WorldWideScience

Sample records for cast aluminium alloys

  1. Anodization of cast aluminium alloys produced by different casting methods

    Directory of Open Access Journals (Sweden)

    K. Labisz

    2008-08-01

    Full Text Available In this paper the usability of two casting methods, of sand and high pressure cast for the anodization of AlSi12 and AlSi9Cu3 aluminium cast alloys was investigated. With defined anodization parameters like electrolyte composition and temperature, current type and value a anodic alumina surface layer was produced. The quality, size and properties of the anodic layer was investigated after the anodization of the chosen aluminium cast alloys. The Alumina layer was observed used light microscope, also the mechanical properties were measured as well the abrasive wear test was made with using ABR-8251 equipment. The researches included analyze of the influence of chemical composition, geometry and roughness of anodic layer obtained on aluminum casts. Conducted investigations shows the areas of later researches, especially in the direction of the possible, next optimization anodization process of aluminum casting alloys, for example in the range of raising resistance on corrosion to achieve a suitable anodic surface layer on elements for increasing applications in the aggressive environment for example as materials on working building constructions, elements in electronics and construction parts in air and automotive industry.

  2. Computer modelling of age hardening for cast aluminium alloys

    International Nuclear Information System (INIS)

    Wu, Linda; Ferguson, W George

    2009-01-01

    Age hardening, or precipitation hardening, is one of the most widely adopted techniques for strengthening of aluminium alloys. Although various age hardening models have been developed for aluminium alloys, from the large volume of literature reviewed, it appears that the bulk of the research has been concentrated on wrought aluminium alloys, only a few of the established precipitation models have been applied to the casting aluminium alloys. In the present work, there are two modelling methods that have been developed and applied to the casting aluminium alloys A356 and A357. One is based on the Shercliff-Ashby methodology to produce a process model, by which we mean a mathematical relationship between process variables (alloy composition, ageing temperature and time) and material properties (yield strength or hardness) through microstructure evolution (precipitate radius, volume fraction). The other method is based on the Kampmann and Wagner Numerical (KWN) model which deals with concomitant nucleation, growth and coarsening and is thus capable of predicting the full evolution of the particle size distribution and then a strength model is used to evaluate the resulting change in hardness or yield strength at room temperature by taking into account contributions from lattice resistance, solid solution hardening and precipitation hardening.

  3. Quantitative assessment of Aluminium cast Alloys` structural parameters to optimize ITS properties

    Directory of Open Access Journals (Sweden)

    L. Kuchariková

    2017-01-01

    Full Text Available The present work deals with evaluation of eutectic Si (its shape, size, and distribution, dendrite cell size and dendrite arm spacing in aluminium cast alloys which were cast into different moulds (sand and metallic. Structural parameters were evaluated using NIS-Elements image analyser software. This software is imaging analysis software for the evaluation, capture, archiving and automated measurement of structural parameters. The control of structural parameters by NIS Elements shows that optimum mechanical properties of aluminium cast alloys strongly depend on the distribution, morphology, size of eute ctic Si and matrix parameters.

  4. Precipitation hardening of cast Zr-containing A356 aluminium alloy

    International Nuclear Information System (INIS)

    Baradarani, B.; Raiszadeh, R.

    2011-01-01

    The effect of small additions of zirconium on the hardness, grain size, precipitate type and size of cast A356 aluminium alloy was investigated. The cast alloys were solution treated and then artificially aged for different periods of time. Hardness tests and scanning electron microscope (SEM), energy dispersive X-ray (EDX) and X-ray diffraction (XRD) studies were carried out on the as-cast, as-solutionised and age-hardened specimens. Incoherent, coarse Al 3 Zr particles formed in the microstructure during the solidification of the alloy and caused grain refinement in the as-cast structure. These particles dissolved and reprecipitated as smaller-size particles during the solution treatment, causing the hardness of the alloy to remain constant at high temperatures for long periods of time due to the slow diffusion of Zr in the α-Al.

  5. The structure of high-quality aluminium cast iron

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2012-01-01

    Full Text Available In this study presents the analyse of aluminium iron cast structure (as-cast condition which are used in high temperature. While producing the casts of aluminium iron major influence has been preserve the structure of technological process parameters. The addition to Fe-C-Al alloy V, Ti, Cr leads to the improvement of functional and mechanical cast qualities. In this study, a method was investigated to eliminate the presence of undesirable Al4C3 phases in a aluminium cast iron structure and thus improve the production process. V and Ti additions in aluminium cast iron allows to development of FeAl - VC or TiC alloys. In particular, V or Ti contents above 5 wt.% were found to totally eliminate the presence of Al4C3. In addition, preliminary work indicates that the alloy with the FeAl - VC or TiC structure reveals high oxidation resistance. The introduction of 5 wt.% chromium to aluminium cast iron strengthened Al4C3 precipitate. Thus, the resultant alloy can be considered an intermetallic FeAl matrix strengthened by VC and TiC or modified Al4C3 reinforcements.

  6. Optimization of squeeze casting parameters for non symmetrical AC2A aluminium alloy castings through Taguchi method

    International Nuclear Information System (INIS)

    Senthil, P.; Amirthagadeswaran, K. S.

    2012-01-01

    This paper reports a research in which an attempt was made to prepare AC2A aluminium alloy castings of a non symmetrical component through squeeze casting process. The primary objective was to investigate the influence of process parameters on mechanical properties of the castings. Experiments were conducted based on orthogonal array suggested in Taguchi's offline quality control concept. The experimental results showed that squeeze pressure, die preheating temperature and compression holding time were the parameters making significant improvement in mechanical properties. The optimal squeeze casting condition was found and mathematical models were also developed for the process

  7. Laser welding of SSM Cast A356 aluminium alloy processed with CSIR-Rheo technology

    CSIR Research Space (South Africa)

    Akhter, R

    2006-01-01

    Full Text Available Samples of aluminium alloy A356 were manufactured by Semi Solid Metals HPDC technology, developed recently in CSIR, Pretoria. They were butt welded in as cast conditions using as Nd: YAG laser. The best metal and weld microstructure were presented...

  8. Aluminium alloys in municipal solid waste incineration bottom ash.

    Science.gov (United States)

    Hu, Yanjun; Rem, Peter

    2009-05-01

    With the increasing growth of incineration of household waste, more and more aluminium is retained in municipal solid waste incinerator bottom ash. Therefore recycling of aluminium from bottom ash becomes increasingly important. Previous research suggests that aluminium from different sources is found in different size fractions resulting in different recycling rates. The purpose of this study was to develop analytical and sampling techniques to measure the particle size distribution of individual alloys in bottom ash. In particular, cast aluminium alloys were investigated. Based on the particle size distribution it was computed how well these alloys were recovered in a typical state-of-the-art treatment plant. Assessment of the cast alloy distribution was carried out by wet physical separation processes, as well as chemical methods, X-ray fluorescence analysis and electron microprobe analysis. The results from laboratory analyses showed that cast alloys tend to concentrate in the coarser fractions and therefore are better recovered in bottom ash treatment plants.

  9. Electron microscope investigation into dislocation structure of cast aluminium alloys

    International Nuclear Information System (INIS)

    Zolotorevskij, V.S.; Orelkina, T.A.; Istomin-Kastrovskij, V.V.

    1978-01-01

    By applying the diffraction electron microscopy method, the general specific features of the disclocation structure of cast binary alloys of aluminium with different additions were established. It is shown that in most alloys, when they undergo cooling in the process of crystallization at the rate of about 850 deg/min, the cellular dislocation structure is formed. It is shown that in all the alloys studied, the total density of dislocations of one order is about-10 9 cm -2 , which exceeds by 1 to 2 orders of magnitude the value which follows from the Tiller theory of concentration stresses. It has been experimentally established that the contribution of shrinkage and thermal stresses to the formation of a dislocation structure is rather insignificant; yet the dislocation density values calculated according to the size of dendritic cells and the medium angles of their disorientation are close to those determined by the electron-microscopic method. This is the basis for making a supposition that the greater part of the dislocations in castings are formed as a result of comparing dendritic branches with one another, which are disoriented in respect to each other

  10. Residual Stress Measurement of Coarse Crystal Grain in Aluminium Casting Alloy by Neutron Diffraction

    International Nuclear Information System (INIS)

    Nishida, Masayuki; Watanabe, Yoshitaka; Hanabusa, Takao

    2009-01-01

    Full text: Neutron stress measurement can detect strain and stress information in deep region because of large penetration ability of neutron beams. The present paper describes procedure and results in the residual stress measurement of aluminium casting alloy by neutron diffraction. Usually, the aluminium casting alloy includes the large crystal grains. The existence of large crystal grains makes it difficult to estimate the residual stresses in highly accuracy. In this study, the modified three axial method using Hook's equation was employed for neutron stress measurement. These stress measurements were performed under the two kinds of new techniques. One is a rocking curve method to calculate the principal strains in three directions. The peak profiles which appear discretely on rocking curves were translated to principle stresses by the Bragg law and the basic elastic theory. Another is the consideration of measurement positions and the edge effect in the neutron irradiated area (volume gage). The edge effect generates the errors of 2θ-peak position in the neutron stress measurement. In this study, the edge effect was investigated in detail by a small bit of copper single crystal. The copper bit was moved and scanned on three dimensionally within the gage volume. Furthermore, the average strains of symmetrical positions are measure by the sample turning at 180 degrees, because the error distributions of the 2θ-peak position followed to positions inside the gage volume. Form these results of this study, the residual stresses in aluminium casting alloy which includes the large crystal grains were possible to estimate by neutron stress measurement with the rocking curve method and the correction of the edge effect. (author)

  11. Optimization of the composition and structure of heat-resistant casting aluminium alloys with additions of cerium, iron, nickel and zirconium

    International Nuclear Information System (INIS)

    Belov, N.A.; Lavrishchev, Yu.V.

    2000-01-01

    A study is made of the effect of composition and structure on mechanical properties of cast alloys of the Al-Ce-Ni-Fe-Zr system in which binary and ternary eutectics with participation of low alloyed aluminium solid solution and Al 4 Ce, Al 3 Ni and Al 9 FeNi phases are crystallized. It is found that microhardness of eutectics is heavily dependent on the volume fraction of aluminides and their dispersivity. It was shown that essential hardening of aluminium matrix can be achieved at the cost of zirconium additive in quantity of 0.6 % when using two-stage manufacturing operation. Experimental compositions of Al-10 % Ce-5% Ni-0.6 % Zr and Al-1.5 % Fe-1.5 % Ni-0.6 % Zr on the basis of ternary and binary eutectics respectively as billets essentially exceed industrial heat-resistant cast aluminium alloys AK12MMgN and AM5 as to a set of room and high-temperature mechanical properties and hot brittleness index [ru

  12. Solidification and casting

    CERN Document Server

    Cantor, Brian

    2002-01-01

    INDUSTRIAL PERSPECTIVEDirect chillcasting of aluminium alloysContinuous casting of aluminium alloysContinuous casting of steelsCastings in the automotive industryCast aluminium-silicon piston alloysMODELLING AND SIMULATIONModelling direct chill castingMold filling simulation of die castingThe ten casting rulesGrain selection in single crystal superalloy castingsDefects in aluminium shape castingPattern formation during solidificationPeritectic solidificationSTRUCTURE AND DEFECTSHetergeneous nucleation in aluminium alloysCo

  13. Hydrogen analysis and effect of filtration on final quality of castings from aluminium alloy AlSi7Mg0,3

    Directory of Open Access Journals (Sweden)

    M. Brůna

    2011-01-01

    Full Text Available The usage of aluminium and its alloys have increased in many applications and industries over the decades. The automotive industry is the largest market for aluminium castings and cast products. Aluminium is widely used in other applications such as aerospace, marine engines and structures. Parts of small appliances, hand tools and other machinery also use thousands of different aluminium castings. The applications grow as industry seeks new ways to save weight and improve performance and recycling of metals has become an essential part of a sustainable industrial society. The process of recycling has therefore grown to be of great importance, also another aspect has become of critical importance: the achievement of quality and reliability of the products and so is very important to underst and the mechanisms of the formation of defects in aluminium melts, and also to have a reliable and simple means of detection.

  14. Alloys of uranium and aluminium with low aluminium content

    International Nuclear Information System (INIS)

    Cabane, G.; Englander, M.; Lehmann, J.

    1955-01-01

    Uranium, as obtained after spinning in phase γ, presents an heterogeneous structure with large size grains. The anisotropic structure of the metal leads to an important buckling and surface distortion of the fuel slug which is incompatible with its tubular cladding for nuclear fuel uses. Different treatments have been made to obtain an isotropic structure presenting high thermal stability (laminating, hammering and spinning in phase α) without success. Alloys of uranium and aluminium with low aluminium content present important advantage in respect of non allied uranium. The introduction of aluminium in the form of intermetallic compound (UAl 2 ) gives a better resistance to thermal fatigue. Alloys obtained from raw casting present an improved buckling and surface distortion in respect of pure uranium. This improvement is obtained with uranium containing between 0,15 and 0,5 % of aluminium. An even more improvement in thermal stability is obtained by thermal treatments of these alloys. These new characteristics are explained by the fine dispersion of the UAl 2 particles in uranium. The results after treatments obtained from an alloy slug containing 0,4 % of aluminium show no buckling or surface distortion and no elongation. (M.P.)

  15. The effect of natural pre-ageing on the mechanical properties of Rheo-High pressure die cast aluminium alloy 2139

    CSIR Research Space (South Africa)

    Chauke, L

    2015-07-01

    Full Text Available -high pressure die casting process (R-HPDC). Alloy 2139 is a Ag-containing aluminium alloy from the Al-Cu-Mg 2xxx series family. The addition of Ag enhances the age hardening response through the formation of co-clusters that act as precursors to the formation...

  16. Modelling of Filling, Microstructure Formation, Local Mechanical Properties and Stress – Strain Development in High-Pressure Die Cast Aluminium Castings

    DEFF Research Database (Denmark)

    Kotas, Petr; Hattel, Jesper Henri; Thorborg, Jesper

    2009-01-01

    .e. whether the casting is based on cast iron- or aluminium-alloys. The distribution of local properties in a casting might vary substantially which makes it complex to optimize the casting with good accuracy. Often, mechanical simulations of the load situation are based on the assumption that the cast...... in an aluminium alloy is considered including simulation of the entire casting process with emphasis on microstructure formation related to mechanical properties such as elastic modulus, yield stress, ultimate strength and elongation as well as residual stresses. Subsequently, the casting is subjected to service...... loads and the results of this analysis are discussed in relation to the predicted local properties as well as the residual stresses originating from the casting simulation....

  17. Neutralization of the negative influence of iron and silicon on the mechanical properties of aluminium casting alloys

    International Nuclear Information System (INIS)

    Zolotorevsky, V.S.; Axenov, A.A.; Belov, N.A.

    1990-01-01

    In most of casting aluminium alloys iron is a harmful impurity due to the appearance of rough particles with needle, plate or sceleton shapes of intermetallic compounds during crystallization. As a result of it the plasticity, fracture toughness and sometimes the strength are decreased

  18. Direct chill casting of aluminium alloys under electromagnetic interaction by permanent magnet assembly

    Science.gov (United States)

    Bojarevičs, Andris; Kaldre, Imants; Milgrāvis, Mikus; Beinerts, Toms

    2018-05-01

    Direct chill casting is one of the methods used in industry to obtain good microstructure and properties of aluminium alloys. Nevertheless, for some alloys grain structure is not optimal. In this study, we offer the use of electromagnetic interaction to modify melt convection near the solidification interface. Solidification under various electromagnetic interactions has been widely studied, but usually at low solidification velocity and high thermal gradient. This type of interaction may succeed fragmentation of dendrite arms and transport of solidification nuclei thus leading to improved material structure and properties. Realization of experimental small-scale crystallizer and electromagnetic system has been described in this article.

  19. Alloys of uranium and aluminium with low aluminium content; Alliages uranium-aluminium a faible teneur en aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Cabane, G; Englander, M; Lehmann, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    Uranium, as obtained after spinning in phase {gamma}, presents an heterogeneous structure with large size grains. The anisotropic structure of the metal leads to an important buckling and surface distortion of the fuel slug which is incompatible with its tubular cladding for nuclear fuel uses. Different treatments have been made to obtain an isotropic structure presenting high thermal stability (laminating, hammering and spinning in phase {alpha}) without success. Alloys of uranium and aluminium with low aluminium content present important advantage in respect of non allied uranium. The introduction of aluminium in the form of intermetallic compound (UAl{sub 2}) gives a better resistance to thermal fatigue. Alloys obtained from raw casting present an improved buckling and surface distortion in respect of pure uranium. This improvement is obtained with uranium containing between 0,15 and 0,5 % of aluminium. An even more improvement in thermal stability is obtained by thermal treatments of these alloys. These new characteristics are explained by the fine dispersion of the UAl{sub 2} particles in uranium. The results after treatments obtained from an alloy slug containing 0,4 % of aluminium show no buckling or surface distortion and no elongation. (M.P.)

  20. Examination of the effect of Sc on 2000 and 7000 series aluminium alloy castings: for improvements in fusion welding

    International Nuclear Information System (INIS)

    Norman, A.F.; Hyde, K.; Costello, F.; Thompson, S.; Birley, S.; Prangnell, P.B.

    2003-01-01

    It has been reported that small additions of scandium (Sc) can improve the weldability and mechanical properties of some aluminium aerospace alloys that are normally considered to be 'unweldable'. In order to determine the mechanisms by which these improvements occur, and more rapidly arrive at optimum Sc addition levels, small wedge-shaped castings have been used to simulate the cooling rates found in MIG/TIG welds. Using this technique, a range of Sc addition levels have been made to two typical Al-aerospace alloys, 2024 and 7475. It has been found that when the Sc level exceeds a critical concentration, small Al 3 Sc primary particles form in the melt and act as very efficient grain nucleants, resulting in simulated fusion zone grain sizes as fine as 15 μm. This exceptional level of grain refinement produced an unusual grain structure that exhibited no dendritic, or cellular, substructure and a large increase in strength and ductility of the castings. Sc also produced changes in the alloy's freezing paths, which cannot yet be fully explained, but led to the appearance of the W phase in the 2024 alloy and, in both alloys, an overall reduction in the amount of eutectic formed during solidification. When coupled with the high level of grain refinement, this behaviour could be used to explain the increased strength and ductility of the castings. In 2000 and 7000 series aluminium alloys, it is therefore, anticipated that optimised Sc bearing filler wires will significantly improve the mechanical properties of the weld metal, as well as reducing the tendency for solidification cracking

  1. Modelling of micro- and macrosegregation for industrial multicomponent aluminium alloys

    International Nuclear Information System (INIS)

    Ellingsen, K; M'Hamdi, M; Mortensen, D

    2015-01-01

    Realistic predictions of macrosegregation formation during casting of aluminium alloys requires an accurate modeling of solute microsegregation accounting for multicomponent phase diagrams and secondary phase formation. In the present work, the stand alone Alstruc model, a microsegregation model for industrial multicomponent aluminium alloys, is coupled with the continuum model ALSIM which calculates the macroscopic transport of mass, enthalpy, momentum, and solutes as well as stresses and deformation during solidification of aluminium. Alstruc deals with multicomponent alloys accounting for temperature dependent partition coefficients, liquidus slopes and the precipitation of secondary phases. The challenge associated with computation of microsegregation for multicomponent alloys is solved in Alstruc by approximating the phase diagram data by simple, analytical expressions which allows for a CPU-time efficient coupling with the macroscopic transport model. In the present work, the coupled model has been applied in a study of macrosegregation including thermal and solutal convection, solidification shrinkage and surface exudation on an industrial DC-cast billet. (paper)

  2. Comparative study on laser welding and TIG welding of semi-solid high pressure die cast A356 aluminium alloy

    CSIR Research Space (South Africa)

    Govender, G

    2007-07-01

    Full Text Available components. The low porosity levels in SSM high pressure die castings (HPDC) improves the weldability of these components. The aim of the current research was to perform a comparative study of laser and TIG welding of SSM HPDC aluminium alloy A356. SSM...

  3. The effect of palm kernel shell ash on the mechanical properties of as-cast aluminium alloy matrix composites

    Directory of Open Access Journals (Sweden)

    Isiaka Oluwole OLADELE

    2016-06-01

    Full Text Available The present work describes the effect of palm kernel shell ash (PKSA as reinforcement on the mechanical properties of As-cast aluminium alloy. Recycled aluminium alloy from cylinder of an automotive engine block was degreased by using premium motor spirit (PMS also known as petrol, washed thoroughly with soap and water and sun dried for 5 days. The palm kernel shell was screened of dirt and other unwanted foreign materials before being roasted in furnace. The ash was further pulverized by laboratory ball mill machine followed by sieving to obtain particle sizes of 106 µm and divided into two parts. One portion was treated with NaOH solution while the other part was left as untreated before they are used to reinforced molten aluminium alloy in predetermined proportions. The newly developed composites were characterized with respect to their mechanical properties in response to the tests that were carried out on them. The results indicate that palm kernel shell ash can be used as potential reinforcing material for automobile applications.

  4. Centrifugal Casting Features/Metallurgical Characterization of Aluminum Alloys

    International Nuclear Information System (INIS)

    Chirita, G.; Soares, D.; Cruz, D.; Silva, F. S.; Stefanescu, I.

    2008-01-01

    This paper deals with the study of centrifugal effects on aluminium castings under high G values. Most of the studies in this domain (FGMs obtained by centrifugal casting) deal with functionally graded composites reinforced with a solid phase such as silicon particles or others. However, in this study it will be shown that unreinforced aluminium alloys may be significantly influenced by the centrifugal effect and that functionally graded castings are also obtained. It has been observed that the centrifugal effect may increase in some alloys, depending on the relative position in the castings, the rupture strength by approx. 50%, and rupture strain by about 300%, as compared to the gravity casting technique. The Young's modulus may also increase by about 20%. It has also been reported that in vertical centrifugal castings there are mainly three aspects that affect the components thus obtained, namely: fluid dynamics; vibration (inherent to the system); and centrifugal force. These features have a different effect on the castings depending on the aluminium alloy. In this paper, an analysis of the most important effects of the centrifugal casting process on metallurgical features is conducted. A solidification characterization at several points along the mould will be made in order to have an accurate idea of both the fluid dynamics inside the mould during the casting and the solidification behavior in different parts of the component. These two analyses will be related to the metallurgical properties (phase distribution; SDAS; eutectic silicon content and shape, pores density and shape) along the component and mainly along the direction of the centrifugal pressure. A comparison between castings obtained by both centrifugal casting technique and gravity casting technique is made for reference (gravity casting)

  5. Contribution to the grain refinement of hypoeutectic aluminium-silicon casting alloys: application of a new grain refiner and experience from practice; Beitrag zur Kornfeinung von untereutektischen Aluminium-Silicium-Gusslegierungen: Anwendung eines neuen Kornfeiners und Erfahrungen aus der Praxis

    Energy Technology Data Exchange (ETDEWEB)

    Koch, H. [Aluminium Rheinfelden GmbH, Rheinfelden (Germany)

    2000-10-01

    This paper describes the application of a master alloy on the basis of aluminium-titanium-boron, that is designed for hypoeutectic aluminium-silicon casting alloys. The efficiency of the grain refiner was measured using thermal analysis and sand and permanent mould casted samples. The grain size was measured using metallographic technique. In addition, casting trials using a spiral sand mould were carried out to estimate the influence on the flowing behaviour of the melt. To compare the results, a standard AlTi5B1 rod was used under the same test conditions. Finally, results from practice are shown. The grain refinement mechanism is discussed. (orig.)

  6. Investigations of Ferritic Nodular Cast Iron Containing About 5-6% Aluminium

    Directory of Open Access Journals (Sweden)

    Soiński M.S.

    2016-12-01

    Full Text Available The work presents results of investigations concerning the production of cast iron containing about 5-6% aluminium, with the ferritic matrix in the as-cast state and nodular or vermicular graphite precipitates. The examined cast iron came from six melts produced under the laboratory conditions. It contained aluminium in the amount of 5.15% to 6.02% (carbon in the amount of 2.41% to 2.87%, silicon in the amount of 4.50% to 5.30%, and manganese in the amount of 0.12% to 0.14%. After its treatment with cerium mixture and graphitization with ferrosilicon (75% Si, only nodular and vermicular graphite precipitates were achieved in the examined cast iron. Moreover, it is possible to achieve the alloy of pure ferritic matrix, even after the spheroidizing treatment, when both the aluminium and the silicon occur in cast iron in amounts of about 5.2÷5.3%.

  7. Method of preparing an Al-Ti-B grain refiner for aluminium-comprising products, and a method of casting aluminium products

    NARCIS (Netherlands)

    Brinkman, H.J.; Duszczyk, J.; Katgerman, L.

    1999-01-01

    The invention relates to a method of preparing an Al-Ti-B grain refiner for cast aluminium-comprising products. According to the invention the preparation is realized by mixing powders selected from the group comprising aluminium, titanium, boron, and alloys and intermetallic compounds thereof,

  8. Thin wall ductile iron casting as a substitute for aluminum alloy casting in automotive industry

    Directory of Open Access Journals (Sweden)

    M. Górny

    2009-01-01

    Full Text Available In paper it is presented thin wall ductile iron casting (TWDI as a substitute of aluminium alloy casting. Upper control arm made of ductile iron with wall thickness ranging from 2 – 3.7 mm was produced by inmold process. Structure, mechanical properties and computer simulations were investigated. Structural analysis of TWDI shows pearlitic-ferritic matrix free from chills and porosity. Mechanical testing disclose superior ultimate tensile strength (Rm, yield strength (Rp0,2 and slightly lower elongation (E of TWDI in comparison with forged control arm made of aluminium alloy (6061-T6. Moreover results of computer simulation of static loading for tested control arms are presented. Analysis show that the light-weight ductile iron casting can be loaded to similar working conditions as the forged Al alloy without any potential failures.

  9. Ejection Performance of Coated Core Pins Intended for Application on High Pressure Die Casting Tools for Aluminium Alloys Processing

    Directory of Open Access Journals (Sweden)

    P. Terek

    2017-09-01

    Full Text Available In high pressure die casting (HPDC process of aluminium alloys cast alloy soldering severely damages tool surfaces. It hampers casting ejection, reduces the casting quality and decreases the overall production efficiency. Thin ceramic PVD (physical vapor deposition coatings applied on tool surfaces successfully reduce these effects. However, their performance is still not recognised for surfaces with various topographies. In this investigation, soldering tendency of Al-Si-Cu alloy toward EN X27CrMoV51 steel, plasma nitrided steel, CrN and TiAlN duplex PVD coatings is evaluated using ejection test. The coatings were prepared to a range of surface roughness and topographies. After the tests sample surfaces were analysed by different microscopy techniques and profilometry. It was found that the ejection performance is independent of the chemical composition of investigated materials. After the ejection, the cast alloy soldering layer was found on surfaces of all tested materials. This built-up layer formed by effects of mechanical soldering, without corrosion reactions. Coated samples displayed a pronounced dependence of ejection force on surface roughness and topography. By decreasing roughness, ejection force increased, which is a consequence of intensified adhesion effects. Presented findings are a novel information important for efficient application of PVD coatings intendent for protection of HPDC tools.

  10. Method of preparing an Al-Ti-B grain refiner for aluminium-comprising products, and a method of casting aluminium products

    OpenAIRE

    Brinkman, H.J.; Duszczyk, J.; Katgerman, L.

    1999-01-01

    The invention relates to a method of preparing an Al-Ti-B grain refiner for cast aluminium-comprising products. According to the invention the preparation is realized by mixing powders selected from the group comprising aluminium, titanium, boron, and alloys and intermetallic compounds thereof, compressing, heating in an inert environment until an exothermic reaction is initiated and cooling. It has been shown that when the grain refiner thus prepared is applied, the quality of cast products ...

  11. Development of Niobium Boron grain retainer for aluminium silicon alloys

    OpenAIRE

    Nowak, Magdalena

    2011-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University Aluminium castings with a large grain structure have poor mechanical properties which are primarily due to casting defects as opposed to fine grain structure. The grain refinement practice using chemical addition is well established for wrought alloys, however in the case of casting alloys, the practice of adding grain refiners and the impact on castability is not well established. The additio...

  12. Effect of Refiner Addition Level on Zirconium-Containing Aluminium Alloys

    International Nuclear Information System (INIS)

    Jaradeh, M M R; Carlberg, T

    2012-01-01

    It is well known that in aluminium alloys containing Zr, grain refiner additions do not function as desired, producing an effect often referred to as nuclei poisoning. This paper investigates the structure of direct chill-cast ingots of commercial AA3003 aluminium alloys, with and without Zr, at various addition levels of Al5Ti1B master alloy. In Bridgman experiments simulating ingot solidification, Zr-containing alloys were studied after the addition of various amounts of Ti. It could be demonstrated, in both ingot casting and simulation experiments, that Zr poisoning can be compensated for by adding more Ti and/or Al5Ti1B. The results confirm better refinement behaviour with the addition of Ti + B than of only Ti. The various combinations of Zr and Ti also influenced the formation of AlFeMn phases, and the precipitation of large Al 6 (Mn,Fe) particles was revealed. AlZrTiSi intermetallic compounds were also detected.

  13. Effect of Refiner Addition Level on Zirconium-Containing Aluminium Alloys

    Science.gov (United States)

    Jaradeh, M. M. R.; Carlberg, T.

    2012-01-01

    It is well known that in aluminium alloys containing Zr, grain refiner additions do not function as desired, producing an effect often referred to as nuclei poisoning. This paper investigates the structure of direct chill-cast ingots of commercial AA3003 aluminium alloys, with and without Zr, at various addition levels of Al5Ti1B master alloy. In Bridgman experiments simulating ingot solidification, Zr-containing alloys were studied after the addition of various amounts of Ti. It could be demonstrated, in both ingot casting and simulation experiments, that Zr poisoning can be compensated for by adding more Ti and/or Al5Ti1B. The results confirm better refinement behaviour with the addition of Ti + B than of only Ti. The various combinations of Zr and Ti also influenced the formation of AlFeMn phases, and the precipitation of large Al6(Mn,Fe) particles was revealed. AlZrTiSi intermetallic compounds were also detected.

  14. CHARACTERIZATION OF PHASES IN SECONDARY AlZn10Si8Mg CAST ALLOY

    OpenAIRE

    Eva Tillová; Emília Ďuriníková; Mária Chalupová

    2011-01-01

    Using recycled aluminium cast alloys is profitable in many aspects. Requiring only 5 % of the energy to produce secondary metal as compared to primary metal and generates only 5 % of the green house gas emissions, the recycling of aluminium is therefore beneficial of both environmental and economical point of view. Secondary AlZn10Si8Mg (UNIFONT® - 90) cast alloy are used for engine and vehicle constructions, hydraulic unit and mouldmaking without heat treatment. Properties include good casta...

  15. Morphology of intermetallic phases in Al-Si cast alloys and their fracture behaviour

    Directory of Open Access Journals (Sweden)

    Lenka Hurtalová

    2015-03-01

    Full Text Available Applications of Al-Si cast alloys in recent years have increased especially in the automotive industry (dynamic exposed cast, en-gine parts, cylinder heads, pistons and so on. Controlling the microstructure of secondary aluminium cast alloys is very important, because these alloys contain more additional elements that form various intermetallic phases in the structure. Therefore, the contribution is dealing with the valuation type of intermetallic phases and their identification with using optical and scanning microscopy. Some of the intermetallic phases could be identified on the basis of morphology but some of them must be identified according EDX analysis. The properties of alu-minium alloy are affected by morphology of intermetallic phases and therefore it is necessary to study morphology and its fracture behav-iour. The present work shows morphology and typical fracture behaviour as the most common intermetallic phases forming in Al-Si alloys.

  16. Mechanical Properties of Spray Cast 7XXX Series Aluminium Alloys

    OpenAIRE

    SALAMCI, Elmas

    2014-01-01

    Mechanical properties of spray deposited and extruded 7xxx series aluminium alloys were investigated in peak aged condition. To study the influence of Zn additions on the mechanical behaviour of spray deposited materials, three alloy compositions were selected, namely: SS70 (11.5% Zn), N707 (10.9% Zn) and 7075 (5.6% Zn). After ageing treatment, notched and unnotched specimens of spray deposited alloys were subjected to tensile tests at room temperature. Experimental results showed...

  17. Effect of Manganese on the Mechanical Properties of Welded As-Cast Aluminium Joint

    Directory of Open Access Journals (Sweden)

    Isiaka Oluwole OLADELE

    2013-11-01

    Full Text Available The effects of manganese on the mechanical properties of welded and un-weld as-cast 6063 aluminium alloy has been studied. Alloys of varying percentage of manganese from 0.019 to 0.24 were sand cast. A wooden pattern of dimensions 200×100×100mm was used, the aluminium (500g was charged into an induction furnace and heated to 750°C for 15 minutes, this was followed by the addition of weighed powdered manganese, stirred and heated at the same temperature for another 5 minutes and thereafter poured into the already prepared sand mould at a temperature of 690°C. The as-cast aluminium samples, were sectioned into two equal parts of 45mm each using power hack saw; a weld groove was created between the sides of the samples using an electric hand grinding machine, the groove served as the path along which the filler metal was deposited on the aluminium, a single v butt joint was produced from each sample and Metal Inert Gas Welding process was carried out to produce the required joint design. The different cast samples were machined to the different test pieces after which they were assessed to determine their mechanical properties (impact, hardness (welded joint and heat affected zone and tensile tests. The microstructures of the welded samples were also studied. From the results, it was observed that Sample F, which has 0.172% Mn, has the best hardness and impact strength while sample C with 0.160% Mn has the highest ultimate tensile strength.

  18. Aluminium Foam and Magnesium Compound Casting Produced by High-Pressure Die Casting

    Directory of Open Access Journals (Sweden)

    Iban Vicario

    2016-01-01

    Full Text Available Nowadays, fuel consumption and carbon dioxide emissions are two of the main focal points in vehicle design, promoting the reduction in the weight of vehicles by using lighter materials. The aim of the work is to evaluate the influence of different aluminium foams and injection parameters in order to obtain compound castings with a compromise between the obtained properties and weight by high-pressure die cast (HPDC using aluminium foams as cores into a magnesium cast part. To evaluate the influence of the different aluminium foams and injection parameters on the final casting products quality, the type and density of the aluminium foam, metal temperature, plunger speed, and multiplication pressure have been varied within a range of suitable values. The obtained compound HPDC castings have been studied by performing visual and RX inspections, obtaining sound composite castings with aluminium foam cores. The presence of an external continuous layer on the foam surface and the correct placement of the foam to support injection conditions permit obtaining good quality parts. A HPDC processed magnesium-aluminium foam composite has been developed for a bicycle application obtaining a suitable combination of mechanical properties and, especially, a reduced weight in the demonstration part.

  19. Overload effects on a ferritic-baintic steel and a cast aluminium alloy: two very different behaviours

    Energy Technology Data Exchange (ETDEWEB)

    Saintier, N. [Arts et Metiers Paris Tech, I2M, UMR CNRS, Universite Bordeaux 1, Talene Cedex (France); El Dsoki, C.; Kaufmann, H.; Sonsino, C.M. [Fraunhofer-Institute for Structural Durability and System Reliability LBF, Darmstadt (Germany); Dumas, C. [RENAULT, Technocentre, Guyancourt Cedex (France); Voellmecke, F.J. [BORBET GmbH, Hallenberg-Hesborn (Germany); Palin-Luc, T.; Bidonard, H.

    2011-10-15

    Load controlled fatigue tests were performed up to 10{sup 7} cycles on flat notched specimens (K{sub t} = 2.5) under constant amplitude and variable amplitude loadings with and without periodical overloads. Two materials are studied: a ferritic-bainitic steel (HE400M steel) and a cast aluminium alloy (AlSi7Mg0.3). These materials have a very different cyclic behaviour: the steel exhibits cyclic strain softening whereas the Al alloy shows cyclic strain hardening. The fatigue tests show that, for the steel, periodical overload applications reduce significantly the fatigue life for fully reversed load ratio (R{sub {sigma}} = -1), while they have no influence under pulsating loading (R{sub {sigma}} = 0). For the Al alloy overloads have an effect (fatigue life decreasing) only for variable amplitude loadings. The detrimental effect of overloads on the steel is due to ratcheting at the notch root which evolution is overload's dependent. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Property enhancement by grain refinement of zinc-aluminium foundry alloys

    International Nuclear Information System (INIS)

    Krajewski, W K; Piwowarski, G; Krajewski, P K; Greer, A L

    2016-01-01

    Development of cast alloys with good mechanical properties and involving less energy consumption during their melting is one of the key demands of today's industry. Zinc foundry alloys of high and medium Al content, i.e. Zn-(15-30) wt.% Al and Zn-(8-12) wt.% Al, can satisfy these requirements. The present paper summarizes the work [1-9] on improving properties of sand-cast ZnAl10 (Zn-10 wt.% Al) and ZnAl25 (Zn-25 wt. % Al) alloys by melt inoculation. Special attention was devoted to improving ductility, whilst preserving high damping properties at the same time. The composition and structural modification of medium- and high-aluminium zinc alloys influence their strength, tribological properties and structural stability. In a series of studies, Zn - (10-12) wt. % Al and Zn - (25-26) wt.% Al - (1-2.5) wt.% Cu alloys have been doped with different levels of added Ti. The melted alloys were inoculated with ZnTi-based refiners and it was observed that the dendritic structure is significantly finer already after addition of 50 - 100 ppm Ti to the melted alloys. The alloy's structure and mechanical properties have been studied using: SEM (scanning electron microscopy), LM (light microscopy), dilatometry, pin-on-disc wear, and tensile strength measurements. Grain refinement leads to significant improvement of ductility in the binary high-aluminium Zn-(25-27) Al alloys while in the medium-aluminium alloys the effect is rather weak. In the ternary alloys Zn-26Al-Cu, replacing a part of Cu with Ti allows dimensional changes to be reduced while preserving good tribological properties. Furthermore, the high initial damping properties were nearly entirely preserved after inoculation. The results obtained allow us to characterize grain refinement of the examined high-aluminium zinc alloys as a promising process leading to the improvement of their properties. At the same time, using low melting ZnTi-based master alloys makes it possible to avoid the excessive melt

  1. ON MODELLING OF MICROSTRUCTURE FORMATION, LOCAL MECHANICAL PROPERTIES AND STRESS – STRAIN DEVELOPMENT IN ALUMINIUM CASTINGS

    DEFF Research Database (Denmark)

    Svensson, Ingvar; Seifeddine, Salem; Kotas, Petr

    2009-01-01

    , related to mechanical properties as elastic modulus, yield stress, ultimate strength and elongation. In the present work, a test case of a complex casting in an aluminium alloy is considered including simulation of the entire casting process with focus on of microstructure formation, related to mechanical...

  2. Silicon Alloying On Aluminium Based Alloy Surface

    International Nuclear Information System (INIS)

    Suryanto

    2002-01-01

    Silicon alloying on surface of aluminium based alloy was carried out using electron beam. This is performed in order to enhance tribological properties of the alloy. Silicon is considered most important alloying element in aluminium alloy, particularly for tribological components. Prior to silicon alloying. aluminium substrate were painted with binder and silicon powder and dried in a furnace. Silicon alloying were carried out in a vacuum chamber. The Silicon alloyed materials were assessed using some techniques. The results show that silicon alloying formed a composite metal-non metal system in which silicon particles are dispersed in the alloyed layer. Silicon content in the alloyed layer is about 40% while in other place is only 10.5 %. The hardness of layer changes significantly. The wear properties of the alloying alloys increase. Silicon surface alloying also reduced the coefficient of friction for sliding against a hardened steel counter face, which could otherwise be higher because of the strong adhesion of aluminium to steel. The hardness of the silicon surface alloyed material dropped when it underwent a heating cycle similar to the ion coating process. Hence, silicon alloying is not a suitable choice for use as an intermediate layer for duplex treatment

  3. Computation material science of structural-phase transformation in casting aluminium alloys

    Science.gov (United States)

    Golod, V. M.; Dobosh, L. Yu

    2017-04-01

    Successive stages of computer simulation the formation of the casting microstructure under non-equilibrium conditions of crystallization of multicomponent aluminum alloys are presented. On the basis of computer thermodynamics and heat transfer during solidification of macroscale shaped castings are specified the boundary conditions of local heat exchange at mesoscale modeling of non-equilibrium formation the solid phase and of the component redistribution between phases during coalescence of secondary dendrite branches. Computer analysis of structural - phase transitions based on the principle of additive physico-chemical effect of the alloy components in the process of diffusional - capillary morphological evolution of the dendrite structure and the o of local dendrite heterogeneity which stochastic nature and extent are revealed under metallographic study and modeling by the Monte Carlo method. The integrated computational materials science tools at researches of alloys are focused and implemented on analysis the multiple-factor system of casting processes and prediction of casting microstructure.

  4. Relationship between casting modulus and grain size in cast A356 aluminium alloys

    International Nuclear Information System (INIS)

    Niklas, A; Abaunza, U; Fernández-Calvo, A I; Lacaze, J

    2012-01-01

    Microstructure of Al-Si alloy castings depends most generally on melt preparation and on the cooling rate imposed by the thermal modulus of the component. In the case of Al-Si alloys, emphasis is put during melt preparation on refinement of pro-eutectic (Al) grains and on modification of the Al-Si eutectic. Thermal analysis has been used since long to check melt preparation before casting, i.e. by analysis of the cooling curve during solidification of a sample cast in an instrumented cup. The conclusions drawn from such analysis are however valid for the particular cooling conditions of the cups. It thus appeared of interest to investigate how these conclusions could extrapolate to predict microstructure in complicated cast parts showing local changes in the solidification conditions. For that purpose, thermal analysis cups and instrumented sand and die castings with different thermal moduli and thus cooling rates have been made, and the whole set of cooling curves thus recorded has been analysed. A statistical analysis of the characteristic features of the cooling curves related to grain refinement in sand and die castings allowed determining the most significant parameters and expressing the cube of grain size as a polynomial of these parameters. After introduction of a further parameter quantifying melt refining an excellent correlation, with a R 2 factor of 0.99 was obtained.

  5. The chemical phenol extraction of intermetallic particles from casting AlSi5Cu1Mg alloy.

    Science.gov (United States)

    Mrówka-Nowotnik, G; Sieniawski, J; Nowotnik, A

    2010-03-01

    This paper presents a chemical extraction technique for determination of intermetallic phases formed in the casting AlSi5Cu1Mg aluminium alloy. Commercial aluminium alloys contain a wide range of intermetallic particles that are formed during casting, homogenization and thermomechanical processing. During solidification, particles of intermetallics are dispersed in interdendritic spaces as fine primary phases. Coarse intermetallic compounds that are formed in this aluminium alloy are characterized by unique atomic arrangement (crystallographic structure), morphology, stability, physical and mechanical properties. The volume fraction, chemistry and morphology of the intermetallics significantly affect properties and material behaviour during thermomechanical processing. Therefore, accurate determination of intermetallics is essential to understand and control microstructural evolution in Al alloys. Thus, in this paper it is shown that chemical phenol extraction method can be applied for precise qualitative evaluation. The results of optical light microscopy LOM, scanning electron microscopy SEM and X-ray diffraction XRD analysis reveal that as-cast AlSi5Cu1Mg alloy contains a wide range of intermetallic phases such as Al(4)Fe, gamma- Al(3)FeSi, alpha-Al(8)Fe(2)Si, beta-Al(5)FeSi, Al(12)FeMnSi.

  6. Effect of laser surface treatment on the quality of microstructure in recycled Al-Zn-Si cast alloy

    Directory of Open Access Journals (Sweden)

    Eva Tillová

    2014-06-01

    Full Text Available Recycled Al-Zn-Si casting alloys can often be used in new cast products for mechanical engineering, in hydraulic castings, textile machinery parts, cable car components or big parts without heat treatment. Improved mechanical properties and favourable of recycled microstructure of Al-alloys can often significantly increase the lifetime of casting and reduce costs for fuel and reduction of environmental loading. The paper is focused on using one of possible technologies that provide increased mechanical properties of recycled aluminium cast alloys for automotive industry, and that is laser surface hardening. For study was used recycled AlZn10Si8Mg cast alloy. The effect of laser beam Nd: YAG lasers BLS 720 was evaluated with the laser power 50 W and 80 W on the surface of samples. The final microstructure of aluminium alloys depend on the laser process parameters. The changes of microstructure as a grain refinement of the microstructure after laser surface hardening was observed by using classical techniques of etching and deep etching with concentrated HCl. Microstructure was evaluated on an optical microscope Neophot 32 and SEM

  7. Effects of selected casting methods on mechanical behaviour of Al-Mg-Si alloy

    Directory of Open Access Journals (Sweden)

    Henry Kayode TALABI

    2014-11-01

    Full Text Available This study investigated the effects of selected casting methods on mechanical behaviour of Al-Mg-Si alloy. The casting methods used was spin, sand and die casting, these were done with a view to determine which of the casting methods will produce the best properties. The pure aluminium scrap, magnesium and silicon were subjected to chemical analysis using spectrometric analyzer, thereafter the charge calculation to determine the amount needed to be charged into the furnace was properly worked out and charged into the crucible furnace from which as-cast aluminium was obtained. The mechanical properties of the casting produced were assessed by hardness and impact toughness test. The optical microscopy and experimental density and porosity were also investigated. From the results it was observed that magnesium and silicon were well dispersed in aluminium matrix of the spin casting. It was observed from visual examination after machining that there were minimal defects. It was also observed that out of the three casting methods, spin casting possesses the best mechanical properties (hardness and impact toughness.

  8. Effects of as-cast and wrought Cobalt-Chrome-Molybdenum and Titanium-Aluminium-Vanadium alloys on cytokine gene expression and protein secretion in J774A.1 macrophages

    DEFF Research Database (Denmark)

    Jakobsen, Stig Storgaard; Larsen, Agnete; Stoltenberg, Meredin

    2007-01-01

    to the metal implant and wear-products. The aim of the present study was to compare surfaces of as-cast and wrought Cobalt-Chrome-Molybdenum (CoCrMo) alloys and Titanium-Aluminium-Vanadium (TiAlV) alloy when incubated with mouse macrophage J774A.1 cell cultures. Changes in pro- and anti-inflammatory cytokines...... transcription, the chemokine MCP-1 secretion, and M-CSF secretion by 77%, 36%, and 62%, respectively. Furthermore, we found that reducing surface roughness did not affect this reduction. The results suggest that as-cast CoCrMo alloy is more inert than wrought CoCrMo and wrought TiAlV alloys and could prove...... the cell viability. Surface properties of the discs were characterised with a profilometer and with energy dispersive X-ray spectroscopy. We here report, for the first time, that the prosthetic material surface (non-phagocytable) of as-cast high carbon CoCrMo reduces the pro-inflammatory cytokine IL-6...

  9. Microstructure and age-hardening effects of aluminium alloys with additions of scandium and zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Galun, R.; Mordike, B.L. [Inst. fuer Werkstoffkunde und Werkstofftechnik, Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany); Maiwald, T.; Smola, B. [Zentrum fuer Funktionswerkstoffe GmbH, Clausthal-Zellerfeld (Germany); Mergen, R.; Manner, M.; Uitz, W. [Miba Gleitlager GmbH, Laakirchen (Australia)

    2004-12-01

    The aim of the work presented in this report was to produce age-hardenable aluminium alloys containing scandium and zirconium by a casting process with similar cooling conditions like an industrial casting process. Microstructure, precipitation structure and age-hardening response of different alloys with up to 0.4 wt.% Sc and Zr were investigated. Age-hardening experiments from the as-cast condition without solution annealing showed a significant increase of hardness of about 100% for Sc-rich alloys and of 50% for Zr-rich alloys compared to the as-cast condition. TEM investigations revealed the formation of precipitates of ternary Al{sub 3}(Sc{sub x}Zr{sub 1-x}) phases with a cubic cP4 crystal structure. In addition to the strengthening effect, a high thermal stability especially of the precipitates in Zr-rich alloys up to 400 C let these alloys look very promising for high-temperature applications. (orig.)

  10. A regionally-linked, dynamic material flow modelling tool for rolled, extruded and cast aluminium products

    DEFF Research Database (Denmark)

    Bertram, M.; Ramkumar, S.; Rechberger, H.

    2017-01-01

    A global aluminium flow modelling tool, comprising nine trade linked regions, namely China, Europe, Japan, Middle East, North America, Other Asia, Other Producing Countries, South America and Rest of World, has been developed. The purpose of the Microsoft Excel-based tool is the quantification...... of regional stocks and flows of rolled, extruded and casting alloys across space and over time, giving the industry the ability to evaluate the potential to recycle aluminium scrap most efficiently. The International Aluminium Institute will update the tool annually and publish a visualisation of results...

  11. Effect of inlet geometry on macrosegregation during the direct chill casting of 7050 alloy billets: experiments and computer modelling

    International Nuclear Information System (INIS)

    Zhang, L; Miroux, A; Subroto, T; Katgerman, L; Eskin, D G

    2012-01-01

    Controlling macrosegregation is one of the major challenges in direct-chill (DC) casting of aluminium alloys. In this paper, the effect of the inlet geometry (which influences the melt distribution) on macrosegregation during the DC casting of 7050 alloy billets was studied experimentally and by using 2D computer modelling. The ALSIM model was used to determine the temperature and flow patterns during DC casting. The results from the computer simulations show that the sump profiles and flow patterns in the billet are strongly influenced by the melt flow distribution determined by the inlet geometry. These observations were correlated to the actual macrosegregation patterns found in the as-cast billets produced by having two different inlet geometries. The macrosegregation analysis presented here may assist in determining the critical parameters to consider for improving the casting of 7XXX aluminium alloys.

  12. Effect of inlet geometry on macrosegregation during the direct chill casting of 7050 alloy billets: experiments and computer modelling

    Science.gov (United States)

    Zhang, L.; Eskin, D. G.; Miroux, A.; Subroto, T.; Katgerman, L.

    2012-07-01

    Controlling macrosegregation is one of the major challenges in direct-chill (DC) casting of aluminium alloys. In this paper, the effect of the inlet geometry (which influences the melt distribution) on macrosegregation during the DC casting of 7050 alloy billets was studied experimentally and by using 2D computer modelling. The ALSIM model was used to determine the temperature and flow patterns during DC casting. The results from the computer simulations show that the sump profiles and flow patterns in the billet are strongly influenced by the melt flow distribution determined by the inlet geometry. These observations were correlated to the actual macrosegregation patterns found in the as-cast billets produced by having two different inlet geometries. The macrosegregation analysis presented here may assist in determining the critical parameters to consider for improving the casting of 7XXX aluminium alloys.

  13. Improving the casting properties of high-strength aluminium alloys:

    OpenAIRE

    Ekrt, Ondřej; Šerák, Jan; Vojtěch, Dalibor

    2004-01-01

    Al-Zn-Mg-Cu alloys are examples of high-strength alloys. After age-hardening they often possess tensile strengths of more than 500 MPa. However, their casting properties are relatively poor as a result of solidification intervals that are too wide. Therefore, they often require an extrusion, rolling, or forging treatment, and the production of small series of special parts can, as a consequence, be very expensive. In this study, an improvement in the castability and a reduction of the hot-tea...

  14. Numerical microstructure prediction for an aluminium casting and its experimental validation

    OpenAIRE

    Unterreiter Guenter; Ludwig Andreas; Wu Menghuai

    2011-01-01

    Virtual manufacturing based on through-process modelling becomes an evolving research area which aims at integrating diverse simulation tools to realize computer-aided design, analysis, prototyping and manufacturing. Numerical prediction of the as-cast microstructure is an initial and critical step in the whole through-process modelling chain for engineering components. A commercial software package with the capability of calculating important microstructure features for aluminium alloys is u...

  15. The role of TiB2 in strengthening TiB2 reinforced aluminium casting composites

    International Nuclear Information System (INIS)

    Chen, Z; Kang, H; Zhao, Y; Zheng, Y; Wang, T

    2016-01-01

    With an aim of developing high quality in situ TiB 2 reinforced aluminium foundry alloy based composites, the conventional direct synthesis method was modified into a two-step route. In step one we optimized the halide salt route to fabricate in situ TiB 2 particulate reinforced aluminium matrix composites and in step two we investigated the effects of the Al-5wt.% TiB 2 composite, as a “master composite”, on strengthening the practical foundry alloys. The in situ formed TiB 2 particles play two roles while strengthening the composites: (1) The grain refinement effect that improves the quality of the alloy matrix; and (2) The interactions between the hard particulates and the matrix add extra increment to the material strength. In different alloy systems, TiB 2 may play distinct roles in these two aspects (figure 1). Further analysis of the strengthening mechanisms shows that particle agglomeration behaviour during solidification is responsible for the latter one. The present work details the role of TiB 2 in strengthening TiB 2 reinforced aluminium casting composites. (paper)

  16. High-Strength Aluminium Alloys and Their Use in Foundry Industry of Nickel Superalloys

    Directory of Open Access Journals (Sweden)

    Pysz S.

    2014-08-01

    Full Text Available Of great importance in the selection of materials for cast structures is keeping a proper balance between the mechanical and plastic properties, while preserving the relevant casting properties. This study has been devoted to an analysis of the choice and application of high-strength aluminium-based alloys maintaining sufficient level of casting properties. The high level of tensile strength (Rm > 500 MPa matched with satisfactory elongation (A > 3% is important because materials of this type are used for cast parts operating in the aerospace, automotive, and military industries. These beneficial relationships between the high tensile strength and toughness are relatively easy to obtain in the Al-Zn-Mg-Cu alloys subjected to plastic forming and proper heat treatment. In gravity cast products, on the other hand, whether poured into sand moulds or metal moulds (dies, obtaining this favourable combination of properties poses a number of research problems (mostly resulting from the alloy chemical composition as well as technical and technological difficulties.

  17. Recent developments in advanced aircraft aluminium alloys

    International Nuclear Information System (INIS)

    Dursun, Tolga; Soutis, Costas

    2014-01-01

    Highlights: • To compete with composites, performance of aluminium alloys should be increased. • Al–Li alloys have higher strength, fracture and fatigue/corrosion resistance. • Improvements of aerospace Al alloys are due to optimised solute content and ratios. • In selecting new materials, there should be no reduction in the level of safety. • The use of hybrid materials could provide additional opportunities for Al alloys. - Abstract: Aluminium alloys have been the primary material for the structural parts of aircraft for more than 80 years because of their well known performance, well established design methods, manufacturing and reliable inspection techniques. Nearly for a decade composites have started to be used more widely in large commercial jet airliners for the fuselage, wing as well as other structural components in place of aluminium alloys due their high specific properties, reduced weight, fatigue performance and corrosion resistance. Although the increased use of composite materials reduced the role of aluminium up to some extent, high strength aluminium alloys remain important in airframe construction. Aluminium is a relatively low cost, light weight metal that can be heat treated and loaded to relatively high level of stresses, and it is one of the most easily produced of the high performance materials, which results in lower manufacturing and maintenance costs. There have been important recent advances in aluminium aircraft alloys that can effectively compete with modern composite materials. This study covers latest developments in enhanced mechanical properties of aluminium alloys, and high performance joining techniques. The mechanical properties on newly developed 2000, 7000 series aluminium alloys and new generation Al–Li alloys are compared with the traditional aluminium alloys. The advantages and disadvantages of the joining methods, laser beam welding and friction stir welding, are also discussed

  18. Rate of solidification of aluminium casting in varying wall thickness of cylindrical metallic moulds

    Directory of Open Access Journals (Sweden)

    Katsina Christopher BALA

    2014-02-01

    Full Text Available The quality of final casting mainly depends on the rate of solidification as rapid solidification produces fine grains structures with better mechanical properties. The analysis of heat transfer during the casting and solidification of aluminium alloy as well as the experimental investigation of the rate of solidification in varying thicknesses of cylindrical metallic mould was carried out. The temperature variation with time of the casting was recorded from which cooling curves were obtained for the determination of solidification time of the cast. The results showed that as the cylindrical mould thickness increases the solidification time decreases due to the chilling effect of the mould.

  19. Comparison of modification with strontium and the refining with antimony in A 356 aluminium alloys

    International Nuclear Information System (INIS)

    Fuoco, Ricardo; Correa, Edison Roberto; Correa, Alzira V.O.; Bocalini Junior, Mario

    1992-01-01

    Strontium and Antimony treated A356 aluminium alloy samples were metallographically characterized in the as cast and solution and aged conditions. Antimony treated alloy has shown slower spheroidizing kinetics of the Silicon particles during solution treatment, lower porosity level and higher tensile strength and elongation than Strontium treated one. (author)

  20. Numerical microstructure prediction for an aluminium casting and its experimental validation

    Directory of Open Access Journals (Sweden)

    Unterreiter Guenter

    2011-08-01

    Full Text Available Virtual manufacturing based on through-process modelling becomes an evolving research area which aims at integrating diverse simulation tools to realize computer-aided design, analysis, prototyping and manufacturing. Numerical prediction of the as-cast microstructure is an initial and critical step in the whole through-process modelling chain for engineering components. A commercial software package with the capability of calculating important microstructure features for aluminium alloys is used to simulate a G-AlSi7MgCu0.5 laboratory casting. The simulated microstructure, namely grain size, secondary dendrite arm spacing and diverse phase fractions are verified experimentally. Correspondence and discrepancies are reported and discussed.

  1. Impact of as-cast structure on structure and properties of twin-roll cast AA8006 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Slamova, M.; Ocenasek, V. [Vyzkumny Ustav Kovu, Panenske Brezany (Czechoslovakia); Juricek, Z.

    2000-07-01

    Sheet production by twin-roll casting (TRC) process is a well established practice in the aluminium industry because it offers several advantages in comparison with DC casting and hot rolling, esp. lower production and investment costs. Thin strips exhibiting a combination of good strength and high ductility are required for various applications and for this reason alloys with higher Fe and Mn content such as AA 8006 displace AA 1xxx or AA 8011 alloys. However, TRC of AA 8006 strips involves several problems, e.g. casting conditions and subsequent treatment procedures need fine tuning. The results of an investigation of the effect of casting conditions on structure and properties of AA 8006 strips are presented. The influence of casting speed, grain refiner addition, molten metal level in the tundish, tip setback and roll separating force was investigated. The impact of imperfect as-cast structure on structure and properties of thin strips in H22 and O tempers was evaluated and compared with strips from good as-cast material. (orig.)

  2. Application of a novel cellular automaton porosity prediction model to aluminium castings

    International Nuclear Information System (INIS)

    Atwood, R.C.; Chirazi, A.; Lee, P.D.

    2002-01-01

    A multiscale model was developed to predict the formation of porosity within a solidifying aluminium-silicon alloy. The diffusion of silicon and dissolved gas was simulated on a microscopic scale combined with cellular automaton models of gas porosity formation within the growing three-dimensional solidification microstructure. However, due to high computational cost, the modelled volume is limited to the millimetre range. This renders the application of direct modelling of complex shape castings unfeasible. Combining the microstructural modelling with a statistical response-surface prediction method allows application of the microstructural model results to industrial scale casts by incorporating them in commercial solidification software. (author)

  3. Phase-oriented surface segregation in an aluminium casting alloy

    International Nuclear Information System (INIS)

    Nguyen, Chuong L.; Atanacio, Armand; Zhang, Wei; Prince, Kathryn E.; Hyland, Margaret M.; Metson, James B.

    2009-01-01

    There have been many reports of the surface segregation of minor elements, especially Mg, into surface layers and oxide films on the surface of Al alloys. LM6 casting alloy (Al-12%Si) represents a challenging system to examine such segregation as the alloy features a particularly inhomogeneous phase structure. The very low but mobile Mg content (approximately 0.001 wt.%), and the surface segregation of modifiers such as Na, mean the surface composition responds in a complex manner to thermal treatment conditions. X-ray photoelectron spectroscopy (XPS) has been used to determine the distribution of these elements within the oxide film. Further investigation by dynamic secondary ion mass spectrometry (DSIMS) confirmed a strong alignment of segregated Na and Mg into distinct phases of the structure.

  4. Al-Si-Re Alloys Cast by the Rapid Solidification Process / Stopy Al-Si-Re Odlewane Metodą Rapid Solidification

    Directory of Open Access Journals (Sweden)

    Szymanek M.

    2015-12-01

    Full Text Available The aim of the studies described in this article was to present the effect of rare earth elements on aluminium alloys produced by an unconventional casting technique. The article gives characteristics of the thin strip of Al-Si-RE alloy produced by Rapid Solidification (RS. The effect of rare earth elements on structure refinement, i.e. on the size of near-eutectic crystallites in an aluminium-silicon alloy, was discussed. To determine the size of crystallites, the Scherrer X-ray diffraction method was used. The results presented capture relationships showing the effect of variable casting parameters and chemical composition on microstructure of the examined alloys. Rapid Solidification applied to Al-Si alloys with the addition of mischmetal (Ce, La, Ne, Pr refines their structure.

  5. Pit nucleation on as-cast aluminiuim alloy AW-5083 in 0.01M NaCl

    Directory of Open Access Journals (Sweden)

    Dolić N.

    2011-01-01

    Full Text Available The use of aluminium alloys in a wide range of technical applications is related mostly to the two facts: they facilitate weight saving of final products (if compared to the steel and they are prone to spontaneous passivity due to the coherent surface oxide layer which impedes further reaction of aluminium with the environment. Among the commercial Al alloys, EN AW-5083 alloy is a representative non-heat treatable Al-Mg based alloy which possesses many interesting characteristics as a structural material, such as low price, moderately high strength, high formability in conjunction with superplasticity and good corrosion resistance in marine atmospheres. Aiming to enhance the knowledge of possible interactions of studied alloy EN AW-5083 in as-cast condition with chloride media, electrochemical measurements were used to follow the pitting behaviour in 0.01 M NaCl. The results of tests have shown that susceptibility of alloy to pitting corrosion is strongly influenced by the microstructural constituents of the alloy in as-cast condition.

  6. Derivative thermo analysis of the Al-Si cast alloy with addition of rare earths metals

    Directory of Open Access Journals (Sweden)

    M. Krupiński

    2010-01-01

    Full Text Available In this paper the dependence between chemical composition, structure and cooling rate of Al–Si aluminium cast alloy was investigated. For studying of the structure changes the thermo-analysis was carried out, using the UMSA (Universal Metallurgical Simulator and Analyzer device. For structure investigation optical and electron scanning microscopy was used, phase and chemical composition of the Al cast alloy also using qualitative point-wise EDS microanalysis.

  7. Current research progress in grain refinement of cast magnesium alloys: A review article

    International Nuclear Information System (INIS)

    Ali, Yahia; Qiu, Dong; Jiang, Bin; Pan, Fusheng; Zhang, Ming-Xing

    2015-01-01

    Grain refinement of cast magnesium alloys, particularly in magnesium–aluminium (Mg–Al) based alloys, has been an active research topic in the past two decades, because it has been considered as one of the most effective approaches to simultaneously increase the strength, ductility and formability. The development of new grain refiners was normally based on the theories/models that were established through comprehensive and considerable studies of grain refinement in cast Al alloys. Generally, grain refinement in cast Al can be achieved through either inoculation treatment, which is a process of adding, or in situ forming, foreign particles to promote heterogeneous nucleation rate, or restricting grain growth by controlling the constitutional supercooling or both. But, the concrete and tangible grain refinement mechanism in cast metals is still not fully understood and there are a number of controversies. Therefore, most of the new developed grain refiners for Mg–Al based alloys are not as efficient as the commercially available ones, such as zirconium in non-Al containing Mg alloys. To facilitate the research in grain refinement of cast magnesium alloys, this review starts with highlighting the theoretical aspects of grain refinement in cast metals, followed by reviewing the latest research progress in grain refinement of magnesium alloys in terms of the solute effect and potent nucleants

  8. Current research progress in grain refinement of cast magnesium alloys: A review article

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Yahia; Qiu, Dong [School of Mechanical and Mining Engineering, University of Queensland, St Lucia, QLD 4072 (Australia); Jiang, Bin; Pan, Fusheng [College of Materials Science and Engineering, Chongqing University, Chongqing 400030 (China); Zhang, Ming-Xing, E-mail: Mingxing.Zhang@uq.edu.au [School of Mechanical and Mining Engineering, University of Queensland, St Lucia, QLD 4072 (Australia)

    2015-01-15

    Grain refinement of cast magnesium alloys, particularly in magnesium–aluminium (Mg–Al) based alloys, has been an active research topic in the past two decades, because it has been considered as one of the most effective approaches to simultaneously increase the strength, ductility and formability. The development of new grain refiners was normally based on the theories/models that were established through comprehensive and considerable studies of grain refinement in cast Al alloys. Generally, grain refinement in cast Al can be achieved through either inoculation treatment, which is a process of adding, or in situ forming, foreign particles to promote heterogeneous nucleation rate, or restricting grain growth by controlling the constitutional supercooling or both. But, the concrete and tangible grain refinement mechanism in cast metals is still not fully understood and there are a number of controversies. Therefore, most of the new developed grain refiners for Mg–Al based alloys are not as efficient as the commercially available ones, such as zirconium in non-Al containing Mg alloys. To facilitate the research in grain refinement of cast magnesium alloys, this review starts with highlighting the theoretical aspects of grain refinement in cast metals, followed by reviewing the latest research progress in grain refinement of magnesium alloys in terms of the solute effect and potent nucleants.

