition of copper nanoparticles (nano-Cu. The surface morphology of the prepared nano-Cu/Cu electrodes was investigated by scanning electron microscope (SEM and energy dispersive X-ray spectrometer (EDX. The bare copper substrates and the nano-copper modified electrodes were utilized and optimized for electrochemical assay of chemical oxygen demand (COD using glycine as a standard. A comparison was made among the four electrodes (i.e., bare and nano-Cu coated copper cable and pure copper disk as potential COD sensors. The oxidation behavior of glycine was investigated on the surface of the prepared sensors using linear sweep voltammetry (LSV. The results indicate significant enhancement of the electrochemical oxidation of glycine by the deposited nano-Cu. The effects of different deposition parameters, such as Cu2+ concentration, deposition potential, deposition time, pH, and scan rate on the response of the prepared sensors were investigated. Under optimized conditions, the optimal nano-Cu based COD sensor exhibited a linear range of 2–595 mg/L, lower limit of detection (LOD as low as 1.07 mg/L (S/N = 3. The developed method exhibited high tolerance level to Cl− ion where 1.0 M Cl− exhibited minimal influence. The sensor was utilized for the detection of COD in different real water samples. The results obtained were validated using the standard dichromate method.

  6. ENVIRONMENTAL RISK ASSESSMENT OF SOME COPPER BASED FUNGICIDES ACCORDING TO THE REQUIREMENTS OF GOOD LABORATORY PRACTICE

    Directory of Open Access Journals (Sweden)

    Marga GRĂDILĂ

    2015-10-01

    Full Text Available The paper presents data demonstrating the functionality of biological systems reconstituted with aquatic organisms developed under Good Laboratory Practice testing facility within Research - Development Institute for Plant Protection Bucharest for environmental risk assessment of four fungicides based on copper, according to Good Laboratory Practice requirements. For risk assessment, according to GLP were made the following steps: Good Laboratory Practice test facility was established, we have ensured adequate space for growth, acclimatization and testing for each test species, it was installed a complex water production instalation needed to perform tests, it was achieved control system for checking environmental conditions and have developed specific operating procedures that have been accredited according to Good Laboratory Practice.The results showed that biological systems model of the Good Laboratory Practice test facility in Research - Development Institute for Plant Protection meet the requirements of Organisation for Economic Co-operation and Development Guidelines regarding GLP, and after testing copper-based fungicides in terms of acute toxicity Cyprinus carpio and to Daphnia magna revealed that three of them (copper oxychloride, copper hydroxide and copper sulphate showed ecological efficiency, ie low toxicity. Metallic copper based fungicides showed a higher toxicity, resulting in fish toxicity symptoms: sleep, sudden immersion, faded, weakness, swimming in spiral, lack of balance, breathing slow and cumbersome, spasms and mortality.

  7. Capillarity theory for the fly-casting mechanism

    Science.gov (United States)

    Trizac, Emmanuel; Levy, Yaakov; Wolynes, Peter G.

    2010-01-01

    Biomolecular folding and function are often coupled. During molecular recognition events, one of the binding partners may transiently or partially unfold, allowing more rapid access to a binding site. We describe a simple model for this fly-casting mechanism based on the capillarity approximation and polymer chain statistics. The model shows that fly casting is most effective when the protein unfolding barrier is small and the part of the chain which extends toward the target is relatively rigid. These features are often seen in known examples of fly casting in protein–DNA binding. Simulations of protein–DNA binding based on well-funneled native-topology models with electrostatic forces confirm the trends of the analytical theory. PMID:20133683

  8. Breakout Prediction Based on BP Neural Network in Continuous Casting Process

    Directory of Open Access Journals (Sweden)

    Zhang Ben-guo

    2016-01-01

    Full Text Available An improved BP neural network model was presented by modifying the learning algorithm of the traditional BP neural network, based on the Levenberg-Marquardt algorithm, and was applied to the breakout prediction system in the continuous casting process. The results showed that the accuracy rate of the model for the temperature pattern of sticking breakout was 96.43%, and the quote rate was 100%, that verified the feasibility of the model.

  9. Casting defects and fatigue behaviour of ductile cast iron for wind turbine components: A comprehensive study

    Energy Technology Data Exchange (ETDEWEB)

    Haerkegaard, G. [Norwegian University of Science and Technology, Dept. of Engineering Design and Materials, Trondheim (Norway); Shirani, M.

    2011-12-15

    Two types of EN-GJS-400-18-LT ductile cast iron were investigated in this research, clean baseline material in the shape of castings with different thicknesses and also defective material from a rejected wind turbine hub. P-S-N curves for baseline EN-GJS-400-18-LT specimens with different dimensions and from castings with different thicknesses at different load ratios were established. Geometrical size effect, technological size effects and mean stress effect on fatigue strength of baseline EN-GJS-400-18-LT were evaluated. Fatigue strength of baseline EN-GJS-400-18-LT was compared with that of defective material from the rejected hub. The effect of defects type, shape, size and position on fatigue strength of this material was evaluated. The hypothesis that the endurance observed in an S-N test can be predicted based on the analysis of crack growth from casting defects through defect-free 'base' material was tested for the analyzed defective material. 3D X-ray computed tomography was use to detect defects in defective specimens and find the defect size distribution. The obtained defect size distribution for the defective material was used in random defect analysis to establish the scatter of fatigue life for defective specimens. Finally both safe-life design and damage tolerant design of wind turbine castings were analyzed and compared. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Effect of cast steel production metallurgy on the emergence of casting defects

    Directory of Open Access Journals (Sweden)

    L. Čamek

    2016-10-01

    Full Text Available The paper documents metallurgical possibilities of high alloy cast steel production in open induction medium frequency furnaces and an electric arc furnace in a gravity die casting foundry. The observation was focused on the emergence of gas defects in steel castings. The content of gases achieved during the metallurgical processes was evaluated for every unit of the production equipment and the casting ladle before casting into disposable sand moulds. The sand mould area was considered to be constant. The aim was to evaluate the current metallurgical possibilities of affecting the content of gases in high alloy cast steel in the current technical conditions of the foundry.

  11. Wetting of refractory metals with copper base alloys

    International Nuclear Information System (INIS)

    Anikeev, E.F.; Kostikov, V.I.; Chepelenko, V.N.; Batov, V.M.

    1978-01-01

    The effect is studied of phosphorus upon the wetting of molybdenum, niobium and tantalum by an alloy of the system copper-silver (10%) as a function of contact time and phosphorus concentration. Experiments have been conducted in vacuum of 5x10 -4 mm Hg at 900 deg C. It is established that the introduction of phosphorus into a copper-silver alloy improves the wetting of molybdenum, niobium and tantalum. Formation of intermetallic compounds on the alloy-refractory metal interface can be avoided by adjusting the time of contact of the solder with molybdenum, niobium and tantalum. As a solder with 2.9% phosphorus spreads well over copper, it is suggested to use said solder for brazing copper and the investigated refractory metals in items intended for service at temperatures of up to 600 deg C

  12. Venous Thrombosis Risk after Cast Immobilization of the Lower Extremity: Derivation and Validation of a Clinical Prediction Score, L-TRiP(cast), in Three Population-Based Case-Control Studies.

    Science.gov (United States)

    Nemeth, Banne; van Adrichem, Raymond A; van Hylckama Vlieg, Astrid; Bucciarelli, Paolo; Martinelli, Ida; Baglin, Trevor; Rosendaal, Frits R; le Cessie, Saskia; Cannegieter, Suzanne C

    2015-11-01

    Guidelines and clinical practice vary considerably with respect to thrombosis prophylaxis during plaster cast immobilization of the lower extremity. Identifying patients at high risk for the development of venous thromboembolism (VTE) would provide a basis for considering individual thromboprophylaxis use and planning treatment studies. The aims of this study were (1) to investigate the predictive value of genetic and environmental risk factors, levels of coagulation factors, and other biomarkers for the occurrence of VTE after cast immobilization of the lower extremity and (2) to develop a clinical prediction tool for the prediction of VTE in plaster cast patients. We used data from a large population-based case-control study (MEGA study, 4,446 cases with VTE, 6,118 controls without) designed to identify risk factors for a first VTE. Cases were recruited from six anticoagulation clinics in the Netherlands between 1999 and 2004; controls were their partners or individuals identified via random digit dialing. Identification of predictor variables to be included in the model was based on reported associations in the literature or on a relative risk (odds ratio) > 1.2 and p ≤ 0.25 in the univariate analysis of all participants. Using multivariate logistic regression, a full prediction model was created. In addition to the full model (all variables), a restricted model (minimum number of predictors with a maximum predictive value) and a clinical model (environmental risk factors only, no blood draw or assays required) were created. To determine the discriminatory power in patients with cast immobilization (n = 230), the area under the curve (AUC) was calculated by means of a receiver operating characteristic. Validation was performed in two other case-control studies of the etiology of VTE: (1) the THE-VTE study, a two-center, population-based case-control study (conducted in Leiden, the Netherlands, and Cambridge, United Kingdom) with 784 cases and 523 controls

  13. SPRAY CASTING

    OpenAIRE

    SALAMCI, Elmas

    2010-01-01

    ABSTRACT This paper is designed to provide a basic review of spray casting. A brief overview of the historical development of spray  casting and the description of plant and equipment have been given. Following metallurgical characteristics of spray formed alloys, process parameters and solidification mechanism of spray deposition have been discussed in detail. Finally, microstructure and mechanical properties of the selected spray cast Al-Zn-Mg-Cu alloys have been presented and comp...

  14. 76 FR 44322 - Copper Mountain Solar 1, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2011-07-25

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-4055-000] Copper Mountain Solar 1, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... Copper Mountain Solar 1, LLC's application for market-based rate authority, with an accompanying rate...

  15. Application of a CCA-treated wood waste decontamination process to other copper-based preservative-treated wood after disposal

    Energy Technology Data Exchange (ETDEWEB)

    Janin, Amelie, E-mail: amelie.janin@ete.inrs.ca [University of Toronto, Faculty of Forestry, 33, Willcocks St., Toronto, ON, M5S 3B3 (Canada); Coudert, Lucie, E-mail: lucie.coudert@ete.inrs.ca [Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Universite du Quebec, 490 rue de la Couronne, Quebec, QC, G1K 9A9 (Canada); Riche, Pauline, E-mail: pauline.riche@ete.inrs.ca [Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Universite du Quebec, 490 rue de la Couronne, Quebec, QC, G1K 9A9 (Canada); Mercier, Guy, E-mail: guy_mercier@ete.inrs.ca [Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Universite du Quebec, 490 rue de la Couronne, Quebec, QC, G1K 9A9 (Canada); Cooper, Paul, E-mail: p.cooper@utoronto.ca [University of Toronto, Faculty of Forestry, 33, Willcocks St., Toronto, ON, M5S 3B3 (Canada); Blais, Jean-Francois, E-mail: blaisjf@ete.inrs.ca [Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Universite du Quebec, 490 rue de la Couronne, Quebec, QC, G1K 9A9 (Canada)

    2011-02-28

    Research highlights: {yields} This paper describes a process for the metal removal from treated (CA-, ACQ- or MCQ-) wood wastes. {yields} This sulfuric acid leaching process is simple and economic. {yields} The remediated wood could be recycled in the industry. - Abstract: Chromated copper arsenate (CCA)-treated wood was widely used until 2004 for residential and industrial applications. Since 2004, CCA was replaced by alternative copper preservatives such as alkaline copper quaternary (ACQ), copper azole (CA) and micronized copper quaternary (MCQ), for residential applications due to health concerns. Treated wood waste disposal is becoming an issue. Previous studies identified a chemical process for decontaminating CCA-treated wood waste based on sulfuric acid leaching. The potential application of this process to wood treated with the copper-based preservatives (alkaline copper quaternary (ACQ), copper azole (CA) and micronized copper quaternary (MCQ)) is investigated here. Three consecutive leaching steps with 0.1 M sulfuric acid at 75 deg, C for 2 h were successful for all the types of treated wood and achieved more than 98% copper solubilisation. The different acidic leachates produced were successively treated by coagulation using ferric chloride and precipitation (pH = 7) using sodium hydroxide. Between 94 and 99% of copper in leachates could be recovered by electrodeposition after 90 min using 2 A electrical current. Thus, the process previously developed for CCA-treated wood waste decontamination could be efficiently applied for CA-, ACQ- or MCQ-treated wood.

  16. Influence of Heat Treatment on the Morphologies of Copper Nanoparticles Based Films by a Spin Coating Method

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2017-01-01

    Full Text Available We have investigated the influence of heat treatment on the morphologies of copper nanoparticles based films on glass slides by a spin coating method. The experiments show that heat treatment can modify the sizes and morphologies of copper nanoparticles based films on glass slides. We suggest that through changing the parameters of heat treatment process may be helpful to vary the scattering and absorbing intensity of copper nanoparticles when used in energy harvesting/conversion and optical devices.

  17. High Efficiency Graphene Coated Copper Based Thermocells Connected in Series

    Directory of Open Access Journals (Sweden)

    Mani Sindhuja

    2018-04-01

    Full Text Available Conversion of low-grade waste heat into electricity had been studied employing single thermocell or flowcells so far. Graphene coated copper electrodes based thermocells connected in series displayed relatively high efficiency of thermal energy harvesting. The maximum power output of 49.2 W/m2 for normalized cross sectional electrode area is obtained at 60°C of inter electrode temperature difference. The relative carnot efficiency of 20.2% is obtained from the device. The importance of reducing the mass transfer and ion transfer resistance to improve the efficiency of the device is demonstrated. Degradation studies confirmed mild oxidation of copper foil due to corrosion caused by the electrolyte.

  18. Operation of an InGrid based X-ray detector at the CAST experiment

    Science.gov (United States)

    Krieger, Christoph; Desch, Klaus; Kaminski, Jochen; Lupberger, Michael

    2018-02-01

    The CERN Axion Solar Telescope (CAST) is searching for axions and other particles which could be candidates for DarkMatter and even Dark Energy. These particles could be produced in the Sun and detected by a conversion into soft X-ray photons inside a strong magnetic field. In order to increase the sensitivity for physics beyond the Standard Model, detectors with a threshold below 1 keV as well as efficient background rejection methods are required to compensate for low energies and weak couplings resulting in very low detection rates. Those criteria are fulfilled by a detector utilizing the combination of a pixelized readout chip with an integrated Micromegas stage. These InGrid (Integrated Grid) devices can be build by photolithographic postprocessing techniques, resulting in a close to perfect match of grid and pixels facilitating the detection of single electrons on the chip surface. The high spatial resolution allows for energy determination by simple electron counting as well as for an event-shape based analysis as background rejection method. Tests at an X-ray generator revealed the energy threshold of an InGrid based X-ray detector to be well below the carbon Kα line at 277 eV. After the successful demonstration of the detectors key features, the detector was mounted at one of CAST's four detector stations behind an X-ray telescope in 2014. After several months of successful operation without any detector related interruptions, the InGrid based X-ray detector continues data taking at CAST in 2015. During operation at the experiment, background rates in the order of 10-5 keV-1 cm-2 s-1 have been achieved by application of a likelihood based method discriminating the non-photon background originating mostly from cosmic rays. For continued operation in 2016, an upgraded InGrid based detector is to be installed among other improvements including decoupling and sampling of the signal induced on the grid as well as a veto scintillator to further lower the

  19. The x-ray telescope of CAST

    Energy Technology Data Exchange (ETDEWEB)

    Kuster, M [Technische Universitaet Darmstadt, IKP, Schlossgartenstrasse 9, D-64289 Darmstadt (Germany); Braeuninger, H [Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Cebrian, S [Laboratorio de Fisica Nuclear y Altas Energias, Universidad de Zaragoza, E-50009 Zaragoza (Spain)] (and others)

    2007-06-15

    The CERN Axion Solar Telescope (CAST) has been in operation and taking data since 2003. The main objective of the CAST experiment is to search for a hypothetical pseudoscalar boson, the axion, which might be produced in the core of the sun. The basic physics process CAST is based on is the time inverted Primakoff effect, by which an axion can be converted into a detectable photon in an external electromagnetic field. The resulting x-ray photons are expected to be thermally distributed between 1 and 7 keV. The most sensitive detector system of CAST is a pn-CCD detector combined with a Wolter I type x-ray mirror system. With the x-ray telescope of CAST a background reduction of more than 2 orders of magnitude is achieved, such that for the first time the axion photon coupling constant g{sub a{gamma}}{sub {gamma}} can be probed beyond the best astrophysical constraints g{sub a{gamma}}{sub {gamma}} < 1 x 10{sup -10} GeV{sup -1}.

  20. Novel technologies for the lost foam casting process

    Science.gov (United States)

    Jiang, Wenming; Fan, Zitian

    2018-03-01

    Lost foam casting (LFC) is a green precision casting process categorized as a near net forming technology. Yet, despite its popularity, it still suffers from some technological problems, such as poor filling ability of the castings, coarse and non-dense microstructure, low mechanical properties for the Al and Mg LFC processes, and defective carburization for the low carbon steel LFC process. These drawbacks restrict the development and widespread application of the LFC process. To solve these problems, the present study developed several novel LFC technologies, namely, LFC technologies under vacuum and low pressure, vibration solidification, and pressure solidification conditions; expendable shell casting technology; and preparation technology of bimetallic castings based on the LFC process. The results showed that the LFC under vacuum and low pressure evidently improved the filling ability and solved the oxidization problem of the alloys, which is suitable for producing complex and thinwall castings. The vibration and pressure solidifications increased the compactness of the castings and refined the microstructure, significantly improving the mechanical properties of the castings. The expendable shell casting technology could solve the pore, carburization, and inclusion defects of the traditional LFC method, obtaining castings with acceptable surface quality. Moreover, the Al/Mg and Al/Al bimetallic castings with acceptable metallurgical bonding were successfully fabricated using the LFC process. These proposed novel LFC technologies can solve the current technological issues and promote the technological progress of the LFC process.

  1. Effect of surface roughness on ultrasonic echo amplitude in aluminium-copper alloy castings

    International Nuclear Information System (INIS)

    Ambardar, R.; Pathak, S.D.; Prabhakar, O.; Jayakumar, T.

    1996-01-01

    In the present investigation, the influence of test surface roughness on ultrasonic back-wall echo (BWE) amplitude in Al-4.5%Cu alloy cast specimens has been studied. The results indicate that as the value of surface roughness of the specimen increases, the value of relating BWE amplitude at a given probe frequency decreases. However, under the present set of experimental conditions, the decrease in BWE amplitude with the increase in surface roughness of the test specimen is found to be appreciable at 10 MHz probe frequency. (author)

  2. Pre-Brazed Casting and Hot Radial Pressing: A Reliable Process for the Manufacturing of CFC and W Monoblock Mockups

    International Nuclear Information System (INIS)

    Visca, E.; Libera, S.; Mancini, A.; Mazzone, G.; Pizzuto, A.; Testani, C.

    2006-01-01

    ENEA association is involved in the European International Thermonuclear Experimental Reactor (ITER) R-and-D activities and in particular for the manufacturing of high heat flux plasma-facing components (HHFC), such as the divertor targets, the baffles and the limiters: During the last years ENEA has manufactured actively cooled mock-ups by using different technologies, namely brazing, diffusion bonding and hot isostatic pressing (HIPping). A new manufacturing process has been set up and tested. It was successfully applied for the manufacturing of W armoured monoblock mockups. This technique is the HRP (Hot Radial Pressing) based on performing a radial diffusion bonding between the cooling tube and the armour tile by pressurizing only the internal tube and by keeping the joining zone in vacuum and at the required bonding temperature. The heating is obtained by a standard air furnace. The next step was to apply the HRP technique for the manufacturing of CFC armoured monoblock components. For this purpose some issues have to be solved like as the low CFC tensile strength, the pure copper interlayer between the heat sink and the armour necessary to mitigate the stress at the joint interface and the low wettability of the pure copper on the CFC matrix. This paper reports the research path followed to manufacture a medium scale vertical target CFC and W armoured mockup by HRP. An ad hoc rig able to maintain the CFC in a compressive constant condition was also designed and tested. The casting of a soft copper interlayer between the tube and the tile was performed by a new technique: the Pre-Brazed Casting (PBC, ENEA patent). Some mock-ups with three NB31 CFC tiles were successfully manufactured and tested to thermal fatigue using electron beam facilities. They all reached at least 1000 cycles at 20 MW/m 2 without suffering any damage. The manufactured medium scale vertical target mock-up is now under testing at the FE2000 (France) facility. (author)

  3. TECHNOLOGICAL PARAMETERS OF SLUGS CASTING OF GREY CAST IRON BY FROSTING

    Directory of Open Access Journals (Sweden)

    E. I. Marukovich

    2009-01-01

    Full Text Available The relation of geometrical parametres of casting with technological ones is shown. The monogram for definition of basic technological parametres of obtaining of castings by the method of continuously-cyclic iterative casting by freezing-up is presented.

  4. Colour Metallography of Cast Iron - Chapter 3: Spheroidal Graphite Cast Iron (Ⅳ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2010-11-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  5. Colour Metallography of Cast Iron - Chapter 3: Spheroidal Graphite Cast Iron (Ⅰ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2010-02-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  6. Colour Metallography of Cast Iron - Chapter 4: Vermicular Graphite Cast Iron (Ⅱ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2011-05-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  7. Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency

    Science.gov (United States)

    Stromme, Eric T.; Henderson, Hunter B.; Sims, Zachary C.; Kesler, Michael S.; Weiss, David; Ott, Ryan T.; Meng, Fanqiang; Kassoumeh, Sam; Evangelista, James; Begley, Gerald; Rios, Orlando

    2018-04-01

    Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatment line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. This work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.

  8. Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency

    Science.gov (United States)

    Stromme, Eric T.; Henderson, Hunter B.; Sims, Zachary C.; Kesler, Michael S.; Weiss, David; Ott, Ryan T.; Meng, Fanqiang; Kassoumeh, Sam; Evangelista, James; Begley, Gerald; Rios, Orlando

    2018-06-01

    Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatment line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. This work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.

  9. The structure of abrasion-resisting castings made of chromium cast iron

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2011-01-01

    Full Text Available In this study presents the analyse of chrome iron cast structure (as-cast condition which are used in rugged conditions abrasion-percussive and high temperature. While producing the casts of chrome iron major influence has been preserve the structure of technologi cal process parameters. The addition to Fe-C-Cr alloy Ni, Mo or Cu and then proper heat treatment leads to the improvement of functional and mechanical cast qualities. Then it is possible to develop high mechanical properties which are recommended by PN-EN12513. As can it be seen from the above research silicon is an adverse chemical element in this kind of alloy cast iron. However, the reason of cracksappearing in chrome iron casts are phosphorus eutectic microareas. When the compound of Si and P reach the critical point, described inPN-88/H-83144 outdated standard, the microareas might appear.

  10. The deformation of wax patterns and castings in investment casting technology

    Directory of Open Access Journals (Sweden)

    A. Herman

    2012-01-01

    Full Text Available The dimensional accuracy of the final casting of Inconel alloy 738 LC is affected by many aspects. One of them is the choice of method and time of cooling wax model for precision investment casting. The main objective was to study the initial deformation of the complex shape of the casting of the rotor blades. Various approaches have been tested for cooling wax pattern. When wax models are cooling on the air, without clamping in jig for cooling, deviations from the ideal shape of the casting are very noticeable (up to 8 mm and most are in extreme positions of the model. When blade is cooled in fixing jig in water environment, the resulting deviations compared with cooling in air are significantly larger, sometimes up to 10 mm. This itself does not mean that the final shape of the casting is dimensionally more accurate with usage of wax models, which have deviations from the ideal position smaller. Another deformation occurs when shell mould is produced around wax pattern and furthermore deformations emerge while casting of blade is cooling. This paper demonstrates first steps in describing complex process of deformations of Inconel alloy blades produced with investment casting technology by comparing results from thermal imagery, simulations in foundry simulation software ProCAST 2010 and measurements from CNC scanning system Carl Zeiss MC 850. Conclusions are so far not groundbreaking, but it seems deformations of wax pattern and deformations of castings do in some cases cancel each other by having opposite directions. Describing entirely whole process of deformations will help increase precision of blade castings so that models at the beginning and blades in the end are the same.

  11. Moessbauer study of the composition and corrosion behaviour of electrodeposited and cast brass containing 1-4 m% tin

    International Nuclear Information System (INIS)

    Vertes, A.; Suba, M.; Varsanyi-Lakatos, M.; Czako-Nagy, I.; Pchelnikov, A.P.; Losev, V.V.

    1982-01-01

    Moessbauer measurements on electrodeposited and cast brass containing 1-4 m% tin were carried out using conversion electron detector. It was found that the tin formed phases with copper but not with zinc. The identified phases were β, γ, epsilon and eta and their ratio depended on the tin concentration and on the preparation process of the brass. The corrosion behaviour of the samples was also studied. (author)

  12. Assessment of a spent fuel disposal canister. Assessment studies for a copper canister with cast steel inner component

    International Nuclear Information System (INIS)

    Bond, A.E.; Hoch, A.R.; Jones, G.D.; Tomczyk, A.J.; Wiggin, R.M.; Worraker, W.J.

    1997-05-01

    The proposed design for a final repository for spent fuel and other long-lived residues in Sweden, is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will then be placed in vertical storage holes drilled in a series of caverns excavated from the granite bedrock at a depth of about 500 m. Each canister will be surrounded by compacted bentonite clay. In this report, a simple model of the behaviour of the canister subsequent to a first breach in its copper overpack is developed. This model is used to predict: -the ingress of water to the canister (as a function of the size and the shape of the initial defect, the buffer conductivity, the corrosion rate and the pressure inside the canister); -the build-up of corrosion products in the canister (as a function of the available water in the canister, the corrosion rate and the properties of the corrosion products); -the effect of corrosion on the structural integrity of the canister. A number of different scenarios for the location of the breach in the copper overpack are considered

  13. Towards efficient solar-to-hydrogen conversion: Fundamentals and recent progress in copper-based chalcogenide photocathodes

    Directory of Open Access Journals (Sweden)

    Chen Yubin

    2016-09-01

    Full Text Available Photoelectrochemical (PEC water splitting for hydrogen generation has been considered as a promising route to convert and store solar energy into chemical fuels. In terms of its large-scale application, seeking semiconductor photoelectrodes with high efficiency and good stability should be essential. Although an enormous number of materials have been explored for solar water splitting in the last several decades, challenges still remain for the practical application. P-type copper-based chalcogenides, such as Cu(In, GaSe2 and Cu2ZnSnS4, have shown impressive performance in photovoltaics due to narrow bandgaps, high absorption coefficients, and good carrier transport properties. The obtained high efficiencies in photovoltaics have promoted the utilization of these materials into the field of PEC water splitting. A comprehensive review on copper-based chalcogenides for solar-to-hydrogen conversion would help advance the research in this expanding area. This review will cover the physicochemical properties of copper-based chalco-genides, developments of various photocathodes, strategies to enhance the PEC activity and stability, introductions of tandem PEC cells, and finally, prospects on their potential for the practical solar-to-hydrogen conversion. We believe this review article can provide some insights of fundamentals and applications of copper-based chalco-genide thin films for PEC water splitting.

  14. Development of NZP ceramic based {open_quotes}cast-in-place{close_quotes} diesel engine port liners

    Energy Technology Data Exchange (ETDEWEB)

    Nagaswaran, R.; Limaye, S.Y.

    1996-02-01

    BSX (Ba{sub 1+x}Zr{sub 4}P{sub 6-2x}Si{sub 2x}O{sub 24}) and CSX (Ca{sub l-x}Sr{sub x}Zr{sub 4}P{sub 6}O{sub 24}) type NZP ceramics were fabricated and characterized for: (i) thermal properties viz., thermal conductivity, thermal expansion, thermal stability and thermal shock resistance; (ii) mechanical properties viz., flexure strength and elastic modulus; and (iii) microstructures. Results of these tests and analysis indicated that the BS-25 (x=0.25 in BSX) and CS-50 (x=0.50 in CSX) ceramics had the most desirable properties for casting metal with ceramic in place. Finite element analysis (FEA) of metal casting (with ceramic in place) was conducted to analyze thermomechanical stresses generated and determine material property requirements. Actual metal casting trials were also conducted to verify the results of finite element analysis. In initial trials, the ceramic cracked because of the large thermal expansion mismatch (hoop) stresses (predicted by FEA also). A process for introduction of a compliant layer between the metal and ceramic to alleviate such destructive stresses was developed. The compliant layer was successful in preventing cracking of either the ceramic or the metal. In addition to these achievements, pressure slip casting and gel-casting processes for fabrication of NZP components; and acoustic emission and ultrasonics-based NDE techniques for detection of microcracks and internal flaws, respectively, were successfully developed.

  15. Anti-carburizing Coating for Resin Sand Casting of Low Carbon Steel Based on Composite Silicate Powder Containing Zirconium

    Directory of Open Access Journals (Sweden)

    Zhan Chunyi

    2018-01-01

    Full Text Available This paper studied the structure and properties of anticarburizing coating based on composite silicate powder containing zirconium by X-ray diffraction analyzer, thermal expansion tester, digital microscope and other equipment. It is introduced that the application example of the coating in the resin-sand casting of ZG1Cr18Ni9Ti stainless steel impeller. The anti-carburizing effect of the coating on the surface layer of the cast is studied by using direct reading spectrometer and spectrum analyzer. The change of the micro-structure of the coating after casting and cooling is observed by scanning electron microscope. The analysis of anti-carburizing mechanism of the coating is presented. The results indicate that the coating possesses excellent suspension property, brush ability, permeability, levelling property and crackresistance. The coating exhibits high strength and low gas evolution. Most of the coating could be automatically stripped off flakily when the casting was shaken out. The casting possesses excellent surface finish and antimetal penetration effect. The carburizing layer thickness of the stainless steel impeller casting with respect to allowable upper limit of carbon content is about 1mm and maximum carburizing rate is 23.6%. The anticarburizing effect of casting surface is greatly improved than that of zircon powder coating whose maximum carburizing rate is 67.9% and the carburizing layer thickness with respect to allowable upper limit of carbon content is greater than 2mm. The composite silicate powder containing zirconium coating substantially reduces the zircon powder which is expensive and radioactive and mainly dependent on imports. The coating can be used instead of pure zircon powder coating to effectively prevent metal-penetration and carburizing of resin-sand-casting surface of low carbon steel, significantly improve the foundry production environment and reduce the production costs.

  16. Direct Cast U-6Nb – 2017 Progress on Cylindrical Castings

    Energy Technology Data Exchange (ETDEWEB)

    Aikin, Jr., Robert M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-04

    This report describes work to further develop a sound technical basis and best practices for mold design and process parameters for the Direct Casting of U-6wt%Nb components. One major challenge to the production of U-6Nb components is the propensity for niobium segregation during casting and solidification. This is especially true for cylindrical castings where the vertical side walls allow flotation of Nb resulting in severe inverse macrosegregation. In this work, a small (120 mm diameter by 180 mm tall) and large cylinder (250 mm diameter by 310 mm tall) are examined with a focus on reducing, or eliminating, niobium segregation. It is demonstrated that counter gravity casting (top-to-bottom solidification) can be used to minimize segregation in the small cylinder. Attempts to counter gravity cast the large cylinder were unsuccessful, in large part due to size limitations of the current furnace. A path forward for casting of the large cylinders is discussed.

  17. Anodization of cast aluminium alloys produced by different casting methods

    Directory of Open Access Journals (Sweden)

    K. Labisz

    2008-08-01

    Full Text Available In this paper the usability of two casting methods, of sand and high pressure cast for the anodization of AlSi12 and AlSi9Cu3 aluminium cast alloys was investigated. With defined anodization parameters like electrolyte composition and temperature, current type and value a anodic alumina surface layer was produced. The quality, size and properties of the anodic layer was investigated after the anodization of the chosen aluminium cast alloys. The Alumina layer was observed used light microscope, also the mechanical properties were measured as well the abrasive wear test was made with using ABR-8251 equipment. The researches included analyze of the influence of chemical composition, geometry and roughness of anodic layer obtained on aluminum casts. Conducted investigations shows the areas of later researches, especially in the direction of the possible, next optimization anodization process of aluminum casting alloys, for example in the range of raising resistance on corrosion to achieve a suitable anodic surface layer on elements for increasing applications in the aggressive environment for example as materials on working building constructions, elements in electronics and construction parts in air and automotive industry.

  18. The Effect of Shell Thickness, Insulation and Casting Temperature on Defects Formation During Investment Casting of Ni-base Turbine Blades

    Directory of Open Access Journals (Sweden)

    Raza M.

    2015-12-01

    Full Text Available Turbine blades have complex geometries with free form surface. Blades have different thickness at the trailing and leading edges as well as sharp bends at the chord-tip shroud junction and sharp fins at the tip shroud. In investment casting of blades, shrinkage at the tip-shroud and cord junction is a common casting problem. Because of high temperature applications, grain structure is also critical in these castings in order to avoid creep. The aim of this work is to evaluate the effect of different process parameters, such as, shell thickness, insulation and casting temperature on shrinkage porosity and grain size. The test geometry used in this study was a thin-walled air-foil structure which is representative of a typical hot-gas-path rotating turbine component. It was observed that, in thin sections, increased shell thickness helps to increase the feeding distance and thus avoid interdendritic shrinkage. It was also observed that grain size is not significantly affected by shell thickness in thin sections. Slower cooling rate due to the added insulation and steeper thermal gradient at metal mold interface induced by the thicker shell not only helps to avoid shrinkage porosity but also increases fill-ability in thinner sections.

  19. Cast erosion from the cleaning of debris after the use of a cast trimmer.

    Science.gov (United States)

    Hansen, Paul A; Beatty, Mark W

    2017-02-01

    Whether using tap water to rinse off debris will make a clinical difference to the surface detail of a gypsum cast is unknown. In addition, how best to remove debris from the cast is unknown. The purpose of this in vitro study was to evaluate the efficiency of different methods of cleaning a gypsum cast after trimming and the effect of short-term exposure to tap water on the surface quality of the cast. A die fitting American National Standards Institute/American Dental Association specification 25 (International Standards Organization specification 6873) for dental gypsum products was embedded in a Dentoform with the machined lines positioned at the same level as the occlusal surface of the posterior teeth. A flat plate was used to ensure that the plane of occlusion for the die was at the same position as the posterior teeth. Forty polyvinyl siloxane impressions of the Dentoform were made and poured with vacuum-mixed improved Type IV dental stone. Each cast was inspected for the accurate reproduction of the lines. The base of the 2-stage pour was trimmed with a cast trimmer with water, and surface debris was removed by rinsing by hand under tap water for 10 seconds, by brushing the cast with a soft toothbrush for 10 seconds, or by resoaking the cast and using a soft camel hair brush in slurry water for 10 seconds. The amount of debris was evaluated on a scale of 1 to 4, and the quality of the 20-μm line was evaluated on a scale of 1 to 4 under ×15 magnification. The nonparametric Kruskal-Wallis ranks test was used to identify significant differences among the different cleaning methods (α=.05). Results of the Kruskal-Wallis and Kruskal-Wallis Z-value tests demonstrated that all cleaning methods produced cleaner casts than were observed for uncleansed controls (P<.001), but no differences in debris removal were found among the different cleaning methods (.065≤P≤.901). The ability to see the quality of a 20-μm line (P=.974) was not statistically different

  20. Spectroscopic characterization of schiff base-copper complexes immobilized in smectite clays

    Directory of Open Access Journals (Sweden)

    Patrícia M. Dias

    2010-01-01

    Full Text Available Herein, the immobilization of some Schiff base-copper(II complexes in smectite clays is described as a strategy for the heterogenization of homogeneous catalysts. The obtained materials were characterized by spectroscopic techniques, mostly UV/Vis, EPR, XANES and luminescence spectroscopy. SWy-2 and synthetic Laponite clays were used for the immobilization of two different complexes that have previously shown catalytic activity in the dismutation of superoxide radicals, and disproportionation of hydrogen peroxide. The obtained results indicated the occurrence of an intriguing intramolecular redox process involving copper and the imine ligand at the surface of the clays. These studies are supported by computational calculations.