  9. Argon-arc welding of heat resisting aluminium alloys

    International Nuclear Information System (INIS)

    Ryazantsev, V.I.; Fedoseev, V.A.

    1997-01-01

    Welding of aluminium heat resisting alloys of the Al-Cu-Mg system is studied. The hot-shortness of heat-resistant alloys M40, 1150 and 1151 are at the level of aluminium alloys 1201 and by 2-3 times lower as compared to the aluminium alloy AMg6. The M40, 1150 and 1151 alloys have unquestionable advantages against other know aluminium alloys only at temperatures of welded structures operation, beginning with 150-2000 deg C and especially at 250 deg C

  10. Optimization of Squeeze Casting Parameters for 2017 A Wrought Al Alloy Using Taguchi Method

    Directory of Open Access Journals (Sweden)

    Najib Souissi

    2014-04-01

    Full Text Available This study applies the Taguchi method to investigate the relationship between the ultimate tensile strength, hardness and process variables in a squeeze casting 2017 A wrought aluminium alloy. The effects of various casting parameters including squeeze pressure, melt temperature and die temperature were studied. Therefore, the objectives of the Taguchi method for the squeeze casting process are to establish the optimal combination of process parameters and to reduce the variation in quality between only a few experiments. The experimental results show that the squeeze pressure significantly affects the microstructure and the mechanical properties of 2017 A Al alloy.

  11. Irradiation effects in magnesium and aluminium alloys

    International Nuclear Information System (INIS)

    Sturcken, E.F.

    1979-01-01

    Effects of neutron irradiation on microstructure, mechanical properties and swelling of several magnesium and aluminium alloys were studied. The neutron fluences of 2-3 X 10 22 n/cm 2 , >0.2 MeV produced displacement doses of 20 to 45 displacements per atom (dpa). Ductility of the magnesium alloys was severely reduced by irradiation induced recrystallization and precipitation of various forms. Precipitation of transmuted silicon occurred in the aluminium alloys. However, the effect on ductility was much less than for the magnesium alloys. The magnesium and aluminium alloys had excellent resistance to swelling: The best magnesium alloy was Mg/3.0 wt% Al/0.19 wt% Ca; its density decreased by only 0.13%. The best aluminium alloy was 6063, with a density decrease of 0.22%. (Auth.)

  12. Laser welding of aluminium alloys

    OpenAIRE

    Forsman, Tomas

    2000-01-01

    This thesis treats laser welding of aluminium alloys from a practical perspective with elements of mathematical analysis. The theoretical work has in all cases been verified experimentally. The aluminium alloys studied are from the 5xxx and 6xxx groups which are common for example in the automotive industry. Aluminium has many unique physical properties. The properties which more than others have been shown to influence the welding process is its high reflection, high thermal conductivity, lo...

  13. Continuum damage mechanics based approach to the fatigue life prediction of cast aluminium alloy with considering the effect of porosity

    Directory of Open Access Journals (Sweden)

    Wang Xiaojia

    2018-01-01

    Full Text Available A damage mechanics based approach is applied for the study of fatigue behaviour of high pressure die cast ADC12 aluminium alloy. A damage coupled elastoplastic constitutive model is presented according to the concept of effective stress and the hypothesis of strain equivalence. An elastic fatigue damage model taking into account the pore-induced stress concentration is developed to investigate fatigue damage evolution of the specimens subjected to cyclic loading. The predicted lives for the specimens with different sizes of pores are consistent with the experimental data. The pore-induced fatigue damage and the variation of fatigue life along with the size of pores are also investigated.

  14. TITANIUM CARBON ALUMINIUM : A NOVEL GRAIN REFINER FOR ALUMINIUM-LITHIUM ALLOYS

    OpenAIRE

    Birch , M.; Cowell , A.

    1987-01-01

    This work explores the possibility of achieving grain size control in aluminium-lithium alloys with the titanium carbon aluminium (TiCAl) master alloys invented at the Technical University of Berlin and developed by London and Scandinavian Metallurgical Co Ltd (LSM). Grain refining tests were conducted on a single batch of 8090 alloy using addition rates of 0.2wt% and 0.4wt% of TiCAl and 3/1 titanium boron aluminium (TiBAl). Other tests using 0.4wt% of binary TiAl gave poor results, showing t...

  15. Characterisation of phase composition, microstructure and microhardness of electroless nickel composite coating co-deposited with SiC on casting aluminium LM24 alloy substrate

    OpenAIRE

    Franco, M.; Sha, Wei; Malinov, Savko

    2013-01-01

    Electroless Ni-P (EN) and composite Ni-P-SiC (ENC) coatings were developed on cast aluminium alloy, LM24. The coating phase composition, microstructure and microhardness were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and microhardness tester, respectively, on as-plated and heat-treated specimens. The original microstructure of the Ni-P matrix is not affected by the inclusion of the hard particles SiC. No formation of Ni-Si phase was observed upto 500°C of ...

  16. Prospects for designing structural cast eutectic alloys on Al-Ce-Ni system base

    International Nuclear Information System (INIS)

    Belov, N.A.; Naumova, E.S.

    1996-01-01

    The phase diagram of Al-Ce-Ni system is built for an aluminium corner at component concentration up to 16 mass %Ce and 8 mass%Ni. A ternary eutectic reaction is established at 12%Ce, 5%Ni and 626 deg C. The ternary eutectic alloy is similar in structure to rapidly cooled Al base alloys with transition metals. The possibility to design new cast alloys based on three-phase (Al)+NiAl 3 +CeAl 4 eutectics is under consideration. Al-Zn-Mg-Cu, Al-Sc and Al-Zr base alloys can be used as (Al) constituent of the eutectics. The new alloys may be considered as heat resistant ones due to the fact that no structural changes are observed in castings on heating up to 350 deg C. 18 refs.; 4 figs.; 2 tabs

  17. Recycling of aluminium swarf by direct incorporation in aluminium melts

    OpenAIRE

    Puga, Hélder; Barbosa, J.; Soares, Delfim; Silva, Filipe Samuel; Ribeiro, Carlos Silva

    2009-01-01

    The purpose of this work was to recover a standard AlSi12Cu1 alloy from machining chips inside the foundry plant, by using an environmentally friend technique to produce cast ingots with characteristics similar to those of the commercially available 2nd melt raw material. The recyclability of aluminium swarf using different melting techniques and the influence of chips preparation in the aluminium alloy recovery rate and dross production was experimentally studied and evaluated...

  18. Material properties of Al-Si-Cu aluminium alloy produced by the rotational cast technology

    Directory of Open Access Journals (Sweden)

    Muhammad Syahid

    2017-03-01

    Full Text Available The aim of the present study is to explore microstructural and mechanical properties of cast Al-Si-Cu aluminum alloy (ADC12. To obtain excellent material properties, the cast Al alloys were produced by an originally developed mold rotational machine, namely liquid aluminum alloy is solidified during high speed rotating. The casting process was conducted under various casting conditions, in which the following factors were altered, e.g., melt temperature, metal mold temperature and different rotational speed. Microstructural characteristics were examined by direct observation using an optical microscope and a scanning electron microscope (SEM, and the secondary dendrite arm spacing of alpha-Al phase (SDAS and the size of Si eutectic phase were identified. Mechanical properties were investigated by micro-hardness and tensile tests. Rotation speed and melt temperature were directly attributed to the SDAS, and severe shear stress arising from the rotation made fine and complicated grain structure, leading to the high mechanical properties. The extent of the shear stress was altered depending on the area of the sample due to the different shear stress. Furthermore, high melt temperature and high rotational speed decrease the size of Si eutectic phases. The high mechanical properties were detected for the cast samples produced by the casting condition as follows: melt temperature 700oC, mold temperature 400oC and rotation speed 400 rpm

  19. Influence of transport mechanisms on nucleation and grain structure formation in DC cast aluminium alloy ingots

    Science.gov (United States)

    Bedel, M.; Založnik, M.; Kumar, A.; Combeau, H.; Jarry, P.; Waz, E.

    2012-01-01

    The grain structure formation in direct chill (DC) casting is directly linked to nucleation, which is generally promoted by inoculation. Inoculation prevents defects, but also modifies the physical properties by changing the microstructure. We studied the coupling of the nucleation on inoculant particles and the grain growth in the presence of melt flow induced by thermosolutal convection and of the transport of free-floating equiaxed grains. We used a volume-averaged two-phase multiscale model with a fully coupled description of phenomena on the grain scale (nucleation on grain refiner particles and grain growth) and on the product scale (macroscopic transport). The transport of inoculant particles is also modeled, which accounts for the inhomogeneous distribution of inoculant particles in the melt. The model was applied to an industrial sized (350mm thick) DC cast aluminium alloy ingot. A discretised nuclei size distribution was defined and the impact of different macroscopic phenomena on the grain structure formation was studied: the zone and intensity of nucleation and the resulting grain size distribution. It is shown that nucleation in the presence of macroscopic transport cannot be explained only in terms of cooling rate, but variations of composition, nuclei density and grain density, all affected by transport, must be accounted for.

  20. Effect of ageing time 200 °C on microstructure behaviour of Al-Zn-Cu-Mg cast alloys

    Directory of Open Access Journals (Sweden)

    Pratiwi Diah Kusuma

    2017-01-01

    Full Text Available Al-Zn-Cu-Mg is heat treatable alloy that can be used in many hightech applications, such as aerospace and military. The main objective of this study is to investigate the influence of ageing process in microstrucure behaviour of Al-9Zn-5Cu-4Mg cast alloy by performing SEM analysis and its correlation with hardness tests of as-cast Al-9Zn-5Cu-4Mg alloy and heat treated Al-9Zn-5Cu-4Mg cast alloy. The results show the deployment of precipitation spread over the dendrite and also the presence of second phases Mg3Zn3Al2 , Cu2FeAl7 , CuAl2, and CuMgAl2 in as-cast Al-9Zn-5Cu-4Mg alloy. The presence of all these second phases are affecting to the toughness of aluminium alloy and the presence of MgZn2 leads the impairment of hardness value of heat-treated Al-9Zn-5Cu-5Mg cast alloy.

  1. Fabrication and Performance Test of Aluminium Alloy-Rice Husk Ash Hybrid Metal Matrix Composite as Industrial and Construction Material

    Directory of Open Access Journals (Sweden)

    Md. Rahat Hossain

    2017-12-01

    Full Text Available Aluminium matrix composites (AMCs used extensively in various engineering fields due to their exceptional mechanical properties. In this present study, aluminium matrix composites (AMCs such as aluminium alloy (A356 reinforced with rice husk ash particles (RHA are made to explore the possibilities of reinforcing aluminium alloy. The stir casting method was applied to produce aluminium alloy (A356 reinforced with various amounts of (2%, 4%, and 6% rice husk ash (RHA particles. Physical treatment was carried out before the rice husk ash manufacturing process. The effect of mechanical strength of the fabricated hybrid composite was investigated. Therefore, impact test, tensile stress, compressive stress, and some other tests were carried out to analyse the mechanical properties. From the experimental results, it was found that maximum tensile, and compressive stress were found at 6% rice husk ash (RHA and aluminium matrix composites (AMCs. In future, the optimum percentages of rice husk ash (RHA to fabricate the hybrid composites will be determined. Also, simulation by finite element method (FEM will be applied for further investigation.

  2. Characterization of aluminium alloys rapidly solidified

    International Nuclear Information System (INIS)

    Monteiro, W.A.

    1988-01-01

    This paper discussed the investigation of the microstructural and mechanical properties of the aluminium alloys (3003; 7050; Al-9% Mg) rapidly solidified by melt spinning process (cooling rate 10 4 - 10 6 K/s). The rapidly solidification process of the studied aluminium alloys brought a microcrystallinity, a minimum presence of coarse precipitation and, also, better mechanical properties of them comparing to the same alloys using ingot process. (author) [pt

  3. Effect of hydrogen on aluminium and aluminium alloys: A review

    DEFF Research Database (Denmark)

    Ambat, Rajan; Dwarakadasa, E.S.

    1996-01-01

    Susceptibility of aluminium and its alloys towards hydrogen embrittlement has been well established. Still a lot of confusion exists on the question of transport of hydrogen and its possible role in stress corrosion cracking. This paper reviews some of the fundamental properties of hydrogen...... in aluminium and its alloys and its effect on mechanical properties. The importance of hydrogen embrittlement over anodic dissolution to explain the stress corrosion cracking mechanism of these alloys is also examined in considerable detail. The various experimental findings concerning the link between...

  4. Determination of Optimal Parameters for Diffusion Bonding of Semi-Solid Casting Aluminium Alloy by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Kaewploy Somsak

    2015-01-01

    Full Text Available Liquid state welding techniques available are prone to gas porosity problems. To avoid this solid state bonding is usually an alternative of preference. Among solid state bonding techniques, diffusion bonding is often employed in aluminium alloy automotive parts welding in order to enhance their mechanical properties. However, there has been no standard procedure nor has there been any definitive criterion for judicious welding parameters setting. It is thus a matter of importance to find the set of optimal parameters for effective diffusion bonding. This work proposes the use of response surface methodology in determining such a set of optimal parameters. Response surface methodology is more efficient in dealing with complex process compared with other techniques available. There are two variations of response surface methodology. The one adopted in this work is the central composite design approach. This is because when the initial upper and lower bounds of the desired parameters are exceeded the central composite design approach is still capable of yielding the optimal values of the parameters that appear to be out of the initially preset range. Results from the experiments show that the pressing pressure and the holding time affect the tensile strength of jointing. The data obtained from the experiment fits well to a quadratic equation with high coefficient of determination (R2 = 94.21%. It is found that the optimal parameters in the process of jointing semi-solid casting aluminium alloy by using diffusion bonding are the pressing pressure of 2.06 MPa and 214 minutes of the holding time in order to achieve the highest tensile strength of 142.65 MPa

  5. Behaviour and fatigue damage study of cast aluminium alloys; Etude du comportement et de l'endommagement en fatigue d'alliages d'aluminium de fonderie

    Energy Technology Data Exchange (ETDEWEB)

    Barlas, B.

    2004-02-15

    This study is aimed at determining the influence of chemical composition and heat treatment of cast aluminium alloys Al-Si-Cu-Mg on mechanical behaviour and fatigue life of structures. The industrial frame of this study concerns cylinder-heads of high efficiency diesel engines, for Renault and Montupet companies. The experimental means involved in this work are as well microscopic (TEM, microhardness, image analysis), mechanical (LCF and aniso-thermal tests, macro-hardness) and numerical (simulation of the stability of the hardening phases, behaviour and damage model identification, cylinder-head life time calculation). The link between micro and macro approaches is provided by the means of an internal microscopic variable representing thermal aging through coarsening of the precipitates and implemented into the macroscopic model. (author)

  6. Irradiation of aluminium alloy materials with electron beam

    International Nuclear Information System (INIS)

    Konno, Osamu; Masumoto, Kazuyoshi

    1982-01-01

    It is a theme with a room for discussion to employ the stainless steel composed of longer half-life materials for the vacuum system of accelerators, from the viewpoint of radiation exposure. Therefore, it is desirable to use aluminium of shorter half-life in place of stainless steel. As a result of investigation on the above theme in the 1.2 GeV electron linac project in Tohoku University, it has been concluded that aluminium alloy vacuum chambers can reduce exposure dose by about one or two figures as compared with stainless steel ones. Of course, aluminium alloy contains trace amounts of Mg, Si, Ti, Cr, Mn, Fe, Zn, Cu and others. Therefore, four kinds of aluminium alloy considered to be usable have been examined for induced radioactivity by electron beam irradiation. Stainless steel SUS 304 has been also irradiated for comparison. Radiation energy has been 30 MeV and 200 MeV. When stainless steel and aluminium alloy were compared, aluminium alloy was very effective for reducing surface dose in low energy irradiation. In 200 MeV irradiation, the dose ratio of aluminium alloy to stainless steel became 1/30 to 1/100 after one week, though the dose difference between these two materials became smaller in 100 days or more after irradiation. If practical inspection and repair are implemented during the period from a few days to one week after shutdown, the aluminium alloy is preferable for exposure dose reduction even in high energy irradiation. (Wakatsuki, Y.)

  7. CHARACTERIZATION OF PHASES IN SECONDARY AlZn10Si8Mg CAST ALLOY

    Directory of Open Access Journals (Sweden)

    Eva Tillová

    2011-04-01

    Full Text Available Using recycled aluminium cast alloys is profitable in many aspects. Requiring only 5 % of the energy to produce secondary metal as compared to primary metal and generates only 5 % of the green house gas emissions, the recycling of aluminium is therefore beneficial of both environmental and economical point of view. Secondary AlZn10Si8Mg (UNIFONT® - 90 cast alloy are used for engine and vehicle constructions, hydraulic unit and mouldmaking without heat treatment. Properties include good castability, very good mechanical strength and elongation, light weight, good wear resistance, low thermal expansion and very good machining. Improved mechanical properties are strongly dependent upon the morphologies, type and distribution of the secondary phases, which are in turn a function of alloy composition and cooling rate. The presence of additional elements as Mg, Mn, Fe, or Cu allows many complex intermetallic phases to form, which make characterisation non-trivial. These include, for example, Mg2Si, Al2CuMg and AlFeMn phases, all of which may have some solubility for additional elements. Phase’s identification in aluminium alloys is often non-trivial due to the fact that some of the phases have either similar crystal structures or only subtle changes in their chemistries. A combination different analytical techniques (light microscopy upon black-white and colour etching, scanning electron microscopy (SEM upon deep etching, energy dispersive X-ray analysis (EDX and HV 0.01 microhardness measurement were therefore been used for the identification of the various phase.

  8. Wear behavioral study of as cast and 7 hr homogenized Al25Mg2Si2Cu4Ni alloy at constant load

    Science.gov (United States)

    Harlapur, M. D.; Sondur, D. G.; Akkimardi, V. G.; Mallapur, D. G.

    2018-04-01

    In the current study, the wear behavior of as cast and 7 hr homogenized Al25Mg2Si2Cu4Ni alloy has been investigated. Microstructure, SEM and EDS results confirm the presence of different intermetallic and their effects on wear properties of Al25Mg2Si2Cu4Ni alloy in as cast as well as aged condition. Alloying main elements like Si, Cu, Mg and Ni partly dissolve in the primary α-Al matrix and to some amount present in the form of intermetallic phases. SEM structure of as cast alloy shows blocks of Mg2Si which is at random distributed in the aluminium matrix. Precipitates of Al2Cu in the form of Chinese script are also observed. Also `Q' phase (Al-Si-Cu-Mg) be distributed uniformly into the aluminium matrix. Few coarsened platelets of Ni are seen. In case of 7 hr homogenized samples blocks of Mg2Si get rounded at the corners, Platelets of Ni get fragmented and distributed uniformly in the aluminium matrix. Results show improved volumetric wear resistance and reduced coefficient of friction after homogenizing heat treatment.

  9. Effects of as-cast and wrought Cobalt-Chrome-Molybdenum and Titanium-Aluminium-Vanadium alloys on cytokine gene expression and protein secretion in J774A.1 macrophages

    DEFF Research Database (Denmark)

    Jakobsen, Stig Storgaard; Larsen, Agnete; Stoltenberg, Meredin

    2007-01-01

    the cell viability. Surface properties of the discs were characterised with a profilometer and with energy dispersive X-ray spectroscopy. We here report, for the first time, that the prosthetic material surface (non-phagocytable) of as-cast high carbon CoCrMo reduces the pro-inflammatory cytokine IL-6......Insertion of metal implants is associated with a possible change in the delicate balance between pro- and anti-inflammatory proteins, probably leading to an unfavourable predominantly pro-inflammatory milieu. The most likely cause is an inappropriate activation of macrophages in close relation...... to the metal implant and wear-products. The aim of the present study was to compare surfaces of as-cast and wrought Cobalt-Chrome-Molybdenum (CoCrMo) alloys and Titanium-Aluminium-Vanadium (TiAlV) alloy when incubated with mouse macrophage J774A.1 cell cultures. Changes in pro- and anti-inflammatory cytokines...

  10. The low-aluminium cast iron of reduced silicon content treated with cerium mischmetal

    Directory of Open Access Journals (Sweden)

    M. S. Soiński

    2008-07-01

    Full Text Available The work presents the effect of cerium mischmetal used in quantities of 0.1 and 0.2 wt-% and ferrosilicon used in quantities from 0.5% to 1.5% on the alloy matrix and the shape of graphite precipitates in the low-aluminium cast iron from seven heats, basing on the examination of its structure. The hypereutectic cast iron of the relatively high carbon content (4.0÷4.2% at the prior-to-treatment silicon and manganese content equal to ca. 0.6% and ca. 0.04%, respectively, has been examined.It has been found that the performed treatment leads to the change in the alloy matrix from the nearly almost pearlitic to the ferritic-pearlitic one accompanied by changes in the shape of graphite precipitates. Due to applying both of the mentioned substances in the above stated amounts the graphite precipitates in cast iron have taken the shape of nodular and vermicular ones, and no presence of flake graphite has been revealed. A quantitative analysis of the performed treatment i.e. determining the fractions of graphite precipitates of different shapes has been possible by means of a computer image analyser.

  11. Influence of the Mould Cooling Process on the Quality and Properties of Aluminium Alloy

    Directory of Open Access Journals (Sweden)

    Viktorie Weiss

    2014-12-01

    Full Text Available The article deals with the effect on the quality of casting moulds (metal, bentonite mixture on the structure of the alloy AlZn5,5MgCu and selected mechanical properties of the alloy. The effect of foundry moulds can significantly affect formation and range of crystal segregation and the subsequent thermal process of homogenization which has an influence on the final quality of the alloy. The research focuses on the formation and range of crystal segregation and its removal with homogenization annealing, in which the observed influence of individual factors influencing the diffusion process and quality of the aluminium alloy.

  12. Melting and casting of FeAl-based cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K. [Oak Ridge National Lab., TN (United States); Wilkening, D. [Columbia Falls Aluminum Co., Columbia Falls, MT (United States); Liebetrau, J.; Mackey, B. [AFFCO, L.L.C., Anaconda, MT (United States)

    1998-11-01

    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{trademark} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast.

  13. Steam Initiated Surface Modification of Aluminium Alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud

    The extensive demand of aluminium alloys in various industries such as in transportationis mainly due to the high strength to weight ratio, which could be translated into fuel economy and efficiency. Corrosion protection of aluminium alloys is an important aspect for all applications which includes...... the use of aluminium alloys in the painted form requiring a conversion coating to improve the adhesion. Chromate based conversion coating processes are extremely good for these purposes, however the carcinogenic and toxic nature of hexavalent chromium led to the search for more benign and eco......, crystalline nano-particles, role of steam-based treatment on adhesion of industrially applied powder coating, and investigations of a failed painted aluminium window profile due to defects in the extruded profile. Chapters 13 and 14 describe the overall discussion, conclusions and future work based...

  14. Effect of Laser Feeding on Heat Treated Aluminium Alloy Surface Properties

    Directory of Open Access Journals (Sweden)

    Labisz K.

    2016-06-01

    Full Text Available In this paper are presented the investigation results concerning microstructure as well as mechanical properties of the surface layer of cast aluminium-silicon-copper alloy after heat treatment alloyed and/ or remelted with SiC ceramic powder using High Power Diode Laser (HPDL. For investigation of the achieved structure following methods were used: light and scanning electron microscopy with EDS microanalysis as well as mechanical properties using Rockwell hardness tester were measured. By mind of scanning electron microscopy, using secondary electron detection was it possible to determine the distribution of ceramic SiC powder phase occurred in the alloy after laser treatment. After the laser surface treatment carried out on the previously heat treated aluminium alloys, in the structure are observed changes concerning the distribution and morphology of the alloy phases as well as the added ceramic powder, these features influence the hardness of the obtained layers. In the structure, there were discovered three zones: the remelting zone (RZ the heat influence zone (HAZ and transition zone, with different structure and properties. In this paper also the laser treatment conditions: the laser power and ceramic powder feed rate were investigated. The surface laser structure changes in a manner, that there zones are revealed in the form of. This carried out investigations make it possible to develop, interesting technology, which could be very attractive for different branches of industry.

  15. Hot workability of aluminium alloys

    International Nuclear Information System (INIS)

    Yoo, Yeon Chul; Oh, Kyung Jin

    1986-01-01

    Hot Workability of aluminium alloys, 2024, 6061 and 7075, has been studied by hot torsion tests at temperatures from 320 to 515 deg C and at strain rates from 1.26 x 10 -3 to 5.71 x 10 -3 sec -1 . Hot working condition of these aluminium alloys was determined quantitatively from the constitutive equations obtained from flow stress curves in torsion. Experimental data of the logarith of the Zener-Hollomonn parameter showed good linear relationships to the logarith of sinh(ασ-bar)

  16. Reducing non value adding aluminium alloy in production of parts through high pressure die casting

    CSIR Research Space (South Africa)

    Pereira, MFVT

    2010-10-01

    Full Text Available in the cast part feed system, including overflows. CSIR intends using the results of this research for further development and application of high temperature die construction materials in high pressure die casting processes of light metal alloys...

  17. On the performance of a novel grain refiner in hyper-eutectic Al-Si cast alloys

    OpenAIRE

    Bolzoni, L; Nowak, M; Hari Babu, N

    2014-01-01

    The stringent requirements for pollution reduction are pushing the automotive industry towards the employment of lightweight structures and, therefore, aluminium and its alloys play a remarkable role. Al-Si casting alloy with eutectic or hyper- eutectic compositions are, normally, employed for the production of high performance automotive products such as pistons and engine blocks which have to withstand critical loading conditions (i.e. high temperature, high pressure and corrosive exhaust g...

  18. Internal friction in iron-aluminium alloys having a high aluminium content

    International Nuclear Information System (INIS)

    Hillairet, J.; Delaplace, J.; Silvent, A.

    1966-01-01

    By using a torsion pendulum to measure the internal friction of iron-aluminium alloys containing between 25 and 50 atom per cent of aluminium, it has been possible to show the existence of three damping peaks due to interstitial carbon. Their evolution is followed as a function of the carbon content, of the thermal treatment and of the aluminium content. A model based on the preferential occupation of tetrahedral sites is proposed as an interpretation of the results. A study of the Zener peak in these substitution alloys shows also that a part of the short distance disorder existing at high temperatures can be preserved by quenching. (author) [fr

  19. Thermodynamic properties of uranium in gallium–aluminium based alloys

    International Nuclear Information System (INIS)

    Volkovich, V.A.; Maltsev, D.S.; Yamshchikov, L.F.; Chukin, A.V.; Smolenski, V.V.; Novoselova, A.V.; Osipenko, A.G.

    2015-01-01

    Activity, activity coefficients and solubility of uranium was determined in gallium-aluminium alloys containing 1.6 (eutectic), 5 and 20 wt.% aluminium. Additionally, activity of uranium was determined in aluminium and Ga–Al alloys containing 0.014–20 wt.% Al. Experiments were performed up to 1073 K. Intermetallic compounds formed in the alloys were characterized by X-ray diffraction. Partial and excess thermodynamic functions of U in the studied alloys were calculated. - Highlights: • Thermodynamics of uranium is determined in Ga–Al alloys of various compositions. • Uranium in the mixed alloys interacts with both components, Ga and Al. • Interaction of U with Al increases with decreasing temperature. • Activity and solubility of uranium depend on Al content in Ga–Al alloys.

  20. Thermodynamic properties of uranium in gallium–aluminium based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Volkovich, V.A., E-mail: v.a.volkovich@urfu.ru [Department of Rare Metals and Nanomaterials, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Maltsev, D.S.; Yamshchikov, L.F. [Department of Rare Metals and Nanomaterials, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Chukin, A.V. [Department of Theoretical Physics and Applied Mathematics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Smolenski, V.V.; Novoselova, A.V. [Institute of High-Temperature Electrochemistry UD RAS, Ekaterinburg, 620137 (Russian Federation); Osipenko, A.G. [JSC “State Scientific Centre - Research Institute of Atomic Reactors”, Dimitrovgrad, 433510 (Russian Federation)

    2015-10-15

    Activity, activity coefficients and solubility of uranium was determined in gallium-aluminium alloys containing 1.6 (eutectic), 5 and 20 wt.% aluminium. Additionally, activity of uranium was determined in aluminium and Ga–Al alloys containing 0.014–20 wt.% Al. Experiments were performed up to 1073 K. Intermetallic compounds formed in the alloys were characterized by X-ray diffraction. Partial and excess thermodynamic functions of U in the studied alloys were calculated. - Highlights: • Thermodynamics of uranium is determined in Ga–Al alloys of various compositions. • Uranium in the mixed alloys interacts with both components, Ga and Al. • Interaction of U with Al increases with decreasing temperature. • Activity and solubility of uranium depend on Al content in Ga–Al alloys.

  1. Steam generated conversion coating on aluminium alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    Aluminium and its alloys are widely used in aerospace industry owing to their high strength to weight ratio. The surface of aluminium under normal conditions has a thin oxide film (2.5-10 nm) responsible for its inherent corrosion resistance. This oxide film can further be converted or transformed...... into functional conversion coatings in order to enhance corrosion resistance and adhesion to paint systems. Chromium based conversion coatings have been extensively used on aluminium alloys to improve adhesion of subsequent paint layers and corrosion resistance. However, the use of hexavalent chromium is strictly...... regulated due to its toxic nature and suspected carcinogenicity. So, it is highly imperative to develop other alternatives for chrome conversion coatings. Treatment of aluminium with natural water at elevated temperatures results in the formation of different forms of aluminium oxide (γ-AlO(OH) , Al(OH)3...

  2. 3D printing of high-strength aluminium alloys.

    Science.gov (United States)

    Martin, John H; Yahata, Brennan D; Hundley, Jacob M; Mayer, Justin A; Schaedler, Tobias A; Pollock, Tresa M

    2017-09-20

    Metal-based additive manufacturing, or three-dimensional (3D) printing, is a potentially disruptive technology across multiple industries, including the aerospace, biomedical and automotive industries. Building up metal components layer by layer increases design freedom and manufacturing flexibility, thereby enabling complex geometries, increased product customization and shorter time to market, while eliminating traditional economy-of-scale constraints. However, currently only a few alloys, the most relevant being AlSi10Mg, TiAl6V4, CoCr and Inconel 718, can be reliably printed; the vast majority of the more than 5,500 alloys in use today cannot be additively manufactured because the melting and solidification dynamics during the printing process lead to intolerable microstructures with large columnar grains and periodic cracks. Here we demonstrate that these issues can be resolved by introducing nanoparticles of nucleants that control solidification during additive manufacturing. We selected the nucleants on the basis of crystallographic information and assembled them onto 7075 and 6061 series aluminium alloy powders. After functionalization with the nucleants, we found that these high-strength aluminium alloys, which were previously incompatible with additive manufacturing, could be processed successfully using selective laser melting. Crack-free, equiaxed (that is, with grains roughly equal in length, width and height), fine-grained microstructures were achieved, resulting in material strengths comparable to that of wrought material. Our approach to metal-based additive manufacturing is applicable to a wide range of alloys and can be implemented using a range of additive machines. It thus provides a foundation for broad industrial applicability, including where electron-beam melting or directed-energy-deposition techniques are used instead of selective laser melting, and will enable additive manufacturing of other alloy systems, such as non-weldable nickel

  3. 3D printing of high-strength aluminium alloys

    Science.gov (United States)

    Martin, John H.; Yahata, Brennan D.; Hundley, Jacob M.; Mayer, Justin A.; Schaedler, Tobias A.; Pollock, Tresa M.

    2017-09-01

    Metal-based additive manufacturing, or three-dimensional (3D) printing, is a potentially disruptive technology across multiple industries, including the aerospace, biomedical and automotive industries. Building up metal components layer by layer increases design freedom and manufacturing flexibility, thereby enabling complex geometries, increased product customization and shorter time to market, while eliminating traditional economy-of-scale constraints. However, currently only a few alloys, the most relevant being AlSi10Mg, TiAl6V4, CoCr and Inconel 718, can be reliably printed; the vast majority of the more than 5,500 alloys in use today cannot be additively manufactured because the melting and solidification dynamics during the printing process lead to intolerable microstructures with large columnar grains and periodic cracks. Here we demonstrate that these issues can be resolved by introducing nanoparticles of nucleants that control solidification during additive manufacturing. We selected the nucleants on the basis of crystallographic information and assembled them onto 7075 and 6061 series aluminium alloy powders. After functionalization with the nucleants, we found that these high-strength aluminium alloys, which were previously incompatible with additive manufacturing, could be processed successfully using selective laser melting. Crack-free, equiaxed (that is, with grains roughly equal in length, width and height), fine-grained microstructures were achieved, resulting in material strengths comparable to that of wrought material. Our approach to metal-based additive manufacturing is applicable to a wide range of alloys and can be implemented using a range of additive machines. It thus provides a foundation for broad industrial applicability, including where electron-beam melting or directed-energy-deposition techniques are used instead of selective laser melting, and will enable additive manufacturing of other alloy systems, such as non-weldable nickel

  4. Application of Anodization Process for Cast Aluminium Surface Properties Enhancement

    Directory of Open Access Journals (Sweden)

    Włodarczyk-Fligier A.

    2016-09-01

    Full Text Available An huge interest is observed in last years in metal matrix composite, mostly light metal based, which have found their applications in many industry branches, among others in the aircraft industry, automotive-, and armaments ones, as well as in electrical engineering and electronics, where one of the most important issue is related to the corrosion resistance, especially on the surface layer of the used aluminium alloys. This elaboration presents the influence of ceramic phase on the corrosion resistance, quality of the surface layer its thickness and structure of an anodic layer formed on aluminium alloys. As test materials it was applied the aluminium alloys Al-Si-Cu and Al-Cu-Mg, for which heat treatment processes and corrosion tests were carried out. It was presented herein grindability test results and metallographic examination, as well. Hardness of the treated alloys with those ones subjected to corrosion process were compared.

  5. The determination of trace oxygen in aluminium and aluminium-silicon alloy by helium-3 activation analysis

    International Nuclear Information System (INIS)

    Vandecasteele, C.; Goethals, P.; Kieffer, R.; Hoste, J.

    1975-01-01

    The determination of oxygen in aluminium and aluminium-silicon alloy by helium-3 activation is studied. The 18 F formed from oxygen is separated by distillation followed by precipitation of leadfluorochloride. The chemical yield is determined by activation in an isotopic neutron source. Concentrations of resp. 27 and 64 ng.g -1 with a precision for a single determination of resp. 30 and 13% are found in 99.5% aluminium and in aluminium-silicon (3%) alloy. (author)

  6. Mechanical behaviour of aluminium-lithium alloys

    Indian Academy of Sciences (India)

    Aluminium-lithium alloys hold promise of providing a breakthrough response to the crying need for lightweight alloys for use as structurals in aerospace applications. Considerable worldwide research has gone into developing a range of these alloys over the last three decades. As a result, substantial understanding has ...

  7. Interlocking multi-material components made of structured steel sheets and high-pressure die cast aluminium

    Science.gov (United States)

    Senge, S.; Brachmann, J.; Hirt, G.; Bührig-Polaczek, A.

    2017-10-01

    Lightweight design is a major driving force of innovation, especially in the automotive industry. Using hybrid components made of two or more different materials is one approach to reduce the vehicles weight and decrease fuel consumption. As a possible way to increase the stiffness of multi-material components, this paper presents a process chain to produce such components made of steel sheets and high-pressure die cast aluminium. Prior to the casting sequence the steel sheets are structured in a modified rolling process which enables continuous interlocking with the aluminium. Two structures manufactured by this rolling process are tested. The first one is a channel like structure and the second one is a channel like structure with undercuts. These undercuts enable the formation of small anchors when the molten aluminium fills them. The correlation between thickness reduction during rolling and the shape of the resulting structure was evaluated for both structures. It can be stated that channels with a depth of up to 0.5 mm and a width of 1 mm could be created. Undercuts with different size depending on the thickness reduction could be realised. Subsequent aluminium high-pressure die casting experiments were performed to determine if the surface structure can be filled gap-free with molten aluminium during the casting sequence and if a gap-free connection can be achieved after contraction of the aluminium. The casting experiments showed that both structures could be filled during the high-pressure die casting. The channel like structure results in a gap between steel and aluminium after contraction of the cast metal whereas the structure with undercuts leads to a good interlocking resulting in a gap-free connection.

  8. Corrosion-electrochemical and mechanical properties of aluminium-berylium alloys alloyed by rare-earth metals

    International Nuclear Information System (INIS)

    Safarov, A.M.; Odinaev, Kh.E.; Shukroev, M.Sh.; Saidov, R.Kh.

    1997-01-01

    In order to study influence of rare earth metals on corrosion-electrochemical and mechanical properties of aluminium-berylium alloys the alloys contain 1 mass % beryllium and different amount of rare earth metals were obtained.-electrochemical and mechanical properties of aluminium-berylium alloys. The electrochemical characteristics of obtained alloys, including stationary potential, potentials of passivation beginning and full passivation, potentials of pitting formation and re passivation were defined.

  9. Steam Assisted Accelerated Growth of Oxide Layer on Aluminium Alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Yuksel, Serkan; Jellesen, Morten Stendahl

    2013-01-01

    Corrosion resistance of aluminium alloys is related to the composition and morphology of the oxide film on the surface of aluminium. In this paper we investigated the use of steam on the surface modification of aluminium to produce boehmite films. The study reveals a detailed investigation...... of the effect of vapour pressure, structure of intermetallic particles and thickness of boehmite films on the corrosion behaviour of aluminium alloys....

  10. Evaluation of Mechanical Properties of MWCNT / Nanoclay Reinforced Aluminium alloy Metal Matrix Composite

    Science.gov (United States)

    Ratna Kumar, P. S. Samuel; Robinson Smart, D. S.; Alexis, S. John

    2018-04-01

    Aluminium alloy 5083 (AA5083) is a widely used material in aerospace, marine, defence and structural applications were mechanical and corrosion resistance property plays a vital role. For the present work, MWCNT / Nanoclay (montmorillonite (MMT) K10) mixed with AA5083 for different composition in weight percentage to enhance the mechanical property. Semi-solid state casting method (Compo-casting) was used to fabricate the composite materials. By using Field-emission scanning electron microscope (FESEM) the uniform dispersion of the reinforcement and microstructure were studied. Finally, the addition of Nanoclay shows decrease in tensile strength compared to the AA5083 / MWCNT composites and hardness value of the composites (AA5083 / MWCNT and AA5083 / Nanoclay) was found to increase significantly.

  11. Effects of as-cast and wrought Cobalt-Chrome-Molybdenum and Titanium-Aluminium-Vanadium alloys on cytokine gene expression and protein secretion in J774A.1 macrophages.

    Science.gov (United States)

    Jakobsen, Stig S; Larsen, A; Stoltenberg, M; Bruun, J M; Soballe, K

    2007-09-11

    Insertion of metal implants is associated with a possible change in the delicate balance between pro- and anti-inflammatory proteins, probably leading to an unfavourable predominantly pro-inflammatory milieu. The most likely cause is an inappropriate activation of macrophages in close relation to the metal implant and wear-products. The aim of the present study was to compare surfaces of as-cast and wrought Cobalt-Chrome-Molybdenum (CoCrMo) alloys and Titanium-Aluminium-Vanadium (TiAlV) alloy when incubated with mouse macrophage J774A.1 cell cultures. Changes in pro- and anti-inflammatory cytokines (TNF-alpha, IL-6, IL-alpha, IL-1beta, IL-10) and proteins known to induce proliferation (M-CSF), chemotaxis (MCP-1) and osteogenesis (TGF-beta, OPG) were determined by ELISA and Real Time reverse transcriptase - PCR (Real Time rt-PCR). Lactate dehydrogenase (LDH) was measured in the medium to asses the cell viability. Surface properties of the discs were characterised with a profilometer and with energy dispersive X-ray spectroscopy. We here report, for the first time, that the prosthetic material surface (non-phagocytable) of as-cast high carbon CoCrMo reduces the pro-inflammatory cytokine IL-6 transcription, the chemokine MCP-1 secretion, and M-CSF secretion by 77%, 36%, and 62%, respectively. Furthermore, we found that reducing surface roughness did not affect this reduction. The results suggest that as-cast CoCrMo alloy is more inert than wrought CoCrMo and wrought TiAlV alloys and could prove to be a superior implant material generating less inflammation which might result in less osteolysis.

  12. Mushy Zone Properties and Castability of Aluminium Foundry Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dahle, A.K.

    1996-01-01

    The growing application and market share of aluminium castings demand better understanding of the mechanisms of defect formation during casting. Although casting is a cost-effective production route, inadequate reproducibility and quality of the cast structure often restrict the utilization of castings. This doctoral thesis aims to (1) determine how the solidification conditions affect the rheological behaviour in the partially solidified state, (2) to measure how alterations in solidification variables influence castability, and (3) to investigate the relationship between mushy zone rheology and castability. The development of mechanical strength in the mushy zone was measured as a function of chemical composition. Measurements of the dendrite coherency point provided accurate determination of the point where the dendrite network is established. The strength measurements confirm that the dendrites are largely independent and free-floating before dendrite coherency. The point and rate of strength development in the subsequently established interdendritic network strongly depend on the size and morphology of the dendrites and fraction solid. The castability investigation was limited to evaluations of fluidity and feeding. Fluidity measurements showed a complex effect of increased grain refinement. Alterations of the concentration and type of main alloying element gave a direct relationship between mushy zone rheology and fluidity. The range of the operating feeding mechanisms during solidification is directly related to the rheological properties of the mushy zone. 251 refs., 77 refs., 25 tabs.

  13. Influence of Al grain structure on Fe bearing intermetallics during DC casting of an Al-Mg-Si alloy

    OpenAIRE

    Kumar, S.; O'Reilly, K.A.Q.

    2016-01-01

    207 mm diameter direct chill (DC) cast billets of 6063 aluminium-magnesium-silicon (Al-Mg-Si) alloy were produced with various different primary aluminium (α-Al) grain structures including feathery-dendrites, equiaxed-dendrites and equiaxed-globular morphologies. To control the α-Al grain structure (grain morphology and grain size) an intensive shearing melt conditioning technique and Al-5Ti-1B grain refiner were used. For the first time, due to the variety of controlled microstructures produ...

  14. Effect of iron and silicon in aluminium and its alloys

    International Nuclear Information System (INIS)

    Kovacs, I.

    1990-01-01

    The iron and silicon are the main impurities in aluminium, they are always present in alloys made from commercially pure base material. The solid solubility of iron in aluminium is very low, therefore its largest amount forms intermetallic compounds the kind of which depends strongly on the other impurities of alloying elements. Although the solid solubility of silicon is much larger than that of the iron, it is the constituent of both the primary and the secondary particles, the structure of which depends in general on the iron-silicon concentration ratio. These Fe and Si containing particles can cause various and basic changes in the macroscopic properties of the alloy. Since commercially pure aluminium has extensive consumer and industrial use, it is very important to know, not only from scientific but also from practical point of view, the effect of iron and silicon on the physical and mechanical properties of aluminium and its alloys. The aim of the ''International Workshop on the Effect of Iron and Silicon in Aluminium and its Alloys'' was to clarify the present knowledge on this subject. The thirty papers presented at the Workshop and collected in this Proceedings cover many important fields of the subject. I hope that they will contribute to both the deeper understanding of the related phenomena and the improvement of technologies for producing better aluminium alloys

  15. Impact toughness of laser alloyed aluminium AA1200 alloys

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2013-08-01

    Full Text Available ),. 559-563. [2] T. Tomida, K. Nakata, S. Saji, T. Kubo, T, Formation of metal matrix composite layer on aluminium alloy with TiC-Cu powder by laser surface alloying process; Surface and Coatings Technology; vol. 142-144, 2001, 585-589. [3] L. A. B...

  16. Evolution of microstructure of U-Mo alloys in as cast and sintered forms

    International Nuclear Information System (INIS)

    Sinha, V.P.; Hegde, P.V.; Prasad, G.J.; Kamath, H.S.; Dey, G.K.

    2009-01-01

    Over the years U 3 Si 2 compound dispersed in aluminium matrix has been successfully used as potential Low Enriched Uranium (LEU 235 ) base dispersion fuel in new research and test reactors and also for converting High Enriched Uranium (HEU > 85% U 235 ) cores to LEU in most of the existing research and test reactors. The maximum density achievable with U 3 Si 2 -AI dispersion fuel is around 4.8 g U cm -3 . To achieve a uranium density of 8.0 to 9.0 g U cm -3 in dispersion fuel with aluminium as matrix material, it is required to use γ-stabilized uranium metal powders. At Metallic Fuels Division, R and D efforts are on to develop these high density uranium alloys. Molybdenum plays a crucial role in metastabilising the γ-phase of uranium at room temperature which is very much evident when we see the microstructures of different U-Mo alloys with varying molybdenum concentration as solute atom. The paper describes the role of molybdenum in imparting metastability in U-Mo alloys from their microstructures in as cast and sintered forms. The paper also covers the role of tailored microstructure in U-Mo alloy for the purpose of hydriding and dehydriding treatment to generate alloy powders. (author)

  17. Evaluation of casting defects in aluminium alloys by CT and US

    International Nuclear Information System (INIS)

    Silva, Ivan L.M.; Lopes, Ricardo T.; Jesus, Edgar F.O. de

    2000-01-01

    This work shows the development of a methodology in the comparative analyze between the Computerized Tomography and the ultrasound technique. These techniques were utilized in non-destructive essays in casting pieces in aluminum alloy with the aim of analyzing all kinds of defects aroused in the casting process. The results show that the computerized tomography gives a more precise and easier information to be interpreted. On the other hand, the ultrasound technique is a more sensitive technique that can be utilized as an auxiliary tool for choosing the parameters used in the computerized tomography. The results with the X-ray transmission tomography technique show results of spatial resolution of the order of 0.8 mm. The ultra-sound technique was capable of detecting defects of the order of 0.5 mm of diameter, with resolution of 0.4 mm in the x direction and 0.39 in y direction, besides being sensitive to the porosity presence. (author)

  18. Precipitate strengthening of nanostructured aluminium alloy.

    Science.gov (United States)

    Wawer, Kinga; Lewandowska, Malgorzata; Kurzydlowski, Krzysztof J

    2012-11-01

    Grain boundaries and precipitates are the major microstructural features influencing the mechanical properties of metals and alloys. Refinement of the grain size to the nanometre scale brings about a significant increase in the mechanical strength of the materials because of the increased number of grain boundaries which act as obstacles to sliding dislocations. A similar effect is obtained if nanoscale precipitates are uniformly distributed in coarse grained matrix. The development of nanograin sized alloys raises the important question of whether or not these two mechanisms are "additive" and precipitate strengthening is effective in nanostructured materials. In the reported work, hydrostatic extrusion (HE) was used to obtain nanostructured 7475 aluminium alloy. Nanosized precipitates were obtained by post-HE annealing. It was found that such annealing at the low temperatures (100 degrees C) results in a significant increase in the microhardness (HV0.2) and strength of the nanostructured 7475 aluminium alloy. These results are discussed in terms of the interplay between the precipitation and deformation of nanocrystalline metals.

  19. Market Opportunity of Some Aluminium Silicon Alloys Materials through Changing the Casting Process

    Directory of Open Access Journals (Sweden)

    Delfim SOARES

    2012-08-01

    Full Text Available Fatigue is considered to be the most common mechanism by which engineering components fail, and it accounts for at least 90% of all service failures attributed to mechanical causes. Mechanical properties (tensile strength, tensile strain, Young modulus, etc as well as fatigue properties (fatigue life are very dependent on casting method. The most direct effects of casting techniques are on the metallurgical microstructure that bounds the mechanical properties. One of the important variables affected by the casting technique is the cooling rate which is well known to strongly restrict the microstructure. In the present research has been done a comparison of fatigue properties of two aluminum silicon alloys obtained by two casting techniques. It was observed that the fatigue life is increasing with 24% for Al12Si and 31% for AL18Si by using centrifugal casting process instead of gravity casting. This increasing in fatigue life means that a component tailored from materials obtained by centrifugal casting will stay longer in service. It was made an estimation of the time required to recover the costs of technology in order to use the centrifuge process that will allow to obtain materials with improved properties. The amortization can be achieved by using two different marketing techniques: through the release of the product at the old price and with much longer life of the component which means "same price - longer life", or increasing price, by highlighting new product performance which means "higher price - higher properties".

  20. Low temperature oxidation of niobium alloy with silicon-aluminium coating

    International Nuclear Information System (INIS)

    Lazarev, Eh.M.; Sapozhnikova, L.V.; Shabanova, M.E.; Pod'yachev, V.N.; Kornilova, Z.I.

    1987-01-01

    Using the gravimetry methods heat resistance of niobium-titanium-aluminium alloy in the air and at 700 deg C in the initial state and when it is protected by silicide-aluminium coatings (with variable content of aluminium) is investigated. Using X-ray diffraction and micro X-ray diffraction analyses, mechanisms of the alloy oxidation and the coating protective effect are studied. The role of aluminium in the formation of coatings is analyzed and according to bend tests the plasticity of the coatings is evaluated

  1. Improving the wettability of 2024 aluminium alloy by means of cold plasma treatment

    Science.gov (United States)

    Polini, W.; Sorrentino, L.

    2003-05-01

    Aluminium alloys are heavily used to manufacture structural parts in the aeronautic industry because of its lightness and its corrosion resistance. These alloys are successfully used in other industrial fields too, such as railway, automotive and naval industries. The need to contrast the severe use conditions and the heavy stresses developing in aeronautic field implies to protect the surfaces of the structures in aluminium alloy by any deterioration. To preserve by deterioration, it is necessary to make aluminium more suitable to be coated by protective paint. In the aeronautic industry, a complex and critical process is used in order to enhance both wettability and adhesive properties of aluminium alloy surfaces. Cold plasma treatment represents an efficient, clean and economic alternative to activate aluminium surfaces. The present work deals with air cold plasma treatment of 2024 aluminium alloy surfaces. The influence of dc electrical discharge cold plasma parameters on wettability of 2024 aluminium alloy surfaces has been studied. A set of process variables (voltage, time and air flow rate) has been identified and used to conduct some experimental tests on the basis of design of experiment (DOE) techniques. The experimental results show that the proposed plasma process may considerably increase aluminium alloy wettability. These results represent the first step in trying to optimise the aluminium adhesion by means of this non-conventional manufacturing process.

  2. Weld metal grain refinement of aluminium alloy 5083 through controlled additions of Ti and B

    Energy Technology Data Exchange (ETDEWEB)

    Schempp, Philipp; Rethmeier, Michael [Federal Institute for Materials Research and Testing BAM, Berlin (Germany). Div. ' ' Safety of Joined Components' ' ; Fraunhofer Institute for Production Systems and Design Technology IPK, Berlin (Germany). Dept. ' ' Joining and Coating Technology' ' ; Schwenk, Christopher; Cross, Carl Edward [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany)

    2011-07-01

    The refinement of the weld metal grain structure may lead to a significant change in its mechanical properties and in the weldability of the base metal. One possibility to achieve weld metal grain refinement is the inoculation of the weld pool. In this study, it is shown how additions of titanium and boron influence the weld metal grain structure of GTA welds of the aluminium alloy 5083 (Al Mg4.5Mn0.7). For this purpose, inserts consisting of base metal and additions of the master alloy Al Ti5B1 have been cast, deposited in the base metal and fused in a GTA welding process. The increase of the Ti and B content led to a significant decrease of the weld metal mean grain size and to a change in grain shape. The results provide a basis for a more precise definition of the chemical composition of commercial filler wires and rods for aluminium arc welding. (orig.)

  3. Contradictory effect of chromate inhibitor on corrosive wear of aluminium alloy

    International Nuclear Information System (INIS)

    Pokhmurskii, V.I.; Zin, I.M.; Vynar, V.A.; Bily, L.M.

    2011-01-01

    Research highlights: → Corrosive wear of aluminium alloy in inhibited artificial acid rain was studied. → Tribometer with linear reciprocating ball-on-flat geometry was used.→ Corrosion potential, polarization current and friction coefficient were measured. → Chromate decreases corrosion of aluminium alloy under wear conditions. → Chromate in general accelerates corrosive wear of the alloy in acid rain. - Abstract: The corrosive wear of D16T aluminium alloy in artificial acid rain was studied. A special tribometer with the linear reciprocating ball-on-flat geometry was used. The setup allows to measure simultaneously an open circuit potential, to carry out potentiostatic and potentiodynamic polarization studies of the alloy corrosion and to record the friction coefficient. It was established that the addition of strontium chromate inhibitor to the working environment decreases an electrochemical corrosion of the aluminium alloy under wear conditions, but in general accelerates its destruction due to insufficient wear resistance of a formed surface film.

  4. Elastic and plastic properties of iron-aluminium alloys. Special problems raised by the brittleness of alloys of high aluminium content

    International Nuclear Information System (INIS)

    Mouturat, P.

    1966-06-01

    The present study embodies the results obtained with iron-aluminium alloys whose composition runs from 0 to nearly 50 atoms per cent aluminium. Conditions of elaboration and transformation have been studied successively, as well as the Young's modulus and the flow stress; the last chapter embodies, a study of the Portevin-le-Chatelier effect in alloys of 40 atoms per cent of aluminium. I) The principal difficulty to clear up consisted in the intergranular brittleness of ordered alloys; this brittleness has been considerably reduced with appropriate conditions of elaboration and transformation. II) The studies upon the Young's modulus are in connection with iron-aluminium alloys; transformation temperatures are well shown up. The formation of covalent bonds on and after 25 atoms per cent show the highest values of the modulus. III) The analysis of variations of the flow stress according to the temperature show some connection with ordered structures, the existence of antiphase domains and the existence of sur-structure dislocations. IV) In the ordered Fe Al domain the kinetics of the Portevin-le-Chatelier effect could be explained by a mechanism of diffusion of vacancies. The role they play has been specified by the influence they exert upon the dislocations; this has led us to the inhomogeneous Rudman order; this inhomogeneous order could explain the shape of the traction curves. (author) [fr

  5. Crystallographic orientation-spray formed hypereutectic aluminium-silicon alloys

    Directory of Open Access Journals (Sweden)

    Hamilta de Oliveira Santos

    2005-06-01

    Full Text Available Aluminium-silicon alloys have been wide accepted in the automotive, electric and aerospace industries. Preferred orientation is a very common condition for metals and alloys. Particularly, aluminium induces texture during the forming process. The preparation of an aggregate with completely random crystal orientation is a difficult task. The present work was undertaken to analyse the texture by X-ray diffraction techniques, of three spray formed hypereutectic Al-Si alloys. Samples were taken from a billet of an experimental alloy (alloy 1 and were subsequently hot-rolled and cold-rolled (height reduction, 72% and 70%, respectively. The other used samples, alloys 2 and 3, were taken from cylinders liners. The results from the Laue camera showed texture just in the axial direction of alloy 3. The pole figures also indicated the presence of a typical low intensity deformation texture, especially for alloy 3. The spray formed microstructure, which is very fine, hinders the Al-Si texture formation during mechanical work.

  6. Filler metal alloy for welding cast nickel aluminide alloys

    Science.gov (United States)

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  7. Pressing Speed, Specific Pressure and Mechanical Properties of Aluminium Cast

    Directory of Open Access Journals (Sweden)

    Gaspar S.

    2016-06-01

    Full Text Available Recent research in the process of aluminum alloy die castings production, which is nowadays deeply implemented into the rapidly growing automobile, shipping and aircraft industries, is aimed at increasing the useful qualitative properties of the die casting in order to obtain its high mechanical properties at acceptable economic cost. Problem of technological factors of high pressure die casting has been a subject of worldwide research (EU, US, Japan, etc.. The final performance properties of die castings are subjected to a large number of technological factors. The main technological factors of high pressure die casting are as follows: plunger pressing speed, specific (increase pressure, mold temperature as well as alloy temperature. The contribution discusses the impact of the plunger pressing speed and specific (increase pressure on the mechanical properties of the casting aluminum alloy.

  8. Grain distinct stratified nanolayers in aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Donatus, U., E-mail: uyimedonatus@yahoo.com [School of Materials, The University of Manchester, Manchester, M13 9PL, England (United Kingdom); Thompson, G.E.; Zhou, X.; Alias, J. [School of Materials, The University of Manchester, Manchester, M13 9PL, England (United Kingdom); Tsai, I.-L. [Oxford Instruments NanoAnalysis, HP12 2SE, High Wycombe (United Kingdom)

    2017-02-15

    The grains of aluminium alloys have stratified nanolayers which determine their mechanical and chemical responses. In this study, the nanolayers were revealed in the grains of AA6082 (T6 and T7 conditions), AA5083-O and AA2024-T3 alloys by etching the alloys in a solution comprising 20 g Cr{sub 2}O{sub 3} + 30 ml HPO{sub 3} in 1 L H{sub 2}O. Microstructural examination was conducted on selected grains of interest using scanning electron microscopy and electron backscatter diffraction technique. It was observed that the nanolayers are orientation dependent and are parallel to the {100} planes. They have ordered and repeated tunnel squares that are flawed at the sides which are aligned in the <100> directions. These flawed tunnel squares dictate the tunnelling corrosion morphology as well as appearing to have an affect on the arrangement and sizes of the precipitation hardening particles. The inclination of the stratified nanolayers, their interpacing, and the groove sizes have significant influence on the corrosion behaviour and seeming influence on the strengthening mechanism of the investigated aluminium alloys. - Highlights: • Stratified nanolayers in aluminium alloy grains. • Relationship of the stratified nanolayers with grain orientation. • Influence of the inclinations of the stratified nanolayers on corrosion. • Influence of the nanolayers interspacing and groove sizes on hardness and corrosion.

  9. A reliability based stress-life evaluation of aluminium-graphite particulate composites

    International Nuclear Information System (INIS)

    Achutha, M.V.; Sridhara, B.K.; Abdul Budan, D.

    2008-01-01

    Fatigue tests were conducted on sand cast aluminium-graphite composite specimens on Rotating Beam Fatigue Testing Machine with three different stress levels. Aluminium-graphite (LM 25-5% graphite) composite was processed by closed mould sand casting method. Three-stress level fatigue test program was planned for carrying out fatigue experiments. Three different stress levels selected for fatigue experiments were a fraction of ultimate tensile strength. Statistical design of fatigue experiments was carried out to determine the sample size at each stress level. Experimental results are presented in the form of stress-life (S-N) curves and reliability-stress-life (R-S-N) curves, which are helpful for designers. The S-N curve of the aluminium-graphite composite was compared with its matrix alloy LM 25. Comparison revealed that the fatigue behaviour of the aluminium-graphite composite is superior to that of the matrix alloy

  10. Influence of the crystallization condition on Al–Si–Cu casting alloys structure

    OpenAIRE

    L.A. Dobrzański; W. Borek; R. Maniara

    2006-01-01

    Purpose: The purpose of this paper is to show the effect of solidification rate on microstructural features,hardness and microhardness of Al–Si–Cu alloys in as cast state.Design/methodology/approach: The main base of the paper is to compare the properties of aluminium castalloys of ACAlSi7Cu, ACAlSi7Cu2 and ACAlSi7Cu4. Microstructural features were characterised using lightoptical microscopy. For rapid determination of the parameters: grains size and Secondary Dendrite Arm Spacing– SDAS were ...

  11. A survey of some metallographic etching reagents for restoration of obliterated engraved marks on aluminium-silicon alloy surfaces.

    Science.gov (United States)

    Uli, Norjaidi; Kuppuswamy, R; Amran, Mohd Firdaus Che

    2011-05-20

    A brief survey to assess the sensitivity and efficacy of some common etching reagents for revealing obliterated engraved marks on Al-Si alloy surfaces is presented. Experimental observations have recommended use of alternate swabbing of 10% NaOH and 10% HNO(3) on the obliterated surfaces for obtaining the desired results. The NaOH etchant responsible for bringing back the original marks resulted in the deposition of some dark coating that has masked the recovered marks. The coating had been well removed by dissolving it in HNO(3) containing 10-20% acid. However, the above etching procedure was not effective on aluminium (99% purity) and Al-Zn-Mg-Cu alloy surfaces. Also the two reagents (i) immersion in 10% aq. phosphoric acid and (ii) alternate swabbing of 60% HCl and 40% NaOH suggested earlier for high strength Al-Zn-Mg-Cu alloys [23] were quite ineffective on Al-Si alloys. Thus different aluminium alloys needed different etching treatments for successfully restoring the obliterated marks. Al-Si alloys used in casting find wide applications especially in the manufacture of engine blocks of motor vehicles. Hence, the results presented in this paper are of much relevance in serial number restoration problems involving this alloy. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Combined Corrosion and Wear of Aluminium Alloy 7075-T6

    NARCIS (Netherlands)

    Liu, Y.; Mol, J.M.C.; Janssen, G.C.A.M.

    2016-01-01

    The aluminium alloy 7075-T6 is widely used in engineering. In some applications, like slurry transport, corrosion and abrasion occur simultaneously, resulting in early material failure. In the present work, we investigated the combined effect of corrosion and wear on the aluminium alloy 7075-T6. We

  13. Effect of tempering on corrosion resistance of cast aluminium bronzes

    International Nuclear Information System (INIS)

    Aaltonen, P.; Klemetti, K.; Haenninen, H.

    1985-01-01

    The subject of this study is corrosion resistance of aluminium bronzes, which are copper base alloys containing aluminium up to 12% with additions of nickel, iron and manganese. The main conclutions that can be drawn are: (1) The dealloying corrosion resistance of nickel-aluminium bronze is much better than that of aluminium bronze with iron and manganese additions, but it is not immune; (2) The dealloying corrosion resistance of aluminium bronzes can be improved by appropiate heat treatments. The best properties were obtained by temperering between 600 and 800 deg C, depending on the initial microstructure; (3) In crevice conditions, where local acidification can occur, dealloying of aluminium bronzes is a consequence of the preferential attack of aluminium-rich phases. By appropriate tempering, a uniform distribution of aluminium-rich phases is obtained and the continous path for selective corrosion is not formed

  14. Corrosion-electrochemical behaviour and mechanical properties ofaluminium alloy-321, alloyed by barium

    International Nuclear Information System (INIS)

    Ganiev, I.; Mukhiddinov, G.N.; Kargapolova, T.V.; Mirsaidov, U.

    1995-01-01

    The purpose of present work is studying of influence of barium additionson electrochemical corrosion of casting aluminium-copper alloy Al-321,containing as base alloying components copper, chromium, manganese, titanium,zirconium, cadmium

  15. Beryllium-aluminum alloys for investment castings

    International Nuclear Information System (INIS)

    Nachtrab, W.T.; Levoy, N.