  1. Copper economy in Chlamydomonas: Prioritized allocation and reallocation of copper to respiration vs. photosynthesis

    Science.gov (United States)

    Kropat, Janette; Gallaher, Sean D.; Urzica, Eugen I.; Nakamoto, Stacie S.; Strenkert, Daniela; Tottey, Stephen; Mason, Andrew Z.; Merchant, Sabeeha S.

    2015-01-01

    Inorganic elements, although required only in trace amounts, permit life and primary productivity because of their functions in catalysis. Every organism has a minimal requirement of each metal based on the intracellular abundance of proteins that use inorganic cofactors, but elemental sparing mechanisms can reduce this quota. A well-studied copper-sparing mechanism that operates in microalgae faced with copper deficiency is the replacement of the abundant copper protein plastocyanin with a heme-containing substitute, cytochrome (Cyt) c6. This switch, which is dependent on a copper-sensing transcription factor, copper response regulator 1 (CRR1), dramatically reduces the copper quota. We show here that in a situation of marginal copper availability, copper is preferentially allocated from plastocyanin, whose function is dispensable, to other more critical copper-dependent enzymes like Cyt oxidase and a ferroxidase. In the absence of an extracellular source, copper allocation to Cyt oxidase includes CRR1-dependent proteolysis of plastocyanin and quantitative recycling of the copper cofactor from plastocyanin to Cyt oxidase. Transcriptome profiling identifies a gene encoding a Zn-metalloprotease, as a candidate effecting copper recycling. One reason for the retention of genes encoding both plastocyanin and Cyt c6 in algal and cyanobacterial genomes might be because plastocyanin provides a competitive advantage in copper-depleted environments as a ready source of copper. PMID:25646490

  2. Synthesis of copper nanocolloids using a continuous flow based microreactor

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Lei, E-mail: xulei_kmust@aliyun.com [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Mechanical Engineering, University of Washington, Seattle 98195 (United States); Peng, Jinhui [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Srinivasakannan, C. [Chemical Engineering Program, The petroleum Institute, Abu Dhabi, P.O. Box 253 (United Arab Emirates); Chen, Guo [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Shen, Amy Q., E-mail: amy.shen@oist.jp [Mechanical Engineering, University of Washington, Seattle 98195 (United States); Micro/Bio/Nanofluidics Unit, Okinawa Institute of Technology Graduate University, Okinawa (Japan)

    2015-11-15

    Highlights: • The copper nanocolloidal were synthesized in a T-shaped microreactor at room temperature. • The morphology of copper nanocolloidal are spherical, and with good size distribution. • The mean particle diameter increased with decreases the NaBH{sub 4} molar concentration. • With increasing particle size, the more obvious localized surface plasmon resonance absorption. - Abstract: The copper (Cu) nanocolloids were prepared by sodium borohydride (NaBH{sub 4}) reduction of metal salt solutions in a T-shaped microreactor at room temperature. The influence of NaBH{sub 4} molar concentrations on copper particle's diameter, morphology, size distribution, and elemental compositions has been investigated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The ultraviolet–visible spectroscopy (UV–vis) was used to verify the chemical compounds of nanocolloids and estimate the average size of copper nanocolloids. The synthesized copper nanocolloids were uniform in size and non-oxidized. A decrease in the mean diameter of copper nanocolloids was observed with increasing NaBH{sub 4} molar concentrations. The maximum mean diameter (4.25 nm) occurred at the CuSO{sub 4}/NaBH{sub 4} molar concentration ratio of 1:2.

  3. Pre-brazed casting and hot radial pressing: A reliable process for the manufacturing of CFC and W monoblock mock-ups

    Energy Technology Data Exchange (ETDEWEB)

    Visca, Eliseo [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, Via E. Fermi, 45, IT-00044 Frascati, RM (Italy)], E-mail: visca@frascati.enea.it; Libera, S.; Mancini, A.; Mazzone, G.; Pizzuto, A. [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, Via E. Fermi, 45, IT-00044 Frascati, RM (Italy); Testani, C. [CSM S.p.A., IT-00128 Castel Romano, RM (Italy)

    2007-10-15

    ENEA is involved in the European International Thermonuclear Experimental Reactor (ITER) R and D activities and, in particular, for the manufacturing of high heat flux plasma-facing components (HHFC), such as the divertor targets, the baffles and the limiters. During last years, ENEA has manufactured actively cooled mock-ups by using different technologies, namely brazing, diffusion bonding and hot isostatic pressing (HIPping). A new manufacturing process has been set up and tested. It was successfully applied for the manufacturing of W armoured monoblock mock-ups. This technique is the HRP (hot radial pressing) based on performing a radial diffusion bonding between the cooling tube and the armour tile by pressurizing only internal tube and by keeping the joining zone in vacuum at the required bonding temperature. The heating is obtained by a standard air furnace. The HRP technique is now used for the manufacturing of CFC armoured monoblock components. For this purpose, some issues have to be faced, like the low CFC tensile strength, the pure copper interlayer between the heat sink and the armour necessary to mitigate the stress at the joint interface, and the low wettability of the pure copper on the CFC matrix. This paper reports the research path followed to manufacture a medium scale vertical target CFC and W armoured mock-up by HRP. A casting of a soft copper interlayer between the tube and the tile was obtained by a new technique: the pre-brazed casting (PBC, ENEA patent). Some preliminary mock-ups with three NB31 CFC tiles were successfully manufactured and tested to thermal fatigue using electron beam facilities. They all reached at least 1000 cycles at 20 MW/m{sup 2} without suffering any damage. The manufactured medium scale vertical target mock-up is now under testing at the FE2000 (France) facility. These activities were performed in the frame of ITER-EFDA contracts.

  4. Aging of Dissolved Copper and Copper-based Nanoparticles in Five Different Soils: Short-term Kinetics vs. Long-term Fate

    Science.gov (United States)

    With the growing availability and use of copper-based nanomaterials (Cu-NMs), there is increasing concern regarding their release and potential impact on the environment. In this study, the short term (≤5 d) aging profile and the long-term (135 d) speciation of dissolved Cu, cop...

  5. Research on Accuracy of Automatic System for Casting Measuring

    Directory of Open Access Journals (Sweden)

    Jaworski J.

    2016-09-01

    Full Text Available Ensuring the required quality of castings is an important part of the production process. The quality control should be carried out in a fast and accurate way. These requirements can be met by the use of an optical measuring system installed on the arm of an industrial robot. In the article a methodology for assessing the quality of robotic measurement system to control certain feature of the casting, based on the analysis of repeatability and reproducibility is presented. It was shown that industrial robots equipped with optical measuring systems have the accuracy allowing their use in the process of dimensional control of castings manufactured by lost-wax process, permanent-mould casting, and pressure die-casting.

  6. Dimensional control of die castings

    Science.gov (United States)

    Karve, Aniruddha Ajit

    The demand for net shape die castings, which require little or no machining, is steadily increasing. Stringent customer requirements are forcing die casters to deliver high quality castings in increasingly short lead times. Dimensional conformance to customer specifications is an inherent part of die casting quality. The dimensional attributes of a die casting are essentially dependent upon many factors--the quality of the die and the degree of control over the process variables being the two major sources of dimensional error in die castings. This study focused on investigating the nature and the causes of dimensional error in die castings. The two major components of dimensional error i.e., dimensional variability and die allowance were studied. The major effort of this study was to qualitatively and quantitatively study the effects of casting geometry and process variables on die casting dimensional variability and die allowance. This was accomplished by detailed dimensional data collection at production die casting sites. Robust feature characterization schemes were developed to describe complex casting geometry in quantitative terms. Empirical modeling was utilized to quantify the effects of the casting variables on dimensional variability and die allowance for die casting features. A number of casting geometry and process variables were found to affect dimensional variability in die castings. The dimensional variability was evaluated by comparisons with current published dimensional tolerance standards. The casting geometry was found to play a significant role in influencing the die allowance of the features measured. The predictive models developed for dimensional variability and die allowance were evaluated to test their effectiveness. Finally, the relative impact of all the components of dimensional error in die castings was put into perspective, and general guidelines for effective dimensional control in the die casting plant were laid out. The results of

  7. Colloidal and electrochemical aspects of copper-CMP

    Science.gov (United States)

    Sun, Yuxia

    Copper based interconnects with low dielectric constant layers are currently used to increase interconnect densities and reduce interconnect time delays in integrated circuits. The technology used to develop copper interconnects involves Chemical Mechanical Planarization (CMP) of copper films deposited on low-k layers (silica or silica based films), which is carried out using slurries containing abrasive particles. One issue using such a structure is copper contamination over dielectric layers (SiO2 film), if not reduced, this contamination will cause current leakage. In this study, the conditions conducive to copper contamination onto SiO2 films during Cu-CMP process were studied, and a post-CMP cleaning technique was discussed based on experimental results. It was found that the adsorption of copper onto a silica surface is kinetically fast (electrocoagulation was investigated to remove both copper and abrasive slurry particles simultaneously. For effluent containing ˜40 ppm dissolved copper, it was found that ˜90% dissolved copper was removed from the waste streams through electroplating and in-situ chemical precipitation. The amount of copper removed through plating is impacted by membrane surface charge, type/amount of complexing agents, and solid content in the slurry suspension. The slurry particles can be removed ˜90% within 2 hours of EC through multiple mechanisms.

  8. Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique.

    Science.gov (United States)

    Yang, Tae Young; Lee, Jung Min; Yoon, Seog Young; Park, Hong Chae

    2010-05-01

    A novel freeze-gel casting/polymer sponge technique has been introduced to fabricate porous hydroxyapatite scaffolds with controlled "designer" pore structures and improved compressive strength for bone tissue engineering applications. Tertiary-butyl alcohol (TBA) was used as a solvent in this work. The merits of each production process, freeze casting, gel casting, and polymer sponge route were characterized by the sintered microstructure and mechanical strength. A reticulated structure with large pore size of 180-360 microm, which formed on burn-out of polyurethane foam, consisted of the strut with highly interconnected, unidirectional, long pore channels (approximately 4.5 microm in dia.) by evaporation of frozen TBA produced in freeze casting together with the dense inner walls with a few, isolated fine pores (<2 microm) by gel casting. The sintered porosity and pore size generally behaved in an opposite manner to the solid loading, i.e., a high solid loading gave low porosity and small pore size, and a thickening of the strut cross section, thus leading to higher compressive strengths.

  9. The simulation of magnesium wheel low pressure die casting based on PAM-CASTTM

    International Nuclear Information System (INIS)

    Peng Yinghong; Wang Yingchun; Li Dayong; Zeng Xiaoqin

    2004-01-01

    Magnesium is the lightest metal commonly used in engineering, with various excellent characteristics such as high strength and electromagnetic interference shielding capability. Particularly, the usage of magnesium in automotive industry can meet better the need to reduce fuel consumption and CO2 emissions. Nowadays, most current magnesium components in automobiles are made by die casting. In this paper, commercial software for die casting, PAM-CAST TM , was utilized to simulate the low pressure die casting process of magnesium wheel. Through calculating temperature field and velocity field during filling and solidification stages, the evolution of temperature distribution and liquid fraction was analyzed. Then, the potential defects including the gas entrapments in the middle of the spokes, shrinkages between the rim and the spokes were forecasted. The analytical results revealed that the mold geometry and die casting parameters should be improved in order to get the sound magnesium wheel. The reasons leading to these defects were also analyzed and the solutions to eliminate them were put forward. Furthermore, through reducing the pouring velocity, the air gas entrapments and partial shrinkages were eliminated effectively

  10. Corrosion resistance of copper canister weld material

    International Nuclear Information System (INIS)

    Gubner, Rolf; Andersson, Urban

    2007-03-01

    The proposed design for a final repository for spent fuel and other long-lived residues is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast iron insert fitted inside a copper canister. SKB has since several years developed manufacturing processes for the canister components using a network of manufacturers. For the encapsulation process SKB has built the Canister Laboratory to demonstrate and develop the encapsulation technique in full scale. The critical part of the encapsulation of spent fuel is the sealing of the canister which is done by welding the copper lid to the cylindrical part of the canister. Two welding techniques have been developed in parallel, Electron Beam Welding (EBW) and Friction Stir Welding (FSW). During the past two decades, SKB has developed the technology EBW at The Welding Institute (TWI) in Cambridge, UK. The development work at the Canister Laboratory began in 1999. In electron beam welding, a gun is used to generate the electron beam which is aimed at the joint. The beam heats up the material to the melting point allowing a fusion weld to be formed. The gun was developed by TWI and has a unique design for use at reduced pressure. The system has gone through a number of improvements under the last couple of years including implementation of a beam oscillation system. However, during fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow they will tend to concentrate impurities at the new grain boundaries that might pose adverse effects on the corrosion resistance of welds. As a new method for joining, SKB has been developing friction stir welding (FSW) for sealing copper canisters for spent nuclear fuel in cooperation with TWI since 1997. FSW was invented in 1991 at TWI and is a thermo

  11. Corrosion resistance of copper canister weld material

    Energy Technology Data Exchange (ETDEWEB)

    Gubner, Rolf; Andersson, Urban [Corrosion and Metals Research Institute, Sto ckholm (Sweden)

    2007-03-15

    The proposed design for a final repository for spent fuel and other long-lived residues is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast iron insert fitted inside a copper canister. SKB has since several years developed manufacturing processes for the canister components using a network of manufacturers. For the encapsulation process SKB has built the Canister Laboratory to demonstrate and develop the encapsulation technique in full scale. The critical part of the encapsulation of spent fuel is the sealing of the canister which is done by welding the copper lid to the cylindrical part of the canister. Two welding techniques have been developed in parallel, Electron Beam Welding (EBW) and Friction Stir Welding (FSW). During the past two decades, SKB has developed the technology EBW at The Welding Institute (TWI) in Cambridge, UK. The development work at the Canister Laboratory began in 1999. In electron beam welding, a gun is used to generate the electron beam which is aimed at the joint. The beam heats up the material to the melting point allowing a fusion weld to be formed. The gun was developed by TWI and has a unique design for use at reduced pressure. The system has gone through a number of improvements under the last couple of years including implementation of a beam oscillation system. However, during fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow they will tend to concentrate impurities at the new grain boundaries that might pose adverse effects on the corrosion resistance of welds. As a new method for joining, SKB has been developing friction stir welding (FSW) for sealing copper canisters for spent nuclear fuel in cooperation with TWI since 1997. FSW was invented in 1991 at TWI and is a thermo

  12. 3D scanning based mold correction for planar and cylindrical parts in aluminum die casting

    Directory of Open Access Journals (Sweden)

    Takashi Seno

    2015-04-01

    Full Text Available Aluminum die casting is an important manufacturing process for mechanical components. Die casting is known to be more accurate than other types of casting; however, post-machining is usually necessary to achieve the required accuracy. The goal of this investigation is to develop machining- free aluminum die casting. Improvement of the accuracy of planar and cylindrical parts is expected by correcting metal molds. In the proposed method, the shape of cast aluminum made with the initial metal molds is measured by 3D scanning. The 3D scan data includes information about deformations that occur during casting. Therefore, it is possible to estimate the deformation and correction amounts by comparing 3D scan data with product computer-aided design (CAD data. We corrected planar and cylindrical parts of the CAD data for the mold. In addition, we corrected the planar part of the metal mold using the corrected mold data. The effectiveness of the proposed method is demonstrated by evaluating the accuracy improvement of the cast aluminum made with the corrected mold.

  13. Fabricating Zr-Based Bulk Metallic Glass Microcomponent by Suction Casting Using Silicon Micromold

    Directory of Open Access Journals (Sweden)

    Zhijing Zhu

    2014-08-01

    Full Text Available A suction casting process for fabricating Zr55Cu30Al10Ni5 bulk metallic glass microcomponent using silicon micromold has been studied. A complicated BMG microgear with 50 μm in module has been cast successfully. Observed by scanning electron microscopy and laser scanning confocal microscopy, we find that the cast microgear duplicates the silicon micromold including the microstructure on the surface. The amorphous state of the microgear is confirmed by transmission election microscopy. The nanoindentation hardness and elasticity modulus of the microgear reach 6.5 GPa and 94.5 GPa. The simulation and experimental results prove that the suction casting process with the silicon micromold is a promising one-step method to fabricate bulk metallic glass microcomponents with high performance for applications in microelectromechanical system.

  14. Plane-Based Sampling for Ray Casting Algorithm in Sequential Medical Images

    Science.gov (United States)

    Lin, Lili; Chen, Shengyong; Shao, Yan; Gu, Zichun

    2013-01-01

    This paper proposes a plane-based sampling method to improve the traditional Ray Casting Algorithm (RCA) for the fast reconstruction of a three-dimensional biomedical model from sequential images. In the novel method, the optical properties of all sampling points depend on the intersection points when a ray travels through an equidistant parallel plan cluster of the volume dataset. The results show that the method improves the rendering speed at over three times compared with the conventional algorithm and the image quality is well guaranteed. PMID:23424608

  15. Application of digital pattern-less molding technology to produce art casting

    Directory of Open Access Journals (Sweden)

    Chen Li1

    2014-11-01

    Full Text Available Compared with the conventional casting process, digital pattern-less casting technology has many advantages such as good machining accuracy, a short processing cycle, and low production cost. It is a new rapid manufacturing technology for castings, integrated with CAD/CAM, casting, CNC machining and many other advanced technologies. With this digital casting technology, no pattern is needed for making molds; it is precise, flexible, and green. Usually, art castings have complex structures and are made in small batches or even made in a single-piece, especially for large-sized art castings. So it has the shortcomings of high cost, low efficiency and long time for making a pattern to produce art castings with the conventional casting processes. However, the digital pattern-less casting technology can be applied to fabricate art castings, since it can greatly shorten the manufacturing cycle and lower the production cost, thus having a very good prospect. In this study, based on the digital pattern-less casting technology, a plaque casting with artistic Chinese characters (a Chinese poem was designed and manufactured, and the production process was demonstrated in detail.

  16. The effect of major alloying elements on the size of the secondary dendrite arm spacing in the as-cast Al-Si-Cu alloys

    Directory of Open Access Journals (Sweden)

    M. B. Djurdjevič

    2012-01-01

    Full Text Available A comprehensive understanding of melt quality is of paramount importance for the control and prediction of actual casting characteristics. Among many phenomenons that occur during the solidification of castings, there are four that control structure and consequently mechanical properties: chemical composition, liquid metal treatment, cooling rate and temperature gradient. The cooling rate and alloy composition are among them most important. This paper investigates the effect of some major alloying elements (silicon and copper of Al-Si-Cu alloys on the size of the secondary dendrite arm spacing. It has been shown that both alloying elements have reasonable influence on the refinement of this solidification parameter.

  17. An Investigation of Low Biofouling Copper-charged Membranes

    Science.gov (United States)

    Asapu, Sunitha

    with increased biofouling resistance. The goal of this project was to develop low-biofouling nanofiltration cellulose acetate (CA) membranes through functionalization with metal chelating ligands charged with biocidal metal ions, i.e. copper ions. To this end, glycidyl methacrylate (GMA), an epoxy, was used to attach a chelating agent, iminodiacetic acid (IDA) to facilitate the charging of copper to the membrane surface. Both CA and CA-GMA membranes were cast using the phase-inversion method. The CA-GMA membranes were then charged with copper ions to make them low biofouling. Pore size distribution analysis of CA and copper charged membranes were conducted using various molecular weights of polyethylene glycol (PEG). CA and copper-charged membranes were characterized using Fourier Transform Infrared (FTIR), contact angle to measure hydrophilicity changes, and using scanning electron microscope (SEM) coupled with X-ray energy dispersive spectroscopy EDS to monitor copper leaching. Permeation experiments were conducted with distilled (DI) water, protein solutions, and synthetic brackish water containing microorganisms. The DI water permeation of the copper-charged membranes was initially lower than the CA membranes. The membranes were then subjected to bovine serum albumin (BSA) and lipase filtration. The copper-charged membranes showed higher pure water flux values for both proteins as compared to CA membranes. The rejection of BSA and lipase was the same for both the copper charged and CA membranes. The filtration with the synthetic brackish water showed that copper-charged membranes had higher flux values as compared to CA membranes, and biofouling analysis showed more bacteria on the CA membranes as compared to copper-charged membranes. Therefore, the copper-charged membranes made here have shown a potential to be used as low-biofouling membranes in the future.

  18. Copper Pyrimidine based MOFs

    Indian Academy of Sciences (India)

    Synthesized hydrothermally in a 23-mL Teflon lined stainless steel bomb by heating copper(II) 2-pyrazinecarboxylate (31 mg, 0.1 mmol) and tin(II) iodide (75 mg, 0.2 mmol) in 4 mL water at 150±C for 24 h. The reaction vessel was subsequently cooled to 70±C at 1±C/min and held at that temperature for 6 h before returning ...

  19. Casting metal microstructures from a flexible and reusable mold

    International Nuclear Information System (INIS)

    Cannon, Andrew H; King, William P

    2009-01-01

    This paper describes casting-based microfabrication of metal microstructures and nanostructures. The metal was cast into flexible silicone molds which were themselves cast from microfabricated silicon templates. Microcasting is demonstrated in two metal alloys of melting temperature 70 °C or 138 °C. Many structures were successfully cast into the metal with excellent replication fidelity, including ridges with periodicity 400 nm and holes or pillars with diameter in the range 10–100 µm and aspect ratio up to 2:1. The flexibility of the silicone mold permits casting of curved surfaces, which we demonstrate by fabricating a cylindrical metal roller of diameter 8 mm covered with microstructures. The metal microstructures can be in turn used as a reusable molding tool

  20. Compound cast product and method for producing a compound cast product

    Science.gov (United States)

    Meyer, Thomas N.; Viswanathan, Srinath

    2002-09-17

    A compound cast product is formed in a casting mold (14) having a mold cavity (16) sized and shaped to form the cast product. A plurality of injectors (24) is supported from a bottom side (26) of the casting mold (14). The injectors (24) are in fluid communication with the mold cavity (16) through the bottom side (26) of the casting mold (14). A molten material holder furnace (12) is located beneath the casting mold (14). The holder furnace (12) defines molten material receiving chambers (36) configured to separately contain supplies of two different molten materials (37, 38). The holder furnace (12) is positioned such that the injectors (24) extend downward into the receiving chamber (36). The receiving chamber (36) is separated into at least two different flow circuits (51, 52). A first molten material (37) is received in a first flow circuit (51), and a second molten material (38) is received into a second flow circuit (52). The first and second molten materials (37, 38) are injected into the mold cavity (16) by the injectors (24) acting against the force of gravity. The injectors (24) are positioned such that the first and second molten materials (37, 38) are injected into different areas of the mold cavity (16). The molten materials (37, 38) are allowed to solidify and the resulting compound cast product is removed from the mold cavity (16).

  1. Multi-layers castings

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2010-01-01

    Full Text Available In paper is presented the possibility of making of multi-layers cast steel castings in result of connection of casting and welding coating technologies. First layer was composite surface layer on the basis of Fe-Cr-C alloy, which was put directly in founding process of cast carbon steel 200–450 with use of preparation of mould cavity method. Second layer were padding welds, which were put with use of TIG – Tungsten Inert Gas surfacing by welding technology with filler on Ni matrix, Ni and Co matrix with wolfram carbides WC and on the basis on Fe-Cr-C alloy, which has the same chemical composition with alloy, which was used for making of composite surface layer. Usability for industrial applications of surface layers of castings were estimated by criterion of hardness and abrasive wear resistance of type metal-mineral.

  2. Hydrothermal growth of cross-linked hyperbranched copper dendrites using copper oxalate complex

    Science.gov (United States)

    Truong, Quang Duc; Kakihana, Masato

    2012-06-01

    A facile and surfactant-free approach has been developed for the synthesis of cross-linked hyperbranched copper dendrites using copper oxalate complex as a precursor and oxalic acid as a reducing and structure-directing agent. The synthesized particles are composed of highly branched nanostructures with unusual cross-linked hierarchical networks. The formation of copper dendrites can be explained in view of both diffusion control and aggregation-based growth model accompanied by the chelation-assisted assembly. Oxalic acid was found to play dual roles as reducing and structure-directing agent based on the investigation results. The understanding on the crystal growth and the roles of oxalic acid provides clear insight into the formation mechanism of hyperbranched metal dendrites.

  3. Interfacial phase formation of Al-Cu bimetal by solid-liquid casting method

    Directory of Open Access Journals (Sweden)

    Ying Fu

    2017-05-01

    Full Text Available The solid-liquid method was used to prepare the continuous casting of copper cladding aluminium by liquid aluminum alloy and solid copper, and the interfacial phase formation of Al-Cu bimetal at different pouring temperatures (700, 750, 800 oC was investigated by means of metallograph, scanning electron microscopy (SEM and energy dispersive spectrometry (EDS methods. The results showed that the pouring temperature of aluminum melt had an important influence on the element diffusion of Cu from the solid Cu to Al alloy melt and the reactions between Al and Cu, as well as the morphology of the Al-Cu interface. When the pouring temperature was 800 oC, there were abundant Al-Cu intermetallic compounds (IMCs near the interface. However, a lower pouring temperature (700 oC resulted in the formation of cavities which was detrimental to the bonding and mechanical properties. Under the conditions in this study, the good metallurgical bonding of Al-Cu was achieved at a pouring temperature of 750 oC.

  4. Triple Plate Mold Final Report: Optimization of the Mold Design and Casting Parameters for a Thin U-10mo Fuel Casting

    Energy Technology Data Exchange (ETDEWEB)

    Aikin, Jr., Robert M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-04

    This work describes the experiments and modeling that have been performed to improve and try to optimize the simultaneous casting of three plates of U-10wt%Mo in a single coil vacuum induction melting (VIM) furnace. The plates of interest are 280 mm wide by 203 mm tall by 5 mm thick (11" x 8" x 0.2"). The initial mold design and processing parameters were supplied by Y-12. The mold and casting cavity were instrumented with a number of thermocouples, and the casting performed to determine the thermal history of the mold and casting. The resulting cast plates were radiographed and numerous defects identified. Metallography was performed to help identify the nature of the radiographically observed defects. This information was then used to validate a mold filling and solidification model of that casting. Based on the initial casting, good casting design practice, and process simulation of several design alternatives, a revised design was developed with the goal of minimizing casting defects such as porosity. The redesigned mold had a larger hot-top and had its long axis along the horizontal direction. These changes were to try to develop a strong thermal gradient conducive to good feeding and minimization of micro- and macroporosity in the cast plates. An instrumented casting was then performed with the revised mold design and a linear distributor. This design yielded cast plates with significantly less radiographically identified defects. Unfortunately, there was significant variation in plate weight and metal content in their hot-tops. Fluid flow simulations were then performed on this mold/distributor design. This helped identify the issue with this linear distributor design. Additional simulations were then performed on candidate distributor redesigns and a preferred distributor annular design was identified. This improved annular design was used to produce a third instrumented casting with favorable results. These refined designs and their radiographic

  5. Sorption mechanisms of selenium species (selenite and selenate) on copper-based minerals

    International Nuclear Information System (INIS)

    Devoy, J.

    2001-09-01

    The sorption of radionuclides on the surface of minerals represents a process capable to delay the migration of the elements from a spent fuel deep repository towards the biosphere. In the framework of a deep underground repository, an engineered clay barrier has a high trapping capacity for cationic radio-elements, in particular because of the negative charge of clay surfaces. However, anionic radioelements like selenium species, would be only weakly retained by chemical processes. In order to optimize the trapping capacity of a clay barrier with respect to anionic species, prospective studies are carried out in order to find and evaluate some minerals with specific chemical trapping functions. Among radionuclides, the case of selenium has to be considered because its isotope 79 Se is present in radioactive wastes and has a half life time of 6.5 10 4 years. It is also judicious to find a mineral capable of trapping simultaneously several anionic radio-elements. Copper oxides and sulfides (Cu 2 O, CuO, Cu 2 S, CuS, CuFeS 2 and Cu 5 FeS 4 ) are good adsorbents with respect to selenium species (selenite and selenate). These minerals, with their selenium retention properties, could be used also for the decontamination of soils and waters or to process industrial effluents. The sorption mechanisms have been studied in details for copper oxides (Cu 2 O and CuO) with respect to selenite and selenate. Chalcomenite precipitates in acid pH conditions when selenite is added to a Cu 2 O and CuO suspension. Selenate, in contact with cuprite (Cu 2 O) leads also to a selenium-based precipitate in acid pH environment. For higher pH values, selenite and selenate are adsorbed on copper oxides (Cu 2 O and CuO) and lead to internal and external sphere complexes, respectively. In the case of a selenite/cuprite mixture in basic pH environment and at the equilibrium, a chemical reaction occurs between the oxidation product of cuprite, Cu(OH) 2 and HSeO 3 . A preliminary study of

  6. Gating system optimization of low pressure casting A356 aluminum alloy intake manifold based on numerical simulation

    Directory of Open Access Journals (Sweden)

    Jiang Wenming

    2014-03-01

    Full Text Available To eliminate the shrinkage porosity in low pressure casting of an A356 aluminum alloy intake manifold casting, numerical simulation on filling and solidification processes of the casting was carried out using the ProCAST software. The gating system of the casting is optimized according to the simulation results. Results show that when the gating system consists of only one sprue, the filling of the molten metal is not stable; and the casting does not follow the sequence solidification, and many shrinkage porosities are observed through the casting. After the gating system is improved by adding one runner and two in-gates, the filling time is prolonged from 4.0 s to 4.5 s, the filling of molten metal becomes stable, but this casting does not follow the sequence solidification either. Some shrinkage porosity is also observed in the hot spots of the casting. When the gating system was further improved by adding risers and chill to the hot spots of the casting, the shrinkage porosity defects were eliminated completely. Finally, by using the optimized gating system the A356 aluminum alloy intake manifold casting with integrated shape and smooth surface as well as dense microstructure was successfully produced.

  7. Intelligent Machine Vision Based Modeling and Positioning System in Sand Casting Process

    Directory of Open Access Journals (Sweden)

    Shahid Ikramullah Butt

    2017-01-01

    Full Text Available Advanced vision solutions enable manufacturers in the technology sector to reconcile both competitive and regulatory concerns and address the need for immaculate fault detection and quality assurance. The modern manufacturing has completely shifted from the manual inspections to the machine assisted vision inspection methodology. Furthermore, the research outcomes in industrial automation have revolutionized the whole product development strategy. The purpose of this research paper is to introduce a new scheme of automation in the sand casting process by means of machine vision based technology for mold positioning. Automation has been achieved by developing a novel system in which casting molds of different sizes, having different pouring cup location and radius, position themselves in front of the induction furnace such that the center of pouring cup comes directly beneath the pouring point of furnace. The coordinates of the center of pouring cup are found by using computer vision algorithms. The output is then transferred to a microcontroller which controls the alignment mechanism on which the mold is placed at the optimum location.

  8. The Application of the Method of Continuous Casting for Manufacturing of Welding Wire AMg6

    International Nuclear Information System (INIS)

    Azhazha, V.M.; Sverdlov, V.Ya.; Kondratov, A.A.; Rudycheva, T.Yu.

    2007-01-01

    The method of manufacturing semifinished item of high alloyed of aluminum, silver and copper alloys has been investigated on the basis of the continuous casting method. The sample of aluminum alloy AMg6 consist of small grains with the vios-cut dimension ∼ 15 mkm and which are stretched in the direction of longitudinal axis of the sample Such microstructure is favourable for plastic deformation of the sample. Welding wire which meets the demands of standards of commercial welding wires of this brand has been produced by the drawing from the sample

  9. Copper-based nanoparticles prepared from copper (II acetate bipyridine complex

    Directory of Open Access Journals (Sweden)

    Lastovina Tatiana A.

    2016-01-01

    Full Text Available We report the synthesis of CuO, Cu/Cu2O and Cu2O/CuO nanoparticles (NPs from the single copper (II acetate bipyridine complex by three different methods:microwave-assisted, solvothermal and borohydride. Presence of bipyridine ligand in the copper complex would impose no need in additional stabilization during synthesis. The phases of formed NPs were identified by X-ray diffraction. CuO NPs of ~11 nm were obtained via solvothermal synthesis from alkaline solution at 160°C. The Cu/Cu2O NPs of ~80 nm were produced via microwave-assisted polyol procedure at 185-200°C, where ethylene glycol can play a triple role as a solvent, a reducing agent and a surfactant. The Cu2O/CuO NPs of ~16 nm were synthesized by a borohydride method at room temperature. Interplanar spacing calculated from the selected-area electron diffraction data confirmed the formation of Cu, CuO and Cu2O phases in respective samples. All NPs are stable and can be used for various applications including biomedicine.

  10. Accuracy of single-abutment digital cast obtained using intraoral and cast scanners.

    Science.gov (United States)

    Lee, Jae-Jun; Jeong, Ii-Do; Park, Jin-Young; Jeon, Jin-Hun; Kim, Ji-Hwan; Kim, Woong-Chul

    2017-02-01

    Scanners are frequently used in the fabrication of dental prostheses. However, the accuracy of these scanners is variable, and little information is available. The purpose of this in vitro study was to compare the accuracy of cast scanners with that of intraoral scanners by using different image impression techniques. A poly(methyl methacrylate) master model was fabricated to replicate a maxillary first molar single-abutment tooth model. The master model was scanned with an accurate engineering scanner to obtain a true value (n=1) and with 2 intraoral scanners (CEREC Bluecam and CEREC Omnicam; n=6 each). The cast scanner scanned the master model and duplicated the dental stone cast from the master model (n=6). The trueness and precision of the data were measured using a 3-dimensional analysis program. The Kruskal-Wallis test was used to compare the different sets of scanning data, followed by a post hoc Mann-Whitney U test with a significance level modified by Bonferroni correction (α/6=.0083). The type 1 error level (α) was set at .05. The trueness value (root mean square: mean ±standard deviation) was 17.5 ±1.8 μm for the Bluecam, 13.8 ±1.4 μm for the Omnicam, 17.4 ±1.7 μm for cast scanner 1, and 12.3 ±0.1 μm for cast scanner 2. The differences between the Bluecam and the cast scanner 1 and between the Omnicam and the cast scanner 2 were not statistically significant (P>.0083), but a statistically significant difference was found between all the other pairs (POmnicam, 9.2 ±1.2 μm for cast scanner 1, and 6.9 ±2.6 μm for cast scanner 2. The differences between Bluecam and Omnicam and between Omnicam and cast scanner 1 were not statistically significant (P>.0083), but there was a statistically significant difference between all the other pairs (POmnicam in video image impression had better trueness than a cast scanner but with a similar level of precision. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by

  11. Sulfidation treatment of copper-containing plating sludge towards copper resource recovery.

    Science.gov (United States)

    Kuchar, D; Fukuta, T; Onyango, M S; Matsuda, H

    2006-11-02

    The present study is concerned with the sulfidation treatment of copper-containing plating sludge towards copper resource recovery by flotation of copper sulfide from treated sludge. The sulfidation treatment was carried out by contacting simulated or real copper plating sludge with Na(2)S solution for a period of 5 min to 24 h. The initial molar ratio of S(2-) to Cu(2+) (S(2-) to Me(2+) in the case of real sludge) was adjusted to 1.00, 1.25 or 1.50, while the solid to liquid ratio was set at 1:50. As a result, it was found that copper compounds were converted to various copper sulfides within the first 5 min. In the case of simulated copper sludge, CuS was identified as the main sulfidation product at the molar ratio of S(2-) to Cu(2+) of 1.00, while Cu(7)S(4) (Roxbyite) was mainly found at the molar ratios of S(2-) to Cu(2+) of 1.50 and 1.25. Based on the measurements of oxidation-reduction potential, the formation of either CuS or Cu(7)S(4) at different S(2-) to Cu(2+) molar ratios was attributed to the changes in the oxidation-reduction potential. By contrast, in the case of sulfidation treatment of real copper sludge, CuS was predominantly formed, irrespective of S(2-) to Me(2+) molar ratio.