    1997-01-01

    Beryllium-aluminum alloys containing greater than 60 wt % beryllium are very favorable materials for applications requiring light weight and high stiffness. However, when produced by traditional powder metallurgical methods, these alloys are expensive and have limited applications. To reduce the cost of making beryllium-aluminum components, Nuclear Metals Inc. (NMI) and Lockheed Martin Electronics and Missiles have recently developed a family of patented beryllium-aluminum alloys that can be investment cast. Designated Beralcast, the alloys can achieve substantial weight savings because of their high specific strength and stiffness. In some cases, weight has been reduced by up to 50% over aluminum investment casting. Beralcast is now being used to make thin wall precision investment castings for several advanced aerospace applications, such as the RAH-66 Comanche helicopter and F-22 jet fighter. This article discusses alloy compositions, properties, casting method, and the effects of cobalt additions on strength

  16. Effect of Cr and Mn addition and heat treatment on AlSi3Mg casting alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tocci, Marialaura, E-mail: m.tocci@unibs.it [Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123 Brescia (Italy); Donnini, Riccardo, E-mail: riccardo.donnini@cnr.it [National Research Council of Italy (CNR), Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), Via R. Cozzi 53, 20125 Milan (Italy); Angella, Giuliano, E-mail: giuliano.angella@cnr.it [National Research Council of Italy (CNR), Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), Via R. Cozzi 53, 20125 Milan (Italy); Pola, Annalisa, E-mail: annalisa.pola@unibs.it [Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123 Brescia (Italy)

    2017-01-15

    In the present paper the effect of heat treatment on an AlSi3Mg alloy with and without Cr and Mn addition was investigated. Beside the well-known modification of the morphology of Fe-containing intermetallics, it was found that Cr and Mn allowed the formation of dispersoids in the aluminium matrix after solution heat treatment at 545 °C, as shown by scanning transmission electron microscope observations. These particles were responsible of the enhanced Vickers microhardness of the aluminium matrix in comparison with the base alloy after solution treatment and quenching, according to dispersion hardening mechanism. The presence of these particles was not affected by ageing treatment, which instead allowed the precipitation of β-Mg{sub 2}Si, as shown by the elaboration of differential scanning calorimeter curves. The formation of dispersoids and the study of their effect on mechanical properties can represent an interesting development for applications at high temperatures of casting alloys due to their thermal stability compared to other strengthening phases as β-Mg{sub 2}Si. - Highlights: •Cr and Mn successfully modified the morphology of Fe-containing intermetallics. •Cr- and Mn-dispersoids formed in the aluminium matrix during solution treatment. •Dispersion hardening was detected after solution treatment for Cr-containing alloy. •The dispersion hardening effect was maintained after ageing treatment.

  17. Structure and Mechanical Properties of Al-Li Alloys as Cast

    Directory of Open Access Journals (Sweden)

    Augustyn-Pieniążek J.

    2013-06-01

    Full Text Available The high mechanical properties of the Al-Li-X alloys contribute to their increasingly broad application in aeronautics, as an alternative for the aluminium alloys, which have been used so far. The aluminium-lithium alloys have a lower specific gravity, a higher nucleation and crack spread resistance, a higher Young’s module and they characterize in a high crack resistance at lower temperatures. The aim of the research planned in this work was to design an aluminium alloy with a content of lithium and other alloy elements. The research included the creation of a laboratorial melt, the microstructure analysis with the use of light microscopy, the application of X-ray methods to identify the phases existing in the alloy, and the microhardness test.

  18. HPDL Remelting of Anodised Al-Si-Cu Cast Alloys Surfaces

    Directory of Open Access Journals (Sweden)

    K. Labisz

    2012-12-01

    Full Text Available The results of the investigations of the laser remelting of the AlSi9Cu4 cast aluminium alloy with the anodised and non-anodised surfacelayer and hardness changes have been presented in this paper. The surface layer of the tested aluminium samples was remelted with thelaser of a continuous work. The power density was from 8,17•103 W/cm2 to 1,63•104 W/cm2. The metallographic tests were conducted inform of light microscope investigations of the received surface layer. The main goal of the investigation was to find the relation betweenthe laser beam power and its power density falling on a material, evaluating the shape and geometry of the remelted layers and theirhardness. As the substrate material two types of surfaces of the casted AlSi9Cu4 alloy were applied – the non–treated as cast surface aswell the anodized surface. As a device for this type of surface laser treatment the High Power Diode Laser was applied with a maximumpower of 2.2 kW and the dimensions of the laser beam focus of 1.8 x 6.8 mm. By mind of such treatment it is also possible to increasehardness as well eliminate porosity and develop metallurgical bonding at the coating-substrate interface. Suitable operating conditions forHPDL laser treatment were finally determined, ranging from 1.0 to 2.0 kW. Under such conditions, taking into account the absorptionvalue, the effects of laser remelting on the surface shape and roughness were studied. The results show that surface roughness is reducedwith increasing laser power by the remelting process only for the non-anodised samples, and high porosity can be found in the with highpower remelted areas. The laser influence increases with the heat input of the laser processing as well with the anodisation of the surface,because of the absorption enhancement ensured through the obtained alumina layer.

  19. Processing and characterization of aluminium alloys or composites exhibiting low-temperature or high-rate superplasticity

    International Nuclear Information System (INIS)

    Huang, J. C.

    1997-01-01

    Wide applications of superplastic forming still face several problems, one is the high temperature that promotes grain growth, another is the low forming rate that makes economically inefficient. The current study is intended to develop a series of fabrication and thermomechanical processing, so as to result in materials possessing either low temperature superplasticity (LTSP) or high rate superplasticity (HRSP). The former has been achieved in the cast Al alloys, while the latter was accomplished in powder-metallurgy aluminium matrix composites. The aluminium alloys, after special thermomechanical processes, exhibited LTSP from 300 to 450 degree C with elongations varying from 300 to 700 %. The LTSP sheets after 700 % elongation at 350 degree C still possessed fine grains 3.7 μm size and narrow surface solute depletion zones 11 μm in with, resulting in a post-SP T6 strength of 500 MPa, significantly higher than that of the HTSP superplasticity alloys tested at 525 degree C or above. Meanwhile, it was found that LTSP materials may be transferred into HTSP materials simply by adding a preloading at 300-400 degree C for a small amount of work. As for the endeavor in making HRSP materials, 2024Al/SiC, 6061Al/SiC and Al/Al 3 Ti systems processed by powder metallurgy or mechanical alloying methods are under investigation. The average sizes of the reinforcing SiC or A13Ti particles, as well as the grain size are all around 1 μm. The aluminium composites have exhibited HRSP at 525-620 degree C and 10 -2 -10 -1 s -l , with elongations varying from 150 to 350 %. This ultimate goal is to produce an alloy or composite exhibiting low temperature and high strain rate superplasticity (LT and HRSP). (author)

  20. The assessment of castings quality using selected quantitative methods

    Directory of Open Access Journals (Sweden)

    Lenka Kuchariková

    2016-12-01

    Full Text Available Aluminium alloys represent an important category of materials due to their high technological value and wide range of applications. The alloys of the Al-Si-Cu system have become increasingly important in recent years, mainly in automotive industry that uses secondary aluminium (recycled in the form of various motor mounts, pistons, cylinder heads, heat exchangers, air conditioners due to their high strength at room and high temperature. This work deals with possibilities of quick and correct assessment of aluminium castings microstructure, especially focused on volume, size and shape of structural parameters – eutectic Si and ntermetallic phases different chemical compositions. These structural parameters affect the properties of castings and it is important to study their features. The features were studied by using image analyser software NIS Elements.

  1. Distribution of trace elements in a modified and grain refined aluminium-silicon hypoeutectic alloy.

    Science.gov (United States)

    Faraji, M; Katgerman, L

    2010-08-01

    The influence of modifier and grain refiner on the nucleation process of a commercial hypoeutectic Al-Si foundry alloy (A356) was investigated using optical microscopy, scanning electron microscopy (SEM) and electron probe microanalysis technique (EPMA). Filtering was used to improve the casting quality; however, it compromised the modification of silicon. Effect of filtering on strontium loss was also studied using the afore-mentioned techniques. EPMA was used to trace the modifying and grain refining agents inside matrix and eutectic Si. This was to help understanding mechanisms of nucleation and modification in this alloy. Using EPMA, the negative interaction of Sr and Al3TiB was closely examined. In modified structure, it was found that the maximum point of Sr concentration was in line with peak of silicon; however, in case of just 0.1wt% added Ti, the peak of Ti concentration was not in line with aluminium, (but it was close to Si peak). Furthermore, EPMA results showed that using filter during casting process lowered the strontium content, although produced a cleaner melt. (c) 2010 Elsevier Ltd. All rights reserved.

  2. Grindability of cast Ti-Cu alloys.

    Science.gov (United States)

    Kikuchi, Masafumi; Takada, Yukyo; Kiyosue, Seigo; Yoda, Masanobu; Woldu, Margaret; Cai, Zhuo; Okuno, Osamu; Okabe, Toru

    2003-07-01

    The purpose of the present study was to evaluate the grindability of a series of cast Ti-Cu alloys in order to develop a titanium alloy with better grindability than commercially pure titanium (CP Ti), which is considered to be one of the most difficult metals to machine. Experimental Ti-Cu alloys (0.5, 1.0, 2.0, 5.0, and 10.0 mass% Cu) were made in an argon-arc melting furnace. Each alloy was cast into a magnesia mold using a centrifugal casting machine. Cast alloy slabs (3.5 mm x 8.5 mm x 30.5 mm), from which the hardened surface layer (250 microm) was removed, were ground using a SiC abrasive wheel on an electric handpiece at four circumferential speeds (500, 750, 1000, or 1250 m/min) at 0.98 N (100 gf). Grindability was evaluated by measuring the amount of metal volume removed after grinding for 1min. Data were compared to those for CP Ti and Ti-6Al-4V. For all speeds, Ti-10% Cu alloy exhibited the highest grindability. For the Ti-Cu alloys with a Cu content of 2% or less, the highest grindability corresponded to an intermediate speed. It was observed that the grindability increased with an increase in the Cu concentration compared to CP Ti, particularly for the 5 or 10% Cu alloys at a circumferential speed of 1000 m/min or above. By alloying with copper, the cast titanium exhibited better grindability at high speed. The continuous precipitation of Ti(2)Cu among the alpha-matrix grains made this material less ductile and facilitated more effective grinding because small broken segments more readily formed.

  3. Grain refinement of zinc-aluminium alloys

    International Nuclear Information System (INIS)

    Zaid, A.I.O.

    2006-01-01

    It is now well-established that the structure of the zinc-aluminum die casting alloys can be modified by the binary Al-Ti or the ternary Al-Ti-B master alloys. in this paper, grain refinement of zinc-aluminum alloys by rare earth materials is reviewed and discussed. The importance of grain refining of these alloys and parameters affecting it are presented and discussed. These include parameters related to the Zn-Al alloys cast, parameters related to the grain refining elements or alloys and parameters related to the process. The effect of addition of other alloying elements e.g. Zr either alone or in the presence of the main grain refiners Ti or Ti + B on the grain refining efficiency is also reviewed and discussed. Furthermore, based on the grain refinement and the parameters affecting it, a criterion for selection of the optimum grain refiner is suggested. Finally, the recent research work on the effect of grain refiners on the mechanical behaviour, impact strength, wear resistance, and fatigue life of these alloys are presented and discussed. (author)

  4. Research progress of aluminium alloy endplates for PEMFCs

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yu.; Hou, Junbo [Fuel Cell system and Engineering Laboratory, Dalian Institute of Chemical and Physics, Chinese Academy of Sciences, Dalian 116023 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Hou, Ming; Yan, Xiqiang; Luo, Xiaokuan; Shao, Zhigang; Yi, Baolian [Fuel Cell system and Engineering Laboratory, Dalian Institute of Chemical and Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2007-04-15

    The endplate is a crucial component in a proton exchange membrane fuel cell (PEMFC) stack. It can provide the necessary rigidity and strength for the stack. An aluminium alloy is one of the ideal materials for PEMFC endplates because of its low density and high rigidity. But it does not meet the requirements of corrosion resistance and electrical insulation in PEMFC environments. In this work, methods of sealing treatments and the conditions of aluminium alloy anodization were investigated. Corrosion resistances of the samples prepared by different technologies were evaluated in simulated PEMFC environments. The results showed that the corrosion resistance of the samples sealed by epoxy resin was greatly improved compared with those sealed in boiling water, and the samples anodized at a constant current density performed better than those anodized at a constant voltage. By insulation measurements, all of the samples showed good electrical insulation. The aluminium alloy endplate anodized at a constant current density and sealed with thermosetting bisphenol-A epoxy resin exhibited promising potential for practical applications by assembling it in a PEMFC stack and applying a life test. (author)

  5. Microstructures of alloyed and dispersed hard particles in the aluminium surface

    CSIR Research Space (South Africa)

    Pityana, S

    2010-03-01

    Full Text Available Laser surface alloying of A1200 aluminium alloy was carried out using a 4.4 kW Nd:YAG laser. Powder mixtures of SiC and TiC hard particles were injected into the laser generated melt pool on the aluminium substrate using a commercial powder feeder...

  6. Remediation of phosphate-contaminated water by electrocoagulation with aluminium, aluminium alloy and mild steel anodes.

    Science.gov (United States)

    Vasudevan, Subramanyan; Lakshmi, Jothinathan; Jayaraj, Jeganathan; Sozhan, Ganapathy

    2009-05-30

    The present study provides an electrocoagulation process for the remediation of phosphate-contaminated water using aluminium, aluminium alloy and mild steel as the anodes and stainless steel as the cathode. The various parameters like effect of anode materials, effect of pH, concentration of phosphate, current density, temperature and co-existing ions, and so forth, and the adsorption capacity was evaluated using both Freundlich and Langmuir isotherm models. The adsorption of phosphate preferably fitting the Langmuir adsorption isotherm suggests monolayer coverage of adsorbed molecules. The results showed that the maximum removal efficiency of 99% was achieved with aluminium alloy anode at a current density of 0.2 A dm(-2), at a pH of 7.0. The adsorption process follows second-order kinetics.

  7. Friction factor of CP aluminium and aluminium–zinc alloys

    Indian Academy of Sciences (India)

    zinc alloys using ring compression test at different temperatures from 303 K to 773 K. It is found that CP aluminium exhibits stick- ing whereas Al–Zn alloys do not exhibit sticking at elevated temperatures. Hot working of Al–Zn alloy is easier.

  8. Evaluation of porosity in Al alloy die castings

    Directory of Open Access Journals (Sweden)

    M. Říhová

    2012-01-01

    Full Text Available Mechanical properties of an Al-alloy die casting depend significantly on its structural properties. Porosity in Al-alloy castings is one of the most frequent causes of waste castings. Gas pores are responsible for impaired mechanical-technological properties of cast materials. On the basis of a complex evaluation of experiments conducted on AlSi9Cu3 alloy samples taken from the upper engine block which was die- cast with and without local squeeze casting it can be said that castings manufactured without squeeze casting exhibit maximum porosity in the longitudinal section. The area without local squeeze casting exhibits a certain reduction in mechanical properties and porosity increased to as much as 5%. However, this still meets the norms set by SKODA AUTO a.s.

  9. Complex deformation routes for direct recycling aluminium alloy scrap via industrial hot extrusion

    Science.gov (United States)

    Paraskevas, Dimos; Kellens, Karel; Kampen, Carlos; Mohammadi, Amirahmad; Duflou, Joost R.

    2018-05-01

    This paper presents the final results of an industrial project, aiming for direct hot extrusion of wrought aluminium alloy scrap at an industrial scale. Two types of complex deformation/extrusion routes were tested for the production of the same profile, starting from AA6060 scrap in form of machining chips. More specifically scrap-based billets were extruded through: a 2-porthole and a 4-porthole die-set, modified for enhanced scrap consolidation and grain refinement. For comparison reasons, cast billets of the same alloy were extruded through the modified 2-porthole die set. The tensile testing results as well as microstructural investigations show that the 4-porthole extrusion route further improves scrap consolidation compared to the 2-porthole die output. The successful implementation of solid state recycling, directly at industrial level, indicates the technological readiness level of this research.

  10. Determination of the distribution and content of boron in aluminium casting strands. 1

    International Nuclear Information System (INIS)

    Rachlitz, R.

    1987-01-01

    Neutron-induced autoradiography was applied to investigate and optimize grain refining in the production of aluminium casting strands. The behaviour of the alloy AlTi5B1 used for grain refining was studied by analysis of both content and distribution of boron. This paper is concerned with the quantitative determinatin of track densities by means of the image analyzer type A 6471 and the results obtained are discussed in comparison with the amount of tracks visually counted. Boron contents as calculated from track densities are compared with calibration functions relating track density to the boron content determined by chemical analysis. The content of boron depends on the position of the autoradiographed plane in the sample, allowing, with its distribution taken into consideration, grain-refining processes to be studied. (author)

  11. Cavitation-aided grain refinement in aluminium alloys

    NARCIS (Netherlands)

    Atamanenko, T.V.

    2010-01-01

    This thesis deals with grain refinement under the influence of ultrasonic-driven cavitation in aluminium casting processes. Three major goals of this research were: (1) to identify the mechanism of the cavitation-aided grain refinement at different stages of solidification; (2) to reveal the

  12. Friction Welding of Aluminium and Aluminium Alloys with Steel

    Directory of Open Access Journals (Sweden)

    Andrzej Ambroziak

    2014-01-01

    Full Text Available The paper presents our actual knowledge and experience in joining dissimilar materials with the use of friction welding method. The joints of aluminium and aluminium alloys with the different types of steel were studied. The structural effects occurring during the welding process were described. The mechanical properties using, for example, (i microhardness measurements, (ii tensile tests, (iii bending tests, and (iv shearing tests were determined. In order to obtain high-quality joints the influence of different configurations of the process such as (i changing the geometry of bonding surface, (ii using the interlayer, or (iii heat treatment was analyzed. Finally, the issues related to the selection of optimal parameters of friction welding process were also investigated.

  13. Corrosion of Metal-Matrix Composites with Aluminium Alloy Substrate

    Directory of Open Access Journals (Sweden)

    B. Bobic

    2010-03-01

    Full Text Available The corrosion behaviour of MMCs with aluminium alloy matrix was presented. The corrosion characteristics of boron-, graphite-, silicon carbide-, alumina- and mica- reinforced aluminium MMCs were reviewed. The reinforcing phase influence on MMCs corrosion rate as well as on various corrosion forms (galvanic, pitting, stress corrosion cracking, corrosion fatique, tribocorrosion was discussed. Some corrosion protection methods of aluminium based MMCs were described

  14. Casting characteristics of Al-Mg alloy 535 cast in permanent moulds

    International Nuclear Information System (INIS)

    Fasoyinu, F.A.; Thomson, J.; Cousineau, D.; Castles, T.; Sahoo, M.

    2002-01-01

    Aluminum alloy 535 could be used for automotive and marine applications because of its good corrosion resistance against mild alkaline and salt spray exposure. The majority of components from this alloy are usually produced by sand casting because it is prone to hot shortness and has poor fluidity when poured in permanent moulds. In an attempt to improve its castability in permanent moulds, casting characteristics such as casting fluidity and hot tear resistance have been studied. In addition, the effectiveness of titanium, boron, scandium, zirconium and a combination of selected elements from this group as grain refiners were evaluated. It s shown that alloy 535 exhibits good casting fluidity when poured with adequate metal superheat and that there is significant improvement in hot tear resistance following grain refinement. (author)

  15. Grain Refinement of Commercial EC Grade 1070 Aluminium Alloy for Electrical Application

    OpenAIRE

    Hassanabadi, Massoud

    2015-01-01

    The aluminium alloys for electrical conductivity applications are generally not grain refinedsince the addition of grain refiners drops the electrical conductivity by introducing impuritiesinto the melt. Non-grain refined aluminium may lead to bar fracture and cracks during themetalworking process. The present study focuses to find an optimum balance between the grain refiner addition andthe electrical conductivity of commercial EC grade 1070 aluminium alloy for electricalapplication. In orde...

  16. Galvanic corrosion study of aluminium alloy plates mounted to stainless and mild steel bolts by accelerated exposure test

    OpenAIRE

    MREMA, Emmanuel; ITOH, Yoshito; KANEKO, Akira; HIROHATA, Mikihito

    2016-01-01

    Despite the fact that aluminium alloy members have a proven durability over stainless steel members, their joint fasteners like bolts, nuts and washers are drawn from steel material due to aluminium alloy inferior mechanical properties. Bare contact between aluminium alloy members and stainless steel fasteners results to galvanic corrosion of aluminium alloy members. A corrosion behaviour study was carried out on different aluminium alloy types with different surface treatments mounted to sta...

  17. Aluminium alloys containing iron and nickel

    International Nuclear Information System (INIS)

    Coriou, H.; Fournier, R.; Grall, L.; Hure, J.; Herenguel, J.; Lelong, P.

    1958-01-01

    The first part of this report addresses mechanism, kinetics and structure factors of aluminium alloys containing iron and nickel in water and high temperature steam. The studied alloys contain from 0.3 to 0.7 per cent of iron, and 0.2 to 1.0 per cent of nickel. Corrosion resistance and corrosion structure have been studied. The experimental installation, process and samples are presented. Corrosion structures in water at 350 C are identified and discussed (structure of corrosion products, structure of metal-oxide interface), and then in steam at different temperatures (350-395 C). Corrosion kinetics is experimentally studied (weight variation in time) in water at 350 C and in steam at different temperatures. Reactions occurring at over-heated steam (more than 400 C) are studied, and the case of welded alloys is also addressed. The second part addresses the metallurgical mechanism and processes influencing aluminium alloy resistance to corrosion by high temperature water as it appeared that separated phases protect the solid solution through a neighbourhood action. In order to avoid deep local corrosions, it seems necessary to multiply protective phases in an as uniform as possible way. Some processes enabling this result are described. They belong to conventional metallurgy or to powder metallurgy (with sintering and extrusion)

  18. The effects of radiation on aluminium alloys in the core of energy nuclear reactors

    International Nuclear Information System (INIS)

    Petrossian, V.G.

    1995-01-01

    One of the attractive directions in the worldwide practice of nuclear installations is the replacement of expensive zirconium alloy with more cheap materials, particularly aluminium allo. For Heat Supply Nuclear Plants (HSNP) with approximately 473 K core temperatures, the use of heat-resistant aluminium alloys seems to be reasonable. The present work is concerned with the studies on radiation effects on aluminium alloy, and interaction between the alloy and coolant in the reactor core. (author). 2 refs., 3 figs., 1 tab

  19. Influence of Iron in AlSi10MgMn Alloy

    Directory of Open Access Journals (Sweden)

    Žihalová M.

    2014-12-01

    Full Text Available Presence of iron in Al-Si cast alloys is common problem mainly in secondary (recycled aluminium alloys. Better understanding of iron influence in this kind of alloys can lead to reduction of final castings cost. Presented article deals with examination of detrimental iron effect in AlSi10MgMn cast alloy. Microstructural analysis and ultimate tensile strength testing were used to consider influence of iron to microstructure and mechanical properties of selected alloy.

  20. Local electrochemical behaviour of 7xxx aluminium alloys

    NARCIS (Netherlands)

    Andreatta, F.

    2004-01-01

    Aluminium alloys of the 7xxx series (Al-Zn-Mg-Cu) are susceptible to localized types of corrosion like pitting, intergranular corrosion and exfoliation corrosion. This represents a limitation for the application of these alloys in the aerospace components because localized corrosion might have a

  1. Wear behaviour and morphology of stir cast aluminium/SiC nanocomposites

    Science.gov (United States)

    Tanwir Alam, Md; Arif, Sajjad; Husain Ansari, Akhter

    2018-04-01

    Wear and friction play a vital role in the service life of components. Aluminium matrix nanocomposites possess tremendous potential for a number of applications in addition to their present uses. It is valuable to the field of newer materials for better performance in tribological applications. In this work, dry sliding wear, friction coefficient and morphology of aluminium alloy (A356) reinforced with silicon carbide nanoparticles (SiCn) were investigated. A356/SiCn nanocomposites (AMNCs) containing 1–5 weight percentage of SiCn were prepared through two-step stir casting process via mechanical ball milling. The wear test was conducted on pin-on-disc test apparatus. Regression analysis was performed to develop mathematical functions to fit the experimental data points. Morphological studies of Al and SiCn as-received, wear debris and worn surfaces were further analysed by SEM along with EDS. The occurrence of oxide layers was observed on worn surfaces. Iron trace was identified by wear debris. It was found that the wear loss and friction coefficient were strongly influenced by mechanical milling and SiCn content. The results exhibited that the friction coefficient reduces with the addition of SiCn as well as with the increase in load. However, wear resistance increases as the reinforcement content increases because of the embedding and wettability effects.

  2. Corrosion behaviour of 6063 aluminium alloy in acidic and in alkaline media

    Directory of Open Access Journals (Sweden)

    Prabhu Deepa

    2017-05-01

    Full Text Available The corrosion behaviour of 6063 aluminium alloy was investigated in different concentrations of phosphoric acid medium and sodium hydroxide medium at different temperatures. The study was done by electrochemical method, using Tafel polarization technique and electrochemical impedance spectroscopy (EIS technique. The surface morphology was investigated using scanning electron microscope (SEM with Energy-dispersive X-ray spectroscopy (EDX. The results showed that the 6063 aluminium alloy undergoes severe corrosion in sodium hydroxide medium than in phosphoric acid medium. The corrosion rate of 6063 aluminium alloy increased with an increase in the concentration of acid as well as with alkali. The corrosion rate was increased with an increase in temperature. The kinetic parameters and thermodynamic parameters were calculated using Arrhenius theory and transition state theory. Suitable mechanism was proposed for the corrosion of 6063 aluminium alloy in phosphoric acid medium and sodium hydroxide medium. The results obtained by Tafel polarization and electrochemical impedance spectroscopy (EIS techniques were in good agreement with each other.

  3. Optimization of heat treatment parameters for additive manufacturing and gravity casting AlSi10Mg alloy

    Science.gov (United States)

    Girelli, L.; Tocci, M.; Montesano, L.; Gelfi, M.; Pola, A.

    2017-11-01

    Additive manufacturing of metals is a production process developed in the last few years to realize net shape components with complex geometry and high performance. AlSi10Mg is one of the most widely used aluminium alloys, both in this field and in conventional foundry processes, for its significant mechanical properties combined with good corrosion resistance. In this paper the effect of heat treatment on AlSi10Mg alloy was investigated. Solution and ageing treatments were carried out with different temperatures and times on samples obtained by direct metal laser sintering and gravity casting in order to compare their performance. Microstructural analyses and hardness tests were performed to investigate the effectiveness of the heat treatment. The results were correlated to the sample microstructure and porosity, analysed by means of optical microscopy and density measurements. It was found that, in the additive manufactured samples, the heat treatment can reduce significantly the performance of the alloy also because of the increase of porosity due to entrapped gas during the deposition technique and that the higher the solution temperature the higher the increase of such defects. A so remarkable effect was not found in the conventional cast alloy.

  4. Adhesive Bonding of Aluminium Alloy A5754 by Epoxy Resins

    Directory of Open Access Journals (Sweden)

    Ivan Michalec

    2013-01-01

    Full Text Available Joining thin sheets of aluminium and its alloys is a promising area in the field of joining materials. Nowadays, joining methods that do not melt the material itself are increasingly being utilised. This paper deals with adhesive bonding of aluminium alloy A5754 by two-component epoxy resins. Theresults show that joints bonded by Hysol 9466 have appropriate mechanical properties, but that joints bonded by Hysol 9492 have better thermal stability.

  5. R-HPDC of magnesium alloys

    CSIR Research Space (South Africa)

    Curle, UA

    2013-01-01

    Full Text Available Flexibility of the Council for Scientific and Industrial Research’s Rheocasting System (CSIR-RCS) and its rheo-high pressure die casting (R-HPDC) technology is again demonstrated, as with aluminium alloys, by processing and shape casting of three...

  6. About some corrosion mechanisms of AZ91D magnesium alloy

    International Nuclear Information System (INIS)

    Ballerini, Gaia; Bardi, Ugo; Bignucolo, Roberto; Ceraolo, Giuseppe

    2005-01-01

    The present work is dedicated to a study of the corrosion resistance of AZ91D (91% Mg) alloy in wet environments. Three industrial alloys obtained by die-casting or sand casting were subjected to salt spray corrosion tests (ASTM-B117 standard) and immersion tests. Weight loss kinetic curves were measured. Surface analysis was performed by X-ray photoelectron diffraction (XPS). After corrosion the sand cast alloy presents a surface mainly enriched in hydroxides and carbonates while the die-cast alloy presents a surface enriched also in mixed Mg-Al oxides. The quantitative analysis of the rate Mg/Al shows an enrichment in aluminium for the die-cast alloys in comparison to the sand cast alloy

  7. Effect of surface roughness on ultrasonic echo amplitude in aluminium-copper alloy castings

    International Nuclear Information System (INIS)

    Ambardar, R.; Pathak, S.D.; Prabhakar, O.; Jayakumar, T.

    1996-01-01

    In the present investigation, the influence of test surface roughness on ultrasonic back-wall echo (BWE) amplitude in Al-4.5%Cu alloy cast specimens has been studied. The results indicate that as the value of surface roughness of the specimen increases, the value of relating BWE amplitude at a given probe frequency decreases. However, under the present set of experimental conditions, the decrease in BWE amplitude with the increase in surface roughness of the test specimen is found to be appreciable at 10 MHz probe frequency. (author)

  8. Development Program for Natural Aging Aluminum Casting Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Geoffrey K. Sigworth

    2004-05-14

    A number of 7xx aluminum casting alloys are based on the ternary Al-Zn-Mg system. These alloys age naturally to high strength at room temperature. A high temperature solution and aging treatment is not required. Consequently, these alloys have the potential to deliver properties nearly equivalent to conventional A356-T6 (Al-Si-Mg) castings, with a significant cost saving. An energy savings is also possible. In spite of these advantages, the 7xx casting alloys are seldom used, primarily because of their reputation for poor castibility. This paper describes the results obtained in a DOE-funded research study of these alloys, which is part of the DOE-OIT ''Cast Metals Industries of the Future'' Program. Suggestions for possible commercial use are also given.

  9. Investigation of americium-241 metal alloys for target applications

    International Nuclear Information System (INIS)

    Conner, W.V.; Rockwell International Corp., Golden, CO

    1982-01-01

    Several 241 Am metal alloys have been investigated for possible use in the Lawrence Livermore National Laboratory Radiochemical Diagnostic Tracer Program. Several properties were desired for an alloy to be useful for tracer program applications. A suitable alloy would have a fairly high density, be ductile, homogeneous and easy to prepare. Alloys investigated have included uranium-americium, aluminium-americium, and cerium-americium. Uranium-americium alloys with the desired properties proved to be difficult to prepare, and work with this alloy was discontinued. Aluminium-americium alloys were much easier to prepare, but the alloy consisted of an aluminium-americium intermetallic compound (AmAl 4 ) in an aluminum matrix. This alloy could be cast and formed into shapes, but the low density of aluminum, and other problems, made the alloy unsuitable for the intended application. Americium metal was found to have a high solid solubility in cerium and alloys prepared from these two elements exhibited all of the properties desired for the tracer program application. Cerium-americium alloys containing up to 34 wt% americium have been prepared using both co-melting and co-reduction techniques. The latter technique involves co-reduction of cerium tetrafluoride and americium tetrafluoride with calcium metal in a sealed reduction vessel. Casting techniques have been developed for preparing up to eight 2.2 cm (0.87 in) diameter disks in a single casting, and cerium-americium metal alloy disks containing from 10 to 25 wt% 241 Am have been prepared using these techniques. (orig.)

  10. Grain Refinement of Permanent Mold Cast Copper Base Alloys

    Energy Technology Data Exchange (ETDEWEB)

    M.Sadayappan; J.P.Thomson; M.Elboujdaini; G.Ping Gu; M. Sahoo

    2005-04-01

    Grain refinement is a well established process for many cast and wrought alloys. The mechanical properties of various alloys could be enhanced by reducing the grain size. Refinement is also known to improve casting characteristics such as fluidity and hot tearing. Grain refinement of copper-base alloys is not widely used, especially in sand casting process. However, in permanent mold casting of copper alloys it is now common to use grain refinement to counteract the problem of severe hot tearing which also improves the pressure tightness of plumbing components. The mechanism of grain refinement in copper-base alloys is not well understood. The issues to be studied include the effect of minor alloy additions on the microstructure, their interaction with the grain refiner, effect of cooling rate, and loss of grain refinement (fading). In this investigation, efforts were made to explore and understand grain refinement of copper alloys, especially in permanent mold casting conditions.

  11. Surface treatments for aluminium alloys

    Science.gov (United States)

    Ardelean, M.; Lascău, S.; Ardelean, E.; Josan, A.

    2018-01-01

    Typically, in contact with the atmosphere, the aluminium surface is covered with an aluminium oxide layer, with a thickness of less than 1-2μm. Due to its low thickness, high porosity and low mechanical strength, this layer does not protect the metal from corrosion. Anodizing for protective and decorative purposes is the most common method of superficial oxidation processes and is carried out through anodic oxidation. The oxide films, resulted from anodizing, are porous, have a thickness of 20-50μm, and are heat-resistant, stable to water vapour and other corrosion agents. Hard anodizing complies with the same obtains principles as well as decorative and protective anodization. The difference is in that hard anodizing is achieved at low temperatures and high intensity of electric current. In the paper are presented the results of decorative and hard anodization for specimens made from several aluminium alloys in terms of the appearance of the specimens and of the thickness of the anodized.

  12. Incorporation of transition metal ions and oxygen generation during anodizing of aluminium alloys

    International Nuclear Information System (INIS)

    Habazaki, H.; Konno, H.; Shimizu, K.; Nagata, S.; Skeldon, P.; Thompson, G.E.

    2004-01-01

    Enrichment of nickel at the alloy/film interface and incorporation of nickel species into the anodic film have been examined for a sputtering-deposited Al-1.2at.%Ni alloy in order to assist understanding of oxygen generation in barrier anodic alumina films. Anodizing of the alloy proceeds in two stages similarly to other dilute aluminium alloys, for example Al-Cr and Al-Cu alloys, where the Gibbs free energies per equivalent for formation of alloying element oxide exceeds the value for alumina. In the first stage, a nickel-free alumina film is formed, with nickel enriching in an alloy layer, 2 nm thick, immediately beneath the anodic oxide film. In the second stage, nickel atoms are oxidized together with aluminium, with oxygen generation forming gas bubbles within the anodic oxide film. This stage commences after accumulation of about 5.4 x 10 15 nickel atoms cm -2 in the enriched alloy layer. Oxygen generation also occurs when a thin layer of the alloy, containing about 2.0 x 10 19 nickel atoms m -2 , on electropolished aluminium, is completely anodized, contrasting with thin Al-Cr and Al-Cu alloy layers on electropolished aluminium, for which oxygen generation is essentially absent. A mechanism of oxygen generation, based on electron impurity levels of amorphous alumina and local oxide compositions, is discussed in order to explain the observations

  13. Casting Characteristics of High Cerium Content Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, D; Rios, O R; Sims, Z C; McCall, S K; Ott, R T

    2017-09-05

    This paper compares the castability of the near eutectic aluminum-cerium alloy system to the aluminum-silicon and aluminum-copper systems. The alloys are compared based on die filling capability, feeding characteristics and tendency to hot tear in both sand cast and permanent mold applications. The castability ranking of the binary Al–Ce systems is as good as the aluminum-silicon system with some deterioration as additional alloying elements are added. In alloy systems that use cerium in combination with common aluminum alloying elements such as silicon, magnesium and/or copper, the casting characteristics are generally better than the aluminum-copper system. In general, production systems for melting, de-gassing and other processing of aluminum-silicon or aluminum-copper alloys can be used without modification for conventional casting of aluminum-cerium alloys.

  14. Annex 5 - Fabrication of U-Al alloy

    International Nuclear Information System (INIS)

    Drobnjak, Dj.; Lazarevic, Dj.; Mihajlovic, A.

    1961-01-01

    Alloy U-Al with low content of aluminium is often used for fabrication of fuel elements because it is stable under moderate neutron flux density. Additionally this type of alloys show much better characteristics than pure uranium under reactor operating conditions (temperature, mechanical load, corrosion effect of water). This report contains the analysis of the phase diagram of U-Al alloy with low content of aluminium, applied procedure for alloying and casting with detailed description of equipment. Characteristics of the obtained alloy are described and conclusions about the experiment and procedure are presented [sr

  15. Effect of friction time on the properties of friction welded YSZ‐alumina composite and 6061 aluminium alloy

    Directory of Open Access Journals (Sweden)

    Uday M. Basheer

    2012-03-01

    Full Text Available The aim of this work was to study the effect of friction time on the microstructure and mechanical properties of alumina 0, 25, 50 wt% yttria stabilized zirconia (YSZ composite and 6061 aluminium alloy joints formed by friction welding. The alumina-YSZ composites were prepared through slip casting in plaster of Paris molds (POP and subsequently sintered at 1600°C, while the aluminium rods were machined down using a lathe machine to the dimension required. The welding process was carried out under different rotational speeds and friction times, while friction force (0.5 ton-force was kept constant. Scanning electron microscopy was used to characterize the interface of the joints structure. The experimental results showed that the friction time has a significant effect on joint structure and mechanical properties.

  16. Recovery of actinides from actinide-aluminium alloys by chlorination: Part I

    Energy Technology Data Exchange (ETDEWEB)

    Cassayre, L., E-mail: cassayre@chimie.ups-tlse.fr [Laboratoire de Genie Chimique (LGC), Departement Procedes Electrochimiques, CNRS-UMR 5503, Universite de Toulouse III - Paul Sabatier, 31062 Toulouse (France); Soucek, P.; Mendes, E.; Malmbeck, R.; Nourry, C.; Eloirdi, R.; Glatz, J.-P. [European Commission, JRC, Institute for Transuranium Elements, Postfach 2340, 76125 Karlsruhe (Germany)

    2011-07-01

    Pyrochemical processes in molten LiCl-KCl are being developed in ITU for recovery of actinides from spent nuclear fuel. The fuel is anodically dissolved to the molten salt electrolyte and actinides are electrochemically reduced on solid aluminium cathodes forming solid actinide-aluminium alloys. A chlorination route is being investigated for recovery of actinides from the alloys. This route consists in three steps: Vacuum distillation for removal of the salt adhered on the electrode, chlorination of the actinide-aluminium alloys by chlorine gas and sublimation of the formed AlCl{sub 3}. A thermochemical study showed thermodynamic feasibility of all three steps. On the basis of the conditions identified by the calculations, experiments using pure UAl{sub 3} alloy were carried out to evaluate and optimise the chlorination step. The work was focused on determination of the optimal temperature and Cl{sub 2}/UAl{sub 3} molar ratio, providing complete chlorination of the alloy without formation of volatile UCl{sub 5} and UCl{sub 6}. The results showed high efficient chlorination at a temperature of 150 deg. C.

  17. Recovery of actinides from actinide-aluminium alloys by chlorination: Part I

    International Nuclear Information System (INIS)

    Cassayre, L.; Soucek, P.; Mendes, E.; Malmbeck, R.; Nourry, C.; Eloirdi, R.; Glatz, J.-P.

    2011-01-01

    Pyrochemical processes in molten LiCl-KCl are being developed in ITU for recovery of actinides from spent nuclear fuel. The fuel is anodically dissolved to the molten salt electrolyte and actinides are electrochemically reduced on solid aluminium cathodes forming solid actinide-aluminium alloys. A chlorination route is being investigated for recovery of actinides from the alloys. This route consists in three steps: Vacuum distillation for removal of the salt adhered on the electrode, chlorination of the actinide-aluminium alloys by chlorine gas and sublimation of the formed AlCl 3 . A thermochemical study showed thermodynamic feasibility of all three steps. On the basis of the conditions identified by the calculations, experiments using pure UAl 3 alloy were carried out to evaluate and optimise the chlorination step. The work was focused on determination of the optimal temperature and Cl 2 /UAl 3 molar ratio, providing complete chlorination of the alloy without formation of volatile UCl 5 and UCl 6 . The results showed high efficient chlorination at a temperature of 150 deg. C.

  18. Corrosion behaviour of the AlSi6Cu4 alloy and cast AlSi6Cu4-graphite particles composite

    Directory of Open Access Journals (Sweden)

    S. Holecek

    2009-04-01

    Full Text Available The corrosion behaviour of the AlSi6Cu4 alloy as a composite matrix and of composites with 8% vol. of graphite particles was investigated. The corrosion experiments were performed over a range of elevated temperatures and were carried out in sea water (3.5%NaCl solution. We have focused our attention to the determination of the mode of corrosion attack and to the determination of the rate ofcorrosion and other corrosion characteristics. Both as-cast and annealed matrix and composite specimens were tested, as well as the99.9% as-cast aluminium for comparison. Corrosion behaviour of the materials was assessed by the corrosion potential (Ec and bypotentiodynamic (polarization curves. As expected, composite is less corrosion resistant than the matrix alloy. In addition to pitting,a severe galvanic corrosion occurs as a result of galvanic couple aluminium/graphite formation. Corrosion potentials imply that examinedmaterials would be sufficiently resistant in non or slightly oxidizing solutions without dissolved oxygen. All studied materials corrode very slowly at potentials negative to corrosion potential, while at potentials positive to corrosion potential the corrosion rate goes up by 1 or 2 orders.

  19. Corrosion characterization of in-situ titanium diboride (TiB2) reinforced aluminium-copper (Al-Cu) alloy by two methods: Salts spray fog and linear polarization resistance (LPR)

    Science.gov (United States)

    Rosmamuhamadani, R.; Talari, M. K.; Yahaya, Sabrina M.; Sulaiman, S.; Ismail, M. I. S.; Hanim, M. A. Azmah

    2018-05-01

    Aluminium-copper (Al-Cu) alloys is the one of most Metal Matrix Composites (MMCs) have important high-strength Al alloys. The aluminium (Al) casting alloys, based on the Al-Cu system are widely used in light-weight constructions and transport applications requiring a combination of high strength and ductility. In this research, Al-Cu master alloy was reinforced with 3 and 6wt.% titanium diboride (TiB2) that obtained from salts route reactions. The salts used were were potassium hexafluorotitanate (K2TiF6) and potassium tetrafluoroborate (KBF4). The salts route reaction process were done at 800 °C. The Al-Cu alloy then has characterized on the mechanical properties and microstructure characterization. Salts spray fog test and Gamry-electrode potentiometer instruments were used to determine the corrosion rate of this alloys. From results obtained, the increasement of 3wt.%TiB2 contents will decrease the value of the corrosion rate. In corrosion test that conducted both of salt spray fog and Gamry-electrode potentiometer, the addition of 3wt.%TiB2 gave the good properties in corrosion characterization compare to Al-Cu-6wt.%TiB2 and Al-Cu cast alloy itself. As a comparison, Al-Cu with 3wt.%TiB2 gave the lowest value of corrosion rate, which means alloy has good properties in corrosion characterization. The results obtained show that in-situ Al-Cu alloy composites containing the different weight of TiB2 phase were synthesized successfully by the salt-metal reaction method.

  20. Three body abrasion of laser surface alloyed aluminium AA1200

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2012-06-01

    Full Text Available Laser surface alloying of aluminium AA1200 was performed with a 4 kW Nd:YAG laser to improve the abrasion wear resistance. Aluminium surfaces reinforced with metal matrix composites and intermetallic phases were achieved. The phases present depended...

  1. Characterization of Ni–Cr alloys using different casting techniques and molds

    International Nuclear Information System (INIS)

    Chen, Wen-Cheng; Teng, Fu-Yuan; Hung, Chun-Cheng

    2014-01-01

    This study differentiated the mechanical properties of nickel–chromium (Ni–Cr) alloys under various casting techniques (different casting molds and casting atmospheres). These techniques were sampled by a sand mold using a centrifugal machine in ambient air (group I) and electromagnetic induction in an automatic argon castimatic casting machine (group II). The specimen casting used a graphite mold by a castimatic casting machine (group III). The characteristics of the Ni–Cr alloys, yield and ultimate tensile strength, bending modulus, microhardness, diffraction phase, grindability, ability to spring back, as well as ground microstructure and pattern under different casting conditions were evaluated. The group III specimens exhibited the highest values in terms of strength, modulus, hardness, and grindability at a grind rate of 500 rpm. Moreover, group III alloys exhibited smaller grain sizes, higher ability to spring back, and greater ductility than those casted by sand investment (groups I and II). The main factor, “casting mold,” significantly influenced all mechanical properties. The graphite mold casting of the Ni–Cr dental alloys in a controlled atmosphere argon casting system provided an excellent combination of high mechanical properties and good ability to spring back, and preserved the ductile properties for application in Ni–Cr porcelain-fused system. The results can offer recommendations to assist a prosthetic technician in selecting the appropriate casting techniques to obtain the desired alloy properties. - Highlights: • Properties of Ni–Cr alloys using various casting techniques are characterized. • Alloys cast by graphite mold exhibited higher recovery angle and more ductility. • Alloys cast by graphite mold exhibited higher strength and grinding rate. • Alloys in this study increase operative room to adjust the precision for prosthesis

  2. Characterization of Ni–Cr alloys using different casting techniques and molds

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wen-Cheng, E-mail: wencchen@fcu.edu.tw [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Teng, Fu-Yuan [Department of Dentistry, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan (China); School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Hung, Chun-Cheng [School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China)

    2014-02-01

    This study differentiated the mechanical properties of nickel–chromium (Ni–Cr) alloys under various casting techniques (different casting molds and casting atmospheres). These techniques were sampled by a sand mold using a centrifugal machine in ambient air (group I) and electromagnetic induction in an automatic argon castimatic casting machine (group II). The specimen casting used a graphite mold by a castimatic casting machine (group III). The characteristics of the Ni–Cr alloys, yield and ultimate tensile strength, bending modulus, microhardness, diffraction phase, grindability, ability to spring back, as well as ground microstructure and pattern under different casting conditions were evaluated. The group III specimens exhibited the highest values in terms of strength, modulus, hardness, and grindability at a grind rate of 500 rpm. Moreover, group III alloys exhibited smaller grain sizes, higher ability to spring back, and greater ductility than those casted by sand investment (groups I and II). The main factor, “casting mold,” significantly influenced all mechanical properties. The graphite mold casting of the Ni–Cr dental alloys in a controlled atmosphere argon casting system provided an excellent combination of high mechanical properties and good ability to spring back, and preserved the ductile properties for application in Ni–Cr porcelain-fused system. The results can offer recommendations to assist a prosthetic technician in selecting the appropriate casting techniques to obtain the desired alloy properties. - Highlights: • Properties of Ni–Cr alloys using various casting techniques are characterized. • Alloys cast by graphite mold exhibited higher recovery angle and more ductility. • Alloys cast by graphite mold exhibited higher strength and grinding rate. • Alloys in this study increase operative room to adjust the precision for prosthesis.

  3. Microstructures and properties of aluminum die casting alloys

    Energy Technology Data Exchange (ETDEWEB)

    M. M. Makhlouf; D. Apelian; L. Wang

    1998-10-01

    This document provides descriptions of the microstructure of different aluminum die casting alloys and to relate the various microstructures to the alloy chemistry. It relates the microstructures of the alloys to their main engineering properties such as ultimate tensile strength, yield strength, elongation, fatigue life, impact resistance, wear resistance, hardness, thermal conductivity and electrical conductivity. Finally, it serves as a reference source for aluminum die casting alloys.

  4. Friction stir spot welding of dissimilar aluminium alloys

    International Nuclear Information System (INIS)

    Bozkurt, Yahya

    2016-01-01

    Friction stir spot welding (FSSW) has been proposed as an effective technology to spot weld the so-called “difficult to be welded” metal alloys such as thin sheets aluminum alloys and dissimilar materials. FSSW is derived from friction stir welding technology, its principle benefit being low cost joining, lower welding temperature and shorter welding time than conventional welding methods. In this study, dissimilar AlMg 3 and AlCu 4 Mg 1 aluminium alloy plates were FSSWed by offsetting the low strength sheet on upper side of the weld. The effects of tool rotation speed on the microstructure, lap shear fracture load (LSFL), microhardness and fracture features of the weld are investigated by constant welding parameters. The maximum LSFL was obtained by increasing the tool rotational speed. However, the joints exhibited pull-out nugget fracture mode under lap shear tensile testing conditions. The largest completely bonded zone was observed as 5.86 mm which was narrower at the opposite position of the joint. Key words: friction stir spot welding, aluminium alloys, mechanical properties, dissimilar joint, welding parameters

  5. Aeronautical Cast Ti Alloy and Forming Technology Development

    OpenAIRE

    ZHANG Meijuan; NAN Hai; JU Zhongqiang; GAO Fuhui; QIE Xiwang; ZHU Langping

    2016-01-01

    The application and feature of Ti alloy and TiAl alloy for aviation at home and abroad were briefly introduced. According to the patent application status in Ti alloy field, the development of Ti alloy casting technology was analyzed in the recent thirty years, especially the transformation in aviation. Along with the development of aeronautional manufacturing technology and demand of high performance aircraft, Ti alloy casting is changing towards to be large, integral and complicated, and th...

  6. Casting defects and mechanical properties of high pressure die cast Mg-Zn-Al-RE alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Wenlong; Easton, Mark A.; Zhu, Suming; Nie, Jianfeng [CAST Cooperative Research Centre, Department of Materials Engineering Monash University, Melbourne, VIC (Australia); Dargusch, Matthew S. [School of Mechanical and Mining Engineering, University of Queensland, Brisbane, QLD (Australia); Gibson, Mark A. [CSIRO Process Science and Engineering, Melbourne, VIC (Australia); Jia, Shusheng [Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering Jilin University, Changchun (China)

    2012-02-15

    The die casting defects and tensile properties of high pressure die cast (HPDC) Mg-Zn-Al-RE alloys with various combinations of Zn and Al were studied. The results show that die casting defects in Mg-Zn-Al-RE alloys are affected by the percentage of Zn and Al contents. The hot tearing susceptibility (HTS) of Mg-Zn-Al-RE alloys tends to increase with increasing Zn content up to 6 wt%, while a further increase of Al and/or Zn content reduces the HTS. In tensile tests, the yield strength (YS) is generally improved by increasing Zn or Al content, whereas the tensile strength (TS) and ductility appear to depend largely on the presence of casting defects. Compared with Mg-Zn-Al alloys, the mechanical properties of the Mg-Zn-Al-RE alloy are significantly improved. The Mg-4Zn-4Al-4RE alloy is found to have few casting defects and the optimal tensile properties. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Study on erosion behaviour of hybrid aluminium composite

    Science.gov (United States)

    Vishwas, D. K.; Chandrappa, C. N.; Venkatesh, Shreyas

    2018-04-01

    The origin of the light metals, as compared to other metals in this century, is noticeable and an exciting area of expansion for innovation. Light metals, are need of the day in engineering, among them application of aluminium and its alloys is enormous. we observe that these metals tend to have a progressive loss of metal from having contact surface with other metals. Erosion is one such wear process, where damage occurs by the repeated application of high localised stresses. Erosion due to impact of solid particle, is a significant problem. In the present work, the erosion behaviour of hybrid aluminium composite is studied. AL 6061 is used as the base alloy. AL 6061 alloy has excellent corrosion resistance but poor wear resistance. So, in order to have improved properties, it is reinforced with Tungsten Chromium Nickel powder in varied proportions by the method of stir casting. The results are compared with the as-cast Al-alloy to determine the improvement in mechanical properties. The tests were conducted in ASTM G76 setup, to determine solid particle erosion behaviour and the results of the hybrid composite were compared with that of as-cast AL 6061 alloy. It was evident that mass loss was maximum at 300 inclinations, which is a characteristic of ductile materials. It was observed that upon increasing the percentages of reinforcement (wt.%), the wear resistance of the hybrid composite increased significantly. It was also observed that the inclusion of tungsten-chromium-nickel powder increased the hardness of the hybrid composite significantly.

  8. The ‘full sleeve’ application in the horizontal cold-chamber machine for pressure die casting of aluminium alloys

    Directory of Open Access Journals (Sweden)

    Z. Konopka

    2008-04-01

    Full Text Available The ‘full sleeve’ construction has been designed and accomplished in the horizontal cold-chamber pressure die casting machine. Main part of this solution is a counter plunger placed in a movable die half which allows for full filling of the shot sleeve and precisely fixes the metal quantity needed for casting. The purpose of this new construction solution is mainly the reduction of the casting porosity caused by air entrapment and the improvement of both castability and accuracy of the die cavity reproduction. For such a redesigned machine there have been performed examinations consisting in pressure casting of AlSi9Cu alloy (EN AC-46000 at varying plunger velocity in the second stage of injection and varying intensification pressure. The alloy castability (the die filling ability has been measured for each parameter setting. For the purpose of comparison, similar measurements have been performed also for the conventional system without a counter plunger. The castability examination has been done by means of a specially designed die with an impression of a trial casting of variable wall thickness. The experiments have been held according to the assumed factor design 22, what allowed for determining the mathematical models describing the influence of die filling parameters on the castability and the die cavity reproduction level. Both alternatives of the experiment confirmed the positive influence of plunger velocity and intensification pressure increase on the improvement of castability, the measure of the latter being the filled length of the impression. Applying of the new ‘full sleeve’ solution has improved castability for each experiment by about 20% as compared with conventional alternative. Castability in the ‘full sleeve’ system has been increased even for low values of plunger velocity and intensification pressure. For both alternative systems the influence of plunger velocity has been found, as an average, by four times

  9. Study of Bending Fatigue Properties of Al-Si Cast Alloy

    Directory of Open Access Journals (Sweden)

    Tillová E.

    2017-09-01

    Full Text Available Fatigue properties of casting Al-alloys are very sensitive to the microstructural features of the alloy (e.g. size and morphology of the eutectic Si, secondary dendrite arm spacing - SDAS, intermetallics, grain size and casting defects (porosity and oxides. Experimental study of bending fatigue properties of secondary cast alloys have shown that: fatigue tests up to 106-107cycles show mean fatigue limits of approx. 30-49 MPa (AlSi9Cu3 alloy - as cast state, approx. 65-76 MPa (AlSi9Cu3 alloy after solution treatment and 60-70 MPa (self-hardened AlZn10Si8Mg alloy in the tested casting condition; whenever large pore is present at or near the specimen’s surface, it will be the dominant cause of fatigue crack initiation; in the absence of large casting defects, the influence of microstructural features (Si morphology; Fe-rich phases on the fatigue performance becomes more pronounced.

  10. Technological Aspects of Low-Alloyed Cast Steel Massive Casting Manufacturing

    Directory of Open Access Journals (Sweden)

    Szajnara J.

    2013-12-01

    Full Text Available In the paper authors have undertaken the attempt of explaining the causes of cracks net occurrence on a massive 3-ton cast steel casting with complex geometry. Material used for casting manufacturing was the low-alloyed cast steel with increased wear resistance modified with vanadium and titanium. The studies included the primary and secondary crystallization analysis with use of TDA and the qualitative and quantitative analysis of non-metallic inclusions.

  11. Application of laser additive manufacturing to produce dies for aluminium high pressure die casting

    CSIR Research Space (South Africa)

    Pereira, MFVT

    2012-07-01

    Full Text Available through immersion in liquid aluminium. The dipping cycle closely resembles the heating and cooling cycle of a typical aluminium die under casting conditions. The suitability of any LAM technology, that can produce fully dense metallic components... cost vs wrought manufactured 5.2 1,7 2. 2 Average cost Very High Medium High Table 3: Processing and finishing costs of test coupons 3.1 Cyclic Immersion in Molten Aluminium Figure 3 below shows the testing apparatus developed to simulate...

  12. Solidification microstructures of aluminium-uranium alloys

    International Nuclear Information System (INIS)

    Ambrozio Filho, F.; Vieira, R.R.

    1976-01-01

    The solidification of microstrutures of aluminium-uranium alloys in the range of 4 to 20% uranium is investigated. The solidification was obtained both in ingot molds and under controlled directional solidification. The conditions for the presence of primary crystals and eutectic are discussed and an analysis of the influence of variables (growth rate and thermal gradient in the liquid) on the alloy structure is made. The effect of cooling rate on the alloy structures has been determined. It is found that the resulting structure can be derived from the kinectics concept, as required by the coupled-zone theory. Suggestions on the qualitative intervals of composition and temperatures with eutectic growth are presented [pt

  13. Aluminium alloys welding with high-power Nd:YAG lasers

    International Nuclear Information System (INIS)

    Garcia Orza, J.A.

    1998-01-01

    Aluminium alloys have good mechanical properties (high strength-to-weight ratio, corrosion resistance) and good workability. their applications are growing up, specially in the transportation industry. Weldability is however poorer than in other materials; recent advances in high power YAG laser are the key to obtain good appearance welds and higher penetration, at industrial production rates. Results of the combination of high power YAG beams with small fiber diameters and specific filler wires are presented. It is also characterized the air bone particulate material, by-product of the laser process: emission rates, size distribution and chemical composition are given for several aluminium alloys. (Author) 6 refs

  14. Spatial Bimetallic Castings Manufactured from Iron Alloys

    Directory of Open Access Journals (Sweden)

    M. Cholewa

    2007-07-01

    Full Text Available In this paper a conception for manufacturing method of skeleton castings with composite features was shown. Main application of such castings are the working organs of machines subjected to intensive abrasive and erosive wear. Skeleton geometry was based on three-dimensional cubic net consisting of circular connectors and nodes joining 6 connectors according to Cartesian co-ordinate system. Dimension of an elementary cell was equal to 10 mm and diameter of single connector was equal to 5 mm. For bimetallic castings preparation two Fe based alloys were used: L25SHMN cast steel for skeleton substrate and ZlCr15NiMo cast iron for working part of the casting. In presented work obtained structure was analyzed with indication of characteristic regions. Authors described phenomena occurring at the alloys interface and phases in transition zone. A thesis was formulated concerning localization of transition zone at the cast iron matrix – cast steel reinforcement interface. Direction of further studies were indicated.

  15. Study of strength properties of semi-finished products from economically alloyed high-strength aluminium-scandium alloys for application in automobile transport and shipbuilding

    Science.gov (United States)

    Baranov, Vladimir; Sidelnikov, Sergey; Zenkin, Evgeny; Frolov, Viktor; Voroshilov, Denis; Yakivyuk, Olga; Konstantinov, Igor; Sokolov, Ruslan; Belokonova, Irina

    2018-04-01

    The results of a study on the strength of rolled products from aluminium alloys doped with scandium under various processing conditions of hot and cold rolling are presented. The regularities of metal flow and the level of strength of deformed semi-finished products from aluminum-scandium alloys are established, depending on the total degree of deformation and the various modes of single reduction during rolling. It is shown that when using one heating of a cast billet to obtain high-quality semi-finished products, the temperature during the rolling process should not be lower than 350-370°, and the total degree of deformation does not exceed 50-60%. It was found that the semi-finished products from alloys with a content of scandium in the range 0.11-0.12% in the deformed state had elevated values of ultimate tensile strength and yield strength of the metal, which allows them to be recommended for industrial production of sheet metal products.

  16. A new casting defect healing technology

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, E.S.; Reddoch, T.W. [ForMat Industries, Inc., Knoxville, TN (United States); Viswanathan, S. [Oak Ridge National Lab., TN (United States)

    1997-01-01

    A new technology is presented for healing of defects in 356 aluminium alloys that provides economic upgrading of these cast alloys. It uses pneumatic isostatic forging (PIF) to produce high quality Al alloys products with enhanced mechanical properties uniform throughout the part, allowing higher design allowables and increased usage of Al alloy castings. The fundamental mechanism underlying PIF is a single mode plastic deformation process that uses isostatic application of pressures for 10-30 seconds at temperature. The process can be integrated in-line with other production operations, i.e., using the latent heat from the previous casting step. Results of applying the PIF process indicate lower cost and significant improvement in mechanical properties that rival and often exceed corresponding properties of other technologies like hot isostatic pressing and related processes. This process offers many advantages that are described in this paper in addition to presenting case histories of property enhancement by PIF and the mechanism responsible for property enhancement.

  17. The effect of surface treatment and gaseous rust protection paper on the atmospheric corrosion stability of aluminium alloy

    International Nuclear Information System (INIS)

    Gao Guizhong

    1992-03-01

    The experimental results of atmospheric corrosion of 166 aluminium alloy of Al-Mg-Si-Cu system and 167 aluminium alloy of Al-Mg-Si-Cu-Fe-Ni system for different surface treatment and different wrapping papers used are introduced. The results show: 1. The composition of aluminium alloy has some effect on the performance of atmospheric corrosion stability and the local corrosion depth for 167 aluminium alloy specimen is considerable. 2. After 8 years storage, the 167 aluminium alloy tubular specimen, which was treated with surface treatment in deionized water at 100 ∼ 230 C degree, has no spot of atmospheric corrosion found. 3. Within the test period, the performance of atmospheric corrosion stability by sulphuric-acid anodization film is remarkable. 4. The No. 19 gaseous rust protection paper has no effect of atmospheric corrosion stability on the 166 and 167 aluminium alloys which were treated with quenching and natural ageing method

  18. Microstructural investigation of as-cast uranium rich U–Zr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuting, E-mail: zhangyuting@caep.cn [Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621908, Sichuan (China); School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui (China); Wang, Xin [Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621908, Sichuan (China); Zeng, Gang [Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, Sichuan (China); Wang, Hui [Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621908, Sichuan (China); Jia, Jianping [Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, Sichuan (China); Sheng, Liusi [School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui (China); Zhang, Pengcheng, E-mail: zpc113@sohu.com [Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621908, Sichuan (China)

    2016-04-01

    The present study evaluates the microstructure in as-cast uranium rich U–Zr alloys, an important subsystem of U–Pu–Zr ternary metallic nuclear reactor fuel, as a function of the Zr content, from 2wt.% to 15wt.%Zr. It has been previously suggested that the unique intermetallic compound δ phase in U–Zr alloys is only present in as-cast U–Zr alloys with a Zr content exceeding 10wt.%Zr. However, our analysis of transmission electron microscopy (TEM) data shows that the δ phase is common to all as-cast alloys studied in this work. Furthermore, specific coherent orientation relationship is found between the α and δ phases, consistent with previous findings, and a third variant is discovered in this paper. - Highlights: • Initially, lattice parameter of as-cast U–Zr alloys decrease with the increasing Zr content, and then increase. • XRD data show the presence of δ-UZr{sub 2} phase in as-cast U–Zr alloys with a Zr content of more than 8wt.% Zr. • Finding δ-UZr{sub 2} phase exists in all as-cast uranium rich U–Zr alloys, even for alloys with a lean Zr content. • Three kinds of preferential orientations of the δ phase grow.

  19. Influence of S. mutans on base-metal dental casting alloy toxicity.

    Science.gov (United States)

    McGinley, E L; Dowling, A H; Moran, G P; Fleming, G J P

    2013-01-01

    We have highlighted that exposure of base-metal dental casting alloys to the acidogenic bacterium Streptococcus mutans significantly increases cellular toxicity following exposure to immortalized human TR146 oral keratinocytes. With Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), S. mutans-treated nickel-based (Ni-based) and cobalt-chromium-based (Co-Cr-based) dental casting alloys were shown to leach elevated levels of metal ions compared with untreated dental casting alloys. We targeted several biological parameters: cell morphology, viable cell counts, cell metabolic activity, cell toxicity, and inflammatory cytokine expression. S. mutans-treated dental casting alloys disrupted cell morphology, elicited significantly decreased viable cell counts (p casting alloys induced elevated levels of cellular toxicity compared with S. mutans-treated Co-Cr-based dental casting alloys. While our findings indicated that the exacerbated release of metal ions from S. mutans-treated base-metal dental casting alloys was the likely result of the pH reduction during S. mutans growth, the exact nature of mechanisms leading to accelerated dissolution of alloy-discs is not yet fully understood. Given the predominance of S. mutans oral carriage and the exacerbated cytotoxicity observed in TR146 cells following exposure to S. mutans-treated base-metal dental casting alloys, the implications for the long-term stability of base-metal dental restorations in the oral cavity are a cause for concern.

  20. Effect of Lubrication on Sliding Wear of Red Mud Particulate Reinforced Aluminium Alloy 6061

    Directory of Open Access Journals (Sweden)

    N. Panwar

    2017-09-01

    Full Text Available In present study, Red mud, an industrial waste, has been utilized as a reinforcement material to fabricate Aluminium 6061 matrix based metal matrix composite. Taguchi L18 orthogonal array has been employed for fabrication of composite castings and for conducting the tribological experimentation. ANOVA analysis has been applied to examine the effect of individual parameters such as sliding condition: dry and wet, reinforcement weight fraction, load, speed, and sliding distance on specific wear rate obtained experimentally. It has been found that tensile strength and impact energy increases while elongation decreases, with increasing weight fraction and decrease in particle size of red mud. The percentage contribution of the effect of factors on SWR is Sliding condition (73.17, speed (7.84, percentage reinforcement (7.35, load (5.75, sliding distance (2.24, and particle size (1.25. It has also been observed that specific wear rate is very low in wet condition. However, it decreases with increase in weight fraction of reinforcement, decrease in load and sliding speed. Al6061/red mud metal matrix composites have shown reasonable strength and wear resistance. The use of red mud in Aluminium composite provides the solution for disposal of red mud and can possibly become an economic replacement of Aluminium and its alloys.

  1. Process-scale modelling of microstructure in direct chill casting of aluminium alloys

    Science.gov (United States)

    Bedel, M.; Heyvaert, L.; Založnik, M.; Combeau, H.; Daloz, D.; Lesoult, G.

    2015-06-01

    The mechanical properties of an alloy being related to its microstructure, the understanding of the mechanisms responsible for the grain structure formation in direct chill casting is crucial. However, the grain size prediction by modelling is difficult since a variety of multi-scale coupled phenomena have to be considered. Nucleation and growth of the grains are interrelated, and the macroscopic transport phenomena such as the motion of grains and inoculant particles with the flow impact the nucleation-gowth competition. Thus we propose to study the grain size distribution of a 5182 alloy industrial scale slab of 510 mm thickness, both non-inoculated and inoculated with Al-3Ti-1B, for which experimental grain size measurements are available. We use a volume-averaged two-phase multi-scale model that describes nucleation from inoculant particles and grain growth, fully coupled with macroscopic transport phenomena: fluid flow induced by natural convection and solidification shrinkage, heat, mass and solute mass transport, grains and inoculant particles motion. We analyze the effect of liquid and grain motion as the effect of grain morphology on microstructure formation and we show in which extent those phenomena are responsible for the grain size distribution observed experimentally. The effect of the refiner level is also studied.

  2. Two-Scale Modelling of Effects of Microstructure and Thermomechanical Properties on Dynamic Performance of an Aluminium Alloy

    Science.gov (United States)

    2010-09-01

    Influences of microstructure and properties of an aluminium alloy on resistance to dynamic perforation are predicted using a decoupled multiscale ... simulated performance. Library parameters typical for aluminium alloys (Kohn, 1969) are used for the macroscopic equation of state of Al 2139, details of...Two-Scale Modelling of Effects of Microstructure and Thermomechanical Properties on Dynamic Performance of an Aluminium Alloy by J. D

  3. Effect of aluminium on formation of metastable phases in titanium-niobium alloys

    International Nuclear Information System (INIS)

    Trenogina, T.L.; Derevyanko, V.N.; Vozilkin, V.A.

    2001-01-01

    Specific features of phase transformations in the alloy of Ti-20Nb-29Al (at.%) are investigated in comparison with those in the aluminium-free Ti-21Nb alloy. It is states that in the alloy Ti-20Nb-29Al on quenching the ordering of β-solid solution takes place with B2-structure formation. The B2-matrix experiences decomposition with the formation of ordered Ω 0 -phase which field ranges up to 700 deg C. The investigation results show that the sequence of phase formation in Ti-Nb-Al and aluminium-free alloys is much the same. The only difference between them is the formation of ordered phases in the alloy Ti-20Nb-29Al [ru

  4. Microstructure and mechanical properties of thixoformed A319 aluminium alloy

    International Nuclear Information System (INIS)

    Salleh, M.S.; Omar, M.Z.; Syarif, J.; Alhawari, K.S.; Mohammed, M.N.

    2014-01-01

    Highlights: • A319 was successfully thixoformed at 50% liquid, i.e. at 571 °C. • T6 heat treatment has increased the strength and hardness of the thixoformed alloy. • The elongation after T6 heat treatment is even significantly improved. • The iron-rich intermetallic phase reduces the strength of the thixoformed alloy. - Abstract: Thixoforming is a viable technology for forming alloys in a semisolid state into near net-shaped products. In the present study, the effect of a thixoforming process on the microstructure and mechanical properties of A319 aluminium alloy was investigated. The ingots obtained from the cooling slope were thixoformed in a press after they remained at 571 °C for 5 min, yielding a microstructure predominantly composed of α-Al globules and inter-globular Si particles. Some of the thixoformed samples were treated with an ageing process (T6) and then, hardness and tensile samples were prepared from the as-cast, as-thixoformed and thixoformed T6. All the thixoformed samples were characterised using optical microscopy, scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and X-ray diffraction (XRD) as well as hardness measurements and tensile tests. The results indicate that the mechanical properties of the thixoformed A319 alloy increased after the T6 heat treatment (hardness of 124.2 ± 3.2 HV, tensile strength of 298 ± 3.0 MPa, yield strength of 201 ± 2.6 MPa and elongation to fracture of 4.5 ± 0.3%). The fracture samples from the tensile test were analysed, revealing that the iron-rich intermetallic observed in the samples reduced the tensile strength and ductility of the thixoformed A319 alloys

  5. Influence of Sludge Particles on the Fatigue Behavior of Al-Si-Cu Secondary Aluminium Casting Alloys

    Directory of Open Access Journals (Sweden)

    Lorella Ceschini

    2018-04-01

    Full Text Available Al-Si-Cu alloys are the most widely used materials for high-pressure die casting processes. In such alloys, Fe content is generally high to avoid die soldering issues, but it is considered an impurity since it generates acicular intermetallics (β-Fe which are detrimental to the mechanical behavior of the alloys. Mn and Cr may act as modifiers, leading to the formation of other Fe-bearing particles which are characterized by less harmful morphologies, and which tend to settle on the bottom of furnaces and crucibles (usually referred to as sludge. This work is aimed at evaluating the influence of sludge intermetallics on the fatigue behavior of A380 Al-Si-Cu alloy. Four alloys were produced by adding different Fe, Mn and Cr contents to A380 alloy; samples were remelted by directional solidification equipment to obtain a fixed secondary dendrite arm spacing (SDAS value (~10 μm, then subjected to hot isostatic pressing (HIP. Rotating bending fatigue tests showed that, at room temperature, sludge particles play a detrimental role on fatigue behavior of T6 alloys, diminishing fatigue strength. At elevated temperatures (200 °C and after overaging, the influence of sludge is less relevant, probably due to a softening of the α-Al matrix and a reduction of stress concentration related to Fe-bearing intermetallics.

  6. Investment casting of beta titanium alloys for aerospace applications

    International Nuclear Information System (INIS)

    Wheeler, D.A.; Cianci, M.S.; Vogt, R.G.

    1993-01-01

    The process of investment casting offers the ability to produce complex titanium components with minimal finish machining, thereby reducing their overall manufacturing cost. While aerospace applications for cast titanium have focused primarily on alpha+beta alloys, recent interest in higher strength beta alloys has prompted an examination of their suitability for investment casting. In this paper, the processing characteristics and mechanical proper-ties of Ti-1 5V-3Cr-3Al-3Sn, Ti-3Al-8V-6Cr-4Mo-4Zr, and Ti-15Mo-3Nb-3Al-0.2Si (wt.%) will be discussed. It will be shown that all three alloy compositions are readily processed using only slight modifications from current Ti-6Al-4V (wt.%) production operations. In addition, the mechanical properties of the cast product form can be manipulated through heat treatment and compare quite favorably with typical properties obtained in wrought beta titanium products. Finally, several demonstration castings are reviewed which illustrate the shape-making capabilities of the investment casting approach for beta titanium alloys

  7. Aluminium base amorphous and crystalline alloys with Fe impurity

    International Nuclear Information System (INIS)

    Sitek, J.; Degmova, J.

    2006-01-01

    Aluminium base alloys show remarkable mechanical properties, however their low thermal stability still limits the technological applications. Further improvement of mechanical properties can be reached by partial crystallization of amorphous alloys, which gives rise to nanostructured composites. Our work was focused on aluminium based alloys with Fe, Nb and V additions. Samples of nominal composition Al 90 Fe 7 Nb 3 and Al 94 Fe 2 V 4 were studied in amorphous state and after annealing up to 873 K. From Moessbauer spectra taken on the samples in amorphous state the value of f-factor was determined as well as corresponding Debye temperatures were calculated. Annealing at higher temperatures induced nano and microcrystalline crystallization. Moessbauer spectra of samples annealed up to 573 K are fitted only by distribution of quadrupole doublets corresponding to the amorphous state. An increase of annealing temperature leads to the structural transformation, which consists in growth of nanometer sized aluminium nuclei. This is partly reflected in Moessbauer parameters. After annealing at 673 K intermetallic phase Al 3 Fe and other Al-Fe phases are created. In this case Moessbauer spectra are fitted by quadrupole doublets. During annealing up to 873 K large grains of Fe-Al phases are created. (authors)

  8. DOE applied to study the effect of process parameters on silicon spacing in lost foam Al-Si-Cu alloy casting

    International Nuclear Information System (INIS)

    Shayganpour, A; Izman, S; Idris, M H; Jafari, H

    2012-01-01

    Lost foam casting as a relatively new manufacturing process is extensively employed to produce sound complicated castings. In this study, an experimental investigation on lost foam casting of an Al-Si-Cu aluminium cast alloy was conducted. The research was aimed in evaluating the effect of different pouring temperatures, slurry viscosities, vibration durations and sand grain sizes on eutectic silicon spacing of thin-wall castings. A stepped-pattern was used in the study and the focus of the investigations was at the thinnest 3 mm section. A full two-level factorial design experimental technique was used to plan the experiments and afterwards identify the significant factors affecting casting silicon spacing. The results showed that pouring temperature and its interaction with vibration time have pronounced effect on eutectic silicon phase size. Increasing pouring temperature coarsened the eutectic silicon spacing while the higher vibration time diminished coarsening effect. Moreover, no significant effects on silicon spacing were found with variation of sand size and slurry viscosity.

  9. Modeling of TiAl Alloy Grating by Investment Casting

    OpenAIRE

    Yi Jia; Shulong Xiao; Jing Tian; Lijuan Xu; Yuyong Chen

    2015-01-01

    The investment casting of TiAl alloys has become the most promising cost-effective technique for manufacturing TiAl components. This study aimed to investigate a series of problems associated with the investment casting of TiAl alloys. The mold filling and solidification of this casting model were numerically simulated using ProCAST. Shrinkage porosity was quantitatively predicted by a built-in feeding criterion. The results obtained from the numerical simulations were compared with experimen...

  10. Application of X-ray microtomography to study the influence of the casting microstructure upon the tensile behaviour of an Al–Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Limodin, Nathalie, E-mail: nathalie.limodin@ec-lille.fr [Laboratoire de Mécanique de Lille (LML), CNRS, UMR 8107, Cité Scientifique, 59650 Villeneuve d’Ascq (France); El Bartali, Ahmed, E-mail: ahmed.elbartali@ec-lille.fr [Laboratoire de Mécanique de Lille (LML), CNRS, UMR 8107, Cité Scientifique, 59650 Villeneuve d’Ascq (France); Ecole Centrale de Lille, 59650 Villeneuve d’Ascq (France); Wang, Long, E-mail: long.wang@ec-lille.fr [Laboratoire de Mécanique de Lille (LML), CNRS, UMR 8107, Cité Scientifique, 59650 Villeneuve d’Ascq (France); Ecole Centrale de Lille, 59650 Villeneuve d’Ascq (France); Lachambre, Joël, E-mail: joel.lachambre@insa-lyon.fr [Laboratoire Matériaux, Ingénierie et Sciences (MATEIS), INSA-Lyon, CNRS, UMR 5510, 20 Av. Albert Einstein, 69621 Villeurbanne (France); Buffiere, Jean-Yves, E-mail: jean-yves.buffiere@insa-lyon.fr [Laboratoire Matériaux, Ingénierie et Sciences (MATEIS), INSA-Lyon, CNRS, UMR 5510, 20 Av. Albert Einstein, 69621 Villeurbanne (France); Charkaluk, Eric, E-mail: eric.charkaluk@ec-lille.fr [Laboratoire de Mécanique de Lille (LML), CNRS, UMR 8107, Cité Scientifique, 59650 Villeneuve d’Ascq (France)

    2014-04-01

    In cast aluminium alloys used in the automotive industry the microstructure inherited from the foundry process has a strong influence on the mechanical properties. In the cylinder heads produced by the Lost Foam Casting process, the microstructure consists of hard intermetallic phases and large gas and microshrinkage pores. To study its influence, full field measurements at the microstructure scale were performed during a tensile test performed in situ under X-ray microtomography. Intermetallics were used as a natural speckle pattern. Feasibility of Digital Volume Correlation on this alloy was proved and the accuracy of the measurement was assessed and discussed in light of the small volume fraction of intermetallics and in comparison with the accuracy of Digital Image Correlation performed on optical images at a finer spatial resolution.

  11. Microstructural Evolution in Intensively Melt Sheared Direct Chill Cast Al-Alloys

    Science.gov (United States)

    Jones, S.; Rao, A. K. Prasada; Patel, J. B.; Scamans, G. M.; Fan, Z.

    The work presented here introduces the novel melt conditioned direct chill casting (MC-DC) technology, where intensive melt shearing is applied to the conventional direct-chill casting process. MC-DC casting can successfully produce high quality Al-alloy billets. The results obtained from 80 mm diameter billets cast at speed of 200 mm/min show that MC-DC casting of Al-alloys, substantially refines the microstructure and reduces macro-segregation. In this paper, we present the preliminary results and discuss microstructural evolution during MC-DC casting of Al-alloys.

  12. Experimental Observation and Analytical Modeling of Melting and Solidification during Aluminum Alloy Repair by Turbulence Flow Casting

    Directory of Open Access Journals (Sweden)

    Muki Satya Permana

    2017-03-01

    Full Text Available This paper presents an overview on the state of the art of applicable casting technology for applications in the field of repairing Aluminium Alloy components. Repair process on the Aluminium sample using similar metal has been carried out to investigate the micro-structural effect. Joining occurs as a result of convection heat transfer of molten flow into the sand mold which melts the existing base metal inside the mold and subsequent solidification. The analytical model has been developed to describe aluminium component repair by Turbulence Flow Casting. The model built is based on heat transfer principle that can handle the phenomena of heat flow. The experimental result and analytical model analyses pointed out that joint quality are greatly affected by parameters of preheating temperature and duration of molten metal flow in the mold. To obtain a desired metallurgical sound at the joint, the optimum temperature and time were adjusted in order to obtain a similarity of microstructure between filler and base metal. This model is aimed to predict the use of the process parameter ranges in order to have the optimum parameters when it is applied to the experiment. The fixed parameters are flow rate, sand ratio, and pouring temperature. The process parameters are preheating temperature and pouring time. It is concluded that anaytical modeling has good agreement with the experimental result

  13. Hot forging of roll-cast high aluminum content magnesium alloys

    Science.gov (United States)

    Kishi, Tomohiro; Watari, Hisaki; Suzuki, Mayumi; Haga, Toshio

    2017-10-01

    This paper reports on hot forging of high aluminum content magnesium alloy sheets manufactured using horizontal twin-roll casting. AZ111 and AZ131 were applied for twin-roll casting, and a hot-forging test was performed to manufacture high-strength magnesium alloy components economically. For twin-roll casting, the casting conditions of a thick sheet for hot forging were investigated. It was found that twin-roll casting of a 10mm-thick magnesium alloy sheet was possible at a roll speed of 2.5m/min. The grain size of the cast strip was 50 to 70µm. In the hot-forging test, blank material was obtained from as-cast strip. A servo press machine with a servo die cushion was used to investigate appropriate forging conditions (e.g., temperature, forging load, and back pressure) for twin-roll casts (TRCs) AZ111 and AZ131. It was determined that high aluminum content magnesium alloy sheets manufactured using twin-roll casting could be forged with a forging load of 150t and a back pressure of 3t at 420 to 430°C. Applying back pressure during hot forging effectively forged a pin-shaped product.

  14. Study of the precipitation hardening process in recycled Al-Si-Cu cast alloys

    Directory of Open Access Journals (Sweden)

    Kuchariková L.

    2017-03-01

    Full Text Available The formation of extremely small uniformly dispersed particles of a second phase within the original phase matrix during heat treatment changed material properties. Therefore the characterization of precipitation had been investigated using high resolution transmission electron microscopy (TEM and electron diffraction of thin foils for an AlSi9Cu3 cast alloy. For investigation the hardening effect onto mechanical properties of aluminium cast was used heat treatment, which consisted from solution treatment at 515°C / 4 hours (h, followed by quenching into water with temperature 50°C and artificial aging using different temperatures 170°C and 190°C with different holding time 2, 4, 8, 16, and 32 hours. The observations of microstructure and substructure reveals that precipitation hardening has caused great changes in size, morphology and distributions of structural components, the formation of precipitates of Cu phases, and the change of mechanical properties as well.

  15. Studies of the Action of Grain-Refining Particles in Aluminium Alloys

    Science.gov (United States)

    Schumacher, P.; Greer, A. L.

    Crystallization from a melt and from a metallic glass both occur in an undercooled liquid. In this way identical nucleation mechanisms can operate in the two cases. However, in metallic glasses, unlike conventional solidification at low undercooling, the low atomic mobility permits the resolution and microscopical study of nucleation processes on added particles. Conventional aluminium grain-refiner based on Al-Ti-B has been used to obtain nucleant particles embedded in a glassy matrix of Al85Y8Ni5Co2 (at%). During crystallization from the glassy state, nucleation and growth of α-Al can be observed on TiB2 particles coated with a layer of Al3Ti Empirical relations found in casting practice of Al-alloys, such as excess Ti necessary for grain refinement, can be related to the observed nucleation mechanism, which is found to be very sensitive to both crystallographic and chemical factors.

  16. Modeling of TiAl Alloy Grating by Investment Casting

    Directory of Open Access Journals (Sweden)

    Yi Jia

    2015-12-01

    Full Text Available The investment casting of TiAl alloys has become the most promising cost-effective technique for manufacturing TiAl components. This study aimed to investigate a series of problems associated with the investment casting of TiAl alloys. The mold filling and solidification of this casting model were numerically simulated using ProCAST. Shrinkage porosity was quantitatively predicted by a built-in feeding criterion. The results obtained from the numerical simulations were compared with experiments, which were carried out on Vacuum Skull Furnace using an investment block mold. The investment casting of TiAl grating was conducted for verifying the correctness and feasibility of the proposed method. The tensile test results indicated that, at room temperature, the tensile strength and elongation were approximately 675 MPa and 1.7%, respectively. The microstructure and mechanical property of the investment cast TiAl alloy were discussed.

  17. Corrosion of cast and non equilibrium magnesium alloys

    International Nuclear Information System (INIS)

    Mathieu, S.; Rapin, C.; Steinmetz, P.; Hazan, J.

    1999-01-01

    Due to their low density, magnesium alloys arc very promising as regards applications in the automotive or aeronautical industry. Their corrosion resistance has however to be increased, particularly for cast alloys which are very often two-phased and thus suffer from internal galvanic corrosion. With use of sputtering methods of elaboration, homogeneous magnesium alloys containing far from equilibrium Al, Zr or valve metals contents can be prepared. Corrosion data for Mg-Al-Zn-Sn alloys and MgZr alloys obtained by sputtering, have been determined and compared to those of cast and thixocast AZ91 alloy. Electrochemical tests have evidenced a significantly better behaviour of non equilibrium alloys which, thanks to XPS measurements, could be correlated to the composition of the superficial oxide scale formed on these alloys. (author)

  18. Casting of Titanium and its Alloys

    OpenAIRE

    R. L. Saha; K. T. Jacob

    1986-01-01

    Titaniuni and its alloys have many applications in aerospace, marine and other engineering industries. Titanium requires special melting techniques because of its high reactivity at elevated temperatures and needs special mould materials and methods for castings. This paper reviews the development of titanium casting technology.

  19. Inventory of pollution reduction options for an aluminium pressure die casting plant

    NARCIS (Netherlands)

    Neto, B.A.F.; Kroeze, C.; Hordijk, L.; Costa, C.

    2009-01-01

    This study presents an overview of options aiming to reduce emissions to air, soil and water from an aluminium die casting plant located in Portugal. We identify eighteen pollution reduction options and then estimate their potential to reduce the pollution, and the costs associated with their

  20. Recycling of aluminium scrap for secondary Al-Si alloys.

    Science.gov (United States)

    Velasco, Eulogio; Nino, Jose

    2011-07-01

    An increasing amount of recycled aluminium is going into the production of aluminium alloy used for automotive applications. In these applications, it is necessary to control and remove alloy impurities and inclusions. Cleaning and fluxing processes are widely used during processing of the alloys for removal of inclusions, hydrogen and excess of magnesium. These processes use salt fluxes based in the system NaCl-KCl, injection of chlorine or mixture of chlorine with an inert gas. The new systems include a graphite wand and a circulation device to force convection in the melt and permit the bubbling and dispersion of reactive and cleaning agents. This paper discusses the recycling of aluminium alloys in rotary and reverberatory industrial furnaces. It focuses on the removal of magnesium during the melting process. In rotary furnaces, the magnesium lost is mainly due to the oxidation process at high temperatures. The magnesium removal is carried out by the reaction between chlorine and magnesium, with its efficiency associated to kinetic factors such as concentration of magnesium, mixing, and temperature. These factors are also related to emissions generated during the demagging process. Improvements in the metallic yield can be reached in rotary furnaces if the process starts with a proper salt, with limits of addition, and avoiding long holding times. To improve throughput in reverberatories, start the charging with high magnesium content material and inject chlorine gas if the molten metal is at the right temperature. Removal of magnesium through modern technologies can be efficiently performed to prevent environmental problems.

  1. Grindability of cast Ti-Hf alloys.

    Science.gov (United States)

    Kikuchi, Masafumi; Takahashi, Masatoshi; Sato, Hideki; Okuno, Osamu; Nunn, Martha E; Okabe, Toru

    2006-04-01

    As part of our systematic studies characterizing the properties of titanium alloys, we investigated the grindability of a series of cast Ti-Hf alloys. Alloy buttons with hafnium concentrations up to 40 mass% were made using an argon-arc melting furnace. Each button was cast into a magnesia-based mold using a dental titanium casting machine; three specimens were made for each metal. Prior to testing, the hardened surface layer was removed. The specimens were ground at five different speeds for 1 min at 0.98 N using a carborundum wheel on an electric dental handpiece. Grindability was evaluated as the volume of metal removed per minute (grinding rate) and the volume ratio of metal removed compared to the wheel material lost (grinding ratio). The data were analyzed using ANOVA. A trend of increasing grindability was found with increasing amounts of hafnium, although there was no statistical difference in the grindability with increasing hafnium contents. We also found that hafnium may be used to harden or strengthen titanium without deteriorating the grindability.

  2. The Effect of Laser Surface Treatment on Structure and Mechanical Properties Aluminium Alloy ENAC-AlMg9

    Directory of Open Access Journals (Sweden)

    Pakieła W.

    2016-09-01

    Full Text Available In this work, the influence of a high power diode laser surface treatment on the structure and properties of aluminium alloy has been determined. The aim of this study was to improve the mechanical and tribological properties of the surface layer of the aluminium alloy by simultaneously melting and feeding tungsten carbide particles into the molten pool. During the process was used high-power diode laser HPDL. In order to remelt the aluminium alloy surface the HPDL laser of 1.8, 2.0 and 2.2 kW laser beam power has been used. The linear laser scan rate of the beam was set 0.5 cm/s. In order to protect the liquid metal during laser treatment was used argon. As a base material was used aluminium alloy ENAC-AlMg9. To improve the surface mechanical and wear properties of the applied aluminium alloy was used biphasic tungsten carbide WC/W2C. The size of alloying powder was in the range 110-210 µm. The ceramic powder was introduced in the remelting zone by a gravity feeder at a constant rate of 8 g/m.

  3. Characterization of Ni-Cr alloys using different casting techniques and molds.

    Science.gov (United States)

    Chen, Wen-Cheng; Teng, Fu-Yuan; Hung, Chun-Cheng

    2014-02-01

    This study differentiated the mechanical properties of nickel-chromium (Ni-Cr) alloys under various casting techniques (different casting molds and casting atmospheres). These techniques were sampled by a sand mold using a centrifugal machine in ambient air (group I) and electromagnetic induction in an automatic argon castimatic casting machine (group II). The specimen casting used a graphite mold by a castimatic casting machine (group III). The characteristics of the Ni-Cr alloys, yield and ultimate tensile strength, bending modulus, microhardness, diffraction phase, grindability, ability to spring back, as well as ground microstructure and pattern under different casting conditions were evaluated. The group III specimens exhibited the highest values in terms of strength, modulus, hardness, and grindability at a grind rate of 500 rpm. Moreover, group III alloys exhibited smaller grain sizes, higher ability to spring back, and greater ductility than those casted by sand investment (groups I and II). The main factor, "casting mold," significantly influenced all mechanical properties. The graphite mold casting of the Ni-Cr dental alloys in a controlled atmosphere argon casting system provided an excellent combination of high mechanical properties and good ability to spring back, and preserved the ductile properties for application in Ni-Cr porcelain-fused system. The results can offer recommendations to assist a prosthetic technician in selecting the appropriate casting techniques to obtain the desired alloy properties. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Feeding and Distribution of Porosity in Cast Al-Si Alloys as Function of Alloy Composition and Modification

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat; Taylor, John A.; Easton, Mark A.

    2012-01-01

    Unmodified, Na-modified, and Sr-modified castings of Al-7 pct Si and Al-12.5 pct Si alloys were cast in molds in which it was possible to create different cooling conditions. It is shown how solidification influences the distribution of porosity at the surface and the center of the castings...... of the casting, while Sr-modified castings solidify in a mushy manner that creates a more homogeneous distribution of porosity in the casting. The amount of porosity was highest in the Sr-modified alloys, lower in the Na-modified alloys, and lowest in the unmodified alloys. The size of the porosity-free layer...... as a function of modification and Si content in sand- and chill-cast samples. Eutectic modification, Si content, and cooling conditions have a great impact on the distribution of porosity. Unmodified and Na-modified castings are more easily fed with porosity tending to congregate near the centerline...

  5. The influence of alloy composition on residual stresses in heat treated aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, J.S., E-mail: jeremy.robinson@ul.ie [Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick (Ireland); Redington, W. [Materials and Surface Science Institute, University of Limerick (Ireland)

    2015-07-15

    The as quenched properties of eight different heat treatable aluminium alloys are related to residual stress magnitudes with the objective being to establish if there is a relationship between the residual stress and the as quenched alloy hardness and strength. Near surface residual stresses were assessed with X-ray diffraction using both the established sin{sup 2}ψ method and the more recent cos α technique. Through thickness residual stresses were also characterised using neutron diffraction. The alloys were chosen to encompass a wide range of strengths. The low to medium strength alloys were 6060 and 6082, medium to high strength 2618A, 2014A, 7075, 7010 and two variants of 7449, while the very high strength alloy was the powder metallurgy alloy N707. To assess the as quenched strength, dynamic hardness and tensile properties were determined from samples tested immediately after quenching to minimise the influence of precipitation hardening by natural aging. In addition, hot hardness measurements were made in situ on samples cooled to simulate quench paths. Within the experimental constraints of the investigation, the distribution of residual stress through the thickness was found to follow the same pattern for all the alloys investigated, varying from tensile in the interior to surface compression. The influence of alloy strength was manifested as a change in the observed residual stress magnitudes, and surface residual stresses were found to vary linearly with as quenched hardness and strength. - Highlights: • As quenched aluminium alloys contain high magnitude residual stresses. • Surface is compressive balance by a tensile core. • As quenched surface residual stress is linear function of alloy strength. • In situ hot hardness demonstrates rapid change in intrinsic hardness during rapid cooling.

  6. Multiscale modeling for the prediction of casting defects in investment cast aluminum alloys

    International Nuclear Information System (INIS)

    Hamilton, R.W.; See, D.; Butler, S.; Lee, P.D.

    2003-01-01

    Macroscopic modeling of heat transfer and fluid flow is now routinely used for the prediction of macroscopic defects in castings, while microscopic models are used to investigate the effects of alloy changes on typical microstructures. By combining these two levels of modeling it is possible to simulate the casting process over a wider range of spatial and temporal scales. This paper presents a multiscale model where micromodels for dendrite arm spacing and microporosity are incorporated into a macromodel of heat transfer and in order to predict the as cast microstructure and prevalence of microscopic defects, specifically porosity. The approach is applied to aluminum alloy (L169) investment castings. The models are compared with results obtained by optical image analysis of prepared slices, and X-ray tomography of volume samples from the experiments. Multiscale modeling is shown to provide the designer with a useful tool to improve the properties of the final casting by testing how altering the casting process affects the final microstructure including porosity

  7. Enhanced heterogeneous nucleation on oxides in Al alloys by intensive shearing

    International Nuclear Information System (INIS)

    Li, H T; Wang, Y; Fan, Z

    2012-01-01

    Oxides, in liquid aluminium alloys, can cause severe difficulties during casting, contribute to the formation of cast defects and degrade the mechanical properties of cast components. In this paper, microstructural characteristics of naturally occurring oxides in the melts of commercial purity aluminium and Al-Mg binary alloys have been investigated. They are characterised by densely populated oxide particles within liquid oxide films. With intensive shearing, the particle agglomerates are dispersed into uniformly distributed individual particles. It was found that with intensive melt shearing, grain refinement of α-Al can be achieved by the dispersed oxide particles. The smaller lattice misfit between the oxide particles and the α-Al phase is characterised by a well defined crystallographic orientation relationship. And the mechanisms of grain refinement are discussed.

  8. Determination of initial stages of recrystallization in aluminium alloys by X-ray diffraction

    International Nuclear Information System (INIS)

    Loew, Marjorie

    2000-01-01

    Aluminium is a metal with a wide variety of application, such as beer cans, pans, door and window borders, and others more advanced, such as airplane structure, car engines, nuclear reactors components, rocket propulsion components and so on. Most of aluminium application is in alloy form. Such alloys must present suitable mechanical and chemical properties that are obtained, not entirely, by microstructure development. In this work, the beginning of recrystallization processes of AA1050 and AA3003 aluminium alloys were studied using X-ray diffraction techniques, transmission electron microscopy and hardness test. For such a sample, an initial heat treatment was done in order to homogenize the samples microstructure, followed by cold rolling and submitted again to a heat treatment in different temperatures in a hot furnace. After that samples were analyzed to verify the beginning of the recrystallization. Vickers hardness test revealed that the beginning of recrystallization is between 150 and 300 deg C for 1050 aluminium alloy and 200 and 300 deg C for 3003 aluminium alloy. X-ray diffraction using transmission chamber showed that the beginning of recrystallization is 240 and 260 deg C for AA1050 and AA3003, respectively. These temperatures were determined as the diffraction patterns recorded in the photographic plates changes when the recrystallization takes place. In this way, the deformed sample shows continuous concentric lines and the beginning of recrystallization is characterized by the occurrence of defined spots in this pattern. The Pole Figures goniometric method revealed that the beginning of recrystallization takes place between 250 and 300 deg C for both alloys. In the same way, orientation distribution functions showed the same temperature range for the recrystallization. However, the analysis by α and β fiber figures, the recrystallization temperatures are 240 and 260 deg C for AA1050 and AA3003, respectively. Finally, after the analysis of all

  9. Appearance of anodised aluminium: Effect of alloy composition and prior surface finish

    DEFF Research Database (Denmark)

    Aggerbeck, Martin; Canulescu, Stela; Dirscherl, Kai

    2014-01-01

    Effect of alloy composition and prior surface finish on the optical appearance of the anodised layer on aluminium alloys was investigated. Four commercial alloys namely AA1050, Peraluman 706, AA5754, and AA6082 were used for the investigation. Microstructure and surface morphology of the substrat...

  10. Evaluation of the new TAMZ titanium alloy for dental cast application.

    Science.gov (United States)

    Zhang, Y M; Guo, T W; Li, Z C

    2000-12-01

    To reveal the potential of the new titanium alloy as dental prosthodontic materials. Dental castings of TAMZ alloy were investigated in the casting machine specially designed for titanium. A mesh pattern was used to count the castability value. The mechanical properties were measured by means of a universal testing machine. Optical micrography was done on the exposed cross-section of TAMZ alloy casting. From the surface to the inner part the Knoop hardness in reacted layer of TAMZ alloy casting was measured. The structure and elemental analyses of the reacted layer were made by SEM and element line scanning observation. The castability value (Cv = 98%) and the tensile test (sigma b = 850 Mpa, sigma 0.2 = 575 Mpa, delta = 7.33%) data were collected. The castings microstructure showed main alpha phase and small beta phase. Knoop hardness in the surface reacted layer was greater than that in the inner part. From the SEM and element line scanning observation, there are three different layers in the surface reacted layer of the TAMZ alloy castings, and higher level of element of O, Al, Si and Zr were found in the reacted layer while the Si permeated deeper than others. TAMZ alloy can be accepted as a material for dental alloy in prosthodontics.

  11. Aluminium alloys containing iron and nickel; Alliages d'aluminium contenant du fer et du nickel

    Energy Technology Data Exchange (ETDEWEB)

    Coriou, H.; Fournier, R.; Grall, L.; Hure, J. [Commissariat a l' Energie atomique, Centre d' Etudes Nucleaires de Saclay, Departement de Metallurgie et de Chimie Appliquee (France); Herenguel, J.; Lelong, P. [Centre de Recherches d' Antony, des Trefileries et Laminoirs du Havre (France)

    1958-07-01

    The first part of this report addresses mechanism, kinetics and structure factors of aluminium alloys containing iron and nickel in water and high temperature steam. The studied alloys contain from 0.3 to 0.7 per cent of iron, and 0.2 to 1.0 per cent of nickel. Corrosion resistance and corrosion structure have been studied. The experimental installation, process and samples are presented. Corrosion structures in water at 350 C are identified and discussed (structure of corrosion products, structure of metal-oxide interface), and then in steam at different temperatures (350-395 C). Corrosion kinetics is experimentally studied (weight variation in time) in water at 350 C and in steam at different temperatures. Reactions occurring at over-heated steam (more than 400 C) are studied, and the case of welded alloys is also addressed. The second part addresses the metallurgical mechanism and processes influencing aluminium alloy resistance to corrosion by high temperature water as it appeared that separated phases protect the solid solution through a neighbourhood action. In order to avoid deep local corrosions, it seems necessary to multiply protective phases in an as uniform as possible way. Some processes enabling this result are described. They belong to conventional metallurgy or to powder metallurgy (with sintering and extrusion)

  12. Study of Surface Roughness and Cutting force in machining for 6068 Aluminium alloy

    Science.gov (United States)

    Purushothaman, D.; Kaushik Yanamundra, Krishna; Krishnan, Gokul; Perisamy, C.

    2018-04-01

    Metal matrix composites, in particular, Aluminium Hybrid Composites are gaining increasing attention for applications in air and land because of their superior strength to weight ratio, density and high temperature resistance. Aluminium alloys are being used for a wide range of applications in Aerospace and Automobile industries, to name a few. The Aluminium Alloy 6068 has been used as the specimen. It is mainly composed of Aluminium (93.22 - 97.6 %), Magnesium (0.60 - 1.2 %), Silicon (0.60 - 1.4 %) and Bismuth (0.60 - 1.1 %). Aluminium 6068 is widely used for manufacturing aircraft structures, fuselages and wings. It is also extensively used in fabricating automobile parts such as wheel spacers. In this study, tests for the measurement of surface roughness and cutting force has been carried out on the specimen, the results evaluated and conclusions are drawn. Also the simulation of the same is carried out in a commercial FE software – ABAQUS.

  13. Properties of experimental copper-aluminium-nickel alloys for dental post-and-core applications.

    Science.gov (United States)

    Rittapai, Apiwat; Urapepon, Somchai; Kajornchaiyakul, Julathep; Harniratisai, Choltacha

    2014-06-01

    This study aimed to develop a copper-aluminium-nickel alloy which has properties comparable to that of dental alloys used for dental post and core applications with the reasonable cost. Sixteen groups of experimental copper alloys with variants of 3, 6, 9, 12 wt% Al and 0, 2, 4, 6 wt% Ni were prepared and casted. Their properties were tested and evaluated. The data of thermal, physical, and mechanical properties were analyzed using the two-way ANOVA and Tukey's test (α=0.05). The alloy toxicity was evaluated according to the ISO standard. The solidus and liquidus points of experimental alloys ranged from 1023℃ to 1113℃ and increased as the nickel content increased. The highest ultimate tensile strength (595.9 ± 14.2 MPa) was shown in the Cu-12Al-4Ni alloy. The tensile strength was increased as the both elements increased. Alloys with 3-6 wt% Al exhibited a small amount of 0.2% proof strength. Accordingly, the Cu-9Al-2Ni and Cu-9Al-4Ni alloys not only demonstrated an appropriate modulus of elasticity (113.9 ± 8.0 and 122.8 ± 11.3 GPa, respectively), but also had a value of 0.2% proof strength (190.8 ± 4.8 and 198.2 ± 3.4 MPa, respectively), which complied with the ISO standard requirement (>180 MPa). Alloys with the highest contents of nickel (6 wt% Ni) revealed a widespread decolourisation zone (5.0-5.9 mm), which correspondingly produced the largest cell response, equating positive control. The copper alloys fused with 9 wt% Al and 2-4 wt% Ni can be considered for a potential use as dental post and core applications.

  14. Squeeze casting of aluminum alloy A380: Microstructure and tensile behavior

    Directory of Open Access Journals (Sweden)

    Li Fang

    2015-09-01

    Full Text Available A380 alloy with a relatively thick cross-section of 25 mm was squeeze cast using a hydraulic press with an applied pressure of 90 MPa. Microstructure and tensile properties of the squeeze cast A380 were characterized and evaluated in comparison with the die cast counterpart. Results show that the squeeze cast A380 possesses a porosity level much lower than the die cast alloy, which is disclosed by both optical microscopy and the density measurement technique. The results of tensile testing indicate the improved tensile properties, specifically ultimate tensile strength (UTS: 215.9 MPa and elongation (Ef: 5.4%, for the squeeze cast samples over those of the conventional high-pressure die cast part (UTS: 173.7 MPa, Ef: 1.0%. The analysis of tensile behavior shows that the squeeze cast A380 exhibits a high tensile toughness (8.5 MJ·m-3 and resilience (179.3 kJ·m-3 compared with the die cast alloy (toughness: 1.4 MJ·m-3, resilience: 140.6 kJ·m-3, despite that, during the onset of plastic deformation, the strain-hardening rate of the die cast specimen is higher than that of the squeeze cast specimens. The microstructure analyzed by the scanning electron microscopy (SEM shows that both the squeeze and die cast specimens contain the primary α-Al, Al2Cu, Al5FeSi phase and the eutectic Si phase. But, the Al2Cu phase present in the squeeze cast alloy is relatively large in size and quantity. The SEM fractography evidently reveals the ductile fracture features of the squeeze cast A380 alloy.

  15. Machinability of magnesium and aluminium alloys. Part I: cutting resistance

    International Nuclear Information System (INIS)

    Balout, B.; Songmene, V.; Masounave, J.

    2002-01-01

    Aluminium (2.7 g/cm 3 ) and magnesium (1.7 g/cm 3 ) are two competing light metals with similar mechanical properties and excellent possibilities for recycling. The forming of magnesium is often seen as an impediment to its use. New forming techniques using magnesium shavings are being developed, particularly in Japan. The machining of magnesium alloys by removal of metal raises safety concerns (risk of fire), which limits many potential applications of magnesium. The purpose of this work is to clarify and compare the machining properties of these two types of metal and better understand the mechanisms that may explain the differences in behaviour. Such a comparison could eventually provide an estimate of the cost of producing shavings for the manufacture of aluminium and magnesium parts through forging and extrusion, which would limit environmental pollution. Based on an analysis of cutting resistance during machining, it was demonstrated that magnesium alloys are easier to machine than similar aluminium alloys. Magnesium shavings are shorter than those of 6061-T6, but are especially more regular than those of A356, and their size is independent of cutting speed. It was also demonstrated that the fragility of materials can be characterized based on the results of cutting resistance produced during drilling

  16. Evaluation of Cracking Causes of AlSi5Cu3 Alloy Castings

    Directory of Open Access Journals (Sweden)

    Eperješi Š.

    2014-10-01

    Full Text Available Recently, the castings made from aluminum-silicon alloys by pressure die casting are increasingly used in the automotive industry. In practice, on these castings are high demands, mainly demands on quality of their structure, operating life and safety ensuring of their utilization. The AlSi5Cu3 alloy castings are widely used for production of car components. After the prescribed tests, the cracks and low mechanical properties have been identified for several castings of this alloy, which were produced by low pressure casting into a metal mould and subsequent they were heat treated. Therefore, analyses of the castings were realized to determine the causes of these defects. Evaluation of structure of the AlSi5Cu3 alloy and causes of failure were the subjects of investigation presented in this article.

  17. Elastic and plastic properties of iron-aluminium alloys. Special problems raised by the brittleness of alloys of high aluminium content; Proprietes elastiques et plastiques des alliages fer-aluminium. Problemes particuliers poses par la fragilite des alliages a forte teneur en aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Mouturat, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-06-01

    The present study embodies the results obtained with iron-aluminium alloys whose composition runs from 0 to nearly 50 atoms per cent aluminium. Conditions of elaboration and transformation have been studied successively, as well as the Young's modulus and the flow stress; the last chapter embodies, a study of the Portevin-le-Chatelier effect in alloys of 40 atoms per cent of aluminium. I) The principal difficulty to clear up consisted in the intergranular brittleness of ordered alloys; this brittleness has been considerably reduced with appropriate conditions of elaboration and transformation. II) The studies upon the Young's modulus are in connection with iron-aluminium alloys; transformation temperatures are well shown up. The formation of covalent bonds on and after 25 atoms per cent show the highest values of the modulus. III) The analysis of variations of the flow stress according to the temperature show some connection with ordered structures, the existence of antiphase domains and the existence of sur-structure dislocations. IV) In the ordered Fe Al domain the kinetics of the Portevin-le-Chatelier effect could be explained by a mechanism of diffusion of vacancies. The role they play has been specified by the influence they exert upon the dislocations; this has led us to the inhomogeneous Rudman order; this inhomogeneous order could explain the shape of the traction curves. (author) [French] Cette etude comporte les resultats obtenus avec des alliages fer-aluminium dont la composition s'etend de 0 a pres de 50 atomes pour cent d'aluminium. Nous avons etudie successivement les conditions d'elaboration et de transformation, le module elastique et la limite elastique; un dernier chapitre est consacre a l'etude du phenomene Portevin-le-Chatelier dans les alliages a 40 atomes pour cent d'aluminium. I) La principale difficulte a resoudre residait dans la fragilite intergranulaire des alliages ordonnes; celle-ci a ete considerablement reduite par des conditions

  18. The determination of sulphur in copper, nickel and aluminium alloys by proton activation analysis

    International Nuclear Information System (INIS)

    Vandecasteele, C.; Dewaele, J.; Esprit, M.; Goethals, P.

    1981-01-01

    The 34 S(p,n) 34 sup(m)Cl reaction, induced by 13 MeV protons is used for the determination of sulphur in copper, nickel and aluminium alloys. The 34 sup(m)Cl is separated by repeated precipitation as silver chloride. The results obtained were resp. 3.08 +- 0.47, 1.47 +- 0.17 and -1 for copper, nickel and aluminium alloys. (orig.)

  19. Experimental research on the ultimate strength of hard aluminium alloy 2017 subjected to short-time radioactive heating

    International Nuclear Information System (INIS)

    Dafang, Wu; Yuewu, Wang; Bing, Pan; Meng, Mu; Lin, Zhu

    2012-01-01

    Highlights: ► Ultimate strength at transient heating is critical to security design of missiles. ► We measure the ultimate strength of alloy 2017 subjected to transient heating. ► Experimental results at transient heating are lacking in strength design handbook. ► Ultimate strength of alloy 2017 experimented is much higher than handbook value. ► The results provide a new method for optimal design of high-speed flight vehicles. -- Abstract: Alloy 2017 (Al–Cu–Mg) is a hard aluminium alloy strengthened by heat treatment. Because of its higher strength, finer weldability and ductility, hard aluminium alloy 2017 has been widely used in the field of aeronautics and astronautics. However, the ultimate strength and other characteristic mechanical parameters of aluminium alloy 2017 in a transient heating environment are still unclear, as these key mechanical parameters are lacking in the existing strength design handbook. The experimental characterisation of these critical parameters of aluminium alloy 2017 is undoubtedly meaningful for reliably estimating life span of and improving safety in designing high-speed flight vehicles. In this paper, the high-temperature ultimate strength, loading time and other mechanical properties of hard aluminium alloy 2017 under different transient heating temperatures and loading conditions are investigated by combining a transient aerodynamic heating simulation system and a material testing machine. The experimental results reveal that the ultimate strength and loading capability of aluminium alloy 2017 subjected to transient thermal heating are much higher than those tested in a long-time stable high-temperature environment. The research of this work not only provides a substantial basis for the loading capability improvement and optimal design of aerospace materials and structures subject to transient heating but also presents a new research direction with a practical application value.

  20. Quality analysis of the Al-Si-Cu alloy castings

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2007-04-01

    Full Text Available The developed design methodologies both the material and technological ones will make it possible to improve shortly the quality of materials from the light alloys in the technological process, and the automatic process flow correction will make the production cost reduction possible, and - first of all - to reduce the amount of the waste products. Method was developed for analysis of the casting defects images obtained with the X-ray detector analysis of the elements made from the Al-Si-Cu alloys of the AC-AlSi7Cu3Mg type as well as the method for classification of casting defects using the artificial intelligence tools, including the neural networks; the developed method was implemented as software programs for quality control. Castings were analysed in the paper of car engine blocks and heads from the Al-Si-Cu alloys of the AC-AlSi7Cu3Mg type fabricated with the “Cosworth” technological process. The computer system, in which the artificial neural networks as well as the automatic image analysis methods were used makes automatic classification possible of defects occurring in castings from the Al-Si-Cu alloys, assisting and automating in this way the decisions about rejection of castings which do not meet the defined quality requirements, and therefore ensuring simultaneously the repeatability and objectivity of assessment of the metallurgical quality of these alloys.

  1. Effect of surface reaction layer on grindability of cast titanium alloys.

    Science.gov (United States)

    Ohkubo, Chikahiro; Hosoi, Toshio; Ford, J Phillip; Watanabe, Ikuya

    2006-03-01

    The purpose of this study was to investigate the effect of the cast surface reaction layer on the grindability of titanium alloys, including free-machining titanium alloy (DT2F), and to compare the results with the grindability of two dental casting alloys (gold and Co-Cr). All titanium specimens (pure Ti, Ti-6Al-4V and DT2F) were cast using a centrifugal casting machine in magnesia-based investment molds. Two specimen sizes were used to cast the titanium metals so that the larger castings would be the same size as the smaller gold and Co-Cr alloy specimens after removal of the surface reaction layer (alpha-case). Grindability was measured as volume loss ground from a specimen for 1 min using a handpiece engine with a SiC abrasive wheel at 0.1 kgf and four circumferential wheel speeds. For the titanium and gold alloys, grindability increased as the rotational speed increased. There was no statistical difference (p>0.05) in grindability for all titanium specimens either with or without the alpha-case. Of the titanium metals tested, Ti-6 Al-4V had the greatest grindability at higher speeds, followed by DT2F and CP Ti. The grindability of the gold alloy was similar to that of Ti-6 Al-4V, whereas the Co-Cr alloy had the lowest grindability. The results of this study indicated that the alpha-case did not significantly affect the grindability of the titanium alloys. The free-machining titanium alloy had improved grindability compared to CP Ti.

  2. Development the Mechanical Properties of (AL-Li-Cu Alloy

    Directory of Open Access Journals (Sweden)

    Ihsan Kadhom AlNaimi

    2017-11-01

    Full Text Available The aim of this research is to develop mechanical properties of a new aluminium-lithium-copper alloy. This alloy prepared under control atmosphere by casting in a permanent metal mould. The microstructure was examined and mechanical properties were tested before and after heat treatment to study the influence of heat treatment on its mechanical properties including; modulus of elasticity, tensile strength, impact, and fatigue. The results showed that the modulus of elasticity of the prepared alloy is higher than standard alloy about 2%. While the alloy that heat treated for 6 h and cooled in water, then showed a higher ultimate tensile stress comparing with as-cast alloy. The homogenous heat treatment gives best fatigue behaviour comparing with as-cast and other heat treatment alloys. Also, the impact test illustrates that the homogeneous heat treatment alloy gives the highest value.

  3. Influence of nanoporous structure on mechanical strength of aluminium and aluminium alloy adhesive structural joints

    International Nuclear Information System (INIS)

    Spadaro, C; Dispenza, C; Sunseri, C

    2006-01-01

    The influence of surface treatments on the mechanical strength of adhesive joints was investigated. The attention was focused on AA2024 alloy because it is extensively used in both the automotive and aerospace industries. Adhesive joints fabricated with pure aluminium were also investigated in order to evidence possible differences in the surface features after identical treatments. Before joining with a commercial epoxy adhesive, metal substrates were subjected to different kinds of treatment and the surfaces were characterized by SEM analysis. The formation of a microporous surface in the AA2024 alloy, upon etching and anodizing, is discussed on the basis of the role of the intermetallic particles and their electrochemical behaviour with respect to the aluminium matrix. Moreover, nanostructured porous oxide layers on both type of substrate were also formed, as a consequence of the anodizing process. Differences in their morphologies were revealed as a function of both the applied voltage and the presence of alloying elements. On this basis, an explanation of the different values of fracture energy measured by means of T-peel tests carried out on the corresponding joints was attempted

  4. An approach for continuous cooling transformation (CCT) diagrams of aluminium alloys

    International Nuclear Information System (INIS)

    Herding, T.; Kessler, O.; Hoffmann, F.; Mayr, P.

    2002-01-01

    Two different kinds of time temperature transformation (TTT) diagrams are known. The first one are isothermal transformation (IT) diagrams and the second one continuous cooling transformation (CCT) diagrams. These diagrams are important for the correct heat treatment of aluminium alloys, because they provide information about the required quenching rate, which is necessary to obtain a supersaturated solid solution during age hardening. Furthermore, it is possible to determine the lowest quenching rate, which permits both a high strength and a small distortion of the component after age hardening. In the literature IT diagrams for different aluminium alloys are available. To determine these diagrams, a solution annealing followed by quenching to defined temperatures is necessary. At these temperatures the alloy is kept isothermally until a transformation has started. These diagrams are not directly portable on continuous cooling, because of the different cooling paths. (orig.)

  5. Corrosion behaviour of powder metallurgical and cast Al-Zn-Mg base alloys

    International Nuclear Information System (INIS)

    Sameljuk, A.V.; Neikov, O.D.; Krajnikov, A.V.; Milman, Yu.V.; Thompson, G.E.

    2004-01-01

    The behaviour of Al-Zn-Mg base alloys produced by powder metallurgy and casting has been studied using potentiodynamic polarisation in 0.3% and 3% NaCl solutions. The influence of alloy production route on microstructure has been examined by scanning electron microscopy, Auger electron spectroscopy and secondary ion mass spectrometry. An improvement in performance of powder metallurgy (PM) materials, compared with the cast alloy, was evident in solutions of low chloride concentration; less striking differences were revealed in high chloride concentration. Both powder metallurgy and cast alloys show two main types of precipitates, which were identified as Zn-Mg and Zr-Sc base intermetallic phases. The microstructure of the PM alloys is refined compared with the cast material, which assists understanding of the corrosion performance. The corrosion process commences with dissolution of the Zn-Mg base phases, with the relatively coarse phases present in the cast alloy showing ready development of corrosion

  6. Design and Analysis of Wind Turbine Blade Hub using Aluminium Alloy AA 6061-T6

    Science.gov (United States)

    Ravikumar, S.; Jaswanthvenkatram, V.; Sai kumar, Y. J. N. V.; Sohaib, S. Md.

    2017-05-01

    This work presents the design and analysis of horizontal axis wind turbine blade hub using different material. The hub is very crucial part of the wind turbine, which experience the loads from the blades and the loads were transmitted to the main shaft. At present wind turbine is more expensive and weights more than a million pounds, with the nacelle, rotor hub and blades accounting for most of the weight. In this work Spheroidal graphite cast iron GGG 40.3 is replaced by aluminium alloy 6061-T6 to enhance the casting properties and also to improve the strength-weight ratio. This transition of material leads to reduction in weight of the wind turbine. All the loads caused by wind and extreme loads on the blades are transferred to the hub. Considering the IEC 61400-1 standard for defining extreme loads on the hub the stress and deflection were calculated on the hub by using Finite element Analysis. Result obtained from ANSYS is compared and discussed with the existing design.

  7. Machinability of cast commercial titanium alloys.

    Science.gov (United States)

    Watanabe, I; Kiyosue, S; Ohkubo, C; Aoki, T; Okabe, T

    2002-01-01

    This study investigated the machinability of cast orthopedic titanium (metastable beta) alloys for possible application to dentistry and compared the results with those of cast CP Ti, Ti-6Al-4V, and Ti-6Al-7Nb, which are currently used in dentistry. Machinability was determined as the amount of metal removed with the use of an electric handpiece and a SiC abrasive wheel turning at four different rotational wheel speeds. The ratios of the amount of metal removed and the wheel volume loss (machining ratio) were also evaluated. Based on these two criteria, the two alpha + beta alloys tested generally exhibited better results for most of the wheel speeds compared to all the other metals tested. The machinability of the three beta alloys employed was similar or worse, depending on the speed of the wheel, compared to CP Ti. Copyright 2002 Wiley Periodicals, Inc.

  8. Friction and corrosion resistance of sputter deposited supersaturated metastable aluminium-molybdenum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Zeid, O.A. [Univ. of the United Arab Emirates, Al-Ain (United Arab Emirates). Dept. of Mech. Eng.; Bates, R.I. [Design, Mfg. and Marketing Research Inst., Univ. of Salford (United Kingdom)

    1996-12-15

    Two closed field unbalanced magnetrons with targets of aluminium and molybdenum have been used for the co-deposition of aluminium-molybdenum coatings with different compositions. A pin on disk machine and a computer controlled potentiostat have been used to evaluate respectively, the tribological and corrosion properties of the deposited alloys. Results have shown that introducing molybdenum into aluminium coatings improves their poor tribological properties. Aluminium-molybdenum coatings with different compositions have shown low wear behaviour and for coatings with high molybdenum contents (> 80%) friction coefficients against steel, as low as 0.18 have been obtained. The addition of molybdenum into aluminium coatings has reduced their corrosion tendency and corrosion current density in a marine environment. (orig.)

  9. Enhancement of wear and ballistic resistance of armour grade AA7075 aluminium alloy using friction stir processing

    Directory of Open Access Journals (Sweden)

    I. Sudhakar

    2015-03-01

    Full Text Available Industrial applications of aluminium and its alloys are restricted because of their poor tribological properties. Thermal spraying, laser surfacing, electron beam welding are the most widely used techniques to alter the surface morphology of base metal. Preliminary studies reveal that the coating and layering of aluminium alloys with ceramic particles enhance the ballistic resistance. Furthermore, among aluminium alloys, 7075 aluminium alloy exhibits high strength which can be compared to that of steels and has profound applications in the designing of lightweight fortification structures and integrated protection systems. Having limitations such as poor bond integrity, formation of detrimental phases and interfacial reaction between reinforcement and substrate using fusion route to deposit hard particles paves the way to adopt friction stir processing for fabricating surface composites using different sizes of boron carbide particles as reinforcement on armour grade 7075 aluminium alloy as matrix in the present investigation. Wear and ballistic tests were carried out to assess the performance of friction stir processed AA7075 alloy. Significant improvement in wear resistance of friction stir processed surface composites is attributed to the change in wear mechanism from abrasion to adhesion. It has also been observed that the surface metal matrix composites have shown better ballistic resistance compared to the substrate AA7075 alloy. Addition of solid lubricant MoS2 has reduced the depth of penetration of the projectile to half that of base metal AA7075 alloy. For the first time, the friction stir processing technique was successfully used to improve the wear and ballistic resistances of armour grade high strength AA7075 alloy.

  10. Mechanical properties of plasma-sprayed layers of aluminium and aluminium alloy on AZ 91

    Czech Academy of Sciences Publication Activity Database

    Kubatík, Tomáš František; Ctibor, Pavel; Mušálek, Radek; Janata, Marek

    2017-01-01

    Roč. 51, č. 2 (2017), s. 323-327 ISSN 1580-2949 R&D Projects: GA ČR(CZ) GP14-31538P Institutional support: RVO:61389021 Keywords : plasma spraying of aluminium * adhesion of coating * wear * magnesium alloy AZ91 Subject RIV: JG - Metallurgy OBOR OECD: Materials engineering Impact factor: 0.436, year: 2016

  11. An indirect method for determining phosphorus in aluminium alloys by atomic-absorption spectrometry.

    Science.gov (United States)

    Bernal, J L; Del Nozal, M A; Deban, L; Aller, A J

    1981-07-01

    An indirect method is described for the determination of phosphorus in aluminium alloys. Ammonium molybdate is added to a solution of the aluminium alloy and the molybdophosphoric acid formed is selectively extracted into n-butyl acetate. The twelve molybdenum atoms associated with each phosphate ion are determined by direct atomic-absorption spectrometry with the n-butyl acetate phase in a nitrous oxide-acetylene flame, with measurement at 313.2 nm. The most suitable conditions have been established and the effect of other ions has been studied.

  12. Elastic and plastic properties of iron-aluminium alloys. Special problems raised by the brittleness of alloys of high aluminium content; Proprietes elastiques et plastiques des alliages fer-aluminium. Problemes particuliers poses par la fragilite des alliages a forte teneur en aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Mouturat, P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-06-01

    The present study embodies the results obtained with iron-aluminium alloys whose composition runs from 0 to nearly 50 atoms per cent aluminium. Conditions of elaboration and transformation have been studied successively, as well as the Young's modulus and the flow stress; the last chapter embodies, a study of the Portevin-le-Chatelier effect in alloys of 40 atoms per cent of aluminium. I) The principal difficulty to clear up consisted in the intergranular brittleness of ordered alloys; this brittleness has been considerably reduced with appropriate conditions of elaboration and transformation. II) The studies upon the Young's modulus are in connection with iron-aluminium alloys; transformation temperatures are well shown up. The formation of covalent bonds on and after 25 atoms per cent show the highest values of the modulus. III) The analysis of variations of the flow stress according to the temperature show some connection with ordered structures, the existence of antiphase domains and the existence of sur-structure dislocations. IV) In the ordered Fe Al domain the kinetics of the Portevin-le-Chatelier effect could be explained by a mechanism of diffusion of vacancies. The role they play has been specified by the influence they exert upon the dislocations; this has led us to the inhomogeneous Rudman order; this inhomogeneous order could explain the shape of the traction curves. (author) [French] Cette etude comporte les resultats obtenus avec des alliages fer-aluminium dont la composition s'etend de 0 a pres de 50 atomes pour cent d'aluminium. Nous avons etudie successivement les conditions d'elaboration et de transformation, le module elastique et la limite elastique; un dernier chapitre est consacre a l'etude du phenomene Portevin-le-Chatelier dans les alliages a 40 atomes pour cent d'aluminium. I) La principale difficulte a resoudre residait dans la fragilite intergranulaire des alliages ordonnes; celle-ci a ete

  13. A Fundamental Approach to Developing Aluminium based Bulk Amorphous Alloys based on Stable Liquid Metal Structures and Electronic Equilibrium - 154041

    Science.gov (United States)

    2017-03-28

    AFRL-AFOSR-JP-TR-2017-0027 A Fundamental Approach to Developing Aluminium -based Bulk Amorphous Alloys based on Stable Liquid-Metal Structures and...to 16 Dec 2016 4.  TITLE AND SUBTITLE A Fundamental Approach to Developing Aluminium -based Bulk Amorphous Alloys based on Stable Liquid-Metal...Air Force Research Laboratory for accurately predicting compositions of new amorphous alloys specifically based on aluminium with properties superior

  14. Casting Porosity-Free Grain Refined Magnesium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Schwam, David [Case Western Reserve University

    2013-08-12

    The objective of this project was to identify the root causes for micro-porosity in magnesium alloy castings and recommend remedies that can be implemented in production. The findings confirm the key role played by utilizing optimal gating and risering practices in minimizing porosity in magnesium castings. 

  15. First results on nitriding aluminium alloys in a low-pressure RF plasma

    International Nuclear Information System (INIS)

    Fewell, M.P.; Priest, J.M.; Collins, G.A.; Short, K.T.

    2000-01-01

    Full text: Aluminium alloys are now well established as materials of choice for many commercial applications, especially where strength-to-weight ratio is a critical parameter. However, their more widespread use is inhibited by their low surface hardness. For steels, similar problems can be overcome by nitriding. The nitrogen-rich surface layer has high hardness and load-bearing capacity, and is very well bonded to the substrate. The development of a similar surface-treatment process for aluminium alloys is clearly a desirable goal. It is therefore not surprising that many research groups worldwide have attempted to nitride aluminium. Much of this work studied pure aluminium, a material of no interest for structural applications. Previous investigations into nitriding aluminium alloys' had indifferent results. However, they have served to identify the key issues, which are the importance of a pre-cleaning steps to remove the surface oxide, of impurity control during the nitriding and the desirability of using as low a process temperature as possible. In all of these areas, our process using a low-pressure RF plasma is likely to be competitive. In view of this, we have undertaken a comparative study of a range of commercially available aluminium alloys. All treatments were carried out in the hot-wall nitriding reactor at ANSTO. The samples consist of disks 25mm in diameter and ∼3mm thick which were polished and ultrasonically cleaned in alcohol prior to treatment. The samples were stored in air at all times except when in the nitriding reactor. In a series of treatments, the treatment time was varied in the range 1-16 h and the temperature in the range 350-500 deg C. All treatments were preceeded by a plasma cleaning step in a H 2 /50%Ar mixture for a duration of 1.5-2.0 h while the reactor reached processing temperature. The treatments all used pure N 2 at a pressure of 0.4Pa and a nitrogen flow rate of 12μmol s -1 , with 245W of rf power at 13.56MHz applied to

  16. Quality evaluation of cast Al-SiCp composites

    International Nuclear Information System (INIS)

    Adalarasu, S.; Mahadevan, S.; Satyanarayana, K.G.; Pai, B.C.; Pillai, R.M.

    1996-01-01

    This paper presents a methodology for using x-ray radiography and ultrasonic for testing the soundness and distribution of dispersoids and identifying the casting defects in a cast aluminium cast alloy matrix SiCp composites. The ultrasonic inspection could detect in 6061-SiCp cast composites 1) the presence of low levels of locked in stresses and 2) existence of local imperfection due to the combined effects of the local solidification condition and the presence of the dispersoids which were not possible through x-ray radiography. This clearly suggests that ultrasonic test can be used as a powerful NDE tool for screening the composite ingots. (author)

  17. Cast and hipped gamma titanium aluminum alloys modified by chromium, boron, and tantalum

    International Nuclear Information System (INIS)

    Huang, Shyhchin.

    1993-01-01

    A cast body is described of a chromium, boron, and tantalum modified titanium aluminum alloy, said alloy consisting essentially of titanium, aluminum, chromium, boron, and tantalum in the following approximate atomic ratio: Ti-Al 45-50 Cr 1-3 Ta 1-8 B 0.1-0.3 , and said alloy having been prepared by casting the alloy to form said cast body and by HIPping said body

  18. [A surface reacted layer study of titanium-zirconium alloy after dental casting].