  12. Preparation and characterization of Fe-based bulk metallic glasses in plate form

    International Nuclear Information System (INIS)

    Lavorato, G.C.; Fiore, G.; Castellero, A.; Baricco, M.; Moya, J.A.

    2012-01-01

    Amorphous alloys with composition (at%) Fe 48 Cr 15 Mo 14 C 15 B 6 Gd 2 (alloy A) and Fe 48 Cr 15 Mo 14 C 15 B 6 Y 2 (alloy B) were prepared either using pure elements (A and B1) and a commercial AISI430 steel as a base material (B2). When prepared from pure elements both alloys (A and B1) could be cast in plate form with a fixed thickness of 2 mm and variable lengths between 10 and 20 mm by means of copper-mold injection in air atmosphere. In the case of alloy B2, prepared using commercial grade raw materials, rods of 2 mm diameter were obtained. X-ray diffraction and scanning electron microscopy observations confirmed that an amorphous structure was obtained in all the as-cast samples. A minor fraction of crystalline phases (oxides and carbides) was detected on the as-cast surface. Differential scanning calorimetry measurements showed a glass transition temperature at 856 K for alloy A and 841 K for alloy B1, and an onset crystallization temperature of 887 K for alloy A and 885 K for alloy B1. In the case of alloy B2 a slightly different crystallization sequence was observed. Values of hardness (∼13 GPa) and the Young modulus (∼180 GPa) were measured by nanoindentation for both the alloys. The effects of adverse casting conditions (such as air atmosphere, non-conventional injection copper mold casting and partial replacement of pure elements with commercial grade raw materials) on the glass formation and properties of the alloy are discussed.

  13. Preparation and characterization of Fe-based bulk metallic glasses in plate form

    Energy Technology Data Exchange (ETDEWEB)

    Lavorato, G.C. [INTECIN (FIUBA-CONICET), Paseo Colon 850, Capital Federal (Argentina); Dipartimento di Chimica IFM and NIS, Universita di Torino, Torino (Italy); Fiore, G.; Castellero, A.; Baricco, M. [Dipartimento di Chimica IFM and NIS, Universita di Torino, Torino (Italy); Moya, J.A., E-mail: jmoya.fi.uba@gmail.com [IESIING, Facultad de Ingenieria e Informatica, UCASAL, Salta (Argentina); CONICET (Argentina)

    2012-08-15

    Amorphous alloys with composition (at%) Fe{sub 48}Cr{sub 15}Mo{sub 14}C{sub 15}B{sub 6}Gd{sub 2} (alloy A) and Fe{sub 48}Cr{sub 15}Mo{sub 14}C{sub 15}B{sub 6}Y{sub 2} (alloy B) were prepared either using pure elements (A and B1) and a commercial AISI430 steel as a base material (B2). When prepared from pure elements both alloys (A and B1) could be cast in plate form with a fixed thickness of 2 mm and variable lengths between 10 and 20 mm by means of copper-mold injection in air atmosphere. In the case of alloy B2, prepared using commercial grade raw materials, rods of 2 mm diameter were obtained. X-ray diffraction and scanning electron microscopy observations confirmed that an amorphous structure was obtained in all the as-cast samples. A minor fraction of crystalline phases (oxides and carbides) was detected on the as-cast surface. Differential scanning calorimetry measurements showed a glass transition temperature at 856 K for alloy A and 841 K for alloy B1, and an onset crystallization temperature of 887 K for alloy A and 885 K for alloy B1. In the case of alloy B2 a slightly different crystallization sequence was observed. Values of hardness ({approx}13 GPa) and the Young modulus ({approx}180 GPa) were measured by nanoindentation for both the alloys. The effects of adverse casting conditions (such as air atmosphere, non-conventional injection copper mold casting and partial replacement of pure elements with commercial grade raw materials) on the glass formation and properties of the alloy are discussed.

  14. Wear Resistance of TiC Reinforced Cast Steel Matrix Composite

    Directory of Open Access Journals (Sweden)

    Sobula S.

    2017-03-01

    Full Text Available Wear resistance of TiC-cast steel metal matrix composite has been investigated. Composites were obtained with SHSB method known as SHS synthesis during casting. It has been shown the differences in wear between composite and base cast steel. The Miller slurry machine test were used to determine wear loss of the specimens. The slurry was composed of SiC and water. The worn surface of specimens after test, were studied by SEM. Experimental observation has shown that surface of composite zone is not homogenous and consist the matrix lakes. Microscopic observations revealed the long grooves with SiC particles indented in the base alloy area, and spalling pits in the composite area. Due to the presence of TiC carbides on composite layer, specimens with TiC reinforced cast steel exhibited higher abrasion resistance. The wear of TiC reinforced cast steel mechanism was initially by wearing of soft matrix and in second stage by polishing and spalling of TiC. Summary weight loss after 16hr test was 0,14÷0,23 g for composite specimens and 0,90 g for base steel.

  15. A molecular concept of caste in insect societies.

    Science.gov (United States)

    Sumner, Seirian; Bell, Emily; Taylor, Daisy

    2018-02-01

    The term 'caste' is used to describe the division of reproductive labour that defines eusocial insect societies. The definition of 'caste' has been debated over the last 50 years, specifically with respect to the simplest insect societies; this raises the question of whether a simple categorisation of social behaviour by reproductive state alone is helpful. Gene-level analyses of behaviours of individuals in hymenopteran social insect societies now provide a new empirical base-line for defining caste and understanding the evolution and maintenance of a reproductive division of labour. We review this literature to identify a set of potential molecular signatures that, combined with behavioural, morphological and physiological data, help define caste more precisely; these signatures vary with the type of society, and are likely to be influenced by ecology, life-history, and stage in the colony cycle. We conclude that genomic approaches provide us with additional ways to help quantify and categorise caste, and behaviour in general. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Effects of Copper-based Compounds, Antibiotics and a Plant Activator on Population Sizes and Spread of Clavibacter michiganensis subsp. michiganensis in Greenhouse Tomato Seedlings

    Directory of Open Access Journals (Sweden)

    Svetlana Milijašević

    2009-01-01

    Full Text Available Three copper-based compounds (copper hydroxide, copper oxychloride, copper sulphate, two antibiotics (streptomycin and kasugamycin and a plant activator (ASM significantly reduced population sizes and spread of C. michiganensis subsp. michiganensis among tomatoseedlings in the greenhouse. Streptomycin had the best effect in reducing pathogen population size in all sampling regions. Moreover, this antibiotic completely stopped the spread of C. michiganensis subsp. michiganensis in the region most distant from the inoculumfocus. Copper hydroxide mixed with streptomycin significantly limited the pathogen population, compared with copper hydroxide alone, the other copper-based compounds, ASM and kasugamycin. However, combining streptomycin with copper hydroxide did notcontribute to its greater efficacy against the pathogen population. Copper-based compounds, in general, were less effective in limiting pathogen population sizes than the other treatments in all three sampling regions, primarily copper oxychloride and the combinationof copper hydroxide and mancozeb. Among copper compounds, copper hydroxide was the most prominent in reducing the bacterial population, especially in the region closest to the inoculum focus, while its combination with mancozeb did not improve the effects. Kasugamycin significantly limited pathogen population size, compared to copper bactericides, but it was less effective than the other antibiotic compound, i.e. streptomycin. The plant activator ASM significantly reduced population density, and it was more effectivewhen used three days prior to inoculation than six days before inoculation.

  17. Investigation and modelling of friction stir welded copper canisters

    Energy Technology Data Exchange (ETDEWEB)

    Kaellgren, Therese

    2010-02-15

    This work has been focused on characterisation of FSW joints, and modelling of the process, both analytically and numerically. The Swedish model for final deposit of nuclear fuel waste is based on copper canisters as a corrosion barrier with an inner pressure holding insert of cast iron. Friction Stir Welding (FSW) is the method to seal the copper canister, a technique invented by The Welding Institute (TWI). The first simulations were based on Rosenthal's analytical medium plate model. The model is simple to use, but has limitations. Finite element models (FEM) were developed, initially with a two-dimensional geometry. Due to the requirements of describing both the heat flow and the tool movement, three-dimensional models were developed. These models take into account heat transfer, material flow, and continuum mechanics. The geometries of the models are based on the simulation experiments carried out at TWI and at Swedish Nuclear Fuel Waste and Management Co (SKB). Temperature distribution, material flow and their effects on the thermal expansion were predicted for a full-scale canister and lid. The steady state solutions have been compared with temperature measurements, showing good agreement. In order to understand the material flow during welding a marker technique is used, which involves inserting dissimilar material into the weld zone before joining. Different materials are tested showing that brass rods are the most suitable material in these welds. After welding, the weld line is sliced, etched and examined by optical microscope. To understand the material flow further, and in the future predict the flow, a FEM is developed. This model and the etched samples are compared showing similar features. Furthermore, by using this model the area that is recrystallised can be predicted. The predicted area and the grain size and hardness profile agree well

  18. Friction Stir Welding of Copper Canisters for Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Kaellgren, Therese

    2005-07-01

    The Swedish model for final disposal of nuclear fuel waste is based on copper canisters as a corrosion barrier with an inner pressure holding insert of cast iron. One of the methods to seal the copper canister is to use the Friction Stir Welding (FSW), a method invented by The Welding Institute (TWI). This work has been focused on characterisation of the FSW joints, and modelling of the process, both analytically and numerically. The first simulations were based on Rosenthal's analytical medium plate model. The model is simple to use, but has limitations. Finite element models were developed, initially with a two-dimensional geometry. Due to the requirements of describing both the heat flow and the tool movement, three-dimensional models were developed. These models take into account heat transfer, material flow, and continuum mechanics. The geometries of the models are based on the simulation experiments carried out at TWI and at Swedish Nuclear Fuel Waste and Management Co (SKB). Temperature distribution, material flow and their effects on the thermal expansion were predicted for a full-scale canister and lid. The steady state solutions have been compared with temperature measurements, showing good agreement. Microstructure and hardness profiles have been investigated by optical microscope, Scanning Electron Microscope (SEM), Electron Back Scatter Diffraction (EBSD) and Rockwell hardness measurements. EBSD visualisation has been used to determine the grain size distribution and the appearance of twins and misorientation within grains. The orientation maps show a fine uniform equiaxed grain structure. The root of the weld exhibits the smallest grains and many annealing twins. This may be due to deformation after recrystallisation. The appearance of the nugget and the grain size depends on the position of the weld. A large difference can be seen both in hardness and grain size between the start of the weld and when the steady state is reached.

  19. On the nature of T(Al2Mg3Zn3) and S(Al2CuMg) phases present in as-cast and annealed 7055 aluminum alloy

    International Nuclear Information System (INIS)

    Mondal, Chandan; Mukhopadhyay, A.K.

    2005-01-01

    Aluminum alloys, encompassed by AA 7055 alloy composition, having the nominal zinc content (i.e. 8 wt.%) but varying copper and magnesium contents across the alloy composition range were examined in the as-cast form by a combination of light microscopy, scanning electron microscopy (SEM), electron probe micro analysis (EPMA) and X-ray diffraction (XRD). It is observed that for all compositions, the second phases based on η(MgZn 2 ), T(Al 2 Mg 3 Zn 3 ) and S(Al 2 CuMg) are present. The T phase dissolves copper up to 28 wt.%, whilst the S phase shows metastable solubility of zinc that may range up to 30 wt.%. In alloys with magnesium at the lower limit and the copper contents approaching the upper limit of the alloy composition, the θ phase (Al 2 Cu) of the constituent binary Al-Cu system is further observed. The θ phase (Al 2 Cu) does not dissolve either zinc or magnesium. Below the nominal composition, the alloys could be homogenized substantially using a commercially viable homogenization treatment leaving small amounts of undissolved S phase that does not contain any zinc

  20. Effect of Cu on the microstructural and mechanical properties of as-cast ductile iron

    International Nuclear Information System (INIS)

    Tiwari, Siddhartha; Das, J.; Ray, K.K.; Kumar, Hemant; Bhaduri, A.

    2012-01-01

    The application of ductile cast iron in the heavy engineering components like, cask for the storage and transportation of radioactive materials, demands high strength with improved fracture toughness in as cast condition. The mechanical properties and fracture toughness of as-cast ductile iron (DI) is directly related to its structure property which can be controlled by proper inoculation, alloying elements and cooling rate during solidification. The aim of the present investigation is to study the effect of varying amount of Cu (0.07%, 0.11%, and 0.16%) with 1% Ni in the microstructural development of as-cast ductile iron with emphasis on its mechanical properties and fracture toughness. Three different ductile irons have been prepared using induction furnace in batches of 300 kg following industrial practice. Microstructural features (amount of phases, morphology, size and count of graphite nodules) and mechanical properties (tensile strength and hardness) of prepared DI were determined using standard methods. Dynamic fracture toughness was measured using instrumented Charpy impact test on pre-cracked specimens following the standard ISO-FDIS-26843. Additionally, fracture surfaces of broken tensile and pre-cracked specimens were observed by SEM to study the micro-mechanism of fracture. The pearlite fraction and the nodule count are found to increase with increasing amount of copper in ferritic-pearlitic matrix. The hardness and strength values are found to increase with increasing amount of pearlite whereas fracture toughness decreases. Fractographs of broken specimens exhibited decohesion of graphite, crack propagation from graphite interface and transgranular fracture of ferrite. (author)

  1. A pyrazolyl-based thiolato single-source precursor for the selective synthesis of isotropic copper-deficient copper(I) sulfide nanocrystals: synthesis, optical and photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Gopinath; Santra, Ananyakumari; Bera, Pradip; Acharjya, Moumita [Vidyasagar University, Post Graduate Department of Chemistry, Panskura Banamali College (India); Jana, Sumanta [Indian Institute of Engineering Science and Technology (IIEST), Department of Chemistry (India); Chattopadhyay, Dipankar [University of Calcutta, Department of Polymer Science and Technology (India); Mondal, Anup [Indian Institute of Engineering Science and Technology (IIEST), Department of Chemistry (India); Seok, Sang Il [Korea Research Institute of Chemical Technology, KRICT-EPFL Global Research Laboratory, Division of Advanced Materials (Korea, Republic of); Bera, Pulakesh, E-mail: pbera.pbc.chem@gmail.com [Vidyasagar University, Post Graduate Department of Chemistry, Panskura Banamali College (India)

    2016-10-15

    Hexagonal copper-deficient copper(I) sulfide (Cu{sub 2-x}S, x = 0.03, 0.2) nanocrystals (NCs) are synthesized from a newly prepared single-source precursor (SP), [Cu(bdpa){sub 2}][CuCl{sub 2}], where bdpa is benzyl 3,5-dimethyl-pyrazole-1-carbodithioate. The SP is crystallized with space group Pī and possesses a distorted tetrahedron structure with a CuN{sub 2}S{sub 2} chromophore where the central copper is in +1 oxidation state. Distortion in copper(I) structure and the low decomposition temperature of SP make it favorable for the low-temperature solvent-assisted selective growth of high-copper content sulfides. The nucleation and growth of Cu{sub 2-x}S (x = 0.03, 0.2) are effectively controlled by the SP and the solvent in the solvothermal decomposition process. During decomposition, fragment benzyl thiol (PhCH{sub 2}SH) from SP effectively passivates the nucleus leading to spherical nanocrystals. Further, solvent plays an important role in the selective thermochemical transformation of Cu{sup I}-complex to Cu{sub 2-x}S (x = 0.03, 0.2) NCs. The chelating binders (solvent) like ethylene diamine (EN) and ethylene glycol (EG) prefer to form spherical Cu{sub 1.97}S nanoparticles (djurleite), whereas nonchelating hydrazine hydrate (HH) shows the tendency to furnish hexagonal platelets of copper-deficient Cu{sub 1.8}S. The optical band gap values (2.25–2.50 eV) show quantum confinement effect in the structure. The synthesized NCs display excellent catalytic activity (~87 %) toward photodegradation of organic dyes like Congo Red (CR) and Methylene Blue (MB).Graphical abstractA pyrazolyl-based thiolato single-source precursor for the selective synthesis of isotropic copper-deficient copper(I) sulfide nanocrystals: Synthesis, optical and photocatalytic activity.Gopinath Mondal, Ananyakumari Santra, Pradip Bera, Moumita Acharjya, Sumanta Jana, Dipankar Chattopadhyay, Anup Mondal, Sang Il Seok, Pulakesh Bera.

  2. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Lost Foam Thin Wall - Feasibility of Producing Lost Foam Castings in Aluminum and Magnesium Based Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fasoyinu, Yemi [CanmetMATERIALS; Griffin, John A. [University of Alabama - Birmingham

    2014-03-31

    With the increased emphasis on vehicle weight reduction, production of near-net shape components by lost foam casting will make significant inroad into the next-generation of engineering component designs. The lost foam casting process is a cost effective method for producing complex castings using an expandable polystyrene pattern and un-bonded sand. The use of un-bonded molding media in the lost foam process will impose less constraint on the solidifying casting, making hot tearing less prevalent. This is especially true in Al-Mg and Al-Cu alloy systems that are prone to hot tearing when poured in rigid molds partially due to their long freezing range. Some of the unique advantages of using the lost foam casting process are closer dimensional tolerance, higher casting yield, and the elimination of sand cores and binders. Most of the aluminum alloys poured using the lost foam process are based on the Al-Si system. Very limited research work has been performed with Al-Mg and Al-Cu type alloys. With the increased emphasis on vehicle weight reduction, and given the high-strength-to-weight-ratio of magnesium, significant weight savings can be achieved by casting thin-wall (≤ 3 mm) engineering components from both aluminum- and magnesium-base alloys.

  3. Casting traceability with direct part marking using reconfigurable pin-type tooling based on paraffin–graphite actuators

    DEFF Research Database (Denmark)

    Vedel-Smith, Nikolaj Kjelgaard; Lenau, Torben Anker

    2012-01-01

    Green sand moulding machines for cast iron foundries are presently unable to uniquely identify individual castings. An insert tool concept is developed and tested via incremental mock-up development. The tool is part of the pattern plate and changes shape between each moulding, thus giving each...... mould a unique ID by embossing a Data Matrix symbol into the sand. In the process of producing the mould, each casting can be given a unique (DPM), enabling part tracking throughout the casting's life cycle. Sand embossing is achieved with paraffin-actuated reconfigurable pin-type tooling under...... simulated processing conditions. The marker geometry limitations have been tested using static symbol patterns, both for sand embossing and actual casting marking. The marked castings have successfully been identified with decoding software. The study shows that the function of each element...

  4. Room-temperature base-free copper-catalyzed trifluoromethylation of organotrifluoroborates to trifluoromethylarenes

    KAUST Repository

    Huang, Yuanyuan; Fang, Xin; Lin, Xiaoxi; Li, Huaifeng; He, Weiming; Huang, Kuo-Wei; Yuan, Yaofeng; Weng, Zhiqiang

    2012-01-01

    An efficient room temperature copper-catalyzed trifluoromethylation of organotrifluoroborates under the base free condition using an electrophilic trifluoromethylating reagent is demonstrated. The corresponding trifluoromethylarenes were obtained in good to excellent yields and the reaction tolerates a wide range of functional groups. © 2012 Elsevier Ltd. All rights reserved.

  5. Room-temperature base-free copper-catalyzed trifluoromethylation of organotrifluoroborates to trifluoromethylarenes

    KAUST Repository

    Huang, Yuanyuan

    2012-12-01

    An efficient room temperature copper-catalyzed trifluoromethylation of organotrifluoroborates under the base free condition using an electrophilic trifluoromethylating reagent is demonstrated. The corresponding trifluoromethylarenes were obtained in good to excellent yields and the reaction tolerates a wide range of functional groups. © 2012 Elsevier Ltd. All rights reserved.

  6. Caste System

    OpenAIRE

    Hoff, Karla

    2016-01-01

    In standard economics, individuals are rational actors and economic forces undermine institutions that impose large inefficiencies. The persistence of the caste system is evidence of the need for psychologically more realistic models of decision-making in economics. The caste system divides South Asian society into hereditary groups whose lowest ranks are represented as innately polluted. ...

  7. Monitoring losses of copper based wood preservatives in the Thames estuary

    International Nuclear Information System (INIS)

    Hingston, J.A.; Murphy, R.J.; Lester, J.N.

    2006-01-01

    Field trials were conducted at two sites in the Thames estuary to monitor losses of copper, chromium and arsenic from wood preservative treated timbers of varying sizes and treatment regimes. Results indicated that leaching tests conducted under standard laboratory conditions might overestimate losses compared to losses resulting from real environmental exposures. Amine copper treated wood was noted to leach higher levels of copper compared to chromated copper arsenate treated wood, and was therefore considered an inappropriate replacement biocide for fresh and marine construction purposes on this basis. Increases in copper concentrations in the outer sections of amine copper treated posts may have represented re-distribution of this component in this timber. No accumulation of metals was found in sediments surrounding field trial posts. - Wood preservative field trials in the UK indicate that standard laboratory tests overestimate losses compared to those resulting from real environmental exposures

  8. Monitoring losses of copper based wood preservatives in the Thames estuary

    Energy Technology Data Exchange (ETDEWEB)

    Hingston, J.A. [Environmental Processes and Water Technology Research Group, Department of Environmental Science and Technology, Faculty of Life Sciences, Imperial College, London SW7 2AZ (United Kingdom)]. E-mail: james.hingston@psd.defra.gsi.gov.uk; Murphy, R.J. [Department of Biology, Imperial College, London SW7 2AZ (United Kingdom); Lester, J.N. [School of Water Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom)

    2006-09-15

    Field trials were conducted at two sites in the Thames estuary to monitor losses of copper, chromium and arsenic from wood preservative treated timbers of varying sizes and treatment regimes. Results indicated that leaching tests conducted under standard laboratory conditions might overestimate losses compared to losses resulting from real environmental exposures. Amine copper treated wood was noted to leach higher levels of copper compared to chromated copper arsenate treated wood, and was therefore considered an inappropriate replacement biocide for fresh and marine construction purposes on this basis. Increases in copper concentrations in the outer sections of amine copper treated posts may have represented re-distribution of this component in this timber. No accumulation of metals was found in sediments surrounding field trial posts. - Wood preservative field trials in the UK indicate that standard laboratory tests overestimate losses compared to those resulting from real environmental exposures.

  9. SLIP CASTING METHOD

    Science.gov (United States)

    Allison, A.G.

    1959-09-01

    S>A process is described for preparing a magnesium oxide slip casting slurry which when used in conjunction with standard casting techniques results in a very strong "green" slip casting and a fired piece of very close dimensional tolerance. The process involves aging an aqueous magnestum oxide slurry, having a basic pH value, until it attains a specified critical viscosity at which time a deflocculating agent is added without upsetting the basic pH value.

  10. Field-based evidence for consistent responses of bacterial communities to copper contamination in two contrasting agricultural soils

    Directory of Open Access Journals (Sweden)

    Jing eLi

    2015-02-01

    Full Text Available Copper contamination on China’s arable land could pose severe economic, ecological and healthy consequences in the coming decades. As the drivers in maintaining ecosystem functioning, the responses of soil microorganisms to long-term copper contamination in different soil ecosystems are still debated. This study investigated the impacts of copper gradients on soil bacterial communities in two agricultural fields with contrasting soil properties. Our results revealed consistent reduction in soil microbial biomass carbon (SMBC with increasing copper levels in both soils, coupled by significant declines in bacterial abundance in most cases. Despite of contrasting bacterial community structures between the two soils, the bacterial diversity in the copper-contaminated soils showed considerably decreasing patterns when copper levels elevated. High-throughput sequencing revealed copper selection for major bacterial guilds, in particular, Actinobacteria showed tolerance, while Acidobacteria and Chloroflexi were highly sensitive to copper. The thresholds that bacterial communities changed sharply were 800 and 200 added copper mg kg-1 in the fluvo-aquic soil and red soil, respectively, which were similar to the toxicity thresholds (EC50 values characterized by SMBC. Structural equation model (SEM analysis ascertained that the shifts of bacterial community composition and diversity were closely related with the changes of SMBC in both soils. Our results provide field-based evidence that copper contamination exhibits consistently negative impacts on soil bacterial communities, and the shifts of bacterial communities could have largely determined the variations of the microbial biomass.

  11. Gating Systems for Sizeable Castings from Al Alloys Cast into Ceramic Moulds

    Directory of Open Access Journals (Sweden)

    I. Stachovec

    2012-04-01

    Full Text Available In contrast to casting to conventional non-reusable “sand” moulds, for which calculating technique for an optimum design of the gating system is comparatively well-developed, a trial-and-error method is applied mostly for casting to ceramic shell moulds made by the investment casting technology. A technologist selects from gating systems of several types (that are standardized by the foundry mostly on the basis of experience. However, this approach is not sustainable with ever growing demands on quality of castings and also the economy of their fabrication as well as with new types of complex sizeable castings introduced to the production gradually (by new customers from the aircraft industry above all any more. The simulation software may be used as a possible tool for making the process of optimising gating systems more effective.

  12. Development Program for Natural Aging Aluminum Casting Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Geoffrey K. Sigworth

    2004-05-14

    A number of 7xx aluminum casting alloys are based on the ternary Al-Zn-Mg system. These alloys age naturally to high strength at room temperature. A high temperature solution and aging treatment is not required. Consequently, these alloys have the potential to deliver properties nearly equivalent to conventional A356-T6 (Al-Si-Mg) castings, with a significant cost saving. An energy savings is also possible. In spite of these advantages, the 7xx casting alloys are seldom used, primarily because of their reputation for poor castibility. This paper describes the results obtained in a DOE-funded research study of these alloys, which is part of the DOE-OIT ''Cast Metals Industries of the Future'' Program. Suggestions for possible commercial use are also given.

  13. Diffusion of C and Cr During Creation of Surface Layer on Cast Steel Casting

    Directory of Open Access Journals (Sweden)

    Szajnar J.

    2014-10-01

    Full Text Available In paper a method of improvement in utility properties of unalloyed cast steel casting in result of diffusion of C and Cr in process of creation of surface layer is presented. The aim of paper was determination of diffusion range of basic elements of alloyed surface layer. Moreover a quantitative analysis of carbides phase strengthens alloyed surface layer of casting was carried out. The results of studies shown that important factors of surface layer creation are maximal temperature Tmax on granular insert – cast steel boundary dependent of pouring temperature, granularity Zw of Fe-Cr-C alloy insert and thickness of casting wall gśo. On the basis of obtained results was affirmed that with increase of thickness of casting wall increases range of diffusion in solid state in Fe-Cr-C grains and in liquid state. Moreover the range of Tmax = 13001500oC favours creation of the proper alloyed surface layers on cast steel.

  14. The Presence of Algae Mitigates the Toxicity of Copper-Based Algaecides to a Non-Target Organism.

    Science.gov (United States)

    Bishop, West M; Willis, Ben E; Richardson, Robert J; Cope, W Gregory

    2018-05-07

    Copper-based algaecides are routinely applied to target noxious algal blooms in freshwaters. Standard toxicity testing data with copper suggest typical concentrations used to control algae can cause deleterious acute impacts to non-target organisms. These "clean" water experiments lack algae, which are specifically targeted in field applications of algaecides and contain competing ligands. This research measured the influence of algae on algaecide exposure and subsequent response of the non-target species Daphnia magna to copper sulfate and an ethanolamine-chelated copper algaecide (Captain®). Significant shifts (Palgae were present in exposures along with a copper salt or chelated copper formulation. Copper sulfate 48-h LC50 values shifted from 75.3 to 317.8 and 517.8 µg Cu/L whereas Captain increased from 353.8 to 414.2 and 588.5 µg Cu/L in no algae, 5 × 10 5 and 5 × 10 6 cells/mL algae treatments, respectively. Larger shifts were measured with copper sulfate exposures, although Captain was less toxic to Daphnia magna in all corresponding treatments. Captain was more effective at controlling Scenedesmus dimorphus at most concentrations, and control was inversely proportional to toxicity to D. magna. Overall, incorporating target competing ligands (i.e., algae) into standard toxicity testing is important for accurate risk assessment, and copper formulation can significantly alter algaecidal efficacy and risks to non-target organisms. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Advanced rotary engine components utilizing fiber reinforced Mg castings

    Science.gov (United States)

    Goddard, D.; Whitman, W.; Pumphrey, R.; Lee, C.-M.

    1986-01-01

    Under a two-phase program sponsored by NASA, the technology for producing advanced rotary engine components utilizing graphite fiber-reinforced magnesium alloy casting is being developed. In Phase I, the successful casting of a simulated intermediate housing was demonstrated. In Phase II, the goal is to produce an operating rotor housing. The effort involves generation of a material property data base, optimization of parameters, and development of wear- and corrosion-resistant cast surfaces and surface coatings. Results to date are described.

  16. Species redistribution during solidification of nuclear fuel waste metal castings

    Energy Technology Data Exchange (ETDEWEB)

    Naterer, G F; Schneider, G E [Waterloo Univ., ON (Canada)

    1994-12-31

    An enthalpy-based finite element model and a binary system species redistribution model are developed and applied to problems associated with solidification of nuclear fuel waste metal castings. Minimal casting defects such as inhomogeneous solute segregation and cracks are required to prevent container corrosion and radionuclide release. The control-volume-based model accounts for equilibrium solidification for low cooling rates and negligible solid state diffusion for high cooling rates as well as intermediate conditions. Test problems involving nuclear fuel waste castings are investigated and correct limiting cases of species redistribution are observed. (author). 11 refs., 1 tab., 13 figs.

  17. Aircast walking boot and below-knee walking cast for avulsion fractures of the base of the fifth metatarsal: a comparative cohort study.

    Science.gov (United States)

    Shahid, Mohammad Kamran; Punwar, Shahid; Boulind, Caroline; Bannister, Gordon

    2013-01-01

    Acute avulsion fractures of the base of the fifth metatarsal are common and are treated in a variety of ways. The aims of this study were to compare pain, functional outcome, and time taken off work after treatment with a walking boot or a short-leg cast. Of 39 patients with acute avulsion fractures of the base of the fifth metatarsal, 23 were treated with a short-leg cast and 16 with a walking boot, according to the preference of the consultant present at outpatient clinic. Functional outcome was assessed by the Visual Analogue Scale Foot and Ankle Questionnaire (VAS FA), pain, and other complaints on presentation and at 3, 6, 9, and 12 weeks after injury. The VAS FA scores were compared between the 2 groups by a paired Student t test. The mean time to return to the level of pain and function before injury was approximately 9 weeks after treatment in the walking boot group and 12 weeks with a short-leg cast. Patients with walking boots reported less pain between 3 and 12 weeks than did those with short-leg casts after 6 (P = .06), 9 (P = .020), and 12 weeks (P = .33). Function was significantly better with Aircast walking boots after 3 (P = .006), 6 (P = .002), and 9 weeks (P = .002) but not after 12 weeks (P = .09). Patients returned to their preinjury level of driving after 6 weeks with walking boots and 12 weeks with short-leg casts (P = .006). Employed patients took a mean of 35.8 days off work (range, 28-42 days), fewer with boots (31.5 days) than with short-leg casts (39.2 days). The walking boot was better treatment than a short-leg cast for avulsion fractures of the base of the fifth metatarsal. Patients had an improved combined level of pain and function 3 weeks earlier, at 9 weeks post injury, when managed in a walking boot. Level II, prospective comparative series.

  18. Heat Transfer Coefficient at Cast-Mold Interface During Centrifugal Casting: Calculation of Air Gap

    Science.gov (United States)

    Bohacek, Jan; Kharicha, Abdellah; Ludwig, Andreas; Wu, Menghuai; Karimi-Sibaki, Ebrahim

    2018-06-01

    During centrifugal casting, the thermal resistance at the cast-mold interface represents a main blockage mechanism for heat transfer. In addition to the refractory coating, an air gap begins to form due to the shrinkage of the casting and the mold expansion, under the continuous influence of strong centrifugal forces. Here, the heat transfer coefficient at the cast-mold interface h has been determined from calculations of the air gap thickness d a based on a plane stress model taking into account thermoelastic stresses, centrifugal forces, plastic deformations, and a temperature-dependent Young's modulus. The numerical approach proposed here is rather novel and tries to offer an alternative to the empirical formulas usually used in numerical simulations for a description of a time-dependent heat transfer coefficient h. Several numerical tests were performed for different coating thicknesses d C, rotation rates Ω, and temperatures of solidus T sol. Results demonstrated that the scenario at the interface is unique for each set of parameters, hindering the possibility of employing empirical formulas without a preceding experiment being performed. Initial values of h are simply equivalent to the ratio of the coating thermal conductivity and its thickness ( 1000 Wm-2 K-1). Later, when the air gap is formed, h drops exponentially to values at least one order of magnitude smaller ( 100 Wm-2 K-1).

  19. Multiscale modeling for the prediction of casting defects in investment cast aluminum alloys

    International Nuclear Information System (INIS)

    Hamilton, R.W.; See, D.; Butler, S.; Lee, P.D.

    2003-01-01

    Macroscopic modeling of heat transfer and fluid flow is now routinely used for the prediction of macroscopic defects in castings, while microscopic models are used to investigate the effects of alloy changes on typical microstructures. By combining these two levels of modeling it is possible to simulate the casting process over a wider range of spatial and temporal scales. This paper presents a multiscale model where micromodels for dendrite arm spacing and microporosity are incorporated into a macromodel of heat transfer and in order to predict the as cast microstructure and prevalence of microscopic defects, specifically porosity. The approach is applied to aluminum alloy (L169) investment castings. The models are compared with results obtained by optical image analysis of prepared slices, and X-ray tomography of volume samples from the experiments. Multiscale modeling is shown to provide the designer with a useful tool to improve the properties of the final casting by testing how altering the casting process affects the final microstructure including porosity

  20. Ultrastretchable and flexible copper interconnect-based smart patch for adaptive thermotherapy

    KAUST Repository

    Hussain, Aftab M.; Lizardo, Ernesto B.; Sevilla, Galo T.; Nassar, Joanna M.; Hussain, Muhammad Mustafa

    2014-01-01

    Unprecedented 800% stretchable, non-polymeric, widely used, low-cost, naturally rigid, metallic thin-film copper (Cu)-based flexible and non-invasive, spatially tunable, mobile thermal patch with wireless controllability, adaptability (tunes the amount of heat based on the temperature of the swollen portion), reusability, and affordability due to low-cost complementary metal oxide semiconductor (CMOS) compatible integration. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Ultrastretchable and flexible copper interconnect-based smart patch for adaptive thermotherapy

    KAUST Repository

    Hussain, Aftab M.

    2014-12-03

    Unprecedented 800% stretchable, non-polymeric, widely used, low-cost, naturally rigid, metallic thin-film copper (Cu)-based flexible and non-invasive, spatially tunable, mobile thermal patch with wireless controllability, adaptability (tunes the amount of heat based on the temperature of the swollen portion), reusability, and affordability due to low-cost complementary metal oxide semiconductor (CMOS) compatible integration. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Copper and Copper Proteins in Parkinson's Disease

    Science.gov (United States)

    Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo

    2014-01-01

    Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology. PMID:24672633

  3. [The surface roughness analysis of the titanium casting founding by a new titanium casting investment material].