    Science.gov (United States)

    Zhang, Y; Guo, T; Li, Z; Li, C

    2000-10-01

    To investigate the influence of the mold temperature on the surface reacted layer of Ti-Zr alloy castings. Ti-Zr alloy was casted into a mold which was made of a zircon (ZrO2.SiO2) for inner coating and a phosphate-bonded material for outer investing with a casting machine (China) designed as vacuum, pressure and centrifuge. At three mold temperatures (room temperature, 300 degrees C, 600 degrees C) the Ti-Zr alloy was casted separately. The surface roughness of the castings was calculated by instrument of smooth finish (China). From the surface to the inner part the Knoop hardness and thickness in reacted layer of Ti-Zr alloy casting was measured. The structure of the surface reacted layer was analysed by SEM. Elemental analyses of the interfacial zone of the casting was made by element line scanning observation. The surface roughness of the castings was increased significantly with the mold temperature increasing. At a higher mold temperature the Knoop hardness of the reactive layer was increased. At the three mold temperature the outmost surface was very hard, and microhardness data decreased rapidly where they reached constant values. The thickness was about 85 microns for castings at room temperature and 300 degrees C, 105 microns for castings at 600 degrees C. From the SEM micrograph of the Ti-Zr alloy casting, the surface reacted layer could be divided into three different layers. The first layer was called non-structure layer, which thickness was about 10 microns for room temperature group, 20 microns for 300 degrees C and 25 microns for 600 degrees C. The second layer was characterized by coarse-grained acicular crystal, which thickness was about 50 microns for three mold temperatures. The third layer was Ti-Zr alloy. The element line scanning showed non-structure layer with higher level of element of O, Al, Si and Zr, The higher the mold temperature during casting, the deeper the Si permeating and in the second layer the element Si could also be found

  19. Recovery of aluminium, nickel-copper alloys and salts from spent fluorescent lamps.

    Science.gov (United States)

    Rabah, Mahmoud A

    2004-01-01

    This study explores a combined pyro-hydrometallurgical method to recover pure aluminium, nickel-copper alloy(s), and some valuable salts from spent fluorescent lamps (SFLs). It also examines the safe recycling of clean glass tubes for the fluorescent lamp industry. Spent lamps were decapped under water containing 35% acetone to achieve safe capture of mercury vapour. Cleaned glass tubes, if broken, were cut using a rotating diamond disc to a standard shorter length. Aluminium and copper-nickel alloys in the separated metallic parts were recovered using suitable flux to decrease metal losses going to slag. Operation variables affecting the quality of the products and the extent of recovery with the suggested method were investigated. Results revealed that total loss in the glass tube recycling operation was 2% of the SFLs. Pure aluminium meeting standard specification DIN 1712 was recovered by melting at 800 degrees C under sodium chloride/carbon flux for 20 min. Standard nickel-copper alloys with less than 0.1% tin were prepared by melting at 1250 degrees C using a sodium borate/carbon flux. De-tinning of the molten nickel-copper alloy was carried out using oxygen gas. Tin in the slag as oxide was recovered by reduction using carbon or hydrogen gas at 650-700 degrees C. Different valuable chloride salts were also obtained in good quality. Further research is recommended on the thermodynamics of nickel-copper recovery, yttrium and europium recovery, and process economics.

  20. Recovery of aluminium, nickel-copper alloys and salts from spent fluorescent lamps

    International Nuclear Information System (INIS)

    Rabah, Mahmoud A.

    2004-01-01

    This study explores a combined pyro-hydrometallurgical method to recover pure aluminium, nickel-copper alloy(s), and some valuable salts from spent fluorescent lamps (SFLs). It also examines the safe recycling of clean glass tubes for the fluorescent lamp industry. Spent lamps were decapped under water containing 35% acetone to achieve safe capture of mercury vapour. Cleaned glass tubes, if broken, were cut using a rotating diamond disc to a standard shorter length. Aluminium and copper-nickel alloys in the separated metallic parts were recovered using suitable flux to decrease metal losses going to slag. Operation variables affecting the quality of the products and the extent of recovery with the suggested method were investigated. Results revealed that total loss in the glass tube recycling operation was 2% of the SFLs. Pure aluminium meeting standard specification DIN 1712 was recovered by melting at 800 deg. C under sodium chloride/carbon flux for 20 min. Standard nickel-copper alloys with less than 0.1% tin were prepared by melting at 1250 deg. C using a sodium borate/carbon flux. De-tinning of the molten nickel-copper alloy was carried out using oxygen gas. Tin in the slag as oxide was recovered by reduction using carbon or hydrogen gas at 650-700 deg. C. Different valuable chloride salts were also obtained in good quality. Further research is recommended on the thermodynamics of nickel-copper recovery, yttrium and europium recovery, and process economics

  1. Control of segregation in squeeze cast Al-4.5Cu binary alloy

    Energy Technology Data Exchange (ETDEWEB)

    Durrant, G. [Oxford Univ. (United Kingdom). Dept. of Materials; Gallerneault, M. [Alcan International Ltd., Kingston, ON (Canada); Cantor, B. [Oxford Univ. (United Kingdom). Dept. of Materials

    1997-10-01

    The high pressure applied in squeeze casting allows Al alloys of wrought composition to be cast to near net-shape, although their long freezing range leads to the segregation of alloying elements. In this paper we present results on the squeeze casting and gravity casting of a model Al-4.5 wt%Cu alloy. Squeeze cast Al-4.5Cu has a normal segregation pattern with eutectic macrosegregates towards the centre of the billet, whereas gravity cast material has a typical inverse segregation pattern. Normal segregation in squeeze cast Al-4.5Cu is due to large temperature gradients during solidification. Segregation can be minimized by releasing the applied pressure during solidification to allow backflow of the interdendritic fluid, or by the addition of grain refiner to remove the large columnar dendritic growth structure. (orig.)

  2. Semi-solid twin-roll casting process of magnesium alloy sheets

    International Nuclear Information System (INIS)

    Watari, H.; Davey, K.; Rasgado, M.T. Alonso; Haga, T.; Koga, N.

    2004-01-01

    An experimental approach has been performed to ascertain the effectiveness of semi-solid strip casting using a horizontal twin roll caster. The demand for light-weight products with high strength has grown recently due to the rapid development of automobile and aircraft technology. One key to such development has been utilization of magnesium alloys, which can potentially reduce the total product weight. However, the problems of utilizing magnesium alloys are still mainly related to high manufacturing cost. One of the solutions to this problem is to develop magnesium casting-rolling technology in order to produce magnesium sheet products at competitive cost for commercial applications. In this experiment, magnesium alloy AZ31B was used to ascertain the effectiveness of semi-solid roll strip casting for producing magnesium alloy sheets. The temperature of the molten magnesium, and the roll speeds of the upper and lower rolls, (which could be changed independently), were varied to find an appropriate manufacturing condition. Rolling and heat treatment conditions were changed to examine which condition would be appropriate for producing wrought magnesium alloys with good formability. Microscopic observation of the crystals of the manufactured wrought magnesium alloys was performed. It has been found that a limiting drawing ratio of 2.7 was possible in a warm deep drawing test of the cast magnesium alloy sheets after being hot rolled

  3. Mechanical properties and grindability of dental cast Ti-Nb alloys.

    Science.gov (United States)

    Kikuchi, Masafumi; Takahashi, Masatoshi; Okuno, Osamu

    2003-09-01

    Aiming at developing a dental titanium alloy with better mechanical properties and machinability than unalloyed titanium, a series of Ti-Nb alloys with Nb concentrations up to 30% was made. They were cast into magnesia-based molds using a dental casting machine and the mechanical properties and grindability of the castings were examined. The hardness of the alloys with Nb concentrations of 5% and above was significantly higher than that of titanium. The yield strength and tensile strength of the alloys with Nb concentrations of 10% and above were significantly higher than those of titanium, while the elongation was significantly lower. A small addition of niobium to titanium did not contribute to improving the grindability of titanium. The Ti-30% Nb alloy exhibited significantly better grindability at low grinding speed with higher hardness, strength, and Young's modulus than titanium, presumably due to precipitation of the omega phase in the beta matrix.

  4. Castability of Ti-6Al-7Nb alloy for dental casting

    OpenAIRE

    Wang, Tie Jun; 小林, 郁夫; 土居, 壽; 米山, 隆之

    1999-01-01

    Castability of Ti-6Al-7Nb alloy, CP Ti, and Co-Cr alloy was examined for mesh type and plate type specimens. The casting was carried out with a pressure type casting machine and commercial molding material. The castability of the mesh type specimen was evaluated in terms of the number of cast segments (castability index), and that of the plate type was evaluated by the area of the speci­men (casting rate). X-ray images processed by a digital imaging technique were used to identify the casting...

  5. High strength aluminum cast alloy: A Sc modification of a standard Al–Si–Mg cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Arfan, E-mail: engr.arfan@gmail.com [Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Material Science and Engineering, Beihang University, Beijing 100191 (China); Xu, Cong; Xuejiao, Wang [Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Material Science and Engineering, Beihang University, Beijing 100191 (China); Hanada, Shuji [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Yamagata, Hiroshi [Center for Advanced Die Engineering and Technology, Gifu University, 1-1 Yanagido, Gifu City, Gifu 501-1193 (Japan); Hao, LiRong [Hebei Sitong New Metal Material Co., Ltd., Baoding 071105 (China); Chaoli, Ma [Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Material Science and Engineering, Beihang University, Beijing 100191 (China)

    2014-05-01

    A standard Aluminum–Silicon–Magnesium cast alloy (A357 foundry alloy without Beryllium) modified with different weight percentages of Scandium (Sc), has been studied to evaluate the effects of Sc contents on microstructure and strength. Study has been conducted under optimized parameters of melting, casting and heat treatment. Characterization techniques like optical microscopy, SEM, TEM and tensile testing were employed to analyze the microstructure and mechanical properties. Results obtained in this research indicate that with the increase of Sc contents up to 0.4 wt%, grain size is decreased by 80% while ultimate tensile strength and hardness are increased by 28% and 19% respectively. Moreover along with the increase in strength, elongation to failure is also increased up to 165%. This is quite interesting behavior because usually strength and ductility have inverse relationship.

  6. Contribution to comprehensive study of aluminium alloy Aa 5083 ...

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... Corrosion induced by elemental mercury in aqueous media of industrial Aluminium alloys AA5083 used in heat exchanger industries of natural gas liquefaction has been studied by linear sweep voltammétry on ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  7. Analysis of four dental alloys following torch/centrifugal and induction/ vacuum-pressure casting procedures.

    Science.gov (United States)

    Thompson, Geoffrey A; Luo, Qing; Hefti, Arthur

    2013-12-01

    Previous studies have shown casting methodology to influence the as-cast properties of dental casting alloys. It is important to consider clinically important mechanical properties so that the influence of casting can be clarified. The purpose of this study was to evaluate how torch/centrifugal and inductively cast and vacuum-pressure casting machines may affect the castability, microhardness, chemical composition, and microstructure of 2 high noble, 1 noble, and 1 base metal dental casting alloys. Two commonly used methods for casting were selected for comparison: torch/centrifugal casting and inductively heated/ vacuum-pressure casting. One hundred and twenty castability patterns were fabricated and divided into 8 groups. Four groups were torch/centrifugally cast in Olympia (O), Jelenko O (JO), Genesis II (G), and Liberty (L) alloys. Similarly, 4 groups were cast in O, JO, G, and L by an inductively induction/vacuum-pressure casting machine. Each specimen was evaluated for casting completeness to determine a castability value, while porosity was determined by standard x-ray techniques. Each group was metallographically prepared for further evaluation that included chemical composition, Vickers microhardness, and grain analysis of microstructure. Two-way ANOVA was used to determine significant differences among the main effects. Statistically significant effects were examined further with the Tukey HSD procedure for multiple comparisons. Data obtained from the castability experiments were non-normal and the variances were unequal. They were analyzed statistically with the Kruskal-Wallis rank sum test. Significant results were further investigated statistically with the Steel-Dwass method for multiple comparisons (α=.05). The alloy type had a significant effect on surface microhardness (Pcasting did not affect the microhardness of the test specimen (P=.465). Similarly, the interaction between the alloy and casting technique was not significant (P=.119). A high

  8. Emeraldine base as corrosion protective layer on aluminium alloy AA5182, effect of the surface microstructure

    DEFF Research Database (Denmark)

    Cecchetto, L; Ambat, Rajan; Davenport, A.J.

    2007-01-01

    AA5182 aluminium alloy cold rolled samples were coated by thin Wlms of emeraldine base (EB) obtained from a 5% solution in N-methylpyrrolidinone. Accelerated corrosion tests prove this coating very eVective for corrosion protection of aluminium alloys in neutral environment. This study underlines......: • a weak redox activity of the polymer which passivate the metal, • a proton involving self-healing process taking place at the polymer–metal interface, which contributes to delay local acidiWcation in Wrst steps of corrosion on EB coated aluminium surfaces....

  9. Grain refinement in a AlZnMgCuTi alloy by intensive melt shearing: A multi-step nucleation mechanism

    Science.gov (United States)

    Li, H. T.; Xia, M.; Jarry, Ph.; Scamans, G. M.; Fan, Z.

    2011-01-01

    Direct chill (DC) cast ingots of wrought Al alloys conventionally require the deliberate addition of a grain refiner to provide a uniform as-cast microstructure for the optimisation of both mechanical properties and processability. Grain refiner additions have been in widespread industrial use for more than half a century. Intensive melt shearing can provide grain refinement without the need for a specific grain refiner addition for both magnesium and aluminium based alloys. In this paper we present experimental evidence of the grain refinement in an experimental wrought aluminium alloy achieved by intensive melt shearing in the liquid state prior to solidification. The mechanisms for high shear induced grain refinement are correlated with the evolution of oxides in alloys. The oxides present in liquid aluminium alloys, normally as oxide films and clusters, can be effectively dispersed by intensive shearing and then provide effective sites for the heterogeneous nucleation of Al 3Ti phase. As a result, Al 3Ti particles with a narrower size distribution and hence improved efficiency as active nucleation sites of α-aluminium grains are responsible for the achieved significant grain refinement. This is termed a multi-step nucleation mechanism.

  10. Metallurgical aspects of corrosion resistance of aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Reboul, M.C. [Pechiney Voreppe Research Centre France (France); CNRS-INP Grenoble, SIMAP-INP Grenoble, Universite France, Saint Martin d' Heres Cedex (France); Baroux, B. [SIMAP-INP, Grenoble University, 1130 rue de la piscine, Saint Martin d' Heres Cedex (France)

    2011-03-15

    Aluminium is the second most often used metal after steel. In this paper, the most current uses of aluminium alloys are first summarised. Then, their different corrosion modes, i.e. pitting, crevice, filiform, galvanic and structural corrosion (including inter-granular, exfoliation and stress corrosion cracking) are reviewed, with particular attention paid to metallurgical factors controlling the corrosion process. For each mode, some instances of possible in-service failure are given, followed by the discussion of the involved mechanisms and the presentation of appropriate solutions to prevent corrosion. Last, passivity and polarisation behaviour are discussed with reference to stainless steels. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Refinement and fracture mechanisms of as-cast QT700-6 alloy by alloying method

    Directory of Open Access Journals (Sweden)

    Min-qiang Gao

    2017-01-01

    Full Text Available The as-cast QT700-6 alloy was synthesized with addition of a certain amount of copper, nickel, niobium and stannum elements by alloying method in a medium frequency induction furnace, aiming at improving its strength and toughness. Microstructures of the as-cast QT700-6 alloy were observed using a scanning-electron microscope (SEM and the mechanical properties were investigated using a universal tensile test machine. Results indicate that the ratio of pearlite/ferrite is about 9:1 and the graphite size is less than 40 μm in diameter in the as-cast QT700-6 alloy. The predominant refinement mechanism is attributed to the formation of niobium carbides, which increases the heterogeneous nucleus and hinders the growth of graphite. Meanwhile, niobium carbides also exist around the grain boundaries, which improve the strength of the ductile iron. The tensile strength and elongation of the as-cast QT700-6 alloy reach over 700 MPa and 6%, respectively, when the addition amount of niobium is 0.8%. The addition of copper and nickel elements contributed to the decrease of eutectoid transformation temperature, resulting in the decrease of pearlite lamellar spacing (about 248 nm, which is also beneficial to enhancing the tensile strength. The main fracture mechanism is cleavage fracture with the appearance of a small amount of dimples.

  12. Results of the Experiment: Welding of Aluminium Alloy in Microgravity

    Science.gov (United States)

    Ferretti, S.; Amadori, K.; Boccalatte, A.; Alessandrini, M.; Freddi, A.; Persiani, F.; Poli, G.

    2002-01-01

    An experiment on "dendritic growth in aluminium alloy welding" was performed by the UNIBO team during the 3rd Student Parabolic Flight Campaign and the 30th Professional Parabolic Flight Campaign organised by ESA. Its purpose was to achieve a better understanding of crystal growth during tungsten inert gas (TIG) welding of an aluminium alloy to define the main parameters affecting the process under microgravity condition. The experiment had 4 phases : The paper discusses different aspects of the research, paying particularly attention not only to the influence of gravity, but also to other factors influencing welding microstructure, such as the Marangoni effect and the thermal transfer from the electrode to the material. The paper conclude the dissertation of the results offering new perspectives for welding studies and proposing a new approach to the scientific community to investigate this materials processes for manufacturing.

  13. ANALYSIS OF KINETICS OF CAST IRON ALLOYING THROUGH SLAG PHASE

    Directory of Open Access Journals (Sweden)

    O. S. Komarov

    2012-01-01

    Full Text Available The mechanism of cast iron alloying through slag phase due to use of nickel and copper oxides is considered and the analysis of kinetics regularity of alloying in case of absence of fuse in the form of milled cast-iron chips in slag and at their presence in it is carried out.

  14. Experimental and theoretical investigation on corrosion inhibition of AA5052 aluminium alloy by L-cysteine in alkaline solution

    International Nuclear Information System (INIS)

    Wang, Dapeng; Gao, Lixin; Zhang, Daquan; Yang, Dong; Wang, Hongxia; Lin, Tong

    2016-01-01

    The corrosion inhibition of L-cysteine on AA5052 aluminium alloy in 4 mol/L NaOH solution was investigated by hydrogen gas evolution experiment, polarisation curve, galvanostatic discharge, electrochemical impedance spectroscopy measurements and quantum chemical calculations. The adsorption of L-cysteine on aluminium alloy surface obeyed the amended Langmuir's adsorption isotherm. The polarisation curves indicated that L-cysteine acted as a cathodic inhibitor to inhibit cathodic reaction. The inhibition mechanism was dominated by the geometric covering effect. The galvanostatic discharge shows that the additives restrain the hydrogen evolution and increase the anodic utilization rate. Quantum chemical calculations indicated that L-cysteine molecules mainly interacted with on the carboxyl groups on the aluminium alloy surface. A strong hybridization occurred between the s-orbital and p-orbital of reactive sites in the L-cysteine molecule and the sp-orbital of Aluminium. - Highlights: • L-cysteine was used as corrosion inhibitor for Al alloy in alkaline solution. • Adsorption of L-cysteine on Al alloy surface obeyed the amended Langmuir's isotherm. • L-cysteine molecules interacted with the carboxyl groups on the Al alloy surface. • A strong orbital hybridization occurred between the reactive sites in L-cysteine and Al.

  15. Effect of process parameters on tensile strength of friction stir welding A356/C355 aluminium alloys joint

    Energy Technology Data Exchange (ETDEWEB)

    Dwivedi, Shashi Prakash [Noida Institute of Engineering and Technology, Greater Noida (Korea, Republic of)

    2014-01-15

    In the present investigation, A356/C355 aluminium alloys are welded by friction stir welding by controlling various welding parameters. A356 and C355 aluminium alloys materials have a set of mechanical and physical properties that are ideally suited for application in aerospace and automobile industries and not widely used because of its poor weldebility. To overcome this barrier, weldebility analysis of A356 and C355 aluminium alloys with high speed steel (Wc-Co) tool has been investigated. An attempt has been made to investigate the influence of the rotational speed of the tools, the axial force and welding speed on tensile strength of A356/C355 aluminium alloys joint. The experiments were conducted on a milling machine. The main focus of investigation is to determine good tensile strength. Response surface methodology (box Behnken design) is chosen to design the optimum welding parameters leading to maximum tensile strength. The result shows that axial force increases, tensile strength decreases. Whereas tool rotational speed and welding speed increase, tensile strength increases. Optimum values of axial force (3 /KN), tool rotational speed (900 RPM) and welding speed (75 mm/min.) during welding of A356/C355 aluminium alloys joint to maximize the tensile strength (Predicted 223.2 MPa) have been find out.

  16. Effect of process parameters on tensile strength of friction stir welding A356/C355 aluminium alloys joint

    International Nuclear Information System (INIS)

    Dwivedi, Shashi Prakash

    2014-01-01

    In the present investigation, A356/C355 aluminium alloys are welded by friction stir welding by controlling various welding parameters. A356 and C355 aluminium alloys materials have a set of mechanical and physical properties that are ideally suited for application in aerospace and automobile industries and not widely used because of its poor weldebility. To overcome this barrier, weldebility analysis of A356 and C355 aluminium alloys with high speed steel (Wc-Co) tool has been investigated. An attempt has been made to investigate the influence of the rotational speed of the tools, the axial force and welding speed on tensile strength of A356/C355 aluminium alloys joint. The experiments were conducted on a milling machine. The main focus of investigation is to determine good tensile strength. Response surface methodology (box Behnken design) is chosen to design the optimum welding parameters leading to maximum tensile strength. The result shows that axial force increases, tensile strength decreases. Whereas tool rotational speed and welding speed increase, tensile strength increases. Optimum values of axial force (3 /KN), tool rotational speed (900 RPM) and welding speed (75 mm/min.) during welding of A356/C355 aluminium alloys joint to maximize the tensile strength (Predicted 223.2 MPa) have been find out.

  17. Influence of Process Parameters on the Quality of Aluminium Alloy EN AW 7075 Using Selective Laser Melting (SLM)

    Science.gov (United States)

    Kaufmann, N.; Imran, M.; Wischeropp, T. M.; Emmelmann, C.; Siddique, S.; Walther, F.

    Selective laser melting (SLM) is an additive manufacturing process, forming the desired geometry by selective layer fusion of powder material. Unlike conventional manufacturing processes, highly complex parts can be manufactured with high accuracy and little post processing. Currently, different steel, aluminium, titanium and nickel-based alloys have been successfully processed; however, high strength aluminium alloy EN AW 7075 has not been processed with satisfying quality. The main focus of the investigation is to develop the SLM process for the wide used aluminium alloy EN AW 7075. Before process development, the gas-atomized powder material was characterized in terms of statistical distribution: size and shape. A wide range of process parameters were selected to optimize the process in terms of optimum volume density. The investigations resulted in a relative density of over 99%. However, all laser-melted parts exhibit hot cracks which typically appear in aluminium alloy EN AW 7075 during the welding process. Furthermore the influence of processing parameters on the chemical composition of the selected alloy was determined.

  18. Corrosion behavior of cast Ti-6Al-4V alloyed with Cu.

    Science.gov (United States)

    Koike, Marie; Cai, Zhuo; Oda, Yutaka; Hattori, Masayuki; Fujii, Hiroyuki; Okabe, Toru

    2005-05-01

    It has recently been found that alloying with copper improved the inherently poor grindability and wear resistance of titanium. This study characterized the corrosion behavior of cast Ti-6Al-4V alloyed with copper. Alloys (0.9 or 3.5 mass % Cu) were cast with the use of a magnesia-based investment in a centrifugal casting machine. Three specimen surfaces were tested: ground, sandblasted, and as cast. Commercially pure titanium and Ti-6Al-4V served as controls. Open-circuit potential measurement, linear polarization, and potentiodynamic cathodic polarization were performed in aerated (air + 10% CO(2)) modified Tani-Zucchi synthetic saliva at 37 degrees C. Potentiodynamic anodic polarization was conducted in the same medium deaerated by N(2) + 10% CO(2). Polarization resistance (R(p)), Tafel slopes, and corrosion current density (I(corr)) were determined. A passive region occurred for the alloy specimens with ground and sandblasted surfaces, as for CP Ti. However, no passivation was observed on the as-cast alloys or on CP Ti. There were significant differences among all metals tested for R(p) and I(corr) and significantly higher R(p) and lower I(corr) values for CP Ti compared to Ti-6Al-4V or the alloys with Cu. Alloying up to 3.5 mass % Cu to Ti-6Al-4V did not change the corrosion behavior. Specimens with ground or sandblasted surfaces were superior to specimens with as-cast surfaces. (c) 2005 Wiley Periodicals, Inc.

  19. Fracture strength of aluminium alloys under rapid loading conditions

    International Nuclear Information System (INIS)

    Joshi, K.D.; Rav, Amit S.; Sur, Amit; Kaushik, T.C.; Gupta, Satish C.

    2016-04-01

    Spall fracture strength and dynamic yield strength of aluminium alloys have been measured at high strain rates generated in plate impact experiments carried out at different impact velocities ranging from 174 m/s to 560 m/s using single stage gas gun facility. In each experiment, the free surface velocity history of the sample plate of aluminium alloy has been derived from time resolved Doppler shift measured employing indigenously developed velocity interferometer system for any reflector (VISAR). The free surface velocity history so determined has been used to evaluate the spall fracture strength and dynamic yield strength of the target material. The two kinds of alloys of aluminium namely Al2014-T4 and Al2024-T4 have been investigated in these experiments. In Al2014-T4 target plates, the spall strength determined from free surface velocity history recorded for impact velocities of 179 m/s, 307 m/s, 398 m/s and 495m/s is 0.90 GPa, 0.96 GPa, 1.0 GPa and 1.1 GPa, respectively. The average strain rates just ahead of spall pulse have been found to vary from ∼ 1.1×10 4 /s to 2.4×10 4 /s. The dynamic yield strength derived from the measured Hugoniot elastic limit ranges from 0.36 GPa to 0.40 GPa. The spall strength for Al2024-T4 samples has been determined to be 1.11 GPa, 1.18 GPa and 1.42 GPa, at impact velocities of 174 m/s, 377 m/s and 560 m/s, respectively. The corresponding average strain rates range from 1.9×104/s to 2.5×104/s. The dynamic yield strength of Al2024-T4 at these impact velocities has been found to vary from 0.37 GPa to 0.43 GPa. The measured spall strengths in all these experiments are higher than the quasi-static value of 0.511 GPa for Al2014-T4 and 0.470 GPa for Al2024. Similarly, the dynamic yield strengths are also larger than the quasi-static value of 0.355 GPa for Al2014-T4 and 0.360 GPa for Al2024-T4. These experimental studies suggest that at high strain rates, both the alloys of aluminium offer higher resistance against the tensile

  20. Development of thermophysical calculator for stainless steel casting alloys by using CALPHAD approach

    Directory of Open Access Journals (Sweden)

    In-Sung Cho

    2017-11-01

    Full Text Available The calculation of thermophysical properties of stainless steel castings and its application to casting simulation is discussed. It is considered that accurate thermophysical properties of the casting alloys are necessary for the valid simulation of the casting processes. Although previous thermophysical calculation software requires a specific knowledge of thermodynamics, the calculation method proposed in the present study does not require any special knowledge of thermodynamics, but only the information of compositions of the alloy. The proposed calculator is based on the CALPHAD approach for modeling of multi-component alloys, especially in stainless steels. The calculator proposed in the present study can calculate thermophysical properties of eight-component systems on an iron base alloy (Fe-C-Si-Cr-Mn-Ni-Cu-Mo, and several Korean standard stainless steel alloys were calculated and discussed. The calculator can evaluate the thermophysical properties of the alloys such as density, heat capacity, enthalpy, latent heat, etc, based on full Gibbs energy for each phase. It is expected the proposed method can help casting experts to devise the casting design and its process easily in the field of not only stainless steels but also other alloy systems such as aluminum, copper, zinc, etc.

  1. Influence of the casting processing route on the corrosion behavior of dental alloys.

    Science.gov (United States)

    Galo, Rodrigo; Rocha, Luis Augusto; Faria, Adriana Claudia; Silveira, Renata Rodrigues; Ribeiro, Ricardo Faria; de Mattos, Maria da Gloria Chiarello

    2014-12-01

    Casting in the presence of oxygen may result in an improvement of the corrosion performance of most alloys. However, the effect of corrosion on the casting without oxygen for dental materials remains unknown. The aim of this study was to investigate the influence of the casting technique and atmosphere (argon or oxygen) on the corrosion behavior response of six different dental casting alloys. The corrosion behavior was evaluated by electrochemical measurements performed in artificial saliva for the different alloys cast in two different conditions: arc melting in argon and oxygen-gas flame centrifugal casting. A slight decrease in open-circuit potential for most alloys was observed during immersion, meaning that the corrosion tendency of the materials increases due to the contact with the solution. Exceptions were the Co-based alloys prepared by plasma, and the Co-Cr-Mo and Ni-Cr-4Ti alloys processed by oxidized flame, in which an increase in potential was observed. The amount of metallic ions released into the artificial saliva solution during immersion was similar for all specimens. Considering the pitting potential, a parameter of high importance when considering the fluctuating conditions of the oral environment, Co-based alloys show the best performance in comparison with the Ni-based alloys, independent of the processing route. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Phase composition and properties of rapidly cooled aluminium-zirconium-chromium alloys

    International Nuclear Information System (INIS)

    Sokolovskaya, E.M.; Badalova, L.M.; Podd''yakova, E.I.; Kazakova, E.F.; Loboda, T.P.; Gribanov, A.V.

    1989-01-01

    Using the methods of physicochemical analysis the interaction of aluminium with zirconium and chromium is studied. Polythermal cross sections between Al 3 -Zr-Al 7 Cr and radial polythermal cross section from aluminium-rich corner with the ratio of components Zr:Cr=5:7 by mass are constructed. The effect of zirconium and chromium content on electrochemical characteristics of aluminium-base rapidly quenching alloys in systems Al-Cr, Al-Zr, Al-Cr-Zr. An increase in chromium concentration in oversaturated solid solution of Al-Cr system expands considerably the range of passive state. When Al 7 Cr phase appears the range of passive stae vanishes

  3. Microstructural evolution and mechanical properties of as-cast and T6-treated AA2195 DC cast alloy

    International Nuclear Information System (INIS)

    Hekmat-Ardakan, A.; Elgallad, E.M.; Ajersch, F.; Chen, X.-G.

    2012-01-01

    The use of direct chill (DC) cast ingot plates of AA2195 alloys has been recently extended for large mold applications in the plastics and automotive industries. The microstructural evolution of the as-cast AA2195 alloy was investigated using the Factsage thermodynamic software under both equilibrium and non-equilibrium conditions, and was compared with the results from differential scanning calorimetry (DSC) analysis and microstructural observations. The as-cast microstructure exhibited the presence of Al 2 CuMg, Al 2 Cu and Al 2 CuLi intermetallic phases formed at the aluminum dendrite boundaries, which can be completely dissolved in the α-Al matrix during the solution treatment. A significant improvement in the mechanical properties of the AA2195 cast alloy after the T6 heat treatment is attributed to the formation of nano-scale θ′ (Al 2 Cu) and T1 (Al 2 CuLi) precipitates. However, the non-uniform distribution of T1 precipitates together with the large size and low density indicate that the role of θ′ precipitates in strengthening the AA2195 cast alloy is more dominant than that of the T1 precipitates, in contrast with the strengthening mechanism of the pre-deformed AA2195-T8 rolled products.

  4. Electron microscopy study of hardened layers structure at electrospark alloying the VT-18 titanium alloy with aluminium

    International Nuclear Information System (INIS)

    Pilyankevich, A.N.; Martynenko, A.N.; Verkhoturov, A.D.; Paderno, V.N.

    1979-01-01

    Presented are the results of metallographic, electron-microscopic, and X-ray structure analysis, of microhardness measurements and of the study of the electrode weight changes at electrospark alloying the VT-18 titanium alloy with aluminium. It is shown, that pulsating thermal and mechanical loadings in the process of electrospark alloying result in the electrode surface electroerosion, a discrete relief is being formed, which changes constantly in the process depending on the alloying time. Though with the process time the cathode weight gain increases, microareas of fracture in the hardened layer appear already at the initial stages of electrospark alloying

  5. Improved corrosion resistance of cast carbon steel in sulphur oxides by Alonizing

    International Nuclear Information System (INIS)

    Holtzer, M.; Dzioba, Z.

    1992-01-01

    The results of studies on the Alonizing of cast steel and of testing the corrosion resistance of this cast steel in an atmosphere containing 5 to 6% SO 2 + 50% SO 3 at 853 K are described and compared with the results obtained with unalonized cast carbon steel and high-alloy 23Cr-8Ni-2Mo cast steel. The duration of the corrosion tests was 336 hours. The aluminium diffusion layer on cast carbon steel was obtained by holding the specimens in a mixture containing 99% of powered Fe-Al and 1% of NH 4 Cl at 1323 ± 20 K. The holding time was 10 and 20 hours, respectively. The aluminium layer formed on the cast carbon steel was examined by optical microscopy and an X-ray microanalysis. After Alonizing for 10 h the layer had reached a thickness of 950 μm, and contained up to 35% Al. In a mixture of sulphur oxides corrosion rate of the alonized cast carbon steel was by about 600 times lower than of the unalonized cast carbon steel, and by about 50 times lower than that of the 23Cr-8Ni-2Mo cast steel. (orig.) [de

  6. Composite Ni-Co-fly ash coatings on 5083 aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Panagopoulos, C.N., E-mail: chpanag@metal.ntua.gr [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, 15780 Athens (Greece); Georgiou, E.P.; Tsopani, A.; Piperi, L. [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, 15780 Athens (Greece)

    2011-03-15

    Ni-Co-fly ash coatings were deposited on zincate treated 5083 wrought aluminium alloy substrates with the aid of the electrodeposition technique. Structural and chemical characterization of the produced composite coatings was performed with the aid of X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron dispersive X-ray analysis (EDS) techniques. The Ni-Co-fly ash coatings were found to consist of a crystalline Ni-Co solid solution with dispersed fly ash particles. In addition, chemical analysis of the Ni-Co matrix showed that it consisted of 80 wt.% Ni and 20 wt.% Co. The co-deposition of fly ash particles leads to a significant increase of the microhardness of the coating. The corrosion behaviour of the Ni-Co-fly ash/zincate coated aluminium alloy, in a 0.3 M NaCl solution (pH = 3.5), was studied by means of potentiodynamic corrosion experiments.

  7. Modelling of flow phenomena during DC casting

    NARCIS (Netherlands)

    Zuidema, J.

    2005-01-01

    Modelling of Flow Phenomena during DC Casting Jan Zuidema The production of aluminium ingots, by semi-continuous casting, is a complex process. DC Casting stands for direct chill casting. During this process liquid aluminium transforms to solid aluminium while cooling down. This is not an

  8. Cast Alloys for Advanced Ultra Supercritical Steam Turbines

    Energy Technology Data Exchange (ETDEWEB)

    G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk,

    2010-05-01

    The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 °C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 °C).

  9. Does the casting mode influence microstructure, fracture and properties of different metal ceramic alloys?

    Science.gov (United States)

    Bauer, José Roberto de Oliveira; Grande, Rosa Helena Miranda; Rodrigues-Filho, Leonardo Eloy; Pinto, Marcelo Mendes; Loguercio, Alessandro Dourado

    2012-01-01

    The aim of the present study was to evaluate the tensile strength, elongation, microhardness, microstructure and fracture pattern of various metal ceramic alloys cast under different casting conditions. Two Ni-Cr alloys, Co-Cr and Pd-Ag were used. The casting conditions were as follows: electromagnetic induction under argon atmosphere, vacuum, using blowtorch without atmosphere control. For each condition, 16 specimens, each measuring 25 mm long and 2.5 mm in diameter, were obtained. Ultimate tensile strength (UTS) and elongation (EL) tests were performed using a Kratos machine. Vickers Microhardness (VM), fracture mode and microstructure were analyzed by SEM. UTS, EL and VM data were statistically analyzed using ANOVA. For UTS, alloy composition had a direct influence on casting condition of alloys (Wiron 99 and Remanium CD), with higher values shown when cast with Flame/Air (p casting condition" influenced the EL and VM results, generally presenting opposite results, i.e., alloy with high elongation value had lower hardness (Wiron 99), and casting condition with the lowest EL values had the highest VM values (blowtorch). Both factors had significant influence on the properties evaluated, and prosthetic laboratories should select the appropriate casting method for each alloy composition to obtain the desired property.

  10. Modelling of hardness prediction of magnesium alloys using artificial neural networks applications

    OpenAIRE

    L.A. Dobrzański; T. Tański; J. Trzaska; L. Čížek

    2008-01-01

    Purpose: In the following paper there have been presented the optimisation of heat treatment condition and structure of the MCMgAl12Zn1, MCMgAl9Zn1, MCMgAl6Zn1, MCMgAl3Zn1 magnesium cast alloy as-cast state and after a heat treatment.Design/methodology/approach: Working out of a neural network model for simulation of influence of temperature, solution heat treatment and ageing time and aluminium content on hardness of the analyzed magnesium cast alloys.Findings: The different heat treatment k...

  11. Derivative thermo analysis of the near eutectic Al-Si-Cu alloy

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2008-12-01

    Full Text Available For determining of the dependence between cooling Speer, chemical composition and structure of the Al–Si–Cu aluminium cast alloy the thermo-analysis was carried out, using the UMSA device (Universal Metallurgical Simulator and Analyzer, next the optical and electron scanning microscopy was used for investigation of the structure, phase and chemical composition of the AC-AlSi7Cu3Mg grade Al cast alloy also using the EDS microanalysis as well the EBSD technique.

  12. Development of casting techniques for uranium and uranium alloys

    International Nuclear Information System (INIS)

    Singh, S.P.

    2003-01-01

    The casting process concerning furnace set-up, mould temperatures, pouring temperatures, out gassing, post heating, casting recovery and crucible and mould clean-up is discussed. Some applications of casting theory can be made in practice, but experience in handling the metal is most valuable in the successful solution of a new problem. The casting of uranium alloys using induction stirring of the melt to promote homogeneity in the casting is described. A few remarks are made concerning safety aspects associated with the casting of uranium

  13. Microstructure of As-cast Co-Cr-Mo Alloy Prepared by Investment Casting

    Science.gov (United States)

    Park, Jong Bum; Jung, Kyung-Hwan; Kim, Kang Min; Son, Yong; Lee, Jung-Il; Ryu, Jeong Ho

    2018-04-01

    The microstructure of a cobalt-base alloy (Co-Cr-Mo) obtained by an investment casting process was studied. This alloy complies with the ASTM F75 standard and is widely used in the manufacturing of orthopedic implants owing to its high strength, good corrosion resistance, and excellent biocompatibility. This work focuses on the resulting microstructures arising from normal industrial environmental conditions. The characterization of the samples was carried out using optical microscopy, field emission scanning electron microscopy and energy-dispersive spectroscopy. In this study, the as-cast microstructure is an γ-Co (face-centered cubic) dendritic matrix with the presence of a secondary phase, such as M23C6 carbides precipitated at grain boundaries and interdendritic zones. These precipitates are the main strengthening mechanism in this type of alloy. Other minority phases, such as the σ phase, were also detected, and their presence could be linked to the manufacturing process and environment.

  14. Strength and deformation behaviour of magnesium die casting alloys

    International Nuclear Information System (INIS)

    Regener, D.; Schick, E.; Wagner, I.; Heyse, H.

    1999-01-01

    Modern magnesium die casting alloys are used for the manufacturing of automotive parts due to their low density, fortunate mechanical and physical properties as well as good castability and machinability. However, in comparison to other materials the automotive application of these alloys is still low. The reasons for this are among other things the shortage of relevant materials values, insufficient knowledge concerning the correlation between the microstructure and the mechanical properties as well as deficits in relation to the die cast technology. This paper investigates the influence of the microstructure and manufacture-induced defects like micro-shrinkage and gas pores on the strength and deformability of the alloys AZ91, AM50 and AE42 under tensile and bend loading. To characterise the microstructure in the dependence on the wall thickness, the investigations are mainly carried out using in situ specimens obtained from die castings. (orig.)

  15. Ballistic impact velocity response of carbon fibre reinforced aluminium alloy laminates for aero-engine

    Science.gov (United States)

    Mohammed, I.; Abu Talib, A. R.; Sultan, M. T. H.; Saadon, S.

    2017-12-01

    Aerospace and other industries use fibre metal laminate composites extensively due to their high specific strength, stiffness and fire resistance, in addition to their capability to be tailored into different forms for specific purposes. The behaviours of such composites under impact loading is another factor to be considered due to the impacts that occur in take-off, landing, during maintenance and operations. The aim of the study is to determine the specific perforation energy and impact strength of the fibre metal laminates of different layering pattern of carbon fibre reinforced aluminium alloy and hybrid laminate composites of carbon fibre and natural fibres (kenaf and flax). The composites are fabricated using the hand lay-up method in a mould with high bonding polymer matrix and compressed by a compression machine, cured at room temperature for one day and post cure in an oven for three hours. The impact tests are conducted using a gun tunnel system with a flat cylindrical bullet fired using a helium gas at a distance of 14 inches to the target. Impact and residual velocity of the projectile are recorded by high speed video camera. Specific perforation energy of carbon fibre reinforced aluminium alloy (CF+AA) for both before and after fire test are higher than the specific perforation energy of the other composites considered before and after fire test respectively. CF +AA before fire test is 55.18% greater than after. The same thing applies to impact strength of the composites where CF +AA before the fire test has the highest percentage of 11.7%, 50.0% and 32.98% as respectively compared to carbon fibre reinforced aluminium alloy (CARALL), carbon fibre reinforced flax aluminium alloy (CAFRALL) and carbon fibre reinforced kenaf aluminium alloy (CAKRALL), and likewise for the composites after fire test. The considered composites in this test can be used in the designated fire zone of an aircraft engine to protect external debris from penetrating the engine

  16. Experimental and theoretical investigation on corrosion inhibition of AA5052 aluminium alloy by L-cysteine in alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dapeng; Gao, Lixin [School of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090 (China); Zhang, Daquan, E-mail: zhangdaquan@shiep.edu.cn [School of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090 (China); Yang, Dong [School of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090 (China); Wang, Hongxia; Lin, Tong [Institute for Frontier Materials, Deakin University, Geelong, VIC 3216 (Australia)

    2016-02-01

    The corrosion inhibition of L-cysteine on AA5052 aluminium alloy in 4 mol/L NaOH solution was investigated by hydrogen gas evolution experiment, polarisation curve, galvanostatic discharge, electrochemical impedance spectroscopy measurements and quantum chemical calculations. The adsorption of L-cysteine on aluminium alloy surface obeyed the amended Langmuir's adsorption isotherm. The polarisation curves indicated that L-cysteine acted as a cathodic inhibitor to inhibit cathodic reaction. The inhibition mechanism was dominated by the geometric covering effect. The galvanostatic discharge shows that the additives restrain the hydrogen evolution and increase the anodic utilization rate. Quantum chemical calculations indicated that L-cysteine molecules mainly interacted with on the carboxyl groups on the aluminium alloy surface. A strong hybridization occurred between the s-orbital and p-orbital of reactive sites in the L-cysteine molecule and the sp-orbital of Aluminium. - Highlights: • L-cysteine was used as corrosion inhibitor for Al alloy in alkaline solution. • Adsorption of L-cysteine on Al alloy surface obeyed the amended Langmuir's isotherm. • L-cysteine molecules interacted with the carboxyl groups on the Al alloy surface. • A strong orbital hybridization occurred between the reactive sites in L-cysteine and Al.

  17. Comparative study on microstructures and mechanical properties of the heat-treated Al–5.0Cu–0.6Mn–xFe alloys prepared by gravity die casting and squeeze casting

    International Nuclear Information System (INIS)

    Lin, Bo; Zhang, WeiWen; Lou, ZhaoHui; Zhang, DaTong; Li, YuanYuan

    2014-01-01

    Highlights: • Only two kind Fe-rich intermetallics are found in the heat-treated Al–5.0Cu–0.6Mn–xFe alloys. • Squeeze cast Al–5.0Cu–0.6Mn alloys containing 1.5% Fe have desirable mechanical properties. • The difference between gravity die cast and squeeze cast Al–5.0Cu–0.6Mn–xFe alloys. - Abstract: The Al–5.0 wt% Cu–0.6 wt% Mn alloys with different Fe contents were prepared by gravity die casting and squeeze casting. The difference in microstructures and mechanical properties of the T5 heat-treated alloys was examined by tensile test, optical microscopy, deep etching technique, scanning electron microscope and electron probe micro-analyzer. The results show that both β-Fe and α (CuFe) are observed in T5 heat-treated gravity die cast alloy and only α (CuFe) appears in the squeeze cast alloy when the Fe content is 0.5 wt%. When the Fe content is more than 1.0 wt%, the main Fe-rich intermetallics is α (CuFe) in both squeeze cast and gravity die cast alloys. The mechanical properties of both the gravity die cast and squeeze cast alloys decrease gradually with the increase of Fe content due to the decreased volume fraction of precipitation particles, the increased volume fraction of Fe-rich intermetallics and the increased size of α (Al) dendrites. The squeeze cast alloys with different Fe contents have superior mechanical properties compared to the gravity die cast alloys, which is mainly attributed to the reduction of porosity and refinement of Fe-rich intermetallics and α (Al) dendrite. In particularly, the elongation of the squeeze cast alloys is less sensitive to the Fe content than that of the gravity die cast alloys. An elongation level of 13.7% is obtained in squeeze cast alloy even when the Fe content is as high as 1.5%, while that of the gravity die cast alloy is only 5.3%

  18. Grain refinement of DC cast magnesium alloys with intensive melt shearing

    International Nuclear Information System (INIS)

    Zuo, Y B; Jiang, B; Zhang, Y; Fan, Z

    2012-01-01

    A new direct chill (DC) casting process, melt conditioned DC (MC-DC) process, has been developed for the production of high quality billets/slabs of light alloys by application of intensive melt shearing through a rotor-stator high shear device during the DC casting process. The rotor-stator high shear device provides intensive melt shearing to disperse the naturally occurring oxide films, and other inclusions, while creating a microscopic flow pattern to homogenize the temperature and composition fields in the sump. In this paper, we report the grain refining effect of intensive melt shearing in the MC-DC casting processing. Experimental results on DC casting of Mg-alloys with and without intensive melt shearing have demonstrated that the MC-DC casting process can produce magnesium alloy billets with significantly refined microstructure. Such grain refinement in the MC-DC casting process can be attributed to enhanced heterogeneous nucleation by dispersed naturally occurring oxide particles, increased nuclei survival rate in uniform temperature and compositional fields in the sump, and potential contribution from dendrite arm fragmentation.

  19. Modeling wear of cast Ti alloys.

    Science.gov (United States)

    Chan, Kwai S; Koike, Marie; Okabe, Toru

    2007-05-01

    The wear behavior of Ti-based alloys was analyzed by considering the elastic-plastic fracture of individual alloys in response to the relevant contact stress field. Using the contact stresses as the process driving force, wear was computed as the wear rate or volume loss as a function of hardness and tensile ductility for Ti-based cast alloys containing an alpha, alpha+beta or beta microstructure with or without the intermetallic precipitates. Model predictions indicated that wear of Ti alloys increases with increasing hardness but with decreasing fracture toughness or tensile ductility. The theoretical results are compared with experimental data to elucidate the roles of microstructure in wear and contrasted against those in grindability.

  20. Physical and chemical grounds of electrolytic fabrication of aluminium-strontium alloying composition

    International Nuclear Information System (INIS)

    Lysenko, A.P.

    1998-01-01

    It was revealed via study of literature sources that usage of alloying composition of strontium (not of sodium) is more expedient in modification of silumin-type alloys. In this case modification effect is keeping during long holdings and in repeated meltings. Electrolytic decomposition of strontium chloride with usage of liquid aluminium cathode is the most simple and cheap method for fabrication of alloying composition. The operation scheme for production of Al-Sr alloy was proposed in this work on the base of thermodynamic analysis

  1. Evaluation of the mechanical properties of microarc oxidation coatings and 2024 aluminium alloy substrate

    CERN Document Server

    Xue Wen Bin; Deng Zhi Wei; Chen Ru Yi; Li Yong Liang; Zhang Ton Ghe

    2002-01-01

    A determination of the phase constituents of ceramic coatings produced on Al-Cu-Mg alloy by microarc discharge in alkaline solution was performed using x-ray diffraction. The profiles of the hardness, H, and elastic modulus, E, across the ceramic coating were determined by means of nanoindentation. In addition, a study of the influence of microarc oxidation coatings on the tensile properties of the aluminium alloy was also carried out. The results show that the H-and E-profiles are similar, and both of them exhibit a maximum value at the same depth of coating. The distribution of the alpha-Al sub 2 O sub 3 phase content determines the H- and E-profiles of the coatings. The tensile properties of 2024 aluminium alloy show less change after the alloy has undergone microarc discharge surface treatment.

  2. Experimental investigation of hardness of FSW and TIG joints of Aluminium alloys of AA7075 and AA6061

    Directory of Open Access Journals (Sweden)

    Chetan Patil

    2016-07-01

    Full Text Available This paper reports hardness testing conducted on welded butt joints by FSW and TIG welding process on similar and dissimilar aluminium alloys. FSW joints were produced for similar alloys of AA7075T651 and dissimilar alloys of AA7075T651- AA6061T6. The Friction stir welds of AA7075 & AA6061 aluminium alloy were produced at different tool rotational speeds of 650,700, 800, 900, 1000 and transverse speed of 30, 35, 40 mm/min. TIG welding was conducted along the rolling direction of similar and dissimilar aluminium plates. The Brinell hardness testing techniques were employed to conduct the tests; these tests were conducted on the welds to ascertain the joint integrity before characterization to have an idea of the quality of the welds

  3. Features of argon-arc welding of aluminium alloy AD1 to stainless steel 12Kh18N10T

    International Nuclear Information System (INIS)

    Sadov, I.I.

    1982-01-01

    Welding of pipes made of the 12Kh18N10T stainless steel and the AD1 aluminium alloy is proposed to perform using one-sided aluminizing. It is recommended to use shields in order to protect internal and external surfaces of pipes, aluminizing of which is impossible. It is shown that developed technological process for welded joints made of aluminium and stainless steel for cryogenic apparatus permits to create light-duty cryostat assembly using aluminium alloys instead of copper alloys, to increase reliability of apparatus (usage of welded joints instead of soldered ones), and to improve labour conditions

  4. Inhibitive Behaviour of Corrosion of Aluminium Alloy in NaCl by Mangrove Tannin

    International Nuclear Information System (INIS)

    Solhan Yahya; Afidah Abdul Rahim; Affaizza Mohd Shah; Rohana Adnan

    2011-01-01

    Anticorrosion potential of mangrove tannins on aluminium alloys AA6061 in NaCl solution has been studied using potentiodynamic polarisation method and scanning electron microscopy (SEM). The study was carried out in different pH of corrosive medium in the absence and presence of various concentrations of tannin. The corrosion inhibition behaviour of the mangrove tannin on AA6061 aluminium alloy corrosion was found to be dependant on the pH of NaCl solution. Our results showed that the inhibition efficiency increased with increasing tannins concentration in chloride solution at pH 6. Treatment of aluminium alloy 6061 with all concentrations of mangrove tannins reduced the current density, thus decreased the corrosion rate. Tannins behaved as mixed inhibitors at pH 6 and reduction in current density predominantly affected in cathodic reaction. Meanwhile, at pH 12, addition of tannins shifted the corrosion potential to more cathodic potentials and a passivating effect was observed in anodic potentials. SEM studies have shown that the addition of tannins in chloride solution at pH 12 reduced the surface degradation and the formation of pits. (author)

  5. The role of magnesium in the electrochemical behaviour of 5XXX aluminium-magnesium alloys

    NARCIS (Netherlands)

    Flores Ramirez, J.R.

    2006-01-01

    An investigation concerning the effects of magnesium on the intergranular corrosion susceptibility of AA5XXX aluminium alloys was carried out. In the present work, magnesium is found to be highly mobile in the bulk metal as well as in the aluminium oxide. This mobility is also found to be dependent

  6. Tensile behavior of dissimilar friction stir welded joints of aluminium alloys

    International Nuclear Information System (INIS)

    Shanmuga Sundaram, N.; Murugan, N.

    2010-01-01

    The heat treatable aluminium alloy AA2024 is used extensively in the aircraft industry because of its high strength to weight ratio and good ductility. The non-heat treatable aluminium alloy AA5083 possesses medium strength and high ductility and used typically in structural applications, marine, and automotive industries. When compared to fusion welding processes, friction stir welding (FSW) process is an emerging solid state joining process which is best suitable for joining these alloys. The friction stir welding parameters such as tool pin profile, tool rotational speed, welding speed, and tool axial force influence the mechanical properties of the FS welded joints significantly. Dissimilar FS welded joints are fabricated using five different tool pin profiles. Central composite design with four parameters, five levels, and 31 runs is used to conduct the experiments and response surface method (RSM) is employed to develop the model. Mathematical regression models are developed to predict the ultimate tensile strength (UTS) and tensile elongation (TE) of the dissimilar friction stir welded joints of aluminium alloys 2024-T6 and 5083-H321, and they are validated. The effects of the above process parameters and tool pin profile on tensile strength and tensile elongation of dissimilar friction stir welded joints are analysed in detail. Joints fabricated using Tapered Hexagon tool pin profile have the highest tensile strength and tensile elongation, whereas the Straight Cylinder tool pin profile have the lowest tensile strength and tensile elongation. The results are useful to have a better understanding of the effects of process parameters, to fabricate the joints with desired tensile properties, and to automate the FS welding process.

  7. Low Cost Al-Si Casting Alloy As In-Situ Composite for High Temperature Applications

    Science.gov (United States)

    Lee, Jonathan A.

    2000-01-01

    A new aluminum-silicon (Al-Si) alloy has been successfully developed at NASA- Marshall Space Flight Center (MSFC) that has significant improvement in tensile and fatigue strength at elevated temperatures (500 F-700 F). The alloy offers a number of benefits such as light weight, high hardness, low thermal expansion and high surface wear resistance. In hypereutectic form, this alloy is considered as an in-situ Al-Si composite with tensile strength of about 90% higher than the auto industry 390 alloy at 600 F. This composite is very economically produced by using either conventional permanent steel molds or die casting. The projected material cost is less than $0.90 per pound, and automotive components such as pistons can be cast for high production rate using conventional casting techniques with a low and fully accounted cost. Key Words: Metal matrix composites, In-situ composite, aluminum-silicon alloy, hypereutectic alloy, permanent mold casting, die casting.

  8. Experimental study of friction in aluminium bolted joints

    Science.gov (United States)

    Croccolo, D.; de Agostinis, M.; Vincenzi, N.

    2010-06-01

    This study aims at developing an experimental tool useful to define accurately the friction coefficients in bolted joints and, therefore, at relating precisely the tightening torque to the bolt preloading force in some special components used in front motorbike suspensions. The components under investigation are some clamped joints made of aluminium alloy. The preloading force is achieved by applying a torque wrench to the bolt head. Some specific specimens have been appropriately designed and realized in order to study the tribological aspects of the tightening phase. Experimental tests have been performed by applying the Design of Experiment (DOE) method in order to obtain a mathematical model for the friction coefficients. Three replicas of a full factorial DOE at two levels for each variable have been carried out. The levels include cast versus forged aluminium alloy, anodized versus spray-painted surface, lubricated versus unlubricated screw, and first tightening (fresh unspoiled surfaces) versus sixth tightening (spoiled surfaces). The study considers M8x1.25 8.8 galvanized screws.

  9. Research of Mechanical Property Gradient Distribution of Al-Cu Alloy in Centrifugal Casting

    Science.gov (United States)

    Sun, Zhi; Sui, Yanwei; Liu, Aihui; Li, Bangsheng; Guo, Jingjie

    Al-Cu alloy castings are obtained using centrifugal casting. The regularity of mechanical property gradient distribution of Al-Cu alloy castings with the same centrifugal radius at different positions is investigated. The result shows that the tensile strength, yield strength, elongation and microscope hardness exhibit the following gradient distribution characteristic — high on both sides and low on the center. The trend of mechanical property gradient distribution of Al-Cu alloy increases with the increase in the rotation speed. Moreover, the mechanical properties of casting centerline two sides have asymmetry. The reason is that the grain size of casting centerline two sides and Al2Cu phase and Cu content change correspondingly.

  10. Fabrication and characterisation of uranium, molybdenum, chromium, niobium and aluminium; Dobijanje i karakterizacija legura uranijuma sa molibdenom, hromom, niobijumom i aluminijumom

    Energy Technology Data Exchange (ETDEWEB)

    Sofrenovic, R; Isailovic, M; Kotur, Z [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-11-15

    This paper describes fabrication of binary uranium alloys by melting and casting. The following alloys with nominal composition were obtained by melting in the vacuum furnace: uranium with niobium contents from 0.5%- 4.0% and uranium with molybdenum contents from 0.4% - 1.2%. Uranium alloys with chromium content from 0.4% - 1.2% and uranium alloy with 0.12% of aluminium were obtained by vacuum induction furnace (electric arc melting)

  11. Fiber laser cladding of nickel-based alloy on cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Arias-González, F., E-mail: felipeag@uvigo.es [Applied Physics Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo E-36310 (Spain); Val, J. del [Applied Physics Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo E-36310 (Spain); Comesaña, R. [Materials Engineering, Applied Mechanics and Construction Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo E-36310 (Spain); Penide, J.; Lusquiños, F.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pou, J. [Applied Physics Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo E-36310 (Spain)

    2016-06-30

    Highlights: • Fiber laser cladding of Ni-based alloy on cast iron was experimentally studied. • Two different types of cast iron have been analyzed: gray and ductile cast iron. • Suitable processing parameters to generate a Ni-based coating were determined. • Dilution is higher in gray cast iron samples than in ductile cast iron. • Ni-based coating presents higher hardness than cast iron but similar Young's modulus. - Abstract: Gray cast iron is a ferrous alloy characterized by a carbon-rich phase in form of lamellar graphite in an iron matrix while ductile cast iron presents a carbon-rich phase in form of spheroidal graphite. Graphite presents a higher laser beam absorption than iron matrix and its morphology has also a strong influence on thermal conductivity of the material. The laser cladding process of cast iron is complicated by its heterogeneous microstructure which generates non-homogeneous thermal fields. In this research work, a comparison between different types of cast iron substrates (with different graphite morphology) has been carried out to analyze its impact on the process results. A fiber laser was used to generate a NiCrBSi coating over flat substrates of gray cast iron (EN-GJL-250) and nodular cast iron (EN-GJS-400-15). The relationship between processing parameters (laser irradiance and scanning speed) and geometry of a single laser track was examined. Moreover, microstructure and composition were studied by Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-Ray Diffraction (XRD). The hardness and elastic modulus were analyzed by means of micro- and nanoindentation. A hardfacing coating was generated by fiber laser cladding. Suitable processing parameters to generate the Ni-based alloy coating were determined. For the same processing parameters, gray cast iron samples present higher dilution than cast iron samples. The elastic modulus is similar for the coating and the substrate, while the Ni

  12. Characteristic evaluation of process parameters of friction stir welding of aluminium 2024 hybrid composites

    Science.gov (United States)

    Sadashiva, M.; Shivanand, H. K.; Vidyasagar, H. N.

    2018-04-01

    The Current work is aimed to investigate the effect of process parameters in friction stir welding of Aluminium 2024 base alloy and Aluminium 2024 matrix alloy reinforced with E Glass and Silicon Carbide reinforcements. The process involved a set of synthesis techniques incorporating stir casting methodology resulting in fabrication of the composite material. This composite material that is synthesized is then machined to obtain a plate of dimensions 100 mm * 50 mm * 6 mm. The plate is then friction stir welded at different set of parameters viz. the spindle speed of 600 rpm, 900 rpm and 1200 rpm and feed rate of 40 mm/min, 80 mm/min and 120 mm/min for analyzing the process capability. The study of the given set of parameters is predominantly important to understand the physics of the process that may lead to better properties of the joint, which is very much important in perspective to its use in advanced engineering applications, especially in aerospace domain that uses Aluminium 2024 alloy for wing and fuselage structures under tension.

  13. Grindability of dental cast Ti-Ag and Ti-Cu alloys.

    Science.gov (United States)

    Kikuchi, Masafumi; Takahashi, Masatoshi; Okabe, Toru; Okuno, Osamu

    2003-06-01

    Experimental Ti-Ag alloys (5, 10, and 20 mass% Ag) and Ti-Cu alloys (2, 5, and 10 mass% Cu) were cast into magnesia molds using a dental casting machine, and their grindability was investigated. At the lowest grinding speed (500 m min(-1)), there were no statistical differences among the grindability values of the titanium and titanium alloys. The grindability of the alloys increased as the grinding speed increased. At the highest grinding speed (1500 m x min(-1)), the grindability of the 20% Ag, 5% Cu, and 10% Cu alloys was significantly higher than that of titanium. It was found that alloying with silver or copper improved the grindability of titanium, particularly at a high speed. It appeared that the decrease in elongation caused by the precipitation of small amounts of intermetallic compounds primarily contributed to the favorable grindability of the experimental alloys.

  14. Nanostructural hierarchy increases the strength of aluminium alloys.

    Science.gov (United States)

    Liddicoat, Peter V; Liao, Xiao-Zhou; Zhao, Yonghao; Zhu, Yuntian; Murashkin, Maxim Y; Lavernia, Enrique J; Valiev, Ruslan Z; Ringer, Simon P

    2010-09-07

    Increasing the strength of metallic alloys while maintaining formability is an interesting challenge for enabling new generations of lightweight structures and technologies. In this paper, we engineer aluminium alloys to contain a hierarchy of nanostructures and possess mechanical properties that expand known performance boundaries-an aerospace-grade 7075 alloy exhibits a yield strength and uniform elongation approaching 1 GPa and 5%, respectively. The nanostructural architecture was observed using novel high-resolution microscopy techniques and comprises a solid solution, free of precipitation, featuring (i) a high density of dislocations, (ii) subnanometre intragranular solute clusters, (iii) two geometries of nanometre-scale intergranular solute structures and (iv) grain sizes tens of nanometres in diameter. Our results demonstrate that this novel architecture offers a design pathway towards a new generation of super-strong materials with new regimes of property-performance space.

  15. Comparison of the passivity between cast alloy and laser-welded titanium overdenture bars.

    Science.gov (United States)

    Paiva, Jose; Givan, Daniel A; Broome, James C; Lemons, Jack E; McCracken, Michael S

    2009-12-01

    The purpose of this study was to investigate the fit of cast alloy overdenture and laser-welded titanium-alloy bars by measuring induced strain upon tightening of the bars on a master cast as well as a function of screw tightening sequence. Four implant analogs were secured into Type IV dental stone to simulate a mandibular edentulous patient cast, and two groups of four overdenture bars were fabricated. Group I was four cast alloy bars and Group II was four laser-welded titanium bars. The cast alloy bars included Au-Ag-Pd, Pd-Ag-Au, Au-Ag-Cu-Pd, and Ag-Pd-Cu-Au, while the laser-welded bars were all Ti-Al-V alloy. Bars were made from the same master cast, were torqued into place, and the total strain in the bars was measured through five strain gauges bonded to the bar between the implants. Each bar was placed and torqued 27 times to 30 Ncm per screw using three tightening sequences. Data were processed through a strain amplifier and analyzed by computer using StrainSmart software. Data were analyzed by ANOVA and Tukey's post hoc test. Significant differences were found between alloy types. Laser-welded titanium bars tended to have lower strains than corresponding cast bars, although the Au-Ag-Pd bar was not significantly different. The magnitudes of total strain were the least when first tightening the ends of the bar. The passivity of implant overdenture bars was evaluated using total strain of the bar when tightening. Selecting a high modulus of elasticity cast alloy or use of laser-welded bar design resulted in the lowest average strain magnitudes. While the effect of screw tightening sequence was minimal, tightening the distal ends first demonstrated the lowest strain, and hence the best passivity.

  16. Aluminium EN AW-2124 alloy matrix composites reinforced with Ti(C,N), BN and Al2O3 particles

    International Nuclear Information System (INIS)

    Dobrzanski, L.A.; Wlodarczyk, A.; Adamiak, M.

    2003-01-01

    Investigation results of the aluminium alloy EN AW-2124 matrix composite materials with particles of the powders Ti(C,N), BN and Al 2 O 3 (15 wt.%) are presented in the paper. In order to obtain uniform distribution of reinforcement particles in aluminium alloy matrix powders of composite components have been milled in the rotary ball-bearing pulverizer. The composites have been pressed in laboratory vertical press at room temperature under the pressure of 500 kN. Obtained die samplings have been heated to the temperature 520-550 o C and extruded. Bars of diameter 8 mm have been received as a final product. Metallographic examination of the composites materials' structure shows non-uniform distribution of reinforced powders in the aluminium alloy matrix banding of reinforcements particles corresponds to the extrusion direction. Particles of reinforcement distribution in aluminium alloy matrix is irregular, some agglomerations of powder of aluminium oxide and porosity of different size have been noticed. Investigations of hardness and ultimate compressive strength show that the particles of reinforcement improve mechanical properties of composite materials. Investigations of compressive strength, carried out at room temperature, enable to compare mechanical properties of matrix and composite. (author)

  17. Effects of Eutectic Si Particles on Mechanical Properties and Fracture Toughness of Cast A356 Aluminum Alloys

    International Nuclear Information System (INIS)

    Lee, Kyu Hong; Lee, Sung Hak; Kwon, Yong Nam

    2007-01-01

    The present study aims at investigating the effects of eutectic Si particles on mechanical properties and fracture toughness of three A356 aluminum alloys. These A356 alloys were fabricated by casting processes such as rheo-casting, squeeze-casting, and casting-forging, and their mechanical properties and fracture toughness were analyzed in relation with microfracture mechanism study. All the cast A356 alloys contained eutectic Si particles mainly segregated along solidification cells, and the distribution of Si particles was modified by squeeze-casting and casting-forging processes. Microfracture observation results showed that eutectic Si particles segregated along cells were cracked first, but that aluminum matrix played a role in blocking crack propagation. Tensile properties and fracture toughness of the squeeze cast and cast-forged alloys having homogeneous distribution of eutectic Si particles were superior to those of the rheo-cast alloy. In particular, the cast-forged alloy had excellent hardness, strength, ductility, and fracture toughness because of the matrix strengthening and homogeneous distribution of eutectic Si particles due to forging process

  18. Grain refinement of permanent mold cast copper base alloys. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sadayappan, M.; Thomson, J. P.; Elboujdaini, M.; Gu, G. Ping; Sahoo, M.

    2004-04-29

    Grain refinement behavior of copper alloys cast in permanent molds was investigated. This is one of the least studied subjects in copper alloy castings. Grain refinement is not widely practiced for leaded copper alloys cast in sand molds. Aluminum bronzes and high strength yellow brasses, cast in sand and permanent molds, were usually fine grained due to the presence of more than 2% iron. Grain refinement of the most common permanent mold casting alloys, leaded yellow brass and its lead-free replacement EnviroBrass III, is not universally accepted due to the perceived problem of hard spots in finished castings and for the same reason these alloys contain very low amounts of iron. The yellow brasses and Cu-Si alloys are gaining popularity in North America due to their low lead content and amenability for permanent mold casting. These alloys are prone to hot tearing in permanent mold casting. Grain refinement is one of the solutions for reducing this problem. However, to use this technique it is necessary to understand the mechanism of grain refinement and other issues involved in the process. The following issues were studied during this three year project funded by the US Department of Energy and the copper casting industry: (1) Effect of alloying additions on the grain size of Cu-Zn alloys and their interaction with grain refiners; (2) Effect of two grain refining elements, boron and zirconium, on the grain size of four copper alloys, yellow brass, EnviroBrass II, silicon brass and silicon bronze and the duration of their effect (fading); (3) Prediction of grain refinement using cooling curve analysis and use of this method as an on-line quality control tool; (4) Hard spot formation in yellow brass and EnviroBrass due to grain refinement; (5) Corrosion resistance of the grain refined alloys; (6) Transfer the technology to permanent mold casting foundries; It was found that alloying elements such as tin and zinc do not change the grain size of Cu-Zn alloys

  19. Improvement of the oxidation resistance of Tribaloy T-800 alloy by the additions of yttrium and aluminium

    International Nuclear Information System (INIS)

    Zhang, Y.-D.; Zhang, C.; Lan, H.; Hou, P.Y.; Yang, Z.-G.

    2011-01-01

    Research highlights: → The additions of yttrium (Y) reduced the oxidation rate of Tribaloy T-800 alloy. → Y promoted selective oxidation of Cr due to refinement of alloy phase size. → The oxidation rate was further reduced by Y plus Al with a protective Al 2 O 3 scale. → The positive effect of Y and Al being more pronounced at the higher temperature. - Abstract: The microstructures and oxidation behaviour of the modified Tribaloy T-800 alloys by additions of yttrium and yttrium plus aluminium have been studied. At the presence of yttrium alone, the oxidation rate decreased, and the selective oxidation of chromium was promoted, which was related to the refinement of alloy phase size. The addition of yttrium plus aluminium further reduced the oxidation rate. The selective oxidation of chromium and aluminium were both promoted significantly. The benefits were especially pronounced at 1000 o C, with the formation of protective alumina external layer and no internal oxides, which may be detrimental to the alloy mechanical property.

  20. Effect of grain refiner on the tensile and impact properties of Al–Si–Mg cast alloys

    International Nuclear Information System (INIS)

    Samuel, E.; Golbahar, B.; Samuel, A.M.; Doty, H.W.; Valtierra, S.; Samuel, F.H.

    2014-01-01

    The present study aims to investigate the influence of the addition of Ti and B in the form of five different grain refiners/aluminium master alloys (Al–10%Ti, Al–5%Ti–1%B, Al–2.5%Ti–2.5%B, Al–1.7%Ti–1.4%B and Al–4%B) in conjunction with that of Sr (as modifier) added in the form of Al–10%Sr master alloy to A356.2 alloy. Grain refinement of an A356.2 alloy with Ti and B additions in the ranges of 0.02–0.5% and 0.01–0.5%, respectively, was examined using these different types of grain refiners. Strontium additions of 30 and 200 ppm were made. All alloys were T6-heat treated before mechanical testing. Tensile and impact tests were conducted to evaluate the influence of the interaction between grain refiner and modifier on the mechanical properties. The properties were determined for both the as-cast and heat-treated conditions. - Highlights: • Grain refining of 356 alloys using five types of grain refiners. • Interaction between the added grain refiner and amount of modifier used (i.e. 30 or 200ppm Sr). • Role of the added amount of Ti and/or B on the eutectic Si particle characteristics. • Role of Ti/B on the impact toughness of 356 alloys modified with Sr (30 or 200ppm)

  1. Experimental analysis of volumetric wear behavioural and mechanical properties study of as cast and 1Hr homogenized Al-25Mg2Si2Cu4Ni alloy at constant load

    Science.gov (United States)

    Harlapur, M. D.; Mallapur, D. G.; Udupa, K. Rajendra

    2018-04-01

    In the current study, an experimental analysis of volumetric wear behaviour and mechanical properties of aluminium (Al-25Mg2Si2Cu4Ni) alloy in as cast and 1Hr homogenized with T6 heat treatment is carried out at constant load. Pin-on-disc apparatus was used to carry out sliding wear test. Mechanical properties such as tensile, hardness and compression test on as-cast and 1 hr homogenized samples are measured. Universal testing machine was used to conduct the tensile and compressive test at room temperature. Brinell hardness tester was used to conduct the hardness test. The scanning electron microscope was used to analyze the worn-out wear surfaces. Wear results and mechanical properties shows that 1Hr homogenized Al-25Mg2Si2Cu4Ni alloy samples with T6 treated had better volumetric wear resistance, hardness, tensile and compressive strength as compared to as cast samples.

  2. Effects of heat pipe cooling on permanent mold castings of aluminum alloys

    International Nuclear Information System (INIS)

    Zhang, C.; Mucciardi, F.; Gruzleski, J.E.

    2002-01-01

    The temperature distribution within molds is a critical parameter in determining the ultimate casting quality in permanent mold casting processes, so there is a considerable incentive to develop a more effective method of mold cooling. Based on this consideration, a novel, effective and controllable heat pipe has been successfully developed and used as a new method of permanent mold cooling. Symmetric step casting of A356 alloy have been produced in an experimental permanent mold made of H13 tool steel, which is cooled by such heat pipes. The experimental results show that heat pipes can provide extremely high cooling rates in permanent mold castings of aluminum. The dendrite arm spacing of A356 alloy is refined considerably, and porosity and shrinkage of the castings are redistributed by the heat pipe cooling. Moreover, the heat pipe can be used to determine the time when the air gap forms at the interface between the mold and the casting. The effect of heat pipe cooling on solidification time of castings of A356 alloy with different coating types is also discussed in this paper. (author)

  3. Characterization of fold defects in AZ91D and AE42 magnesium alloy permanent mold castings

    International Nuclear Information System (INIS)

    Bichler, L.; Ravindran, C.

    2010-01-01

    Casting premium-quality magnesium alloy components for aerospace and automotive applications poses unique challenges. Magnesium alloys are known to freeze rapidly prior to filling a casting cavity, resulting in misruns and cold shuts. In addition, melt oxidation, solute segregation and turbulent metal flow during casting contribute to the formation of fold defects. In this research, formation of fold defects in AZ91D and AE42 magnesium alloys cast via the permanent mold casting process was investigated. Computer simulations of the casting process predicted the development of a turbulent metal flow in a critical casting region with abrupt geometrical transitions. SEM and light optical microscopy examinations revealed the presence of folds in this region for both alloys. However, each alloy exhibited a unique mechanism responsible for fold formation. In the AZ91D alloy, melt oxidation and velocity gradients in the critical casting region prevented fusion of merging metal front streams. In the AE42 alloy, limited solubility of rare-earth intermetallic compounds in the α-Mg phase resulted in segregation of Al 2 RE particles at the leading edge of a metal front and created microstructural inhomogeneity across the fold.

  4. Steam assisted oxide growth on aluminium alloys using oxidative chemistries: Part II corrosion performance

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    2015-01-01

    the protection provided by steam treatment with HNO3was a function of the concentration of NO3−ions. The coating generated by inclusion of KMnO4showed highest resistance to filiform corrosion. Overall, the performance of the steam treated surfaces under filiform corrosion and AASS test was a result of the local......Surface treatment of aluminium alloys using steam with oxidative chemistries, namely KMnO4 and HNO3 resulted in accelerated growth of oxide on aluminium alloys. Detailed investigation of the corrosion performance of the treated surfaces was carried out using potentiodynamic polarisation...

  5. Effect of technological parameters on formability of semi-solid rheological casting-forging 6061 alloy

    Directory of Open Access Journals (Sweden)

    Jianbo TAN

    2016-02-01

    Full Text Available The 6061 alloy cooling curve is determined by analysis software, and the 6061 semi-solid alloy is prepared by manual paddling process. The primary solid fraction is tested through prepared water quenched samples under different temperature. With H1F100 type servo press and cup type test mold, the forming of the 6061 semi-solid alloy rheological casting-forging is made. The influence of alloy temperature, forming pressure, upper mould temperature and holding time on the formability of 6061 alloy is researched. The results show that within the same set of mold completing casting and forging of the alloy is feasible. Along with the increase of the alloy temperature and the upper mould temperature, the formability of finished products becomes better. Under this experimentation, when the temperature of the semi-solid alloy is amongst 642 ℃ to 645 ℃ and the upper mould preheating temperature is amongst 200 ℃ to 300 ℃, casting defects such as cold insulation will form in the casting-forging sample of semi-solid 6061 alloy with the prolongation of holding time.

  6. A hybrid aluminium alloy and its zoo of interacting nano-precipitates

    Energy Technology Data Exchange (ETDEWEB)

    Wenner, Sigurd, E-mail: sigurd.wenner@ntnu.no [Department of Physics, NTNU, Høgskoleringen 5, NO-7491 Trondheim (Norway); Marioara, Calin Daniel; Andersen, Sigmund Jarle [Materials and Chemistry, SINTEF, Høgskoleringen 5, NO-7491 Trondheim (Norway); Ervik, Martin; Holmestad, Randi [Department of Physics, NTNU, Høgskoleringen 5, NO-7491 Trondheim (Norway)

    2015-08-15

    An alloy with aluminium as its base element is heat treated to form a multitude of precipitate phases known from different classes of industrial alloys: Al–Cu(–Mg), Al–Mg–Si–Cu, and Al–Zn–Mg. Nanometer-sized needle-shaped particles define the starting point of the phase nucleation, after which there is a split in the precipitation sequence into six phases of highly diverse compositions and morphologies. There are several unique effects of phases from different alloy systems being present in the same host lattice, of which we concentrate on two: the replacement of Ag by Zn on the Ω interface and the formation of combined plates of the θ′ and C phases. Using atomically resolved scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy, we investigate the formation mechanisms, crystal structures and compositions of the precipitates. - Graphical abstract: Display Omitted - Highlights: • An aluminium alloy composition in-between the 2/6/7xxx systems was investigated. • Six different phases from the three systems coexist in an over-aged state. • All phases with 〈001〉{sub Al} coherencies can nucleate on 6xxx needle precipitates. • Modified theta′ and omega interfaces are observed.

  7. Tribological Properties of AlSi11-SiCp Composite Castings Produced by Pressure Die Casting Method

    Directory of Open Access Journals (Sweden)

    Konopka Z.

    2014-08-01

    Full Text Available The measurement results concerning the abrasive wear of AlSi11-SiC particles composites are presented in paper. The method of preparing a composite slurry composed of AlSi11 alloy matrix and 10, 20% vol.% of SiC particles, as well as the method of its high-pressure die casting was described. Composite slurry was injected into metal mould of cold chamber pressure die cast machine and castings were produced at various values of the piston velocity in the second stage of injection, diverse intensification pressure values, and various injection gate width values. Very good uniform arrangement of SiC particles in volume composite matrix was observed and these results were publicated early in this journal. The kinetics of abrasive wear and correlation with SiC particles arrangement in composite matrix were presented. Better wear resistance of composite was observed in comparison with aluminium alloy. Very strong linear correlation between abrasive wear and particle arrangement was observed. The conclusion gives the analysis and the interpretation of the obtained results.

  8. Precision casting of Ti-15V-3Cr-3Al-3Sn alloy setting

    OpenAIRE

    Nan Hai; Liu Changkui; Huang Dong

    2008-01-01

    In this research, Ti-15V-3Cr-3Al-3Sn alloy ingots were prepared using ceramic mold and centrifugal casting. The Ti-15V-3Cr-3Al-3Sn setting casting, for aeronautic engine, with 1.5 mm in thickness was manufactured. The alloy melting process, precision casting process, and problems in casting application were discussed. Effects of Hot Isostatic Pressing and heat treatment on the mechanical properties and microstructure of the Ti-15V-3Cr-3Al-3Sn alloy were studied.

  9. Effect of parameters of high-pressure die casting on occurrence of casting nonconformities in sleeves of silumin alloy EN AB 47100

    Directory of Open Access Journals (Sweden)

    Pałyga Ł.

    2017-03-01

    Full Text Available The paper presents a research on the effect of extreme - for the technology of the considered silumin EN AB 47100 - parameters of high-pressure die casting on occurrence of casting nonconformities. Considered was influence of the way of assembling the mould cooled-down to 140-160°C, non-standard for the selected casting, and pouring temperature in the range of 705 to 720°C (higher than the recommended of non-refined alloy. The castings were prepared with use of a high-pressure casting machine made by Kirov with mould closing force of 2500 kN. Occurrence of nonconformities was evaluated on properly prepared specimens taken from the castings manufactured with various parameters of the injection piston and various multiplication pressures. The results were subjected to quantitative and qualitative analyses of casting nonconformities and distribution of major alloying elements. It was found that proper selection of working parameters of the casting machine, in spite of disadvantageous pouring conditions, makes it possible to reduce occurrence of some casting defects, like shrinkage cavities and porosity, to improve tightness of castings even when the alloy refining process is omitted.

  10. Effects of minor scandium on as-cast microstructure, mechanical properties and casting fluidity of ZA84 magnesium alloy

    International Nuclear Information System (INIS)

    Pan Fusheng; Yang Mingbo; Cheng Liang

    2010-01-01

    The effects of minor Sc on the as-cast microstructure, mechanical properties and casting fluidity of the ZA84 magnesium alloy were investigated. The results indicate that the Mg 32 (Al,Zn) 49 phase in the ZA84 alloy is refined with the addition of 0.12-0.35 wt.% Sc, and the formation of the Mg 32 (Al,Zn) 49 phase is suppressed. An increase in Sc amount from 0.12 wt.% to 0.35 wt.% causes the morphology of the Mg 32 (Al,Zn) 49 phase to gradually change from coarse continuous and/or quasi-continuous net to relatively fine quasi-continuous and/or disconnected shapes. In addition, it is shown that the tensile and creep properties of the ZA84 alloy are improved, but the casting fluidity of the alloy is decreased with the addition of 0.12-0.35 wt.% Sc.

  11. Laser beam welding of high strength aluminium-lithium alloys; Laserstrahlschweissen von hochfesten Aluminium-Lithium Legierungen

    Energy Technology Data Exchange (ETDEWEB)

    Enz, Josephin

    2012-07-01

    The present development in aircraft industry determined by the demand for a higher cost-effectiveness. Laser beam welding is one of the most promising joining technologies for the application in the aircraft industry through the considerable reduction of the production costs. Furthermore the weight of an aircraft structure can be reduced by the use of light and high strength aluminium alloys. This paper deals with the development of a process for the laser beam welding of a skin-stringer-joint where the Al-Li-alloy AA2196 is used as stringer material and the Al-Li-alloy AA2198 is used as skin and stringer material. By the use of design of experiments the optimal welding process parameters for different material combinations were determined which will be used for the welding of a 5-stringer panel. Therefore the weld seams of the joints were tested for irregularities and microstructural characteristics. In addition several mechanical tests were performed, which define the quality of the welded joint. Furthermore the influence of the oxide layer and the welding preparation on the welding performance was investigated. (orig.) [German] Die derzeitigen Entwicklungen im Flugzeugbau werden durch die allgemeine Forderung nach einer Steigerung der Wirtschaftlichkeit bestimmt. Das Laserstrahlschweissen ist dabei eines der vielversprechendsten Fuegeverfahren fuer die Anwendung im Flugzeugbau durch das die Herstellungskosten deutlich reduziert werden koennen. Zudem kann durch die Verwendung von leichten und hochfesten Aluminium-Legierungen das Gewicht einer Flugzeugstruktur zusaetzlich reduziert werden. Die vorliegende Arbeit befasst sich mit der Entwicklung eines Prozesses zum Laserstrahlschweissen einer Skin-Stringer-Verbindung aus den Aluminium-Lithium-Legierungen AA2196 (als Stringer-Werkstoff) und AA2198 (als Skin- und Stringer-Werkstoff). Unter Verwendung der statistischen Versuchsplanung wurden die optimalen Einstellungen der Schweissprozessparameter fuer die

  12. Rheological Analysis of Semi-Solid A380.0 Aluminium Alloy / Analiza Właściwości Reologicznych Stopu Aluminium A380.0 W Stanie Stało-Ciekłym

    Directory of Open Access Journals (Sweden)

    Solek K.

    2015-12-01

    Full Text Available Knowledge of the rheological properties is crucial for the numerical modeling of technological processes. The main objective of this study was to conduct an analysis of the rheological properties of A380.0 (AlSi9Cu3(Fe aluminium alloy in the semi-solid state. The results could be used for identification of temperature range of the alloy, where thixoforming processes could be executed. Another purpose of the experimental work could be development of the mathematical models of the alloy apparent viscosity. The significant achievement of this particular study is an application of a viscometer which was specially designed for material tests executed at high temperatures, such as the measurement of liquid or semi-liquid aluminium viscosity. This paper presents the results of a rheological analysis of aluminium alloy.

  13. Evaluation of mechanical properties of as-cast Al-Zn-Ce alloy

    International Nuclear Information System (INIS)

    Govindaraju, H.K.; Jayaraj, T.; Sadanandarao, P.R.; Venkatesha, C.S.

    2010-01-01

    The effect of cerium on Al-Zn alloys with T6 and T5 treatments was investigated for mechanical and impact properties. Alloys were prepared by controlled melting and casting. The cast alloys were solution heat treated at 500-550 o C, for up to 24 h, followed by artificial aging at 165 o C for 6 h (T6). The T5 type temper was produced merely by applying a precipitation treatment to the as-cast castings, without previous solution treatment. All the tests were conducted according to ASTM standards. From the investigation, it was found that there was an improvement in mechanical and impact properties. Scanning electron microscopy was carried out to characterize the structural properties of different heat treatments and the effect of cerium. In addition, the fractured specimens were examined using a scanning electron microscopy in order to clarify fracture.

  14. Analysis of heavy alloying elements segregation in gravity cast experimental Mg-Al-Zn-RE alloy

    Directory of Open Access Journals (Sweden)

    A. Żydek

    2010-01-01

    Full Text Available Microstructure of experimental AZ91 alloy with an addition of rare earth elements (RE at a level of 4 wt.% was examined by means of light microscopy. The investigated AZ91 + 4 wt.% RE alloy was fabricated by adding cerium rich mish metal to molten commercial AZ91 alloy. In the microstructure of the resulting alloy, besides α solid solution, α + γ eutectic and discontinuous precipitates of γ phase, also the Al11RE3 phase with needle-like morphology and the polygonal Al10RE2Mn7 phase were revealed. No segregation of rare earth elements was found in the investigated gravity cast alloy, which was confirmed by statistical analysis of cerium concentrations in selected parts of the cast. Similar results were obtained for manganese. Ce and Mn concentrations were determined by a spectrophotometric method.

  15. Recovery of Actinides from Actinide-Aluminium Alloys: Chlorination Route

    International Nuclear Information System (INIS)

    Mendes, E.; Malmbeck, R.; Soucek, P.; Jardin, R.; Glatz, J.P.; Cassayre, L.

    2008-01-01

    A method for recovery of actinides (An) from An-Al alloys formed by electrochemical separation of metallic spent nuclear fuel on solid aluminium electrodes in molten chloride salts is described. The proposed route consists of three main steps: -) vacuum distillation of salt adhered on the electrodes, -) chlorination of An-Al alloy by pure chlorine gas and -) sublimation of formed AlCl 3 . A thermochemical study of the route was performed to determine important chemical reactions and to find optimum experimental conditions for all process steps. Vacuum distillation of the electrode is efficient for complete removal of remaining salt and most fission products, full chlorination of the An-Al alloys is possible at any working temperature and evaporation of AlCl 3 is achieved by heating under argon. Experiments have been carried out using U-Al alloy in order to define parameters providing full alloy chlorination without formation of volatile UCl 5 and UCl 6 . It was shown that full chlorination of An-Al alloys without An losses should be possible at a temperature approx. 150 deg. C. (authors)

  16. Recovery of Actinides from Actinide-Aluminium Alloys: Chlorination Route

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, E.; Malmbeck, R.; Soucek, P.; Jardin, R.; Glatz, J.P. [European Commission, JRC, Institute for Transuranium Elements, Postfach 2340, 76125 Karlsruhe (Germany); Cassayre, L. [Laboratoire de Genie Chimique (LGC), Universite Paul Sabatier, UMR CNRS 5503, 118 route de Narbonne, 31062 Toulouse Cedex 04 (France)

    2008-07-01

    A method for recovery of actinides (An) from An-Al alloys formed by electrochemical separation of metallic spent nuclear fuel on solid aluminium electrodes in molten chloride salts is described. The proposed route consists of three main steps: -) vacuum distillation of salt adhered on the electrodes, -) chlorination of An-Al alloy by pure chlorine gas and -) sublimation of formed AlCl{sub 3}. A thermochemical study of the route was performed to determine important chemical reactions and to find optimum experimental conditions for all process steps. Vacuum distillation of the electrode is efficient for complete removal of remaining salt and most fission products, full chlorination of the An-Al alloys is possible at any working temperature and evaporation of AlCl{sub 3} is achieved by heating under argon. Experiments have been carried out using U-Al alloy in order to define parameters providing full alloy chlorination without formation of volatile UCl{sub 5} and UCl{sub 6}. It was shown that full chlorination of An-Al alloys without An losses should be possible at a temperature approx. 150 deg. C. (authors)

  17. Microscopic observation of pattern attack by aggressive ions on finished surface of aluminium alloy sacrificial anode

    International Nuclear Information System (INIS)

    Zaifol Samsu; Muhammad Daud; Siti Radiah Mohd Kamarudin; Nur Ubaidah Saidin; Azali Muhammad; Mohd Shaari Ripin; Rusni Rejab; Mohd Shariff Sattar

    2010-01-01

    This paper presents the results of a microscopic observation on submerged finished surface of aluminium alloy sacrificial anode. Experimental tests were carried out on polished surface aluminium anode exposed to seawater containing aggressive ions in order to observe of pattern corrosion attack on corroding surface of anode. Results have shown, at least under the present testing condition, that surface of sacrificial anode were attack by an aggressive ion such as chloride along grain boundaries. In addition, results of microanalysis showed that the corrosion products on surface of aluminium alloy have Al, Zn and O element for all sample and within the pit was consists of Al, Zn, O and Cl element. (author)

  18. Scanning and transmission electron microscopy study of the microstructural changes occurring in aluminium matrix composites reinforced with SiC particles during casting and welding: interface reactions

    Science.gov (United States)

    Urena; Gomez De Salazar JM; Gil; Escalera; Baldonedo

    1999-11-01

    Processing of aluminium matrix composites (AMCs), especially those constituted by a reactive system such as Al-SiC, presents great difficulties which limit their potential applications. The interface reactivity between SiC and molten Al generates an aluminium carbide which degrades the composite properties. Scanning and transmission electron microscopes equipped with energy-dispersive X-ray spectroscopes are essential tools for determining the structure and chemistry of the Al-SiC interfaces in AMCs and changes occurring during casting and arc welding. In the present work, an aluminium-copper alloy (AA2014) reinforced with three different percentages of SiC particles was subjected to controlled remelting tests, at temperatures in the range 750-900 degrees C for 10 and 30 min. Arc welding tests using a tungsten intert gas with power inputs in the range 850-2000 W were also carried out. The results of these studies showed that during remelting there is preferential SiC particle consumption with formation of Al4C3 by interface reaction between the solid SiC particle and the molten aluminium matrix. The formation of Al4C3 by the same mechanism has also been detected in molten pools of arc welded composites. However, in this case there was formation of an almost continuous layer of Al4C3, which protects the particle against further consumption, and formation of aciculate aluminium carbide on the top weld. Both are formed by fusion and dissolution of the SiC in molten aluminium followed by reaction and precipitation of the Al4C3 during cooling.

  19. Optimization of Micro-Alloying Elements for Mechanical Properties in Normalized Cast Steel Using Taguchi Technique

    Directory of Open Access Journals (Sweden)

    Chokkalingam B.

    2017-06-01

    Full Text Available In this study, Taguchi method is used to find out the effect of micro alloying elements like vanadium, niobium and titanium on the hardness and tensile strength of the normalized cast steel. Based on this method, plan of experiments were made by using orthogonal arrays to acquire the data on hardness and tensile strength. The signal to noise ratio and analysis of variance (ANOVA are used to investigate the effect of these micro alloying elements on these two mechanical properties of the micro alloyed normalized cast steel. The results indicated that in the micro alloyed normalized cast steel both these properties increases when compared to non-micro-alloyed normalized cast steel. The effect of niobium addition was found to be significantly higher to obtain higher hardness and tensile strength when compared to other micro alloying elements. The maximum hardness of 200HV and the maximum tensile strength of 780 N/mm2 were obtained in 0.05%Nb addition micro alloyed normalized cast steel. Micro-alloyed with niobium normalized cast steel have the finest and uniform microstructure and fine pearlite colonies distributed uniformly in the ferrite. The optimum condition to obtain higher hardness and tensile strength were determined. The results were verified with experiments.

  20. Aluminium in Infrastructures

    NARCIS (Netherlands)

    Maljaars, J.

    2016-01-01

    Aluminium alloys are used in infrastructures such as pedestrian bridges or parts of it such as handrail. This paper demonstrates that aluminium alloys are in principle also suited for heavy loaded structures, such as decks of traffic bridges and helicopter landing platforms. Recent developments in

  1. Improvement of hardness of aluminium AA1200 by laser surface alloying

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-07-01

    Full Text Available Aluminium is vastly used in industry due to its low cost, light weight and excellent workability, but lacks in wear resistance and hardness. Laser alloying is used to improve the surface properties such as hardness by modifying the composition...

  2. Braze Welding TIG of Titanium and Aluminium Alloy Type Al – Mg

    Directory of Open Access Journals (Sweden)

    Winiowski A.

    2016-03-01

    Full Text Available The article presents the course and the results of technological tests related to TIG-based arc braze welding of titanium and AW-5754 (AlMg3 aluminium alloy. The tests involved the use of an aluminium filler metal (Al99.5 and two filler metals based on Al-Si alloys (AlSi5 and AlSi12. Braze welded joints underwent tensile tests, metallographic examinations using a light microscope as well as structural examinations involving the use of a scanning electron microscope and an X-ray energy dispersive spectrometer (EDS. The highest strength and quality of welds was obtained when the Al99.5 filler metal was used in a braze welding process. The tests enabled the development of the most convenient braze welding conditions and parameters.

  3. Trends in the Production of Castings in the World and in Poland in the XXI Century

    Directory of Open Access Journals (Sweden)

    Soiński M.S.

    2016-06-01

    Full Text Available The paper presents data concerning the total production of castings over the 2000-2014 period, both on a global scale, and in Poland. The basic types of casting alloys were taken into account. Changes in the production volume and structure over the period of the analysed 15 years were pointed out with respect to countries leading in foundry production. The topmost position in the world foundry industry is held by China for several years (with almost 45% share in the foundry market, the second place is taken by India (with almost 9% share. A distinct reduction in the shares of the once significant producers of castings, such as USA, Japan, Germany, Russia, Italy, or France, was observed over the 2000-2014 period. Poland had a share of 1.16% in 2000, and of 1.02% in 2014. Comparing the detailed data concerning the years 2000 and 2014, one can see that the fractions of castings made of ductile iron, cast steel, aluminium alloys, or magnesium alloys increase on a global scale, while such alloys as grey cast iron or malleable are in decline.

  4. Structure analysis of 3104 aluminium alloy applied to deep drawing

    Energy Technology Data Exchange (ETDEWEB)

    Klyszewski, A.; Lech-Grega, M.; Zelechowski, J.; Szymanski, W. [Light Metals Div., Skawina (Poland). Inst. of Non-Ferrous Metals

    2000-07-01

    Optical and electron microscopy observations and X-ray investigations of 3104 aluminium alloy ingots and bands after experimental heat treatment were carried out. The influence of ingots homogenisation temperature and parameters of material heat treatment after hot rolling on structure, texture and earing of band 0.3 mm thick was analysed. (orig.)

  5. Strategies to reduce the environmental impact of an aluminium pressure die casting plant: A scenario analysis

    NARCIS (Netherlands)

    Neto, B.; Kroeze, C.; Hordijk, L.; Costa, C.; Pulles, M.P.J.

    2009-01-01

    This study explores a model (MIKADO) to analyse scenarios for the reduction of the environmental impact of an aluminium die casting plant. Our model calculates the potential to reduce emissions, and the costs associated with implementation of reduction options. In an earlier paper [Neto, B., Kroeze,

  6. High frequency ohmic loss of beryllium and its alloy with aluminium

    International Nuclear Information System (INIS)

    Prentslau, N.N.

    1999-01-01

    The surface resistance of Be of different purity and its alloy with Al (50%Be-50%Al) is investigated at temperatures ranged from 4,2 to 300 K in the 0-10 10 Hz frequency region. It is shown that within the temperature range (in the vicinity of 77 K) where beryllium is a de hyper conductor. Its surface resistance and the surface resistance of the alloy are minimum compared to that of other metals, in particular, of aluminium. The temperature dependence of the surface resistance of Be and its alloys is well described by the classical formulae of electrodynamics

  7. The solidification behavior of dilute aluminium-scandium alloys

    International Nuclear Information System (INIS)

    Norman, A.F.; Prangnell, P.B.; McEwen, R.S.

    1998-01-01

    The solidification behavior of dilute Sc containing Al alloys has been investigated. In binary Al-Sc alloys, Sc additions greater than the eutectic composition (0.55 wt%) were found to produce a remarkable refinement in the grain size of aluminum castings, of two orders of magnitude, due to the formation of the primary Al 3 Sc intermetallic phase during solidification. The refinement in grain size only occurred in hypereutectic compositions and was shown to be far greater than can be achieved by conventional Al grain refiners. Grain refinement by the addition of Sc is accompanied by a change in growth morphology from dendritic, in the large unrefined grains, to fine spherical grains with a divorced eutectic appearing on the grain boundaries in the refined castings. Similar levels of refinement were observed in Al-Sc-Zr and Al-Cu-Sc alloys. In the latter, a change in the segregation behavior of Cu was observed, from a strongly interdendritic segregation pattern to a more homogeneous distribution. The supersaturated Al-Sc solid solution can decompose via a discontinuous precipitation reaction to form coherent rod-like precipitates of the L1 2 Al 3 Sc phase

  8. Low Cycle Mechanical and Fatigue Properties of AlZnMgCu Alloy

    Directory of Open Access Journals (Sweden)

    Pysz S.

    2016-03-01

    Full Text Available The article presents the analysis of properties of the high-strength AlZnMgCu (abbr AlZn aluminium alloy and estimates possibilities of its application for responsible structures with reduced weight as an alternative to iron alloy castings. The aim of the conducted studies was to develop and select the best heat treatment regime for a 7xx casting alloy based on high-strength materials for plastic working from the 7xxx series. For analysis, wrought AlZnMgCu alloy (7075 was selected. Its potential of the estimated as-cast mechanical properties indicates a broad spectrum of possible applications for automotive parts and in the armaments industry. The resulting tensile and fatigue properties support the thesis adopted, while the design works further confirm these assumptions.

  9. Fatigue Life of Cast Titanium Alloys Under Simulated Denture Framework Displacements

    Science.gov (United States)

    Koike, Mari; Chan, Kwai S.; Hummel, Susan K.; Mason, Robert L.; Okabe, Toru

    2013-02-01

    The objective of the study was to evaluate the hypothesis that the mechanical properties and fatigue behavior of removable partial dentures (RPD) made from cast titanium alloys can be improved by alloying with low-cost, low-melting elements such as Cu, Al, and Fe using commercially pure Ti (CP-Ti) and Ti-6Al-4V as controls. RPD specimens in the form of rest-shaped, clasp, rectangular-shaped specimens and round-bar tensile specimens were cast using an experimental Ti-5Al-5Cu alloy, Ti-5Al-1Fe, and Ti-1Fe in an Al2O3-based investment with a centrifugal-casting machine. The mechanical properties of the alloys were determined by performing tensile tests under a controlled displacement rate. The fatigue life of the RPD specimens was tested by the three-point bending in an MTS testing machine under a cyclic displacement of 0.5 mm. Fatigue tests were performed at 10 Hz at ambient temperature until the specimens failed into two pieces. The tensile data were statistically analyzed using one-way ANOVA (α = 0.05) and the fatigue life data were analyzed using the Kaplan-Meier survival analysis (α = 0.05). The experimental Ti-5Al-5Cu alloy showed a significantly higher average fatigue life than that of either CP-Ti or Ti-5Al-1Fe alloy ( p < 0.05). SEM fractography showed that the fatigue cracks initiated from surface grains, surface pores, or hard particles in surface grains instead of the internal casting pores. Among the alloys tested, the Ti-5Al-5Cu alloy exhibited favorable results in fabricating dental appliances with an excellent fatigue behavior compared with other commercial alloys.

  10. The Effect of Grain-refinement on Zn-10Al Alloy Damping Properties

    Directory of Open Access Journals (Sweden)

    Piwowarski G.

    2014-12-01

    Full Text Available The paper is devoted to grain-refinement of the medium-aluminium zinc based alloys (MAl-Zn. The system examined was sand cast Zn- 10 wt. %. Al binary alloy (Zn-10Al doped with commercial Al-3 wt. % Ti - 0.15 wt. % C grain refiner (Al-3Ti-0.15C GR. Basing on the measured attenuation coefficient of ultrasonic wave it was stated that together with significantly increased structure fineness damping decreases only by about 10 - 20%. The following examinations should establish the influence of the mentioned grain-refinement on strength and ductility of MAl-Zn cast alloys.

  11. Registration of Crystallization Process of Ultra-Lightweight Mg-Li Alloys with Use of ATND Method

    Directory of Open Access Journals (Sweden)

    A. Białobrzeski

    2007-07-01

    Full Text Available Magnesium alloys are characterized by advantageous ratio of strength and/or elastic modulus to density, that is, can sustain static and dynamic loads similar to iron and aluminium, and additionally feature good vibration damping. Castings from magnesium alloys are lighter with about 20 – 30% than aluminium alloys and with 50 – 75% than iron alloys, that is why they are used in aviation and rocket industry and everywhere the weight of a product is of important significance for conditions of its operation. Also automotive industry introduces to vehicle’s structure an elements (castings manufactured from such alloys. On metallic matrix of magnesium alloys with lithium are also manufactured a composites reinforced with e.g. ceramic fiber, which are used as lightweight and resistant structure materials. The paper presents an attempt of implementation of ATND method (Thermal-Voltage-Derivative Analysis to monitoring of crystallization process of ultra-lightweight Mg-Li alloys. Investigated magnesium alloys with contents of about 2,3% Li, 10% Li and 11 % Li were produced in the Foundry Research Institute. Registration of melting and crystallization processes was made with use of the ATND method. Results of preliminary tests are shown in graphical form.

  12. Section thickness-dependent tensile properties of squeeze cast magnesium alloy AM60

    Directory of Open Access Journals (Sweden)

    Xuezhi Zhang

    2012-05-01

    Full Text Available The development of alternative casting processes is essential for the high demand of light weight magnesium components to be used in the automotive industry, which often contain different section thicknesses. Squeeze casting with its inherent advantages has been approved for the capability of minimizing the gas porosity in magnesium alloys. For advanced engineering design of light magnesium automotive applications, it is critical to understand the effect of section thickness on mechanical properties of squeeze cast magnesium alloys. In this study, magnesium alloy AM60 with different section thicknesses of 6, 10 and 20 mm squeeze cast under an applied pressure of 30 MPa was investigated. The prepared squeeze cast AM60 specimens were tensile tested at room termperature. The results indicate that the mechanical properties including yield strength (YS, ultimate tensile strength (UTS and elongation (A decrease with an increase in section thickness of squeeze cast AM60. The microstructure analysis shows that the improvement in the tensile behavior of squeeze cast AM60 is primarily attributed to the low-gas porosity level and fine grain strucuture which result from the variation of cooling rate of different section thickness. The numerical simulation (Magmasoft? was employed to determine the solidification rates of each step, and the simulated results show that the solidification rate of the alloy decreases with an increase in the section thickness. The computed solidification rates support the experimental observation on grain structural development.

  13. Analysis of the Causes of Cracks in a Thick-Walled Bush Made of Die-Cast Aluminum Bronze

    Directory of Open Access Journals (Sweden)

    Pisarek B.P.

    2016-12-01

    Full Text Available For the die casting conditions of aluminium bronzes assumed based on the literature data, a thick-walled bush was cast, made of complex aluminium bronze (Cu-Al-Fe-Ni-Cr. After the cast was removed from the mould, cracks were observed inside it. In order to identify the stage in the technological production process at which, potentially, the formation of stresses damaging the continuity of the microstructure created in the cast was possible (hot cracking and/or cold cracking, a computer simulation was performed. The article presents the results of the computer simulation of the process of casting the material into the gravity die as well as solidifying and cooling of the cast in the shape of a thick-walled bush. The simulation was performed with the use of the MAGMA5 program and by application of the CuAl10Ni5,5Fe4,5 alloy from the MAGMA5 program database. The results were compared with the location of the defects identified in the actual cast. As a result of the simulation of the die-casting process of this bush, potential regions were identified where significant principal stresses accumulate, which can cause local hot and cold cracking. Until now, no research has been made of die-cast aluminium bronzes with a Cr addition. Correlating the results of the computer simulation validated by the analysis of the actual cast made it possible to clearly determine the critical regions in the cast exposed to cracking and point to the causes of its occurrence. Proposals of changes in the bush die casting process were elaborated, in order to avoid hot tearing and cold cracking. The article discusses the results of preliminary tests being a prologue to the optimization of the die-casting process parameters of complex aluminium bronze thick-walled bushs.

  14. Fabrication of uranium alloy fuel slug for sodium-cooled fast reactor by injection casting

    International Nuclear Information System (INIS)

    Jong Hwan Kim; Hoon Song; Ki Hwan Kim; Chan Bock Lee

    2014-01-01

    Metal fuel slugs of U-Zr alloys for a sodium-cooled fast reactor (SFR) have been fabricated using an injection casting method. However, casting alloys containing volatile radioactive constituents such as Am can cause problems in a conventional injection casting method. Therefore, in this study, several injection-casting methods were applied to evaluate the volatility of the metal-fuel elements and control the transport of volatile elements. Mn was selected as a volatile surrogate alloy since it possesses a total vapor pressure equivalent to that of minor actinide-bearing fuels for SFRs. U-10 wt% Zr and U-10 wt% Zr-5 wt% Mn metal fuels were prepared, and the casting processes were evaluated. The casting soundness of the fuel slugs was characterized by gamma-ray radiography and immersion density measurements. Inductively coupled plasma atomic emission spectroscopy was used to determine the chemical composition of fuel slugs. Fuel losses after casting were also evaluated according to the casting conditions. (author)

  15. RESEARCH OF FATIGUE AND MECHANICAL PROPERTIES AlMg1SiCu ALUMINIUM ALLOYS

    Directory of Open Access Journals (Sweden)

    Mária Mihaliková

    2015-11-01

    Full Text Available The paper is concerned with an analysis of utility and fatigue properties of industrially produced aluminium alloy, specifically EN AW 6061 (AlMg1SiCu, reinforced with the particles of SiC. The following properties were subject to evaluation: microstructure and sub-structure, mechanical characteristics. All of these mechanical properties in pre- and post- equal channel angular pressed (ECAP state have been studied. The hardness was evaluated by Vickers hardness test at the load of HV10. The significant part the thesis was devoted to the fatigue properties at cyclic load in torsion. The presented results demonstrate well that the combination of fractography and microscopy can give a significant contribution to the knowledge of initiation and propagation crack in the aluminium alloy.

  16. Application of spectral analysis of the electrochemical noise to the investigation of aluminium alloy pitting corrosion

    International Nuclear Information System (INIS)

    Bataillon, Christian

    1987-01-01

    The objective of this research is to decode (at least partially) the nature of the information contained in the electrochemical noise associated with the pitting corrosion phenomenon in aluminium alloys. After a general presentation of aluminium and its alloys and a report of a bibliographical study on the electrochemical noise, the author gives an overview of a theoretical approach of stochastic phenomena, and of an experimental approach. Then, the experimental investigation of the electrochemical noise in the case of pitting corrosion leads to a noise control law, to a study of the structure of pitting growth, and to the elaboration of a procedure of assessment of spectral characteristics of this noise. The author reports a systematic study of the electrochemical noise with respect to the parameters of the control law. Results allow a quantitative characterization of pitting corrosion resistance of the studied alloys, notably by using the kinetic aspect of pitting growth and the structure of pitting corrosion. The author discusses the physicochemical nature of random fluctuations which build up the noise. He proposes a more precise explanation of phenomena related to initiation and propagation of pitting corrosion on aluminium alloys in marine environment [fr

  17. Physicochemical properties of aluminium alloys with elements of II and III groups of periodic table

    International Nuclear Information System (INIS)

    Eshov, B.B.

    2016-01-01

    The purpose of the present work is to establish the mechanism and regularities of changes of physicochemical properties of binary and multicomponent aluminium alloys with elements of II and III groups of periodic table as well as optimization and elaboration of new alloys.

  18. Anti-corrosive Conversion Coating on Aluminium Alloys Using High Temperature Steam

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    or convert to a functional conversion coating. In the last several decades chromate conversion coating (CrCCs) have been the most common conversion coatings used for aluminium alloys. Due to the toxicity of the hexavalent chrome, however, environmental friendly alternatives to CrCCs have been investigated...

  19. Quantitative prediction of solute strengthening in aluminium alloys.

    Science.gov (United States)

    Leyson, Gerard Paul M; Curtin, William A; Hector, Louis G; Woodward, Christopher F

    2010-09-01

    Despite significant advances in computational materials science, a quantitative, parameter-free prediction of the mechanical properties of alloys has been difficult to achieve from first principles. Here, we present a new analytic theory that, with input from first-principles calculations, is able to predict the strengthening of aluminium by substitutional solute atoms. Solute-dislocation interaction energies in and around the dislocation core are first calculated using density functional theory and a flexible-boundary-condition method. An analytic model for the strength, or stress to move a dislocation, owing to the random field of solutes, is then presented. The theory, which has no adjustable parameters and is extendable to other metallic alloys, predicts both the energy barriers to dislocation motion and the zero-temperature flow stress, allowing for predictions of finite-temperature flow stresses. Quantitative comparisons with experimental flow stresses at temperature T=78 K are made for Al-X alloys (X=Mg, Si, Cu, Cr) and good agreement is obtained.

  20. Influences of pulsed current tungsten inert gas welding parameters on the tensile properties of AA 6061 aluminium alloy

    International Nuclear Information System (INIS)

    Senthil Kumar, T.; Balasubramanian, V.; Sanavullah, M.Y.

    2007-01-01

    Medium strength aluminium alloy (Al-Mg-Si alloy) has gathered wide acceptance in the fabrication of light weight structures requiring a high strength-to-weight ratio, such as transportable bridge girders, military vehicles, road tankers and railway transport systems. In any structural application of this alloy consideration its weldability is of utmost importance as welding is largely used for joining of structural components. The preferred welding process of aluminium alloy is frequently tungsten inert gas (TIG) welding due to its comparatively easier applicability and better economy. In the case of single pass TIG welding of thinner section of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current process. The use of pulsed current parameters has been found to improve the mechanical properties of the welds compared to those of continuous current welds of this alloy due to grain refinement occurring in the fusion zone. Many considerations come into the picture and one need to carefully balance various pulse current parameters to arrive at an optimum combination. Hence, in this investigation an attempt has been made to study the influence of pulsed current TIG welding parameters on tensile properties of AA 6061 aluminium alloy weldments

  1. Mechanical properties and corrosion behaviour of MIG welded 5083 aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Durmus, Huelya [Celal Bayar Univ., Turgutlu-Manisa (Turkey)

    2011-07-01

    For this study 5083 Aluminium alloy plates, as used in automobiles and watercraft, were experimentally MIG welded. The plates were joined with different wires and at various currents. The effects of welding with different parameters on the mechanical and corrosion properties were investigated. The corrosion behaviour of the MIG welded 5083 Aluminium base material was also investigated. The effects of the chemical composition of the filler material on the mechanical properties were examined by metallographic inspection and tensile testing. By EDS and XRD analyses of specimens it turned out that different structures in the weld metal (Cu3Si) affect its mechanical properties. The mechanical properties of the specimens welded with 5356 filler metal were found as quite well improved as compared to those specimens welded with 4043 and 5183 filler material. The results of the metallographic analysis, and mechanical and corrosion tests exhibited that the 5356 filler material was most suitable for the 5083 Al alloy base material. (orig.)

  2. CORROSION RESISTANCE OF DYNAMIC LOADED CAST ALLOY AS12

    Directory of Open Access Journals (Sweden)

    A. A. Andrushevich

    2017-01-01

    Full Text Available The assessment of influence of powder particles in the mode of super deep penetration (SDP on change of corrosion resistance of aluminum cast alloy AK12 is executed. The aluminum alloy reinforced by fiber zones with the reconstructed structure has the increased corrosion resistance.

  3. Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency

    Science.gov (United States)

    Stromme, Eric T.; Henderson, Hunter B.; Sims, Zachary C.; Kesler, Michael S.; Weiss, David; Ott, Ryan T.; Meng, Fanqiang; Kassoumeh, Sam; Evangelista, James; Begley, Gerald; Rios, Orlando

    2018-04-01

    Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatment line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. This work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.

  4. Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency

    Science.gov (United States)

    Stromme, Eric T.; Henderson, Hunter B.; Sims, Zachary C.; Kesler, Michael S.; Weiss, David; Ott, Ryan T.; Meng, Fanqiang; Kassoumeh, Sam; Evangelista, James; Begley, Gerald; Rios, Orlando

    2018-06-01

    Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatment line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. This work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.

  5. Low cycle fatigue behavior of die cast Mg-Al-Mn-Ce magnesium alloy

    Directory of Open Access Journals (Sweden)

    Wu Wei

    2013-11-01

    Full Text Available Fatigue failure is a main failure mode for magnesium and other alloys. It is beneficial for fatigue design and fatigue life improvement to investigate the low cycle fatigue behavior of magnesium alloys. In order to investigate the low cycle fatigue behavior of die cast Mg-Al-Mn-Ce magnesium alloy, the strain controlled fatigue experiments were performed at room temperature and fatigue fracture surfaces of specimens were observed with scanning election microscopy for the alloys under die-cast and aged states. Cyclic stress response curves, strain amplitude versus reversals to failure curve, total strain amplitude versus fatigue life curves and cyclic stress-strain curves of Mg-Al-Mn-Ce alloys were analyzed. The results show that the Mg-Al-Mn-Ce alloys under die-cast (F and aged (T5 states exhibit cyclic strain hardening under the applied total strain amplitudes, and aging treatment could greatly increase the cyclic stress amplitudes of die cast Mg-Al-Mn-Ce alloys. The relationships between the plastic strain amplitude, the elastic strain amplitude and reversals to failure of Mg-Al-Mn-Ce magnesium alloy under different treatment states could be described by Coffin-Manson and Basquin equations, respectively. Observations on the fatigue fracture surface of specimens reveal that the fatigue cracks initiate on the surface of specimens and propagate transgranularly.

  6. Influence of Mn on the tensile properties of SSM-HPDC Al-Cu-Mg-Ag alloy A201

    CSIR Research Space (South Africa)

    Müller, H

    2011-03-01

    Full Text Available A201 aluminium alloy is a high strength casting alloy with a nominal composition of Al-4.6Cu-0.3Mg-0.6Ag. It is strengthened by the O(Al2Cu) phase and the ’(Al2Cu) phase during heat treatment. Further strengthening of this alloy system can...

  7. Decagonal quasicrystalline phase in as-cast and mechanically alloyed Al–Cu–Cr alloys

    International Nuclear Information System (INIS)

    Shevchukov, A.P.; Sviridova, T.A.; Kaloshkin, S.D.; Tcherdyntsev, V.V.; Gorshenkov, M.V.; Churyukanova, M.N.; Zhang, D.; Li, Z.

    2014-01-01

    Highlights: ► Microstructure of as-cast Al–Cu–Cr alloys was investigated. ► Composition of decagonal quasicrystalline phase was determined. ► Single-phase decagonal quasicrystalline powder was obtained. ► Phase composition changes during heating were controlled using DSC and X-ray diffraction. -- Abstract: Microstructure and phase composition of three Al-rich as-cast alloys of Al–Cu–Cr system were investigated by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). The decagonal quasicrystalline phase is contained in all alloys under study and has grains with faceted shape, its composition lies in the range of 71–73 at.% Al, 11–12 at.% Cu and 15–18 at.% Cr. The heating in calorimeter of the mechanically alloyed Al 73 Cu 11 Cr 16 powder up to 600 °C leads to the formation of the pure decagonal phase. Total thermal effect in the temperature range 250–600 °C corresponding to the quasicrystalline phase formation is about 15 kJ/mol

  8. Influence of the Aluminium Alloy Type on Defects Formation in Friction Stir Lap Welding of Thin Sheets

    Directory of Open Access Journals (Sweden)

    M. I. Costa

    Full Text Available Abstract The weldability in Friction Stir Lap Welding (FSLW of heat and non-heat treatable aluminium alloys, the AA6082-T6 and the AA5754-H22 aluminium alloys, respectively, are compared. For both alloys, welds were produced in very thin sheets, using the same welding parameters and procedures, and strong differences in welds morphology were found. The strength of the welds was evaluated by performing tensile-shear tests under monotonic and cyclic loading conditions. As-welded and heat-treated samples of the AA6082- T6 were tested. It was found that the heat-treatable alloy is more sensitive to defects formation, in lap welding, than the non-heat-treatable alloy. The presence of defects has a strong influence on the monotonic and fatigue behaviour of the welds. In spite of this, for very high-applied stresses, the heat-treatable alloy welds perform better in fatigue than the non-heat-treatable alloy welds.

  9. Development of Cast Alumina-forming Austenitic Stainless Steel Alloys for use in High Temperature Process Environments

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, Govindarajan [ORNL; Yamamoto, Yukinori [ORNL; Brady, Michael P [ORNL; Pint, Bruce A [ORNL; Pankiw, Roman [Duraloy Technologies Inc; Voke, Don [Duraloy Technologies Inc

    2015-01-01

    There is significant interest in the development of alumina-forming, creep resistant alloys for use in various industrial process environments. It is expected that these alloys can be fabricated into components for use in these environments through centrifugal casting and welding. Based on the successful earlier studies on the development of wrought versions of Alumina-Forming Austenitic (AFA) alloys, new alloy compositions have been developed for cast products. These alloys achieve good high-temperature oxidation resistance due to the formation of protective Al2O3 scales while multiple second-phase precipitation strengthening contributes to excellent creep resistance. This work will summarize the results on the development and properties of a centrifugally cast AFA alloy. This paper highlights the strength, oxidation resistance in air and water vapor containing environments, and creep properties in the as-cast condition over the temperature range of 750°C to 900°C in a centrifugally cast heat. Preliminary results for a laboratory cast AFA composition with good oxidation resistance at 1100°C are also presented.

  10. The effect of zinc (Zn) content to cell potential value and efficiency aluminium sacrificial anode in 0.2 M sulphuric acid environment

    Science.gov (United States)

    Akranata, Ahmad Ridho; Sulistijono, Awali, Jatmoko

    2018-04-01

    Sacrificial anode is sacirifial component that used to protect steel from corrosion. Generally, the component are made of aluminium and zinc in water environment. Sacrificial anode change the protected metal structure become cathodic with giving current. The advantages of aluminium is corrosion resistance, non toxicity and easy forming. Zinc generally used for coating in steel to prevent steel from corrosion. This research was conducted to analyze the effect of zinc content to the value of cell potential and efficiency aluminium sacrificial anode with sand casting method in 0.2 M sulphuric acid environment. The sacrificial anode fabrication made with alloying aluminium and zinc metals with variation composition of alloy with pure Al, Al-3Zn, Al-6Zn, and Al-9Zn with open die sand casting process. The component installed with ASTM A36 steel. After the research has been done the result showed that addition of zinc content increase the cell potential, protection efficiency, and anode efficiency from steel plate. Cell potential value measurement and weight loss measurement showed that addition of zinc content increase the cell potential value into more positive that can protected the ASTM A36 steel more efficiently that showed in weight loss measurement where the protection efficiency and anodic efficiency of Al-9Zn sacrificial anode is better than protection efficiency and anodic efficiency of pure Al. The highest protection efficiency gotten by Al-9Zn alloy

  11. Ductile failure in upsetting of a rapid-solidification-processed aluminium alloy

    NARCIS (Netherlands)

    Habraken, F.A.C.M.; Dautzenberg, J.H.

    1993-01-01

    Cold upset-tests have been performed on a Rapid Solidification Processed (RSP) aluminium-alloy, produced by the ‘melt-spun ribbons’-process out of 70% car-scrap and 30% primary scrap. The ribbons are hot extruded, resulting in 29 mm diameter bar. Its properties regarding plastic flow and fracture

  12. Quality Management and Control of Low Pressure Cast Aluminum Alloy

    Science.gov (United States)

    Zhang, Dianxi; Zhang, Yanbo; Yang, Xiufan; Chen, Zhaosong; Jiang, Zelan

    2018-01-01

    This paper briefly reviews the history of low pressure casting and summarizes the major production processes of low pressure casting. It briefly introduces the quality management and control of low pressure cast aluminum alloy. The main processes include are: preparation of raw materials, Melting, refining, physical and chemical analysis, K-mode inspection, sand core, mold, heat treatment and so on.

  13. Abrasive Wear of Alloyed Cast Steels Applied for Heavy Machinery

    Directory of Open Access Journals (Sweden)

    Studnicki A.

    2015-03-01

    Full Text Available In the paper the results and analysis of abrasive wear studies were shown for two grades of cast steels: low-alloyed cast steel applied for heavy machinery parts such as housing, covers etc. and chromium cast steels applied for kinetic nodes of pin-sleeve type. Studies were performed using the modified in Department of Foundry pin-on-disc method.

  14. Development of casting investment preventing blackening of noble metal alloys Part 2. Application of developed investment for type 4 gold alloy.

    Science.gov (United States)

    Nakai, Akira; Kakuta, Kiyoshi; Goto, Shin-ichi; Kato, Katuma; Yara, Atushi; Ogura, Hideo

    2003-09-01

    The objective of this study was to evaluate the efficacy of the developed investment for the prevention of blackening of a cast Type 4 gold and to analyze the oxides on its surface in relation to the blackening of the alloy. The experimental investments were prepared using a gypsum-bonded investment in which boron (B) or aluminum (Al) was added as a reducing agent. A Type 4 gold alloy was cast into the mold made of the prepared investment. The effect of the additives was evaluated from the color difference (deltaE*) between the as-cast surface and the polished surface of the cast specimen. B and Al were effective to prevent the blackening of a Type 4 gold alloy and the color of the as-cast surface approached that of the polished surface with increasing B and Al content. The prevention of the blackening of the gold alloy can be achieved by restraining the formation of CuO.

  15. Fatigue properties of particle reinforced aluminium alloys

    International Nuclear Information System (INIS)

    Tabernig, B.J.

    2000-06-01

    In this work the particle reinforced Al-alloys 359 T6 + 20 % SiC and 2124 + 17 % SiC which differ significantly in their production and microstructure are investigated. Standard and in-situ tensile tests show, that in the powder metallurgically produced alloy 2124 reinforcement leads to a higher Young's modulus, yield and ultimate tensile stress where the cast alloy 359 + 20 % SiC exhibit increased stiffness, but low ductility due to cast porosity of some 100 μm. The failure mechanism governed by microstructural parameters is found to play an important role for ductility. The fatigue properties are investigated with specific regard to the influence of the in-service condition (load ratio, temperature, variable amplitude loading) in the foreseen applications in the automobile- and aerospace industry. Standard fatigue tests point out that the endurance limit is improved by reinforcement, but is strongly dependent on the size of given initial defects. The fatigue crack properties are characterised by standard crack growth curves and r(esistance)-curves for the threshold of stress intensity factor range. Both composites exhibit a higher effective threshold than their unreinforced alloys. Furthermore the fatigue resistance described by the R-curve as well as the long crack threshold are improved in the alloy 2124 + 17 % SiC. While in crack growth tests under constant amplitude loading the alloy 2124 + 17 % SiC shows lower crack growth rates than its unreinforced alloy, the opposite case is in the alloy 359 + 20 % SiC at high DK. Periodic overloads lead in the 359 + 20 % SiC to particle fracture at the crack tip and to a steeper increase in the crack growth rate. In the 2124 + 17% SiC the fatigue crack grows predominately in the matrix and a retardation effect due to overloads is observed. In order to describe the fatigue limit of components as a function of initial defect size an analytical concept is developed assuming that the fatigue limit is controlled by the

  16. Deviatoric response of the aluminium alloy, 5083

    Science.gov (United States)

    Appleby-Thomas, Gareth; Hazell, Paul; Millett, Jeremy; Bourne, Neil

    2009-06-01

    Aluminium alloys such as 5083 are established light weight armour materials. As such, the shock response of these materials is of great importance. The shear strength of a material under shock loading provides an insight into its ballistic performance. In this investigation embedded manganin stress gauges have been employed to measure both the longitudinal and lateral components of stress during plate impact experiments over a range of impact stresses. In turn, these results were used to determine the shear strength and to investigate the time dependence of lateral stress behind the shock front to give an indication of material response.

  17. The effect of zinc on the microstructure and phase transformations of casting Al-Cu alloys

    OpenAIRE

    Manasijević Ivana I.; Štrbac Nada D.; Živković Dragana T.; Balanović Ljubiša T.; Minić Duško M.; Manasijević Dragan M.

    2016-01-01

    Copper is one of the main alloying elements for aluminum casting alloys. As an alloying element, copper significantly increases the tensile strength and toughness of alloys based on aluminum. The copper content in the industrial casting aluminum alloys ranges from 3,5 to 11 wt.%. However, despite the positive effect on the mechanical properties, copper has a negative influence on the corrosion resistance of aluminum and its alloys. In order to further improve the properties of Al-Cu alloys th...

  18. The Structure of the Silumin Coat on Alloy Cast Steels

    Directory of Open Access Journals (Sweden)

    T. Szymczak

    2012-04-01

    Full Text Available The work presents the analysis results of the structure of the coat obtained by dipping in silumin AlSi5 of two grades of alloy cast steel: GX6CrNiTi18-10 (LH18N9T and GX39Cr13 (LH14. The temperature of the silumin bath was 750±5°C, and the hold-up time of the cast steel element τ = 180 s. The absolute thickness of the coat obtained in the given conditions was g = 104 μm on cast steel GX6CrNiTi18-10 and g = 132 μm on GX39Cr13. The obtained coat consisted of three layers of different phase structure. The first layer from the base “g1`” was constructed of the phase AlFe including Si and alloy additives of the tested cast steel grades: Cr and Ni (GX6CrNiTi18-10 and Cr (GX39Cr13. The second layer “g1``” of intermetallic phases AlFe which also contains Si and Cr crystallizes on it. The last, external layer “g2” of the coat consists of the silumin containing the intermetallic phases AlFeSi which additionally can contain alloy additives of the cast steel. It was shown that there were no carbides on the coat of the tested cast steels which are the component of their microstructure, as it took place in the case of the coat on the high speed steels.

  19. Weldability of AA 5052 H32 aluminium alloy by TIG welding and FSW process - A comparative study

    Science.gov (United States)

    Shanavas, S.; Raja Dhas, J. Edwin

    2017-10-01

    Aluminium 5xxx series alloys are the strongest non-heat treatable aluminium alloy. Its application found in automotive components and body structures due to its good formability, good strength, high corrosion resistance, and weight savings. In the present work, the influence of Tungsten Inert Gas (TIG) welding parameters on the quality of weld on AA 5052 H32 aluminium alloy plates were analyzed and the mechanical characterization of the joint so produced was compared with Friction stir (FS) welded joint. The selected input variable parameters are welding current and inert gas flow rate. Other parameters such as welding speed and arc voltage were kept constant throughout the study, based on the response from several trial runs conducted. The quality of the weld is measured in terms of ultimate tensile strength. A double side V-butt joints were fabricated by double pass on one side to ensure maximum strength of TIG welded joints. Macro and microstructural examination were conducted for both welding process.

  20. Heat treatments of TiAl-Cr-V casting alloy

    International Nuclear Information System (INIS)

    Pu, Z.J.; Ma, J.L.; Wu, K.H.

    1995-01-01

    The need to investigate various kinds of fine microstructure based on casting TiAl alloy led to development of a multiple-stage heat treatment procedure. The first stage required the transformation of as-cast lamellar structure into near-gamma structure, followed by required transformation of near-gamma structure into various kinds of fine microstructure. The as-cast lamellar structure can be changed into near-gamma structure by annealing the alloy at 1,200 C for at least 50 hours. During the annealing process, two mechanisms are involved in transforming the lamellar structure into a near-gamma structure. One is the discontinuous coarsening (DC) process, and the other is the continuous coarsening (CC) process. With the near-gamma structure as an initial structure, the alloy being heat-treated in the γ + α and in the α fields can produce various kinds of microstructure with fine grain size. These microstructure significantly differ from the microstructure produced by heat-treating the deformed lamellar structure. Results of the investigation show that careful control of the time of the heat-treatment process in the single a field can produce a fine fully lamellar structure

  1. Removal of chromium (VI) from water by micro-alloyed aluminium ...

    African Journals Online (AJOL)

    This paper deals with Cr(VI) ion removal from water, by micro-alloyed aluminium composite (MAlC), under flow conditions. In a water environment the MAlC acts as a strong reducing agent. Dissolving it in water is accompanied by the generation of Al(III) ions and reduction of water to H2, with OH- ions. The final product is ...

  2. Development and characterization of Al-Li alloys

    International Nuclear Information System (INIS)

    Gupta, R.K.; Nayan, Niraj; Nagasireesha, G.; Sharma, S.C.