    Science.gov (United States)

    Liang, Qin-ye; Wu, Xia-yi; Lin, Xue-feng

    2012-04-01

    To investigate the surface roughness property of the titanium castings cast in a new investment for titanium casting. Six wax patterns (20 mm × 20 mm × 0.5 mm) were invested using two investments: three in a new titanium investment material and three in the control material (Rematitan Plus). Six titanium specimens were obtained by conventional casting. After casting, surface roughness of the specimens were evaluated with a surface profilometer. The surface roughness of the specimens cast in new titanium investment material was (1.72 ± 0.08) µm, which was much smaller than that from Rematitan Plus [(1.91 ± 0.15) µm, P cast using these two investment materials are both smooth enough to fulfill the demand of the titanium precision-casting for prosthodontic clinical use.

  4. Investment Casting vs Replicast CS Considered in Terms of the Ceramic Mould Making and Dimensional Accuracy of Castings

    Directory of Open Access Journals (Sweden)

    Karwiński A.

    2014-03-01

    Full Text Available The article presents an analysis of the applicability of the Replicast CS process as an alternative to the investment casting process, considered in terms of the dimensional accuracy of castings. Ceramic shell moulds were based on the Ekosil binder and a wide range of ceramic materials, such as crystalline quartz, fused silica, aluminosilicates and zirconium silicate. The linear dimensions were measured with a Zeiss UMC 550 machine that allowed reducing to minimum the measurement uncertainty

  5. Examination and Elimination of Defects in Cone Casting Made of Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    Guzik E.

    2013-12-01

    Full Text Available In the scope of existing cooperation with the Foundry of Cast Iron ZM “WSK Rzeszów” Ltd. there was carried out research work of microstructure and mechanical properties in the walls of a cone casting made of ductile cast iron. The particular attention was being put to the search of the potential brittle phases which have deleterious effect on ductility and dynamic properties of highly strained use of the casting prone to the potential risk of cracks during the highly strained use.

  6. Dalit women in India: at the crossroads of gender, class, and caste

    OpenAIRE

    Sabharwal, Nidhi Sadana; Sonalkar, Wandana

    2015-01-01

    As the lowest in the caste hierarchy, Dalits in Indian society have historically suffered caste-based social exclusion from economic, civil, cultural, and political rights. Women from this community suffer from not only discrimination based on their gender but also caste identity and consequent economic deprivation. Dalit women constituted about 16.60 percent of India’s female population in 2011. Dalit women’s problems encompass not only gender and economic deprivation but also discrimination...

  7. Evaluation of cast creep occurring during simulated clubfoot correction.

    Science.gov (United States)

    Cohen, Tamara L; Altiok, Haluk; Wang, Mei; McGrady, Linda M; Krzak, Joseph; Graf, Adam; Tarima, Sergey; Smith, Peter A; Harris, Gerald F

    2013-08-01

    The Ponseti method is a widely accepted and highly successful conservative treatment of pediatric clubfoot involving weekly manipulations and cast applications. Qualitative assessments have indicated the potential success of the technique with cast materials other than standard plaster of Paris. However, guidelines for clubfoot correction based on the mechanical response of these materials have yet to be investigated. The current study sought to characterize and compare the ability of three standard cast materials to maintain the Ponseti-corrected foot position by evaluating cast creep response. A dynamic cast testing device, built to model clubfoot correction, was wrapped in plaster of Paris, semi-rigid fiberglass, and rigid fiberglass. Three-dimensional motion responses to two joint stiffnesses were recorded. Rotational creep displacement and linearity of the limb-cast composite were analyzed. Minimal change in position over time was found for all materials. Among cast materials, the rotational creep displacement was significantly different (p creep displacement occurred in the plaster of Paris (2.0°), then the semi-rigid fiberglass (1.0°), and then the rigid fiberglass (0.4°). Torque magnitude did not affect creep displacement response. Analysis of normalized rotation showed quasi-linear viscoelastic behavior. This study provided a mechanical evaluation of cast material performance as used for clubfoot correction. Creep displacement dependence on cast material and insensitivity to torque were discovered. This information may provide a quantitative and mechanical basis for future innovations for clubfoot care.

  8. Supporting the Bronze CastingThrough Information Structuring Based on Ontology application

    Directory of Open Access Journals (Sweden)

    Górny Z.

    2014-03-01

    Full Text Available A significant part of the knowledge used in the production processes is represented with natural language. Yet, the use of that knowledge in computer-assisted decision-making requires the application of appropriate formal and development tools. An interesting possibility is created by the use of an ontology that is understandable both for humans and for the computer. This paper presents a proposal for structuring the information about the foundry processes, based on the definition of ontology adapted to the physical structure of the ongoing technological operations that make up the process of producing castings.

  9. Colour Metallography of Cast Iron

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2009-05-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron.Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron , uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditionalmaterials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  10. Immunotoxicity of copper nanoparticle and copper sulfate in a common Indian earthworm.

    Science.gov (United States)

    Gautam, Arunodaya; Ray, Abhishek; Mukherjee, Soumalya; Das, Santanu; Pal, Kunal; Das, Subhadeep; Karmakar, Parimal; Ray, Mitali; Ray, Sajal

    2018-02-01

    nanoparticles and sulfate salt of copper in M.posthuma inhabiting the soil of India, an agriculture based country. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Reproducibility of ZrO2-based freeze casting for biomaterials.

    Science.gov (United States)

    Naleway, Steven E; Fickas, Kate C; Maker, Yajur N; Meyers, Marc A; McKittrick, Joanna

    2016-04-01

    The processing technique of freeze casting has been intensely researched for its potential to create porous scaffold and infiltrated composite materials for biomedical implants and structural materials. However, in order for this technique to be employed medically or commercially, it must be able to reliably produce materials in great quantities with similar microstructures and properties. Here we investigate the reproducibility of the freeze casting process by independently fabricating three sets of eight ZrO2-epoxy composite scaffolds with the same processing conditions but varying solid loading (10, 15 and 20 vol.%). Statistical analyses (One-way ANOVA and Tukey's HSD tests) run upon measurements of the microstructural dimensions of these composite scaffold sets show that, while the majority of microstructures are similar, in all cases the composite scaffolds display statistically significant variability. In addition, composite scaffolds where mechanically compressed and statistically analyzed. Similar to the microstructures, almost all of their resultant properties displayed significant variability though most composite scaffolds were similar. These results suggest that additional research to improve control of the freeze casting technique is required before scaffolds and composite scaffolds can reliably be reproduced for commercial or medical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Carbon-carbon composite and copper-composite bond damages for high flux component controlled fusion

    International Nuclear Information System (INIS)

    Chevet, G.

    2010-01-01

    Plasma facing components constitute the first wall in contact with plasma in fusion machines such as Tore Supra and ITER. These components have to sustain high heat flux and consequently elevated temperatures. They are made up of an armour material, the carbon-carbon composite, a heat sink structure material, the copper chromium zirconium, and a material, the OFHC copper, which is used as a compliant layer between the carbon-carbon composite and the copper chromium zirconium. Using different materials leads to the apparition of strong residual stresses during manufacturing, because of the thermal expansion mismatch between the materials, and compromises the lasting operation of fusion machines as damage which appeared during manufacturing may propagate. The objective of this study is to understand the damage mechanisms of the carbon-carbon composite and the composite-copper bond under solicitations that plasma facing components may suffer during their life. The mechanical behaviours of carbon-carbon composite and composite-copper bond were studied in order to define the most suitable models to describe these behaviours. With these models, thermomechanical calculations were performed on plasma facing components with the finite element code Cast3M. The manufacturing of the components induces high stresses which damage the carbon-carbon composite and the composite-copper bond. The damage propagates during the cooling down to room temperature and not under heat flux. Alternative geometries for the plasma facing components were studied to reduce damage. The relation between the damage of the carbon-carbon composite and its thermal conductivity was also demonstrated. (author) [fr

  13. Genetic profile based upon 15 microsatellites of four caste groups of the eastern Indian state, Bihar.

    Science.gov (United States)

    Ashma, R; Kashyap, V K

    2003-01-01

    The formation of caste groups among the Hindu community and the practice of endogamy exert a great impact on the genetic structure and diversity of the Indian population. Allele frequency data of 15 microsatellite loci clearly portray the genetic diversity and relatedness among four socio-culturally advanced caste groups: Brahmin, Bhumihar, Rajput and Kayasth of Caucasoid ethnicity of Bihar. The study seeks to understand the impact of the man-made caste system on the genetic profile of the four major caste groups of Bihar. Computation of average heterozygosity, most frequent allele, allele diversity and coefficient of gene differentiation (Gst), along with genetic distance (DA)and principal coordinate analysis were performed to assess intra-population and inter-population diversity. The average Gst value for all the loci was 0.012 +/- 0.0033, and the level of average heterozygosity was approximately 75.5%, indicating genetic similarity and intra-population diversity. Genetic distance (DA) values and the phylogenetic tree along with other higher caste groups of India indicate the relative distance between them. The present study clearly depicts the genetic profile of these caste groups, their inherent closeness in the past, and the impact of the imposed caste system that later restricted the gene flow. The study highlights the status of Bhumihar and Kayasth in the Hindu caste system. The former was found clustering with the Brahmin group (as expected, since Bhumihar is known to be a subclass of Brahmin), whereas the distance between the Brahmin and Kayasth caste groups was found to be large. North-eastern Indian Mongoloids form a separate cluster.

  14. Mechanical Properties of Oxide Films on Electrolytic In-process Dressing (ELID) Copper-based Grinding Wheel

    Science.gov (United States)

    Kuai, J. C.; Wang, J. W.; Jiang, C. R.; Zhang, H. L.; Yang, Z. B.

    2018-05-01

    The mechanical properties of oxide films on copper based grinding wheel were studied by nanoindentation technique. The analysis of load displacement shows that the creep phenomenon occurs during the loading stage. Results show that the oxide film and the matrix have different characteristics, and the rigidity of the copper based grinding wheel is 0.6-1.3mN/nm, which is weaker than that of the matrix; the hardness of the oxide film is 2000-2300MPa, which is higher than the matrix; and the elastic modulus of the oxide film is 100-120GPa, also higher than the matrix.

  15. Casting characteristics of Al-Mg alloy 535 cast in permanent moulds

    International Nuclear Information System (INIS)

    Fasoyinu, F.A.; Thomson, J.; Cousineau, D.; Castles, T.; Sahoo, M.

    2002-01-01

    Aluminum alloy 535 could be used for automotive and marine applications because of its good corrosion resistance against mild alkaline and salt spray exposure. The majority of components from this alloy are usually produced by sand casting because it is prone to hot shortness and has poor fluidity when poured in permanent moulds. In an attempt to improve its castability in permanent moulds, casting characteristics such as casting fluidity and hot tear resistance have been studied. In addition, the effectiveness of titanium, boron, scandium, zirconium and a combination of selected elements from this group as grain refiners were evaluated. It s shown that alloy 535 exhibits good casting fluidity when poured with adequate metal superheat and that there is significant improvement in hot tear resistance following grain refinement. (author)

  16. Strategy of Cooling Parameters Selection in the Continuous Casting of Steel

    Directory of Open Access Journals (Sweden)

    Falkus J.

    2016-03-01

    Full Text Available This paper presents a strategy of the cooling parameters selection in the process of continuous steel casting. Industrial tests were performed at a slab casting machine at the Arcelor Mittal Poland Unit in Krakow. The tests covered 55 heats for 7 various steel grades. Based on the existing casting technology a numerical model of the continuous steel casting process was formulated. The numerical calculations were performed for three casting speeds - 0.6, 0.8 and 1 m min-1. An algorithm was presented that allows us to compute the values of the heat transfer coefficients for the secondary cooling zone. The correctness of the cooling parameter strategy was evaluated by inspecting the shell thickness, the length of the liquid core and the strand surface temperature. The ProCAST software package was used to construct the numerical model of continuous casting of steel.

  17. Fatigue Reliability Analysis of Wind Turbine Cast Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard; Fæster, Søren

    2017-01-01

    .) and to quantify the relevant uncertainties using available fatigue tests. Illustrative results are presented as obtained by statistical analysis of a large set of fatigue data for casted test components typically used for wind turbines. Furthermore, the SN curves (fatigue life curves based on applied stress......The fatigue life of wind turbine cast components, such as the main shaft in a drivetrain, is generally determined by defects from the casting process. These defects may reduce the fatigue life and they are generally distributed randomly in components. The foundries, cutting facilities and test...... facilities can affect the verification of properties by testing. Hence, it is important to have a tool to identify which foundry, cutting and/or test facility produces components which, based on the relevant uncertainties, have the largest expected fatigue life or, alternatively, have the largest reliability...

  18. Applying RP-FDM Technology to Produce Prototype Castings Using the Investment Casting Method

    Directory of Open Access Journals (Sweden)

    M. Macků

    2012-09-01

    Full Text Available The research focused on the production of prototype castings, which is mapped out starting from the drawing documentation up to theproduction of the casting itself. The FDM method was applied for the production of the 3D pattern. Its main objective was to find out whatdimensional changes happened during individual production stages, starting from the 3D pattern printing through a silicon mouldproduction, wax patterns casting, making shells, melting out wax from shells and drying, up to the production of the final casting itself.Five measurements of determined dimensions were made during the production, which were processed and evaluated mathematically.A determination of shrinkage and a proposal of measures to maintain the dimensional stability of the final casting so as to meetrequirements specified by a customer were the results.

  19. Corrosion-electrochemical behaviour and mechanical properties ofaluminium alloy-321, alloyed by barium

    International Nuclear Information System (INIS)

    Ganiev, I.; Mukhiddinov, G.N.; Kargapolova, T.V.; Mirsaidov, U.

    1995-01-01

    The purpose of present work is studying of influence of barium additionson electrochemical corrosion of casting aluminium-copper alloy Al-321,containing as base alloying components copper, chromium, manganese, titanium,zirconium, cadmium

  20. Casting of microstructured shark skin surfaces and possible applications on aluminum casting parts

    Directory of Open Access Journals (Sweden)

    Todor Ivanov

    2011-02-01

    Full Text Available Within the project Functional Surfaces via Micro- and Nanoscaled Structures?which is part of the Cluster of Excellence 揑ntegrative Production Technology?established and financed by the German Research Foundation (DFG, an investment casting process to produce 3-dimensional functional surfaces down to a structural size of 1 μm on near-net-shape-casting parts has been developed. The common way to realize functional microstructures on metallic surfaces is to use laser ablation, electro discharge machining or micro milling. The handicap of these processes is their limited productivity. The approach of this project to raise the efficiency is to use the investment casting process to replicate microstructured surfaces by moulding from a laser-microstructured grand master pattern. The main research objective deals with the investigation of the single process steps of the investment casting process with regard to the moulding accuracy. Actual results concerning making of the wax pattern, suitability of ceramic mould and core materials for casting of an AlSi7Mg0.3 alloy as well as the knock-out behavior of the shells are presented. By using of the example of an intake manifold of a gasoline race car engine, a technical shark skin surface has been realized to reduce the drag of the intake air. The intake manifold consists of an air-restrictor with a defined inner diameter which is microstructured with technical shark skin riblets. For this reason the inner diameter cannot be drilled after casting and demands a very high accuracy of the casting part. A technology for the fabrication and demoulding of accurate microstructured castings are shown. Shrinkage factors of different moulding steps of the macroscopic casting part as well as the microscopic riblet structure have been examined as well.

  1. Maintenance system improvement in cast iron foundry

    Directory of Open Access Journals (Sweden)

    S. Kukla

    2011-07-01

    Full Text Available The work presents the issue of technical equipment management in an iron foundry basing on the assumptions of the TPM system (Total Productive Maintenance. Exploitation analysis of automatic casting lines has been carried out and their work’s influence on the whole production system’s functioning has been researched. Within maintenance system improvement, implementation of autonomic service and planned lines’ review have been proposed in order to minimize the time of breakdown stoppages. The SMED method was used to optimize changeover time, and the OEE (Overall Equipment Effectiveness was applied to evaluate the level of resources usage before and after implementing changes. Further, the influence of the maintenance strategy of casting devices’ efficiency on own costs of casting manufac- ture was estimated.

  2. Mesophilic leaching of copper sulphide sludge

    Directory of Open Access Journals (Sweden)

    VLADIMIR B. CVETKOVSKI

    2009-02-01

    Full Text Available Copper was precipitated using a sodium sulphide solution as the precipitation agent from an acid solution containing 17 g/l copper and 350 g/l sulphuric acid. The particle size of nearly 1 µm in the sulphide sludge sample was detected by optical microscopy. Based on chemical and X-ray diffraction analyses, covellite was detected as the major sulphide mineral. The batch bioleach amenability test was performed at 32 °C on the Tk31 mine mesophilic mixed culture using a residence time of 28 days. The dissolution of copper sulphide by direct catalytic leaching of the sulphides with bacteria attached to the particles was found to be worthy, although a small quantity of ferrous ions had to be added to raise the activity of the bacteria and the redox potential of the culture medium. Throughout the 22-day period of the bioleach test, copper recovery based on residue analysis indicated a copper extraction of 95 %, with copper concentration in the bioleach solution of 15 g/l. The slope of the straight line tangential to the exponential part of the extraction curve gave a copper solubilisation rate of 1.1 g/l per day. This suggests that a copper extraction of 95 % for the period of bioleach test of 13.6 days may be attained in a three-stage bioreactor system.

  3. Design basis for the copper/steel canister. Stage five. Final report

    International Nuclear Information System (INIS)

    Bowyer, W.H.

    1999-05-01

    The development of the copper/iron canister which has been proposed by SKB for the containment of high level nuclear waste in the Swedish Program, has been studied by the present author from the points of view of choice of materials, manufacturing technology and quality assurance. This report describes the observations on progress that has been made between May-1-1998 and April-30-1999 and the result of further literature studies. Cast steel has been rejected in favour of cast iron as a candidate material for the load bearing liner. The nodular iron that was selected has been the subject of casting trials at several foundries. Early trials, using uphill feeding, met with limited success owing to difficulties feeding during solidification. Lessons from this trial led to a modification to the casting design to include extra cores that have the effect of reducing the need for feeding in the heaviest sections. Results using the new design and direct (downhill) casting are very promising. Castings appear to be sound and mechanical test results cast-on bars are within specification. Tensile test results from specimens cut from the casting have reduced ductility compared with the cast-on bars and this may be evidence of microstructural variations within the casting. The material specified for the overpack is OF (Oxygen Free) copper with 50 ppm of phosphorus added. Concentration limits have now been placed on impurity elements which are below those allowed in the OF specification. All current trials are using material from Outokompu produced from cathode on their OF(E) line, which delivers total impurity levels of less than 30 ppm excluding silver and phosphorus. The phosphorus addition is made using a master alloy added to the launder and this does not give good control of phosphorus level either within or between castings. Phosphorus is added to improve creep rates and creep strain to failure. The level is limited to 50 ppm in order to avoid difficulties, which it might

  4. Design basis for the copper/steel canister. Stage five. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bowyer, W.H. [Meadow End Farm, Farnham (United Kingdom)

    1999-05-01

    The development of the copper/iron canister which has been proposed by SKB for the containment of high level nuclear waste in the Swedish Program, has been studied by the present author from the points of view of choice of materials, manufacturing technology and quality assurance. This report describes the observations on progress that has been made between May-1-1998 and April-30-1999 and the result of further literature studies. Cast steel has been rejected in favour of cast iron as a candidate material for the load bearing liner. The nodular ironthat was selected has been the subject of casting trials at several foundries. Early trials, using uphill feeding, met with limited success owing to difficulties feeding during solidification. Lessons from this trial led to a modification to the casting design to include extra cores that have the effect of reducing the need for feeding in the heaviest sections. Results using the new design and direct (downhill) casting are very promising. Castings appear to be sound and mechanical test results cast-on bars are within specification. Tensile test results from specimens cut from the casting have reduced ductility compared with the cast-on bars and this may be evidence of microstructural variations within the casting. The material specified for the overpack is OF (Oxygen Free) copper with 50 ppm of phosphorus added. Concentration limits have now been placed on impurity elements which are below those allowed in the OF specification. All current trials are using material from Outokompu produced from cathode on their OF(E) line, which delivers total impurity levels of less than 30 ppm excluding silver and phosphorus. The phosphorus addition is made using a master alloy added to the launder and this does not give good control of phosphorus level either within or between castings. Phosphorus is added to improve creep rates and creep strain to failure. The level is limited to 50 ppm in order to avoid difficulties, which it might

  5. Influence of core-finishing intervals on tensile strength of cast posts-and-cores luted with zinc phosphate cement

    Directory of Open Access Journals (Sweden)

    Michele Andrea Lopes Iglesias

    2012-08-01

    Full Text Available The core finishing of cast posts-and-cores after luting is routine in dental practice. However, the effects of the vibrations produced by the rotary cutting instruments over the luting cements are not well-documented. This study evaluated the influence of the time intervals that elapsed between the cementation and the core-finishing procedures on the tensile strength of cast posts-and-cores luted with zinc phosphate cement. Forty-eight bovine incisor roots were selected, endodontically treated, and divided into four groups (n = 12: GA, control (without finishing; GB, GC, and GD, subjected to finishing at 20 minutes, 60 minutes, and 24 hours after cementation, respectively. Root canals were molded, and the resin patterns were cast in copper-aluminum alloy. Cast posts-and-cores were luted with zinc phosphate cement, and the core-finishing procedures were applied according to the groups. The tensile tests were performed at a crosshead speed of 0.5 mm/min for all groups, 24 hours after the core-finishing procedures. The data were subjected to one-way analysis of variance (ANOVA and Tukey's test (α = 0.05. No significant differences were observed in the tensile strengths between the control and experimental groups, regardless of the time interval that elapsed between the luting and finishing steps. Within the limitations of the present study, it was demonstrated that the core-finishing procedures and time intervals that elapsed after luting did not appear to affect the retention of cast posts-and-cores when zinc phosphate cement was used.

  6. Micronized copper wood preservatives: an efficiency and potential health risk assessment for copper-based nanoparticles.

    Science.gov (United States)

    Civardi, Chiara; Schwarze, Francis W M R; Wick, Peter

    2015-05-01

    Copper (Cu) is an essential biocide for wood protection, but fails to protect wood against Cu-tolerant wood-destroying fungi. Recently Cu particles (size range: 1 nm-25 μm) were introduced to the wood preservation market. The new generation of preservatives with Cu-based nanoparticles (Cu-based NPs) is reputedly more efficient against wood-destroying fungi than conventional formulations. Therefore, it has the potential to become one of the largest end uses for wood products worldwide. However, during decomposition of treated wood Cu-based NPs and/or their derivate may accumulate in the mycelium of Cu-tolerant fungi and end up in their spores that are dispersed into the environment. Inhaled Cu-loaded spores can cause harm and could become a potential risk for human health. We collected evidence and discuss the implications of the release of Cu-based NPs by wood-destroying fungi and highlight the exposure pathways and subsequent magnitude of health impact. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Aluminium Foam and Magnesium Compound Casting Produced by High-Pressure Die Casting

    Directory of Open Access Journals (Sweden)

    Iban Vicario

    2016-01-01

    Full Text Available Nowadays, fuel consumption and carbon dioxide emissions are two of the main focal points in vehicle design, promoting the reduction in the weight of vehicles by using lighter materials. The aim of the work is to evaluate the influence of different aluminium foams and injection parameters in order to obtain compound castings with a compromise between the obtained properties and weight by high-pressure die cast (HPDC using aluminium foams as cores into a magnesium cast part. To evaluate the influence of the different aluminium foams and injection parameters on the final casting products quality, the type and density of the aluminium foam, metal temperature, plunger speed, and multiplication pressure have been varied within a range of suitable values. The obtained compound HPDC castings have been studied by performing visual and RX inspections, obtaining sound composite castings with aluminium foam cores. The presence of an external continuous layer on the foam surface and the correct placement of the foam to support injection conditions permit obtaining good quality parts. A HPDC processed magnesium-aluminium foam composite has been developed for a bicycle application obtaining a suitable combination of mechanical properties and, especially, a reduced weight in the demonstration part.

  8. Properties shaping and repair of selected types of cast iron

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2007-04-01

    Full Text Available The paper presents research results of twofold use of TIG - Tungsten Inert Gas also known as GTA - Gas Tungsten Arc. First is surfacing by welding on cold and hot-cold to repair chromium cast iron with chromium content about 15%. Second is remelting with electric arc of selected gray (with pearlitic matrix and ductile (with ferritic-pearlitic matrix cast iron. Repair of cast iron elements was realized in order to cut out a casting defects. Defects decrease a usability of castings for constructional application and increase a manufacturing costs. Application of surface heat treatment guarantees mechanical properties i.e. hardness and wear resistance improvement. The result of investigations show possibility of castings repair by put on defects a good quality padding welds, which have comparable properties with base material. Use of electric arc surface heat treatment resulted in increase of hardness and wear resistance, which was measured on the basis of ASTM G 65 - 00 standard.

  9. Automatic inspection of surface defects in die castings after machining

    Directory of Open Access Journals (Sweden)

    S. J. Świłło

    2011-07-01

    Full Text Available A new camera based machine vision system for the automatic inspection of surface defects in aluminum die casting was developed by the authors. The problem of surface defects in aluminum die casting is widespread throughout the foundry industry and their detection is of paramount importance in maintaining product quality. The casting surfaces are the most highly loaded regions of materials and components. Mechanical and thermal loads as well as corrosion or irradiation attacks are directed primarily at the surface of the castings. Depending on part design and processing techniques, castings may develop surface discontinuities such as cracks or tears, inclusions due to chemical reactions or foreign material in the molten metal, and pores that greatly influence the material ability to withstand these loads. Surface defects may act as a stress concentrator initiating a fracture point. If a pressure is applied in this area, the casting can fracture. The human visual system is well adapted to perform in areas of variety and change; the visual inspection processes, on the other hand, require observing the same type of image repeatedly to detect anomalies. Slow, expensive, erratic inspection usually is the result. Computer based visual inspection provides a viable alternative to human inspectors. Developed by authors machine vision system uses an image processing algorithm based on modified Laplacian of Gaussian edge detection method to detect defects with different sizes and shapes. The defect inspection algorithm consists of three parameters. One is a parameter of defects sensitivity, the second parameter is a threshold level and the third parameter is to identify the detected defects size and shape. The machine vision system has been successfully tested for the different types of defects on the surface of castings.

  10. Analysis of Mold Friction in a Continuous Casting Using Wavelet Transform

    Science.gov (United States)

    Ma, Yong; Fang, Bohan; Ding, Qiqi; Wang, Fangyin

    2018-04-01

    Mold friction (MDF) is an important parameter reflecting the lubrication condition between the initial shell and the mold during continuous casting. In this article, based on practical MDF from the slab continuous casting driven by a mechanical vibration device, the characteristics of friction were analyzed by continuous wavelet transform (CWT) and discrete wavelet transform (DWT) in different casting conditions, such as normal casting, level fluctuation, and alarming of the temperature measurement system. The results show that the CWT of friction accurately captures the subtle changes in friction force, such as the periodic characteristic of MDF during normal casting and the disordered feature of MDF during level fluctuation. Most important, the results capture the occurrence of abnormal casting and display the friction frequency characteristics at this abnormal time. In addition, in this article, there are some abnormal casting conditions, and the friction signal is stable until there is a sudden large change when abnormal casting, such as split breakout and submerged entry nozzle breakage, occurs. The DWT has a good ability to capture the friction characteristics for such abnormal situations. In particular, the potential abnormal features of MDF were presented in advance, which provides strong support for identifying abnormal casting and even preventing abnormal casting.

  11. Copper and copper-nickel alloys as zebra mussel antifoulants

    Energy Technology Data Exchange (ETDEWEB)

    Dormon, J.M.; Cottrell, C.M.; Allen, D.G.; Ackerman, J.D.; Spelt, J.K. [Univ. of Toronto, Ontario (Canada)

    1996-04-01

    Copper has been used in the marine environment for decades as cladding on ships and pipes to prevent biofouling by marine mussels (Mytilus edulis L.). This motivated the present investigation into the possibility of using copper to prevent biofouling in freshwater by both zebra mussels and quagga mussels (Dreissena polymorpha and D. bugensis collectively referred to as zebra mussels). Copper and copper alloy sheet proved to be highly effective in preventing biofouling by zebra mussels over a three-year period. Further studies were conducted with copper and copper-nickel mesh (lattice of expanded metal) and screen (woven wire with a smaller hole size), which reduced the amount of copper used. Copper screen was also found to be strongly biofouling-resistant with respect to zebra mussels, while copper mesh reduced zebra mussel biofouling in comparison to controls, but did not prevent it entirely. Preliminary investigations into the mechanism of copper antifouling, using galvanic couples, indicated that the release of copper ions from the surface of the exposed metal into the surrounding water is directly or indirectly responsible for the biofouling resistance of copper.

  12. Synchrotron based x-ray fluorescence microscopy confirms copper in the corrosion products of metals in contact with treated wood

    Science.gov (United States)

    Samuel L. Zelinka; Joseph E. Jakes; Grant T. Kirker; David Vine; Stefan Vogt

    2017-01-01

    Copper based waterborne wood preservatives are frequently used to extend the service life of wood products when subjected to frequent moisture exposure. While these copper based treatments protect the wood from fungal decay and insect attack, they increase the corrosion of metals embedded or in contact with the treated wood. Previous research has shown the most...

  13. Applying RP-FDM Technology to Produce Prototype Castings Using the Investment Casting Method

    Directory of Open Access Journals (Sweden)

    Macků M.

    2012-09-01

    Full Text Available The research focused on the production of prototype castings, which is mapped out starting from the drawing documentation up to the production of the casting itself. The FDM method was applied for the production of the 3D pattern. Its main objective was to find out what dimensional changes happened during individual production stages, starting from the 3D pattern printing through a silicon mould production, wax patterns casting, making shells, melting out wax from shells and drying, up to the production of the final casting itself. Five measurements of determined dimensions were made during the production, which were processed and evaluated mathematically. A determination of shrinkage and a proposal of measures to maintain the dimensional stability of the final casting so as to meet requirements specified by a customer were the results.

  14. Casting AISI 316 steel by gel cast

    International Nuclear Information System (INIS)

    Ozols, A; Thern, G; Rozenberg, S; Barreiro, M; Marajofsky, A

    2004-01-01

    The feasibility of producing AISI 316 steel components from their powders and avoiding their compaction is analyzed. A casting technique is tested that is similar to gel casting, used for ceramic materials. In the initial stage, the process consists of the formulation of a concentrated barbotine of powdered metal in a solution of water soluble organic monomers, which is cast in a mold and polymerized in situ to form a raw piece in the shape of the cavity. The process can be performed under controlled conditions using barbotines with a high monomer content from the acrylimide family. Then, the molded piece is slowly heated until the polymer is eliminated, and it is sintered at temperatures of 1160 o C to 1300 o C under a dry hydrogen atmosphere, until the desired densities are attained. The density and micro structure of the materials obtained are compared with those for the materials compacted and synthesized by the conventional processes. The preliminary results show the feasibility of the process for the production of certain kinds of structural components (CW)

  15. The Effect of Ductile Cast Iron Matrix on Zinc Coating During Hot Dip Galvanising of Castings

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2012-12-01

    Full Text Available The growth kinetics of the zinc coating formed on the surface of casting made from ductile iron grade EN-GJS-500-3 was investigated. To produce homogenous metal matrix in test samples, the normalising and ferritising annealing was carried out. Studies showeda heterogeneous structure of cast iron with varying content of the phases formed. This was followed by hot dip galvanising treatment at450°C to capture the growth kinetics of the zinc coating (the time of the treatment ranged from 60 to 600 seconds. Nonlinear estimation of the determined growth kinetics of the alloyed layer of a zinc coating was made and an equation of the zinc coating growth was derived.Based on the results of the investigations it was concluded that thickness of the zinc coating formed on the surface of casting with a 100% pearlitic matrix makes 55% of the thickness of coating formed on the surface in 100% ferritic.

  16. The Effect of Ductile Cast Iron Matrix on Zinc Coating During Hot Dip Galvanising of Castings

    Directory of Open Access Journals (Sweden)

    Kopyciński D.

    2012-12-01

    Full Text Available The growth kinetics of the zinc coating formed on the surface of casting made from ductile iron grade EN-GJS-500-3 was investigated. To produce homogenous metal matrix in test samples, the normalising and ferritising annealing was carried out. Studies showed a heterogeneous structure of cast iron with varying content of the phases formed. This was followed by hot dip galvanising treatment at 450°C to capture the growth kinetics of the zinc coating (the time of the treatment ranged from 60 to 600 seconds. Nonlinear estimation of the determined growth kinetics of the alloyed layer of a zinc coating was made and an equation of the zinc coating growth was derived. Based on the results of the investigations it was concluded that thickness of the zinc coating formed on the surface of casting with a 100% pearlitic matrix makes 55% of the thickness of coating formed on the surface in 100% ferritic.

  17. Dome style heavy wall steel casting manufactured by metallic core mould system

    International Nuclear Information System (INIS)

    Yamamoto, Shiro; Saeki, Keiji; Hirose, Yutaka; Takebayashi, Kazunari; Kawasaki, Masatoshi

    1986-01-01

    Semi-spherical thick walled steel castings are one of the main products of Nippon Chutanko K.K., but there have been the problems of internal defects peculiar to large thick walled steel castings, and the various improvements have been carried out so far for the manufacturing method, but still some of those remains. Based on the anxiety about the reliability of large steel castings, the conversion to forging has been studied. For the purpose of thoroughly improving the internal quality of thick walled steel castings to compete with forgings, on the basis of the operating experience of chills, the development of the casting techniques changing cores completely to metallic cores has been advanced. After the preliminary experiment using models, a semi-spherical thick walled steel casting mentioned before was manufactured by this metallic core casting method for trial, and the detailed investigation was carried out. As the result, the excellent internal quality was confirmed, accordingly at present, the production is made by this method. The form, dimensions and specification of the semi-spherical thick walled steel castings, the conventional casting plan, the metallic core casting plan, the design of metallic cores, molding and casting, and the examination of the castings made for trial are reported. (Kako, I.)

  18. Copper-zinc superoxide dismutase is activated through a sulfenic acid intermediate at a copper ion entry site.

    Science.gov (United States)

    Fetherolf, Morgan M; Boyd, Stefanie D; Taylor, Alexander B; Kim, Hee Jong; Wohlschlegel, James A; Blackburn, Ninian J; Hart, P John; Winge, Dennis R; Winkler, Duane D

    2017-07-21

    Metallochaperones are a diverse family of trafficking molecules that provide metal ions to protein targets for use as cofactors. The copper chaperone for superoxide dismutase (Ccs1) activates immature copper-zinc superoxide dismutase (Sod1) by delivering copper and facilitating the oxidation of the Sod1 intramolecular disulfide bond. Here, we present structural, spectroscopic, and cell-based data supporting a novel copper-induced mechanism for Sod1 activation. Ccs1 binding exposes an electropositive cavity and proposed "entry site" for copper ion delivery on immature Sod1. Copper-mediated sulfenylation leads to a sulfenic acid intermediate that eventually resolves to form the Sod1 disulfide bond with concomitant release of copper into the Sod1 active site. Sod1 is the predominant disulfide bond-requiring enzyme in the cytoplasm, and this copper-induced mechanism of disulfide bond formation obviates the need for a thiol/disulfide oxidoreductase in that compartment. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Application of optical scanning for measurements of castings and cores

    Directory of Open Access Journals (Sweden)

    M. Wieczorowski

    2010-01-01

    Full Text Available In the paper application of non destructive method for dimensional control of elements in initial phase of car manufacturing, at Volks-wagen Poznań foundry was presented. VW foundry in Poznań is responsible of series production of chill and dies castings made of light alloys using contemporary technologies. Castings have a complex shape: they are die castings of housings for steering columns and gravity chill castings of cylinder heads, for which cores are manufactured using both hot box and cold box method. Manufacturing capabilities of VW foundry in Poznań reach 26.000 tons of aluminum castings per year. Optical system ATOS at Volkswagen Poznań foundry is used to digitize object and determination of all dimensions and shapes of inspected object. This technology is applied in car industry, reverse engineering, quality analysis and control and to solve many similar tasks. System is based on triangulation: sensor head projects different fringes patterns onto a measured object while scanner observes their trajectories using two cameras. Basing on optical transform equations a processing unit automatically and with a great accuracy calculates 3D coordinates for every pixel of camera. Depending on camera reso-lution as an effect of such a scan we obtain a cloud of up to 4 million points for every single measurement. In the paper examples of di-mensional analysis regarding castings and cores were presented.