    2006-01-01

    Increased strength to weight ratio of aluminium-lithium alloys has attracted material scientists to develop these for aerospace applications. But commercial scale production of these alloys has always been slow in view of difficulties encountered during addition of lithium and in ensuring homogeneous billet composition. A new technique of Li addition has been adapted, which gives maximum recovery of Li in the billet. Using this technique, aluminium-lithium alloys of two different grades for aerospace application were cast. Billets were hot forged and rolled to the thickness range of 3-4 mm and heat-treated for different temper conditions. Mechanical properties were evaluated in T6 (solution treated and artificial aged), T8 (solution treated, cold worked and artificial aged) and T4 (solution treated and natural aged) temper conditions. Both alloys exhibit a strong natural aging response. Reversion for short periods at 180 deg. C results in decrease of strength. With artificial reaging strength reaches above the T4 temper condition level. Characterization was carried out using optical microscope (OM) and scanning electron microscope (SEM). Experimental investigation shows that addition of lithium at high melt temperature gives lower recovery of Li, and use of impure aluminium adversely affects the mechanical properties of the alloy in all temper conditions

  3. Influence of ecologically friendly cores on surface quality of castings based on magnesium alloys

    Directory of Open Access Journals (Sweden)

    P. Lichý

    2014-07-01

    Full Text Available Constructional materials as Al - alloys can be replaced by other materials with high strength to low mass density ratio, e.g. Mg-alloys. In order to pre-casting of holes and cavities cores based on pure inorganic salt can be applied due to easy cleaning of even geometrically complex pre-cast holes. This technology is applied mainly for gravity and low-pressure casting technology. This contribution is aimed at studying of mutual interaction of the Mg-alloy and the salt core. Experiments were focused on surface quality; macro- and microstructure of testing casting samples determination. Metallographic analysis and scanning electron microscope (SEM with X-ray energy-dispersion superficial and spot microanalysis (EDAX were employed.

  4. Industrial based volume manufacturing of lightweight aluminium alloy panel components with high-strength and complex-shape for car body and chassis structures

    Science.gov (United States)

    Anyasodor, Gerald; Koroschetz, Christian

    2017-09-01

    To achieve the high volume manufacture of lightweight passenger cars at economic cost as required in the automotive industry, low density materials and new process route will be needed. While high strength aluminium alloy grades: AA7075 and AA6082 may provide the alternative material solution, hot stamping process used for high-strength and ultrahigh strength steels such as boron steel 22mnb5 can enable the volume manufacture of panel components with high-strength and complex-shape for car body and chassis structures. These aluminium alloy grades can be used to manufacture panel components with possible yield strengths ≥ 500 MPa. Due to the differences in material behaviors, hot stamping process of 22mnb5 cannot be directly applied to high strength aluminium alloy grades. Despite recorded successes in laboratories, researches and niche hot forming processes of high strength aluminium alloy grades, not much have been achieved for adequate and efficient volume manufacturing system applicable in the automotive industry. Due to lack of such system and based on expert knowledge in hot stamping production-line, AP&T presents in this paper a hot stamping processing route for high strength aluminium alloys been suitable for production-line development and volume manufacturing.

  5. Solutionizing temperature and abrasive wear behaviour of cast Al-Si-Mg alloys

    International Nuclear Information System (INIS)

    Sharma, Rajesh; Anesh; Dwivedi, D.K.

    2007-01-01

    In the present paper, the influence of solutionizing temperature during artificial age hardening treatment (T 6 ) of cast Al-(8, 12, 16%)Si-0.3%Mg on abrasive wear behaviour has been reported. Alloys were prepared by controlled melting and casting. Cast alloys were given artificial age hardening treatment having a sequence of solutionizing, quenching and artificial aging. All the alloys were solutionized at 450 deg. C, 480 deg. C, 510 deg. C, and 550 deg. C for 8 h followed by water quenching (30 deg. C) and aging hardening at 170 deg. C for 12 h. Abrasive wear tests were conducted against 320 grade SiC polishing papers at 5 N and 10 N normal loads. It was observed that the silicon content and solution temperature affected the wear resistance significantly. Increase in solution temperature improved the wear resistance. Hypereutectic alloy showed better wear resistance than the eutectic and hypoeutectic alloys under identical conditions. Optical microstructure study of alloys revealed that the increase in solutionizing temperature improved distribution of silicon grains. Scanning electron microscopy (SEM) of wear surface was carried out to analyze the wear mechanism

  6. Evidence of zirconium nano-agglomeration in as-cast dilute U–Zr alloys

    International Nuclear Information System (INIS)

    Mukherjee, S.; Kaity, S.; Saify, M.T.; Jha, S.K.; Pujari, P.K.

    2014-01-01

    Microstructure evaluation of as-cast and annealed U–Zr (Zr = 2, 6 and 10 wt.%) alloys has been carried out for the first time using positrons as a probe. The chemical signature in the matter–antimatter annihilation gamma and the positron lifetime data suggests that majority of positrons are annihilating from Zr sites in the as-cast alloys. The results have been interpreted as due to the presence of Zr nano-agglomerates in the as-cast alloys which have a higher positron affinity as compared to the rest of the U matrix. A minimum agglomerate size of ∼2 nm diameter has been calculated from the difference in positron affinity between the agglomerates and the matrix. Upon annealing, the Zr signature in the annihilation gamma photons vanishes suggesting that the Zr agglomerates diffuse out of U matrix and form micron-sized precipitates. This has been confirmed by scanning electron microscopy which shows a 3 times increase in the surface density of the precipitates in the annealed alloys as compared to the as-cast ones. Shorter positron diffusion length (measured using slow positron beam) as compared to precipitate separation has been invoked to explain the observed data

  7. Predicting tensile strength of friction stir welded AA6061 aluminium alloy joints by a mathematical model

    International Nuclear Information System (INIS)

    Elangovan, K.; Balasubramanian, V.; Babu, S.

    2009-01-01

    AA6061 aluminium alloy (Al-Mg-Si alloy) has gathered wide acceptance in the fabrication of light weight structures requiring a high strength-to weight ratio and good corrosion resistance. Compared to the fusion welding processes that are routinely used for joining structural aluminium alloys, friction stir welding (FSW) process is an emerging solid state joining process in which the material that is being welded does not melt and recast. This process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The welding parameters such as tool rotational speed, welding speed, axial force etc., and tool pin profile play a major role in deciding the joint strength. An attempt has been made to develop a mathematical model to predict tensile strength of the friction stir welded AA6061 aluminium alloy by incorporating FSW process parameters. Four factors, five levels central composite design has been used to minimize number of experimental conditions. Response surface method (RSM) has been used to develop the model. Statistical tools such as analysis of variance (ANOVA), student's t-test, correlation co-efficient etc. have been used to validate the developed model. The developed mathematical model can be effectively used to predict the tensile strength of FSW joints at 95% confidence level

  8. Age hardening in die-cast Mg–Al–RE alloys due to minor Mn additions

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, S.M., E-mail: suming.zhu@rmit.edu.au [School Engineering, RMIT University, Carlton, Victoria 3053 (Australia); Department of Materials Science and Engineering, Monash University, Victoria 3800 (Australia); Abbott, T.B. [School Engineering, RMIT University, Carlton, Victoria 3053 (Australia); Department of Materials Science and Engineering, Monash University, Victoria 3800 (Australia); Magontec Limited, Sydney, New South Wales 2000 (Australia); Gibson, M.A. [School Engineering, RMIT University, Carlton, Victoria 3053 (Australia); Department of Materials Science and Engineering, Monash University, Victoria 3800 (Australia); CSIRO Manufacturing Flagship, Clayton, Victoria 3168 (Australia); Nie, J.F. [Department of Materials Science and Engineering, Monash University, Victoria 3800 (Australia); Easton, M.A. [School Engineering, RMIT University, Carlton, Victoria 3053 (Australia)

    2016-02-22

    Die-cast Mg–Al–rare earth (RE) alloys are normally used in the as-cast condition without the application of heat treatment because it is a common perception that heat treatment will not provide benefit to these alloys. This paper reports, for the first time, that enhanced age hardenability can be achieved in die-cast Mg–Al–RE alloys with minor Mn additions. For example, the yield strength of Mg–4 wt%Al–3 wt%La alloy with 0.32 wt% Mn is increased by ∼34 MPa (∼26%) after ageing at 200 °C for 32 h (T5). The enhanced age hardenability is associated with the precipitation of nanoscale Al–Mn particles during ageing.

  9. Influences of hydrostatic pressure during casting and Pd content on as-cast phase in Zr-Al-Ni-Cu-Pd bulk alloys

    International Nuclear Information System (INIS)

    Kato, Hidemi; Inoue, Akihisa; Saida, Junji

    2004-01-01

    The influences of sample diameter (D), Pd content (x), and hydrostatic pressure (P) in a chamber during casting on the structure of as cast Zr 65 Al 7.5 Ni 10 Cu 17.5-x Pd x (x=10,17.5 at.%) bulk alloys were investigated. Zr 65 Al 7.5 Ni 10 Cu 7.5 Pd 10 and Zr 65 Al 7.5 Ni 10 Pd 17.5 alloys (D=3 mm) cast in a vacuum chamber (P∼4.0x10 -3 Pa) were mainly of the tetragonal-Zr 2 Ni equilibrium phase and nanosize icosahedral primary phase, respectively, while the same alloys cast in inert argon gas at atmospheric pressure (P∼0.1 MPa) were of the single glassy phase. Due to the higher cooling rate obtained by decreasing the sample diameter (D=2 mm) even in the vacuum chamber, the Zr 65 Al 7.5 Ni 10 Pd 17.5 alloy was still of the icosahedral phase, while the Zr 65 Al 7.5 Ni 10 Cu 7.5 Pd 10 alloy froze into a single glassy phase. These results indicate that the temperature- and time- transformation curves for the icosahedral and subsequent equilibrium phase formations in the alloy system shifts to a shorter time side with decreasing P, and the pressure sensitivity of the icosahedral phase formation increases with x

  10. Determination of ultratrace amounts of uranium and thorium in aluminium and aluminium alloys by electrothermal vaporization/ICP-MS

    International Nuclear Information System (INIS)

    Nakamura, Yasushi; Kobayashi, Yoshio; Kakurai, Yousuke

    1993-01-01

    A method has been developed for determining the 0.01 ng g -1 level of uranium and thorium in aluminium and aluminium alloys by electrothermal vaporization (ETV)/ICP-MS. This method was found to be significantly interfered with any matrices or other elements contained. An ion-exchange technique was therefore applied to separate uranium and thorium from aluminium and other elements. It was known that uranium are adsorbed on an anion-exchange resin and thorium are adsorbed on cation-exchange resin. However, aluminium and copper were eluted with 6 M hydrochloric acid. Dissolve the sample with hydrochloric acid containing copper which was added for analysis of pure aluminium, and oxidize with hydrogen peroxide. Concentration of hydrochloric acid in the solution was adjusted to 6 M, and then passed the solution through the mixed ion-exchange resin column. After the uranium and thorium were eluted with 1 M hydrofluoric acid-0.1 M hydrochloric acid, the solution was evaporated to dryness. It was then dissolved with 1 M hydrochloric acid. Uranium and thorium were analyzed by ETV/ICP-MS using tungsten and molybdenum boats, respectively, since the tungsten boat contained high-level thorium and the molybdenum boat contained uranium. The determination limit of uranium and thorium were 0.003 and 0.005 ng g -1 , respectively. (author)

  11. Decomposition of the γ phase in as-cast and quenched U–Zr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Irukuvarghula, S., E-mail: sandeep.irukuvarghula@manchester.ac.uk [Department of Nuclear Engineering, Texas A& M University, College Station (United States); School of Materials, University of Manchester (United Kingdom); Ahn, Sangjoon [Department of Nuclear Engineering, Texas A& M University, College Station (United States); Department of Mechanical and Nuclear Engineering, UNIST (Korea, Republic of); McDeavitt, S.M. [Department of Nuclear Engineering, Texas A& M University, College Station (United States)

    2016-05-15

    An investigation of the decomposition of the high temperature γ phase in as-cast and quenched U–Zr alloys was conducted. Differential scanning calorimetry data clearly showed δ⇌γ transformations in alloys with <10 wt% Zr while XRD data did not contain any peaks which uniquely identify it's presence. Since δ phase forms via ω transformation, a comparison of the theoretical diffraction patterns for ω and δ revealed that the intensities of the peaks which uniquely identify the existence of δ when α-U is present, were either very weak, or were zero in ω, suggesting that the ambiguity can be explained if the phase present in these alloys is ω as opposed to δ. Our data are consistent with the presence of δ and ω in as-cast and quenched U–50Zr alloy, respectively, and (α + ω) in rest of the as-cast and quenched alloys. Based on the experimental data, the transformation sequence from γ phase in U–Zr alloys is proposed.

  12. Study of localized corrosion in AA2024 aluminium alloy using electron tomography

    International Nuclear Information System (INIS)

    Zhou, X.; Luo, C.; Hashimoto, T.; Hughes, A.E.; Thompson, G.E.

    2012-01-01

    Highlights: ► SEM tomography of localized corrosion has been achieved. ► Nanotomography provides evidence that links microstructure and corrosion propagation path. ► IGC stemmed from localized corrosion associated with buried clusters of intermetallics. ► IGC started beneath the alloy surface and may emerge on the alloy surface. - Abstract: SEM based tomography of localized corrosion has been achieved using selective detection of backscattered electrons. The high resolution tomography provides direct evidence that links the surface appearance of corroded alloy, the alloy microstructure and the corrosion propagation path. Stable localized corrosion of AA2024-T351 aluminium alloy was initiated at locations where large clusters of S phase particles were buried beneath the surface. Propagating away from the initiation sites, corrosion developed preferentially along the grain boundary network. The grain boundary attack started beneath the alloy surface, proceeded along preferred grain boundaries and may emerge at the alloy surface.

  13. IEC 61267: Feasibility of type 1100 aluminium and a copper/aluminium combination for RQA beam qualities.

    Science.gov (United States)

    Leong, David L; Rainford, Louise; Zhao, Wei; Brennan, Patrick C

    2016-01-01

    In the course of performance acceptance testing, benchmarking or quality control of X-ray imaging systems, it is sometimes necessary to harden the X-ray beam spectrum. IEC 61267 specifies materials and methods to accomplish beam hardening and, unfortunately, requires the use of 99.9% pure aluminium (Alloy 1190) for the RQA beam quality, which is expensive and difficult to obtain. Less expensive and more readily available filters, such as Alloy 1100 (99.0% pure) aluminium and copper/aluminium combinations, have been used clinically to produce RQA series without rigorous scientific investigation to support their use. In this paper, simulation and experimental methods are developed to determine the differences in beam quality using Alloy 1190 and Alloy 1100. Additional simulation investigated copper/aluminium combinations to produce RQA5 and outputs from this simulation are verified with laboratory tests using different filter samples. The results of the study demonstrate that although Alloy 1100 produces a harder beam spectrum compared to Alloy 1190, it is a reasonable substitute. A combination filter of 0.5 mm copper and 2 mm aluminium produced a spectrum closer to that of Alloy 1190 than Alloy 1100 with the added benefits of lower exposures and lower batch variability. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  14. Influence of Age Hardening Parameters on the Microstructure and Properties of the AlSi7Mg Sand Cast Alloy / Wpływ Parametrów Utwardzania Wydzieleniowego Na Strukturę I W Łaściwości Stopu Alsi7mg

    Directory of Open Access Journals (Sweden)

    Poloczek Ł.

    2015-12-01

    Full Text Available Aluminium alloys are characterized by a low density, acceptable mechanical properties and good technological properties. This unique connection of features made aluminium alloys perfect structural material for the transportation industry. Also, due to their good electrical conductivity they also found application in energy production industry. High mechanical properties and electrical conductivity of the Al-Si alloys with Mg addition may be achieved by heat treatment. However, the highest mechanical properties are achieved in the early stages of age hardening - due to precipitation of coherent phases, while high electrical conductivity may be achieved only by prolonged aging, during precipitation of semi-coherent or fully noncoherent, coarse phases. Carefully heat treated AlSi7Mg alloy may exhibit both fairly high electrical conductivity and slightly increased mechanical properties. The following article present results of the research of influence of heat treatment on the properties and microstructure of sand cast AlSi7Mg alloy. Microstructure observations were performed using light microscopy, scanning electron and scanning-transmission electron microscopy. Hardness and electrical conductivity of the AlSi7Mg alloy were investigated both in as-cast condition and after heat treatment. Maximum hardness of the alloy is achieved after solutioning at 540°C for 8h, followed by 72h of aging at 150°C, while maximal electrical conductivity after solutioning at 540°C for 48h, followed by 96h of aging at 180°C. Increase of the electrical conductivity is attributed to increasing distance between Si crystals and precipitation of semi coherent phases.

  15. Corrosion behavior of die-cast Mg-4Al-2Sn-xCa alloy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Chul; Kim, Byeong Ho; Kim, Kyung Ro [Defence Agency for Technology and Quality, Jinju (Korea, Republic of); Cho, Dae Hyun; Park, Ik Min [Pusan National University, Busan (Korea, Republic of)

    2016-05-15

    In the present work, the effect of Ca additions on microstructure and corrosion characteristics of high pressure die-cast Mg-4Al-2Sn alloy has been investigated. Mg-4Al-2Sn-xCa (x= 0, 0.3 and 0.7wt.%) alloy was prepared by using a high pressure die-casting method. Results indicated that the microstructure of Mg-4Al-2Sn alloy consisted of α-Mg, Mg{sub 17}Al{sub 12} and Mg{sub 2}Sn phase. With increase of Ca additions, CaMgSn phase was newly formed and grain size was sharply decreased. From the test results, the corrosion resistance of die-cast Mg-4Al-2Sn alloy was significantly improved by Ca addition. It is considered that stabilization of Mg(OH){sub 2} layer and refinements of microstructure with increase of Ca additions.

  16. Cap casting and enveloped casting techniques for Zr55Cu30Ni5Al10 glassy alloy rod with 32 mm in diameter

    International Nuclear Information System (INIS)

    Yokoyama, Yoshihiko; Inoue, Akihisa; Mund, Enrico; Schultz, Ludwig

    2009-01-01

    In order to produce centimetre-sized bulk glassy alloys (BMGs), various cast techniques have been developed. We succeed in the development of cap casting and enveloped casting technique to accomplish the fabrication of centimetre sized BMGs. The former has an advantage to increase cooling rate and the later has an advantage to joint another materials instead of welding. This paper presents the production of a glassy Zr 55 Cu 30 Ni 5 Al 10 alloy rod with a diameter of 32 mm and joined glassy Zr 55 Cu 30 Ni 5 Al 10 alloy parts with another materials for industrial applications.

  17. Microstructure control during twin roll casting of an AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Huang, Y; Bayandorian, I; Fan, Z

    2012-01-01

    The existing twin roll casting technique for magnesium alloys suffers heterogeneity in both microstructure and chemistry and downstream processing is required to improve the strip quality, resulting in cost rise. In the present work, twin roll casting was carried out using an AZ31 magnesium alloy, with the application of intensive shearing melt conditioning prior to casting. The effect of process parameters such as pouring temperature and casting speed on microstructure control during casting and subsequent downstream processing was studied. Experimental results showed that the melt conditioning treatment allowed the production of AZ31 strips with uniform and refined microstructure free of centreline segregations. It was also shown that an optimized combination of pouring temperature and casting speed, in conjunction with a strip thickness control operation, resulted in uniformly distributed stored energies due to enhanced plastic deformation, which promoted recrystallization during casting and subsequent heat treatment. Strips prepared by twin roll casting and homogenization developed similar microstructural features to those prepared by twin roll casting followed by lengthy downstream processing by homogenization, hot rolling and annealing and displayed a weaker basal texture, exhibiting a potentially better formability.

  18. Effect of matrix constitution on interface of aluminium/δ-Al2O3 and strength of metal matrix composites

    International Nuclear Information System (INIS)

    Johansson, P.; Hutchinson, B.; Savage, S.J.

    1992-06-01

    Aluminium based fiber composites have been made by squeeze casting. The 'saffil' pre-forms used in the work employed aluminium oxide binder or silica binder. Two families of alloys have been used based either on high purity aluminium or 3% copper containing alloys. These were both alloyed with a range of magnesium contents from 0.1% to 5% with the aim of varying the degree of reaction and bonding between the matrix and the reinforcing fibres. Studies of macro- and micro structures have been performed as well as non-destructive testing by X-ray radiography. Tensile testing, three point bend tests on notched bars and wetting studies in a wetting balance are also included in the investigation. The structure of the squeeze cast products shows different zones. The extension and appearance of the zones are dependent on the alloy constitution. In general the surface of the casting have small equiaxed grains. This surface zone is replaced by a columnar grain zone which, in the center, transforms to an equiaxed crystal zone. Defects such as pores, fibre-free zones, and 'pockets' in the interface matrix/fiber have been found. Of these defects, only pores can be detected by X-ray radiography. Evaluation of tensile testing shows a relatively large scatter of results. The results reveal a dominant role of matrix composition on strength level. For the 20 vol% reinforced metals, with performs with silica binder, the maximum measured elongation was 3.5%. With alumina binder approximately half of the above mentioned ductility is obtained. The use of grain-refiner, Al-5Ti-B, decreases the ductility of the composite below 2%, independent of the type of binder. From 3-point bend tests fracture energies are estimated to vary between 0.3 and 0.6 Joule. The toughness is low. Studies of the wetting between pieces of ceramic pre-forms and molten Al-2Mg show that generally the wetting is poor. At the same time, the wettability of d-alumina with silicon oxide as binding medium was slightly

  19. Effects of Process Conditions on the Mechanical Behavior of Aluminium Wrought Alloy EN AW-2219 (AlCu6Mn Additively Manufactured by Laser Beam Melting in Powder Bed

    Directory of Open Access Journals (Sweden)

    Michael Cornelius Hermann Karg

    2017-01-01

    Full Text Available Additive manufacturing is especially suitable for complex-shaped 3D parts with integrated and optimized functionality realized by filigree geometries. Such designs benefit from low safety factors in mechanical layout. This demands ductile materials that reduce stress peaks by predictable plastic deformation instead of failure. Al–Cu wrought alloys are established materials meeting this requirement. Additionally, they provide high specific strengths. As the designation “Wrought Alloys” implies, they are intended for manufacturing by hot or cold working. When cast or welded, they are prone to solidification cracks. Al–Si fillers can alleviate this, but impair ductility. Being closely related to welding, Laser Beam Melting in Powder Bed (LBM of Al–Cu wrought alloys like EN AW-2219 can be considered challenging. In LBM of aluminium alloys, only easily-weldable Al–Si casting alloys have succeeded commercially today. This article discusses the influences of boundary conditions during LBM of EN AW-2219 on sample porosity and tensile test results, supported by metallographic microsections and fractography. Load direction was varied relative to LBM build-up direction. T6 heat treatment was applied to half of the samples. Pronounced anisotropy was observed. Remarkably, elongation at break of T6 specimens loaded along the build-up direction exceeded the values from literature for conventionally manufactured EN AW-2219 by a factor of two.

  20. Microcapillary Features in Silicon Alloyed High-Strength Cast Iron

    Directory of Open Access Journals (Sweden)

    R.K. Hasanli

    2017-04-01

    Full Text Available Present study explores features of silicon micro capillary in alloyed high-strength cast iron with nodular graphite (ductile iron produced in metal molds. It identified the nature and mechanism of micro liquation of silicon in a ductile iron alloyed with Nickel and copper, and demonstrated significant change of structural-quality characteristics. It was concluded that the matrix of alloyed ductile iron has a heterogeneous structure with cross reinforcement and high-silicon excrement areas.

  1. The influence of alloying elements in aluminium on the grain refinement with ALTI5B1

    Directory of Open Access Journals (Sweden)

    Naglič I.

    2009-07-01

    Full Text Available This work deals with the influence of alloying elements in aluminium on the grain refinement with various additions of AlTi5B1. Grain-refinement tests were made at a cooling rate of 15 °C/s. The results revealed that in both aluminium and an Al-Fe alloy the grain size decreases with increasing additions of the AlTi5B1 grain refiner. We found that for the same boron content the grain size was smaller in the case of the Al-Fe alloy. The difference in the grain sizes for the same content of boron was approximately 15 μm; this is considerably smaller than the difference between the grain sizes in samples with the same difference of growth-restricting factor made at slower cooling rates.

  2. Development in corrosion resistance by microstructural refinement in Zr-16 SS 304 alloy using suction casting technique

    Energy Technology Data Exchange (ETDEWEB)

    Das, N., E-mail: nirupamd@barc.gov.in; Sengupta, P.; Abraham, G.; Arya, A.; Kain, V.; Dey, G.K.

    2016-08-15

    Highlights: • Grain refinement was made in Zr–16 wt.% SS alloy while prepared by suction casting process. • Distribution of Laves phase, e.g., Zr{sub 2}(Fe, Cr) was raised in suction cast (SC) Zr–16 wt.% SS. • Corrosion resistance was improved in SC alloy compared to that of arc-melt-cast alloy. • Grain refinement in SC alloy assisted for an increase in its corrosion resistance. - Abstract: Zirconium (Zr)-stainless steel (SS) hybrid alloys are being considered as baseline alloys for developing metallic-waste-form (MWF) with the motivation of disposing of Zr and SS base nuclear metallic wastes. Zr–16 wt.% SS, a MWF alloy optimized from previous studies, exhibit significant grain refinement and changes in phase assemblages (soft phase: Zr{sub 2}(Fe, Cr)/α-Zr vs. hard phase: Zr{sub 3}(Fe, Ni)) when prepared by suction casting (SC) technique in comparison to arc-cast-melt (AMC) route. Variation in Cr-distribution among different phases are found to be low in suction cast alloy, which along with grain refinement restricted Cr-depletion at the Zr{sub 2}(Fe, Cr)/Zr interfaces, prone to localized attack. Hence, SC alloy, compared to AMC alloy, showed lower current density, higher potential at the breakdown of passivity and higher corrosion potential during polarization experiments (carried out under possible geological repository environments, viz., pH 8, 5 and 1) indicating its superior corrosion resistance.

  3. Evaluation of surface chemical segregation of semi-solid cast aluminium alloy A356

    CSIR Research Space (South Africa)

    Govender, G

    2008-01-01

    Full Text Available In order for SSM forming to produce homogeneous properties in a casting, it is important that there is a uniform distribution of the primary grains. Besides producing a sound casting free of porosity, the amount of liquid segregation must...

  4. Microstructure, process, and tensile property relationships in an investment cast near-γTiAl alloy

    International Nuclear Information System (INIS)

    Jones, P.E.; Porter, W.J. III.; Keller, M.M.; Eylon, D.

    1992-01-01

    The brittle nature of near-γ TiAl alloys makes fabrication difficult. This paper reports on developing near-net shape technologies, such as investment casting, for these alloys which is one of the essential approached to their commercial introduction. The near-γ TiAl alloy Ti-48Al-2Nb-2Cr (a%) is investment cast with two cooling rates. The effect of casting cooling rate on the fill and surface integrity was studied for complex shape thin walled components. Block and bar castings are hot isostatically pressed (HIP'd) and heat treated to produce duplex (lamellar + equiaxed) microstructures for mechanical property evaluation. The relationships between the casting conditions, microstructures, and tensile properties are studied. The strength and elongation below the ductile to brittle transition temperature are dependent on the casting cooling rate and section size. The tensile properties improved with faster cooling during the casting process as a result of microstructural refinement. Faster cooled castings are more fully transformed to a duplex structure during post-casting heat treatments. Above the ductile to brittle transition temperature the effect of casting cooling rate on tensile properties is less pronounced

  5. Atmospheric corrosion of metals in tropics and subtropic. 2. Corrosion resistance of different metals and alloys

    International Nuclear Information System (INIS)

    Strekalov, P.V.

    1993-01-01

    Data from 169 sources concerning corrosion of different metals, alloys and means of protection, obtained for a 30-year period (up to 1987) in different continent including Europe (Bulgaria, Spain, Italy, France, USSR); America (USA, Panama, Cuba, Venezuela, Brasil, Argentine); Africa (Nigeria, SAR); Australia, New Zeland, Papua-Newguinea, Philippines, are systemized. Actual results of full-scal atmospheric testings of iron, zinc, copper, cadmium, aluminium, tin, lead, carbon, low-alloys. Stainless steels, cast irons, halvanic coatings, copper, aluminium, nickel, titanium, magnesium alloys are presented. Data on the fracture rate can be used for creating the data base in banks on atmospheric resistance of metal materials

  6. Friction and wear characteristics of Al-Cu/C composites synthesized using partial liquid phase casting process

    International Nuclear Information System (INIS)

    Ng, W.B.; Gupta, M.; Lim, S.C.

    1997-01-01

    During the sliding of aluminium alloys dispersed with graphite particulates, a layer of graphite is usually present at the sliding interface. This tribo-layer significantly reduces the amount of direct metal-to-metal contact, giving rise to low friction and a low rate of wear, making these composites useful candidate materials for anti-friction applications. Such self-lubricating composites are commonly fabricated via the squeeze casting, slurry casting or powder metallurgy route. These processes are expensive while the less-expensive conventional casting route is limited by the agglomeration of graphite particles in the composites, giving rise to poor mechanical properties. In this work, graphite particulate-reinforced Al-4.5 wt.% Cu composites with two effective graphite contents (Al-4.5 Cu/4.2 wt.% C and Al-4.5 Cu/6.8 wt.% C) were synthesized through an innovative partial liquid phase casting (rheocasting) technique, which is a modification of the conventional casting process. Unlubricated (without the use of conventional liquid lubrication) friction and wear performance of these composites as well as the un-reinforced aluminium alloy was determined using a pin-on-disk tester. The results revealed that the graphite-reinforced composites have a higher wear rate than the un-reinforced matrix alloy while their frictional characteristics are very similar within the range of testing conditions. Combining these with the information gathered from worn-surface examinations and wear-debris analysis, it is suggested that there exists a certain threshold for the amount and size of graphite particulates in these composites to enable them to have improved tribological properties. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  7. Challenges in LCA modelling of multiple loops for aluminium cans

    DEFF Research Database (Denmark)

    Niero, Monia; Olsen, Stig Irving

    considered the case of closed-loop recycling for aluminium cans, where body and lid are different alloys, and discussed the abovementioned challenge. The Life Cycle Inventory (LCI) modelling of aluminium processes is traditionally based on a pure aluminium flow, therefore neglecting the presence of alloying...... elements. We included the effect of alloying elements on the LCA modelling of aluminium can recycling. First, we performed a mass balance of the main alloying elements (Mn, Fe, Si, Cu) in aluminium can recycling at increasing levels of recycling rate. The analysis distinguished between different aluminium...... packaging scrap sources (i.e. used beverage can and mixed aluminium packaging) to understand the limiting factors for multiple loop aluminium can recycling. Secondly, we performed a comparative LCA of aluminium can production and recycling in multiple loops considering the two aluminium packaging scrap...

  8. Joining of Aluminium Alloy and Steel by Laser Assisted Reactive Wetting

    Science.gov (United States)

    Liedl, Gerhard; Vázquez, Rodrigo Gómez; Murzin, Serguei P.

    2018-03-01

    Compounds of dissimilar materials, like aluminium and steel offer an interesting opportunity for the automotive industry to reduce the weight of a car body. Thermal joining of aluminium and steel leads to the formation of brittle intermetallic compounds, which negatively affects the properties of the welded joint. Amongst others, growth of such intermetallic compounds depends on maximum temperature and on the time at certain temperatures. Laser welding with its narrow well seam and its fast heating and cooling cycles provides an excellent opportunity to obtain an ultrathin diffusion zone. Joining of sheet metal DC01 with aluminium alloy AW6016 has been chosen for research. The performed experimental studies showed that by a variation of the beam power and scanning speed it is possible to obtain an ultrathin diffusion zone with narrow intermetallic interlayers. With the aim of supporting further investigation of laser welding of the respective and other dissimilar pairings a multi-physical simulation model has been developed.

  9. Microstructures and mechanical properties of squeeze cast Al–5.0Cu–0.6Mn alloys with different Fe content

    International Nuclear Information System (INIS)

    Zhang, WeiWen; Lin, Bo; Zhang, DaTong; Li, YuanYuan

    2013-01-01

    Highlights: • The effect of Fe-rich phases on squeeze cast Al–Cu alloys with high Fe content. • Four kinds of Fe-rich phases may present in Al–Cu alloys. • There is great tolerance to Fe impurities in squeeze cast Al–Cu alloys. - Abstract: The microstructures and mechanical properties of gravity die cast and squeeze cast Al–5.0 wt% Cu–0.6 wt% Mn alloys with different Fe content have been studied using tensile test, optical microscope, scanning electron microscope, electron probe micro-analyzer and image analysis. The results show that four kinds of Fe-rich intermetallics may present in the final microstructures of the alloys: Chinese script α-Fe (Al 15 (FeMn) 3 (CuSi) 2 ) and Al 6 (FeMn), needle-like β-Fe(Al 7 Cu 2 Fe) and Al 3 (FeMn) when the Fe content increases from 0.1 wt% to 1.5 wt%. In the gravity die cast alloy with 0.5 wt% Fe, the Chinese script α-Fe presents as the main Fe-rich intermetallics, and a few needle-like β-Fe also exist. When the Fe content increases to 1.0 wt%, the main Fe-rich intermetallics change to needle-like Al 3 (FeMn) and Chinese-script Al 6 (FeMn). The needle-like β-Fe disappears when the Fe content is 0.5 wt% in the squeeze cast alloy with an applied pressure of 75 MPa. Furthermore, the secondary dendritic arm spacing of α(Al), the percentage of porosity and the volume fraction of the second intermetallics decrease distinctly in the squeeze cast alloy compared to the gravity die cast alloy. There is a peak value of ultimate strength and yield strength for the alloy with 0.5 wt% Fe. The elongations of the alloys decrease gradually with increasing Fe content and the elongation of the squeeze cast alloys is two times more than that of the gravity die cast alloys

  10. Characteristic of DTA curves for cast ferrous alloys

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-04-01

    Full Text Available The study presents DTA curves for selected grades of cast iron and cast steel. The thermal effects observed on derivative curves, caused by crystallisation of single phases and eutectic were discussed. The thermal effects having their origin in crystallisation of secondary carbides were determined. It has been indicated that the range of temperatures of their crystallisation can be determined from the cooling curve t = f(τ, from the solidification curve dt/dτ = f′(τ, and from the second derivative d2t/dτ2 = f″(τ. The crystallisation rate of single phases or of their mixture is indicated by the duration of thermal effect and by the slope angle of the curve responsible for a specific thermal effect before and after its maximum. A very high sensitivity of the derivative curve to temperature changes in liquid and solid alloy and to the phase (phases growth rate enables control of alloy before pouring of moulds. The control of alloy may consist in identification of phases the presence of which is indispensable in alloy microstructure and in determination of some important properties, e.g. Rp0,2, Rm, A5 and HB. In the latter case, the statistical relationships between the above mentioned characteristic parameters of DTA curves and the selected mechanical properties have been determined. The said relationships form a basis for construction of algorithms used in development of computer programs for control of individual alloys.

  11. Construction of a high-temperature viscosimeter and measurement of the viscosity of melts of the system aluminium-nickel; Aufbau eines Hochtemperaturviskosimeters und Messung der Viskositaet von Schmelzen des Systems Aluminium-Nickel

    Energy Technology Data Exchange (ETDEWEB)

    Kehr, Mirko

    2009-10-29

    The system aluminium-nickel is of importance as a model-system in materials science as well as a basic system for superalloys in technical applications. The knowledge of the thermophysical properties of the system aluminium-nickel has been limited to the areas close to the pure elements mainly related to the high melting temperatures of up to 1638 C. The viscosity, which is one of these thermophysical properties, depends on alloy composition as well as on temperature. The viscosity is of importance as an input parameter in computer simulations and for improving casting processes of metallic alloys. The viscosity of aluminium-nickel melts has been measured only once so far. However, not the whole concentration range of the aluminium-nickel system was covered by these data. In particular the viscosity values of the high melting alloys, which are of technological interest, were unknown. The measurement of the missing values was not possible due to the high melting temperatures using existing viscometers. A new oscillating cup viscometer has been constructed within this work. The viscometer has been tested measuring the viscosity values of pure metals, which are well known in literature. The test measurements have been done at temperatures up to 1800 C. A temperature of 2300 C is achievable with slight modifications. A new software for controlling the device and evaluation of the measured data has been developed. Several working equations for calculating the viscosity have been implemented. Furthermore a new approach has been used for detecting the damping of the oscillation of the pendulum containing the liquid sample. The viscosity of aluminium-nickel melts have been measured successfully. The measured values are in good agreement with the little number of known values. A good agreement with values calculated from diffusion experiments and computer simulations was observed as well. Several models for calculating the viscosity of liquid alloys have been tested and

  12. Investigation of the effects of cooling rate on the microstructure of investment cast biomedical grade Co alloys

    International Nuclear Information System (INIS)

    Kaiser, R; Browne, D J; Williamson, K

    2012-01-01

    The objective of this work is to determine the microstructural characteristics of investment cast cobalt alloy as the cross-sectional area is varied, thus changing the local effective cooling rates and solidification times. The extent of published work on the as-cast properties of cobalt alloys is minimal. The primary aim of this work is therefore to extend knowledge of the behaviour of such alloys as they solidify, which will influence the design of new products as well as the industrial optimisation of the casting process. Wedge-shaped parts were cast from a biomedical grade cobalt alloy employing the method of lost wax investment casting. Analytical techniques such as optical microscopy, image analysis and microhardness testing were used to characterise the as-cast parts. Parameters studied include variations in grain structure, nature of the columnar and equiaxed zones and the spread of porosity (both shrinkage and gas). Changes in microstructure were compared to microhardness values obtained. The solidification profile of the alloy through the prototype cast component was investigated based on measurement of the dendrite arm spacings. A discussion on the physical phenomena controlling the microstructural variations is presented.

  13. Advances in aluminium alloy products for structural applications in transportation

    International Nuclear Information System (INIS)

    Staley, J.T.; Lege, D.J.

    1993-01-01

    This paper describes the needs of the aviation and automotive markets for structural materials and presents examples of developments of aluminum alloy products to fill these needs. Designers of aircraft desire materials which will allow them to design lightweight, cost-effective structures which have the performance characteristics of durability and damage tolerance. Their needs are being met by new and emerging materials varying from Al-Li alloys for thick structure, high-strength plate and extrusions for wings, and new monolithic and aluminum-fiber laminates for fuselages. Increase in fuel economy because of lighter weight structure is the driving force for aluminum alloys in the automotive market, and cost is extremely important. Mechanical properties for automotive use also depend on the application, and corrosion resistance must be adequate. For ''hang-on'' components such as fenders and hoods, formability is typically the limiting mechanical property. Strength must be adequate to resist denting at a thickness which offers cost-effective weight savings over steel. Because formability often decreases with increasing yield strength, alloys which are highly formable in the T4 temper and which age harden during the paint bake operation were developed. Alloys such as 6009 and 6010 are now being challenged by 2008, 6111 and 6016. Body structure components must be made from materials which absorb energy and fail gracefully during a crash. Such components for an automotive space frame are being die cast from an Al-Si-Mg alloy. These ductile die castings are joined to thin 6XXX extrusions which must combine formability, strength, ductility and the ability to deform plastically on impact. Bumpers must combine strength and adequate formability; in the event that current alloys are inadequate for future needs, a new 7XXX alloy offers an improved combination of properties. (orig.)

  14. Small fatigue crack growth in aluminium alloy EN-AW 6082/T6

    Czech Academy of Sciences Publication Activity Database

    Jíša, D.; Liškutín, P.; Kruml, Tomáš; Polák, Jaroslav

    2010-01-01

    Roč. 32, č. 12 (2010), s. 1913-1920 ISSN 0142-1123 R&D Projects: GA ČR GA101/07/1500 Institutional research plan: CEZ:AV0Z20410507 Keywords : Aluminium alloys * small cracks * grack growth rate Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.799, year: 2010

  15. Microstructure, Texture, and Mechanical Behavior of As-cast Ni-Fe-W Matrix Alloy

    Science.gov (United States)

    Rao, A. Sambasiva; Manda, Premkumar; Mohan, M. K.; Nandy, T. K.; Singh, A. K.

    2018-04-01

    This article describes the tensile properties, flow, and work-hardening behavior of an experimental alloy 53Ni-29Fe-18W in as-cast condition. The microstructure of the alloy 53Ni-29Fe-18W displays single phase (fcc) in as-cast condition along with typical dendritic features. The bulk texture of the as-cast alloy reveals the triclinic sample symmetry and characteristic nature of coarse-grained materials. The alloy exhibits maximum strength ( σ YS and σ UTS) values along the transverse direction. The elongation values are maximum and minimum along the transverse and longitudinal directions, respectively. Tensile fracture surfaces of both the longitudinal and transverse samples display complete ductile fracture features. Two types of slip lines, namely, planar and intersecting, are observed in deformed specimens and the density of slip lines increases with increasing the amount of deformation. The alloy displays moderate in-plane anisotropy ( A IP) and reasonably low anisotropic index ( δ) values, respectively. The instantaneous or work-hardening rate curves portray three typical stages (I through III) along both the longitudinal and transverse directions. The alloy exhibits dislocation-controlled strain hardening during tensile testing, and slip is the predominant deformation mechanism.

  16. Study on fluidity of squeeze cast AZ91D magnesium alloy with different wall thicknesses

    Directory of Open Access Journals (Sweden)

    Chen Yun

    2014-03-01

    Full Text Available Rectangular cross-section specimens with different section thicknesses were prepared to study the influences of pouring temperature, mould temperature and squeeze velocity on the fluidity of squeeze cast AZ91D magnesium alloy by means of orthogonal test design method. The results show that pouring temperature, mould temperature and squeeze velocity can significantly affect the fluidity of magnesium alloy specimens with wall thickness no more than 4 mm, and the pouring temperature is the most influential factor on the fluidity of specimens with wall thickness of 1, 2 and 3 mm, while mould temperature is the one for specimens with wall thickness of 4 mm. Increasing pouring temperature between 700 °C and 750 °C is beneficial to the fluidity of AZ91D magnesium alloy, and increasing mould temperature significantly enhances the filling ability of thick (3 and 4 mm section castings. The fluidity of squeeze cast magnesium alloy increases with the increase of wall thickness. It is not recommended to produce magnesium alloy casting with wall thickness of smaller than 3 mm by squeeze cast process due to the poor fluidity. The software DPS was used to generate the regression model, and linear regression equations of the fluidity of squeeze cast AZ91D with different wall thicknesses are obtained using the test results.

  17. Evaluation of mechanical properties of aluminium alloy–alumina–boron carbide metal matrix composites

    International Nuclear Information System (INIS)

    Vijaya Ramnath, B.; Elanchezhian, C.; Jaivignesh, M.; Rajesh, S.; Parswajinan, C.; Siddique Ahmed Ghias, A.

    2014-01-01

    Highlights: • Fabrication of MMC with aluminium alloy–alumina–boron carbide is done. • Different proportions of reinforcements are added. • The effects of varying proportions are studied. • Investigation on mechanical properties above composites is performed. • Failure morphology analysis is done using SEM. - Abstract: This paper deals with the fabrication and mechanical investigation of aluminium alloy, alumina (Al 2 O 3 ) and boron carbide metal matrix composites. Aluminium is the matrix metal having properties like light weight, high strength and ease of machinability. Alumina which has better wear resistance, high strength, hardness and boron carbide which has excellent hardness and fracture toughness are added as reinforcements. Here, the fabrication is done by stir casting which involves mixing the required quantities of additives into stirred molten aluminium. After solidification, the samples are prepared and tested to find the various mechanical properties like tensile, flexural, impact and hardness. The internal structure of the composite is observed using Scanning Electron Microscope (SEM)

  18. Automatic TV X-ray unit for testing aluminium castings

    International Nuclear Information System (INIS)

    Morgunov, V.I.; Firstov, V.G.; Kisin, V.I.; Savostenok, M.I.

    1989-01-01

    The automatic TV X-ray unit for testing of aluminum alloy castings in a flow is described. The unit includes RAP-150/300 X-ray apparatus and PI-60TK TV X-ray device. The biological protection chamber and the common control board are the main functional units. The tests of the unit have shown that as regards its characteristics it is not worse than its foreign-made analogues, for example, devices of the DP-35 and DP-38 type of the 'Seifert' company

  19. Investigation of aluminium-rich alloy system of aluminium-strontium-silicium

    International Nuclear Information System (INIS)

    Ganiev, I.N.; Vakhobov, A.B.; Dzhuraev, T.D.; Alidzhanov, F.N.

    1976-01-01

    An area of the solid solution based on aluminium was studied, and the surface was plotted of the liquidus adjoining the apex of the aluminium corner of the strontium-aluminium-silicon system. The investigation was carried out by microstructure and differential thermal analyses and by the measurement of the microhardness of the component phases. A combined solubility of silicon and strontium in aluminium was studied along three radial sections at Sr-to-Si ratios of 1/2, 1/1 and 2/1. The relationships of ''composition vs. Microhardness'', obtained in these sections, made it possible to define the boundaries of the phase regions in the aluminium corner of the strontium-aluminium-silicon system at 500 deg C. The greatest solubility is that along the Al-SrAl 2 Si 2 section at a Sr/Si ratio of 1/2. A further increase in the content of strontium brings about a drop in the solubility of silicon in solid aluminium. The projection of the liquidus surface of the strontium-aluminium-silicon system, rich in aluminium, includes four surfaces of primary crystallization: α-Al, SrAl 4 , SrAl 2 Si 2 and Si. The system comprises a section of Al-SrAl 2 Si 2 representing a quasibinary system of an eutectic type. The eutectic reaction takes place at a temperature of 640 deg C. The quasibinary Al-SrAl 2 Si 2 section divides the aluminium corner of the Sr-Al-Si system into two independent systems Al-SrAl 4 -SrAl 2 Si 2 and Al-Si-SrAl 2 Si 2 of an eutectic type

  20. A Brief Research Review for Improvement Methods the Wettability between Ceramic Reinforcement Particulate and Aluminium Matrix Composites

    Science.gov (United States)

    Razzaq, Alaa Mohammed; Majid, Dayang Laila Abang Abdul; Ishak, M. R.; B, Uday M.

    2017-05-01

    The development of new methods for addition fine ceramic powders to Al aluminium alloy melts, which would lead to more uniform distribution and effective incorporation of the reinforcement particles into the aluminium matrix alloy. Recently the materials engineering research has moved to composite materials from monolithic, adapting to the global need for lightweight, low cost, quality, and high performance advanced materials. Among the different methods, stir casting is one of the simplest ways of making aluminium matrix composites. However, it suffers from poor distribution and combination of the reinforcement ceramic particles in the metal matrix. These problems become significantly effect to reduce reinforcement size, more agglomeration and tendency with less wettability for the ceramic particles in the melt process. Many researchers have carried out different studies on the wettability between the metal matrix and dispersion phase, which includes added wettability agents, fluxes, preheating the reinforcement particles, coating the reinforcement particles, and use composting techniques. The enhancement of wettability of ceramic particles by the molten matrix alloy and the reinforcement particles distribution improvement in the solidified matrix is the main objective for many studies that will be discussed in this paper.

  1. In-situ electron microscopy studies on the tensile deformation mechanisms in aluminium 5083 alloy

    CSIR Research Space (South Africa)

    Motsi, G

    2014-10-01

    Full Text Available In this study tensile deformation mechanisms of aluminium alloy 5083 were investigated under observations made from SEM equipped with a tensile stage. Observations during tensile testing revealed a sequence of surface deformation events...

  2. Lost foam casting of aluminum alloy-SiCp composite material

    International Nuclear Information System (INIS)

    Baalasuburamaniam, R.; Cvetnic, C.; Ravindran, C.

    2002-01-01

    Metal matrix composites are a viable alternative to cast irons in automotive components with possible increase in strength-to-weight ratio. Lost foam casting of aluminum alloy matrix composite containing 20 volume percent SiC was carried out at 690, 730, and 770 o C with a view to determining the effects of cooling rate on microstructure, particle distribution, microporosity and mechanical properties. These results were compared with those for the matrix material cast under similar conditions. The results and the correlations are of particular interest as there is no published literature on lost foam casting of composite materials. (author)

  3. Microstructural features of friction stir welded dissimilar Aluminium alloys AA2219-AA7475

    Science.gov (United States)

    Zaman Khan, Noor; Ubaid, Mohammed; Siddiquee, Arshad Noor; Khan, Zahid A.; Al-Ahmari, Abdulrahman; Chen, Xizhang; Haider Abidi, Mustufa

    2018-05-01

    High strength, good corrosion resistance, light weight make aluminium alloys a material of choice in many industrial sectors like aerospace, marine etc. Problems associated with welding of these alloys by fusion welding processes restricted their use in various industries. Friction stir welding (FSW), a clean solid-state joining process, easily overcomes various difficulties encountered during conventional fusion welding processes. In the present work, the effect of rotational speed (710 rpm, 900 rpm and 1120 rpm) on micro-hardness distribution and microstructure of FSWed dissimilar aluminium alloy joints were analyzed. Plates of AA7475-T761 and AA2219-O having thickness of 2.5 mm were welded by fixing AA7475 on retreating side (RS) and AA2219 on advancing side (AS). Welded joints were characterized by Vickers micro-hardness testing, scanning electron microscopy (SEM) and optical microscopy (OM). Results revealed that rotational speed significantly affects the micro-hardness due to increase in grain size, coarsening and dissolution of strengthening precipitates and re-precipitation. Higher micro-hardness values were observed in stir zone due to grain refinement and re-precipitation. Minimum micro-hardness value was observed at the TMAZ/HAZ of advancing side due to thermal softening.

  4. Researches focused on structure of aluminium alloys processed by rapid solidification, used in automotive industry

    International Nuclear Information System (INIS)

    Sfat, C.; Vasile, T.; Vasilescu, M.

    2001-01-01

    The paper present some new results focused on an aluminium high temperature alloy, obtained by 'melt spinning method'. alloy composition, processing conditions, resulted structures and the influence between them are presented. There are studied the two zone structures of the alloy and the relation between processing conditions and the characteristics of the zones, with implications on mechanical behavior in real conditions. The final conclusion show that is possible to control the structure in order to improve material behavior. (author)

  5. Deviatoric Response of AN Armour-Grade Aluminium Alloy

    Science.gov (United States)

    Appleby-Thomas, G. J.; Hazell, P. J.; Millett, J.; Bourne, N. K.

    2009-12-01

    Aluminium alloys such as 5083 H32 are established light-weight armour materials. As such, the shock response of these materials is of great importance. The shear strength of a material under shock loading provides an insight into its ballistic performance. In this investigation embedded manganin stress gauges have been employed to measure both the longitudinal and lateral components of stress during plate-impact experiments over a range of impact stresses. In turn, these results were used to determine the shear strength and to investigate the time dependence of lateral stress behind the shock front to give an indication of material response.

  6. Recovery in aluminium

    DEFF Research Database (Denmark)

    Gundlach, Carsten

    2006-01-01

    In the present thesis the development of a unique experimental method for volume characterisation of individual embedded crystallites down to a radius of 150 nm is presented. This method is applied to in-situ studies of recovery in aluminium. The method is an extension of 3DXRD microscopy, an X...... are represented as strings. To identify the strings a combination of a 5D connected component type algorithm and multi-peak fitting was found to be superior. The first use of the method was a study of recovery of a deformed aluminium alloy (AA1050). The aluminium alloy was deformed by cold rolling to a thickness...

  7. Study of Dissimilar Welding AA6061 Aluminium Alloy and AZ31B Magnesium Alloy with ER5356 Filler Using Friction Stir Welding

    Science.gov (United States)

    Mahamud, M. I. I.; Ishak, M.; Halil, A. M.

    2017-09-01

    This paper is to study of dissimilar welding AA6061 aluminium alloy and AZ31B magnesium alloy with ER5356 filler using friction stir welding. 2 mm thick plates of aluminium and magnesium were used. Friction stir welding operations were performed at different rotation and travel speeds and used the fixed tilt angle which is 3°. The rotation speeds varied from 800 to 1100 rpm, and the travel speed varied from 80 to 100 mm/min. In the range rotation speed of 800 to 1000 rpm and welding speed of 80 to 100 mm/min there are no defect at the weld. Tensile test show the higher tensile strength is 198 MPa and the welding efficiency is about 76%.

  8. Evaluation of cast Ti-Fe-O-N alloys for dental applications

    International Nuclear Information System (INIS)

    Koike, Marie; Ohkubo, Chikahiro; Sato, Hideki; Fujii, Hideki; Okabe, Toru

    2005-01-01

    Good mechanical properties, biocompatibility and corrosion resistance make titanium an excellent material for biomedical applications. However, when better mechanical properties than those offered by commercially pure titanium (CPTi) are needed, Ti-6Al-4V is sometimes a good alternative. Some new titanium alloys, developed as industrial structural materials, aim at an intermediate range of strength between that of CP Ti and Ti-6Al-4V. Two of these alloys are Super-TIX800TM (Ti-1% Fe-0.35% O-0.01% N) and Super-TIX800NTM (Ti-1% Fe-0.3% O-0.04% N) (both produced by Nippon Steel Corp., Japan). Besides being stronger than CP Ti, the cost of manufacturing these alloys is reportedly lower than for Ti-6Al-4V since they do not contain any expensive elements. In addition, they are not composed of elements such as aluminum or vanadium, which have caused biocompatibility concerns in medical and dental appliances. To evaluate these alloys as candidates for dental use, it is helpful to compare them to CP Ti (ASTM Grade 2) and Ti-6Al-4V (ASTM Grade 5), which have already been employed in dentistry. We evaluated the tensile properties, mold filling capacity, corrosion characteristics and grindability of these industrial alloys prepared by investment casting. Compared to the strengths of cast CPTi, the yield strength and tensile strength of these cast alloys were more than 20% and approximately 30% higher, respectively. On the other hand, both of these properties were 30% lower than for Ti-6Al-4V. Better grindability and wear resistance were additional benefits of these new alloys for dental applications

  9. Modeling mechanical properties of cast aluminum alloy using artificial neural network

    International Nuclear Information System (INIS)

    Jokhio, M.H.; Panhwar, M.I.

    2009-01-01

    Modeling is widely used to investigate the mechanical properties of engineering materials due to increasing demand of low cost and high strength to weight ratio for many engineering applications. The aluminum casting alloys are cost competitive material and possess the desired properties. The mechanical properties largely depend upon composition of alloys and their processing method. Alloy design involves controlling mechanical properties via optimization of the composition and processing parameters. For optimization the possible root is empirical modeling and its more refined version is the analysis of the wide range of data using ANN (Artificial Neural Networks) modeling. The modeling of mechanical properties of the aluminum alloys are the main objective of present work. For this purpose, some data were collected and experimentally prepared using conventional casting method. A MLP (Multilayer Perceptron) network was developed, which is trained by using the error back propagation algorithm. (author)

  10. Modelling Eutectic Growth in Unmodified and Modified Near-Eutectic Al-Si Alloy

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat; Hattel, Jesper Henri; Taylor, John A.

    2013-01-01

    growth parameters from the literature that depend on the type of modification (unmodified, Na-modified or Sr-modified) are used to describe differences in growth of the alloys. Modelling results are compared with solidification experiments where an Al-12.5wt%Si alloy was cast in unmodified, Na modified......A numerical model that describes solidification of primary aluminium grains and nucleation and growth of eutectic cells is used to analyse the solidification of an Al-12.5wt% Si alloy. Nucleation of eutectic cells is modelled using an Oldfield-type nucleation model where the number of nuclei...... and Sr modified forms. The model confirms experimental observations of how modification and alloy composition influence nucleation, growth and finally the size of eutectic cells in the alloys. Modelling results are used to explain how cooling conditions in the casting act together with the nuclei density...

  11. Modeling and Analysis of Mechanical Properties of Aluminium Alloy (A413 Processed through Squeeze Casting Route Using Artificial Neural Network Model and Statistical Technique

    Directory of Open Access Journals (Sweden)

    R. Soundararajan

    2015-01-01

    Full Text Available Artificial Neural Network (ANN approach was used for predicting and analyzing the mechanical properties of A413 aluminum alloy produced by squeeze casting route. The experiments are carried out with different controlled input variables such as squeeze pressure, die preheating temperature, and melt temperature as per Full Factorial Design (FFD. The accounted absolute process variables produce a casting with pore-free and ideal fine grain dendritic structure resulting in good mechanical properties such as hardness, ultimate tensile strength, and yield strength. As a primary objective, a feed forward back propagation ANN model has been developed with different architectures for ensuring the definiteness of the values. The developed model along with its predicted data was in good agreement with the experimental data, inferring the valuable performance of the optimal model. From the work it was ascertained that, for castings produced by squeeze casting route, the ANN is an alternative method for predicting the mechanical properties and appropriate results can be estimated rather than measured, thereby reducing the testing time and cost. As a secondary objective, quantitative and statistical analysis was performed in order to evaluate the effect of process parameters on the mechanical properties of the castings.

  12. Microstructure And Mechanical Properties Of An Al-Zn-Mg-Cu Alloy Produced By Gravity Casting Process

    Directory of Open Access Journals (Sweden)

    Saikawa S.

    2015-06-01

    Full Text Available High-strength aluminum alloy are widely used for structural components in aerospace, transportation and racing car applications. The objective of this study is to enhance the strength of the Al-Zn-Mg-Cu alloy used for gravity casting process. All alloys cast into stepped-form sand mold (Sand-mold Casting; SC and Y-block shaped metal mold(Permanent mold Casting; PC C and then two –step aged at 398-423 K after solution treated at 743 K for 36 ks. The tensile strength and total elongation of the two-step aged SC alloys were 353-387 MPa and about 0.4% respectively. This low tensile properties of the SC alloys might be caused by remaining of undissolved crystallized phase such as Al2CuM, MgZn2 and Al-Fe-Cu system compounds. However, good tensile properties were obtained from PC alloys, tensile strength and 0.2% proof stress and elongation were 503-537 MPa, 474-519 MPa and 1.3-3.3%.

  13. Identification of a cast iron alloy containing nonstrategic elements

    Science.gov (United States)

    Cooper, C. V.; Anton, D. L.; Lemkey, F. D.; Nowotny, H.; Bailey, R. S.; Favrow, L. H.; Smeggil, J. G.; Snow, D. B.

    1989-01-01

    A program was performed to address the mechanical and environmental needs of Stirling engine heater head and regenerator housing components, while reducing the dependence on strategic materials. An alloy was developed which contained no strategic elemental additions per se. The base is iron with additions of manganese, molybdenum, carbon, silicon, niobium, and ferro-chromium. Such an alloy should be producible on a large scale at very low cost. The resulting alloy, designated as NASAUT 4G-Al, contained 15 Mn, 15 Cr, 2 Mo, 1.5 C, 1.0 Si, 1.0 Nb (in weight percent) with a balance of Fe. This alloy was optimized for chemistry, based upon tensile strength, creep-rupture strength, fracture behavior, and fatigue resistance up to 800 C. Alloys were also tested for environmental compatibility. The microstructure and mechanic properties (including hardness) were assessed in the as-cast condition and following several heat treatments, including one designed to simulate a required braze cycle. The alloy was fabricated and characterized in the form of both equiaxed and columnar-grained castings. The columnar grains were produced by directional solidification, and the properties were characterized in both the longitudinal and transverse orientations. The NASAUT 4G-Al alloy was found to be good in cyclic-oxidation resistance and excellent in both hydrogen and hot-corrosion resistance, especially in comparison to the baseline XF-818 alloy. The mechanical properties of yield strength, stress-rupture life, high-cycle-fatigue resistance, and low-cycle-fatigue resistance were good to excellent in comparison to the current alloy for this application, HS-31 (X-40), with precise results depending in a complex manner on grain orientation and temperature. If required, the ductility could be improved by lowering the carbon content.

  14. Oxidation of an aluminium-magnesium alloy in liquid state. Methodology of determination of mechanisms from not necessarily repeatable experiments

    International Nuclear Information System (INIS)

    Surla, Karine

    1998-01-01

    This research thesis reports the study of the oxidation of an aluminium-5 pc magnesium alloy in its liquid state in an oxygen environment, using thermogravimetric analysis and that of magnesium in its solid state. In a first part, the author reports a thermodynamic and bibliographical study on magnesium transformation in its solid state (Mg/O 2 and Mg/H 2 O systems, transformation with dry and humid synthetic air, oxidation inhibitors) and on Al-Mg alloy transformation in presence of oxygen (thermodynamic properties of aluminium-rich Al-Mg alloys, Al-Mg/O 2 /N 2 and Al-Mg/O 2 /N 2 /H 2 O systems). The next parts address the selection of reaction systems for the different cases (oxidation of solid magnesium in oxygen, oxidation of the Al-Mg alloy in oxygen), the modelling of the formation of magnesia from solid magnesium and from the Al-Mg alloy, and the modelling of the liquid Al-Mg A5182 alloy oxidation in oxygen [fr

  15. Application of a grain refiner and modifier to an Al-12 Si cast alloy

    International Nuclear Information System (INIS)

    Haro R, Sergio; Goytia R, Rafael E; Santos B, Audel; Dwivedi, D.K

    2008-01-01

    The refining and modification of an alloy of cast aluminum Al-12Si was studied, using sample alloys of Al-5Ti-1B as a refiner and Al-10Sr as a modifier. Two levels of each one were tested and added separately. The results show that the addition of titanium as well as of strontium favored the improvement of the tension properties of the cast Al-12Si alloy, by modifying the microstructure. But the addition of 0.06% Sr in the form of a master alloy produced a more adequate microstructure and presented the best combination of mechanical properties (au)

  16. Study of the Fatigue Life and Weight Optimization of an Automobile Aluminium Alloy Part under Random Road Excitation

    Directory of Open Access Journals (Sweden)

    A. Saoudi

    2010-01-01

    Full Text Available Weight optimization of aluminium alloy automobile parts reduces their weight while maintaining their natural frequency away from the frequency range of the power spectral density (PSD that describes the roadway profile. We present our algorithm developed to optimize the weight of an aluminium alloy sample relative to its fatigue life. This new method reduces calculation time; It takes into account the multipoint excitation signal shifted in time, giving a tangle of the constraint signals of the material mesh elements; It also reduces programming costs. We model an aluminium alloy lower vehicle suspension arm under real conditions. The natural frequencies of the part are inversely proportional to the mass and proportional to flexural stiffness, and assumed to be invariable during the process of optimization. The objective function developed in this study is linked directly to the notion of fatigue. The method identifies elements that have less than 10% of the fatigue life of the part's critical element. We achieved a weight loss of 5 to 11% by removing the identified elements following the first iteration.

  17. Numerical analysis of heat treatment of TiCN coated AA7075 aluminium alloy

    Science.gov (United States)

    Srinath, M. K.; Prasad, M. S. Ganesha

    2018-04-01

    The Numerical analysis of heat treatments of TiCN coated AA7075 aluminium alloys is presented in this paper. The Convection-Diffusion-Reaction (CDR) equation with solutions in the Streamlined-Upward Petrov-Galerkin (SUPG) method for different parameters is provided for the understanding of the process. An experimental process to improve the surface properties of AA-7075 aluminium alloy was attempted through the coatings of TiCN and subsequent heat treatments. From the experimental process, optimized temperature and time was obtained which gave the maximum surface hardness and corrosion resistance. The paper gives an understanding and use of the CDR equation for application of the process. Expression to determine convection, diffusion and reaction parameters are provided which is used to obtain the overall expression of the heat treatment process. With the substitution of the optimized temperature and time, the governing equation may be obtained. Additionally, the total energy consumed during the heat treatment process is also developed to give a mathematical formulation of the energy consumed.

  18. Development of casting investment preventing blackening of noble metal alloys part 1. Application of developed investment for Ag-Pd-Cu-Au alloy.

    Science.gov (United States)

    Kakuta, Kiyoshi; Nakai, Akira; Goto, Shin-ichi; Wakamatsu, Yasushi; Yara, Atushi; Miyagawa, Yukio; Ogura, Hideo

    2003-03-01

    The objective of this study is to develop a casting investment that prevents the blackening of the cast surface of noble metal alloys. The experimental investments were prepared using a gypsum-bonded investment in which the metallic powders such as boron (B), silicon (Si), aluminum (Al) and titanium (Ti) were added as oxidizing agents. An Ag-Pd-Cu-Au alloy was cast into the mold made of the prepared investment. The effect of the addition of each metal powder was evaluated from the color difference between the as-cast surface and the polished surface of the cast specimen. The color of the as-cast surface approached that of the polished surface with increasing B and Al content. A lower mean value in the color difference was obtained at 0.25-1.00 mass% B content. B and Al are useful as an additive in a gypsum-bonded investment to prevent the blackening of an Ag-Pd-Cu-Au alloy. The effects of Si and Ti powder addition could not be found.

  19. Effect of molybdenum addition on aluminium grain refined by titanium on its metallurgical and mechanical characteristics in the as cast condition and after pressing by the equal angular channel process

    International Nuclear Information System (INIS)

    Zaid, A. I. O.; Atieh, A. M.

    2013-01-01

    Aluminium and its alloys are versatile materials which are widely used in industrial and engineering applications due to their attractive characteristics. However, they solidify in columnar structure which tends to reduce their surface quality and mechanical strength. It is therefore, grain refined by grain refiners i.e. titanium or titanium+boron. The equal angular channel pressing, ECAP, process is a recent method for producing severe plastic deformation in materials. In this research work, the effect of addition of molybdenum either alone or in the presence of titanium to commercially pure aluminium on microstructure and mechanical behaviour is investigated in two conditions; first, in the as cast condition, and second after pressing by the ECAP process at room temperature. It was found that addition of Ti alone at a rate of 0.15 percentage weight to commercially pure Al resulted in grain refining of microstructure and a grain size of 91 meu m was obtained. However, after pressing by the ECAP process further refinement was achieved and the grain size was reduced to 18 meu m. Addition of Mo alone to aluminium at a rate of 0.1 percentage resulted in grain size of 76 meu m in the as cast condition and 32 meu m after pressing by the ECAP process. The combination of the two elements Ti and Mo together resulted in 48 meu m grain size in the as cast condition, compared to 40 meu m after pressing by the ECAP process. Furthermore, it was found that in the as cast condition: addition of Ti alone to Al resulted in enhancement of its mechanical behaviour by an increase of 5.2 percentage increase in its flow stress at 20 percentage true strain, whereas addition of Mo either alone or in the presence of Ti resulted in decrease of its flow stress at 20 percentage by 9 percentage and 5.6 percentage respectively. However, after pressing by ECAP: it was found that addition of Ti or Mo either alone or together to Al resulted in increase of its flow stress at 20 percentage strain by

  20. Effect of molybdenum addition on aluminium grain refined by titanium on its metallurgical and mechanical characteristics in the as cast condition and after pressing by the equal angular channel process

    International Nuclear Information System (INIS)

    Zaid, A I O; Atieh, A M

    2014-01-01

    Aluminium and its alloys are versatile materials which are widely used in industrial and engineering applications due to their attractive characteristics. However, they solidify in columnar structure which tends to reduce their surface quality and mechanical strength. It is therefore, grain refined by grain refiners i.e. titanium or titanium+boron. The equal angular channel pressing, ECAP, process is a recent method for producing severe plastic deformation in materials. In this research work, the effect of addition of molybdenum either alone or in the presence of titanium to commercially pure aluminium on microstructure and mechanical behaviour is investigated in two conditions; first, in the as cast condition, and second after pressing by the ECAP process at room temperature. It was found that addition of Ti alone at a rate of 0.15% weight to commercially pure Al resulted in grain refining of microstructure and a grain size of 91μm was obtained. However, after pressing by the ECAP process further refinement was achieved and the grain size was reduced to 18μm. Addition of Mo alone to aluminium at a rate of 0.1% resulted in grain size of 76μm in the as cast condition and 32μm after pressing by the ECAP process. The combination of the two elements Ti and Mo together resulted in 48μm grain size in the as cast condition, compared to 40μm after pressing by the ECAP process. Furthermore, it was found that in the as cast condition: addition of Ti alone to Al resulted in enhancement of its mechanical behaviour by an increase of 5.2% increase in its flow stress at 20% true strain, whereas addition of Mo either alone or in the presence of Ti resulted in decrease of its flow stress at 20% by 9% and 5.6% respectively. However, after pressing by ECAP: it was found that addition of Ti or Mo either alone or together to Al resulted in increase of its flow stress at 20 % strain by the following percentages 5.49, 4.74 and 10.3% respectively

  1. Observations of a Cast Cu-Cr-Zr Alloy

    Science.gov (United States)

    Ellis, David L.

    2006-01-01

    Prior work has demonstrated that Cu-Cr-Nb alloys have considerable advantages over the copper alloys currently used in regeneratively cooled rocket engine liners. Observations indicated that Zr and Nb have similar chemical properties and form very similar compounds. Glazov and Zakharov et al. reported the presence of Cr2Zr in Cu-Cr-Zr alloys with up to 3.5 wt% Cr and Zr though Zeng et al. calculated that Cr2Zr could not exist in a ternary Cu-Cr-Zr alloy. A cast Cu-6.15 wt% Cr-5.25 wt% Zr alloy was examined to determine if the microstructure developed would be similar to GRCop-84 (Cu-6.65 wt% Cr-5.85 wt% Nb). It was observed that the Cu-Cr-Zr system did not form any Cr2Zr even after a thermal exposure at 875 C for 176.5 h. Instead the alloy consisted of three phases: Cu, Cu5Zr, and Cr.

  2. Experimental wear behavioral studies of as-cast and 5 hr homogenized Al25Mg2Si2Cu4Ni alloy at constant load based on taguchi method

    Science.gov (United States)

    Harlapur, M. D.; Mallapur, D. G.; Udupa, K. Rajendra

    2018-04-01

    In the present study, an experimental study of the volumetric wear behaviour of Aluminium (Al-25Mg2Si2Cu4Ni) alloy in as cast and 5Hr homogenized with T6 heat treatment is carried out at constant load. The Pin on disc apparatus was used to carry out the sliding wear test. Taguchi method based on L-16 orthogonal array was employed to evaluate the data on the wear behavior. Signal-to-noise ratio among the objective of smaller the better and mean of means results were used. General regression model is obtained by correlation. Lastly confirmation test was completed to compose a comparison between the experimental results foreseen from the mention correlation. The mathematical model reveals the load has maximum contribution on the wear rate compared to speed. Scanning Electron Microscope was used to analyze the worn-out wear surfaces. Wear results show that 5Hr homogenized Al-25Mg2Si2Cu4Ni alloy samples with T6 treated had better volumetric wear resistance as compared to as cast samples.

  3. Microstructures of erbium modified aluminum-copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Berghof-Hasselbaecher, Ellen; Schmidt, Gerald; Galetz, Mathias; Schuetze, Michael [DECHEMA-Forschungsinstitut, Frankfurt am Main (Germany); Masset, Patrick J. [Fraunhofer UMSICHT-ATZ Entwicklungszentrum, Sulzbach-Rosenberg (Germany); Zhang, Ligang [Technische Univ. Bergakademie Freiberg (Germany). ZIK Virtuhcon; Liu, Libin; Jin, Zhanpeng [Central South Univ., Changsha, Hunan (China)

    2012-07-01

    Alloying with rare earth metals improves to the mechanical properties and corrosion resistance of aluminium base alloys at high temperatures. The rare earth metal erbium may be used for grain refinement. Within a project of computer-aided alloy development based on the CALPHAD (CALculation of PHAse Diagrams) method various alloys were melted on the Al-rich side of the ternary system Al-Cu-Er under argon atmosphere and their microstructures were characterized in the as-cast state or after long-term isothermal annealing (400 C/960 h) by means of different investigation techniques. As a result, the phases fcc (Al), {tau}{sub 1}-Al{sub 8}Cu{sub 4}Er, {theta}-CuAl{sub 2}, {eta}-CuAl, and Al{sub 3}Er were identified, their compositions and fractions were quantified, and their hardnesses were determined. The experimental obtained microstructures agree very well with the calculated solidification behaviors of the cast alloys. The knowledge gained from this work about the phase compositions and microstructures can also be utilized for the fine optimization of the phase diagram. (orig.)

  4. The evaluation of dynamic cracking resistance of chosen casting alloys in the aspect of the impact bending test

    Directory of Open Access Journals (Sweden)

    J.Sadowski

    2008-10-01

    Full Text Available The increase of quality and durability of produced casting alloys can be evaluated on the base of material tests performed on a high level. One of such modern test methods are tests of the dynamic damage process of materials and the evaluation on the base of obtained courses F(f, F(t of parameters of dynamic cracking resistance KId, JId, performed with the usage of instrumented Charpy pendulums. In the paper there was presented the evaluation of dynamic cracking resistance parameters of casting alloys such as: AK12 aluminum alloy, L20G cast steel and spheroid cast iron. The methodology of the evaluation of that parameters was described and their change as well, for the AK12 alloy with the cold work different level, L20G cast steel cooled from different temperatures in the range +20oC -60oC, and for the spheroid cast iron in different stages of treatment i.e. raw state, after normalization, spheroid annealing and graphitizing annealing.Obtained parameters of dynamic cracking resistance KId, JId of tested casting alloys enabled to define the critical value of the ad defect that can be tolerated by tested castings in different work conditions with impact loadings.

  5. Prediction of as-cast grain size of inoculated aluminum alloys melt solidified under non-isothermal conditions

    International Nuclear Information System (INIS)

    Du, Qiang; Li, Yanjun

    2015-01-01

    In this paper, a multi-scale as-cast grain size prediction model is proposed to predict as-cast grain size of inoculated aluminum alloys melt solidified under non-isothermal condition, i.e., the existence of temperature gradient. Given melt composition, inoculation and heat extraction boundary conditions, the model is able to predict maximum nucleation undercooling, cooling curve, primary phase solidification path and final as-cast grain size of binary alloys. The proposed model has been applied to two Al-Mg alloys, and comparison with laboratory and industrial solidification experimental results have been carried out. The preliminary conclusion is that the proposed model is a promising suitable microscopic model used within the multi-scale casting simulation modelling framework. (paper)

  6. Rheo-processing of semi-solid metal alloys: a new technology for manufacturing automotive and aerospace components

    CSIR Research Space (South Africa)

    Ivanchev, L

    2008-01-01

    Full Text Available The latest trend in the automotive industry to produce fuel-efficient vehicles has resulted in the increased use of aluminium and magnesium alloys. Liquid metal high pressure die-casting (HPDC) currently satisfies the bulk of the automotive industry...

  7. Study of quality of nine aluminium alloys surfaces created using abrasiv waterjet

    Czech Academy of Sciences Publication Activity Database

    Klichová, Dagmar; Klich, Jiří; Gurková, Lucie

    2016-01-01

    Roč. 2016, March 2016 (2016), s. 892-895 ISSN 1805-0476 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : abrasive waterjet * aluminium alloy * optical profilometer Subject RIV: JQ - Machines ; Tools http://www.mmscience.eu/content/file/archives/MM_Science_201608.pdf

  8. A Stochastic mesoscopic model for predicting the globular grain structure and solute redistribution in cast alloys at low superheat

    International Nuclear Information System (INIS)

    Nastac, Laurentiu; El Kaddah, Nagy

    2012-01-01

    It is well known that casting at low superheat has a strong influence on the solidification morphology and macro- and microstructures of the cast alloy. This paper describes a stochastic mesoscopic solidification model for predicting the grain structure and segregation in cast alloy at low superheat. This model was applied to predict the globular solidification morphology and size as well as solute redistribution of Al in cast Mg AZ31B alloy at superheat of 5°C produced by the Magnetic Suspension Melting (MSM) process, which is an integrated containerless induction melting and casting process. The castings produced at this low superheat have fine globular grain structure, with an average grain size of 80 μm, which is about 3 times smaller than that obtained by conventional casting techniques. The stochastic model was found to reasonably predict the observed grain structure and Al microsegregation. This makes the model a useful tool for controlling the structure of cast magnesium alloys.

  9. Prediction of deformation textures in asymmetric rolling of aluminium alloys

    OpenAIRE

    Shore, Diarmuid; Nguyen-Minh, Tuan; Kestens, Leo; Van Bael, Albert

    2015-01-01

    Asymmetric cold rolling (ASR) has been shown to have potential to improve the formability of aluminium sheet alloys in deep drawing by increasing the normal plastic anisotropy, mainly as a result of the additional shear strains it imposes and the consequent alteration of the crystallographic texture. It is generally found that the process produces shear strains that vary across the sheet thickness, resulting in heterogeneity of the texture and related properties. While it may be a typical des...

  10. Effect of pulsed current welding on fatigue behaviour of high strength aluminium alloy joints

    International Nuclear Information System (INIS)

    Balasubramanian, V.; Ravisankar, V.; Madhusudhan Reddy, G.

    2008-01-01

    High strength aluminium alloys (Al-Zn-Mg-Cu alloys) have gathered wide acceptance in the fabrication of light weight structures requiring high strength-to weight ratio, such as transportable bridge girders, military vehicles, road tankers and railway transport systems. The preferred welding processes of high strength aluminium alloy are frequently gas tungsten arc welding (GTAW) process and gas metal arc welding (GMAW) process due to their comparatively easier applicability and better economy. Weld fusion zones typically exhibit coarse columnar grains because of the prevailing thermal conditions during weld metal solidification. This often results inferior weld mechanical properties and poor resistance to hot cracking. In this investigation, an attempt has been made to refine the fusion zone grains by applying pulsed current welding technique. Rolled plates of 6 mm thickness have been used as the base material for preparing single pass welded joints. Single V butt joint configuration has been prepared for joining the plates. The filler metal used for joining the plates is AA 5356 (Al-5Mg (wt%)) grade aluminium alloy. Four different welding techniques have been used to fabricate the joints and they are: (i) continuous current GTAW (CCGTAW), (ii) pulsed current GTAW (PCGTAW), (iii) continuous current GMAW (CCGMAW) and (iv) pulsed current GMAW (PCGMAW) processes. Argon (99.99% pure) has been used as the shielding gas. Fatigue properties of the welded joints have been evaluated by conducting fatigue test using rotary bending fatigue testing machine. Current pulsing leads to relatively finer and more equi-axed grain structure in gas tungsten arc (GTA) and gas metal arc (GMA) welds. In contrast, conventional continuous current welding resulted in predominantly columnar grain structures. Grain refinement is accompanied by an increase in fatigue life and endurance limit

  11. Influence of casting defects on fatigue strength of an investment cast Ti-6Al-4V alloy

    Directory of Open Access Journals (Sweden)

    Léopold Gaëlle

    2014-06-01

    Full Text Available The influence of casting defects on fatigue strength of an investment cast Ti-6Al-4V alloy is investigated. The most common of these defects are: pinhole, linear defect and inclusion. Each of them is currently defined by its size, morphology and position from the surface but is different from each other for a same type. An experimental campaign is defined with different types of defect. The first part of the campaign is focused on the influence of an artificial and spherical defect, considering two different surface conditions. It is shown that fatigue behaviour of this alloy is very sensitive to the surface condition of this artificial defect despite stress concentrations at the tip of the defect. The second part of the campaign is focused on casting defects: reduction of fatigue life is quantified and it is shown that an electro-discharge machined defect cannot be representative of pinhole.

  12. Multiaxial fatigue of cast aluminium EN AC-42000 T6 (G-AlSi7Mg0.3 T6 for automotive safety components under constant and variable amplitude loading

    Directory of Open Access Journals (Sweden)

    C.M. Sonsino

    2016-07-01

    Full Text Available Regarding the fatigue behaviour of EN AC-42000 T6 (A 356 T6, which is the most frequently used cast aluminium alloy for automotive safety components, especially under non-proportional constant and variable normal and shear stress amplitudes with changing principal stress directions, a poor level of knowledge was available. The reported investigations show that, under non-proportional normal and shear stresses, fatigue life is increased in contrast to ductile steels where life is reduced due to changing principal stress directions. This behaviour caused by the low ductility of this alloy (e < 10% compared to quenched and tempered steels suggests the application of the Normal (Principal Stress Hypothesis (NSH. For all of the investigated stress states under multiaxial constant and variable (Gaussian spectrum amplitudes without and with mean stresses, the NSH was able to depict the life increase by the non-proportionality and delivered, for most cases, conservative but non-exaggerated results.

  13. Microstructural and thermodynamic evaluation of as-cast U-rich U-Zr alloys

    International Nuclear Information System (INIS)

    Basak, Chandrabhanu; Prasad, G.J.; Kamath, H.S.

    2009-01-01

    The present study involves evaluation of microstructures and some basic properties of as-cast uranium rich U-Zr alloys; i.e. uranium alloys containing 2wt%, 5wt%, 7wt% and 10 wt% zirconium. Microstructural evaluation, both optical and SEM, with hardness values are reported. It was shown that a definite correlation exists between the microstructure and the hardness of the alloy. Lattice parameter and densities are determined with the help of XRD analysis. Also the phase transformation mechanism is proposed based on the microstructures and XRD analysis. Thermodynamic analysis coupled with the experimental observation reveals that the lamellar structure found in the as-cast U-rich U-Zr alloys originates from the monotectoid reaction (γ→β + γ'). As Zr concentration increases in the alloy the gamma phase can remain in the metastable state even at lower T. So, with increasing Zr content the monotectoid reaction takes place at lower temperature causing generation of finer lamellae. (author)

  14. Reengineering of Permanent Mould Casting with Lean Manufacturing Methods

    Directory of Open Access Journals (Sweden)

    R. Władysiak

    2007-07-01

    Full Text Available At the work were introduced main areas of production system project of casts produced in permanent moulds, that constitutes reengineering of conventional production system according to Lean Manufacturing (LM methods. New resolution of cooling of dies with water mist was shown to casting of car wheels made from aluminium alloys in low pressure casting process. It was implemented as a part of goal-oriented project in R.H. Alurad Sp.z o.o. in Gorzyce. Its using intensifies solidification and self-cooling of casts shortening the time of casting cycle by the 30%. It was described reorganizing casting stations into multi-machines cells production and the process of their fast tool’s exchange with applying the SMED method. A project of the system was described controlling the production of the foundry with the computer aided light Kanban system. A visualization of the process was shown the production of casts with use the value stream mapping method. They proved that applying casting new method in the technology and LM methods allowed to eliminate down-times, to reduce the level of stocks, to increase the productivity and the flow of the castings production.

  15. Aluminium Alloy AA6060 surface treatment with high temperature steam containing chemical additives

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Tabrizian, Naja; Jellesen, Morten S.

    2015-01-01

    The steam treatment process was employed to produce a conversion coating on aluminium alloy AA6060. The changes in microstructure and its effect on corrosion resistance properties were investigated. Various concentrations of KMnO4 containing Ce(NO3)3 was injected into the steam and its effect...... on the formation of steam-based conversion coating was evaluated. The use of Mn-Ce into the steam resulted in incorporation of these species into the conversion coating, which resulted in improved corrosion resistance of the alloy substrate....

  16. Characteristics of Fe-28Mn-6Si-5Cr shape memory alloy produced by centrifugal casting

    International Nuclear Information System (INIS)

    Otsuka, H.; Maruyama, T.; Kubo, H.

    2000-01-01

    Recent application of ferrous shape memory alloys, particularly Fe-Mn-Si alloys as pipe joints used for a tunnel driving technique in the field of civil engineering, requires efficient production of alloy pipes. Centrifugal casting is one of the efficient manufacturing techniques which can produce suitable sizes of pipes of approximately 4 to 14 inches in outside diameter. The mechanical properties of the centrifugally cast Fe-Mn-Si shape memory alloy were investigated to have 700 MPa in tensile strength and shape recovery of ∝3% of the initial deformation. The shape recovery achieved by the centrifugally cast materials proved to be comparable to that of the rolled materials. The TEM microstructure of the centrifugally cast materials deformed necessarily in the process of shape recovery reveals random distribution of ε (hcp) bands containing many dislocations inside, whereas the structure of the rolled materials shows ε phases containing fewer dislocations. (orig.)

  17. Analysing the strength of friction stir welded dissimilar aluminium alloys using Sugeno Fuzzy model

    Science.gov (United States)

    Barath, V. R.; Vaira Vignesh, R.; Padmanaban, R.

    2018-02-01

    Friction stir welding (FSW) is a promising solid state joining technique for aluminium alloys. In this study, FSW trials were conducted on two dissimilar plates of aluminium alloy AA2024 and AA7075 by varying the tool rotation speed (TRS) and welding speed (WS). Tensile strength (TS) of the joints were measured and a Sugeno - Fuzzy model was developed to interconnect the FSW process parameters with the tensile strength. From the developed model, it was observed that the optimum heat generation at WS of 15 mm.min-1 and TRS of 1050 rpm resulted in dynamic recovery and dynamic recrystallization of the material. This refined the grains in the FSW zone and resulted in peak tensile strength among the tested specimens. Crest parabolic trend was observed in tensile strength with variation of TRS from 900 rpm to 1200 rpm and TTS from 10 mm.min-1 to 20 mm.min-1.

  18. Heat transfer modeling in asymmetrical sheet rolling of aluminium alloys with ultra high shear strain

    Directory of Open Access Journals (Sweden)

    Pesin Alexander

    2016-01-01

    Full Text Available Asymmetrical sheet rolling is a method of severe plastic deformation (SPD for production of aluminium alloys with UFG structure. Prediction of sheet temperature during SPD is important. The temperature of sheet is changed due to the conversion of mechanical work into heat through sliding on contact surfaces and high shear strain. Paper presents the results of FEM simulation of the effect of contact friction, rolling speed and rolls speed ratio on the heating of aluminium sheets during asymmetrical rolling.

  19. Evaluating the Tensile Properties of Aluminum Foundry Alloys through Reference Castings-A Review.

    Science.gov (United States)

    Anilchandra, A R; Arnberg, Lars; Bonollo, Franco; Fiorese, Elena; Timelli, Giulio

    2017-08-30

    The tensile properties of an alloy can be exploited if detrimental defects and imperfections of the casting are minimized and the microstructural characteristics are optimized through several strategies that involve die design, process management and metal treatments. This paper presents an analysis and comparison of the salient characteristics of the reference dies proposed in the literature, both in the field of pressure and gravity die-casting. The specimens produced with these reference dies, called separately poured specimens, are effective tools for the evaluation and comparison of the tensile and physical behaviors of Al-Si casting alloys. Some of the findings of the present paper have been recently developed in the frame of the European StaCast project whose results are complemented here with some more recent outcomes and a comprehensive analysis and discussion.

  20. Salvaging of service exposed cast alloy 625 cracker tubes of ammonia based Heavy Water Plants

    International Nuclear Information System (INIS)

    Kumar, Niraj; Misra, B.; Mahajan, M.P.; Mittra, J.; Sundararaman, M.; Chakravartty, J.K.

    2006-01-01

    In ammonia based heavy water plants, cracking of ammonia vapour, enriched in deuterium is carried out inside a cracker tube, packed with catalyst. These cracker tubes are made of alloy 625 (either wrought or cast) having dimensions of about 12.5 metres long, 88 mm outer diameter and 7.9 mm wall thickness. Seventy such tubes are housed in a typical ammonia cracker unit. The anticipated design life of such tube is 1,00,000 hrs. when operated at 720 degC based on creep as main degradation mechanism. Presently, these tubes are being operated at 680 degC skin temperature. Alloy 625 tubes are costly and normally not manufactured in India and are being imported. The cast alloy 625 cracker tubes have outlived their design life of 100,000 hrs. Therefore it has been decided to salvage the cast cracker tubes and extend the life further as it had already been done for wrought tubes. Similar to the earlier attempt of resolutionising of wrought alloy 625 tubes, efforts are in progress to salvage these cast tubes. In this study, cast tubes samples were subjected to solution-annealing treatment at two different temperatures, 1100degC and 1160degC respectively for two hrs. Mechanical properties along with the microstructure of the samples, which were resolutionized at 1160degC were comparable with that of virgin material. The 12.5 metres long cast alloy 625 cracker tubes will also be shortly solution-annealed in a specially designed resistance heating furnace after completing some more tests. (author)

  1. Sintered aluminium powders

    International Nuclear Information System (INIS)

    Stepanova, M.G.; Matveev, B.I.

    1974-01-01

    The mechanical and physical properties of aluminium powder alloys and the various methods employed to produce them are considered. Data are given on the hardening of the alloys SAP and SPAK-4, as well as the powder-alloy system Al-Cr-Zr. (L.M.)

  2. Effect of Al on Grain Refinement and Mechanical Properties of Mg-3Nd Casting Alloy

    Science.gov (United States)

    Wang, Lei; Feng, Yicheng; Wang, Liping; Chen, Yanhong; Guo, Erjun

    2018-05-01

    The effect of Al on the grain refinement and mechanical properties of as-cast Mg-3Nd alloy was investigated systematically by a series of microstructural analysis, solidification analysis and tensile tests. The results show that Al has an obvious refining effect on the as-cast Mg-3Nd alloy. With increasing Al content, the grain size of the as-cast Mg-3Nd alloy decreases firstly, then increases slightly after the Al content reaching 3 wt.%, and the minimum grain size of the Mg-3Nd alloy is 48 ± 4.0 μm. The refining mechanism can be attributed to the formation of Al2Nd particles, which play an important role in the heterogeneous nucleation. The strength and elongation of the Mg-3Nd alloy refined by Al also increase with increasing Al content and slightly decrease when the Al content is more than 3 wt.%, and the strengthening mechanism is attributed to the grain refinement as well as dispersed intermetallic particles. Furthermore, the microstructural thermal stability of the Mg-3Nd-3Al alloy is higher than that of the Mg-3Nd-0.5Zr alloy. Overall, the Mg-3Nd alloy with Al addition is a novel alloy with wide and potential application prospects.

  3. Laser surface alloying of aluminium with WC+Co+NiCr for improved wear resistance

    CSIR Research Space (South Africa)

    Nath, S

    2012-03-01

    Full Text Available Department of Metallurgical & Materials Engineering, IIT Kharagpur, West Bengal, India 2National Laser Centre, CSIR, Pretoria, South Africa Abstract In the present study, laser surface alloying of aluminium with WC+Co+NiCr (in the ratio of 70... be used for dispersion of ceramic materials into metallic matrix and hence, form a ceramic dispersed metal matrix composite on metallic substrate [3]. The advantages of laser surface alloying include refinement of the microstructure, uniform dispersion...

  4. Effect of scandium on structure and hardening of Al–Ca eutectic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Belov, N.A., E-mail: nikolay-belov@yandex.ru [National Research and Technological University “MISIS”, 4, Leninsky pr., Moscow 119049 (Russian Federation); Naumova, E.A. [Bauman Moscow State Technical University, 5, 2 ul. Baumanskaya, Moscow, 105005 (Russian Federation); Alabin, A.N. [National Research and Technological University “MISIS”, 4, Leninsky pr., Moscow 119049 (Russian Federation); UC RUSAL, 13/1, Nikoloyamskaya st., Moscow, 109240 (Russian Federation); Matveeva, I.A. [UC RUSAL, 13/1, Nikoloyamskaya st., Moscow, 109240 (Russian Federation)

    2015-10-15

    The phase composition, structure and hardening of alloys in the aluminium corner of the Al–Ca–Sc system were studied in the range up to 10% Ca and up to 1% S≿. The experimental study (optical, scanning and transmission electron microscopy with electron-microprobe analysis, differential thermal analysis and hardness measurements) was combined with Thermo-Calc software simulation for the optimization of the alloy composition. It was shown that only phases of the binary systems (Al{sub 4}Ca and Al{sub 3}Sc) might be in equilibrium with the aluminium solid solution. It was shown that the (Al) + Al{sub 4}Ca eutectic had a much finer structure as compared with the Al–Si eutectic, which suggests a possibility of reaching higher mechanical properties as compared to commercial alloys of the A356 type. The influence of the annealing temperature within the range up to 600 °C on the structure and hardness of the Al–Ca–Sc experimental alloys was studied. It was determined that the maximum hardening corresponded to the annealing at 300 °C, which was due to the precipitation of Al{sub 3}Sc nanoparticles with their further coarsening. With an example of an Al-7.6% Ca-0.3% Sc model experimental alloy, a principal possibility of manufacturing aluminium casting alloys based on the (Al) + Al{sub 4}Ca eutectic was demonstrated. Unlike commercial alloys of the A356 type, the model alloy does not require quenching, as hardening particles are formed in the course of annealing of casting. - Highlights: • Al–Ca–Sc phase diagram in aluminum corner. • Formation of Al{sub 3}Sc nanoparticles in eutectic (Al) + Al{sub 4}Ca during heating at 300–450 °C. • Hardening and thermal stability of proposed (Al–Ca–Sc) and commercial (Al–Si–Mg, 356 type) eutectic alloys.

  5. The effect of thermohydrogen treatment on the structure and properties of casts obtained from titanium alloys

    International Nuclear Information System (INIS)

    Il'in, A.A.; Skvortsova, S.V.; Mamonov, A.M.; Permyakova, G.V.; Kurnikov, D.A.

    2002-01-01

    The method based on the combination of high temperature gas-static and thermal hydrogen treatments is suggested to increase mechanical properties of cast pseudo-α and (α+β)-titanium alloys. The study is carried out using alloys VT20L, VT23L and alloy Ti-6%Al-2%Mo-4%Zr-2%Sn. It is shown that the method proposed provides the change in a cast structure, an increase in density of castings, an increase of strength properties by 10-20% and fatigue by a factor of 1.5-2 at satisfactory ductility and impact strength [ru

  6. Metallurgical bond between magnesium AZ91 alloy and aluminium plasma sprayed coatings

    Czech Academy of Sciences Publication Activity Database

    Kubatík, Tomáš František; Pala, Zdeněk; Neufuss, Karel; Vilémová, Monika; Mušálek, Radek; Stoulil, J.; Slepička, P.; Chráska, Tomáš

    2015-01-01

    Roč. 282, November (2015), s. 163-170 ISSN 0257-8972 R&D Projects: GA ČR(CZ) GP14-31538P Institutional support: RVO:61389021 Keywords : Plasma spraying * AZ91 magnesium alloy * Aluminium * Metallurgical bond * X-ray diffraction Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 2.139, year: 2015 http://www.sciencedirect.com/science/article/pii/S0257897215303297

  7. KS R41B. A high performance steel-aluminium composite material; KS R41B. Ein Stahl-Aluminium-Verbundwerkstoff fuer hohe Belastungen

    Energy Technology Data Exchange (ETDEWEB)

    Deicke, K. [KS Gleitlager GmbH (Germany). Bereich Metall; Matucha, H.; Schubert, W. [KS Gleitlager GmbH, St. Leon-Rot (Germany); Steffens, T. [KS Gleitlager GmbH, Neckarsulm (Germany)

    2002-08-01

    Aluminium-tin alloys have been well-known for a long time and have proved to be suitable bearing materials for crankshaft bearings for many years. The known alloy AlZn4,5SiCuPb is one of the aluminium materials capable of sustaining the highest mechanical loads. In order to achieve optimum sliding properties, it would be necessary to increase the share of the soft lead phase in the alloy. This article by KS Gleitlager GmbH shows a reasonably priced manufacturing technology for high-performance aluminium-zinc-silicon-copper alloys. (orig.) [German] Die Aluminium-Zinn-Lagerlegierungen sind seit langem bekannt und haben sich seit Jahren als Lagerwerkstoff fuer Kurbelwellenlager bewaehrt. Die Legierung AlZn4,5SiCuPb gehoert zu den mechanisch am hoechsten belastbaren Aluminium-Werkstoffen. Um optimale Gleiteigenschaften zu erzielen, muesste in der Legierung der Anteil des weichen Bleis noch weiter erhoeht werden. Dieser Beitrag der KS Gleitlager GmbH zeigt eine kostenguenstige Herstelltechnologie fuer hochbelastbare Aluminium-Zink-Silizium-Kupfer-Legierungen. (orig.)

  8. Die Casting Mold Design for Aluminum Alloy Shell of Instrument

    Directory of Open Access Journals (Sweden)

    Li Yuanyuan

    2015-01-01

    Full Text Available This paper is about die casting mold design for aluminum alloy shell of instrument. Three-dimensional model of the casting and mold are designed by using Pro/Engineer and AutoCad which can analyze forming quality. Digital design and theoretical calculation can greatly shorten product development cycle and mold design cycle, improve the accuracy of product design and mold design, and reduce the cost of mold design.

  9. Interface analysis of A1 matrix composites produced by hot isostatic pressing, squeeze casting and semi-solid processing

    International Nuclear Information System (INIS)

    Shamsul, J.B.; Zainal Arifin Ahmad; Faaizulaswad, M.S.; Azmi, R.

    2000-01-01

    The interface analysis has been carried out an aluminium based composites system produced by hot isostatic pressing, squeeze casting and semi-solid processing. A range of different fabrication techniques has been used to produce different types of microstructure of Al 2124 (Al-Cu-Mg) reinforced with 5 weight % SiC particles. Blending followed by hot isostatic pressing is used to fabricate composite I. Composite II was 6061 (Al-Si-Mg) wrought aluminium alloy reinforced with fibres of alumina-silica (V f = 0.58) and fabricated by squeeze casting. Finally, A356 (AlSi7Mg0.3) alloy was reinforced with 20 Vol.% of SiC particles (13 μm) and namely as composite III. Composite III is fabricated by semi-solid processing. Interface analysis was done by optical microscopy, scanning and transmission electron microscopy. Composite I exhibited good interface bonding and dislocation was also observed near the interface. Elements such as Al, Fe, Cr, Mn were found near the interface of composite II and intermetallic of iron rich inclusion and Mg 2 Si were observed near the interface of composite III. (Author)

  10. Technical-economic modelling of an aluminium high pressure die casting system for automotive parts fabrication

    International Nuclear Information System (INIS)

    Faura, F.

    1997-01-01

    In the present paper a technical-economic model for an aluminium high pressure die casting system has been developed. In order to obtain the necessary data for correlations utilized by the model, has been analyzed the production systems of companies that use these processes. This has allowed to determine the most important technological variables that affect to the economical aspect of the process. A computer application has been developed which allows to explore easily the influence of different system parameters. (Author) 12 refs

  11. Effects of heat treatment on the microstructure and mechanical properties of AA2618 DC cast alloy

    International Nuclear Information System (INIS)

    Elgallad, E.M.; Shen, P.; Zhang, Z.; Chen, X.-G.

    2014-01-01

    Highlights: • The microstructure and mechanical properties of AA2618 DC cast alloy were studied. • The Al 2 CuMg, Al 2 Cu, Al 7 Cu 4 Ni, Al 7 Cu 2 (Fe,Ni) and Al 9 FeNi phases were identified. • Solution treatment at 530 °C for 5 h is the optimum solution treatment. • Different combinations of strength and ductility can be achieved. • The strengthening of AA2618 DC cast alloy was caused by GPB zones and S′ phase. - Abstract: Direct chill (DC) cast ingot plates of AA2618 alloy have been increasingly used for large-mold applications in the plastics and automotive industries. The effects of different heat treatments on the microstructure and mechanical properties of AA2618 DC cast alloy were investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and hardness and tensile testing. The as-cast microstructure contained a considerable amount of coarse intermetallic phases, including Al 2 CuMg, Al 2 Cu, Al 7 Cu 4 Ni, Al 7 Cu 2 (Fe,Ni) and Al 9 FeNi, resulting in poor mechanical properties. Solution treatment at 530 °C for 5 h dissolved the first three phases into the solid solution and consequently improved the mechanical properties of the alloy. By utilizing the appropriate aging temperature and time, different combinations of strength and ductility could be obtained to fulfill the design requirements of large-mold applications. The strengthening of AA2618 DC cast alloy under the aging conditions studied was caused by GPB zones and S′ precipitates. The evolution of both precipitates in terms of their size and density was observed to have a significant effect on the mechanical properties of the alloy

  12. Corrosion inhibition of 7000 series aluminium alloys with cerium diphenyl phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Julie-Anne [Department of Materials Engineering and Australian Centre of Excellence for Electromaterials Science, Wellington Rd, Monash University, Clayton, Victoria (Australia); Markley, Tracey [Department of Materials Engineering and Australian Centre of Excellence for Electromaterials Science, Wellington Rd, Monash University, Clayton, Victoria (Australia); CSIRO, Division of Materials Science and Technology, Clayton, Victoria (Australia); Forsyth, Maria, E-mail: maria.forsyth@deakin.edu.au [Department of Materials Engineering and Australian Centre of Excellence for Electromaterials Science, Wellington Rd, Monash University, Clayton, Victoria (Australia); Howlett, Patrick C. [Department of Materials Engineering and Australian Centre of Excellence for Electromaterials Science, Wellington Rd, Monash University, Clayton, Victoria (Australia); Hinton, Bruce R.W. [Department of Materials Engineering and Australian Centre of Excellence for Electromaterials Science, Wellington Rd, Monash University, Clayton, Victoria (Australia); Defence Science and Technology Organisation, Melbourne, Victoria (Australia)

    2011-02-03

    Graphical abstract: Scanning electron micrographs of microtomed surface shows pristine surface free of corrosion related 'mud cracking' inset for an inhibited AA7050 specimen when only 150 ppm Ce(dpp)3 is present in 0.1 M NaCl solution. Display Omitted Research highlights: > The thin film of hydrolysis products of Ce(dpp)3 and aluminium oxide is proposed to cause the inhibition. > The film consists of discrete Ce rich particles and a thin film over the matrix of Ce, P and Al oxides. > Discrete deposition of Ce is specifically influenced by Cu rich intermetallics. - Abstract: Cerium diphenyl phosphate (Ce(dpp){sub 3}) has previously been shown to be a strong corrosion inhibitor for aluminium-copper magnesium alloy AA2024-T3 and AA7075 in chloride solutions. Surface characterisation including SEM and ToF-SIMS coupled with electrochemical impedance spectroscopy (EIS) measurements are used to propose a mechanism of corrosion inhibition which appears to involve the formation of a complex oxide film of aluminium and cerium also incorporating the organophosphate component. The formation of a thin complex film consisting of hydrolysis products of the Ce(dpp){sub 3} compound and aluminium oxide is proposed to lead to the observed inhibition. SEM analysis shows that some intermetallics favour the creation of thicker deposits predominantly containing cerium oxide compounds.

  13. Defects in Al casting alloy in contact with Ni coat - as the Frenkla effect

    Directory of Open Access Journals (Sweden)

    A. Patejuk

    2007-04-01

    Full Text Available The subjects of analysis of this work are the defects occurring in the contact area of aluminium and nickel. The purpose of this work was to do a model research. The research concerns the mechanism of the occurrence of the defects in the area of contact: aluminium alloy - nickel coat. The model research describes the making of joints between the above mentioned metals in the warming temperature lower than the time of melting temperature of aluminium and the time of welding. It was affirmed that these defects appear as the result of special diffusion - presented in professional literature as the Kirkendall - Frenkla. The made analysis of results allowed to define parameters and factors of pores - appearing it defined plane shifting in the line of parting between the metals. Appearing of three zones of diffusive alloy was observed in the contact area of given (examined metals. Observed phenomenon of the Frenkl porosity appeared in the area of the occurrence of the Al3Ni and Al3Ni + Al phases.

  14. Summary of structural refinement in hi-silicon aluminium piston alloy with phosphorous as grain refiner

    International Nuclear Information System (INIS)

    Malik, F.A.; Sheikh, S.T.; Choudhry, A.A.

    2003-01-01

    Aluminium Silicon Alloys are extensively used in a wide variety of applications. There are numerous variables in composition, production control, final structure which can influence the mechanical properties of Hi - Silicon Piston alloys. Hypereutectic AlSi alloys develop coarse grain primary silicon crystals, which have a strong negative effect on the tensile strength, the ductility, and the hardness. These crystals slow machining and reduce the tool life considerably. Phosphorous addition produce a fine, evenly spread crystal structure, lamellar structure of the silicon changes into a granular structure. (author)

  15. Microstructural and electrochemical characterization of environmentally friendly conversion layers on aluminium alloys

    Directory of Open Access Journals (Sweden)

    Palomino Luis Enrique M.

    2003-01-01

    Full Text Available Cerium conversion layers (CeCL have been investigated as a replacement for chromium conversion layers to protect Al alloys against corrosion. In this work the microstructure and the electrochemical behaviour of aluminium alloy 2024 with and without CeCL were investigated using, respectively, SEM-EDX and EIS. EDX results have shown that the presence of dispersed plated Cu particles on the alloy surface enhances the formation of the CeCL increasing the intensity of Ce peaks in the EDX spectra. EIS measurements on conversion-coated samples have shown that the presence of the layer increases the impedance, and that its presence is detected by the presence of a high frequency time constant. Results of potentiodynamic experiments have shown that the corrosion protection afforded by the conversion layer is due to the hindrance of the oxygen reduction reaction and that the pitting potential of the alloy is not changed.

  16. The effect of cast-to-cast variations on the quality of thin section nickel alloy welded joints

    International Nuclear Information System (INIS)

    Lambert, J.A.

    1989-02-01

    The welding behaviour of 26 commercial casts of Alloy 800 has been quantified for mechanised, autogenous, full penetration, bead-on-strip tungsten inert gas welding tests. Weld front and back widths have been measured and correlated with minor element variations. Casts with similar welding responses have been sorted into groups. The behaviour of the weld pool, surface slags and arc have been compared and a convection controlled model has been used to account for differences between the groups of casts. The main factors governing laboratory process control variability have been identified and a statistical method has been used to identify all the components of weld variance. An optimum size of welding test matrix has been proposed to determine typical cast-to-cast variations at high significance levels. (author)

  17. Precipitation processes in DC-cast AlMn(Fe,Si) alloys

    International Nuclear Information System (INIS)

    Voeroes, G.; Kovacs, I.

    1990-01-01

    The precipitation processes in DC cast Al-Mn alloys were investigated by electrical resistivity measurements. It was obtained that the addition of Fe or Fe and Si influences basically the precipitation of Mn. In pure Al-Mn alloys a phase transition like behaviour was observed at about 550 degC, which can be related to the formation of two different precipitate particles below and above this temperature

  18. PRODUCTION OF ROTARY ENGINES’ PARTS FROM ALUMINUM ALLOYS USING LOST FOAM CASTING PROCESS

    Directory of Open Access Journals (Sweden)

    E. I. Marukovich

    2018-01-01

    Full Text Available The production technology of casting details for rotary engine from the aluminum alloy АК12М2 is developed. The bulk density of expanded polystyrene to ensure the best quality of the surface of castings has been experimentally established. The lost foam casting shop was organized in the experimental department of the Institute.

  19. Refining of cast intermetallic alloy Ti - 43 % Al - X (Nb, Mo, B) microstructure using heat treatment

    International Nuclear Information System (INIS)

    Imaev, R.M.; Imaev, V.M.; Khismatullin, T.G.

    2006-01-01

    The microstructure and high temperature mechanical properties are studied in a cast alloy Ti - 43 % Al - X (Nb, Mo, B) using methods of optical and scanning electron microscopy, X ray spectrum microanalysis and differential thermal analysis. The alloy belongs to a new class of β-solidifying γ-TiAl+α 2 -Ti 3 Al alloys. The alloy is investigated as cast and after heat treatment that promotes grain refinement. Mechanical properties are determined on tensile tests at 1000 and 1100 deg C in the air [ru

  20. Circular economy: To be or not to be in a closed product loop? A Life Cycle Assessment of aluminium cans with inclusion of alloying elements

    DEFF Research Database (Denmark)

    Niero, Monia; Olsen, Stig Irving

    2016-01-01

    Packaging, representing the second largest source of aluminium scrap at global level, deserves a key role in the transition towards the circular economy. Life Cycle Assessment (LCA) of aluminium products has been typically based on one life cycle considering pure aluminium flows and neglecting...... the presence of alloying elements and impurities. However, this simplification undermines the potentials of using LCA to quantify the environmental performances of products in multiple loops, as required in the circular economy. This study aims to investigate the effects of including the actual alloy...... composition in the LCA of aluminium can production and recycling, in order to understand whether a can-to-can (i.e. closed product loop) recycling should be promoted or not. Mass balance of the main alloying elements (Mn, Si, Cu, Fe) was carried out at increasing levels of recycling rate, corresponding...

  1. Complex, Precision Cast Columbium Alloy Gas Turbine Engine Nozzles Coated to Resist Oxidation.

    Science.gov (United States)

    1980-04-01

    with the silicon powder. 7.3 Place the liner and its lid (covered with titanium sponge in the Inconel retort and seal it by TIG welding . 7.4 Leak check...DEVELOPMENT 19 3.1 Casting Process Development 19 3.1.1 Alloy Selection 19 3.1.2 Foundry Practice 21 3.1.3 Process Development 26 3.1.4 Casting...HYDRIDING TITANIUM AND VANADIUM 115 B SPRAY SLURRY PREPARATION PROCEDURE 117 C TELEDYNE WAH CHANG ALBANY COLUMBIUM AND COLUMBIUM 119 ALLOY PLATES

  2. Investigation on the microstructure and mechanical properties of a cast Mg-6Zn-5Al-4RE alloy

    International Nuclear Information System (INIS)

    Xiao Wenlong; Jia Shusheng; Wang Jun; Wang, Jianli; Wang Limin

    2008-01-01

    Mg-6Zn-5Al-4RE (RE = Mischmetal, mass%) alloy was prepared by metal mould casting method. The microstructure and mechanical properties of the as-cast and heat-treated alloys were investigated. The results show that the phase compositions of the as-cast state alloy are supersaturated solid solution α-Mg, lamellar β-Al 12 Mg 17 , polygonal Al 3 RE and cluster Al 2 REZn 2 phases. The mechanical properties, especially the ultimate tensile strength and elongation of the alloy were significantly improved by the heat treatment. Fracture surface of tensile specimens was analyzed by optical microscope and scanning electron microscope

  3. Experimental investigations of visco-plastic properties of the aluminium and tungsten alloys used in KE projectiles

    Science.gov (United States)

    Kruszka, L.; Magier, M.

    2012-08-01

    The main aim of studies on dynamic behaviour of construction materials at high strain rates is to determine the variation of mechanical properties (strength, plasticity) in function of the strain rate and temperature. On the basis of results of dynamic tests on the properties of constructional materials the constitutive models are formulated to create numerical codes applied to solve constructional problems with computer simulation methods. In the case of military applications connected with the phenomena of gunshot and terminal ballistics it's particularly important to develop a model of strength and armour penetration with KE projectile founded on reliable results of dynamic experiments and constituting the base for further analyses and optimization of projectile designs in order to achieve required penetration depth. Static and dynamic results of strength investigations of the EN AW-7012 aluminium alloy (sabot) and tungsten alloy (penetrator) are discussed in this paper. Static testing was carried out with the INSTRON testing machine. Dynamic tests have been conducted using the split Hopkinson pressure bars technique at strain rates up to 1,2 ṡ 104s-1 (for aluminium alloy) and 6 ṡ 103s-1 (for tungsten alloy).

  4. Experimental investigations of visco-plastic properties of the aluminium and tungsten alloys used in KE projectiles

    Directory of Open Access Journals (Sweden)

    Magier M.

    2012-08-01

    Full Text Available The main aim of studies on dynamic behaviour of construction materials at high strain rates is to determine the variation of mechanical properties (strength, plasticity in function of the strain rate and temperature. On the basis of results of dynamic tests on the properties of constructional materials the constitutive models are formulated to create numerical codes applied to solve constructional problems with computer simulation methods. In the case of military applications connected with the phenomena of gunshot and terminal ballistics it’s particularly important to develop a model of strength and armour penetration with KE projectile founded on reliable results of dynamic experiments and constituting the base for further analyses and optimization of projectile designs in order to achieve required penetration depth. Static and dynamic results of strength investigations of the EN AW-7012 aluminium alloy (sabot and tungsten alloy (penetrator are discussed in this paper. Static testing was carried out with the INSTRON testing machine. Dynamic tests have been conducted using the split Hopkinson pressure bars technique at strain rates up to 1,2 ⋅ 104s−1 (for aluminium alloy and 6 ⋅ 103s−1 (for tungsten alloy.

  5. Modeling Dynamic Anisotropic Behaviour and Spall Failure in Commercial Aluminium Alloys AA7010

    Science.gov (United States)

    Mohd Nor, M. K.; Ma'at, N.; Ho, C. S.

    2018-04-01

    This paper presents a finite strain constitutive model to predict a complex elastoplastic deformation behaviour involves very high pressures and shockwaves in orthotropic materials of aluminium alloys. The previous published constitutive model is used as a reference to start the development in this work. The proposed formulation that used a new definition of Mandel stress tensor to define Hill's yield criterion and a new shock equation of state (EOS) of the generalised orthotropic pressure is further enhanced with Grady spall failure model to closely predict shockwave propagation and spall failure in the chosen commercial aluminium alloy. This hyperelastic-plastic constitutive model is implemented as a new material model in the Lawrence Livermore National Laboratory (LLNL)-DYNA3D code of UTHM's version, named Material Type 92 (Mat92). The implementations of a new EOS of the generalised orthotropic pressure including the spall failure are also discussed in this paper. The capability of the proposed constitutive model to capture the complex behaviour of the selected material is validated against range of Plate Impact Test data at 234, 450 and 895 ms-1 impact velocities.

  6. Thermal and microstructural analysis of an aluminium A356 alloy solidified by magnetic agitation

    International Nuclear Information System (INIS)

    Bustos, O; Ordonez, S; Jarami, Dario; Colas, R

    2008-01-01

    A magnetic agitation device was designed using a permanently rotating magnetic field, in order to study the effect of applying a variable magnetic field to agitate cast metals during the solidification process. The procedure used to verify the machine's functioning involved smelting and casting a predefined amount of A356 alloy in the device with and without the application of the magnetic field and then characterizing the material obtained with standard procedures of metallographic analysis. The results obtained show that the application of a permanently rotating magnetic field produces a destruction of the cast dendritic structure. This is explained by the fact that a magnetic field that varies over time induces a f.e.m. in a fluid conductor that becomes an increased convective transport through the Lorentz force. This work also studied the kinetics of solidification. The alloy was heated to 680 o C and was cast in molds preheated to 200 o C. Tests were carried out with and without the application of magnetic agitation. The cooling curves were recorded to evaluate the effect of the magnetic agitation on the alloy's form of solidification. The thermal analysis of the cooling curves shows a decrease in the temperatures under which the formation of dendrites from the primary phase as well as from the eutectic Al-Si phase begins when a magnetic field is imposed. A series of intermetallic AlFeSi type compounds appear in these alloys, which display noticeable refining and redistribution from the magnetic agitation (au)

  7. The effect of α-alumina particles on the properties of EN AC-44200 Al alloy based composite materials

    OpenAIRE

    J.W. Kaczmar; A. Kurzawa

    2012-01-01

    Purpose: The unreinforced EN AC-44200 aluminium alloy is characterized by the medium mechanical properties and the purpose of performed investigations was improvement of mechanical properties of this alloy by introducing stable ceramic α-alumina particles.Design/methodology/approach: The composite materials were manufactured by squeeze casting of porous ceramic preforms characterized by the open porosities of 90%, 80%, 70% and 60% with the liquid EN AC- 44200 aluminum alloy. The composite mat...

  8. The fracture of boron fibre-reinforced 6061 aluminium alloy

    Science.gov (United States)

    Wright, M. A.; Welch, D.; Jollay, J.

    1979-01-01

    The fracture of 6061 aluminium alloy reinforced with unidirectional and cross-plied 0/90 deg, 0/90/+ or - 45 deg boron fibres has been investigated. The results have been described in terms of a critical stress intensity, K(Q). Critical stress intensity factors were obtained by substituting the failure stress and the initial crack length into the appropriate expression for K(Q). Values were obtained that depended on the dimensions of the specimens. It was therefore concluded that, for the size of specimen tested, the values of K(Q) did not reflect any basic materials property.

  9. Effect of the temperature and the chlorine pressure, over the aluminium chlorides obtained by direct chlorination of the 6061 alloy

    International Nuclear Information System (INIS)

    Alvarez, Fabiola J.; Bohe, Ana E.; Pasquevich, Daniel M.

    2003-01-01

    The aluminium chloride is synthesized by direct chlorination of aluminium, in agreement with the following reaction: Al(s) + 3/2 Cl 2 AlCl 3 (s,g).The present work focuses on the preparation of aluminium chlorides by two methods: (a) Chlorination of 6061 aluminium alloy with gaseous chlorine in sealed containers, filled with different pressures of gas, from 0.8 to 74 Kpa and in the range of temperature between 200 0 and 500 0 C.(b) Chlorination of the same alloy in chlorine flow between 150 0 and 400 0 C.In the sealed systems, the hexahydrated aluminium trichloride predominated over the anhydrous form. For pressures lower than 14 Kpa and temperatures under 250 0 C, the chloride didn't appear.The residues were rich in aluminium, chlorine and magnesium.In the other systems, the anhydrous chloride was found in the areas of the reactor of temperatures above 100 0 C, for all the thermal treatments. The waste was composed by CrCl 3 and AlCl 3 .6H 2 O.The influence of the chlorine pressures and the heating temperature over the characteristics of the product, was studied.The characterization techniques were x-ray diffraction and energy dispersive spectroscopy, and the evolution of the structure was followed by scanning electron microscopy

  10. Fabrication, microstructural characterization and wear characteristics of A380 alloy-alumina composites

    KAUST Repository

    Nurani, Sheikh Jaber

    2016-03-10

    To obtain better mechanical and tribological properties than aluminium alloys aluminium is reinforced with alumina particles making aluminium metal matrix composites. In this work scrap piston A380 alloy was used as the matrix alloy. Alumina particles were added by 5%, 10% and 15% into matrix alloy respectively to form desired composites by stir casting technique. Pin on disc wear testing machine with counter surface as steel disc of hardness HRC 32 and surface roughness of 0.62 μm was used to conduct the wear test. In result composites showed superior wear resistance property over A380 alloy. The effect of load, sliding speed and sliding distance on wear behaviour were also examined in this study. Wear mechanism was identified from the worn surface. Both optical and scanning electron microscope (SEM) of the composites was performed to determine the microstructures. Optical micrograph shows grain size decreases with addition of alumina particles. EDS analysis was performed to confirm the presence of α-Al matrix, primary Si particles and intermetallic. As a general method, phase compositions were analyzed by using a scanning electron microscope (SEM) equipped with an energy dispersive spectroscopy (EDS). Optical microstructures were consistent with the SEM micrographs. © 2015 IEEE.

  11. Thermodynamic analysis of as-cast and heat-treated microstructures of Mg-Ce-Nd alloys

    International Nuclear Information System (INIS)

    Groebner, Joachim; Kozlov, Artem; Schmid-Fetzer, Rainer; Easton, Mark A.; Zhu Suming; Gibson, Mark A.; Nie, Jian-Feng

    2011-01-01

    Alloys based on Mg-rare earth (RE) systems are of increasing technical interest in automotive powertrain applications due to their superior elevated temperature creep resistance. However, there is a deficiency in the literature of phase diagrams of multi-component RE systems that could assist alloy development and composition refinement for enhanced property optimization. The phase relationships in the Mg-rich corner of the Mg-Ce-Nd system have been investigated through the evaluation of selected compositions in the as-cast and heat-treated condition. Consistent thermodynamic CALPHAD-type assessments have also been generated for the Mg-Ce-Nd system. It is shown that this system reveals a significant degree of metastability under technologically significant solidification conditions (i.e. permanent-mould or high-pressure die casting). This is simulated in thermodynamic calculations by suppression of the RE 5 Mg 41 phase and reasonable agreement is found with the as-cast microstructures. After heat treatment these microstructures transform, depending on the alloy composition, into phase assemblies consistent with the calculated stable equilibrium phase diagram. It is the elucidation of such metastable phase formation and the subsequent transformation from the as-cast to the heat-treated state that is a particular strength of the thermodynamic approach and which makes it a powerful tool for alloy development.

  12. Thermodynamic analysis of as-cast and heat-treated microstructures of Mg-Ce-Nd alloys

    Energy Technology Data Exchange (ETDEWEB)

    Groebner, Joachim; Kozlov, Artem [Institute of Metallurgy, Clausthal University of Technology, Robert-Koch-Str. 42, D-38678 Clausthal-Zellerfeld (Germany); Schmid-Fetzer, Rainer, E-mail: schmid-fetzer@tu-clausthal.de [Institute of Metallurgy, Clausthal University of Technology, Robert-Koch-Str. 42, D-38678 Clausthal-Zellerfeld (Germany); Easton, Mark A.; Zhu Suming [CAST CRC, Department of Materials Engineering, Monash University, Victoria 3800 (Australia); Gibson, Mark A. [CAST CRC, CSIRO Process Science and Engineering, Clayton, Victoria 3169 (Australia); Nie, Jian-Feng [CAST CRC, Department of Materials Engineering, Monash University, Victoria 3800 (Australia)

    2011-01-15

    Alloys based on Mg-rare earth (RE) systems are of increasing technical interest in automotive powertrain applications due to their superior elevated temperature creep resistance. However, there is a deficiency in the literature of phase diagrams of multi-component RE systems that could assist alloy development and composition refinement for enhanced property optimization. The phase relationships in the Mg-rich corner of the Mg-Ce-Nd system have been investigated through the evaluation of selected compositions in the as-cast and heat-treated condition. Consistent thermodynamic CALPHAD-type assessments have also been generated for the Mg-Ce-Nd system. It is shown that this system reveals a significant degree of metastability under technologically significant solidification conditions (i.e. permanent-mould or high-pressure die casting). This is simulated in thermodynamic calculations by suppression of the RE{sub 5}Mg{sub 41} phase and reasonable agreement is found with the as-cast microstructures. After heat treatment these microstructures transform, depending on the alloy composition, into phase assemblies consistent with the calculated stable equilibrium phase diagram. It is the elucidation of such metastable phase formation and the subsequent transformation from the as-cast to the heat-treated state that is a particular strength of the thermodynamic approach and which makes it a powerful tool for alloy development.

  13. Damping Properties vs. Structure Fineness of the High-zinc Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    W.K. Krajewski

    2012-09-01

    Full Text Available The subject of this study is the presentation of relation between the degree of structure fineness and ultrasonic wave dampingcoefficient for the high-zinc aluminium alloys represented in this study by the sand mould cast alloy Al - 20 wt% Zn (AlZn20. Thestudied alloy was refined with a modifying (Al,Zn-Ti3 ternary master alloy, introducing Ti in the amount of 400 pm into metal. Based on the analysis of the initial and modified alloy macrostructure images and ultrasonic testing, it was found that the addition of (Al,Zn-Ti3 master alloy, alongside a significant fragmentation of grains, does not reduce the coefficient of ultrasonic waves with a frequency of 1 MHz.

  14. Production of A356 aluminum alloy wheels by thixo-forging combined with a low superheat casting process

    Directory of Open Access Journals (Sweden)

    Wang Shuncheng

    2013-09-01

    Full Text Available The A356 aluminum alloy wheels were produced by thixo-forging combined with a low superheat casting process. The as-cast microstructure, microstructure evolution during reheating and the mechanical properties of thixo-forged wheels made from the A356 aluminum alloy were studied. The results show that the A356 aluminum alloy round billet with fine, uniform and non-dendritic grains can be obtained when the melt is cast at 635 篊. When the round billet is reheated at 600 篊 for 60 min, the non-dendritic grains are changed into spherical ones and the round billet can be easily thixo-forged into wheels. The tensile strength, yield strength and elongation of the thixo-forged wheels with T6 heat treatment are 327.6 MPa, 228.3 MPa and 7.8%, respectively, which are higher than those of a cast wheel. It is suggested that the thixo-forging combined with the low superheat casting process is an effective technique to produce aluminum alloy wheels with high mechanical properties.

  15. Effects of microstructures on low cycle fatigue behavior in Al-Si-Mg cast alloys

    International Nuclear Information System (INIS)

    Han, Sang Won; Kim, Sug Won

    2002-01-01

    Low cycle fatigue tests were carried out using four kinds of Al-7%Si-0.4Mg cast alloys, i.e., two kinds of sand mold casts, permanent mold cast and semi-solid die cast. They were heat-treated in the condition of under aging and over aging to investigate effects of precipitates on fatigue. All tests were conducted under axial plastic strain amplitude control. Stress level of cyclic hardening curves increased sensitively with needle like eutectic Si particle, refine grain size and dendrite arm spacing (DAS). In particular, the refined grain structure of under aged matrix was more effective encourager for cyclic hardening compared with DAS and eutectic Si particle size. After rapid increase in cyclic hardening during several number of cycles, the stress amplitude kept increasing steadily until fracture in under aged alloys strengthened by shearable G.P. zone. On the other hand, over aged alloys strengthened by non-shearable β ' precipitates generated more drastic initial hardening and the stress amplitude reached the saturation state in quite early stage of the fatigue

  16. Linear thermal expansion coefficient of cast Fe-Ni invar and Fe-Ni-Co superinvar alloys

    International Nuclear Information System (INIS)

    Ogorodnikova, O.M.; Chermenskaya, E.V.; Rabinovich, S.V.; Grachev, S.V.

    1999-01-01

    Cast invar alloys Fe-Ni (28-35 wt. % Ni) are investigated using metallography, dilatometry and X-ray methods as soon as the crystallization is completed and again after low-temperature treatment resulting in martensitic transformation in low nickel alloys. Nickel distribution in a cast superinvar Fe-32% Ni-4% Co is studied by means of X-ray spectrum microanalysis. The results obtained permit the correction of model concepts about cast invars and the estimate of a coefficient of linear expansion depending on phase composition and nickel microsegregation [ru

  17. Aging temperature and abrasive wear behaviour of cast Al-(4%, 12%, 20%)Si-0.3% Mg alloys

    International Nuclear Information System (INIS)

    Shah, K.B.; Kumar, Sandeep; Dwivedi, D.K.

    2007-01-01

    In the present paper, influence of aging temperature during artificial age hardening treatment (T 6 ) of cast Al-(4, 12, 20%)Si-0.3% Mg on abrasive wear behaviour has been reported. Alloys were prepared by controlled melting and casting. Cast alloys were given age hardening treatment having sequence of solutionizing, quenching and artificial aging. All the alloys were solutionized at 510 deg. C for 8 h followed by water quenching (30 deg. C) and aging hardening at 150, 170, 190, 210 and 230 deg. C for 12 h. Abrasive wear tests were conducted against of 320 grade SiC abrasive medium at 5 and 10 N normal loads. It was observed that the silicon content and aging temperature significantly affect the wear resistance. Increase in aging temperature improves the wear resistance. Hypereutectic alloy showed better wear resistance than the eutectic alloy under identical conditions. Optical microstructure study of alloys under investigation has shown that cast dendritic structure is destroyed besides the spheroidization of eutectic silicon crystals after the heat treatment. The extent of change in structure depends on aging temperature. Scanning electron microscopy (SEM) of wear surface was carried to analyze the wear mechanism

  18. Squeeze Casting Method Of AI-Si Alloy For Piston Material

    International Nuclear Information System (INIS)

    Wagiyo, H.; Dani, Muhammad; Sulistioso, G.S.; Pardede, Elman; Handayani, Ari; Teguh, Yulius S.P.P.

    2001-01-01

    The AI-Si alloy is an alloy used as piston material. This alloys could be as AI-Si hypereutectic alloy (Si content more than 12.5 % wt.), as AI-Si eutectic alloy (Si cuntent 12.5 % wt, and as AI-Si hypoeutectic alloy (Si content less than 12.5 % wt.). The synthesize of AI-Si alloy piston generally using the technique of gravity casting in a dies. This method is causing high porousity. By using the squeeze technique, amount ofporousity in AI-Si alloy is possibly reduced and the density of this alloy should be higher. The other factors such as alloying elements of AI-Si alloy (Mg. Cu, Zn) would increase the mechanical properties especially the hardness. The focuses of this research are the microstructure and the maximum hardness during the heat treatment of AI-Si alloy which was added by alloying elments. The result of hardness at test shows the maximum hardness at 94.7 kg/mm 2 obtained at aging temperature of 210 o C for hours with homogenous dendritic microstructure

  19. Cold forming of aluminium - State of the art

    DEFF Research Database (Denmark)

    Bay, Niels

    1997-01-01

    The ongoing development of cold forging technology has been manifested lately by the increasing application of components in cold forged aluminium alloys. Applying precipitation hardening alloys components with great strength/weight ratio can be produced with a strength comparable...... to that of unalloyed steel. After description of the different types of alloys and their individual properties and applications, the special requirements for tool design by cold forging in aluminium is discussed. Finally, a large number of industrial examples on cold forged aluminium components are presented. (C) 1997...

  20. Emission of organic compounds from mould and core binders used for casting iron, aluminium and bronze in sand moulds

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat; Crepaz, Rudolf; Eggert, Torben

    2010-01-01

    compositions were tested. A test method that provides uniform test conditions is described. The method can be used as general test method to analyse off gasses from binders. Moulds containing a standard size casting were produced and the amount and type of organic compounds resulting from thermal degradation...... of binders was monitored when cast iron, bronze and aluminium was poured in the moulds. Binder degradation was measured by collecting off gasses in a specially designed ventilation hood at a constant flow rate. Samples were taken from the ventilation system and analysed for hydrocarbons and CO content...