  20. Symptomatic stent cast.

    LENUS (Irish Health Repository)

    Keohane, John

    2012-02-03

    Biliary stent occlusion is a major complication of endoscopic stent insertion and results in repeat procedures. Various theories as to the etiology have been proposed, the most frequently studied is the attachment of gram negative bacteria within the stent. Several studies have shown prolongation of stent patency with antibiotic prophylaxis. We report the case of stent occlusion from a cast of a previously inserted straight biliary stent; a "stent cast" in an 86-year-old woman with obstructive jaundice. This was retrieved with the lithotrypter and she made an uneventful recovery. This is the first reported case of a biliary stent cast.

  1. Fracture Mechanisms in Steel Castings

    Directory of Open Access Journals (Sweden)

    Stradomski Z.

    2013-09-01

    Full Text Available The investigations were inspired with the problem of cracking of steel castings during the production process. A single mechanism of decohesion - the intergranular one - occurs in the case of hot cracking, while a variety of structural factors is decisive for hot cracking initiation, depending on chemical composition of the cast steel. The low-carbon and low-alloyed steel castings crack due to the presence of the type II sulphides, the cause of cracking of the high-carbon tool cast steels is the net of secondary cementite and/or ledeburite precipitated along the boundaries of solidified grains. Also the brittle phosphor and carbide eutectics precipitated in the final stage solidification are responsible for cracking of castings made of Hadfield steel. The examination of mechanical properties at 1050°C revealed low or very low strength of high-carbon cast steels.

  2. Colorimetric assay of copper ions based on the inhibition of peroxidase-like activity of MoS2 nanosheets

    Science.gov (United States)

    Chen, Huan; Li, Zhihong; Liu, Xueting; Zhong, Jianhai; Lin, Tianran; Guo, Liangqia; Fu, Fengfu

    2017-10-01

    The peroxidase-like catalytic activity of MoS2 nanomaterials has been utilized for colorimetric bioassays and medical diagnostics. However, the application of peroxidase-like catalytic activity of MoS2 nanomaterials in environmental analysis was seldom explored. Herein, copper ions were found to inhibit the peroxidase-like catalytic activity of MoS2 nanosheets, which can catalyze the oxidation of 3, 3‧, 5, 5‧-tetramethylbenzidine by H2O2 to produce a colorimetric product. Based on this finding, a simple sensitive colorimetric method for the detection of copper ions was developed. In the presence of copper ions, the absorbance and color of the solution decreased with the increasing concentration of copper ions. The color of the solution can be used to semi-quantitative on-site assay of copper ions by naked eyes. A linear relationship between the absorbance and the concentration of copper ions was observed in the range of 0.4-4.0 μmol L- 1 with a detection limit of 92 nmol L- 1, which was much lower than the maximum contaminant level of copper in drinking water legislated by the Environmental Protection Agency of USA and the World Health Organization. The method was applied to detect copper ions in environmental water samples with satisfactory results.

  3. CAST reaches milestone but keeps on searching

    CERN Multimedia

    CERN Courier (september 2011 issue)

    2011-01-01

    After eight years of searching for the emission of a dark matter candidate particle, the axion, from the Sun, the CERN Axion Solar Telescope (CAST) has fulfilled its original physics programme.   Members of the CAST collaboration in July, together with dipole-based helioscope. CAST, the world’s most sensitive axion helioscope, points a recycled prototype LHC dipole magnet at the Sun at dawn and dusk, looking for the conversion of axions to X-rays. It incorporates four state-of-the-art X-ray detectors: three Micromegas detectors and a pn-CCD imaging camera attached to a focusing X-ray telescope that was recovered from the German space programme (see CERN Courier April 2010).  Over the years, CAST has operated with the magnet bores - the location of the axion conversion - in different conditions: first in vacuum, covering axion masses up to 20 meV/c2, and then with a buffer gas (4He and later 3He) at various densities, finally reaching the goal of 1.17 eV/c2 on 22 ...

  4. Probing eV-scale axions with CAST

    CERN Document Server

    Ruz, J

    2009-01-01

    CAST (CERN Axion Solar Telescope) is a helioscope looking for axions coming from the solar core to the Earth. The experiment, located at CERN, is based on the Primakoff effect and uses a magnetic field of 9 Tesla provided by a decommissioned LHC magnet. CAST is able to follow the Sun during sunrise and sunset having four X-ray detectors mounted on both ends of the magnet to look for photons from axion-to-photon conversions. During its First Phase, which concluded in 2004, CAST searched for axions with masses up to 0.02 eV. By using a buffer gas the coherence needed to scan for axions with masses up to 1.20 eV is re-established in CAST’s Second Phase. This technique enables the experiment to study the theoretical regions for axions. During the years 2005 and 2006, the use of 4He has already enabled the search for axions with masses up to 0.39 eV. Up to present time, CAST has upgraded its experimental setup to operate with 3He in the magnetic field.

  5. The influence of copper-based fungicide use in soils and aquatic sediments. Case study: Aetoliko lagoon, Western Greece

    Science.gov (United States)

    Avramidis, Pavlos; Barouchas, Pantelis; Dünwald, Thomas; Unkel, Ingmar

    2017-04-01

    In the study area, in order farmers to keep their olive trees healthy, the first measure is to keep their olive trees well-fed that is the best initial defense against diseases. Copper-based fungicides are the most common fungicides to protect olive plantations against diseases such as the olive leaf spot. Pathogens are controlled by farmers with strategically timed disease control programs rely on copper sprays to protect the foliage and fruit from infection Successful disease control depends on even distribution and good retention of the copper over all of the plant surfaces before the disease develops. Artificially added copper has the ability to accumulate in soils and aquatic sediments and can cause adverse effects on flora and fauna in its environment. For the present study soil and aquatic sediments field campaign was carried out in the Aetoliko Lagoon ecosystem which is exclusively dominated by olive orchards. It is for the first time in Greece that soil as well as aquatic sediments samples of one coherent protected aquatic ecosystem were taken and compared. To determine the influence that the usage of copper-based fungicides have on the lagoon and surrounding areas, ten (10) sediment samples from the bottom of the lagoon and twenty five (25) soil samples at the different olive orchards that are bordering the water body were taken. The samples were analyzed for total copper content (total digestion) and extractable copper (DTPA and NH4NO3). Furthermore, soil / sedimentological and geochemical analyses such as pH, grain size, total organic carbon, total nitrogen and calcium carbonate content were carried out. The results show in over 80 % of the orchard soils a critical accumulation of the total amount of copper. In some of the examined soils the value of 140 mg/kg(as set by the European Union as a limit for total copper in farmland) is exceeded by the factors of 2 to 4.5. Copper content in the aquatic sediments is generally lower and varies between 43.85 mg

  6. Copper and Copper Proteins in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Sergio Montes

    2014-01-01

    Full Text Available Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson’s disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson’s disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson’s disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson’s disease and that a mutation in ATP7B could be associated with Parkinson’s disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology.

  7. Non-destructive control of castings

    International Nuclear Information System (INIS)

    Boutault, J.; Mascre, C.

    1978-01-01

    The object of non-destructive control in foundries is to verify the metal structure, the absence of unacceptable discontinuity, total tightness, etc. This leads to a range of very varied controls according to the importance of the series, the quality level required by the specifications, the nature of the alloy. The originality of the solutions which are imperative for castings is shown through examples: casting of high quality complex forms in short series; very thick unit parts; very large series of parts requiring on efficient automation of non-destructive control. Lastly the publishing of testing methods and interpretating rules, which are the base of a friendly understanding between constructors and founders are recalled [fr

  8. Preparation of thin actinide metal disks using a multiple disk casting technique

    International Nuclear Information System (INIS)

    Conner, W.V.

    1975-01-01

    A casting technique has been developed for preparing multiple actinide metal disks which have a minimum thickness of 0.006 inch. This technique was based on an injection casting procedure which utilizes the weight of a tantalum metal rod to force the molten metal into the mold cavity. Using the proper mold design and casting parameters, it has been possible to prepare ten 1/2 inch diameter neptunium or plutonium metal disks in a single casting, This casting technique is capable of producing disks which are very uniform. The average thickness of the disks from a typical casting will vary no more than 0.001 inch and the variation in the thickness of the individual disks will range from 0.0001 to 0.0005 inch. (Auth.)

  9. Preparation of thin actinide metal disks using a multiple disk casting technique

    International Nuclear Information System (INIS)

    Conner, W.V.

    1976-01-01

    A casting technique has been developed for preparing multiple actinide metal disks which have a minimum thickness of 0.006 inch. This technique was based on an injection casting procedure which utilizes the weight of a tantalum metal rod to force the molten metal into the mold cavity. Using the proper mold design and casting parameters, it has been possible to prepare ten 1/2 inch diameter neptunium or plutonium metal disks in a single casting. This casting technique is capable of producing disks which are very uniform. The average thickness of the disks from a typical casting will vary no more than 0.001 inch and the variation in the thickness of the individual disks will range from 0.0001 to 0.0005 inch. (author)

  10. Freeze-casting: Fabrication of highly porous and hierarchical ceramic supports for energy applications

    Directory of Open Access Journals (Sweden)

    Cyril Gaudillere

    2016-03-01

    The aim of this paper is to give an overview of the freeze-casting ceramic shaping method and to show how its implementation could be useful for several energy applications where key components comprise a porous scaffold. A detailed presentation of the freeze-casting process and of the characteristics of the resulting porous parts is firstly given. The characteristic of freeze-cast parts and the drawbacks of conventional porous scaffolds existing in energy applications are drawn in order to highlight the expected beneficial effect of this new shaping technique as possible substitute to the conventional ones. Finally, a review of the state of the art freeze-cast based energy applications developed up to now and expected to be promising is given to illustrate the large perspectives opened by the implementation of the freeze-casting of ceramics for energy fields. Here we suggest discussing about the feasibility of incorporate freeze-cast porous support in high temperature ceramic-based energy applications.

  11. Optimization design of a gating system for sand casting aluminium A356 using a Taguchi method and multi-objective culture-based QPSO algorithm

    Directory of Open Access Journals (Sweden)

    Wen-Jong Chen

    2016-04-01

    Full Text Available This article combined Taguchi method and analysis of variance with the culture-based quantum-behaved particle swarm optimization to determine the optimal models of gating system for aluminium (Al A356 sand casting part. First, the Taguchi method and analysis of variance were, respectively, applied to establish an L27(38 orthogonal array and determine significant process parameters, including riser diameter, pouring temperature, pouring speed, riser position and gating diameter. Subsequently, a response surface methodology was used to construct a second-order regression model, including filling time, solidification time and oxide ratio. Finally, the culture-based quantum-behaved particle swarm optimization was used to determine the multi-objective Pareto optimal solutions and identify corresponding process conditions. The results showed that the proposed method, compared with initial casting model, enabled reducing the filling time, solidification time and oxide ratio by 68.14%, 50.56% and 20.20%, respectively. A confirmation experiment was verified to be able to effectively reduce the defect of casting and improve the casting quality.

  12. Possibilities of radioisotopic fluorescence analysis application in copper industry

    International Nuclear Information System (INIS)

    Parus, J.; Kierzek, J.

    1983-01-01

    The main applications of X-ray fluorescence analysis in copper industry such as: copper ores and other materials from flotation analysis, lead and silver determination in blister copper, analysis of metallurgic dusts and copper base alloys analysis are presented. (A.S.)

  13. NUMERICAL MODELING OF HARDENING OF UNINTERRUPTEDLY-CASTED BRONZE CASTING

    Directory of Open Access Journals (Sweden)

    E. I. Marukovich

    2009-01-01

    Full Text Available The three-dimensional numerical model for calculation of thermal fields during solidification of continuously casted bronze casting is developed. Coefficients of heat transfer on borders of calculation areas on the basis of the solution of inverse heat transfer conduction problem are determined. The analysis of thermal fields, depending on loop variables of drawing and the sizes of not cooled zone of crystallizer is curried out.

  14. Defect studies in copper-based p-type transparent conducting oxides

    Science.gov (United States)

    Ameena, Fnu

    Among other intrinsic open-volume defects, copper vacancy (VCu) has been theoretically identified as the major acceptor in p-type Cu-based semiconducting transparent oxides, which has potential as low-cost photovoltaic absorbers in semi-transparent solar cells. A series of positron annihilation experiments with pure Cu, Cu2O, and CuO presented strong presence of VCu and its complexes in the copper oxides. The lifetime data also showed that the density of VCu was becoming higher as the oxidation state of Cu increased which was consistent with the decrease in the formation energy of VCu. Doppler broadening measurements further indicated that electrons with low momentum made more contribution to the contributed as pure Cu oxidizes to copper oxides. The metastable defects are known to be generated in Cu2O upon illumination and it has been known to affect the performance of Cu2O-based hetero-junctions used in solar cells. The metastable effect was studied using positron annihilation lifetime spectroscopy and its data showed the change in the defect population upon light exposure and the minimal effect of light-induced electron density increase in the bulk of materials to the average lifetime of the positrons. The change in the defect population is concluded to be related to the dissociation and association of VCu -- V Cu complexes. For example, the shorter lifetime under light was ascribed to the annihilation with smaller size vacancies, which explains the dissociation of the complexes with light illumination. Doppler broadening of the annihilation was independent of light illumination, which suggested that the chemical nature of the defects remained without change upon their dissociation and association -- only the size distribution of copper vacancies varied. The delafossite metal oxides, CuMIIIO2 are emerging wide-bandgap p-type semiconductors. In this research, the formation energies of structural vacancies are calculated using Van Vechten cavity model as an attempt

  15. The Decision Support System in the Domain of Casting Defects Diagnosis

    Directory of Open Access Journals (Sweden)

    Wilk-Kołodziejczyk D.

    2014-08-01

    Full Text Available This article presents a computer system for the identification of casting defects using the methodology of Case-Based Reasoning. The system is a decision support tool in the diagnosis of defects in castings and is designed for small and medium-sized plants, where it is not possible to take advantage of multi-criteria data. Without access to complete process data, the diagnosis of casting defects requires the use of methods which process the information based on the experience and observations of a technologist responsible for the inspection of ready castings. The problem, known and studied for a long time, was decided to be solved with a computer system using a CBR (Case-Based Reasoning methodology. The CBR methodology not only allows using expert knowledge accumulated in the implementation phase, but also provides the system with an opportunity to “learn” by collecting new cases solved earlier by this system. The authors present a solution to the system of inference based on the accumulated cases, in which the main principle of operation is searching for similarities between the cases observed and cases stored in the knowledge base.

  16. Observations of a Cast Cu-Cr-Zr Alloy

    Science.gov (United States)

    Ellis, David L.

    2006-01-01

    Prior work has demonstrated that Cu-Cr-Nb alloys have considerable advantages over the copper alloys currently used in regeneratively cooled rocket engine liners. Observations indicated that Zr and Nb have similar chemical properties and form very similar compounds. Glazov and Zakharov et al. reported the presence of Cr2Zr in Cu-Cr-Zr alloys with up to 3.5 wt% Cr and Zr though Zeng et al. calculated that Cr2Zr could not exist in a ternary Cu-Cr-Zr alloy. A cast Cu-6.15 wt% Cr-5.25 wt% Zr alloy was examined to determine if the microstructure developed would be similar to GRCop-84 (Cu-6.65 wt% Cr-5.85 wt% Nb). It was observed that the Cu-Cr-Zr system did not form any Cr2Zr even after a thermal exposure at 875 C for 176.5 h. Instead the alloy consisted of three phases: Cu, Cu5Zr, and Cr.

  17. Materials for Advanced Ultrasupercritical Steam Turbines Task 4: Cast Superalloy Development

    Energy Technology Data Exchange (ETDEWEB)

    Thangirala, Mani

    2015-09-30

    The Steam Turbine critical stationary structural components are high integrity Large Shell and Valve Casing heavy section Castings, containing high temperature steam under high pressures. Hence to support the development of advanced materials technology for use in an AUSC steam turbine capable of operating with steam conditions of 760°C (1400°F) and 35 Mpa (5000 psia), Casting alloy selection and evaluation of mechanical, metallurgical properties and castability with robust manufacturing methods are mandated. Alloy down select from Phase 1 based on producability criteria and creep rupture properties tested by NETL-Albany and ORNL directed the consortium to investigate cast properties of Haynes 282 and Haynes 263. The goals of Task 4 in Phase 2 are to understand a broader range of mechanical properties, the impact of manufacturing variables on those properties. Scale up the size of heats to production levels to facilitate the understanding of the impact of heat and component weight, on metallurgical and mechanical behavior. GE Power & Water Materials and Processes Engineering for the Phase 2, Task 4.0 Castings work, systematically designed and executed casting material property evaluation, multiple test programs. Starting from 15 lbs. cylinder castings to world’s first 17,000 lbs. poured weight, heavy section large steam turbine partial valve Haynes 282 super alloy casting. This has demonstrated scalability of the material for steam Turbine applications. Activities under Task 4.0, Investigated and characterized various mechanical properties of Cast Haynes 282 and Cast Nimonic 263. The development stages involved were: 1) Small Cast Evaluation: 4 inch diam. Haynes 282 and Nimonic 263 Cylinders. This provided effects of liquidus super heat range and first baseline mechanical data on cast versions of conventional vacuum re-melted and forged Ni based super alloys. 2) Step block castings of 300 lbs. and 600 lbs. Haynes 282 from 2 foundry heats were evaluated which

  18. The effects of different types of investments on the alpha-case layer of titanium castings.

    Science.gov (United States)

    Guilin, Yu; Nan, Li; Yousheng, Li; Yining, Wang

    2007-03-01

    Different types of investments affect the formation of the alpha-case (alpha-case) layer on titanium castings. This alpha-case layer may possibly alter the mechanical properties of cast titanium, which may influence the fabrication of removable and fixed prostheses. The formation mechanism for the alpha-case layer is not clear. The aim of this study was to evaluate the effect of 3 types of investments on the microstructure, composition, and microhardness of the alpha-case layer on titanium castings. Fifteen wax columns with a diameter of 5 mm and a length of 40 mm were divided into 3 groups of 5 patterns each. Patterns were invested using 3 types of investment materials, respectively, and were cast in pure titanium. The 3 types of materials tested were SiO(2)-, Al(2)O(3)-, and MgO-based investments. All specimens were sectioned and prepared for metallographic observation. The microstructure and composition of the surface reaction layer of titanium castings were investigated by scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). The surface microhardness (VHN) for all specimens was measured using a hardness testing machine, and a mean value for each group was calculated. The alpha-case layer on titanium castings invested with SiO(2)-, Al(2)O(3)-, and MgO-based investments consisted of 3 layers-namely, the oxide layer, alloy layer, and hardening layer. In this study, the oxide layer and alloy layer were called the reaction layer. The thickness of the reaction layer for titanium castings using SiO(2)-, Al(2)O(3)-, and MgO-based investments was approximately 80 microm, 50 microm, and 14 microm, respectively. The surface microhardness of titanium castings made with SiO(2)-based investments was the highest, and that with MgO-based investments was the lowest. The type of investment affects the microstructure and microhardness of the alpha-case layer of titanium castings. Based on the thickness of the surface reaction layer and the surface

  19. Systems and Methods for Fabricating Structures Including Metallic Glass-Based Materials Using Low Pressure Casting

    Science.gov (United States)

    Hofmann, Douglas C. (Inventor); Kennett, Andrew (Inventor)

    2018-01-01

    Systems and methods to fabricate objects including metallic glass-based materials using low-pressure casting techniques are described. In one embodiment, a method of fabricating an object that includes a metallic glass-based material includes: introducing molten alloy into a mold cavity defined by a mold using a low enough pressure such that the molten alloy does not conform to features of the mold cavity that are smaller than 100 microns; and cooling the molten alloy such that it solidifies, the solid including a metallic glass-based material.

  20. What is the Potential for More Copper Fabrication in Zambia?

    OpenAIRE

    World Bank

    2011-01-01

    The copper fabrication industry lies between: (1) the industry that produces copper (as a commodity metal from mined ores as well as from recycling), and (2) the users of copper in finished products such as electronic goods. Copper fabrication involves the manufacture of products such as copper wire, wire rod, low-voltage cable, and other copper based semi-manufactures. Copper is clearly a...

  1. Copper carrier protein in copper toxic sheep liver

    Energy Technology Data Exchange (ETDEWEB)

    Harris, A L; Dean, P D.G.

    1973-01-01

    The livers of copper-toxic sheep have been analyzed by gel electrophoresis followed by staining the gels for copper with diethyldithiocarbamate and for protein with amido schwartz. These gels were compared with similar gels obtained from the livers of normal and copper-deficient animals. The copper-toxic livers contained an extra protein band which possessed relatively weakly bound copper. Possible origins of this protein are discussed. 8 references, 1 figure, 2 tables.

  2. A comparative study on microgap of premade abutments and abutments cast in base metal alloys.

    Science.gov (United States)

    Lalithamma, Jaini Jaini; Mallan, Sreekanth Anantha; Murukan, Pazhani Appan; Zarina, Rita

    2014-06-01

    The study compared the marginal accuracy of premade and cast abutments. Premade titanium, stainless steel, and gold abutments formed the control groups. Plastic abutments were cast in nickel-chromium, cobalt-chromium and grade IV titanium. The abutment/implant interface was analyzed. Analysis of variance and Duncan's multiple range test revealed no significant difference in mean marginal microgap between premade gold and titanium abutments and between premade stainless steel and cast titanium abutments. Statistically significant differences (P < .001) were found among all other groups.

  3. Repairs of Damaged Castings Made of Graphitic Cast Iron by Means of Brazing

    Directory of Open Access Journals (Sweden)

    Mičian M.

    2017-09-01

    Full Text Available The article summarizes the theoretical knowledge from the field of brazing of graphitic cast iron, especially by means of conventional flame brazing using a filler metal based on CuZn (CuZn40SnSi – brass alloy. The experimental part of the thesis presents the results of performance assessment of brazed joints on other than CuZn basis using silicone (CuSi3Mn1 or aluminium bronze (CuAl10Fe. TIG electrical arc was used as a source of heat to melt these filler materials. The results show satisfactory brazed joints with a CuAl10Fe filler metal, while pre-heating is not necessary, which favours this method greatly while repairing sizeable castings. The technological procedure recommends the use of AC current with an increased frequency and a modified balance between positive and negative electric arc polarity to focus the heat on a filler metal without melting the base material. The suitability of the joint is evaluated on the basis of visual inspection, mechanic and metallographic testing.

  4. Cast Alloys for Advanced Ultra Supercritical Steam Turbines

    Energy Technology Data Exchange (ETDEWEB)

    G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk,

    2010-05-01

    The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 °C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 °C).

  5. Computer-aided control of high-quality cast iron

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-04-01

    Full Text Available The study discusses the possibility of control of the high-quality grey cast iron and ductile iron using the author’s genuine computer programs. The programs have been developed with the help of algorithms based on statistical relationships that are said to exist between the characteristic parameters of DTA curves and properties, like Rp0,2, Rm, A5 and HB. It has been proved that the spheroidisation and inoculation treatment of cast iron changes in an important way the characteristic parameters of DTA curves, thus enabling a control of these operations as regards their correctness and effectiveness, along with the related changes in microstructure and mechanical properties of cast iron. Moreover, some examples of statistical relationships existing between the typical properties of ductile iron and its control process were given for cases of the melts consistent and inconsistent with the adopted technology.A test stand for control of the high-quality cast iron and respective melts has been schematically depicted.

  6. High temperature oxidation of copper and copper aluminium alloys: Impact on furnace side wall cooling systems

    Science.gov (United States)

    Plascencia Barrera, Gabriel

    The high temperature oxidation behaviours of copper and dilute Cu-Al alloys were investigated. Experiments were carried out by: (i) Oxidizing under various oxygen potentials at different temperatures using a combined TG-DTA apparatus. (ii) Oxidizing in a muffle furnace (in air) at different temperatures for extended periods of time. The oxidation mechanisms were evaluated based upon the kinetic data obtained as well as by X-ray diffraction and microscopical (SEM and optical) analyses. It was found that oxidation of copper strongly depends on the temperature. Two distinct mechanisms were encountered. Between 300 and 500°C, the oxidation rate is controlled by lateral growth of the oxide on the metal surface, whereas between 600 and 1000°C oxidation is controlled by lattice diffusion of copper ions through the oxide scale. On the other hand, the partial pressure of oxygen only has a small effect on the oxidation of copper. Alloy oxidation is also dependent on the temperature. As temperature increases, more aluminium is required to protect copper from being oxidized. It was shown that if the amount of oxygen that dissolves in the alloy exceeds the solubility limit of oxygen in copper, an internal oxidation layer will develop, leading to the formation of a tarnishing scale. On the other hand if the oxygen content in the alloy lies below the solubility limit of oxygen in copper, no oxidation products will form since a tight protective alumina layer will form on the alloy surface. Surface phenomena may affect the oxidation behaviour of dilute Cu-Al alloys. Immersion tests in molten copper matte and copper converting slag, using laboratory scale cooling elements with various copper based materials, were conducted. Results from these tests showed that alloying copper with 3 to 4 wt% Al decreases the oxidation rate of pure copper by 4 orders of magnitude; however due to a significant drop in thermal conductivity, the ability to extract heat is compromised, leading to

  7. Development of a New Ferrous Aluminosilicate Refractory Material for Investment Casting of Aluminum Alloys

    Science.gov (United States)

    Yuan, Chen; Jones, Sam; Blackburn, Stuart

    2012-12-01

    Investment casting is a time-consuming, labour intensive process, which produces complex, high value-added components for a variety of specialised industries. Current environmental and economic pressures have resulted in a need for the industry to improve current casting quality, reduce manufacturing costs and explore new markets for the process. Alumino-silicate based refractories are commonly used as both filler and stucco materials for ceramic shell production. A new ceramic material, norite, is now being produced based on ferrous aluminosilicate chemistry, having many potential advantages when used for the production of shell molds for casting aluminum alloy. This paper details the results of a direct comparison made between the properties of a ceramic shell system produced with norite refractories and a typical standard refractory shell system commonly used in casting industry. A range of mechanical and physical properties of the systems was measured, and a full-scale industrial casting trial was also carried out. The unique properties of the norite shell system make it a promising alternative for casting aluminum based alloys in the investment foundry.

  8. Casting thermal simulation

    International Nuclear Information System (INIS)

    Shamsuddin bin Sulaiman

    1994-01-01

    The whole of this study is concerned with process simulation in casting processes. This study describes the application of the finite element method as an aid to simulating the thermal design of a high pressure die casting die by analysing the cooling transients in the casting cycle. Two types of investigation were carried out to model the linear and non-linear cooling behavior with consideration of a thermal interface effect. The simulated cooling for different stages were presented in temperature contour form. These illustrate the successful application of the Finite Element Method to model the process and they illustrate the significance of the thermal interface at low pressure

  9. Comparison in processing routes by copper mold casting injection and suction in the Cu{sub 46}Zr{sub 42}Al{sub 7}Y{sub 5} vitreous alloy; Comparacao entre as rotas de processamento por fundicao com injecao e com succao da liga vitrea Cu{sub 46}Zr{sub 42}Al{sub 7}Y{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Batalha, W.; Aliaga, L.C.R.; Bolfarini, C.; Botta, W.J.; Kiminami, C.S. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Engenharia de Materiais

    2014-07-01

    To expand the application of glassy metals, the development of processing routes and compositions that allow the production of parts with dimensions of millimeters or even centimeters, is very important. The present work aims the contribution to the technological development of processing routes for the production of Cu-based bulk metallic glasses. Wedge-shaped samples of Cu{sub 46}Zr{sub 42}Al{sub 7}Y{sub 5} (atom percent) chemical composition were processed using copper mold casting by suction and injection. Characterization was made combining scanning electron microscopy, x-ray diffraction and differential scanning calorimetry. The critical amorphous thickness obtained by those two different routes was carefully observed. The suction route allow obtaining the best results with critical amorphous thickness about 8 mm. This result was analyzed considering the different extrinsic parameters to the glass forming ability of the alloy. (author)

  10. Investment casting: parameters, application and recent development

    International Nuclear Information System (INIS)

    Zaid, A.I.O.

    2007-01-01

    Investment casting process, also referred to as the lost wax method and as precision casting, has been known for more than 6000 years. However, industry paid little attention to the process until the urgent military demands of World War 1 overtaxed the machine tool industry and short cuts were then needed to provide finished tools and precision parts, avoiding time-consuming in machining and assembly. The use of the process for the production of commercial casting has grown in the second half of the 20th century. The process is highly flexible and can handle great variety of parts which are difficult or even not possible to be produced by forging or other casting methods. In this paper, the investment casting process, its applications, advantages and limitations together with the parameters affecting it as related to pattern material, cluster, slurry and molten metal are given and discussed. Furthermore, the recent developments in the process particularly in manufacturing parts made of superalloys e.g nickel-base alloys are given and discussed. The striking fact that the process has advanced further in the last 60 years than it has in the previous 6000 years ensures that in the coming years of this century development in the process and its application will continue to advance in the interest of achieving higher quality and precision which can meet the critical performance standards being imposed. (author)

  11. Forensic discrimination of copper wire using trace element concentrations.

    Science.gov (United States)

    Dettman, Joshua R; Cassabaum, Alyssa A; Saunders, Christopher P; Snyder, Deanna L; Buscaglia, JoAnn

    2014-08-19

    Copper may be recovered as evidence in high-profile cases such as thefts and improvised explosive device incidents; comparison of copper samples from the crime scene and those associated with the subject of an investigation can provide probative associative evidence and investigative support. A solution-based inductively coupled plasma mass spectrometry method for measuring trace element concentrations in high-purity copper was developed using standard reference materials. The method was evaluated for its ability to use trace element profiles to statistically discriminate between copper samples considering the precision of the measurement and manufacturing processes. The discriminating power was estimated by comparing samples chosen on the basis of the copper refining and production process to represent the within-source (samples expected to be similar) and between-source (samples expected to be different) variability using multivariate parametric- and empirical-based data simulation models with bootstrap resampling. If the false exclusion rate is set to 5%, >90% of the copper samples can be correctly determined to originate from different sources using a parametric-based model and >87% with an empirical-based approach. These results demonstrate the potential utility of the developed method for the comparison of copper samples encountered as forensic evidence.

  12. 14 CFR 23.621 - Casting factors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Casting factors. 23.621 Section 23.621... Casting factors. (a) General. The factors, tests, and inspections specified in paragraphs (b) through (d... structural castings except castings that are pressure tested as parts of hydraulic or other fluid systems and...

  13. Hair casts

    OpenAIRE

    Sweta S Parmar; Kirti S Parmar; Bela J Shah

    2014-01-01

    Hair casts or pseudonits are circumferential concretions, which cover the hair shaft in such a way that, it could be easily removed. They are thin, cylindrical, and elongated in length. We present an unusual case of an 8-year-old girl presenting with hair casts. Occurrence of these is unusual, and they may have varied associations. This patient was suffering from developmental delay. It is commonly misdiagnosed as and very important to differentiate from pediculosis capitis.

  14. HFIR Fuel Casting Support

    Energy Technology Data Exchange (ETDEWEB)

    Imhoff, Seth D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gibbs, Paul Jacob [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Solis, Eunice Martinez [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-28

    Process exploration for fuel production for the High Flux Isotope Reactor (HFIR) using cast LEU-10wt.%Mo as an initial processing step has just begun. This project represents the first trials concerned with casting design and quality. The studies carried out over the course of this year and information contained in this report address the initial mold development to be used as a starting point for future operations. In broad terms, the final billet design is that of a solid rolling blank with an irregular octagonal cross section. The work covered here is a comprehensive view of the initial attempts to produce a sound casting. This report covers the efforts to simulate, predict, cast, inspect, and revise the initial mold design.

  15. The effect of Sc additions on the microstructure and age hardening behaviour of as cast Al–Sc alloys

    International Nuclear Information System (INIS)

    Costa, S.; Puga, H.; Barbosa, J.; Pinto, A.M.P.

    2012-01-01

    Highlights: ► The Sc effect on the microstructure and ageing behaviour of Al–Sc alloys is studied. ► Cast into copper mould allows the elimination of solution heat treatment. ► Directly aged as cast alloys exhibits higher hardness and precipitation kinetics. ► Sc addition and optimised ageing result in an increase in Al–Sc mechanical properties. -- Abstract: The grain refinement effect and the ageing behaviour of Al–0.5 wt.% Sc, Al–0.7 wt.% Sc, and Al–1 wt.% Sc alloys are studied on the basis of optic microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) observations and hardness measurements. In Al–Sc alloys the higher grain refinement is observed for Sc contents greater than 0.5 wt.% accompanied by a notorious morphology modification, from coarse columnar grains to a fine perfect equiaxed structure. The as cast structures are characterised by a rich supersaturated solid solution in Sc, that promotes a great age hardening response at 250 °C and 300 °C. The age hardening curves also demonstrate a low overageing kinetics for all the alloys. Although the higher Sc content in solid solution for the alloys with 0.7 and 1 wt.% Sc, the age hardening response of all the Al–Sc alloys remains similar. The direct age hardening response of the as cast Al–0.5 wt.% Sc is shown to be greater than the solutionised and age hardened alloy.

  16. Nanoscale characterization of martensite structures in copper based shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Adiguzel, O, E-mail: oadiguzel@firat.edu.t [Firat University Department of Physics, 23169 Elazig (Turkey)

    2010-11-01

    Martensitic transformations are first order displacive transitions and occur in the materials on cooling from high temperature. Shape memory effect is an unusual property exhibited by certain alloy systems, and leads to martensitic transition. Copper-based alloys exhibit this property in beta phase field which possess simple bcc- structures, austenite structure at high-temperatures. As temperature is lowered the austenite undergoes martensitic transition following two ordering reactions, and structural changes in nanoscale govern this transition. Atomic movements are also confined to interatomic lengths in sub-{mu}m or angstrom scale in martensitic transformation. The formation of the layered structures in copper based alloys consists of shears and shear mechanism. Martensitic transformations occur in a few steps with the cooperative movement of atoms less than interatomic distances by means of lattice invariant shears on a {l_brace}110{r_brace} - type plane of austenite matrix which is basal plane or stacking plane of martensite. The lattice invariant shears occurs, in two opposite directions, <110> -type directions on the {l_brace}110{r_brace}-type plane. These shears gives rise to the formation of layered structure.

  17. Copper and copper-nickel-alloys - An overview

    Energy Technology Data Exchange (ETDEWEB)

    Klassert, Anton; Tikana, Ladji [Deutsches Kupferinstitut e.V. Am Bonneshof 5, 40474 Duesseldorf (Germany)

    2004-07-01

    With the increasing level of industrialization the demand for and the number of copper alloys rose in an uninterrupted way. Today, the copper alloys take an important position amongst metallic materials due to the large variety of their technological properties and applications. Nowadays there exist over 3.000 standardized alloys. Copper takes the third place of all metals with a worldwide consumption of over 15 millions tons per year, following only to steel and aluminum. In a modern industrial society we meet copper in all ranges of the life (electro-technology, building and construction industry, mechanical engineering, automotive, chemistry, offshore, marine engineering, medical applications and others.). Copper is the first metal customized by humanity. Its name is attributed to the island Cyprus, which supplied in the antiquity copper to Greece, Rome and the other Mediterranean countries. The Romans called it 'ore from Cyprus' (aes cyprium), later cuprum. Copper deposited occasionally also dapper and could be processed in the recent stone age simply by hammering. Already in early historical time copper alloys with 20 to 50 percent tin was used for the production of mirrors because of their high reflecting power. Although the elementary nickel is an element discovered only recently from a historical perspective, its application in alloys - without any knowledge of the alloy composition - occurred at least throughout the last 2.000 years. The oldest copper-nickel coin originates from the time around 235 B.C.. Only around 1800 AD nickel was isolated as a metallic element. In particular in the sea and offshore technology copper nickel alloys found a broad field of applications in piping systems and for valves and armatures. The excellent combination of characteristics like corrosion resistance, erosion stability and bio-fouling resistance with excellent mechanical strength are at the basis of this success. An experience of many decades supports the use

  18. Clean Cast Steel Technology, Phase IV

    Energy Technology Data Exchange (ETDEWEB)

    Charles E. Bates

    2003-02-24

    The objective of the Clean Cast Steel Technology Program was to improve casting product quality by removing or minimizing oxide defects and to allow the production of higher integrity castings for high speed machining lines. Previous research has concentrated on macro-inclusions that break, chip, or crack machine tool cutters and drills and cause immediate shutdown of the machining lines. The overall goal of the project is to reduce the amount of surface macro-inclusions and improve the machinability of steel castings. Macro-inclusions and improve the machinability of steel castings. Macro-inclusions have been identified by industrial sponsors as a major barrier to improving the quality and marketability of steel castings.

  19. Ultrasonic test of carbon composite/copper joints in the ITER divertor

    International Nuclear Information System (INIS)

    Roccella, S.; Cacciotti, E.; Candura, D.; Mancini, A.; Pizzuto, A.; Reale, A.; Tatì, A.; Visca, E.

    2013-01-01

    Highlights: • ENEA developed and tested a specimen for the simulation of defects at the interface between CFC and copper. • The use of an ultrasonic technique properly set permitted to highlight and size with high accuracy the defects. • The technology developed could be employed successfully in the production of these components for high heat flux applications. -- Abstract: The vertical targets of the ITER divertor consist of high flux units (HFU) actively cooled: CuCrZr tubes armoured by tungsten and carbon/carbon fibre composite (CFC). The armour is obtained with holed parallelepiped blocks, called monoblocks, previously prepared and welded onto the tubes by means diffusion bonding. The monoblock preparation consists in the casting of a layer of copper oxygen free (Cu OFHC) inside the monoblock hole. Each HFU is covered with more than 100 monoblocks that have to be joined simultaneously to the tube. Therefore, it is very important to individuate any defects present in the casting of Cu OFHC or at the interface with the CFC before the monoblocks are installed on the units. This paper discusses the application of non-destructive testing by ultrasound (US) method for the control of the joining interfaces between CFC monoblocks and Cu OFHC, before the brazing on the CrCrZr tube. In ENEA laboratory an ultrasonic technique (UT) suitable for the control of these joints with size and geometry according to the ITER specifications has been developed and widely tested. Real defects in this type of joints are, however, still hardly detected by UT. The CFC surface has to be machined to improve the mechanical strength of the joint. This results in a surface not perpendicular to the ultrasonic wave. Moreover, CFC is characterized by high acoustic attenuation of the ultrasonic wave and then it is not easy to get information regarding the Cu/CFC bonding. Nevertheless, the UT sharpness and simplicity pushes to perform some further study. With this purpose, a sample with

  20. Ultrasonic test of carbon composite/copper joints in the ITER divertor

    Energy Technology Data Exchange (ETDEWEB)

    Roccella, S., E-mail: selanna.roccella@enea.it [Associazione ENEA-Euratom sulla Fusione, C.R. Frascati, 00044 Frascati, RM (Italy); Cacciotti, E. [Associazione ENEA-Euratom sulla Fusione, C.R. Frascati, 00044 Frascati, RM (Italy); Candura, D. [Ansaldo Nucleare S.p.A., C. so F.M. Perrone 25, 16152 Genoa (Italy); Mancini, A.; Pizzuto, A.; Reale, A. [Associazione ENEA-Euratom sulla Fusione, C.R. Frascati, 00044 Frascati, RM (Italy); Tatì, A. [Associazione Euratom-ENEA sulla Fusione, C.R. Casaccia, Via Anguillarese 301, 00123 Santa Maria di Galeria, RM (Italy); Visca, E. [Associazione ENEA-Euratom sulla Fusione, C.R. Frascati, 00044 Frascati, RM (Italy)

    2013-10-15

    Highlights: • ENEA developed and tested a specimen for the simulation of defects at the interface between CFC and copper. • The use of an ultrasonic technique properly set permitted to highlight and size with high accuracy the defects. • The technology developed could be employed successfully in the production of these components for high heat flux applications. -- Abstract: The vertical targets of the ITER divertor consist of high flux units (HFU) actively cooled: CuCrZr tubes armoured by tungsten and carbon/carbon fibre composite (CFC). The armour is obtained with holed parallelepiped blocks, called monoblocks, previously prepared and welded onto the tubes by means diffusion bonding. The monoblock preparation consists in the casting of a layer of copper oxygen free (Cu OFHC) inside the monoblock hole. Each HFU is covered with more than 100 monoblocks that have to be joined simultaneously to the tube. Therefore, it is very important to individuate any defects present in the casting of Cu OFHC or at the interface with the CFC before the monoblocks are installed on the units. This paper discusses the application of non-destructive testing by ultrasound (US) method for the control of the joining interfaces between CFC monoblocks and Cu OFHC, before the brazing on the CrCrZr tube. In ENEA laboratory an ultrasonic technique (UT) suitable for the control of these joints with size and geometry according to the ITER specifications has been developed and widely tested. Real defects in this type of joints are, however, still hardly detected by UT. The CFC surface has to be machined to improve the mechanical strength of the joint. This results in a surface not perpendicular to the ultrasonic wave. Moreover, CFC is characterized by high acoustic attenuation of the ultrasonic wave and then it is not easy to get information regarding the Cu/CFC bonding. Nevertheless, the UT sharpness and simplicity pushes to perform some further study. With this purpose, a sample with

  1. VARIABILITY OF COORDINATION COMPLEXES OF COPPER ACCUMULATED WITHIN FUNGAL COLONY IN THE PRESENCE OF COPPER-CONTAINING MINERALS

    Directory of Open Access Journals (Sweden)

    M. O. Fomina

    2014-04-01

    Full Text Available The aim of work was to elucidate the mechanisms of bioaccumulation of copper leached from minerals by fungus Aspergillus niger with great bioremedial potential due to its ability to produce chelating metabolites and transform toxic metals and minerals. The special attention was paid to the chemical speciation of copper bioaccumulated within fungal colony in the process of fungal transformation of copper-containing minerals. Chemical speciation of copper within different parts of the fungal colony was studied using solid-state chemistry methods such as synchrotron-based X-ray absorption spectroscopy providing information about the oxidation state of the target element, and its coordination environment. The analysis of the obtained X-ray absorption spectroscopy spectra was carried out using Fourier transforms of Extended X-ray Absorption Fine Structure regions, which correspond to the oscillating part of the spectrum to the right of the absorption edge. Results of this study showed that fungus A. niger was involved in the process of solubilization of copper-containing minerals resulted in leaching of mobile copper and its further immobilization by fungal biomass with variable coordination of accumulated copper within fungal colony which depended on the age and physiological/reproductive state of fungal mycelium. X-ray absorption spectroscopy data demonstrated that copper accumulated within outer zone of fungal colony with immature vegetative mycelium was coordinated with sulphur–containing ligands, in contrast to copper coordination with phosphate ligands within mature mycelium with profuse conidia in the central zone of the colony. The findings of this study not only broaden our understanding of the biogeochemical role of fungi but can also be used in the development of various fungal-based biometallurgy technologies such as bioremediation, bioaccumulation and bioleaching and in the assessment of their reliability. The main conclusion is that

  2. Effect of Jahn-Teller distortion on the short range magnetic order in copper ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Abdellatif, M.H., E-mail: Mohamed.abdellatif@iit.it [Nanostrctures Department, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy); Innocenti, Claudia [INSTM—Department of Chemistry, University of Florence, via della Lastruccia 3, I-50019 Sesto Fiorentino, FI (Italy); Liakos, Ioannis [Nanostrctures Department, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy); Scarpellini, Alice; Marras, Sergio [Nanochemistry Department, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy); Salerno, Marco [Nanostrctures Department, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy)

    2017-02-15

    Copper ferrite of spinel crystal structure was synthesized in the form of nano-particles using citrate-gel auto-combustion method. The sample morphology and composition were identified using scanning electron microscopy, X-ray diffraction, and X-ray spectroscopy. The latter technique reveals an inverse spinel structure with Jahn-Teller tetragonal distortion. The static magnetization was measured using vibrating sample magnetometer. Magnetic force microscopy was used in combination with the magnetization data to demonstrate the finite size effect of the magnetic spins and their casting behavior due to the introduction of copper ions in the tetrahedral magnetic sub-lattices, which results in tetragonal distorting the spinel structure of the copper ferrite. The magnetic properties of materials are a result of the collective behavior of the magnetic spins, and magnetic force microscopy can probe the collective behavior of the magnetic spins in copper ferrite, yet providing a sufficient resolution to map the effects below the micrometer size scale, such as the magnetic spin canting. A theoretical study was done to clarify the finite size effect of Jahn-Teller distortion on the magnetic properties of the material. When the particles are in the nano-scale, below the single domain size, their magnetic properties are very sensitive to their size change. - Highlights: • The spin canting due to Jahn-Teller distortion in Copper ferrite can be detected using magnetic force microscope. • The contrast in the magnetic AFM image can be analyzed to give information not only about the surface spins but also about the canting of the core spins inside the aggregated cluster of magnetic nanoparticle.

  3. Characteristics of centrifugally cast GX25CrNiSi18-9 steel

    Directory of Open Access Journals (Sweden)

    R. Zapała

    2011-07-01

    Full Text Available The paper presents the results of microstructural examinations of the industrial heat-resistant centrifugally cast GX25CrNiSi18-9 steel characterised by increased content of Cu. The study included changes in the microstructure of base cast steel respective of the steel held at a temperature of 900 and 950°C for 48 hours. Based on the results obtained, an increase in microhardness of the examined cast steel matrix with increasing temperature was stated, which was probably caused by fine precipitates enriched in Cr, Mo, and C forming inside the matrix grains.The layer of scale formed on the tested cast steel oxidised in the atmosphere of air at 900 and 950°C was characterised by an increased tendency to degradation with increasing temperature of the conducted tests.

  4. Copper based superconductors by the combination of blocking and mediating layers

    International Nuclear Information System (INIS)

    Shimizu, K.; Nobumasa, H.; Kawai, T.

    1992-01-01

    Copper based high temperature superconductors are composed of Cu-O 2 sheets in combination with thin atomic mediating layers and thick blocking layers which mediate and intercept interactions between Cu-O 2 sheets, respectively. New possible superconductors can be designed by the stacking of the Cu-O 2 sheets along with the periodic insertion of the mediating layers and different kinds of blocking layers. (orig.)

  5. Current research progress in grain refinement of cast magnesium alloys: A review article

    International Nuclear Information System (INIS)

    Ali, Yahia; Qiu, Dong; Jiang, Bin; Pan, Fusheng; Zhang, Ming-Xing

    2015-01-01

    Grain refinement of cast magnesium alloys, particularly in magnesium–aluminium (Mg–Al) based alloys, has been an active research topic in the past two decades, because it has been considered as one of the most effective approaches to simultaneously increase the strength, ductility and formability. The development of new grain refiners was normally based on the theories/models that were established through comprehensive and considerable studies of grain refinement in cast Al alloys. Generally, grain refinement in cast Al can be achieved through either inoculation treatment, which is a process of adding, or in situ forming, foreign particles to promote heterogeneous nucleation rate, or restricting grain growth by controlling the constitutional supercooling or both. But, the concrete and tangible grain refinement mechanism in cast metals is still not fully understood and there are a number of controversies. Therefore, most of the new developed grain refiners for Mg–Al based alloys are not as efficient as the commercially available ones, such as zirconium in non-Al containing Mg alloys. To facilitate the research in grain refinement of cast magnesium alloys, this review starts with highlighting the theoretical aspects of grain refinement in cast metals, followed by reviewing the latest research progress in grain refinement of magnesium alloys in terms of the solute effect and potent nucleants

  6. Current research progress in grain refinement of cast magnesium alloys: A review article

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Yahia; Qiu, Dong [School of Mechanical and Mining Engineering, University of Queensland, St Lucia, QLD 4072 (Australia); Jiang, Bin; Pan, Fusheng [College of Materials Science and Engineering, Chongqing University, Chongqing 400030 (China); Zhang, Ming-Xing, E-mail: Mingxing.Zhang@uq.edu.au [School of Mechanical and Mining Engineering, University of Queensland, St Lucia, QLD 4072 (Australia)

    2015-01-15

    Grain refinement of cast magnesium alloys, particularly in magnesium–aluminium (Mg–Al) based alloys, has been an active research topic in the past two decades, because it has been considered as one of the most effective approaches to simultaneously increase the strength, ductility and formability. The development of new grain refiners was normally based on the theories/models that were established through comprehensive and considerable studies of grain refinement in cast Al alloys. Generally, grain refinement in cast Al can be achieved through either inoculation treatment, which is a process of adding, or in situ forming, foreign particles to promote heterogeneous nucleation rate, or restricting grain growth by controlling the constitutional supercooling or both. But, the concrete and tangible grain refinement mechanism in cast metals is still not fully understood and there are a number of controversies. Therefore, most of the new developed grain refiners for Mg–Al based alloys are not as efficient as the commercially available ones, such as zirconium in non-Al containing Mg alloys. To facilitate the research in grain refinement of cast magnesium alloys, this review starts with highlighting the theoretical aspects of grain refinement in cast metals, followed by reviewing the latest research progress in grain refinement of magnesium alloys in terms of the solute effect and potent nucleants.

  7. The potential of centrifugal casting for the production of near net shape uranium parts

    International Nuclear Information System (INIS)

    Robertson, E.

    1993-09-01

    This report was written to provide a detailed summary of a literature survey on the near net shape casting process of centrifugal casting. Centrifugal casting is one potential casting method which could satisfy the requirements of the LANL program titled Near Net Shape Casting of Uranium for Reduced Environmental, Safety and Health Impact. In this report, centrifugal casting techniques are reviewed and an assessment of the ability to achieve the near net shape and waste minimization goals of the LANL program by using these techniques is made. Based upon the literature reviewed, it is concluded that if properly modified for operation within a vacuum, vertical or horizontal centrifugation could be used to safely cast uranium for the production of hollow, cylindrical parts. However, for the production of components of geometries other than hollow tubes, vertical centrifugation could be combined with other casting methods such as semi-permanent mold or investment casting

  8. Impact of as-cast structure on structure and properties of twin-roll cast AA8006 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Slamova, M.; Ocenasek, V. [Vyzkumny Ustav Kovu, Panenske Brezany (Czechoslovakia); Juricek, Z.

    2000-07-01

    Sheet production by twin-roll casting (TRC) process is a well established practice in the aluminium industry because it offers several advantages in comparison with DC casting and hot rolling, esp. lower production and investment costs. Thin strips exhibiting a combination of good strength and high ductility are required for various applications and for this reason alloys with higher Fe and Mn content such as AA 8006 displace AA 1xxx or AA 8011 alloys. However, TRC of AA 8006 strips involves several problems, e.g. casting conditions and subsequent treatment procedures need fine tuning. The results of an investigation of the effect of casting conditions on structure and properties of AA 8006 strips are presented. The influence of casting speed, grain refiner addition, molten metal level in the tundish, tip setback and roll separating force was investigated. The impact of imperfect as-cast structure on structure and properties of thin strips in H22 and O tempers was evaluated and compared with strips from good as-cast material. (orig.)

  9. Microstructure of As-cast Co-Cr-Mo Alloy Prepared by Investment Casting

    Science.gov (United States)

    Park, Jong Bum; Jung, Kyung-Hwan; Kim, Kang Min; Son, Yong; Lee, Jung-Il; Ryu, Jeong Ho

    2018-04-01

    The microstructure of a cobalt-base alloy (Co-Cr-Mo) obtained by an investment casting process was studied. This alloy complies with the ASTM F75 standard and is widely used in the manufacturing of orthopedic implants owing to its high strength, good corrosion resistance, and excellent biocompatibility. This work focuses on the resulting microstructures arising from normal industrial environmental conditions. The characterization of the samples was carried out using optical microscopy, field emission scanning electron microscopy and energy-dispersive spectroscopy. In this study, the as-cast microstructure is an γ-Co (face-centered cubic) dendritic matrix with the presence of a secondary phase, such as M23C6 carbides precipitated at grain boundaries and interdendritic zones. These precipitates are the main strengthening mechanism in this type of alloy. Other minority phases, such as the σ phase, were also detected, and their presence could be linked to the manufacturing process and environment.

  10. Numerical simulation of CICC design based on optimization of ratio of copper to superconductor

    International Nuclear Information System (INIS)

    Jiang Huawei; Li Yuan; Yan Shuailing

    2007-01-01

    For cable-in-conduit conductor (CICC) structure design, a numeric simulation is proposed for conductor configuration based on optimization of ratio of copper to superconductor. The simulation outcome is in agreement with engineering design one. (authors)

  11. Relationship between casting modulus and grain size in cast A356 aluminium alloys

    International Nuclear Information System (INIS)

    Niklas, A; Abaunza, U; Fernández-Calvo, A I; Lacaze, J

    2012-01-01

    Microstructure of Al-Si alloy castings depends most generally on melt preparation and on the cooling rate imposed by the thermal modulus of the component. In the case of Al-Si alloys, emphasis is put during melt preparation on refinement of pro-eutectic (Al) grains and on modification of the Al-Si eutectic. Thermal analysis has been used since long to check melt preparation before casting, i.e. by analysis of the cooling curve during solidification of a sample cast in an instrumented cup. The conclusions drawn from such analysis are however valid for the particular cooling conditions of the cups. It thus appeared of interest to investigate how these conclusions could extrapolate to predict microstructure in complicated cast parts showing local changes in the solidification conditions. For that purpose, thermal analysis cups and instrumented sand and die castings with different thermal moduli and thus cooling rates have been made, and the whole set of cooling curves thus recorded has been analysed. A statistical analysis of the characteristic features of the cooling curves related to grain refinement in sand and die castings allowed determining the most significant parameters and expressing the cube of grain size as a polynomial of these parameters. After introduction of a further parameter quantifying melt refining an excellent correlation, with a R 2 factor of 0.99 was obtained.

  12. Development of automated system based on neural network algorithm for detecting defects on molds installed on casting machines

    Science.gov (United States)

    Bazhin, V. Yu; Danilov, I. V.; Petrov, P. A.

    2018-05-01

    During the casting of light alloys and ligatures based on aluminum and magnesium, problems of the qualitative distribution of the metal and its crystallization in the mold arise. To monitor the defects of molds on the casting conveyor, a camera with a resolution of 780 x 580 pixels and a shooting rate of 75 frames per second was selected. Images of molds from casting machines were used as input data for neural network algorithm. On the preparation of a digital database and its analytical evaluation stage, the architecture of the convolutional neural network was chosen for the algorithm. The information flow from the local controller is transferred to the OPC server and then to the SCADA system of foundry. After the training, accuracy of neural network defect recognition was about 95.1% on a validation split. After the training, weight coefficients of the neural network were used on testing split and algorithm had identical accuracy with validation images. The proposed technical solutions make it possible to increase the efficiency of the automated process control system in the foundry by expanding the digital database.

  13. Comparison of residual stresses in sand- and chill casting of ductile cast iron wind turbine main shafts

    International Nuclear Information System (INIS)

    Sonne, M R; Hattel, J H; Frandsen, J O

    2015-01-01

    In this work, simulations of pouring, solidification and cooling, and residual stress evolution of sand and chill cast wind turbine main shafts is performed. The models are made in the commercial software MAGMAsoft. As expected, the cooling rate of the sand casting is shown to be much lower than for the chill casting, resulting in a very course microstructure. From the simulations the nodule count is found to be 17 nodules per mm 2 and 159 nodules per mm 2 for the sand and chill casting, respectively, in the critical region of the main bearing seat. This is verified from nodule counts performed on the real cast main shafts. Residual stress evaluations show an overall increase of the maximum principal stress field for the chill casting, which is expected. However, the stresses are found to be in compression on the surface of the chill cast main shaft, which is unforeseen. (paper)

  14. Comparison of residual stresses in sand- and chill casting of ductile cast iron wind turbine main shafts

    DEFF Research Database (Denmark)

    Sonne, Mads Rostgaard; Frandsen, J. O.; Hattel, Jesper Henri

    2015-01-01

    In this work, simulations of pouring, solidification and cooling, and residual stress evolution of sand and chill cast wind turbine main shafts is performed. The models are made in the commercial software MAGMAsoft. As expected, the cooling rate of the sand casting is shown to be much lower than...... for the chill casting, resulting in a very course microstructure.From the simulations the nodule count is found to be 17 nodules per mm2 and 159 nodules permm2 for the sand and chill casting, respectively, in the critical region of the main bearing seat.This is verified from nodule counts performed on the real...... cast main shafts. Residual stressevaluations show an overall increase of the maximum principal stress field for the chill casting,which is expected. However, the stresses are found to be in compression on the surface of thechill cast main shaft, which is unforeseen....

  15. Galvanic and stress corrosion of copper canisters in repository environment. A short review

    International Nuclear Information System (INIS)

    Hermansson, H.P.; Koenig, M.

    2001-02-01

    The Swedish Nuclear Power Inspectorate, SKI, has studied different aspects of canister and copper corrosion as part of the general improvement of the knowledge base within the area. General and local corrosion has earlier been treated by experiments as well as by thermodynamic calculations. For completeness also galvanic and stress corrosion should be treated. The present work is a short review, intended to indicate areas needing further focus. The work consists of two parts, the first of which contains a judgement of statements concerning risk of galvanic corrosion of copper in the repository. The second part concerns threshold values for the stress intensity factor of stress corrosion in copper. A suggestion is given on how such values possibly could be measured for copper at repository conditions. In early investigations by SKB, galvanic corrosion is not mentioned or at least not treated. In later works it is treated but often in a theoretical way without indications of any further treatment or investigation. Several pieces of work indicate that further investigations are required to ensure that different types of corrosion, like galvanic, cannot occur in the repository environment. There are for example effects of grain size, grain boundary conditions, impurities and other factors that could influence the appearance of galvanic corrosion that are not treated. Those factors have to be considered to be completely sure that galvanic corrosion and related effects does not occur for the actual canister in the specific environment of the repository. The circumstances are so specific, that a rather general discussion indicating that galvanic corrosion is not probable just is not enough. Experiments should also be performed for verification. It is concluded that the following specific areas, amongst others, could benefit from further consideration. Galvanic corrosion of unbreached copper by inhomogeneities in the environment and in the copper metal should be addressed

  16. Galvanic and stress corrosion of copper canisters in repository environment. A short review

    Energy Technology Data Exchange (ETDEWEB)

    Hermansson, H.P.; Koenig, M. [Studsvik Nuclear AB, Nykoeping (Sweden)

    2001-02-01

    The Swedish Nuclear Power Inspectorate, SKI, has studied different aspects of canister and copper corrosion as part of the general improvement of the knowledge base within the area. General and local corrosion has earlier been treated by experiments as well as by thermodynamic calculations. For completeness also galvanic and stress corrosion should be treated. The present work is a short review, intended to indicate areas needing further focus. The work consists of two parts, the first of which contains a judgement of statements concerning risk of galvanic corrosion of copper in the repository. The second part concerns threshold values for the stress intensity factor of stress corrosion in copper. A suggestion is given on how such values possibly could be measured for copper at repository conditions. In early investigations by SKB, galvanic corrosion is not mentioned or at least not treated. In later works it is treated but often in a theoretical way without indications of any further treatment or investigation. Several pieces of work indicate that further investigations are required to ensure that different types of corrosion, like galvanic, cannot occur in the repository environment. There are for example effects of grain size, grain boundary conditions, impurities and other factors that could influence the appearance of galvanic corrosion that are not treated. Those factors have to be considered to be completely sure that galvanic corrosion and related effects does not occur for the actual canister in the specific environment of the repository. The circumstances are so specific, that a rather general discussion indicating that galvanic corrosion is not probable just is not enough. Experiments should also be performed for verification. It is concluded that the following specific areas, amongst others, could benefit from further consideration. Galvanic corrosion of unbreached copper by inhomogeneities in the environment and in the copper metal should be addressed

  17. A high efficacy antimicrobial acrylate based hydrogels with incorporated copper for wound healing application

    Energy Technology Data Exchange (ETDEWEB)

    Vuković, Jovana S.; Babić, Marija M.; Antić, Katarina M.; Miljković, Miona G.; Perić-Grujić, Aleksandra A.; Filipović, Jovanka M.; Tomić, Simonida Lj., E-mail: simonida@tmf.bg.ac.rs

    2015-08-15

    In this study, three series of hydrogels based on 2-hydroxyethyl acrylate and itaconic acid, unloaded, with incorporated copper(II) ions and reduced copper, were successfully prepared, characterized and evaluated as novel wound healing materials. Fourier transform infrared spectroscopy (FTIR) confirmed the expected structure of obtained hydrogels. Scanning electron microscopy (SEM) revealed porous morphology of unloaded hydrogels, and the morphological modifications in case of loaded hydrogels. Thermal characteristics were examined by differential scanning calorimetry (DSC) and the glass transition temperatures were observed in range of 12–50 °C. Swelling study was conducted in wide range of pHs at 37 °C, confirming pH sensitive behaviour for all three series of hydrogels. The in vitro copper release was investigated and the experimental data were analysed using several models in order to elucidate the transport mechanism. The antimicrobial assay revealed excellent antimicrobial activity, over 99% against Escherichia coli, Staphylococcus aureus and Candida albicans, as well as good correlation with the copper release experiments. In accordance with potential application, water vapour transmission rate, oxygen penetration, dispersion characteristics, fluid retention were observed and the suitability of the hydrogels for wound healing application was discussed. - Graphical abstract: Display Omitted - Highlights: • Design and evaluation of novel pH responsive hydrogel series. • Structural, morphological, thermal characterization and controlled copper release. • Antibacterial activity against Escherichia coli and Staphylococcus aureus over 99%. • Antifungal activity against Candida albicans over 99%. • In vitro evaluation studies revealed great potential for wound healing application.

  18. Wear resistance of cast iron

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-10-01

    Full Text Available In this paper investigations of abrasive and adhesive wear resistance of different cast iron grades have been presented. Examinations showed, that the most advantageous pair of materials is the cast iron – the hardened steel with low-tempered martensite. It was found, that martensitic nodular cast iron with carbides is the most resistant material.

  19. Microstructural causes of negative creep in cast superalloys

    International Nuclear Information System (INIS)

    Frank, G.

    1990-01-01

    The dissertation examines by means of microstructural investigations and modelling calculations two types of superalloys: the nickel-base cast alloy IN 738 LC (γ'-hardened, containing MC and M 23 C 6 carbides), and the cobalt-base cast alloy FSX 414 (containing M 23 C 6 carbides, solid solution-hardened). The task was to determine the causes of microstructural volume contraction, in order to improve and facilitate explanation and extrapolation of the materials' long-term behaviour at high temperatures, and to derive if possible information on appropriate measures preventing negative creep, which may lead to critical damage of bolted joints, for instance. (orig./MM) [de

  20. Copper as a target for prostate cancer therapeutics: copper-ionophore pharmacology and altering systemic copper distribution

    Science.gov (United States)

    Denoyer, Delphine; Pearson, Helen B.; Clatworthy, Sharnel A.S.; Smith, Zoe M.; Francis, Paul S.; Llanos, Roxana M.; Volitakis, Irene; Phillips, Wayne A.; Meggyesy, Peter M.; Masaldan, Shashank; Cater, Michael A.

    2016-01-01

    Copper-ionophores that elevate intracellular bioavailable copper display significant therapeutic utility against prostate cancer cells in vitro and in TRAMP (Transgenic Adenocarcinoma of Mouse Prostate) mice. However, the pharmacological basis for their anticancer activity remains unclear, despite impending clinical trails. Herein we show that intracellular copper levels in prostate cancer, evaluated in vitro and across disease progression in TRAMP mice, were not correlative with copper-ionophore activity and mirrored the normal levels observed in patient prostatectomy tissues (Gleason Score 7 & 9). TRAMP adenocarcinoma cells harbored markedly elevated oxidative stress and diminished glutathione (GSH)-mediated antioxidant capacity, which together conferred selective sensitivity to prooxidant ionophoric copper. Copper-ionophore treatments [CuII(gtsm), disulfiram & clioquinol] generated toxic levels of reactive oxygen species (ROS) in TRAMP adenocarcinoma cells, but not in normal mouse prostate epithelial cells (PrECs). Our results provide a basis for the pharmacological activity of copper-ionophores and suggest they are amendable for treatment of patients with prostate cancer. Additionally, recent in vitro and mouse xenograft studies have suggested an increased copper requirement by prostate cancer cells. We demonstrated that prostate adenocarcinoma development in TRAMP mice requires a functional supply of copper and is significantly impeded by altered systemic copper distribution. The presence of a mutant copper-transporting Atp7b protein (tx mutation: A4066G/Met1356Val) in TRAMP mice changed copper-integration into serum and caused a remarkable reduction in prostate cancer burden (64% reduction) and disease severity (grade), abrogating adenocarcinoma development. Implications for current clinical trials are discussed. PMID:27175597

  1. Depositing Nickel-based Hardfacing to Join Carbon Steel and Cast Iron

    Directory of Open Access Journals (Sweden)

    Tomás Fernández-Columbié

    2016-10-01

    Full Text Available The objective of this investigation is to determine the micro-structural behavior of a joint between cast iron and carbon steel by depositing a nickel-based substrate in the carbon steel. The filler was added through Shielded Metal Arc Welding using Castec 3099 (UTP 8 electrodes while the base materials were joined through Gas Tungsten Arc Welding with ER 70S – A1 bare electrodes. The Schaeffler diagram was used to analyze the chemical composition of the resulting weld beads. The results of the analysis performed on the welded area and the heat influence zone indicated the formation of acicular structures near the welded line when Castec 3099 electrodes are used and the formation of skeletal ferrite on the heat influence zone during the application of this welding process. An austenitic mixture is formed when ER 70S – A1 electrodes are used.

  2. Determination of copper (II) in foodstuffs based on its quenching effect on the fluorescence of N,N'-bis(pyridoxal phosphate)-o-phenylenediamine.

    Science.gov (United States)

    Xu, Canhui; Liao, Lifu; He, Yunfei; Wu, Rurong; Li, Shijun; Yang, Yanyan

    2015-01-01

    A Schiff base-type fluorescence probe was prepared for the detection of copper (II) in foodstuffs. The probe is N,N'-bis(pyridoxal phosphate)-o-phenylenediamine (BPPP). It was synthesized by utilizing the Schiff base condensation reaction of pyridoxal 5-phosphate with 1,2-phenylenediamine. BPPP has the properties of high fluorescence stability, good water solubility and low toxicity. Its maximum excitation wavelength and maximum fluorescence emission wavelength are at 389 and 448 nm, respectively. When BPPP coexists with copper (II), its fluorescence is dramatically quenched. Under a certain condition, the fluorescence intensity decreased proportionally to the concentration of copper (II) by the quenching effect. Based on this fact, we established a fluorescence quenching method for the determination of copper (II). Under optimal conditions a linear range was found to be 0.5-50 ng/mL with a detection limit of 0.2 ng/mL. The method has been applied to determine copper (II) in foodstuff samples and the analytical results show good agreement with that obtained from atomic absorption spectrometry method. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Antimicrobial activity of copper against organisms in aqueous solution: a case for copper-based water pipelines in hospitals?

    Science.gov (United States)

    Cervantes, Hilda I; Alvarez, Jose A; Muñoz, Juan M; Arreguín, Virginia; Mosqueda, Juan L; Macías, Alejandro E

    2013-12-01

    An association exists between water of poor quality and health care-associated infections. Copper shows microbiocidal action on dry surfaces; it is necessary to evaluate its antimicrobial effect against organisms in aqueous solution. The objective was to determine the in vitro antimicrobial activity of copper against common nosocomial pathogens in aqueous solution. Copper and polyvinyl chloride containers were used. Glass was used as control material. Fourteen organisms isolated from hospital-acquired infections, and 3 control strains were tested. Inocula were prepared by direct suspension of colonies in saline solution and water in each container tested. Bacterial counts in colony-forming units (CFU)/mL were determined at the beginning of the experiment; at 30 minutes; and at 1, 2, 24, and 48 hours. Organisms in glass and polyvinyl chloride remained viable until the end of the experiment. Organisms in copper showed a reduction from more than 100,000 CFU/mL to 0 CFU/mL within the first 2 hours of contact (F > 4.29, P water for human use, particularly in hospitals. Copyright © 2013 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  4. Temperature and microstructure characteristics of silumin casting AlSi9 made with investment casting method

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2011-07-01

    Full Text Available This work presents the research result of the temperature distribution and the microstructure in certain parts of the field-glass body frame casting made from silumin AlSi9 using the investment casting method in the ceramic mould. It was proved that the highest temperature of the silumin appears in the sprue in which the silumin is in the liquid-solid state, though the process of silumin crystallization in the casting is finished. It was stated that in certain elements of the casting the side opposite to the runner crystallizes and cools fastest. The differences in the rate of crystalline growth and cooling of certain casting elements cause differ- ent microstructure in them which can also influence the mechanic properties.It is necessary to state that the temperature of the initial heating of the ceramic mold equal to 60oC guarantees obtaining of the castings without defects and of little porosity. Incomplete modification of the silumin with strontium causes silica precipitation to appear close to the spherical ones.

  5. The effect of microstructure of low-alloy spheroidal cast iron on impact strength

    Directory of Open Access Journals (Sweden)

    T. Szykowny

    2010-01-01

    Full Text Available The study presents an evaluation of the effect of microstructure of low-alloy spheroidal cast iron on impact strength within the temperature range from –60 to 100°C. Analyses were conducted on one type of cast iron containing 0.51% Cu and 0.72% Ni. Cast iron was austempered or normalized. Values of KCV and static mechanical properties were determined. Structural and fractographic analyses were based on light and scanning microscopy as well as X-ray diffraction. It was found that thermal processing considerably improves impact strength in relation to cast iron after casting. At the same time static mechanical properties are enhanced.

  6. Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy.

    Science.gov (United States)

    Dang, B; Zhang, X; Chen, Y Z; Chen, C X; Wang, H T; Liu, F

    2016-08-09

    Al-Si-based casting alloys have a great potential in various industrial applications. Common strengthening strategies on these alloys are accompanied inevitably by sacrifice of ductility, known as strength-ductility trade-off dilemma. Here, we report a simple route by combining rapid solidification (RS) with a post-solidification heat treatment (PHT), i.e. a RS + PHT route, to break through this dilemma using a commercial Al-Si-based casting alloy (A356 alloy) as an example. It is shown that yield strength and elongation to failure of the RS + PHT processed alloy are elevated simultaneously by increasing the cooling rate upon RS, which are not influenced by subsequent T6 heat treatment. Breaking through the dilemma is attributed to the hierarchical microstructure formed by the RS + PHT route, i.e. highly dispersed nanoscale Si particles in Al dendrites and nanoscale Al particles decorated in eutectic Si. Simplicity of the RS + PHT route makes it being suitable for industrial scaling production. The strategy of engineering microstructures offers a general pathway in tailoring mechanical properties of other Al-Si-based alloys. Moreover, the remarkably enhanced ductility of A356 alloy not only permits strengthening further the material by work hardening but also enables possibly conventional solid-state forming of the material, thus extending the applications of such an alloy.

  7. Copper (I) oxide (Cu 2 ) based solar cells - a review | Abdu | Bayero ...

    African Journals Online (AJOL)

    Copper (I) oxide (Cu2O) is a potential material for the fabrication of low cost solar cells for terrestrial application. A detailed survey on the previous work so far carried out on Cu2O based solar cells has been presented. The aspects discussed include the fabrication of Schottky (metal/semiconductor) barrier Cu2O solar cells, ...

  8. Segregation in cast products

    Indian Academy of Sciences (India)

    Unknown

    The agreement with experimental data is mostly qualitative. The paper also ... For example, a high degree of positive segregation in the central region .... solute in a cast product, important ones being: size of casting, rate of solidification, mode.

  9. A copper-based layered coordination polymer: synthesis, magnetic properties and electrochemical performance in supercapacitors.

    Science.gov (United States)

    Liu, Qi; Liu, Xiuxiu; Shi, Changdong; Zhang, Yanpeng; Feng, Xuejun; Cheng, Mei-Ling; Su, Seng; Gu, Jiande

    2015-11-28

    A copper-based layered coordination polymer ([Cu(hmt)(tfbdc)(H2O)]; hmt = hexamethylenetetramine, tfbdc = 2,3,5,6-tetrafluoroterephthalate; Cu-LCP) has been synthesized, and it has been structurally and magnetically characterized. The Cu-LCP shows ferromagnetic interactions between the adjacent copper(II) ions. Density functional theory calculations on the special model of Cu-LCP support the occurrence of ferromagnetic interactions. As an electrode material for supercapacitors, Cu-LCP exhibits a high specific capacitance of 1274 F g(-1) at a current density of 1 A g(-1) in 1 M LiOH electrolyte, and the capacitance retention is about 88% after 2000 cycles.

  10. Native copper as a natural analogue for copper canisters

    International Nuclear Information System (INIS)

    Marcos, N.

    1989-12-01

    This paper discusses the occurrence of native copper as found in geological formations as a stability analogue of copper canisters that are planned to be used for the disposal of spent nuclear fuel in the Finnish bedrock. A summary of several publications on native copper occurrences is presented. The present geochemical and geohydrological conditions in which copper is met with in its metallic state show that metallic copper is stable in a wide range of temperatures. At low temperatures native copper is found to be stable where groundwater has moderate pH (about 7), low Eh (< +100 mV), and low total dissolved solids, especially chloride. Microscopical and microanalytical studies were carried out on a dozen of rock samples containing native copper. The results reveal that the metal shows no significant alteration. Only the surface of copper grains is locally coated. In the oldest samples there exist small corrosion cracks; the age of the oldest samples is over 1,000 million years. A review of several Finnish groundwater studies suggests that there are places in Finland where the geohydrological conditions are favourable for native copper stability. (orig.)

  11. Genetic structure of Rajaka caste and affinities with other caste populations of Andhra Pradesh, India.

    Science.gov (United States)

    Parvatheesam, C; Babu, B V; Babu, M C

    1997-01-01

    The present study gives an account of the genetic structure in terms of distribution of a few genetic markers, viz., A1A2B0, Rh(D), G6PD deficiency and haemoglobin among the Rajaka caste population of Andhra Pradesh, India. The genetic relationships of the Rajaka caste with other Andhra caste populations were investigated in terms of genetic distance, i.e., Sq B (mn) of Balakrishnan and Sanghvi. Relatively lesser distance was established between the Rajaka and two Panchama castes. Also, the pattern of genetic distance corroborates the hierarchical order of the Hindu varna system.

  12. Grindability of cast Ti-Hf alloys.

    Science.gov (United States)

    Kikuchi, Masafumi; Takahashi, Masatoshi; Sato, Hideki; Okuno, Osamu; Nunn, Martha E; Okabe, Toru

    2006-04-01

    As part of our systematic studies characterizing the properties of titanium alloys, we investigated the grindability of a series of cast Ti-Hf alloys. Alloy buttons with hafnium concentrations up to 40 mass% were made using an argon-arc melting furnace. Each button was cast into a magnesia-based mold using a dental titanium casting machine; three specimens were made for each metal. Prior to testing, the hardened surface layer was removed. The specimens were ground at five different speeds for 1 min at 0.98 N using a carborundum wheel on an electric dental handpiece. Grindability was evaluated as the volume of metal removed per minute (grinding rate) and the volume ratio of metal removed compared to the wheel material lost (grinding ratio). The data were analyzed using ANOVA. A trend of increasing grindability was found with increasing amounts of hafnium, although there was no statistical difference in the grindability with increasing hafnium contents. We also found that hafnium may be used to harden or strengthen titanium without deteriorating the grindability.

  13. Homogeneous weldings of copper

    International Nuclear Information System (INIS)

    Campurri, C.; Lopez, M.; Fernandez, R.; Osorio, V.

    1995-01-01

    This research explored the metallurgical and mechanical properties of arc welding of copper related with influence of Argon, Helium and mixtures of them. Copper plates of 6 mm thickness were welded with different mixtures of the mentioned gases. The radiography of welded specimens with 100% He and 100% Ar does not show show any porosity. On the other hand, the copper plates welded different gas mixtures presented uniform porosity in the welded zone. The metallographies show recrystallized grain in the heat affected zone, while the welding zone showed a dendritic structure. The results of the tensile strength vary between a maximum of 227 MPa for 100% He and a minimum of 174 MOa for the mixture of 60% He and 40% Ar. For the elongation after fracture the best values, about 36%, were obtained for pure gases. As a main conclusion, we can say that arc welding of copper is possible without loosing the mechanical and metallurgical properties of base metal. 6 refs

  14. mtDNA variation in caste populations of Andhra Pradesh, India.

    Science.gov (United States)

    Bamshad, M; Fraley, A E; Crawford, M H; Cann, R L; Busi, B R; Naidu, J M; Jorde, L B

    1996-02-01

    Various anthropological analyses have documented extensive regional variation among populations on the subcontinent of India using morphological, protein, blood group, and nuclear DNA polymorphisms. These patterns are the product of complex population structure (genetic drift, gene flow) and a population history noted for numerous branching events. As a result, the interpretation of relationships among caste populations of South India and between Indians and continental populations remains controversial. The Hindu caste system is a general model of genetic differentiation among endogamous populations stratified by social forces (e.g., religion and occupation). The mitochondrial DNA (mtDNA) molecule has unique properties that facilitate the exploration of population structure. We analyzed 36 Hindu men born in Andhra Pradesh who were unrelated matrilineally through at least 3 generations and who represent 4 caste populations: Brahmin (9), Yadava (10), Kapu (7), and Relli (10). Individuals from Africa (36), Asia (36), and Europe (36) were sampled for comparison. A 200-base-pair segment of hypervariable segment 2 (HVS2) of the mtDNA control region was sequenced in all individuals. In the Indian castes 25 distinct haplotypes are identified. Aside from the Cambridge reference sequence, only two haplotypes are shared between caste populations. Middle castes form a highly supported cluster in a neighbor-joining network. Mean nucleotide diversity within each caste is 0.015, 0.012, 0.011, and 0.012 for the Brahmin, Yadava, Kapu, and Relli, respectively. mtDNA variation is highly structured between castes (GST = 0.17; p caste populations of Andhra Pradesh cluster more often with Africans than with Asians or Europeans. This is suggestive of admixture with African populations.

  15. Electrothermal atomic absorption spectrometric determination of copper in nickel-base alloys with various chemical modifiers*1

    Science.gov (United States)

    Tsai, Suh-Jen Jane; Shiue, Chia-Chann; Chang, Shiow-Ing

    1997-07-01

    The analytical characteristics of copper in nickel-base alloys have been investigated with electrothermal atomic absorption spectrometry. Deuterium background correction was employed. The effects of various chemical modifiers on the analysis of copper were investigated. Organic modifiers which included 2-(5-bromo-2-pyridylazo)-5-(diethylamino-phenol) (Br-PADAP), ammonium citrate, 1-(2-pyridylazo)-naphthol, 4-(2-pyridylazo)resorcinol, ethylenediaminetetraacetic acid and Triton X-100 were studied. Inorganic modifiers palladium nitrate, magnesium nitrate, aluminum chloride, ammonium dihydrogen phosphate, hydrogen peroxide and potassium nitrate were also applied in this work. In addition, zirconium hydroxide and ammonium hydroxide precipitation methods have also been studied. Interference effects were effectively reduced with Br-PADAP modifier. Aqueous standards were used to construct the calibration curves. The detection limit was 1.9 pg. Standard reference materials of nickel-base alloys were used to evaluate the accuracy of the proposed method. The copper contents determined with the proposed method agreed closely with the certified values of the reference materials. The recoveries were within the range 90-100% with relative standard deviation of less than 10%. Good precision was obtained.

  16. Effects of heat pipe cooling on permanent mold castings of aluminum alloys

    International Nuclear Information System (INIS)

    Zhang, C.; Mucciardi, F.; Gruzleski, J.E.

    2002-01-01

    The temperature distribution within molds is a critical parameter in determining the ultimate casting quality in permanent mold casting processes, so there is a considerable incentive to develop a more effective method of mold cooling. Based on this consideration, a novel, effective and controllable heat pipe has been successfully developed and used as a new method of permanent mold cooling. Symmetric step casting of A356 alloy have been produced in an experimental permanent mold made of H13 tool steel, which is cooled by such heat pipes. The experimental results show that heat pipes can provide extremely high cooling rates in permanent mold castings of aluminum. The dendrite arm spacing of A356 alloy is refined considerably, and porosity and shrinkage of the castings are redistributed by the heat pipe cooling. Moreover, the heat pipe can be used to determine the time when the air gap forms at the interface between the mold and the casting. The effect of heat pipe cooling on solidification time of castings of A356 alloy with different coating types is also discussed in this paper. (author)

  17. White cast iron with a nano-eutectic microstructure and high tensile strength and considerable ductility prepared by an aluminothermic reaction casting

    International Nuclear Information System (INIS)

    La, Peiqing; Wei, Fuan; Hu, Sulei; Li, Cuiling; Wei, Yupeng

    2013-01-01

    A white cast iron with nano-eutectic microstructure was prepared by an aluminothermic reaction casting. Microstructures of the cast iron were investigated by optical microscope (OM), electron probe micro-analyzer (EPMA), scanning electron microscope (SEM) and X-ray diffraction (XRD). Mechanical properties of the cast iron were tested. The results showed that the cast iron consisted of pearlite and cementite phases. Lamellar spacing of the pearlite phase was in a range of 110–275 nm and much smaller than that of the Ni-Hard 2 cast iron. Hardness of the cast iron was 552 Hv, tensile strength was 383 MPa, total elongation was 3% and compressive strength was 2224 MPa. Tensile strength and hardness of the cast iron was same to Ni-Hard 2 cast iron, besides the ductility was much better than that of the Ni-Hard 2 cast iron which is much expensive than the cast iron.

  18. Cloud-Based Speech Technology for Assistive Technology Applications (CloudCAST).

    Science.gov (United States)

    Cunningham, Stuart; Green, Phil; Christensen, Heidi; Atria, José Joaquín; Coy, André; Malavasi, Massimiliano; Desideri, Lorenzo; Rudzicz, Frank

    2017-01-01

    The CloudCAST platform provides a series of speech recognition services that can be integrated into assistive technology applications. The platform and the services provided by the public API are described. Several exemplar applications have been developed to demonstrate the platform to potential developers and users.

  19. Method for casting thin metal objects

    Science.gov (United States)

    Pehrson, Brandon P; Moore, Alan F

    2015-04-14

    Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.

  20. A Time-Variant Reliability Model for Copper Bending Pipe under Seawater-Active Corrosion Based on the Stochastic Degradation Process

    Directory of Open Access Journals (Sweden)

    Bo Sun

    2018-03-01

    Full Text Available In the degradation process, the randomness and multiplicity of variables are difficult to describe by mathematical models. However, they are common in engineering and cannot be neglected, so it is necessary to study this issue in depth. In this paper, the copper bending pipe in seawater piping systems is taken as the analysis object, and the time-variant reliability is calculated by solving the interference of limit strength and maximum stress. We did degradation experiments and tensile experiments on copper material, and obtained the limit strength at each time. In addition, degradation experiments on copper bending pipe were done and the thickness at each time has been obtained, then the response of maximum stress was calculated by simulation. Further, with the help of one kind of Monte Carlo method we propose, the time-variant reliability of copper bending pipe was calculated based on the stochastic degradation process and interference theory. Compared with traditional methods and verified by maintenance records, the results show that the time-variant reliability model based on the stochastic degradation process proposed in this paper has better applicability in the reliability analysis, and it can be more convenient and accurate to predict the replacement cycle of copper bending pipe under seawater-active corrosion.

  1. Performance Evaluation of Monolith Based Immobilized Acetylcholinesterase Flow-Through Reactor for Copper(II Determination with Spectrophotometric Detection

    Directory of Open Access Journals (Sweden)

    Parawee Rattanakit

    2014-01-01

    Full Text Available A monolith based immobilized acetylcholinesterase (AChE flow-through reactor has been developed for the determination of copper(II using flow injection spectrophotometric system. The bioreactor was prepared inside a microcapillary column by in situ polymerization of butyl methacrylate, ethylene dimethacrylate, and 2,2-dimethoxy-1,2-diphynyletane-1-one in the presence of 1-decanol, followed by vinyl azlactone functionalization and AChE immobilization. The behavior of AChE before and after being immobilized on the monolith was evaluated by kinetic parameters from Lineweaver and Burk equation. The detection was based on measuring inhibition effect on the enzymatic activity of AChE by copper(II using Ellman’s reaction with spectrophotometric detection at 410 nm. The linear range of the calibration graph was obtained over the range of 0.02–3.00 mg L−1. The detection limit, defined as 10% inhibition (I10, was found to be 0.04 mg L−1. The repeatability was 3.35 % (n=5 for 1.00 mg L−1 of copper(II. The proposed method was applied to the determination of copper(II in natural water samples with sampling rate of 4 h−1.

  2. Influence of the casting processing route on the corrosion behavior of dental alloys.

    Science.gov (United States)

    Galo, Rodrigo; Rocha, Luis Augusto; Faria, Adriana Claudia; Silveira, Renata Rodrigues; Ribeiro, Ricardo Faria; de Mattos, Maria da Gloria Chiarello

    2014-12-01

    Casting in the presence of oxygen may result in an improvement of the corrosion performance of most alloys. However, the effect of corrosion on the casting without oxygen for dental materials remains unknown. The aim of this study was to investigate the influence of the casting technique and atmosphere (argon or oxygen) on the corrosion behavior response of six different dental casting alloys. The corrosion behavior was evaluated by electrochemical measurements performed in artificial saliva for the different alloys cast in two different conditions: arc melting in argon and oxygen-gas flame centrifugal casting. A slight decrease in open-circuit potential for most alloys was observed during immersion, meaning that the corrosion tendency of the materials increases due to the contact with the solution. Exceptions were the Co-based alloys prepared by plasma, and the Co-Cr-Mo and Ni-Cr-4Ti alloys processed by oxidized flame, in which an increase in potential was observed. The amount of metallic ions released into the artificial saliva solution during immersion was similar for all specimens. Considering the pitting potential, a parameter of high importance when considering the fluctuating conditions of the oral environment, Co-based alloys show the best performance in comparison with the Ni-based alloys, independent of the processing route. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Gendered-Caste Discrimination, Human Rights Education, and the Enforcement of the Prevention of Atrocities Act in India

    Science.gov (United States)

    Kapoor, Dip

    2007-01-01

    Despite the constitutional ban on the practice of untouchability and caste-based discrimination, this article elaborates on a gendered-caste-based discriminatory reality in rural India, the difficulties of enforcing legal remedies, and on related human rights praxis to address gendered-caste atrocities by drawing on the experiences of a Canadian…

  4. Modelling of flow phenomena during DC casting

    NARCIS (Netherlands)

    Zuidema, J.

    2005-01-01

    Modelling of Flow Phenomena during DC Casting Jan Zuidema The production of aluminium ingots, by semi-continuous casting, is a complex process. DC Casting stands for direct chill casting. During this process liquid aluminium transforms to solid aluminium while cooling down. This is not an

  5. Uptake and internalisation of copper by three marine microalgae: comparison of copper-sensitive and copper-tolerant species.

    Science.gov (United States)

    Levy, Jacqueline L; Angel, Brad M; Stauber, Jennifer L; Poon, Wing L; Simpson, Stuart L; Cheng, Shuk Han; Jolley, Dianne F

    2008-08-29

    Although it has been well established that different species of marine algae have different sensitivities to metals, our understanding of the physiological and biochemical basis for these differences is limited. This study investigated copper adsorption and internalisation in three algal species with differing sensitivities to copper. The diatom Phaeodactylum tricornutum was particularly sensitive to copper, with a 72-h IC50 (concentration of copper to inhibit growth rate by 50%) of 8.0 microg Cu L(-1), compared to the green algae Tetraselmis sp. (72-h IC50 47 microg Cu L(-1)) and Dunaliella tertiolecta (72-h IC50 530 microg Cu L(-1)). At these IC50 concentrations, Tetraselmis sp. had much higher intracellular copper (1.97+/-0.01 x 10(-13)g Cu cell(-1)) than P. tricornutum (0.23+/-0.19 x 10(-13)g Cu cell(-1)) and D. tertiolecta (0.59+/-0.05 x 10(-13)g Cu cell(-1)), suggesting that Tetraselmis sp. effectively detoxifies copper within the cell. By contrast, at the same external copper concentration (50 microg L(-1)), D. tertiolecta appears to better exclude copper than Tetraselmis sp. by having a slower copper internalisation rate and lower internal copper concentrations at equivalent extracellular concentrations. The results suggest that the use of internal copper concentrations and net uptake rates alone cannot explain differences in species-sensitivity for different algal species. Model prediction of copper toxicity to marine biota and understanding fundamental differences in species-sensitivity will require, not just an understanding of water quality parameters and copper-cell binding, but also further knowledge of cellular detoxification mechanisms.

  6. Casting Simulation of an Austrian Bronze Age Sword Hilt

    Science.gov (United States)

    Pola, Annalisa; Mödlinger, Marianne; Piccardo, Paolo; Montesano, Lorenzo

    2015-07-01

    Bronze Age swords with a metal hilt can be considered the peak of Bronze Age casting technologies. To reconstruct the casting techniques used more than 3000 years ago, a metal hilted sword of the Schalenknauf type from Lower Austria was studied with the aid of macroscopic analyses and simulation of mold filling and casting solidification. A three-dimensional model of the hilt was created based on optical scanner measurements performed on a hilt recently discovered during archaeological excavations. Three different configurations of the gating system were considered, two on the pommel disk and one on the knob, and the effect of its location on the formation of casting defects was investigated. Three-dimensional computed tomography was used to detect internal defects, such as gas and shrinkage porosity, which were then compared with those calculated by simulation. The best match between actual and predicted hilt quality demonstrated the location of the gating system, which turned out to be on the pommel disk.

  7. Possibilities of obtaining and controlling high-quality pressure castings

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2011-07-01

    Full Text Available The paper presents the influence of the type of furnace charging melting, refining and modification silumins 226 and 231 on the porosity and microstructure of castings. It was shown that in order to reduce or eliminate the porosity of the castings is necessary to the refining ECOSAL-AL113 of liquid silumin both in the melting furnace, and in the ladle and an additional nitrogen, in the heat furnace modified and refining with nitrogen. To control the effects of refining and modifying the TDA method was used. It was found that based on crystal- lization curve can be qualitatively assess the gas porosity of the castings. In order to control and quality control silumins author developed a computer program using the method of TDA, which sets out: Rm, A5, HB and casting porosity P and the concentration of hydrogen in them. The program also informs the technological procedures to be performed for liquid silumin improper preparation.

  8. Development of a new passive sampler based on diffusive milligel beads for copper analysis in water

    International Nuclear Information System (INIS)

    Perez, M.; Reynaud, S.; Lespes, G.; Potin-Gautier, M.; Mignard, E.; Chéry, P.; Schaumlöffel, D.; Grassl, B.

    2015-01-01

    A new passive sampler was designed and characterized for the determination of free copper ion (Cu 2+ ) concentration in aqueous solution. Each sampling device was composed of a set of about 30 diffusive milligel (DMG) beads. Milligel beads with incorporated cation exchange resin (Chelex) particles were synthetized using an adapted droplet-based millifluidic process. Beads were assumed to be prolate spheroids, with a diameter of 1.6 mm and an anisotropic factor of 1.4. The milligel was controlled in chemical composition of hydrogel (monomer, cross-linker, initiator and Chelex concentration) and characterized in pore size. Two types of sampling devices were developed containing 7.5% and 15% of Chelex, respectively, and 6 nm pore size. The kinetic curves obtained demonstrated the accumulation of copper in the DMG according to the process described in the literature as absorption (and/or adsorption) and release following the Fick's first law of diffusion. For their use in water monitoring, the typical physico-chemical characteristics of the samplers, i.e. the mass-transfer coefficient (k 0 ) and the sampler-water partition coefficient (K sw ), were determined based on a static exposure design. In order to determine the copper concentration in the samplers after their exposure, a method using DMG bead digestion combined to Inductively Coupled Plasma – Atomic Emission Spectrometry (ICP-AES) analysis was developed and optimized. The DMG devices proved to be capable to absorb free copper ions from an aqueous solution, which could be accurately quantified with a mean recovery of 99% and a repeatability of 7% (mean relative uncertainty). - Highlights: • Controlled geometry of new passive sampler with ellipsoidal shape. • Original manufacturing process based on droplet-based millifluidic device. • Pore size characterization of the sampler. • Mass-transfer and sampler-water partitioning coefficients by static exposure experiments

  9. Development of a new passive sampler based on diffusive milligel beads for copper analysis in water

    Energy Technology Data Exchange (ETDEWEB)

    Perez, M.; Reynaud, S.; Lespes, G.; Potin-Gautier, M. [Université de Pau et des Pays de l’Adour/CNRS UMR IPREM 5254, Hélioparc, 2 av. du Président Angot, 64053 Pau (France); Mignard, E. [CNRS-Solvay-Université Bordeaux, UMR5258, Laboratoire du Futur, 178 Avenue du Dr. A. Schweitzer, 33608 Pessac Cedex (France); Chéry, P. [Bordeaux Science Agro, 1 cours du Général De Gaulle, Gradignan, 33175 (France); Schaumlöffel, D. [Université de Pau et des Pays de l’Adour/CNRS UMR IPREM 5254, Hélioparc, 2 av. du Président Angot, 64053 Pau (France); Grassl, B., E-mail: bruno.grassl@univ-pau.fr [Université de Pau et des Pays de l’Adour/CNRS UMR IPREM 5254, Hélioparc, 2 av. du Président Angot, 64053 Pau (France)

    2015-08-26

    A new passive sampler was designed and characterized for the determination of free copper ion (Cu{sup 2+}) concentration in aqueous solution. Each sampling device was composed of a set of about 30 diffusive milligel (DMG) beads. Milligel beads with incorporated cation exchange resin (Chelex) particles were synthetized using an adapted droplet-based millifluidic process. Beads were assumed to be prolate spheroids, with a diameter of 1.6 mm and an anisotropic factor of 1.4. The milligel was controlled in chemical composition of hydrogel (monomer, cross-linker, initiator and Chelex concentration) and characterized in pore size. Two types of sampling devices were developed containing 7.5% and 15% of Chelex, respectively, and 6 nm pore size. The kinetic curves obtained demonstrated the accumulation of copper in the DMG according to the process described in the literature as absorption (and/or adsorption) and release following the Fick's first law of diffusion. For their use in water monitoring, the typical physico-chemical characteristics of the samplers, i.e. the mass-transfer coefficient (k{sub 0}) and the sampler-water partition coefficient (K{sub sw}), were determined based on a static exposure design. In order to determine the copper concentration in the samplers after their exposure, a method using DMG bead digestion combined to Inductively Coupled Plasma – Atomic Emission Spectrometry (ICP-AES) analysis was developed and optimized. The DMG devices proved to be capable to absorb free copper ions from an aqueous solution, which could be accurately quantified with a mean recovery of 99% and a repeatability of 7% (mean relative uncertainty). - Highlights: • Controlled geometry of new passive sampler with ellipsoidal shape. • Original manufacturing process based on droplet-based millifluidic device. • Pore size characterization of the sampler. • Mass-transfer and sampler-water partitioning coefficients by static exposure experiments.

  10. Background studies in support of a feasibility assessment on the use of copper-base materials for nuclear waste packages in a repository in tuff

    International Nuclear Information System (INIS)

    Van Konynenburg, R.A.; Kundig, K.J.A.; Lyman, W.S.; Prager, M.; Meyers, J.R.; Servi, I.S.

    1990-06-01

    This report combines six work units performed in FY'85--86 by the Copper Development Association and the International Copper Research Association under contract with the University of California. The work includes literature surveys and state-of-the-art summaries on several considerations influencing the feasibility of the use of copper-base materials for fabricating high-level nuclear waste packages for the proposed repository in tuff rock at Yucca Mountain, Nevada. The general conclusion from this work was that copper-base materials are viable candidates for inclusion in the materials selection process for this application. 55 refs., 48 figs., 22 tabs

  11. Background studies in support of a feasibility assessment on the use of copper-base materials for nuclear waste packages in a repository in tuff

    Energy Technology Data Exchange (ETDEWEB)

    Van Konynenburg, R.A. [Lawrence Livermore National Lab., CA (USA); Kundig, K.J.A.; Lyman, W.S.; Prager, M.; Meyers, J.R.; Servi, I.S. [CDA/INCRA Joint Advisory Group, Greenwich, CT (USA)

    1990-06-01

    This report combines six work units performed in FY`85--86 by the Copper Development Association and the International Copper Research Association under contract with the University of California. The work includes literature surveys and state-of-the-art summaries on several considerations influencing the feasibility of the use of copper-base materials for fabricating high-level nuclear waste packages for the proposed repository in tuff rock at Yucca Mountain, Nevada. The general conclusion from this work was that copper-base materials are viable candidates for inclusion in the materials selection process for this application. 55 refs., 48 figs., 22 tabs.

  12. Dielectric material in lead-based perovskite and fabrication process for multilayer ceramic capacitor with copper internal electrode

    International Nuclear Information System (INIS)

    Kato, J.; Yokotani, Y.; Kagata, H.; Nakatani, S.; Kugimiya, K.

    1990-01-01

    This paper reports on the development of a multilayer ceramic capacitor with copper internal electrodes. Dielectric materials of the capacitor is lead- based perovskite (Pb a Ca b ) (Mg 1/3 Nb 2/3 ) x Ti y (Ni 1/2 W 1/2 ) z O 2 + a + b where a + b gt 1 and x + y + z = 1. The materials can be fired below 1000 degrees C and have high resistivity even when fired in the atmosphere below the equilibrium oxygen partial pressure of copper and CuO. The fabrication process of the capacitor has following features. The electrode paste is composed of copper oxide to prevent breaking of the laminated body in a burn out process. Then the copper oxide is first metalized and fired in a controlled atmosphere. The obtained capacitor of 20 dielectric layers of 17 micron meter meets to Z5U specification and has low loss tangent of 0.6% and stability under d.c. bias voltage and high a.c. field

  13. Multidisciplinary approach to improve the quality of below-knee plaster casting.

    Science.gov (United States)

    Williams, John Teudar; Kedrzycki, Marta; Shenava, Yathish

    2018-01-01

    In our trauma unit, we noted a high rate of incorrectly applied below-knee casts for ankle fractures, in some cases requiring reapplication. This caused significant discomfort and inconvenience for patients and additional burden on plaster-room services. Our aim was to improve the quality of plaster casts and reduce the proportion that needed to be reapplied. Our criteria for plaster cast quality were based on the British Orthopaedic Association Casting Standards (2015) and included neutral (plantargrade) ankle position, adequacy of fracture reduction and rate of cast reapplication. Baseline data collection was performed over a 2-month period by two independent reviewers. After distributing findings and presenting to relevant departments, practical casting sessions with orthopaedic technicians were arranged for the multidisciplinary team responsible for casting. This was later supplemented by new casting guidelines in clinical areas and available online. Postintervention data collection was performed over two separate cycles to assess the effect and permanence of intervention. Data from the preintervention period (n=29) showed median ankle position was 32° plantarflexion (PF), with nine (31%) inadequate reductions and six (20%) backslabs reapplied. Following Plan-Do-Study-Act (PDSA) 1, ankle position was significantly improved (median 25° PF), there were fewer inadequate reductions (12%; 2/17) and a lower rate of reapplication (0%; 0/17). After PDSA 2 (n=16), median ankle position was 21° PF, there was one (6%) inadequate reduction and two (12%) reapplications of casts. Following implementation of plaster training sessions for accident and emergency and junior orthopaedic staff, in addition to publishing guidance and new protocol, there has been a sustained improvement in the quality of below-knee backslabs and fewer cast reapplications. These findings justify continuation and expansion of the current programme to include other commonly applied plaster casts.

  14. Enhanced thermal diffusivity of copperbased composites using copper-RGO sheets

    Science.gov (United States)

    Kim, Sangwoo; Kwon, Hyouk-Chon; Lee, Dohyung; Lee, Hyo-Soo

    2017-11-01

    The synthesis of copper-reduced graphene oxide (RGO) sheets was investigated in order to control the agglutination of interfaces and develop a manufacturing process for copper-based composite materials based on spark plasma sintering. To this end, copper-GO (graphene oxide) composites were synthesized using a hydrothermal method, while the copper-reduced graphene oxide composites were made by hydrogen reduction. Graphene oxide-copper oxide was hydrothermally synthesized at 80 °C for 5 h, and then annealed at 800 °C for 5 h in argon and hydrazine rate 9:1 to obtain copper-RGO flakes. The morphology and structure of these copper-RGO sheets were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy. After vibratory mixing of the synthesized copper-RGO composites (0-2 wt%) with copper powder, they were sintered at 600 °C for 5 min under100 MPa of pressure by spark plasma sintering process. The thermal diffusivity of the resulting sintered composite was characterized by the laser flash method at 150 °C.

  15. An objective assessment of safety to drive in an upper limb cast.

    Science.gov (United States)

    Stevenson, H L; Peterson, N; Talbot, C; Dalal, S; Watts, A C; Trail, I A

    2013-03-01

    Patients managed with upper limb cast immobilization often seek advice about driving. There is very little published data to assist in decision making, and advice given varies between healthcare professionals. There are no specific guidelines available from the UK Drivers and Vehicles Licensing Agency, police, or insurance companies. Evidence-based guidelines would enable clinicians to standardize the advice given to patients. Six individuals (three male, three female; mean age 36 years, range 27-43 years) were assessed by a mobility occupational therapist and driving standards agency examiner while completing a formal driving test in six different types of upper limb casts (above-elbow, below-elbow neutral, and below-elbow cast incorporating the thumb [Bennett's cast]) on both left and right sides. Of the 36 tests, participants passed 31 tests, suggesting that most people were able to safely drive with upper limb cast immobilization. However, driving in a left above-elbow cast was considered unsafe.

  16. AIS/DOE Technology Roadmap Program: Strip Casting: Anticipating New Routes To Steel Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Prof. Alan W. Camb; Prof. Anthony Rollett

    2001-08-31

    To determine the potential for strip casting in the steel industry and to develop the fundamental knowledge necessary to allow the role of strip casting in the modern steel industry to be understood. Based upon a study of carbon steel strip castings that were either produced for the program at British Steel or were received from a pre-commercial production machine, the following conclusions were made. Strip casting of carbon steels is technically feasible for sheet material from slightly less than 1 mm thick to 3 mm thick, and, assuming that it is economically viable, it will be first applied in carbon steel markets that do not require stringent surface quality or extensive forming. The potential of strip casting as a casting process to be developed for steel castings is very high as the cast strip has some very novel characteristics. Direct cast carbon strip has better surface quality, shape and profile than any other casting process currently available. The more rapidly solidified structure of direct cast strip tends to be strong with low ductility; however, with adequate thermal treatment, it is possible to develop a variety of properties from the same grade. The process is more amenable at this time to production tonnages per year of the order of 500,000 tons and as such will first find niche type applications. This technology is an additional technology for steel production and will be in addition to, rather than a replacement for, current casting machines.

  17. Effects of copper-based compounds, antibiotics and a plant activator on population sizes and spread of Clavibacter michiganensis subsp. michiganensis in greenhouse tomato seedlings

    OpenAIRE

    Milijašević Svetlana; Todorović Biljana; Potočnik Ivana; Rekanović Emil; Stepanović Miloš

    2009-01-01

    Three copper-based compounds (copper hydroxide, copper oxychloride, copper sulphate), two antibiotics (streptomycin and kasugamycin) and a plant activator (ASM) significantly reduced population sizes and spread of C. michiganensis subsp. michiganensis among tomato seedlings in the greenhouse. Streptomycin had the best effect in reducing pathogen population size in all sampling regions. Moreover, this antibiotic completely stopped the spread of C. michiganensis subsp. michiganensis in the regi...

  18. Behavior of duplex stainless steel casting defects under mechanical loadings

    Energy Technology Data Exchange (ETDEWEB)

    Jayet-Gendrot, S [Electricite de France, 77 - Moret-sur-Loing (France). Dept. of Materials Study; Gilles, P; Migne, C [Societe Franco-Americaine de Constructions Atomiques (FRAMATOME), 92 - Paris-La-Defense (France)

    1997-04-01

    Several components in the primary circuit of pressurized water reactors are made of cast duplex stainless steels. This material contains small casting defects, mainly shrinkage cavities, due to the manufacturing process. In safety analyses, the structural integrity of the components is studied. In order to assess the real severity of the casting defects under mechanical loadings, an experimental program was carried out. It consisted of testing, under both cyclic and monotonic solicitations, three-point bend specimens containing either a natural defect (in the form of a localized cluster of cavities) or a machined notch having the dimensions of the cluster`s envelope. The tests are analyzed in order to develop a method that takes into account the behavior of castings defects in a more realistic fashion than by an envelope crack. Various approaches are investigated, including the search of equivalent defects or of criteria based on continuum mechanics concepts, and compared with literature data. This study shows the conservatism of current safety analyses in modelling casting defects by envelope semi-elliptical cracks and contributes to the development of alternative approaches. (author) 18 refs.

  19. Making Artificial Heart Components – Selected Aspects Of Casting Technology

    Directory of Open Access Journals (Sweden)

    Sobczak J.J.

    2015-09-01

    Full Text Available This study shown possibilities of Rapid Prototyping techniques (RP and metal casting simulation software (MCSS, including non inertial reference systems. RP and MCSS have been used in order to design and produce essential elements for artificial heart. Additionally it has been shown possibilities of Fused Deposition Modeling (FDM technique and DodJet technology using prototyped elements of rotodynamic pump. MAGMASOFT® software allowed to verify the cast kit heart valves model. Optical scanner Atos III enabled size verification of experimental elements supplied by rapid prototyping together with metal casting elements. Due to the selection of ceramic materials and assessment of molten metal – ceramic reactivity at high temperatures together with pattern materials selection model it was possible to design, manufacture a ceramic mould for titanium based alloys. The casting structure modification has been carried out by means of high isostatic pressure technique (HIP. The quality assessment of the casting materials has been performed using X-ray fluorescence (XRF, ARL 4460 Optical Emission Spectrometer, metallographic techniques and X-ray computed tomography.

  20. Cast dielectric composite linear accelerator

    Science.gov (United States)

    Sanders, David M [Livermore, CA; Sampayan, Stephen [Manteca, CA; Slenes, Kirk [Albuquerque, NM; Stoller, H M [Albuquerque, NM

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  1. Numerical modelling of solidification of thin walled hypereutectic ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Hattel, Jesper; Tiedje, Niels

    2006-01-01

    Numerical simulation of solidification of ductile cast iron is normally based on a model where graphite nodules are surrounded by an austenite shell. The two phases are then growing as two concentric spheres governed by diffusion of carbon through the austenite shell. Experiments have however shown...... simulation of thin-walled ductile iron castings. Simulations have been performed with a 1-D numerical solidi¬fication model that includes the precipitation of non-eutectic austenite during the eutectic stage. Results from the simulations have been compared with experimental castings with wall thick...

  2. Evaluation of porosity in Al alloy die castings

    Directory of Open Access Journals (Sweden)

    M. Říhová

    2012-01-01

    Full Text Available Mechanical properties of an Al-alloy die casting depend significantly on its structural properties. Porosity in Al-alloy castings is one of the most frequent causes of waste castings. Gas pores are responsible for impaired mechanical-technological properties of cast materials. On the basis of a complex evaluation of experiments conducted on AlSi9Cu3 alloy samples taken from the upper engine block which was die- cast with and without local squeeze casting it can be said that castings manufactured without squeeze casting exhibit maximum porosity in the longitudinal section. The area without local squeeze casting exhibits a certain reduction in mechanical properties and porosity increased to as much as 5%. However, this still meets the norms set by SKODA AUTO a.s.

  3. Carbohydrate metabolism in erythrocytes of copper deficient rats.

    Science.gov (United States)

    Brooks, S P J; Cockell, K A; Dawson, B A; Ratnayake, W M N; Lampi, B J; Belonje, B; Black, D B; Plouffe, L J

    2003-11-01

    Dietary copper deficiency is known to adversely affect the circulatory system of fructose-fed rats. Part of the problem may lie in the effect of copper deficiency on intermediary metabolism. To test this, weanling male Long-Evans rats were fed for 4 or 8 weeks on sucrose-based diets containing low or adequate copper content. Copper deficient rats had significantly lower plasma and tissue copper as well as lower plasma copper, zinc-superoxide dismutase activity. Copper deficient rats also had a significantly higher heart:body weight ratio when compared to pair-fed controls. Direct measurement of glycolysis and pentose phosphate pathway flux in erythrocytes using (13)C NMR showed no differences in carbon flux from glucose or fructose to pyruvate but a significantly higher flux through the lactate dehydrogenase locus in copper deficient rats (approximately 1.3 times, average of glucose and glucose + fructose measurements). Copper-deficient animals had significantly higher erythrocyte concentrations of glucose, fructose, glyceraldehyde 3-phosphate and NAD(+). Liver metabolite levels were also affected by copper deficiency being elevated in glycogen and fructose 1-phosphate content. The results show small changes in carbohydrate metabolism of copper deficient rats.

  4. Some Theoretical Considerations on Caste

    Directory of Open Access Journals (Sweden)

    Madhusudan Subedi

    2014-05-01

    Full Text Available Caste as a system of social stratification was an encompassing system in the past. There was reciprocal system of exchange goods and services. With time, occupation and mode of generation of livelihood of various caste groups changed, and the traditional form of jajmani system fizzled out. This paper provides an account of changing perspectives of caste relations in social science writing and political discourse. The discourse of caste has been shifted from ritual hierarchy and social discrimination to an instrument to mobilize people for economic and political gain. DOI: http://dx.doi.org/10.3126/dsaj.v7i0.10437 Dhaulagiri Journal of Sociology and Anthropology Vol. 7, 2013; 51-86

  5. Fabrication of sacrificial anode cathodic protection through casting method

    International Nuclear Information System (INIS)

    Mohd Sharif Sattar; Muhamad Daud; Siti Radiah Mohd Kamarudin; Azali Muhamad; Zaiton Selamat; Rusni Rejab

    2007-01-01

    Aluminum is one of the few metals that can be cast by all of the processes used in casting metals. These processes consist of die casting, permanent mold casting, sand casting (green sand and dry sand), plaster casting, investment casting, and continuous casting. Other processes such as lost foam, squeeze casting, and hot isostatic pressing are also used. Permanent mold casting method was selected in which used for fabricating of sacrificial anode cathodic protection. This product was ground for surface finished and fabricated in the cylindrical form and reinforced with carbon steel at a center of the anode. (Author)

  6. Copper-based electrochemical sensor with palladium electrode for cathodic stripping voltammetry of manganese.

    Science.gov (United States)

    Kang, Wenjing; Pei, Xing; Bange, Adam; Haynes, Erin N; Heineman, William R; Papautsky, Ian

    2014-12-16

    In this work, we report on the development of a palladium-based, microfabricated point-of-care electrochemical sensor for the determination of manganese using square wave cathodic stripping voltammetry. Heavy metals require careful monitoring, yet current methods are too complex for a point-of-care system. Voltammetry offers an attractive approach to metal detection on the microscale, but traditional carbon, gold, or platinum electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor uses palladium working and auxiliary electrodes and integrates them with a copper-based reference electrode for simple fabrication and compatibility with microfabrication and printed circuit board processing, while maintaining competitive performance in electrochemical detection. Copper electrodes were prepared on glass substrate using a combination of microfabrication procedures followed by electrodeposition of palladium. The disposable sensor system was formed by bonding a poly(dimethylsiloxane) (PDMS) well to the glass substrate. Cathodic stripping voltammetry of manganese using our new disposable palladium-based sensors exhibited 334 nM (18.3 ppb) limit of detection in borate buffer. The sensor was used to demonstrate manganese determination in natural water samples from a pond in Burnet Woods, located in Cincinnati, OH, and the Ohio River.

  7. Copper Promoted Synthesis of Diaryl Ethers

    OpenAIRE

    Ghosh, Rajshekhar; Samuelson, Ashoka G

    2004-01-01

    An efficient protocol using copper based reagents for the coupling of aryl halides with phenols to generate diaryl ethers is described. Acopper( I) complex, [ Cu( CH3CN) (4)] ClO4, or the readily available copper( II) source, CuCO3 . Cu( OH) (2) . H2O ( in combination with potassium phosphate), can be used. Aryl halides and phenols with different steric and electronic demands have been used to assess the efficiency of the procedure. The latter source of copper gives better yields under all co...

  8. 14 CFR 29.621 - Casting factors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Casting factors. 29.621 Section 29.621... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.621 Casting factors. (a... approved specifications. Paragraphs (c) and (d) of this section apply to structural castings except...

  9. Selective low temperature NH3 oxidation to N2 on copper-based catalysts

    NARCIS (Netherlands)

    Gang, L.; Grondelle, van J.; Anderson, B.G.; Santen, van R.A.

    1999-01-01

    TPD, TPR, UV-visible spectroscopy, and high-resolution electron microscopy (HREM) have been used to characterize the state and reactivity of alumina-supported copper-based catalysts for the oxidation of ammonia to nitrogen. The results of HREM and UV spectra show that a CuAl2O4-like phase is more

  10. Nanosecond laser-induced back side wet etching of fused silica with a copper-based absorber liquid

    Science.gov (United States)

    Lorenz, Pierre; Zehnder, Sarah; Ehrhardt, Martin; Frost, Frank; Zimmer, Klaus; Schwaller, Patrick

    2014-03-01

    Cost-efficient machining of dielectric surfaces with high-precision and low-roughness for industrial applications is still challenging if using laser-patterning processes. Laser induced back side wet etching (LIBWE) using UV laser pulses with liquid heavy metals or aromatic hydrocarbons as absorber allows the fabrication of well-defined, nm precise, free-form surfaces with low surface roughness, e.g., needed for optical applications. The copper-sulphatebased absorber CuSO4/K-Na-Tartrate/NaOH/formaldehyde in water is used for laser-induced deposition of copper. If this absorber can also be used as precursor for laser-induced ablation, promising industrial applications combining surface structuring and deposition within the same setup could be possible. The etching results applying a KrF excimer (248 nm, 25 ns) and a Nd:YAG (1064 nm, 20 ns) laser are compared. The topography of the etched surfaces were analyzed by scanning electron microscopy (SEM), white light interferometry (WLI) as well as laser scanning microscopy (LSM). The chemical composition of the irradiated surface was studied by energy-dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FT-IR). For the discussion of the etching mechanism the laser-induced heating was simulated with finite element method (FEM). The results indicate that the UV and IR radiation allows micro structuring of fused silica with the copper-based absorber where the etching process can be explained by the laser-induced formation of a copper-based absorber layer.

  11. Cast Steels for Creep-Resistant Parts Used in Heat Treatment Plants

    Directory of Open Access Journals (Sweden)

    Drotlew A.

    2012-12-01

    Full Text Available Creep-resistant parts of heat treatment furnaces are in most cases made from high-alloyed chromium-nickel and nickel-chromium iron alloys, both cast and wrought. This paper presents the types of casting alloys used for this particular purpose, since the majority of furnace components are made by the casting process. Standards were cited which give symbols of alloy grades used in technical specifications by the domestic industry. It has been indicated that castings made currently are based on a wider spectrum of the creep-resistant alloy grades than the number of alloys covered by the standards. Alloy grades recommended by the technical literature for individual parts of the furnace equipment were given. The recommendations reflect both the type of the technological process used and the technical tasks performed by individual parts of the furnace equipment. Comments were also made on the role of individual alloying elements in shaping the performance properties of castings.

  12. Cast Steels for Creep-resistant Parts Used in Heat Treatment Plants

    Directory of Open Access Journals (Sweden)

    A. Drotlew

    2012-12-01

    Full Text Available Creep-resistant parts of heat treatment furnaces are in most cases made from high-alloyed chromium-nickel and nickel-chromium ironalloys, both cast and wrought. This paper presents the types of casting alloys used for this particular purpose, since the majority of furnace components are made by the casting process. Standards were cited which give symbols of alloy grades used in technical specifications by the domestic industry. It has been indicated that castings made currently are based on a wider spectrum of the creep-resistant alloy grades than the number of alloys covered by the standards. Alloy grades recommended by the technical literature for individual parts of the furnace equipment were given. The recommendations reflect both the type of the technological process used and the technical tasks performed by individual parts of the furnace equipment. Comments were also made on the role of individual alloying elements in shaping the performance properties of castings.

  13. Carcass and physical meat characteristics of thin tail sheep (TTS based on calpastatin gene (CAST (Locus intron 5 – exon 6 genotypes variation

    Directory of Open Access Journals (Sweden)

    Muhammad Ihsan Andi Dagong

    2012-03-01

    Full Text Available The quality of sheep carcass is mostly determined by the total lean meat production, meat distribution on the carcass and the quality of meat. Calpastatin gene (CAST is known to have an association with carcass and meat quality traits. The objective of this research was to identify the association between CAST polymorphisms and carcass characteristics in Thin Tail Sheep (TTS. Thirty three heads of sheep representing three genotypes of CAST (CAST-11, CAST-12 and CAST-22 were identified for carcass and meat characterisation. There was no significant difference between CAST polymorphisms with meat tenderness, pH, water holding capacity and cooking loss, neither with carcass weight and dressing percentage among genotypes. Shoulder proportion of CAST-11 genotype was larger than that of CAST-12 or CAST-22, but the lean meat proportion of CAST-22 genotype in shoulder, rack and loin were higher than those of CAST-11 but not different from CAST-12. The fat percentage of CAST-11 was the highest among the genotypes. CAST-22 genotype has higher lean meat percentage than the CAST-11. Variation in CAST gene could be used as marker assisted selection in sheep for higher lean meat proportion.

  14. The temperature gradient on section of casting in process of primary crystallization of chromium cast iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2008-08-01

    Full Text Available The methodology of defining in article was introduced the temperature gradient in process of primary crystallization during cooling the casting from chromium cast iron on basis of measurements of thermal field in test DTA-K3. Insert also the preliminary results of investigations of influence temperature gradient on structure of studied wear resistance chromium cast iron.

  15. Casting Footprints for Eternity

    Science.gov (United States)

    1999-01-01

    Apollo 11 Astronaut Buzz Aldrin has his footprints casted during the dedication ceremony of the rocket fountain at Building 4200 at Marshall Space Flight Center. The casts of Aldrin's footprints will be placed in the newly constructed Von Braun courtyard representing the accomplishments of the Apollo 11 lunar landing.

  16. 3D interconnect technology based on low temperature copper nanoparticle sintering

    NARCIS (Netherlands)

    Zhang, B.; Carisey, Y.C.P.; Damian, A.; Poelma, R.H.; Zhang, G.Q.; van Zeijl, H.W.; Bi, Keyun; Liu, Sheng; Zhou, Shengjun

    2016-01-01

    We explore a methodology for patterned copper nanoparticle paste for 3D interconnect applications in wafer to wafer (W2W) bonding. A novel fine pitch thermal compression bonding process (sintering) with coated copper nanoparticle paste was developed. Most of the particle size is between 10-30 nm.

  17. Casting fine grained, fully dense, strong inorganic materials

    Science.gov (United States)

    Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.

    2015-11-24

    Methods and apparatuses for casting inorganic materials are provided. The inorganic materials include metals, metal alloys, metal hydrides and other materials. Thermal control zones may be established to control the propagation of a freeze front through the casting. Agitation from a mechanical blade or ultrasonic energy may be used to reduce porosity and shrinkage in the casting. After solidification of the casting, the casting apparatus may be used to anneal the cast part.

  18. Comparative Evaluation of Marginal Accuracy of a Cast Fixed Partial Denture Compared to Soldered Fixed Partial Denture Made of Two Different Base Metal Alloys and Casting Techniques: An In vitro Study.

    Science.gov (United States)

    Jei, J Brintha; Mohan, Jayashree

    2014-03-01

    The periodontal health of abutment teeth and the durability of fixed partial denture depends on the marginal adaptation of the prosthesis. Any discrepancy in the marginal area leads to dissolution of luting agent and plaque accumulation. This study was done with the aim of evaluating the accuracy of marginal fit of four unit crown and bridge made up of Ni-Cr and Cr-Co alloys under induction and centrifugal casting. They were compared to cast fixed partial denture (FPD) and soldered FPD. For the purpose of this study a metal model was fabricated. A total of 40 samples (4-unit crown and bridge) were prepared in which 20 Cr-Co samples and 20 Ni-Cr samples were fabricated. Within these 20 samples of each group 10 samples were prepared by induction casting technique and other 10 samples with centrifugal casting technique. The cast FPD samples obtained were seated on the model and the samples were then measured with travelling microscope having precision of 0.001 cm. Sectioning of samples was done between the two pontics and measurements were made, then the soldering was made with torch soldering unit. The marginal discrepancy of soldered samples was measured and all findings were statistically analysed. The results revealed minimal marginal discrepancy with Cr-Co samples when compared to Ni-Cr samples done under induction casting technique. When compared to cast FPD samples, the soldered group showed reduced marginal discrepancy.

  19. 14 CFR 25.621 - Casting factors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Casting factors. 25.621 Section 25.621... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General § 25.621 Casting factors. (a... meet approved specifications. Paragraphs (c) and (d) of this section apply to any structural castings...

  20. 14 CFR 27.621 - Casting factors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Casting factors. 27.621 Section 27.621... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.621 Casting factors. (a) General... approved specifications. Paragraphs (c) and (d) of this section apply to structural castings except...

  1. Abrasion Resistance of as-Cast High-Chromium Cast Iron

    Directory of Open Access Journals (Sweden)

    Pokusová Marcela

    2014-12-01

    Full Text Available High chromium cast irons are widely used as abrasion resistant materials. Their properties and wear resistance depend on carbides and on the nature of the matrix supporting these carbides. The paper presents test results of irons which contain (in wt.% 18-22 Cr and 2-5 C, and is alloyed by 1.7 Mo + 5 Ni + 2 Mn to improve the toughness. Tests showed as-cast irons with mostly austenitic matrix achieved hardness 36-53 HRC but their relative abrasion-resistance was higher than the tool steel STN 19436 heat treated on hardness 60 HRC.

  2. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Ultrasonic imaging of EB weld, theory of harmonic imaging of welds, NDE of cast iron

    International Nuclear Information System (INIS)

    Stepinski, T.; Lingvall, F.; Ping Wu

    2001-07-01

    The objective of task presented in the first chapter, ultrasonic imaging of EB weld is to investigate imaging methods capable of improving ultrasonic imaging of defects in EB-welds. Algorithms based on ideas from ultrasonic tomography were examined as the first step. After a concise review of literature in the field of tomography the attention is focused on synthetic focusing and particularly on using linear phased array systems for imaging. Synthetic focusing is a technique where the focusing is performed by software after gathering the ultrasonic data. General principles of synthetic aperture focusing technique (SAFT) - a synthetic focusing technique especially suitable for linear ultrasonic arrays are presented. Problems related to the application of SAFT to ultrasonic transducers with large apertures are identified and the solution is proposed. It appears that when the probe becomes larger (i.e., cannot be regarded as a point source) the ultrasonic pulses that it generates will be smeared by its spatial impulse response (SIR). This impairs the spatial resolution achieved for the finite aperture probes comparing to the point source. Thus, a proper application of synthetic focusing requires taking into account the spatially varying probe's SIR. The SIR has to be calculated (measured) in the interesting points of space and than deconvoluted. A technique for deconvoluting the SIR based on Wiener filter is proposed and illustrated by experimental results. Some preliminary results from immersion testing of copper blocks using the ALLIN system in our lab facility are presented. Nonlinear propagation of plane waves in fluids based on the Burgers equation is investigated in the second chapter. The presented method is basically adopted from the existing literature although some modification has been made to adapt to our situation. The solution has been re-derived and two alternative forms feasible for computer calculation are given and some numerical results are

  3. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Ultrasonic imaging of EB weld, theory of harmonic imaging of welds, NDE of cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, T.; Lingvall, F.; Ping Wu [Uppsala Univ. (Sweden). Dept. of Materials Science

    2001-07-01

    The objective of task presented in the first chapter, ultrasonic imaging of EB weld is to investigate imaging methods capable of improving ultrasonic imaging of defects in EB-welds. Algorithms based on ideas from ultrasonic tomography were examined as the first step. After a concise review of literature in the field of tomography the attention is focused on synthetic focusing and particularly on using linear phased array systems for imaging. Synthetic focusing is a technique where the focusing is performed by software after gathering the ultrasonic data. General principles of synthetic aperture focusing technique (SAFT) - a synthetic focusing technique especially suitable for linear ultrasonic arrays are presented. Problems related to the application of SAFT to ultrasonic transducers with large apertures are identified and the solution is proposed. It appears that when the probe becomes larger (i.e., cannot be regarded as a point source) the ultrasonic pulses that it generates will be smeared by its spatial impulse response (SIR). This impairs the spatial resolution achieved for the finite aperture probes comparing to the point source. Thus, a proper application of synthetic focusing requires taking into account the spatially varying probe's SIR. The SIR has to be calculated (measured) in the interesting points of space and than deconvoluted. A technique for deconvoluting the SIR based on Wiener filter is proposed and illustrated by experimental results. Some preliminary results from immersion testing of copper blocks using the ALLIN system in our lab facility are presented. Nonlinear propagation of plane waves in fluids based on the Burgers equation is investigated in the second chapter. The presented method is basically adopted from the existing literature although some modification has been made to adapt to our situation. The solution has been re-derived and two alternative forms feasible for computer calculation are given and some numerical results are

  4. CASTING METHOD AND APPARATUS

    Science.gov (United States)

    Gray, C.F.; Thompson, R.H.

    1958-10-01

    An improved apparatus for the melting and casting of uranium is described. A vacuum chamber is positioned over the casting mold and connected thereto, and a rod to pierce the oxide skin of the molten uranium is fitted into the bottom of the melting chamber. The entire apparatus is surrounded by a jacket, and operations are conducted under a vacuum. The improvement in this apparatus lies in the fact that the top of the melting chamber is fitted with a plunger which allows squeezing of the oxide skin to force out any molten uranium remaining after the skin has been broken and the molten charge has been cast.

  5. Manufacturing of aluminum composite material using stir casting process

    International Nuclear Information System (INIS)

    Jokhio, M.H.; Panhwar, M.I.; Unar, M.A.

    2011-01-01

    Manufacturing of aluminum alloy based casting composite materials via stir casting is one of the prominent and economical route for development and processing of metal matrix composites materials. Properties of these materials depend upon many processing parameters and selection of matrix and reinforcements. Literature reveals that most of the researchers are using 2, 6 and 7 xxx aluminum matrix reinforced with SiC particles for high strength properties whereas, insufficient information is available on reinforcement of 'AI/sub 2/O/sub 3/' particles in 7 xxx aluminum matrix. The 7 xxx series aluminum matrix usually contains Cu-Zn-Mg; Therefore, the present research was conducted to investigate the effect of elemental metal such as Cu-Zn-Mg in aluminum matrix on mechanical properties of stir casting of aluminum composite materials reinforced with alpha 'AI/sub 2/O/sub 3/' particles using simple foundry melting alloying and casting route. The age hardening treatments were also applied to study the aging response of the aluminum matrix on strength, ductility and hardness. The experimental results indicate that aluminum matrix cast composite can be manufactured via conventional foundry method giving very good responses to the strength and ductility up to 10% 'AI/sub 2/O/sub 3/' particles reinforced in aluminum matrix. (author)

  6. Manufacturing of Aluminum Composite Material Using Stir Casting Process

    Directory of Open Access Journals (Sweden)

    Muhammad Hayat Jokhio

    2011-01-01

    Full Text Available Manufacturing of aluminum alloy based casting composite materials via stir casting is one of the prominent and economical route for development and processing of metal matrix composites materials. Properties of these materials depend upon many processing parameters and selection of matrix and reinforcements. Literature reveals that most of the researchers are using 2, 6 and 7xxx aluminum matrix reinforced with SiC particles for high strength properties whereas, insufficient information is available on reinforcement of \\"Al2O3\\" particles in 7xxx aluminum matrix. The 7xxx series aluminum matrix usually contains Cu-Zn-Mg. Therefore, the present research was conducted to investigate the effect of elemental metal such as Cu-Zn-Mg in aluminum matrix on mechanical properties of stir casting of aluminum composite materials reinforced with alpha \\"Al2O3\\" particles using simple foundry melting alloying and casting route. The age hardening treatments were also applied to study the aging response of the aluminum matrix on strength, ductility and hardness. The experimental results indicate that aluminum matrix cast composite can be manufactured via conventional foundry method giving very good responses to the strength and ductility up to 10% \\"Al2O3\\" particles reinforced in aluminum matrix.

  7. Pressure distribution in centrifugal dental casting.

    Science.gov (United States)

    Nielsen, J P

    1978-02-01

    Equations are developed for liquid metal pressure in centrifugal dental casting, given the instantaneous rotational velocity, density, and certain dimensions of the casting machine and casting pattern. A "reference parabola" is introduced making the fluid pressure concept more understandable. A specially designed specimen demonstrates experimentally the reference parabola at freezing.

  8. Electrical conduction in composites containing copper core-copper

    Indian Academy of Sciences (India)

    Composites of nanometre-sized copper core-copper oxide shell with diameters in the range 6.1 to 7.3 nm dispersed in a silica gel were synthesised by a technique comprising reduction followed by oxidation of a suitably chosen precursor gel. The hot pressed gel powders mixed with nanometre-sized copper particles ...

  9. Thermal cooling effects in the microstructure and properties of cast cobalt-base biomedical alloys

    Science.gov (United States)

    Vega Valer, Vladimir

    Joint replacement prosthesis is widely used in the biomedical field to provide a solution for dysfunctional human body joints. The demand for orthopedic knee and hip implants motivate scientists and manufacturers to develop novel materials or to increase the life of service and efficiency of current materials. Cobalt-base alloys have been investigated by various researchers for biomedical implantations. When these alloys contain Chromium, Molybdenum, and Carbon, they exhibit good tribological and mechanical properties, as well as excellent biocompatibility and corrosion resistance. In this study, the microstructure of cast Co-Cr-Mo-C alloy is purposely modified by inducing rapid solidification through fusion welding processes and solution annealing heat treatment (quenched in water at room temperature. In particular the effect of high cooling rates on the athermal phase transformation FCC(gamma)↔HCP(epsilon) on the alloy hardness and corrosion resistance is investigated. The Co-alloy microstructures were characterized using metallography and microscopy techniques. It was found that the as cast sample typically dendritic with dendritic grain sizes of approximately 150 microm and containing Cr-rich coarse carbide precipitates along the interdendritic boundaries. Solution annealing gives rise to a refined microstructure with grain size of 30 microm, common among Co-Cr-Mo alloys after heat treating. Alternatively, an ultrafine grain structure (between 2 and 10 microm) was developed in the fusion zone for specimens melted using Laser and TIG welding methods. When laser surface modification treatments were implemented, the developed solidification microstructure shifted from dendritic to a fine cellular morphology, with possible nanoscale carbide precipitates along the cellular boundaries. In turn, the solidified regions exhibited high hardness values (461.5HV), which exceeds by almost 110 points from the alloy in the as-cast condition. The amount of developed athermal

  10. USE OF HIGH-STRENGTH BAINITIC CAST IRON FOR PRODUCING GEAR WHEELS

    Directory of Open Access Journals (Sweden)

    A. I. Pokrovskiy

    2015-01-01

    Full Text Available The advantages and drawbacks of high-strength cast irons with bainitic structure are reviewed basing on the authors’ own experience in the production of critical partsfrom this material and on the analysis of world trends. A possibility of the replacement of alloy steels by bainitic cast iron in manufacturing critical machine parts is discussed.

  11. High sensitive detection of copper II ions using D-penicillamine-coated gold nanorods based on localized surface plasmon resonance

    Science.gov (United States)

    Hong, Yoochan; Jo, Seongjae; Park, Joohyung; Park, Jinsung; Yang, Jaemoon

    2018-05-01

    In this paper, we describe the development of a nanoplasmonic biosensor based on the localized surface plasmon resonance (LSPR) effect that enables a sensitive and selective recognition of copper II ions. First, we fabricated the nanoplasmonics as LSPR substrates using gold nanorods (GNR) and the nano-adsorption method. The LSPR sensitivity of the nanoplasmonics was evaluated using various solvents with different refractive indexes. Subsequently, D-penicillamine (DPA)—a chelating agent of copper II ions—was conjugated to the surface of the GNR. The limit of detection (LOD) for the DPA-conjugated nanoplasmonics was 100 pM. Furthermore, selectivity tests were conducted using various divalent cations, and sensitivity tests were conducted on the nanoplasmonics under blood-like environments. Finally, the developed nanoplasmonic biosensor based on GNR shows great potential for the effective recognition of copper II ions, even in human blood conditions.

  12. Hardness and Wear Resistance of TiC-Fe-Cr Locally Reinforcement Produced in Cast Steel

    Directory of Open Access Journals (Sweden)

    Olejnik E.

    2016-06-01

    Full Text Available In order to increase wear resistance cast steel casting the TiC-Fe-Cr type composite zones were fabricated. These zones were obtained by means of in situ synthesis of substrates of the reaction TiC with a moderator of a chemical composition of white cast iron with nickel of the Ni-Hard type 4. The synthesis was carried out directly in the mould cavity. The moderator was applied to control the reactive infiltration occurring during the TiC synthesis. The microstructure of composite zones was investigated by electron scanning microscopy, using the backscattered electron mode. The structure of composite zones was verified by the X-ray diffraction method. The hardness of composite zones, cast steel base alloy and the reference samples such as white chromium cast iron with 14 % Cr and 20 % Cr, manganese cast steel 18 % Mn was measured by Vickers test. The wear resistance of the composite zone and the reference samples examined by ball-on-disc wear test. Dimensionally stable composite zones were obtained containing submicron sizes TiC particles uniformly distributed in the matrix. The macro and microstructure of the composite zone ensured three times hardness increase in comparison to the cast steel base alloy and one and a half times increase in comparison to the white chromium cast iron 20 % Cr. Finally ball-on-disc wear rate of the composite zone was five times lower than chromium white cast iron containing 20 % Cr.

  13. Ponseti casting: a new soft option.

    Science.gov (United States)

    Brewster, M B S; Gupta, M; Pattison, G T R; Dunn-van der Ploeg, I D

    2008-11-01

    We have modified the Ponseti casting technique by using a below-knee Softcast instead of an above-knee plaster of Paris cast. Treatment was initiated as soon as possible after birth and the Pirani score was recorded at each visit. Following the manipulation techniques of Ponseti, a below-knee Softcast was applied directly over a stockinette for a snug fit and particular attention was paid to creating a deep groove above the heel to prevent slippage. If necessary, a percutaneous Achilles tenotomy was performed and casting continued until the child was fitted with Denis Browne abduction boots. Between April 2003 and May 2007 we treated 51 consecutive babies with 80 idiopathic club feet with a mean age at presentation of 4.5 weeks (4 days to 62 weeks). The initial mean Pirani score was 5.5 (3 to 6). It took a mean of 8.5 weeks (4 to 53) of weekly manipulation and casting to reach the stage of percutaneous Achilles tenotomy. A total of 20 feet (25%) did not require a tenotomy and for the 60 that did, the mean Pirani score at time of operation was 2.5 (0.5 to 3). Denis Browne boots were applied at a mean of 10 weeks (4 to 56) after presentation. The mean time from tenotomy to boots was 3.3 weeks (2 to 10). We experienced one case of cast-slippage during a period of non-attendance, which prolonged the casting process. One case of prolonged casting required repeated tenotomy, and three feet required repeated tenotomy and casting after relapsing while in Denis Browne boots. We believe the use of a below-knee Softcast in conjunction with Ponseti manipulation techniques shows promising initial results which are comparable to those using above-knee plaster of Paris casts.

  14. Rapid Separation of Copper Phase and Iron-Rich Phase From Copper Slag at Low Temperature in a Super-Gravity Field

    Science.gov (United States)

    Lan, Xi; Gao, Jintao; Huang, Zili; Guo, Zhancheng

    2018-06-01

    A novel approach for quickly separating a metal copper phase and iron-rich phase from copper slag at low temperature is proposed based on a super-gravity method. The morphology and mineral evolution of the copper slag with increasing temperature were studied using in situ high-temperature confocal laser scanning microscopy and ex situ scanning electron microscopy and X-ray diffraction methods. Fe3O4 particles dispersed among the copper slag were transformed into FeO by adding an appropriate amount of carbon as a reducing agent, forming the slag melt with SiO2 at low temperature and assisting separation of the copper phase from the slag. Consequently, in a super-gravity field, the metallic copper and copper matte were concentrated as the copper phase along the super-gravity direction, whereas the iron-rich slag migrated in the opposite direction and was quickly separated from the copper phase. Increasing the gravity coefficient (G) significantly enhanced the separation efficiency. After super-gravity separation at G = 1000 and 1473 K (1200 °C) for 3 minutes, the mass fraction of Cu in the separated copper phase reached 86.11 wt pct, while that in the separated iron-rich phase was reduced to 0.105 wt pct. The recovery ratio of Cu in the copper phase was as high as up to 97.47 pct.

  15. Improved Casting Furnace Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Fielding, Randall Sidney [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tolman, David Donald [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-02-01

    In an attempt to ensure more consistent casting results and remove some schedule variance associated with casting, an improved casting furnace concept has been developed. The improved furnace uses the existing arc melter hardware and glovebox utilities. The furnace concept was designed around physical and operational requirements such as; a charge sized of less than 30 grams, high heating rates and minimal additional footprint. The conceptual model is shown in the report as well as a summary of how the requirements were met.

  16. Serpula lacrymans, the dry rot fungus and tolerance towards copper-based wood preservatives

    Science.gov (United States)

    Anne Christine Steenkjaer Hastrup; Frederick Green; Carol Clausen; Bo Jensen

    2005-01-01

    Serpula lacrymans (Wulfen : Fries) Schröter, the dry rot fungus, is considered the most economically important wood decay fungus in temperate regions of the world i.e. northern Europe, Japan and Australia. Previously copper based wood preservatives were the most commonly used preservatives for pressure treatment of wood for building constructions. Because of a...

  17. Low cycle fatigue life of two nickel-base casting alloys in a hydrogen environment

    International Nuclear Information System (INIS)

    Cooper, R.A.

    1976-01-01

    Results of low cycle fatigue tests on alloy Mar-M-246 and Inconel 713 are presented. Based on the limited data, it was concluded that the Mar-M-246 material had a cyclic life in hydrogen that averaged three times higher than the alloy 713LC material for similar strain ranges. The hydrogen environment reduced life for both materials. The life reduction was more than an order of magnitude for the 713LC material. Porosity content of the cast specimens was as expected and was an important factor governing low cycle fatigue life

  18. Reagent conditions of the flotation of copper, copper - molybdenum and copper -zinc ores in foreing countries

    International Nuclear Information System (INIS)

    Nevaeva, L.M.

    1983-01-01

    Reagents-collectors and frothers, used abroad in reagent regimes of flotation of copper, copper-molybdenum and copper zinc ores, have been considered. Xanthogenates, aerofloats, xanthogenformiates, thionocarbamates are mainly used as reagents-collectors. Methylizobutylcarbinol and Daufros are used as reagents-frothers

  19. Casting defects and mechanical properties of high pressure die cast Mg-Zn-Al-RE alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Wenlong; Easton, Mark A.; Zhu, Suming; Nie, Jianfeng [CAST Cooperative Research Centre, Department of Materials Engineering Monash University, Melbourne, VIC (Australia); Dargusch, Matthew S. [School of Mechanical and Mining Engineering, University of Queensland, Brisbane, QLD (Australia); Gibson, Mark A. [CSIRO Process Science and Engineering, Melbourne, VIC (Australia); Jia, Shusheng [Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering Jilin University, Changchun (China)

    2012-02-15

    The die casting defects and tensile properties of high pressure die cast (HPDC) Mg-Zn-Al-RE alloys with various combinations of Zn and Al were studied. The results show that die casting defects in Mg-Zn-Al-RE alloys are affected by the percentage of Zn and Al contents. The hot tearing susceptibility (HTS) of Mg-Zn-Al-RE alloys tends to increase with increasing Zn content up to 6 wt%, while a further increase of Al and/or Zn content reduces the HTS. In tensile tests, the yield strength (YS) is generally improved by increasing Zn or Al content, whereas the tensile strength (TS) and ductility appear to depend largely on the presence of casting defects. Compared with Mg-Zn-Al alloys, the mechanical properties of the Mg-Zn-Al-RE alloy are significantly improved. The Mg-4Zn-4Al-4RE alloy is found to have few casting defects and the optimal tensile properties. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. The effect of casting conditions on the biaxial flexural strength of glass-ceramic materials.

    Science.gov (United States)

    Johnson, A; Shareef, M Y; Walsh, J M; Hatton, P V; van Noort, R; Hill, R G

    1998-11-01

    To assess the effect of mould and glass casting temperatures on the biaxial flexural strength (BFS) of two different types of castable glass-ceramic, using existing laboratory equipment and techniques. Two castable glass-ceramic materials were evaluated. One glass (LG3) is based on SiO2-Al2O3-P2O5-CaO-CaF2, and is similar in composition to glasses used in the manufacture of glass-ionomer cements. The other glass (SG3) is based on SiO2-K2O-Na2O-CaO-CaF2, and is a canasite-based material. Both materials were used to produce discs of 12 mm diameter and 2 mm thickness using the same lost-wax casting process as used for metal castings. Mould temperatures of between 500 degrees C and 1000 degrees C and glass casting temperatures of between 1100 degrees C and 1450 degrees C were evaluated. The cast discs were cerammed and the biaxial flexural strength determined with a Lloyd 2000 R tester. A significant difference was found for the BFS in the range of mould temperatures evaluated, with the optimum investment mould temperature being 590 degrees C for LG3 and 610 degrees C for SG3 (p = 0.0002 and p = 0.019, respectively). No significant differences were seen between any of the glass casting temperatures evaluated. The mould temperature for castable glass-ceramic materials produced using the lost-wax casting process can have a significant effect on BFS. The optimum mould temperature may differ slightly depending on the type of material being used. The glass casting temperature of these materials does not appear to have a significant effect on BFS.